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Abstract A dynamic boundary value problem for a fluid-saturated solid can be
represented as two coupled boundary value problems for one-phase media. This
allows us to solve the problem with a commercial computer program without a
built-in procedure for the solution of dynamic problems with non-zero permeability,
provided that the user is able to establish the required coupling between the two
problems. This approach has been implemented in the present paper with the com-
puter program Abaqus/Standard using the dynamic analysis for one-phase media as
a built-in procedure without the need to construct a user-defined finite element.
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1 Motivation

Dynamic boundary value problems for fluid-saturated porous solids are dealt with
in various branches of mechanics, including soil and rock mechanics. However,
most commercial computer codes do not provide a built-in solution procedure for
such problems. In particular, this is true for the widely used finite-element program
Abaqus. As far as Abaqus is concerned, these limitations can be overcome by the
implementation of the subroutine UEL which allows us to construct a user-defined
finite element with the desired degrees of freedom. The construction of a user-defined
element requires a thorough knowledge of the finite-element method and entails
careful debugging. In this regard, alternative ways of solving the problem without
resort to the UEL subroutine may be useful (e.g. [1]).

This paper presents a numerical approach to the solution of the dynamic ini-
tial boundary value problem for a two-phase porous medium. The approach itself
is not related to a specific discretization method such as the finite-element or
finite-difference method. It consists in the representation of the boundary value
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problem for a two-phase medium as two coupled problems for one-phase media.
Using this approach, the original problem for a two-phasemedium can be solvedwith
a computer program which solves boundary value problems for one-phase media,
provided that the user is able to establish the required coupling between the two prob-
lems and to solve them concurrently. The proposed method has been implemented
with Abaqus/Standard. Since Abaqus performs the dynamic analysis for one-phase
media as a built-in procedure, a user-defined finite element is not needed.

2 Governing Equations

Assuming that the solid phase of a two-phase medium is much stiffer than the skele-
ton, the total stress is represented as the sum of the effective stress σ (compressive
stresses are negative) and an isotropic stress −pf I, where pf is the fluid pressure
(positive for compression) and I is the unit tensor. We write the dynamic equations
in the small-strain approximation neglecting the convective terms and replacing the
material time derivatives with the partial ones. The equations of motion for the solid
and fluid phases without mass forces are [2, 3]

divσ + (n − 1) grad pf + ξ(vf − vs) = (1 − n)�s
∂vs

∂t
, (1)

−n grad pf − ξ(vf − vs) = n�f
∂vf

∂t
, (2)

where vs, vf are the velocities of the skeleton and the fluid, �s, �f are the densities
of the solid and fluid phases, and n is the porosity of the skeleton. The coefficient ξ
is inversely proportional to the permeability of the skeleton: ξ = �f gn2/k, where k
is the permeability (m/s), and g is the acceleration due to gravity.

A constitutive equation for the skeleton can be written in the general form

∂σ

∂t
= F (Ds,σ, S), (3)

where

Ds = 1

2

[
grad vs + (grad vs)

T
]

(4)

is the stretching tensor of the skeleton, and the tensor-valued function F corresponds
to an elasticity or plasticity model. In the latter case, Eq. (3) may contain a set S =
(S1, ..., Sm) of additional state variables which have their own evolution equations
denoted here by a function M :

∂S

∂t
= M (Ds,σ, S). (5)
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Pore pressure changes are determined by the constitutive equation (neglecting
grad n)

∂ pf

∂t
= −K f tr D f − K f

(1 − n)

n
tr Ds, (6)

where

D f = 1

2

[
grad vf + (

grad vf
)T

]
(7)

is the stretching tensor of the fluid phase, and K f is the compression modulus of the
fluid.

