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Abstract. Minimum spanning tree (MST) based clustering algorithms
have been employed successfully to detect clusters of heterogeneous na-
ture. Given a dataset of n random points, most of the MST-based clus-
tering algorithms first generate a complete graph G of the dataset and
then construct MST from G. The first step of the algorithm is the major
bottleneck which takes O(n2) time. This paper proposes two algorithms
namely MST-based clustering on K-means Graph and MST-based clus-
tering on Bi-means Graph for reducing the computational overhead. The
proposed algorithms make use of a centroid based nearest neighbor rule
to generate a partition-based Local Neighborhood Graph (LNG). We
prove that both the size and the computational time to construct the
graph (LNG) is O(n3/2), which is a O(

√
n) factor improvement over

the traditional algorithms. The approximate MST is constructed from
LNG in O(n3/2 lg n) time, which is asymptotically faster than O(n2).
The advantage of the proposed algorithms is that they do not require
any parameter setting which is a major issue in many of the nearest
neighbor finding algorithms. Experimental results demonstrate that the
computational time has been reduced significantly by maintaining the
quality of the clusters obtained from the MST.

Keywords: Clustering · MST · K-means · Bi-means · Local neighbor-
hood graph

1 Introduction

Graph-based clustering algorithms have been used extensively in cluster analysis
due to their efficient functionality in a wide range of problem domains [1][2].
Graph clustering identify similar subgraphs based on the topological properties
of the graph. Several graph construction methods have been widely studied in
the context of clustering, to name a few [10][11]. The motivation of many of
the graph learning methods is to obtain a robust and sparse affinity graph and
applying clustering algorithms such as spectral clustering on the affinity graph.

In recent years, Minimum Spanning Tree (MST) based graph clustering al-
gorithms have drawn much attention, as they are capable of identifying clusters
irrespective of their shapes and sizes [8].
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The MST-based clustering method comprises of the following steps [3]:

1. Given a set of points, compute pairwise dissimilarity matrix which defines
the adjacency matrix of the graph G.

2. Construct MST of G.

3. Remove the inconsistent edges until the required number of connected com-
ponents are found. Each resulting component corresponds to a cluster.

Most of the previous work on MST-based clustering algorithms focuses on
improving the quality of the clusters [4][5][6][7][8]. But computational efficiency
is also an important issue to be considered. Very few algorithms were proposed
in this direction [9][12][13]. Wang et al. proposed a MST based clustering algo-
rithm using a divide-and-conquer scheme [9]. Using cut and cycle properties, the
long edges are identified at an early stage, so as to save distance computations.
However, the worst-case complexity of the algorithm remains as O(n2).

A fast approximate MST algorithm was proposed by C.Zhong et al. in [12]. By
dividing the dataset into k subsets using K-means algorithm and applying exact
MST algorithm on each of these subsets separately, they obtain approximate
MST in O(n3/2) complexity. However, the actual running time of the algorithm
and the accuracy of the MST mainly depend on the distribution of the partitions
from K-means [12].

X.Chen proposed two graph clustering algorithms namely clustering based on
a near neighbor graph (CNNG) and clustering based on a grid cell graph (CGCG)
[13]. While CNNG algorithm construct MST based on δ-nearest neighbors, the
CGCG algorithm determines the nearest neighbors by dividing the attribute
space into grid cells. The worst-case complexity of these algorithms is O(n2)
and they speed up the clustering process using multidimensional grid partition
and index searches. But the algorithms are sensitive to the parameters such as
δ-near neighbors and interval length in each dimension of grid cells [13].

Contribution. Most of the previous algorithms assume complete graph of the
dataset [7]. If we could represent the underlying structure of the dataset using
a local neighborhood graph instead of a complete graph, the cost of MST-based
clustering algorithms can be reduced. With this motivation, we present two
efficient algorithms to improve the run time overhead caused in clustering based
on MST. A centroid based nearest neighbor rule is proposed in this paper for
identifying the local neighborhood of the points. We show that the number of
edges in the local neighborhood graph generated by the proposed algorithms as
well as the cost of graph generation is O(n3/2). Also the proposed algorithms do
not require any parameters.

The rest of the paper is organized as follows. The details of the proposed
algorithms are explained in Section 2. The complexity of the proposed algorithms
is discussed in Section 3. The experimental analysis is shown in Section 4. The
conclusion and future scope are given in Section 5.
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2 Proposed Method

Let X = {x1, x2, · · · , xn} be a dataset of n d-dimensional points. A weighted
undirected graph G = (V,E) is constructed from X , where the vertex set V =
{X} and the edge set E = {(xi, xj) | xi, xjεV }. The edges are weighted using
Euclidean distance d(xi, xj). In most of the previous algorithms, as all-pair edges
are assumed, |E| = n(n− 1)/2, resulting in a complete graph.

