
© Springer International Publishing Switzerland 2015
C.-L. Liu et al. (Eds.): GbRPR 2015, LNCS 9069, pp. 231–241, 2015.
DOI: 10.1007/978-3-319-18224-7_23

On the Influence of Node Centralities
on Graph Edit Distance for Graph Classification

Xavier Cortés, Francesc Serratosa(), and Carlos F. Moreno-García

Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
{francesc.serratosa,xavier.cortes}@urv.cat
carlosfrancisco.moreno@estudiants.urv.cat

Abstract. Classical graph approaches for pattern recognition applications rely
on computing distances between graphs in the graph domain. That is, the
distance between two graphs is obtained by directly optimizing some objective
function which consider node and edge attributes. Bipartite Graph Matching
was first published in a journal in 2009 and new versions have appeared to
speed up its runtime such as the Fast Bipartite Graph Matching. This algorithm
is based on defining a cost matrix between all nodes of both graphs and solving
the node correspondence through a linear assignment method. To construct the
matrix, several local structures can be defined from the simplest one (only the
node) to the most complex (a whole clique or eigenvector structure). In this
paper, we propose five different options and we show that the type of local
structure and the distance defined between these structures is relevant for graph
classification.

Keywords: Graph edit distance · Bipartite graph matching · Fast bipartite graph
matching · Levenshtein distance

1 Introduction1

Attributed Graphs have been of crucial importance in pattern recognition throughout
more than 3 decades [1], [2], [3], [4], [5] and [6]. If elements in pattern recognition
are modelled through attributed graphs, error-tolerant graph-matching algorithms are
needed that aim to compute a matching between nodes of two attributed graphs that
minimizes some kind of objective function. Unfortunately, the time and space
complexity to compute the minimum of these objective functions is very high. For
this reason, some graph prototyping methods have appeared with the aim of reducing
the runtime while querying a graph in a large database [7], [8], [9], [10], [11]. There
are two interesting surveys in [2] and [3] about this subject. Recently, Fast Bipartite
algorithm (FBP) [12] and Square Fast Bipartite algorithm (SFBP) [13] was presented
that solve the graph-matching problem in a similar way. They are variants of Bipartite
algorithm (BP) [14] but with a reduced runtime. The three algorithms are based on
translating the error-tolerant graph-matching problem into a linear assignation

1 This research is supported by I+D projects DPI2013-42458-P and TIN2013-47245-C2-2-R.

232 X. Cortés et al.

problem. They are composed of two steps. In the first one, a cost matrix is constructed
with the information of both graphs to be compared. Each cell of the matrix represents
the distance between a local sub-structure of one of the graphs and the local sub-
structure of the other graph. In the second one, a linear assignation algorithm is
applied to this matrix to obtain the best (sub-optimal) isomorphism between nodes of
both graphs. Several linear assignation algorithms can be used, such as [15] or [16].
Recently, a new research field has appeared where the human or an expert system can
interact on the graph matching algorithm to increase the accuracy of the obtained
node correspondence [17] and [18].

In this paper, we compare five local sub-structures. The first three are strictly based
on considering the local structure as a sub-graph. The other two are based on the
spectral information centred at the involved nodes of both graphs.

Results show that the selected local sub-structure has a great impact on the
obtained distance value and also on the runtime although in the past little research
have been done. There is a related research in [19] that considers the two eigenvector
centralities we propose and it studies their impact on the runtime and the accuracy to
obtain the exact distance value. In our paper, we test the five centralities in well-
known datasets and we obtain the recognition accuracy and also the runtime.

The outline of the paper is as follows. In the next section, we define Attributed
graphs, Graph edit distance and we comment how to compute the Graph edit distance
using Square Fast Bipartite algorithm (SFBP) [13]. In section 3, we present five local
sub-structures and distances between them. In section 4, we show the experimental
validation and finally, we conclude the article in section 5.

2 Graphs and Graph Edit Distance

In this section, we first define Attributed graphs with the concept of a neighbour of a
node and Error-tolerant graph matching and then we explain the Graph edit distance.

