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On Covariant Poisson Brackets in Field Theory

A.A. Sharapov

Abstract. A general approach is proposed to constructing covariant Poisson
brackets in the space of histories of a classical field-theoretical model. The
approach is based on the concept of Lagrange anchor, which was originally
developed as a tool for path-integral quantization of Lagrangian and non-
Lagrangian dynamics. The proposed covariant Poisson brackets generalize
the Peierls’ bracket construction known in the Lagrangian field theory.
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1. Introduction

The least action principle provides the foundation for classical mechanics and field
theory. A distinguishing feature of the Lagrangian equations of motion among
other differential equations is that their solution space carries a natural symplectic
structure, making it into a phase space. The physical observables, being identified
with the smooth function(al)s on the phase space, are then endowed with the
structure of a Poisson algebra. There are at least two different ways for describing
this Poisson algebra. The first one is the standard Hamiltonian formalism, which
requires an explicit splitting of space-time into space and time and introduction of
canonical momenta. The main drawback of this approach is the lack of manifest
covariance, which causes some complications in applying it to relativistic field the-
ory. An alternative approach was proposed by Peierls in his seminal 1952 paper [1].
In that paper he invented what is now known as the Peierls brackets on the covari-
ant phase space. In contrast to the usual (non-covariant) Hamiltonian formalism,
where the phase space is identified with the space of initial data, the covariant
phase space is the functional space consisting of all the trajectories obeying the
Lagrangian equations of motion. Peierls’ paper opened up the way for constructing
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a fully relativistic theory of quantum fields [2]. For more recent discussions of the
Peierls brackets, on different levels of rigor, we refer the reader to [3–5].

In this paper, we explain how to extend the concept of covariant phase-space
to the most general (i.e., not necessarily Lagrangian) theories. Our approach is
based on the notion of Lagrange anchor, which was originally proposed in [6] as
a tool for path-integral quantization of Lagrangian and non-Lagrangian theories.
In most cases the existence of a Lagrange anchor appears to be less restrictive
condition for the classical dynamics than the existence of an action functional.
Furthermore, one and the same system of equations may admit a variety of different
Lagrange anchors leading to nonequivalent quantizations. In the next sections, we
will show that any Lagrange anchor gives rise to a Poisson structure in the space of
solutions to the classical equations of motion. The corresponding Poisson brackets
are fully covariant and reduce to the Peierls brackets in the case of Lagrangian
theories endowed with the canonical Lagrange anchor. It is pertinent to note that
for the mechanical systems described by ordinary differential equations in normal
form, a relationship between the Lagrange anchors and Poisson brackets has been
already established in [7].

Our exposition is mostly focused on the algebraic and geometric aspects of
the construction, while more subtle functional analytical details are either ignored
or treated in a formal way. These details, however, are not specific to our problem
and can be studied, in principle, along the same lines as in the case of conventional
Peierls’ brackets.

2. Classical gauge systems

2.1. Kinematics

In modern language the classical fields are just the sections of a locally trivial
fiber bundle B → M over the space-time manifold M . The typical fiber F of B
is called the target space of fields. In case the bundle is trivial, i.e., B = M × F ,
the fields are merely the mappings from M to F . In each trivializing coordinate
chart U ⊂ M a field ϕ : M → B is described by a collection of functions ϕi(x),
where x ∈ U and ϕi are local coordinates in F . These functions are often called
the components of the field ϕ.

Formally, one can think of Γ(B) – the space of all field configurations – as a
smooth manifold M with the continuum infinity of dimensions and ϕi(x) playing
the role of local coordinates. In other words, the different local coordinates ϕi(x)
on M are labeled by the space-time point x ∈ M and the discrete index i. To
emphasize this interpretation of fields as coordinates on the infinite-dimensional
manifold M we will include the space-time point x into the discrete index i and
write ϕi for ϕi(x); in so doing, the summation over the “superindex” i implies
usual summation for its discrete part and integration over M for x. In the physical
literature this convention is known as DeWitt’s condensed notation [2].
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Proceeding with the infinite-dimensional geometry above, we identify the
“smooth functions” on the “manifold” M with the infinitely differentiable func-
tionals of field ϕ. These functionals form a commutative algebra, which will be
denoted by Φ. If δϕi is an infinitesimal variation of field, then, according to the
condensed notation, the corresponding variation of a functional S ∈ Φ can be
written in the form

δS = S,i δϕ
i , (1)

where the comma denotes the functional derivative.

