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Abstract Two-dimensional turbulent flows, and to some extent, geophysical flows,
are systems with a large number of degrees of freedom, which, albeit fluctuating,
exhibit some degree of organization: coherent structures emerge spontaneously at
large scales. In this short course, we showhow the principles of equilibrium statistical
mechanics apply to this problemandpredict the condensation of energy at large scales
and allow for computing the resulting coherent structures. We focus on the structure
of the theory using the language of large deviation theory.

1 Introduction

Various characterizations of turbulent flows can be encountered; the components
they usually entail are a chaotic dynamics on a strange attractor [81], a large range
of scales (i.e. a large number of degrees of freedom), and strong nonlinear effects
due to the prevalence of inertia over molecular dissipation [29]. Such flows can be
found in industrial problems, but also in nature, for instance in geophysical flows and
astrophysical flows. The above mentioned properties typically mean that not much
can be said about the system in a deterministic framework, and that one should try
instead to predict statistical properties.

This is exactly the purpose of the field of statistical mechanics: given a dynamical
system (or set of ordinary or partial differential equations) in a large phase space
(the microscopic state), can we predict typical values for specific functions on phase
space (the macroscopic observables) without knowing the exact trajectory in phase
space? For a large class of systems, said to be in equilibrium, such typical values
can be obtained by assuming that the microscopic variables are random and distrib-
uted according to probability measures built upon a few macroscopic quantities, the
invariants of the dynamical system. A classical example is that of the ideal gas: the
exact position and velocity of the molecules matters little to us, but knowing the
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relations between macroscopic quantities such as temperature, pressure, energy and
entropy is fundamental.

The ideas of statisticalmechanics have been applied successfully to a large number
of models of physical phenomena. An example of achievement of this approach is
the theory of phase transitions, in which systems such as the Ising model, a toy-
model of ferromagnetism, have been instrumental. However, turbulent flows present
a number of difficulties: (i) they are directly formulated as continuous fields (infinite
number of degrees of freedom) and can have an infinity of conserved quantities,
(ii) the interactions between constituents have a long range, (iii) in many practical
applications, the system is driven out of equilibrium by external forces.

Although we shall not tackle issue (iii) at all in this chapter, we will try to show
how (i) and (ii) are actually useful ingredients to make probabilistic predictions for
the system. They are the cornerstones of a mean-field theory: interacting degrees of
freedom can be treated as statistically independent random variables in the limit of
a large number of degrees of freedom. A natural language to express these proper-
ties is that of large deviations theory [25, 46, 80]: the probability of the outcome
of a given observable concentrates exponentially around a set of values when the
size of the system goes to infinity. The focus of the chapter is on the presentation
of the large deviation principles for carefully chosen observables for a discretized
form of 2D turbulence. To show that the principles at work are very general, we
shall underline the connection with simpler models such as variants of the Ising
model of ferromagnetism. Although it is shown that the theory allows us to compute
the equilibrium states of the system, we shall not dwell on the description of such
equilibrium states; the reader is referred to the review articles [13, 53] on this topic.
We shall also refrain from discussing the connections with earlier applications of
statistical mechanics, like the point vortex approach of Onsager, reviewed in [28], or
the Kraichnan approach to Galerkin truncated flows [44], only mentioned briefly in
Sect. 3.6.1.

These notes are based on lectures given at the Stochastic Equations for Complex
Systems: Theory and Applications summer school organized at the University of
Wyoming in June 2014. They mostly serve a pedagogical purpose, and we shall
not give proofs of the results with the required mathematical rigor. However, we
have tried as much as possible to provide the original references for the interested
readers. The presentation adopted here owes much to the references [10, 69, 89].
Note that the ideas discussed here are applicable to many other systems with long
range interactions [14, 23] and in particular gravitational systems [17, 66], plasmas,
cold atoms or toy models of statistical physics.
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2 Models of Turbulent Flows

2.1 3D and 2D Hydrodynamics

We are mainly interested here in the behavior of incompressible fluid flows, which
is governed by the Navier-Stokes equations:

∂t u + u · ∇u = −∇ P + ν�u, (1)

∇ · u = 0, (2)

where u is the velocity field, P the pressure and ν the viscosity. The equations can
be recast into non-dimensional form by introducing a velocity scale U , a length
scale L , the corresponding time scale or eddy turnover time T = L/U , and the
Reynolds number Re = U L/ν. In other words, the Reynolds number measures the
ratio of the nonlinear term and the dissipative term, or equivalently, of inertia and
viscosity [29, 45]. Since viscosity acts at small scales, it is also a measure of the
range of scales characteristic of the flow: the smallest scale is the Kolmogorov scale
�η = (ν3/ε)1/4, where ε is the energy dissipation rate. Now, with ε = U 3/L , we
obtain L/�η = Re3/4. Hence, the effective number of degrees of freedom in 3Dflows
grows as Re9/4: flows with Reynolds number on the order of 109 are not uncommon
in nature (the atmosphere and the ocean for instance), leading to a very large typical
number of degrees of freedom.

TheNavier-Stokes equations canbe recast in termsof the vorticity fieldω = ∇×u:

∂tω + u · ∇ω = ω · ∇u + ν�ω. (3)

The first termon the right hand side corresponds to stretching of vorticity tubes.When
we consider a flow on a two-dimensional surface rather than the three-dimensional
space, this vorticity stretching term vanishes (the only non-vanishing component
of vorticity ω is normal to the surface), yielding conservation of vorticity along
streamlines in the inviscid (ν = 0) case:

∂tω + u · ∇ω = 0. (4)

This difference between 2D and 3D flows have important consequences on their
respective behavior. While 3D flows tend to transfer energy from the large scales to
the small scales, where it is dissipated by viscosity, in a process referred to as a direct
energy cascade [31, 41] (big vortices break up into smaller and smaller vortices),
2D flows, on the contrary, transfer energy from the small scales to the large scales,
and this is called an inverse energy cascade [6, 44, 86, 87]. In this inverse cascade
process, vortices merge to form larger and larger vortices [55]. Unless sufficient large
scale dissipation (e.g. bottom friction) is present, the energy piles up at the largest
available scales, forming a condensate which dominates the flow [6, 21, 85].
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The physical problem we are interested in here is the inverse energy cascade and
the emergence of large scale coherent structures.

2.2 Global Invariants

The equations ofmotion for 3D and 2Dhydrodynamics have aHamiltonian structure,
although non-canonical: there exists a Poisson structure, but it is degenerate [64].
This degeneracy leads to the existence of invariants, described in this section.

