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Abstract The stability of structures strongly relies upon the strength and stiffness
of the foundation soil underneath. If fluid-saturated or nearly saturated soils are
subjected to rapid cyclic loading conditions, for instance, during earthquakes, the
intergranular frictional forces might be dramatically reduced. Subsequently, the load-
bearing capacity decreases or even vanishes, if the soil grains loose contact to each
other. This phenomena is often referred to as soil liquefaction. Drawing our atten-
tion to fluid-saturated granular materials with heterogeneous microstructures, the
modelling is carried out within a continuum-mechanical framework by exploiting
the macroscopic Theory of Porous Media (TPM) together with thermodynamically
consistent constitutive equations. In this regard, the present contribution proceeds
from a fully saturated soil, composed of an elasto-plastic solid skeleton and a mate-
rially incompressible pore fluid. The governing material parameters of the solid
skeleton have been identified for the research-unit sand. The underlying equations
are used to simulate soils under rapid cyclic loading conditions. In this regard, the
semi-infinite domain is split into a near field, which usually the domain of inter-
est, and a far field, which extents the simulated domain towards infinity. In order
to avoid wave reflections at the near-field boundaries an energy-absorbing layer is
introduced. Finally, several simulations are carried out. Firstly, a parametric study of
the particular far-field treatment is performed and, secondly, soil liquefaction is simu-
lated, where the underlying initial-boundary-value problem is inspired by practically
relevant scenarios.
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1 Introduction

From a continuum-mechanical point of view, granular materials, such as soils, can
neither be classified as solids nor fluids. Their macroscopic observed state (solid-
or fluid-like) is a direct consequence of the microstructural intergranular frictional
forces and, thus, strongly depends on the loading conditions. If fluid-saturated soils
are subjected to rapid cyclic loading conditions, depending on the amplitude and
the frequency of the excitation, its load-bearing capacity may decrease dramatically
causing the soil to exhibit a fluid-like behaviour, i. e. it liquefies. For instance, build-
ings on the surface may tilt, which is referred to as structural overturning, or even
entirely collapse. In the related literature, the general term “liquefaction” comprises
more specific liquefaction-related phenomena, in particular, “flow liquefaction” and
“cyclic mobility” [1]. The term “flow liquefaction” addresses an instability phenom-
enon, which is associated with loose soils with a low shear strength. Therein, the
intergranular frictional forces are reduced dramatically by an increasing pore pres-
sure until the residual shear strength cannot sustain static equilibrium anymore. In
contrast, the term “cyclic mobility” is associated with medium dense to dense soils
and refers to a limited plastic deformation under cyclic loading conditions, where
the overall stability of the granular assembly is maintained.

When describing liquefaction phenomena, on the one hand, a comprehensive
understanding of the mutual interactions of the various components, in particular,
the solid skeleton, composed of the grains, and the pore fluid, which itself can be a
mixture of various interacting components, is decisive. On the other hand, special
attention also needs to be paid to the description of the contractant (densification)
and dilatant (loosening) behaviour of the solid skeleton under pure shear deforma-
tion, which is a consequence of the sliding and the rolling of the grains. In particular,
depending on the initial density, the soil exhibits a macroscopically contractant (loose
soil) or dilatant behaviour (medium-dense to dense soil) under shear loading. Note
that the dilatant behaviour of medium-dense and dense soils is preceded by a slightly
contractant behaviour [2]. As a consequence, medium-dense and dense soils exhibit
a contractant behaviour if they are subjected to small shear deformations. In order to
explain, soil liquefaction, attention is drawn to a fluid-saturated soil with a low Darcy
permeability subjected to rapid cyclic shear deformations. Therein, in contrast to a
dry soil, the materially incompressible pore fluid (here water) has no time to evacuate
from the reducing pore space. As a consequence, an excess of pore pressure accumu-
lates, thereby reducing the intergranular normal forces, and thus, the intergranular
frictional forces. Therefore, the load-bearing capacity of the whole fluid-saturated
soil is weakened or might be lost entirely.

Aiming at the simulation of liquefaction phenomena, there are several models
available (e.g. [3–7]) most of which are based on Biot’s theory [8]. However, these
models proceed from different approaches in order to describe the behaviour of
the solid skeleton. In this regard, some are associated with the Cam-Clay-based
descriptions (e.g. [9, 10]) and others with the hypoplasticity framework (e.g. [11]).
Furthermore, it is also worth to mention the more phenomenological approaches, such
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as [12, 13], which employ a direct stress-strain relation that distinguishes between
loading and unloading stages.