Attributed Graphs
An Attributed graph is defined as a triplet G ൌ ሺΣ஝, Σୣ, γ୴ሻ, where Σ୴ ൌ ሼvୟ | a ൌ 1, … , nሽ is the set of vertices and Σୣ ൌ ሼeୟୠ|a, b א 1, … , nሽ is the set of undirected
and unattributed edges. Function γ୴: Σ୴ ՜ Δ୴ assigns attribute values in any domain
to vertices. The order of graph G is ݊. We call ܧሺݒୟሻ to the number of neighbours of
node ݒ௔. Finally, we define the neighbours of a node vୟ, named Nୟ, on an attributed
graph G, as another graph Nୟ ൌ ൫Σ୴N౗, ΣNୣ౗, γ୴N౗൯ only composed of nodes connected to

them by an edge. Formally, Σ୴N౗ ൌ ሼvୟ|eୟୠ א Σୣ ሽ, ΣNୣ౗ ൌ Φ and γ୴N౗ሺݒ௔ሻ ൌ γ୴ሺݒ௔ሻ, ݒ׊௔ א Σ୴N౗. Finally, we represent as A the adjacency matrix such that Aሾa, bሿ ൌ 1 if eୟୠ א Σୣ and Aሾa, bሿ ൌ 0 otherwise.

Error Correcting Graph Isomorphism
Let G୮ ൌ ሺΣ୴୮, Σ୮ୣ, γ୴୮ሻ and G୯ ൌ ሺΣ୴୯, Σ୯ୣ, γ୴୯ሻ be two Attributed graphs of initial order ݊ and ݉. To allow maximum flexibility in the matching process, graphs are extended
with null nodes to be of order ݊ ൅ ݉. We refer to null nodes of G୮ and G୯ by

 On the Influence of Node Centralities on Graph Edit Distance 233

Σ෠୴୮ ك Σ୴୮ and Σ෠୴୯ ك Σ୴୯ respectively. We assume null nodes have indices ܽ א ሾ݊ ൅1, … , ݊ ൅ ݉ሽ and ݅ א ሾ݉ ൅ 1, … , ݊ ൅ ݉ሽ for graphs G୮ and G୯, respectively. Let T be
a set of all possible bijections between two vertex sets Σ୴୮ and Σ୴୯. We define the non-
existent or null edges as Σ෠୮ୣ ك Σ୮ୣ and Σ෠୯ୣ ك Σ୯ୣ. Isomorphism ݂୮,୯: Σ୴୮ ՜ Σ୴୯, assigns
one vertex of G୮ to only one vertex of G୯. The isomorphism between edges is defined
accordingly to the isomorphism of their terminal nodes.

Graph Edit Distance between Graphs

One of the most widely used methods to evaluate an error-correcting graph
isomorphism is the Graph edit distance [1], [6], [20]. The dissimilarity is defined as
the minimum amount of required distortion to transform one graph into the other. To
this end, a number of distortion or edit operations, consisting of insertion, deletion
and substitution of both nodes and edges are defined. Edit cost functions are
introduced to quantitatively evaluate the edit operations. The basic idea is to assign a
penalty cost to each edit operation according to the amount of distortion that it
introduces in the transformation. Deletion and insertion operations are transformed to
assignations of a non-null node of the first or second graph to a null node of the
second or first graph. Substitutions simply indicate node-to-node assignations. Using
this transformation, given two graphs ܩ௣ and ܩ௤, and a bijection between their nodes, ݂௣,௤, the graph edit cost is given by:

,௣ܩ௄ೡ,௄೐ሺݐݏ݋ܥݐ݅݀ܧ ,௤ܩ ݂௣,௤ሻ ൌ ∑ ,௔௣ݒ௩௦൫ܥ ஊೡ೜ିஊ෡ೡ೜אೡ೛ିஊ෡ೡ೛௩೔೜ఀא௜௤൯௩೛ೌݒ
൅ ∑ ஊ෡ೡ೜אೡ೛ିஊ෡ೡ೛௩೔೜ఀא௩௩೛ೌܭ

൅ ∑ ஊೡ೜ିஊ෡ೡ೜אஊ෡ೡ೛௩೔೜א௩௩೛ೌܭ
൅ (1)

 ෍ ௘௘ೌ೛್ܭ ೐೛ିஊ෡೐೛௘೔ೕ೜ఀא ஊ෡೐೜א
൅ ෍ ௘௘ೌ೛್ܭ ஊ෡೐೛௘೔ೕ೜א ஊ೐೜ିஊ෡೐೜א

Where ݂௣,௤൫ݒ௔௣൯ ൌ ௜௤ݒ and ௘݂௣,௤൫݁௔௜௣ ൯ ൌ ݁௜௝௤

where ܥ௩௦ is a function that represents the cost of substituting node ݒ௔௣ of ܩ௣ by

node ݂௣,௤൫ݒ௔௣൯ of ܩ௤ . Constant ܭ௩ is the cost of deleting node ݒ௔௣ of ܩ௣ or inserting
node ݒ௜௤ of ܩ௤ . Likewise for the edges, ܭ௘ is the cost of assigning edge ݁௔௕௣ of ܩ௣ to a
non-existing edge of ܩ௤ or assigning edge ݁௔௕௤ of ܩ௤ to a non-existing edge of ܩ௣.
Note that we have not considered the cases in which two null nodes or null arcs are
mapped, this is because this cost is zero by definition. In the same way, we do not
have considered the cost of substituting two edges since they are unattributed and so,
its substitution has a null cost. Note the definitions exposed in this paper can be easily
generalised by adding attributes on edges.