Inviscid 3D flows have two global invariants, the energy and the helicity [84]:

E = 1

2

∫
u2, (5)

H =
∫

u · ω. (6)

Helicity being sign indefinite, it does not in general constrain the nonlinear transfers
sufficiently to hamper the direct energy cascade process [43] (see however, [5, 34]
for particular cases). On the contrary, in 2D, vorticity conservation along streamlines
leads to a family of invariants in addition to the energy (ψ being the stream function,
defined by ω = −�ψ)

H =
∫
D

ω(x)ψ(x)dx, (7)

the Casimir invariants:

Ig =
∫
D

g(ω(x))dx, (8)

where g is an arbitrary function. As a particular case, all the moments (or L p norms)
of the vorticity field are conserved:


p = 1

|D|
∫
D

ω(x)pdx, (9)

including the L2 norm of the vorticity field, referred to as the enstrophy. It was
anticipated early on [2, 42, 48] that the existence of a second, positive-definite,
quadratic invariant, in addition to the energy, is sufficient to reverse the direction of
the energy cascade. The basic idea is that enstrophy is stronger in the presence of
small-scale activity: transferring energy towards the small-scales while keeping the
total energy constant cannot be done if we also need to conserve enstrophy. This
loose statement was made more precise by a number of analytic arguments [2, 30,
42, 48, 56, 63], and verified in experiments [67, 82] and high-resolution numerical
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simulations [6]. Statistical mechanics provides one of these analytical arguments
(see Sect. 3.6.1).

Conservation of the Casimir invariants can be formulated equivalently in terms of
the moments of the vorticity field, as above, or in terms of the vorticity distribution.
Indeed, the fraction of the domain area |D|, occupied by the vorticity level σ , which
can be written as

γ (σ ) = 1

|D|
∫
D

δ(ω(x) − σ)dx, (10)

is conserved. We shall see that this form is particularly convenient in Sect. 3, but note
that the two formulations are connected by the formula


p = 1

|D|
∫
D

dx
∫
R

dσσ pδ(ω(x) − σ) =
∫
R

dσσ pγ (σ ), (11)

and, conversely, using an integral representation of the Dirac distribution,

γ (σ ) = 1

2π

+∞∑
p=0

(−1)p
p

p! δ(p)(σ ). (12)

Finally, note that the vorticity distribution is normalized:

∫
R

γ (σ )dσ = 1. (13)

2.3 Geophysical Flows

Although 2D flows are interesting in themselves, part of the motivation for studying
them comes from their common features with geophysical flows. Indeed, in addition
to the small aspect ratio of the atmosphere and the ocean, their dynamics is subjected
to the effect of strong rotation and density stratification. These properties allow for
an asymptotic regime which describes well the large-scale dynamics, the quasi-
geostrophic regime [93]. This regime is very similar to 2D flows, because it reduces
to a quantity, called potential vorticity, being advected by the flow, similarly to the
vorticity (see (4)). In particular, the velocity field is purely horizontal. The only
difference is that the fields also depend on the vertical, and whereas the vorticity is
the laplacian of the stream function: ω = −�ψ in 2D, here the potential vorticity
is related to the stream function by a slightly more complicated linear differential
operator. The existence of Casimir invariants similar to those of 2D flows leads
again to an inverse cascade of energy and the formation of coherent structures at large
scales [15, 72, 83]. Therefore, the considerations presented here may apply to such
flows aswell, and attempts to extend the theory in this context have flourished over the
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past few years. For the sake of simplicity, we shall restrict ourselves here to the case
of 2D flows; the interested reader may consult the literature on extensions to quasi-
geostrophic flows in the barotropic case [12, 36, 61, 95], the baroclinic case [24, 33,
94, 96], shallow-water equations [18, 20], as well as the general references [13, 53,
54], for instance.

The quasi-geostrophic regime breaks down at smaller scales, and we enter an
intermediate regime, often referred to as stratified turbulence [50]. In this regime,
even though we can still define a potential vorticity which is a Lagrangian invariant,
it does not put as strong a constraint on the system as in the 2D case. Indeed, the
fields (velocity, density) can be decomposed into a balanced part which contributes
to potential vorticity, and inertia-gravity waves, which do not. As a result, the organi-
zation of the system in terms of inertial ranges and energy cascades is not so simple.
High-resolution numerical simulations have indicated the existence of two inertial
ranges with a constant and opposite flux of energy [70]. A possible interpretation
is that the vortical modes are responsible for the inverse cascade of energy while
the inertia-gravity waves have to do with the direct energy cascade. This interpre-
tation is supported by a statistical mechanics argument [37], which is an adaptation
of the Kraichnan argument (see Sect. 3.6.1) in the context of the restricted canonical
ensemble [68].

Independently of the constraining effect of rotation and stratification (which can
be seen as forces breaking isotropy), another direction of generalization which has
been considered is that of 3D flows with symmetries, and especially axisymmetric
flows [49, 62, 88]. This configuration is relevant for setups used in laboratory exper-
iments, such as the von Karman experiment. It has been shown in particular that
one could define a microcanonical measure using an approach analogous to that of
Sect. 3.1, with, however, some considerable complications to treat the fluctuations
of the poloidal field [88].

2.4 Discretized Form for 2D Euler Flows and Analogies
with Toy Models of Magnetic Systems

Instead of the continuous vorticity field ω and the infinite dimensional phase space it
belongs to, it may be more convenient to introduce finite dimensional models. Here
we shall mostly consider a discretization on a square lattice with N sites equally
spaced in the domainD (see Fig. 1), and the variables of interest are the values taken
by vorticity at each site. In this form, the system can be related to some classical
models of statistical physics.

2.4.1 Two-Vorticity Level System and Long-Range Ising Model

The Ising model is one of the most famous models in statistical physics. It can be
seen as a toy model of ferromagnetism, but it has served as a testbed for a very large
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i = 1

i = M

Fig. 1 Discretization and coarse-graining. Left We replace the 2D domain by a finite lattice and
the continuous vorticity field by a N -dimensional vector whose components are the values of the
vorticity at each site. Right We decompose the lattice in M cells, each containing n = N/M sites.
The coarse-grained vorticity is a M dimensional vector whose components are the average value
of the vorticity in each cell

number of ideas going far beyond this particular problem [22]. It consists of a finite
number N of spins si ∈ {−1, 1} located on a lattice of arbitrary shape and dimension
(although a square lattice is often considered) and interacting through a hamiltonian
(per degree of freedom) of the form:

HI [ŝ] = − 1

N

N∑
i, j=1

Ji j si s j . (14)

In this form, the hamiltonian is just any quadratic function. A standard choice of
interaction is the nearest-neighbor model: Ji j = J if the sites i and j are connected
in the lattice, and Ji j = 0 if they are not. That way, aligned neighboring spins will
contribute a term −J to the hamiltonian, while anti-aligned neighboring spins will
contribute J . If J is positive the system is called ferromagnetic and if it is negative
the system is called antiferromagnetic. An observable of interest is themagnetization
(per spin):

M[ŝ] = 1

N

N∑
i=1

si . (15)

When one finds about the same proportion of positive and negative spins, the mag-
netization should vanish. Applying an external magnetic field, represented by a term
of the form −h

∑
i si in the hamiltonian, leads to alignment of spins, and therefore a

non-vanishing magnetization. This is the standard behavior of so-called
paramagnetic materials. By contrast, in ferromagnetic materials, spins may align
spontaneously and yield unit magnetization (in absolute value) without imposing
an external magnetic field (or, in experiments, the system retains its magnetization
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when the applied magnetic field is switched off). The Ising model can be seen as a
toy model of the paramagnetic-ferromagnetic transition.