The present contribution proceeds from a thermodynamically consistent approach
based on the Theory of Porous Media (TPM) (e.g. [14–16]), where the solid skeleton
is described as an elasto-plastic material including isotropic hardening and a stress-
dependent failure surface. The governing equations comprise the balance equations
of [17] and the elasto-plastic solid-skeleton description of [18]. Following this, the
governing balance equations are discretised with respect to space and time, thereby
accounting for the transient loading conditions. In this regard, the semi-infinite half-
space is spatially discretised, by splitting the analysed domain into a near field,
which is, in general, the domain of interest, and a far field, which extents towards
infinity. However, truncating the semi-infinite half-space at the near field, which is
often sufficient in quasi-static simulations, introduces artificial boundaries at which,
in a dynamic analysis, the incident waves are reflected back into the domain of
interest. In order to overcome this problem, several methods have been proposed in the
literature. In general, they can be classified into so-called coupling methods, such as,
for instance, the combined finite-element-infinite-element-method (FEM-IEM), and
so-called absorbing-boundary-condition (ABC) methods. The present contributions
proceeds from the approach proposed in [19]. Therein, the near and the far field are
spatially discretised by mixed Taylor-Hood finite elements (FE) and infinite elements
(IE), respectively, and, additionally, an energy-absorbing layer at the FE-IE interface
has been introduced. In the next step, the temporal discretisation is carried out,
thereby, accounting for the special requirements of the global (spatial discretisation)
and the local system (plastic evolution). In particular, the Hilber-Hughes-Taylor
method is used for the global system, whereas, the implicit (backward) Euler is
used for the local system. Following this, the discretised governing equations are
implemented into the coupled finite-element solver PANDAS, which is linked to
the commercial FE package Abaqus via a general interface. This coupling allows
the definition of complex initial-boundary-value problems through Abaqus, thereby
using the material models of PANDAS. The material parameters of the solid-skeleton
model have been identified for the sand used in the research-unit FOR 1136, by the
commonly used Least-Squares approximation. The numerical model will be used,
firstly, to perform a parametric study of the far-field treatment and, secondly, to
simulate flow liquefaction in a loose soil. Finally, future aspects are addressed in the
conclusions.

2 Description of the Fluid-Saturated Soil

A suitable framework for the description of fully-saturated soils is provided by the
TPM. Following this, the individual components are described separately through
their respective mass and momentum balances, but joined together to a holistic for-
mulation by incorporating suitable production terms.
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Within the macroscopic TPM approach, one assumes a homogeneous distribution
of overlaid individual components ϕα, which, in the present case, are the materially
incompressible solid skeleton (α = S) and the materially incompressible pore fluid
(α = F), both within a representative elementary volume (REV) dv. The compo-
sition of the bulk volume element is defined through respective volume fractions
nα = dvα/dv, where dvα is the partial volume of the component ϕα within the
REV. Note that the saturation condition

∑
α nα = nS + nF = 1 must hold. Follow-

ing this, two density functions are defined. The material (realistic or effective) density
ραR = dmα/dvα relates the components local mass dmα to its volume dvα, while
the partial (global or bulk) density ρα = dmα/dv is associated with the bulk volume.
Moreover, both density definitions are related to each other through ρα = nαραR . As
we assume materially incompressible and uncrushable grains, the realistic density of
the solid remains constant under the prescribed isothermal conditions, but the bulk
density can still change through a changing volume fraction nα.

In the framework of the TPM, the solid ϕS and the pore fluid ϕF are treated
as superimposed continua where each spatial point is simultaneously occupied by
particles of both components and each components particle is moving according to
its own motion function and, thus, have their own velocity and acceleration field. In
this regard, it is convenient to express the solid motion in the Lagrangean or material
setting through the solid displacement uS and the fluid motion in the Eulerian or
spatial setting through the seepage velocity wF relative to the solid motion. Following
this, the displacement, velocity and acceleration functions read [17]:

• solid motion: uS = x − XS, vS = (uS)′S = ′
xS, (vS)′S = ′′

xS,

• fluid motion: wF = ′
xF − ′

xS, (vF )′F ≈ (vF )′S .
(1)

Therein, XS denotes the position of a solid material point in the reference con-
figuration (t = t0), while x is the position of a point in the current configura-
tion (t > t0). Moreover, (·)′S and (·)′F denote material time derivatives following
the motion of the solid skeleton and the pore fluid, respectively. Note that accord-
ing to [8], for the lower frequency range ( f ≤ 30 Hz), which is the case within
the scope of the present contribution, the convective terms can be neglected. Thus,
(vF )′F = (vF )′S + grad vF wF ≈ (vF )′S .

According to [17], the governing balance equations are the convective-less total
momentum balance of the overall porous material, the convective-less momentum
balance of the pore fluid and the total volume balance of the overall porous material.
They read:

ρS(vS)′S + ρF (vF )′S = div (TS
E − p I) + (ρS + ρF )b, (2)

ρF (vF )′S = div(−nF p I) + ρF b
(nF )2γF R

k F
wF + p grad nF , (3)

0 = div(vS + k F

γF R
{ρF R[b − (vF )′S] − grad p}). (4)
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Therein, b is the unique mass-specific body force, k F is the hydraulic conductivity
(Darcy permeability) and γF R = gρF R is the effective fluid weight with g = |b| =
const. as the scalar gravitational acceleration. Moreover, TS

E is the effective solid
stress, which is associated with the intergranular forces, p is the pore-fluid pressure
and I is the second-order identity tensor. The corresponding primary variables of
the resulting three-field formulation are the solid displacement uS , the pore-fluid
velocity vF and the pore-fluid pressure p.

