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Abstract. Although it is agreed that the Volgenant-Jonker (VJ) algo-
rithm provides a fast way to approximate graph edit distance (GED),
until now nobody has reported how the VJ algorithm can be tuned for
this task. To this end, we revisit VJ and propose a series of refinements
that improve both the speed and memory footprint without sacrificing
accuracy in the GED approximation. We quantify the effectiveness of
these optimisations by measuring distortion between control-flow graphs:
a problem that arises in malware matching. We also document an un-
expected behavioural property of VJ in which the time required to find
shortest paths to unassigned nodes decreases as graph size increases, and
explain how this phenomenon relates to the birthday paradox.

1 Introduction

Graph edit distance (GED) [5] measures the similarity of two graphs as the min-
imum number of edit operations needed to convert one graph to another. More
precisely, suppose G = 〈V,E, �〉 is a labelled directed graph where E ⊆ V × V
and � : V → Σ assigns each vertex to a label drawn from an alphabet Σ. (In
the general case, edges can also be similarly attributed.) An edit operation on
a graph G1 inserts or deletes an isolated vertex, inserts or deletes an edge, or
relabels a vertex, to obtain a new graph G2. Applying a sequence of n− 1 edit
operations gives a sequence of n graphs G1, G2, . . . , Gn. Since the cost of edit
operations is not necessarily uniform, in the more general form, each edit opera-
tion has an associated edit cost as defined by a cost function. The GED between
two graphs G and G′ is the minimum sum of edit operation costs. GED has
proven to be useful [2,4,7,8] because it is an error tolerant measure of similarity.

However, computing GED is equivalent to finding an optimal permutation
matrix [11], which is NP-hard. Fast but suboptimal approaches have thus risen
to prominence [8], in which GED is approximated by solving a linear sum as-
signment problem. Of those algorithms proposed for solving this problem, the
Volgenant-Jonker (VJ) algorithm [6] is the most efficient. This paper takes VJ
as the starting point, and explores how it can be improved for the specific task of
GED computation. Several similar works have been attempted before [9,10]. Our
work differs from these previous attempts because our changes attack the highly
regular structure of the cost matrix and the redundancy that this implies for the
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VJ algorithm instead of approaching the problem by using a refined concept of
edit distance. Our paper makes the following contributions:

– It shows how the VJ algorithm can be tuned to GED computation;
– It quantifies the ensuing speedup and decrease in memory requirements;
– It reports an emergent behaviour in which the time taken on the shortest

path calculations decreases as the problem size increases;
– It gives an explanation to the above phenomenon based on the well known

birthday problem.

The paper is structured as follows: To keep the paper self-contained, section 2,
explains how GED is related to the linear sum assignment problem, and sec-
tion 3 describes the classical VJ algorithm. Section 4 introduces the proposed
optimisations, and Section 5 presents the experimental results, comparing the
improved algorithm with the original. Finally, Section 6 conclusions.

2 The Linear Assignment Problem and GED

Given an n×n cost matrix C, the linear assignment problem [3] is that of finding
a bijection f : {1, . . . , n} → {1, . . . , n} which minimises

∑n
i=1 Ci,f(i). When

|V1| = n = |V2| the GED between G1 = 〈V1, E1, �1〉 and G2 = 〈V2, E2, �2〉 can be
approximated by solving a linear assignment problem using an n× n matrix C
where Ci,j denotes the cost of substituting vertex i for vertex j. Approximating
GED with this minimum requires |V1| = |V2| and is imprecise since it only
considers vertex substitutions. A more general approach [8] addresses both these
problems by working on an extended cost matrix defined as follows:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1,1 c1,2 · · · c1,m c1,ε ∞ · · · ∞
c2,1 c2,2 · · · c2,m ∞ c2,ε

. . .
...

...
...

. . .
...

...
. . .

. . . ∞
cn,1 cn,2 · · · cn,m ∞ · · · ∞ cn,ε
cε,1 ∞ · · · ∞ 0 0 · · · 0

∞ cε,2 · · · ∞ 0 0
. . . 0

...
. . .

