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Abstract Behaviour of soils under small cycles is examined in the triaxial apparatus
and the results are used for the calibration of several constitutive relations. The small
strain relation is not exactly linear and stiffness Eijkl in σ̇ij = Eijkl ε̇kl is not constant.
The popular hypoplastic (HP) model describes the small strain behaviour using the
intergranular strain (Niemunis, Herle, Mech Cohesive-Frictional Mater 2(4):279–
299 1997). However, this idea with an additional strain has several shortcomings. A
better approach is the paraelastic (PE) model (Niemunis et al, Acta Geotech 6(2):67–
80 2011; Prada Sarmiento, Paraelastic description of small-strain soil behaivour
2012). In this study the paraelasticity has been used already while evaluating of
the raw data from triaxial test results. Similarly a simplified high cycle accumulation
(HCA) formula (Niemunis et al, Comput Geotech 32(4):245–263 2005) and a simple
assumption of stress dependence of Eijkl have been used to purify the measured test
data. A general curve-fitting strategy for testing of different constitutive models is
developed. Some shortcomings of PE and HCA could be observed.

Keywords Small strain stiffness · Paraelasticity · Hyperelasticity · Curve fitting

1 Introduction

1.1 Notation

For evaluation of triaxial tests the Cartesian components σij, εij or Roscoe invariants
p, q, εvol, εq of stress σ and strain ε (compression is positive) are less convenient
than the isomorphic components:
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Fig. 1 Concept of response envelopes. Left applied strain increments (equal in all directions).Right
stress increments obtained as the material response
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√
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2q,

εP = (ε11 + ε22 + ε33)/
√
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√
3. Isomorphic variables

preserve the orthogonality and distance contrarily to Roscoe invariants, e.g. ‖σ‖ =√
P2 + Q2 �= √

p2 + q2, wherein ‖ ‖ is the Euclidean norm. For brevity we denote
the isomorphic components of stress, strain and stiffness as σA, εA,EAB with the
usual summation convention, e.g. σA = EABεB. Accordingly, δAB is a 2 × 2 version
of the Kronecker symbol.

In the paraelastic (PE) model [7, 9] the reversals of stress and strain paths are of

essential importance. The abbreviation
�� = � − �R denotes the span of � measured

from the most recent reversal value �R and h� = ‖ �� ‖ is the size of the span.

1.2 On Evaluation of Stiffness

Stiffness Eijkl used to describe stress rates σ̇ij = Eijkl ε̇kl at small strains is an impor-
tant element of the hypoplastic model [5, 6]. Triaxial data dealing with the small
deformation response allows for evaluation of the components of the small strain
stiffness. At first, the triaxial testing programme was intended to reproduce experi-
mentally the so-called response envelopes, to compare them (graphically) with the
ones obtained from the HP and to conclude some improvements of the model from
this comparison. Eventually a different approach based on the error of curve fitting
has been proposed.

The polar representation of stiffness with the response envelopes [2, 4] is a well
established graphic tool for modelling of soil behaviour. At a given state, a consti-
tutive model obtains small perturbations, usually strain increments ε̇A of the same
length ‖ε̇‖ = const but in different directions. The resulting stress increments σ̇A are
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plotted, Fig. 1. The obtained response envelope1 is a valuable graphic representation
of stiffness. For example, the response envelopes should be continuous,2 otherwise
the jumps would render the constitutive model unstable.

Tests with very small amplitudes (εampl < 10−5) are technically not feasible
in a standard triaxial apparatus. A direct measurement of stiffness is too strongly
blurred by inaccuracies from the testing device. At too large amplitudes various
non-linear effects as accumulation, hysteretic phenomena, barotropy, anisotropy etc.
overly distort the response envelope andunreliable small strainmodels are concluded.
Therefore, we use cycles with intermediate amplitudes (εampl ≈ 5×10−4) and apply
various purification procedures to remove the nonlinearities and the accumulation.

Primarily, the constitutive curve-fitting procedure is used to purify the results.
After different purifying operation the net small-strain response remains. Beside
the components of the elastic stiffness various material constants of PE and HCA
etc. are calibrated in the course of the purification. Judging by the fitting error (after
optimal calibration), we may also easily discover, which versions of these model are
better suited for a given material and a given test. The error of fitting seems to be
a convenient quantitative criterion for testing of a constitutive model. A graphical
comparison of experimental and theoretical response envelopes is very subjective.
Nevertheless, the response envelopes may be used for general visualization of the
final results.