In order to complete the model, a constitutive description of the effective solid
stress TS

E is necessary. In extension of [17], which proceeds from a purely elastic
description, we continue with an elasto-plastic model, in particular, with an elasto-
(visco)plastic solid skeleton including isotropic hardening and a stress-dependent
failure surface (cf. [18] for details). Restricting the presentation to the small-strain
regime, the linear solid strain tensor is given by

εS = 1

2
(grad uS + gradT uS) −→ εS = εSe + εSp, (5)

which in the framework of elasto-plasticity is additively split into an elastic εSe and a
plastic part εSp. Following this, the solid volume fraction can be written as (cf. [20]),

nS = nS
0S(1 − εV

S ) = nS
0S(1 − εV

Sp)(1 − εV
Se) = nS

p(1 − εV
Se). (6)

Therein, nS
0S denotes the initial solid volume fraction and εV

S = div uS = εS · I is the
volumetric solid strain, which is split into its corresponding elastic part εV

Se = εSe · I
and plastic part εV

Sp = εSp ·I. Note that, as we proceed from a continuum-mechanical
framework, in contrast to geomechanics, volumetric compression corresponds to
negative volumetric quantities, i.e. TS

E · I < 0 and εV
S < 0, whereas volumetric

expansion corresponds to positive volumetric quantities, i.e. TS
E · I > 0 and εV

S > 0.

2.1 Elastic Domain

In order to capture the non-linear behaviour of sand, even in the geometrically linear
regime, the following stress-strain relation, based on a non-linear elastic potential,
has been introduced [18]:

TS
E = 2 μS εD

Se +
[

kS
0 + kS

1 (
εV

Se crit

εV
Se crit − εV

Se

− 1)

]

εV
Se I. (7)

Therein, εD
Se = εSe − 1/3 εV

Se I denotes the deviator of the elastic strain tensor.
Moreover, μS is the constant elastic shear modulus, kS

0 and kS
1 are volumetric bulk

moduli, and εV
Se crit is the critical volumetric strain, which is given by
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εV
Se crit = 1 − nS

max

nS
P

, (8)

where nS
max is a material parameter defining the densest packing.

2.2 Plastic Domain

Within the framework of elasto-plasticity, the elastic domain is bounded by an appro-
priate yield surface. For soils, or granular matter in general, a suitable criterion is
provided in [21]. It reads:

F =
√

Γ IID + 1

2
αI2 + δ2I4 + βI + εI2 − κ = 0,

where Γ = (1 + γ
IIID

(IID)3/2
)m .

(9)

Therein, I, IID and IIID are the first principal invariant of TS
E , and the (negative)

second and third principal invariants of the effective stress deviator (TS
E )D . The

material parameter sets Sh = (δ, ε,β,α,κ)T and Sd = (γ, m)T define the shape of
the yield surface in the hydrostatic (Sh) and deviatoric plane (Sd ).

Following the concept of non-associated plasticity for frictional geomaterials, a
suitable plastic potential, which describes the contractant and dilatant behaviour of
the soil, is given by

G =
√

ψ1IID + 1

2
α I2 + δ2I4 + ψ2β I + ε I2. (10)

Therein, ψ1 and ψ2 are material parameters, which serve to relate the dilatation angle
to experimental data. The flow rule governing the plastic strain rate (εSp)

′
S reads

(εSp)
′
S = Λ

∂G

∂TS
E

. (11)

Therein, Λ is the so-called plastic multiplier, which in the framework of viscoplas-
ticity using the overstress concept of Perzyna [22] is determined from

Λ = 1

η

〈 F

σ0

〉r
, (12)

where
〈·〉 are the Macaulay brackets, η is the relaxation time, σ0 is the reference stress

and r is the viscoplastic exponent. Note that the overstress concept also regularises
ill-posed problems, for instance during the onset of shear bands (cf. [23] and the
references therein), through a careful choice of the parameters η and r .
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Any dilatant or compactive behaviour of soils is accompanied by macroscopic
softening or hardening effects resulting in a shrinkage or an expansion of the yield
surface in the principal stress space. Therefore, suitable evolution laws (pi )

′
S for the

parameter subset pi ∈ {β, δ, ε, γ} of the yield surface are used (cf. [20]):

(pi )
′
S = (pV

i )′S + (pD
i )′S = (

∗
pi − pi )[CV

pi (εV
Sp)

′
S + C D

pi ‖(εD
Sp)

′
S‖],

where pi (t = 0) = pi0. (13)

Note that the yield-surface-parameter evolution is split into volumetric (pV
i )′S and

deviatoric parts (pD
i )′S , which are driven by the corresponding volumetric and devi-

atoric plastic strain rates, (εV
Sp)

′
S and (εD

Sp)
′
S . Moreover, pi0 and

∗
pi denote the yield-

surface parameters at the initial and the saturated state, respectively, where the latter
are associated with the failure surface.