The Graph edit distance is defined as the minimum cost under any bijection in ܶ:
,௣ܩ௄ೡ,௄೐ሺݐݏ݅ܦݐ݅݀ܧ ௤ሻܩ ൌ min௙೛,೜்א൛ݐݏ݋ܥݐ݅݀ܧ௄ೡ,௄೐ሺܩ௣, ,௤ܩ ݂௣,௤ሻൟ (2)

234 X. Cortés et al.

The assignment problem considers the task of finding an optimal assignment of the
elements of a set ܲ to the elements of another set ܳ, where both sets have the same
cardinality ܰ ൌ |ܲ| ൌ |ܳ|. Let us assume there is a ܰܺܰ cost matrix ܥ. The matrix
elements ܥ௜,௝ correspond to the cost of assigning the i-th element of ܲ to the j-th
element of ܳ. An optimal linear assignment is the one that minimises the sum of the
assignment costs and so, the assignment problem can be stated as finding the
permutation ݌ that minimises ∑ C୧,௣ሺ୧ሻN୧ୀଵ . There are several algorithms that solve the
linear assignation problem [15], [16]. In the worst case, the maximum number of
operations needed by these algorithms is Oሺܰଷሻ.

Square Fast Bipartite algorithm (SFBP) [13] is an efficient algorithm to Edit
Distance computation for general graphs that in a first step generates a matrix costs
and in a second step, applies an optimal linear assignment algorithm on this matrix.
The algorithm is similar to Bipartite BP but with a different cost matrix. In fact, SFBP
defines two matrices, depending on the order of the graphs (BP only defines one
matrix).

If ݉ ൒ ݊ then the cost matrix is,

௠ஹ௡ௌி஻௉ܥ ൌ ࢓
ەۖۖ
ۖۖۖ
۔ۖ
ۖۖۖۖ
ۓ

ێێۏ
ێێێ
ێێێ
Cଵ,ଵۍێ Cଵ,ଶ Cଶ,ଵ Cଶ,ଶ … Cଵ,୫ Cଶ,୫ ڭ ڭ C୬,ଵ C୬,ଶ … ڭ C୬,୫Cக,ଵ Cக,ଶ Cக,ଵ Cக,ଶ … Cக,୫ Cக,୫ ڭ Cக,ଵ ڭ Cக,ଶ … ڭ Cக,୫

തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
ۑۑے
ۑۑۑ
ۑۑۑ
࢓ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇫېۑ

If ݉ ൑ ݊ then the cost matrix is,

௠ஸ௡ௌி஻௉ܥ ൌ ࢔
۔ۖۖەۖۖ
ۓ

ێێۏ
Cଵ,ଵۍێ Cଵ,ଶ Cଶ,ଵ Cଶ,ଶ … Cଵ,୫ Cଶ,୫ ڭ ڭ C୬,ଵ C୬,ଶ … ڭ C୬,୫

ተተ
Cଵ,க Cଵ,க Cଶ,க Cଶ,க … Cଵ,க Cଶ,க ڭ C୬,க ڭ C୬,க … ڭ C୬,கۑۑے

࢔ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫېۑ

Where ܥ௔,௜ denotes the cost of substituting nodes ݒ௔௣ and ݒ௜௤ and its local sub-

structure. ܥ௔,ఌ denotes the cost of deleting node ݒ௔௣ and its local sub-structure, and ܥఌ,௜
denotes the cost of inserting node ݒ௜௤ and its local sub-structure. Obviously, as
described in [14], this minimum cost is a sub-optimal Edit distance value between the
involved graphs since cost matrix rows are related to local sub-structures of graph G୮
and columns are related to local sub-structures of G୯. The computational cost of the
SFBP is Oሺሺmax ሺ݊, ݉ሻሻଷሻ. Note that the linear assignment algorithms used in its
original form are optimal for solving the assignment problem, but they are suboptimal