As choosing the edges for MST comes from local neighborhood principle, the
points which are far apart are not connected by an edge in the MST. Hence an
initial edge pruning strategy is required in order to rule out the longest edges
which play no role in the construction of MST. Fig. 1 illustrates this.

(a) (b)

Fig. 1. MST connects points in the neighborhood:(a) A given dataset. (b) The points
x and y are located far apart and the distance computation between x and y is not
necessary.

In order to reduce the size of nearest neighbor search during MST construc-
tion, the proposed algorithms carry out a preliminary partition which gives us
an intuition about the approximate nearest neighbors for each point. This saves
much of the pair-wise distance computations and as a result the size of the graph
is reduced from O(n2) to O(n3/2). This is the key idea used in our proposed al-
gorithms namely MST-based clustering on K-means Graph (KMGClust) and
MST-based clustering on Bi-means Graph (BMGClust).

Let X be divided into a set of partitions S = {S1, S2, · · · , Sk}, where k is
the number of partitions. Let μi be the center of the partition Si, where 1 ≤
i ≤ k. Based on the partitions and their neighboring nature, we obtain local
neighborhood of the points. A brute-force search on distance between centers of
all pairs of partitions would easily reveal their adjacent nature. Let ωij be the
distance between centers of a pair of partitions Si and Sj . Let ω be the average
distance between centers of all such pairs. ω is computed as follows.

ω =
1

Tp

∑

SiεS

∑

SjεS

d(μi, μj)

where Tp = k × (k − 1)/2 and d(a, b) denotes the Euclidean distance between a
and b. The two partitions Si and Sj are said to be neighbors iff d(μi, μj) ≤ ω.
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With the above information, we define Local Neighborhood (LN) and Local
Neighborhood Graph (LNG) as follows.

Definition 1. [Local Neighborhood] Consider a point xiεX . Let Si be the
partition containing xi. The local neighborhood of the point xi is defined as:

LN(xi) =

{
xj , ∀xjεSi

xj , ∀xjεSj, i �= j, Si & Sj are neighboring partitions

The above definition states that the points are likely to be in the neighbor-
hood if either they belong to the the same partition or they fall in the boundary
of the two partitions. Such boundary points are recognized using the Centroid
Based Rule (CBR) which is stated as follows:

Definition 2. [Centroid Based Rule (CBR)] Let Si and Sj be any two
adjacent partitions with μSi and μSj as their centers respectively. Let xi and xj

be any two points in the dataset X , such that xiεSi and xjεSj . Let us define
Dii, Dij , Djj and Dji as: Dii = d(xi, μSi); Dij = d(xi, μSj ); Djj = d(xj , μSj);
Dji = d(xj , μSi). Then, the points xi and xj are said to be boundary points iff
(Dij ≤ 2Dii) OR (Dji ≤ 2Djj).

Definition 3. [Local neighborhood graph] GLN = (V,E) is a weighted
undirected graph, where V = {X} and E is defined as follows:

E = {(xi, xj) | xi, xjεV & (xiεLN(xj)OR xjεLN(xi))} (1)

Once the local neighborhood graph GLN is constructed with respect to the
above definition, MST can be generated from this graph. As only the points in
the closer proximity are considered in the edge set of GLN , much of the distance
computations are saved.

2.1 MST-Based Clustering on K-means Graph

The KMGClust algorithm is briefed as follows. First, the given dataset X is
divided into k partitions using K-means algorithm, where k is set to

√
n [7].

Then, the local neighborhood graphGLN is obtained by considering the points in
the neighboring partitions. Finally, the MST is constructed from GLN = (V,E).

We divide the edge set E of GLN as intra-partition edges (Eintra) and inter-
partition edges (Einter). Let S = {S1, S2, · · · , Sk} be the set of partitions pro-
duced by K-means with μi as the center of each partition Si , where 1 ≤ i ≤ k.
Each partition Si is a complete subgraph and hence each pair of points within
a partition Si will be connected by an intra-partition edge. The inter-partition
edges are computed only between the adjacent partitions so as to rule out the
comparisons between partitions which lie significantly far apart.

Once the adjacent partitions are determined, the adjoining edges are com-
puted between these partitions. The points which lie on the boundary of a parti-
tion Si will likely to have nearest neighbors from the boundary points of another
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Algorithm 1. KMGClust Algorithm.

Input: Dataset X.
Output: Approximate MST of X.

1 Partition Phase.
1.1 Divide the dataset X using K-means.
1.2 Let S be the set of partitions with μi as their respective centroids.

