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Preface

The Rocky Mountain Mathematics Consortium (RMMC) Summer School
“Stochastic equations for complex systems: Theory and applications” took place for
two weeks in June, 2014 at the University of Wyoming in Laramie. This summer
school involved about 80 graduate students and lecturers from all over the United
States and Europe. Mathematical analyses and computational predictions of the
behavior of complex systems are needed to effectively deal, for example, with
weather and climate predictions, and the optimal design of technical processes.
Given the random nature of such systems and the recognized relevance of ran-
domness, the equations used to describe such systems usually need to involve
stochastics. The basic goal of this summer school was to introduce graduate stu-
dents to the mathematics and application of stochastic equations to the modeling of
complex systems. One of the known problems of research in this field is that
mathematicians, engineers, and physicists generally use rather different terminology
to present the results of their analyses. Therefore, a particular goal of this summer
school was to create bridges between different analysis methods and techniques in
order to contribute to a growing cooperation between researchers in different fields.

Following the lectures of our RMMC Summer School, the book presents eight
selected chapters. Each of the chapters addresses questions that are relevant to the
mathematical analysis and computational prediction of the behavior of complex
systems on the basis of stochastic equations. The first three chapters provide
introductions to different topics on mathematical analysis. “An Introduction to the
Malliavin Calculus and Its Applications” focuses on the Malliavin calculus with
applications to stochastic integral representation, density formulas, smoothness of
densities, and normal approximations. “Fractional Brownian Motion and An
Application to Fluids” describes fractional Brownian motion with application to
vortex dynamics in fluids, and “An Introduction to Large Deviations and
Equilibrium Statistical Mechanics for Turbulent Flows” deals with large devia-
tions with applications to the equilibrium statistical mechanics of turbulent flows.
“Recent Developments on the Micropolar and Magneto-Micropolar Fluid Systems:
Deterministic and Stochastic Perspectives” and “Pathwise Sensitivity Analysis in
Transient Regimes” focus on the application of mathematical tools to the analysis
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of stochastic equations: the analysis of magneto-hydrodynamic equations and the
sensitivity analysis of stochastic equations are considered. The development and
application of stochastic methods to simulate turbulent flows seen in reality are the
concern of “The Langevin Approach: A Simple Stochastic Method for Complex
Phenomena,” “Monte Carlo Simulations of Turbulent Non-Premixed Combustion
Using a Velocity Conditioned Mixing Model,” and “Massively Parallel FDF
Simulation of Turbulent Reacting Flows.” In particular, “The Langevin Approach:
A Simple Stochastic Method for Complex Phenomena” explains how observations
can be used for the design of stochastic equations. “Monte Carlo Simulations of
Turbulent Non-Premixed Combustion Using a Velocity ConditionedMixingModel”
and “Massively Parallel FDF Simulation of Turbulent Reacting Flows” describe the
stochastic modeling of turbulent reacting flows using techniques that differ by their
predictive capability and computational requirements.

First of all, we would like to thank the Rocky Mountain Mathematics
Consortium and University of Wyoming Mathematics Department for providing a
frame for organizing this summer school. In particular, we are thankful to the head
of the University of Wyoming Mathematics Department Prof. F. Jafari for his
constant support of our efforts. We are grateful to V. Staddie, B. Buskirk, L. Roan,
R. Johnson, and C. Johnson (University of Wyoming Mathematics Department) for
their great help regarding the organization of this event. This summer school would
not have been possible without substantial financial support of many organizations:
the Rocky Mountain Mathematics Consortium (Prof. T. Sherman), the National
Science Foundation (Prof. T. Bartoszynski), the National Center for Atmospheric
Research (Dr. J. Tribbia), the Institute for Mathematics and its Applications (Prof.
F. Santosa) located at the University of Minnesota, and the University of Wyoming
Research Office (Prof. B. Shader and Prof. B. Gern). We are deeply thankful for this
support.

Laramie Stefan Heinz
March 2015 Hakima Bessaih
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An Introduction to the Malliavin Calculus
and Its Applications

David Nualart

Abstract The purpose of these notes is to provide an introduction to the Malliavin
calculus and its recent application to quantitative results in normal approximations,
in combination with Stein’s method. The basic differential operators of the Malli-
avin calculus and their main properties are presented. We explain the connection
of these operators with the Wiener chaos expansion and the Ornstein-Uhlenbeck
semigroup. We survey several applications of the Malliavin calculus including sto-
chastic integral representation, density formulas, smoothness of densities and normal
approximations.

1 Introduction

PaulMalliavin introduced in the 70s a calculus of variationswith respect to the trajec-
tories of Brownian motion, in order to provide a probabilistic proof of Hörmander’s
hypoellipticity theorem (see [18]). This calculus was further developed by Bismut,
Kusuoka, Stroock andWatanabe (see [3, 4, 14–16, 34, 37]), among others. Themain
application of this calculus is to show the existence and smoothness of densities of
functionals of Gaussian processes. On the other hand, in combination with Stein’s
method, the Malliavin calculus has been recently used to establish quantitative re-
sults on normal approximations (see Nourdin and Peccati [22]). In this section we
introduce some basic elements of Malliavin calculus and we refer the reader to [18,
24–26, 36] for a more complete presentation of these notions.

1.1 Finite Dimensional Case

The Malliavin calculus is a differential calculus on a Gaussian probability space.
Consider first the finite dimensional case. That is, the probability space (�,F, P)

D. Nualart (B)
Department of Mathematics, The University of Kansas, Lawrence, KS 66045, USA
e-mail: nualart@ku.edu

© Springer International Publishing Switzerland 2015
S. Heinz and H. Bessaih (eds.), Stochastic Equations for Complex Systems,
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2 D. Nualart

is such that � = R
n , F = B(Rn) is the Borel σ -field of Rn , and P is the standard

Gaussian probability with density p(x) = (2π)−n/2e−|x |2/2. In this framework, we
consider two basic differential operators. The first one is the derivative operator,
which is simply the gradient of a differentiable function F : Rn → R:

∇F =
(

∂ F

∂x1
, . . . ,

∂ F

∂xn

)
.

The second basic differential operator is called the divergence operator and it is
defined on differentiable vector-valued functions u : Rn → R

n as follows

δ(u) =
n∑

i=1

(
ui xi − ∂ui

∂xi

)
= 〈u, x〉 − divu.

It turns out that δ is the adjoint of the derivative operator with respect to the Gaussian
measure P . This is the contents of the next proposition.

Proposition 1 The operator δ is the adjoint of ∇, that is,

E(〈u,∇F〉) = E(Fδ(u)),

if F and u are continuously differentiable and their partial derivatives have at most
polynomial growth. Here E denotes the mathematical expectation in the probability
space (�,F, P).

Proof Integrating by parts, and using ∂p
∂xi

= −xi p, we obtain

∫
Rn

〈∇F, u〉pdx =
n∑

i=1

∫
Rn

∂ F

∂xi
ui pdx =

n∑
i=1

(
−
∫
Rn

F
∂ui

∂xi
pdx +

∫
Rn

Fui xi pdx

)

=
∫
Rn

Fδ(u)pdx .

This completes the proof. �

1.2 Malliavin Calculus on the Wiener Space

Fix T > 0, and consider the probability space (�,F, P), where � = C([0, T ]), F
is the Borel σ -field of �, and P is the Wiener measure. This measure is defined on
cylindrical sets in the following way. For all 0 ≤ t1 < · · · < tn ≤ T , ai < bi ,
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P {ω : ai ≤ ω(ti ) ≤ bi , 1 ≤ i ≤ n}
=
∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

1√
2π(ti − ti−1)

e
− (xi −xi−1)2

2(ti −ti−1) dx1 · · · dxn,

with the convention t0 = 0 and x0 = 0. This measure can be extended to the Borel
σ -field F and the canonical stochastic process W = {Wt (ω) = ω(t), t ∈ [0, T ]} is a
Brownian motion. The process W has independent increments, W0 = 0, and for any
0 ≤ s < t , Wt − Ws has the normal law N (0, t − s).

Set H = L2([0, T ]) and for any h ∈ H, denote by W (h) the Wiener integral
W (h) = ∫ T

0 h(t)dW (t). The Hilbert space H plays a basic role in the definition of
the derivative operator. In fact, the derivative of a random variable F : � → R

takes values inH = L2([0, T ]), and {Dt F, T ∈ [0, T ]} is a stochastic process. More
precisely, consider the set S of smooth and cylindrical random variables of the form

F = f (W (h1) . . . , W (hn)), (1)

where f ∈ C∞
p (Rn) ( f and all ist partial derivatives have polynomial growth) and

hi ∈ H.

Definition 1 If F ∈ S is a smooth and cylindrical random variable of the form (1),
the derivative DF is the H-valued random variable defined by

Dt F =
n∑

i=1

∂ f

∂xi
(W (h1) . . . , W (hn))hi (t).

For instance, D(W (h)) = h and D(Wt1) = 1[0,t1], for any t1 ∈ [0, T ]. The
operator D can be interpreted as a directional derivative in the following way. Con-
sider the Cameron-Martin space H1 ⊂ � defined as the set of functions of the form
ψ(t) = ∫ t

0 h(s)ds, where h ∈ H. Then, for ant h ∈ H, 〈DF, h〉H is the derivative of
F in the direction of

∫ ·
0 h(s)ds:

〈DF, h〉H =
∫ T

0
ht Dt Fdt = d

dε
F

(
ω + ε

∫ ·

0
hsds

)
|ε=0.

Let us now introduce the divergence operator on the Wiener space. Denote by SH

the class of smooth and cylindrical stochastic process u = {ut , t ∈ [0, T ]} of the
form

ut =
n∑

j=1

Fj h j (t), (2)

where the Fj ∈ S and h j ∈ H.
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Definition 2 Wedefine the divergence of an element u of the form (2), as the random
variable given by

δ(u) =
n∑

j=1

Fj W (h j ) −
n∑

j=1

〈
DF j , h j

〉
H . (3)

In particular, for any h ∈ H, we have δ(h) = W (h).
As in the finite dimensional case, the divergence defined by (3) is the adjoint of

the derivative operator.

Proposition 2 Let F ∈ S and u ∈ SH. Then,

E(Fδ(u)) = E(〈DF, u〉H). (4)

Proof We can assume that F = f (W (h1) . . . , W (hn)) and

u =
n∑

j=1

g j (W (h1) . . . , W (hn))h j ,

where h1, . . . , hn are orthonormal elements inH. In this case, the duality relationship
reduces to the finite dimensional case. �

We make use of the notation Dh F = 〈DF, h〉H, for any h ∈ H and F ∈ S. The
following proposition states the basic properties of the derivative and divergence
operators on smooth and cylindrical random variables.

Proposition 3 Suppose that u, v ∈ SH, F ∈ S and h ∈ H. Then, if {ei , i ≥ 1} is a
complete orthonormal system in H, we have

E(δ(u)δ(v)) = E(〈u, v〉H) + E

⎛
⎝ ∞∑

i, j=1

Dei 〈u, e j 〉HDe j 〈v, ei 〉H
⎞
⎠ , (5)

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H, (6)

δ(Fu) = Fδ(u) − 〈DF, u〉H. (7)

Property (5) can also be written as

E(δ(u)δ(v)) = E

(∫ T

0
ut vt dt

)
+ E

(∫ T

0

∫ T

0
Dsut Dt vsdsdt

)
.
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Proof We first show Property (6). Assume u = ∑n
j=1 Fj h j . Then, using

Dh(W (h j )) = 〈h, h j 〉H, we obtain

Dh(δ(u)) = Dh

⎛
⎝ n∑

j=1

Fj W (h j ) −
n∑

j=1

〈DF j , h j 〉H
⎞
⎠

=
n∑

j=1

Fj
〈
h, h j

〉
H +

n∑
j=1

(
Dh Fj W (h j ) − 〈

Dh
(
DF j

)
, h j

〉
H

)

= 〈u, h〉H + δ(Dhu).

To show Property (5), using the duality formula (4) and Property (6) yield

E (δ(u)δ(v)) = E
(〈v, D(δ(u))〉H

)

= E

⎛
⎝ ∞∑

i=1

〈v, ei 〉H Dei (δ(u))

⎞
⎠ = E

⎛
⎝ ∞∑

i=1

〈v, ei 〉H
(〈u, ei 〉H + δ(Dei u)

)⎞⎠

= E
(〈u, v〉H

) + E

⎛
⎝ ∞∑

i, j=1

Dei

〈
u, e j

〉
H De j 〈v, ei 〉H

⎞
⎠ .

Finally, to prove Property (7), we choose a smooth random variable G ∈ S and we
write, using the duality relationship (4)

E[δ(u)G] = E
(〈DG, Fu〉H

) = E
(〈u, D(FG) − GDF〉H

)
= E

((
δ(u)F − 〈u, DF〉H

)
G
)
,

which implies the result because S is dense in L2(�). �

As a consequence of the duality relationship, the operator D is closable from
L p(�) to L p(�;H) for any p ≥ 1. Thismeans that if FN ∈ S is a sequence of smooth
and cylindrical random variables converging in L p(�) to 0 and DF N converges in
L p(�;H) to some element η, then η = 0. Indeed, for any u = ∑N

j=1 G j h j ∈ SH

such that G j and DG j are bounded, we can write

E(〈η, u〉H) = lim
N→∞ E(〈DF N , u〉H) = lim

N→∞ E(FN δ(u)) = 0,

which implies that η = 0.



6 D. Nualart

1.3 Sobolev Spaces

For any p ≥ 1, we denote by D
1,p the closure of S with respect to the seminorm

‖F‖1,p =
(

E[|F |p] + E

[∣∣∣∣
∫ T

0
(Dt F)2dt

∣∣∣∣
p/2])1/p

.

For p = 2, the space D1,2 is a Hilbert space with the scalar product

〈F, G〉1,2 = E(FG) + E

[∫ T

0
Dt F Dt Gdt

]
.

In the same way we can introduce the spaces D1,p(H) by taking the closure of SH.

Definition 3 The domain of the divergence operator Domδ in L2(�) is the set of
processes u ∈ L2(� × [0, T ]) such that there exists δ(u) ∈ L2(�) satisfying the
duality relationship

E(〈DF, u〉H) = E(δ(u)F),

for any F ∈ D
1,2.

Clearly if un ∈ SH satisfies un
L2(�;H)−→ u and δ(un)

L2(�)−→ G, then u belongs to
Domδ and δ(u) = G.

Proposition 3 can be extended to random variables in suitable Sobolev spaces.
Property (5) holds for u, v ∈ D

1,2(H) ⊂ Domδ and in this case, for any u ∈ D
1,2(H),

we can write

E(δ(u)2) ≤ E

[∫ T

0
(ut )

2dt

]
+ E

[∫ T

0

∫ T

0
(Dsut )

2dsdt

]
= ‖u‖21,2,H.

Property (6) holds if u ∈ D
1,2(H) and Dhu is in the domain of δ. Finally Property

(7) holds if F ∈ D
1,2, Fu ∈ L2(�;H), u ∈ Domδ and the right-hand side is square

integrable.
The next theorem asserts the continuity of the divergence operator in L p(�) for

any p > 1. It was first proved by Meyer [20]. An alternative proof based on the
boundedness in L p of the Riesz transform is due to Pisier [32].

Theorem 1 For any p > 1 and u ∈ D
1,p(H),

E(|δ(u)|p) ≤ cp

(
E(‖Du‖p

L2([0,T ]2)) + E(‖u‖p
H)
)

. (8)
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We can also introduce iterated derivatives and the corresponding Sobolev spaces.
The kth derivative Dk F of a randomvariable F ∈ S is a k-parameter process obtained
by iteration:

Dk
t1,...tk F =

n∑
i1,...,ik=1

∂k f

∂xi1 · · · ∂xik

(W (h1), . . . W (hn))hi1(t1) · · · hik (tk).

For any p ≥ 1, the operator Dk is closable from L p(�) into L p(�;H⊗k) and we
denote by Dk,p the closure of S with respect to the norm

‖F‖k,p =
⎛
⎝E[|F |p] + E

⎡
⎣ k∑

j=1

∣∣∣∣
∫

[0,T ] j
(D j

t1,...,t j
F)2dt1 · · · dt j

∣∣∣∣
p/2

⎤
⎦
⎞
⎠

1/p

.

1.4 The Divergence as a Stochastic Integral

For each t ∈ [0, T ], we denote by Ft the σ -field generated by the random variables
{Ws, 0 ≤ s ≤ t}. A stochastic process u = {ut , t ∈ [0, T ]} is adapted if for each
t ∈ [0, T ], ut is Ft -measurable. We denote by L2

a the subspace of L2(� × [0, T ])
formed by adapted processes. The following result says that the divergence operator
is an extension of the Itô integral [10].

Theorem 2 L2
a ⊂ Domδ and for any u ∈ L2

a, δ(u) coincides with the Itô’s stochastic
integral:

δ(u) =
∫ T

0
ut dWt .

Proof Let u = ∑n
j=1 Fj 1[a j ,b j ], where the random variables Fj ∈ S are

Fa j -measurable. Then, δ(u) coincides with the Itô integral of u because

δ(u) =
n∑

j=1

Fj (W (b j ) − W (a j )) −
n∑

j=1

∫ b j

a j

Dt Fdt =
n∑

j=1

Fj (W (b j ) − W (a j )),

taking into account that Dt F = 0 if t > a j . Then, the result follows by approximating
any square integrable adapted process by cylindrical adapted smooth processes. �

If u not adapted, δ(u) coincides with an anticipating stochastic integral introduced
by Skorohod in [33]. Using techniques of Malliavin calculus, Nualart and Pardoux
developed in [28] a stochastic calculus for the Skorohod integral.



8 D. Nualart

If u and v are adapted, then for s < t , Dt vs = 0 and for s > t , Dsut = 0. As a
consequence, Property (5) leads to the isometry property of the Itô integral

E[δ(u)δ(v)] = E

[∫ T

0
ut vt dt

]
.

If u is an adapted process in D1,2(H), then from Property (6) we obtain

Dt

(∫ T

0
usdWs

)
= ut +

∫ T

t
Dt usdWs,

because Dt us = 0 if t > s.

2 Wiener Chaos and the Ornstein-Uhlenbeck Semigroup

In this sectionwe introduce theWiener chaos expansion for square integrable random
variables and we show how the operators defined in Sect. 1 act on the Wiener chaos.
We recall the W = {Wt , t ∈ [0, T ]} is a Brownian motion defined in the canonical
probability space (�,F, P).

2.1 Multiple Stochastic Integrals

Let L2
s ([0, T ]n) be the space of symmetric square integrable functions f : [0, T ]n →

R. The multiple stochastic integral of f ∈ L2
s ([0, T ]n) is defined as an iterated Itô

integral:

In( f ) = n!
∫ T

0

∫ tn

0
· · ·

∫ t2

0
f (t1, . . . , tn)dWt1 · · · dWtn .

We have the following property E[In( f )Im(g)] = 0 if n = m and

E[In( f )In(g)] = n!〈 f, g〉L2([0,T ]n) (9)

for all n ≥ 1. If f ∈ L2([0, T ]n) is not necessarily symmetric we define In( f ) =
In( f̃ ), where the f̃ is the symmetrization of f defined by

f̃ (t1, . . . , tn) = 1

n!
∑
σ

f (tσ(1), . . . , tσ(n)),

where the sum runs over all permutations σ of {1, 2, . . . , n}.
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There is a basic relation between multiple stochastic integrals and Hermite poly-
nomials. Denote by hn the nth Hermite polynomial given by

hn(x) = (−1)nex2/2 dn

dxn
(e−x2/2).

The first Hermite polynomials are h0(x) = 1, h1(x) = x , h2(x) = x2 − 1, h3(x) =
x3 − 3x , . . .. Then, for any g ∈ L2([0, T ]) of norm one we have

In(g⊗n) = hn

(∫ T

0
gt dWt

)
, (10)

where g⊗n(t1, . . . , tn) = g(t1) · · · g(tn).
Let f ∈ L2

s ([0, T ]n) and g ∈ L2
s ([0, T ]m). For any r = 0, . . . , n ∧ m, we define

the contraction of f and g of order r to be the element of L2([0, T ]n+m−2r ) defined
by

( f ⊗r g) (t1, . . . , tn−r , s1, . . . , sm−r )

=
∫

[0,T ]r
f (t1, . . . , tn−r , x1, . . . , xr )g(s1, . . . , sm−r , x1, . . . , xr )dx1 · · · dxr .

Notice that f ⊗r g is not necessarily symmetric, and we denote by f ⊗̃r g its sym-
metrization. The next equation is the product of two multiple stochastic integrals

In( f )Im(g) =
n∧m∑
r=0

r !
(

n

r

)(
m

r

)
In+m−2r ( f ⊗r g). (11)

The following result is the Wiener chaos expansion.

Theorem 3 A random variable F ∈ L2(�) can be uniquely expanded into a sum
of multiple stochastic integrals:

F = E[F] +
∞∑

n=1

In( fn).

For any n ≥ 1 we denote by Hn the closed subspace of L2(�) formed by all
multiple stochastic integrals of order n. For n = 0,H0 is the space of constants. Then,
Theorem 3 can be reformulated by saying that we have the orthogonal decomposition
L2(�) = ⊕∞

n=0Hn .
Theorem3 follows from the fact that if a randomvariableG ∈ L2(�) is orthogonal

to ⊕∞
n=0Hn , then it is orthogonal to all random variables of the form

(∫ T
0 gt dWt

)k
,

where g ∈ L2([0, T ]), k ≥ 0. This implies thatG is orthogonal to all the exponentials

exp
(∫ T

0 gt dWt

)
, which form a total set in L2(�). So G = 0.
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Let us compute the derivative of a multiple stochastic integral. Suppose that f ∈
L2

s ([0, T ]n). Then In( f ) ∈ D
1,2, and

Dt In( f ) = nIn−1( f (·, t)). (12)

Formula (12) can be proved as follows. Assume f = g⊗n , with ‖g‖H = 1. Let
θ = ∫ T

0 gt dWt . Then, using (10) and the properties of Hermite polynomials yields

Dt In( f ) = Dt (hn(θ)) = h′
n(θ)Dtθ = nhn−1(θ)gt

= ngt In−1(g
⊗(n−1)) = nIn−1( f (·, t)).

Moreover, applying (9), we obtain

E
∫ T

0
[Dt In( f )]2dt = n2

∫ T

0
E[In−1( f (·, t))2]dt

= n2(n − 1)!
∫ T

0
‖ f (·, t)‖2L2([0,T ]n−1)

dt

= nn!‖ f ‖2L2([0,T ]n)
= nE[In( f )2]. (13)

As a consequence of (12) and (13) we deduce the following result.

Proposition 4 Let F ∈ L2(�) with the Wiener chaos expansion F = ∑∞
n=0 In( fn).

Then F ∈ D
1,2 if and only if

E(‖DF‖2H) =
∞∑

n=1

nn!‖ fn‖2L2([0,T ]n)
< ∞,

and in this case

Dt F =
∞∑

n=1

nIn−1( fn(·, t)).

Similarly, if F ∈ D
k,2, then

Dk
t1,...,tk F =

∞∑
n=k

n(n − 1) · · · (n − k + 1)In−k( fn(· , t1, . . . , tk)),

provided this series converges in L2(� × T k). As a consequence, if F ∈ D
∞,2 :=

∩kD
k,2, then the following Stroock’s formula (see [35]) allows us to compute explic-

itly the kernels in the Wiener chaos expansion of F :

fn = 1

n! E(Dn F).
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Example 1 Let F = W 3
1 , assuming 1 ≤ T . Then,

f1(t1) = E(Dt1W 3
1 ) = 3E(W 2

1 )1[0,1](t1) = 31[0,1](t1),

f2(t1, t2) = 1

2
E(D2

t1,t2W 3
1 ) = 3E(W1)1[0,1](t1 ∨ t2) = 0,

f3(t1, t2, t3) = 1

6
E(D3

t1,t2,t3W 3
1 ) = 1[0,1](t1 ∨ t2 ∨ t3),

and we obtain the Wiener chaos expansion

W 3
1 = 3W1 + 6

∫ 1

0

∫ t1

0

∫ t2

0
dWt1dWt2dWt3 .

Let us now compute the divergence operator on the Wiener chaos expansion. A
square integrable stochastic process u = {ut , t ∈ [0, T ]} ∈ L2(� × [0, T ]) has an
orthogonal expansion of the form

ut =
∞∑

n=0

In( fn(·, t)),

where f0(t) = E[ut ] and for each n ≥ 1, fn ∈ L2([0, T ]n+1) is a symmetric
function in the first n variables.

Proposition 5 The process u belongs to the domain of δ if and only if the series

δ(u) =
∞∑

n=0

In+1( f̃n) (14)

converges in L2(�).

Proof Suppose that G = In(g) is amultiple stochastic integral of order n ≥ 1, where
g is symmetric. Then,

E(〈u, DG〉H) =
∫ T

0
E(In−1( fn−1(·, t))nIn−1(g(·, t)))dt

= n(n − 1)!
∫ T

0
〈 fn−1(·, t), g(·, t)〉L2([0,T ]n−1) dt

= n! 〈 fn−1, g〉L2([0,T ]n) = n! 〈 f̃n−1, g
〉
L2([0,T ]n)

= E
(
In
(

f̃n−1
)

In(g)
) = E

(
In
(

f̃n−1
)

G
)
.

If u ∈ Domδ, we deduce that

E(δ(u)G) = E
(
In
(

f̃n−1
)

G
)
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for every G ∈ Hn . This implies that In
(

f̃n−1
)
coincides with the projection of δ(u)

on the nth Wiener chaos. Consequently, the series in (14) converges in L2(�) and
its sum is equal to δ(u) . The converse can be proved by similar arguments. �

2.2 The Ornstein-Uhlenbeck Semigroup

Consider the one-parameter semigroup {Tt , t ≥ 0} of contraction operators on L2(�)

defined by

Tt (F) =
∞∑

n=0

e−nt In( fn),

where F = ∑∞
n=0 In( fn). An alternative and useful formula for the Ornstein-

Uhlenbeck semigroup is the following Mehler’s formula.

Proposition 6 Let W ′ = {W ′
t , t ∈ [0, T ]} be an independent copy of W . Then, for

any t ≥ 0 and F ∈ L2(�) we have

Tt (F) = E ′(F(e−t W +
√
1 − e−2t W ′)), (15)

where E ′ denotes the mathematical expectation with respect to W ′.

Proof Both Tt and the right-hand side of (15) give rise to linear contraction operators
on L2(�). Thus, it suffices to show (15) when F = exp

(
λW (h) − 1

2λ
2
)
, where

W (h) = ∫ T
0 ht dWt , h ∈ H is an element of norm one, and λ ∈ R. We have,

E ′
(
exp

(
e−tλW (h) +

√
1 − e−2tλW ′(h) − 1

2
λ2
))

= exp

(
e−tλW (h) − 1

2
e−2tλ2

)
=

∞∑
n=0

e−nt λ
n

n! hn (W (h)) = Tt F,

because

F =
∞∑

n=0

λn

n! hn (W (h))

and for any a, z ∈ R the Hermite polynomials satisfy

eaz− 1
2 a2 =

∞∑
n=0

an

n! hn(z).

This completes the proof. �
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Mehler’s formula implies that the operator Tt is nonnegative. On the other hand,
the operator Tt is symmetric:

E(GTt (F)) = E(FTt (G)) =
∞∑

n=0

e−nt E(In( fn)In(gn)),

where F = ∑∞
n=0 In( fn) and G = ∑∞

n=0 In(gn). It turns out that {Tt , t ≥ 0} is the
semigroup of transition probabilities of a Markov process with values in C([0, T ]),
whose invariant measure in the Wiener measure. This process can be expressed in
terms of a Wiener sheet W as follows:

Xt,τ = √
2
∫ t

−∞

∫ τ

0
e−(t−s)W (dσ, ds),

τ ∈ [0, T ], t ≥ 0.
The Ornstein-Uhlenbeck semigroup has the following hypercontractivity prop-

erty: If F ∈ L p(�), p > 1 and q(t) = e2t (p − 1) + 1 > p, t > 0, then

‖Tt F‖q(t) ≤ ‖F‖p. (16)

As a consequence, for any 1 < p < q < ∞ the norms ‖ ·‖p and ‖ ·‖q are equivalent
on any Wiener chaosHn , and for each n ≥ 1 and 1 < p < ∞, the projection on the
nth Wiener chaos is bounded in L p(�).

The generator of the Ornstein-Uhlenbeck semigroup in L2(�) is the operator
given by

LF = lim
t↓0

Tt F − F

t
=

∞∑
n=1

−nIn( fn),

if F = ∑∞
n=0 In( fn). The domain of L in L2(�) coincides with the space D2,2. The

next proposition provides a useful relationship between the operators D, δ, and L .

Proposition 7 Let F ∈ L2(�). Then F ∈ Dom L if and only if F ∈ D
1,2 and

DF ∈ Dom δ, and in this case, we have

δDF = −LF.

Proof Let F = In( f ). Then, using (12) and (14) we obtain

δDF = δ(Dt In( f )) = nδ(In−1( f (·, t)) = nIn( f ) = −LF,

and the result follows easily. �

The operator L behaves as a second-order differential operator on smooth random
variables.
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Proposition 8 Suppose that F = (F1, . . . , Fm) is a random vector whose compo-
nents belong to D

2,4. Let ϕ be a function in C2(Rm) with bounded first and second
partial derivatives. Then ϕ(F) ∈ Dom L and

L(ϕ(F)) =
m∑

i, j=1

∂2ϕ

∂xi∂x j
(F)〈DFi , DF j 〉H +

m∑
i=1

∂ϕ

∂xi
(F)L Fi .

Proof Suppose first that F ∈ S is of the form

F = f (W (h1), . . . , W (hn)),

f ∈ C∞
p (Rn) and hi ∈ H. Then

Dt F =
n∑

i=1

∂ f

∂xi
(W (h1), . . . , W (hn))hi (t).

Consequently, DF ∈ SH ⊂ Dom δ and we obtain

δDF =
n∑

i=1

∂ f

∂xi
(W (h1), . . . , W (hn))W (hi )

−
n∑

i, j=1

∂2 f

∂xi∂x j
(W (h1), . . . , W (hn))〈hi , h j 〉H,

which yields the desired result because L = −δD. In the general case, it suffices to
approximate F by smooth random variables in the norm ‖ · ‖2,4, and ϕ by functions
in C∞

p (Rm), and use the continuity of the operator L in the norm ‖ · ‖2,2. �

In the finite-dimensional case (� = R
n equipped with the standard Gaussian

law), L = �− x ·∇ coincides with the generator of the Ornstein-Uhlenbeck process
{Xt , t ≥ 0} in Rn , which is the solution to the stochastic differential equation

d Xt = √
2dWt − Xt dt,

where {Wt , t ≥ 0} is a standard n-dimensional Brownian motion.
The following integration-by-parts formula will play an important role in the

applications of Malliavin calculus to normal approximations.

Proposition 9 Let F ∈ D
1,2 with E(F) = 0. Let f be a continuously differentiable

function with bounded derivative. Then,

E[ f (F)F] = E[ f ′(F)〈DF,−DL−1F〉H]. (17)



An Introduction to the Malliavin Calculus and Its Applications 15

Proof Using that
F = LL−1F = −δ(DL−1F)

yields

E[ f (F)F] = −E[ f (F)δ(DL−1F)]
= −E[〈D( f (F)), DL−1F〉H]
= E[ f ′(F)〈DF,−DL−1F〉H].

This completes the proof. �

If we define, for almost all x in the support of F , the function gF by

gF (x) = E[〈DF,−DL−1F〉H|F = x],

then, for any f ∈ C1
b(R) we have E[ f (F)F] = E[ f ′(F)gF (F)]. Moreover,

gF (F) ≥ 0 almost surely. Indeed, taking f (x) = ∫ x
0 ϕ(y)dy, where ϕ is smooth and

non-negative we obtain

E[E[〈DF,−DL−1F〉H|F]ϕ(F)] ≥ 0,

because x f (x) ≥ 0.

3 Clark Ocone’s Formula

LetW = {Wt , 0 ≤ t ≤ T }be aBrownianmotion definedon the canonical probability
space (�,F, P). Recall that L2

a denotes the space of adapted process u = {ut , t ∈
[0, T } such that E

(∫ T
0 u2

t dt
)

< ∞. The following result is the Itô’s stochastic

integral representation theorem.

Theorem 4 Let F ∈ L2(�). Then, there exists a unique process u ∈ L2
a such that

F = E(F) +
∫ T

0
ut dWt .

Then, Clark Ocone’s formula (see [30]) provides an explicit expression for the
process u in terms of the Malliavin derivative of the random variable F . More pre-
cisely, u coincides with the predictable projection of the derivative of F . That is, if
F ∈ D

1,2, then, ut = E(Dt F |Ft ), and we can write

F = E(F) +
∫ T

0
E(Dt F |Ft )dWt . (18)



16 D. Nualart

Proof For any v ∈ L2
a we can write, using the duality relationship (4), we obtain

E

(
F
∫ T

0
vt dWt

)
= E(Fδ(v)) = E

(∫ T

0
Dt Fvt dt

)

=
∫ T

0
E[E(Dt F |Ft )vt ]dt.

If we assume that F = E(F) + ∫ T
0 ut dWt , then by the Itô isometry

E

(
F
∫ T

0
vt dWt

)
=
∫ T

0
E(ut vt )dt.

Comparing these two expressions we deduce that

ut = E(Dt F |Ft )

almost everywhere in � × [0, T ]. �

Example 2 Suppose that F = W 3
t . Then Ds F = 3W 2

t 1[0,t](s) and

E(Ds F |Fs) = 3E[(Wt − Ws + Ws)
2|Fs] = 3[t − s + W 2

s ].

Therefore,

W 3
t = 3

∫ t

0
[t − s + W 2

s ]dWs . (19)

This formula should be compared with Itô’s formula

W 3
t = 3

∫ t

0
W 2

s dWs + 3
∫ t

0
Wsds. (20)

Notice that Eq. (19) contains only a stochastic integral, but it is not a martingale,
because the integrand depends on t , whereas (20) contains two terms and one is a
martingale. Moreover, the integrand in (19) is unique.

Example 3 The local time of theBrownianmotion {Lx
t , t ∈ [0, T ], x ∈ R} is defined

as the density of the occupation measure:

∫ t

0
1{Ws∈C}ds =

∫
C

Lx
t dx,
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for any Borel set C ∈ B(R). Formally, Lx
t = ∫ t

0 δx (Ws)ds. Then, if for any ε > 0,

we set pε(x) = (2πε)− 1
2 e−x2/2ε, it holds that

Fε =
∫ t

0
pε(Ws − x)ds

L2(�)−→ Lx
t .

Applying the derivative operator yields

Dr Fε =
∫ t

0
p′
ε(Ws − x)Dr Wsds =

∫ t

r
p′
ε(Ws − x)ds,

and

E(Dr Fε|Fr ) =
∫ t

r
E
(

p′
ε(Ws − Wr + Wr − x)|Fr

)
ds

=
∫ t

r
p′
ε+s−r (Wr − x) ds.

As a consequence, taking the limit as ε tends to zero, we obtain the following integral
representation for the Brownian local time

Lx
t = E(Lx

t ) +
∫ t

0

(∫ t

r
p′

s−r (Wr − x)ds

)
dWr .

4 Application of Malliavin Calculus to Regularity
and Estimations of Densities

In this section we establish two different formulas for the density of a Brownian
functional using Malliavin calculus. Recall that W = {Wt , t ∈ [0, T ]} is a Brownian
motion on the canonical probability space (�,F, P) and D and δ are the fundamental
operators in the Malliavin calculus.

4.1 First Density Formula

Proposition 10 Let F be a random variable in the space D1,2. Suppose that DF
‖DF‖2H

belongs to the domain of the operator δ in L2(�). Then the law of F has a continuous
and bounded density given by

p(x) = E

[
1{F>x}δ

(
DF

‖DF‖2H

)]
. (21)
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Proof Letψ be a nonnegative smooth functionwith compact support, and setϕ(y) =∫ y
−∞ ψ(z)dz. Then ϕ(F) belongs to D1,2, and we can write

〈D(ϕ(F)), DF〉H = ψ(F)‖DF‖2H.

Using the duality formula (4), we obtain

E[ψ(F)] = E

[〈
D(ϕ(F)) ,

DF

‖DF‖2H

〉
H

]
= E

[
ϕ(F)δ

(
DF

‖DF‖2H

)]
. (22)

By an approximation argument, Eq. (22) holds for ψ(y) = 1[a,b](y), where a < b.
As a consequence, we apply Fubini’s theorem to get

P(a ≤ F ≤ b) = E

[(∫ F

−∞
ψ(x)dx

)
δ

(
DF

‖DF‖2H

)]

=
∫ b

a
E

[
1{F>x}δ

(
DF

‖DF‖2H

)]
dx

which implies the desired result. �

Remark 1 Equation (21) still holds under the hypotheses F ∈ D
1,p and DF

‖DF‖2H
∈

D
1,p′

(H) for some p, p′ > 1. Sufficient conditions for these hypotheses are F ∈ D
2,α

and E(‖DF‖−2β) < ∞ with 1
α

+ 1
β

< 1.

Example 4 Let F = W (h). Then, DF = h and

δ

(
DF

‖DF‖2H

)
= W (h)‖h‖−2

H .

As a consequence, formula (21) yields

p(x) = ‖h‖−2
H E

[
1{F>x}F

]
,

which is true because p(x) is the density of N (0, ‖h‖2H).
Applying Eq. (21) we can derive density estimates. Notice first that (21) holds if

1{F>x} is replaced by 1{F<x}, because the divergence has zero expectation. Fix p
and q such that p−1 + q−1 = 1. Then, by Hölder’s inequality, we obtain

p(x) ≤ (P(|F | > |x |))1/q

∥∥∥∥∥δ
(

DF

‖DF‖2H

)∥∥∥∥∥
p

, (23)
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for all x ∈ R. Then, applying Meyer’s inequalities we dan deduce the following
result (see [25, Propsition 2.1.3]).

Proposition 11 Let q, α, β be three positive real numbers such that q−1 + α−1 +
β−1 = 1. Let F be a random variable in the spaceD2,α , such thatE(‖DF‖−2β

H ) < ∞.
Then the density p(x) of F can be estimated as follows

p(x) ≤ cq,α,β (P(|F | > |x |))1/q

×
(

E(‖DF‖−1
H ) +

∥∥∥D2F
∥∥∥

Lα(�;H⊗H)

∥∥∥‖DF‖−2
H

∥∥∥
β

)
. (24)

Example 5 Set Mt = ∫ t
0 u(s)dWs , where u = {u(t), t ∈ [0, T ]} is an adapted

process such that |u(t)| ≥ ρ > 0 for some constant ρ, E
(∫ T

0 u(t)2dt
)

< ∞,

u(t) ∈ D
2,2 for each t ∈ [0, T ], and

λ := sup
s,t∈[0,T ]

E(|Dsut |p) + sup
r,s∈[0,T ]

E

[(∫ T

0
|D2

r,sut |pdt

)p/2]
< ∞,

for some p > 3. Then, applying Proposition 11 one can show that the density of Mt ,
denoted by pt (x) satisfies

pt (x) ≤ c√
t

P(|Mt | > |x |) 1
q ,

for all t > 0, where q >
p

p−3 and the constant c depends on λ, ρ and p.

Example 6 Consider the process ξ = {ξr,t , 0 ≤ r ≤ t ≤ T } solutionof the stochastic
differential equation

ξr,t = x + Wt − Wr +
∫ t

r

∫
R

h
(
y − ξr,u

)
Z (du, dy) ,

where x ∈ R, W is a standard Brownian motion, Z is a Brownian sheet independent
of W and h ∈ H2

2 (R). The process ξ represents the position of a particle in a random
environment. A measure valued process obtained as the limit of critical branching
particles moving with the dynamics of ξ was studied by Dawson, Li and Wang in
[9]. For r ≤ t we define the conditional transition density given Z by

p(r, x; t, y) = P (ξt ∈ dy|ξr = x, Z).

Then, Proposition 10 leads to the following expression for this conditional density

p(r, x; t, y) = EW
[
1{ξr,t >y}δ(ur,t )

]
,
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where EW denotes the mathematical expectation with respect to W . From this for-
mula, one can derive the following result (see [11]):

Lemma 1 Let c = 1 ∨ ‖h‖22. For any 0 ≤ r < t ≤ T , y ∈ R and p ≥ 1,

‖p (r, x; t, y) ‖2p ≤ 2K p exp

(
− (x − y)2

64pc (t − r)

)
(t − r)−

1
2 ,

where K p is a constant depending on p.

This lemma has been used by Hu et al. [11] to establish the Hölder continuity in
space and time of the solution of the stochastic partial differential equation satisfied
by the density of the associated limiting branching particles, improving previous
results by Li et al. [17].

4.2 Second Density Formula

Let F ∈ D
1,2 be such that E[F] = 0. Recall that gF (x) = E[〈DF,−DL−1F〉H|F =

x] ≥ 0. The following density formula was proved by Nourdin and Viens in [23].

Theorem 5 Let F ∈ D
1,2 be such that E[F] = 0. Then, the law of F has a density

p if and only if gF (F) > 0 a.s. In this case the support of p is a closed interval
containing zero and for all x in the support of p

p(x) = E[|F |]
2gF (x)

exp

(
−
∫ x

0

ydy

gF (y)

)
.

Proof Suppose that F has a density p. We consider only the case where the support
of p is R. Let φ be a smooth function with compact support and consider a function
� such that �′ = φ. Then

E[φ(F)gF (F)] = E[�(F)F] =
∫
R

�(x)xp(x)dx =
∫
R

φ(x)ϕ(x)dx,

where ϕ(x) = ∫∞
x yp(y)dy. This implies ϕ(x) = p(x)gF (x). Taking into account

that ϕ′(x) = −xp(x) we obtain

ϕ′(x)

ϕ(x)
= − x

gF (x)
.

Using that ϕ(0) = 1
2 E[|F |], we get ϕ(x) = 1

2 E[|F |] exp
(
− ∫ x

0
ydy

gF (y)

)
, which

completes the proof. �
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Corollary 1 If there exist constants σ 2
min, σ

2
max > 0 such that

σ 2
min ≤ gF (F) ≤ σ 2

max

a.s., then F has a density p satisfying

E[|F |]
2σ 2

max
exp

(
− x2

2σ 2
min

)
≤ p(x) ≤ E[|F |]

2σ 2
min

exp

(
− x2

2σ 2
max

)
.

The random variable gF (F) can be computed using Mehler’s formula (15) and
the fact that −DL−1F = ∫∞

0 e−t Tt (DF)dt . In this way we obtain

gF (F) =
∫ ∞

0
e−t E

[
〈DF, E ′[DF(e−t W +

√
1 − e−2t W ′)]〉H|F

]
dt.

Then, the above corollary can be applied in particular case where we have uniform
upper and lower bounds for 〈DF, E ′[DF(e−t W + √

1 − e−2t W ′)]〉H, as it is illus-
trated by Example 7.

We would like to point out here that the Malliavin calculus can be developed
replacing H by a general separable Hilbert space and assuming that {W (h), h ∈ H}
is an isonormal Gaussian process, that is, a centered Gaussian family satisfying
E[W (h)W (g) = 〈h, g〉H for any h, g ∈ H.

Example 7 Suppose that B H = {B H
t , t ∈ [0, T ]} is a fractional Brownian motion

with Hurst parameter H ∈ (0, 1). That is, B H is a zero mean Gaussian process with
covariance

E[B H
t B H

s ] = 1

2

(
t2H + s2H − |t − s|2H

)
.

We define H as the closed span of the indicator functions on [0, T ] under the inner
product 〈1[0,t], 1[0,t]〉H = E[B H

t B H
s ]. Then, the mapping 1[0,t] �→ B H

t can be
extended to a linear isometry between H and the Gaussian space spanned by B H .
In this way, B H defines an isonormal Gaussian process associated with H. Consider
the random variable

F = max
t∈[a,b] B H

t − E

(
max

t∈[a,b] B H
t

)
,

where 0 < a < b ≤ T . Then, F ∈ D
1,2 and Dr F = 1[0,τ ](r), where τ is the random

point in [0, T ] where B H attains its maximum. As a consequence, if H > 1/2,
the previous corollary holds with σmin = aH and σmax = bH , because a2H ≤
E[B H

t B H
s ] ≤ b2H .



22 D. Nualart

4.3 Existence and Smoothness of Densities

Let F = (F1, . . . , Fm) be such that Fi ∈ D
1,2 for i = 1, . . . , m. We define the

Malliavin matrix of F as the random symmetric nonnegative definite matrix

γF = (〈DFi , DF j 〉H)1≤i, j≤m .

Theorem 6 If det γF > 0 a.s., then the law of F is absolutely continuous with
respect to the Lebesgue measure on R

m.

This theorem was proved by Bouleau and Hirsch in [5] using the coarea formula
and techniques of geometric measure theory. The measure (det γF × P) ◦ F−1 is
always absolutely continuous, that is, P (F ∈ B , det γF > 0) = 0 for any B ∈
B(Rm) of zero Lebesgue measure. In the one-dimensional case, γF = ‖DF‖2H.
Definition 4 Let F = (F1, . . . , Fm) be a random vector such that Fi ∈ D

1,2 for
i = 1, . . . , m. We say that F is nondegenerate if E[(det γF )−p] < ∞ for all p ≥ 2.

Set ∂i = ∂/∂xi , and for any multiindex α ∈ {1, . . . , m}k , k ≥ 1, we denote by ∂α

the partial derivative ∂k/(∂xα1 · · · ∂xαk ).

Lemma 2 Let γ be an m × m random matrix such that γ ij ∈ D
1,∞ for all i, j and

E[(det γ )−p] < ∞ for all p ≥ 2. Then
(
γ −1

)ij
belongs to D

1,∞ for all i, j , and

D
(
γ −1

)ij = −
m∑

k,l=1

(
γ −1

)ik (
γ −1

)lj
Dγ kl.