 On the Influence of Node Centralities on Graph Edit Distance 235

for finding the Graph edit distance. This is due to the fact that nodes and their local
sub-structure are considered individually. If ௠݂௣,௤כ

is the obtained isomorphism
through method or algorithm ݉, then we have that ݐݏ݋ܥݐ݅݀ܧ௄ೡ,௄೐൫ܩ௣, ,௤ܩ ௠݂௣,௤כ൯ ൒ ݐݏ݅ܦݐ݅݀ܧ௄ೡ,௄೐ሺܩ௣, ௤ሻ. In some cases, it is not possible to compute the real distanceܩ
value ݐݏ݅ܦݐ݅݀ܧ௄ೡ,௄೐ሺܩ௣, ௤ሻ for runtime reasons due to it has to be computed throughܩ
an כܣ algorithm. In these cases, if we want to evaluate two suboptimal methods to
compute the Graph edit distance, the lower the cost, the better the method.

3 Node Centralities and Distances between Them

In this section, different methods are proposed to obtain values ܥ௔,௜ , C௔,க and Cக,୧ in
the cost matrices used by SFBP algorithm to compute the isomorphism between
nodes. The whole values on the cost matrices depend on two weighted disjoint costs.
The first one only depends on the nodes and the second one depends on the rest of the
local sub-structure.

When the original nodes ݒ௔௣ א ௩௣ߑ െ Σ෠௩௣ and ݒ௜௤ א Σ௩௤ െ Σ෠௩௤ are mapped:
௔,௜ܥ ൌ ߚ ൉ ,௔௣ݒ௩௦൫ܥ ௜௤൯ݒ ൅ ሺ1 െ ሻߚ ൉ ,௔௣ݒ௖௦൫ܥ ௜௤൯ (3)ݒ

When the original node ݒ௔௣ א ௩௣ߑ െ Σ෠௩௣ in ܩ௣ is deleted and so mapped to a null

node ݒ௜௤ א Σ෠௩௤ in ܩ௤: ܥ௔,க ൌ ߚ ൉ ݇௩ ൅ ሺ1 െ ሻߚ ൉ ,௔௣ݒ௖ௗ൫ܥ ௜௤൯ (4)ݒ

When the original node ݒ௜௤ א Σ௩௤ െ Σ෠௩௤ in ܩ௤ is inserted and so mapped from a null

node ݒ௔௣ א Σ෠௩௣ in ܩ௣: ܥக,௜ ൌ ߚ ൉ ݇௩ ൅ ሺ1 െ ሻߚ ൉ ,௔௣ݒ௖௜൫ܥ ௜௤൯ (5)ݒ

As commented in section 2, ܥ௩௦ is a distance function defined through the node

attribute values and ݇௩ gauges the importance of deleting or inserting nodes in the
matching process. ܥ௖௦ is the cost to substitute the local sub-structure and ܥ௖ௗ and ܥ௖௜
are the costs to delete and insert it, respectively. These costs depend on the used local
sub-structures. Finally, the weighting parameter ߚ has to be set in a validation or
learning process.

We propose the following five node centralities and distances:

-The degree: The local sub-structure is composed of a node and its connected arcs.
Although it is easily generalizable, in this paper we have considered edges do not
have attributes. Therefore, these costs are based on counting the number of edges,

,௔௣ݒ௖௦൫ܥ ௜௤൯ݒ ൌ ݇௘ ൉ หܧ൫ݒ௔௣൯ െ ௔௣ݒ ௜௤൯ห whereݒ൫ܧ א ௩௣ߑ െ Σ෠௩௣ and ݒ௜௤ א Σ௩௤ െ Σ෠௩௤. ܥ௖ௗ൫ݒ௔௣, ௜௤൯ݒ ൌ ݇௘ ൉ ௔௣ݒ ௔௣൯ whereݒ൫ܧ א ௩௣ߑ െ Σ෠௩௣ and ݒ௜௤ א Σ෠௩௤. (6) ܥ௖௜൫ݒ௔௣, ௜௤൯ݒ ൌ ݇௘ ൉ ௔௣ݒ ௜௤൯ whereݒ൫ܧ א Σ෠௩௣ and ݒ௜௤ א Σ௩௤ െ Σ෠௩௤.

