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Preface

This textbook summarizes the midterm results of the research group GEOTECH
dealing with the holistic consideration of geotechnical installation processes. In this
sense, the entire process for the realization of a geotechnical construction project
starting from a well-defined initial stress and deformation state is taken into
account. For every subsequent construction stage, as e.g., the vibro-installation of
piles in excavation pits, the changes in stress and deformations caused by the
installation process are calculated.

It is well known that the majority of events with unacceptable deformations of
nearby structures due to the geotechnical construction activity were caused during
the installation of the supporting elements (D-wall panels, pile installation, etc.) and
not by the pit excavation or insufficient stiffness of the shoring system. Construction
steps like excavation, dewatering, shoring support of the pit, etc. implemented in
commercial codes can reliably predict the deformations using appropriate input
parameters for soil–structure interaction. However, accompanying measurements in
accordance with the observational method in geotechnics on construction sites
testify that the deformations of the supporting system in large excavation pits and
nearby structures caused by the installation processes are the most significant ones
over the entire construction procedure, but unfortunately up to now they are not
satisfactory predictable.

In the light of EC 7, it is on the other hand crucial for the serviceability state to
estimate the deformations and distortions of the supporting systems taking also into
account the effects of construction (installation process).

Within the frame of the envisaged research plan, the research group tackles this
problem creating the necessary fundamental knowledge for the improvement of the
soil–structure interaction models in order to describe the installation process
especially in the case of the vibro-installation of piles.

The research group operates in three levels:

• benchmarking projects with element-like and large-scale model tests for cali-
bration and validation of the developed numerical models
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• theoretical fundamental research for the development of high-quality constitu-
tive soil models and contact formulations in combination with efficient
numerical implementations and algorithms

• application of the developed theoretical models to boundary value problems
with parametric studies of respective geotechnical installation processes and
recommendations for further use of the numerical models in practice as well as
for the practical optimization of these processes.

In this book, the demonstrator experiments for pile installation as benchmark are
presented with very interesting results which can be used either for validation of
numerical simulations/calibration of simulation purposes or for further experimental
and numerical investigations. Further simulation methods for vibro-injection pile
installation with multimaterial flow and large material deformations are also
presented.

The mortar contact formulations for soil–structure interaction problems with a
hypoplastic material model and the evolution of effective stress around a vibrating
pile toe using a combination of a hypoplastic model with an explicit formulation for
very high numbers of cycles implementing new numerical strategies are described.

A new hypoplastic formulation and an improved integration for explicit high-
cycle loading using hierarchical, enhanced, and assumed strain finite elements is
described as well as experimental results on strain response-envelopes of sandy
material for monotonic and low-cycle loading processes.

The main target of the research group is the provision of suitable methods for the
simulation of geotechnical installation processes based on fundamental research in
order to reliably predict the serviceability state of supporting systems and nearby
structures.

The editor likes to thank all his colleagues (Prof. Ehlers, Prof. Wriggers,
Prof. Savidis, Prof. Rackwitz, Prof. Hettler) and co-workers (Dr. Niemunis,
Dr. Osinov, Dr. Huber) for their valuable contributions and their extreme efforts and
engagement in order to achieve the high scientific targets of the projects.

Furthermore, I would like to express my thanks to Mrs. Meininger for organi-
zation of all the workshops of the research group GEOTECH and her engagement
to make those events pleasant.

Finally, all of us like to express our deep gratitude to DFG (German Research
Council) for the generous financial support of this very interesting research topic in
geotechnical engineering.

Karlsruhe Th. Triantafyllidis
February 2015
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Effects of Soil Deposition on the Initial Stress
State in Model Tests: Experimental Results
and FE Simulation

J. Vogelsang, H. Zachert, G. Huber and Th. Triantafyllidis

Abstract The knowledge of the initial soil state (stress and density distribution)
in geotechnical model tests is indispensable, particularly with regard to FE back
calculation of experimental results. Usually, so-called K0-conditions are assumed,
which for many cases do not describe the soil stress state before the experiment
begins adequately. Using an exemplary test device we present and discuss different
measurement techniques for the interpretation of soil deposition procedures and the
evaluation of the initial state. Bymeans of stress and bearing forcemeasurements, the
stress state is captured representatively. The soil deformations during the filling of
the test device are evaluated with Digital Image Correlation (DIC) methods and the
initial density distribution is examined by cone penetration tests (CPT). Afterwards,
a simple FE simulation method is presented, which models the soil deposition pro-
cedure by a weight increase layer-by-layer. It is shown that the method is suitable to
provide a realistic initial soil state. The methods presented can be easily transferred
to other geotechnical test devices and can inmany cases ensure a better comparability
of tests with their simulations.

Keywords Initial soil state ·Model test · Back calculation · Cone penetration test ·
Digital image correlation

1 Introduction

Objectives of geotechnical model tests are various: they reach from simple qual-
itative investigation to sophisticated, quantitative studies and model validation.
A starting point for new test types can be the qualitative investigation of the behav-
iour of geotechnical structures. Subsequently, model tests are often used to validate
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2 J. Vogelsang et al.

calculationmethods, soilmodels or general newnumerical developments. This is also
the aim of the experiments performed in the research group FOR 1136 funded by the
GermanResearch Foundation (DFG). This contribution reports some often neglected
but for successful validations essential aspects of the interpretation of initial states
in geotechnical test devices. This may help to close the gap between experimental
measurements and numerical simulations.

Most geotechnical model tests are performed in box- or tube-shaped test devices.
The test material is usually installed in horizontal layers. Such procedure resembles
the filling process of a silo. The stress distribution in the sample differs from free
field conditions, which are usually assumed to be initial conditions for the simulation
of model tests. For the filling case and simple geometries, the stress distribution in
the soil body can be estimated with sufficient accuracy using classical silo theories
(e.g. Janssen [7]). In 2D-conditions, the vertical stress σz is a function of depth z and
depends on the soil weight γ , the width of the silo b, the coefficient of lateral earth
pressure K and the soil-wall friction angle δ, Eq. (1).

σz = − γ · b

4 · K · tan δ
(1 − e−4·K ·tan δ·z/b). (1)

In a normalized form, Eq. (1) can be written as:

σz

γ · b
= − 1

4 · K · tan δ
(1 − e−4·K ·tan δ·z/b). (2)

where the normalized vertical stress σz/(γ · b) is a function of a normalized (dimen-
sionless) depth z/b.

Figure1a shows the experimental set-up of an exemplary test device for the inves-
tigation of “plane strain” model pile penetration. Similar set-ups are used e.g. by
White and Bolton [17] and many other researchers. Figure1b plots the vertical stress
distribution in those test devices assuming plane strain conditions for different soil-
wall friction angles δ according to Eq. (1). The coefficient of lateral earth pressure
K is set equal to 0.4, which is a reasonable value for many cohesionless soils. Note,
that K is lower than the coefficient of earth pressure at rest K0 due to friction in the
interface soil-wall.

Silo effects result in an under-linear increase of stress with depth below the soil
surface. As a matter of course, they are more pronounced for higher soil-wall friction
angles. In order to minimize wall friction, smooth wall surfaces are often used in
experiments (δ = 10−20◦). Figure1b shows that for these low δ values, silo effects
have a minor influence for z/b < 0.5. For increasing z/b, silo effects become
more apparent and should not be neglected for z/b > 1. Their impact on the stress
distribution is significant for z/b > 2. Existing test devices easily reach values of
z/b = 7−15 in the regions of interest (e.g. [17]). For the Interface test device (ITD),
used for the validation of numerical methods in the research group FOR 1136, z/b
lies in the range of 1–4. As a result, the stress distribution in the soil body is strongly
influenced by silo effects. However, due to different surface roughnesses in contact
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Fig. 1 a Schematic test device intending plane strain model pile penetration (after [17]) and b nor-
malized vertical stress in a 2D silo problem for different soil-wall friction angles (Eq. (1) according
to [7] with K = 0.4)

with the sand and more complex geometries, conventional silo equations fail in this
special case. The suitability of the test device to provide benchmark experiments is
therefore questionable.

Important questions to be answered are:

(a) How can the initial soil state be evaluated experimentally?
(stress state and density distribution)

(b) Are simple and reliable numerical methods available to obtain a realistic initial
state for the simulation of the experiments?

(c) Taking into account (a) and (b), can the tests in the Interface test device (ITD)
still be used as benchmark experiments?

In order to answer these questions, the ITD is briefly presented and available
experimental methods for the evaluation of the initial soil state are discussed. After-
wards, a simple method for the simulation of the soil installation is described and
validated by comparison with experimental data.