Proof Approximate γ −1 by γ −1
ε = (det γ + ε)−1A(γ ), where A(γ ) is the adjoint

matrix of γ . �
The following result can be regarded as an integration by parts formula and plays

a fundamental role in the proof of the regularity of densities.

Proposition 12 Let F = (F1, . . . , Fm) be a nondegenerate random vector. Fix
k ≥ 1 and suppose that Fi ∈ D

k+1,∞ for i = 1, . . . , m. Let G ∈ D
∞ and let

ϕ ∈ C∞
p (Rm). Then for any multiindex α ∈ {1, . . . , m}k , there exists an element

Hα(F, G) ∈ D
∞ such that

E [∂αϕ(F)G] = E [ϕ(F)Hα(F, G)] ,

where the elements Hα(F, G) are recursively given by

H(i)(F, G) =
m∑

j=1

δ
(

G
(
γ −1

F

)
ijDF j

)
, (25)

Hα(F, G) = Hαk (F, H(α1,...,αk−1)(F, G)). (26)
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Proof By the chain rule we have

〈D(ϕ(F)), DF j 〉H =
m∑

i=1

∂iϕ(F)〈DFi , DF j 〉H =
m∑

i=1

∂iϕ(F)γ
ij
F ,

and, consequently,

∂iϕ(F) =
m∑

j=1

〈D(ϕ(F)), DF j 〉H(γ −1
F )ji.

Taking expectations and using the duality relationship (4), yields

E [∂iϕ(F)G] = E
[
ϕ(F)H(i)(F, G)

]
,

where H(i) = ∑m
j=1 δ

(
G
(
γ −1

F

)ij
DF j

)
. Notice that. Meyer’s inequality (8) and

Lemma 2 imply that H(i) belongs to L p for any p ≥ 2. We can finish the proof by a
recurrence argument. �

One can show that for any p > 1 there exist constants β, γ > 1 and integers n,
m such that

‖Hα(F, G)‖p ≤ cp,q

∥∥∥det γ −1
F

∥∥∥m

β
‖DF‖n

k,γ ‖G‖k,q .

The following result is a multidimensional version of the density formula (21).

Proposition 13 Let F = (F1, . . . , Fm) be a nondegenerate random vector such
that Fi ∈ D

m+1,∞ for i = 1, . . . , m. Then, F has a continuous and bounded density
given by

p(x) = E
[
1{F>x} Hα(F, 1)

]
. (27)

where α = (1, 2, . . . , m).

Recall that

Hα(F, 1) =
m∑

j1,..., jm=1

δ
(
(γ −1

F )1 j1DF j1δ
(
(γ −1

F )2 j2DF j2 . . . δ
(
(γ −1

F )mjm DF jm
)

. . .
))

.

Proof Equality (26) applied to the multiindex α = (1, 2, . . . , m) yields

E [∂αϕ(F)] = E[ϕ(F)Hα(F, 1)].

Notice that

ϕ(F) =
∫ F1

−∞
· · ·

∫ Fm

−∞
∂αϕ(x)dx .
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Hence, by Fubini’s theorem we can write

E [∂αϕ(F)] =
∫
Rm

∂αϕ(x)E
[
1{F>x} Hα(F, 1)

]
dx . (28)

We can take as ∂αϕ any function in C∞
0 (Rm) and the result follows. �

The following theorem is the basic criterion for smoothness of densities.

Theorem 7 Let F = (F1, . . . , Fm) be a nondegenerate random vector such that
Fi ∈ D

∞ for all i = 1, . . . , m. Then the law of F possesses an infinitely differentiable
density.

Proof For any multiindex β we have (with α = (1, 2, . . . , m))

E
[
∂β∂αϕ(F)

] = E[ϕ(F)Hβ(F, Hα(F, 1)))]
=
∫
Rm

∂αϕ(x)E
[
1{F>x} Hβ(F, Hα(F, 1))

]
dx .

Hence, for any ξ ∈ C∞
0 (Rm)

∫
Rm

∂βξ(x)p(x)dx =
∫
Rm

ξ(x)E
[
1{F>x} Hβ(F, Hα(F, 1))

]
dx .

Therefore p(x) is infinitely differentiable, and for any multiindex β we have

∂β p(x) = (−1)|β|E
[
1{F>x} Hβ(F, (Hα(F, 1))

]
.

This completes the proof. �

We finish this section with a density formula obtained using the Riesz transform,
following the methodology introduced by Bally and Caramellino [1, 2]. In compar-
ison with (27), here we only need two derivatives, instead of m + 1.

Let Qm be the fundamental solution to the Laplace equation �Qm = δ0 on R
m ,

m ≥ 2. That is,

Q2(x) = a−1
2 ln

1

|x | , Qm(x) = a−1
m |x |2−m, m > 2,

where am is the area of the unit sphere in R
m . We know that ∂i Qm(x) = −cm

xi|x |m ,
where cm = 2(m − 2)/am if m > 2 and c2 = 2/a2. Notice that any function ϕ in
C1
0(R

m) can be written as
ϕ(x) = ∇ϕ ∗ ∇Qm(x). (29)

Indeed,
∇ϕ ∗ ∇Qm(x) = ϕ ∗ �Qm(x) = ϕ(x).
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Theorem 8 Let F be an m-dimensional nondegenerate random vector whose com-
ponents are in D

2,∞. Then the law of F admits a continuous and bounded density p
given by

p(x) =
m∑

i=1

E
(
∂i Qm(F − x)H(i)(F, 1)

)
,

where

H(i)(F, 1) =
m∑

j=1

δ
(
(γ −1

F )ijDF j
)

.

Proof Let ϕ ∈ C1
0(R

m). Applying (29), Fubini’s theorem, Proposition 12, and inte-
grating by parts, we get

E (ϕ(F)) =
m∑

i=1

∫
Rm

∂i Qm(y)E (∂iϕ(F − y)) dy

=
m∑

i=1

∫
Rm

∂i Qm(y)E
(
ϕ(F − y)H(i)(F, 1)

)
dy

=
m∑

i=1

∫
Rm

ϕ(y)E
(
∂i Qm(F − y)H(i)(F, 1)

)
dy.

The use of Fubini’s theorem needs to be justified by showing that all the functions
are integrable. Assume that the support of ϕ is included in the ball BR(0) for some
R > 1. Then,

E
∫
Rm

|∂i Qm(y)∂iϕ(F − y)| dy ≤ |∂iϕ|∞E
∫

{y:|F |−R≤|y|≤|F |+R}
|∂i Qm(y)|dy

≤ Cm |∂iϕ|∞E
∫ |F |+R

|F |−R

r

rm
rm−1dr

= 2Cm R|∂iϕ|∞ < ∞.

This completes the proof. �

The approach based on theRiesz transformcan also be used to obtain the following
uniform estimate for densities due to Stroock.

Lemma 3 Under the assumptions of Theorem 8, for any p > m there exists a
constant c depending only on m and p such that

‖p‖∞ ≤ c

(
max
1≤i≤m

‖H(i)(F, 1)‖p

)m

.
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Proof Suppose m ≥ 3. From

p(x) =
m∑

i=1

E
(
∂i Qm(F − x)H(i)(F, 1)

)
,

applying Hölder’s inequality with 1
p + 1

q = 1 and the estimate

|∂i Qm(F − x)| ≤ cm |F − x |1−m

yields

p(x) ≤ mcm A
(

E[|F − x |(1−m)q ]
)1/q

,

where A = max1≤i≤m ‖H(i)(F, 1)‖p.
Suppose first that p is bounded by a constant M . We can write for any ε > 0,

E[|F − x |(1−m)q ] ≤ ε(1−N )q +
∫

|z−x |≤ε

|z − x |(1−N )q p(x)dx

≤ ε(1−N )q + CN ε
p−N
p−1 M.

Therefore,

M ≤ ANkN

(
ε1−N + C

1
q
N ε

p−N
p M

1
q

)
.

Now we minimize with respect to ε and we obtain M ≤ ACN ,p M1− 1
N , for some

constant cN ,p, which implies M ≤ cN
N ,p AN . If p is not bounded, we apply the

procedure to p ∗ ψδ , where ψδ is an approximation of the identity and let δ tend to
zero at the end. �

5 Malliavin Calculus and Normal Approximation

In this sectionwe present the application ofMalliavin calculus combinedwith Stein’s
method (see [8]) to normal approximations. We refer the reads to the reference book
by Nourdin and Peccati [22] for a detailed account of this topic.

5.1 Stein’s Method for Normal Approximation

A random variable Z has the standard normal distribution N (0, 1) if and only if for
any function f ∈ C1

b(R), we have E( f (Z)Z) = E( f ′(Z)). Then, if the expectation
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E( f (Z)Z − f ′(Z)) is small for functions f in some large set, we might conclude
that the distribution of Z is close to the normal distribution. The purpose of Stein’s
method is to quantify this assertion in a proper way. To do this, consider a random
variable Z with the N (0, 1) distribution and fix a continuous function h : R → [0, 1].
The Stein’s equation associated with h is the linear differential equation

f ′
h(x) − x fh(x) = h(x) − E(h(Z)). (30)

One can show that this equation has a unique solution satisfying limx→±∞ e−x2/2

fh(x) = 0, given by

fh(x) = ex2/2
∫ x

−∞
(h(y) − E[h(Z)])e−y2/2dy

= −ex2/2
∫ ∞

x
(h(y) − E[h(Z)])e−y2/2dy. (31)

Moreover, fh ∈ C1(R) and |x fh(x)| ≤ 1, | f ′
h(x)| ≤ 2.

Recall that the total variation distance between the laws of two random variables
Y and Z is

dTV (Y, Z) = sup
B∈B(R)

|P(Y ∈ B) − P(Z ∈ B)|.

Proposition 14 Let F and Z be such that E[F] = 0 and Z has the N (0, 1) distri-
bution. Then,

dTV (F, Z) ≤ sup
f ∈F0

|E[ f ′(F)] − E[F f (F)]|,

where F0 is the class of C1-functions, such that |x f (x)| ≤ 1 and | f ′(x)| ≤ 2.

Proof Let B ⊂ [−K , K ] be a bounded Borel set. There is a sequence of continuous
functions hn : R → [0, 1] such that hn(x) → 1B(x) for (λ+ PF )-almost all x , where
λ and PF denote, respectively, the Lebesgue measure and the law of F . Substituting
x by F in Stein’s equation (30) yields

|E[hn(F)] − E[hn(Z)]| = |E[ f ′
hn

(F)] − E(F fhn (F)]|
≤ sup

f ∈F0

|E[ f ′(F)] − E[F f (F)].

Letting n go to infinity and applying the dominated convergence theorem, we obtain
the desired result. �

Suppose now that our probability space (�,F, P) is the canonical space asso-
ciated to the standard Brownian motion W = {Wt , t ∈ [0, T ]}. Combining Stein’s
method with Malliavin calculus leads to the following result due to Nourdin and
Peccati.



28 D. Nualart

Theorem 9 Suppose that F ∈ D
1,2 satisfies E[F] = 0. Let Z be a N (0, 1) random

variable. Then,
dTV (F, Z) ≤ 2E[|1 − 〈DF,−DL−1F〉H|].

Proof Using (17) we obtain for any f ∈ F0,

|E[ f ′(F)] − E[F f (F)]| = |E[ f ′(F)(1 − 〈DF,−DL−1F〉H|
≤ 2E

[
|1 − 〈DF,−DL−1F〉H|

]
,

which competes the proof. �

If E[F2] = σ 2 > 0 and we take Z to have the law N (0, σ 2), we can derive the
following inequality using similar arguments

dTV (F, Z) ≤ 2

σ 2 E[|σ 2 − 〈DF,−DL−1F〉H|]. (32)

5.2 Normal Approximation on a Fixed Wiener Chaos

Suppose that F ∈ Hq for some q ≥ 2 and E(F2) = σ 2. Then L−1F = − 1
q F .

Taking into account that E[‖DF‖2H] = qσ 2 we obtain form (32) that

dTV (F, Z) ≤ 2

qσ 2

√
Var

(
‖DF‖2H

)
.

Indeed,

E[|σ 2 − 〈DF,−DL−1F〉H|] = E

[∣∣∣∣σ 2 − 1

q
‖DF‖2H

∣∣∣∣
]

≤ 1

q

√
Var

(
‖DF‖2H

)
.

The next proposition shows that the variance of ‖DF‖2H is equivalent to E(F4)−
3σ 4.

Proposition 15 Suppose that F = Iq( f ) ∈ Hq , q ≥ 2. Then,

Var
(
‖DF‖2H

)
≤ (q − 1)q

3
(E(F4) − 3σ 4) ≤ (q − 1)Var

(
‖DF‖2H

)
.

Proof This proposition is a consequence of the following two formulas for the vari-
ance of ‖DF‖2H and for E(F4) − 3σ 4.
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Formula 1:

Var
(
‖DF‖2H

)
=

q−1∑
r=1

r2(r !)2
(

q

r

)4

(2q − 2r)!‖ f ⊗̃r f ‖2
H⊗(2q−2r) . (33)

To establish (33), we start with Dt F = q Iq−1( f (·, t)), and using the product formula
for multiple stochastic integrals (see (11)) we obtain

‖DF‖2H = q2
∫ T

0
Iq−1( f (·, t))2dt

= q2
q−1∑
r=0

r !
(

q − 1

r

)2

I2q−2r−2( f ⊗̃r+1 f )

= q2
q∑

r=1

(r − 1)!
(

q − 1

r − 1

)2

I2q−2r ( f ⊗̃r f )

= qq!‖ f ‖2H⊗q + q2
q−1∑
r=1

(r − 1)!
(

q − 1

r − 1

)2

I2q−2r ( f ⊗̃r f ). (34)

Then Formula (33) follows from the isometry property of multiple integrals.
Formula 2: We claim that

E[F4] − 3σ 4 = 3

q

q−1∑
r=1

r(r !)2
(

q

r

)4

(2q − 2r)!‖ f ⊗̃r f ‖2
H⊗(2q−2r) . (35)

To show this formula, using that −L−1F = 1
q F and L = −δD we first write

E[F4] = E[F × F3] = E[(−δDL−1F)F3] = E[〈−DL−1F, D(F3)〉H]
= 1

q
E[〈DF, D(F3)〉H] = 3

q
E[F2‖DF‖2H]. (36)

By the product formula of multiple integrals,

F2 = Iq( f )2 = q!‖ f ‖2H⊗q +
q∑

r=1

r !
(

q

r

)2

I2q−2r ( f ⊗̃r f ). (37)

Then, Formula (35) follows from (36), (37), (34) and the isometry property of mul-
tiple integrals (see (11)). �

These results can be applied to derive the so-called Fourth Moment theorem,
proved by Nualart and Peccati in [29] (see also [27]), which represents a drastic
simplification of the method of moments.
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Theorem 10 Fix q ≥ 2. Consider a sequence of multiple stochastic integrals of
order q, Fn = Iq( fn) ∈ Hq , n ≥ 1, such that

lim
n→∞ E(F2

n ) = σ 2.

The following conditions are equivalent:

(i) Fn ⇒ N (0, σ 2), as n → ∞.
(ii) E(F4

n ) → 3σ 4, as n → ∞.
(iii) ‖DFn‖2H → qσ 2 in L2(�), as n → ∞.
(iv) For all 1 ≤ r ≤ q − 1, fn ⊗r fn → 0, as n → ∞.

Proof First notice that (i) implies (ii) because for any p > 2, the hypercontractivity
property of the Ornstein-Uhlenbeck semigroup (16) implies

sup
n

‖Fn‖p ≤ (p − 1)
n
2 sup

n
‖Fn‖2 < ∞.

The equivalence of (ii) and (iii)) follows from Proposition 15, and these conditions
imply (i), with convergence in total variation. Moreover (iv) implies (ii) and (iii)
because ‖ fn⊗̃r fn‖H⊗(2q−2r) ≤ ‖ fn ⊗r fn‖H⊗(2q−2r) . Finally, the fact that (ii) implies
(iv) follows form the expression

E[F4
n ] =

q∑
r=0

(r !)2
(

q

r

)2

(2q − 2r)!‖ fn⊗̃r fn‖2
H⊗(2q−r) ,

and the fact that (2q)!‖ fn⊗̃ fn‖2
H⊗2q equals to 2(q!)2‖ f ‖4H plus a linear combination

of the terms ‖ fn ⊗r fn‖2
H⊗(2q−2r) , with 1 ≤ r ≤ q − 1. �

As an application we include a simple proof of the classical Breuer-Major The-
orem (see [6]). A function f ∈ L2(R, γ ), where γ = N (0, 1), has Hermite rank
d ≥ 1 if

f (x) =
∞∑

q=d

aq hq(x),

and ad = 0. For instance, f (x) = |x |p − ∫
R

|x |pdγ (x) has Hermite rank 1. Let
X = {Xk, k ∈ Z} be a centered stationary sequence with unit variance. Set ρ(v) =
E[X0Xv] for v ∈ Z.

Theorem 11 Let f ∈ L2(R, γ ) with Hermite rank d and assume
∑

v∈Z |ρ(v)|d <

∞. Then,

Vn := 1√
n

n∑
k=1

f (Xk) ⇒ N (0, σ 2),

as n → ∞, where σ 2 = ∑∞
q=d q!a2

q
∑

v∈Z ρ(v)q .



An Introduction to the Malliavin Calculus and Its Applications 31

Proof It suffices to consider the case f = aq hq , q ≥ d. The result for the sum
would follow from a multidimensional version of the Fourth Moment Theorem due
to Peccati and Tudor [31]. There exists a sequence {ek, k ≥ 1} in H = L2([0, T ])
such that

〈ek, e j 〉H = ρ(k − j).

The sequence {W (ek)} has the same law as {Xk}, and we may replace Vn by

Fn = aq√
n

n∑
k=1

hq(W (ek)) = Iq( fn,q),

where fn,q = aq√
n

∑n
k=1 e⊗q

k . We can write

q!‖ fn,q‖2H⊗q = q!a2
q

n

n∑
i, j=1

ρ(i − j)q = q!a2
q

∑
v∈Z

ρ(v)q
(
1 − |v|

n

)
1{|v|<n},

and by the dominated convergence theorem

E[F2
n ] = q!‖ fn,q‖2H⊗q → q!a2

q

∑
v∈Z

ρ(v)q = σ 2,

as n tends to infinity. It suffices to show that ‖DFn‖2H converges in L2(�) to
qq!a2

q
∑

v∈Z ρ(v)q . We have

‖DFn‖2H = a2
q

n

n∑
i, j=1

h′
q(Xi )h

′
q(X j )ρ(i − j),

which has the same limit in L2 as the sequence

Bn := a2
q

n

n∑
j=1

h′
q(X j )

( ∞∑
m=−∞

h′
q(X j+m)ρ(m)

)
.

The sequence {
h′

q(X j )

( ∞∑
m=−∞

h′
q(X j+m)ρ(m)

)
, j ≥ 1

}

is strictly stationary and ergodic. By the Ergodic Theorem, converges in L2(�) to its
expectation which is equal to qq!a2

q
∑

v∈Z ρ(v)q . This concludes the proof. �
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5.3 Convergence of Densities

The total variation distance is equivalent to L1 norm of the densities:

dTV (F, G) =
∫
R

|pF (x) − pG(x)|dx,

where pF and pG are the densities of the random variables F and G, respectively.
Uniform convergence, however, requires stronger hypotheses. The following result
was proved by Hu et al. in [12].

Theorem 12 Let F ∈ Hq , q ≥ 2, be such that E(F2) = 1 and E(‖DF‖−6
H ) ≤ M.

Then,
sup
s∈R

|pF (x) − φ(x)| ≤ CM,q

√
E(F4) − 3,

where φ is the density of the law N (0, 1).

Using the notion of Fisher information, Nourdin and Nualart [21], provided al-
ternative proof of this theorem under the weaker assumption E(‖DF‖−4−ε

H ) ≤ M
for some ε > 0.

Proof Using the density formula (21), Property (7) and δDF = q F , we can write

pF (x) = E

[
1{F>x}δ

(
DF

‖DF‖2H

)]

= E

[
1{F>x}

q F

‖DF‖2H

]
− E[1{F>x}〈DF, D(‖DF‖−2

H )〉H]

= E[1{F>x}F] + E[q‖DF‖−2
H − 1] − E[1{F>x}〈DF, D(‖DF‖−2

H )〉H].

The terms E[|q‖DF‖−2
H − 1|] and E[|〈DF, D(‖DF‖−2

H )〉H|] can be estimated by a

constant times
√

E(F4) − 3. Taking into account that

φ(x) = E[1{Z>x}Z ],

where Z has the N (0, 1) distribution, it suffices to estimate the difference

E[1{F>x}F] − E[1{Z>x}Z ],

which can be done by Stein’s method and Malliavin calculus. �

Example 8 Letq = 2 and F = ∑∞
i=1 λi (X (ei )

2−1), where {ei , i ≥ 1} is a complete
orthonormal system in H and λi is a decreasing sequence of positive numbers such
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that
∑∞

i=1 λ2i < ∞. Suppose E[F2] = 1. Then, if λN = 0 for some N > 4, we
obtain

sup
x∈R

|pF (x) − φ(x)| ≤ CN ,λN

√√√√ ∞∑
i=1

λ4i .

We can also establish the uniform convergence of densities in the framework of
the Breuer-Major theorem. Fix q ≥ 2 and consider the sequence

Vn = 1√
n

n∑
k=1

q∑
j=d

a j h j (Xk), ad = 0,

where X = {Xk, k ∈ Z} is a centered Gaussian stationary sequence with unit
variance and covariance ρ(v). The following result have been proved by Hu et al.
in [13].

Theorem 13 Suppose the spectral density of X, fρ , satisfies log( fρ) ∈ L1([−π, π ]).
Assume

∑
v∈Z |ρ(v)|d < ∞. Set σ 2 := q!a2

q
∑

v∈Z ρ(v)q ∈ (0,∞). Then for any
p ≥ 1, there exists n0 such that

sup
n≥n0

E[‖DVn‖−p
H ] < ∞. (38)

Therefore, if q = d and Fn = Vn/
√

E[V 2
n ], we have

sup
x∈R

|pFn (x) − φ(x)| ≤ c
√

E[F4
n ] − 3.

Proof Here is a sketch of the proof of this result. From the non-causal representation
Xk = ∑∞

j=0 ψ j wk− j , where w = {wk, k ∈ Z} is a discrete Gaussian white noise,
and using the Malliavin calculus for the discrete white noise w, it follows that

‖DVn‖2H ≥ 1

n

n∑
m=1

⎛
⎝ n∑

k=m

q∑
j=d

a j h
′
j (Xk)ψk−m

⎞
⎠

2

:= Bn .

Fix N and consider a block decomposition Bn = ∑N
i=1 Bi

n , where Bi
n is the sum of

n
N squares. We use the estimate

B
− p

2
n ≤

N∏
i=1

(Bi
n)−

p
2N

and we apply the Carbery-Wright inequality (see [7]) to control the expectation of
(Bi

n)
− p

2N if p
2N is small enough. This inequality says that there is a universal constant
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c > 0 such that, for any polynomial Q : Rn → R of degree at most d and any α > 0,
we have

E[Q(X1, . . . , Xn)2] 1
2d P(|Q(X1, . . . , Xn)| ≤ α) ≤ cdα

1
d ,

where X1, . . . , Xn are independent random variables with law N (0, 1). �

This theorem can be applied to the increments of a fractional Brownian motion
with Hurst parameter H ∈ (0, 1), that is, {Xk = B H

k − B H
k−1 , k ≥ 1}. In this case,

the spectral density satisfies the required conditions. As a consequence, we obtain
the uniform convergence of densities to φ for the sequence of Hermite variations
Fn = Vn/E[V 2

n ], where

Vn = 1√
n

n∑
k=1

hq(nH �k B H ), q ≥ 2,

for 0 < H < 1− 1
2q , where �k B H = B H

k/n − B H
(k−1)/n . In the particular case q = 2

we need H ∈ (0, 3
4 ) and we have

sup
x∈R

|pFn (x) − φ(x)| ≤ c
√

E(F4
n ) − 3 ≤ cH

⎧⎪⎨
⎪⎩

n− 1
2 if H ∈ (0, 5

8 )

n− 1
2 (log n)

3
2 if H = 5

8

n4H−3 if H ∈ ( 58 ,
3
4 )

The following further results on uniform convergence of densities have been also
proved in [12].

(i) One can show the uniform approximation of the mth derivative of pF by the
corresponding mth derivative of the Gaussian density φ(m) under the stronger
assumption E(‖DF‖−β

H ) < ∞ for some β > 6m + 6
(�m

2 � ∨ 1
)
.

(ii) Consider a d-dimensional vector F , whose components are in a fixed chaos, and
such that E[(det γF )−p] < ∞ for all p, where γF denotes the Malliavin matrix
of F . In this case for any multi-index β = (β1, . . . , βk), 1 ≤ βi ≤ d, one can
show

sup
x∈Rd

∣∣∂β fF (x) − ∂βφd(x)
∣∣ ≤ c

(
|C − I | 12 +

d∑
j=1

√
E[F4

j ] − 3(E[F2
j ])2

)

where C is the covariance matrix of F , φd is the standard d-dimensional normal
density, and ∂β = ∂k

∂xβ1 ···∂xβk
.
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Fractional Brownian Motion
and an Application to Fluids

Chandana Wijeratne and Hakima Bessaih

Abstract In this chapter, we review the fractional Brownian motion (fBm) and
some of its properties. It is a Gaussian process that is characterized by its covariance
function and its hurst parameter H ∈ (0, 1). When H > 1/2, we introduce the
stochastic integral with respect to a fBm by using fractional integrals. This is a
pathwise approach based on the Riemann Stieltjes construction using the Hölder
continuity of the process. An application related to fluids is provided. This is an
integrodifferential equation representing the dynamic of a vortex filament associated
to an inviscid, incompressible, homogeneous fluid in R

3. We prove existence and
uniqueness of solutions in a functional space of Sobolev type.

1 Introduction

This chapter begins with a short introduction to fractional Brownian motion (fBm)
and a description on the vortex filament associated to a 3D turbulent fluid flow. In
Sect. 2, assumptions and the functional setting of our problem have been introduced.
We recall the notions of fractional integrals and some related a priori estimates in
Sect. 3. In Sect. 4, we introduce the notion of integration with respect to a fBm.
Section5 contains our main results about the existence and uniqueness of a global
solution for the Eq. (5) with most of their proofs.
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1.1 Fractional Brownian Motion

Fractional Brownian motion (fBm) was first introduced by Kolmogorov in 1940 by
the name “Wiener spiral” [26] within a Hilbert space setting. The name “fractional
Brownian motion” is due to Mandelbrot and Van Ness as they gave a representation
to the fractional Brownian motion through a fractional integral with respect to the
standard Brownian motion in 1968 [31].

Definition 1 Let B H = {B H
η , η ≥ 0} be a stochastic process, and H ∈ (0, 1). B H is

called a fractional Brownian motion (fBm) with Hurst parameter H , if it is a centered
Gaussian process with the covariance function

RH (γ, η) = E[B H
γ B H

η ] = 1

2
(η2H + γ 2H − |η − γ |2H ), γ, η ≥ 0. (1)

Fractional Brownian motion is parameterized by a parameter H , known as the
‘Hurst parameter’, and it is also due toMandelbrot. Mandelbrot named the parameter
after the hydrologist Hurst who did a statistical study of the yearly water run-offs
of the Nile river [23]. The parameter H ∈ (0, 1) and when H = 1

2 , we recover
the well known standard Brownian motion. Hence fractional Brownian motion is a
generalization of the standard Brownian motion. Many authors treat the fBm in three
different families corresponding respectively to 0 < H < 1

2 , H = 1
2 and

1
2 < H < 1.

Fractional Brownian motion finds applications in diverse fields such as fi-
nance, economics, biology, physics and engineering. Whenever we are interested
in processes with self similarity, long memory, stationary increments fBm is a nat-
ural candidate. Applications of fBm have been studied bymany authors. For instance
in mathematical finance, Cheridito [10] constructed arbitrage strategies using fBm,
Comte and Renault [12] presents continuous time models with long memory with
fBm, and Rogers [38] discussed use of fBm in modeling long range dependence
of share returns. In engineering applications for instance, in [19] a queue with an
infinite buffer space and fBm as a long-range dependent input have been studied. In
[34] Norros presented a model for connectionless traffic using fBm. In [28] the self
similarity of fBm has been studied in capturing fractal behavior in Ethernet local
area network traffic.

1.2 Properties of Fractional Brownian Motion

Many authors have studied fBm in different approaches. For instance, [20] describes
fBm together with a detailed presentation on self similarity which is an interesting
property of fBm. Theory and applications of the long range dependence, another
widely used property of fBm can be found in [17]. For a comprehensive treatment
of fBm, see for instance [8, 33, 35]. The Hurst parameter H relates with the sign
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of the correlation of the increments, regularity of the sample paths, and many other
properties of fBm as described below.

• Self-similarity: Fractional Brownian motion with Hurst parameter H is H
self similar. For any constant a > 0, the two processes {B H (at), t ≥ 0} and
{aH B H (t), t ≥ 0} are equal in their probability distributions. This is a fractal prop-
erty of fBm and results from its covariance function (1).

• Stationary increments: Fractional Brownian motion has stationary increments.
Using the covariance function (1), one could verify that {B H (t + h) − B H (h)} and
{B H (t)} have the same probability distribution for h > 0.

• Independent increments: Fractional Brownian motion has independent incre-
ments if and only if H = 1

2 . When H = 1
2 it can be seen that E[B H (t)B H (s)] =

min{s, t} and we recover the ordinary Brownian motion. For H �= 1
2 increments of

fBm are not independent. When H > 1
2 , the increments are positively correlated,

and for H < 1
2 , they are negatively correlated.

• Long range dependence: Let {X (t), t ≥ 0} be an H−self similar process with
stationary increments, and non-degenerate for all t , with E[X (1)2] < ∞. Suppose
ξ(n) = X (n + 1) − X (n) and r(n) = E[ξ(0)ξ(n)], for n = 0, 1, 2 . . . . Then, for
1
2 < H < 1 we have

∑
n |r(n)| = ∞ and this property is known as long range

dependence. Fractional Brownian motion exhibits long range dependence or long
memory when H > 1

2 . The coupling between values at distinct points of time de-
creases quite slowly as the time difference increases. This is in contrast with the short
range dependence of some processes where the coupling between values at distinct
points of time decreases quite rapidly (exponentially) as the time difference increases.

• Markovian property: Recall that a Gaussian process with covariance R is
Markovian if and only if R(s, u) = R(s,t)R(s,u)

R(t,t) for all s ≤ t ≤ u. Applying the

covariance function in (1) one can see that fBm is Markovian if and only if H = 1
2 .

• β Hölder continuity: For the sample path properties of fBm, it has continuous
trajectories. In particular, fBm admits a modification which is Hölder continuous of
order β if and only if β ∈ (0, H). This can be seen ny applying Kolmogorov’s con-
tinuity criterion, for instance see [20]. Thus, value of the Hurst parameter H decides
the regularity of sample paths.

• Differentiability: Fractional Brownian motion is almost surely nowhere differ-
entiable. As fBm has stationary increments, consider the point t = 0. If the derivative
(B H )′(0) exists, then we have B H (s) ≤ (ε + (B H )′(0))s, for some positive s ≤ sε

and B H is 1-Hölder continuous at t = 0, contradicting the Hölder continuity of fBm.
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• p-variation: Let f be a real valued function on [0, T ], � := {tk | 0 = t0 <

t1 < · · · < tn = T }, be a partition of [0, T ], and p ∈ [1,∞). Then the p-
variation of f along the partition � is Vp( f : �) := ∑

tk∈� | f (tk) − f (tk−1)|p.

If Vp( f ) := sup� Vp( f : �) is finite, then f has bounded p-variation. Fractional
Brownian motion has zero bounded p-variation when p > 1

H a.s. and unbounded
p-variation when p < 1

H .

• Semimartingale: A semimartingale can be written as the sum of a bounded vari-
ation process and a local martingale which has finite quadratic variation. If H < 1

2
the quadratic variation is infinite, and if H > 1

2 the 1-variation is infinite. Thus, most
importantly the fBmwith H �= 1

2 is not a semimartingale. As a consequence, the well
developed Itô calculus which is applicable to semimartingales can’t be used to define
the stochastic integral with respect to the fBm. As a result, different approaches have
been introduced when working with fBm.

The definition of stochastic integrals with respect to the fractional Brownian mo-
tion

∫ t
0 usdBH

s where u is a stochastic process has been investigated intensively by
several authors. One approach is deterministic pathwise approach that is based on the
Riemann-Stieltjes construction using the Hölder continuity and is due to Young [40].
This is applicable only for Hurst parameters H > 1

2 . This idea has been extended,
see [14, 15, 22, 29, 30] and a rough path theory which is valid for Hurst parameters
H > 1

4 has been introduced and studied. As fBm is a Gaussian process another
approach is to use Malliavin calculus or stochastic calculus of variation with the use
of divergence operator and for more details refer [27, 35, 36]. For a comprehensive
treatment of stochastic integrals with respect to the fractional Brownian motion refer
[1, 2, 9, 13, 16, 18, 25, 37].

1.3 An Application of fBm to Fluids

In the present work, we are using the pathwise argument to solve an integral equation
which is an approximation of the line vortex equation. In particular, we will assume
that the vorticity field associated to an ideal inviscid incompressible homogeneous
fluid inR3 is described by a fractional BrownianmotionwithHurst parameter H > 1

2
and we will study its evolution through a pathline equation. Let us denote by ω this
vorticity field then

ω := ∇ × u,

where u is the velocity field inR3. If we denote by Xt (x) the position at time t of the
fluid particle that at time 0 was at x ∈ R

3. We have the following path-lines equation

dXt (x)

dt
= u(t, Xt (x)). (2)
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Now, let us assume that the vorticity field is concentrated on a fractional Brownian
curve BH as follows

ω(t, x) = 	

∫ 1

0
δ(x − BH

ξ (t)) dBH
ξ (t), (3)

where δ is the usual “Dirac delta function”, 	 > 0 is the intensity of vorticity,
ξ ∈ [0, 1] is the arc-length, while the parameter t represents the time. Using the
Biot-Savart formula, the Eq. (2) becomes

dXξ (t)

dt
=

∫ 1

0
Q(Xξ (t) − BH

η (t)) dBH
η (t), (4)

with
Xξ (0) = φξ .

Here φ is the initial condition and the matrix valued function Q is the singular
matrix

−	

4π |y|3

⎛
⎝ 0 y3 −y2

−y3 0 y1
y2 −y1 0

⎞
⎠ .

For an introduction to this topicwe refer to [5, 11, 32, 39] and for amore probabilistic
approach to [21]. When BH is replaced by X, the Eq. (4) has been studied by [3] for
a smooth closed curve X in the Sobolev space W 1,2 and an existence and uniqueness
theorem has been proved for local solutions in time. Later, local solutions in some
spaces of Hölder continuous functions have been investigated in [6] that have been
extended to global solutions in [4].

In this work, we will be dealing with an approximation of Eq. (4), the approxima-
tion will be on the matrix Q, while the study of Eq. (4) is left for a subsequent paper.
Furthermore, in order to make the exposition of our results easier to understand, we
will make the assumption that the function X is a real valued function, however,
our results will still be true for a vector valued function X. More precisely, we are
interested in the following integrodifferential equation

Yξ (t) = φξ +
∫ t

0

∫ ξ

0
A(Yη(s)) dBH

η (s)ds, (5)

where for all t ∈ [0, T ], B H (t) =
{

B H
ξ (t), ξ ∈ [0, 1]

}
is a real valued fractional

Brownian motion of Hurst parameter H > 1
2 , A is a bounded and differentiable real

valued function with a Lipschitz continuity property, ξ is a parameter in [0,1].



42 C. Wijeratne and H. Bessaih

2 Some Preliminaries

2.1 The Integrodifferential Equation

Here we study the following equation.

∂Yξ (t)

∂t
=

∫ ξ

0
A(Yη(t)) dBH

η (t), ξ ∈ [0, 1] and t ∈ [0, T ] (6)

with
Yξ (0) = φξ

or alternatively, we can consider the integral form

Yξ (t) = φξ +
∫ t

0

∫ ξ

0
A(Yη(s)) dBH

η (s)ds, (7)

where B H is a fractional Brownian motion defined on a complete probability space
(�,F, P). Here the stochasticity is with respect to ξ and this is deterministic with
respect to time. The initial condition is φξ and A : R → R is a measurable function
that satisfies the assumptions given below.

2.2 Assumptions

Let us assume that:
A1. A is differentiable.
A2. There exists M1 > 0 such that |A(x) − A(y)| ≤ M1|x − y| for all x, y ∈ R.
A3. There exists M2 > 0 such that |A(x)| ≤ M2 for all x ∈ R.
A4. For every N there exists MN > 0, such that
|A′(x) − A′(y)| ≤ MN |x − y| for all |x |, |y| ≤ N .

2.3 Functional Setting

Let 12 < H < 1, 1− H < α < 1
2 . We will introduce the following functional spaces.

Let C([0, T ], W α,∞[0, 1]) be the space of measurable functions f : [0, T ] ×
[0, 1] → R such that

‖ f ‖α,∞:= sup
t∈[0,T ]

sup
ξ∈[0,1]

(
| f (t, ξ)| +

∫ ξ

0

| f (t, ξ) − f (t, η)|
(ξ − η)α+1 dη

)
< ∞. (8)
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Let C([0, T ], W 1−α,∞
0 [0, 1]) be the space of measurable functions f : [0, T ] ×

[0, 1] → R such that

‖ f ‖1−α,∞,0 := sup
t∈[0,T ]

sup
0<η<ξ<1

( | f (t, ξ) − f (t, η)|
(ξ − η)1−α

+
∫ ξ

η

| f (t, γ ) − f (t, η)|
(γ − η)2−α

dγ

)
< ∞. (9)

Let W α,1([0, 1]) be the space of measurable functions f : [0, 1] → R such that

‖ f ‖α,1:=
∫ 1

0

| f (η)|
ηα

dη +
∫ 1

0

∫ η

0

| f (η) − f (δ)|
(η − δ)α+1 dδdη < ∞. (10)

3 Some a Priori Estimates

Since fBm with Hurst parameters H > 1
2 have sample paths that are λ-Hölder

continuous for all λ ∈ (0, H), the construction of the integral with respect to a fBm
will be performed using a pathwise argument by means of fractional derivatives and
integrals. We refer to [24, 37] for more details.

3.1 Fractional Integrals and Derivatives

As usual we denote by L p(a, b) the space of all Lebesgue measurable functions
f : (a, b) → R such that

‖ f ‖L p(a,b):=
( ∫ b

a
| f (x)|pdx

) 1
p

< ∞ (11)

for a < b and 1 ≤ p < ∞. Let us recall some definitions on Riemann-Liouville
fractional integrals and Weyl derivative.

Definition 2 Let f ∈ L1(a, b) and α > 0. The left-sided and right-sided Riemann-
Liouville fractional integrals of f of order α are defined for almost all x ∈ (a, b) by

I α
a+ f (x) = 1

	(α)

∫ x

a

f (y)

(x − y)1−α
dy (12)

and

I α
b− f (x) = (−1)−α

	(α)

∫ b

x

f (y)

(y − x)1−α
dy (13)
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respectively, where (−1)−α = e−iπα and 	(α) = ∫ ∞
0 r (α−1)e−r dr is the Gamma

function or the Euler integral of the second kind.

Definition 3 Suppose I α
a+(L p) is the image of L p(a, b) under the operator I α

a+ and
I α
b−(L p) is the image of L p(a, b) under the operator I α

b−. Let 0 < α < 1, then we
define the Weyl derivative for almost all x ∈ (a, b) as

Dα
a+ f (x) = 1

	(1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (y)

(x − y)α+1 dy

)
1(a,b)(x) (14)

when f ∈ I α
a+(L p), and

Dα
b− f (x) = (−1)α

	(1 − α)

(
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)

(y − x)α+1 dy

)
1(a,b)(x) (15)

when f ∈ I α
b−(L p).

The convergence of the integrals at the singularity y = x holds pointwise for
almost all x ∈ (a, b) when p = 1, and in L p sense when 1 < p < ∞.

We now introduce the following notations in order to define the generalized Stielt-
jes integrals. Assuming the limits exist and are finite, let

f (a+) = limε↘0 f (a + ε),
g(b−) = limε↘0 g(b − ε),
fa+(x) = [ f (x) − f (a+)]1(a,b)(x),
gb−(x) = [g(x) − g(b−)]1(a,b)(x).

Definition 4 Suppose that f and g are functions such that f (a+), g(a+) and g(b−)

exist, fa+ ∈ I α
a+(L p) and gb− ∈ I 1−α

b− (Lq) for some p, q ≥ 1, 1
p + 1

q ≤ 1 and
0 < α < 1. Then the generalized Stieltjes integral of f with respect to g is defined
as follows, (using (14) and (15)),

∫ b

a
f dg = (−1)α

∫ b

a
Dα

a+ fa+(x)D1−α
b− gb−(x) dx + f (a+)[g(b−) − g(a+)].

(16)

Remark that if αp < 1, under the assumptions of the above definition, we have
f ∈ I α

a+(L p), and (16) can be written as

∫ b

a
f dg = (−1)α

∫ b

a
Dα

a+ fa+(x)D1−α
b− gb−(x) dx. (17)

For a ≤ c < d ≤ b, the restriction of f ∈ I α
a+(L p(a, b)) to (c, d) belongs to

I α
c+(L p(c, d)) and the continuation of f ∈ I α

c+(L p(c, d)) by zero beyond (c, d)
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belongs to I α
a+(L p(a, b)). Thus, if f ∈ I α

a+(L p) and gb− ∈ I 1−α
b− (Lq), then the

integral
∫ b

a 1(c,d) f dg in the sense of (17) exists for any a ≤ c < d ≤ b, and
whenever the left-hand side is defined in the sense of (17), we have

∫ d

c
f dg =

∫ b

a
1(c,d) f dg. (18)

3.2 A Priori Estimates

We have the following basic estimates. Let

�α(g) := 1

	(1 − α)
sup

0<η<ξ<1
|(D1−α

ξ− gξ−)(η)|. (19)

Then

�α(g) ≤ 1

	(1 − α)	(α)
‖ g ‖1−α,∞,0< ∞. (20)

If f ∈ W α,1(0, 1), and g ∈ W 1−α,∞
0 (0, 1) then the integral

∫ ξ

0 f dg exists for all
ξ ∈ [0, 1].

Also, by (18) we have

∫ ξ

0
f dg =

∫ 1

0
f 1(0,ξ) dg.

Using (17) we get

∫ ξ

0
f dg = (−1)α

∫ ξ

0
Dα
0+ f (η)D1−α

ξ− gξ−(η) dη.

Then ∣∣∣∣
∫ ξ

0
f dg

∣∣∣∣ ≤ sup
0<η<ξ

|D1−α
ξ− gξ−(η)|

∫ ξ

0
|Dα

0+ f (η)| dη.

Hence ∣∣∣∣
∫ ξ

0
f dg

∣∣∣∣ ≤ �α(g) ‖ f ‖α,1 . (21)
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4 Stochastic Integrals with Respect to a fBm

Let us recall the following result, for details and proofs see [37].

Lemma 1 Let {B H
η : η ≥ 0} be a real-valued fBm of Hurst parameter H ∈ ( 12 , 1).

If 1 − H < α < 1
2 , then

E sup
0≤γ≤η≤1

|D1−α
η− B H

η−(γ )|p < ∞, (22)

for all p ∈ [1,∞).

Let {B H
η : η ∈ [0, 1]} be a real-valued fBm,with the Hurst parameter 1

2 < H < 1,
defined on a complete probability space (�,F, P). By (1), we have

E(|B H
η − B H

γ |2) = |η − γ |2H ,

and for any p ≥ 1 we have

‖ B H
η − B H

γ ‖p= [E(|B H
η − B H

γ |p)] 1
p = cp|η − γ |H . (23)

By Lemma (1) we know that the random variable

G = 1

	(1 − α)
sup

0<γ<η<1
|D1−α

η− B H
η−(γ )| (24)

has moments of all orders.

As a consequence for 1 − H < α < 1
2 , the pathwise integral

∫ η

0 uγ dBH
γ exists

when u = {uη, η ∈ [0, 1]} is a stochastic process whose trajectories belong to the
space W α,1 and B H

γ is a fBm with H > 1
2 . Moreover, we have the estimate

∣∣∣∣
∫ 1

0
uγ dBH

γ

∣∣∣∣ ≤ G‖u‖α,1. (25)

5 Main Results with Proofs

5.1 Main Result

We state the main result of the present work:

Theorem 1 Let α ∈ (1 − H, 1
2 ). Assume that φ ∈ W α,∞[0, 1] and the function A

satisfies the assumptions A1, A2, A3, and A4. Then for every T > 0, there exists
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a unique stochastic process Y ∈ L0((�,F, P), C([0, T ], W α,∞[0, 1])) solution of
the Eq. (6).

As we already defined in Sect. 4, the stochastic integral with respect to the fBm
is well defined pathwise. The above theorem will be proved using a contraction
principle that will give us the existence and uniqueness of local solutions. In order
to get the global solution, we will need to have an a priori estimate of the solution in
some functional spaces. The proof will follow after several steps and will be stated
in Sect. 5.3.

5.2 Fixed Point Argument

Consider the operator

F : C([0, T ], W α,∞[0, 1]) −→ C([0, T ], W α,∞[0, 1])

defined by

F(Yξ (t)) := φξ +
∫ t

0

∫ ξ

0
A(Yγ (s)) dgγ ds, (26)

where g ∈ C([0, T ], W 1−α,∞
0 [0, 1]), φ ∈ W α,∞[0, 1] and A satisfies the assump-

tions A1, A2, A3, and A4.

