
Approximation of Graph Edit Distance

in Quadratic Time

Kaspar Riesen1,3(�), Miquel Ferrer1, Andreas Fischer2,
and Horst Bunke3

1 Institute for Information Systems,
University of Applied Sciences and Arts Northwestern Switzerland,

Riggenbachstrasse 16, 4600, Olten, Switzerland
{kaspar.riesen,miquel.ferrer}@fhnw.ch

2 DIUF Department, University of Fribourg, Switzerland and iCoSys Institute,
University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland

andreas.fischer@unifr.ch
3 Institute of Computer Science and Applied Mathematics, University of Bern,

Neubrückstrasse 10, 3012, Bern, Switzerland
{riesen,bunke}@iam.unibe.ch

Abstract. The basic idea of a recent graph matching framework is to
reduce the problem of graph edit distance (GED) to an instance of a
linear sum assignment problem (LSAP). The optimal solution for this
simplified GED problem can be computed in cubic time and is eventu-
ally used to derive a suboptimal solution for the original GED problem.
Yet, for large scale graphs and/or large scale graph sets the cubic time
complexity remains a severe handicap of this procedure. Therefore, we
propose to use suboptimal algorithms – with quadratic rather than cu-
bic time complexity – for solving the underlying LSAP. In particular, we
introduce several greedy assignment algorithms for approximating GED.
In an experimental evaluation we show that there is great potential for
further speeding up the GED computation. Moreover, we empirically
confirm that the distances obtained by this procedure remain sufficiently
accurate for graph based pattern classification.

1 Introduction

Graph edit distance (GED) is a widely accepted concept for general graph dis-
similarity computation [1–5]. Yet, a well known drawback of GED is its compu-
tational complexity which is exponential in the number of nodes of the involved
graphs. This means that for large graphs the exact computation of GED is in-
tractable. In recent years, a number of methods addressing the high complexity
of GED computation have been proposed [6–8]. In [9] the authors of the present
paper introduced an algorithmic framework for the approximation of GED. The
basic idea of this approach is to reduce the problem of GED computation to a
linear sum assignment problem (LSAP). For LSAPs quite an arsenal of efficient
(i.e. cubic time) algorithms exist [10].

c© Springer International Publishing Switzerland 2015
C.-L. Liu et al. (Eds.): GbRPR 2015, LNCS 9069, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-18224-7_1



4 K. Riesen et al.

The algorithmic procedure described in [9] consists of three major steps. In a
first step the graphs to be matched are subdivided into individual nodes includ-
ing local structural information. Next, in step 2, an LSAP solving algorithm is
employed in order to find an optimal assignment of the nodes (plus local struc-
tures) of both graphs. Finally, in step 3, an approximate GED, which is globally
consistent with the underlying edge structures of both graphs, is derived from
the assignment of step 2.

In a recent paper [11] the optimal LSAP algorithm is replacedwith a suboptimal
greedy algorithm. From the theoretical point of view this approach is very appeal-
ing as it makes use of an approximation algorithm for an LSAP which in turn ap-
proximates the corresponding GED problem. The present paper introduces three
advancements of this novel greedy graph edit distance approximation. All of these
refinements are still greedy algorithms with quadratic time complexity. The pro-
posed variants aim at improving the overall quality of the solution for the LSAP
(and thus the GED approximation) by means of several heuristics.

Next, in Sect. 2 the original framework for GED approximation [9] is sum-
marized. In Sect. 3 the greedy assignment algorithms are introduced. An exper-
imental evaluation on diverse data sets is carried out in Sect. 4, and in Sect. 5
we draw conclusions and point out possible directions for future work.

2 Bipartite Graph Edit Distance Approximation

By reformulating GED to an instance of an LSAP (as introduced in [9] and
denoted with BP-GED1), three major steps have to be carried out.

First Step: A cost matrix C based on the node sets V1 = {u1, . . . , un} and
V2 = {v1, . . . , vm} of g1 and g2, respectively, is established as follows.

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
. . .

.

.

.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2
. . .

.

.