2 Test Device

In the ITD, large scale 1g-model tests can be performed on soil-structure interac-
tions. It was designed to provide high quality experimental data for the validation
of constitutive models and new simulation techniques. Details concerning the con-
struction and test results can be found in [14, 15]. The basic concept is schematically
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Fig. 2 Schematic
construction of the Interface
test device

side and rear walls

4 instrumented 
wall segments 
on linear guiding
(vertically movable - 
horizontally fixed)

glass 
windows

sand

sand
surface

0.5 m

1 m

2 m

illustrated in Fig. 2. The inner dimensions of the test device are 1.2 × 0.5 × 2.4 m
(length × width × height).

In the test, the device is filled with sand up to heights of 1.5–2.0 m. Integral part of
the test device are four instrumented wall segments placed on one of the short sides.
They can be installed with different surface roughnesses or geometries. In the tests,
the wall segments are displaced vertically and the reaction forces in the soil-structure
interface are measured. The soil is partly kept visible through observation windows
on both sides of the device. The soil displacement and deformations can thus be
evaluated with DIC.

The test devicewas developed intending plane strain conditions. In order to ensure
this, the side walls have to be designed with very smooth surfaces and have to be
supported by a stiff construction. Within the realms of technical possibility, this was
achieved by using glass plates or stainless steel for the inner surfaces. Nevertheless, a
“silo effect” occurs in the test device [14]. Below a certain depth of about 0.5–1.0 m
under the sand surface a significantly lower stress is observed compared to free
field conditions. Silo effects result in a considerable discrepancy from plane strain
conditions. Any quantitative simulation of these tests has to take this phenomenon
into account.

2.1 Denotation

The chosen coordinate system is shown in Fig. 2. The y-axis corresponds to the
vertical direction. The x-direction is perpendicular to the wall segments surfaces.
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Table 1 Nomenclature Interface test device

b Width of test device in x-direction

hsand Fill height

γ Averaged unit soil weight (dry)

σy Vertical stress

σx Horizontal stress in x-direction

Fx,ij Horizontal bearing force j in x-direction on
wall segment i

Fy,i Vertical bearing force on wall segment i

ID Relative density

Id Pressure-dependent relative density

The origin lies in the intersection of wall segments, bottom plate surface and sym-
metry plane of the test device. Mechanical sign convention is used (compressive
force/stress/strain negative). Table1 contains some important variables subsequently
used for the interpretation and visualization of test results.

2.2 Remarks on Test Material and Installation Method

Good descriptions of requirements and procedures for the preparation of uniform
large scale soil samples are provided e.g. in [3, 8]. For dry cohesionless soil, the plu-
viation method is usually applied, which leads to reproducibly uniform test samples.
The soil density can be controlled via variation of free fall height and intensity. The
preparation methods for the Interface test device were already extensively described
in [15] and are therefore not repeated here. A dry, uniform medium quartz sand was
used as test material. Detailed information can be found in [14, 15].

2.3 Initial Density Distribution

As already mentioned, the pluviation method aims to produce a uniform density
distribution over the whole soil sample. However, a certain fluctuation of void ratio
cannot be avoided.Depending on the quality and thorough execution of the placement
method, this fluctuation varies only within a few percent of ID . In [10], it was shown
that a cyclic preloading (before the test) can lead to homogenization soil samples.
However, this kind of procedure is not applicable to all test devices and a cyclic
pre-loading can influence the soils mechanical behaviour significantly in subsequent
tests.
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2.4 Uniformity Control Using Cone Penetration Tests (CPT)

There are several methods to examine the density of in situ soils. CPT are widely
accepted to be a reliable tool for the determination of the soil density profile and
are often used in model tests [3, 6, 16]. However, the interpretation of soil’s relative
density from the CPT-results is still a challenging task. Especially for small confining
pressure, as in 1g-model tests without additional pressure boundaries or surcharge
loads, the simple relations between tip pressure and relative density generally used
(e.g. DIN4094-1 [5]) are no longer valid. This is the reason for the use of alternative
and more advanced methods for the assessment of the CPT-results (e.g. [1, 4, 12]).
In this contribution, the procedure after Cudmani and Osinov [4] is used.

Cone Penetration Tests inmodel tests are often influenced by boundary conditions
of the test device. In order to approach to free field conditions, the cone for CPT in
model tests should be designed in relation to the test device’s dimensions. According
to [9], a relation of sample to cone diameter of Dsample/dcone ≥ 71 is sufficient to
neglect the effects of the boundaries on the cone resistance. The cone used in this
contribution was developed in [18] for a test device shown in [20] with a diameter
of 94cm. The cone dimensions are shown in Fig. 3.

cone

load cell
counter 
weight

crane

Ø
14 90

˚

7 14 514

Ø
10

5
45[mm]

Fig. 3 Scheme of the CPT in the test device and miniature cone for CPT
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Fig. 4 a Development of the expansion pressure. b Scheme of the cavity expansion

The penetration force is measured by a load cell, mounted to the head of the
sounding rods. It captures tip pressure and skin friction at once without the ability to
separate them. The sounding rods were therefore designed with a diameter reduction
compared to the cone, which will reduce the skin friction considerably. The rod
with the load cell is mounted to a counter weight, which was driven downwards
with a constant speed during the CPT. A scheme of the setup is shown in Fig. 3.
The resulting tip pressure is then interpreted by the method proposed in [4]. This
is a semi-empirical method based on the numerical solution of a spherical cavity
expansion problem. An initial cavity (radius r0a ) in a hypoplastic continuum (radius
r0b with r0b � r0a , Fig. 4b is expanded until a stationary expansion pressure pLS is
reached (see pr and pθ in Fig. 4a). This limit pressure is influenced by the material
and its state, in detail the initial density Id and the initial effective mean pressure p0,
as shown in Fig. 4a for medium dense (Id = 50%) and dense (Id = 90%) sand.

The pressure-related relative density Id is defined by [4] as

Id = ec − e

ec − ed
(3)

with the pressure-dependent void ratios ec and ed according to the hypoplastic model
[2]. The limit pressure pLS is coupled with the results of calibration chamber tests
qc using a so-called shape factor kq

qc = kq(Id) · pLS(p0, Id) (4)

with

kq(Id) = 1.5 + 5.8 · I 2d
I 2d + 0.11

. (5)
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Fig. 5 Limit pressure
pLS(Id, p0) in spherical
cavity expansion of the test
sand
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Table 2 Parameters ai and bi
for Eq. (6) of the test sand

a1 a2 a3 b1 b2 b3

6.433 −3.644 −1.138 0.4961 0.5755 1.172

The connection between pLS, the density Id and the effective mean pressure p0 is
obtained from the numerical calculation of a set of cavity expansions with different
initial conditions. This leads to the results shown in Fig. 5.

These data can be described with a surface using the parameters ai and bi accord-
ing to [4]

pL S = a pb
0 (6)

with

a = a1 + a2
a3 + Id

and b = b1 + b2
b3 + Id

. (7)

This set of parameters is unique for every soil, in particular for every set of hypoplastic
parameters, used for the determination of pLS(Id, p0). With the hypoplastic parame-
ters from Table3 the parameters ai , bi in Table2 were gained:

With the results of a CPT (qc over depth z) and the corresponding mean pressure
qc(z), Eq. (6) leads to the density Id.

2.5 Deformation During Filling

DIC is usually used to evaluate soil deformations during model tests. Furthermore,
the method is also applicable to investigate the soil deformations during the soil
deposition process. The filling process is documented photographically with image
sequences like the subsequent experiment. These image sequences are then evaluated
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layer 1
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layer 1
layer 2

layer 4

layer i

layer 1

steel beam

rear 
side wall

glass window

(a) (b) (c)

Fig. 6 DIC-evaluation of the sand installation and definition of soil layers: start of DIC-evaluation
for a layer 1, b layer 4 and c layer i

with the program JPIV [13]. Therefrom, the compression and settlement of a soil
layer due to the deposition of the soil above can be estimated.

Figure6 illustrates the evaluation procedure in greater detail. Three different filling
levels are shown in schematical side views on the test device. Between the horizontal
steel beams, the current sand height is visible. Every 3–4 cmanew soil layer is defined
for which the evaluation process starts just after its deposition. The deformations of
this layer—due to the continuing filling process—aremeasured indirectly in this way.
The soil layers hidden by the steel beams cannot be evaluated when this procedure
is used. Their deformation has to be interpolated between the adjacent visible layers
above and below.

Note that these displacements or deformations of the distinct layers do not have
the same reference time. The deformation of a layer is defined as its deformation
with respect to the initial configuration of this layer (configuration of the layer at the
time directly after deposition).