A reliable curve fitting requires an extensive experimental database. We use stress
and strain paths from several triaxial stress controlled low-cycle tests (asterisk tests)
performed at different initial stress levels with different polarizations. For example,
Fig. 2 shows a typical asterisk (around the average stress Pav = 521.05kPa and
Qav = 124.05kPa). Theprescribed stress path, Fig. 2 left, consists of six polarizations
απ , each composed of regular stress cycles with 180◦ reversals. Such reversals are
chosen to simplify the pertaining PE equation. If the average stress σav was overlaid
by a chaotic stress path (a randomwalk)we could still use the curve fitting procedures
but the complicated full versions of PE and HCA models would be indispensable.

The high quality laboratory tests were performed on the cubical triaxial sam-
ples with local strain measurement by Espino [1]. A single asterisk is intended for
evaluation of a single small strain stiffnessEmax

AB atσav. The calibration of thematerial
constants of PE and HCA and evaluation of these models is obtained as a by-product
just for this stress level.

The curve-fitting algorithm is based on the minimization of error which is the sum
of discrepancies between the experimental points and proposed constitutive relation.
This is described in Sect. 2. In Sect. 3 we discuss some remedies of some problems
appearing due to inaccuracies in raw data. The results of curve fitting can be found
in Sect. 4. Having determined the constitutive relation between stress and strain, the
response envelopes are drawn at different stress points (for illustration).

1It is common to consider that the form of response-envelope is an ellipse, but in general it is not.
2Some authors require also the convexity of response-envelopes, but the necessity of this condition
is not proven.
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Fig. 2 Stress controlled low-cyclic asterisk test and corresponding strain response (provided in
master thesis by Espino [1]). Reversal points are marked in green. Left Stress cycles. Right Strain
response (problem with accumulation)

2 Linear Approximation of the Small Strain Stiffness

In order to estimate the small strain stiffness from the triaxial test we consider stress
and strain values measured from the most recent reversal point R. These quantities

are termed spans and are denoted as
�
σij = σij − σR

ij and
�
εij = εij − εR

ij . A reversal
is established at the current state whenever the distance h of this state from the most
recent reversal begins to decrease, see PE [7, 9]. Only uniaxial cycles with 180◦
reversals are applied in tests, so that the general definition of distance given in [7, 9]
simplifies to the Euclidean distance. Only two stress and two strain components can
bemeasured in the triaxial tests and therefore it suffices to use isomorphic (with sign)
components εP, εQ, P and Q. For uniaxial cycles we use the Euclidean measures of
distance:

hε =
√
(
�
εP)2 + (

�
εQ)2 or hσ =

√
(
�
P)2 + (

�
Q)2. (1)

Given the first reversalR = (PR,QR, εR
P, ε

R
Q) and the test results in the form of a list of

numbered m = 1, 2, . . .M records (quadruples) (P,Q, εP, εQ)
m one can determine

all subsequent reversal points (updating sequentially the record R) using following
Mathematica script:

findRever[data_,AnzahlP_:100]:=Module[{m,n,k,i,j,l,P,Q,EP,EQ,hS,spanS,begin,

iReverAll,P0,Q0,jdel},

m = Length[data]; iReverAll = {{1, data[[1, 1 ;; 4]]}}; {P0, Q0} = data[[1, 1 ;; 2]];

hSlast = 0;

Do[{P, Q, EP, EQ} = data[[i, 1 ;; 4]];

Label[begin]; spanS = {P, Q} - iReverAll[[-1, 2, 1 ;; 2]]; hS = Norm[spanS];

If[hS < hSlast, AppendTo[iReverAll, {i - 1, data[[i - 1, 1 ;; 4]]}];

hSlast = 0; Goto[begin], hSlast = hS];

, {i, 1, m}]; iReverAll = Drop[iReverAll, 1]; n = Length[iReverAll]; jdel = {};

(*Delete not true reversal points*)
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Do[If[iReverAll[[j+1,1]]-iReverAll[[j, 1]]<AnzahlP,

If[Flatten[Position[Ordering[{Norm[iReverAll[[j, 2, 1 ;; 2]]-{P0,Q0}],

Norm[iReverAll[[j+1, 2, 1;;2]]-{P0,Q0}]}],2]][[1]]==1,

jdel = AppendTo[jdel, j + 1], jdel = AppendTo[jdel, j]]

(*jdel = index of reversal point to be deleted*)];

,{j, 1, n - 1}]; k = Length[jdel];