Having cyclic loading conditions in mind, one has to take care of the mutual
interlocking of the grains as a consequence of a preloading and their release during
a subsequent reloading at a lower isotropic stress state. This influence has been
observed during triaxial experiments and is considered in the model through a stress-
dependent failure surface (cf. [18] for details)

∗
ε(I) = ∗

ε0(1 + ∗
Cε I) with

∗
ε ≥ ∗

εlim . (14)

Therein,
∗
Cε is a constant evolution parameter of the failure surface,

∗
ε0 theoretically

defines the failure surface for the unloaded virgin material and
∗
εlim defines the limit

of the failure-surface parameter.

3 Numerical Treatment

3.1 Spatial Discretisation

The spatial discretisation of the semi-infinite domain is based on the finite-element
method (FEM). In this connection, following a variational approach of Bubnov-
Galerkin-type, the governing strong forms are multiplied by test function and are
integrated over the spatial domain yielding the weak forms. However, in contrast
to the standard FEM, the semi-infinite halfspace is spatially split into the near field
(domain of interest) and far field (extension towards infinity) discretised by finite
elements (FE) and infinite elements (IE), respectively.

At first, the attention is drawn to the spatial discretisation of the near field, which
is carried out by the FEM. Therein, the governing strong forms (2)–(4) are multiplied
with the test functions δuS , δvF and δ p and are integrated over the spatial domain
Ω . The particular weak forms are taken from [17] and read
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0 =
∫

Ω

δuS · {ρS(vS)′S + ρF (vF )′S − (ρS + ρF )b} dv

+
∫

Ω

grad δuS · (TS
E − p I) dv −

∫

Γt

δuS · t da,
(15)

0 =
∫

Ω

δvF · [ρF (vF )′S − b] dv +
∫

Ω

δvF · [ (n
F )2γF R

k F
wF − p grad nF ] dv

+
∫

Ω

div δvF (−nF p)dv +
∫

ΓtF

δvF · tF
da,

(16)

0 = −
∫

Ω

grad δ p · k F

γF R
{ρF R[ b − (vF )′S] − grad p}dv +

∫

Ω

δ p div vS dv

+
∫

Γv

δ p v̄ da.

(17)

Therein, t = (TS
E − p I)n and tF = −nF p n denote the external loading vectors

acting on the Neumann boundaries Γt and ΓtF of the overall aggregate and the
pore fluid, respectively, and v = nF wF n is the volume efflux draining through the
Neumann boundary Γv with n as the outward oriented unit surface normal.

In contrast to the near field, the far field is discretised via infinite elements (IE).
Additionally, in order to achieve energy-absorbing properties, dashpots are intro-
duced at the FE-IE interface. This procedure is often referred to as visco-damped
boundaries (VDB) and originates from [24]. According to [19], the governing weak
form, composed of a quasi-static and a viscous damped part, is given by

∫

Ω

grad δuS · (TS
E − p I)dv −

∫

Ω

δuS · ρ b dv

︸ ︷︷ ︸
quasi−static part

+
∫

ΓI

δuS · r da

︸ ︷︷ ︸
visous−damped part

= 0

where r = PT

⎡

⎣
aρcp 0

0 bρcs

0 bρcs

⎤

⎦ P(uS)′S .

(18)

Therein, ρ = ∑
α ρα denotes the density of overall aggregate, Ω denotes the volume

of the infinite element, ΓI the area of the FE-IE interface and P a projection matrix
relating the global solid velocity components to the local coordinate system (normal
and shear direction) onΓI . Furthermore, r represents an area-weighted 3-dimensional
force vector containing the nodal contributions of the dashpots to the nodes associated
with the area at the FE-IE interface. They depend on the compression- and shear-
wave velocities, cp = √

(2μS + λS)/ρ and cs = √
μS/ρ (cf. [19]), and on the

dimensionless compression- and shear-wave damping coefficients a and b.
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In a second step, the unknown fields (uS, vF , p) and the corresponding test func-
tions (δuS, δvF , δ p) of the weak forms (15–18) are approximated by suitable test
and ansatz functions, which, in the present scope, for the sake of stable solution pro-
cedure, need to fulfil the inf-sup condition (Ladyshenskaya-Babuška-Brezzi (LBB)
condition) [25]. In particular, uS and δuS are approximated by quadratic shape func-
tions, whereas linear shape functions are used for vF , p, δvF and δ p. Note that the
test and ansatz functions of the finite and the infinite elements are not given here,
instead, the interested reader is referred to [26, 27] for the FE and IE approximation,
respectively.

Following this, the spatially discretised formulation combining the near and the
far field can be summarised as

Fh =
[

Gh(t, y, y′, y′′, q)

Lh(t, q, q ′, y)

]

=
[

M y′′ + C y′ + k( y, q) − f
Aq ′ + r(q, y)

]
!= 0. (19)

Therein, y = [ûS, v̂F , p̂]T is a vector containing the nodel degrees of freedom of
the finite-element mesh (global system Gh) and a vector q = [εSp, Λ, p]T , which
gathers the internal variables plastic strains (εSp), plastic multiplier (Λ) and yield-
surface evolution parameters (p) at the Gauss points of the finite-element mesh (local
system Lh). Note that for the sake of convenience the abbreviation (·)′ = (·)′S is used.
Moreover, M and C are the generalised mass and damping matrices, k( y, q) and
r( y, q) denote the static residual vectors of the global and local system, respectively,
and f is the generalised force vector acting on the Neumann boundaries.