Formediumdense to dense soil, the observed displacements are very small (|uy | <

1 mm). They result in changes of void ratio of about −0.001. The change in density
is more significant for loose soil (up to −0.1 in void ratio). In other words, the lower
the relative density is, the more relevant becomes the DIC analysis of the installation
process. In every case, the evaluated displacements can serve for the validation of
displacements obtained from FE-analysis.

In particular theDIC results can be useful to verify the soil stiffness in simulations,
which may differ from the one obtained from laboratory tests due to different stress
levels.
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2.6 Initial Stress State

The initial stress state in the test device depends on void ratio and geometric bound-
aries of the test device. Apart from its direct influence on the stress (γ (e) ·h), the void
ratio e has an important impact on the soil behavior, especially on the coefficient of
lateral earth pressure and on jamming/unjamming effects.

Beside measurement instrumentation installed in a test device for the observation
during a model test, additional placement of transducers can sometimes be useful
for the investigation of the installation process.

In the test device discussed here, earth pressures are measured with pressure
transducers as well as in terms of bearing forces on boundary structures (wall seg-
ments). Detailed information on the instrumentation is provided in [15]. Here, only
an overview is given. In the bottom plate, two relative pressure transducers are inte-
grated measuring the vertical earth pressure during filling. Their membran area is
about 12 cm2. Thus, the measurement provides only local information. Especially
in loose sand, the membrane can be to small to provide representative and reliable
results.

The instrumentation of the test device also allows for separate measurement of
horizontal and vertical components of earth pressure. On each wall segment i (i =
1, ..., 4), the resulting vertical component, named Fy,i, is recorded with one load cell
and the horizontal one with four load cells Fx,1−4,i, see Fig. 7. From the equilibrium
of forces and momentum we can also estimate the earth pressure distribution. This
is done by assuming a sectionwise linear (trapezoidal) distribution in order to obtain
a statically determined system, see Fig. 7.

Fig. 7 a Static system of
wall segment i and b
denotation of measured
bearing forces

earth pressure

x

y

z x

y

z

Fx,1/2,i

Fx,3/4,i

Fy,i

(a) (b)
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3 Simulation of Sand Deposition

Several kinds of simulation techniques can be applied to model the soil deposition
process in a test device (FEM, FDM, DEM, etc.). Considering only the deposition
process, the most appropriate algorithm should be used. But often, the applied soft-
ware is already chosen for the simulation of the subsequent experiment. The same
applies for the choice of an appropriate constitutive model. In both, simulation of
soil installation and subsequent test, only one model should be used in order to
ensure a realistic evolution of internal state variables. Advanced constitutive models
should be preferred, but basic phenomena can already be modelled by using simple
elasto-plastic or even elastic models. However, at least elasto-plastic description of
the contact behaviour in the interface soil-test device boundaries is indispensable
(e.g. Coulomb friction model).

In this study, the FE software Abaqus is used. The soil behavior is described by
a hypoplastic constitutive model (after [19]). The concept of intergranular strain is
not necessarily to be applied because the soil is installed in a “virgin” state and no
cyclic loading occurs during the installation process. If the model test is simulated
subsequently, the intergranular strain can be assumed to be fully mobilized in verti-
cal direction. The used parameters for the hypoplastic constitutive model are taken
from [18] and are listed in Table3.

A simple Coulomb contact description was applied. The friction coefficients were
chosen according to the experimental measurements (the instrumentation of the wall
segments allows for determination of the interface friction angle). The contact friction
angle between sand and the side walls and the wall segments 1 and 3 was set to
12◦. The second wall segment had a rough surface (coarse fraction of the test sand
bonded on the steel surface). The friction angle between this wall segment and sand
was chosen to 38◦, which corresponds to the peak friction angle for medium dense
sand.

3.1 FE Model of the Test Device

A 3D FE model of the ITD was developed in order to include geometric effects
appropriately, Fig. 8. Reduced integration elements (Abaqus keyword C3D8R) were
used. Taking advantage of the symmetry of the problem, only the half of the test
device was modelled. The side and rear walls, as well as the wall segments, were

Table 3 Used hypoplastic parameters (from [18])

ϕc(
◦) ed0 ec0 ei0 hs

(MN/m2)
n α β

32.8 0.568 0.866 0.953 5800 0.28 0.13 1.05
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sand
elements

side and rear wall elements

wall segment elements
1

2

3

4

x
z

x

y

z

symmetry plane

(a)

(b)

Fig. 8 a Top view and b 3D view of the FE model

modelled with shell elements (Abaqus keyword S4R). The supporting steel beams
were notmodelled. The deflection of the sidewallswas disabled. If this simplification
is admissable, has to be verified in the individual case.

3.2 Simulation Steps

The simulation steps are schematically illustrated in Fig. 9. The first simulation step
refers to a geostatic equilibrium calculation. The difference to usual simulations is
the application of a strongly reduced gravity (e.g. to 1/100g). This gravity must be in
equilibriumwith the defined initial stress field so that no (or only very small) displace-
ments occur. Since there is no relative displacement between soil and boundaries, no
friction is mobilized.

In the subsequent steps, the gravity is “switched-on” layer by layer from the
bottom to the top. Each increase of weight of a layer is associated with one step.
The weight-increase leads to a compaction of the lower layers and to a mobilisation
of shear stresses on the boundaries. This reproduces the well-known “silo effect”.
It is also possible to use the Abaqus user subroutine dload.for for these kinds of
calculation, but the presented method turned out to be more robust.
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Geostatic

γ =1/100.ρ.g

1. layer

γ =1/100.ρ.g

γ = ρ.g

Last layer

γ = ρ.g

settlement

τ τ

2. layer

γ =1/100.ρ.g

γ = ρ.g

τ τ

Fig. 9 Schematical illustration of the calculation process

The FE model was created in the Abaqus scripting interface and was entirely
parameterised. Choosing a geometry and a number of soil layers, all element sets,
calculation steps, etc. are then automatically defined. This allows for easy adaption
of the FE model to other test device or geometries. The model was also applied for
other test devices (e.g. [20]) to study the influence of boundary effects.

4 Comparison of Experimental and Simulation Results

4.1 Vertical Stress Evolution

Figure10 shows the evolution of vertical stress σy on the two pressure transducers
PT1 and PT2 as a function of the fill height hsand for an exemplary test and its
simulation. Figure10b illustrates the position of the two pressure transducers with
respect to the wall segments. The green line colour in Fig. 10a is attributed to test
results and the red one to simulation results. PT1 is plotted in solid line and PT2 in
dotted line. For better orientation, the linearly increasing pressure −γ · hsand is also
shown in black solid line. On the bottom x-axis hsand is given in m and on the upper
x-axis hsand is normalized with the width bz of the test device (bz = 0.5 m).

As predicted by the silo theory, test results and simulation show an increase of
vertical stress on both pressure transducers lower than the γ · hsand-curve. A good
accordance between test and simulation can be observed. The evolution of stress on
PT1 is very similar. On PT2, the differences between test and simulation are more
pronounced with about 1 kN/m2 for greater sand heights. With regard to a planned
FE simulation of the subsequent model test, the agreement of test and simulation can
be considered as satisfying.

4.2 Horizontal Stress Distribution

Figure11 compares the resulting earth pressures on the wall segments for the same
test. In the centre of thefigure, the threewall segments interactingwith sand are shown
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Fig. 10 a Vertical stress evolution σy = f (hsand ) on PT1 and PT2 measured an experiment
(internal name V13-4) and obtained from FE simulation and b location of pressure transducers PT1
and PT2 in schematic side view (zoom)

schematically. The region filled with sand in shown with yellow background on their
left. The second segment has a rough surface (coarse fraction of test sand bonded
on the front sheet). In the upper right part of the figure, the static system of a wall
segment is illustrated. The horizontal stress distribution is plotted in the left half of
the figure (x-range bottom left) and horizontal bearing forces on the right (x-range
top right). The horizontal stress distribution obtained from force and momentum
equilibrium (assuming a section-wise trapezoidal shape) is plotted in green. The
simulation results are plotted in red as the average over thewidth of thewall segments.
For better orientation, the K0-line is plotted in black (using K0 = 0.37). Test and
simulation results can be quantitatively compared considering the horizontal bearing
forces. They are displayed in the right part of Fig. 11 as bar graphs for each horizontal
bearing.

Figure11 shows a very good agreement of test and simulation results. Globally, the
earth pressure distribution is similar. Differences between experiment and simulation
can be seen around the transition from one segment to another. The smooth curve
obtained from the simulation shows a qualitatively expected and plausible shape, e.g.
with reduced earth pressure under the rough second segment and directly above the
bottom plate. The interpreted experimental results can per definitionem not provide
suchdetailed information, but principally the stress distributions arewell comparable.

