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1 Introduction

A d-restriction problem [7,13,58] is a problem of the following form:
Given an alphabet Σ of size |Σ| = q, an integer n and a class M of nonzero
functions f : Σd → {0, 1}.
Find a small set A ⊆ Σn such that: For every 1 ≤ i1 < i2 < · · · < id ≤ n and
f ∈ M there is a ∈ A such that f(ai1 , . . . , aid) �= 0.

A (1 − ε)-dense d-restriction problem is a problem of the following form:
Given an alphabet Σ of size |Σ| = q, an integer n and a class M of nonzero
functions f : Σd → {0, 1}.
Find a small set A ⊆ Σn such that: For every 1 ≤ i1 < i2 < · · · < id ≤ n and
f ∈ M

Pra∈A[f(ai1 , . . . , aid) �= 0] > 1 − ε

where the probability is over the choice of a from the uniform distribution on A.
We give new constructions for the following three ((1−ε)-dense) d-restriction

problems: Perfect hash family, cover-free family and separating hash family.
Perfect hash families were introduced by Mehlhorn [50] in 1984 and used as

database management. They were used in compiler design to prove lower bounds
on the size of a program that constructs a hash function suitable for fast retrieval
of fixed data such as library function names [27]. Perfect hash families have been
also applied to circuit complexity problems [59], derandomize some probabilistic
algorithms [6], broadcast encryption [39] and threshold cryptography [11,12].

Cover-free families were first introduced in 1964 by Kautz and Singleton [47]
to investigate superimposed binary codes. Cover-free families have been used to
solve some problems in cryptography and communications, including blacklist-
ing, broadcast encryption, broadcast anti-jamming, source authentication in a
network setting, group key predistribution and pooling designs over complexes.
See [25,29,33,41,42,46,52,62–64,68,69].
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A construction is global explicit if it runs in deterministic polynomial time
in the size of the construction. A local explicit construction is a construction
where one can find any bit in the construction in time poly-log in the size of
the construction. The constructions in this paper are linear time global explicit
constructions.

To the best of our knowledge, our constructions have sizes that are less than
the ones known from the literature.

1.1 Learning Hypergraphs

In this section we give one application in computational learning theory.
A hypergraph is H = (V,E) where V is the set of vertices and E ⊆ 2V is the

set of edges. The dimension of the hypergraph H is the cardinality of the largest
set in E. For a set S ⊆ V , the edge-detecting queries QH(S) is answered “Yes”
or “No”, indicating whether S contains all the vertices of at least one edge of
H. Learning a hidden hypergraph of constant dimension r with s edges using
edge-detecting queries is equivalent to another important problem in learning
theory [4]: Learning the class s-term r-MDNF (Monotone DNF with s terms
of size r) with membership queries (the learner can ask about the value of the
function in some point).

This problemhasmanyapplications in chemical reactions and genome sequenc-
ing. In chemical reactions, we are given a set of chemicals, some of which react and
somewhich do not.Whenmultiple chemicals are combined in one test tube, a reac-
tion is detectable if and only if at least one set of the chemicals in the tube reacts.
The goal is to identify which sets react using as few experiments as possible. See
[2–5,16,18,24,26,28,34,35,40,53,61] for more details on the problem and many
other applications.

This problem is also called “sets of positive subsets” [70] “complex group
testing” [53] and “group testing in hypergraph” [35].

It is known that a cover-free families can be used as queries to solve the above
problem. Several algorithms with non-optimal query complexity are known from
the literature. See [28] and references within. Our construction is the first linear
time construction that construct an optimal query set for learning hypergraphs.

2 Old and New Results

2.1 Perfect Hash Family

Let H be a family of functions h : [n] → [q]. For d ≤ q we say that H is an (n, q, d)-
perfect hash family ((n, q, d)-PHF) [7] if for every subset S ⊆ [n] of size |S| = d
there is a hash function h ∈ H such that h|S is injective (one-to-one) on S, i.e.,
|h(S)| = d.