. 0 0
. . .

.

.

.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Entry cij thereby denotes the cost of a node substitution (ui → vj), ciε denotes
the cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj). That is, the left upper corner of C = (cij) represents the costs of
all possible node substitutions, while the diagonals of the right upper and left
lower corner represent the costs of all possible node deletions and insertions,
respectively (every node can be deleted or inserted at most once and thus any

1 Bipartite Graph Edit Distance (LSAPs can be formulated by means of bipartite
graphs).



Approximation of Graph Edit Distance in Quadratic Time 5

non-diagonal element is set to ∞ in these parts). Substitutions of the form
(ε → ε) should not cause any cost and therefore, any element in the right lower
part is set to zero.

Second Step: Next, an LSAP is stated on cost matrix C = (cij) and eventually
solved. The LSAP optimization consists in finding a permutation (ϕ1, . . . , ϕn+m)
of the integers (1, 2, . . . , (n + m)) that minimizes the overall assignment cost
∑(n+m)

i=1 ciϕi . This permutation corresponds to the assignment

ψ = ((u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n))

of the nodes of g1 to the nodes of g2. Note that assignment ψ includes node
assignments of the form (ui → vj), (ui → ε), (ε → vj), and (ε → ε) (the latter
can be dismissed, of course). Hence, the definition of C = (cij) in Eq. 1 explicitly
allows insertions and/or deletions to occur in the optimal assignment.

Assignment ψ does not take any structural constraints of the graphs into
account as long as the individual entries in C = (cij) consider the nodes of both
graphs only. In order to integrate knowledge about the graph structure, to each
entry cij , i.e. to each cost of a node edit operation (ui → vj), the minimum sum
of edge edit operation costs, implied by the corresponding node operation, is
added. This enables the LSAP to consider information about the local, yet not
global, edge structure of a graph for optimizing the node assignment.

Third Step: The LSAP optimization finds an assignment ψ in which every node of
g1 and g2 is either assigned to a unique node of the other graph, deleted or inserted.
That is, ψ refers to a consistent node assignment and thus, the edge operations,
which are implied by edit operations on their adjacent nodes, canbe completely and
consistently inferred from ψ. Hence, we get an edit path between the graphs under
consideration. Yet, the edit path corresponding to ψ considers the edge structure
of g1 and g2 in a global and consistent way while the optimal node assignment ψ
is able to consider the structural information in an isolated way only (single nodes
and their adjacent edges). Hence, the edit path found by this specific framework is
not necessarily optimal and thus the distances are – in the best case – equal to, or
– in general – larger than the exact graph edit distance.

3 Greedy Assignment Algorithms

3.1 Basic Greedy Assignment

In the second step of BP-GED an assignment of the nodes (plus local structures)
of both graphs has to be found. For this task a large number of algorithms
exist (see [10] for an exhaustive survey). For optimally solving the LSAP in the
existing framework, Munkres’ algorithm [12] also referred to as Kuhn-Munkres,
or Hungarian algorithm, is deployed. The time complexity of this particular
algorithm (as well as the best performing other algorithms for LSAPs) is cubic
in the size of the problem, i.e. O((n +m)3) in our case.



6 K. Riesen et al.

Algorithm 1. Greedy-Assignment(C = (cij))

1. ψ = {}
2. for i = 1, . . . , (m + n) do
3. ϕi = argmin

∀j
cij

4. Remove column ϕi from C
5. ψ = ψ ∪ {(ui → vϕi

)}
6. end for

7. return ψ

In [11] a suboptimal (rather than an optimal) algorithm is used for solving
the LSAP on cost matrix C. In particular, a greedy algorithm is employed that
iterates through C from top to bottom through all rows and assigns every ele-
ment to the minimum unused element of the current row. This idea is formalized
in Alg. 1. For each row i in the cost matrix C = (cij) the minimum cost assign-
ment is determined and the corresponding node edit operation (ui → vϕi) is
added to ψ. By removing column ϕi in C it is ensured that every column of the
cost matrix is considered at most once (i.e. ∀j only refers to available columns
in C). Clearly, the complexity of this suboptimal assignment algorithm is only
O((n+m)2). For the remainder of this paper we denote the graph edit distance
approximation where the basic node assignment is computed by means of this
greedy procedure with Greedy-GED.