The bar graphs in the right part of Fig. 11 are rather suited for quantitative com-
parison since they do not imply any assumptions. They prove the good accordance
between test and simulation in an impressive way. All bearing forces are repro-
duced very well by FE simulation, except the upper one on the first segment. Even
here, the difference is lower the 20%, which is still an acceptable error tolerance
for geotechnical simulations. Note that for these results no soil parameter fitting
had to be performed. The good accordance is probably contributed to very reliable
measurements. The wall segments are exposed to earth pressures over quite large
areas (0.5m × 0.6m) so local inhomogeneities have a lower impact on the results.
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Fig. 11 Horizontal earth
pressures and bearing forces
measured in an experiment
(internal name V13-4) and
obtained from FE simulation
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Furthermore, the well-known good performance of hypoplastic constitutive models
for monotonic loading cases is once more proven.

4.3 Density Distribution

In order to examine the density distribution in the model test, CPT are conducted in
recent experiments. The results of three CPT are depicted in Fig. 12 for an experiment
with the internal nameV18-2. The three CPT are named S18-21, S18-22 and S18-23.
For the test presented before, no CPT were performed.

The whole force, measured by the load cell is interpreted as cone tip resistance qc.
An estimation of skin friction with a friction angle δ = 1/3ϕ′ = 13◦ yields only to a
low impact of about 1% and was therefore neglected. Furthermore, Fig. 12 contains
the vertical effective stress σy calculated as linear increasing with depth (σy = γ ·h)
as well as by taking silo effects into account (see Fig. 10).

The tip resistances qc in Fig. 12 show a certain scatter but CPT S18-22, which
is close to the instrumented wall segments, gives the best and quite smooth results.
This confirms the experimental impression, that the pluviation is of higher quality
near to the wall segments (S18-22) than in the rear part of the test device (near
S18-23), where the sand dropper sometimes stood still when it was refilled by the
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Fig. 12 a qc of three CPT in the model test and assumed vertical effective stress σy (linear distrib-
ution with depth and with silo effect), b relative density ID calculated with linear stress distribution
with depth and with consideration of the silo effect and c location of the CPT in schematic top view

sand reservoir. The relative density ID obtained from these CPT is evaluated with
the method described in Sect. 2.4 with the linear stress distribution versus depth and
also with the problem-adapted stress distribution incorporating the silo effect (see
Fig. 12b). Only with the realistic stress distribution, considering the silo effect, the
calculated density is almost homogeneous over depth.A linear stress distributionwith
depth (which is mostly adopted for interpretation of results!) gives an apparently non
plausible decreasing relative density with depth.

The absolute value of ID ≈ 1 seems to be too high. The averaged relative density,
calculated with soil weight and sample volume, is ID = 0.81. This difference results
probably from boundary effects. The cone was designed for a diameter of the sample
Dsample = 94 cm. The space between the walls in this test device was only 50 cm,
which results in a ratio of Dsample/dcone = 35.7. As the walls are quite stiff, the
measured cone tip resistance qc is higher than it would be in free field conditions.
This leads to the evaluated higher relative density, compared to mean density that
was measured. Another reason for the discrepancy of ID may also be found in non-
optimized soil parameters for this special application.



Effects of Soil Deposition on the Initial Stress State … 17

Fig. 13 Comparison of
vertical displacements during
filling process evaluated by
DIC and FEM simulation
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4.4 Displacements During Filling Process

Figure13 shows the displacements occuring during the filling process in test V18-2
(internal denotation) compared with the associated simulation using 17 soil layers á
0.1 m height. The configuration of this test was a 2D-pile (for details see [14]). This
configuration is more challenging for numerical simulation due to the non-planar
wall geometry.

Figure13 shows a qualitative shape as explained above for the test results as well
as for the simulation. The displacements at the bottomplate and at the sand surface are
zero per definition. The qualitative curve shape is similar in test and simulation. The
maximum displacement is reached at a height of about 1 m. However, the maximum
settlement in the simulation is three times as large as in the experiment. This is
probably contributed to a non representative soil stiffness obtained by the hypoplastic
equation for this low stress level. The stress level in the experiment ranges from 0
to −15 kN/m2. Constitutive equations are usually calibrated for stress levels ranging
from −50 to −500kN/m2. Specific parameter calibration considering low stresses
may provide better results. The change of void ratio related to this settlement is very
small and can be considered to be negligible for the simulation of the subsequent
model test. Taking into account the soils small strain stiffness in the constitutive
model might enhance the prediction of displacement. However, this point is not
discussed in this contribution. The satisfying results of the stress distribution in the
soil were considered to be sufficient for the simulation of the subsequent test.
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5 Summary and Outlook

In this paper, some aspects related to the evaluation of the initial soil state in geotech-
nical model tests are discussed. Methods for the quantitative description of initial
soil state are shown. Numerical modelling of the deposition process with the Finite
Element Method is shown to be a solution for treating silo effects in geotechnical
model test devices.

For the simulation of installation procedures a 3D FE model was used. The soil
behavior was described by a hypoplastic constitutive model without the concept of
intergranular strain. The sand deposition is modelled by a layered increase of weight
from near to zero to the unit soil weight starting from the bottom of the soil body.
The principal results can be summarized as follows:

(a) Horizontal and vertical stress measurements during the soil installation in a
model test device are indispensable for the evaluation of the initial soil state.
The sample homogeneity can be proven using CPT, if advanced interpretation
methods are applied. Even more effort has to be made, when boundary effects
influence the interpretation of CPT results. DIC can be an useful tool for the
evaluation of settlements and soil deformation during the deposition process.

(b) A realistic back-calculation of the initial soil state in model tests is possible with
reasonable effort using a 3D FE-model, a well-established constitutive model
(here hypoplastic) and simple Coulomb contact description. Good results can
only be achieved if contact friction angles experimentally determined and fully
mobilized. The presented measurement and simulation methods are adaptable
to other test devices and should be considered when quantitative validation of
numerical simulation is intended.

(c) Experiments influenced by silo effects can provide experimental data for bench-
mark boundary value problems as long as the soil state can be modelled realis-
tically with reasonable effort and can be validated with experimental data. The
presented Interface test device was shown to meet these requirements and is
therefore suited to provide experimental data for benchmark tests.

The contribution focuses on the preparation of large scale samples of cohesionless
soil. The basic problem exists also for tests in clayey or silty soil. Whether the
presentedmethods can be applied to those soils has to be investigated in the particular
case. Usually, moist tamping compaction methods are applied in those soils, whose
incorporation in the simulation is challenging.

Another important point only briefly mentioned before is the beneficial interac-
tion of experiment and simulation, even for the experimentalist. Interpretation of
experimental measurements can be strongly supported by numerical modelling of
the process. The improved interpretation of CPT-data is only one example. Some
effects occurring in the experiments can easily be studied in FE models, such as
the influence of boundaries on the test results or the evaluation of soil deformations
via DIC. The presented methods can also be applied to the design process of a test
device. Pre-dimensioning with FEM can be a cost-efficient tool replacing expensive
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pre-tests. Their advantage is the ”overall instrumentation” of an FEmodel. Stress and
deformation can be plotted for every point in the model. This allows e.g. appropriate
placement of transducers and avoids faulty design. This approach is only meaningful
if high quality material models are available describing the soil behaviour realisti-
cally.

Important issues of future work are an improved consideration of boundary effects
in the evaluation of soil density via CPT and the simulation of soil deposition for
other test configurations resp. for sloped soil deposition (used for loose samples).
Furthermore, the elevated soil stiffness at small strains has to be considered in order
to investigate its influence in this case.
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Demonstrator Experiments on Significant
Effects During Pile Installation

J. Vogelsang, G. Huber and Th. Triantafyllidis

Abstract Benchmark tests for the numerical simulation of pile installation require
clearly defined boundary value problems with corresponding experimental data.
These experiments have to provide quantitative information on the soil deforma-
tions and stresses. Large scale model tests in dry, granular soil were carried out for
this purpose. The interface testing device, that is used for the tests, allows the inves-
tigation of selected aspects of pile penetration. The normal and shear forces on the
pile structure are measured. The displacements in the surrounding soil zone can be
evaluated via Digital Image Correlation (DIC). The test results concentrate on the
interface behavior between the soil and the pile and the evolution of stresses and
deformations around the pile tip. For rough pile surfaces the occurrence of dilatancy
effects in the pile-soil interface is shown. The localization of deformations in the
post-peak phase is analyzed for monotonic and cyclic test paths. The influence of the
pile driving mode on the evolution of stresses around the pile tip is demonstrated.