Blackburn and Wild [23] gave an optimal explicit construction when q ≥
exp

(√
d log d log n

)
. Stinson et al., [65], gave an explicit construction of (n, q, d)-

PHF of size dlog
∗ n log n for q ≥ d2 log n/ log q. It follows from the technique used

in [1] with Reed-Solomon codes that an explicit (n, q, d)-PHF of sized2 log n/ log q
exist for q ≥ d2 log n/ log q. In [7,9,58] it was shown that there are (n,Ω(d2), d)-
PHF of size O(d6 log n) that can be constructed in poly(n) time. Wang and Xing
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[71] used algebraic function fields and gave an (n, d4, d)-PHF of size O((d2/ log d)
log n) for infinite sequence of integers n. Their construction is not linear time
construction. The above constructions are either for large q or are not linear
time constructions.

Bshouty in [13] shows that for a constant c > 1, the following (third column
in the table) (n, q, d)-PHF can be locally explicitly constructed in almost linear
time (within poly(log))

Linear time. Upper Lower
n q Size = O() Bound Bound

I.S. q ≥ c
4d4 d2 log n

log q d log n
log q d log n

log q

all q ≥ c
4d4 d4 log n

log q d log n
log q d log n

log q

I.S. q ≥ c
2d2 d4 log n

log d d log n
log(2q/(d(d−1))) d log n

log q

all q ≥ c
2d2 d6 log n

log d d log n
log(2q/(d(d−1))) d log n

log q

I.S. q = d(d−1)
2 + 1 + o(d2) d6 log n

log d d log n d log n
log q

all q = d(d−1)
2 + 1 + o(d2) d8 log n

log d d log n d log n
log q

The upper bound in the table follows from union bound [13]. The lower bound
is from [10,51] (see also [17,22,23,37,44,45,55]). We note here that all the lower
bounds in this paper are true even for non-explicit constructions. I.S. stands for
“true for infinite sequence of integers n”. Here we prove

Theorem 1. Let q be a power of prime. If q > 4(d(d − 1)/2 + 1) then there is
a (n, q, d)-PHF of size

O

(
d2 log n

log(q/e(d(d − 1)/2 + 1))

)

that can be constructed in linear time.
If d(d − 1)/2+2 ≤ q ≤ 4(d(d − 1)/2+1) then there is a (n, q, d)-PHF of size

O

(
q2d2 log n

(q − d(d − 1)/2 − 1)2

)

that can be constructed in linear time.
In particular, for any constants c > 1, δ > 0 and 0 ≤ η < 1, the following

(n, q, d)-PHF can be constructed in linear time (the third column in the following
table)

Linear time. Upper Lower
n q Size = O() Bound Bound

all q ≥ d2+δ d2 log n
log q d log n

log q d log n
log q

all q ≥ c
2d2 d2log n d log n d log n

log q

all q = d(d−1)
2 + 1 + d2η d6−4ηlog n d log n d log n

log q

all q = d(d−1)
2 + 2 d6 log n

log d d log n d log n
log q
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Notice that for q > cd2/2, c > 1 the sizes in the above theorem is within a factor
of d of the lower bound. Constructing almost optimal (within poly(d)) (n, q, d)-
PHF for q = o(d2) is still a challenging open problem. Some nearly optimal
constructions of (n, q, d)-PHF for q = o(d2) are given in [49,58].

The (n, q, d)-perfect hash families for d ≤ 6 are studied in [8,10,20,21,23,49,
54,65]. In this paper we prove

Theorem 2. If q is prime power and d ≤ log n/(8 log log n) then there is a linear
time construction of (n, q, d)-PHF of size O

(
d3 log n/g(q, d)

)
where g(q, d) =

(1 − 1/q) (1 − 2/q) · · · (1 − (d − 1)/q) .

Using the lower bound in [37] we show that the size in the above theorem is
within a factor of d4 of the lower bound when q = d + O(1) and within a factor
of d3 for q > cd for some c > 1.

2.2 Dense Perfect Hash Family

We say that H is an (1 − ε)-dense (n, q, d)-PHF if for every subset S ⊆ [n] of
size |S| = d there are at least (1 − ε)|H| hash functions h ∈ H such that h|S is
injective on S.

The following improves the results that can be obtained from [13,14]

Theorem 3. Let q be a power of prime. If ε > 4(d(d − 1)/2 + 1)/q then there
is a (1 − ε)-dense (n, q, d)-PHF of size

O

(
d2 log n

ε log(εq/e(d(d − 1)/2 + 1))

)

that can be constructed in linear time.
If (d(d−1)/2+1)/(q−1) ≤ ε ≤ 4(d(d−1)/2+1)/q then there is a (1−ε)-dense

(n, q, d)-PHF of size

O

(
q2d2 log n

ε(q − (d(d − 1)/2 + 1)/ε)2

)

that can be constructed in linear time.