. . . ∞ ...
. . .

. . . 0
∞ · · · ∞ cε,m 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where n = |V1| and m = |V2|. The top left hand corner of ci,j describes the cost
of vertex substitution. The top right hand corner ci,ε the cost of vertex deletion
ui. The bottom left hand corner cε,j denotes the cost of vertex insertion vj . The
bottom right hand corner is uniformly zero (henceforth called the null quadrant).

A further extension [2] uses Ek and �k to compute a lower bound on GED,
by finding labels on the incoming neighbours of a given vertex j in Gk using
Ink(j) = {�k(i) | 〈i, j〉 ∈ Ek}. The matrix is defined ci,j = di,j+ei,j where di,j =
1 if �1(i) �= �2(j) otherwise 0, and ei,j = max(|In1(i)− In2(j)|, |In2(i)− In1(i)|).
Then ci,j accounts for any difference in labelling between vertex i and vertex j
and also removing edges and relabelling their incoming neighbours. The diago-
nals ci,ε and cε,i are degenerative and defined as above with Ink(ε) = ∅.
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⎡
⎣
1 7 6
5 2 3
8 9 4

⎤
⎦

⎡
⎣
0 5 3
4 0 0
7 7 1

⎤
⎦

⎡
⎣

3 5 3
7 0 0

10 7 1

⎤
⎦

⎡
⎣

0 2 0
7 0 0

10 7 1

⎤
⎦

(a) (b) (c) (d)

Fig. 1. (a) Example cost matrix; (b) After column reduction; (c) After anti-column
reduction; (d) After row reduction (reduction transfer)

3 The Classical VJ Algorithm

The VJ algorithm [6] is a shortest path algorithm solved by a dual method.
We describe the essence of the algorithm (though not the detail). The algorithm
consists of two main steps, which are outlined in the sub-sections that follow:

1. Initialisation in three stages: (a) column reduction; (b) reduction transfer;
and (c) augmenting row reduction.

2. Augmentation until complete, in which alternating paths are found where
each path is from an unassigned row to an unassigned column.

3.1 Initialisation

Column reduction The first step of initialisation is a column reduction, in which
a positive value is subtracted from each element of a column. Starting at the
last column, the VJ algorithm reduces each column by its minimum element, so
that each column contains a zero. Figure 1(b) illustrates the result of column
reduction. As the matrix is scanned right-to-left, each column is assigned, when-
ever possible, to a unique row that contains a zero in that column. Column 3 is
assigned to row 2 (and vice versa), and column 1 is assigned to row 1 (and vice
versa), but column 2 will remain unassigned (as does row 3).

Reduction Transfer. The second step of initialisation is reduction transfer, which
is applied to enable row reduction, in which a positive value is subtracted from
each element of a row. Row reduction cannot be applied to row 1 of Figure 1(b),
without introducing a negative entry. Thus an inverse of column reduction is
applied to row 1, to give the matrix depicted in Figure 1(c). Row reduction
is then applied, the result of which is illustrated in Figure 1(d), albeit at the
expense of column reduction. This exchange in reduction value between a column
and a row, in this case by 3, is called reduction transfer.

Augmenting Row Reduction. In the third phase of initialisation, an attempt is
made to find a set of (alternating) paths where each path starts in an unassigned
row and ends in an unassigned column. For a given unassigned row i, VJ finds
a column j1 that contains the minimum entry e1 and another column j2 that
contains the least entry e2 such that e2 ≥ e1. Row i is then reduced by e2.
If e2 > e1 then this incurs a negative value in column j1, in which case, anti-
column reduction is applied to column j1 to eliminate the negative entry. Row
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⎡
⎢⎢⎢⎢⎢⎢⎣

3 1 4 1 ∞ ∞
5 9 2 ∞ 6 ∞
5 3 5 ∞ ∞ 8

9 ∞ ∞ 0 0 0
∞ 7 ∞ 0 0 0
∞ ∞ 9 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

3 1 4 1
5 9 2 6
5 3 5 8

9 0 0 0
7 0 0 0
9 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
3 1 4 1
5 9 2 6
5 3 5 8