Do[iReverAll = Drop[iReverAll, {jdel[[-1 - l]]}], {l, 0, k - 1}];

iReverAll];

Note that the reversals of the stress and strain path should coincide. Some
discrepancies appear presumably due to measurement errors in the lab. Next we

may append to each quadruple a list of spans
�
P,

�
Q,

�
εP,

�
εQ and their sizes hσ , hε

followed by the void ratio e:

(P,Q, εP, εQ,
�
P,

�
Q,

�
εP,

�
εQ, hσ, hε, e)m. (2)

This is done with the following Mathematica procedure:

createFullList[data_, Rever_] := Module[{n,P,Q,EP,EQ,hS,hE,spanS,spanE,i,outline,

dataf,ReversAll,iR},

n = Length[data]; ReversAll = Rever; dataf = {}; iR = 1;

ReversAll = PrependTo[ReversAll, {1, data[[1, 1 ;; 4]]}];

ReversAll = AppendTo[ReversAll, ReversAll[[-1]]];

Do[{P, Q, EP, EQ} = data[[i, 1 ;; 4]]; If[i == ReversAll[[iR+1,1]],iR += 1;];

spanS = {P, Q} - ReversAll[[iR, 2, 1 ;; 2]]; hS = Norm[spanS];

spanE = {EP, EQ} - ReversAll[[iR, 2, 3 ;; 4]]; hE = Norm[spanE];

outline = Join[data[[i, 1 ;; 4]], Flatten[{spanS, spanE, hS, hE}]];

AppendTo[dataf, outline];, {i, 1, n}];

{dataf, Rever}];

In this paper we are considering a nearly linear (paraelastic) relation between the
stress and strain spans. For triaxial case it is describedwith isomorphic components as

⎧
⎨
⎩

�
P
�
Q

⎫
⎬
⎭ =

[
EPP EPQ

EQP EQQ

]
·
{ �

εP
�
εQ

}
or briefly

�
σA = Es

AB
�
εB (3)

withEs
AB �= const.The stiffness tensor is reduced to three independent (andunknown)

components EPP,EQQ and EPQ = EQP. If these components were constant we could
determine them defining the squared error

F0 =
∑

m

(
�
σA − Es

AB
�
εB)(

�
σA − Es

AC
�
εC), (4)

wherein the sum is takenover the recordsm = 1, 2, . . .M of interest. The components
EAB are found using the stationarity condition

(∂F0/∂Es
RS) = −2

∑
m

�
εS(

�
σR − Es

RC
�
εC) = 0RS and hence (5)
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Es
RC =

[∑
m

�
εC

�
εS

]−1 [∑
m

�
εS

�
σR

]
. (6)

Equation (6) has been implemented in theMathematica routine getConstApprox

getConstApprox[espan_, sspan_] := Module[{ee, es, m, Estiffav, F},

m = Length[espan];

ee = Sum[Outer[Times, espan[[i]], espan[[i]] ], {i, 1, m}]; (*dyad eps x eps*)

es = Sum[Outer[Times, espan[[i]], sspan[[i]] ], {i, 1, m}]; (*dyad eps x sig*)

Estiffav = (Inverse[ee].es ) // Transpose;

F = Sum[(sspan[[i]] - Estiffav.espan[[i]]).(sspan[[i]] - Estiffav.espan[[i]]), {i, 1, m}];

{F, Estiffav}];

Note that expressions in the square brackets are sums of dyads (having only one non-

zero eigenvalue) so it is essential to have spans
�
εC in different directions to avoid

singularity. Of course, the first expression is symmetric. If the material response is
elastic then the second expression should be also symmetric.

Usually, the secant stiffness Es is not a constant within the experimental data.
The stress components σK = (P,Q), especially in the first cycle, may considerably
deviate from the average valueσav

K = (Pav,Qav) during the test. Therefore the (linear,
in Eq. (7)) influence of stress σK on the stiffness should be also considered:

Es
ijkl (σ) ≈ E0

ijkl + ∂Es
ijkl

∂σrs

(
σrs − σav

rs

)
. (7)

With isomorphic components and Es(av) = Es(Pav,Qav) we obtain

Es
AB (P,Q) ≈ Es(av)

AB + ∂Es
AB

∂P

(
P − Pav) + ∂Es

AB

∂Q

(
Q − Qav). (8)

In Eq. (8) we allow the resulting secant stiffness Es
RC to vary depending on the

amplitude, on stress and on the void ratio only

Es
RC = Es

RC(hε,P,Q, e). (9)

Es
RC does not depend on the direction of deformation (a so-called polarization).