236 X. Cortés et al.

-The clique: The local sub-structure is composed of a node, its arcs and the connected
nodes. Clearly, we could define more levels of complexity but we decided not to
consider them. Some excluded examples are the clique plus the edges of the
neighbouring nodes, since the combinations of structures exponentially explode. To
increase the complexity of the local sub-structure but not the computational
complexity, the spectral centralities are proposed. In the clique structure, the costs on
the centralities are defined as follows,

,௔௣ݒ௖௦൫ܥ ௜௤൯ݒ ൌ ௞ೡା௞೐,଴൫݁ܿ݊ܽݐݏ݅ܦݐ݅݀ܧ ௔ܰ௣, ௜ܰ௤൯
where ݒ௔௣ א ௩௣ߑ െ Σ෠௩௣ and ݒ௜௤ א Σ௩௤ െ Σ෠௩௤. (7)

Function ݁ܿ݊ܽݐݏ݅ܦݐ݅݀ܧ is computed through SFBP in the same way it is done with

graphs. A neighbour node and its connecting edge have to be seen as an indivisible
structure. Note, the neighbour structures ௔ܰ௣ and ௜ܰ௤ are defined as non-connected
graphs with only the neighbouring nodes and without edges. Yet, the centrality cost
has to consider the cost of the edges that connect the central node with the
neighbouring nodes. To do so, the cost of deleting and inserting nodes in function ݁ܿ݊ܽݐݏ݅ܦݐ݅݀ܧ is defined as ݇௩ ൅ ݇௘. Due to there are no edges, any cost of deleting
and inserting edges could be set at function ݁ܿ݊ܽݐݏ݅ܦݐ݅݀ܧ and we imposed 0.

The deletion and insertion centrality costs depend on the number of neighbours,

,௔௣ݒ௖ௗ൫ܥ ௜௤൯ݒ ൌ ሺ݇௩ ൅ ݇௘ሻ ൉ ௔௣ݒ ௔௣൯ whereݒ൫ܧ א ௩௣ߑ െ Σ෠௩௣ and ݒ௜௤ א Σ෠௩௤.
,௔௣ݒ௖௜൫ܥ ௜௤൯ݒ ൌ ሺ݇௩ ൅ ݇௘ሻ ൉ ௔௣ݒ ௜௤൯ whereݒ൫ܧ א Σ෠௩௣ and ݒ௜௤ א Σ௩௤ െ Σ෠௩௤. (8)

-The planar: The local sub-structure is exactly the same as the clique but in this case
the relative position is considered. Costs ܥ௖ௗ and ܥ௖௜ are defined in the same way as

above. The difference resides in ܥ௖௦. The only allowed isomorphisms ݂ே೛ೌ,ே೔೜ are the
ones that are generated from cyclic combinations of the neighbours. Therefore, sets ௔ܰ௣ and ௜ܰ௤ are seen as strings and the cost is computed through the Cyclic
Levenshtein distance [21], [22].

,௔௣ݒ௖௦൫ܥ ௜௤൯ݒ ൌ ൫݄ݏ݊݁ݒ݁ܮ݈ܿ݅ܿݕܥ ௔ܰ௣, ௜ܰ௤, ݇௩ ൅ ݇௘൯
 where ݒ௔௣ א ௩௣ߑ െ Σ෠௩௣ & ݒ௜௤ א Σ௩௤ െ Σ෠௩௤. (9)

Figure 1 shows an example of the Clique and Planar centralities. Red lines

represent the optimal correspondence while considering Clique centrality and green
lines while considering Planar centrality. Numbers on the nodes are the attributes γ௩௣൫ݒ௔௣൯ or γ௩௤൫ݒ௜௤൯. Edges do not have attributes. Suppose ܥ௖௦൫ݒ௔௣, ௜௤൯ݒ ൌหγ௩௣൫ݒ௔௣൯ െ γ௩௤൫ݒ௔௤൯ห. In the Clique case (red lines), ܥ௖௦൫ݒ௔௣, ௜௤൯ݒ ൌ 1 ൅ 0 ൅ 1 ൅ 0 ൌ 2.
In the Planar case (green lines), ܥ௖௦൫ݒ௔௣, ௜௤൯ݒ ൌ 1 ൅ 17 ൅ 1 ൅ 17 ൌ 36. Note the
restriction to be the labelling cyclic makes the distance value to be larger.