The concepts of vector fields, differential forms and exterior differentiation
on M are naturally introduced through the functional derivatives, see, e.g., [13].
In particular, the variations δϕi span the space of 1-forms and the functional
derivatives δ/δϕi define a basis in the tangent space TϕM. So, we can speak of
the tangent and cotangent bundles of M.

The tangent and cotangent bundles are not the only vector bundles that can
be defined overM. Given a vector bundle E → M over the space-time manifold, we
define the vector bundle E → M whose sections a smooth functionals of fields with
values in Γ(E). In other words, a section ξ ∈ Γ(E) takes each field configuration
ϕ ∈ M to a section ξ[ϕ] ∈ Γ(E). Here we do not require the section ξ[ϕ] to be
smooth; discontinuous or even distributional sections are also allowed. We will
refer to E as the vector bundle associated with E. The dual vector bundle E∗ is
defined to be the vector bundle associated with E∗.

In order to justify our subsequent constructions some restrictions are to be
imposed on the structure of the underlying space-time manifold. Our basic as-
sumption will be that M is a globally hyperbolic manifold endowed with a volume
form. In the most of field-theoretical models both the structures come from a
Lorentzian metric on M . The globally hyperbolic manifolds is a natural arena for
the theory of hyperbolic differential equations with well-posed Cauchy problem.
By definition, each globally hyperbolic manifold M admits a global time function
whose level surfaces provide a foliation of M into space-like Cauchy surfaces N ,
so that M � R× N . Using the direct product structure, one can cut M into the
“past” and the “future” with respect to a given instant of time t ∈ R:

M−
t = (−∞, t]×N , M+

t = [t,∞)×N , M = M−
t ∪M+

t .

Given a vector bundle E → M , we define the following subspaces in the space
of sections Γ(E):

• Γ0(E) = {ξ ∈ Γ(E) | supp ξ is compact};
• Γsc(E) = {ξ ∈ Γ(E) | supp ξ is spatially compact};
• Γ−(E) = {ξ ∈ Γsc(E) | supp ξ ⊂ M−

t for some t};
• Γ+(E) = {ξ ∈ Γsc(E) | supp ξ ⊂ M+

t for some t}.
Here the spatially compact means that the intersection M−

t ∩ supp ξ ∩ M+
t′ is

compact for any t ≥ t′. We will refer to the elements of Γ−(E) and Γ+(E) as the
sections with retarded and advanced support, respectively.
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A differentiable functional A is said to be compactly supported if A,i ∈
Γ0(T

∗M). For example, a local functional, like the action functional, is compactly
supported if it is given by an integral over a compact domain. The formally smooth
and compactly supported functionals form a subalgebra Φ0 ⊂ Φ. Let now E be
a vector bundle associated with E. We say that a section ξ ∈ Γ(E) has retarded,
advanced or compact support if ξ[ϕ] ∈ Γ(E) does so for any field configuration
ϕ ∈ M. The sections with the mentioned support properties form subspaces in
Γ(E), which will be denoted by Γ−(E), Γ+(E), and Γ0(E), respectively.

When dealing with local field theories it is also useful to introduce the sub-
space of local sections Γloc(E) ⊂ Γ(E). This consists of those sections of E whose
components are given, in each coordinate chart, by smooth functions of the field
ϕ and its partial derivatives up to some finite order. For instance, the components
of the Euler–Lagrange equations S,i = 0 constitute a section of Γloc(T

∗M).

2.2. Dynamics

The dynamics of fields are specified by a set of differential equations

Ta[ϕ] = 0 . (2)

Here a is to be understood as including a space-time point. According to our
definitions, the left-hand sides of the equations can be viewed as components of a
local section of some vector bundle E overM. We call E the dynamics bundle. Since
we do not assume the field equations (2) to come from the least action principle,
the discrete part of the condensed index a may have nothing to do with that
of i labeling the field components. In the special case of Lagrangian systems, the
dynamics bundle coincides with the cotangent bundle T ∗M and the field equations
are determined by the exact 1-form (1), with S being the action functional.

Let Σ denote the space of all solutions to the field equations (2). Geomet-
rically, we can think of Σ as a smooth submanifold of M and refer to Σ as the
dynamical shell or just the shell. For the Lagrangian systems the shell is just the
set of all stationary points of the action S. By referring to Σ as a smooth subman-
ifold we mean that the standard regularity conditions hold for the field equations
[8].