Suppose, we have an average stress level (Pav,Qav) around which the test has been
done. We may approximate stiffness in the vicinity of (Pav,Qav) using the following
Taylor series (here only the barotropy):

[
EPP EPQ

EQP EQQ

]s

=
[

EPP EPQ

EQP EQQ

]av
+ (P − Pav)

[
EPP,P EPQ,P

EQP,P EQQ,P

]
(10)

or Es
AB = Eav

AB + P̃ E′
AB

the unknown derivatives EPP,P, EPQ,P . . . of stiffness components with respect to
pressure P are abbreviated with E′

AB. The average stiffness Eav
AB (components EPP,
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EPQ, . . . ) is taken from (6) and it is assumed to hold exactly at the average stress
(Pav,Qav). Additional parametersEPP,P,EPQ,P . . . should improve theminimization
of error F. The error function (4) takes now the form

F1 =
∑

m

(sA − P̃ E′
AB

�
εB)(sA − P̃ E′

AC
�
εC), (11)

wherein sA = �
σA − Eav

AB
�
εB and P̃ = P − Pav denotes the deviation of pressure P

from Pav (with sign) for each record m. The components E′
AB are found using the

stationarity condition

(∂F1/∂E′
RS) = 0RS = −2

∑
m

P̃
�
εS(

�
sR − P̃ E′

RC
�
εC) hence (12)

E′
RC =

[∑
m

P̃2�
εC

�
εS

]−1 [∑
m

P̃
�
εS

�
sR

]
. (13)

Equation (13) is implemented in getPApproxMathematica routine:

getPApprox[espan_,sspan_,Estiffav_,Ppoint_,Pav_]:=Module[{ee,es,m,F,EstiffP,sPspan},

m = Length[espan];

sPspan=Table[sspan[[i]]-Estiffav.espan[[i]],{i,1,m}];

ee=Sum[(Ppoint[[i]]-Pav)ˆ2*Outer[Times,espan[[i]],espan[[i]]],{i,1,m}]; (*dyad*)

es=Sum[(Ppoint[[i]]-Pav)*Outer[Times,espan[[i]],sPspan[[i]]],{i,1,m}]; (*dyad*)

EstiffP = (Inverse[ee].es ) // Transpose;

F=Sum[(sPspan[[i]]-(Ppoint[[i]]-Pav)*EstiffP.espan[[i]]).(sPspan[[i]]-(Ppoint[[i]]-Pav)*

EstiffP.espan[[i]]), {i, 1, m}];

{F, EstiffP}];

Having found the influence ofPwemayapply the analogous strategy to investigate
the influence of Q. These improvements can be made one by one.

getQApprox[espan_,sspan_,Estiffav_,EstiffP_,Ppoint_,Pav_,Qpoint_,Qav_]:=

Module[{ee, es, m, F, EstiffQ, sPspan, sQspan},

m = Length[espan];

sPspan = Table[sspan[[i]] - Estiffav.espan[[i]], {i, 1, m}];

sQspan = Table[sPspan[[i]] - (Ppoint[[i]] - Pav)*EstiffP.espan[[i]], {i, 1, m}];

ee=Sum[(Qpoint[[i]]-Qav)ˆ2*Outer[Times,espan[[i]],espan[[i]]],{i, 1, m}]; (*dyad*)

es=Sum[(Qpoint[[i]]-Qav)*Outer[Times,espan[[i]],sQspan[[i]]],{i,1,m}]; (*dyad*)

EstiffQ=(Inverse[ee].es)//Transpose;

F=Sum[(sQspan[[i]]-(Qpoint[[i]]-Qav)*EstiffQ.espan[[i]]).(sQspan[[i]]-(Qpoint[[i]]-Qav)*

EstiffQ.espan[[i]]), {i, 1, m}];

{F, EstiffQ}];

Finally we obtain the constitutive stiffness function

Es
RC(σK ) = Eav

RC + P̃E′
RC + Q̃E′

RC, (14)
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which is performed inMathematica as:

findStiffnessPQ[dataff_,{Pav_,Qav_},{P_:P,Q_:Q}]:=Module[{F1,F2,F3,Estiffav,EstiffP,EstiffQ,

Estiff, EstiffP4, EstiffQ4, F4, Pexp, Qexp, spanE, spanS },

spanE=dataff[[All,7;;8]]; spanS=dataff[[All,5;;6]];