3.2 Tie Break Strategy

A crucial question in Alg. 1 is how possible ties between two (or more) cost entries
in the same roware resolved. In [11] a certain row is always assigned to the firstmin-
imum column that occurs from left to right. As a refinement of this coarse heuristic
we propose the following procedure (denoted by Greedy-Tie-GED from now on).

Assume that in the i-th row the following t > 1 cost entries {cij1 , . . . , cijt}
offer minimal cost among all available columns. For each of the corresponding
columns {j1, . . . , jt} we search the minimum cost row that has not yet been
assigned. Eventually, row i is assigned to column ϕi ∈ {j1, . . . , jt} that holds the
highest minimum entry. Formally, column

ϕi = argmax
j∈{j1,...,jt}

(

min
∀k

ckj

)

is assigned to row i.
The intuition behind this strategy is as follows. The minimum cost

min
∀k

ckj

refers to the best available alternative for column j besides row i (∀k refers to all
unprocessed rows of matrixC). With other words, if we do not select (ui → vj) as
assignment, the alternative assignment costs at least min

∀k
ckj . Hence, we should

select the assignment among {ui → vj1 , . . . , ui → vjt} where the best possible
alternative would lead to the highest cost.



Approximation of Graph Edit Distance in Quadratic Time 7

3.3 Refined Greedy Assignment

A next refinement of the basic greedy algorithm is given in Alg. 2. Similar to
Alg. 1 for every row i we search for the minimum cost column ϕi (in case of ties
the strategy described in the previous section is applied). In addition to Alg. 1
we also seek for the minimum cost row k for column ϕi.

Algorithm 2. Greedy-Refined-Assignment(C = (cij))

1. ψ = {}
2. while row i in C is available do
3. ϕi = argmin

∀j
cij and k = argmin

∀i
ciϕi

4. if ciϕi
≤ ckϕi

then

5. ψ = ψ ∪ {(ui → vϕi
)}

6. Remove row i and column ϕi from C
7. else
8. ψ = ψ ∪ {(uk → vϕi

)}
9. Remove row k and column ϕi from C

10. end if
11. end while

12. return ψ

That is, for row i column ϕi is the best assignment. Yet, considering the
assignment process from column ϕi’s point of view, row k would be the best
choice. We select the assignment which leads to lower cost. That is, if ciϕi ≤ ckϕi

the assignment (ui → vϕi) is added to ψ. This includes the special situation
where i = k, i.e. column ϕi corresponds to the optimal assignment for row i
and vice versa. Otherwise, if ciϕi > ckϕi , assignment (uk → vϕi) is selected.
Regardless of the assignment actually added to ψ, the corresponding row and
column are removed from C.

Note that in contrast with Alg. 1 where the i-th assignment added to ψ always
considers row i, this algorithm processes the rows of C not necessarily from
top to bottom. However, the complexity of this assignment algorithm remains
O((n+m)2). We denote the graph edit distance approximation where the LSAP
is solved by means of this particular greedy assignment algorithm with Greedy-
Refined-GED.

3.4 Greedy Assignment Regarding Loss

A further refinement of the greedy assignment is given in Alg. 3. Similar to Alg. 2
we first find both the minimum cost column ϕi for row i and the minimum cost
row k for column ϕi (again the tie break strategy of Sect. 3.2 is applied). Now
three cases have to be considered.