Given the shell, a functional A ∈ Φ0 is said to be trivial iff A|Σ = 0. Clearly,
the trivial functionals form an ideal of the algebra Φ0. Denoting this ideal by Φtriv

0 ,
we define the quotient-algebra ΦΣ

0 = Φ0/Φ
triv
0 . The regularity of the field equations

imply that for each trivial functional A ∈ Φtriv
0 there exists a (distributional)

section ξ ∈ Γ(E∗) such that A = ξaTa. In other words, the trivial functionals
are precisely those that are proportional to the equations of motion and their
differential consequences. By definition, the elements of the algebra ΦΣ

0 are given
by the equivalence classes of functionals from Φ0, where two functionals A and
B are considered to be equivalent if A − B ∈ Φtriv

0 . In that case we will write
A ≈ B. Formally, one can think of ΦΣ

0 as the space of smooth, compactly supported
functionals on Σ.
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2.3. Gauge symmetries and physical observables

The first functional derivatives of the field equations (2) constitute the Jacobi
operator J ,

Jai = Ta,i . (3)

Geometrically, J defines a homomorphism from the tangent to the dynamics bun-
dle.

The field equations (2) are said to be gauge invariant if there exist a vector
bundle F → M together with a section R = {Ri

α} of F∗ ⊗ TM such that

JaiR
i
α ≈ 0 ⇔ RαTa = Cb

αaTb . (4)

In local field theory it is also assumed that Ri
α[ϕ] is the integral kernel of a differ-

ential operator R[ϕ] : Γ(F) → Γ(TM) for each ϕ ∈ M.
For the sake of simplicity we assume the bundle F to be trivial and consider

Rα = {Ri
α} as a collection of vector fields on M. This vector fields are called the

gauge symmetry generators. The terminology is justified by the fact that for any
infinitesimal section ε ∈ Γ0(F) the infinitesimal change of field ϕi → ϕi + δεϕ

i,
where

δεϕ
i = Ri

αε
α ,

maps solutions of (2) to solutions. In other words, the vector fields Rα are tangent
to the dynamical shell Σ. The gauge symmetry transformations are said to be
trivial if R ≈ 0. If the vector bundle F is big enough to accommodate all nontrivial
gauge symmetries, then we call F the gauge algebra bundle and refer to Rα as a
complete set of gauge symmetry generators. It follows from the definition (4) that
the vector fields Rα define an on-shell involutive vector distribution on M, i.e.,

[Rα, Rβ ] ≈ Cγ
αβRγ ,

for some C’s. This distribution will be denoted by R and called gauge distribution.
A functional A ∈ Φ0 is gauge invariant if

A,i R
i
α ≈ 0 .

In that case we say that A represents a physical observable. The gauge invari-
ant functionals form a subalgebra Φinv

0 ⊂ Φ0. Two gauge invariant functionals A
and A′ are considered as equivalent or represent the same physical observable if
A ≈ A′. So, we identify the physical observables with the equivalence classes of
gauge invariant functionals from Φ0. This definition is consistent as the trivial
functionals are automatically gauge invariant and the property of being gauge in-
variant passes through the quotient Φinv

0 /Φtriv
0 . In what follows we will identify

physical observables with their particular representatives in Φinv
0 .

3. The Lagrange anchor

According to our definitions each classical field theory is completely specified by
a pair (E , T ), where E → M is a vector bundle over the configuration space
of fields and T is a particular section of Γloc(E). The solution space Σ is then
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identified with the zero locus of the section T . Whereas the classical equations
of motion Ta[ϕ] = 0 are enough to formulate the classical dynamics they are
certainly insufficient for constructing a quantum-mechanical description of fields.
Any quantization procedure has to involve one or another additional structure.
Within the path-integral quantization, for instance, it is the action functional that
plays the role of such an extra structure. The procedure of canonical quantization
relies on the Hamiltonian form of dynamics, involving a non-degenerate Poisson
bracket and a Hamiltonian. Either approach assumes the existence of a variational
formulation for the classical equations of motion (the least action principle) and
becomes inapplicable beyond the scope of variational dynamics. The extension of
these quantization methods to non-variational dynamics was proposed in [6, 9].
In particular, the least action principle of the Lagrangian formalism was shown to
admit a far-reaching generalization based on the concept of a Lagrange anchor.