3.2 Temporal Discretisation

In the next step, the temporal discretisation of Eq. (19) is carried out. In order to
account for the specific requirements regarding numerical properties (e.g. stability,
numerical damping) of the global and the local system, different time-integration
schemes are deployed. In particular, the global system benefits from a numerical-
damping-free procedure, whereas unconditional stability is desired for the local
system.

In this regard, Gh is discretised through the implicit Hilber-Hughes-Taylor (HHT)
method (cf. [28]) which is a generalisation of Newmarks method (cf. [29]) but allows
for the explicit control of the numerical damping. Note that the for dynamic problems
desired explicit schemes, which are more efficient, are not applicable within the
current setting, as the incompressibility of the constituents leads to a singular and,
thus, a non-invertible mass matrix (cf. [17] for details). The time-discrete form of
Eq. (19)1 is given by
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M y′′
n+1 + (1 + α)(C y′

n+1 + k( yn+1, qn+1) − f n+1)

− α(C y′
n + k( yn, qn) − f n)

!= 0

with yn+1 = yn + �t y′
n + �t2((

1

2
− β) y′′

n + β y′′
n+1

)
, (20)

y′
n+1 = y′

n + �t
(
(1 − γ) y′′

n + γ y′′
n+1

)
.

Therein, the parameter α controls the numerical damping, on the one hand, by adding
the quasi-static residual contributions from the previous state (at tn) to the current
residual (at tn+1) and, on the other hand, by the parameters β and γ, which are inherit
from Newmarks method, and are given by

β = 1

4
(1 − α)2, γ = 1

2
(1 − α). (21)

A suitable choice of the parameter α ranges from α = −1/3 (significant damping) to
α = 0 (no damping), whereby, in the latter, the trapezoidal rule (β = 1/4, γ = 1/2)
is obtained. Note that a value of α = −0.05 is in general considered as good choice
as the inevitably time-stepping-induced high-frequency noise is quickly removed
without a significant effect on the low-frequency response of the system.

The local system Lh , in order to ensure unconditional stability, the implicit (back-
ward) Euler scheme is exploited. In this regard, the time-discrete representation of
(19)2 is given by

Aq ′
n+1 + r(qn+1, yn+1)

!= 0 with q ′
n+1 = qn+1 − qn

�t
. (22)

3.3 Solution Procedure

The solution of the coupled system (19) is carried out with respect to its block-
structured nature through a generalisation of the Block Gauß-Seidel-Newton method,
which is also know as multilevel or, in this particular case, as two-stage Newton
method. This procedure results in two nested Newton iterations. In this connection,
at each global iteration, which seeks the solution of the global variables yn+1, the
nonlinear local system is iteratively solved for the internal variables qn+1 at each
Gauss integration point with frozen global variables (e.g. cf. [30] and reference
therein).

The discretised system is implemented into the FE package PANDAS1 and linked
through a general interface to the commercial FE package Abaqus [31]. This coupling

1Porous media Adaptive Non-linear finite-element solver based on Differential Algebraic Systems,
www.get-pandas.com.

www.get-pandas.com
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allows for the definition of complex initial-boundary-value problems in terms of
features, such as kinematic coupling and tie constraints, and in terms of large-scale
analyses through parallelisation.

4 Parameter Identification

In order to identify the solid-skeleton material parameters for the sand of the research-
unit FOR 1136 the course of actions is basically following the procedure described
in [18]. Therein, a staggered identification scheme has been carried, in which, at
first, the elastic shear modulus μS and the compression-extension-ratio parameter of

the failure surface
∗
γ are determined straightforward from triaxial loading-unloading

loops and from compression and extension experiments at different confining pres-
sures. The remaining model parameters are found through a minimisation of the
squared error between simulation and experiment, which is commonly known as
Least-Squares optimisation method. In particular, a gradient-based constrained opti-
misation is used, in which the Hessean matrix is approximated through BGFS (Broy-
den, Fletcher, Goldfarb, Shannon) (cf. [32] and references) and and the parameter
constraints are considered via the sequential-quadratic-programming (SQP) tech-
nique [33]. The identified solid-skeleton material parameters of the research-unit
sand FOR 1136 are summarised in the Appendix.

5 Simulations

5.1 Parametric Studies

The following section addresses several parametric studies related to the numerical
treatment of the semi-infinite unbound-domain. In particular, in the first investigation
the macroscopic damping properties of a fully-saturated soil, which is mainly gov-
erned by the Darcy permeability, is investigated. The second set of studies servers
as a parametric study of the present far-field treatment, in particular, of its energy-
absorbing capabilities in relation to certain wave types. In this regard, as the fol-
lowing simulation are solely related to the elastic wave-propagation problem, the
elasto-plastic solid is simplified to a purely elastic material governed by the material
parameters given in Table 1. Note that the material parameters μs and ks

0 are chosen
arbitrarily and result in comparatively low compression- and shear-wave propagation
velocities. The remaining material parameters, in particular, k F and γF R , are defined
in the related sections.
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Table 1 Material parameters of the numerical parametric study of the far-field treatment

