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Abstract We describe a simple stochastic method, so-called Langevin approach,
which enables one to extract evolution equations of stochastic variables from a set
of measurements. Our method is parameter free and it is based on the nonlinear
Langevin equation. Moreover, it can be applied not only to processes in time, but
also to processes in scale, given that the data available shows ergodicity. This chapter
introduces the mathematical foundations of this Langevin approach and describes
how to implement it numerically. In addition, we present an application of themethod
to a turbulent velocity field measured in laboratory, retrieving the corresponding
energy cascade and comparingwith the results fromacomputer fluid dynamics (CFD)
simulation of that experiment. Finally, we describe extensions of the method for
time series reconstruction and applications to other fields such as finance, medicine,
geophysics and renewable energies.

1 Introduction

“The present state of the universe is an effect of its past states and causes its future
one”. Such a claim is a fundamental assumption in every physical approach to our
surrounding nature and was mathematically defended for the first time two centuries
ago, in 1814, by Simon Laplace. Laplace had a dream [1], one where “an intellect at a
certainmomentwould knowall forces that set nature inmotion, and all positions of all
items of which nature is composed, […] vast enough to submit these data to analysis
[…], to embrace in a single formula [all movements of the universe]”. Why was
this a dream? Because there are strong arguments against it, such as thermodynamic
irreversibility, quantic indeterminacy and nonlinear sensitivity to initial states. But
there is also a practical reason: such a high-dimensional problem, due to its huge
number of variables, would only be computable if one would take as model of
reality the reality itself, an approach which is pointless. To model reality one needs
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simplifications and stochastic methods enables one to simplify reality in several
adequate ways. In this chapter we describe one of such ways, which, in the last 15
years, has been successfully applied in several fields [2].

As an illustration we address the problem of turbulence, one of the central open
problems in physics [3]. A turbulent fluid is governed by the so-called Navier-Stokes
equations which cannot be approached analytically in all their detail. Therefore
one handlesNavier-Stokes equations numerically, developing discretization schemes
whichyield the solution of one specific problem.Suchdiscretization in space and time
corresponds in general to high-dimensional problems which, in the limit of infinitely
small discrete elements, leads to infinite many degrees of freedom. Such numerical
approaches to the equations governing turbulence enabled rather successful insight
and modeling approaches for fundamental physics and engineering applications [3].

However, the Navier-Stokes equations, which are purely deterministic, could be
substituted by a stochastic approach, using only a few—the essential—variables,
say Xi (i = 1, . . . , N ) and incorporating the rest of the degrees of freedom in a
“stochastic bag”. In this way one arrives to evolution equations of the type:

d Xi

dt
= Fi (X1, . . . , X N , t) + Gi (X1, . . . , X N , �1, . . . , �M , t) (1)

where function Fi (X1, . . . , X N ) is a deterministic function depending on each vari-
able Xi and function Gi (X1, . . . , X N , �1, . . . , �M ) depends not only on variables
Xi but also on stochastic forces � j ( j = 1, . . . , M). For Gi ≡ 0, Eq. (1) reduces to
a deterministic dynamical system and for Gi ∼ 0 one can take it as a deterministic
dynamical system subjected to small noise of constant amplitude [4].

In general however, not only function G cannot be neglected but it possesses a
much more complicated (nonlinear) dependence on the accounted variables. Such
functional dependence of G is important, for instance when one intends to describe
physical features of a process underlying a set of data or when aiming at predicting
or reconstructing a set of observations.

Having properly defined an equation such as Eq. (1), it should be possible to
reconstruct series of values of one variable, say X ≡ Xi in a statistical sense, i.e. it
should be possible to derive the conditional probability:

p(X (t + �t)|X (t), X (t − �t), . . . , X (t0)) (2)

for each set of values X (k) with k = t0, . . . , t . See sketch in Fig. 1.
In this chapter we will describe in detail how to derive an evolution equation such

as Eq. (1) from a set of measurements. Our method, so-called Langevin approach, is
fully introduced in Sect. 2. In Sect. 3 the Langevin approach is applied to turbulence
by using the data gained from an experimental study in Sect. 3.1. Furthermore, the
Langevin approach is applied to a numerical simulation of the experimental study in
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Fig. 1 Illustration of F and G in Eq. (1). The deterministic contribution, F = D(1), which drives
the system according to X → X + F�t and a stochastic contribution G = √

D(2)�t that is added
to it, according to some probability distribution. Both functions D(1) and D(2) have a well-defined
meaning and can be extracted from sets of measurements. See Sect. 2

Sect. 3.2. A comparative analysis, discussing the results obtained in the experiments
and simulations is given in Sect. 3.3. Section4 concludes this chapter, discussing
briefly recent trends in the Langevin approach and other possible fields and topics
where it can be successfully applied.