Let us introduce new velocities v(1), v(2) and stresses σ(1),σ(2) defined as

v(1) = a11vs + a12vf , (8)

v(2) = a21vs + a22vf , (9)

σ(1) = a11σ + (n − 1)

(
a11 + �s

�f
a12

)
pf I, (10)

σ(2) = a21σ + (n − 1)

(
a21 + �s

�f
a22

)
pf I, (11)

where a11, a12, a21, a22 are constant coefficients. Provided that

a11a22 − a12a21 �= 0, (12)

transformation (8)–(11) from vs, vf ,σ, pf I to v(1), v(2),σ(1),σ(2) can be inverted
to give

vs = a22
a0

v(1) − a12
a0

v(2), (13)

vf = −a21
a0

v(1) + a11
a0

v(2), (14)

σ = κ1σ
(1) + κ2σ

(2), (15)

pf I = �f

(1 − n)�sa0

(
a21σ

(1) − a11σ
(2)

)
, (16)

where

a0 = a11a22 − a12a21, (17)

κ1 = 1

a0

(
a22 + �f

�s
a21

)
, (18)

κ2 = − 1

a0

(
a12 + �f

�s
a11

)
. (19)
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In numerical calculations, pf can be taken as a diagonal component of the right-hand
side of (16), or as

pf = �f

3(1 − n)�sa0

(
a21trσ

(1) − a11trσ
(2)

)
. (20)

Substituting (13)–(16) into (1), (2), we obtain

divσ(1) + b11ξv(1) + b12ξv(2) = (1 − n)�s
∂v(1)

∂t
, (21)

divσ(2) + b21ξv(1) + b22ξv(2) = (1 − n)�s
∂v(2)

∂t
, (22)

where

b11 = (a21 + a22)

a0

(
−a11 + (1 − n)�s

n�f
a12

)
, (23)

b12 = (a11 + a12)

a0

(
a11 − (1 − n)�s

n�f
a12

)
, (24)

b21 = (a21 + a22)

a0

(
−a21 + (1 − n)�s

n�f
a22

)
, (25)

b22 = (a11 + a12)

a0

(
a21 − (1 − n)�s

n�f
a22

)
. (26)

Equation (21) can be viewed as the equation of motion of a one-phase medium
with the stress tensorσ(1), the velocity vector v(1) and the density (1−n)�s . Similarly,
Eq. (22) can be viewed as the equation of motion of a one-phase medium with the
stress tensor σ(2), the velocity vector v(2) and the same density (1 − n)�s . Each
equation contains two additional terms that play the role of a mass force. One term
is proportional to the velocity of the same medium, while the other is proportional
to the velocity of the other medium (a coupling term).

Defining the stretching tensors

D(1) = 1

2

[
grad v(1) +

(
grad v(1)

)T
]

, (27)

D(2) = 1

2

[
grad v(2) +

(
grad v(2)

)T
]

, (28)

and using the transformation relations, we can write constitutive equations for
σ(1),σ(2) in terms of D(1), D(2),σ(1),σ(2):

∂σ(1)

∂t
= a11

∂σ

∂t
+ (n − 1)

(
a11 + �s

�f
a12

)
∂ pf

∂t
I, (29)
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∂σ(2)

∂t
= a21

∂σ

∂t
+ (n − 1)

(
a21 + �s

�f
a22

)
∂ pf

∂t
I, (30)

where
∂σ

∂t
= F

(
a22
a0

D(1) − a12
a0

D(2), κ1σ
(1) + κ2σ

(2), S

)
, (31)

∂ pf

∂t
= K f

a0

(
a21 − (1 − n)

n
a22

)
tr D(1)− K f

a0

(
a11 − (1 − n)

n
a12

)
tr D(2). (32)

Equation (29) expresses the rate of σ(1) as a function of the stretching tensor
D(1) of the same medium, σ(1) itself and the state variables S. As distinct from
conventional constitutive equations, it contains external terms with D(2) and σ(2).
The same holds for Eq. (30): it expresses the rate ofσ(2) as a function ofD(2),σ(2), S
and contains external terms with D(1) and σ(1). In this way the original system (1)–
(3), (6) for a two-phase medium is split into two systems, namely (21), (29) and
(22), (30), for two one-phase media. The two systems are coupled with each other
through the mass-force terms in the equations of motion and the additional terms
in the constitutive equations. In the case of a plastic skeleton, the two systems are
supplemented by Eq. (5) written as