We also prove (what we believe) two folklore results that show that the
bounds on the size and ε in the above theorem are almost tight. First, we show
that the size of any (1 − ε)-dense (n, q, d)-PHF is Ω (d log n/(ε log q)) . Second,
we show that no (1 − ε)-dense (n, q, d)-PHF exists when ε < d(d − 1)/(2q) +
O((d2/q)2). Notice that for q ≥ (d/ε)1+c, where c > 1 is any constant, the size
of the construction in Theorem 3, O

(
d2 log n/(ε log q)

)
, is within a factor d of

the lower bound. Also the bound on ε is asymptotically tight.
For the rest of this section we will only state the results for the non-dense d-

restriction problems. Results similar to Theorem 3 can be easily obtained using
the same technique.
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2.3 Cover-Free Families

Let X be a set with N elements and let B be a set of subsets (blocks) of X. We
say that (X, B) is (w, r)-cover-free family ((w, r)-CFF), [47], if for any w blocks
B1, . . . , Bw ∈ B and any other r blocks A1, . . . , Ar ∈ B, we have

w⋂

i=1

Bi �⊆
r⋃

j=1

Aj .

Let N((w, r), n) denotes the minimum number of points in any (w, r)-CFF hav-
ing n blocks. Here we will study CFF when w = o(r) (or r = o(w)). We will
write (n, (w, r))-CFF when we want to emphasize the number of blocks.

When w = 1, the problem is called group testing. The problem of group
testing which was first presented during World War II was presented as fol-
lows [30,56]: Among n soldiers, at most r carry a fatal virus. We would like to
blood test the soldiers to detect the infected ones. Testing each one separately
will give n tests. To minimize the number of tests we can mix the blood of several
soldiers and test the mixture. If the test comes negative then none of the tested
soldiers are infected. If the test comes out positive, we know that at least one of
them is infected. The problem is to come up with a small number of tests.

This problem is equivalent to (n, (1, r))-CFF and is equivalent to finding a
small set F ⊆ {0, 1}n such that for every 1 ≤ i1 < i2 < · · · < id ≤ n and every
1 ≤ j ≤ d there is a ∈ F such that aik = 0 for all k �= j and aij = 1.

Group testing has the following lower bound [31,32,36]

N((1, r), n) ≥ Ω

(
r2

log r
log n

)
. (1)

It is known that a group testing of size O(r2 log n) can be constructed in linear
time [30,43,60].

An (n, (w, r))-CFF can be regarded as a set F ⊆ {0, 1}n such that for every
1 ≤ i1 < i2 < · · · < id ≤ n where d = w + r and every J ⊂ [d] of size |J | = w
there is a ∈ F such that aik = 0 for all k �∈ J and aij = 1 for all j ∈ J . Then
N((w, r), n) is the minimum size of such F .

It is known that, [67],

N((w, r), n) ≥ Ω

(
d
(

d
w

)

log
(

d
w

) log n

)

.

Using union bound it is easy to show

Lemma 1. For d = w+r = o(n) we have N((w, r), n) ≤ O
(√

wrd · (
d
w

)
log n

)
.

It follows from [65], that for infinite sequence of integers n, an (n, (w, r))-
CFF of size M = O

(
(wr)log

∗ n log n
)
can be constructed in polynomial time.

For constant d, the (n, d)-universal set over Σ = {0, 1} constructed in [57] of
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size M = O(23d log n) (and in [58] of size M = 2d+O(log2 d) log n) is (n, (w, r))-
CFF for any w and r of size O(log n). See also [48]. In [13], Bshouty gave the
following locally explicit constructions of (n, (w, r))-CFF that can be constructed
in (almost) linear time in their sizes (the third column in the table).

Linear time Upper Lower
n w Size= Bound Bound

I.S O(1) rw+2

log r log n rw+1 log n rw+1

log r log n

all O(1) rw+3

log r log n rw+1 log n rw+1

log r log n

I.S. o(r) w2(ce)wrw+2

log r log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r log n

all o(r) w3(ce)wrw+3

log r log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r log n

In the table, c > 1 is any constant. We also added to the table the non-
constructive upper bound in the forth column and the lower bound in the fifth
column.