Keywords Pile installation · Large scale model test · Benchmark test · Soil-
structure interaction

1 Introduction

The research unit FOR 1136 has the objective to provide numerical tools for the
simulation of pile driving processes. The main focus is on the installation of vibro-
injection piles, in German RI-piles (Rüttelinjektionspfähle). Such piles are schemat-
ically illustrated in Fig. 1. RI-piles are H-section steel profiles that are vibrated into
the ground. The collar, a welded flat-bar placed above the pile tip, displaces the soil
and creates a cavity above. Simultaneously to the pile installation, cement grout is
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Fig. 1 Schematic illustration of RI-pile installation

injected into this cavity and encloses the steel profile. When cured, the grout offers
a corrosion protection in combination with a rough contact to the surrounding soil.

These processes are influenced by several effects that have to be taken into account
in simulations. Pile driving is a high-cyclic, dynamic process that often takes place
in water saturated soil. This causes important liquefaction effects around the pile.
The penetration of the pile structure induces large soil deformations that have to
be handled using adequate simulation techniques. The interface between the soil
and the pile structure has to be considered as well as the interaction between soil
and cement grout. The influences of these aspects are difficult to separate, for real
pile installations as well as in experiments. Therefore, demonstrator experiments on
selected aspects have to be performed. The experimental investigations discussed
here concentrate on the pile penetration in dry soil without grout injection. In this
contribution, the requirements for these tests are defined, the test devices are illus-
trated and representative results are shown.

Many geotechnical model tests dealing with penetration of pile-like structures
have been performed, mostly in dry granular soil in order to exclude pore water
effects. E.g. [2] or [6] present experiments with small scale piles penetrated into
dry sand. Usually the overall axial/vertical pile force is measured in relation to the
penetration depth. In [2] the tip resistance and skin friction forces were extracted
from the pile head force. Soil displacements are rarely evaluated in these kind of
tests. Other experiments using glass windows installed in symmetry planes allow
the observation of soil displacements, e.g. the model test performed in [1]. Another
problem is the measuring of the stress distribution. In [9] a possible solution is
presented, however, without evaluation of the soil displacements. The combination
of extensive stress measurements and evaluation of the soil displacements in one
experiment is a complex challenge. Such experiments were therefore only performed
very rarely.
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Often, the purpose of geotechnical model tests is a qualitative prediction on the
behavior of real pile structures. As shown e.g. in [14], the quantitative application on
real structures of results obtained from small scale tests is doubtful. Scaling effects
can significantly limit the transferability of the test results. Somefield tests that enable
the application of test results on real pile structures have been performed. Examples
are presented in [8] or [4]. Those tests eliminate scaling effects and are performed
in the in-situ soil layers. The instrumentation is usually limited on the axial pile
head force. In [8], in addition, a sophistically instrumental model pile allowed the
evaluation of tip resistance and skin friction.

To provide experimental data for boundary value problems that can be back-
calculated with numerical methods is another purpose of geotechnical model tests.
Such experiments have to reproduce similar effects as the real process that is to be
investigated. The test conditions have to be kept as simple as possible and an extensive
instrumentation has to provide quantitatively reliable results on the evolution of
stresses and deformations. It is useful to focus the experimental set-up on selected
aspects (e.g. contact zone between the soil and the structure or liquefaction effects)
and to exclude effects of secondary interest. These effects can rarely be separated
in small scale tests. Large scale tests that simulate only parts of a real structure in a
realistic scale are one possibility to solve this problem. Suchmodel tests are presented
in this paper.

A large scale interface testing device is used to investigate the soil-structure inter-
action for monotonic and cyclic test paths. A sophisticated instrumentation enables
themeasuringof shear andnormal stresses in the interface for smooth and rough struc-
tural surfaces. The soil displacements are observable and can be evaluated by DIC.

The interface testing device is also used for tests on the penetration of pile-like
structures under plane strain conditions. The test configuration and the instrumenta-
tion allow the observation of skin friction and tip resistance. Idealized tests simulating
a 2D pile penetration are performed for the validation of FE-techniques. In the tests,
the difference between the so-called cavitational and non-cavitational pile driving
[2] and its influence on the soil deformation is shown.

2 Interface Test Device

The interface test device used for the tests has already been presented in detail in
[10, 13]. Nevertheless, for a better comprehension of the following recent results,
we will recapitulate the essential aspects.

2.1 Basic Idea

The basic idea of the interface test device is the transition of an idealized pile structure
into plane structures that are investigated separately. In Fig. 2a an idealized pile
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Fig. 2 Interface testing device—basic idea. a Transition of sections of an idealized pile structure
to 2D wall elements. b Schematic design of the interface test device

structure is shown. The idealized pile is simplified to a radial symmetric structure
that is penetrated into sand. This simplified pile has skin sections (detail I), structural
elements imitating the collar of an RI-pile (detail II) and a pile tip (detail III).

As in many numerical simulations the pile has a “pre-pile” with a small diameter
compared to the pile. The pile itself represents only an expansion of this pre-pile. In
the interface test device parts of this idealized radial symmetric structure are cut out
and “unfolded” to plane elements. This transition is illustrated in Fig. 2a. The plane
pile elements are integrated in the interface test device as wall segments, Fig. 2b. The
wall segments are guided and can be moved vertically between two glass windows
placed on the side. The back part of the test device is designed with stiff construction
plates. A bottom plate forms the lower boundary of the box and the sand filling.
In the tests, the wall segments interact with the sand and are displaced vertically
performing various test paths. The sand displacements can be observed through the
glasswindows on the sides. The forces acting between the sand and thewall segments
are measured by load cells integrated in the supports of the wall segments. In that
way, both, displacements and stresses in the zones of interest, are evaluated.

2.2 Design

Figure3a shows a side view on the interface test device. Some design details are
shown schematically in Fig. 3b. More technical details are discussed in [13].

A stiff outer steel construction minimizes the deformations of the test device and
their influence on the experiments. From the outside, the back part of the sand body
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Fig. 3 Overview—interface test device. a Side view and b schematic side view and view on the
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is hidden by side walls, only the first part in vicinity to the wall segments is visible
through glass windows (on the front and on the back side). Between the horizontal
steel beams five fields with free view on the sand body can be used to take image
sequences during the tests. Usually, the threemiddlewindows are used (namedDIC1,
DIC2 and DIC3 in Fig. 3b).

The base area of the sand filling is 1.2m×0.5m. Sand heights up to 2.0m are
possible. Usual sand heights range between 1.5 and 1.7m. The movable wall is
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divided into four instrumented segments (numbered 1–4 from bottom to top). The
wall segments are based on a stiff steel frame in order tominimize their deformations.
The front plates of the wall segments are modifiable and can be adapted depending
on the test configuration. Each wall segment has load cells for the measuring of the
normal and the tangential (vertical) force acting on the front plate, see below. The
wall segments are coupled separately to a ladder-like connection rod. The view on
the back side of the wall segments in Fig. 3b illustrates their position relative the
connection rod. The second segment is highlighted. A hydraulic actuator is placed
on top of the test device and moves the connection rod in vertical direction. The
maximum possible wall displacements are about 200mm.

2.3 Test Configurations

Various test configurations are possible in the interface test device. Three basic con-
figurations for the simulation of pile driving can be distinguished and were investi-
gated, Fig. 4.

Configuration I focuses on the cyclic and monotonic interface behavior between
the soil and the pile. In this configuration four plane wall segments with modifiable
surface roughness are installed. In the tests presented here, the segments 1, 3 and 4
have smooth surfaces of stainless steel, while segment 2 has a rough surface (sanded
steel). The wall segments represent a part of the skin section of a pile.
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Fig. 4 Basic test configurations in the interface test device
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Configuration II investigates the influence of structural geometries more similar
to real pile structures. The segments are installed with smooth steel surfaces. A pile
structure imitating the collar of RI-piles is mounted on segment 2. The tip resistance
on this structure can be evaluated. In addition to this, its influence on the skin friction
on the upper segments can be observed as well.

Configuration III represents a 2D pile and is particularly suited for the validation
of numerical simulations of the pile penetration problems. Segment 2 contains an
inclined pile tip. Segment 3 and 4 are shifted into the test device and form a complete
pile in 2D in combination with segment 2.

2.4 Instrumentation

The test device provides a sophisticated instrumentation. The basic instrumentation
installed in the test device is presented in [10]. The more advanced instrumentation
of the test device which has been added in a later stage of development is discussed
in [13]. Here, an overview of the instrumentation components is provided, Fig. 3.

Tangential Forces Fy,i. Eachwall segment is attached individually to the connection
rod by one tangential load cell (HBM RSCA). In the case of plane wall segments,
the tangential load cell generally measures the resulting shear force on the front plate
and furthermore a weak systemic friction force of the Teflon sealings on the glass
windows. In the case of segment 2 in the test configurations II and III, a tip force
under the pile tip is also included in the tangential force.