Remark 1 Let us remark that the function g in the Eq. (26) is a function of time t
and γ and the fractional integration is with respect to the parameter γ ∈ (0, 1).

For a given R > 0, let us define the ball BR,T in C([0, T ], W α,∞[0, 1]) as
BR,T = {Y ∈ C([0, T ], W α,∞[0, 1]) : ||Y ||α,∞ ≤ R}.

We state the following lemmas and propositions without proof. Detailed proofs for
this particular equation can be found in [7].

Lemma 2 Given a positive constant R1 > ‖φ‖α,∞, there exists T1 > 0 such that
F(BR1,T1) ⊆ BR1,T1 . The time T1 depends on R1, α and the initial condition ‖φ‖α,∞.

Now in order to prove that the operator F is a contraction, we will need the
following two propositions.

Proposition 1 Let f ∈ C([0, T ], W α,∞
0 [0, 1]) and g ∈ C([0, T ], W 1−α,∞

0 [0, 1]).
Then, for all ξ ∈ [0, 1] and t ∈ [0, T ]
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∣∣∣∣
∫ t

0

∫ ξ

0
fγ (s) dgγ ds

∣∣∣∣
+

∫ ξ

0
(ξ − η)−α−1

∣∣∣∣
∫ t

0

∫ ξ

0
fγ (s) dgγ ds −

∫ t

0

∫ η

0
fγ (s) dgγ ds

∣∣∣∣ dη

≤ sup
0≤t≤T

�α(g)b(3)
α

∫ t

0

∫ ξ

0
[(ξ − γ )−2α + γ −α]

(
| fγ (s)|

+
∫ γ

0

| fγ (s) − fδ(s)|
(γ − δ)α+1 dδ

)
dγ ds. (27)

where b(3)
α is a constant which depends on α, its explicit expression is given below.

Proposition 2 Let h : R → R be a function satisfying the assumptions A3 and A4.
Then for all N > 0 and |X1|, |X2|, |X3|, |X4| ≤ N for all X1, X2, X3, X4 ∈ R,

|h(X1) − h(X2) − h(X3) + h(X4)|
≤ M1|X1 − X2 − X3 + X4| + MN |X1 − X3|(|X1 − X2| + |X3 − X4|). (28)

Lemma 3 Given a positive constant R2 > ‖φ‖α,∞, there exists T2 > 0 and a
constant 0 < C < 1 such that,

||F(Y1) − F(Y2)||α,∞ ≤ C ||Y1 − Y2||α,∞

for all Y1, Y2 ∈ BR2,T2 .

Now, we are able to state the following theorem:

Theorem 2 Let 0 < α < 1
2 , g ∈ C([0, T ], W 1−α,∞

0 [0, 1]). Consider the integrod-
ifferential equation

Yξ (t) = φξ +
∫ t

0

∫ ξ

0
A(Yη(s)) dgη(s)ds (29)

where t ∈ [0, T ], ξ ∈ [0, 1]. Assume that A satisfies assumptions A1, A2, A3, and A4
and that φ ∈ W α,∞([0, 1]). Then, there exists T0 > 0 such that the above equation
has a unique solution

Y ∈ C([0, T ], W α,∞[0, 1]),
for all T ≤ T0.

Proof Choose T0 = min{T1, T2}, and R = min{R1, R2}. Then, using Lemma 2 and
Lemma 3 the operator F is a contraction on BR,T for all T ≤ T0 and this completes
the proof. �

Now, we can show that the solution of (29) is global in time.
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Theorem 3 Let 1 − H < α < 1
2 , g ∈ C([0, T ], W 1−α,∞,0[0, 1]). Assume that A

satisfies assumptions A1, A2, A3, and A4 and that φ ∈ W α,∞([0, 1]). Then for all
T > 0, there exists a unique Y ∈ C([0, T ], W α,∞[0, 1]) solution of (29).

Proof It is enough to get an estimate in C([0, T ], W α,∞[0, 1]). We can write

||Y (t)||α,∞ = sup
ξ∈[0,1]

(
Yξ (t) +

∫ ξ

0

|Yξ (t) − Yη(t)|
(ξ − η)α+1 dη

)
. (30)

Consider the first term on the right side of the above equality,

|Yξ (t)| ≤ |φ(ξ)| +
∫ t

0

∣∣∣∣
∫ ξ

0
A(Yη(s)) dg(s, η)

∣∣∣∣ ds.

From Lemma (2) we can obtain

|Yξ (t)| ≤ |φξ | +
∫ t

0
�α(g)t

(
M2

1 − α
+ M1||Y (s)||α,∞ds

)
. (31)

Consider the second term. We have

∣∣∣∣
∫ ξ

0

|Yξ (t) − Yη(t)|
(ξ − η)α+1 dη

∣∣∣∣
=

∫ ξ

0

1

(ξ − η)α+1∣∣∣∣φ(ξ) +
∫ t

0

∫ ξ

0
A(Yγ (s)) dgγ ds −

(
φ(η) +

∫ t

0

∫ η

0
A(Yγ (s)) dgγ ds

)∣∣∣∣
≤

∫ ξ

0

1

(ξ − η)α+1

(
|φξ − φη| +

∫ t

0

∣∣∣∣
∫ ξ

η

A(Yγ (s)) dgγ

∣∣∣∣ dsdη

)

≤
∫ ξ

0

|φξ − φη|
(ξ − η)α+1 dη +

∫ t

0

∫ ξ

0

1

(ξ − η)α+1

∣∣∣∣
∫ ξ

η

A(Yγ (s)) dgγ

∣∣∣∣ dηds.

From Lemma (2) we can obtain

∣∣∣∣
∫ ξ

0

|Yξ (t) − Yη(t)|
(ξ − η)α+1 dη

∣∣∣∣
≤

∫ ξ

0

|φξ − φη|
(ξ − η)α+1 dη

+ �α(g)

∫ t

0

(
M2b(1)

α

1 − 2α
ξ1−2α + M1

α(1 − α)
||Y (s)||α,∞ξ1−α

)
ds. (32)
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By (31) and (32) we get,

||Y (t)||α,∞
≤ ||φ||α,∞

+ �α(g)

∫ t

0

(
M2

(
1

1 − α
+ b(1)

α

1 − 2α

)
+ M1

(
1 + 1

α(1 − α)

)
||Y (s)||α,∞

)
ds.

By Gronwall’s inequality we obtain,

||Y ||α,∞ ≤ ||φ||α,∞ exp(K T ),

where K = sup
0≤t≤T

�α(g)

[
M2

(
1

1 − α
+ b(1)

α

1 − 2α

)
+ M1

(
1 + 1

α(1 − α)

)]
.

Hence, the local solution is global in time. �

5.3 Proof of Theorem 1

For every t ∈ [0, T ], the random variable

G = 1

	(1 − α)
sup

0<η<ξ<1
|(D1−α

ξ− Bξ−)η(t)|

has moments of all orders by Proposition 1. Hence, the pathwise integral

∫ 1

0
A(Yη(t))dBη(t)

exists for 1 − H < α < 1
2 and the existence and uniqueness of solutions follows

from Theorem 3 which completes the proof.
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An Introduction to Large Deviations
and Equilibrium Statistical Mechanics
for Turbulent Flows

Corentin Herbert

Abstract Two-dimensional turbulent flows, and to some extent, geophysical flows,
are systems with a large number of degrees of freedom, which, albeit fluctuating,
exhibit some degree of organization: coherent structures emerge spontaneously at
large scales. In this short course, we showhow the principles of equilibrium statistical
mechanics apply to this problemandpredict the condensation of energy at large scales
and allow for computing the resulting coherent structures. We focus on the structure
of the theory using the language of large deviation theory.

1 Introduction

Various characterizations of turbulent flows can be encountered; the components
they usually entail are a chaotic dynamics on a strange attractor [81], a large range
of scales (i.e. a large number of degrees of freedom), and strong nonlinear effects
due to the prevalence of inertia over molecular dissipation [29]. Such flows can be
found in industrial problems, but also in nature, for instance in geophysical flows and
astrophysical flows. The above mentioned properties typically mean that not much
can be said about the system in a deterministic framework, and that one should try
instead to predict statistical properties.

This is exactly the purpose of the field of statistical mechanics: given a dynamical
system (or set of ordinary or partial differential equations) in a large phase space
(the microscopic state), can we predict typical values for specific functions on phase
space (the macroscopic observables) without knowing the exact trajectory in phase
space? For a large class of systems, said to be in equilibrium, such typical values
can be obtained by assuming that the microscopic variables are random and distrib-
uted according to probability measures built upon a few macroscopic quantities, the
invariants of the dynamical system. A classical example is that of the ideal gas: the
exact position and velocity of the molecules matters little to us, but knowing the
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relations between macroscopic quantities such as temperature, pressure, energy and
entropy is fundamental.

The ideas of statisticalmechanics have been applied successfully to a large number
of models of physical phenomena. An example of achievement of this approach is
the theory of phase transitions, in which systems such as the Ising model, a toy-
model of ferromagnetism, have been instrumental. However, turbulent flows present
a number of difficulties: (i) they are directly formulated as continuous fields (infinite
number of degrees of freedom) and can have an infinity of conserved quantities,
(ii) the interactions between constituents have a long range, (iii) in many practical
applications, the system is driven out of equilibrium by external forces.

Although we shall not tackle issue (iii) at all in this chapter, we will try to show
how (i) and (ii) are actually useful ingredients to make probabilistic predictions for
the system. They are the cornerstones of a mean-field theory: interacting degrees of
freedom can be treated as statistically independent random variables in the limit of
a large number of degrees of freedom. A natural language to express these proper-
ties is that of large deviations theory [25, 46, 80]: the probability of the outcome
of a given observable concentrates exponentially around a set of values when the
size of the system goes to infinity. The focus of the chapter is on the presentation
of the large deviation principles for carefully chosen observables for a discretized
form of 2D turbulence. To show that the principles at work are very general, we
shall underline the connection with simpler models such as variants of the Ising
model of ferromagnetism. Although it is shown that the theory allows us to compute
the equilibrium states of the system, we shall not dwell on the description of such
equilibrium states; the reader is referred to the review articles [13, 53] on this topic.
We shall also refrain from discussing the connections with earlier applications of
statistical mechanics, like the point vortex approach of Onsager, reviewed in [28], or
the Kraichnan approach to Galerkin truncated flows [44], only mentioned briefly in
Sect. 3.6.1.

These notes are based on lectures given at the Stochastic Equations for Complex
Systems: Theory and Applications summer school organized at the University of
Wyoming in June 2014. They mostly serve a pedagogical purpose, and we shall
not give proofs of the results with the required mathematical rigor. However, we
have tried as much as possible to provide the original references for the interested
readers. The presentation adopted here owes much to the references [10, 69, 89].
Note that the ideas discussed here are applicable to many other systems with long
range interactions [14, 23] and in particular gravitational systems [17, 66], plasmas,
cold atoms or toy models of statistical physics.
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2 Models of Turbulent Flows

2.1 3D and 2D Hydrodynamics

We are mainly interested here in the behavior of incompressible fluid flows, which
is governed by the Navier-Stokes equations:

∂t u + u · ∇u = −∇ P + ν�u, (1)

∇ · u = 0, (2)

where u is the velocity field, P the pressure and ν the viscosity. The equations can
be recast into non-dimensional form by introducing a velocity scale U , a length
scale L , the corresponding time scale or eddy turnover time T = L/U , and the
Reynolds number Re = U L/ν. In other words, the Reynolds number measures the
ratio of the nonlinear term and the dissipative term, or equivalently, of inertia and
viscosity [29, 45]. Since viscosity acts at small scales, it is also a measure of the
range of scales characteristic of the flow: the smallest scale is the Kolmogorov scale
�η = (ν3/ε)1/4, where ε is the energy dissipation rate. Now, with ε = U 3/L , we
obtain L/�η = Re3/4. Hence, the effective number of degrees of freedom in 3Dflows
grows as Re9/4: flows with Reynolds number on the order of 109 are not uncommon
in nature (the atmosphere and the ocean for instance), leading to a very large typical
number of degrees of freedom.

TheNavier-Stokes equations canbe recast in termsof the vorticity fieldω = ∇×u:

∂tω + u · ∇ω = ω · ∇u + ν�ω. (3)

The first termon the right hand side corresponds to stretching of vorticity tubes.When
we consider a flow on a two-dimensional surface rather than the three-dimensional
space, this vorticity stretching term vanishes (the only non-vanishing component
of vorticity ω is normal to the surface), yielding conservation of vorticity along
streamlines in the inviscid (ν = 0) case:

∂tω + u · ∇ω = 0. (4)

This difference between 2D and 3D flows have important consequences on their
respective behavior. While 3D flows tend to transfer energy from the large scales to
the small scales, where it is dissipated by viscosity, in a process referred to as a direct
energy cascade [31, 41] (big vortices break up into smaller and smaller vortices),
2D flows, on the contrary, transfer energy from the small scales to the large scales,
and this is called an inverse energy cascade [6, 44, 86, 87]. In this inverse cascade
process, vortices merge to form larger and larger vortices [55]. Unless sufficient large
scale dissipation (e.g. bottom friction) is present, the energy piles up at the largest
available scales, forming a condensate which dominates the flow [6, 21, 85].
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The physical problem we are interested in here is the inverse energy cascade and
the emergence of large scale coherent structures.

2.2 Global Invariants

The equations ofmotion for 3D and 2Dhydrodynamics have aHamiltonian structure,
although non-canonical: there exists a Poisson structure, but it is degenerate [64].
This degeneracy leads to the existence of invariants, described in this section.

Inviscid 3D flows have two global invariants, the energy and the helicity [84]:

E = 1

2

∫
u2, (5)

H =
∫

u · ω. (6)

Helicity being sign indefinite, it does not in general constrain the nonlinear transfers
sufficiently to hamper the direct energy cascade process [43] (see however, [5, 34]
for particular cases). On the contrary, in 2D, vorticity conservation along streamlines
leads to a family of invariants in addition to the energy (ψ being the stream function,
defined by ω = −�ψ)

H =
∫
D

ω(x)ψ(x)dx, (7)

the Casimir invariants:

Ig =
∫
D

g(ω(x))dx, (8)

where g is an arbitrary function. As a particular case, all the moments (or L p norms)
of the vorticity field are conserved:


p = 1

|D|
∫
D

ω(x)pdx, (9)

including the L2 norm of the vorticity field, referred to as the enstrophy. It was
anticipated early on [2, 42, 48] that the existence of a second, positive-definite,
quadratic invariant, in addition to the energy, is sufficient to reverse the direction of
the energy cascade. The basic idea is that enstrophy is stronger in the presence of
small-scale activity: transferring energy towards the small-scales while keeping the
total energy constant cannot be done if we also need to conserve enstrophy. This
loose statement was made more precise by a number of analytic arguments [2, 30,
42, 48, 56, 63], and verified in experiments [67, 82] and high-resolution numerical



An Introduction to Large Deviations and Equilibrium … 57

simulations [6]. Statistical mechanics provides one of these analytical arguments
(see Sect. 3.6.1).

Conservation of the Casimir invariants can be formulated equivalently in terms of
the moments of the vorticity field, as above, or in terms of the vorticity distribution.
Indeed, the fraction of the domain area |D|, occupied by the vorticity level σ , which
can be written as

γ (σ ) = 1

|D|
∫
D

δ(ω(x) − σ)dx, (10)

is conserved. We shall see that this form is particularly convenient in Sect. 3, but note
that the two formulations are connected by the formula


p = 1

|D|
∫
D

dx
∫
R

dσσ pδ(ω(x) − σ) =
∫
R

dσσ pγ (σ ), (11)

and, conversely, using an integral representation of the Dirac distribution,

γ (σ ) = 1

2π

+∞∑
p=0

(−1)p
p

p! δ(p)(σ ). (12)

Finally, note that the vorticity distribution is normalized:

∫
R

γ (σ )dσ = 1. (13)

2.3 Geophysical Flows

Although 2D flows are interesting in themselves, part of the motivation for studying
them comes from their common features with geophysical flows. Indeed, in addition
to the small aspect ratio of the atmosphere and the ocean, their dynamics is subjected
to the effect of strong rotation and density stratification. These properties allow for
an asymptotic regime which describes well the large-scale dynamics, the quasi-
geostrophic regime [93]. This regime is very similar to 2D flows, because it reduces
to a quantity, called potential vorticity, being advected by the flow, similarly to the
vorticity (see (4)). In particular, the velocity field is purely horizontal. The only
difference is that the fields also depend on the vertical, and whereas the vorticity is
the laplacian of the stream function: ω = −�ψ in 2D, here the potential vorticity
is related to the stream function by a slightly more complicated linear differential
operator. The existence of Casimir invariants similar to those of 2D flows leads
again to an inverse cascade of energy and the formation of coherent structures at large
scales [15, 72, 83]. Therefore, the considerations presented here may apply to such
flows aswell, and attempts to extend the theory in this context have flourished over the
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past few years. For the sake of simplicity, we shall restrict ourselves here to the case
of 2D flows; the interested reader may consult the literature on extensions to quasi-
geostrophic flows in the barotropic case [12, 36, 61, 95], the baroclinic case [24, 33,
94, 96], shallow-water equations [18, 20], as well as the general references [13, 53,
54], for instance.

The quasi-geostrophic regime breaks down at smaller scales, and we enter an
intermediate regime, often referred to as stratified turbulence [50]. In this regime,
even though we can still define a potential vorticity which is a Lagrangian invariant,
it does not put as strong a constraint on the system as in the 2D case. Indeed, the
fields (velocity, density) can be decomposed into a balanced part which contributes
to potential vorticity, and inertia-gravity waves, which do not. As a result, the organi-
zation of the system in terms of inertial ranges and energy cascades is not so simple.
High-resolution numerical simulations have indicated the existence of two inertial
ranges with a constant and opposite flux of energy [70]. A possible interpretation
is that the vortical modes are responsible for the inverse cascade of energy while
the inertia-gravity waves have to do with the direct energy cascade. This interpre-
tation is supported by a statistical mechanics argument [37], which is an adaptation
of the Kraichnan argument (see Sect. 3.6.1) in the context of the restricted canonical
ensemble [68].

Independently of the constraining effect of rotation and stratification (which can
be seen as forces breaking isotropy), another direction of generalization which has
been considered is that of 3D flows with symmetries, and especially axisymmetric
flows [49, 62, 88]. This configuration is relevant for setups used in laboratory exper-
iments, such as the von Karman experiment. It has been shown in particular that
one could define a microcanonical measure using an approach analogous to that of
Sect. 3.1, with, however, some considerable complications to treat the fluctuations
of the poloidal field [88].

2.4 Discretized Form for 2D Euler Flows and Analogies
with Toy Models of Magnetic Systems

Instead of the continuous vorticity field ω and the infinite dimensional phase space it
belongs to, it may be more convenient to introduce finite dimensional models. Here
we shall mostly consider a discretization on a square lattice with N sites equally
spaced in the domainD (see Fig. 1), and the variables of interest are the values taken
by vorticity at each site. In this form, the system can be related to some classical
models of statistical physics.

2.4.1 Two-Vorticity Level System and Long-Range Ising Model

The Ising model is one of the most famous models in statistical physics. It can be
seen as a toy model of ferromagnetism, but it has served as a testbed for a very large
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i = 1

i = M

Fig. 1 Discretization and coarse-graining. Left We replace the 2D domain by a finite lattice and
the continuous vorticity field by a N -dimensional vector whose components are the values of the
vorticity at each site. Right We decompose the lattice in M cells, each containing n = N/M sites.
The coarse-grained vorticity is a M dimensional vector whose components are the average value
of the vorticity in each cell

number of ideas going far beyond this particular problem [22]. It consists of a finite
number N of spins si ∈ {−1, 1} located on a lattice of arbitrary shape and dimension
(although a square lattice is often considered) and interacting through a hamiltonian
(per degree of freedom) of the form:

HI [ŝ] = − 1

N

N∑
i, j=1

Ji j si s j . (14)

In this form, the hamiltonian is just any quadratic function. A standard choice of
interaction is the nearest-neighbor model: Ji j = J if the sites i and j are connected
in the lattice, and Ji j = 0 if they are not. That way, aligned neighboring spins will
contribute a term −J to the hamiltonian, while anti-aligned neighboring spins will
contribute J . If J is positive the system is called ferromagnetic and if it is negative
the system is called antiferromagnetic. An observable of interest is themagnetization
(per spin):

M[ŝ] = 1

N

N∑
i=1

si . (15)

When one finds about the same proportion of positive and negative spins, the mag-
netization should vanish. Applying an external magnetic field, represented by a term
of the form −h

∑
i si in the hamiltonian, leads to alignment of spins, and therefore a

non-vanishing magnetization. This is the standard behavior of so-called
paramagnetic materials. By contrast, in ferromagnetic materials, spins may align
spontaneously and yield unit magnetization (in absolute value) without imposing
an external magnetic field (or, in experiments, the system retains its magnetization
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when the applied magnetic field is switched off). The Ising model can be seen as a
toy model of the paramagnetic-ferromagnetic transition.

In the above case, the system has short-range interactions, since only neighboring
spins interact. Versions with long-range interactions can be built by allowing non-
vanishing Ji j for distant sites i and j . For instance, one may assume that all the spins
interact with all the other spins with the same coupling constant: Ji j = 1/N , where
the 1/N ensures that the energy per degree of freedom is an intensive quantity. In
this case, the Hamiltonian becomes a function of magnetization only:

HI M F [ŝ] = − 1

N 2

N∑
i, j=1

si s j = −M[ŝ]2. (16)

This version of the Ising model is referred to as mean-field, because it is tantamount
to saying that each spin feels the effect of a magnetic field created by all the other
spins rather than the individual effect of each of his neighbors. Indeed, let us consider
a given spin si ; it provides a contribution −1/Nsi

∑
j Ji j s j , which is the same as a

non-interacting spin under externalmagnetic field 1/N
∑

j Ji j s j would. Ifwe replace
this magnetic field by themagnetization, we obtain themean-field Hamiltonian. Note
that the geometric shape (square, triangle, etc.) and the dimension of the lattice do
not matter here since all the spins interact with the same intensity.

An advantage of the mean-field Ising model is that it has an exact solution in any
dimension [3]. On the contrary, exact solutions for the standard, short-range Ising
model are only know for dimension one [38] and two [65].

The discretized version of 2D flows described above is related to the Ising model
in the following way: rather than allowing the vorticity to take any real value, we
can restrict it to a two-level set {σ,−σ }. Then the system becomes analogous to the
Ising model, with an interaction matrix given by the Green function of the Laplacian
on the lattice. On a plane, this amounts to interactions proportional to the logarithm
of the distance between sites: Ji j ∝ ln |i − j | for i �= j . This is a kind of long-
range interaction. The difference with the Ising model is the presence of the vorticity
distribution conservation constraint. This would amount to fixing the number of +
spins and the number of − spins in the Ising model.

2.4.2 Energy-Enstrophy Ensemble and the Long-Range Spherical Model

Another variant of the Ising model consists in letting the spins si take any real
value, while satisfying the global constraint

∑N
i=1 s2i = N . Clearly, this constraint is

satisfied in the standard Isingmodel with spins in {1,−1}. The name spherical model
was coined for this variant because of the form of the global constraint, which means
that the set of all spin values lies on the surface of a sphere in R

N . It was introduced
by Berlin and Kac [4] as an attempt to patch the divergence arising from assuming
that the spins are distributed according to a normal distribution (the Gaussian model)
while remaining exactly solvable in any dimension [3]. The observables of interest
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(Hamiltonian, magnetization) are the same as for the Ising model. Versions with
short-range [4] or long-range [39] interactions can again be considered by choosing
different quadratic forms Ji j .

In their discretized version, 2D flows resemble a long-range spherical model if
we only retain one Casimir invariant: the enstrophy. Indeed, enstrophy conservation
implies

∑
i ω2

i = N
2. Again, the interaction matrix is given by the Green function
of the Laplacian on the lattice. This connection is further investigated in Sect. 3.6. It
has also been pointed out in a series of papers by Lim [51, 52].

3 Mean-Field Theory for 2D Flows

We provide here a heuristic presentation of the mean-field theory introduced inde-
pendently by Miller [59, 60], Robert and Sommeria [75, 77], and further developed
by many others. The presentation is inspired by the original work by Miller and the
more recent references [10, 13, 69].More rigorousmathematical proofs can be found
in the original papers by Robert and coworkers [57, 58, 73–77] and Ellis, Turkington
and coworkers [7, 8, 26, 27, 91].

3.1 Microcanonical Measure and Large Deviations
for the Energy and Vorticity Distribution

The general idea is to consider the vorticity field ω, referred to as the microstate,
as a random variable distributed according to the microcanonical distribution. In
other words, we introduce a probability measure on the phase space � = L∞(D),
whereD is a 2D domain (we shall mostly consider the case of a rectangular domain
here). We are going to give a sketch of the construction of this measure as a limit
of measures on finite-dimensional phase spaces corresponding to approximations of
the continuous vorticity field. Then, we will be able to make predictions on the value
of macrostates, i.e. observables A : � −→ R (or more generally A : � −→ M
where the space M is macroscopic in some sense, e.g. has a dimension much lower
than �) on phase space, which, as we shall see, satisfy large deviation properties:
they concentrate in probability around some specific values, the equilibrium states.

To keep things simple, we shall consider a finite number of vorticity levels S =
{σ1, . . . , σK }. This amounts to saying that the vorticity distribution has the form
γ (σ ) = ∑K

k=1 γkδ(σ − σk). We consider the discretized system with N sites on the
square lattice introduced in Sect. 2.4 (see Fig. 1), and define a microstate as being
simply the value of the vorticity field at all the points of the lattice. Therefore the
phase space is simply �N = SN .
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Considering the conservation laws mentioned above, there are two observables
of primary interest: the energy observable, i.e. the Hamiltonian, given by

HN : ω̂ ∈ �N �−→ 1

2N 2

∑
1≤i �= j≤N

G N
i j ωiω j , (17)

with G N
i j the Green function of the Laplacian on the lattice, and the vorticity distri-

bution observables

G(k)
N : ω̂ ∈ �N �−→ 1

N

N∑
i=1

δωi ,σk . (18)

Note that the set of accessible energies (i.e. the values taken by the observableHN )
is finite and depends both on the vorticity levels σk and on the number of sites N .
Ultimately, in the limit N → ∞, we shall be interested in a continuum of energy
levels. One approach to circumvent this difficulty is to consider in a first step energy
shells with finite width �E , large enough so that each shell is attained by the energy
observable for some microstates [69]. In the limit N → +∞, the results will not
depend on the value of �E . To keep notations as simple as possible, we shall refrain
from doing so here, but in all rigor one should understand HN [ω̂] ∈ [E, E + �E]
whenever we write HN [ω̂] = E . In this framework, the set of microstates with
vorticity distribution γ and energy E is

�N (γ, E) = {ω̂ ∈ �N | HN [ω̂] = E,∀k ∈ [[1, K ]],G(k)
N [ω̂] = γk}, (19)

= H−1
N ({E}) ∩

K⋂
k=1

G(k)
N

−1
({γk}). (20)

This is a finite set whose cardinality we denote by �N (γ, E) = Card�N (γ, E).
We are going to introduce two probability measures on phase space: first, let us

consider a prior measure μ(N ), which here is just the normalized counting measure:
if M ⊂ �N , μ(N )(M) = Card M

K N . This amounts to saying that all the microstates are
equiprobable: for any observableAN : �N −→ R, the probability of the outcome x
is just the fraction of microstates for whichAN [ω̂] = x . Now, wewant to restrict that
statement to all the microstates with a fixed energy and vorticity distribution, while
assigning vanishing probability to all the other microstates. Hence, we introduce
the (finite-N ) microcanonical measure μ

(N )
γ,E : if M ⊂ �N , μ

(N )
γ,E (M) = Card(M ∩

�N (γ, E))/�N (γ, E). Hence, for an observable AN , the probability law of the
random variable AN [ω̂] is μ

(N )
γ,E (AN [ω̂] = x) = μ

(N )
γ,E (A−1

N ({x})). Note that we
have introduced indices γ and E to distinguish from probabilities computed with
respect to the prior measure. Probabilities in the microcanonical ensemble are thus
just conditional probabilities:
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μ
(N )
γ,E (AN [ω̂] = x) = μ(N )(AN [ω̂] = x |HN [ω̂] = E,G(k)

N [ω̂] = γk), (21)

=
⎧⎨
⎩

μ(N )(AN [ω̂]=x,HN [ω̂]=E,G(k)
N [ω̂]=γk )

μ(N )(HN [ω̂]=E,G(k)
N [ω̂]=γk ))

ifHN [ω̂]=E, and
∀k∈[[1,K ]],G(k)

N [ω̂]=γk

0 otherwise.
(22)

As mentioned above, observables of particular interest are the hamiltonian HN

and the vorticity distribution observables G(k)
N . The joint probability to observe an

energy E and a vorticity distribution γ , with respect to the prior measure, satisfies a
large-deviation property, and the large deviation rate function is (up to an unimportant
constant term) the opposite of the entropy S(E, γ ):

μ(N )(HN [ω̂] = E,G(k)
N [ω̂] = γk) = �N (γ, E)

K N
= eN S(E,γ )−N ln K+o(N ), (23)

with

S(E, γ ) = lim
N→∞

1

N
ln�N (γ, E). (24)

3.2 Large Deviations for the Macrostates

We now introduce a new class of observables associated with the coarse-graining of
the vorticity field. We decompose the lattice into M cells, each containing n = N/M
sites. For a microstate ω̂ ∈ SN , we shall denote the components as ωiα where
1 ≤ i ≤ M is the index of the cell and 1 ≤ α ≤ n is the index of the site within the
cell (see Fig. 1). The coarse-graining observable is given by

C : ω̂ ∈ SN �−→ ω̄ ∈ R
M , with ω̄i = 1

n

n∑
α=1

ωiα, 1 ≤ i ≤ M. (25)

More generally, we can define an observable which corresponds to the distribution
of vorticity levels in each cell. It is just the empirical vector

P : ω̂ ∈ SN �−→ P = (pik)1≤i≤M
1≤k≤K

∈ MM,K (R), with pik = 1

n

n∑
α=1

δωiα,σk . (26)

Note that
∑K

k=1 pik = 1. Besides, the observable C can be deduced from P since
ω̄i = ∑K

k=1 σk pik for 1 ≤ i ≤ M . Let us refer to the elements of the image of
P as the macrostates. The set of microstates corresponding to a given macrostate
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P is simply its pre-image P−1(P). The number of microstates realizing a given
macrostate P will be denoted W (P) = CardP−1(P). It is easily computed that:

W (P) =
M∏

i=1

(
n

npi1

)(
n − npi1

npi2

)
· · ·

(
n − npi1 − · · · − npin−1

npin

)
, (27)

=
M∏

i=1

n!∏K
k=1(npik)!

. (28)

The vorticity distribution observables G(k)
N take a constant value over an equivalence

class P−1(P):

G(k)
N [ω̂] = 1

M

M∑
i=1

pik, (29)

so that if ω̂1, ω̂2 ∈ SN are such that P[ω̂1] = P[ω̂2], then for 1 ≤ k ≤ K ,
G(k)

N [ω̂1] = G(k)
N [ω̂2]. In other words, the equivalence kernel of the observable P is

finer than that of any of the observablesG(k)
N . In practice, this means that we need not

worry about enforcing the vorticity distribution constraint when counting the number
of microstates realizing a given macrostate. For the energy observable, the situation
is slightly more subtle: denoting G M,n

iα, jβ the Green function of the Laplacian on the
lattice with the new indexing of the sites, the energy observable is given by:

HN ,M [ω̂] = 1

2N 2

∑
1≤i, j≤M
1≤α,β≤n

(i,α) �=( j,β)

G M,n
iα, jβωiαω jβ, (30)

which is not necessarily constant over equivalence classes. However, it can be shown
that the dominant contribution is the mean-field energy, i.e. the energy of the coarse-
grained vorticity field:

HN ,M [ω̂] = 1

2M2

∑
1≤i �= j≤M

G M
i j ω̄i ω̄ j + o

(
1

N

)
, (31)

= HM [C[ω̂]] + o

(
1

N

)
. (32)

The above results are sometimes restated by saying that we have an energy (and
here, also vorticity distribution) representation function [89] (see Fig. 2). It allows
us to obtain the most probable states with respect to the microcanonical measure
by obtaining a large deviation property with respect to the prior (unconstrained)
measure.
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Fig. 2 The different levels of description of the system, and the observables/representation function
relating them. Observables are represented with straight arrows, representation functions with wig-
gly arrows and contraction principles with dashed arrows. Observables for which a large deviation
principle has been obtained directly are represented with thick arrows

Indeed, the unconstrained probability of observing a macrostate P is

μ(N )(P[ω̂] = P) = μ(N )(P−1(P)), (33)

= W (P)

K N
. (34)

Using the Stirling approximation, it is easily shown that when N → ∞, this proba-
bility satisfies a large deviation property:

μ(N )(P[ω̂] = P) = eNSM,K [P]+o(N ), (35)

where we have introduced the mean-field entropy

SM,K [P] = lim
N→+∞

1

N
lnμ(N )(P[ω̂] = P), (36)

= − 1

M

M∑
i=1

K∑
k=1

pik ln pik, (37)

which again appears as a large deviation rate function (up to an additive constant
and a minus sign), although this time it is a large deviation of an empirical vector
(observableP) rather than a sample mean (energy observableH). Hence, the above
result should in all rigor be seen as a consequence of the Sanov theorem.

Now, in the microcanonical ensemble, the probability μ
(N )
γ,E (P[ω̂] = P) involves

the joint (unconstrained) probability μ(N )(P[ω̂] = P,HN [ω̂] = E,G(k)
N [ω̂] =

γk). But due to the existence of the energy and vorticity distribution representation
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functions, we have:

μ(N )(P[ω̂] = P,HN [ω̂] = E,G(k)
N [ω̂] = γk)

= μ(N )(P[ω̂] = P,HN ,M [P] = E,G (k)
N ,M [P] = γk),

(38)

therefore,

μ
(N )
γ,E (P[ω̂] = P) =

⎧⎨
⎩

μ(N )(P[ω̂]=P)

μ(N )(HN [ω̂]=E,G(k)
N [ω̂]=γk ))

ifHN ,M [P]=E, and

∀k∈[[1,K ]],G (k)
N ,M [P]=γk

0 otherwise.
(39)

It follows that the probability of a given macrostate also satisfies a large deviation
result with respect to the microcanonical measure:

μ
(N )
γ,E (P[ω̂] = P) = e−N I [P]+o(N ), (40)

with the large deviation rate function

I [P] =
{

S(E, γ ) − SM,K [P] if HN ,M [P] = E, and ∀k ∈ [[1, K ]],G (k)
N ,M [P] = γk

+∞ otherwise.

(41)

Hence, the most probable macrostates with respect to the microcanonical measure
are thosewhichminimize the large deviation rate function, i.e. thosewhichmaximize
the entropy SM,K while satisfying the constraints on energy and vorticity distrib-
ution: they are solutions of a constrained variational problem. It is worthy of note
that the Boltzmann-Gibbs entropy SM,K , defined in (37), evaluated at a solution
P∗ of the variational problem, agrees with the entropy S(E, γ ) defined from the
Boltzman formula (24). This is not a coincidence, but a cornerstone of the mean-
field approach. It can be understood in the language of large deviation theory as a
contraction principle [89]. Roughly speaking, due to the existence of representation
functions, the probability of observing an energy E and a vorticity distribution γ

can be computed as the integral over all the macrostates (rather than the microstates)
with these constraints: denoting

�̃N ,M (γ, E) = {P ∈ MM,K (R) | HN ,M [P] = E,∀k ∈ [[1, K ]],G (k)
N ,M [P] = γk},

(42)
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we have

μ(N )(HN [ω̂] = E,G(k)
N [ω̂] = γk) =

∫
�N (γ,E)

μ(N )(dω̂), (43)

=
∫

�̃N ,M (γ,E)

μ(N )(P−1(P)), (44)

=
∫

�̃N ,M (γ,E)

eNSM,K [P]+o(N ), (45)

Using Laplace’s approximation, the integral evaluates to

= exp

(
N max

P∈�̃N ,M (γ,E)

SM,K [P] + o(N )

)
. (46)

As a conclusion, the most probables macrostates P∗ with respect to the microcanon-
ical measure satisfy I [P∗] = 0: they are solutions of the constrained variational
problem:

S(E, γ ) = max
P

{SM,K [P] | HN ,M [P] = E,∀k ∈ [[1, K ]],G (k)
N ,M [P] = γk}. (47)

3.3 Thermodynamic Limit and Mean-Field Equation

We are now interested in the macrostates obtained in the limit M → +∞. Letting
also K → +∞, they are the probability distributions for fine-grained vorticity
ρ(r, σ ): ρ(r, σ )dσ is the probability that the vorticity at point r lies in the interval
[σ, σ + dσ ]. The local normalization condition

∫
R

ρ(r, σ )dσ = 1 must still be
satisfied for each point r ∈ D. The coarse-grained vorticity field is now ω̄(r) =∫
R

σρ(r, σ )dσ . As explained above, the energy and vorticity distribution depend
only on the macrostate ρ:

H [ρ] = 1

2

∫
D2

drdr′
∫
R2

dσdσ ′G(r, r′)σσ ′ρ(r, σ )ρ(r′, σ ′), (48)

Dσ [ρ] =
∫
D

ρ(σ, r)dr. (49)

Similarly, the mean field entropy becomes

S [ρ] = −
∫
D

dr
∫
R

dσρ(σ, r) ln ρ(σ, r). (50)
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The most probable macrostates are now those maximizing (50) while satisfying the
energy and vorticity distribution constraints. They are solutions of themicrocanonical
variational problem:

S(E, γ ) = max
ρ

{S [ρ] | H [ρ] = E,∀σ ∈ R,Dσ [ρ] = γ (σ )}. (51)

The critical points of the variational problem are readily found: there exist Lagrange
multipliers β and α(σ) such that the first variations vanish:

0 = δS −
∫
D

drζ(r)
∫
R

dσδρ(σ, r) − βδH −
∫
R

dσα(σ)

∫
D

drδρ(σ, r), (52)

which leads to the Gibbs states

ρ∗(σ, r) = e−βσψ(r)−α(σ)

Zα(βψ(r))
, (53)

where the coarse grained stream function ψ̄ and the partition functionZα are given
by

ψ = −�−1ω, Zα(u) =
∫
R

e−σu−α(σ)dσ. (54)

It follows that the coarse-grained vorticity field satisfies

ω(r) = Fα(βψ(r)), with Fα(u) = −d lnZα(u)

du
. (55)

This is a (elliptic) partial differential equation, referred to as the mean-field equation,
characterizing the most probable coarse-grained vorticity fields. Note that the equa-
tion is of the same form as the equation defining steady-states of the Euler equation:
equilibrium states form a subclass of steady-states for which the function relating
vorticity and stream function is fixed by the invariants of the system.

The equilibrium states of the system can thus be obtained by solving (55). In
general, this is a difficult task. Analytical solutions have been obtained in the limit
of a linear function Fα (the mean-field equation then reduces to a Helmholtz equa-
tion), using the method introduced by Chavanis and Sommeria [19], which con-
sists in decomposing the vorticity field and stream function on a basis of Laplacian
eigenfunctions. Numerical methods are also available: Turkington and Whitaker
have proposed an algorithm to iteratively solve the variational problem described
above [92], while Robert and Sommeria [78] have proposed relaxation equations
where the dynamics maximize the entropy production rate, thereby reaching a max-
imum entropy state. We shall not describe in details these methods here, nor the
solutions they yield. Note, however, that in general, they correspond to large scale
coherent structures, like vortices or unidirectional (e.g. zonal) flows, depending on the
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geometry of the domain: for instance dipole/monopole in a rectangular domain [19],
dipole/unidirectional flow in a doubly periodic domain [11], Fofonoff flows on a beta-
plane [61], and solid-body rotation/dipole/quadrupole/unidirectional flowon a sphere
[32, 35, 36, 71].

3.4 Non-equivalence of Ensembles

3.4.1 Statistical Ensembles and Variational Problems

So far we have been using exclusively the microcanonical measure

μ
(N )
γ,E (dω̂) = δ(HN [ω̂] − E)

K∏
k=1

δ
(
G(k)

N [ω̂] − γk

)
μ(N )(dω̂), (56)

which assigns uniform probability to microstates with a given energy and vortic-
ity distribution, and zero probability to other microstates. We could make different
choices and consider the canonical measure

μ
(N )
γ,β (dω̂) = e−βHN [ω̂]

Z
K∏

k=1

δ
(
G(k)

N [ω̂] − γk

)
μ(N )(dω̂), (57)

or the grand-canonical measure

μ
(N )
α,β (dω̂) = e−βHN [ω̂]−∑K

k=1 αkG(k)
N [ω̂]

�
μ(N )(dω̂), (58)

and similarly in the thermodynamic limit N → +∞. If we replace the microcanon-
ical measure in Sect. 3.2 by any of these two measures, we obtain mutas mutandi a
large deviation principle for the macrostates. In the thermodynamic limit, the most
probable macrostates (i.e. the equilibrium states) are therefore solutions of the fol-
lowing variational problems:

S(E, γ ) = max
ρ

{S [ρ] | H [ρ] = E,∀σ ∈ R,Dσ [ρ] = γ (σ )}, (59)

F(β, γ ) = max
ρ

{S [ρ] − βH [ρ] | ∀σ ∈ R,Dσ [ρ] = γ (σ )}, (60)

J (β, α) = max
ρ

{S [ρ] − βH [ρ] −
∫
R

dσα(σ)Dσ [ρ]}, (61)

respectively for the microcanonical measure, the canonical measure and the grand-
canonical measure. The maximized functions arise as large deviation rate functions,
and the constraints stem from the definition of the ensembles as conditional proba-
bilities and from the existence of representation functions. The entropy S(E, γ ), the
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free energy F(β, γ ) and the grand potential J (β, α) are referred to generically as
thermodynamic potentials.

The existence of a large deviation principle for the macrostates does not depend
on the particular choice of ensemble, but the most probable macrostates may depend
on this choice. The task that we set out to investigate in this section is therefore how
the different ensembles are related. The discussion closely follows the Refs. [26, 90].

3.4.2 Ensemble Equivalence at the Macrostate Level

First of all, it is clear from the structure of the variational problems and the Lagrange
multiplier rule that they all have the same critical points. However, the critical points
may be of different nature: a maximizer of one variational problem may be a saddle
point of another variational problem for instance. Nevertheless, it is easily seen that
a solution of a variational problem with a constraint relaxed (e.g. the canonical vari-
ational problem) is always a solution of the original constrained variational problem
(e.g. the microcanonical problem). We can formalize this remark by introducing the
sets of equilibrium states (i.e. solutions of the variational problems):

MC (E, γ ) = {ρ | S [ρ] = S(E, γ ),H [ρ] = E,∀σ ∈ R,Dσ [ρ] = γ (σ )},
(62)

C (β, γ ) = {ρ | S [ρ] − βH [ρ] = F(β, γ ),∀σ ∈ R,Dσ [ρ] = γ (σ )}, (63)

GC (β, α) = {ρ | S [ρ] − βH [ρ] −
∫
R

dσα(σ)Dσ [ρ] = J (β, α)}. (64)

As per the above remark, we always have,

∀β, α,∀ρ ∈ GC (β, α), ρ ∈ C (β,Dσ [ρ]) and ρ ∈ MC (H [ρ],Dσ [ρ]), (65)

∀β, γ,∀ρ ∈ C (β, γ ), ρ ∈ MC (H [ρ], γ ). (66)

In particular,

⋃
β,α

GC (β, α) ⊂
⋃
β,γ

C (β, γ ) ⊂
⋃
E,γ

MC (E, γ ). (67)

If the converse statements hold, i.e.

∀E, γ,∀ρ ∈ MC (E, γ ), ∃β ∈ R : ρ ∈ C (β, γ ), (68)

or

∀β, γ,∀ρ ∈ C (β, γ ), ∃α : ρ ∈ GC (β, α), (69)
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we say, respectively, that the microcanonical and canonical ensembles are
equivalent at the macrostate level or that the canonical and grand canonical ensem-
bles are equivalent at the macrostate level. It is straightforward to see that it is a
transitive relation, in the sense that if the microcanonical ensemble is equivalent
to the canonical ensemble at the macrostate level, and if the canonical ensemble
and the grand-canonical ensemble are equivalent at the macrostate level, then the
microcanonical and the grand-canonical ensembles are equivalent a the macrostate
level. Besides, if the grand-canonical ensemble is equivalent to the microcanonical
ensemble at the macrostate level, then the canonical ensemble is equivalent to both
the microcanonical and the grand-canonical ensembles at the macrostate level.

If the three ensembles are equivalent at themacrostate level,wehave the equalities:

⋃
β,α

GC (β, α) =
⋃
β,γ

C (β, γ ) =
⋃
E,γ

MC (E, γ ). (70)

3.4.3 Ensemble Equivalence at the Thermodynamic Level

Due to the definition of the thermodynamic potentials through the variational prob-
lems, connections exist between them as well. For the free energy for instance, we
have

F(β, γ ) = max
ρ,N [ρ](x)=1

{S [ρ] − βH [ρ] | ∀σ ∈ R,Dσ [ρ] = γ (σ )} ,

= max
E≥0

(
max

ρ,N [ρ](x)=1,H [ρ]=E
{S [ρ] − βE | ∀σ ∈ R,Dσ [ρ] = γ (σ )}

)
,

= max
E≥0

(S(E, γ ) − βE) .