In the above case, the system has short-range interactions, since only neighboring
spins interact. Versions with long-range interactions can be built by allowing non-
vanishing Ji j for distant sites i and j . For instance, one may assume that all the spins
interact with all the other spins with the same coupling constant: Ji j = 1/N , where
the 1/N ensures that the energy per degree of freedom is an intensive quantity. In
this case, the Hamiltonian becomes a function of magnetization only:

HI M F [ŝ] = − 1

N 2

N∑
i, j=1

si s j = −M[ŝ]2. (16)

This version of the Ising model is referred to as mean-field, because it is tantamount
to saying that each spin feels the effect of a magnetic field created by all the other
spins rather than the individual effect of each of his neighbors. Indeed, let us consider
a given spin si ; it provides a contribution −1/Nsi

∑
j Ji j s j , which is the same as a

non-interacting spin under externalmagnetic field 1/N
∑

j Ji j s j would. Ifwe replace
this magnetic field by themagnetization, we obtain themean-field Hamiltonian. Note
that the geometric shape (square, triangle, etc.) and the dimension of the lattice do
not matter here since all the spins interact with the same intensity.

An advantage of the mean-field Ising model is that it has an exact solution in any
dimension [3]. On the contrary, exact solutions for the standard, short-range Ising
model are only know for dimension one [38] and two [65].

The discretized version of 2D flows described above is related to the Ising model
in the following way: rather than allowing the vorticity to take any real value, we
can restrict it to a two-level set {σ,−σ }. Then the system becomes analogous to the
Ising model, with an interaction matrix given by the Green function of the Laplacian
on the lattice. On a plane, this amounts to interactions proportional to the logarithm
of the distance between sites: Ji j ∝ ln |i − j | for i �= j . This is a kind of long-
range interaction. The difference with the Ising model is the presence of the vorticity
distribution conservation constraint. This would amount to fixing the number of +
spins and the number of − spins in the Ising model.

2.4.2 Energy-Enstrophy Ensemble and the Long-Range Spherical Model

Another variant of the Ising model consists in letting the spins si take any real
value, while satisfying the global constraint

∑N
i=1 s2i = N . Clearly, this constraint is

satisfied in the standard Isingmodel with spins in {1,−1}. The name spherical model
was coined for this variant because of the form of the global constraint, which means
that the set of all spin values lies on the surface of a sphere in R

N . It was introduced
by Berlin and Kac [4] as an attempt to patch the divergence arising from assuming
that the spins are distributed according to a normal distribution (the Gaussian model)
while remaining exactly solvable in any dimension [3]. The observables of interest
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(Hamiltonian, magnetization) are the same as for the Ising model. Versions with
short-range [4] or long-range [39] interactions can again be considered by choosing
different quadratic forms Ji j .

In their discretized version, 2D flows resemble a long-range spherical model if
we only retain one Casimir invariant: the enstrophy. Indeed, enstrophy conservation
implies

∑
i ω2

i = N
2. Again, the interaction matrix is given by the Green function
of the Laplacian on the lattice. This connection is further investigated in Sect. 3.6. It
has also been pointed out in a series of papers by Lim [51, 52].

3 Mean-Field Theory for 2D Flows

We provide here a heuristic presentation of the mean-field theory introduced inde-
pendently by Miller [59, 60], Robert and Sommeria [75, 77], and further developed
by many others. The presentation is inspired by the original work by Miller and the
more recent references [10, 13, 69].More rigorousmathematical proofs can be found
in the original papers by Robert and coworkers [57, 58, 73–77] and Ellis, Turkington
and coworkers [7, 8, 26, 27, 91].

3.1 Microcanonical Measure and Large Deviations
for the Energy and Vorticity Distribution

The general idea is to consider the vorticity field ω, referred to as the microstate,
as a random variable distributed according to the microcanonical distribution. In
other words, we introduce a probability measure on the phase space � = L∞(D),
whereD is a 2D domain (we shall mostly consider the case of a rectangular domain
here). We are going to give a sketch of the construction of this measure as a limit
of measures on finite-dimensional phase spaces corresponding to approximations of
the continuous vorticity field. Then, we will be able to make predictions on the value
of macrostates, i.e. observables A : � −→ R (or more generally A : � −→ M
where the space M is macroscopic in some sense, e.g. has a dimension much lower
than �) on phase space, which, as we shall see, satisfy large deviation properties:
they concentrate in probability around some specific values, the equilibrium states.

To keep things simple, we shall consider a finite number of vorticity levels S =
{σ1, . . . , σK }. This amounts to saying that the vorticity distribution has the form
γ (σ ) = ∑K

k=1 γkδ(σ − σk). We consider the discretized system with N sites on the
square lattice introduced in Sect. 2.4 (see Fig. 1), and define a microstate as being
simply the value of the vorticity field at all the points of the lattice. Therefore the
phase space is simply �N = SN .
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Considering the conservation laws mentioned above, there are two observables
of primary interest: the energy observable, i.e. the Hamiltonian, given by

HN : ω̂ ∈ �N �−→ 1

2N 2

∑
1≤i �= j≤N

G N
i j ωiω j , (17)

with G N
i j the Green function of the Laplacian on the lattice, and the vorticity distri-

bution observables

G(k)
N : ω̂ ∈ �N �−→ 1

N

N∑
i=1

δωi ,σk . (18)

Note that the set of accessible energies (i.e. the values taken by the observableHN )
is finite and depends both on the vorticity levels σk and on the number of sites N .
Ultimately, in the limit N → ∞, we shall be interested in a continuum of energy
levels. One approach to circumvent this difficulty is to consider in a first step energy
shells with finite width �E , large enough so that each shell is attained by the energy
observable for some microstates [69]. In the limit N → +∞, the results will not
depend on the value of �E . To keep notations as simple as possible, we shall refrain
from doing so here, but in all rigor one should understand HN [ω̂] ∈ [E, E + �E]
whenever we write HN [ω̂] = E . In this framework, the set of microstates with
vorticity distribution γ and energy E is

�N (γ, E) = {ω̂ ∈ �N | HN [ω̂] = E,∀k ∈ [[1, K ]],G(k)
N [ω̂] = γk}, (19)

= H−1
N ({E}) ∩

K⋂
k=1

G(k)
N

−1
({γk}). (20)

This is a finite set whose cardinality we denote by �N (γ, E) = Card�N (γ, E).
We are going to introduce two probability measures on phase space: first, let us

consider a prior measure μ(N ), which here is just the normalized counting measure:
if M ⊂ �N , μ(N )(M) = Card M

K N . This amounts to saying that all the microstates are
equiprobable: for any observableAN : �N −→ R, the probability of the outcome x
is just the fraction of microstates for whichAN [ω̂] = x . Now, wewant to restrict that
statement to all the microstates with a fixed energy and vorticity distribution, while
assigning vanishing probability to all the other microstates. Hence, we introduce
the (finite-N ) microcanonical measure μ

(N )
γ,E : if M ⊂ �N , μ

(N )
γ,E (M) = Card(M ∩

�N (γ, E))/�N (γ, E). Hence, for an observable AN , the probability law of the
random variable AN [ω̂] is μ

(N )
γ,E (AN [ω̂] = x) = μ

(N )
γ,E (A−1

N ({x})). Note that we
have introduced indices γ and E to distinguish from probabilities computed with
respect to the prior measure. Probabilities in the microcanonical ensemble are thus
just conditional probabilities:
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μ
(N )
γ,E (AN [ω̂] = x) = μ(N )(AN [ω̂] = x |HN [ω̂] = E,G(k)