2 The Langevin Approach

To introduce the Langevin approach, we first explain in Sect. 2.1 what processes in
scale1 are and relate themwith the usual processes in time. In Sect. 2.2, the necessary
conditions under which the Langevin approach is applied are given together with a
brief description of how to verify these conditions in empirical and simulated data.
Section2.3 describes the derivation of the deterministic and stochastic contributions
with a given set ofmeasurements taken froma process in scale. Finally, in Sect. 2.4we
derive the stochastic evolution equation describing a process in scale. A particular
example is described, namely the “Brownian motion” in scale, using the Galton
box as an illustration, which complements the usual Brownian motion described by
Einstein [5] and Langevin [6].

1In statistics such processes are also known as branching processes.
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2.1 Processes in Scale

There is a famous poem by Richardson [3] about turbulence which summarizes his
important paper from 1920 [7]: “a turbulent fluid is composed by a few big eddies that
decay into smaller eddies, these ones into even smaller eddies, and so on to viscosity”.
The energy that feeds the turbulent fluid enters the system on large scales—through
the largest eddies—and travels towards smaller and smaller scales up to a minimum
scale where it leaves the system by means of dissipation. In each of these steps the
energy of the larger eddy is randomly distributed between the smaller “child” eddies.
Such a pictorial view of turbulent energy traveling through a hierarchical succession
of length scales leads to the concept of the turbulent energy cascade evolving in the
spatial length scale as the independent variable.

One may ask if it would be possible to extract such energy cascade from empirical
data, e.g. from a set of velocity measurements at one specific point of the fluid.
In the following we show that indeed it is possible [2, 8, 9]. Describing how a
property behaves across an ordered series of different spatial scales is analogous
to the more common description of the evolution of a property in time, with the
important difference that instead of the time-propagator in Eq. (2) one has now a
“scale-propagator”.

Assuming that one has a non-negligible stochastic contribution, the aim is to
derive an equation analogous to Eq. (1) where the spatial scale r plays the role of
time t . Since the independent variable r accounts for the size of some structure, like
an eddy, we choose for the dependent variable the difference of an observable X at
two distinct positions, separated by r , namely the increment

�Xr (x) = X (x + r) − X (x) (3)

with x being a specific location in the system. Thus, the scale-propagator describes
how this increment—ordifference—changeswhen thedistance increases or decreases
as follows:

p(�Xr+�r |�Xr ,�Xr−�r , . . . ,�Xr0). (4)

Four important remarks are due here. First, the scale increment �r in Eq. (4) can
in general be positive or negative. In fact, as we will see in the next sections, the
energy in turbulence flows from the largest scales, of the size of the system itself,
toward the smallest scale at which dissipation takes place. Therefore, in turbulence
one considers a scale-propagator as in (4) with �r < 0.

Second, one should define a proper metric for the scale r . Is the spatial distance
the best choice? Or is there a more appropriate functional of spatial distances? A
process in time evolves according to an iteration from t to t + dt . The same should
occur for processes in scale. However, when “iterating” from one scale to the “next”,
one iterates in a multiplicative way, i.e., from one scale to the next one multiplies
the previous scale by some constant a, yielding a succession of scales rn = an →
rn+1 = an+1 = arn . A suitable choice of an additive scale, similar to the additive
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time iteration, is the logarithmic scale log r , since in this case one has log rn =
n log a → log rn+1 = (n + 1) log a = log rn + log a. This logarithm scale is of
importance to understand the concept of self-similarity, which is closely related to
processes in scale. Self-similarity is the property that a phenomenon may manifest,
by showing invariance under multiplicative changes of scale, as observed in turbulent
flows. Indeed, following Richardson’s poem, eddies are self-similar objects, since
multiplying or dividing their size by a proper scaling factor we obtain an eddy again.
With the logarithmic scale we “convert” the multiplicative changes into additive
ones.