This exactly means that the free energy is the Legendre-Fenchel transform of the
entropy. The Legendre-Fenchel transform is a generalization of the Legendre trans-
form to functions which need not be differentiable and convex [79]. Denoting the
Legendre-Fenchel of an arbitrary function with a star (the variable with respect to
which the transform is taken should be clear from the arguments of the function), we
have the compact form:

F(β, γ ) = S�(E, γ ).

Similarly,

J (β, α) = F�(β, γ ).

We know that the Legendre transform is an involution [1]. This is not necessar-
ily the case for the Legendre-Fenchel transform, because the Legendre-Fenchel
transform of an arbitrary function is always a concave function, but it is true when
the original function is concave. In general, when applying the Legendre-Fenchel
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transform twice, we only obtain the concave hull of the original function [79].
Hence, the free energy F is always a concave function of β and the grand-
potential J is always a concave function of its arguments, while F� = S�� is
always a concave function of E , and is the smallest concave function satisfy-
ing S(E, γ ) ≤ S��(E, γ ). The equality holds if S is a concave function. There-
fore, we say that the microcanonical and canonical ensemble are equivalent at the
thermodynamic level if S = F� = S��, or equivalently, if S is a concave function of
E . Similarly, the grand canonical and the canonical ensembles are equivalent at the
thermodynamic level if F = J � = F��, i.e. if F is a concave function of γ .

Again, we have a transitivity property: equivalence of the grand canonical and
canonical ensembles on the one hand, and of the canonical and microcanonical
ensembles on the other hand implies equivalence of the grand canonical and micro-
canonical ensembles. Besides, if the grand canonical and the microcanonical ensem-
bles are equivalent, then the canonical ensemble is equivalent to both the grand
canonical and the microcanonical ensembles. In both these cases, the entropy S is a
concave function of all its arguments.

3.4.4 Equivalence and Non-equivalence of Statistical Ensembles

The notions of ensemble equivalence at the macrostate level (Sect. 3.4.2) and at the
thermodynamic level (Sect. 3.4.3) are connected. Indeed, the local concavity prop-
erties of the thermodynamic potential determine the possibility to invert the relation
with the Lagrange multiplier, or in other words, the possibility that the macrostates
can be obtained by solving a relaxed variational problem. Following [26], let us
examine the three possibilities in the context of the microcanonical and canonical
ensembles. Let us fix E, γ , then one of the three following assertions holds:

(i) Total Ensemble Equivalence: If S = S�� and S is not locally flat, then
MC (E, γ ) = C (β, γ ) for β = ∂S/∂ E .

(ii) Marginal Ensemble Equivalence: If S = S�� and S is locally flat, then
MC (E, γ ) � C (β, γ ) for β = ∂S/∂ E .

(iii) Ensemble Inequivalence: If S �=S��, then ∀β∈R,MC (E, γ )∩C (β, γ ) = ∅.

3.5 Large Deviations for the Coarse-Grained Vorticity Field

In Sect. 3.2, we have considered how the probability of the outcome of a given
observable (the distribution of fine-grained vorticity) behaves when the size of the
system goes to infinity. We have found that it satisfies a large deviation property,
which allows us to compute the most probable outcomes (see Sect. 3.3). From there,
we are able to deduce what the most probable coarse-grained vorticity fields are.
But can we apply the same methods directly to the coarse-graining observable to
compute the most probable coarse-grained vorticity fields? In other words, can we
obtain a large deviation principle directly for the observable C?
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In general this is not straightforward, because we do not have a representation
function for the vorticity distribution in terms of the coarse-grained vorticity field.
Let us give an exemple in the simple case where we have only three levels of vor-
ticity: S = {−1, 0, 1}. We have represented on Fig. 3 two microstates which lead
to the same coarse-grained vorticity field, with different vorticity distributions. As a
consequence, we cannot deduce a large deviation principle with respect to the micro-
canonical measure (or any of the other ensembles) from a large deviation principle
with respect to the prior measure. In principle it remains possible to evaluate directly
the probability of a coarse-grained vorticity field in the microcanonical ensemble,
but this is a much more complicated combinatorial problem. However, in the special
case of a two-level vorticity system, we do have a representation function for the
vorticity distribution. We illustrate this in the following sections by making use of
the analogy with the mean-field Ising model pointed out above.
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Fig. 3 Exemples of two microstates with different vorticity distribution, which are mapped to the
same coarse-grained vorticity field by the operator C, in the three-level case: S= {−1, 0, 1}
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Fig. 4 Mean-field Ising model: observables (hamiltonian and magnetization) and representation
function for the energy (left) and most probable magnetization as a function of temperature in the
canonical ensemble (right)

3.5.1 Mean-Field Ising Model

Remember the mean-field Ising model described in Sect. 2.4.1. We have mentioned
above that there is a representation function for the energy in terms of the magneti-
zation (Fig. 4). Therefore it is sufficient to obtain a large deviation principle for the
magnetization with respect to the unconstrained measure. If N+ (resp. N−) is the
number of + (resp. −) spins, the magnetization is given byM[ŝ] = (N+ − N−)/N ,
and we have N+ + N− = N . In other words, N±/N = (1 ± M[ŝ])/2. Hence, the
unconstrained probability to observe a given magnetization is

μ(N )(M[ŝ] = m) = N !
2N N+!N−! (71)

= eNS [m]+o(N ), (72)

where the mean-field entropy is given by (up to an unimportant constant ln 2)

S [m] = −1 + m

2
ln

(
1 + m

2

)
− 1 − m

2
ln

(
1 − m

2

)
, (73)

which proves that themagnetization observable satisfies a large deviation principle. It
is customary to work in the canonical ensemble (see Sect. 3.4), and themost probable
states are therefore solutions of the variational problem:

F(β) = min
m∈[−1,1] (βHI M F [m] − S [m]) , (74)

where F is the free energy (per spin). UsingHI M F [m] = −m2 and (73), it is easily
shown that for β = 1/(kT ) smaller than a critical value βc = 1/(kTc) (high temper-
ature T ), there is a unique solution m = 0, while for β larger than the critical value



An Introduction to Large Deviations and Equilibrium … 75

(low temperature), there are two non-zero solutions ±m0(T ). The most probable
magnetization as a function of the temperature is represented on Fig. 4.

3.5.2 Two-Level System

We have noted above that when the vorticity level set is made of two opposite
values, S = {σ0,−σ0} (with σ0 > 0), the system becomes analogous to the mean-
field Ising model studied above. The only difference is the vorticity distribution
conservation constraint (and the interaction coefficients). This amounts to keeping
fixed the number of + and − spins in the Ising model, or equivalently, to fixing
the magnetization. But the magnetization here is nothing but the circulation 
1.
Therefore, conservation of the Casimir invariants in the discretized two-level model
reduces to conservation of the circulation.

Another way to see this is to show explicitly that there exists a representation
function for the vorticity distribution in this case. The coarse-graining operator C
takes value in a discrete subset of R

M : denoting S̄n = {( 2k
n − 1

)
σ0, 0 ≤ k ≤ n},

the image of the operator is S̄M
n . Here, k corresponds to the number of sites with

value σ0 in each coarse-graining cell. The relation between k and ω̄i can be inverted:
k = n(1 + ω̄i/σ0)/2, and we obtain

γ+ = 1

N

M∑
i=1

n

2

(
1 + ω̄i

σ0

)
, (75)

= 1

2
+ 
1

2σ0
, (76)

and similarly,

γ− = 1

2
− 
1

2σ0
. (77)

Note that, as expected,γ++γ− = 1 (Eq. (13)) and (γ+−γ−)σ0 = 
1 (Eq. (11)).Now,
it is an easy task to evaluate the unconstrained probability of a given coarse-grained
vorticity field:

μ(N )(C[ω̂] = ω̄) = Card C−1[ω̄]
2N

= 2−N
M∏

i=1

n!
(n/2(1 + ω̄i/σ0))!(n/2(1 − ω̄i/σ0))! ,

(78)

= eNS̄M,2[ω̄]+o(N ), (79)
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with the entropy of the coarse-graining observable (up to an unimportant constant
ln 2)

S̄M,2[ω̄] = − 1

2M

M∑
i=1

[(
1 + ω̄i

σ0

)
ln

(
1 + ω̄i

σ0

)
+

(
1 − ω̄i

σ0

)
ln

(
1 − ω̄i

σ0

)]
.

(80)

The contraction principle ensures that, as can be checked explicitly,

S̄M,2[ω̄] = max
P∈MM,2(R)

{SM,2[P] | E[P] = ω̄}. (81)

By the same token as in Sect. 3.2, it follows that the most probable coarse-grained
vorticity fields are solutions of the constrained variational problem:

S(E, γ ) = max
ω̄∈S̄M

n

{S̄M,2[ω̄] | H̄M [ω̄] = E, Ḡ(+)

M [ω̄] = γ+, Ḡ(−)

M [ω̄] = γ−}, (82)

or equivalently,

S(E, 
1) = max
ω̄∈S̄M

n

{S̄M,2[ω̄] | H̄M [ω̄] = E, M̄M [ω̄] = 
1}. (83)

Straightforward computations show that the critical points of the variational problem
are solutions of the equation:

ω̄ = σ0 tanh

(
(βψ̄ + α1)σ0

2

)
. (84)

3.5.3 Fragile Constraints and Constrained Casimir Variational Problem

It has been observed by several authors that none of the Casimir invariants 
p

(moments of the vorticity field) except the first (circulation) can be obtained from the
coarse-grained vorticity field ω̄. For this reason they are often referred to as fragile
invariants, in the sense that they do not survive coarse-graining. This is exactly the
same as saying that there is no representation function for the Casimir invariants
(or, equivalently, for the vorticity distribution γ (σ )) in terms of the coarse-grained
vorticity field ω̄, except in the particular case mentioned above. However, with an
arbitrary vorticity distribution, a large deviation principle can still be obtained by
contraction, as illustrated above in the two-layer case. This provides a variational
problem for the most probable coarse-grained vorticity field, even though it still
relies on an auxiliary maximization on the distribution P for the vorticity levels.

Because of their fragile nature, and because an infinite number of invariants is
difficult to handle in practice, it was suggested [16, 27] to treat these invariants in a
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canonical ensemble, and to consider the Lagrange parameter α(σ) as a prior vorticity
distribution chosen based on physical intuition of the problem at hand. This provides
a subset of solutions of the microcanonical variational problem, but not necessarily
the full set (see Sect. 3.4). However, this variational problem, expressed in terms of
the distribution P for the vorticity levels, is equivalent to minimizing, with respect to
the coarse-grained vorticity field ω̄, the so-called Casimir functionals

∫
D s(ω) with

fixed energy, where s is a convex function, choosing for s the Legendre-Fenchel
transform of lnZα [9].

3.6 The Energy-Enstrophy Measure

3.6.1 Gibbs Measure for Galerkin Truncated Flows

In this section we investigate the statistical mechanics of the 2D Euler equations
resulting from simplifying the conservation constraints: we retain only the energy
and the enstrophy invariants. This was actually one of the starting points for statistical
mechanics of turbulent flows: Lee in 3D [47] and Kraichnan in 2D [42] considered
Fourier series of the dynamical fields truncated at a given order N . In 3D, the only
invariants are the energy and the helicity, while in 2D, Kraichnan considered the
energy:

HN [ω̂] = 1

2

N∑
i=1

|ω̂i |2
λi

, (85)

and the enstrophy

GN [ω̂] = 1

2

N∑
i=1

|ω̂i |2, (86)

where the truncated vorticity field is given by

ω̂(x) =
N∑

i=1

ω̂iφi (x), �φi = −λiφi , 0 ≤ λi ≤ λi+1. (87)

It is assumed that the truncated vorticity field ω̂ is a random variable distributed
according to the canonical (Gibbs) measure:

μ
(N )
β,α (dω̂) = 1

Ze−βHN [ω̂]−αGN [ω̂]
N∏

i=1

dω̂i . (88)
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This is a Gaussian probability density, well-defined if β + αλi > 0 for all i . This
condition leads to three possible regimes: (i) β < 0, α > 0, (ii) β > 0, α > 0, (iii)
β > 0, α < 0. In each case, Kraichnan considered the energy spectrum Ei [ω̂] =
|ω̂i |2
2λi

and computed its average value with respect to the Gibbs measure [42, 44]:

〈Ei 〉 = 1
2(β+αλi )

. In the negative temperature (β < 0) regime, the spectrum peaks at
the gravest mode φ1; there is even an infrared divergence when β → −αλ1. This
is classically interpreted as an indication that not only nonlinear interactions in 2D
flows tend to transfer energy towards the large scales (the inverse cascade), but there
is a tendency for energy to accumulate in the gravest mode to form a condensate [6,
21, 85]. Note that the average value of each vorticity mode vanishes by symmetry:
〈ω̂i 〉 = 0, because a given vorticity field and its opposite have the same probability
in the canonical ensemble. Of course, in reality, the system will spontaneously break
the symmetry and choose a vorticity field, which can be computed in the limit of
large N using large deviations results for the macrostates as we did above. In the
energy-enstrophy ensemble, averaging over the set of equilibrium states indeed yields
a vanishing mean value, thereby showing that statistical mechanics is more about
most probable states than average values.

3.6.2 Large Deviations in the Microcanonical Ensemble

Using the same notations as in the previous paragraph, one may assume that the
truncated vorticity field is distributed according to the microcanonical measure

μ
(N )
E,
2

(dω̂) = 1

�N (E, 
2)
δ(HN [ω̂] − E)δ(GN [ω̂] − 
2)

N∏
i=1

dω̂i , (89)

instead of the Gibbs measure μ
(N )
β,α (dω̂), with the structure function given by

�N (E, 
2) =
∫

δ(HN [ω̂] − E)δ(GN [ω̂] − 
2)

N∏
i=1

dω̂i . (90)

Rather exceptionally, since both constraints involve quadratic functions, the struc-
ture function can be computed explicitly, using integral representations of the Dirac
distributions [10], and thus also the entropy:

�N (E, 
2) = eN S(E,
2)+o(N ), (91)

S(E, 
2) = 1

2
ln(
2 − 2λ1E). (92)

Note that Bouchet and Corvellec [10] have also checked with explicit compu-
tations that this entropy defined as the joint large deviation rate function for
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the energy and enstrophy observables (i.e. the Boltzmann formula S(E, 
2) =
lim(1/N ) ln�N (E, 
2), given in (92)) coincides with the entropy defined through
the variational problem for the macrostates, as expected from the contraction prin-
ciple (Eq. (47)). A similar computation of the structure function was carried out by
Kastner and Schnetz [40] for the mean-field spherical model defined in Sect. 2.4.2.

From the joint large deviation principle for the energy and enstrophy, we can
deduce a large deviation principle for the energy spectrum observable [10]:

μ
(N )
E,
2

(Ei [ω̂] = Ei ) = e
NS (i)

E,
2
[Ei ]+o(N )

, (93)

with

S (1)
E,
2

[E1] =
{

1
2 ln(
2 − 2λ2E + 2(λ2 − λ1)E1) if 0 < E1 < E

−∞ otherwise
, (94)

and for i > 1,

S (i)
E,
2

[Ei ] =
{

1
2 ln(
2 − 2λ1E − 2(λi − λ1)Ei ) if 0 ≤ Ei ≤ E

−∞ otherwise
. (95)

The large deviation rate functions are monotonous:S (1)
E,
2

[E1] is an increasing func-
tion of E1, andS

(i)
E,
2

[Ei ] are decreasing functions of Ei . Therefore, the most proba-
ble energy spectrum in the limit N → +∞ has all its energy in the gravestmode. This
can be seen as the microcanonical counterpart of the Kraichnan argument presented
in Sect. 3.6.1. It provides further theoretical evidence for the spectral condensation
in 2D turbulence.

The above discussion on the vanishing of the average truncated vorticity field
also applies in the microcanonical ensemble. The mean-field theory allows to com-
pute the most probable macrostates: we find a linear mean-field equation for the
coarse-grained vorticity field: ω̄ = β/(2α)ψ̄ , which is easily solved and yields
ω̄ = √

2λ1Eφ1, in agreement with the above prediction.

4 Conclusion

In this chapter, we have given a brief introduction to the methods of equilibrium
statistical mechanics applied to models of turbulent flows, focusing on the case of
two-dimensional flows. Themain purpose of the course was to show, in the context of
a lattice discretization of the system, how some well-chosen observables, such as the
distribution of fined-grained vorticity levels, concentrate in probability around a set
of equilibrium values. Such properties are conveniently expressed using the theory
of large deviations. In fact, we have closely followed the principles of equilibrium
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statistical mechanics formulated in the language of large deviations, as exposed for
instance in [89]. Amajor ingredient in deriving the large deviation results is the long-
range character of the interactions, because it leads to the existence of a representation
function for the energy. This is a major simplification, as it allows us to compute the
probability of a macrostate with respect to the uniform measure and then deduce the
probability with respect to the microcanonical measure. We have emphasized this
point by considering another observable, the coarse-grained vorticity field (for which
there is no representation function for the vorticity distribution) and by making the
analogy with a simpler system, the mean-field Ising model.

The large deviation principle leads to a variational problemcharacterizing themost
probable macrostates. This allows to compute coarse-grained vorticity fields which
should correspond in practice to the final state of the system, if ergodicity holds.
This provides a statistical explanation of the spontaneous emergence of coherent
structures in two-dimensional flows. The equilibrium states obtained may depend on
the choice of probability measure in phase space: we have discussed the relations
between the standard ensembles of statistical mechanics and given a connection with
the concavity properties of the entropy.

In the simpler context of the energy-enstrophy measure, we have explained that
the energy spectrumobservable also satisfies a large deviation principle, which shows
that the most probable state has all its energy condensed in the gravest mode. This is
physically consistent with the familiar ideas of inverse cascade of energy and energy
condensation for 2D flows.
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Recent Developments on the Micropolar
and Magneto-Micropolar Fluid Systems:
Deterministic and Stochastic Perspectives

Kazuo Yamazaki

Abstract We review recent developments on the micropolar and magneto-
micropolar fluid systems in spatial dimensions two and three from both determinis-
tic and stochastic perspectives. Under the deterministic setting, we review the global
regularity result in two-dimensional space with zero angular viscosity and a reg-
ularity criterion in three-dimensional space that involves only two velocity vector
field components. Under the stochastic setting, we review the existence of a weak
martingale solution in three-dimensional space and the unique strong solution in two-
dimensional space under a suitable condition on the noise. Throughout the paper, we
compare these resultswith other partial differential equations related to fluidmechan-
ics, such as the Navier-Stokes equations, magnetohydrodynamics and Boussinesq
systems.

1 Introduction

We study the following micropolar fluid (MPF) system (1) and (2) as well as the
magneto-micropolar fluid (MMPF) system (3)–(5) presented in a three-dimensional
case:

du

dt
+ (u · ∇)u + ∇π − (μ + χ)�u (1)

= χ(∇ × w) + f1(y, t) + g1(y, t)
dW1

dt
,

δ
dw

dt
+ δ(u · ∇)w − γ�w (2)

= −2χw + (α+ β)∇divw + χ(∇ × u) + f2(y, t) + g2(y, t)
dW2

dt
,
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du

dt
+ (u · ∇)u − r(b · ∇)b + ∇π − (μ + χ)�u (3)

= χ(∇ × w) + f̃1(ỹ, t) + g̃1(ỹ, t)
dW1

dt
,

δ
dw

dt
+ δ(u · ∇)w − γ�w (4)

= −2χw + (α+ β)∇divw + χ(∇ × u) + f̃2(ỹ, t) + g̃2(ỹ, t)
dW2

dt
,

db

dt
+ (u · ∇)b − (b · ∇)u − ν�b = f̃3(ỹ, t) + g̃3(ỹ, t)

dW3

dt
(5)

subjected to the following divergence-free and initial conditions:

∇ · u = ∇ · b = 0, (u, w, b)(x, 0) = (u0, w0, b0)(x).

In the Eqs. (1)–(5) we denoted y � (u, w), ỹ � (u, w, b), where u, w, b, π repre-
sent the velocity, micro-rotational velocity, the magnetic vector fields and the hydro-
static pressure scalar field respectively. Moreover, Wi , i = 1, 2, 3 are the Wiener
processes in mi -dimension respectively. We also denoted physically meaningful
quantities: r = M2

ReRm where M is the Hartmann number, Re the Reynolds number,
Rm themagnetic Reynolds number,χ the vortex viscosity,μ the kinematic viscosity,
δ the microinertia, α, β, γ the angular viscosities, ν = 1

Rm all of which taking into
account of conditions such as Calusius-Duhem inequality we assume to be positive
unless specifically mentioned. Finally, the functions fi , gi , f̃i , g̃i , i = 1, 2, 3 are
forcing terms.

Hereafter, for simplicity let us denote d
dt by ∂t and d

dxi
by ∂i , i = 1, 2, 3 and

assume that δ = r = 1. Let us use the notation A �a,b B to imply that there exists
a non-negative constant c that depends on a, b such that A ≤ cB. We also write the
Lebesgue and Sobolev spaces L p, W m,p, Hm � W m,2 respectively and

L
p � (L p)d , W

m,p � (W m,p)d .

Both the MPF and the MMPF systems are generalizations of many other impor-
tant partial differential equations (PDE) of fluid mechanics and hence analysis on
these systems are of much interest to wide audience of mathematicians, engineers
and physicists. Firstly, the MMPF system at w ≡ b ≡ 0 deduces the Navier-Stokes
equations (NSE)which iswell-known for its various applications in realworld aswell
as the mathematically challenging problem whether given an initial data sufficiently
smooth, its solution will remain smooth for all time or not. Moreover, the MMPF
system at χ = 0, w ≡ 0 reduces to the magnetohydrodynamics (MHD) system
which describes the motion of electrically conducting fluids and has broad applica-
tions in applied sciences including astrophysics, geophysics and plasma physics. We
also observe that the MMPF system (3)–(5) at b ≡ 0 reduces to the MPF system (1)
and (2).
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The micropolar fluids were formally introduced in [15] as the fluid consisting
of bar-like elements, for example anisotropic fluids, such as liquid crystals made
up of dumbbell molecules and animal blood. Subsequently, the MMPF system was
introduced by the authors in [1] in which they studied Serrin-type stability. Both
systems found much attraction for further investigation thereafter ([14, 28, 52] for
the MPF system, [21, 30, 32, 51] for the MMPF system and the references found
therein).

The rest of this manuscript is organized as follows. In the next section, we discuss
new results in the deterministic case when gi , g̃i ≡ 0 in (1)–(5). Thereafter, we
discuss new results in the stochastic case when gi , g̃i are not necessarily identically
zero. Finally, we finish with a brief conclusion.

2 Deterministic Case

2.1 Global Regularity of the 2D MMPF System with Zero
Angular Viscosity

In this section, we specifically study the two-dimensional (2D) MMPF system with
a spatial domain being R

2 which takes the following form:

∂t u + (u · ∇)u − (b · ∇)b + ∇π − (μ + χ)�u = χ(∇ × w), (6)

∂t w + (u · ∇)w − γ�w = −2χw + χ(∇ × u), (7)

∂t b + (u · ∇)b − (b · ∇)u − ν�b = 0. (8)

The present form (6)–(8) is due to the fact that following the previous work (for
example [14, 28]) on the 2D case, we set

u = (u1, u2, 0), b = (b1, b2, 0), w = (0, 0, w3). (9)

We remark that the results in this section remain valid after keeping f̃i , i = 1, 2, 3
under a suitable condition. Let us set the following standard notations:

� � ∇ × u = ∂1u2 − ∂2u1, j � ∇ × b = ∂1b2 − ∂2b1, ∇ × w = (∂2w,−∂1w)

(10)

where ∇ × u,∇ × b represent the vorticity and current density respectively.
It is well known (for example [21, 28]) that by classical methods, the system

(6)–(8) when μ,χ, γ, ν > 0 admits a unique weak solution (u, w, b) globally in
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time. This result may be understood as a generalization of analogous results for the
2D NSE and the 2D MHD system [34]. Let us present our result:

Theorem 1 ([46]) For every (u0, w0, b0) ∈ H
s(R2), s > 2, there exists a unique

solution triple (u, w, b) to (6)–(8) with γ = 0 such that

u, b ∈ C([0,∞);Hs(R2)) ∩ L2([0,∞);Hs+1(R2)), w ∈ C([0,∞);Hs(R2)).

The proof of the local existence of the unique solution can be achieved in many
ways, for example usingmollifiers following thework on theNSE.Let us elaborate on
the difficulty of extending such local existence to global as claimed in the statement of
Theorem 1. TakingL2-inner products with (u, w, b) on (6)–(8) at γ = 0 respectively,
using divergence-free property of u, b, summing and using the fact that

∫
R2

(∇ × w) · udx =
∫
R2

(∇ × u)wdx

lead to

1

2
∂t (‖u‖2

L2 + ‖w‖2
L2 + ‖b‖2

L2) + (μ + χ)‖∇u‖2
L2 + 2χ‖w‖2

L2 + ν‖∇b‖2
L2 (11)

≤ 2χ‖w‖L2‖∇u‖L2 ≤ 2χ‖w‖2
L2 + χ

2
‖∇u‖2

L2

where we used the Hölder’s and Young’s inequalities. Therefore, after absorbing the
right hand side, integrating in time we obtain

sup
t∈[0,T ]

(
‖u‖2

L2 + ‖w‖2
L2 + ‖b‖2

L2

)
(t) +

∫ T

0
‖∇u‖2

L2 + ‖∇b‖2
L2dτ �u0,w0,b0 1.

(12)

We observe that the claim in Theorem 1 is reminiscent of the important result
that although the 2D NSE is L2-norm critical, the 2D Euler equations, which is the
NSE with (μ+χ) = 0, admits a global regularity result ([54]). The key observation
in [54] was that taking a curl on the 2D Euler equations reduces the equations to
a transport equation of vorticity � so that ‖�‖L∞ becomes bounded uniformly in
time which is more helpful than ‖u‖L2 -bound in the process of a priori estimates.
Experimenting this idea and taking a curl on (6) gives

∂t� − (μ + χ)�� = −(u · ∇)� + (b · ∇) j − χ�w. (13)

Due to the lack of angular viscosity, we have no obvious way to handle −χ�w. An
immediate idea is to couple this estimate with that of w in regularity high enough
to absorb − χ�w. However, taking L

2-inner products on (7) at γ = 0 with −�w
leads to
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1

2
∂t‖∇w‖2

L2 ≤
∫
R2

∇u · ∇w · ∇wdx − χ

∫
R2

(∇ × u)�wdx (14)

for which it is not clear at all how to handle the first non-linear term without angular
viscosity. In fact,we can takeHölder’s andGagliardo-Nirenberg inequalities to obtain

∫
R2

∇u · ∇w · ∇wdx ≤ ‖∇u‖L2‖∇w‖2
L4 � ‖�‖L2‖∇w‖L2‖�w‖L2

so that clearly in the presence of the angular viscosity, this estimate may be closed
to lead to the global regularity result. Therefore, the lack of angular viscosity seems
to create a major obstacle in attaining the necessary a priori estimates.

Remark 1 We point out here the distinctive difference between the MPF or the
MMPF system and the Boussinesq systemwhichmay be written with same notations
as (6) and (7) as follows:

∂t u + (u · ∇)u + ∇π − (μ + χ)�u = χw2, (15)

∂t w + (u · ∇)w − γ�w = 0. (16)

The crucial fact here is thatχw2 in (15) is less singular thanχ(∇×w) of (6) and the
current issue of −χ�w in (13) being too singular would be much less severe in the
case of the Boussinesq system. As we will discuss in subsequent sections our results
in the stochastic case, we believe that this differencemay bring interesting challenges
in mathematical analysis so that even though the stochastic Boussinesq system has
been studied intensively (for example [16]), perhaps not all the results known for
the stochastic Boussinesq system may be readily generalized to the stochastic MPF
or the MMPF system. At least in the deterministic case, there are many results that
exist for the Boussinesq system (for example [22]) that do not seem to be easily
generalized to the MPF system. Similarly, many results that are known to exist for
the deterministic MHD system may not be readily generalized to the MMPF system
due to same issue.

The first important idea in the proof of Theorem 1 is the following observation
from [14] that by defining

Z � � −
(

χ

μ + χ

)
w, (17)

we can take advantage of its evolution in time governed by the equation of

∂t Z = (μ + χ)�Z − (u · ∇)Z − c1Z + c2w + (b · ∇) j (18)
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where we denoted

c1 �
χ2

μ + χ
≥ 0, c2 � 2χ2

μ + χ
− χ3

(μ + χ)2
.

Multiplying (18) by |Z |p−2Z , integrating in space, using the divergence-free property
of u andHölder’s inequality and dividing by ‖Z‖p−1

Lp , we obtain taking limit p → ∞,

∂t‖Z‖L∞ � ‖w‖L∞ + ‖b‖L∞‖∇ j‖L∞ . (19)

On the other hand, from (7) with γ = 0 we can estimate similarly

1

p
∂t‖w‖p

Lp + 2χ‖w‖p
Lp ≤ χ‖�‖Lp‖w‖p−1

Lp � ‖Z‖Lp‖w‖p−1
Lp + ‖w‖p

Lp

due to the divergence-free property of u, Hölder’s inequality and (17). Dividing by
‖w‖p−1

Lp and taking limit p → ∞ lead to

∂t‖w‖L∞ � ‖Z‖L∞ + ‖w‖L∞ (20)

so that in sum of (19) and (20), we obtain

∂t (‖Z‖L∞ + ‖w‖L∞) � ‖Z‖L∞ + ‖w‖L∞ + ‖b‖L∞‖∇ j‖L∞ .

This inequality is very similar to the key observation for the 2D generalized MHD
system that led to many new results very recently (for example [8, 24, 38, 41, 42,
50, 53] and references found therein). Indeed, we may execute an iteration scheme
in a way that a certain bound of j will lead to a bound of Z , which in turn leads to the
bound of w and then � until its regularity is high enough so that via a commutator
estimate using Besov space techniques, the proof of Theorem 1 can be completed.

Inmore detail, using (12) and taking advantage of (18),we canobtain the following
bound:

sup
t∈[0,T ]

(‖Z‖2
L2 + ‖�‖2

L2 + ‖ j‖2
L2)(t) +

∫ T

0
‖∇Z‖2

L2 + ‖∇ j‖2
L2dτ � 1 (21)

(see Proposition 3 in [46]). We can improve the bounds uniform in time furthermore;
specifically ∀ q ∈ [2, 4], we can obtain the following bound:

sup
t∈[0,T ]

(‖Z‖Lq + ‖�‖Lq + ‖ j‖Lq )(t) � 1 (22)

(see Proposition 4 in [46]). Using (12), (21) and (22) we can propel the bounds up to

∫ T

0
‖�‖L∞ + ‖w‖2

L∞ + ‖∇ j‖L2dτ � 1. (23)
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Due to the classical results from [3], one can understand that we have a sufficient
bound in terms of u from ‖�‖L∞ in (23). Moreover, due to the following Brezis-
Wainger type inequality

‖∇ f ‖L∞ � ‖ f ‖L2 + ‖∇ f ‖H1 log2(2 + ‖ f ‖Hs ) + 1

valid ∀ f ∈ L
2(R2) ∩ H

s(R2), s > 2 (see [6, 48] for the proof of this specific
inequality), we see that we have a sufficient bound in terms of b from ‖∇ j‖L2 in
(23). However, as (23) does not provide any bound on the derivative of w, it is not
clear whether (23) is sufficient to imply the higher regularity of Hs, s > 2.

The second part of the proof of Theorem 1 is to show that (23) is indeed sufficient
to complete the proof of Theorem 1. In order to explain, let us briefly recall some
Besov spaces settings below all of which can be found for example in [10].

We denote by S(R2) the Schwartz class functions, S′(R2) its dual and

S0 � {φ ∈ S,

∫
R2

φ(x)xldx = 0, |l| = 0, 1, 2, ...}.

Its dual S′
0 is given by S′

0 = S/S⊥
0 = S′/P where P is the space of polynomials.

For k ∈ Z we define

Ak � {ξ ∈ R
2 : 2k−1 < |ξ | < 2k+1}.

It is well-known that there exists a sequence {
k} in S(R2) such that

supp 
̂k ⊂ Ak, 
̂k(ξ) = 
̂0(2
−kξ) or 
k(x) = 22k
0(2

k x) and

∞∑
k=−∞


̂k(ξ) =
{
1 if ξ ∈ R

2 \ {0},
0 if ξ = 0

where we denote the Fourier transform of f by f̂ . Consequently, for any f ∈ S′
0,

∞∑
k=−∞


k ∗ f = f.

We can let � ∈ C∞
0 (R2) be such that

1 = �̂(ξ) +
∞∑

k=0


̂k(ξ), f = � ∗ f +
∞∑

k=0


k ∗ f,
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for any f ∈ S′ and set

�k f �

⎧⎪⎨
⎪⎩
0 if k ≤ −2,

� ∗ f if k = −1,


k ∗ f if k = 0, 1, 2, ....

The following Bernstein’s inequalities have proven to be one of the most useful
tools in obtaining needed estimates in Besov space settings:

Lemma 1 Let f ∈ L
p(R2) with 1 ≤ p ≤ q ≤ ∞ and 0 < r < R. Then for all

s ∈ Z
+ ∪ {0}, and λ > 0, there exists a constant Cs ≥ 0 such that

sup
|k|=s

‖∂k f ‖Lq ≤ Csλ
s+2( 1

p − 1
q )‖ f ‖Lp if supp f̂ ⊂ {ξ : |ξ | ≤ λr},

C−1
s λs‖ f ‖Lp ≤ sup|k|=s‖∂k f ‖Lp ≤ Csλ

s‖ f ‖Lp if supp f̂ ⊂ {ξ : λr ≤ |ξ | ≤ λR},

and if we replace derivative ∂k by the fractional derivative, the inequalities remain
valid only with trivial modifications.

We also recall the Bony’s paraproduct decomposition:

f g = T f g + Tg f + R( f, g)

where

T f g =
∑

k

Sk−1 f �k g, R( f, g) =
∑

k,k′:|k−k′|≤1

�k f �k′ g, Sk−1 =
∑

m:m≤k−2

�m .

We refer to [10] for more details on Besov spaces. Now in [14, 46], the following
commutator estimates were proved:

Lemma 2 Let s > −1, f ∈ H
s(R2)∩L

∞(R2),∇g ∈ H
s(R2) ∩ L

∞(R2),∇ ·g =
0. Then for any k ≥ 3,

‖[�k, gi∂i ] f ‖L2 � ck2
−ks(‖∇g‖L∞‖ f ‖Hs + ‖∇g‖Hs ‖ f ‖L∞).

Moreover, for s > 0 if additionally ∇ f ∈ L
∞(R2), then for any k ≥ −1,

‖[�k, gi∂i ] f ‖L2 � ck2
−ks(‖∇g‖L∞‖ f ‖Hs + ‖g‖Hs ‖∇ f ‖L∞)

where {ck} ∈ l2k≥−1.

We just mention that the proof of Lemma 2 makes use of Bernstein’s inequalities
in Lemma 1 and Bony’s paraproduct decomposition and refer to [14, 46] for details.

Using Lemma 2, one can show that indeed (23) is sufficient to reach the higher
regularity of H

s, s > 2 (see Proposition 2 [46]). We omit further details and
refer to [46].
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2.2 Regularity Criterion of the 3D MMPF System in Terms
of Two Velocity Components

In this section, we specifically study the three-dimensional (3D) MMPF system with
a spatial domain being R

3, although generalization to T
3 is possible. It takes the

following form:

∂t u + (u · ∇)u − (b · ∇)b + ∇π − (μ + χ)�u = χ(∇ × w), (24)

∂t w + (u · ∇)w − γ�w = −2χw + (α+ β)∇divw + χ(∇ × u), (25)

∂t b + (u · ∇)b − (b · ∇)u − ν�b = 0. (26)

In [30, 32], the authors obtained the local existence of the unique weak solution
and extended to be global under small initial data conditions. The global regularity
issue of the system (24)–(26) is expected to be extremely difficult because its special
case, as we discussed, is the NSE.

In the absence of global regularity results, an important direction of research is
extension and improvements of conditions for regularity initiated by the pioneering
work in [35]:

Theorem 2 ([35]) If u is a weak solution to the 3D NSE in [0, T ] and

∫ T

0
‖u‖r

Lpdτ < ∞,
3

p
+ 2

r
< 1, p ∈ (3,∞],

then u is smooth.

Remark 2 We remark here that as we will discuss more in subsequent sections, there
is also an increasing interest in the uniqueness of a solution to the stochastic partial
differential equations (SPDE), such as the stochastic NSE (for example [17]).

Moreover, in the deterministic case the result concerning the partial regularity
theory for the NSE by the authors in [7] is well-known and an analogous study for
the stochastic NSE with additive noise has been initiated by the authors in [20].

For a system which consists of a solution (u, w, b) as (24)–(26), it is typically
expected that a certain bound on all u, w, b are required for the local strong solution
to be extended globally in time. However, the author in [51] was able to show that
the following condition on the velocity vector field u alone suffices:

∫ T

0
‖u‖r

Lpdτ < ∞,
3

p
+ 2

r
≤ 1, 3 < p ≤ ∞ (27)
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(see also [52] for the MPF system). We remark that the condition described in (27)
imposes a certain bound on all three components u1, u2, u3 of u = (u1, u2, u3). Let
us present our result:

Theorem 3 ([45]) Let u0, w0, b0 ∈ H
s(R3), s ≥ 3. Suppose

u, w, b ∈ C([0, T );Hs(R3)) ∩ L2([0, T );Hs+1(R3)), (28)

is a solution to the MMPF system (24)–(26) and there exists a constant C0 ≥ 0 so
that

3∑
l=2

∫ T

0
‖ul‖rl

L
pl dτ ≤ C0,

3

pl
+ 2

rl
≤ 1

2
, 6 < pl ≤ ∞. (29)

Then (u, w, b) remains in the same regularity class of (28) on [0, T ′] for some T ′ > T .

Remark 3 1. Let us emphasize that (29) imposes no condition on u1 at all. More-
over, we note that the Theorem 3 also gives a new result for the MPF system
because the MMPF system at b ≡ 0 reduces to the MPF system.

2. The proof of Theorem 3 is inspired by similar component reduction results on the
regularity criterion for the solution to the NSE, for example [26]. However, the
proof in [26] depends crucially on the divergence-free property of u of the NSE
while w in (24)–(26) lacks this advantage.

3. It is an interesting open problem whether we can reduce this regularity criterion
presented in (29) to one component, for example u3. In fact, even though such
a result is well-known for the NSE (for example [26]), it remains open even for
the MHD system (see [43, 45]). It is also a research direction of great importance
whether the upper bound of 1

2 in (29) may be improved up to 1 as in (27).

The proof of Theorem 3 consists of two key steps. Firstly, the standard commu-
tator estimates show that the H1-bounds of (u, w, b) imply higher regularity for the
solution to the system (24)–(26). Upon the H

1-estimates of (u, w, b) which starts
by taking L2-inner products on (24)–(26) with (−�u,−�w,−�b) respectively, the
following decomposition of the non-linear terms in (24) and (26) were crucial:

Lemma 3 ([45]) Suppose u, b ∈ C∞(R3),∇ · u = ∇ · b = 0. Then

∫
R3

(u · ∇)u · �u − (b · ∇)b · �u + (u · ∇)b · �b − (b · ∇)u · �bdx (30)

�
3∑

l=2

∫
R3

|ul |(|∇u||∇2u| + |∇b||∇2b|) + |bl |(|∇u||∇2b| + |∇b||∇2u|)dx
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(see also [43, 44]). With this decomposition, we may manipulate our estimates to
shift the sufficient condition for regularity to u2, u3, b2, b3. The second key step in
the proof of Theorem 2 is the following estimate:

Lemma 4 ([45]) Let (u, b) satisfy (24) and (26) in [0, T ] and l ∈ {1, 2, 3}. Then
for any t ∈ [0, T ], p ∈ (2, 6],

sup
τ∈[0,t]

‖bl(τ )‖2
Lp ≤ ‖bl(0)‖2Lp + c(p)

∫ t

0
‖∇b(τ )‖2

L2‖ul(τ )‖2
L

6p
6−p

dτ (31)

where 6p
6−p = ∞ if p = 6

(see also [43, 44, 55]).
The message of this lemma is that one can estimate the lth component of b in

terms of the same lth component of u. The proof of Lemma 4 relies on the simplicity
of the equation that governs the evolution of bl in time according to (26), namely

∂t bl − ν �bl = −(u · ∇)bl + (b · ∇)ul

so that upon any L
p-estimate of bl , the first non-linear term vanishes due to the

divergence-free property of u while in the second non-linear term, ul is already
separated.

With these two lemmas in hand, the rest of the proof consists of careful energy
estimates using anisotropic Sobolev inequalities. We refer interested readers to [45]
for details.

3 Stochastic Case

3.1 Existence of Weak Martingale Solution for the 3D MPF
and the MMPF Systems with Non-Lipschitz Multiplicative
Noise

In this section, we study the 3D MPF system (1) and (2) and the MMPF systems
(3)–(5) fully. We first remark that in case gi , g̃i , i = 1, 2, 3 do not depend on the
solution y, ỹ respectively so that the noise is only additive rather than multiplicative,
these SPDE may be solved in a way that is very similar to the deterministic case.
Indeed, the author in [18] considered the stochastic NSE (see [12] in the case of the
stochastic Burgers equations)

du(t) + [(u · ∇)u(t) + ∇π(t) − (μ + χ)�u(t)]dt = f1(t)dt + g1(t)dW1(t) (32)
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where we emphasize in particular that g1 is independent of u. A remarkable strategy
to tackle this SPDE with such an additive noise is to consider the following auxiliary
Ornstein-Uhlenbeck equation

dzδ(t) − [(μ + χ)�zδ(t) − δzδ(t)]dt = g1(t)dW1(t), δ ∈ R
+ (33)

for which the solution is well understood due to the lack of nonlinearity (see [11]).
Hence, one can study the equation of the difference u − zδ for which the noise term
cancels and therefore the techniques from deterministic case becomes applicable.

We mention that for the Boussinesq system (15) and (16), the authors in [9, 23]
independently showed that the system admits a globally regular unique solution pair
(u, w) even in casesμ+χ > 0, γ = 0 and μ+χ = 0,χ > 0, γ > 0. Considering an
appropriate Ornstein-Uhlenbeck equation and canceling the noise term, the authors
in [5] extended such results to the stochastic Boussinesq system with additive noise.
The stochastic MHD system with additive noise is also considered by the authors in
[2, 37].

In case gi , g̃i , i = 1, 2, 3 depend on the solution y, ỹ respectively, the noise must
be handled with more care. Let us consider the following non-slip boundary and
perfectly conducting wall conditions with nonrandom initial data on the boundary
of some bounded domain D ⊂ R

3:

⎧⎪⎨
⎪⎩

u|∂ D(t) = w|∂ D(t) = 0, ∀ t ∈ [0, T ],
b · n|∂ D = 0, ∀ t ∈ [0, T ],
(∇ × b) × n|∂ D = 0, ∀ t ∈ [0, T ]

(34)

where n is an outward unit normal vector on ∂ D. For the case of the domain being
R
3, we refer to for example [29] where the author studied the stochastic NSE in the

whole space.
Let us explain further notations and define the weak martingale solution to the

MPF system (1) and (2) and the MMPF system (3)–(5). We write Hm
0 = Ker(γ0)

where γ0 : Hm(D) �→ L2(∂ D) is the bounded trace operator that agrees with
v �→ v|∂ D for v ∈ C1(D) and denote Hm

0 � (Hm
0 (D))d .

Given any separable Banach space E , we denote by B(E) the Borel σ -algebra on
E and L p

T (E), 1 ≤ p ≤ ∞ the space of functions endowed with a norm

‖v‖L p
T (E) �

(∫ T

0
‖v‖p

Edτ

) 1
p

, 1 ≤ p < ∞,

with a standard generalization at p = ∞. We further denote by

V1 � {v ∈ (C∞
c )3 : ∇ · v = 0},

V1 � {v ∈ H
1
0 : ∇ · v = 0},

V2 � {v ∈ (C∞(D))3 : ∇ · v = 0, v · n|∂ D = 0},
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V2 � {v ∈ H
1 : ∇ · v = 0, v · n|∂ D = 0},

H1 = H2 � {v ∈ L
2 : ∇ · v = 0, v · n|∂ D = 0}.

We endow V1 with the inner product

((u, v))1 �
3∑

i=1

(∂i u, ∂i v) where (u, v) �
3∑

i=1

∫
D

ui (x)vi (x)dx,

and V2 with the inner product

((u, v))2 � (∇ × u,∇ × v).

We let
V � V1 × H

1
0 × V2

endowed with its norm for 
i � (Xi , Y i , Zi ) ∈ V, i = 1, 2,

((
1,
2)) � ((X1, X2))1 + ((Y 1, Y 2))1 + ((Z1, Z2))2, ((
i ,
i )) � ‖
i‖2.

In case Zi ≡ 0 as in the solution for the stochastic MPF system (1) and (2), we have
((
1,
2)) � ((X1, X2))1 + ((Y 1, Y 2))1. We also let

H � H1 × L
2 × H2

endowed with its norm

(
1,
2) � (X1, X2) + (Y 1, Y 2) + (Z1, Z2), (
i ,
i ) � |
i |2,

for which if Zi ≡ 0 as in the solution for the stochastic MPF system (1) and (2),
we have (
1,
2) = (X1, X2) + (Y 1, Y 2). We introduce the space L p(�,F, P; Lr

(0, T ;Ls)) endowed with a norm

‖u‖L p(�,F,P;Lr (0,T ;Ls )) �
(

E‖u(ω, ·, ·)‖p
Lr (0,T ;Ls )

) 1
p
.