If i equals k, column ϕi is the best available assignment for row i and vice
versa (and thus assignment (ui → vϕi) can safely be added to ψ). If i �= k two
scenarios have to be distinguished. For both scenarios the second best assignment
ϕ′
i for row i, as well as the best available assignment ϕk for row k (distinct from

ϕi) are determined. In the first scenario row i is assigned to its best column ϕi



8 K. Riesen et al.

Algorithm 3. Greedy-Loss-Assignment(C = (cij))

1. ψ = {}
2. while row i in C is available do
3. ϕi = argmin

∀j
cij and k = argmin

∀i
ciϕi

4. if i == k then
5. ψ = ψ ∪ {(ui → vϕi

)}
6. Remove row i and column ϕi from C
7. else
8. ϕ′

i = argmin
∀j �=ϕi

cij and ϕk = argmin
∀j �=ϕi

ckj

9. if (ciϕi
+ ckϕk

) < (ciϕ′
i
+ ckϕi

) then

10. ψ = ψ ∪ {(ui → vϕi
), (uk → vϕk

)}
11. Remove rows i, k and columns ϕi, ϕk from C
12. else
13. ψ = ψ ∪ {(ui → vϕ′

i
), (uk → vϕi

)}
14. Remove rows i, k and columns ϕi, ϕ

′
i from C

15. end if
16. end if
17. end while

18. return ψ

and thus row k has eventually to be assigned to the best alternative ϕk. The
sum of cost of this scenario amounts to (ciϕi + ckϕk

). In the other scenario, row
k is assigned to column ϕi and thus row i has to be assigned to its best possible
alternative which is column ϕ′

i. The sum of cost of this scenario amounts to
(ciϕ′

i
+ ckϕi). We choose the scenario with lower sum of cost and remove the

corresponding rows and columns from C.
We denote the graph edit distance approximation using this greedy approach

with Greedy-Loss-GED (the complexity of this assignment algorithm remains
O((n+m)2).

3.5 Relations to Exact Graph Edit Distance

Note that In contrast with the optimal permutation (ϕ1, . . . , ϕn+m) returned by
the original framework, the permutations (ϕ′

1, . . . , ϕ
′
n+m) of the proposed greedy

algorithms are suboptimal. That is, the sum of assignments costs of all greedy
approaches are greater than, or equal to, the minimal sum of assignment cost
provided by optimal LSAP solving algorithms. Formally, we have

(n+m)∑

i=1

ciϕ′
i
≥

(n+m)∑

i=1

ciϕi

However, for the approximate graph distance values derived by BP-GED and
any greedy approach no globally valid order relation exists. That is, the ap-
proximate graph edit distance derived from a greedy assignment can be greater
than, equal to, or smaller than a distance value returned by BP-GED. Note
that approximations derived from both optimal or suboptimal local assignments
constitute upper bounds of the true graph edit distance. Hence, the smaller the
approximated distance value is, the nearer it is to the exact graph edit distance.



Approximation of Graph Edit Distance in Quadratic Time 9

4 Experimental Evaluation

In Table 1 we show different characteristic numbers for BP-GED and all greedy
variants for graph edit distance approximation on three different data sets from
the IAM graph repository [13]. First we focus on the mean run time for one
matching in ms (�t). On the relatively small graphs of the FP data set, the
speed-up by Greedy-GED compared to BP-GED is rather small. Yet, on the
other two data sets with larger graphs substantial speed-ups can be observed.
That is, using Greedy-GED rather than BP-GED on the AIDS data set leads to a
decrease of the mean matching time from 3.61ms to 1.21ms. On the MUTA data
Greedy-GED is more than seven times faster than the original approximation.
We also observe that the enhanced greedy algorithms, viz. Greedy-Tie, Greedy-
Refined, and Greedy-Loss, do not need substantially more computation time
compared to the plain approximation using Greedy-GED.