N [ω̂] = γk), (21)

=
⎧⎨
⎩

μ(N )(AN [ω̂]=x,HN [ω̂]=E,G(k)
N [ω̂]=γk )

μ(N )(HN [ω̂]=E,G(k)
N [ω̂]=γk ))

ifHN [ω̂]=E, and
∀k∈[[1,K ]],G(k)

N [ω̂]=γk

0 otherwise.
(22)

As mentioned above, observables of particular interest are the hamiltonian HN

and the vorticity distribution observables G(k)
N . The joint probability to observe an

energy E and a vorticity distribution γ , with respect to the prior measure, satisfies a
large-deviation property, and the large deviation rate function is (up to an unimportant
constant term) the opposite of the entropy S(E, γ ):

μ(N )(HN [ω̂] = E,G(k)
N [ω̂] = γk) = �N (γ, E)

K N
= eN S(E,γ )−N ln K+o(N ), (23)

with

S(E, γ ) = lim
N→∞

1

N
ln�N (γ, E). (24)

3.2 Large Deviations for the Macrostates

We now introduce a new class of observables associated with the coarse-graining of
the vorticity field. We decompose the lattice into M cells, each containing n = N/M
sites. For a microstate ω̂ ∈ SN , we shall denote the components as ωiα where
1 ≤ i ≤ M is the index of the cell and 1 ≤ α ≤ n is the index of the site within the
cell (see Fig. 1). The coarse-graining observable is given by

C : ω̂ ∈ SN �−→ ω̄ ∈ R
M , with ω̄i = 1

n

n∑
α=1

ωiα, 1 ≤ i ≤ M. (25)

More generally, we can define an observable which corresponds to the distribution
of vorticity levels in each cell. It is just the empirical vector

P : ω̂ ∈ SN �−→ P = (pik)1≤i≤M
1≤k≤K

∈ MM,K (R), with pik = 1

n

n∑
α=1

δωiα,σk . (26)

Note that
∑K

k=1 pik = 1. Besides, the observable C can be deduced from P since
ω̄i = ∑K

k=1 σk pik for 1 ≤ i ≤ M . Let us refer to the elements of the image of
P as the macrostates. The set of microstates corresponding to a given macrostate
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P is simply its pre-image P−1(P). The number of microstates realizing a given
macrostate P will be denoted W (P) = CardP−1(P). It is easily computed that:

W (P) =
M∏

i=1

(
n

npi1

)(
n − npi1

npi2

)
· · ·

(
n − npi1 − · · · − npin−1

npin

)
, (27)

=
M∏

i=1

n!∏K
k=1(npik)!

. (28)

The vorticity distribution observables G(k)
N take a constant value over an equivalence

class P−1(P):

G(k)
N [ω̂] = 1

M

M∑
i=1

pik, (29)

so that if ω̂1, ω̂2 ∈ SN are such that P[ω̂1] = P[ω̂2], then for 1 ≤ k ≤ K ,
G(k)

N [ω̂1] = G(k)
N [ω̂2]. In other words, the equivalence kernel of the observable P is

finer than that of any of the observablesG(k)
N . In practice, this means that we need not

worry about enforcing the vorticity distribution constraint when counting the number
of microstates realizing a given macrostate. For the energy observable, the situation
is slightly more subtle: denoting G M,n

iα, jβ the Green function of the Laplacian on the
lattice with the new indexing of the sites, the energy observable is given by:

HN ,M [ω̂] = 1

2N 2

∑
1≤i, j≤M
1≤α,β≤n

(i,α) �=( j,β)

G M,n
iα, jβωiαω jβ, (30)

which is not necessarily constant over equivalence classes. However, it can be shown
that the dominant contribution is the mean-field energy, i.e. the energy of the coarse-
grained vorticity field:

HN ,M [ω̂] = 1

2M2

∑
1≤i �= j≤M

G M
i j ω̄i ω̄ j + o

(
1

N

)
, (31)

= HM [C[ω̂]] + o

(
1

N

)
. (32)

The above results are sometimes restated by saying that we have an energy (and
here, also vorticity distribution) representation function [89] (see Fig. 2). It allows
us to obtain the most probable states with respect to the microcanonical measure
by obtaining a large deviation property with respect to the prior (unconstrained)
measure.
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Fig. 2 The different levels of description of the system, and the observables/representation function
relating them. Observables are represented with straight arrows, representation functions with wig-
gly arrows and contraction principles with dashed arrows. Observables for which a large deviation
principle has been obtained directly are represented with thick arrows

Indeed, the unconstrained probability of observing a macrostate P is

μ(N )(P[ω̂] = P) = μ(N )(P−1(P)), (33)

= W (P)

K N
. (34)

Using the Stirling approximation, it is easily shown that when N → ∞, this proba-
bility satisfies a large deviation property:

μ(N )(P[ω̂] = P) = eNSM,K [P]+o(N ), (35)

where we have introduced the mean-field entropy

SM,K [P] = lim
N→+∞

1

N
lnμ(N )(P[ω̂] = P), (36)

= − 1

M

M∑
i=1

K∑
k=1

pik ln pik, (37)

which again appears as a large deviation rate function (up to an additive constant
and a minus sign), although this time it is a large deviation of an empirical vector
(observableP) rather than a sample mean (energy observableH). Hence, the above
result should in all rigor be seen as a consequence of the Sanov theorem.

Now, in the microcanonical ensemble, the probability μ
(N )
γ,E (P[ω̂] = P) involves

the joint (unconstrained) probability μ(N )(P[ω̂] = P,HN [ω̂] = E,G(k)
N [ω̂] =

γk). But due to the existence of the energy and vorticity distribution representation
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functions, we have:

μ(N )(P[ω̂] = P,HN [ω̂] = E,G(k)
N [ω̂] = γk)

= μ(N )(P[ω̂] = P,HN ,M [P] = E,G (k)
N ,M [P] = γk),

(38)

therefore,

μ
(N )
γ,E (P[ω̂] = P) =

⎧⎨
⎩

μ(N )(P[ω̂]=P)

μ(N )(HN [ω̂]=E,G(k)
N [ω̂]=γk ))

ifHN ,M [P]=E, and

∀k∈[[1,K ]],G (k)
N ,M [P]=γk

0 otherwise.
(39)

It follows that the probability of a given macrostate also satisfies a large deviation
result with respect to the microcanonical measure:

μ
(N )
γ,E (P[ω̂] = P) = e−N I [P]+o(N ), (40)

with the large deviation rate function

I [P] =
{

S(E, γ ) − SM,K [P] if HN ,M [P] = E, and ∀k ∈ [[1, K ]],G (k)
N ,M [P] = γk

+∞ otherwise.