9 7 9

⎤
⎥⎥⎦

(a) (b) (c)

Fig. 2. (a) Original cost matrix. (b) Row-by-row representation with zeroes. (c) Row-
by-row representation without zeroes.

i is then assigned to column j1 regardless of whether this column is already
assigned or not. If j1 was previously assigned to a row k, then row k becomes
unassigned and the procedure continues from row k. This repeats until either
row k is matched to an unassigned column, or it becomes impossible to transfer
reduction to the selected row k. Observe how reduction transfer provides a vehicle
for constructing a path that alternates between rows and columns, hence the
name.

3.2 Augmentation

For each unassigned row, the augmentation phase finds a shortest alternating
path (of the type previously described) to an unassigned column. VJ modifies
Dijkstra’s algorithm to search for these shortest paths, where the notion of dis-
tance between a row and a column is the entry in the cost matrix. Search starts
at an unassigned row, say row i, and a shortest edge is found from row i to a
column j. If column j was previously assigned to row k, then row k becomes
unassigned (though no changes are made until a complete path to an unassigned
column is found) and search resumes from row k. Unlike classical Dijkstra, search
continues in this fashion until such a column is found. After augmentation, the
assignments to the cost matrix are updated so that all assignments in the current
solution correspond to minimum entries in each row of the cost matrix.

4 The Improved VJ Algorithm

This section explores several improvements to the classical VJ algorithm, most
of which follow from the regular structure of the cost matrix.

4.1 Representation

A brief foreword to this section. It should be noted that while we change the
representation in memory, we do not just näıvely iterate over it. Our change is
simply to simplify many operations; we are still essentially calculating assign-
ments and solutions in their ”real” positions.
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C =

⎡

⎢
⎢
⎢
⎢
⎣

c1,1 c1,2 · · · c1,m c1,ε

c2,1 c2,2 · · · c2,m
...

...
...

. . .
...

...
cn,1 cn,2 · · · cn,m cn,ε

cε,1 cε,2 · · · cε,m

⎤

⎥
⎥
⎥
⎥
⎦

C =

⎡

⎢
⎢
⎢
⎢
⎣

c1,1 c1,2 · · · c1,m c1,ε

c2,1 c2,2 · · · c2,m
...

...
...

. . .
...

...
cn,1 cn,2 · · · cn,m cn,ε

cε,1 cε,2 · · · cε,m

⎤

⎥
⎥
⎥
⎥
⎦

(a) (b)

Fig. 3. (a) The split for the left hand and right hand block (the left hand block is
highlighted). (b) The split for the top and bottom blocks (the top is highlighted).

Given two reasonably-sized graphs G1 and G2, the largest data structure by
far is the cost matrix requiring (n+m)

2
entries for n = |V1| and m = |V2|.

However, most of these entries are either zero or infinity, as is illustrated in
Figure 2(a). Given the operations that must be applied to the cost matrix,
there are two natural compressed representations: a row-by-row representation
in which each row of the matrix is represented by only storing non-infinite values,
as depicted in Figure 2(b); and an analogous column-by-column representation.

There is also the question of whether to explicitly store the zeros in the bot-
tom right of Figure 2(b). We choose to discard them as we found no algorithmic
benefit in retaining them. With this change, the row-by-row representations re-
duces to Figure 2(c). The net effect is that the cost matrix is represented in space
(n+ 1)× (m + 1). Although row equality is no longer preserved, operations on
the effected rows can still be performed in constant time since there is only one
variable entry per row. Moreover, this representation homogenises the column-
by-column and row-by-row representations, which means that it simultaneously
benefits both row- and column-based operations.