 On the Influence of Node Centralities on Graph Edit Distance 237

Fig. 1. In red: optimal correspondence in Clique centrality. In green: optimal correspondence in
Planar centrality

-The Eigenvector: The local sub-structure takes into consideration the degree of the
neighbouring nodes considering the eigenvector that has the largest eigenvalue. The
eigenvector centralities given a specific node in both graphs are defined by,

 ܿ௔௣ ൌ ଵఒభ೛ ൉ ∑ ห ௔ܸᇱ௣ห௩ೌᇲ೛ ே೛ೌא and ܿ௜௤ ൌ ଵఒభ೜ ൉ ∑ ห ௜ܸᇱ௤ห௩೔ᇲ೜ ே೔೜א (10)

where ௔ܸᇱ௣ and ௜ܸᇱ௤ are the values of the ܽԢ-th and ݅Ԣ-th positions of the eigenvectors

with the largest eigenvalues obtained through adjacency matrices ܣ௣ and ܣ௤. Besides, ߣଵ௣ and ߣଵ௤ are the largest eigenvalues of these adjacency matrices. Thus, the
substitution cost is simply computed as,

,௔௣ݒ௖௦൫ܥ ௜௤൯ݒ ൌ หܿ௔௣ െ ܿ௜௤ห

 where ݒ௔௣ א ௩௣ߑ െ Σ෠௩௣ & ݒ௜௤ א Σ௩௤ െ Σ෠௩௤. (11)

The deletion and insertion costs are computed assuming that the centrality of a null

node is 0.
,௔௣ݒ௖ௗ൫ܥ ௜௤൯ݒ ൌ ܿ௔௣ where ݒ௔௣ א ௩௣ߑ െ Σ෠௩௣ and ݒ௜௤ א Σ෠௩௤.

,௔௣ݒ௖௜൫ܥ ௜௤൯ݒ ൌ ܿ௜௤ where ݒ௔௣ א Σ෠௩௣ and ݒ௜௤ א Σ௩௤ െ Σ෠௩௤. (12)

-The PageRank: This centrality is a variation of the Eigenvector centrality. The
difference consists in each eigenvector element is normalised by the number of
neighbours of the node it represents.

 ܿ௔௣ ൌ ଵఒభ೛ ൉ ∑ ห௏ೌ ᇲ೛ ห୫ୟ୶ቀଵ,ா൫௏ೌ ᇲ೛ ൯ቁ௩ೌᇲ೛ ே೛ೌא and ܥ௜௤ ൌ ଵఒభ೜ ൉ ∑ ห௏೔ᇲ೜ห୫ୟ୶ቀଵ,ா൫௏೔ᇲ೜൯ቁ௩೔ᇲ೜אே೔೜

 (13)

This centrality is normalised by max ቀ1, ൫ܧ ௔ܸᇱ௣൯ቁ instead of ܧ൫ ௔ܸᇱ௣൯ to avoid

dividing by 0. Then, the substitution, insertion and deletion costs are computed in a
similar why than the Eigenvector centrality but using the PageRank centrality.

238 X. Cortés et al.

4 Experimental Validation

Table 1. Recognition ratio of the five proposed centralities given the 5 datasets and different
combinations of parameters