∂S

∂t
= M

(
a22
a0

D(1) − a12
a0

D(2), κ1σ
(1) + κ2σ

(2), S

)
. (33)

Thus, we have shown that a boundary value problem for a two-phase medium can
be represented as two boundary value problems for one-phase media to be solved
in parallel. Note that the splitting of the original problem into two coupled one-
phase problems and the correspondingnumerical implementation could beperformed
only for the particular trivial case v(1) = vs , v(2) = vf with a11 = a22 = 1 and
a12 = a21 = 0 in (8), (9). The reason why this may be insufficient is possible
numerical instabilitywhichmaydependnot only on the discretizationmethodbut also
on the choice of the transformation coefficients ai j . For this reason, it is advantageous
to develop a numerical algorithm for the general case.

3 Boundary Conditions

The two boundary value problems for one-phase media are coupled not only through
the additional terms in the governing equations but also through boundary conditions.
In what follows, τ , τ (1), τ (2) will denote the traction vectors corresponding to the
stress tensors σ,σ(1),σ(2). Vectors n, p, q will denote an orthonormal basis, where
n is the outer normal unit vector and p, q are tangential unit vectors on the boundary.
The projections of a vector on n, p, q will be written with the subscripts n, p, q. For



154 V.A. Osinov and C. Grandas-Tavera

example, vsn = vs · n, vsp = vs · p. Known quantities in the boundary conditions
will be marked with a tilde.

The following boundary conditions may be prescribed (in combination) at the
boundary of a two-phase media: impermeable boundary, velocity of the solid phase,
effective-stress vector, fluid pressure. These conditions can be written for the two
one-phasemediawith the help of the transformation formulae of the previous section:

• impermeable boundary, vf n − vsn = 0,

(a21 + a22)v
(1)
n − (a11 + a12)v

(2)
n = 0, (34)

• given velocity of the solid phase, vs = ṽ,

a22
a0

v(1) − a12
a0

v(2) = ṽ, (35)

• given effective-stress vector, τ = τ̃ ,

κ1τ
(1) + κ2τ

(2) = τ̃ , (36)

• given fluid pressure, pf = p̃f ,

�f

(1 − n)�sa0

(
a21τ

(1)
n − a11τ

(2)
n

)
= p̃f. (37)

The numerical solution of problems formulated originally for infinite domains
may require non-reflecting boundary conditions prescribed on an artificial bound-
ary in order to imitate the infinite domain. In this study we consider non-reflecting
boundary conditions for plane normally incident waves in a two-phase medium with
an isotropic elastic skeleton. These boundary conditions are (see Eqs. (44), (71), (72)
in [4])

τn = −λ + 2μ

c1
vsn, (38)

τp = − μ

c2
vsp, (39)

τq = − μ

c2
vsq , (40)

pf = K f

nc1

[
(1 − n)vsn + nvf n

]
, (41)

where

c1 =
√(

λ + 2μ + K f

n

)
1

�
, (42)
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c2 =
√

μ

�
, (43)

� = (1 − n)�s + n�f , (44)

and λ,μ are the Lamé constants of the skeleton.
Equations (38)–(41) written for the two one-phase media become

κ1τ
(1)
n + κ2τ

(2)
n = −λ + 2μ

c1a0

(
a22v

(1)
n − a12v

(2)
n

)
, (45)

κ1τ
(1)
p + κ2τ

(2)
p = − μ

c2a0

(
a22v

(1)
p − a12v

(2)
p

)
, (46)

κ1τ
(1)
q + κ2τ

(2)
q = − μ

c2a0

(
a22v

(1)
q − a12v

(2)
q

)
, (47)

a21τ
(1)
n − a11τ

(2)
n

= K f (1 − n)�s

n�f c1

{
[(1 − n)a22 − na21] v

(1)
n − [(1 − n)a12 − na11] v

(2)
n

}
. (48)