Normal Forces Fx,ij. In the basic version of the test device [10], the measuring of
the normal forces on the wall segments was not possible. However, for the usage as
demonstrator experiments for the validation of contact formulations, the knowledge
of normal stresses in the contact zone is crucial, but its measurement in granular soil
is complex. The measuring elements have to be very stiff in order to avoid a signifi-
cant influence on the earth pressure. Due to high quality and stiffness requirements
in combination with geometric constraints, the usage of commercial products was
excluded. Thus, self-designed and fabricated load cells are used. Their construction
is discussed in detail in [13]. Four load cells per segment are integrated between the
steel frame and the guidings. Usually, the sum of all four load cells Fx,ij per segment
is shown in the results (Fx,i: resulting normal force on segment i).

Displacements si. The non-uniform force distribution on the wall segments leads
to different deformations of the tangential load cells, ergo varying displacements of
the wall segments. Therefore, the displacements are measured separately with one
absolute magnetostrictive position transducer (Novotechnik TLM 300) per segment.

Vertical Stress σ y. Two pressure transducers measure the evolution of the vertical
stresses on the bottom plate. They are integrated centrically into the bottom plate
with a horizontal distance to the wall segments of 0.15m (PT1) and 0.30m (PT2).
Pressure transducers with very stiff front membrane are used (VEGABAR 52).
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2.5 Evaluation of Soil Displacements

Image Sequences. The first part of the side walls is constructed with glass windows.
Thus, between the horizontal steel beams the contact zone between the wall and the
soil is kept visible throughout the tests. During the tests three digital cameras take
image sequences in the fields DIC1, DIC2 and DIC3, Fig. 3. The arrangement of the
cameras on the side of the device is illustrated in detail in [13].

The obtained image sequences are preprocessed digitally before the DIC eval-
uation. The images are rotated in order to precisely place the wall in a vertical
orientation. Only the zone of interest (sand without steel beams) is evaluated subse-
quently. The edges of the wall segments (where the displacements si are measured)
are kept in this zone in order to allow a control of the calculated displacements.

Digital Image Correlation (DIC). The freeware code JPIV [12] is used to evaluate
the incremental displacement fields by comparing every pair of consecutive images in
the recorded image sequences. Many recommendations can be found in the literature
for the settings inDICevaluations [15, 16]. The settings chosenhere are in accordance
with these. The vector spacing (width and height of the search patch) is set to 12–16
pixel (4−5× d50). Thus, the search patch contains enough pixel and sand grains for
a good precision and it enables the visualization of localized deformations (shear
band width about 10 × d50, see below).

After the JPIV evaluation invalid vectors are marked by a “normalized median
test” and replaced by the median of the neighboring vectors. Invalid vectors are
marked if their displacement differs too much compared to the neighboring vectors
(details in [12]). Invalid vectors can occur in areas of the image that provide only
low texture. In this particular application the problematic zones are on the edges of
the wall segments and especially the teflon sealings. In the evaluations presented,
the number of invalid vectors was very low (maximum 3 per image evaluation). If
appropriate settings are used invalid vectors in the sand zone do not occur.

From the JPIV analysis ASCI-files containing the incremental displacements
(image n and n+1) are obtained. Subsequently, these displacements are summated to
the cumulated displacements and the deformations are calculated.

3 Test Results

3.1 Configuration I: Soil-Pile Interface Behavior

The soil-pile interface behavior was investigated with a series of tests using the first
configuration (plane wall segments). In this test configuration, the segments 1, 3 and
4 were installed with smooth steel surfaces. Segment 2 has a rough (sanded) surface.
Monotonic tests were performed as well as cyclic tests with different test paths. Here,
a cyclic test is compared to a test performing a monotonic wall displacement. The
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initial conditions were similar in both tests with about 1.5m sand height and an initial
relative density of ID ≈ 65%. The initial conditions and test paths are schematically
illustrated in Fig. 5a, b.

A wall displacement of 57mm downwards is imposed in the monotonic test. In
total, the cyclic test performing an alternating wall displacement reaches also 57mm
wall displacement. The alternating displacement was carried out using the following
progression sequence: first 11 cycles of 3mm down and 1mm up and afterwards 7
cycles of 5mm down and 1mm up.

The Fig. 5c–e compare the results of both tests. The evolution of the tangential
force on the secondwall segment is shown in Fig. 5c. In the cyclic test (blue curve) the
tangential force increases over 3 cycles and reaches its maximum at 9mm displace-
ment. In the pull-out phases the tangential force vanishes in all cycles, except the
first. In all other cycles the wall displacement of 1mm is not enough for a reversion
of the shear stresses. In the monotonic test (red curve) the tangential force increases
slightly stronger on the first 6mm. After 6mm displacement the curve kinks, cuts
the peak of the cyclic curve and behaves like an envelope in the residual test path.

Both tests show a peak in the curve of the normal force, Fig. 5d. The peak occurs
after 9mm in the monotonic and after 11mm in the cyclic case. The normal force in
the monotonic test envelopes the curve of the cyclic test. The normal force does not
vanish in the pull-out phases because in granular soil a minimum earth pressure has
to be maintained.

Since normal force Fx,2 and tangential force Fy,2 act on the same area, the mobi-
lized friction angle on the segments surface δmob can be calculated as follows:

δmob = arctan(Fy,2/Fx,2). (1)

The cyclic test shows a global maximum of δmob = 39◦ after 7mm displacement.
Furthermore, in all subsequent cycles a small peak is mobilized. The residual value
of δmob is about 35◦. The monotonic test shows an earlier peak after 4mm displace-
ment. Its maximum is about 38◦. The residual value ranges between 33 and 36◦ and
corresponds approximately to the residual values of the cyclic test. In neither case a
critical state is reached (ϕc,sand = 33◦ from drained triaxial tests).

The results shown in Fig. 5 become more clear when the soil displacements
obtained from DIC are considered. The displacement vectors of the monotonic test
are plotted in Fig. 6a for a small horizontal cross section in the interface zone between
the roughwall segment 2 and the sand. The accumulated displacements are shown for
themonotonic test at the peak of themobilized friction angle (s = −3.5mm), after the
peak (s = −6.0mm about at the kink of Fy,2), at the global minimum (s = −8.5mm
about at the peak in Fx,2) and after a large displacement of s = −20mm. For the
cyclic test the accumulated displacements are shown at similar wall positions in
Fig. 6b. The position s = −3.5mm is now before the peak, s = −5.8mm about
at the peak and s = −8.5mm just after it. A displacement of s = −20.4mm still
corresponds to a position on the residual path.

Figure6a reveals that the displacement field is smooth until the peak of δmob
is reached. The displacements constantly decrease at larger distances from the wall
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Fig. 5 a Initial conditions, b test paths and c–e tangential force Fy,2, normal force Fx,2 and
mobilized friction angle δmob = arctan(Fy,2/Fx,2) on 2nd segment over wall displacement

segment. The deformations aremore or less homogeneous.After the peak, an increase
of the displacements near the segment surface can be observed. The deformations
start to localize in a shear band in front of the wall segment. After 8.5mm wall
displacement, the zone with large gradients is already more pronounced. It becomes
evident after a large displacement of 20mm.The zone of large localized deformations
consists in a band of about 5–6mm in width. This corresponds to approximately 9–
11 times the mean grain diameter d50 (d50 = 0.55mm). The slight drift of the
displacement vectors to the left, beginning from the fourth vector (from the right),
indicates a dilative soil behavior in the shear band. The post peak behavior with the
beginning of strain localization was already reported, e.g. for triaxial tests in [5, 11]
or for various model tests in [7].
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Fig. 6 Displacement vectors
for a the monotonic and b
the cyclic test in a horizontal
cross section at y = 955mm
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The cyclic test shows similar displacement vectors but the localization occurs later,
Fig. 6b. After 8.5mm wall displacement, the deformations are still homogeneous.
Also for the cyclic test, the strain localization corresponds to the peak of δmob.
For 20mm displacement the shear band in front of the wall segment can clearly
be distinguished. The width of the shear band is similar to the monotonic case.
With about 7mm in width, it is a bit larger than in the monotonic case. This width
corresponds to approximately 12–13 times the mean grain diameter d50.

In the case of the cyclic test, after the wall displacement sequence downwards
a cyclic wall displacement with constant amplitude of 0.5mm was performed. 20
cycles were performed. Figure7 plots the averaged tangential (shear) stress over the
normal stress for selected cycles. The averaged stresses are the tangential and normal
forces Fy,2 resp. Fx,2 divided by the surface area of the interface zone (0.3m2). This
presentation is equivalent to the averaged τ − σ -plane in the interface between the
soil and the wall. The two critical state lines (CSL) are plotted with ϕc = 33◦. In
the bottom left corner of each subfigure, the test path and the current position are
indicated schematically. The current cycle is highlighted in red. The previous test
path is illustrated in grey with continuous line and the subsequent test path with a
grey dotted line. The force path is presented analogously. Small arrows illustrate the
curve orientation.