 Kv Ke β Degree Clique Planar Kv β Eigen Vector Pagerank

LETTER

LOW

1 1 0.5 0.95 0.98 0.98 1 0.9 0.94 0.94

1 0.1 0.5 0.96 0.99 0.98 1 0.5 0.96 0.96

0.1 1 0.5 0.96 0.98 0.98 1 0.1 0.93 0.93

0.1 0.1 0.5 0.98 0.99 0.99 1 0.01 0.92 0.92

LETTER

MED

1 1 0.5 0.87 0.94 0.94 1 0.9 0.66 0.65

1 0.1 0.5 0.73 0.94 0.94 1 0.5 0.85 0.84

0.1 1 0.5 0.86 0.89 0.89 1 0.1 0.84 0.84

0.1 0.1 0.5 0.18 0.09 0.09 1 0.01 0.83 0.83

LETTER

HIGH

1 1 0.5 0.79 0.88 0.90 1 0.9 0.65 0.65

1 0.1 0.5 0.74 0.88 0.90 1 0.5 0.72 0.71

0.1 1 0.5 0.81 0.80 0.80 1 0.1 0.71 0.74

0.1 0.1 0.5 0.38 0.07 0.07 1 0.01 0.59 0.61

GREC

10 10 0.5 0.96 0.84 0.83 10 0.9 0.71 0.71

10 5 0.5 0.92 0.65 0.63 10 0.5 0.93 0.93

5 10 0.5 0.95 0.39 0.37 10 0.1 0.99 0.99

5 5 0.5 0.87 0.14 0.14 10 0.01 0.97 0.96

AIDS

1 1 0.5 0.96 0.84 0.84 1 0.9 0.83 0.83

1 0.1 0.5 0.83 0.82 0.82 1 0.5 0.91 0.92

0.1 1 0.5 0.90 0.82 0.82 1 0.1 0.99 0.99

0.1 0.1 0.5 0.82 0.81 0.81 1 0.01 0.99 0.99

Table 1 and table 2 show the recognition ratio and mean runtime of the five

centralities described in section 3 for graph classification using the five graph
databases LETTER LOW, LETTER MEDIUM, LETTER HIGH, GREC and AIDS
from the IAM repository [23]. Each database consists on a set of different graph
instances divided in different classes where each class is composed of a reference set
and a test set. We used the K-NN classifier where K = 3 and the graph-matching
algorithm SFBP summarised in section 2 with Jonker-Volgenant solver [16]. Note the
computation of the edit operations on local structures ܥ௖௦, ܥ௖ௗ and ܥ௖௜ depends on the
following parameters: In case of Degree, Clique and Planar, parameters are ݇௩, ݇௘ and ߚ. In case of Eigenvector and PageRank, parameters are ݇௩ and ߚ. Best results for
each database are marked in bold and underlined.

 On the Influence of Node Centralities on Graph Edit Distance 239

Table 2. Mean runtime spent for a graph classification of the 5 proposed centralities given the 5
datasets and different parameters (I7 3.07 Ghz, Windows, Matlab 2014a)

 Kv Ke β Degree Clique Planar Kv β Eigen Vector Pagerank

LETTER

LOW

1 1 0.5 0.61 3.14 0.95 1 0.9 0.58 0.59

1 0.1 0.5 0.56 3.15 0.90 1 0.5 0.62 0.62

0.1 1 0.5 0.55 3.09 0.85 1 0.1 0.76 0.79

0.1 0.1 0.5 0.48 3.15 0.80 1 0.01 2.04 2.30

LETTER

MED

1 1 0.5 0.61 3.13 0.94 1 0.9 0.57 0.58

1 0.1 0.5 0.56 3.16 0.91 1 0.5 0.63 0.64

0.1 1 0.5 0.55 3.09 0.86 1 0.1 0.77 0.81

0.1 0.1 0.5 0.46 3.16 0.81 1 0.01 2.04 2.38

LETTER

HIGH

1 1 0.5 0.61 3.68 1.24 1 0.9 0.58 0.59

1 0.1 0.5 0.60 3.60 1.26 1 0.5 0.65 0.69

0.1 1 0.5 0.57 3.52 1.17 1 0.1 0.84 0.88

0.1 0.1 0.5 0.47 3.51 1.10 1 0.01 2.40 2.71

GREC

10 10 0.5 0.45 7.34 1.99 10 0.9 0.49 0.48

10 5 0.5 0.42 7.48 2.01 10 0.5 0.53 0.52

5 10 0.5 0.42 7.35 1.99 10 0.1 0.99 0.97

5 5 0.5 0.40 7.34 1.97 10 0.01 4.10 4.35

AIDS

1 1 0.5 0.64 6.29 1.78 1 0.9 0.41 0.41

1 0.1 0.5 0.37 6.27 1.76 1 0.5 0.55 0.59

0.1 1 0.5 0.47 5.94 1.60 1 0.1 3.04 39.23

0.1 0.1 0.5 0.27 6.12 1.65 1 0.01 23.73 21.41

Table 3 summarises the achievements that can be deducted from tables 1 and 2.

We realise that the structure that obtains higher recognition ratio clearly depends on
the database. We know from [23] that graphs in GREC and AIDS have more
variability than graphs in the three LETTER databases. From the runtime point of
view, it is clear that Degree is the fastest structure. Considering edit costs, lower are
values of ݇௩ and ݇௘, lower is the runtime. Contrarily, lower is ߚ, higher is the
runtime.

Table 3. Summary of the achievements of tables 1 and 2

 Highest recognition ratio Lowest runtime
LETTER LOW Clique, Planar Degree
LETTER MEDIUM Clique, Planar Degree
LETTER HIGH Planar Degree
GREC Eigenvector/PageRank Degree
AIDS Eigenvector/PageRank Degree

240 X. Cortés et al.

5 Conclusions

In this paper, we have shown the relevance of the node centrality on graph edit
distance for graph classification. We have presented five different centralities, viz.
Clique, Degree, Planar, Eigenvector and PageRank. We have defined them and we
have shown their recognition ratio and runtime in 5 different databases and different
configurations of Edit costs. With respect to the runtime, it is clear that the Degree is
the best. But it is not so clear which one is the best with respect to the recognition
ratio. It seems that the method that presents a best balance between recognition ratio
and runtime is the Degree centrality but clearly, it depends on the application or
database. For this reason, the decision to use a particular centrality can require an
accurate application-dependent analysis to maximize the specific goals.