We define three operators A1, A2, A3 with their domains respectively by

< A1X1, X2 > � −(μ + χ)(�X1, X2),

< A2Y 1, Y 2 > � < − γ �Y 1 − (α+ β)∇divY 1 + 2χY 1, Y 2 >,

< A3Z1, Z2 > � − ν < �Z1, Z2 >,
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D(A1) = H
2 ∩ V1,

D(A2) = H
2 ∩ H

1
0,

D(A3) = H1 ∩ {
b ∈ H

2 : (∇ × b) · n|∂ D = 0
}
.

Finally, we let

< A
1,
2 >�< A1X1, X2 > + < A2Y 1, Y 2 > + < A3Z1, Z2 > .

In case b ≡ 0 as in the solution for the stochastic MPF system (1) and (2), we have
< A
1,
2 >�< A1X1, X2 > + < A2Y 1, Y 2 >.

Next, we define B(ỹ) � (B1(ỹ), B2(ỹ), B3(ỹ)) with ỹ = (u, w, b) where

B1(ỹ) � (u · ∇)u − (b · ∇)b − χ∇ × w,

B2(ỹ) � (u · ∇)w − χ∇ × u, B3(ỹ) � (u · ∇)b − (b · ∇)u,

and thus with y = (u, w, 0) for the MPF system (1) and (2), B(y) � (B1(y), B2(y),

B3(y))where

B1(y) = (u · ∇)u − χ ∇ × w, B2(y) = (u · ∇)w − χ∇ × u, B3(y) = 0.

We note the following property for ỹ = (u, w, b) obtained similarly to the com-
putations in (11) and (12):

< Aỹ, ỹ > + < B(ỹ), ỹ > (35)

≥ μ‖∇u‖2
L2 + γ‖∇w‖2

L2 + (α+ β)‖divw‖2
L2 + χ‖w‖2

L2 + ν‖∇b‖2
L2 ≥ c̃‖y‖2

for some constant c̃ � c(μ, γ, α, β,χ, ν) > 0.
Finally, we let

f �
(

f1
f2

)
, g �

(
g1 0
0 g2

)
, W �

(
W1
W2

)
,

f̃ �

⎛
⎝ f̃1

f̃2
f̃3

⎞
⎠ , g̃ �

⎛
⎝g̃1 0 0

0 g̃2 0
0 0 g̃3

⎞
⎠ , W̃ �

⎛
⎝W1

W2
W3

⎞
⎠ .

We now state the definition of a weak martingale solution and our theorem only on
the MPF system for simplicity:

Definition 1 A weak martingale solution to (1) and (2) is a system (�,F,Ft ,

P, W, y) where

1. (�,F,Ft , P) is a filtered probability space,
2. W (t) is (m1 + m2)-dimensional Ft measurable standard Wiener processes,
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3. y ∈ L p(�,F, P; L2(0, T ; V1 × H
1
0)) ∩ L p(�,F, P; L∞(0, T ; H1 × L

2)) ∀
p ∈ [1,∞),

4. for almost every t , y(t) is Ft -measurable,
5. for any v ∈ D(A), almost surely ∀ t ∈ [0, T ]

(y(t), v) + ∫ t
0 < Ay(τ ) + B(y(τ )), v > dτ (36)

= (y0, v) + ∫ t
0 < f (y(τ ), τ ), v > dτ + ∫ t

0 (g(y(τ ), τ )dW (τ ), v).

Theorem 4 ([47]) Suppose y0 � y(0) ∈ H1×L
2 and fi , gi , i = 1, 2 are nonlinear

mappings that are continuous in t , f continuous from H1×L
2 to H

−1×H
−1, g1, g2

continuous from H1 to H×m1
1 and L

2 to (L2)×m2 respectively and

‖ f1(y, t)‖H−1 � 1 + ‖u‖H1 , ‖ f2(y, t)‖H−1 � 1 + ‖w‖L2 ,

‖g1(y, t)‖
H

×m1
1

� 1 + ‖u‖H1 , ‖g2(y, t)‖(L2)×m2 � 1 + ‖w‖L2 ,

where ×mi denotes direct product mi times. Then there exists a solution to (1) and
(2) as in Definition 1. Moreover, there exists a unique π ∈ L1(�,F, P; W −1,∞
(0, T ; L2(D))) such that

∫
D πdx = 0 in (C∞

c ([0, T ]))′ and (1) and (2) holds in
((C∞

c ([0, T ] × D))′)3.

The key ingredients in this type of proof consists of a priori estimates on approxi-
mating sequence using stochastic calculus such asBurkholder-Davis-Gundy inequal-
ity and applications of Prokhorov’s and Skorokhod’s theorems as initiated by the
author in [4] for the stochastic NSE (see [33] for the case of the stochastic MHD
system, [13] for the stochastic MHD-α model).

Lemma 5 ([31]) A family of probability measures on E is relatively compact if and
only if it is tight.

Lemma 6 ([36]) For arbitrary sequence of probability measures {Pn}n on (E,B(E))

weakly convergent to a probability measure P, there exists a probability space
(�,F, P) and random variables ξ, ξ1, . . . , ξn, . . . with values in E such that

1. the probability law of ξn, L(ξn)(A) � P(ω ∈ � : ξn(ω) ∈ A} ∀ A ∈ F is Pn,
2. the probability law of ξ is P,
3. limn→∞ ξn = ξ P− almost surely.

The existence of the pressure term is proven by a careful application of the fol-
lowing generalization of de Rham’s Theorem to processes:

Lemma 7 ([27]) Let D be a bounded, connected, Lipschitz open subset of Rd , d =
2, 3, 4 and (�,F, P) a complete probability space and given r0, r1 ∈ [1,∞], s1 ∈
Z, h ∈ Lr0(�,F, P; W s1,r1(0, T ; (H−1(D))d)) be such that ∀ v ∈ (C∞

c (D))d ,
∇ · v = 0, P−almost surely

< h, v >((C∞
c (D))′)d×(C∞

c (D))d = 0 in (C∞
c )′(0, T ).
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Then there exists unique π ∈ Lr0(�,F, P; W s1,r1(0, T ; L2(D))) such that P-almost
surely ∇π = h in ((C∞

c ([0, T ] × D))′)d ,
∫

D πdx = 0 in (C∞
c ([0, T ]))′.

3.2 Unique Strong Solution for the 2D MPF and the MMPF
Systems with Lipschitz Multiplicative Noise

In this section, we study the 2D MPF system (1) and (2) and the MMPF systems
(3)–(5) fully with appropriate modifications as done in (6)–(8), (34) along with all
the notations in the previous sections (see [49] for details). Analogously to the deter-
ministic case, it is of much interest whether the weak martingale solution discussed
in the previous section may be unique or strong and if so, in what sense. Firstly, we
recall the notion of a strong solution only to the stochasticMPF system for simplicity:

Definition 2 A strong solution to (1) and (2) on the given (�,F,Ft , P, W ) is a
process y where

1. y ∈ L p(�,F, P; L2(0, T ; V1 × H
1
0)) ∩ L p(�,F, P; L∞(0, T ; H1 × L

2))

∀ p ∈ [1,∞),
2. for almost every t , y(t) is Ft -measurable,
3. for any v ∈ V, almost surely ∀ t ∈ [0, T ], (36) holds.
Theorem 5 ([49]) Suppose y0 ∈ H1 × L

2 and fi , gi , i = 1, 2 are nonlinear map-
pings that are continuous in t ∈ [0, T ], f (0, t) = 0, g(0, t) = 0 ∀ t ∈ [0, T ], and
there exist two constants L f , Lg > 0 such that with yi = (ui , wi , bi ), i = 1, 2,

‖ f1(y1, t) − f1(y2, t)‖H−1 ≤ L f ‖u1 − u2‖H1,

‖ f2(y1, t) − f2(y2, t)‖H−1 ≤ L f ‖w1 − w2‖L2 ,

‖g1(y1, t) − g1(y2, t)‖
H

×m1
1

≤ Lg‖u1 − u2‖H1 ,

‖g2(y1, t) − g2(y2, t)‖(L2)×m2 ≤ Lg‖w1 − w2‖L2 ,

where ×mi denotes direct product mi times. Then there exists a unique strong solution
to (1) and (2) in the sense of Definition 2. Moreover, there exists a unique π ∈
L1(�,F, P; W −1,∞(0, T ; L2(D))) such that

∫
D πdx = 0 in (C∞

c ([0, T ]))′ and (1)
and (2) holds in ((C∞

c ([0, T ] × D))′)2.

The proof relies on the classical Yamada-Watanabe theorem:

Lemma 8 ([39, 40]) Path-wise uniqueness implies uniqueness in the sense of prob-
ability law.

A consequence of this lemma is the existence of the strong solution.
The condition of path-wise uniqueness for solutions to SPDE is just as interesting

as the case of deterministic PDE. In this regard,we justmention that in [25] the authors
obtained such condition that are similar to the Serrin-type Lp − Lr regularity criteria
that we also discussed in the previous section.
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4 Conclusion

As the mathematical analysis on PDE related to fluid mechanics remain a great
challenge, it is of much interest whether the noise may perhaps have significant
effect, possibly help the well-posedness of the PDE or not (see [19] and references
found therein). In this regard, theMPF and theMMPF systems provide a goodmodel
for further study from both deterministic and stochastic perspectives, due to their
distinctive features from other models such as the NSE, the MHD and Boussinesq
systems.

Acknowledgments The author wishes to express his gratitude to Professor Hakima Bessaih and
Professor Annie Millet for stimulating discussion in this direction of research.
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Pathwise Sensitivity Analysis in Transient
Regimes

Georgios Arampatzis, Markos A. Katsoulakis and Yannis Pantazis

Abstract The instantaneous relative entropy (IRE) and the corresponding instanta-
neous Fisher information matrix (IFIM) for transient stochastic processes are pre-
sented in this paper. These novel tools for sensitivity analysis of stochastic models
serve as an extension of the well known relative entropy rate (RER) and the corre-
sponding Fisher information matrix (FIM) that apply to stationary processes. Three
cases are studied here, discrete-timeMarkov chains, continuous-timeMarkov chains
and stochastic differential equations. A biological reaction network is presented as
a demonstration numerical example.

1 Introduction

Sensitivity analysis, for a general mathematical model, is defined to be the quantifi-
cation of system response to parameter perturbations. Questions on the robustness,
(structural) identifiability, experimental design, uncertainty quantification, estima-
tion and control can be addressed through sensitivity analysis [1]. Moreover, it is
a necessary analysis tool for the study of kinetic models such as chemical and bio-
chemical reaction networks [1, 2]. Themathematical models considered in this paper
are models that describe phenomena exhibiting stochasticity: stochastic differential
equations (SDE), discrete-time and continuous-time Markov chains (DTMC and
CTMC). Some of the mathematical tools for the sensitivity analysis of such systems
include log-likelihood methods and Girsanov transformations [3–5], polynomial
chaos [6], finite difference methods [7, 8] and pathwise sensitivity methods [9].
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Closely related to the log-likelihood methods are various linear-response-based
approaches, for instance in the context of chemical kinetics [10], as well as in recent
mathematical work for linear response in non-equilibrium systems [11, 12].

In [13], the authors propose a newmethodology for the pathwise sensitivity analy-
sis of complex stochastic stationary dynamics based on the Relative Entropy (RE)
between path distributions and the Relative Entropy Rate (RER). These two quan-
tities provide a measure of the sensitivity of the entire time-series distribution. The
space of all such time-series is referred in probability theory as the “path space”. RER
measures the loss of information per unit time in path space after an arbitrary per-
turbation of parameter combinations. Moreover, RER and the corresponding Fisher
Information Matrix (FIM) become computationally feasible in certain cases as they
admit explicit formulas. In fact, it is been showed in [13] that the proposed path-
wise sensitivity analysis has the following properties: (a) it is rigorously valid for
the sensitivity of long-time, stationary dynamics, (b) it is a gradient-free sensitivity
analysis method suitable for high-dimensional parameter spaces, (c) the computation
of RER and FIM does not require the explicit knowledge of the equilibrium proba-
bility distribution, relying only on information for local dynamics, i.e., it is suitable
for non-equilibrium systems.

In this paper we extend the RE and FIM tools, developed in [13] for stationary
processes, to transient and non-stationary processes. The extension is based on the
notion of instantaneous RE (IRE) and instantaneous FIM (IFIM), see for example
Eqs. (10) and (12) in text. These sensitivity tools provide an instantaneous measure
for the sensitivity of a system arising from information theoretic tools. Moreover,
both IRE and IFIM, which are independent of observable functions, can be used as
upper bounds for observable depended sensitivities, see for example the discussion
in Conclusions and [14, 15].

The rest of the paper is organized as follows: In Sect. 2 a review of the RE and
the FIM is given. In Sects. 3–5 the new quantities IRE and IFIM are presented for
discrete-time Markov chains, continuous-time Markov chains and stochastic differ-
ential equations, respectively. In Sect. 6, a numerical example for a biological reaction
network is utilized and IRE and IFIM are computed in the course of a stochastic simu-
lation and various observations are discussed. Finally, in Sect. 7, concluding remarks
and connections with existing work are discussed.

2 Time-Dependent Sensitivity Analysis

2.1 Decomposition of the Pathwise Relative Entropy

The relative entropy (or Kullback-Leibler divergence) of a probability measure P
with respect to (w.r.t.) another probability measure P̄ is defined as [16, 17]
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R (
P | P̄

) :=
{∫

log d P
d P̄

d P, P � P̄
∞ , otherwise

(1)

where d P
d P̄

is a functionknownas theRadon-Nikodymderivativewhich iswell-defined

when P is absolutely continuous w.r.t. P̄ (denoted as P � P̄) while the integration
is performed w.r.t. the probability measure P . Relative entropy has been utilized in
a diverge range of scientific fields from statistical mechanics [18] to telecommuni-
cations [17] and finance [19] and possesses the following fundamental properties:

(i) R (
P | P̄

) ≥ 0,
(ii) R (

P | P̄
) = 0 if and only if P = P̄ P-almost everywhere, and,

These properties allow us to view relative entropy as a “distance” (more precisely a
divergence) between two probability measures capturing the relative importance of
uncertainties [20]. Froman information theory perspective, relative entropymeasures
the loss/change of information when P̄ is considered instead of P [17].

Let a stochastic process—either discrete-time or continuous-time—be denoted
by Xt and let the path space X be the set of all trajectories {Xt }T

t=0. We denote by
Q0:T the path space distribution, i.e., the probability to see a particular element of
path space, X . Denote by Q̄0:T the path space distribution of another process, X̄t .
The pathwise relative entropy of the distribution Q0:T w.r.t. the distribution Q̄0:T
assuming that they are absolutely continuous w.r.t. each other is written using (1) as

R (
Q0:T | Q̄0:T

) =
∫

log
d Q0:T
d Q̄0:T

d Q0:T . (2)

A key property of pathwise relative entropy is that it is an increasing function of
time which is the analog of the second thermodynamic law in statistical physics [17].
To this end, for various important Markov processes, it can be shown exploiting the
Markov property, that the pathwise relative entropy can be written as an averaged
quantity as

R (
Q0:T | Q̄0:T

) =
{
R (ν | ν̄) + ∑T

i=1H
(
Qi | Q̄i

)
, if time is discrete

R (ν | ν̄) + ∫ T
0 H (

Qt | Q̄t
)

dt , if time is continuous ,
(3)

whereR (ν | ν̄) is the relative entropy of the initial distribution ν w.r.t. the perturbed
initial distribution ν̄, while H (

Q· | Q̄·
)
denotes the instantaneous relative entropy

(for explicit formulas we refer to Eqs. (10), (16) and (24)). We named the quantity
H (

Q· | Q̄·
)
instantaneous relative entropy because it is also non-negative but more

importantly is the time-derivative of the pathwise relative entropy and inherits the
properties of the relative entropy. Notice that the notation for instantaneous relative
entropy is somewhat confusing but it will become clear when specific examples will
be presented in the following sections.
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Moreover the relative entropy rate is defined for a broad class of stochastic
processes including Markov and semi-Markov processes as [21] as the limit

H (
Q | Q̄

) = lim
T →∞

1

T
R (

Q0:T | Q̄0:T
)

. (4)

Relative entropy rate is closely related to the instantaneous relative entropy in two
fundamental ways. Firstly it is the limit of instantaneous relative entropy as time
goes to infinity, whenever this limit is defined and second it holds at the stationary
regime that

H (
Qi | Q̄i

) = H (
Q | Q̄

)
(5)

for the discrete-time case with i = 1, . . . , T and similarly for the continuous-time
case.

2.2 Sensitivity Analysis and Fisher Information Matrix

In [13], the authors proposed the relative entropy between path distributions to per-
form sensitivity analysis arguing that pathwise relative entropy takes into account
not only the equilibrium properties but also the complex dynamics of a stochastic
process. Specifically, denote by Qθ

0:T the path space distribution of the process Xt ,
parametrized by the parameter vector θ ∈ R

K . Consider also a perturbation vector,
ε ∈ R

K , and denote by Qθ+ε
0:T the path space distribution of the perturbed process X̄t .

The pathwise relative entropy of the distribution Qθ
0:T w.r.t. the distribution Qθ+ε

0:T
assuming that they are absolutely continuous w.r.t. each other is written using (2) as

R
(

Qθ
0:T | Qθ+ε

0:T
)

=
∫

log
d Qθ

0:T
d Qθ+ε

0:T
d Qθ

0:T . (6)

An attractive approach to sensitivity analysis that is rigorously based on rela-
tive entropy calculations is the Fisher Information Matrix (FIM). Indeed, assuming
smoothness in the parameter vector, it is straightforward to obtain the following
expansion for (6) [17, 22],

R
(

Qθ
0:T | Qθ+ε

0:T
)

= 1

2
εT I(

Qθ
0:T

)
ε + O(|ε|3) , (7)

where the K × K pathwise FIM I(
Qθ

0:T
)
is defined as the Hessian of the pathwise

relative entropy. As (7) readily suggests, relative entropy is locally a quadratic func-
tion of the parameter vector θ . Indeed, the pathwise RE for any perturbation can
be recovered up to third-order utilizing only the pathwise FIM. Moreover, similar
expansions hold for the instantaneous relative entropy and the relative entropy rate.
The decomposition of the pathwise FIM reads
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I(
Qθ

0:T
) =

{
I(

νθ
) + ∑T

i=1 IH
(
Qθ

i

)
, if time is discrete

I(
νθ

) + ∫ T
0 IH

(
Qθ

t

)
dt , if time is continuous

(8)

where I(
νθ

)
is the FIM of the initial distribution νθ while IH

(
Qθ·

)
denotes the

instantaneous FIM. In the following sections concrete examples of stochasticMarkov
processes are presented whose pathwise relative entropy and the associated pathwise
FIM are provided.

3 Discrete-Time Markov Chains

This section presents explicit formulas of the various relative entropy quantities
defined in the previous section as well as the associated FIMs for the case of discrete-
time Markov chains. The analysis of the DTMC case serves (a) as a more intuitive
and manageable example of stochastic processes and (b) as a intermediate step to
handle the continuous-time Markov chain case.

Next, let {xi }i∈Z+ be a discrete-time time-homogeneous Markov chain with sep-
arable state space E . The transition probability kernel of the Markov chain denoted
by Pθ (x, dx ′) depends on the parameter vector θ ∈ R

K . Assume that the transition
kernel is absolutely continuous with respect to the Lebesgue measure and the tran-
sition probability density function pθ (x, x ′) is always positive for all x, x ′ ∈ E and
for all θ ∈ R

K . Exploiting the Markov property, the path space probability density
Qθ

0:T for the path {xi }T
i=0 at the time horizon 0, 1, . . . , T starting from the initial

distribution νθ (x)dx is given by

Qθ
0:T

(
x0, . . . , xT

) = νθ (x0)pθ (x0, x1) . . . pθ (xT −1, xT ) .

We consider a perturbation vector ε ∈ R
K and the Markov chain {x̄i }i∈Z+ with

transition probability density function, pθ+ε(x, x ′), initial density, νθ+ε(x), as well
as path distribution Qθ+ε

0:T . The product representation of the path distributions results
in an additive representation of the relative entropy of the path distribution Qθ

0:T
w.r.t. the perturbed path distribution Qθ+ε

0:T . Let νθ
i (x) denote the probability density

function of the Markov chain at time instant i given that the initial distribution is νθ ,
whose formula is provided by the Chapman-Kolmogorov equation,

νθ
i (x) =

∫
E

· · ·
∫

E
νθ (x0)pθ (x0, x1) . . . pθ (xi−1, x)dx0 . . . dxi−1 .

The following theorem presents the decomposition of the pathwise relative entropy.

Theorem 1 (a) The pathwise relative entropy for the above-defined discrete-time
Markov chain is decomposed as

R
(

Qθ
0:T | Qθ+ε

0:T
)

= R (
νθ | νθ+ε

) +
T∑

i=1

H
(

Qθ
i | Qθ+ε

i

)
, (9)
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where the instantaneous relative entropy is equal to

H
(

Qθ
i | Qθ+ε

i

)
= Eνθ

i−1

[ ∫
E

pθ (x, x ′) log pθ (x, x ′)
pθ+ε(x, x ′)

dx ′] . (10)

(b) Assuming that the transition probability function is differentialble w.r.t. the para-
meter vector θ , the pathwise FIM is also decomposed as

I(
Qθ

0:T
) = I(

νθ
) +

T∑
i=1

IH
(
Qθ

i

)
, (11)

where the instantaneous pathwise FIM is given by

IH
(
Qθ

i

) = Eνθ
i−1

[∫
E

pθ (x, x ′)∇θ log pθ (x, x ′)∇θ log pθ (x, x ′)T dx ′
]

. (12)

Proof (a) The proof of this part of the theorem can be found in [17, Chap. 2] under the
title “Chain rule for relative entropy” but for the shake of completeness we present it
here. The Radon-Nikodym derivative of the unperturbed path distribution w.r.t. the
perturbed path distribution takes the form

d Qθ
0:T

d Qθ+ε
0:T

({xi }T
i=0

) = νθ (x0)
∏T −1

i=0 pθ (xi , xi+1)

νθ+ε(x0)
∏T −1

i=0 pθ+ε(xi , xi+1)
,

which is well-defined since the transition probabilities are always positive. Then,

R
(

Qθ
0:T | Qθ+ε

0:T
)

=
∫

E
· · ·

∫
E

νθ (x0)
T∏

j=1

pθ (x j−1, x j ) log
νθ (x0)

∏T
i=1 pθ (xi−1, xi )

νθ+ε(x0)
∏T

i=1 pθ+ε(xi−1, xi )
dx0 . . . dxT

=
∫

E
· · ·

∫
E

νθ (x0)
T∏

j=1

pθ (x j−1, x j ) log
νθ (x0)

νθ+ε(x0)
dx0 . . . dxT

+
T∑

i=1

∫
E

· · ·
∫

E
νθ (x0)

T∏
j=1

pθ (x j−1, x j ) log
pθ (xi−1, xi )

pθ+ε(xi−1, xi )
dx0 . . . dxT

=R (
νθ | νθ+ε

) +
T∑

i=1

H
(

Qθ
i | Qθ+ε

i

)
,

where R (
νθ | νθ+ε

) = Eνθ

[
log νθ (x)

νθ+ε (x)

]
is the relative entropy of the unperturbed

initial distribution w.r.t. the perturbed one, while the instantaneous relative entropy
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(of the time-varying pathwise relative entropy) is

H
(

Qθ
i | Qθ+ε

i

)
= Eνθ

i−1

[ ∫
E

pθ (x, x ′) log pθ (x, x ′)
pθ+ε(x, x ′)

dx ′] .

(b) The proof of this part of the theorem is similar to the proof of the pathwise FIM for
the relative entropy rate in [13]. We present it with minor but necessary adaptations.
Let δp(x, x ′) = pθ+ε(x, x ′) − pθ (x, x ′), then the instantaneous relative entropy

H
(

Qθ
i | Qθ+ε

i

)
at the i th time instant is written as

H
(

Qθ
i | Qθ+ε

i

)
= −

∫
E

∫
E

νθ
i−1(x)pθ (x, x ′) log

(
1 + δp(x, x ′)

pθ (x, x ′)

)
dxdx ′

= −
∫

E

∫
E

[
νθ

i−1(x)δp(x, x ′) − 1

2
νθ

i (x)
δp(x, x ′)2

pθ (x, x ′)
+ O(|δp(x, x ′)|3)

]
dxdx ′ .

Moreover, for all x ∈ E , it holds that
∫

E
δp(x, x ′)dx ′ =

∫
E

pθ+ε(x, x ′)dx ′ −
∫

E
pθ (x, x ′)dx ′ = 1 − 1 = 0.

Since the transition probability function is differentiable w.r.t. the parameter vector
θ , a Taylor series expansion to δp gives,

δp(x, x ′) = εT ∇θ pθ (x, x ′) + O(|ε|2) .

Thus, we finally obtain for all i = 1, . . . , T , that

H
(

Qθ
i | Qθ+ε

i

)
= 1

2

∫
E

∫
E

νθ
i−1(x)

(εT ∇θ pθ (x, x ′))2

pθ (x, x ′)
dxdx ′ + O(|ε|3)

= 1

2
εT

( ∫
E

∫
E

νθ
i−1(x)pθ (x, x ′)∇θ log pθ (x, x ′)∇θ log pθ (x, x ′)T dxdx ′)ε + O(|ε|3)

= 1

2
εT IH

(
Qθ

i

)
ε + O(|ε|3)

where,

IH
(
Qθ

i

) = Eνθ
i−1

[∫
E

pθ (x, x ′)∇θ log pθ (x, x ′)∇θ log pθ (x, x ′)T d x ′
]

is the instantaneous FIM associated to the instantaneous relative entropy.
Consequently, the pathwise FIMI(

Qθ
0:T

)
, i.e., theHessian of the pathwise relative

entropy (9) at point θ , is given by

I(
Qθ

0:T
) = I(

νθ
) +

T∑
i=1

IH
(
Qθ

i

)
,
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where I(
νθ

) = Eνθ [∇θ log νθ (x)∇θ log νθ (x)T ] is the FIM of the initial distri-
bution. �
Remark 1 Let ‘⊗’ denote the product operator of two distributions (i.e., ν ⊗ p(A ×
B) = ∫

A p(x, B)ν(x)dx). Then, the instantaneous relative entropy can be written as
a relative entropy of the probability measure νθ

i−1⊗ pθ w.r.t. the probability measure
νθ

i−1 ⊗ pθ+ε . Mathematically,

H
(

Qθ
i | Qθ+ε

i

)
= R (

νθ
i−1 ⊗ pθ | νθ

i−1 ⊗ pθ+ε
)

,

and similarly for the associated instantaneous FIM it holds that

IH
(
Qθ

i

) = I(
νθ

i−1 ⊗ pθ
)
.

Remark 2 The instantaneous relative entropyH
(

Qθ
i | Qθ+ε

i

)
is different from, and

should not be confused with, the relative entropy of the unperturbed distribution at
the i th (or the (i − 1)th) time instant νθ

i (or νθ
i−1) w.r.t. the respective perturbed

distribution νθ+ε
i (or νθ+ε

i−1 ). Indeed, it holds that

H
(

Qθ
i | Qθ+ε

i

)
= R (

νθ
i−1 ⊗ pθ | νθ

i−1 ⊗ pθ+ε
) 
= R

(
νθ

i | νθ+ε
i

)
,

as well asH
(

Qθ
i | Qθ+ε

i

)

= R

(
νθ

i−1 | νθ+ε
i−1

)
. Moreover, an explicit formula for the

probability distribution at the i th time instant νθ
i is generally not available making the

computation of the relative entropyR
(
νθ

i | νθ+ε
i

)
intractable. On the other hand, the

instantaneous relative entropyH
(

Qθ
i | Qθ+ε

i

)
can be computed in a straightforward

manner as a statistical average since it incorporates only the transition probabilities
which are known functions.

Stationary regime: In the stationary regime, the initial distribution is the stationary
distribution, μθ . Thus, for all i = 1, . . . , T it holds that νθ

i = μθ and the instan-
taneous relative entropy is a constant function of time that is equal to the relative
entropy rate. The next corollary presents explicit formulas for the relative entropy
rate and the associated FIM.

Corollary 1 The relative entropy rate is equal to

H (
Qθ | Qθ+ε

) = Eμθ

[ ∫
E

pθ (x, x ′) log pθ (x, x ′)
pθ+ε(x, x ′)

dx ′] . (13)

Similarly, the FIM associated to the RER is given by

IH
(
Qθ

) = Eμθ

[∫
E

pθ (x, x)∇θ log pθ (x, x ′)∇θ log pθ (x, x ′)T d x ′
]

. (14)
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Proof Both formulas are obtained by substituting the stationary distribution μθ to
the place of νθ

i−1 in (10) and (12). �

4 Continuous-Time Markov Chains

Let {Xt }t∈R+ be a continuous-time Markov chain with countable state space E . The
parameter dependent transition rates, denoted by cθ (x, x ′), completely define the
continuous-time Markov chain. The transition rates determine the updates (jumps
or sojourn times) from a current state x to a new (random) state x ′ through the
total rate λθ (x) = ∑

x ′∈E cθ (x, x ′) which is the intensity of the exponential waiting
time for a jump from state x . The transition probabilities for the embedded Markov
chain

{
xn

}
n≥0 defined by xn := Xtn where tn is the instance of the nth jump are

pθ (x, x ′) = cθ (x,x ′)
λθ (x)

.

Assume another jumpMarkov process {X̄t }t∈R+ , defined by perturbing the transi-
tion rates by a small vector ε ∈ R

K . Moreover assume that the two path probabilities
Qθ

0:T and Qθ+ε
0:T are absolutely continuous with respect to each other which is satis-

fied when cθ (x, x ′) = 0 if and only if cθ+ε(x, x ′) = 0, ∀x, x ′ ∈ E . The following
theorem presents the decomposition of the pathwise relative entropy for the case of
continuous-time Markov chains.

Theorem 2 (a) The pathwise relative entropy for the above-defined continuous-time
Markov chain is decomposed as

R
(

Qθ
0:T | Qθ+ε

0:T
)

= R (
νθ | νθ+ε

) +
∫ T

0
H (

Qθ
t | Qθ+ε

t

)
dt , (15)

where the instantaneous relative entropy is equal to

H (
Qθ

t | Qθ+ε
t

) = EQθ
0:t

[
λθ (Xt−) log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
− (

λθ (Xt ) − λθ+ε(Xt )
)]

.

(16)

(b) Assuming that the transition rate function cθ (·, ·) is differentialble w.r.t. the para-
meter vector θ , the pathwise FIM is also decomposed as

I(
Qθ

0:T
) = I(

νθ
) +

∫ T

0
IH

(
Qθ

t

)
dt , (17)

where the instantaneous pathwise FIM is given by

IH
(
Qθ

t

) = EQθ
0:t

[
λθ (Xt−)∇θ log cθ (Xt−, Xt )∇θ log cθ (Xt−, Xt )

T
]

. (18)
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Proof (a) As in the discrete-time case, the key element is an explicit formula for the
Radon-Nikodym derivative. The Radon-Nikodym derivative of the path distribution
Qθ

0:T w.r.t. the perturbed path distribution Qθ+ε
0:T has an explicit formula known also

as Girsanov formula [18, 23],

d Qθ
0:T

d Qθ+ε
0:T

({Xt }T
t=0) = · · ·

· · · = νθ (X0)

νθ+ε(X0)
exp

{∫ T

0
log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
d Nt −

∫ T

0
[λθ (Xt ) − λθ+ε(Xt )] dt

}
,

where νθ (resp. νθ+ε) is the initial distributions of {Xt }t∈R+ (resp. {X̄t }t∈R+) while
Nt is the counting measure, i.e., counts the number of jumps in the process up to
time t . Using the Girsanov formula, the pathwise relative entropy is rewritten as

R
(

Qθ
0:T | Qθ+ε

0:T
)

= EQθ
0:T

[
log

νθ (X0)

νθ+ε(X0)
+

∫ T

0
log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
d Nt −

∫ T

0
[λθ (Xt ) − λθ+ε(Xt )] dt

]

= EQθ
0:T

[
log

νθ (X0)

νθ (X0)

]
+ EQθ

0:T

[∫ T

0
log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
d Nt

]
− · · ·

· · · − EQθ
0:T

[∫ T

0
[λθ (Xt ) − λθ+ε(Xt )] dt

]
.

Exploiting the fact that the process MT := NT − ∫ t
0 λθ (Xt )dt is a martingale, we

have that

EQθ
0:T

[∫ T

0
log

cθ (Xt−, Xt )

acθ + ε(Xt−, Xt )
d Nt

]
= EQθ

0:T

[∫ T

0
λθ (Xt−) log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
dt

]
.

Thus, the pathwise relative entropy is rewritten as

R
(

Qθ
0:T | Qθ+ε

0:T
)

= R (
νθ | νθ+ε

) + EQθ
0:T

[∫ T

0
λθ (Xt−) log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
− (

λθ (Xt ) − λθ+ε(Xt )
)

dt

]

= R (
νθ | νθ+ε

) +
∫ T

0
EQθ

0:T

[
λθ (Xt−) log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
− (

λθ (Xt ) − λθ+ε(Xt )
)]

dt

= R (
νθ | νθ+ε

) +
∫ T

0
H (

Qθ
t | Qθ+ε

t

)
dt ,
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where the instantaneous relative entropy is defined as

H (
Qθ

t | Qθ+ε
t

) = EQθ
0:t

[
λθ (Xt−) log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
− (

λθ (Xt ) − λθ+ε(Xt )
)]

.

(b) Even though not directly evident from (16), the instantaneous relative entropy
for continuous-time Markov chains is locally a quadratic function of the parameter
vector θ . Indeed, defining the rate difference δc(x, x ′) = cθ+ε(x, x ′) − cθ (x, x ′),
the instantaneous relative entropy can be rewritten as

H (
Qθ

t | Qθ+ε
t

)

= −EQθ
0:t

[
λθ (Xt−) log

(
1 + δc(Xt−, Xt )

cθ (Xt−, Xt )

)]
− EQθ

0:t
[
λθ (Xt ) − λθ+ε(Xt )

]

= −EQθ
0:t

[
λθ (Xt−)

(
δc(Xt−, Xt )

cθ (Xt−, Xt )
−1

2

(
δc(Xt−, Xt )

cθ (Xt−, Xt )

)2

+O(|δc(Xt−, Xt )|3)
)]

+ EQθ
0:t

[
λθ+ε(Xt ) − λθ (Xt )

)]

= 1

2
EQθ

0:t

[
λθ (Xt−)

(
δc(Xt−, Xt )

cθ (Xt−, Xt )

)2
]

+ O(|δc|3)

Due to the differentiability assumption on the transition rates in a neighborhood of
parameter vector θ a Taylor series expansion of δc(x, x ′) = εT ∇θ cθ (x, x ′)+O(|ε|2)
results in

H (
Qθ

t | Qθ+ε
t

)

= 1

2
EQθ

0:t

[
λθ (Xt−)

(
δc(Xt−, Xt )

cθ (Xt−, Xt )

)2
]

+ O(|δc|3)

= 1

2
εT

EQθ
0:t

[
λθ (Xt−)

∇θ cθ (Xt−, Xt )∇θcθ (Xt−, Xt )
T

cθ (Xt−, Xt )2

]
ε + O(|ε|3)

= 1

2
εT IH

(
Qθ

t

)
ε + O(|ε|3)

where

IH
(
Qθ

t

) = EQθ
0:t

[
λθ (Xt−)∇θ log cθ (Xt−, Xt )∇θ log cθ (Xt−, Xt )

T
]
,

is the instantaneousFIM.Finally, the pathwiseFIM is obtained froma straightforward
expansion of each element of the pathwise relative entropy in terms of ε. It is given by

I(
Qθ

0:T
) = I(

νθ
) +

∫ T

0
IH

(
Qθ

t

)
dt ,
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where I(
νθ

)
is the FIM of the initial distribution while IH

(
Qθ

t

)
is the instantaneous

pathwise FIM computed above. �

Stationary regime: In the stationary regime, the instantaneous relative entropy is a
constant function of time since at each time instant the distribution of the states is
the—typically unknown—stationary distribution. The following corollary presents
explicit formulas for the relative entropy rate and the associated FIM at the stationary
regime.

Corollary 2 The relative entropy rate is equal to the ergodic average

H (
Qθ | Qθ+ε

) = Eμθ

[ ∑
x ′∈E

cθ (x, x ′) log cθ (x, x ′)
cθ+ε(x, x ′)

−(λθ (x)−λθ+ε(x))
]
, (19)

while the FIM of the relative entropy rate, computed as its Hessian, has explicit
formula given by

IH
(
Qθ

) = Eμθ

[∑
x ′∈E

cθ (x, x ′)∇θ log cθ (x, x ′)∇θ log cθ (x, x ′)T

]
. (20)

Proof At the stationary regime, the instantaneous relative entropy is rewritten as

H (
Qθ

t | Qθ+ε
t

)

= EQθ
0:t

[
λθ (Xt−) log

cθ (Xt−, Xt )

cθ+ε(Xt−, Xt )
− (

λθ (Xt ) − λθ+ε(Xt )
)]

= Eμθ

[ ∑
x ′∈E

cθ (x, x ′) log cθ (x, x ′)
cθ+ε(x, x ′)

− (λθ (x) − λθ+ε(x))
]
.

(21)

�

5 Stochastic Differential Equations—Markov Processes

Consider a Markov process Xt ∈ R
d satisfying a stochastic differential equation of

the form {
d Xt = bθ (Xt )dt + σ(Xt )dWt

X0 ∼ νθ (22)

where bθ is the drift function depending on the parameter vector θ , σ is the state-
dependent diffusion matrix, Wt is a d-dimensional Brownian motion while νθ is
the initial distribution of the process. Let Qθ

0:T denote the path space distribution
for a specific parameter vector θ . Consider also a perturbation vector, ε ∈ R

K , and
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denote by Qθ+ε
0:T the path space distribution of the perturbed process X̄t satisfying

the stochastic differential equation (22) with perturbed drift function.
Under appropriate assumption on the components of the stochastic differential

equation, the pathwise relative entropy can be decomposed as in the previous cases
and an explicit formula for the instantaneous relative entropy can be estimated as the
following theorem asserts.

Theorem 3 (a) Assume that the diffusion matrix, σ(x), is invertible for all x ∈ R
d

and EQθ
0:T

[exp { ∫ T
0 |σ−1(Xt )(bθ+ε(Xt ) − bθ (Xt ))|2 dt

}] < ∞ (Novikov condi-
tion). Then, the pathwise relative entropy for the above-defined Markov process is
decomposed as

R
(

Qθ
0:T | Qθ+ε

0:T
)

= R (
νθ | νθ+ε

) +
∫ T

0
H (

Qθ
t | Qθ+ε

t

)
dt , (23)

where the instantaneous relative entropy is equal to

H (
Qθ

t | Qθ+ε
t

) = 1

2
Eνθ

t

[∣∣σ−1(x)
(
bθ+ε(x) − bθ (x)

)∣∣2] . (24)

(b) Assume further that the drift function bθ is differentiable w.r.t. the parameter
vector θ . Then, the pathwise FIM has a similar decomposition and the instantaneous
FIM is given by

IH
(
Qθ

t

) = Eνθ
t

[
∇θ bθ (x)T (σ (x)σ (x)T )−1∇θ bθ (x)

]
. (25)

where ∇θ bθ is a d × K matrix containing all the first-order partial derivatives of the
drift vector (i.e., the Jacobian matrix).

Proof (a) The inversion of the diffusion matrix is a necessary assumption for the
well-posedness of the Novikov condition which in turn suffices for the two path dis-
tributions Qθ

0:T and Qθ+ε
0:T to be absolutely continuous w.r.t. each other [24]. Addi-

tionally, the Girsanov theorem provides an explicit formula of the Radon-Nikodym
derivative [24] which is given by

d Qθ
0:T

d Qθ+ε
0:T

({
(Xt )

}T
t=0

)
= dνθ

dνθ+ε
(X0) exp

{
−

∫ T

0
u(Xt )

T dWt − 1

2

∫ T

0
|u(Xt )|2dt

}
,

where u(x) = σ−1(x)
(
bθ+ε(x) − bθ (x)

)
. Furthermore, it holds that

Ŵt :=
∫ t

0
u(Xs)dt + Wt ,
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is a Brownian motion w.r.t. the unperturbed path distribution Qθ
0:T , meaning that, for

any measurable function f , it holds EQθ
0:T

[ ∫ T
0 f (Xt )

T dŴt
] = 0. Then,

R
(

Qθ
0:T | Qθ+ε

0:T
)

= EQθ
0:T

[
log

dνθ

dνθ+ε
(X0) −

∫ T

0
u(Xt )

T dWt − 1

2

∫ T

0
|u(Xt )|2dt

]

= EQθ
0:T

[
log

dνθ

dνθ+ε
(X0)

]
− EQθ

0:T

[∫ T

0
u(Xt )

T dŴt

]
+ 1

2
EQθ

0:T

[∫ T

0
|u(Xt )|2dt

]

= R (
νθ | νθ+ε

) + 1

2
EQθ

0:T

[∫ T

0
|u(Xt )|2dt

]

= R (
νθ | νθ+ε

) +
∫ T

0

1

2
EQθ

0:T

[
|u(Xt )|2

]
dt

= R (
νθ | νθ+ε

) +
∫ T

0

1

2
Eνθ

t
|u(Xt )|2dt

where νθ
t is the distribution of the process at time instant t . Hence the instantaneous

relative entropy is explicitly given by

H (
Qθ

t | Qθ+ε
t

) = 1

2
Eνθ

t

[∣∣σ−1(x)
(
bθ+ε(x) − bθ (x)

)∣∣2]

(b) Due to the differentiability assumption, a Taylor expansion of the drift function
around the point θ results in bθ+ε(x) − bθ (x) = ∇θ bθ (x)ε + O(|ε|2) where ∇θ bθ

is a d × K matrix containing all the first-order partial derivatives of the drift vector
function (i.e., the Jacobian matrix). Then, it is straightforward to obtain from (24)
that

IH
(
Qθ

t

) = Eνθ
t

[∇θ bθ (x)T (σ (x)σ (x)T )−1∇θ bθ (x)
]
.

�

Stationary regime: In the stationary regime, the instantaneous relative entropy
becomes a constant function of time since the distribution of the process is equal
to the stationary distribution denoted by μθ for all times. The following corollary
presents explicit formulas for the relative entropy rate and the associated FIM.

Corollary 3 Let X0 ∼ μθ . Under the assumptions of Theorem 3 the relative entropy
rate is equal to

R (
Qθ | Qθ+ε

) = 1

2
Eμθ

[∣∣σ−1(x)
(
bθ+ε(x) − bθ (x)

)∣∣2] , (26)

while the FIM associated with the relative entropy rate is given by

IH
(
Qθ

) = Eμθ [∇θbθ (x)T (σ (x)σ (x)T )−1∇θ bθ (x)] . (27)
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We finally remark that a popular method for modeling non-equilibrium systems
in atomistic and mesoscopic scales is based on the Langevin equation. Langevin
equation is a degenerate system of stochastic differential equations whose sensitivity
analysis based on the relative entropy rate and the associated pathwise FIM was
performed in [25].

6 Demonstration Example

In this section we give a numerical example of the pathwise relative entropy (6)
and pathwise FIM (8) for a continuous time Markov chain model. More specific, a
biological reaction network is considered and the quantities instantaneous RE (16)
and instantaneous FIM (18) are presented as a function of time.

6.1 Continuous Time Markov Chains: An EGFR Model

In [26], Kholodenko et al. proposed a reaction network that describes signaling
phenomena of mammalian cells [27–29]. The reaction network consists of N = 23
species and M = 47 reactions. The propensity function for the R j reaction, j =
1, . . . , 47 and j 
= 7, 14, 29, obeys the law of mass action [2],

a j (x) = k j

(
xA j

α j

)(
xB j

β j

)
, (28)

for a reaction of the general form “α j A j + β j B j
k j−→ . . .”, where A j and B j are

the reactant species, α j and β j are the respective number of molecules needed for
the reaction, k j the reaction constant and xA j and xB j is the total number of species

A j and B j , respectively. The binomial coefficient is defined by
(n

k

) = n!
k!(n−k)! . The

propensity functions for reactions R7, R14, R29 are being described by theMichaelis-
Menten kinetics, see [2],

a j (x) = Vj xA j /
(
K j + xA j

)
, j = 7, 14, 29 , (29)

where Vj represents the maximum rate achieved by the system at maximum (sat-
urating) substrate concentrations while K j is the substrate concentration at which
the reaction rate is half the maximum value. The parameter vector contains all the
reaction constants,

θ = [k1, . . . , k6, k8, . . . , k13, k15, . . . , k28, k30, . . . , k47, V7, K7, V14, K14, V29, K29]T .

(30)

In this study the values of the reaction constants are the same as in [26].
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For the initial data and parameters chosen in this study, the time series can be split
into two regimes: (a) a transient regime that approximately corresponds to the time
interval [0, 50] and (b) a stationary regime which approximately corresponds to the
time interval [50,∞).

Next, we discuss two sensitivity measures of the process {Xs}t
s=0: the instanta-

neous RE defined in (16)

f
({Xs}t

s=0

) = H (
Qθ

t | Qθ+ε
t

)

= Eνθ
t

[ M∑
j=1

aθ
j (x) log

aθ
j (x)

aθ+ε
j (x)

− (
aθ
0 (x) − aθ+ε

0 (x)
)]

,
(31)

with t ∈ [0, T ] and the averaged RE, defined as

g
({Xs}t

s=0

) = 1

t

∫ t

0
H (

Qθ
s | Qθ+ε

s

)
ds, t ∈ [0, T ] . (32)

In Fig. 1 the two sensitivity measures are presented for T = 100. As expected, the
averaged RE is smoother than the instantaneous RE while some of the qualitative
characteristics remain. On the other hand, quantitative characteristics, such as the
time that two instantaneousRE are crossed, are not preserved in the averagedRE. The
averagedRE in the interval [0, t] should be interpreted as ameasure of the information
accumulated in the whole interval while the instantaneous RE is a measure of the
information at the time instant t . Moreover, the second observable can be used as
part of an upper bound for a different sensitivity measure, see [15] for a detailed
discussion.