μS k0
S k1

S ρS R ρF R nS
0S

0.26 m2/MN 0.40 m2/MN 0.0 m2/MN 2700 kg/m3 1000 kg/m3 0.6

5.1.1 Parametric Study of the Damping Characteristics
of a Fluid-Saturated Soil

When subjecting a soil to rapidly changing loading conditions waves are emitted at
the source and propagate through the domain. The resulting, in general, complex par-
ticle motion can be considered as a superposition of two fundamental wave types, in
particular, compression or primary waves (p-waves) and shear or secondary waves
(s-waves). By the assumption of a purely elastic solid and by neglecting viscous
shear forces within the pore fluid, its macroscopic observed damping properties are
solely related to the solid-skeleton-pore-fluid interaction, in particular, to the solid-
fluid momentum exchange (cf. Eq. 3). Therein, the momentum exchange is mainly
driven by the solid volume fraction, nS = 1 − nF , and, thus, by the volumetric
deformations (cf. Eq. 6). As deviatoric deformations do not provide significant vol-
umetric strains within the small strain regime, the dissipative properties due to pure
shear deformations can be neglected in the following parametric study. Hence, the
damping-property study is solely applied to compression waves.

In this regard, the displacement amplitude of the solid skeleton is investigated at
different depths with varying Darcy-permeability. Note that the specific pore-fluid
weight is set to γF R = 104 N/m3. The underlying initial-boundary-value problem
(IBVP) is depicted in Fig. 1 (left). Therein, a 3-dimensional soil column, which
as simplified to a 1-d problem via suitable boundary conditions, is subjected to a
displacement impulse applied on the top of the soil column given by

u(t) = u0 sin (2πt/T0)[H(t) − H(t − τ )] (23)

with T0 = 1s, τ = T0/2, u0 = 5 · 10−3 m and H(t − τ ) as the Heaviside step
function.

The evolution of the solid-skeleton displacement amplitude of the triggered p-
wave for different Darcy permeabilities k F = {10−1, 10−3, 10−3} m/s is depicted
in Fig. 1 (right). It can be seen that with decreasing permeability, which increase
the viscous friction between the soil grains and the pore fluid, the amplitude of
the compression wave reduces rapidly. Thus, already for a relatively high Darcy
permeability of k F = 10−3 m/s, the influence of the p-wave can be neglected already
one meter below the surface.
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Fig. 1 IBVP to investigate the influence of the Darcy permeability on the p-wave penetration depth

Fig. 2 Initial-boundary-
value problem of the
far-field-treatment
parametric study

5.1.2 Parametric Study of Numerical Far-Field Treatment

The second example addresses a parametric study of the far-field treatment. In partic-
ular, the influence of the damping coefficients and of the quasi-static contribution on
the energy-absorbing capabilities are investigated. The governing IBVP is depicted
in Fig. 2.

Therein, a ellipsoidal domain (first and second minor axis: 20 m, third minor
axis: 10 m) is extended towards infinity by use of infinite elements, whereas the
FE-IE interface is described through viscous-damped boundaries. Note that the infi-
nite elements are not depicted in Fig. 2. The resulting numerical model consists of
approximately 40,000 elements, which results in approximately 700,000 degrees of
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Fig. 3 Contour plot of the
magnitude of the solid
displacement ‖uS‖ on the
deformed geometry (scale
factor: 500) of the truncated
semi-infinite halfspace

t = 1.375 s t =2.75 s

t = 4.125 s t = 5.5 s

0.0 0.002
uS

freedom. Thus, due to the problem size, the simulations have been carried out in
parallel on 40 cores. In order to trigger waves propagating through the domain, a
displacement impulse, given by Eq. (23), is applied at the indicated area. Moreover,
in order to judge the energy-absorbing capabilities, the vertical displacements of the
solid skeleton at A (located at a depth of 5 m) and B (located 10 m from the vertical
symmetry line) are evaluated.

In order to keep this parametric study within more general setting, the damping
properties of the VDB with respect to compressional waves are investigated as well,
although they are, as seen before, not relevant for most practical-oriented geotech-
nical scenarios. Thus, to allow for the induced wave to propagate nearly without a
loss through the domain, the Darcy permeability and the specific weight are set to
k F = 10−2 m/s and γF R = 10−4 N/m3, respectively. Note that, hereby, the quasi-
static contribution has been neglected and the normal and shear damping coefficients
are set to a = b = 1.

The impact on the numerical solution of the specific far-field treatment is quali-
tatively illustrated in Figs. 3 and 4. The displacement impulse on top of the domain
triggers a compression and a surface wave (Rayleigh wave) which, in case of the
truncated domain, is reflected at introduced artificial domain boundaries (cf. Fig. 3).
In contrast, using the special far-field treatment composed of infinite elements and
an energy-absorbing layer at the near-field-far-field transition shows a significant
improvement (cf. Fig. 4).