The correct formulation of a boundary value problem for a fluid-saturated solid
in the general three-dimensional case requires four scalar boundary conditions. A
boundary value problem for a one-phase solid involves three scalar boundary con-
ditions. Hence, two problems for one-phase media would require six boundary con-
ditions (three for each problem). Nevertheless, the two boundary value problems
for one-phase media considered here are well-posed with four boundary conditions,
namely those derived from the four original boundary conditions for the two-phase
medium. This is because the two problems are not independent but coupled and
must be solved concurrently. In this connection, difficulties may arise in numerical
implementation when using available software with limited possibilities of modifica-
tion. The computer program that solves the boundary value problem for a one-phase
medium will demand three boundary conditions from the user, so that we will need
six boundary conditions altogether to be able to use the software. It might seem that a
simple way to overcome this difficulty is to use two of the four boundary conditions
in both problems and thus to gain six boundary conditions. However, this would lead
to a wrong numerical solution (see Appendix for detail).

The required additional boundary conditions can be obtained from Eq. (16) which
shows that the tensor on the right-hand side is spherical. This gives two boundary
conditions

a21τ
(1)
p − a11τ

(2)
p = 0, (49)

a21τ
(1)
q − a11τ

(2)
q = 0. (50)

If boundary conditions (49), (50) are used in the first boundary value problem, they
represent conditions imposed on τ

(1)
p , τ

(1)
q with given τ

(2)
p , τ

(2)
q . If (49), (50) are used
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in the second boundary value problem, then τ
(1)
p , τ

(1)
q are known and the conditions

are imposed on τ (2)
p , τ (2)

q .
Plane-strain and axisymmetric problems involve three scalar boundary conditions

for a fluid-saturated medium and two scalar boundary conditions for a one-phase
medium. In the implementation of the present method, two boundary conditions are
required for each one-phase medium, and hence, one additional boundary condition
in the form (49), (50) for the tangential stress component is needed.

4 Numerical Implementation with Abaqus

The proposed approach has been implemented with the finite-element program Aba-
qus/Standard. Each of the two boundary value problems is solved in a separate
Abaqus job. The two problems have the same mesh and element type. They have
independent input files, user subroutines and do not share variables in memory. The
first boundary value problem (BVP1) is described byEqs. (21), (29), while the second
one (BVP2) is described byEqs. (22), (30). The twoBVPs are coupledwith each other
through the mass-force terms in the equations of motion (21), (22), the additional
terms in the constitutive Eqs. (29), (30), and also through boundary conditions.

The coupling algorithm is presented schematically in Fig. 1. Each BVP is solved
within a time increment between times tk and tk+1 using the required coupling quan-
tities of the other BVP at time tk . The calculation cycle of each BVP consists of
the numerical integration over the increment to obtain the solution at time tk+1, a
waiting phase if the solution of the other BVP has not yet been completed, and a
phase for reading the data of the other BVP calculated for time tk+1. This solution
procedure can be made possible with the user subroutine UEXTERNALDB in each
BVP. The subroutine allows the user to introduce waiting and reading phases imme-
diately before proceeding to the next time increment. Quantities necessary for the
coupling are read by each BVP from the Abaqus result file (*.fil) of the other
BVP during the reading phase and saved in a global Fortran module accessible to
all user subroutines. The global module also contains quantities of the same BVP
necessary for the calculation of the next increment, e.g. velocities.

tk tktk-1 tk+1

BVP1 RSW R

BVP2 S R S W R

tk tk+1tk-1 tk

S

Wall-clock time 

Fig. 1 Concurrent solution of two boundary value problems. Notation: S solving for a time incre-
ment, W waiting for the results of the other problem, R reading the results of the other problem
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The mass-force terms bi jξv( j) in the equations of motion (21), (22) are treated as
an inhomogeneously distributed load. This load is computed at the integration points
with the help of the user subroutine DLOAD. Velocities available at the nodal points
are interpolated to obtain values at the integration points. Constitutive Eqs. (29),
(30) are implemented in the user subroutines UMAT. The global module of BVP j
contains the deformation fields of BVPi for the last two times. This allows the UMAT
subroutine of BVP j to calculate the external term D(i) in the constitutive equations.
The global module of BVP j also contains the external stressσ(i) of BVPi whichmay
appear in the constitutive equation of BVP j . Additional state variables governed by
Eq. (33) can be calculated in either of the BVPs and stored in the global module. In
the numerical example presented below in Sect. 5, the constitutive equation for the
solid skeleton is linearly elastic and has no additional state variables.