{Pexp,Qexp}=dataff[[All,1;;2]]//Transpose;

{F1, Estiffav} = getConstApprox[spanE, spanS];

{F2, EstiffP} = getPApprox[spanE, spanS, Estiffav, Pexp, Pav] // FullSimplify;

{F3, EstiffQ} = getQApprox[spanE, spanS, Estiffav, EstiffP, Pexp, Pav, Qexp, Qav];

Estiff = Estiffav + (P - Pav)*EstiffP + (Q - Qav)*EstiffQ // FullSimplify;

{F3, Estiff}];

3 Problems with Small-Strain Measurements
and their Remedies

Apart from the stress dependence the rawdatamay include a number of other undesir-
able effects, which can affect the evaluation of small strain stiffness. All fitting proce-
dures described below have been carried out usingMathematica internal functions
FindFit, NMinimize or FindMinimum.

3.1 Strain Accumulation

It is evident, e.g. Fig. 2, that during first cycles of each polarization material expe-
riences strong accumulation of strain. It becomes less pronounced in subsequent
cycles. The decline of accumulation rate in the first polarization is shown in Fig. 3.
Individual cycles have been plotted with different colour. The smaller the strain
amplitude εampl the less accumulation is observed, see Fig. 3 for comparison.

Fig. 3 Strain accumulation
within the first polarization
depending on the loading
amplitude. Top No strain
accumulation within 5 cycles
with lower stress amplitude.
Bottom Strain accumulation
within 7 cycles with higher
stress amplitude
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In order to purify the experimental data from the cumulative phenomena all irreg-
ular cycles (from the so-called conditioning phase) were manually removed so that
the subsequent ones could have been approximated with the simplified HCA-model
[8, 11]. This operation is needed in each polarization (απ = 0◦, 30◦, 60◦, 90◦, 120◦,
150◦) defined in Fig. 2. The simplified expression for the accumulate strain rate is:

ε̇
π(acc)
AB (ti) = mπ

AB(C
π
1 + Cπ

2 ti). (15)

In order to find unknown flow direction mπ
AB and HCA parameters Cπ

1 and Cπ
2 we

approximate experimental strain points at ti with following expression:

επ
P(ti) = Aπ

P cos
(
ωπti + θπ

P

) +
(

Aπ(acc)
P + Bπ(acc)

P ti/2
)

ti, (16)

επ
Q(ti) = Aπ

Q cos
(
ωπti + θπ

Q

) +
(

Aπ(acc)
Q + Bπ(acc)

Q ti/2
)

ti, (17)

where the second summand in each line corresponds to the cumulative part, i.e.
Aπ(acc)
(P,Q) = mπ

(P,Q)C
π
1 andBπ(acc)

(P,Q) = mπ
(P,Q)C

π
2 . In order to remove the accumulationwe

minimize the squared error between the experimental data and the fitting expressions
(16, 17). This is implemented in the following Mathematica procedure:

detrendAcct[{eP_, eQ_}, time_] := Module[{m,err=0,aP,aQ,w,APacc,BPacc,AQacc,BQacc,thetaP,

thetaQ, eExp, eApp, i, out, solu, time0},

m = Length[eP ]; time0 = time[[1]];

Do[eExp={eP[[i]],eQ[[i]]};

eApp={aP*Cos[w*(time[[i]]-time0)+thetaP],aQ*Cos[w*(time[[i]]-time0)+thetaQ]}

+{APacc+BPacc*(time[[i]]-time0)/2,AQacc+BQacc*(time[[i]]-time0)/2}*(time[[i]]-time0);

err += (eExp - eApp).(eExp - eApp),

{i, 1, m}];

solu = FindMinimum[err, {aP, aQ, {w, 0.0063}, thetaP,thetaQ, APacc, BPacc, AQacc, BQacc}];

out = {aP, aQ, w, thetaP, thetaQ, APacc, BPacc, AQacc,BQacc} /. solu[[2]];

{solu[[1]]/m, out}];

The calculated components
{
mP,mQ

}
and the parameters C1 and C2 are given in

Table1 for each polarization. It can be seen that the flowdirection changes frompolar-
ization to polarization. This behaviour contradicts the assumption of HCAmodel that