(41)

Hence, the most probable macrostates with respect to the microcanonical measure
are thosewhichminimize the large deviation rate function, i.e. thosewhichmaximize
the entropy SM,K while satisfying the constraints on energy and vorticity distrib-
ution: they are solutions of a constrained variational problem. It is worthy of note
that the Boltzmann-Gibbs entropy SM,K , defined in (37), evaluated at a solution
P∗ of the variational problem, agrees with the entropy S(E, γ ) defined from the
Boltzman formula (24). This is not a coincidence, but a cornerstone of the mean-
field approach. It can be understood in the language of large deviation theory as a
contraction principle [89]. Roughly speaking, due to the existence of representation
functions, the probability of observing an energy E and a vorticity distribution γ

can be computed as the integral over all the macrostates (rather than the microstates)
with these constraints: denoting

�̃N ,M (γ, E) = {P ∈ MM,K (R) | HN ,M [P] = E,∀k ∈ [[1, K ]],G (k)
N ,M [P] = γk},

(42)
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we have

μ(N )(HN [ω̂] = E,G(k)
N [ω̂] = γk) =

∫
�N (γ,E)

μ(N )(dω̂), (43)

=
∫

�̃N ,M (γ,E)

μ(N )(P−1(P)), (44)

=
∫

�̃N ,M (γ,E)

eNSM,K [P]+o(N ), (45)

Using Laplace’s approximation, the integral evaluates to

= exp

(
N max

P∈�̃N ,M (γ,E)

SM,K [P] + o(N )

)
. (46)

As a conclusion, the most probables macrostates P∗ with respect to the microcanon-
ical measure satisfy I [P∗] = 0: they are solutions of the constrained variational
problem:

S(E, γ ) = max
P

{SM,K [P] | HN ,M [P] = E,∀k ∈ [[1, K ]],G (k)
N ,M [P] = γk}. (47)

3.3 Thermodynamic Limit and Mean-Field Equation

We are now interested in the macrostates obtained in the limit M → +∞. Letting
also K → +∞, they are the probability distributions for fine-grained vorticity
ρ(r, σ ): ρ(r, σ )dσ is the probability that the vorticity at point r lies in the interval
[σ, σ + dσ ]. The local normalization condition

∫
R

ρ(r, σ )dσ = 1 must still be
satisfied for each point r ∈ D. The coarse-grained vorticity field is now ω̄(r) =∫
R

σρ(r, σ )dσ . As explained above, the energy and vorticity distribution depend
only on the macrostate ρ:

H [ρ] = 1

2

∫
D2

drdr′
∫
R2

dσdσ ′G(r, r′)σσ ′ρ(r, σ )ρ(r′, σ ′), (48)

Dσ [ρ] =
∫
D

ρ(σ, r)dr. (49)

Similarly, the mean field entropy becomes

S [ρ] = −
∫
D

dr
∫
R

dσρ(σ, r) ln ρ(σ, r). (50)
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The most probable macrostates are now those maximizing (50) while satisfying the
energy and vorticity distribution constraints. They are solutions of themicrocanonical
variational problem:

S(E, γ ) = max
ρ

{S [ρ] | H [ρ] = E,∀σ ∈ R,Dσ [ρ] = γ (σ )}. (51)

The critical points of the variational problem are readily found: there exist Lagrange
multipliers β and α(σ) such that the first variations vanish:

0 = δS −
∫
D

drζ(r)
∫
R

dσδρ(σ, r) − βδH −
∫
R

dσα(σ)

∫
D

drδρ(σ, r), (52)

which leads to the Gibbs states

ρ∗(σ, r) = e−βσψ(r)−α(σ)

Zα(βψ(r))
, (53)

where the coarse grained stream function ψ̄ and the partition functionZα are given
by

ψ = −�−1ω, Zα(u) =
∫
R

e−σu−α(σ)dσ. (54)

It follows that the coarse-grained vorticity field satisfies

ω(r) = Fα(βψ(r)), with Fα(u) = −d lnZα(u)

du
. (55)

This is a (elliptic) partial differential equation, referred to as the mean-field equation,
characterizing the most probable coarse-grained vorticity fields. Note that the equa-
tion is of the same form as the equation defining steady-states of the Euler equation:
equilibrium states form a subclass of steady-states for which the function relating
vorticity and stream function is fixed by the invariants of the system.

The equilibrium states of the system can thus be obtained by solving (55). In
general, this is a difficult task. Analytical solutions have been obtained in the limit
of a linear function Fα (the mean-field equation then reduces to a Helmholtz equa-
tion), using the method introduced by Chavanis and Sommeria [19], which con-
sists in decomposing the vorticity field and stream function on a basis of Laplacian
eigenfunctions. Numerical methods are also available: Turkington and Whitaker
have proposed an algorithm to iteratively solve the variational problem described
above [92], while Robert and Sommeria [78] have proposed relaxation equations
where the dynamics maximize the entropy production rate, thereby reaching a max-
imum entropy state. We shall not describe in details these methods here, nor the
solutions they yield. Note, however, that in general, they correspond to large scale
coherent structures, like vortices or unidirectional (e.g. zonal) flows, depending on the
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geometry of the domain: for instance dipole/monopole in a rectangular domain [19],
dipole/unidirectional flow in a doubly periodic domain [11], Fofonoff flows on a beta-
plane [61], and solid-body rotation/dipole/quadrupole/unidirectional flowon a sphere
[32, 35, 36, 71].

3.4 Non-equivalence of Ensembles

3.4.1 Statistical Ensembles and Variational Problems

So far we have been using exclusively the microcanonical measure

μ
(N )
γ,E (dω̂) = δ(HN [ω̂] − E)

K∏
k=1

δ
(
G(k)

N [ω̂] − γk

)
μ(N )(dω̂), (56)

which assigns uniform probability to microstates with a given energy and vortic-
ity distribution, and zero probability to other microstates. We could make different
choices and consider the canonical measure

μ
(N )
γ,β (dω̂) = e−βHN [ω̂]

Z
K∏

k=1

δ
(
G(k)

N [ω̂] − γk

)
μ(N )(dω̂), (57)

or the grand-canonical measure

μ
(N )
α,β (dω̂) = e−βHN [ω̂]−∑K

k=1 αkG(k)
N [ω̂]

�
μ(N )(dω̂), (58)

and similarly in the thermodynamic limit N → +∞. If we replace the microcanon-
ical measure in Sect. 3.2 by any of these two measures, we obtain mutas mutandi a
large deviation principle for the macrostates. In the thermodynamic limit, the most
probable macrostates (i.e. the equilibrium states) are therefore solutions of the fol-
lowing variational problems:

S(E, γ ) = max
ρ

{S [ρ] | H [ρ] = E,∀σ ∈ R,Dσ [ρ] = γ (σ )}, (59)

F(β, γ ) = max
ρ

{S [ρ] − βH [ρ] | ∀σ ∈ R,Dσ [ρ] = γ (σ )}, (60)

J (β, α) = max
ρ

{S [ρ] − βH [ρ] −
∫
R

dσα(σ)Dσ [ρ]}, (61)

respectively for the microcanonical measure, the canonical measure and the grand-
canonical measure. The maximized functions arise as large deviation rate functions,
and the constraints stem from the definition of the ensembles as conditional proba-
bilities and from the existence of representation functions. The entropy S(E, γ ), the
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free energy F(β, γ ) and the grand potential J (β, α) are referred to generically as
thermodynamic potentials.

The existence of a large deviation principle for the macrostates does not depend
on the particular choice of ensemble, but the most probable macrostates may depend
on this choice. The task that we set out to investigate in this section is therefore how
the different ensembles are related. The discussion closely follows the Refs. [26, 90].