Figure7a shows the last phase large displacements downwards of the previous test
path. Both, tangential and normal stress, increase significantly and exceed the CSL.
In the first cycle, the tangential stress drops to zero, Fig. 7b. The end of the first cycle
corresponds to the preceding phase of large displacement downwards. In Fig. 7c a
strong relaxation of both stresses can be observed for the second cycle. The cycle
ends on the CSL. After five cycles a relaxation can still be observed, however, at a
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Fig. 7 Tangential stress τxy,2 over normal stress σx,2 for cyclic wall displacement with sampl =
±0.5mm

lower rate. In the pull-out phase, the tangential stress starts to reverse and a butterfly
curve shape forms. In the following cycles, the penetration phases are similar to
the preceding cycles with only slight relaxation. However, in the pull-out phases, a
stronger stress reversion takes place (Fig. 7e, f).

Figure7 clearly reveals the soil-like behavior of rough interfaces. Contractancy
and dilatancy effects have to be modeled by contact formulations if the interaction



Demonstrator Experiments on Significant Effects During Pile Installation 33

is of primordial importance for the simulation. For pile penetration problems this is
assumed to be the case in the region close to the pile tip and along the pile shaft (in
the case of non-injection piles).

3.2 Configuration II: Estimation of the Tip Resistance

The results of a test using configuration II are shown in order to illustrate the influ-
ence of the pile driving mode for dense sand. The initial conditions and the test
path are given in Fig. 8a. The test path corresponds to an alternating penetration of
57mm in total. After 20mm, two small cycles with 0.5mm movement upwards are
performed. In comparison to these small cycles, three larger cycles (5mm upwards)
are performed after 40mm wall penetration. The presented results concentrate on
the effects around the 2D pile tip installed on the second segment.

Figure8b shows the tangential force Fy,2 on the second segment (with pile tip) over
the wall displacement. The arrows indicate the curve progression. After about 10mm
wall displacement, the tangential force increases almost asymptotically. The two
small cycles lead to a slight reversion of the tangential force up to about 0.25kN. The
response after the pull-out phases is stiff. The asymptotic envelope curve is already
reached 4mmafter the last reversal point. The larger cycles are significantly different.
In the pull-out phases a value of 0.25kN is rapidly reached and remains constant
throughout the whole phase. After the pull-out phase, the tangential force almost
instantaneously changes direction to a negative value of −0.4kN. Subsequently, the
force remains approximately constant for 2mm of penetration before it restarts to
increase. The increase ismuch slower compared to the small cycles. The soil behavior
is significantly softer. 4mm additional displacement in these cycles are not enough
to reach the asymptotic curve of the previous penetration.

Evidently, the evolution of the tangential force is a result of the soil behavior
under the 2D pile tip (collar). The tip force cannot be measured directly in the
current configuration but it can be evaluated from the measured forces.

The force distribution on wall segment 2 is illustrated in Fig. 9 for displacements
downwards and upwards.

The tangential force Fy,2, measured by the tangential load cell, is usually directed
downwards in the penetration phases and upwards in the pull-out phases. The normal
force Fx,2 is always a compressive force and enables the mobilization of friction on
thewall segments surface. Fx,2 ismeasuredvia four normal load cells Fx,2 = �Fx,2,i
(i = 1−4). The resulting friction force is named Fτ and can be estimated as follows:

Fτ =
∫ Aseg

τ d A = Fx,2 · tan(δmob), (2)

wherein Aseg is the surface area of the segment and δmob is the mobilized friction
angle steel-soil. For large unidirectional displacements (>1mm), this friction angle
can be assumed to be fully mobilized (δmob = δmax). The segments surface partly
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consists of stainless (front plate) and partly of common steel (collar). For the stain-
less steel surfaces, δmax can be measured on the smooth segments 1 or 3. Usually,
values of about 13◦ are obtained. Taking the higher roughness of common steel into
account, δmax was estimated at 16◦ here. The friction force is directed against the
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wall displacement, thus, against Fy,2. The last force to be considered is the tip force
Fb. This force is always directed upwards and vanishes for large displacement in the
pull-out phases.

Assuming that the friction angle is fully mobilized, the tip force can be estimated
accurately. Taking the distinction of cases (displacements down- or upwards) into
account, the absolute value of the tip force Fb can be calculated as follows:

|Fb| = |Fy,2| − |Fx,2| · tan(|δmax|) (Δs ↓) (3)

|Fb| = |Fx,2| · tan(|δmax|) − |Fy,2| (Δs ↑). (4)

Problems occur at reversal points in the test path. Just after changes of direction
of the wall displacements, the mobilized friction angle is unknown. A characteristic
line for its evolution after reversal points cannot be specified for all cases. Amongst
others, it strongly depends on the stress state and the soil density. This problem is
(yet) not solved at the moment. Thus, the tip force can only be roughly interpolated
in the phases about 0.3–0.4mm wall displacement after reversal points.

Figure10 presents the calculated tip force obtained from Eqs. 3 and 4 for test
V14-4. The sections calculated with Eq.4 are plotted in red, those calculated with
Eq.4 in blue and the interpolated section in green.

The calculated tip force in Fig. 10 is comparable to the tangential force Fy,2 in
Fig. 8b. However, there are important differences. In the small cycles, the tip force
does not vanish. A minimum value of −0.4kN remains in the top position of both
cycles. 2D pile tip and sand are always in contact. In the new penetration phases, the
tip force first increases rapidly. Exceeding the lowest previous position, the response
gets softer and the curve approaches the asymptotic penetration envelope curve. In
the larger cycles in contrast, the tip force evolutes in a different way. A complete
stress relief under the 2D pile tip is reached after a displacement upwards of about
1.5mm. A loss of contact between pile tip and sand was observed in these phases
during the test. In the new penetration phases, there is still no tip force for about
2mm displacement. This penetration is necessary to close the gap between pile tip
and sand surface. Afterwards, the tip force slowly restarts to increase with a much
softer response than in the small cycles.

From Fig. 10 can be concluded that the evaluation of the tip force following Eqs. 3
and 4works correctly in the given case.A strong argument in favour of this conclusion
is that in the phases without contact between tip and sand zero tip force is calculated
with Eq.3 aswell aswith Eq.4. For large unidirectional displacements the calculation
can be considered to work adequately in any case.

The calculated tip force can now be compared with other penetration tests using
pile-like structures. [8] for example presented in-situ experiments using an instru-
mented pile. For smaller scales, similar effects were observed and discussed in [2,
3]. The occurrence of two basic pile driving modes was shown, named cavitational
and non-cavitational pile driving. The schematic illustration of these two modes is
given in Fig. 11. Figure11a illustrates the case of non-cavitational and Fig. 11b the
case of cavitational pile driving.
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Fig. 10 Estimation of the tip
force Fb in test V14-4
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Comparing Figs. 10 and 11, it can easily be seen that in the small cycles
non-cavitational and in the large cycles cavitational pile driving occurs. For non-
cavitational pile driving even in the highest point pull-up phase of the pile a small
tip force remains. The stress ratio of the soil elements under the pile tip does not
reverse. The deformations in the pull-up phase are relatively small. Therefore, the
soil behavior in the penetration phases is very stiff and the tip force rapidly reaches
a maximum value. In the test results, this maximum value is not observed but the
approaching to a straight increasing line. This difference can be explained consider-
ing the boundary conditions in the test device where the pile tip approaches to the
rigid bottom plate during the penetration. In the larger cycles in Fig. 10 as well as
in Fig. 11b the tip force, ergo the vertical stress in the soil elements under the pile
tip, vanishes in the phase of the displacement upwards. The stress ratio reverses and
large soil deformations occur. This leads to a much softer response in the subsequent
penetration phase. In the experiments and field tests in [2, 3], the soil zone under
the pile tip was not visible and the soil deformations could not be evaluated. The
test results presented here show that the attribute “cavitational” for this driving mode
was justified because a cavity actually occurs under the pile tip in certain conditions.

3.3 Configuration III: 2D Cavity Expansion

The test configuration II is not explicitly suitable for simulation using FEM because
the 2D pile tip provides edges of 90◦ and for simulations smoothed geometries are
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Fig. 12 a Initial conditions and test path V15-4 and b tangential force Fy,2 over wall displacement

desirable. Configuration III fits better in these requirements. The pile tip is inclined,
sharp edges are avoided and the surfaces of the wall segments are smooth. Thus, the
tests performed with this configuration are particularly suitable for simulations. This
paper only gives an exemplary overview of the results obtained from DIC analysis.
The test path and the initial conditions are shown in Fig. 12a. The test path (Fig. 12a) is
an alternating penetration of 65mm. In the pull-out phases, the displacement upwards
is 3mm, except in the second cycle (about 4mm). Figure12b shows the tangential
force Fy,2 on segment 2 over the wall displacement.