Simulation of Soils Under Rapid Cyclic Loading Conditions 221

Fig. 4 Contour plot of the
magnitude of the solid
displacement ‖uS‖ on the
deformed geometry (scale
factor: 500) of the
semi-infinite halfspace
incorporating VDB

t = 1.375 s t = 2.75 s

t = 4.125 s t = 5.5 s

0.0 0.002
uS

5.1.3 Influence of the Damping Coefficients

The following simulations investigate the influence of the normal- and shear-damping
coefficients, a and b, of the dashpots at the FE-IE interface on the energy-absorption
behaviour. In particular, the proposed values of Lysmer and Kuhlemeyer (LK) [24]
(a = b = 1), which give the best energy absorption if the wave-propagation direction
is normal to the FE-IE interface, is compared to the approach of White et al. [34],
which is based on the maximisation of the dissipated energy over different wave
incidence angles. In the latter approach, the damping coefficients are computed via

a = 8

15π
(5 + 2c − 2c2), b = 8

15π
(3 + 2c) where c =

√

μS/(λS + 2μS).

(24)

By use of the material parameters of Table 1, the damping coefficients can be com-
puted as a = 0.93 and b = 0.69. Note that the quasi-static contribution (cf. Eq. 18)
has been neglected.

The results of the simulation are depicted in Fig. 5. Therein, the gray line is used
as a reference (ref.) showing the result of the truncated domain. It can be seen that
the approach of White et al. (W) gives slightly better results compared to Lysmer and
Kuhlemeyer (LK). However, as the approach of White et al. is exploiting the linear
elastic Hooke an law for the constitutive description of the solid, their proposal is tied
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Fig. 5 Evolution of the vertical displacement of A (right) and B (left) for different damping
parameters

Fig. 6 Evolution of the vertical displacement of A (right) and B (left) for the quasi-static-
contribution-influence study

to the first and second Lamé constants and, thus, may not be suitable for arbitrary
solid material descriptions.

5.1.4 Influence of the Quasi-Static Contribution

The second example studies the influence of the quasi-static contribution. In this
regard, a simulation involving the quasi-static contribution (S) is compared to a
simulation without one (NS). Note that the damping parameters are set to a = b = 1.

The results of the simulation are depicted in Fig. 6. It can be seen that the best
energy-absorbing capabilities are obtained if the quasi-static part is neglected (NS),
which is in accordance with [35]. However, if the simulation contains quasi-static
loading steps, for instance, if the transient load is preceeded by a consolidation step,
the quasi-static contribution has to be considered, as it provides the necessary residual
stiffness to the far-field.

5.2 Liquefaction of Loose Sand

The next example is related to the simulation of flow liquefaction in a loose, water-
saturated sand under cyclic loading conditions, which is a common scenario, for
instance, during earthquakes.
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Fig. 7 Geometry (left) and deduced initial-boundary-value problem (right) of the liquefaction
examples

The initial-boundary-value problem under consideration is inspired by the
liquefaction-prone Wildlife Refuge area in Imperial Valley in southern California,
where the layout of the domain of interest is as follows (Fig. 7, left). From top to
bottom, the soil layers are a clayey silt, a liquefiable sand, a stiff clay and a bedrock
layer. Based on that, a suitable numerical model is deduced (Fig. 7, right), where
the weight of the single-mass structure and the top layer are replaced by uniformly
distributed loads of 150 and 50 kN/m2, respectively. Note that the replacement of
the top layer by its corresponding load, avoids numerical difficulties as it ensures that
the domain below is under compression during the simulation. Below that is a layer
of a liquefiable sand, which is described as an elasto-(visco)plastic material with
isotropic hardening and a stress-dependent failure-surface (cf. Sect. 2). The bedrock
layer at the bottom of the modelled domain is subjected to lateral displacements
according to the records of the Kobe earthquake in 1995 in Japan, which have been
logged at the FUK station. Note that the modelled semi-infinite halfspace has been
truncated without the use of a special far-field treatment. Due to the facts that, on one
hand, the prescribed bedrock-layer displacements mainly initiate shear waves and
that, on the other hand, the fluid-saturated soil exhibits significant damping proper-
ties with respect to compression waves, the size of the numerical problem size has
been reduced, by discarding a special far-field treatment. Note that the finite-element
mesh below structure has been refined in order to account for the expected strain
localisation. Moreover, tie constraints have been imposed at the interface between
the structure and the foundation soil to ensure kinematic compatibility. The result-
ing numerical model consists of approximately 24,000 elements with approximately
110,000 degrees of freedom.
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Table 2 Comparison of the solid-skeleton material parameters for medium-dense FOR 1136 sand
(set 1) to the estimated parameters for a loose sand (set 2)

Material nS
0S ψ1 ψ2

Medium-dense FOR 1136 sand (1) 0.61 1.3 0.53

Loose sand (2) 0.4 0.4 0.1

The loading history of the liquefaction problem can be split into two stages.
At first, the structural and top layer weights are applied in an initialisation step
(0 s < t < 5000 s). Note that during that stage, the permeability is increased from
k F = 10−5 m/s to k F = 10−3 m/s in order to speed up the consolidation process
and to ensure a static equilibrium before proceeding with the second step (5000 s<

t <5016 s), in which the displacement of the bedrock layer is prescribed according
to the records of the Kobe earthquake.