3.4.2 Ensemble Equivalence at the Macrostate Level

First of all, it is clear from the structure of the variational problems and the Lagrange
multiplier rule that they all have the same critical points. However, the critical points
may be of different nature: a maximizer of one variational problem may be a saddle
point of another variational problem for instance. Nevertheless, it is easily seen that
a solution of a variational problem with a constraint relaxed (e.g. the canonical vari-
ational problem) is always a solution of the original constrained variational problem
(e.g. the microcanonical problem). We can formalize this remark by introducing the
sets of equilibrium states (i.e. solutions of the variational problems):

MC (E, γ ) = {ρ | S [ρ] = S(E, γ ),H [ρ] = E,∀σ ∈ R,Dσ [ρ] = γ (σ )},
(62)

C (β, γ ) = {ρ | S [ρ] − βH [ρ] = F(β, γ ),∀σ ∈ R,Dσ [ρ] = γ (σ )}, (63)

GC (β, α) = {ρ | S [ρ] − βH [ρ] −
∫
R

dσα(σ)Dσ [ρ] = J (β, α)}. (64)

As per the above remark, we always have,

∀β, α,∀ρ ∈ GC (β, α), ρ ∈ C (β,Dσ [ρ]) and ρ ∈ MC (H [ρ],Dσ [ρ]), (65)

∀β, γ,∀ρ ∈ C (β, γ ), ρ ∈ MC (H [ρ], γ ). (66)

In particular,

⋃
β,α

GC (β, α) ⊂
⋃
β,γ

C (β, γ ) ⊂
⋃
E,γ

MC (E, γ ). (67)

If the converse statements hold, i.e.

∀E, γ,∀ρ ∈ MC (E, γ ), ∃β ∈ R : ρ ∈ C (β, γ ), (68)

or

∀β, γ,∀ρ ∈ C (β, γ ), ∃α : ρ ∈ GC (β, α), (69)
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we say, respectively, that the microcanonical and canonical ensembles are
equivalent at the macrostate level or that the canonical and grand canonical ensem-
bles are equivalent at the macrostate level. It is straightforward to see that it is a
transitive relation, in the sense that if the microcanonical ensemble is equivalent
to the canonical ensemble at the macrostate level, and if the canonical ensemble
and the grand-canonical ensemble are equivalent at the macrostate level, then the
microcanonical and the grand-canonical ensembles are equivalent a the macrostate
level. Besides, if the grand-canonical ensemble is equivalent to the microcanonical
ensemble at the macrostate level, then the canonical ensemble is equivalent to both
the microcanonical and the grand-canonical ensembles at the macrostate level.

If the three ensembles are equivalent at themacrostate level,wehave the equalities:

⋃
β,α

GC (β, α) =
⋃
β,γ

C (β, γ ) =
⋃
E,γ

MC (E, γ ). (70)

3.4.3 Ensemble Equivalence at the Thermodynamic Level

Due to the definition of the thermodynamic potentials through the variational prob-
lems, connections exist between them as well. For the free energy for instance, we
have

F(β, γ ) = max
ρ,N [ρ](x)=1

{S [ρ] − βH [ρ] | ∀σ ∈ R,Dσ [ρ] = γ (σ )} ,

= max
E≥0

(
max

ρ,N [ρ](x)=1,H [ρ]=E
{S [ρ] − βE | ∀σ ∈ R,Dσ [ρ] = γ (σ )}

)
,

= max
E≥0

(S(E, γ ) − βE) .

This exactly means that the free energy is the Legendre-Fenchel transform of the
entropy. The Legendre-Fenchel transform is a generalization of the Legendre trans-
form to functions which need not be differentiable and convex [79]. Denoting the
Legendre-Fenchel of an arbitrary function with a star (the variable with respect to
which the transform is taken should be clear from the arguments of the function), we
have the compact form:

F(β, γ ) = S�(E, γ ).

Similarly,

J (β, α) = F�(β, γ ).

We know that the Legendre transform is an involution [1]. This is not necessar-
ily the case for the Legendre-Fenchel transform, because the Legendre-Fenchel
transform of an arbitrary function is always a concave function, but it is true when
the original function is concave. In general, when applying the Legendre-Fenchel
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transform twice, we only obtain the concave hull of the original function [79].
Hence, the free energy F is always a concave function of β and the grand-
potential J is always a concave function of its arguments, while F� = S�� is
always a concave function of E , and is the smallest concave function satisfy-
ing S(E, γ ) ≤ S��(E, γ ). The equality holds if S is a concave function. There-
fore, we say that the microcanonical and canonical ensemble are equivalent at the
thermodynamic level if S = F� = S��, or equivalently, if S is a concave function of
E . Similarly, the grand canonical and the canonical ensembles are equivalent at the
thermodynamic level if F = J � = F��, i.e. if F is a concave function of γ .

Again, we have a transitivity property: equivalence of the grand canonical and
canonical ensembles on the one hand, and of the canonical and microcanonical
ensembles on the other hand implies equivalence of the grand canonical and micro-
canonical ensembles. Besides, if the grand canonical and the microcanonical ensem-
bles are equivalent, then the canonical ensemble is equivalent to both the grand
canonical and the microcanonical ensembles. In both these cases, the entropy S is a
concave function of all its arguments.

3.4.4 Equivalence and Non-equivalence of Statistical Ensembles

The notions of ensemble equivalence at the macrostate level (Sect. 3.4.2) and at the
thermodynamic level (Sect. 3.4.3) are connected. Indeed, the local concavity prop-
erties of the thermodynamic potential determine the possibility to invert the relation
with the Lagrange multiplier, or in other words, the possibility that the macrostates
can be obtained by solving a relaxed variational problem. Following [26], let us
examine the three possibilities in the context of the microcanonical and canonical
ensembles. Let us fix E, γ , then one of the three following assertions holds:

(i) Total Ensemble Equivalence: If S = S�� and S is not locally flat, then
MC (E, γ ) = C (β, γ ) for β = ∂S/∂ E .

(ii) Marginal Ensemble Equivalence: If S = S�� and S is locally flat, then
MC (E, γ ) � C (β, γ ) for β = ∂S/∂ E .

(iii) Ensemble Inequivalence: If S �=S��, then ∀β∈R,MC (E, γ )∩C (β, γ ) = ∅.

3.5 Large Deviations for the Coarse-Grained Vorticity Field

In Sect. 3.2, we have considered how the probability of the outcome of a given
observable (the distribution of fine-grained vorticity) behaves when the size of the
system goes to infinity. We have found that it satisfies a large deviation property,
which allows us to compute the most probable outcomes (see Sect. 3.3). From there,
we are able to deduce what the most probable coarse-grained vorticity fields are.
But can we apply the same methods directly to the coarse-graining observable to
compute the most probable coarse-grained vorticity fields? In other words, can we
obtain a large deviation principle directly for the observable C?
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In general this is not straightforward, because we do not have a representation
function for the vorticity distribution in terms of the coarse-grained vorticity field.
Let us give an exemple in the simple case where we have only three levels of vor-
ticity: S = {−1, 0, 1}. We have represented on Fig. 3 two microstates which lead
to the same coarse-grained vorticity field, with different vorticity distributions. As a
consequence, we cannot deduce a large deviation principle with respect to the micro-
canonical measure (or any of the other ensembles) from a large deviation principle
with respect to the prior measure. In principle it remains possible to evaluate directly
the probability of a coarse-grained vorticity field in the microcanonical ensemble,
but this is a much more complicated combinatorial problem. However, in the special
case of a two-level vorticity system, we do have a representation function for the
vorticity distribution. We illustrate this in the following sections by making use of
the analogy with the mean-field Ising model pointed out above.
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−