Third, when analyzing processes in scale, ideally one would consider a field of
measurements taken simultaneously within a spatially extended region. What one
typically has, contrastingly, is a set of measurements in time taken at a particular
location. To extract processes in scale from single time series, one requires the prop-
erty being measured to be ergodic: the system should display the same behaviour
averaged either over time or over the space of all the system’s states. In the particular
case of a turbulent fluid, ergodicity reduces to the so-called Taylor hypothesis [3].

Fourth, while the derivation of a propagator in scalemay be helpful for uncovering
phenomena such as the energy cascade in turbulence, one may also aim to bridge
from the derived propagator in scale to a propagator in time which would enable
time-series reconstruction. As shown in previous works [10], our Langevin approach
enables such bridging from scale to time.

Henceforth, we will consider a process in scale, i.e. a succession of increments
�Xs of a measurable property X , with:

s = log

(
Rmax

r

)
(5)

taking values from s0 = 0 (largest scale r = Rmax) to sL = log (Rmax/Rmin) at the
smallest scale r = Rmin . Notice that, ds = −dr/r and therefore, for dr < 0 one
arrives again at a positive scale increment.

2.2 Necessary Conditions: Stationarity and the Markov
Property

To apply our method, two important features must be met. First, the set of measures
from which one extracts the succession of increments in scale must be a stationary
process. Second, the process in scale must be Markovian.

For the process Xt to be stationary, the corresponding conditional probability in
Eq. (2) should be invariant under a translation in time, t → t + T , ∀T . Numerically
such property cannot be tested in sets ofmeasurements. As an alternative, one usually
divides the set of measurements in n subsets of N/n � 1 data points and computes
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the first four centred moments. In case the centred moments do not vary significantly
from one subset to the next one, the set of measurements is taken as stationary.

The Markov condition of the scale process reads [11]:

p(�Xs+�s |�Xs,�Xs−�s, . . . ,�Xs0) = p(�Xs+�s |�Xs). (6)

Notice that, an important consequence of the Markov condition is that any n-point
statistics on X can be extracted from the two-point statistics [12] on the increments,
p(�Xs+�s,�Xs), i.e. three-point statistics on X . The two-point joint distribution
of the increments contains all the information of the scale process.

Equation (6) tells us that, any conditional probability distribution from the process
conditioned to an arbitrarily large number of previous observations equals the con-
dition probability conditioned to the single previous observation solely. Again, such
condition is not possible to ascertain in all its mathematical detail. A weaker version
of Eq. (6) suitable for numerical implementation is:

p(�Xs+�s |�Xs,�Xs−�s) = p(�Xs+�s |�Xs). (7)

Both conditions in Eqs. (6) and (7) are equivalent under the physically reasonable
assumption that the dependency of the future state on previous states decreases
monotonically with the time-lag. The equality in Eq. (7) can be qualitatively verified
by plotting contour plots in the range of observed values for �Xs+�s and �Xs , and
fixing �Xs−�s = X̃ . It can also be quantitatively tested through the Wilcoxon test
[13], χ2-test, or by computing a Kullback-Leibler distance between both conditional
distributions [14].

2.3 The Fokker-Planck Equation for Increments

Once the stationarity of our measures as well as theMarkov condition for their incre-
ments are fulfilled, we are able to determine multipoint statistics for our increments.
Since the process is Markovian in scale, it can be easily proven that for any integer
N one has:

p(�Xs,�Xs−�s,�Xs−2�s, . . . ,�Xs−N�s) =
[

N∏
k=1

p(�Xs−(k−1)�s,�Xs−k�s)

p(�Xs−k�s)

]
p(�Xs−N�s) , (8)

and

p(�Xs−k�s) =
∫ ∞

−∞
p(�Xs−(k−1)�s,�Xs−k�s)d�Xs−(k−1)�s, (9)
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for all k = 1, . . . , N . Thus, all information of our process is incorporated in the
two-point statistics of the increments.