Let us define a different sensitivity measure as the relative difference between the
kth species of two systems were the 
th parameter of the second is perturbed by ε′,

time
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

102

100

10-2

10-4

102

100

10-2

10-6

10-4

time

parameter 05
parameter 10
parameter 12
parameter 25
parameter 29
parameter 46

parameter 05
parameter 10
parameter 12
parameter 25
parameter 29
parameter 46

Fig. 1 The instantaneous RE, defined in (15), for the EGFR model (left) and the averaged RE,
defined in (32) (right)
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Sk,
,t := X θ
k,t − X θ+ε


k,t

X θ
k,t

. (33)

where ε
 is a vector with zeros everywhere and ε′ in the 
th position. In the following
examples the value of ε′ for a perturbation in the 
th parameter is ε′ = 0.1θ
. By
summing over all species we obtain a total sensitivity measure, which is only indexed
by the parameter index and time,

S
,t = 1

N

N∑
k=1

Sk,
,t . (34)

By observing the first row of Fig. 2, which shows the instantaneous RE (16) for

 = 10 and 
 = 29, we learn that perturbations in the 10th parameter have large
sensitivity for small times and as time varies the sensitivity is getting smaller. On the
other hand, perturbations in the 29th parameter have small influence on the system
for small times while for larger times the sensitivity becomes significant. These
observations are in good agreement with the sensitivity measure (33) presented in
the second and third row of Fig. 2.

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5
parameter 10
parameter 29

10 20 30 40 50 60 70 80 90

0.01
0.02
0.03
0.04
0.05

parameter 10

time
10 20 30 40 50 60 70 80 90

0
0.005
0.01

0.015

parameter 29

Fig. 2 Instantaneous RE (15) for the EGFR model and parameters 10 and 29 (first row). The total
sensitivity of the system, as defined in (34), due to perturbations in the 10th parameter (second row)
and due to the 29th parameter (third row)
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Moreover there is a crossing in the instantaneous RE which happens around
t = 42. After this time the sensitivity in parameter 
 = 29 becomes more significant
than the sensitivity in parameter 
 = 10. This is again in agreement with the behavior
of the sensitivity measure (33). This observation shows that the transient regime is
more sensitive in perturbations in the 10th parameter while the equilibrium is more
sensitive in perturbations in the 29th parameter.

7 Conclusions

In this paper we presented two pathwise sensitivity measures for the analysis of
stochastic systems; the instantaneous relative entropy and its approximation, the
instantaneous Fisher information matrix. These sensitivity tools serve as an exten-
sion to transient processes of the sensitivity tools presented in [13]. Three examples,
discrete-time Markov chains, continuous-time Markov Chains and stochastic differ-
ential equations, were presented as an application of the new sensitivity measures. In
Sect. 6we demonstrated, in a biological reaction network, how the proposed pathwise
sensitivity measure can be applied to transient, as well as in steady state regimes.

Finally, the pathwise sensitivity method is directly connected to a different sensi-
tivity measure that depends on specific observables. More specifically, if we define
the sensitivity index (SI) of the 
th observable to the kth parameter as

Sk,
 = ∂

∂θk
E

[
f


(
{Xs}T

s=0

)]
, (35)

then IFIM (18) serves as un upper bound of Sk,
 through the inequality,

|Sk,
| ≤
√
VarQθ

0:T
( f
)

√
I(

Qθ
0:T

)
k,k , (36)

where F = ( f1, . . . , fL) is a vector of observable functions. This inequality fol-
lows by rearranging the generalized Cramer-Rao bound for a biased estimator [30,
31]. Due to low variance of the estimator of IFIM compared to the variance of a
finite difference estimator of Sk,
, the estimation of the right hand side of (36) is
faster than that of the left hand side of (36). In [15] the authors used this inequality
to efficiently screen out and exclude low sensitivity indices under a pre-specified
value and then performed a coupling finite difference algorithm [8] to accurately
estimate the remaining sensitivity indices Sk,
. In Fig. 3 the estimated SIs for the
EGFR model discussed in Sect. 6 are ordered in the parameter direction using only
the IFIM (18). Notice that the SIs are then grouped into four distinct regions. For a
detailed presentation of this methodology we refer to [15].
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Fig. 3 Ordering of the sensitivity index (35) in the time interval [0, 50] (left) and [0, 100] (right)
utilizing the averaged IRE (32). In this case f


({Xs}T
s=0

) = 1
T

∫ T
0 X
,sds , which is the mean

concentration of the 
th species in time interval [0, T ]
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The Langevin Approach: A Simple Stochastic
Method for Complex Phenomena

N. Reinke, A. Fuchs, W. Medjroubi, P.G. Lind, M. Wächter and J. Peinke

Abstract We describe a simple stochastic method, so-called Langevin approach,
which enables one to extract evolution equations of stochastic variables from a set
of measurements. Our method is parameter free and it is based on the nonlinear
Langevin equation. Moreover, it can be applied not only to processes in time, but
also to processes in scale, given that the data available shows ergodicity. This chapter
introduces the mathematical foundations of this Langevin approach and describes
how to implement it numerically. In addition, we present an application of themethod
to a turbulent velocity field measured in laboratory, retrieving the corresponding
energy cascade and comparingwith the results fromacomputer fluid dynamics (CFD)
simulation of that experiment. Finally, we describe extensions of the method for
time series reconstruction and applications to other fields such as finance, medicine,
geophysics and renewable energies.

1 Introduction

“The present state of the universe is an effect of its past states and causes its future
one”. Such a claim is a fundamental assumption in every physical approach to our
surrounding nature and was mathematically defended for the first time two centuries
ago, in 1814, by Simon Laplace. Laplace had a dream [1], one where “an intellect at a
certainmomentwould knowall forces that set nature inmotion, and all positions of all
items of which nature is composed, […] vast enough to submit these data to analysis
[…], to embrace in a single formula [all movements of the universe]”. Why was
this a dream? Because there are strong arguments against it, such as thermodynamic
irreversibility, quantic indeterminacy and nonlinear sensitivity to initial states. But
there is also a practical reason: such a high-dimensional problem, due to its huge
number of variables, would only be computable if one would take as model of
reality the reality itself, an approach which is pointless. To model reality one needs
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simplifications and stochastic methods enables one to simplify reality in several
adequate ways. In this chapter we describe one of such ways, which, in the last 15
years, has been successfully applied in several fields [2].

As an illustration we address the problem of turbulence, one of the central open
problems in physics [3]. A turbulent fluid is governed by the so-called Navier-Stokes
equations which cannot be approached analytically in all their detail. Therefore
one handlesNavier-Stokes equations numerically, developing discretization schemes
whichyield the solution of one specific problem.Suchdiscretization in space and time
corresponds in general to high-dimensional problems which, in the limit of infinitely
small discrete elements, leads to infinite many degrees of freedom. Such numerical
approaches to the equations governing turbulence enabled rather successful insight
and modeling approaches for fundamental physics and engineering applications [3].

However, the Navier-Stokes equations, which are purely deterministic, could be
substituted by a stochastic approach, using only a few—the essential—variables,
say Xi (i = 1, . . . , N ) and incorporating the rest of the degrees of freedom in a
“stochastic bag”. In this way one arrives to evolution equations of the type:

d Xi

dt
= Fi (X1, . . . , X N , t) + Gi (X1, . . . , X N , �1, . . . , �M , t) (1)

where function Fi (X1, . . . , X N ) is a deterministic function depending on each vari-
able Xi and function Gi (X1, . . . , X N , �1, . . . , �M ) depends not only on variables
Xi but also on stochastic forces � j ( j = 1, . . . , M). For Gi ≡ 0, Eq. (1) reduces to
a deterministic dynamical system and for Gi ∼ 0 one can take it as a deterministic
dynamical system subjected to small noise of constant amplitude [4].

In general however, not only function G cannot be neglected but it possesses a
much more complicated (nonlinear) dependence on the accounted variables. Such
functional dependence of G is important, for instance when one intends to describe
physical features of a process underlying a set of data or when aiming at predicting
or reconstructing a set of observations.

Having properly defined an equation such as Eq. (1), it should be possible to
reconstruct series of values of one variable, say X ≡ Xi in a statistical sense, i.e. it
should be possible to derive the conditional probability:

p(X (t + �t)|X (t), X (t − �t), . . . , X (t0)) (2)

for each set of values X (k) with k = t0, . . . , t . See sketch in Fig. 1.
In this chapter we will describe in detail how to derive an evolution equation such

as Eq. (1) from a set of measurements. Our method, so-called Langevin approach, is
fully introduced in Sect. 2. In Sect. 3 the Langevin approach is applied to turbulence
by using the data gained from an experimental study in Sect. 3.1. Furthermore, the
Langevin approach is applied to a numerical simulation of the experimental study in
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Fig. 1 Illustration of F and G in Eq. (1). The deterministic contribution, F = D(1), which drives
the system according to X → X + F�t and a stochastic contribution G = √

D(2)�t that is added
to it, according to some probability distribution. Both functions D(1) and D(2) have a well-defined
meaning and can be extracted from sets of measurements. See Sect. 2

Sect. 3.2. A comparative analysis, discussing the results obtained in the experiments
and simulations is given in Sect. 3.3. Section4 concludes this chapter, discussing
briefly recent trends in the Langevin approach and other possible fields and topics
where it can be successfully applied.

2 The Langevin Approach

To introduce the Langevin approach, we first explain in Sect. 2.1 what processes in
scale1 are and relate themwith the usual processes in time. In Sect. 2.2, the necessary
conditions under which the Langevin approach is applied are given together with a
brief description of how to verify these conditions in empirical and simulated data.
Section2.3 describes the derivation of the deterministic and stochastic contributions
with a given set ofmeasurements taken froma process in scale. Finally, in Sect. 2.4we
derive the stochastic evolution equation describing a process in scale. A particular
example is described, namely the “Brownian motion” in scale, using the Galton
box as an illustration, which complements the usual Brownian motion described by
Einstein [5] and Langevin [6].

1In statistics such processes are also known as branching processes.
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2.1 Processes in Scale

There is a famous poem by Richardson [3] about turbulence which summarizes his
important paper from 1920 [7]: “a turbulent fluid is composed by a few big eddies that
decay into smaller eddies, these ones into even smaller eddies, and so on to viscosity”.
The energy that feeds the turbulent fluid enters the system on large scales—through
the largest eddies—and travels towards smaller and smaller scales up to a minimum
scale where it leaves the system by means of dissipation. In each of these steps the
energy of the larger eddy is randomly distributed between the smaller “child” eddies.
Such a pictorial view of turbulent energy traveling through a hierarchical succession
of length scales leads to the concept of the turbulent energy cascade evolving in the
spatial length scale as the independent variable.

One may ask if it would be possible to extract such energy cascade from empirical
data, e.g. from a set of velocity measurements at one specific point of the fluid.
In the following we show that indeed it is possible [2, 8, 9]. Describing how a
property behaves across an ordered series of different spatial scales is analogous
to the more common description of the evolution of a property in time, with the
important difference that instead of the time-propagator in Eq. (2) one has now a
“scale-propagator”.

Assuming that one has a non-negligible stochastic contribution, the aim is to
derive an equation analogous to Eq. (1) where the spatial scale r plays the role of
time t . Since the independent variable r accounts for the size of some structure, like
an eddy, we choose for the dependent variable the difference of an observable X at
two distinct positions, separated by r , namely the increment

�Xr (x) = X (x + r) − X (x) (3)

with x being a specific location in the system. Thus, the scale-propagator describes
how this increment—ordifference—changeswhen thedistance increases or decreases
as follows:

p(�Xr+�r |�Xr ,�Xr−�r , . . . ,�Xr0). (4)

Four important remarks are due here. First, the scale increment �r in Eq. (4) can
in general be positive or negative. In fact, as we will see in the next sections, the
energy in turbulence flows from the largest scales, of the size of the system itself,
toward the smallest scale at which dissipation takes place. Therefore, in turbulence
one considers a scale-propagator as in (4) with �r < 0.

Second, one should define a proper metric for the scale r . Is the spatial distance
the best choice? Or is there a more appropriate functional of spatial distances? A
process in time evolves according to an iteration from t to t + dt . The same should
occur for processes in scale. However, when “iterating” from one scale to the “next”,
one iterates in a multiplicative way, i.e., from one scale to the next one multiplies
the previous scale by some constant a, yielding a succession of scales rn = an →
rn+1 = an+1 = arn . A suitable choice of an additive scale, similar to the additive
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time iteration, is the logarithmic scale log r , since in this case one has log rn =
n log a → log rn+1 = (n + 1) log a = log rn + log a. This logarithm scale is of
importance to understand the concept of self-similarity, which is closely related to
processes in scale. Self-similarity is the property that a phenomenon may manifest,
by showing invariance under multiplicative changes of scale, as observed in turbulent
flows. Indeed, following Richardson’s poem, eddies are self-similar objects, since
multiplying or dividing their size by a proper scaling factor we obtain an eddy again.
With the logarithmic scale we “convert” the multiplicative changes into additive
ones.

Third, when analyzing processes in scale, ideally one would consider a field of
measurements taken simultaneously within a spatially extended region. What one
typically has, contrastingly, is a set of measurements in time taken at a particular
location. To extract processes in scale from single time series, one requires the prop-
erty being measured to be ergodic: the system should display the same behaviour
averaged either over time or over the space of all the system’s states. In the particular
case of a turbulent fluid, ergodicity reduces to the so-called Taylor hypothesis [3].

Fourth, while the derivation of a propagator in scalemay be helpful for uncovering
phenomena such as the energy cascade in turbulence, one may also aim to bridge
from the derived propagator in scale to a propagator in time which would enable
time-series reconstruction. As shown in previous works [10], our Langevin approach
enables such bridging from scale to time.

Henceforth, we will consider a process in scale, i.e. a succession of increments
�Xs of a measurable property X , with:

s = log

(
Rmax

r

)
(5)

taking values from s0 = 0 (largest scale r = Rmax) to sL = log (Rmax/Rmin) at the
smallest scale r = Rmin . Notice that, ds = −dr/r and therefore, for dr < 0 one
arrives again at a positive scale increment.

2.2 Necessary Conditions: Stationarity and the Markov
Property

To apply our method, two important features must be met. First, the set of measures
from which one extracts the succession of increments in scale must be a stationary
process. Second, the process in scale must be Markovian.

For the process Xt to be stationary, the corresponding conditional probability in
Eq. (2) should be invariant under a translation in time, t → t + T , ∀T . Numerically
such property cannot be tested in sets ofmeasurements. As an alternative, one usually
divides the set of measurements in n subsets of N/n � 1 data points and computes
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the first four centred moments. In case the centred moments do not vary significantly
from one subset to the next one, the set of measurements is taken as stationary.

The Markov condition of the scale process reads [11]:

p(�Xs+�s |�Xs,�Xs−�s, . . . ,�Xs0) = p(�Xs+�s |�Xs). (6)

Notice that, an important consequence of the Markov condition is that any n-point
statistics on X can be extracted from the two-point statistics [12] on the increments,
p(�Xs+�s,�Xs), i.e. three-point statistics on X . The two-point joint distribution
of the increments contains all the information of the scale process.

Equation (6) tells us that, any conditional probability distribution from the process
conditioned to an arbitrarily large number of previous observations equals the con-
dition probability conditioned to the single previous observation solely. Again, such
condition is not possible to ascertain in all its mathematical detail. A weaker version
of Eq. (6) suitable for numerical implementation is:

p(�Xs+�s |�Xs,�Xs−�s) = p(�Xs+�s |�Xs). (7)

Both conditions in Eqs. (6) and (7) are equivalent under the physically reasonable
assumption that the dependency of the future state on previous states decreases
monotonically with the time-lag. The equality in Eq. (7) can be qualitatively verified
by plotting contour plots in the range of observed values for �Xs+�s and �Xs , and
fixing �Xs−�s = X̃ . It can also be quantitatively tested through the Wilcoxon test
[13], χ2-test, or by computing a Kullback-Leibler distance between both conditional
distributions [14].

2.3 The Fokker-Planck Equation for Increments

Once the stationarity of our measures as well as theMarkov condition for their incre-
ments are fulfilled, we are able to determine multipoint statistics for our increments.
Since the process is Markovian in scale, it can be easily proven that for any integer
N one has:

p(�Xs,�Xs−�s,�Xs−2�s, . . . ,�Xs−N�s) =
[

N∏
k=1

p(�Xs−(k−1)�s,�Xs−k�s)

p(�Xs−k�s)

]
p(�Xs−N�s) , (8)

and

p(�Xs−k�s) =
∫ ∞

−∞
p(�Xs−(k−1)�s,�Xs−k�s)d�Xs−(k−1)�s, (9)
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for all k = 1, . . . , N . Thus, all information of our process is incorporated in the
two-point statistics of the increments.

It is known that [12], the conditional probability distributions obeys the so-called
Kramers-Moyal (KM) equation:

∂

∂s
p(�Xs |�Xs0) =

∞∑
k=1

(
− ∂

∂(�X)

)k

D(k)(�X, s)p(�Xs |�Xs0), (10)

with functions D(k), so-called KM coefficients, being defined through conditional
moments M (k) in the limit of small scale increments, namely:

D(k)(�X, s) = lim
�s→0

M (k)(�X, s,�s)

k!�s
(11a)

M (k)(�X, s,�s) =
∫ ∞

−∞
(Y − �X)k p(Y |�Xs)dY. (11b)

Notice that, from Eq. (11a), one can see that mathematically each KM coefficient
of order k, apart a multiplicative constant 1/k!, is the derivative of the conditional
moment of the same order k.

Numerically, there are two ways for deriving KM coefficients. One is by com-
puting the conditional moments M (k) for a range of observed values of �X and s,
which is divided in a certain number of bins, and repeating the computation for sev-
eral values of�s. In the case where the conditional moments depend linearly on�s,
at least for the lower range of values, the KM coefficients are taken as the slope of the
linear interpolation of the corresponding conditional moment in that range of values.
In case such linear dependency is not observed, a second procedure is possible: one
computes at once the entire fraction within the limit in Eq. (11a) again for a range of
observed values of �X and s, divided in a proper number of bins, but this time one
takes the range of smallest values of �s and through a linear interpolates infers the
projection in the plane �s = 0.

The error for D(k) are just given by the linear interpolation of the corresponding
conditional moments as functions of �s. The errors of each value M (k)(�X, s),
necessary for computing the errors of the linear interpolation, are given by [15]:

σ 2
M(k) (�X,�s) = M (2k)(�X,�s) −

[
M (k)(�X,�s)

]2
. (12)

The KM equation (10) also holds for the single probability distribution, since
multiplying both sides by p(�Xs0) and integrating in�Xs0 yields the same equation
for p(�Xs).

An important simplification in Eq. (10) follows if the fourth KM coefficient van-
ishes or is sufficiently small compared to the first two KM coefficients. Such sim-
plification is based on Pawula’s Theorem which states that if D(4) ≡ 0 then all
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coefficients in Eq. (10) are identically zero except the first two. Consequently the
Kramers-Moyal equation reduces to the so-called Fokker-Planck equation:

∂

∂s
p(�Xs |�Xs0)=

(
− ∂

∂(�X)
D(1)(�X, s)+ ∂2

∂(�X)2
D(2)(�X, s)

)
p(�Xs |�Xs0).

(13)
For such differential equation of the single probability function one can derive

differential equations for the structure functions of the increments [9]. Uncertainties
in Eq. (11a) can be overcome, namely when estimating the limit, by considering a
subsequent optimization of D(1) and D(2). This optimization procedure is based in
a cost function derived from the conditional probability density functions, which
are deduced from both the experimental data and from Kramers-Moyal coefficients
directly [16, 17].

2.4 Langevin Processes in Scale

The Fokker-Planck equation (13) above describes the evolution of the conditional
probability density function p(�Xs |�Xs0) for a process in scale which can be gen-
erated by a Langevin equation of the form:

d

ds
(�X) = D(1)(�X, s) +

√
D(2)(�X, s)�s, (14)

where �s is a δ-correlated noise (in scale s) with 〈�s〉 = 0 and 〈�s�s′ 〉 = δ(s − s′).
To illustrate the Langevin process in scale described by Eq. (14), we consider the

particular case of D(1) ∝ −�X and constant D(2), reducing the general Langevin
equation to the particular case of Brownian motion “in scale”.

What is the Brownian motion in scale? Though more abstract than the usual
Brownian motion [6], Brownian motion in scale can be illustrated by a Galton Box
[18], as sketched in Fig. 2. The Galton box is an apparatus consisting of a vertical
board with interleaved rows of pins, typically with a constant distance between
neighbouring pins. Balls are dropped from the top, and each time they hit a pin,
they bounce, left or right, downwards. At the bottom, balls are collected in several
columns separated from each other.

In a Galton box, the horizontal rows of pins represent the succession of scales,
s1, s2, . . . , with a constant distance between adjacent rows, representing the scale
increment �s. From one scale sk to the next one sk+1 the possible ways a ball can
bounce doubles. Since s is in fact a logarithmic scale of 2n , sn = n log 2, and therefore
s scales linearly with the vertical distance to the starting point.

As for the horizontal distance from the centred vertical line, it represents the
increments �X . We recall that for processes in scale one has a scale s playing
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Fig. 2 The Galton box as an
illustration of Brownian
motion in scale. Note that the
converging distribution for
the increments is
proportional to
exp [−2(�X)2/s], a
Gaussian distribution with
standard deviation
proportional to

√
s

ΔX

s=
 n

 lo
g(

2)

s1/2

the role of time and one has increments instead of single values of the observable
X . Thus, similarly to the solution of the original Langevin equation for Brownian
motion, in this case one also obtains a Gaussian distribution of increment values
centred at 〈�X〉 = 0 and with a variance proportional to �s. Note that the normal
approximation of this binomial distribution is N (0, s/4).

Such illustration of a process in scale is a very simple one. To properly imagine
a picture of general scale processes in turbulence two important differences must be
considered. First, the energy (i.e. velocity increments) flow from the largest to the
smallest scales, which is opposite to the illustration with the Galton box. Second, the
KM coefficients for the Galton box are those of the simplest situation that we named
as Brownian motion in scale, due to its straightforward parallel with usual Brownian
motion. Here the KM coefficients do not depend on scale s. In turbulence, as we will
see, not only the dependency on the increments is more complicated, but there is an
important dependence on the scale s.
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3 Applying the Langevin Approach to Turbulence

3.1 The Langevin Approach in Laboratory Turbulence

The experiments were conducted in a closed loop wind tunnel with test section
dimensions of 200cm × 25cm × 25cm (length × width × height) at the Uni-
versity of Oldenburg. The wind tunnel has a background turbulence intensity of
approximately 2% for U∞ ≤ 10m/s. The inlet velocity was set to 10m/s, which
corresponds to a Reynolds number related to the biggest grid bar length L0 of about
ReL0 = U∞L0/ν = 83800, where ν is the kinematic viscosity. Constant tempera-
ture anemometrymeasurements of the velocitywere performed using (Dantec 55P01
platinum-plated tungsten wire) single-hot-wire with a wire sensing length of about
lw = 2.0 ± 0.1mm and a diameter of dw = 5µm which corresponds to a length-
to-diameter ratio of lw/dw ≈ 400. A StreamLine measurement system by Dantec
in combination with CTA Modules 90C10 and the StreamWare version 3.50.0.9
was used for the measurements. The hot-wire was calibrated with Dantec Dynamics
Hot-Wire Calibrator. The overheat ratio was set to 0.8. In the streamwise direction,
measurements were performed on the centerline in the range between 5cm ≤ x ≤
176cm distance to the grid. The data was sampled with fs = 60kHz with a NI PXI
1042 AD-converter and 3.6 million samples were collected per measurement point,
representing 60s of measurements data. To satisfy the Nyquist condition, the data
were low-pass filtered at frequency fl = 30kHz.

For the present work, a fractal grid was placed at the inlet of the wind tunnel,
see Fig. 3. In general, fractal grids are constructed from a multiscale collection of
obstacles which are based on a single pattern which is repeated in increasingly

Fig. 3 Illustration of the
space-filling square fractal
grid (SFG) geometry, placed
at the inlet of the test section
for the experiments, and
considered when
implementing the
corresponding numerical
simulations
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Table 1 Geometrical properties of the utilized fractal grid

N σ/% L0/mm t0/mm RL Rt Lr tr Mef f /mm T/mm

3 36.4 128.4 20.1 0.54 0.36 3.5 7.7 24.6 250

σ is the blockage ratio and T the cross section of the wind tunnel (and also of the simulation domain)

numerous copies with different scales. The pattern our fractal grid is based on is
a square shape with N = 3 fractal iterations. The fractal iterations parameter is
the number the square shape is repeated at different scales. At each iteration ( j =
0, . . . , N − 1), the number of squares is four times higher than in the iteration j − 1.
Each scale iteration j is defined by a length L j and a thickness t j of the squares bars
constituting the grid. The thickness of the square bars in the streamwise direction
is constant. The dimensions of the square patterns are related by the ratio of the
length of subsequent iterations RL = L j

L j−1
and by the ratio of the thickness of

subsequent iterations Rt = t j
t j−1

; respectively. The geometry of the fractal grid we
used (also called the space filling fractal grid [19]) is completely characterized by
two further parameters namely the ratio of the length of the first iteration to the last
one Lr = L0

L N−1
and the ratio of the thickness of the first iteration to the last one

tr = t0
tN−1

.
Contrary to classical grids, fractal grids do not have a well-defined mesh size

Mef f . However, an equivalent effective mesh size was defined in [19]. A complete
quantitative description of the N3 fractal grid we used in this study is reported in
Table1.

3.2 The Langevin Approach in Simulated Turbulence

The flow over a fractal grid is described by the three dimensional, incompressible
Navier-Stokes equations. The equations are discretized and solved using a turbulence
model. In this investigation, the Delayed Detached Eddy Simulation (DDES) [20]
with a Spalart-Allmaras background turbulence model [21], commonly referred to
as SA-DDES is used. DDES is a hybrid method stemming from the Detached Eddy
Simulationmethod (DES) [20],which involves the use ofReynoldsAveragedNavier-
Stokes Simulation (RANS) at the wall and Large Eddy Simulation (LES) away from
it. This method combines the simplicity of the RANS formulation and the accu-
racy of LES, with the advantage of being less expensive, in terms of computational
time, when compared with pure LES. DDES is an improvement of the original DES
formulation, where the so called “modelled stress depletion” (or MSD), is treated
[22, 23].

The numerical simulation was set up analogous to the experiments in order to
compare the results in a consistent manner. The open source code OpenFOAM [24]
was used to solve the incompressible Navier-Stokes equations. OpenFOAM is based



136 N. Reinke et al.

on the finite volumemethod, and it consists of a collection of libraries written in C++,
which can be used to simulate a large class of flow problems. For more information
about the available solvers and turbulence models, refer to the official documentation
[24]. The solver used in this investigation is the transient solver pimpleFoam, which
is a merging between the PISO (Pressure implicit with splitting of operator) and
SIMPLE (Semi-ImplicitMethod for PressureLinkedEquation) algorithms.A second
order central-differencing scheme is used for spatial discretization, and a backward,
second-order time advancing schemes was used. The solver is parallelized using the
Message-Passing Interface (MPI), which is necessary for problems of this size.

The numerical mesh was generated using the built-in OpenFOAM meshing tools
blockMesh and snappyHexMesh [24]. As a result, an unstructuredmesh of 24million
cells is obtained, where regions of interest in the wake are refined, as shown in Fig. 4.
The fractal grid is simulated in a domain with similar dimensions as the real wind
tunnel. Thedomainbegins 2mupstreamof the fractal grid and covers a distanceof 2m
downstream (seeFig. 5). Theflow-parallel boundaries are treated as frictionlesswalls,
where the slip boundary condition was applied for all flow variables. At the inflow
boundary, Neumann boundary condition was used for the pressure, and Dirichlet
condition for the velocity. At the outflow boundary, the pressure was set to be equal
to the static pressure and a Neumann boundary condition was used for the velocity.
On the fractal grid, awall function is used for themodified viscosity ν̃, with the size of
the first cell of themesh in terms of the dimensionless wall distance is y+ ∼ 200 [25].
For each simulation, 480 processors were used, and for each time step 4.5GB of data
was collected for post-processing. The data sampling frequency was 60kHz, chosen
to match the experimental one. It took approximatively 72h to simulate one second
of data and a total of 20 s of numerical data were collected. The data was collected
in the same positions as for the experimental study. The numerical simulations were
conducted on the computer cluster of the ForWind Group [26].

Fig. 4 Details of the
computational mesh used in
the computational
simulations of the N3 fractal
grid
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Fig. 5 Schematic representation of the numerical domain considered and the system of coordinates.
The fractal grid is positioned where the dark block is drawn

3.3 Comparative Analysis

We estimate the Kramers-Moyal coefficients D(1,2) for the experimental and simu-
lated data. The coefficients are commonly parametrized as follows:

D(1)(u, r, x) = d11(r, x) · u, (15)

D(2)(u, r, x) = d22(r, x) · u2 + d20(r, x), (16)

dii (r, x) = aii (x)
( r

λ

)3 + bii (x)
( r

λ

)2 + cii (x)
r

λ
+ dii (x). (17)

The results of D(1,2) in terms of a, b, c and d are shown in Table2, for the downstream
position x = 0.76m. Note that the coefficients strongly depend on the downstream
position x . We present and discuss all scales in units of Taylors microscale λ.

Table 2 Coefficients a, b, c and d of the drift and diffusion terms for experimental (Exp.) and
simulated (Sim.) data, for downstream position x = 0.76 m

KM coeff. Data a b c d

d11 exp. −2.7 × 10−5 5.6 × 10−4 −0.075 −1.0

Sim. 6.7 × 10−7 −7.4 × 10−4 −0.070 −0.89

d22 Exp. −2.1 × 10−6 2.0 × 10−4 −0.0037 0.059

Sim. −6.6 × 10−6 4.1 × 10−4 −5.5 × 10−4 0.072

d20 Exp. 0 0 0.10 0.18

Sim. 0 0 0.10 0.21
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Fig. 6 Kramers-Moyal
coefficients in terms of d11,
d20 and d22 along the inertial
range, 1 ≤ r

λ
≤ L
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Figure6 presents Kramers-Moyal coefficients in terms of d11, d20 and d22 versus
the scale r/λ. The coefficient are calculated within the inertial range. We chose this
range, because the DDES simulations treat flow structures of this size as universal
and simplify the turbulent flow properties by means of a sub-grid model, which is in
this case the Spalart-Allmaras model. Therefore, a validation with the experimental
data within the inertial range is of particular interest. Common limits of this region
are λ ≈ 3mm (small scale) and the integral length scale L ≈ 12cm (large scale).

The development of the drift term within the inertial range is shown in Fig. 6a.
Comparing the experimental and the simulated data no significant differences can be
observed. Both curves indicate a stronger drift termwith increasing scale, as usual for
turbulent flows. The four outliers are most likely due to the optimization procedure.
Rarely, local minimum are found instate of the global.

The development of the diffusion term within the inertial range is shown in
Fig. 6b, c. Figure6b shows the curvature of the diffusion term d22, a very small and
sensitive term. Here the experimental and the simulated data differ in their develop-
ment. At large scales the curvature differ significantly (d22,sim ≈ 3 ·d22,exp). At small
scales the developments draw near, but do not converge. The magnitude of d22,exp is
common, and shows why some studies neglect d22. Figure6c presents the diffusion
term offset d20 within the inertial range. Such as the drift term, no essential differ-
ences between the experimental and the simulated data can be observed. The linear
increasing of the offset is typical for the inertial range, it indicates the growth of the
increments (velocity difference) or vortices, respectively, with scale, cf. Eq. (14).

4 Discussion and Conclusions

In this chapterwedescribed the so-calledLangevin approach, a stochasticmethod that
enables deriving evolution equations of stochastic observables, providing important
physical insight about the underlying system.

The method was applied to the problem of turbulence, addressed experimentally
and by means of simulations by extracting the velocity increment time series, one
recorded in a wind tunnel experiment and one simulated by a delayed detached
large eddy simulation (DDES). For each case we extracted the functions defining
the stochastic evolution equation, the so-called Kramers-Moyal coefficients, and
parametrized them through polynomials of the scale.

The results show on the one hand good consistency in the two dominating terms,
namely the linear term d11 of the first KM coefficient (drift) and the independent term
d20 of the second KM coefficient (diffusion). Other terms, such as the quadratic term
d22 for the diffusion, may present deviations that appeal for further investigation,
which will carried out for a forthcoming study focusing on this specific experiment.

Concerning the Langevin approach as a stochastic method on its own, three points
are worth of mention. First, the method can also be applied to the usual processes
in time [2]. For that, one should simply interchange scale s and increments �X in
Eqs. (10) and (14) by time t and observable values X respectively.
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Second, while the method implies the fulfilment of two important conditions,
namely stationarity and markovianity (see Sect. 2.2), the method can still be adapted
to a more general situation where one or both this conditions are dropped. In case the
data series is not stationary, the Langevin approach can be applied to time-windows
within which the series can be taken as stationary [27]. As a result, one derives a set
of KM coefficients as function of time, one for each time-window. In the case the
data series is not Markovian, for instance due to measurement (additive) noise an
extension is still possible [15, 28].

Finally, the Langevin approach can be applied to a broad panoply of different
situations in topics ranging technical applications to biological, geophysical and
financial systems, e.g. electric circuits, wind energy converters, traffic flow, cosmic
microwave background radiation, granular flows, porous media, heart rhythms, brain
diseases such as Parkinson and epilepsy, meteorological data, seismic time series,
nanocrystalline thin films and biological macromolecules. For a review on these
topics see Ref. [2].
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Monte Carlo Simulations of Turbulent
Non-premixed Combustion using
a Velocity Conditioned Mixing Model

Michael Stoellinger, Denis Efimov and Dirk Roekaerts

Abstract Non-premixed turbulent combustion in a laboratory scale flame (Delft
III flame) is studied using a statistical description at the one-point one-time joint
velocity—scalar composition probability density function (PDF) level. The PDF
evolution equation is solved using a stochastic Lagrangian Monte Carlo method.
The PDF equation requires a so called micro-mixing model for closure and the per-
formance of two micro-mixing models is investigated. The Interaction by Exchange
with the Mean (IEM) micro mixing model is the most commonly adopted model.
The IEM model was developed for the scalar PDF method and does not depend on
velocity statistics. A physicallymore sound extension of the IEM is the Interaction by
Exchange with the Conditional Mean (IECM) which involves mixing of the scalars
towards mean values conditional on the velocity. Both models are applied in this
work and it is shown that the IECMmodel does perform significantly better than the
simple IEM model.

1 Introduction

Combustion processes are characterized by a series of fast exothermic chemical reac-
tions between a fuel and an oxidizer accompanied by the release of heat. For large
scale applications safety is of major concern and thus these devices are operated
in non-premixed combustion mode. In non-premixed combustion, fuel and oxidizer
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enter the combustion chamber in separate streams and mixing has to occur before
the reactions take place. In this work we will focus on the modeling of non-premixed
turbulent combustion of gaseous fuels. In non-premixed combustion the interactions
between chemical and physical phenomena are of great importance. The turbulent
flow field gives rise to large instantaneous fluctuations in the thermochemical quan-
tities (such as temperature and gas composition). Molecular and turbulent diffusion
greatly affect the intensity of chemical reactions. Further, the chemical reactions
modify the flow field by changing the density and the viscosity of the gas mixture.
The coupling of the complex interactions between the turbulent flow and chemical
reactions over a large range of time and length scales poses the main difficulty for
modeling turbulent combustion.

Solving numerically the exact transport equations describing turbulent combus-
tion for all time and length scales is not suitable for engineering applications. Such
simulations, called direct numerical simulation (DNS), can be performed for simple
cases and due to the high computational cost their applications are limited to low
Reynolds number canonical flames. The computational cost can be reduced by solv-
ing only for the mean velocity and modeling the effects of turbulent fluctuations as is
done in the Reynolds Averaged Navier-Stokes (RANS) method. However, the con-
ventional RANS method is less suitable for modeling of turbulent reacting flows as
the mean chemical source term appears as unknown in the transport equations for the
mean scalar composition variables (the mean chemical species concentrations and
the mean enthalpy). Because the chemical source term is a highly non-linear func-
tion of the scalar composition variables it cannot be closed utilizing only the mean
values of these variables, but the knowledge of the full joint statistics of the scalar
composition variables is required. The exact transport equation for the one-point,
one-time joint probability density function (PDF) of the scalar composition vari-
ables (SPDF) can be derived from the Navier-Stokes equations [1, 2] but is unclosed
(i.e. it involves multi-point statistical information). The unclosed terms in the PDF
equation are the turbulent transport and the molecular mixing of scalar variables on
the smallest scales (further referred to as the micro-mixing term) and both terms
need to be modeled. The main advantage of the PDF method is given by the exact
treatment of the chemical reaction source term. The modeling of the micro-mixing
remains the biggest challenge in the PDF approach and a variety of models have
been proposed in the past [3].

In the composition PDF approach the effect of turbulent transport has to be mod-
eled in addition to micro-mixing. A more general statistical description is based
on the joint velocity-scalar PDF (VSPDF) approach which is considered in this
work. The turbulent transport (i.e. correlations between scalars and velocity) does
not require modeling in the VSPDF method since the velocity is included in the
statistical formulation. The modeled equation for the VSPDF is solved with a sto-
chastic Lagrangian Monte Carlo method. In the VSPDF method the micro-mixing
term in the PDF transport equation appears in a form conditioned on both the velocity
and the scalar composition. Most micro-mixing models are developed for the SPDF
approach [3] where velocity conditioning is irrelevant and are then simply adopted in
theVSPDF approach bymaking the assumption that the scalar mixing is independent
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of the underlying velocity statistics. The hypothesis tested in this work is that the
effects of velocity conditioning for micro-mixing models, used in the context of the
joint velocity-scalar probability density function approach, are not negligible and
should be accounted for. This work compares the performance of the Interaction by
Exchange with the Mean (IEM) micro-mixing model [4] with that of its velocity
conditioned version the Interaction by Exchange with the Conditional Mean (IECM)
model [5].

The IEM and IECMmodels are both used in simulations [6] of the Delft III flame
that has been studied experimentally at the Heat Transfer Section of Delft University
of Technology [7, 8]. The Delft III flame is a laboratory scale piloted non-premixed
co-flow flame burner with natural gas as the main fuel. Detailed measurements of
the turbulent flow fields and the thermochemical quantities in the Delft III flame are
available, permitting the assessment of the adopted modeling techniques.

2 Stochastic Modeling of Turbulent Non-premixed
Combustion

This section outlines the development of a stochastic model for turbulent react-
ing flows. First, the deterministic governing equations are presented and a simplified
treatment of the chemical reactions is introduced. Then, the exact but unclosed trans-
port equation of the joint velocity-scalar PDF is presented and closure models are
introduced. Finally, an efficient numerical solution method of the VSPDF equations
based on a stochastic Lagrangian Monte Carlo method is briefly described.

2.1 Deterministic Conservation Equations

The description of turbulent reacting flows is based on the conservation of mass,
momentum, energy and chemical species. The continuity equation describing mass
conservation is given by

∂ρ

∂t
+ ∂ρUi

∂xi
= 0 (1)

where ρ is the density, Ui the velocity and xi the Cartesian spatial coordinates with
i = 1, 2, 3. Throughout this work, Einstein summation convention is adopted for
repeated roman letters but not for repeated greek letters. The conservation equation
for momentum can be written as

∂

∂t
ρUi + ∂

∂x j
ρU jUi = − ∂p

∂xi
− ∂

∂x j
τi j (2)
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where p is the pressure and τi j the viscous stress tensor given by

τi j = −μ

(
∂Ui

∂x j
+ ∂U j

∂xi

)
+ 2

3
μ

∂Uk

∂xk
δi j , (3)

where μ is the viscosity of the gas mixture. The Ideal gas assumption relates the
pressure to the density and temperature of the gas mixture:

p = ρR0T
ns∑

α=1

Yα

Mα

, (4)

where R0 the universal gas constant, T the temperature of the mixture, ns the total
number of species, Yα the mass fraction and Mα the molar mass of species α.
Throughout this work the lowMach number approximation is adopted which implies
that in the thermodynamic equation of state the pressure is assumed to be the constant
ambient pressure p0.

The conservation equation for the total specific enthalpy is given by

∂

∂t
ρh + ∂

∂x j
ρU j h = − ∂

∂x j
J h

j + ρSh, (5)

where J h
j represents the molecular enthalpy flux and Sh is a source term. In this work

the effects of radiative heat transfer, viscous dissipation and transient pressure are
neglected and hence Sh = 0. The temperature dependency of the enthalpy for each
of the species is given by the caloric equation of state

h =
ns∑

α=1

Yα

(
href

α +
∫ T

Tref

cp,α

(
T ′) dT ′

)
. (6)

Here Tref is the reference temperature, href
α is the enthalpy of the species α at the

reference temperature and cp,α is the specific heat of the species α.
The conservation equations for species mass fractions Yα read

∂

∂t
ρYα + ∂

∂x j
ρU j Yα = − ∂

∂x j
Jα

j + ρSα, (7)

where Jα
j denotes the diffusion flux and Sα is the chemical reaction source term.

Neglecting effects of thermal diffusion and external body forces and assuming
Fickian diffusion with equal diffusivity D for all species and enthalpy, the flux terms
are given by

Jα
j = −ρD

∂Yα

∂x j
, J h

j = −ρD
∂h

∂x j
. (8)
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2.2 Simplified Chemical Description

The overall reaction of oxidation of methane, the prevailing component of natural
gas, is simply

CH4 + 2O2 → CO2 + 2H2O.

However, in real methane combustion the conversion is a multi-step process and a
high number of intermediate species and elementary reactions should be considered.
As an example the Gri-Mech 3.0 reaction mechanism [9], which is reported to show
good performance for laminar test cases, contains 53 species and 325 elementary
reactions. Adopting such a mechanism directly means that the thermo-chemistry
requires the solution of 54 coupled PDE’s and that would render the problem numer-
ically intractable in particular for turbulent flames. A viable method to drastically
reduce the chemical complexity of combustion is the flamelet tabulation method.
The flamelet tabulation method describes a turbulent flame as an ensemble of sim-
ple 1-d laminar flame structures that are called flamelets. The simulations of such
1-d flamelets are done prior to the main turbulent flame simulation, generating a
lookup table to be used during the main simulation. In this process the whole ther-
mochemistry is stored as a function of a few controlling scalar variables, reducing
the computational costs during the main simulation.

The Flamelet Generated Manifolds (FGM) method [10] is employed in this work.
The FGM for non-premixed flames is a flamelet model with tabulation based on
two controlling variables: the mixture fraction ξ and the progress variable Y. The
mixture fraction ξ is a conserved scalar representing the degree of mixedness. The
second controlling scalar is the reaction progress variable Y which is defined as a
linear combination of the main combustion products [10]

Y = YC O2

MCO2

+ YH2O

MH2O
+ YH2

MH2

. (9)

The FGM database is generated by solving counterflow diffusion flamelets numeri-
cally. The flamelet equations are a 1-D set of partial differential equations [10]. The
chemical mechanism adopted, is the aforementioned Gri-Mech 3.0 with ns = 53
species and 325 elementary reactions. The main parameter in the flamelet equations
is the strain rate a. The strain rate can be related to the velocity difference between
the opposing fuel and oxidizer streams and the distance between the two streams.
The higher the strain rate the more “strained” the flames are and the closer they get
to extinction. Steady flamelets are solved for different strain rates a:

a = (1, 2, 5, 7, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

200, 300, 400, 500, 550, 600, 650, 700, 720) [1/s]
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Then, in order for the flamelet database to account for the process of extinction, a
time dependent solution of the flamelet equations has been found. This is achieved
by using the most strained steady flamelet (a = 720[1/s]) as an initial condition and
increasing the strain rate to the extinction value a = 730[1/s]. The time dependent
simulation is continued until the pure mixing limit is reached, providing a series of
additional states. Each counterflow diffusion flamelet is solved on a non-uniform grid
with 150 points using grid refinement (at the locations of higher gradients more cells
are automatically added to the grid), and the FGM database contains 23 steady and
12 unsteady flamelets. The flamelet equations are solved using the Chem1D software
developed at the Eindhoven University of Technology [11]. A typical solution for
the temperature in a flamelet with a = 100 s−1 is shown in Fig. 1. The figure shows a
plot of the temperature as a function of the mixture fraction (left) and the source term
of the reaction progress variable as a function of the mixture fraction. Both figures
show a strong dependence on the mixture fraction and that both the temperature
and the source term of the progress variable peak around the stoichiometric mixture
fraction ξst ≈ 0.07.

The tabulation is done by interpolating the flamelet solutions on a ξ − Y grid,
which is equidistant in both directions (150 ξ -points× 150Y-points). The tabulated
variables are the density ρ, the temperature T and the source term of the reaction
progress variable SY(ξ,Y). For an adiabatic flame such as the one considered in this
work the thermo-chemistry can thus be reduced to solving two scalar equations one
for the mixture fraction and one for the progress variable. To simplify the notation
we introduce the composition vector φφφ with components

φα = (ξ,Y) (10)

The conservation equation for the mixture fraction and for the reaction progress
variable can now be combined to one equation for the composition vector

0 0.5 1
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Fig. 1 Temperature as a mixture fraction (left) and reaction progress variable source term (right)
for a Flamelet solution for a = 100 s−1
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∂

∂t
ρφα + ∂

∂x j
ρU jφα = − ∂

∂x j
Jα

j + ρSα (φ) , (11)

with S1 = 0 since the mixture fraction is a conserved scalar and S2 = SY(ξ,Y).