The characteristic number �o measures the overestimation of one particular
assignment compared to the optimal assignment. For comparison we take the
difference between the optimal sum of costs and the sum of costs of the plain
greedy assignment as 100%. Regarding the results in Table 1 we note that our
novel tie resolution is not able to substantially reduce this overestimation. Yet,
both Greedy-Refined and Greedy-Loss return overall assignment sums which
are substantially nearer to the optimal sum than the plain greedy approach.
For instance, compared with Greedy-GED the difference to the optimal sum of

Table 1. The mean run time for one matching in ms (�t), the relative overestimation
of a greedy sum of assignment costs compared to the optimal sum of assignment costs
(�o), the mean relative deviation of greedy GED algorithm variants compared with
BP-GED in percentage (�e), and the accuracy of a 1NN classifier

D
a
ta Algorithm

BP-GED
Greedy-
GED

Greedy-Tie-
GED

Greedy-
Refined-
GED

Greedy-
Loss-GED

A
ID

S

�t [ms] 3.61 1.21 1.23 1.25 1.24

�o [%] – +100.0 +99.9 +74.1 +75.0

�e [%] – +7.1/ − 4.1 +6.5/ − 3.7 +5.8/ − 4.6 +7.0/ − 4.3

1NN [%] 99.07 98.93 99.20 99.13 98.87

F
P

�t [ms] 0.41 0.30 0.30 0.31 0.31

�o [%] – +100.0 +99.8 +88.0 +87.0

�e [%] – +6.6/−15.7 +6.5/−15.9 +6.0/−17.5 +5.7/−18.1

1NN [%] 79.75 77.05 77.20 75.80 76.6

M
u
ta

�t [ms] 33.89 4.56 4.68 4.88 4.95

�o [%] – +100.0 +99.9 +2.8 +15.5

�e [%] – +7.4/ − 3.8 +6.2/ − 4.6 +5.9/ − 5.1 +7.6/ − 4.9

1NN [%] 70.20 70.10 71.80 71.60 71.10



10 K. Riesen et al.

assignment costs is reduced by about 25% with Greedy-Refined and Greedy-
Loss on the AIDS data set. Similar results are observable on the other data sets
(note particularly the massive reduction on the Muta data set using Greedy-
Refined). The reduction of overestimation of assignment costs can also be seen
in the scatter plot in Fig. 1 (a) where the optimal assignment cost (x-axis) is
plotted against the greedy assignment costs (y-axis) for Greedy (gray dots) and
Greedy-Loss (black dots) on the AIDS data set.

(a) (b) (c)

Fig. 1. (a) Optimal assignment cost (x-axis) vs. greedy assignment cost (y-axis) on the
AIDS data sets using Greedy (gray dots) and Greedy-Loss (black dots), (b) distances of
BP-GED (x-axis) vs. distances of Greedy-GED (y-axis), and (c) distances of BP-GED
(x-axis) vs. distances of Greedy-Refined-GED (y-axis)

The characteristic number �e in Table 1 measures the mean relative over-
and underestimation of greedy graph edit distances compared with BP-GED.
Note that both means are computed on the sets of distances where a greedy ap-
proach actually over- or underestimates the original approximation. We observe
that our enhanced greedy assignment algorithms are able to reduce the mean
overestimation compared with the plain greedy approach in eight out of nine
cases. For instance, the mean overestimation of Greedy-GED amounts to +7.1%
on the AIDS data, while the same parameter is reduced to +5.8% with Greedy-
Refined-GED. Interestingly, the mean underestimation of Greedy-GED is further
increased with our novel enhancements (also in eight out of nine cases). That is,
compared with Greedy-GED the refined greedy variants are able to improve the
overall distance quality in general. The reduction of overestimation and increase
of underestimation by the refined algorithms can also be seen in Fig. 1 (b) and
(c) where the distances of BP-GED (x-axis) are plotted against distances re-
turned by Greedy-GED and Greedy-Refined-GED (y-axis), respectively (on the
Muta data set).

Not only the mean over- and underestimation, but also the number of match-
ings, where greedy distances are equal to, smaller than, or greater than, the
distances returned by BP-GED are crucially altered using our improved greedy
assignments. Fig. 2 shows for every greedy algorithm the relative number of



Approximation of Graph Edit Distance in Quadratic Time 11

(a) AIDS (b) FP (c) MUTA

Fig. 2. Relative number of matchings where the greedy algorithms return distances
greater than BP-GED (black bars), smaller than than BP-GED (grey bars), or equal
to BP-GED (white bars) on all data sets

matchings for these three cases. On the AIDS data set, for instance, the rela-
tive number of matchings where the greedy distances overestimate the distances
returned by BP-GED are reduced from 55.5% (Greedy-GED) to 42.1% (Greedy-
Loss-GED). Likewise, the number of matchings where the greedy approaches lead
to equal, or even smaller distances than BP-GED is increased using the proposed
refinement algorithms. Similar (or even better) results can be observed on the
other data sets. That is, compared with Greedy-GED the novel algorithms de-
crease the number of matchings which overestimate BP-GED while the number
of matchings with equal or even better approximations than BP-GED is in-
creased.