2 MST Generation Phase
2.1 Let GLN = (V,E) be the local neighborhood graph to be constructed, where

V = {X} and E = {φ}.
2.2 Compute intra-partition all pair-edges as follows:

For each point xj in subset Si,
For each point xk in subset Si, where j �= k,

Compute d(xj , xk) and add this edge (xj , xk) to E.
2.3 Compute inter-partition edges based on CBR as follows:

For each pair of neighboring partitions Si and Sj , where Si �= Sj,
For each pair of elements xi and xj, where xiεSi and xjεSj ,

Compute Dii, Dij ,Djj and Dji as follows:
Dii = d(xi, μSi); Dij = d(xi, μSj ); Djj = d(xj, μa); Dji = d(xj , μb)
If (Dij < 2Dii) || (Dji < 2Djj)

Compute d(xi, xj) and add this edge (xi, xj) to E.
2.4 Run Kruskal’s algorithm on the graph GLN to obtain MST.

partition Sj , where Si and Sj are adjacent partitions. The boundary points
are recognized using CBR. The details of the KMGClust algorithm is given in
Algorithm 1.

Issues with KMGCLust Algorithm. The purpose of creating an initial par-
tition of the dataset is to minimize the number of edges in the nearest neighbor
search during MST construction phase. The purpose can be achieved only if the
partitions are of approximately equal size and the inter-partition distance, the
distance between centers of the two partitions, is maximized. K-means algorithm
may not produce balanced partitions, as a consequence, the neighborhood graph
GLN tends to have more number of intra-partition edges. This is explained in
Fig. 2.

2.2 MST-Based Clustering on Bi-means Graph

As the initial centers for K-means partition are chosen randomly, the two or more
centers may collide in a nearest region. This is shown Fig. 2c with solid stars
representing the center of the partitions. In an effort to maximize the distance
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(a) (b) (c) (d)

Fig. 2. Relation between equilibrium of partition and size of graph: (a) Approximately
equal sized partitions. (b) Subgraphs of the partitions in (a). (c) An unbalanced par-
tition with colliding centers. (d) Subgraphs of the partitions in (c).

between the centers of two partitions, BMGClust algorithm makes use of Bi-
means algorithm which is a recursive bi-partitioning of the dataset with two
centers chosen in a wise manner.

The Bi-partitioning method recursively split the dataset into a binary tree of
partitions with different partitioning criteria [14]. The Bi-means algorithm used
in this paper makes use of bi-partitioning method but in a different manner.
Partitioning of the dataset continues as long as the size of the subset to be
partitioned is greater than

√
n. The subsets, which cannot be partitioned further,

are stored in the set S. The Bi-means algorithm is explained in Algorithm 2.
The local neighborhood graphGLN can be generated from the set of partitions

S returned by Bi-means Algorithm. Then, approximate MST is constructed by
applying Kruskal’s algorithm on the graph GLN . The complete steps involved
in BMGClust algorithm is described in Algorithm 3.

In the context of generating local neighborhood graph, the Bi-means algorithm
has few advantages over K-means algorithm. First, unlike K-means, the Bi-means
algorithm does not require to preset the number of initial partitions. Second, as
the centers chosen from each of partition level are widely separated, the chance
of getting colliding centers is very less.

3 Theoretical Analysis

The number of edges in the local neighborhood graph GLN = (V,E) resulting
from KMGClust and BMGClust is bounded by the relation |E| ≤ O(n3/2). Thus,
the complexity of constructing MST by KMGClust algorithm is O(n3/2 lg n),
considering the average case. The worst case of BMGClust is O(n3/2 lg n).

4 Experimental Results

In order to demonstrate the efficiency of our algorithms on various clustering
problems, we consider four types of artificial datasets as described in Table 1.
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Algorithm 2. Bi-means Algorithm.

Input: Dataset X.
Output: Binary partition tree of X.

1 n′ = |X|.
2 If n′ >

√
n

2.1 Find the center μ of the dataset X.
2.2 Choose a point oεX such that d(o, μ) is minimum.
2.3 Compute the distance from o to all other points.
2.4 Choose two centers pεX and qεX such that p is farthest from o and q is farthest

from p.
2.5 Split the dataset X into two subsets Xp and Xq according to centers p and q.
2.6 Bi-partitioning(Xp).
2.7 Bi-partitioning(Xq).

3 else Append X to the table S.
4 return S.

Algorithm 3. BMGClust Algorithm.

Input: Dataset X.
Output: Approximate MST of X.

1 Let S be the set of partitions returned by Bi-means algorithm (ref. Algorithm 2).
2 Find Intra-partition edges as in KMGClust Algorithm (ref. Algorithm 1).
3 Find Inter-partition edges as in KMGClust Algorithm (ref. Algorithm 1).
4 Run Kruskal’s algorithm on the graph GLN to obtain MST.

Experiments were conducted on a computer with an Intel Core2 Duo Processor
2GHz CPU and 2GB memory running Ubuntu Linux. We have implemented all
the algorithms on C++.