+

−

+

−

+

+

+

−

−

+

−

−

−

−

−

ω 1

γ+ = 3 / 16, γ − = 7 / 16, γ 0 = 3 / 8

0

+

0

−

0

+

0

+

0

−

0

−

−

−

−

−

ω 2

0 1
2

− 1
2 − 1

ω 1 ω 2=− −

∧

∧

Fig. 3 Exemples of two microstates with different vorticity distribution, which are mapped to the
same coarse-grained vorticity field by the operator C, in the three-level case: S= {−1, 0, 1}
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Fig. 4 Mean-field Ising model: observables (hamiltonian and magnetization) and representation
function for the energy (left) and most probable magnetization as a function of temperature in the
canonical ensemble (right)

3.5.1 Mean-Field Ising Model

Remember the mean-field Ising model described in Sect. 2.4.1. We have mentioned
above that there is a representation function for the energy in terms of the magneti-
zation (Fig. 4). Therefore it is sufficient to obtain a large deviation principle for the
magnetization with respect to the unconstrained measure. If N+ (resp. N−) is the
number of + (resp. −) spins, the magnetization is given byM[ŝ] = (N+ − N−)/N ,
and we have N+ + N− = N . In other words, N±/N = (1 ± M[ŝ])/2. Hence, the
unconstrained probability to observe a given magnetization is

μ(N )(M[ŝ] = m) = N !
2N N+!N−! (71)

= eNS [m]+o(N ), (72)

where the mean-field entropy is given by (up to an unimportant constant ln 2)

S [m] = −1 + m

2
ln

(
1 + m

2

)
− 1 − m

2
ln

(
1 − m

2

)
, (73)

which proves that themagnetization observable satisfies a large deviation principle. It
is customary to work in the canonical ensemble (see Sect. 3.4), and themost probable
states are therefore solutions of the variational problem:

F(β) = min
m∈[−1,1] (βHI M F [m] − S [m]) , (74)

where F is the free energy (per spin). UsingHI M F [m] = −m2 and (73), it is easily
shown that for β = 1/(kT ) smaller than a critical value βc = 1/(kTc) (high temper-
ature T ), there is a unique solution m = 0, while for β larger than the critical value
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(low temperature), there are two non-zero solutions ±m0(T ). The most probable
magnetization as a function of the temperature is represented on Fig. 4.

3.5.2 Two-Level System

We have noted above that when the vorticity level set is made of two opposite
values, S = {σ0,−σ0} (with σ0 > 0), the system becomes analogous to the mean-
field Ising model studied above. The only difference is the vorticity distribution
conservation constraint (and the interaction coefficients). This amounts to keeping
fixed the number of + and − spins in the Ising model, or equivalently, to fixing
the magnetization. But the magnetization here is nothing but the circulation 
1.
Therefore, conservation of the Casimir invariants in the discretized two-level model
reduces to conservation of the circulation.

Another way to see this is to show explicitly that there exists a representation
function for the vorticity distribution in this case. The coarse-graining operator C
takes value in a discrete subset of R

M : denoting S̄n = {( 2k
n − 1

)
σ0, 0 ≤ k ≤ n},

the image of the operator is S̄M
n . Here, k corresponds to the number of sites with

value σ0 in each coarse-graining cell. The relation between k and ω̄i can be inverted:
k = n(1 + ω̄i/σ0)/2, and we obtain

γ+ = 1

N

M∑
i=1

n

2

(
1 + ω̄i

σ0

)
, (75)

= 1

2
+ 
1

2σ0
, (76)

and similarly,

γ− = 1

2
− 
1

2σ0
. (77)

Note that, as expected,γ++γ− = 1 (Eq. (13)) and (γ+−γ−)σ0 = 
1 (Eq. (11)).Now,
it is an easy task to evaluate the unconstrained probability of a given coarse-grained
vorticity field:

μ(N )(C[ω̂] = ω̄) = Card C−1[ω̄]
2N

= 2−N
M∏

i=1

n!
(n/2(1 + ω̄i/σ0))!(n/2(1 − ω̄i/σ0))! ,

(78)

= eNS̄M,2[ω̄]+o(N ), (79)
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with the entropy of the coarse-graining observable (up to an unimportant constant
ln 2)

S̄M,2[ω̄] = − 1

2M

M∑
i=1

[(
1 + ω̄i

σ0

)
ln

(
1 + ω̄i

σ0

)
+

(
1 − ω̄i

σ0

)
ln

(
1 − ω̄i

σ0

)]
.

(80)

The contraction principle ensures that, as can be checked explicitly,

S̄M,2[ω̄] = max
P∈MM,2(R)

{SM,2[P] | E[P] = ω̄}. (81)

By the same token as in Sect. 3.2, it follows that the most probable coarse-grained
vorticity fields are solutions of the constrained variational problem:

S(E, γ ) = max
ω̄∈S̄M

n

{S̄M,2[ω̄] | H̄M [ω̄] = E, Ḡ(+)

M [ω̄] = γ+, Ḡ(−)

M [ω̄] = γ−}, (82)

or equivalently,

S(E, 
1) = max
ω̄∈S̄M

n

{S̄M,2[ω̄] | H̄M [ω̄] = E, M̄M [ω̄] = 
1}. (83)

Straightforward computations show that the critical points of the variational problem
are solutions of the equation:

ω̄ = σ0 tanh

(
(βψ̄ + α1)σ0

2

)
. (84)

3.5.3 Fragile Constraints and Constrained Casimir Variational Problem

It has been observed by several authors that none of the Casimir invariants 
p

(moments of the vorticity field) except the first (circulation) can be obtained from the
coarse-grained vorticity field ω̄. For this reason they are often referred to as fragile
invariants, in the sense that they do not survive coarse-graining. This is exactly the
same as saying that there is no representation function for the Casimir invariants
(or, equivalently, for the vorticity distribution γ (σ )) in terms of the coarse-grained
vorticity field ω̄, except in the particular case mentioned above. However, with an
arbitrary vorticity distribution, a large deviation principle can still be obtained by
contraction, as illustrated above in the two-layer case. This provides a variational
problem for the most probable coarse-grained vorticity field, even though it still
relies on an auxiliary maximization on the distribution P for the vorticity levels.

Because of their fragile nature, and because an infinite number of invariants is
difficult to handle in practice, it was suggested [16, 27] to treat these invariants in a
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canonical ensemble, and to consider the Lagrange parameter α(σ) as a prior vorticity
distribution chosen based on physical intuition of the problem at hand. This provides
a subset of solutions of the microcanonical variational problem, but not necessarily
the full set (see Sect. 3.4). However, this variational problem, expressed in terms of
the distribution P for the vorticity levels, is equivalent to minimizing, with respect to
the coarse-grained vorticity field ω̄, the so-called Casimir functionals

∫
D s(ω) with

fixed energy, where s is a convex function, choosing for s the Legendre-Fenchel
transform of lnZα [9].