Table 1 Approximated HCA parameters for each polarization

Polarization Flow direction HCA parameters

Number mP mQ C1 ∗ 107 C2 ∗ 1011

Polarization απ = 0◦ 0.5761 −0.8174 2.3174 −7.3276

Polarization απ = 30◦ 0.1931 −0.9812 1.1320 −3.4493

Polarization απ = 60◦ 0.3190 −0.9477 0.9378 −2.8483

Polarization απ = 90◦ 0.0069 −0.9999 3.0960 −0.1260

Polarization απ = 120◦ 0.3473 −0.9377 −0.1507 0.6563

Polarization απ = 150◦ 0.5286 −0.8489 −0.3552 1.2726
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Fig. 4 Strain path before and after subtraction of accumulated strain. Left Original strain path.
Right Strain path with subtracted strain accumulation according to Eq. (15)

the flow rule is a function of stress only. Moreover, it has been shown that C1 does
not decrease from polarization to polarization. According to the HCA model such
decrease is a consequence of the cyclic pre-loading history of the sample.

The raw experimental data and experimental data with subtracted strain accumu-
lation are compared in Fig. 4.

3.2 Measurement Noise

Apart from accumulation described in Sect. 3.1 we need to remove the noise in the
raw data due to the measurement technology. The smaller is the strain amplitude
the higher is the data impurity with respect to the signal. The removal of the noise
is provided by a convolution of the raw data with a discrete Gauss distribution as a
smoothing function. This is implemented in the followingMathematica procedure:

smoothData[data_, nGlPoints_: 2] := Module[{ker, t, n, i, EPtime, EQtime,

smoothD, dataExtendB, dataExtendE, smoothDstep},

ker = Table[Exp[-nˆ2/10.0]/Sqrt[10.0 \[Pi]], {n, -nGlPoints, nGlPoints}];

ker /= (Plus @@ ker);

Fig. 5 Measurement noise:
original (in blue) and
smoothed (in red) strain
εP(t) diagram
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smoothD = ( ListCorrelate[ker , #] & /@ Transpose[data] ) // Transpose ;

dataExtendB = Array[{0, 0} &, nGlPoints]; dataExtendE = Array[{0, 0} &, nGlPoints];

Do[dataExtendB={data[[nGlPoints-i+1,1]],Interpolation[smoothD,data[[nGlPoints-i+1,1]]]};

dataExtendE={data[[Length[data]-nGlPoints+i,1]],

Interpolation[smoothD,data[[Length[data]-nGlPoints+i,1]]]};

PrependTo[smoothD, dataExtendB]; AppendTo[smoothD, dataExtendE];

,{i, 1, nGlPoints}];

smoothD];

We avoid smoothing across the reversal points. Therefore all reversals have to
be determined a priori. Figure 5 shows the experimental data with subtracted strain
accumulation befor and after the smoothing procedure.

In order to speed up the calculation one may decrease the number of experimental
points. In the following example each nth point is processed:

pickPoints[data_, time_, step_: 1] := Module[{dataRed = {}, timeRed = {}},

Do[AppendTo[dataRed,data[[i]]];AppendTo[timeRed,time[[i]]],{i,1,Length[time],step}];

{dataRed, timeRed}];

3.3 Hysteretic σ–ε Behaviour

Triaxial tests with intermediate strain amplitudes show hysteretic σ–ε behaviour (see
e.g. Fig. 6). It means that for the same stress state we obtain different strain states
depending on loading direction (or vice versa). In order to take this effect into account
we use the paraelasticity. The PE formulation for 1D cycles can be simplified as a
secant [7, 9] stiffness decreasing with the amplitude (or span hε = ∥∥ε − εR

∥∥):

Es
RC ≈ (1 − fhχ

ε )E
max
RC (18)

The unknownmaterial constants f andχ can be determined in the course of the fitting
of experimental data. For hε < 0.02% this paraelastic dependence should work well.
The desired small stain stiffness Emax is obtained from the extrapolation at hε → 0.
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Fig. 6 Hysteretic behaviour simulated for low cyclic tests
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Fig. 7 Anisotropy of stiffness varies with hε

3.4 Anisotropy of Stiffness Depending on hε

In some tests, despite uniaxial stress path along the prescribed polarization, an occur-
rence of oval strain paths could be observed, Fig. 7. This effect should not be mixed
up with the commonly observed σ–ε hysteresis. This ovality described as a variable
anisotropy of stiffness. This phenomenon is not accounted for in any extant small
strain model.