2.3 Statistical Description

The large range of time and length scales in turbulent flows make the direct solution
of the deterministic equations presented in the preceding section computationally
intractable for flows of practical interest. A computationally more feasible approach
is to seek a statistical description. The set of random flow variables considered in this
work are the velocity vectorUUU and the composition vector φφφ = (ξ,Y) with the cor-
responding sample space variables VVV andψψψ , respectively. The statistical description
is based on the one-point, one-time joint velocity-composition mass density function
(MDF)FUUUφφφ (VVV ,ψψψ; xxx, t) [1–3]. The joint velocity-compositionMDF is related to the
joint velocity-composition PDF through

FUUUφφφ (VVV ,ψψψ; xxx, t) = ρ (ψψψ) fUUUφφφ (VVV ,ψψψ; xxx, t) (12)

The main motivation to work with the joint velocity-composition MDF rather than
with the PDF is that in turbulence modeling of flows with variable density it is cus-
tomary to use density-weighted averages (Favre-averaging) to avoid terms involving
density fluctuations. The Favre average of any variable Q is defined by

Q̃ = 〈ρQ〉
〈ρ〉 . (13)

The Favre-average of a function Q (UUU ,φφφ) can thus be expressed simply in terms of
the velocity-composition mass density function (MDF)

〈ρ〉Q̃ (UUU ,φφφ) =
∫
ψψψ

∫
VVV

Q (VVV ,ψψψ)FUUUφφφ (VVV ,ψψψ) dVVV dψψψ. (14)

In the case that a quantity Q is not a function of U and φ only but is a well defined
property of the flow (for example containing a gradient of φ) then Eq. (14) is gener-
alized to

〈ρ〉Q̃ (UUU ,φφφ) =
∫
ψψψ

∫
VVV

〈Q|VVV ,ψψψ〉FUUUφφφ (VVV ,ψψψ) dVVV dψψψ (15)

The transport equation for the one-point one-time joint velocity-scalar MDF
FUUUφφφ (VVV ,ψψψ; xxx, t) can be derived [1–3] from the conservation Eqs. (1), (2) and (11)
and reads
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∂

∂t
F + ∂

∂xi
ViF = − ∂

∂Vi

[
1

ρ (ψψψ)

(
−∂ 〈p〉

∂xi
− ∂

〈
τi j

〉
∂x j

)
F
]

(16a)

− ∂

∂Vi

[
1

ρ (ψψψ)

〈
−∂p′

∂xi
− ∂τ ′

i j

∂x j

∣∣∣∣∣UUU = VVV ,φφφ = ψψψ

〉
F
]

(16b)

− ∂

∂ψα

[(
− 1

ρ (ψψψ)

∂
〈
Jα

i

〉
∂xi

+ Sα (ψψψ)

)
F
]

(16c)

− ∂

∂ψα

[
1

ρ (ψψψ)

〈
−∂ Jα

i
′

∂xi

∣∣∣∣UUU = VVV ,φφφ = ψψψ

〉
F
]

. (16d)

The first two terms on the RHS of this Eq. (16a) and (16b) represent the evolution
in velocity space and the last two terms (16c) and (16d) account for the evolution
in scalar space. Terms (16a) and (16c) are closed and the terms (16b) and (16d),
containing conditional expectation values, are unclosed and require to be modeled.
The closed velocity evolution term (16a) contains the mean pressure gradient and
mean viscous stress tensor. Unclosed velocity evolution terms describe the effects of
the fluctuating pressure gradient and the fluctuating viscous stress tensor, conditional
on the velocity and scalars. Both terms include gradients of fluctuating quantities that
cannot be expressed in terms of the one-point PDF (since gradient statistics would
require at least two-point statistical information). A typical model for this term is the
so called simplified Langevin model (SLM) which is given by [1–3]

1

ρ (ψψψ)

〈
−∂p′

∂xi
− ∂τ ′

i j

∂x j

∣∣∣∣∣UUU = VVV ,φφφ = ψψψ

〉
= 1

ρ (ψψψ)
〈ai |UUU = VVV ,φφφ = ψψψ〉

≈ aM
i (VVV ,ψψψ) (17)

=
(
1

2
+ 3

4
C0

)
ε

k

(
Vi − Ũi

)

− C0ε

2F
∂F
∂Vi

,

where C0 = 2.1 is a model coefficient, k = 0.5ũ′′
i u′′

i is the turbulent kinetic energy
(tke) and ε the dissipation rate of the tkewhich has to be provided by a separatemodel
(see below). The ratio k/ε provides a time scale for the dissipation process of the
large turbulence scales and thusω = ε/k gives a characteristic turbulence frequency.

The closed term describing the evolution in scalar space consists of the mean
molecular diffusion flux and the mean reaction source term. The reaction source
term is closed since the source terms only depend on the composition vector and are
thus statistically fully described by the joint MDF FUUUφφφ (VVV ,ψψψ; xxx, t). This is the main
advantage of working with a transport equation for the joint velocity-scalar MDF in
reacting flows. If only a small number of statistical moments of the MDF are solved
for (such as in conventional RANS modeling), the effects of the nonlinear chemical
source terms would have to be modeled.
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The unclosed scalar evolution term represents the effects of molecular mixing or
micro-mixing. This term can have a drastic influence on the turbulent flame evolution.
The main topic of this work is to investigate the performance of two different closure
models for the micro-mixing term. As an example, the simplest closure model is the
Interaction by Exchange with the Mean (IEM) model [4]

1

ρ (ψψψ)

〈
−∂ Jα

i
′

∂xi

∣∣∣∣UUU = VVV ,φφφ = ψψψ

〉
= 〈θα|UUU = VVV ,φφφ = ψψψ〉
≈ θα,mix(VVV ,φφφ) (18)

= −Cφ

2

ε

k

(
ψα − φ̃α

)
,

where Cφ is the so called mixing parameter.
By adopting the SLM (17) and the IEM model (18) a closed evolution equation

for the joint velocity-scalar MDF is obtained. Even for a steady state problem in two
spatial dimensions (dim(xxx) = 2, dim(UUU ) = 2) and using the simplified chemistry
model (dim(ψψψ) = 2) the MDF equation has derivatives in six dimensions. This
makes the use of standard computational techniques, such as finite-differencing,
inappropriate for this problem as the computational cost grows exponentially with
the dimensions ([12]). Moreover, the MDF has to remain positive and has to satisfy
the consistency property

∫
FUUUφφφ (VVV ,ψψψ; xxx, t) dVVV dψψψ = 〈ρ〉, (19)

which would be very difficult to ensure numerically using FD type discretizations.
Using a stochastic Lagrangian Monte Carlo particle method the computational cost
only increases linearly with the dimensionality of the equation and it is a simple
matter to ensure the constraints on F numerically [2, 3]. The Monte Carlo method
is based on a stochastic Lagrangian representation of the joint velocity-scalar MDF
and is described in the next section.

2.4 Monte Carlo Method

The joint velocity-scalar MDF is represented in terms of the properties of a large
number (N ) of stochastic Lagrangian “fluid” particles [13]. The set of properties
assigned to each particle consists of a numerical weight, the position, the velocity
and the scalar composition. The particles can be viewed as different realizations
of a turbulent reactive flow experiment. An estimate of the MDF FUUUφφφ can then be
obtained as a simple ensemble average over N particles:

FUUUφφφ,N (VVV ,ψψψ; xxx, t) = m
N∑

i=1

δ
(

VVV − UUU (i)
)

δ
(
ψψψ − φφφ(i)

)
δ
(

xxx − XXX (i)
)

(20)
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where UUU (i), φφφ(i) and XXX (i) are respectively the velocity, the composition and the
position of the i th particle, m = M/N is the amount of mass each particle is
representing. As N → ∞, the expected value of the MDF

〈FUUUφφφN
〉
approaches

the exact one FUUUφφφ . Within the Monte Carlo method, if all particles have the same
numerical weight, the average of an arbitrary function of composition Q (φφφ) can be
obtained from an ensemble of N particles as:

〈Q (φ)〉 = 1

N

N∑
i=1

Q
(
φ(i)

)
. (21)

The statistical error εQN is defined by the following equation:

εQN = 〈Q〉N − 〈Q〉N→∞ (22)

and the standard deviation of the statistical error σεQN expressed in terms of the
standard deviation σQ of Q reads:

σεQN = 1√
N

σQ . (23)

For more information on the numerical and statistical errors the interested reader is
referred to [2].

The evolution of the Monte Carlo particles in the velocity-composition-physical
space (UUU ,φφφ, XXX) starting at the initial value (UUU0,φφφ0, xxx0) at the reference time t0 are
governed by the stochastic differential equations (using the SLM (17))

d X∗
i = U∗

i dt (24)

dU∗
i =

(
1

ρ

∂ 〈p〉
∂xi

− ∂
〈
τi j

〉
∂x j

)
dt +

(
1

2
+ 3

4
C0

)
ε

k

(
U∗

i − Ũi
)

dt + (C0ε)
1/2dWi

(25)

dφα = θα,mixdt + Sα (φφφ) dt + ∂

∂xk

( 〈ν〉
Sc

∂φ̃α

∂xk

)
dt, (26)

where θα,mix is the mixing model and WWW (t) is an isotropic Wiener process with the
properties:

〈dWWW (t)〉 = 0,
〈
dWi (t) dW j (t)

〉 = dtδi j . (27)

For the stochastic particle representation the IEM micro-mixing model is given
by (using ω = ε/k for brevity)

θ IEM
α,mix = −1

2
Cφω

(
φ∗

α − φ̃α

)
(28)
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In the IEM method, micro-mixing is achieved by the decay of scalar variance which
is modeled by the deterministic drift of individual particles’ scalar values towards
the local Favre-mean value. More details on the different micro-mixing models con-
sidered in this work will be given in Sect. 3.

2.5 Hybrid Solution Algorithm

Ahybrid finite-volume/Monte Carlo solution algorithm ([14]) is used in this work. In
the hybrid solution approach, the equations for the mean velocity Ũi and the veloc-

ity covariance ũ′′
i u′′

j (the Reynolds stress tensor) that are implied by the adopted
stochastic model are solved by a conventional FV method. The hybrid method dras-
tically reduces the bias error [2, 14] that arises from the fact that the drift term in
the stochastic velocity evolution involves the local mean which is estimated by a
rather small sample (about 50–200 particles per cell). The chemical composition
of the flow is described completely by the stochastic particle ensemble and hence
the mean density 〈ρ〉 required in the mean continuity and momentum equations is
calculated from the stochastic Lagrangian solver. The domain is discretized into

non-overlapping finite volumes which are used to solve for Ũi , ũ′′
i u′′

j , 〈p〉 and ε

using a FV method and also to compute mean values from the stochastic particles
such as 〈ρ〉 = ∑

i∈cell ρ(i)/
∑

i∈cell . The FV solver and the Monte Carlo solver are

loosely coupled which means that several FV iterations (about 500) are performed
and then several Monte Carlo steps (about 10) are performed forming one hybrid
iteration. Figure2 shows a sketch of the hybrid algorithm. The hybrid iterations are
repeated until a converged solution is reached. Convergence is usually judged based
onmonitoring themean temperature (coming from theMonte Carlo solver) at certain
positions within the domain.

Fig. 2 Sketch of hybrid Monte Carlo solution method [12]
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3 Micro Mixing Models

Modeling of the micro-mixing effects remains the biggest challenge in the PDF-
approach. Its importance stems from the fact that the chemical reaction can occur
only after the scalars are mixed at the smallest scales [12]. The evolution of the joint
velocity-scalar MDF FUUUφφφ (VVV ,ψψψ; xxx, t) by the scalar micro-mixing is described by:

∂

∂t
F = − ∂

∂ψα

⎡
⎢⎢⎢⎣

1

ρ (ψψψ)

〈
−∂ Jα

i
′

∂xi

∣∣∣∣UUU = VVV ,φφφ = ψψψ

〉
︸ ︷︷ ︸

θα,mi x

F

⎤
⎥⎥⎥⎦ . (29)

The main topic of this work is to investigate and compare the performance of two
micro-mixing models, namely the Interaction by Exchange with the Mean (IEM)
model [4] and the Interaction by Exchange with the Conditional Mean (IECM)
model [5].

3.1 Description of IEM and IECM Models

For a scalar composition variable φ
(n)
α of a stochastic Lagrangian fluid particle (n)

the IEM and the IECM models can be written as:

dφ(n)
α = θ

(n)
α,mixdt

= −1

2
Cφω

(
φ(n)

α − φ̃α

)
dt (IEM) (30)

= −1

2
Cφω

(
φ(n)

α − φ̃α|UUU
)

dt (IECM) (31)

where Cφ is a model constant with standard value 2, ω the turbulence frequency
given by ε/k , φ̃α is the Favre-mean of the scalar φα of all particles residing in the

grid cell and φ̃α|UUU is the Favre-mean of the scalar φα conditioned on the velocity.
In practice an approximation for the velocity conditioned mean of φα based on the
finite particle ensemble of a grid cell has to be found. In both models, micro-mixing
is achieved by the decay of scalar variance which is modeled by a deterministic drift
of individual particles’ scalar values towards the Favre-mean in case of the IEM and
the velocity conditioned Favre-mean in case of the IECM. The scalar variance decay
rate in Eqs. (30) and (31) is taken to be proportional to the turbulence frequency ω.
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3.2 The Correct Local Scalar Isotropy

Closure models for micro-mixing should satisfy a number of conditions. This topic
is explained in more detail in [3, 12] (and further references therein). One of these
properties is the correct local scalar isotropy. This property represents the fact that
scalar mixing can be dependent on the statistics of the velocity field, which is the
case for inhomogeneous scalar fields with a mean scalar gradient ([5]). From the
two micro-mixing models studied here, clearly, only the IECMmodel is designed to
take this property into account. The IEM model has been originally developed for
the joint composition PDF approach, where it is used to close the scalar mixing term
of the PDF equation conditioned only on the scalar composition:

θ IEM
α,mix = 1

ρ (ψψψ)

〈
−∂ Jα

i
′

∂xi

∣∣∣∣φφφ = ψψψ

〉
. (32)

When the IEMmodel is used in the joint velocity-scalar PDFapproach the assumption
is made that the scalar mixing term in the PDF Eq. (16) is independent of the velocity
field 〈

−∂ Jα
i

′

∂xi

∣∣∣∣UUU = VVV ,φφφ = ψψψ

〉
=

〈
−∂ Jα

i
′

∂xi

∣∣∣∣φφφ = ψψψ

〉
, (33)

while the IECMmodel accounts for such dependencies. The important consequence
of this, at first sight, small modeling difference is discussed next. Without loss of
generality we restrict the discussion to the mixture fraction ξ which is a conserved
scalar (there is no source term due to chemical reactions). We also neglect the effects
of mean molecular diffusion for simplicity since we are mostly interested in high
Reynolds number flows. The transport equation for the joint velocity-mixture fraction
MDF FUUUξ (VVV , ζ ; xxx, t) [15] is the starting point:

∂FUUUξ

∂t
+ Vj

∂FUUUξ

∂x j
= − ∂

∂Vi

[〈ai |UUU = VVV , ξ = ζ 〉FUUUξ

]

− ∂

∂ζ

[〈
θξ,mix

∣∣UUU = VVV , ξ = ζ
〉FUUUξ

]
, (34)

with the term 〈ai |UUU = VVV , ξ = ζ 〉 as defined in (17) andwhere 〈θξ,mix
∣∣UUU = VVV , ξ = ζ

〉
represents one of the two considered micro-mixing models. Now transport equations

for the mean mixture fraction ξ̃ and the scalar flux ũ′′
i ξ ′′ can be derived from the

Eq. (34) by multiplying it respectively by ζ or Viζ and integrating over the phase
space (VVV , ζ ), resulting in:

∂ 〈ρ〉 ξ̃

∂t
+ ∂ 〈ρ〉 Ũ j ξ̃

∂x j
= −∂ 〈ρ〉 ũ′′

jξ
′′

∂x j
, (35)
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and

∂ 〈ρ〉 ũ′′
i ξ ′′

∂t
+ ∂ 〈ρ〉 ũ′′

i ξ ′′Ũ j

∂x j
= −〈ρ〉 ũ′′

jξ
′′ ∂Ũi

∂x j
− 〈ρ〉 ũ′′

i u′′
j

∂ξ̃

∂x j

+ 〈ρ〉 ˜u′′
i θξ,mix

+ 〈ρ〉 ãiξ ′′ −
∂
〈
ρu′′

i u′′
jξ

′′
〉

∂x j
. (36)

In Eq. (36) the symbol ˜ABC DE denotes the Favre-averaging of a long expression.
The micro-mixing model should not affect the mean of a scalar (it only reduces the

scalar variance). Therefore, the scalar flux ũ′′
i ξ ′′ appearing in the equation for the

mean mixture fraction (35) should be independent of the micro-mixing model and

hence the term ˜u′′
i θξ,mix in the equation for the scalar flux (36) should vanish [16].

Expanding this term, by substituting the Eqs. (30) and (31) for θξ,mix for the IEM and
the IECM models, gives respectively:

˜
u′′

i θ IEM
ξ,mix = −1

2
Cφω

[
˜

u′′
i

(
ξ − ξ̃

)] = −1

2
Cφω

[
ũ′′

i ξ ′′
]

�= 0 (37a)

˜
u′′

i θ I EC M
ξ,mix = −1

2
Cφω

[
˜

u′′
i

(
ξ − ξ̃ |UUU

)]
= −1

2
Cφω

[
ũ′′

i ξ − ũ′′
i ξ

]
= 0. (37b)

Therefore, the IEMmodel introduces an extra term in the scalar flux equation, which
influences the turbulent flux and can affect the mean scalar field. In contrast, if the
IECMmixingmodel is applied, this term vanishes, resulting in correct representation
of the local scalar isotropy. Physically this issue can be explained as the fact that fluid
elements with similar velocity values (originally at the same location) will probably
remain together for a longer time and due to that their conditional scalar mean will
be different from the unconditional one [5]. This can be seen as mixing of the fluid
elements residing in one turbulent eddy, having thus a higher chance to mix among
each other.

3.3 Implementation of the IECM Micro-Mixing Model

The main difficulty of the implementation of the IECMmodel is finding the required

velocity-conditioned averages of the scalars participating in the mixing: ˜φα|UUU = VVV .
In this work it is achieved using an algorithm found in [17], where the particles
residing in a finite volume cell are divided into subgroups according to their velocities
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called “conditioning bins”. The average of a particular scalar (mixture fraction or
progress variable) conditional on the velocity value representative of the conditioning
bin is then obtained by computing the average of this scalar from the particle scalar
values that belong to the bin. Arranging the particles into the conditioning bins is
done as follows, reminding that due to the 2D geometry the velocity space is two
dimensional UUU = (U1, U2):

1. The particles in the element are sorted according to their first velocity component.
2. The sorted list is divided into N1 parts with an approximately equal number of

particles and each of these is consequently sorted in the second velocity compo-
nent.

3. Again dividing each of the found lists into N2 parts with an approximately equal
number of particles results in obtaining Nc = N1 × N2 conditioning bins, each
containing particles with comparable velocity values.

An illustration of the result of this procedure is given in Fig. 3. This is shown for a
cell containing Np/e = 350 particles which are subdivided in Nc = 12 conditioning
bins. The particles belonging to the same bin have the same symbol in the plot. The
amount of particles in each conditioning bin is thus np = 29. The configuration of
subdivision in the U1 and U2 velocity range for this particular example is chosen to
be N1 = 4 and N2 = 3 respectively.

The calculation of velocity conditioned scalar Favre-mean value is considered
next. Figure4 shows the scatter plot of the same set of Monte Carlo particles as given
in Fig. 3, but now plotted as a function of scalar variables ξ and Y. The blue rec-
tangles are drawn through the minimum and the maximum of both scalar variables
in every conditioning bin, in this way a rectangle corresponding to a conditioning

Fig. 3 Scatter plot (for one cell) of the distribution of the particles among Nc = 12 conditioning
bins as a function of velocity fluctuations u′′

i . Particles residing in one bin are assigned the same
symbol
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Fig. 4 Scatter plot of theMonteCarlo particles fromone cell as a function of the scalar composition,
particles belonging to one conditioning bin are assigned the same symbol with the range of the scalar
values indicated for each conditioning bin by a blue rectangle

bin illustrates the range of scalars in this bin. The velocity conditioned scalar
Favre-average in a conditioning bin containing np particles is estimated using:

〈φα |UUU = VVV 〉 ≈ 〈φα |UUU = VVV 〉(np) = 1

W (np)

np∑
i=1

w(i)φ(i)
α , (38)

with W (np) the total numerical weight of the particles in the bin, given by:

W (np) =
np∑

i=1

w(i). (39)

For the mixing step, the particles of a given conditioning bin are mixed according to
the Eq. (31), with the velocity conditioned scalar mean given by Eq. (38).

An idealized test case is studied to assess the quality of the method used to deter-
mine the velocity conditioned scalar mean. This test case applies the conditioning
binning method, explained in this section, to a set of Np random particles generated
as a bi-variate normal distribution with the mean vector and the covariance matrix
given by:

μμμ =
(
0.5
12

)
� =

(
0.01 0.32
0.32 16

)
(40)

The first variable can be thought of as a scalar φ and the second as a velocity com-
ponent U . The set is subdivided into Nc = 12 equally large bins, each containing
np particles with comparable velocity U . Then the velocity conditioned mean of the
scalar 〈φ |U 〉(np) can be estimated for each bin. The fact that the set of particles is
generated as a bi-variate normal distribution with knownmean and covariance values
allows to calculate the exact U -conditioned mean of φ:
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Fig. 5 Test case. Comparison of the estimated and the exact values of 〈φ |U 〉

〈φ |U 〉 = μφ + ρ
σφ

σU
(U − μU ) . (41)

Now the estimated and the exact values of the velocity conditioned scalar mean can
be compared. This comparison is shown in Fig. 5 for Np = 300 particles (resulting
in the size of each bin np = 25). In Fig. 5 the “estimated point” for each of the
12 conditioning bins is located at the coordinate

(〈U 〉(np), 〈φ |U 〉(np)

)
. In this way

it is assumed that the bin-estimated U -conditioned mean of φ corresponds to the
mean U -value in this bin

〈
φ
∣∣U = 〈U 〉(np)

〉
(np)

. Therefore, the estimated conditional
mean is most representative for the particles with the U value close to the bin aver-
age. For particles (contained in the same bin) with the U -value slightly deviating
from the mean 〈U 〉(np) the bin-estimate of the conditional mean will be slightly less
representative.

This test case is performed varying the number of particles per bin np from 25
to 500, to assess the bin size dependence of the expected relative statistical error
ε(np). This is done for multiple times to perform an ensemble averaging to reduce
the stochastic error. Figure6 shows the plot of the expected relative statistical error
ε(np) as a function of the conditioning bin size np, calculated by:

ε(np) =
〈∣∣∣∣ 〈φ| U 〉(np) − 〈φ| U 〉

〈φ| U 〉
∣∣∣∣
〉

E A
(42)

Theplot shows also a regression, performedon this data set in order tofit the following
equation:

ε
regress
(np) =

√
c1

(np)
, (43)
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Fig. 6 Expected relative statistical error ε(np) as a function of bin size (np)

resulting in c1 = 0.17. The conducted test case shows that the statistical error of the
method used to estimate the velocity conditioned scalar mean is inversely propor-
tional to the square root of the bin size.

The actual number of particles per cell Np/e is varying between different cells
and Monte Carlo iterations. In the PDFD code this number is controlled by the
simulation input parameter “nominal number of particles per cell” N nom

p/e . The actual

number of particles per cell in a simulation lies mostly between 80 and 95% of
the N nom

p/e rarely occurring below these values. Assuming that the result of the test

case, showing ε(np) ∝ 1/√
(np), can be qualitatively applied to the real joint velocity-

scalar composition PDF Monte Carlo simulation, the choice of the bin size in the
implemented IECM subroutine is made prescribing the minimal allowed number of
particles per bin (np)min. This is done to keep the error of the velocity conditioned
scalar mean estimation as homogeneous as possible throughout the domain. Table1
shows examples of the configurations of subdivision in the U1 and U2 velocity
components (N1 and N2) for different number of particles per cell Np/e with the
(np)min = 25 prescribed.

One of the simulations performed has an input N nom
p/e = 360 and (np)min = 25,

which implies that for most of the cells (as long as 300 < Np/e < 375) the
conditioning bins configuration Nc = 12 (N1 = 4 and N2 = 3) is automatically cho-
sen by the IECM subroutine. In practice employing the implemented IECM mixing

Table 1 Binning configuration for different number of particles in a cell Np/e as a result of pre-
scribed minimal size of a conditioning bin equal (np)min = 25

Np/e <50 <100 <150 <200 <225 <250 <300 <375 <400 <450 <500

N1 ×
N2

1 × 1
(IEM)

2 × 1 2 × 2 3 × 2 4 × 2 3 × 3 5 × 2 4 × 3 5 × 3 4 × 4 6 × 3
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model and taking the minimal number of particles per bin to be lower than 25 (e.g.
in the order of 10) caused the resulting profiles to be heavily oscillating and discon-
tinuous. Most probably the reason of the non-smooth profiles is the high statistical
error of the conditional mean estimation. So the simulations performed in this study
are done with (np)min = 25 or (np)min = 50.

4 Test Case and Numerical Details

4.1 Delft III Flame

To investigate the performance of the two different micro-mixing models IEM and
IECM the experimental data of the Delft III flame is used. The Delft III flame is
generated by a piloted non-premixed co-flow flame burner as shown in Fig. 7. The
Delft III burner was designed to produce an axisymmetric turbulent diffusion flame.
The burner is 1m long and consists of the central fuel pipe surrounded by two
concentric pipes providing a primary and a secondary air co-flows. The fuel is Dutch
natural gas with the volumetric composition approximately given by: 81% C H4,
3% C2H6, 15% N2 ([18]). Initially the fuel pipe diameter is 8mm, at the position
16mm upstream of the nozzle exit this diameter is decreased to 6mm to allow a
placement of 12 pilot flames, which have the purpose to stabilize the flame. The
pilot flames emerge from 0.5mm diameter holes and form a ring with a diameter
of 7mm. The pilots are premixed hydrogen/acetylene/air flames, with C to H ratio
equal to that of natural gas. The outer diameter of the primary air annulus is 45mm.A
schematic of the flame burner is shown in Fig. 7 (left) together with a photograph of
the burner head with the pilot flames (right). The flame is placed in a octagonal glass
flame chamber with dimensions 57cm from side to side and height 0.90m. Also a

Fig. 7 Schematic of the
burner (left, all dimensions in
mm) and photograph of
burner head with pilot flames
(right)
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Table 2 Flow conditions of
Delft III flame [7]

Stream U (m/s) T (K) Re

Fuel 21.9 295 9700

Primary air 4.4 295 8800

Secondary air 0.3 288 12,000

ventilated throat is operating, providing a secondary air co-flow which prevents an
occurrence of a large-scale recirculation in the burning chamber. The conditions of
the inlet streams of the fuel jet, the primary air co-flow and the secondary air co-flow
of the Delft III flame can be found in Table2.

The pilot flames stabilize the flame at the burner rim. The pilot-jets exit velocity
is 13.3m/s, and the composition of pilot mixture is: YH2 = 0.01631, YC2H2 =
0.07392, YN2 = 0.6983, YO2 = 0.211496 and T = 295K. The heat release of
the 12 pilot flames forms about 1% of the total thermal power of Delft III flame.
Numerical studies of Delft III flame using PDFmethods were done by [19, 20]. Both
studies present results of two dimensional simulations of this flame using transported
joint composition PDF methods. In two dimensional simulations of the Delft III
flame the 12 separated pilot flames can not be represented exactly due to the lack of
axisymmetry. The pilot flame model adopted in this work is discussed in the next
section.

4.2 Numerical Setup

The stabilizing effect of the small pilot flames is crucial to prevent global extinction
in simulations of the Delft III flame. In this work, the cross section of the twelve
pilot flame holes is distributed into an axisymmetric ring and the velocity of the pilot
flame inlet is calculated such that the experimental mass flow rate is obtained. The
composition of the pilot flame is simply assumed to be a DNG-air mixture. The inlet
temperature of the pilot stream is T = 295K. To ensure that the pilot flames ignite
the main diffusion flame we enforce the mixed is burnt condition in the region where
the pilot flame is expected to be. This is done by setting the progress variable Y to
its maximum value for all Monte Carlo particles in the region 1mm < x < 30mm
and 3mm < r < 7mm. The maximum value of the progress variable of a Monte
Carlo particleY∗

max is found in the FGM tables as a function of the particle’s mixture
fraction ξ∗. As a second measure to ensure the numerical ignition of the flame we
have increased the value of the mixing parameter Cφ . The flame was found to be
numerically ignited using Cφ = 11 in the near nozzle region (up to x = 75mm) and
Cφ = 3 in the rest of the domain. Such large values for Cφ are plausible as discussed
in [21] where it was reported that higher Cφ values (of order 10–20) can be required
in PDF simulations to prevent numerical extinction.
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The size of the computational domain of the simulations is given by Lx =
1015mm and Lr = 300mm and the domain is discretized by a 162×93 non-uniform
rectangular grid (smaller cell size near axis and in the upstream region). All terms in
the finite volume method are discretized with second order accurate schemes. In the
hybrid finite-volume/Monte Carlo solution algorithm the joint velocity-scalar PDF
Monte Carlo submodel requires the second moment closure finite-volume submodel
(the Reynolds-stresses model). First an attempt has been made to start a numerical
simulation of the Delft III flame using the Reynolds-stress as the finite-volume sub-
model and the joint velocity-scalar PDF as the Monte Carlo submodel. This resulted
in the divergence of the implicit iterations of the Reynolds-stress model, making this
procedure impossible. The divergence appeared in a zone with strong recirculation
in a small upstream region (near the pilot) of the domain. The divergence problem
was solved with a two-step approach: first, a sub-domain (0mm < x < 50mm) has
been calculated employing a hybrid k-ε composition MDF (CMDF) Monte Carlo
solution algorithm (see [6] for more details). The turbulent flow field and scalar com-
position profiles at x = 15mm resulting from this simulation have then been used
as the inflow boundary condition for the Reynolds-stress/joint velocity-scalar PDF
Monte Carlo simulations presented in this work. To avoid confusion, in this paper
the comparison of the simulations with the experiment is presented in the laboratory
system of coordinates. In the final procedure converged solutions are obtained after
2000 hybrid iterations each consisting of 500 FV iterations followed by 10 Monte
Carlo subiterations.

Within this work five different simulations have been performed, using different
settings for the micro-mixing model. These are listed in the Table3. The simulations
are carried out to show the difference in performance between the IEM and the
IECM models. Also an assessment is made of the dependence of the IECM model
results on the number of bins and the number of particles per bin. The number of
conditioning bins Nc for the IECM simulations is given in the table as the expected
value. The actual number of conditioning bins for some cells can become lower if
the cell does not contain enough particles to satisfy the minimum particles per bin
(np)min requirement. Also the higher Nc configurations (see Table1) can occur if
the number of particles in a cell is high enough. The approximate distribution of the
conditioning bins configurations in the simulation I is Nc = 12 in case of 45% of the
cells, three configurations Nc = 10, 15 and 16 together cover another 45% of the

Table 3 The micro-mixing model settings for different simulations

Case Mixing model N nom
p/e (np)min 〈Nc〉

I IECM 360 25 12

II IECM 360 50 6

III IECM 180 25 6

IV IEM 360

V IEM 180
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cells, the remaining 10% of the cells are distributed among other configurations. In
the simulations II and III 60% of the cells attain the Nc = 6 configuration and 30–
35% are subdivided between Nc = 4 and 8. The results of the fifth simulation IEM
N nom

p/e = 180 are found to be nearly identical to the results of the fourth simulation
IEM N nom

p/e = 360 and are not reported. The presented results of the simulations are
all obtained using the same numerical settings differing only in the micro-mixing
models used.

5 Results and Discussion

5.1 Velocity Statistics

This section presents results for the velocity statistics from the simulations I–IV (see
Table3) compared to the experimental LDA data. Overall, the flow fields obtained
with different settings for the micro-mixing model are nearly the same, but the IEM
results differ slightly from the IECM results. Figure8 shows the radial profiles of
the mean axial velocity Ũ as a function of r at different axial positions x . At axial
locations x = 50mmand x = 100mm the agreement with the experimental results is
excellent. This good agreement validates the two step simulation approach discussed
in Sect. 4.2 since incorrect inflow conditionswould bemost noticeable at x = 50mm.
Further downstream the quality of the predictions is still good although the spreading
rate of the jet is somewhat under predicted: the peak velocity at the center-line is too
high but the profile is not wide enough (due to mass conservation in each plane). This
means that the high momentum fluid from the fuel nozzle does not mix fast enough
with low momentum air flow for locations x > 150mm. The results for the RMS of
the axial velocity URMS (shown in Fig. 9) display an underestimation of the maximal
values at the upstream locations x = 50mm and x = 100mm. Further downstream
at x = 200mm and x = 250mm the peak values are predicted quite well but the
under-predicted spreading rate of the jet is noticeable (theURMS profiles are not wide
enough).

The profiles of the turbulence kinetic energy (tke) k = 0.5∗(U 2
RMS+V 2

RMS+W 2
RMS)

are shown in Fig. 10. The tke provides a measure of the overall level of turbulent
fluctuations in the velocity. Very good agreement with the experimental values can
be observed at locations x = 50mm and x = 100mm indicating the validity of the
two-step solution procedure. Further downstream at x = 150mm, x = 200mm and
x = 250mm the simulations predict slightly too large peak values and also show the
under prediction of the jet spreading rate.
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Fig. 8 Radial profiles of the mean axial velocity Ũ as a function of r at different axial locations x

5.2 Results for the Mixture Fraction Fields

This section presents the results of the conserved scalar (the mixture fraction) sta-
tistics of the simulations I to IV (see Table3) compared to the experimental data.
As expected, for the scalar fields clear differences are observed between different
micro-mixing models. Figure11 shows radial profiles of the mean mixture fraction
ξ̃ . At the axial location x = 50mm the agreement with the experimental results is
excellent and again justifies the two-step solution procedure. From the analysis of
the velocity statistics it was found that the spreading rate of the jet is under predicted
for the far downstream locations due to insufficient turbulent mixing of momentum.
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Fig. 9 Radial profiles of the root mean square of the axial velocity Urms as a function of r at
different axial locations x

The same mechanism of turbulent mixing is responsible for the mixing of the “con-
served” scalar mixture fraction and hence we expect to see that the ξ̃ profiles spread
too slowly. This is indeed observed for all simulations at the downstream locations
x > 50mm but the error is much larger in the IEM results (green line) than in IECM
results with the statistically best resolved IECM simulation (blue line) showing the
smallest disagreement. The reason for the large error in the IEM results is directly

related to the incorrect additional source term (37a)
˜

u′′
i θ IEM

ξ,mix = − 1
2Cφω

[
ũ′′

i ξ ′′
]
in

the scalar flux Eq. (36). It should be noted that the flux in radial direction ṽ′′ξ ′′ is the
dominant contribution in the equation for the meanmixture fraction (35). This can be
most easily seen from the commonly adopted gradient-diffusion approximation [1–3]
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Fig. 10 Radial profiles of the turbulent kinetic energy k as a function of r at different axial
locations x

ũ′′
i ξ ≈ −�t

∂ξ̃

∂xi
, (44)

where �T is a turbulent diffusivity. Since the radial derivative ∂ξ̃/∂r is much larger
than the axial variation in the jet flame the radial flux ṽ′′ξ ′′ ismuch larger than the axial
flux and it is positive for r > 0. In the equation for the radial flux component (37a) this

means that the term
˜

v′′θ IEM
ξ,mix = − 1

2Cφω
[
ṽ′′ξ ′′

]
< 0 is a sink term and thus reduces

the radial flux ṽ′′ξ ′′. The reduced radial flux component ṽ′′ξ ′′ in turn causes the
insufficient mixing of the mean mixture fraction (i.e. the over prediction of the peak
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Fig. 11 Radial profiles of themeanmixture fraction ξ̃ as a function of r at different axial locations x

values) for x > 50 in the IEM results. Since the term
˜

u′′
i θ IEM

ξ,mix = − 1
2Cφω

[
ũ′′

i ξ ′′
]

is directly proportional to the mixing constant Cφ and since this flame requires high
Cφ values the effect of the erroneous sink term is so dramatic in the Delft III flame.

The radial profiles of the RMS of mixture fraction ξrms are shown in Fig. 12.
Again, the results for the three IECM simulations are in much closer agreement with
the experimental results than the IEM simulation results. The evolution equation for

the variance ξ̃ ′′2 = ξ2rms contains the turbulent transport term ∂ ũ′′
i ξ ′′2/∂xi and the

evolution equation for ũ′′
i ξ ′′2 contains a similar erroneous sink for the IEM mixing

model as the
˜

u′′
i θ IEM

ξ,mix term that appeared in the scalar flux equation. This erroneous
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Fig. 12 Radial profiles of the root mean square of the mixture fraction ξrms as a function of r at
different axial locations x

sink causes the observed under prediction of mixture fraction RMS ξrms in the IEM
simulation.

5.3 Results for the Temperature

This section presents statistical results for the temperature. The temperature (and
the progress variable) are strongly dependent on the mixture fraction as was shown
in Sect. 2.2. Therefore, it can be expected that the observed differences between the
IEM and IECM simulation results that are discussed in the previous Sect. 5.2 have a
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Fig. 13 Radial profiles of the mean temperature T̃ as a function of r at different axial locations x

profound effect on the results for the temperature. Figure13 shows the results for the
mean temperature obtained from the four different simulations. The results obtained
with the IECM micro-mixing model with the best numerical settings N nom

p/e = 360,
(np)min = 25 (blue line, simulation I) shows overall the best agreement with the
experimental results. At axial locations x = 50mm and x = 100mm the peak
value of the mean temperature is over predicted but further downstream (at the axial
positions x = 150mm, x = 200mm and x = 250mm) the results for the mean
temperature T̃ agree quitewellwith the experimental results although the temperature
remains slightly over predicted. The over prediction could be due to the adopted flame
stabilization method. Up to x = 75mm the value of the mixing constant is set to
Cφ = 11 which could cause too little local extinction and hence explain the higher
than experimentally observed temperatures. A physically more sound model for Cφ

variations will be investigated in a future study. The results of the simulation using
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Fig. 14 Radial profiles of the root mean square of the temperature Trms as a function of r at different
axial locations x

the IEM micro-mixing model (green line, simulation IV) yield radial profiles of the
mean temperature T̃ with values which are overestimated two to three times stronger
than the results with the IECM model N nom

p/e = 360, (np)min = 25. The other IECM

model results (simulations II and III) fall between the IECM results of simulation
I and the IEM results. The results for the mean reaction progress variable follow
similar trends as for the temperature and are not shown.

The radial profiles of the RMS of temperature Trms (Fig. 14) found with the IECM
model are in reasonable agreement with the experimental results, however there is
a moderate underestimation of the peak values. The simulation performed with the
IEM model resulted in strong underestimation of Trms.
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5.4 Discussion on Parameters of the IECM Algorithm

The IECM model cases II and III with the input configurations respectively given
by N nom

p/e = 360, (np)min = 50 and N nom
p/e = 180, (np)min = 25 have both the

expected value of the number of conditioning bins per cell 〈Nc〉 ≈ 6. The difference
between these cases is the number of particles per conditioning bin (np) which is on
average twice as large in the simulation II than in the simulation III. As it can be seen
throughout the Figs. 13 and 14 these two cases give similar results for all reported
scalar composition variables. Thus a conclusion can be made that the (np)min = 25
minimum amount of particles per bin is satisfactory concerning the statistical error
of the conditional mean estimation, and the simulation results are not getting better
if the (np)min is increased.

Also it can be observed that the radial profiles of ξ̃ and T̃ obtained with the IECM
cases II and III (both with the expected value of the number of conditioning bins in
a cell 〈Nc〉 ≈ 6) yield a better agreement with the experimental data than the IEM
case results and a poorer agreement than the IECM simulation with N nom

p/e = 360,
(np)min = 25 (case I with the expected value of the number of the conditioning
bins in a cell 〈Nc〉 ≈ 12). In this way it can be concluded that the IECM model
yields better results if the number of the conditioning bins in a cell increases. A
possible explanation of this trend is that the IEM model does not at all account for
the effects of the velocity conditioned mixing and can be thought of as having only
one bin in every cell (as there is no division of particles into conditioning bins).
Then employing the IECM with 〈Nc〉 ≈ 6, the effects of the velocity conditioned
micro-mixing become taken into account causing the simulation results to become
better. Apparently when the number of conditioning bins is increased to 〈Nc〉 ≈ 12
the quality of the simulation results improves even more as the effects of the velocity
conditioned micro-mixing become better accounted for.

6 Conclusions

The most important conclusion of this work is that the influence of the underlying
velocity field on the scalar micro-mixing is far from negligible. This followed from
the fact that the simulation results obtained with the IECM micro-mixing model
compared much better to the available experimental results than the IEM model
results. A more detailed validation of the role of velocity statistics in the mixing of
scalars is not possible because in the experiments no simultaneous measurements of
velocity and scalars have beenmade. Themixture fraction profiles are up to two times
less overestimated at the peak values using the IECM model. The overestimation of
the mean temperature obtained with the IECM simulation is, at some locations, two
to three times lower than that of the IEM simulation. Similar differences between
the IEM and IECM results are found for the mean profiles of the progress variable.
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A number of remarks can be made concerning the numerical method used in this
thesis to implement the IECM subroutine into the PDFD code. The performance
of the IECM micro-mixing model improves if the number of conditioning bins in
every cell becomes larger. This improvement is due to the fact that the influence of the
velocity field on themicro-mixing becomes better accounted for as the number of bins
increases. In regard of the statistical error of the velocity conditionedmean estimation
it can be concluded that the minimum amount of particles per bin parameter (np)min
equal to 25 is sufficient and does not need to be increased. Changing the minimum
amount of particles per bin parameter (np)min from 25 to 50 while keeping the
number of bins unaffected does not improve the quality of the results. However
due to the restriction of the minimum amount of particles per bin and the need of
higher numbers of bins (in every cell) implies that employing the implemented IECM
model in practice will require large amounts of particles per cell, resulting in high
computational costs of the simulations.
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Massively Parallel FDF Simulation
of Turbulent Reacting Flows

P.H. Pisciuneri, S.L. Yilmaz, P.A. Strakey and P. Givi

Abstract A review is presented of the evolution of a massively parallel solver
for large eddy simulation (LES) of turbulent reacting flows via the filtered density
function (FDF). Development of an efficient parallel implementation is particularly
challenging due to the hybrid Eulerian/Lagrangian structure of typical FDF simula-
tors. The performance of a novel parallel simulator is assessed at each of the major
steps of its development. Subsequent efforts to improve scaling at each of these stages
are discussed along with the prospects for further enhancements.

1 Introduction

Despite all of the dedicated efforts towards the development of alternative and/or
sustainable energy resources, combustion still provides over 85%of the energy needs
in the United States; a situation that will likely remain the same within the foresee-
able future. Associated with combustion is air pollution and the greenhouse effect;
thus the need for the reduction of CO2 emissions while maintaining high combus-
tion efficiency. These concerns, along with stringent demands to reduce petroleum
consumption, are putting a high priority on combustion research. In most cases,
combustion is accompanied by turbulence where the latter provides the means of
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enhanced fuel-air mixing. The physics of turbulent reactive flows is notoriously
difficult due to the intricacies of the interactions between chemistry and turbulence.
The phenomenon ofmixing at bothmicro andmacro scales and its role and capability
(or lack thereof) to provide a suitable environment for combustion, and the subse-
quent effects of combustion on hydrodynamics, have been at the heart of turbulent
combustion research for over half a century now [1–3].

Simulation, long considered as the third form of science [4] (in addition to theory
and experimentation) has certainly come a long way within the past three decades.
It has evolved from the era of scalar computing → vector → parallel → massively
parallel → current petascale → upcoming exascale computing. This has lead to sig-
nificant progress in large scale simulation of turbulent combustion [5, 6]. Specifically,
large eddy simulation (LES) is quickly replacing the traditional RANS (Reynolds
averaged Navier-Stokes) simulations. This is not just in basic research, but also in
industrial applications. A major progress in LES is the development of the filtered
density function (FDF) methodology [7]. This has proven very effective for turbu-
lent combustion simulations due to its capability to account for the effects of subgrid
scale (SGS) chemical reactions in a very accurate manner. This is the primary reason
for the broad coverage of the FDF in modern text- and hand-books [2, 8–13]. This is
also the motivation for implementation of various forms of the FDF closure in com-
mercial and government combustion codes (such as FLUENT/ANSYS, VULCAN,
and US3D amongst others). For recent reviews, see Refs. [3, 14–17].

For the FDF (or any LESmethodology) to be practical it must be implemented in a
computationally efficient manner, especially if employed for prediction of complex
flows. This important issue can be the overriding constraint. Within recent years,
the irregularly portioned methodology has proven very useful in facilitating effi-
cient FDF simulations. This chapter provides a summary of the state of progress in
such simulations. In Sect. 2, the basic FDF formulation is summarized. This is fol-
lowed by a review of the state of progress in irregularly portioned FDF simulations
in Sect. 3. This section covers all of the modern domain decomposition and load
balancing strategies. Section4 provides our concluding remarks along with some
recommendations for future work.