3.6 The Energy-Enstrophy Measure

3.6.1 Gibbs Measure for Galerkin Truncated Flows

In this section we investigate the statistical mechanics of the 2D Euler equations
resulting from simplifying the conservation constraints: we retain only the energy
and the enstrophy invariants. This was actually one of the starting points for statistical
mechanics of turbulent flows: Lee in 3D [47] and Kraichnan in 2D [42] considered
Fourier series of the dynamical fields truncated at a given order N . In 3D, the only
invariants are the energy and the helicity, while in 2D, Kraichnan considered the
energy:

HN [ω̂] = 1

2

N∑
i=1

|ω̂i |2
λi

, (85)

and the enstrophy

GN [ω̂] = 1

2

N∑
i=1

|ω̂i |2, (86)

where the truncated vorticity field is given by

ω̂(x) =
N∑

i=1

ω̂iφi (x), �φi = −λiφi , 0 ≤ λi ≤ λi+1. (87)

It is assumed that the truncated vorticity field ω̂ is a random variable distributed
according to the canonical (Gibbs) measure:

μ
(N )
β,α (dω̂) = 1

Ze−βHN [ω̂]−αGN [ω̂]
N∏

i=1

dω̂i . (88)
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This is a Gaussian probability density, well-defined if β + αλi > 0 for all i . This
condition leads to three possible regimes: (i) β < 0, α > 0, (ii) β > 0, α > 0, (iii)
β > 0, α < 0. In each case, Kraichnan considered the energy spectrum Ei [ω̂] =
|ω̂i |2
2λi

and computed its average value with respect to the Gibbs measure [42, 44]:

〈Ei 〉 = 1
2(β+αλi )

. In the negative temperature (β < 0) regime, the spectrum peaks at
the gravest mode φ1; there is even an infrared divergence when β → −αλ1. This
is classically interpreted as an indication that not only nonlinear interactions in 2D
flows tend to transfer energy towards the large scales (the inverse cascade), but there
is a tendency for energy to accumulate in the gravest mode to form a condensate [6,
21, 85]. Note that the average value of each vorticity mode vanishes by symmetry:
〈ω̂i 〉 = 0, because a given vorticity field and its opposite have the same probability
in the canonical ensemble. Of course, in reality, the system will spontaneously break
the symmetry and choose a vorticity field, which can be computed in the limit of
large N using large deviations results for the macrostates as we did above. In the
energy-enstrophy ensemble, averaging over the set of equilibrium states indeed yields
a vanishing mean value, thereby showing that statistical mechanics is more about
most probable states than average values.

3.6.2 Large Deviations in the Microcanonical Ensemble

Using the same notations as in the previous paragraph, one may assume that the
truncated vorticity field is distributed according to the microcanonical measure

μ
(N )
E,
2

(dω̂) = 1

�N (E, 
2)
δ(HN [ω̂] − E)δ(GN [ω̂] − 
2)

N∏
i=1

dω̂i , (89)

instead of the Gibbs measure μ
(N )
β,α (dω̂), with the structure function given by

�N (E, 
2) =
∫

δ(HN [ω̂] − E)δ(GN [ω̂] − 
2)

N∏
i=1

dω̂i . (90)

Rather exceptionally, since both constraints involve quadratic functions, the struc-
ture function can be computed explicitly, using integral representations of the Dirac
distributions [10], and thus also the entropy:

�N (E, 
2) = eN S(E,
2)+o(N ), (91)

S(E, 
2) = 1

2
ln(
2 − 2λ1E). (92)

Note that Bouchet and Corvellec [10] have also checked with explicit compu-
tations that this entropy defined as the joint large deviation rate function for
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the energy and enstrophy observables (i.e. the Boltzmann formula S(E, 
2) =
lim(1/N ) ln�N (E, 
2), given in (92)) coincides with the entropy defined through
the variational problem for the macrostates, as expected from the contraction prin-
ciple (Eq. (47)). A similar computation of the structure function was carried out by
Kastner and Schnetz [40] for the mean-field spherical model defined in Sect. 2.4.2.

From the joint large deviation principle for the energy and enstrophy, we can
deduce a large deviation principle for the energy spectrum observable [10]:

μ
(N )
E,
2

(Ei [ω̂] = Ei ) = e
NS (i)

E,
2
[Ei ]+o(N )

, (93)

with

S (1)
E,
2

[E1] =
{

1
2 ln(
2 − 2λ2E + 2(λ2 − λ1)E1) if 0 < E1 < E

−∞ otherwise
, (94)

and for i > 1,

S (i)
E,
2

[Ei ] =
{

1
2 ln(
2 − 2λ1E − 2(λi − λ1)Ei ) if 0 ≤ Ei ≤ E

−∞ otherwise
. (95)

The large deviation rate functions are monotonous:S (1)
E,
2

[E1] is an increasing func-
tion of E1, andS

(i)
E,
2

[Ei ] are decreasing functions of Ei . Therefore, the most proba-
ble energy spectrum in the limit N → +∞ has all its energy in the gravestmode. This
can be seen as the microcanonical counterpart of the Kraichnan argument presented
in Sect. 3.6.1. It provides further theoretical evidence for the spectral condensation
in 2D turbulence.

The above discussion on the vanishing of the average truncated vorticity field
also applies in the microcanonical ensemble. The mean-field theory allows to com-
pute the most probable macrostates: we find a linear mean-field equation for the
coarse-grained vorticity field: ω̄ = β/(2α)ψ̄ , which is easily solved and yields
ω̄ = √

2λ1Eφ1, in agreement with the above prediction.

4 Conclusion

In this chapter, we have given a brief introduction to the methods of equilibrium
statistical mechanics applied to models of turbulent flows, focusing on the case of
two-dimensional flows. Themain purpose of the course was to show, in the context of
a lattice discretization of the system, how some well-chosen observables, such as the
distribution of fined-grained vorticity levels, concentrate in probability around a set
of equilibrium values. Such properties are conveniently expressed using the theory
of large deviations. In fact, we have closely followed the principles of equilibrium
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statistical mechanics formulated in the language of large deviations, as exposed for
instance in [89]. Amajor ingredient in deriving the large deviation results is the long-
range character of the interactions, because it leads to the existence of a representation
function for the energy. This is a major simplification, as it allows us to compute the
probability of a macrostate with respect to the uniform measure and then deduce the
probability with respect to the microcanonical measure. We have emphasized this
point by considering another observable, the coarse-grained vorticity field (for which
there is no representation function for the vorticity distribution) and by making the
analogy with a simpler system, the mean-field Ising model.

The large deviation principle leads to a variational problemcharacterizing themost
probable macrostates. This allows to compute coarse-grained vorticity fields which
should correspond in practice to the final state of the system, if ergodicity holds.
This provides a statistical explanation of the spontaneous emergence of coherent
structures in two-dimensional flows. The equilibrium states obtained may depend on
the choice of probability measure in phase space: we have discussed the relations
between the standard ensembles of statistical mechanics and given a connection with
the concavity properties of the entropy.

In the simpler context of the energy-enstrophy measure, we have explained that
the energy spectrumobservable also satisfies a large deviation principle, which shows
that the most probable state has all its energy condensed in the gravest mode. This is
physically consistent with the familiar ideas of inverse cascade of energy and energy
condensation for 2D flows.
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