It is known that [12], the conditional probability distributions obeys the so-called
Kramers-Moyal (KM) equation:

∂

∂s
p(�Xs |�Xs0) =

∞∑
k=1

(
− ∂

∂(�X)

)k

D(k)(�X, s)p(�Xs |�Xs0), (10)

with functions D(k), so-called KM coefficients, being defined through conditional
moments M (k) in the limit of small scale increments, namely:

D(k)(�X, s) = lim
�s→0

M (k)(�X, s,�s)

k!�s
(11a)

M (k)(�X, s,�s) =
∫ ∞

−∞
(Y − �X)k p(Y |�Xs)dY. (11b)

Notice that, from Eq. (11a), one can see that mathematically each KM coefficient
of order k, apart a multiplicative constant 1/k!, is the derivative of the conditional
moment of the same order k.

Numerically, there are two ways for deriving KM coefficients. One is by com-
puting the conditional moments M (k) for a range of observed values of �X and s,
which is divided in a certain number of bins, and repeating the computation for sev-
eral values of�s. In the case where the conditional moments depend linearly on�s,
at least for the lower range of values, the KM coefficients are taken as the slope of the
linear interpolation of the corresponding conditional moment in that range of values.
In case such linear dependency is not observed, a second procedure is possible: one
computes at once the entire fraction within the limit in Eq. (11a) again for a range of
observed values of �X and s, divided in a proper number of bins, but this time one
takes the range of smallest values of �s and through a linear interpolates infers the
projection in the plane �s = 0.

The error for D(k) are just given by the linear interpolation of the corresponding
conditional moments as functions of �s. The errors of each value M (k)(�X, s),
necessary for computing the errors of the linear interpolation, are given by [15]:

σ 2
M(k) (�X,�s) = M (2k)(�X,�s) −

[
M (k)(�X,�s)

]2
. (12)

The KM equation (10) also holds for the single probability distribution, since
multiplying both sides by p(�Xs0) and integrating in�Xs0 yields the same equation
for p(�Xs).

An important simplification in Eq. (10) follows if the fourth KM coefficient van-
ishes or is sufficiently small compared to the first two KM coefficients. Such sim-
plification is based on Pawula’s Theorem which states that if D(4) ≡ 0 then all
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coefficients in Eq. (10) are identically zero except the first two. Consequently the
Kramers-Moyal equation reduces to the so-called Fokker-Planck equation:

∂

∂s
p(�Xs |�Xs0)=

(
− ∂

∂(�X)
D(1)(�X, s)+ ∂2

∂(�X)2
D(2)(�X, s)

)
p(�Xs |�Xs0).

(13)
For such differential equation of the single probability function one can derive

differential equations for the structure functions of the increments [9]. Uncertainties
in Eq. (11a) can be overcome, namely when estimating the limit, by considering a
subsequent optimization of D(1) and D(2). This optimization procedure is based in
a cost function derived from the conditional probability density functions, which
are deduced from both the experimental data and from Kramers-Moyal coefficients
directly [16, 17].

2.4 Langevin Processes in Scale

The Fokker-Planck equation (13) above describes the evolution of the conditional
probability density function p(�Xs |�Xs0) for a process in scale which can be gen-
erated by a Langevin equation of the form:

d

ds
(�X) = D(1)(�X, s) +

√
D(2)(�X, s)�s, (14)

where �s is a δ-correlated noise (in scale s) with 〈�s〉 = 0 and 〈�s�s′ 〉 = δ(s − s′).
To illustrate the Langevin process in scale described by Eq. (14), we consider the

particular case of D(1) ∝ −�X and constant D(2), reducing the general Langevin
equation to the particular case of Brownian motion “in scale”.

What is the Brownian motion in scale? Though more abstract than the usual
Brownian motion [6], Brownian motion in scale can be illustrated by a Galton Box
[18], as sketched in Fig. 2. The Galton box is an apparatus consisting of a vertical
board with interleaved rows of pins, typically with a constant distance between
neighbouring pins. Balls are dropped from the top, and each time they hit a pin,
they bounce, left or right, downwards. At the bottom, balls are collected in several
columns separated from each other.

In a Galton box, the horizontal rows of pins represent the succession of scales,
s1, s2, . . . , with a constant distance between adjacent rows, representing the scale
increment �s. From one scale sk to the next one sk+1 the possible ways a ball can
bounce doubles. Since s is in fact a logarithmic scale of 2n , sn = n log 2, and therefore
s scales linearly with the vertical distance to the starting point.