Like many fundamental concepts, the notion of a Lagrange anchor can be
introduced and motivated from various perspectives. Some of these motivations
and interpretations can be found in Refs. [6, 12, 13]. For our present purposes it
is convenient to define the Lagrange anchor V as a linear operator making the
on-shell commutative diagram

Γ(TM)
J �� Γ(E)

Γ(E∗)

V

��

J∗
�� Γ(T ∗M).

V ∗

��
(5)

Here J∗ and V ∗ denote the formal dual of the operators J and V . The on-shell
commutativity of the diagram means that

J ◦ V ≈ V ∗ ◦ J∗ . (6)

Due to the regularity condition, the off-shell form of the last equality reads

JaiV
i
b − V i

aJbi = Cd
abTd (7)

for some C’s.
In the case of Lagrangian theories E = T ∗M and we can take V = 1. Then (7)

reduces to the commutativity of the second functional derivatives, Jij = S,ij = Jji.
The operator V = 1 is referred to as the canonical Lagrange anchor for Lagrangian
equations of motion. It should be noted that even for Lagrangian equations S,i = 0
there may exist non-canonical Lagrange anchors.

As with the generators of gauge symmetries, we can think of the Lagrange
anchor as a collection of vector fields Va = {V i

a} on M. These generate a (singu-
lar) vector distribution V , which we call the anchor distribution. From the physical
standpoint, V defines the possible directions of quantum fluctuations on M. For
the Lagrangian theories endowed with the canonical Lagrange anchor V = 1 all di-
rections are allowable and equivalent. At the other extreme we have zero Lagrange
anchor, V = 0, for which the corresponding quantum system remains pure classical
(no quantum fluctuations). In the intermediate situation only a part of physical
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degrees of freedom may fluctuate and/or the intensity of fluctuations around a
particular field configuration ϕ ∈ M may vary with ϕ.

Unlike the gauge distribution R, the anchor distribution V is not generally
involutive even on shell. Nonetheless, using the regularity condition, one can derive
the following commutation relations [10]:

[Va, Vb]
i ≈ Cd

abV
i
d +Dα

abR
i
α + JajW

ji
b − JbjW

ji
a ,

[Rα, Va]
i ≈ Cb

αaV
i
b +Dβ

αaR
i
β + JajW

ji
α ,

(8)

where the coefficients W ’s are symmetric in ij and the C’s are defined by Rels. (4)
and (7). By definition, the coefficients Cd

ab and Cb
αa are given by the integral kernels

of trilinear differential operators, while the coefficients D’s and W ’s may well be
non local. Locality of the latter coefficients will be our additional assumption.
It is automatically satisfied for the so-called integrable Lagrange anchors as they
were defined in [11]. We will not dwell here on the concept of integrability of the
Lagrange anchors referring the interested reader to the cited paper.

4. Covariant Poisson brackets

The cornerstone of our construction is an advanced/retarded fluctuation V ±
A caused

by a physical observable A. By definition, V ±
A is a vector field from Γ±(TM)

satisfying the condition

V ±
A Ta ≈ VaA . (9)

It is not hard to see that the last equation defines V ±
A uniquely up to adding a

vector field from R and on-shell vanishing terms [10].
Now we define the advanced/retarded brackets of two physical observables

by the relation

{A,B}± = V ±
A B − V ±

B A , ∀A,B ∈ Φinv
0 . (10)

These brackets are well defined on shell as the ambiguity related to the choice of
the fluctuations,

V ±
A → V ±

A + ξαRα + TaX
a , ξ ∈ Γ±(F) , Xa ∈ Γ±(TM) , (11)

results in on-shell vanishing terms. Using Rels. (8) one can prove the following
main statement.

Proposition 1. Brackets (10) map physical observables to physical observables and
satisfy all the properties of Poisson brackets: antisymmetry, bi-linearity, the Leib-
nitz rule and Jacobi identity.

Proof. See [10]. �

In [10], it was also shown that the advanced and retarded fluctuations are
connected to each other by the following reciprocity relation:

V −
A B ≈ V +

B A . (12)
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It just says that the retarded effect of A on B is equal to the advanced effect of B
on A, and vice versa. As an immediate consequence of (12) we obtain the on-shell
equality

{A,B}± ≈ ±ṼAB , (13)

where the difference ṼA = V +
A − V −

A is called the causal fluctuation.
Let us now compare the covariant Poisson brackets (10) with the usual Peierls’

brackets in Lagrangian field theory. In the latter case the dynamics of fields are gov-
erned by some action functional S[ϕ]. As was explained in Sec. 3, the correspond-
ing equations of motion S,i [ϕ] = 0 admit the canonical Lagrange anchor given
by the unit operator V = 1 on Γ(T ∗M). The definition of the advanced/retarded
fluctuation (9) takes the form