Note that in order to trigger liquefaction phenomena with the available material
parameters, the prescribed displacements are scaled up by a factor of 15. Moreover,
the material parameters of the medium-dense FOR 1136 sand are modified in order
to describe a loose sand. In particular, the initial solid volume fraction nS

0S and the
material parameters governing the dilatation angle, ψ1 and ψ2, are varied such that
liquefiable-prone loose sand can is mimicked (cf. Table 2). The initial solid volume
fraction nS

0S and the material parameters governing the dilatation angle, ψ1 and ψ2,
are varied such that liquefiable-prone loose sand is mimicked (cf. Table 2).

A time sequence of contour plots of the norm of the accumulated plastic strain
tensor ‖εSp‖ on the deformed finite-element mesh (unscaled) are depicted in Fig. 8.
It clearly illustrates the failure of the loose soil foundation beneath the structure. This
particular failure mode is known as punching shear failure [36].

As mentioned earlier, soil liquefaction is consequence of the pore-pressure build-
up due to the contractant tendency of the soil, which reduces the intergranular normal
forces, and thus, the intergranular frictional forces. To make this point clearer, the
interplay between the pore pressure p and the effective volumetric solid stress TS

E · I,
which is associated with the intergranular normal forces, is plotted at point B in
Fig. 9 (left).

As can been seen due to the rapid cyclic motions that the slight pore-pressure build-
up, approximately till t ≈ 5006 s, continues to a dramatic pore-pressure increase
resulting in a drop of the negative volumetric solid stress, which corresponds, accord-
ing to the continuum-mechanical framework, to a decrease of the intergranular normal
forces, and thus, reduces the intergranular frictional forces. Note that the effective
volumetric solid stress may take slight positive values, which is non-physical in a
cohesionless soil, but owed to the elasticity law (7) in case of positive volumetric
solid strains. As a consequence of the reduced intergranular frictional forces, the
foundation soil liquefies and does not recover into a static equilibrium any more.
This is also illustrated in Fig. 9 (right), where the vertical displacement of point A
located on top of the single-mass structure is depicted. Therein, the collapse of the
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0.1

0.0

t = 5005.0 s t = 5005.5 s

t = 5006.0 s t = 5006.5 s

sp

Fig. 8 Contour plots of the norm of the accumulated plastic strain tensor ‖εSp‖ on the deformed
mesh (scale factor: 5) at different times illustrating flow liquefaction

Fig. 9 Evolution of the pore pressure p and the effective volumetric solid stress TS
E · I at point

B (left) and the time history of the vertical displacement of point A (right) in the case of flow
liquefaction

soil foundation is easily recognised by the rapidly increasing vertical displacement
of the single-mass structure.

The computation terminates at approximately t ≈ 5006.5 s due to extremely
distorted finite elements located in the developing shear bands beneath the structure.

6 Conclusions

In this contribution, a modelling approach for the prediction of liquefaction phenom-
ena in saturated soils has been presented. The underlying fluid-saturated soil model
proceeds from a geometrically linear description based on the macroscopic TPM
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Table 3 Elastic material parameters and initial solidity

μS kS
0 kS

1 nS
max nS

0S

190 MN/m2 20 MN/m2 47 MN/m2 0.61 0.623

Table 4 Initial and saturation values of the parameters of the yield surface

δ0 ε0 β0 γ0
∗
δ

∗
ε0

∗
β

∗
γ

0.0009
m2/MN

0.1
m2/MN

0.05 0 0.001
m2/MN

0.01
m2/MN

0.255 1.75

Table 5 Parameters of the yield-surface evolution and the failure surface

CV
δ CV

ε CV
β CV

γ C D
δ C D

ε C D
β C D

γ

∗
Cε

∗
εlim

−93 m2/ −150 m2/ −250 0 23 m2/ 200 m2/ 180 20 0.4 m2/ 0.0001

MN MN MN MN MN

Table 6 Additional yield surface, plastic potential and viscoplastic evolution parameters

κ α m ψ1 ψ2 η r σ0

0.0001 m2/MN 0.01 m2/MN 0.54 1.3 0.53 0.001 s 1.5 0.0001 MN/m2

framework involving an elasto-(visco)plastic solid skeleton with isotropic harden-
ing and a stress-dependent failure surface. The presented numerical results reveal
the capability of the model to mimic the relevant physical behaviour necessary for
the modelling of liquefaction phenomena under rapid cyclic loading conditions. In
particular, the model accounts for the behaviour of granular assemblies undergoing
volumetric strains under pure shear deformation and resulting a in pore-pressure
build-up, which reduces the intergranular frictional forces, and thus, the strength of
the whole soil. However, as the model has so far only been tested under rapid cyclic
loading conditions, statements regarding the behaviour under quasi-static cyclic load-
ing conditions can not made yet. This will be part of ongoing investigations.

Appendix: Material Parameters of the Elasto-Plastic Solid
Describing Medium-Dense FOR 1136 Sand

Below the solid-skeleton material parameters of the research-unit sand FOR 11362

are summarised (Tables 3, 4, 5 and 6).

2Grain size: 0.1–1 mm; sieve retention: d10 = 0.4 mm, d60 = 0.6 mm.
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