In order to capture the hε-dependent anisotropy of stiffness a minor modification
of PE is proposed by introducing of a small hε-dependent tensorial correction C(hε)

to secant stiffness:

Es ≈ (1 − fhχ
ε )E

max + C(hε). (19)

Unlike the scalar modification of Es proposed in PE model (19) allows for a hε-
dependent anisotropy. Equation (19) can be rewritten in the form

Es ≈ Emax − fhχ
ε Ecorr (20)

with non-proportional tensors Emax �∼ Ecorr . Here, apart from f and χ, we have
8 unknown components of matrices Emax and Ecorr which should be found by fit-
ting. The effect of variable stiffness anisotropy can be alternatively captured using a
“rotation” tensor R:

Es ≈ Emax − fhχ
ε RT : Emax : R (21)

In the case of isomorphic components we obtain:

Es
RC ≈ (δRAδCB − fhχ

ε RRARCB) Emax
AB (22)

which generates strain loops from linear stress path. The improvement can be con-
cluded judging by the significant reduction of fit errors. The rotation tensorR = R(hε)

is defined as:
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R(hε) =
[

cos(khε) sin(khε)

− sin(khε) cos(khε)

]
. (23)

Beside four (or three due to symmetry) unknowns components of matrix Emax
AB we

need just one additional parameter k to be found while fitting procedure.

4 Numerical Results and Discussions

The experimental data provided for this analysis by Espino [1] consist of 7 asterisk-
shaped stress paths performed at different stress levels as shown in Fig. 8. Material
parameters are fitted for each stress level separately. Numerical results and error
ranges are therefore independent.

First we read the experimental raw data including information about the time for
each measured point from the input file and reorganize it to the form of quadru-
ples (P,Q, εP, εQ). After subtracting strain accumulation (if necessary), the reversal
points are found using findRever. Between the reversals the smoothing proce-
dure smoothData is carried out. The essential steps for determination of unknown
material parameters, among them the parameters of small strain stiffness itself, are
provided below:

a. Filtering of experimental points. In order to determine the dependence of Eson
the span hε the measured records are grouped depending on the size of the span
hε. A filter function filterExperPoints picks out the records containing spans
(=increments) of the required size hε ( hDesired ± Acc):

filterExperPoints[dataf_, hEdesired_, Accuracy_: 10.ˆ(-8)] := Module[{dataff,i,Pav,Qav},

dataff = Select[dataf, Abs[#[[10]] - hEdesired] < Accuracy &];

If[Length[dataff] == 0 || Length[dataff] == 1,

Fig. 8 Stress asterisks at
different stress levels chosen
for small strain analyse
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Fig. 9 Filtered strain points
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Print[Style["Error: Zero records passed the filter. Analysis will be stopped.

Check the defined value of hEdesired or the accuracy", 14, Red, Bold]]; Abort[]];

If[Length[dataff] < 10,

Print["Warning: Only", Length[dataff] - 1, "records passed the filter \n"]];

{Pav, Qav} = Mean[dataff[[2 ;; -1, 1 ;; 2]]]; Print["{Pav,Qav} =", {Pav, Qav}];

{dataff[[2 ;; -1]], {Pav, Qav}}];

For example, in Test 3 (see Fig. 8) this procedure could filter out 159 strain points
at the distance hε = 0.0001 ± 2 × 10−6 from the most recent reversals. They
are shown in orange in εP–εQ diagram in Fig. 9. The number of the experimental
points (mf ) after filtering procedure available for further analysis for the chosen
test and hε is given in Table2. The accuracy increases with number of points, of
course.

b. Calculating stiffness. Linear approximation of the small strain secant stiffness
Es

AB(P,Q) for a given hε is carried out according to Eq. (14). For example, for
hε = 0.9 × 10−4 ± 2 × 10−6 the values of stiffness components from different
tests are given in Table3 for the average stress level (Pav,Qav). Squared errors,
e.g. F1 form Eq. (11), can be expressed as a ratio of standard error deviation per
pure measurement to hσ:

Table 2 Number of filtered points available for small stiffness analysis for chosen hε range

Number of filtered points (mf ) for

Chosen hε ± 2 × 10−6 Test 1 Test 3 Test 5 Test 7 Test 8 Test 11 Test 14

hε = 0.9 × 10−4 161 175 125 96 51 113 231

hε = 2.1 × 10−4 122 132 84 75 32 88 176

hε = 3.3 × 10−4 110 110 73 58 28 78 163

hε = 4.5 × 10−4 119 123 80 91 38 76 174

hε = 5.1 × 10−4 166 138 94 32 26 58 203
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Table 3 The components of small strain stiffness tensor Es
AB = Es