Boundary conditions (34), (35) for velocity are implementedwith the user subrou-
tine DISP. Boundary conditions (36), (37), (49), (50) for tractions are implemented
with the user subroutine UTRACLOAD. This subroutine is also used to implement
non-reflecting boundary conditions (45)–(48). According to the scheme shown in
Fig. 1, a boundary condition written for velocity or traction for time tk+1 contains
a given quantity (with a tilde) for time tk+1 and known quantities for time tk taken
from the global module.

It should be mentioned that a somewhat similar approach to the solution of
dynamic problems for two-phase media was implemented in [1] with Abaqus/Expli-
cit. The problemwas solvedwith a singleAbaqus job using two identicalmeshes: one
for the fluid phase and the other one for the skeleton. This corresponds to v(1) = vs ,
v(2) = vf . The mass-force terms bi jξv( j) were introduced with the help of con-
nector elements acting between the collocated nodes. In relation to the algorithm
described in [1], two advantages of the present approach can be noticed. First, the
use of connector elements requires sophisticated programming prior to the solution
of the problem. Second, for a given time integration method (explicit or implicit), the
calculation of one time increment with a double mesh as in [1] requires more time
than the calculation of one increment with two Abaqus jobs operating in parallel
with single meshes.

5 Numerical Verification

The present approach implemented with Abaqus/Standard has been tested on the
solution of a two-dimensional plane-strain dynamic problem for an elastic medium
for the domain shown in Fig. 2. The medium is at rest at t = 0 with zero stresses and
pore pressure. Boundary conditions for t > 0 (BC1, BC2 and BC3) are prescribed
as follows.

• BC1 represents an impermeable boundary with a given velocity of the solid phase

vs1(t) = 0, (51)
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Fig. 2 Computational
domain of the boundary
value problem

BC1

BC3

BC3

-1 m 

BC1

Axis of 
symmetry

BC2

Point A 

6 m 1 m 

x2

x1

-8 m 

Fig. 3 Boundary condition
(52) for the vertical velocity

-1

-0.5

 0

 0.5

 1

 0  0.005  0.01  0.015  0.02

v s
2 

[m
/s

]

t [s]

vs2(t) =
{

vamp sin(2πt/t0) sin(πt/t0) if t ≤ t0,
0 if t > t0,

(52)

where vamp = −0.3π m/s and t0 = 5 × 10−3 s. The function vs2(t) is shown in
Fig. 3. This boundary condition imitates the prescribedmotion of a rigid foundation
on a half space x2 < 0.

• BC2 corresponds to a free surface with zero pore pressure and zero traction.
• BC3 describes a non-reflecting boundary as discussed in Sect. 3.

The solid skeleton is assumed to be linearly elastic and isotropic with the Lamé
constants λ and μ. The parameters of the medium are shown in Table 1. The com-
pression modulus of the pore fluid is taken to be equal to the modulus of pure water
and is much higher than the shear modulus of the skeleton (a situation typical of
soils). The size of the finite elements in the mesh varies between 3 and 9 cm. The
time step is equal to 10−5 s.

Figures 4 and 5 show the solution to this boundary value problem as a function
of time at Point A with the coordinates x1 = 1.5 m, x2 = −1.5 m, see Fig. 2. For
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Table 1 Parameters of the medium

λ (MPa) μ (MPa) K f (MPa) k (m/s) �s (kg/m3) �f (kg/m3) n

120 80 2200 10−2 2650 1000 0.4
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Fig. 4 Solutions obtained with the present approach and with the finite-difference method (FDM).
Velocity components at Point A (see Fig. 2) are shown as functions of time

comparison, the figures also show the solution obtained independently by the finite-
difference method for the original system (1)–(3), (6) without the decomposition into
two coupled problems.