As for the horizontal distance from the centred vertical line, it represents the
increments �X . We recall that for processes in scale one has a scale s playing
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Fig. 2 The Galton box as an
illustration of Brownian
motion in scale. Note that the
converging distribution for
the increments is
proportional to
exp [−2(�X)2/s], a
Gaussian distribution with
standard deviation
proportional to

√
s

ΔX

s=
 n

 lo
g(

2)

s1/2

the role of time and one has increments instead of single values of the observable
X . Thus, similarly to the solution of the original Langevin equation for Brownian
motion, in this case one also obtains a Gaussian distribution of increment values
centred at 〈�X〉 = 0 and with a variance proportional to �s. Note that the normal
approximation of this binomial distribution is N (0, s/4).

Such illustration of a process in scale is a very simple one. To properly imagine
a picture of general scale processes in turbulence two important differences must be
considered. First, the energy (i.e. velocity increments) flow from the largest to the
smallest scales, which is opposite to the illustration with the Galton box. Second, the
KM coefficients for the Galton box are those of the simplest situation that we named
as Brownian motion in scale, due to its straightforward parallel with usual Brownian
motion. Here the KM coefficients do not depend on scale s. In turbulence, as we will
see, not only the dependency on the increments is more complicated, but there is an
important dependence on the scale s.
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3 Applying the Langevin Approach to Turbulence

3.1 The Langevin Approach in Laboratory Turbulence

The experiments were conducted in a closed loop wind tunnel with test section
dimensions of 200cm × 25cm × 25cm (length × width × height) at the Uni-
versity of Oldenburg. The wind tunnel has a background turbulence intensity of
approximately 2% for U∞ ≤ 10m/s. The inlet velocity was set to 10m/s, which
corresponds to a Reynolds number related to the biggest grid bar length L0 of about
ReL0 = U∞L0/ν = 83800, where ν is the kinematic viscosity. Constant tempera-
ture anemometrymeasurements of the velocitywere performed using (Dantec 55P01
platinum-plated tungsten wire) single-hot-wire with a wire sensing length of about
lw = 2.0 ± 0.1mm and a diameter of dw = 5µm which corresponds to a length-
to-diameter ratio of lw/dw ≈ 400. A StreamLine measurement system by Dantec
in combination with CTA Modules 90C10 and the StreamWare version 3.50.0.9
was used for the measurements. The hot-wire was calibrated with Dantec Dynamics
Hot-Wire Calibrator. The overheat ratio was set to 0.8. In the streamwise direction,
measurements were performed on the centerline in the range between 5cm ≤ x ≤
176cm distance to the grid. The data was sampled with fs = 60kHz with a NI PXI
1042 AD-converter and 3.6 million samples were collected per measurement point,
representing 60s of measurements data. To satisfy the Nyquist condition, the data
were low-pass filtered at frequency fl = 30kHz.

For the present work, a fractal grid was placed at the inlet of the wind tunnel,
see Fig. 3. In general, fractal grids are constructed from a multiscale collection of
obstacles which are based on a single pattern which is repeated in increasingly

Fig. 3 Illustration of the
space-filling square fractal
grid (SFG) geometry, placed
at the inlet of the test section
for the experiments, and
considered when
implementing the
corresponding numerical
simulations
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Table 1 Geometrical properties of the utilized fractal grid

N σ/% L0/mm t0/mm RL Rt Lr tr Mef f /mm T/mm

3 36.4 128.4 20.1 0.54 0.36 3.5 7.7 24.6 250

σ is the blockage ratio and T the cross section of the wind tunnel (and also of the simulation domain)

numerous copies with different scales. The pattern our fractal grid is based on is
a square shape with N = 3 fractal iterations. The fractal iterations parameter is
the number the square shape is repeated at different scales. At each iteration ( j =
0, . . . , N − 1), the number of squares is four times higher than in the iteration j − 1.
Each scale iteration j is defined by a length L j and a thickness t j of the squares bars
constituting the grid. The thickness of the square bars in the streamwise direction
is constant. The dimensions of the square patterns are related by the ratio of the
length of subsequent iterations RL = L j

L j−1
and by the ratio of the thickness of

subsequent iterations Rt = t j
t j−1

; respectively. The geometry of the fractal grid we
used (also called the space filling fractal grid [19]) is completely characterized by
two further parameters namely the ratio of the length of the first iteration to the last
one Lr = L0

L N−1
and the ratio of the thickness of the first iteration to the last one

tr = t0
tN−1

.
Contrary to classical grids, fractal grids do not have a well-defined mesh size

Mef f . However, an equivalent effective mesh size was defined in [19]. A complete
quantitative description of the N3 fractal grid we used in this study is reported in
Table1.