4.2 Column Reduction

This representation simplifies column reduction in two ways: First, almost half
of the costs in the matrix are infinite and so will never be chosen as a minimum
in a column. Second, nearly a quarter of the costs will be 0, and these zeros
dictate that the column minimum will be zero. Hence only the position of the
minimum need be computed in column reduction (rather than its position and
value). To take advantage of this, the matrix is considered as two separate blocks
with different operations provided for each. see Figure 3a. The leftmost entries
are handled as before thanks to the new data-structure. The rightmost entries
that are stored in a single column, see Figure 2(c), correspond to the top-right
diagonal above the null quadrant. These entries are only compared to zeros and
hence the reduction value will always be zero and thus only the position of the
zero need be found. This can be further simplified in the case that deletion costs
are non-zero because this removes the need for position computation too.
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4.3 Reduction Transfer

Reduction transfer actually becomes slightly more complicated to accommodate
the new data-structure. However, this is a worthwhile trade as reduction transfer
typically takes up a minute fraction of the total run time.

4.4 Augmenting Row Reduction

Augmenting row reduction can be optimised in a very similar fashion to column
reduction. Once again, for each row being considered there is no point considering
infinite costs and similarly the presence of the null quadrant simplifies many of
the calculations. The only difference is that since augmenting row reduction
considers rows instead of columns, the most effective way to operate is a top-
to-bottom split (see Figure 3b), where the top block and the bottom block are
handled separately. We can consider similar simplifications as before if we can
assume that vertex addition will always have a non-zero cost.

4.5 Augmentation

Augmentation is slightly quicker with these improvements, particularly over very
large graphs. There are a number of operations that can be simplified by clever
use of the new data-structure, but these refinements have little to no benefit.
The only significant changes are those that simply replace variable lookups when
the outcome is known, for example, looking up an entry in the null quadrant.

5 Experimental Results

To empirically assess the proposed improvements to VJ, two versions were im-
plemented: the original version (VJ-ORG) and an improved version (VJ-IMP).
Both were compared against a version developed by Jonker himself (VJ-CTRL),
which was used as a control. All three versions were implemented in C++.

5.1 Evaluation on Random Data

Initially random square (n = m) cost matrices were used to provide a large cor-
pus of data for comparing all versions of VJ. The improvements have least effect
on square matrices and thus, if anything, the setup is biased against VJ-IMP.
Costs and matrix sizes were chosen to approximate what might typically be
encountered in malware matching. In this context a control-flow graph (CFG)
is extracted from a binary for comparison against a database of CFGs derived
from malware. BinSlayer [2] was used to derive CFGs from several medium-sized
binaries. These possessed between 465 to 6984 vertices (basic blocks), and pro-
duced matrices where the costs rarely exceeded 2000 and never exceeded 3000.
To cover a range of scenarios, matrices were populated with random values from
cost ranges varying over 1-500 to 1-3000. Matrix sizes were also varied between
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Fig. 4. VJ-IMP against of the fastest of VJ-ORG and VJ-CTRL for various cost ranges
and matrix sizes

1000 and 14000, again to simulate CFGs. We also tested the resilience of the
improvements over some much larger cost ranges (1-50000 and 1-109) for the
full range of matrix sizes.

Figure 4 gives a series of plot lines, one for each cost range. Each data point
on a line corresponds to the runtimes for a different matrix size, though the
horizontal axis is normalised by the runtime for solving a 14000× 14000 matrix.
The vertical axis is normalised relative to the unimproved times, so that the
instantaneous gradient quantifies the improvement over a range of costs and
matrix sizes. Note that VJ-IMP is uniformly faster than both VJ-ORG, and the
third party implementation by Jonker, VJ-CTRL. While we find the improved
version of algorithm to be about twice as fast; the difference being more striking

CFG 1 CFG 2 Size Ratio VJ-ORG VJ-CTRL VJ-IMP Speedup

bash BinSlayer 0.27 201 205 125 62%
BinSlayer bash 3.75 2944 3164 1820 68%
comaker BinSlayer 0.11 623 627 264 137%
BinSlayer comaker 8.83 13221 13729 8905 51%
comaker bash 0.42 3763 3901 3080 24%
bash comaker 2.35 54308 58333 43576 29%
GB BinSlayer 0.07 1862 1656 588 199%
BinSlayer GB 15.02 34020 35468 22127 57%
GB bash 0.25 4555 5087 3155 53%
bash GB 4.00 151457 160074 114091 37%
GB comaker 0.59 17987 18495 15291 19%
comaker GB 1.70 209562 228467 164442 33%

Fig. 5. Runtimes in milliseconds, where the size ratio is |V1|/|V2|
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at lower costs and higher sizes. Although not represented by this data, there is
a small performance advantage to VJ-ORG over VJ-CTRL, which suggests that
our implementations and experiments are robust.