Calculations with the present method have shown that numerical solutions may
exhibit instabilities in the form of spurious oscillations increasingwith time. Stability
has been found to depend on the time integration method and on the choice of the
coefficients ai j , see (8)–(11). Abaqus/Standard offers two implicit time integration
schemes: the Hilber-Hughes-Taylor and the backward Euler schemes. Numerical
experiments with the boundary value problem presented in this section revealed
instability of the Hilber-Hughes-Taylor scheme for all combinations of ai j that were
tested. The solution shown in Figs. 4 and 5 could be obtained only with the backward
Euler method. The dependence of stability of the backward Euler method on the
coefficients ai j is shown in Fig. 6 for some combinations of the coefficients. In the
stable cases, there is no dependence of the solutions on the choice of ai j . Note that
stability of the proposed method in its general form presented in Sect. 2 may depend
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Fig. 5 The same as in Fig. 4 for the stresses

Fig. 6 Stable and unstable
combinations of the
coefficients ai j
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on the numerical implementation of the coupling and the solution method for the
one-phase problems. The present findings apply to the algorithm described in Sect. 4.
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6 Concluding Remarks

The system of dynamic equations for a porous fluid-saturated solid can be written
as two coupled systems, each of them describing the deformation of a one-phase
medium. This decomposition offers the possibility of solving boundary value prob-
lems for two-phase fluid-saturated solids with a computer program which can per-
form a dynamic analysis for one-phase solids only (as, for instance, the commercial
program Abaqus). The necessary condition for the numerical implementation of this
approach is the ability to establish the required coupling between the two problems
within the available software and to solve them concurrently. The approach has been
realized in the present study with the finite-element program Abaqus/Standard and
verified by the comparison of the solution with that obtained independently by a
different method.
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Appendix

As mentioned in Sect. 3, the use of the same boundary condition in the two coupled
boundary value problems would lead to a wrong numerical solution. Here we will
show this fact by a simple example.

Write a boundary condition in the form

g(1)(t) + g(2)(t) = f (t), (53)

where the unknown terms g(1), g(2) contain quantities of the first and the second
boundary value problems, and f (t) is a given function. Obviously, two unknown
functions g(1)(t), g(2)(t) cannot be found from one Eq. (53). They are determined
not only by this boundary condition but also from the solution of the two boundary
value problems. Suppose that boundary condition (53) is used in both boundary value
problems. Let the numerical scheme be such that the values of g(1), g(2) at time t +Δt
are calculated as

g(1)(t + Δt) = f (t + Δt) − g(2)(t), (54)

g(2)(t + Δt) = f (t + Δt) − g(1)(t), (55)

where g(1)(t), g(2)(t) at time t are known, and Eqs. (54), (55) are used as boundary
conditions in the first and the second boundary value problems, respectively. As
a result of the numerical solution, we will find two functions g(1), g(2) from one
Eq. (53). Considering the limit Δt → 0, it is easy to see that the functions g(1), g(2)
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obtained in such a way approximate the solution

g(1)(t) = 1

2
f (t) − 1

2
f (0) + g(1)(0), (56)

g(2)(t) = 1

2
f (t) − 1

2
f (0) + g(2)(0) (57)

to Eq. (53), where g(1)(0), g(2)(0), f (0) are given initial values satisfying (53). The
numerical scheme with

g(2)(t + Δt) = f (t + Δt) − g(1)(t + Δt) (58)

instead of (55) gives a different solution to (53):

g(1)(t) = f (t) − f (0) + g(1)(0), (59)

g(2)(t) = g(2)(0). (60)

We see that the use of one boundary condition twice results in the numerical determi-
nation of two unknown functions involved in the boundary condition independently
of the solutions to the two boundary value problems.
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