3.2 The Langevin Approach in Simulated Turbulence

The flow over a fractal grid is described by the three dimensional, incompressible
Navier-Stokes equations. The equations are discretized and solved using a turbulence
model. In this investigation, the Delayed Detached Eddy Simulation (DDES) [20]
with a Spalart-Allmaras background turbulence model [21], commonly referred to
as SA-DDES is used. DDES is a hybrid method stemming from the Detached Eddy
Simulationmethod (DES) [20],which involves the use ofReynoldsAveragedNavier-
Stokes Simulation (RANS) at the wall and Large Eddy Simulation (LES) away from
it. This method combines the simplicity of the RANS formulation and the accu-
racy of LES, with the advantage of being less expensive, in terms of computational
time, when compared with pure LES. DDES is an improvement of the original DES
formulation, where the so called “modelled stress depletion” (or MSD), is treated
[22, 23].

The numerical simulation was set up analogous to the experiments in order to
compare the results in a consistent manner. The open source code OpenFOAM [24]
was used to solve the incompressible Navier-Stokes equations. OpenFOAM is based
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on the finite volumemethod, and it consists of a collection of libraries written in C++,
which can be used to simulate a large class of flow problems. For more information
about the available solvers and turbulence models, refer to the official documentation
[24]. The solver used in this investigation is the transient solver pimpleFoam, which
is a merging between the PISO (Pressure implicit with splitting of operator) and
SIMPLE (Semi-ImplicitMethod for PressureLinkedEquation) algorithms.A second
order central-differencing scheme is used for spatial discretization, and a backward,
second-order time advancing schemes was used. The solver is parallelized using the
Message-Passing Interface (MPI), which is necessary for problems of this size.

The numerical mesh was generated using the built-in OpenFOAM meshing tools
blockMesh and snappyHexMesh [24]. As a result, an unstructuredmesh of 24million
cells is obtained, where regions of interest in the wake are refined, as shown in Fig. 4.
The fractal grid is simulated in a domain with similar dimensions as the real wind
tunnel. Thedomainbegins 2mupstreamof the fractal grid and covers a distanceof 2m
downstream (seeFig. 5). Theflow-parallel boundaries are treated as frictionlesswalls,
where the slip boundary condition was applied for all flow variables. At the inflow
boundary, Neumann boundary condition was used for the pressure, and Dirichlet
condition for the velocity. At the outflow boundary, the pressure was set to be equal
to the static pressure and a Neumann boundary condition was used for the velocity.
On the fractal grid, awall function is used for themodified viscosity ν̃, with the size of
the first cell of themesh in terms of the dimensionless wall distance is y+ ∼ 200 [25].
For each simulation, 480 processors were used, and for each time step 4.5GB of data
was collected for post-processing. The data sampling frequency was 60kHz, chosen
to match the experimental one. It took approximatively 72h to simulate one second
of data and a total of 20 s of numerical data were collected. The data was collected
in the same positions as for the experimental study. The numerical simulations were
conducted on the computer cluster of the ForWind Group [26].

Fig. 4 Details of the
computational mesh used in
the computational
simulations of the N3 fractal
grid
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Fig. 5 Schematic representation of the numerical domain considered and the system of coordinates.
The fractal grid is positioned where the dark block is drawn

3.3 Comparative Analysis

We estimate the Kramers-Moyal coefficients D(1,2) for the experimental and simu-
lated data. The coefficients are commonly parametrized as follows:

D(1)(u, r, x) = d11(r, x) · u, (15)

D(2)(u, r, x) = d22(r, x) · u2 + d20(r, x), (16)

dii (r, x) = aii (x)
( r

λ

)3 + bii (x)
( r

λ

)2 + cii (x)
r

λ
+ dii (x). (17)

The results of D(1,2) in terms of a, b, c and d are shown in Table2, for the downstream
position x = 0.76m. Note that the coefficients strongly depend on the downstream
position x . We present and discuss all scales in units of Taylors microscale λ.