References

1. Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-based
Representations and Techniques for Image Processing and Image Analysis. Pattern
Recognition 35(3), 639–650 (2002)

2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph Matching In Pattern
Recognition. IJPRAI 18(3), 265–298 (2004)

3. Vento, M.: A One Hour Trip in the World of Graphs, Looking at the Papers of the Last
Ten Years. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR
2013. LNCS, vol. 7877, pp. 1–10. Springer, Heidelberg (2013)

4. Hancock, E.R., Wilson, R.C.: Pattern analysis with graphs: Parallel work at Bern and
York. Pattern Recognition Letters 33(7), 833–841 (2012)

5. Serratosa, F., Cortés, X., Solé-Ribalta, A.: Component Retrieval based on a Database of
Graphs for Hand-Written Electronic-Scheme Digitalisation. Expert Systems With
Applications, ESWA 40, 2493–2502 (2013)

6. Solé, A., Serratosa, F., Sanfeliu, A.: On the Graph Edit Distance cost: Properties and
Applications. International Journal of Pattern Recognition and Artificial Intelligence 26(5)
(2012)

7. Serratosa, F., Alquézar, R., Sanfeliu, A.: Estimating the Joint Probability Distribution of
Random Vertices and Arcs by Means of Second-Order Random Graphs. In: Caelli, T.M.,
Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002.
LNCS, vol. 2396, pp. 252–262. Springer, Heidelberg (2002)

8. Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based on new
theoretical properties. Pattern Recognition 42(9), 2003–2012 (2009)

9. Ferrer, M., Valveny, E., Serratosa, F.: Median graph: A new exact algorithm using a
distance based on the maximum common subgraph. Pattern Recognition Letters 30(5),
579–588 (2009)

10. Serratosa, F., Alquézar, R., Sanfeliu, A.: Estimating the Joint Probability Distribution of
Random Vertices and Arcs by Means of Second-Order Random Graphs. In: Caelli, T.M.,
Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002.
LNCS, vol. 2396, pp. 252–262. Springer, Heidelberg (2002)

11. Serratosa, F., Sanfeliu, A.: Function-Described Graphs applied to 3D object recognition.
In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1310, pp. 701–708. Springer, Heidelberg
(1997)

 On the Influence of Node Centralities on Graph Edit Distance 241

12. Serratosa, F.: Fast Computation of Bipartite Graph Matching. Pattern Recognition
Letters 45, 244–250 (2014)

13. Serratosa, F.: Speeding up Fast Bipartite Graph Matching trough a new cost matrix,
International Journal of Pattern Recognition and Artificial Intelligence 29(2) (2015)

14. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite
graph matching. Image Vision Comput. 27(7), 950–959 (2009)

15. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial & Applied Mathematics 5, 32–38 (1957)

16. Jonker, R., Volgenant, T.: A shortest augmenting path algorithm for dense and sparse
linear assignment problems. Computing 38, 325–340 (1987)

17. Cortés, X., Serratosa, F.: An Interactive Method for the Image Alignment problem based
on Partially Supervised Correspondence. Expert Systems With Applications 42(1), 179–
192 (2015)

18. Serratosa, F., Cortés, X.: Interactive Graph-Matching using Active Query Strategies.
Pattern Recognition 48, 1360–1369 (2015)

19. Riesen, K., Bunke, H., Fischer, A.: Improving Graph Edit Distance Approximation by
Centrality Measures. In: International Congress on Pattern Recognition (2014)

20. Cortés, X., Serratosa, F.: Learning Graph-Matching Edit-Costs based on the Optimality of
the Oracle’s Node Correspondences. Pattern Recognition Letters (2015)

21. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, Cybernetics and Control Theory 10, 707–710 (1966)

22. Peris, G., Marzal, A.: Fast Cyclic Edit Distance Computation with Weighted Edit Costs in
Classification. In: ICPR 2002, vol. 4, pp. 184–187 (2002)

23. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition
and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T.,
Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS,
vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

	On the Influence of Node Centralitieson Graph Edit Distance for Graph Classification
	1 Introduction
	2 Graphs and Graph Edit Distance
	3 Node Centralities and Distances between Them
	4 Experimental Validation
	5 Conclusions
	References