AB(P,Q) for hε = 0.9× 10−4 ±
2 × 10−6

Test number Stress level (kPa) Small strain stiffness (kPa) Fitting error (%)

P Q Es
PP Es

PQ = Es
QP Es

QQ F

Test 1 521.06 246.96 351 547 110 778 282 050 1.26

Test 3 521.05 124.05 430 211 66 077.6 246 056 0.65

Test 5 521.12 1.09 477 436 −6 762.28 218 573 0.95

Test 7 525.01 −116.51 471 363 −122 052 161 716 1.83

Test 8 349.35 −77.43 343 273 −86 897.9 113 112 1.52

Test 11 179.42 −0.38 268 915 −34 837.7 109 468 2.20

Test 14 347.97 83.06 361 681 156.29 179 567 0.45

F =
√

F1

mf hσ
. (24)

Commonly used in statistic coefficient of determination R2 (e.g. [10]) is obtained
as R2 ≈ 1 − mf F2. Calculated here average relative fitting error (F) varies from
0.5 to 2.2% per measurement for all tests. Some discrepancies mean non-linear
dependence of the small strain stiffness on stress and they are to be removed
taking into account hysteretic σ–ε behaviour (18) and the variable anisotropy of
stiffness approximated by (23).

c. Determination of paraelastic material parameters f and χ. Paraelastic para-
meters f and χ are determined separately for all stress levels from Fig. 8. For this
purpose stiffness components for different hε must be evaluated. Given the fol-
lowingMathematica skript we may find the paraelastic parameters from results
similar to Table3 but for different hε:

FindFit[{hList,EnormsList},(1-f*hˆ\[Kappa])*Emax,{{f,-3},{\[Kappa],0.2},{Emax,1.5}},h]

The results of fitting analysis are presented in Table4. Except for the Test 5 the
values of paraelastic parameters are considerably lower than expected from earlier
calibration of the PE model (e.g. f ≈ 300 and χ ≈ 0.9 in [9]). It means that for
chosen a hε range (from hε = 0.9 × 10−4 to hε = 5.1 × 10−4) the material is

Table 4 Paraelastic parameters f , χ and ‖Emax‖
Parameter Test 1 Test 3 Test 5 Test 7 Test 8 Test 14

f 0.48 3.15 154.74 0.84 1.40 0.68

χ 0.05 0.40 0.93 0.02 0.01 0.03

‖Emax‖ 1.42 1.08 1.03 3.57 1.86 2.10
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Fig. 10 The secant stiffness∥∥Ehε
∥∥ / ∥∥Eh1

∥∥ decreases
with the distance hε from the
most recent reversal here
shown for Test 3 only. The
expected PE curve is shown
for f = 300 and χ = 0.9
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nearly elastic with a very weak hysteretic effect. A comparison is shown in Fig. 10
for Test 3 only.
We presume that the weak hysteretic behaviour is a consequence of the experi-
mental errors (relatively high cyclic frequency, low number of cycles, temperature
effects during loading, etc.)

d. Response envelopes. The elastic stiffness has been evaluated from experimental
data for each stress level. The constitutive response at small strain can be visual-
ized in the form of response envelopes, Fig. 11. As expected, the ellipses rotate
and change their size depending on P and Q. The ellipses also become narrow
for triaxial extension.
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5 Summary

A general algorithm for determination of stress-dependent small strain stiffness has
been presented. This algorithm is insensitive to the method how the tests are per-
formed and controlled (stress-, strain- or mixed-controlled tests can be used). The
assumption of a linear dependence of the secant stiffness on stress can be easily
extended to non-linear forms. It has been shown that problems of data analysis, such
as an accompanying measurement noise or a residual strain accumulation, can be
removed using the proposed algorithms. Implementing paraelastic model with some
minor modification for variable anisotropy allows to reduce number of laboratory
tests, instead concentrating only on one stress (strain) amplitude. The small strain
stiffness evaluated from the raw data by fitting the constitutive model can be graphi-
cally represented in the isomorphic stress diagram in the form of response envelopes.
However, it seems that the direct implementation of constitutive equations into fit-
ting algorithm is of advantage compared with the graphical method, in particular
when advanced and well established models are available. We do not recommend
the response envelopes as intermediate results between laboratory tests and the con-
stitutive modelling. In future we intend to apply the proposed algorithm to the more
experimental data of better quality (e.g. from SP 8, DFG FOR1136 [3]) and to com-
pare our stiffness calculation method with a graphical description of small strain
stiffness.
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