Table 2 Coefficients a, b, c and d of the drift and diffusion terms for experimental (Exp.) and
simulated (Sim.) data, for downstream position x = 0.76 m

KM coeff. Data a b c d

d11 exp. −2.7 × 10−5 5.6 × 10−4 −0.075 −1.0

Sim. 6.7 × 10−7 −7.4 × 10−4 −0.070 −0.89

d22 Exp. −2.1 × 10−6 2.0 × 10−4 −0.0037 0.059

Sim. −6.6 × 10−6 4.1 × 10−4 −5.5 × 10−4 0.072

d20 Exp. 0 0 0.10 0.18

Sim. 0 0 0.10 0.21



138 N. Reinke et al.

Fig. 6 Kramers-Moyal
coefficients in terms of d11,
d20 and d22 along the inertial
range, 1 ≤ r

λ
≤ L
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Figure6 presents Kramers-Moyal coefficients in terms of d11, d20 and d22 versus
the scale r/λ. The coefficient are calculated within the inertial range. We chose this
range, because the DDES simulations treat flow structures of this size as universal
and simplify the turbulent flow properties by means of a sub-grid model, which is in
this case the Spalart-Allmaras model. Therefore, a validation with the experimental
data within the inertial range is of particular interest. Common limits of this region
are λ ≈ 3mm (small scale) and the integral length scale L ≈ 12cm (large scale).

The development of the drift term within the inertial range is shown in Fig. 6a.
Comparing the experimental and the simulated data no significant differences can be
observed. Both curves indicate a stronger drift termwith increasing scale, as usual for
turbulent flows. The four outliers are most likely due to the optimization procedure.
Rarely, local minimum are found instate of the global.

The development of the diffusion term within the inertial range is shown in
Fig. 6b, c. Figure6b shows the curvature of the diffusion term d22, a very small and
sensitive term. Here the experimental and the simulated data differ in their develop-
ment. At large scales the curvature differ significantly (d22,sim ≈ 3 ·d22,exp). At small
scales the developments draw near, but do not converge. The magnitude of d22,exp is
common, and shows why some studies neglect d22. Figure6c presents the diffusion
term offset d20 within the inertial range. Such as the drift term, no essential differ-
ences between the experimental and the simulated data can be observed. The linear
increasing of the offset is typical for the inertial range, it indicates the growth of the
increments (velocity difference) or vortices, respectively, with scale, cf. Eq. (14).

4 Discussion and Conclusions

In this chapterwedescribed the so-calledLangevin approach, a stochasticmethod that
enables deriving evolution equations of stochastic observables, providing important
physical insight about the underlying system.

The method was applied to the problem of turbulence, addressed experimentally
and by means of simulations by extracting the velocity increment time series, one
recorded in a wind tunnel experiment and one simulated by a delayed detached
large eddy simulation (DDES). For each case we extracted the functions defining
the stochastic evolution equation, the so-called Kramers-Moyal coefficients, and
parametrized them through polynomials of the scale.

The results show on the one hand good consistency in the two dominating terms,
namely the linear term d11 of the first KM coefficient (drift) and the independent term
d20 of the second KM coefficient (diffusion). Other terms, such as the quadratic term
d22 for the diffusion, may present deviations that appeal for further investigation,
which will carried out for a forthcoming study focusing on this specific experiment.

Concerning the Langevin approach as a stochastic method on its own, three points
are worth of mention. First, the method can also be applied to the usual processes
in time [2]. For that, one should simply interchange scale s and increments �X in
Eqs. (10) and (14) by time t and observable values X respectively.
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Second, while the method implies the fulfilment of two important conditions,
namely stationarity and markovianity (see Sect. 2.2), the method can still be adapted
to a more general situation where one or both this conditions are dropped. In case the
data series is not stationary, the Langevin approach can be applied to time-windows
within which the series can be taken as stationary [27]. As a result, one derives a set
of KM coefficients as function of time, one for each time-window. In the case the
data series is not Markovian, for instance due to measurement (additive) noise an
extension is still possible [15, 28].

Finally, the Langevin approach can be applied to a broad panoply of different
situations in topics ranging technical applications to biological, geophysical and
financial systems, e.g. electric circuits, wind energy converters, traffic flow, cosmic
microwave background radiation, granular flows, porous media, heart rhythms, brain
diseases such as Parkinson and epilepsy, meteorological data, seismic time series,
nanocrystalline thin films and biological macromolecules. For a review on these
topics see Ref. [2].
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