5.2 Evaluation on CFGs

Figure 5 summaries some CFG comparisons for four different binaries, where the
CFGs were derived using BinSlayer. Comparing CFG1 = 〈V1, E1, �1〉 against
CFG2 = 〈V2, E2, �2〉 does not necessarily take the same time as comparing
CFG2 against CFG1. This is because if |V1| < |V2| then cost matrix will have a
large deletion block (in its top right) and a small addition block (in its bottom
left). It is notable that while all versions of VJ are faster when |V1| < |V2|, the
benefits to VJ-IMP are more significant. Excluding augmentation, the runtime
of each component of each algorithm is almost constant no matter whether
|V1| < |V2|. However, the runtime of augmentation is smaller when |V1| < |V2|.
Since column reduction is faster in VJ-IMP extra benefits follow from |V1| < |V2|
because column reduction is faster and the cost of augmentation is less dominant.
We have found that the number of iterations in augmentation does not depend
on |V1| < |V2|, and so the decreased time in augmentation is entirely a byproduct
of an decrease in the runtime of each iteration.

5.3 Component Analysis

Figure 6 shows the time proportion spent in each component of VJ-ORG and
VJ-IMP. Column reduction and augmenting row reduction benefit most from
the improvements; augmentation is faster with VJ-IMP (in absolute terms).

We also see an interesting behaviour in the runtimes of augmentation and
column reduction, especially at low cost ranges. Column reduction quickly in-
creases as a percentage of total runtime as cost matrix size increases eventually

Fig. 6. Normalised runtime of components, for VJ-ORG and VJ-IMP, over range 1-500
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Fig. 7. Runtime of each iteration of augmentation (averaged over all three algorithms)

overtaking augmentation. On closer examination, it is apparent that this is the
result of a reduction in the growth of the runtime of augmentation instead of
a sharp increase in the runtime of column reduction. Furthermore this happens
across all cost ranges (but is more visible for smaller ranges). This is surprising
as augmentation is merely an implementation of Dijkstra’s algorithm. Figure 7
suggests that this stems from an effect in which the growth in runtime of each
iteration of augmentation actually tails off as the size of cost matrix increases.

We conjecture that this is because of a statistical property related to the
birthday paradox. During initialisation the column reduction step works back-
ward (from the highest index to the lowest), so low index columns have a higher
chance of involving a collision and having a lowest element in the same position
as another column. For a randomly generated matrix of total size t× t, column

index i will have a ( t
t+1 )

t−i
probability of not having a minimum element in the

same row as another column, and thus low i are very likely to be unassigned.
Thus a column with a given index is more likely to be unassigned as cost matrix
size increases. Consequently not only are low indexed columns more likely to be
unassigned, but across all columns this effect will increase disproportionally as
matrix size increases. Since Dijkstra’s algorithm scans from low indexed columns
to high indexed ones, it will find assignments for most of its rows more quickly as
cost matrix size increases, even though worse-case complexity remains in O(n3).

6 Conclusions

We have examined the VJ algorithm and studied improvements for approximat-
ing GED. We have shown that our improved algorithm is uniformly faster than
its unimproved counterparts, both across randomly generated matrices and data
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sets that arise in call-graph comparison. The speedups, which are almost 200%
in one case, suggest the that refinements are truly worthwhile. Moreover, the
improved version has a smaller memory footprint, and incurs no loss of accuracy
whatsoever. Finally, we have also documented and explained an anomaly in the
runtime of the Dijkstra’s shortest path search component of VJ. Future work
will, among other things, empirically investigate how the relative sizes of the
two graphs under comparison effect the overall runtime, and also explore the
prospects for parallelisation [1].
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