The efficiency of the proposed algorithms are assessed in terms of size of the
graph they generate, time required to construct MST and the validity of the clus-
ters obtained from the MST. For the sake of clarity, let us denote the complete
graph as CG and the clustering algorithm on the MST of CG as CGClust. Also
We denote the local neighborhood graphs generated by our proposed algorithms
KMGClust and BMGclust as KMLNG(K-means local neighborhood graph) and
BMLNG(Bi-means local neighborhood graph) respectively.

Table 2 demonstrate the experimental results of the proposed algorithms on
the datasets mentioned in Table 1. Fig.3 illustrates the comparison of time to
construct MST (T ime) from CGClust, KMGClust and BMGClust. In case of
KMGClust and BMGClust algorithms, T ime includes both the time spent in
initial partitioning and the time spent in constructing MST. It is clear from the



Fast Minimum Spanning Tree Based Clustering Algorithms 299

Table 1. Details of the Dataset: No. of points (n), No. of clusters (k)

Dataset n k Description

Data11 5000 15
Gaussian clusters

Data12 5000 15

Data21 11522 2
Half-moon clusters

Data22 11522 2

Data31 5000 2
Cluster inside another cluster

Data32 10106 2

Data41 10000 2
Well-separated clusters

Data42 10000 2

Table 2. Comparison of size of the graph (|E|), T ime to construct MST and Weight
of MST on different datasets

Dataset Method |E| T ime Weight

Data11
CGClust 12497500 25.32 2.3430e+07
KMGClust 824130 4.77 2.3859e+07
BMGClust 782189 4.33 2.3430e+07

Data12
CGClust 12497500 26.77 2.7858e+07
KMGClust 891126 15.15 2.7952e+07
BMGClust 842218 5.13 2.7858e+07

Data21
CGClust 66372481 180.3 1026.42
KMGClust 4783583 38.22 1027.2
BMGClust 1933932 24.61 1026.44

Data22
CGClust 66372481 216.9 1118.45
KMGClust 1204878 43.72 1193
BMGClust 1893911 26.83 1113.21

Data31
CGClust 12497500 26.42 156.633
KMGClust 607361 5.72 156.634
BMGClust 447691 2.87 156.633

Data32
CGClust 51060565 133.76 158.017
KMGClust 1692949 36.11 158.018
BMGClust 1341682 11.42 158.017

Data41
CGClust 49995000 135.28 10501.8
KMGClust 4792022 35.63 13782.2
BMGClust 2845821 17.41 10412.9

Data42
CGClust 49995000 134.54 9711.24
KMGClust 6118279 36.94 13501
BMGClust 1581607 16.76 9459.83

figure that the running time of the proposed algorithms is significantly smaller
as compared to CGClust.

In order to demonstrate that the local neighborhood graphs KMLNG and
BMLNG will not miss any information that is significant for clustering, we test
the performance of the clustering results on the approximate MST obtanied
from KMLNG and BMLNG using Zahn’s clustering algorithm [3]. The results



300 R. Jothi et al.

(a)

Fig. 3. Comparison of proposed algorithms

Table 3. Comparison of quality indices of clusters obtained from proposed methods
with CGClust on synthetic datasets

Dataset Method Rand Jaccard FM ARand

Data11
CGClust 0.87565 0.34796 0.58910 0.46329
KMGClust 0.90200 0.40371 0.63461 0.53074
BMGClust 0.87565 0.34796 0.58910 0.46329

Data21
CGClust 1.0000 1.0000 1.0000 1.0000
KMGClust 1.0000 1.0000 1.0000 1.0000
BMGClust 1.0000 1.0000 1.0000 1.0000

Data31
CGClust 1.0000 1.0000 1.0000 1.0000
KMGClust 1.0000 1.0000 1.0000 1.0000
BMGClust 1.0000 1.0000 1.0000 1.0000

Data41
CGClust 0.83962 0.55453 0.74447 0.61432
KMGClust 0.81266 0.48295 0.67378 0.53446
BMGClust 0.83970 0.55465 0.74455 0.61447

are validated using the external quality indices such as Rand, FM, Jaccard and
Adjusted Rand [7]. Table 3 shows the quality indices of clustering on various
datasets.

5 Conclusion

This paper proposed two efficient algorithms namely KMGClust and BMGClust
for obtaining MST in the context of clustering in a less than quadratic time. The
theocratical analysis proved that the size of the graph generated by the proposed
algorithms is bounded by O(n3/2) and thus the time for constructing MST has
been reduced, while maintaining the quality of the clusters. Experimental results
on various datasets demonstrated the efficiency of the proposed algorithms. As a
future work, we will carry out an extensive analysis of local neighborhood graph
generated by our proposed algorithms on various graph clustering algorithms.
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