2 Filtered Density Function

The primary transport variables in chemically reactive flows are the fluid density
ρ(x, t), the velocity vector ui (x, t), i = 1, 2, 3 along the xi direction, the spe-
cific enthalpy h(x, t), the pressure p(x, t), and the mass fractions of Ns species,
Yα(x, t) (α = 1, 2, . . . , Ns), where x ≡ xi (i = 1, 2, 3) and t denote space and
time, respectively. Implementation of LES involves the use of the spatial filtering
operation [18, 19]
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〈Q(x, t)〉 =
∫ +∞

−∞
Q(x′, t)H(x′, x)dx′, (1)

whereH denotes the filter function of width�H, and 〈Q(x, t)〉 represents the filtered
value of the transport variable Q(x, t). In reacting flows, it is convenient to consider
the Favre filtered quantity, 〈Q(x, t)〉L = 〈ρQ〉/〈ρ〉. We consider spatially invariant
and localized filter functions,H(x′, x) ≡ H(x′ −x)with the properties [20]H(x) =
H(−x), and

∫ ∞
−∞ H(x)dx = 1. We consider positive filter functions [21] for which

all the moments
∫ ∞
−∞ xmH(x)dx exist for m ≥ 0. The transport variables satisfy the

conservation equations of mass, momentum, energy and species mass fractions [22].
The filtered form of these equations are:

∂〈ρ〉
∂t

+ ∂〈ρ〉〈ui 〉L

∂xi
= 0, (2)

∂〈ρ〉〈u j
〉
L

∂t
+ ∂〈ρ〉〈ui 〉L

〈
u j

〉
L

∂xi
= −∂〈p〉

∂x j
+ ∂

〈
τi j

〉
∂xi

− ∂Ti j

∂xi
, (3)

∂〈ρ〉〈φα〉L

∂t
+ ∂〈ρ〉〈ui 〉L〈φα〉L

∂xi
= −∂

〈
Jα

i

〉
∂xi

− ∂ Mα
i

∂xi
+ 〈ρSα〉 , (4)

where τi j and Jα
i denote the viscous stress tensor and the scalar fluxes, respectively.

In Eq. (4), Sα denotes the source term, and this equation represents transport of
the species mass fractions and enthalpy in a common form with φα ≡ Yα, α =
1, 2, . . . , Ns, φσ ≡ h, σ = Ns + 1. The SGS closure problem is associated with
Ti j = 〈ρ〉 (〈

ui u j
〉
L − 〈ui 〉L

〈
u j

〉
L

)
, Mα

i = 〈ρ〉 (〈uiφα〉L − 〈ui 〉L〈φα〉L
)
, and 〈ρSα〉.

The FDF provides an effective means for this closure. For the scalars’ array φ(x, t)
and the velocity field, u(x, t), the SGS statistical information is included in the joint
velocity-scalar filtered mass density function (VS-FMDF), denoted by F(v,ψ, x, t),
where (v,ψ) denote the probability-space for the (u,φ) fields. The exact transport
equation for this FDF is [23–25]:

∂F
∂t

+ ∂ (vkF)

∂xk
= ∂

∂vk
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1

ρ
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〉
F

]
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1

ρ
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∂x j
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F

]

+ ∂

∂ψα

[〈
1

ρ

∂ Jα
j

∂x j

∣∣∣v,ψ
〉
F

]
− ∂

∂ψα

[
Sα(ψ)F]

, (5)

where 〈 | 〉 denotes the conditional filtered values. As Eq. (5) shows, the effects of
SGS convection and combustion are in closed forms. However, all of the terms
involving conditional filtered values require closure. The marginal FMDF of the
scalar (S-FMDF) field, Fφ(ψ, x, t), is obtained by integration of the VS-FMDF over
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the velocity domain [26, 27]:

∂Fφ

∂t
+ ∂

[〈ui (x, t)|ψ〉Fφ

]
∂xi

= ∂

∂ψα

[〈
1

ρ

∂ Jα
j

∂x j

∣∣∣∣∣ ψ
〉
Fφ

]
− ∂

∂ψα

[
Sα(ψ)Fφ

]
. (6)

Again, the effects of chemical reaction appear in a closed form. However, in this
case, the SGS convection (second term on the left-hand side) requires closure. This
approach has been the most popular among other investigators using FDF [28–49].

The SGS closures have been primarily based on modeled stochastic differen-
tial equations (SDEs) for each of the transport variables. These SDEs must account
for all of the physics of turbulent combustion; including scalar mixing, chemistry,
exothermicity, dilatation, and dissipation. It is straightforward to realize the capabil-
ity of the FDF in that it accounts for all of the processes involving direct correlations
of the transported variables. For example, there is no need for additional closures
for turbulent-chemistry interactions and/or velocity-scalar correlations. A system of
modeled SDEs [50, 51] based on the stochastic diffusion process [52] has proven
effective for the FDF closure. The coefficients in themodeled Langevin equation will
be set in such a way that the resulting Fokker-Planck equation [53] defines the mod-
eled FDF transport equation, and thus the SGS closures. In particular, the generalized
Langevin model (GLM) [54–57] combined with the linear mean square estimation
(LMSE) [58, 59] has proven to be effective. This is described by [24, 60–62]

dxi
+ = u+

i dt +
√
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〈ρ〉 dWi , (7a)
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dφ+
α = −Cφ ω

(
φ+

α − 〈φα〉L
)
dt + Sα(φ+)dt, (7c)

where x+
i , u+

i , ψ+
α are probabilistic representations of position, velocity vector and

scalar variables, respectively. μ denotes the fluid dynamic viscosity. The W terms
denote the Wiener-Lévy processes in the physical (without the prime) and the veloc-
ity (with prime) spaces [63]. The terms Gi j and k = Tii/2〈ρ〉 denote the kernel of
GLMand the SGS kinetic energy, respectively. Themixing frequencyω is defined as:
ω = C f k1/2/�H. The constants: C0, Cφ and C f are model parameters and are cho-
sen as suggested in the literature [57]. The corresponding Fokker-Planck equation,
or effectively the modeled VS-FMDF transport equation becomes:
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3 Irregularly Portioned FDF Simulator

It is commonly believed that a hybrid Eulerian-Lagrangian solver provides the most
convenient means of solving the transported FDF equation [64–66]. In this setting,
the physical domain is discretized in an Eulerian manner via standard formats e.g.
finite difference (FD), finite volume (FV), or other methods. The FDF is represented
by an ensemble of Lagrangian Monte Carlo (MC) particles. Each of these particles
carry information pertaining to the physical field and also the position vector. Figure1
shows a typical section of the computational domain. The discrete Eulerian grid is
overlaid with an ensemble of MC particles. Modern LES typically requires order of
billions of grids and with an order of magnitude more MC particles. When finite-rate

Fig. 1 A typical section of
the computational domain.
The spheres represent the
Lagrangian MC particles, the
cubes represent the Eulerian
FD points and the dashed
line represents the ensemble
domain surrounding the grid
point i [86]
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kinetics are to be captured, the computational requirements become monstrous. For
example, Yilmaz et al. [67] show that for evenmoderately sized geometries (with just
5M grid points and 50M particles) and a reduced kinetic mechanism (15 species) a
serial, “simple” FDF simulation requires several years of CPU time!

Initially, each MC particle is given a location in physical space and stores the
corresponding composition (velocity, and/or scalar) values. These particles are then
transported due to convection and diffusion in physical space, and due to mixing
and chemical reaction in compositional space. The filtered chemical source terms
are constructed from the MC solver. For that, an ensemble domain is defined as the
region surrounding an Eulerian point, and the filtered quantities are constructed via

〈Q〉L ≈
∑

n∈�E
w(n)Q

(
φ(n)

)
∑

n∈�E
w(n)

, (9)

where �E and w(n) denote the ensemble domain and particle weight, respectively.
The weights are used to keep the number density approximately uniform [66]. Equa-
tion (9) becomes exact as the number of particles within the domain approaches
infinity, and the size of the ensemble domain approaches zero. The SDEs governing
the evolution of the MC particles require the filtered values. These are obtained via
interpolation from the values at the Eulerian points.

With petascale computing a reality and exascale on the horizon, we must lever-
age the enormous opportunities they provide. In order to take advantage of large
distributed memory systems, the Message Passing Interface (MPI) [68, 69] is used
for the parallel implementation. In this approach information residing on different
processors must be shared explicitly via message passing. For the hybrid solver, this
results in two primary message passing tasks. The first task is sharing information
at neighboring grid points. A simplified 2D example is presented in Fig. 2. Here the
9 × 9 grid is decomposed and distributed over 9 different ranks (MPI processes).
Each rank resides on a different CPU core, delineated by the dashed lines. Evalu-
ating derivatives at some grid point (i, j) involves a stencil operation as shown in
the figure. The neighboring points used in the stencil can be local to that process
or reside on neighboring processes. If the points reside on neighboring processes,
the needed data must be sent from each neighbor process and received by the host
process. Typically the points needed from a neighbor process are referred to as ghost
or halo points. After decomposing the domain, each rank allocates extra storage for
the ghost points as required by the stencil operations.

The second task is migrating particles from one cell to another as shown in Fig. 3.
Here the cells surrounding each of the FD points are represented. The particles are
contained in each of the cells, and the cells are distributed over 9 different ranks. Each
rank is on a different CPU core, delineated by the dashed lines. Each particle evolves
in physical space according to Eq. (7a). The updated particle location could be any of
the neighboring cells surrounding the original host cell. Particles that migrate from
one cell to a cell on a neighboring process must be message passed.
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Fig. 2 A 2D grid distributed
over 9 different processors.
The circles denote the FD
points and the dash lined
squares encompass the grid
points belonging to a unique
rank. Shown are two
different sized FD stencils

Fig. 3 A 2D grid distributed
over 9 different processors.
The dots denote the MC
particles and the dash lined
squares encompass the
particles belonging to a
unique rank. The thin lines
mark the cells surrounding a
FD point. The arrows
represent potential landing
spots of a particular particle
after integration of Eq. (7a)

3.1 Static Block Decomposition

The first attempt at a highly scalable implementation of the hybrid FDF solver
involved a simple static uniform block decomposition. In doing so, the number
of grid points/cells are initially divided evenly among all of the processors. This
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Fig. 4 A 3D block uniform
decomposition. Each color
corresponds to a block of
grid points/cells belonging to
a unique MPI process

decomposition remains unchanged throughout the entire simulation. We typically
prefer partitions that are cubic in shape (in terms of an equal number of grid
points/cells in all 3 directions). This is effectively the minimal edge-cut, and rep-
resents the best decomposition in terms of reducing the amount of data to be com-
municated.Additionally, each rankwill have exactly the same communication pattern
(except for ranks at the corners or edges). In terms of underlying data structures, the
block partition shapes map to 3D arrays very efficiently.

The fully 3D block uniform decomposition has been implemented in an existing
hybrid FDF solver [27, 31] with finite-rate kinetics calculations [70]. This solver is
entirely in Fortran, using 3D arrays as the underlying data structure to store grid/cell
values, which map perfectly to the block decomposition. The scheme is employed
for LES of Sandia Flame D [71–73]. The domain is discretized via 120 grid points
in each direction, with approximately 10M MC particles. Combustion chemistry is
modeled via a reduced kinetics mechanism involving 16 species and 12 reaction
steps. A sample decomposition of the domain is presented in Fig. 4. Scaling analysis
is conducted of a nonreactive and a reacting flow. In the latter, Sα is evaluated for
each particle via the CHEMKIN library [74], and Eq. (7c) is integrated for each par-
ticle with a stiff ODE solver [75]. The strong scaling results are presented in Fig. 5.

Fig. 5 Strong scaling
comparisons. Results
correspond to walltime for
an entire iteration step
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The inert case performs well, achieving approximately 85% speedup on 216 proces-
sors. However, the reacting case shows very poor performance, merely achieving a
10% speedup.

3.2 Irregularly Portioned Lagrangian Monte Carlo (IPLMC)

Poor performance of the static block decomposition methodology is due to computa-
tional “hot spots.” This is shown in Fig. 6, demonstrating that simulations pertaining
to regions undergoing chemical reaction are more CPU intensive. This is due to inte-
gration of Eq. (7c) for each particle within each cell (Fig. 3). In regionswhere Sα �= 0,
stiffODEsmust be solved requiringmulti-step integrations. In other regions, the num-
ber of substeps is significantly lower. Therefore, while distributing the number of
grids/cells evenly andminimizing the communication, the block decomposition does
not distribute the computational load evenly amongst the partitions. The resulting
computational load imbalance is shown in Fig. 7. This is measured as the walltime
needed for each rank to perform a single iteration. Many ranks spend significant
chunks of time idle, while others are still busy. This idle time is the reason for poor
performance due to the bulk synchronous [76] design of the flow solver.

Recognizing the computational load imbalance, Yilmaz et al. [67] proposed that
each cell could be assigned a weight based on some work metric required to integrate
Eq. (7c). One potential metric is the sum of the number of RHS function calls made
within the ODE solver for all of the particles within a cell. An approach which has
proven more effective is to merely measure the sum of the walltime spent within the
ODE solver for all of the particles in a cell. The result is that each grid point/cell can be
assigned a weight directly correlated to cost associated with chemical reaction. Thus

Fig. 6 Volume renderings of
the mass fraction of CO
(left), and the CPU time
(right) [67]
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Fig. 7 a 3D block uniform domain decomposition. Each colored block represents the calculations
of a unique CPU rank corresponding to a portion of the domain. b The walltime each CPU rank
spends (red bars) versus the time spent idle (black bars)

the entire mesh can be represented as a weighted graph, and a load balanced domain
decomposition can be obtained using a weighted graph partitioning algorithm [77–
80]. The primary objective of the weighted graph partitioner is to evenly distribute
the computational load among all the partitions. A secondary objective is tominimize
the edge-cut. An example of the resulting decomposition is presented in Fig. 8. This
decomposition portrays three important features. First, the computational load is
distributed well over the different ranks. The amount of idle time is greatly reduced,
and the duration of a given iteration is significantly reduced compared to the block
uniform case. Second, the size of partitions varies. The ones containing heavier
weighted cells are much smaller than those containing lighter weighted cells. Third,
since the primary constraint is to balance the computational load, the edge-cut is
non-optimal resulting in irregularly shaped partitions.

The partitions formed in this way present some significant challenges in terms
of implementation. The underlying 3D arrays storing grid/cell values in the hybrid
solver no longer map efficiently to each partition. Also, every stencil point must be
tested for its locality, and each partition can have an arbitrarily different number of
communicating neighbors. Yilmaz et al. [67] implemented the irregular decomposi-
tion only for the Lagrangian solver, and retained a simple serial implementation for
the Eulerian solver. Thus, the methodology is referred to as “irregularly portioned
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Fig. 8 a 3D irregular decomposition. Each colored block represents the calculations of a unique
CPU rank corresponding to a portion of the domain. b The walltime each CPU rank spends (red
bars) versus the time spent idle (black bars)

Lagrangian Monte Carlo” (IPLMC). The performance of the irregular decomposi-
tion can be easily assessed since the bulk of the computation time is spent inside the
Lagrangian solver, while the amount of modification to the existing solver is kept to
a minimum.

The performance of IPLMC is assessed via LES of a turbulent premixed Bunsen
burner flame [81] using a reduced kinetics mechanism involving 9 species and 5
global reaction steps [82]. Results of the strong scaling analysis are presented in
Fig. 9. The performance is nearly ideal up to 256 processors with regards to just
the MC portion. The total step (including the serial Eulerian solver) shows nearly
ideal scaling up to 64 processors; however, only a 47% speedup is realized at 256
processors. This is due to Amdahl’s law [83], demonstrating that the strong scaling is
ultimately limited by the serial portions of the computation. Weak scaling results are
presented in Fig. 10. For this analysis, work per processor is kept constant. The total
step shows nearly ideal weak scaling upwards of 100 processors before beginning to
tail off. At this point a communication bottleneck is exposed. The intersolver commu-
nication becomes more costly as more processors are employed. Since the Eulerian
solver is serial, this one process must communicate with all of those performing
the Lagrangian computation. Despite these shortcomings, the IPLMC methodology
presents a significant improvement over the block uniform distribution.
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Fig. 9 Strong scaling of the
IPLMC versus the block
uniform decomposition.
Results correspond to
walltimes of a chemistry
substep and an entire
iteration step [67]
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Fig. 10 Weak scaling of the
IPLMC versus the block
uniform decomposition. Np
denotes the total number of
MC particles and increases
proportional to the number
of CPUs (p). Results
correspond to the walltimes
of a chemistry substep and
an entire iteration step [67]
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3.3 Irregularly Portioned Lagrangian Monte Carlo Finite
Difference (IPLMCFD)

In order to overcome the shortcomings of the IPLMC, the Eulerian solver must
be made parallel with the communications restricted to neighboring ranks only. To
minimize the amount of intersolver communication, the partitioning of the Eulerian
solver is made to match the partitioning of the Lagrangian solver from IPLMC.
In an effort to more easily manage the bookkeeping, the Eulerian solver, like its
Lagrangian counterpart, is developed in C++ to leverage robust data structures and
algorithms in its Standard Library [84], and the Boost libraries [85]. This extended
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Fig. 11 Strong scaling of
the IPLMCFD versus an
unbalanced decomposition.
Results correspond to
walltime for an entire
iteration step
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approach is termed “irregularly portioned LagrangianMonte Carlo finite difference”
(IPLMCFD) [86]. The performance of IPLMCFD is assessed via consideration of
the same case considered in the IPLMC [81].

Results of the strong scaling analysis are presented in Fig. 11. The performance
of IPLMCFD is nearly ideal up to a few thousand processors. Upwards of 8,000
processors, IPLMCFD is still achieving approximately a 75% speedup.Weak scaling
results are presented in Fig. 12. Again, work per processor is kept constant. This
time nearly ideal weak scaling is achieved up to 4,000 processors. It is obvious that
IPLMCFD provides more than an order of magnitude improvement over IPLMC in
parallel performance.

It is important to note that the scaling results as presented are for the opti-
mal load balanced decomposition. As the flow evolves, the performance may no
longer be optimal. Ideally, every iteration begins with an optimal decomposition. In

Fig. 12 Weak scaling of the
IPLMCFD methodology
versus an unbalanced
decomposition. Np denotes
the total number of MC
particles and increases
proportional to the number
of CPUs (p). Results
correspond to walltime for
an entire iteration step
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practice, a decomposition performs well for some amount of time before another one
is considered [67, 86].

4 Concluding Remarks

The evolution of massively parallel large eddy simulation (LES) of turbulent reactive
flows via the filtered density function (FDF) has been very successful. It is demon-
strated that the hybrid Eulerian/Lagrangian FDF solver and the tight coupling
between its two components can be efficiently parallelized via weighted graph parti-
tioning for domain decomposition. The weights are determined from the local effects
of chemical reaction. The entire flow solver is constructed in such a way to efficiently
treat the irregularly portioned partitions. Excellent scaling is demonstrated over thou-
sands of CPU cores. Our current work has laid a strong foundation for exploiting
distributed parallelism on the largest systems. However, to makemore efficient usage
of existing petascale and future exascale systems, additional features should be con-
sidered. Some recommendations are provided here:

Overdecomposition: For distributed parallelism, a common approach is to map one
MPI rank to each CPU core. The concept of overdecomposition is to create more than
one MPI rank per core. The advantage is that the computation and communications
are more easily overlapped reducing the idle CPU time [76].

MPI + X: Parallelism at the distributed level (internode) is accomplished via MPI.
The “+ X” identifies what strategy is employed at the intranode level. IPLMCFD is
a flat MPI approach, reusingMPI at this level. However, shared memory approaches,
such as OpenMP [87], better suit the architecture of the hardware at this level. In
Fig. 13 the strong scaling analysis for IPLMCFD is repeated for one MPI process
per node, rather than per core. Excellent scaling is achieved at this level upwards of
4,000 nodes. An efficient implementation of OpenMP at the intranode level (having
8–16 cores) would push scaling to tens of thousands of processors.

Accelerators: Graphics processing units (GPUs) and coprocessors (i.e. Intel Phis)
have become an integral component of existing supercomputers, e.g. Titan (GPUs)
[88], and Stampede (Intel Phis) [89]. Due to power constraints, these will remain
critical components of future systems. As such the MPI + OpenMP approach must
be extended to include accelerators. For Intel Phi coprocessors, OpenMP 4.0 [90]
will support offloading calculations to the Phi. On the other hand, CUDA [91] and
OpenACC [92] are two well established approaches for computing on GPUs. Given
that OpenMP and OpenACC are syntactically similar, these two approaches can be
followed with the same code base to take advantage of accelerators.

Dynamic Repartitioning: A balanced computational load is vital for achievingmas-
sive parallelism on distributed systems. However, the performance of a well balanced
decomposition may gradually degrade over time. This is due to the evolving regions
of finite-rate kinetics, or due to conditions at the system level, such as network traffic,
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Fig. 13 Strong scaling of
IPLMCFD with one MPI
process per node. Results
correspond to walltime for
an entire iteration step
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temperature of different CPU cores, etc. Thus, the domain decomposition should be
adjusted dynamically (repartitioning). In this way, it is possible to keep the optimal
load balance throughout the simulation. The issue of efficient datamigration required
for dynamic load balancing has been studied bymany investigators; e.g. seeRef. [93].
Softwares like Zoltan [80] have been designed to treat the repartitioning and data
migration. Moreover, Charm++ [94] is an entire runtime system and programming
paradigm for treating the overdecomposition, load balancing, repartitioning and data
migration issues.

Acknowledgments The work at the University of Pittsburgh is sponsored by AFOSR under
Grant FA9550-12-1-0057, by NSF under Grant CBET-1250171, and by the NSF Extreme Sci-
ence and Engineering Discovery Environment (XSEDE) under Grants TG-CTS070055N &amp;
TG-CTS120015. We are thankful to members of the Center for Simulation and Modeling at the
University of Pittsburgh for their help with numerous computational issues.

References

1. Hawthorne WR, Weddell DS, Hottel HC (1948) Third Symp Combust Flame Explos Phenom
3(1):266. doi:10.1016/S1062-2896(49)80035-3

2. Kuo KK, Acharya R (2012) Fundamentals of turbulent and multiphase combustion. Wiley,
Hoboken

3. Pope SB (2013) Proc Combust Inst 34(1):1. doi:10.1016/j.proci.2012.09.009
4. Holden C (1991) Science 252:1110. doi:10.1126/science.252.5009.1107
5. Chen JH (2011) Proc Combust Inst 33(1):99. doi:10.1016/j.proci.2010.09.012
6. Poinsot T, Veynante D (2011) Theoretical and numerical combustion, 3rd edn. R.T. Edwards

Inc, Philadelphia
7. Givi P (2006) AIAA J 44(1):16. doi:10.2514/1.15514
8. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
9. Bilger RW (2000) Prog Energy Combust 26(4–6):367. doi:10.1016/S0360-1285(00)00015-0
10. Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge

http://dx.doi.org/10.1016/S1062-2896(49)80035-3
http://dx.doi.org/10.1016/j.proci.2012.09.009
http://dx.doi.org/10.1126/science.252.5009.1107
http://dx.doi.org/10.1016/j.proci.2010.09.012
http://dx.doi.org/10.2514/1.15514
http://dx.doi.org/10.1016/S0360-1285(00)00015-0


190 P.H. Pisciuneri et al.

11. Minkowycz WJ, Sparrow EM, Murthy JY (eds) (2006) Handbook of numerical heat transfer,
2nd edn. Wiley, New York

12. Fox RO (2003) Computational models for turbulent reacting flows. Cambridge University
Press, Cambridge

13. Heinz S (2003) Flow Turbul Combust 70(1–4):115. doi:10.1023/B:APPL.0000004933.17800.
46

14. Haworth DC (2010) Prog Energy Combust 36(2):168. doi:10.1016/j.pecs.2009.09.003
15. Haworth DC (2011) In: Vervisch L, Veynante D, van Beeck JPAJ (eds) Turbulent combustion.

von Karman institute for fluid dynamics lecture series. Rhode-Saint-Genèse, Belgium
16. Haworth DC, Pope SB (2011) In: Echekki T, Mastorakos E (eds) Turbulent combustion mod-

eling, fluid mechanics and its applications, vol 95. Springer, Netherlands, pp 119–142. doi:10.
1007/978-94-007-0412-1_6

17. Ansari N, Jaberi FA, SheikhiMRH,Givi P (2011) In:MaherARS (ed) Engineering applications
of computational fluid dynamics: volume 1. International energy and environment foundation,
Chap 1, pp 1–22

18. Sagaut P (2010) Large eddy simulation for incompressible flows, 3rd edn. Springer, New York
19. Geurts BJ (2004) Elements of direct and large-eddy simulation. R.T. Edwards Inc, Philadelphia
20. Ghosal S, Moin P (1995) J Comput Phys 118(1):24. doi:10.1006/jcph.1995.1077
21. Vreman B, Geurts B, Kuerten H (1994) J Fluid Mech 278:351. doi:10.1017/

S0022112094003745
22. Williams FA (1985) Combustion theory, 2nd edn. The Benjamin/Cummings Publishing Com-

pany, Menlo Park
23. Sheikhi MRH, Drozda TG, Givi P, Pope SB (2003) Phys Fluids 15(8):2321. doi:10.1063/1.

1584678
24. Sheikhi MRH, Givi P, Pope SB (2007) Phys Fluids 19(9):095106. doi:10.1063/1.2768953
25. Sheikhi MRH, Givi P, Pope SB (2009) Phys Fluids 21(7):075102. doi:10.1063/1.3153907
26. Colucci PJ, Jaberi FA, Givi P, Pope SB (1998) Phys Fluids 10(2):499. doi:10.1063/1.869537
27. Jaberi FA, Colucci PJ, James S, Givi P, Pope SB (1999) J Fluid Mech 401:85. doi:10.1017/

S0022112099006643
28. ZhouXY, Pereira JCF (2000) FlowTurbul Combust 64(4):279. doi:10.1023/A:1026595626129
29. Heinz S (2003) Flow Turbul Combust 70(1–4):153. doi:10.1023/B:APPL.0000004934.22265.

74
30. Raman V, Pitsch H, Fox RO (2005) Combust Flame 143(1–2):56. doi:10.1016/j.combustflame.

2005.05.002
31. Sheikhi MRH, Drozda TG, Givi P, Jaberi FA, Pope SB (2005) Proc Combust Inst 30(1):549.

doi:10.1016/j.proci.2004.08.028
32. Raman V, Pitsch H (2005) Combust Flame 142(4):329. doi:10.1016/j.combustflame.2005.03.

014
33. van Vliet E, Derksen JJ, van den Akker HEA (2005) AIChE J 51(3):725. doi:10.1002/aic.

10365
34. Carrara MD, DesJardin PE (2006) Int J Multiph Flow 32(3):365. doi:10.1016/j.

ijmultiphaseflow.2005.11.003
35. Mustata R, Valiéo L, Jiménez C, JonesW, Bondi S (2006) Combust Flame 145(1–2):88. doi:10.

1016/j.combustflame.2005.12.002
36. Jones WP, Navarro-Martinez S, Röhl O (2007) Proc Combust Inst 31(2):1765. doi:10.1016/j.

proci.2006.07.041
37. Jones WP, Navarro-Martinez S (2007) Combust Flame 150(3):170. doi:10.1016/j.

combustflame.2007.04.003
38. James S, Zhu J, Anand MS (2007) Proc Combust Inst 31(2):1737. doi:10.1016/j.proci.2006.

07.160
39. Chen JY (2007) Combust Theory Model 11(5):675. doi:10.1080/13647830601091723
40. McDermott R, Pope SB (2007) J Comput Phys 226(1):947. doi:10.1016/j.jcp.2007.05.006
41. Raman V, Pitsch H (2007) Proc Combust Inst 31(2):1711. doi:10.1016/j.proci.2006.07.152

http://dx.doi.org/10.1023/B:APPL.0000004933.17800.46
http://dx.doi.org/10.1023/B:APPL.0000004933.17800.46
http://dx.doi.org/10.1016/j.pecs.2009.09.003
http://dx.doi.org/10.1007/978-94-007-0412-1_6
http://dx.doi.org/10.1007/978-94-007-0412-1_6
http://dx.doi.org/10.1006/jcph.1995.1077
http://dx.doi.org/10.1017/S0022112094003745
http://dx.doi.org/10.1017/S0022112094003745
http://dx.doi.org/10.1063/1.1584678
http://dx.doi.org/10.1063/1.1584678
http://dx.doi.org/10.1063/1.2768953
http://dx.doi.org/10.1063/1.3153907
http://dx.doi.org/10.1063/1.869537
http://dx.doi.org/10.1017/S0022112099006643
http://dx.doi.org/10.1017/S0022112099006643
http://dx.doi.org/10.1023/A:1026595626129
http://dx.doi.org/10.1023/B:APPL.0000004934.22265.74
http://dx.doi.org/10.1023/B:APPL.0000004934.22265.74
http://dx.doi.org/10.1016/j.combustflame.2005.05.002
http://dx.doi.org/10.1016/j.combustflame.2005.05.002
http://dx.doi.org/10.1016/j.proci.2004.08.028
http://dx.doi.org/10.1016/j.combustflame.2005.03.014
http://dx.doi.org/10.1016/j.combustflame.2005.03.014
http://dx.doi.org/10.1002/aic.10365
http://dx.doi.org/10.1002/aic.10365
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.11.003
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.11.003
http://dx.doi.org/10.1016/j.combustflame.2005.12.002
http://dx.doi.org/10.1016/j.combustflame.2005.12.002
http://dx.doi.org/10.1016/j.proci.2006.07.041
http://dx.doi.org/10.1016/j.proci.2006.07.041
http://dx.doi.org/10.1016/j.combustflame.2007.04.003
http://dx.doi.org/10.1016/j.combustflame.2007.04.003
http://dx.doi.org/10.1016/j.proci.2006.07.160
http://dx.doi.org/10.1016/j.proci.2006.07.160
http://dx.doi.org/10.1080/13647830601091723
http://dx.doi.org/10.1016/j.jcp.2007.05.006
http://dx.doi.org/10.1016/j.proci.2006.07.152


Massively Parallel FDF Simulation of Turbulent Reacting Flows 191

42. Drozda TG, Sheikhi MRH, Madnia CK, Givi P (2007) Flow Turbul Combust 78(1):35. doi:10.
1007/s10494-006-9052-4

43. Réveillon J, Vervisch L (1998) AIAA J 36(3):336. doi:10.2514/2.401
44. Cha CM, Trouillet P (2003) Phys Fluids 15(6):1496. doi:10.1063/1.1569920
45. Yilmaz SL, NikMB, Givi P, Strakey PA (2010) J Propuls Power 26(1):84. doi:10.2514/1.44600
46. Ansari N, Goldin GM, Sheikhi MRH, Givi P (2011) J Comput Phys 230(19):7132. doi:10.

1016/j.jcp.2011.05.015
47. Ansari N, Pisciuneri PH, Strakey PA, Givi P (2012) AIAA J 50(11):2476. doi:10.2514/1.

J051671
48. Otis CC, Ferrero P, Yilmaz SL, Candler GV, Givi P (2012) In: 48th AIAA/ASME/SAE/ASEE

joint propulsion conference& exhibit. AIAA, Atlanta, GA, pp 1–11. AIAA-2012-4260. doi:10.
2514/6.2012-4260

49. Yilmaz SL, Ansari N, Pisciuneri PH, Nik MB, Otis CC, Givi P (2013) J Appl Fluid Mech
6(3):311

50. Gikhman II, Skorokhod AV (1972) Stochastic differential equations. Springer, New York
51. Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press, New

York
52. Stratonovich RL (1963) Introduction to the theory of random noise. Gordon and Breach, New

York
53. Risken H (1989) The Fokker-Planck equation, methods of solution and applications. Springer,

New York
54. Pope SB (1994) Phys Fluids 6(2):973. doi:10.1063/1.868329
55. Haworth DC, Pope SB (1986) Phys Fluids 29(2):387. doi:10.1063/1.865723
56. Dreeben TD, Pope SB (1997) Phys Fluids 9(1):154. doi:10.1063/1.869157
57. Pope SB (1994) Annu Rev Fluid Mech 26:23. doi:10.1146/annurev.fl.26.010194.000323
58. Dopazo C (1994) In: Libby PA,Williams FA (eds) Turbulent reacting flows, Chap 7, Academic

Press, London, pp 375–474
59. Borghi R (1988) Prog Energy Combust 14(4):245. doi:10.1016/0360-1285(88)90015-9
60. Gicquel LYM, Givi P, Jaberi FA, Pope SB (2002) Phys Fluids 14(3):1196. doi:10.1063/1.

1436496
61. Nik MB, Yilmaz SL, Givi P, Sheikhi MRH, Pope SB (2010) AIAA J 48(7):1513. doi:10.2514/

1.50239
62. Nik MB, Yilmaz SL, Sheikhi MRH, Givi P (2010) Flow Turbul Combust 85(3–4):677. doi:10.

1007/s10494-010-9272-5
63. Gardiner CW (1990) Handbook of stochastic methods for physics, chemistry and the natural

sciences, 2nd edn. Springer, New York
64. Grigoriu M (1995) Applied non-Gaussian processes. Prentice-Hall, Englewood Cliffs
65. Kloeden PE, Platen E, Schurz H (1997) Numerical solution of stochastic differential equations

through computer experiments, 2nd edn. Springer, New York
66. Madnia CK, Jaberi FA, Givi P (2006) In: Minkowycz WJ et al (eds) Handbook of numerical

heat transfer, Chap 5, 2nd edn. Wiley, New York, pp 167–189. doi:10.1002/9780470172599.
ch5

67. Yilmaz SL, NikMB, SheikhiMRH, Strakey PA, Givi P (2011) J Sci Comput 47(1):109. doi:10.
1007/s10915-010-9424-8

68. Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the
message-passing interface, 2nd edn, Scientific and engineering computation. MIT Press, Cam-
bridge

69. Gropp W, Lusk E, Thakur R (1999) Using MPI-2: advanced features of the message-passing
interface. Scientific and engineering computation. MIT Press, Cambridge

70. Pisciuneri PH (2008) Large eddy simulation of a turbulent nonpremixed jet flame using a
finite-rate chemistry model. M.S. thesis, Department of Mechanical Engineering andMaterials
Science, University of Pittsburgh, Pittsburgh, PA

71. Barlow RS, Frank JH (1998) Proc Combust Inst 27(1):1087. doi:10.1016/S0082-
0784(98)80510-9

http://dx.doi.org/10.1007/s10494-006-9052-4
http://dx.doi.org/10.1007/s10494-006-9052-4
http://dx.doi.org/10.2514/2.401
http://dx.doi.org/10.1063/1.1569920
http://dx.doi.org/10.2514/1.44600
http://dx.doi.org/10.1016/j.jcp.2011.05.015
http://dx.doi.org/10.1016/j.jcp.2011.05.015
http://dx.doi.org/10.2514/1.J051671
http://dx.doi.org/10.2514/1.J051671
http://dx.doi.org/10.2514/6.2012-4260
http://dx.doi.org/10.2514/6.2012-4260
http://dx.doi.org/10.1063/1.868329
http://dx.doi.org/10.1063/1.865723
http://dx.doi.org/10.1063/1.869157
http://dx.doi.org/10.1146/annurev.fl.26.010194.000323
http://dx.doi.org/10.1016/0360-1285(88)90015-9
http://dx.doi.org/10.1063/1.1436496
http://dx.doi.org/10.1063/1.1436496
http://dx.doi.org/10.2514/1.50239
http://dx.doi.org/10.2514/1.50239
http://dx.doi.org/10.1007/s10494-010-9272-5
http://dx.doi.org/10.1007/s10494-010-9272-5
http://dx.doi.org/10.1002/9780470172599.ch5
http://dx.doi.org/10.1002/9780470172599.ch5
http://dx.doi.org/10.1007/s10915-010-9424-8
http://dx.doi.org/10.1007/s10915-010-9424-8
http://dx.doi.org/10.1016/S0082-0784(98)80510-9
http://dx.doi.org/10.1016/S0082-0784(98)80510-9


192 P.H. Pisciuneri et al.

72. Nooren PA, Versluis M, van der Meer TH, Barlow RS, Frank JH (2000) Appl Phys B 71(1):95.
doi:10.1007/s003400000278

73. Sandia National Laboratories (2015) TNF workshop website, piloted jet flames. http://www.
sandia.gov/TNF/pilotedjet.html

74. KeeRJ, Rupley FM,Meeks E,Miller JA (1996)CHEMKIN-III: a FORTRANchemical kinetics
package for the analysis of gas-phase chemical and plasma kinetics. Technical report. SAND96-
8216, Sandia National Laboratories, Livermore, CA

75. Brown PN, Byrne GD, Hindmarsh AC (1989) SIAM J Sci Stat Comput 10(5):1038. doi:10.
1137/0910062

76. Valiant LG (1990) Commun ACM 33(8):103. doi:10.1145/79173.79181
77. Karypis G, Kumar V (1998) METIS: a software package for partitioning unstructured graphs,

partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0.
University of Minnesota, Minneapolis, MN. http://glaros.dtc.umn.edu/gkhome/views/metis

78. Karypis G, Schloegel K (2013) ParMETIS: parallel graph partitioning and sparse matrix order-
ing library, version 4.0. University of Minnesota, Minneapolis

79. Devine K, Boman E, Heaphy R, Hendrickson B, Vaughan C (2002) Comput Sci Eng 4(2):90.
doi:10.1109/5992.988653

80. Boman E, Devine K, Heaphy R, Hendrickson B, Leung V, Riesen LA, Vaughan C, Catalyurek
U, Bozdag D, Mitchell W, Teresco J (2007) Zoltan 3.0: parallel partitioning, load balancing,
and data-management services; user’s guide. Technical report. SAND2007-4748W, Sandia
National Laboratories, Albuquerque, NM. http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

81. Chen YC, Peters N, Schneemann GA,Wruck N, Renz U, Mansour MS (1996) Combust Flame
107(3):223. doi:10.1016/S0010-2180(96)00070-3

82. Mallampalli HP, Fletcher TH, Chen JY (1998) J Eng Gas Turbines Power 120(4):703. doi:10.
1115/1.2818457

83. AmdahlGM(1967) In: Proceedings of theApril 18–20 1967, Spring joint computer conference,
AFIPS’67 (Spring). ACM, New York, pp 483–485. doi:10.1145/1465482.1465560

84. Josuttis NM (1999) The C++ standard library: a tutorial and handbook. Addison-Wesley, Read-
ing

85. Boost C++ Libraries (2015). http://www.boost.org/
86. Pisciuneri PH, Yilmaz SL, Strakey PA, Givi P (2013) SIAM J Sci Comput 35(4):C438. doi:10.

1137/130911512
87. OpenMP Architecture Review Board (2015) The OpenMP API specification for parallel pro-

gramming. http://www.openmp.org
88. Oak Ridge National Laboratory (2015) Titan user guide. https://www.olcf.ornl.gov/support/

system-user-guides/titan-user-guide/
89. Texas Advanced Computing Center (2015) The University of Texas at Austin. Stampede user

guide. https://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
90. OpenMP Architecture Review Board (2013) OpenMP application program interface version

4.0—July 2013
91. NVIDIA Corporation (2015) NVIDIA CUDA parallel programming and computing platform.

http://www.nvidia.com/object/cuda_home_new.html
92. OpenACC.org (2015) OpenACC directives for accelerators. http://www.openacc-standard.org
93. Devine KD, Boman EG,Karypis G (2006) In: HerouxM, RaghavanA, SimonH (eds) Frontiers

of scientific computing, Chap 1. SIAM, Philadelphia, pp 1–29
94. Kale LV, Bhatele A (2013) In: Parallel science and engineering applications: the Charm++

approach. Series in computational physics. CRC Press, Boca Raton, Chap 1. http://www.
crcpress.com/product/isbn/9781466504127

http://dx.doi.org/10.1007/s003400000278
http://www.sandia.gov/TNF/pilotedjet.html
http://www.sandia.gov/TNF/pilotedjet.html
http://dx.doi.org/10.1137/0910062
http://dx.doi.org/10.1137/0910062
http://dx.doi.org/10.1145/79173.79181
http://glaros.dtc.umn.edu/gkhome/views/metis
http://dx.doi.org/10.1109/5992.988653
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
http://dx.doi.org/10.1016/S0010-2180(96)00070-3
http://dx.doi.org/10.1115/1.2818457
http://dx.doi.org/10.1115/1.2818457
http://dx.doi.org/10.1145/1465482.1465560
http://www.boost.org/
http://dx.doi.org/10.1137/130911512
http://dx.doi.org/10.1137/130911512
http://www.openmp.org
https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/
https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/
https://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
http://www.nvidia.com/object/cuda_home_new.html
http://www.openacc-standard.org
http://www.crcpress.com/product/isbn/9781466504127
http://www.crcpress.com/product/isbn/9781466504127

	Preface
	Contents
	An Introduction to the Malliavin Calculus and Its Applications
	1 Introduction
	1.1 Finite Dimensional Case
	1.2 Malliavin Calculus on the Wiener Space
	1.3 Sobolev Spaces
	1.4 The Divergence as a Stochastic Integral

	2 Wiener Chaos and the Ornstein-Uhlenbeck Semigroup
	2.1 Multiple Stochastic Integrals
	2.2 The Ornstein-Uhlenbeck Semigroup

	3 Clark Ocone's Formula
	4 Application of Malliavin Calculus to Regularity  and Estimations of Densities
	4.1 First Density Formula
	4.2 Second Density Formula
	4.3 Existence and Smoothness of Densities

	5 Malliavin Calculus and Normal Approximation
	5.1 Stein's Method for Normal Approximation
	5.2 Normal Approximation on a Fixed Wiener Chaos
	5.3 Convergence of Densities

	References

	Fractional Brownian Motion  and an Application to Fluids
	1 Introduction
	1.1 Fractional Brownian Motion
	1.2 Properties of Fractional Brownian Motion
	1.3 An Application of fBm to Fluids

	2 Some Preliminaries
	2.1 The Integrodifferential Equation
	2.2 Assumptions
	2.3 Functional Setting

	3 Some a Priori Estimates
	3.1 Fractional Integrals and Derivatives
	3.2 A Priori Estimates

	4 Stochastic Integrals with Respect to a fBm
	5 Main Results with Proofs
	5.1 Main Result
	5.2 Fixed Point Argument
	5.3 Proof of Theorem 1

	References

	An Introduction to Large Deviations  and Equilibrium Statistical Mechanics  for Turbulent Flows
	1 Introduction
	2 Models of Turbulent Flows
	2.1 3D and 2D Hydrodynamics
	2.2 Global Invariants
	2.3 Geophysical Flows
	2.4 Discretized Form for 2D Euler Flows and Analogies  with Toy Models of Magnetic Systems

	3 Mean-Field Theory for 2D Flows
	3.1 Microcanonical Measure and Large Deviations  for the Energy and Vorticity Distribution
	3.2 Large Deviations for the Macrostates
	3.3 Thermodynamic Limit and Mean-Field Equation
	3.4 Non-equivalence of Ensembles
	3.5 Large Deviations for the Coarse-Grained Vorticity Field
	3.6 The Energy-Enstrophy Measure

	4 Conclusion
	References

	Recent Developments on the Micropolar  and Magneto-Micropolar Fluid Systems: Deterministic and Stochastic Perspectives
	1 Introduction
	2 Deterministic Case
	2.1 Global Regularity of the 2D MMPF System with Zero Angular Viscosity
	2.2 Regularity Criterion of the 3D MMPF System in Terms  of Two Velocity Components

	3 Stochastic Case
	3.1 Existence of Weak Martingale Solution for the 3D MPF and the MMPF Systems with Non-Lipschitz Multiplicative Noise
	3.2 Unique Strong Solution for the 2D MPF and the MMPF Systems with Lipschitz Multiplicative Noise

	4 Conclusion
	References

	Pathwise Sensitivity Analysis in Transient Regimes
	1 Introduction
	2 Time-Dependent Sensitivity Analysis
	2.1 Decomposition of the Pathwise Relative Entropy
	2.2 Sensitivity Analysis and Fisher Information Matrix

	3 Discrete-Time Markov Chains
	4 Continuous-Time Markov Chains
	5 Stochastic Differential Equations---Markov Processes
	6 Demonstration Example
	6.1 Continuous Time Markov Chains: An EGFR Model

	7 Conclusions
	References

	The Langevin Approach: A Simple Stochastic Method for Complex Phenomena
	1 Introduction
	2 The Langevin Approach
	2.1 Processes in Scale
	2.2 Necessary Conditions: Stationarity and the Markov Property
	2.3 The Fokker-Planck Equation for Increments
	2.4 Langevin Processes in Scale

	3 Applying the Langevin Approach to Turbulence
	3.1 The Langevin Approach in Laboratory Turbulence
	3.2 The Langevin Approach in Simulated Turbulence
	3.3 Comparative Analysis

	4 Discussion and Conclusions
	References

	Monte Carlo Simulations of Turbulent Non-premixed Combustion using  a Velocity Conditioned Mixing Model
	1 Introduction
	2 Stochastic Modeling of Turbulent Non-premixed Combustion
	2.1 Deterministic Conservation Equations
	2.2 Simplified Chemical Description
	2.3 Statistical Description
	2.4 Monte Carlo Method
	2.5 Hybrid Solution Algorithm

	3 Micro Mixing Models
	3.1 Description of IEM and IECM Models
	3.2 The Correct Local Scalar Isotropy
	3.3 Implementation of the IECM Micro-Mixing Model

	4 Test Case and Numerical Details
	4.1 Delft III Flame
	4.2 Numerical Setup

	5 Results and Discussion
	5.1 Velocity Statistics
	5.2 Results for the Mixture Fraction Fields
	5.3 Results for the Temperature
	5.4 Discussion on Parameters of the IECM Algorithm

	6 Conclusions
	References

	Massively Parallel FDF Simulation  of Turbulent Reacting Flows
	1 Introduction
	2 Filtered Density Function
	3 Irregularly Portioned FDF Simulator
	3.1 Static Block Decomposition
	3.2 Irregularly Portioned Lagrangian Monte Carlo (IPLMC)
	3.3 Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD)

	4 Concluding Remarks
	References