In this paper we prove

Theorem 4. For any constant c > 1, the following (n, (w, r))-CFF can be con-
structed in linear time in their sizes

Linear time. Upper Lower
n w Size=O( ) Bound Bound

all O(1) rw+1 log n rw+1 log n rw+1

log r log n

all o(r) (ce)wrw+1 log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r log n

Notice that when w = O(1) the size of the construction matches the upper bound
obtained with union bound and is within a factor of log r of the lower bound.

See the results for Separating Hash Family in the full paper [15].

3 Preliminary Constructions

A linear code over the field Fq is a linear subspace C ⊂ Fm
q . Elements in the

code are called words. A linear code C is called [m, k, d]q linear code if C ⊂ Fm
q is

a linear code, |C| = qk and for every two words v and u in the code dist(v, u) :=
|{i | vi �= ui}| ≥ d. The q-ary entropy function is

Hq(p) = p logq

q − 1
p

+ (1 − p) logq

1
1 − p

.

The following is from [60] (Theorem 2)

Lemma 2. Let q be a prime power, m and k positive integers and 0 ≤ δ ≤ 1.
If k ≤ (1 − Hq(δ))m, then an [m, k, δm]q linear code can be globally explicit
constructed in time O(mqk).

All the results in this paper uses Lemma 2 and therefore they are globally
explicit constructions. In the full paper, [15], we prove the following
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Lemma 3. Let q be a prime power, 1 < h < q/4 and

m =
⌈

h ln(q(n + 1))
ln q − lnh − 1

⌉
.

A [
m,

⌈
log(n + 1)

log q

⌉
,

(
1 − 1

h

)
m

]

q

linear code can be constructed in time O(hqn log(qn)).

When h = Θ(q) we show

Lemma 4. Let q be a prime power, 2 ≤ q/4 ≤ h ≤ q − 1 and

m =
⌈
4(q − 1)2h ln(q(n + 1))

(q − h)2

⌉
.

A [
m,

⌈
log(n + 1)

log q

⌉
,

(
1 − 1

h

)
m

]

q

linear code can be constructed in time O(h(q2/(q − h)2)n log(qn)).

4 Main Results

In this section we give two main results that will be used throughout the paper
Let I ⊆ [n]2. Define the following homogeneous polynomial HI =

∏
(i1,i2)∈I

(xi1 − xi2). We denote by Hd ⊆ Fq[x1, . . . , xn] the class of all such polynomials
of degree at most d. A hitting set for Hd over Fq is a set of assignment A ⊆ Fn

q

such that for every H ∈ Hd,H �≡ 0, there is a ∈ A where H(a) �= 0. A (1 − ε)-
dense hitting set for Hd over Fq is a set of assignment A ⊆ Fn

q such that for
every H ∈ Hd, H �≡ 0,

Pra∈A[H(a) �= 0] > 1 − ε

where the probability is over the choice of a from the uniform distribution on A.
When H(a) �= 0 then we say that the assignment a hits H and H is not zero on
a.

We prove

Lemma 5. Let n > q, d. If q > 4(d + 1) is prime power then there is a hitting
set for Hd of size

m =
⌈
(d + 1) log(q(n + 1))

log(q/e(d + 1))

⌉
= O

(
d log n

log(q/e(d + 1))

)

that can be constructed in time O(mn) = O(dqn log(qn)).
If d + 2 ≤ q ≤ 4(d + 1) is prime power then there is a hitting set for Hd of

size

m =
⌈
4(q − 1)2(d + 1) ln(q(n + 1))

(q − d − 1)2

⌉
= O

(
dq2 log n

(q − d − 1)2

)

that can be constructed in time O(mn) = O(d(q2/(q − d − 1)2)n log(qn)).
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Proof. Consider the code C
[
m,

⌈
log(n + 1)

log q

⌉
,

(
1 − 1

d + 1

)
m

]

q

constructed in Lemma 3 and Lemma 4. The number of non-zero words in the code
is at least n. Take any n distinct non-zero words c(1), · · · , c(n) in C and define
the assignments a(i) ∈ Fn

q , i = 1, . . . , m where a
(i)
j = c

(j)
i . Let HI ∈ Hd,HI �≡ 0.