Finally, Table 1 shows the recognition rate of a 1-nearest-neighbor classifier
(1NN). The nearest neighbor paradigm is particularly interesting for the present
evaluation because it directly uses the distances without any additional classifier
training. In comparison with BP-GED we observe that Greedy-GED slightly de-
teriorates the recognition rates on all data sets. However, the proposed enhanced
greedy assignment algorithms improve the recognition rate of a 1NN compared
to Greedy-GED in 6 out of 9 cases. Moreover, at least one of the novel greedy
algorithms outperforms the recognition rate of Greedy-GED on all data sets. For
BP-GED the same observation holds for two of the three data sets.

5 Conclusions and Future Work

In the present paper we propose an extension of graph edit distance approx-
imation algorithms developed previously. While in the original framework the
nodes plus local edge structures are assigned to each other in an optimal way,
the extension of the present paper uses various suboptimal greedy algorithms for
this task. In particular we propose three enhanced versions of a simple greedy
assignment algorithm. These novel enhancements allow the graph edit distance
approximation in quadratic – rather than cubic – time. The speed up of the ap-
proximation is empirically verified on three different graph data sets. Moreover,



12 K. Riesen et al.

we show that the enhanced greedy algorithms are able to improve the distance
quality of a plain greedy assignment. Finally, we observe that in most cases the
novel greedy algorithms are able to keep up with the existing framework with
respect to recognition accuracy using a 1NN classifier. In future work we plan
to develop further suboptimal assignment algorithms and test their applicability
in graph based pattern recognition scenarios. Moreover, we aim at testing our
greedy approaches on additional graph data sets and larger graphs

Acknowledgement. This work has been supported by the Hasler Foundation
Switzerland and the Swiss National Science Foundation projects 200021 153249 and
PBBEP2 141453.

References

1. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1, 245–253 (1983)

2. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part
B) 13(3), 353–363 (1983)

3. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

4. Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(3), 365–378 (2005)

5. Emms, D., Wilson, R., Hancock, E.: Graph edit distance without correspon-
dence from continuous-time quantum walks. In: da Vitoria Lobo, N., Kasparis,
T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M.
(eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 5–14. Springer, Heidelberg (2008)

6. Boeres, M., Ribeiro, C., Bloch, I.: A randomized heuristic for scene recognition
by graph matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS,
vol. 3059, pp. 100–113. Springer, Heidelberg (2004)

7. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In:
Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer,
Heidelberg (2005)

8. Justice, D., Hero, A.: A binary linear programming formulation of the graph
edit distance. IEEE Trans. on Pattern Analysis ans Machine Intelligence 28(8),
1200–1214 (2006)

9. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)

10. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for In-
dustrial and Applied Mathematics, Philadelphia (2009)

11. Riesen, K., Ferrer, M., Dornberger, R., Bunke, H.: Greedy graph edit distance
(Submitted to MLDM)

12. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

13. Riesen, K., Bunke, H.: IAM graph database repository for graph based pat-
tern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T.,
Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.)
SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)


	Approximation of Graph Edit Distance in Quadratic Time
	1 Introduction
	2 Bipartite Graph Edit Distance Approximation
	3 Greedy Assignment Algorithms
	3.1 Basic Greedy Assignment
	3.2 Tie Break Strategy
	3.3 Refined Greedy Assignment
	3.4 Greedy Assignment Regarding Loss
	3.5 Relations to Exact Graph Edit Distance

	4 Experimental Evaluation
	5 Conclusions and Future Work