V ±i
A S,ij ≈ A,j . (14)

In the absence of gauge symmetries this equation can be solved for V ±
A with the

help of the advanced/retarded Green function G±ij . By definition,

G±inS,nj = S,jn G±ni = δij and G−ij = 0 = G+ji if j > i . (15)

Here j > i means that the time associated with the index i lies to the past of the
time associated with the index j. Besides (15), the advanced and retarded Green
functions satisfy the so-called reciprocity relation G±ij = G∓ji. In terms of the
Green functions the advanced/retared solution to (14) reads

V ±i
A = G±ijA,j . (16)

and the causal fluctuation takes the form Ṽ i
A = V +i

A − V −i
A = G̃ijA,j , where the

difference G̃ = G+ − G− is known as the causal Green function. In view of the
reciprocity relation, G̃ij = −G̃ji. Substituting (16) into (13), we get

{A,B}± = ±A,i G̃
ijB,j . (17)

The antisymmetry of the brackets as well as the derivation property are obvious.
The direct verification of the Jacobi identity for (17) can be found in [2].

5. An example: the Pais–Uhlenbeck oscillator

The PU oscillator is described by the fourth-order differential equation(
d2

dt2
+ ω2

1

)(
d2

dt2
+ ω2

2

)
x = 0 , (18)

where the constants ω1 and ω2 have the meaning of frequencies. The advanced/
retarded Green function G±(t2 − t1) for (18) is given by

G±(t) = ± θ(∓t)

ω2
2 − ω2

1

(
sinω1t

ω1
− sinω2t

ω2

)
,

with θ(t) being the Heaviside step function.
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Equation (18) admits the two-parameter family of the Lagrange anchors [14]

V = α+ β
d2

dt2
, α, β ∈ R . (19)

In this particular case the defining condition for the Lagrange anchor (7) reduces
to the commutativity of the operator V with the fourth-order differential operator
defining the equation of motion (18). Notice that the equation of motion (18) is
Lagrangian and the canonical Lagrange anchor corresponds to α = 1, β = 0.

The advanced Poisson brackets are given by

{x(t1), x(t2)}+ = V G̃(t1 − t2)

=

(
α− βω2

1

ω2
2 − ω2

1

)
sinω1(t1 − t2)

ω1
−
(
α− βω2

2

ω2
2 − ω2

1

)
sinω2(t1 − t2)

ω2
.

Differentiating with respect to t1, t2 and setting t1 = t2, we obtain the
following Poisson brackets of the phase-space variables z = (x, ẋ, ẍ,

...
x ):

{ẋ, x}+ = β , {ẋ, ẍ}+ = {...x , x}+ = α− β(ω2
1 + ω2

2) ,

{ẍ, ...x}+ = α(ω2
1 + ω2

2)− β(ω4
1 + ω2

1ω
2
2 + ω4

2) ,
(20)

and the other brackets vanish. For α = 1, β = 0, this yields the standard Poisson
brackets on the phase space of the PU oscillator.

With the Poisson brackets (20) the equations of motion (18) can be written
in the Hamiltonian form

żi = {H, zi}+ , i = 1, 2, 3, 4 ,

where the Hamiltonian is given by

H =
1

2

(
...
x + ω2

1ẋ)
2 + ω2

2(ẍ + ω2
1x)

2

(ω2
1 − ω2

2)(α − βω2
2)

− 1

2

(
...
x + ω2

2ẋ)
2 + ω2

1(ẍ + ω2
2x)

2

(ω2
1 − ω2

2)(α − βω2
1)

.

As was first noticed in [14], this Hamiltonian is positive definite whenever

ω2
1 >

α

β
> ω2

2 . (21)

Clearly, the canonical Lagrange anchor (α = 1, β = 0) does not satisfy these
inequalities for any frequencies ω1,2. On the other hand, in the absence of resonance
(ω1 != ω2), one can always choose the non-canonical Lagrange anchor (19) to meet
inequalities (21). Upon quantization the positive-definite Hamiltonian will have
a positive energy spectrum and a well-defined ground state. The last property is
crucial for the quantum stability of the system [14]. So, we see that non-canonical
Lagrange anchors may offer certain advantages over the canonical one, when the
issuers of quantum stability of higher-derivative systems are concerned.
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