Then HI =
∏

(i1,i2)∈I(xi1 − xi2) �≡ 0 where |I| ≤ d. For each t := xi1 − xi2

we have (t(a(1)), . . . , t(a(m)))T = c(i1) − c(i2) ∈ C is a non-zero word in C and
therefore t is zero on at most m/(d+1) assignments. Therefore HI is zero on at
most dm/(d + 1) < m assignment. This implies that there is an assignment in
A that hits HI . ��
Notice that the size of the hitting set is mn and therefore the time complexity
in the above lemma is linear in the size of the hitting set.

In the same way one can prove

Lemma 6. Let q be a prime power. If q > 4(d + 1)/ε be a prime power. Let
n > q, d. There is a (1 − ε)-dense hitting set for Hd of size

m =
⌈
(d + 1) log(q(n + 1))
ε log(εq/e(d + 1))

⌉
= O

(
d log n

ε log(εq/e(d + 1))

)

that can be constructed in time O(dqn log(qn)/ε).
If (d + 1)/ε + 1 ≤ q ≤ 4(d + 1)/ε be a prime power. Let n > q, d. There is a

(1 − ε)-dense hitting set for Hd of size

m =
⌈
4(q − 1)2(d + 1) ln(q(n + 1))

(q − (d + 1)/ε)2ε

⌉
= O

(
dq2 log n

(q − (d + 1)/ε)2ε

)

that can be constructed in time O(d(q2/(q − d − 1)2)n log(qn)/ε).

We note here that such result cannot be achieved when q < d/ε [13].

5 Proof of the Theorems

5.1 Perfect Hash Family

Here we prove Theorem 1

Proof. Consider the set of functions

F = {Δ{i1,...,id}(x1, . . . , xn) | 1 ≤ i1 < · · · < id ≤ n}
in Fq[x1, x2, . . . , xn] where

Δ{i1,...,id}(x1, . . . , xn) =
∏

1≤k<j≤d

(xik − xij ).

It is clear that a hitting set for F , when each assignment is regarded as functions
f : [n] → Fq, is (n, q, d)-PHF. Now since F ⊆ Hd(d−1)/2+1 the result follows from
Lemma 5. ��
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When q > d(d − 1)/2 is not a power of prime number then we can take the
nearest prime q′ < q and construct an (n, q′, d)-PHF that is also (n, q, d)-PHF. It
is known that the nearest prime q′ ≥ q − Θ(q.525), [19], and therefore the result
in the above table is also true for any integer q ≥ d(d + 1)/2 + O(d1.05).

5.2 Perfect Hash Family for Small d

We now prove Theorem 2

Proof. If q > d2 then the construction in Theorem 1 has the required size.
Let q ≤ d2. We first use Theorem 1 to construct an (n, d3, d)-PHF H1 of size
O(d2 log n/ log d) in linear time. Then a (d3, q, d)-PHF H2 of sizeO(d log d/g(q, d))
can be constructed in time, [7,58],

(
d3

d

)
q1+�log d3/ log q�(d−1) ≤ d3dqdd3d ≤ d8d < n.

Then H = {h2(h1) | h2 ∈ H2, h1 ∈ H1} is (n, q, d)-PHF of the required size. ��
It follows from [37] that this bound is within a factor of d4 of the lower bound

when q = d+O(1) and within a factor of d3 log d of the lower bound when q > cd
for some constant c > 1. See details in the following

Lemma 7. [37] Let n > d2+ε for some constant ε > 0. Any (n, q, d)-PHF is of
size at least

Ω

(
(q − d + 1)

q log(q − d + 2)
log n

g(q, d)

)
.

In particular, for q = d + O(1) the bound is

Ω

(
log n

dg(q, d)

)

and for q > cd for some constant c > 1 the bound is

Ω

(
log n

(log d)g(q, d)

)
.

5.3 Dense Perfect Hash

Using Lemma 6 with the same proof as in Theorem 1 we get Theorem 3.
In the appendix we show that the size in the above Theorem and the con-

straint on ε are tight.
For the rest of the paper we will only state the results for the non-dense

d-restriction problems. The results for the dense d-restriction problems follows
immediately from applying Lemma 6.
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5.4 Cover-Free Families

We now prove the following

Theorem 5. Let q ≥ wr + 2 be a prime power. Let S ⊆ Fn
q be a hitting set for

Hwr. Given a (q, (w, r))-CFF of size M that can be constructed in linear time
one can construct an (n, (w, r))-CFF of size M · |S| that can be constructed in
linear time.

In particular, there is an (w, r)-CFF of size
(

q

w

)
· |S|

that can be constructed in linear time in its size.
In particular, for any constant c > 1, the following (w, r)-CFF can be con-

structed in linear time in their sizes

Linear time. Upper Lower
n w Size=O( ) Bound Bound

all O(1) rw+1 log n rw+1 log n rw+1

log r log n

all o(r) (ce)wrw+1 log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r log n

Proof. Let d = r + w. Consider the set of non-zero functions

M = {Δi | i ∈ [n]d, i1, i2, . . . , id are distinct}

where
Δi(x1, . . . , xn) =

∏

1≤k≤w and w<j≤d

(xik − xij ).

Then S is a hitting set for M.
Let F ⊆ {0, 1}q be a (q, (w, r))-CFF of size M . Regard each f ∈ F as a

function f : Fq → {0, 1}. It is easy to see that

{(f(b1), f(b2), . . . , f(bn)) | b ∈ S, f ∈ F} ⊆ {0, 1}n

is (w, r)-CFF of size |F| · |S| = M · |S|.
Now for every subset R ⊆ Fq define the function χR : Fq → {0, 1} where

for β ∈ Fq we have χR(β) = 1 if β ∈ R and χR(β) = 0 otherwise. Then
{χR | R ⊆ Fq, |R| = w} ⊆ {0, 1}Fq is a (q, (w, r))-CFF of size

(
q
w

)
. Therefore

C = {(χR(b1), χR(b2), . . . , χR(bn)) | b ∈ S,R ⊆ Fq, |R| = w}

is (w, r)-CFF of size

|C| ≤
(

q

w

)
|S|.

Now for the results in the table consider a constant c > c′ > 1 and let q be a
power of prime such that q = c′wr+o(wr). This is possible by [19]. By Lemma 5
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there is a hitting set S for Hwr of size O(wr log n). This gives a (w, r)-CFF of
size

O

((
q

w

)
· wr log n

)
= O

((qe

w

)w

wr log n
)
= O

(
(ce)wrw+1log n

)

that can be constructed in linear time in its size. ��

5.5 Open Problems

Here we give some open problems

1. Find a polynomial time almost optimal (within poly(d)) construction of
(n, q, d)-PHF for q = o(d2). Using the techniques in [58] it is easy to give an
almost optimal construction for (n, q, d)-PHF when q = d2/c for any con-
stant c > 1. Unfortunately the size of the construction is within a factor of
dO(c) of the lower bound.

2. In this paper we gave a construction of (n, (w, r))-CFF of size

min((2e)wrw+1, (2e)rwr+1) log n

=
(

w + r

r

)
2min(w log w,r log r)(1+o(1)) log n (2)

that can be constructed in linear time. Fomin et. al. in [38] gave a construc-
tion of size

(
w + r

r

)
2O( r+w

log log(r+w) ) log n (3)

that can be constructed in linear time. The former bound, (2), is better than
the latter when w ≥ r log r log log r or r ≥ w logw log logw. We also note
that the former bound, (2), is almost optimal, i.e.,

(
w + r

r

)1+o(1)

log n = N1+o(1) log n,

where N log n is the optimal size, when r = wω(1) or r = wo(1) and the latter
bound, (3), is almost optimal when

o(w log logw log log logw) = r = ω

(
w

log logw log log logw

)
.

Find a polynomial time almost optimal (within No(1)) construction for (w, r)-
CFF when w = ω(1).

3. A construction is global explicit if it runs in deterministic polynomial time
in the size of the construction. A local explicit construction is a construction
where one can find any bit in the construction in time poly-log in the size
of the construction. The constructions in this paper are linear time global
explicit constructions. Some almost linear time almost optimal local explicit
constructions follows from my recently published paper [14]. It is interesting
to find other explicit constructions that are more optimal.



Linear Time Constructions of Some d-Restriction Problems 85

References

1. Alon, N.: Explicit construction of exponential sized families of k-independent sets.
Discrete Math. 58, 191–193 (1986)

2. Alon, N., Asodi, V.: Learning a hidden subgraph. In: Dı́az, J., Karhumäki, J.,
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