Compared to the test presented using configuration II, the evolution of the tangen-
tial force Fy,2 in Fig. 12b indicates a rather cavitational pile penetration. The tangen-
tial force increases in the penetration phases and reaches about 3.8kN after 60mm
wall displacement. The envelope curve in these phases is not linear, but increases
gradually. After a strong amount in the beginning of the test, the tangential force
increases slowly at the end of the test. In the pull-out phases, a small positive value
is reached rapidly. With restarting penetration, the tangential force increases slowly
over about 8mm displacement before it reaches the envelope curve. This behavior
is similar to the cavitational pile driving mode shown above. Note that with this
test configuration, the inclined pile tip never loses contact to the sand at any time.
However, the contact pressure vanishes and the behavior is similar to the cavitational
pile driving.

Figure13 shows the soil displacements obtained fromDICanalysis after (a) 20 and
(b) 50mmwall penetration. The contour plots including isolines show the magnitude
of the displacements in three areas between the horizontal steel beams. For better
orientation, the steel beams that hide parts of the glass windows are illustrated in
grey and the initial positions of the four wall segments in blue.
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Fig. 13 Displacement magnitudes and vectors for a s = −20mm and b s = −50mm

Beside these information on the displacement magnitudes, vector plots indicate
the direction of the displacements in the zone of interest around the pile tip. In order
to give a clear overview, not all displacement vectors are shown.

Figure13a indicates a bulb-like zone of large soil displacements close to the pile
tip. This zone extends over about two times the pile diameter from the pile axis. The
largest soil displacements are about 8mm. The complete zone with displacements
induced by the pile penetration is about four times as wide as the pile diameter.
From the vector plot detail it can be seen that the pile tip displaces the soil particles
laterally downwards in the zone adjacent to the inclined pile tip. Under the pile,
the displacements are more directed downwards. After 50mm of penetration, the
affected soil zone spreads over the whole width of the glass window. The zone with
large displacements has widened too and is more than four times as wide as the
pile diameter. The largest displacement is about 25mm. The 1mm isoline shows a
distinct necking slightly above the pile tip. This can be explained by the penetration
of pile volume and the dilative soil behavior in vicinity to the pile tip. Both cause
slight displacements upwards above.
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4 Summary and Conclusions

Representative results of large scale model tests on important aspects of pile penetra-
tion are shown. The tests are designed as boundary value problems for the validation
of numerical simulations. An innovative large scale test device is used to perform
cyclic and monotonic penetration tests of planar and non-planar wall structures.
These structures imitate pile penetrations in dry sand under laboratory conditions
(near to plane strain). The distribution of tangential and normal forces on the pile
structure is measured. The soil displacements are obtained from DIC analysis. Thus,
a holistic impression of the test is provided, which allows an extensive comparison
of experiments and simulations.

Tests using three different configuration are discussed. The first test configuration
investigates the soil-pile interface using a planar wall structure displaced along an
adjacent sand body. These tests clearly show the soil behavior of rough soil-pile inter-
faces. The influence of the loading on the development of shear zones is pointed out.
Inmonotonic tests, the localization of shear deformations occurs earlier than in cyclic
penetration tests. The results represent an important database for the development
and the validation of constitutive soil models and contact formulations.

The test configurations II and III concentrate on the soil behavior around pile
tips. The occurrence of the pile driving modes, cavitational and non-cavitational pile
driving, is demonstrated in the model tests. It is shown that, for flat-ended pile tips, in
the case of the cavitational pile driving mode, a cavity forms under the pile tip and in
the case of the non-cavitational pile driving not. However, for the acute-angled pile
tip in test configuration III no cavity is observable although the pile driving modes
are investigated. This leads to the assumption that the cavity is not required for the
cavitational pile driving but only the vanishing of the contact stress under the pile
tip.

From the test results, the general suitability of the tests to provide similar processes
to real pile driving is demonstrated. The wide range of application of the test device
and the abilities of the instrumentation for the evaluation of stresses and soil dis-
placements have been pointed out. The experimental database is thus available for
Benchmark tests of numerical simulations. In the research unit FOR 1136 the other
subprojects can now use these test data for the validation of their work.
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On Soil Deformation and Stress
Redistribution Around Pressed-in
and Vibrated Displacement Pile Tips

J. Vogelsang, G. Huber and Th. Triantafyllidis

Abstract The experimental study compares soil displacement trajectories around
model pile tips obtained from Digital Image Correlation (DIC) for different pen-
etration modes. Monotonic and cyclic quasi-static penetration under plane strain-
resembling conditions in dry sand and vibratory model pile penetration in saturated
sand are investigated. The comparison results agree well although the penetration
mode and the degree of saturation differ considerably. In the experiments, the soil
below the pile tip is first pushed downwards as the pile approaches and is then moved
more and more sidewards. A slight uplift of the grains is observed when the pile tip
has passed. Subsequently, a clear trend of the soil adjacent to the pile shaft to move
towards the pile is measured in the case of quasistatic cyclic and vibratory penetra-
tion. This trend is considered to be an indicator for “friction fatigue”, the degradation
of shaft friction at a certain depth as the pile penetrates further. A discussion on the
comparability with numerical results and on the influence of disturbing boundary
effects concludes this contribution.

Keywords Pile penetration · Vibratory pile driving · Friction fatigue

1 Introduction

The application of Digital Image Correlation (DIC) to geotechnical model tests
on pile penetration has been an important improvement for understanding related
effects. Substantial efforts have been made on the evaluation of soil displacements
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and deformation around pile tips with small diameter, e.g. [15]. However, most work
concentrates on small, non-instrumented model piles penetrating into dry material in
monotonic penetration mode. The measurement of stresses acting on the pile is usu-
ally performed in closed test devices (strong boxes or calibration chambers) without
evaluation of soil deformation [3, 4, 16]. Important phenomena, like e.g. friction
fatigue, were measured in such tests. These effects were also investigated via DIC
in tests with non-instrumented piles by consideration of characteristics of displace-
ment and strain paths [15]. The attribution of these optical observations to stress
measurements in the same test is still a challenging task.

The aim of this paper is to contribute to this research work and to provide reliable
experimental data for the validation of Finite Element (FE)-simulation techniques.
Therefore, 1g-model tests were performed to investigate the soil mechanical effects
aroundpile tips duringpressed-in andvibrated-in penetrationmodes in coarse grained
material. A cohesionless medium quartz sand was used in all tests. Two test devices
were used: a large scale test device with 2D-resembling conditions for pressed-in
sheet-like piles and a half cylinder-shaped device for rectangular vibro-driven piles.
Both devices allow the evaluation of soil displacements and deformations around the
pile tip via DIC. In this contribution displacement trajectories and principal strains
(resp. strain directions)will be analysed.Major subjects of this studywere penetration
mode and pile tip geometry. Quasi-static monotonic and cyclic penetration were
investigated using the large scale test device. Vibratory penetration was performed in
the second test device. Both will be quantitatively compared in terms of displacement
and strain paths. Remarks on the transferability of the test results on real displacement
piles and the limitations of model testing will be made. A comparison of test results
and effects of pile driving observed in FE simulations will conclude this contribution.

2 Experimental Methods and Setup

The interface test device with possible test configurations is presented in detail e.g.
in [8, 12, 16]. The setup used in this study is illustrated schematically in Fig. 1.
The so-called 2D-pile is a wall structure with 0.5 m width placed between two glass
observation windows. This 2D-pile is divided into four instrumented segments in
order to evaluate the force distribution on the structure. In the second segment, the
“pile tip” is located. Thus, the lowest segment and the lower part of the second seg-
ment represent a kind of pre-pile. Segments three and four represent the pile shaft.
This assembly resembles the zipper-technique, that is often used in FE simulations
of pile penetration. The glass windows have relatively smooth surfaces and are rein-
forced horizontally. This experimental setup tries to achieve plane-strain conditions
(which is actually not completely successfull, see [13] and Sect. 6.2). The 2D-pile
is penetrated into the sand using an hydraulic actuator mounted on top of the test
device. This actuator moves a connection rod that is coupled individually to each
wall segment. The 2D-pile is 15 mm wide (bpile = 30 mm) and has a tip inclination
of 30◦.
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Fig. 1 a Schematic interface test device, b sketch of a 2D-pile (sheet pile) and c corresponding
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Fig. 2 a Test device for vibro penetration, b vibrator and c detail pile tip

In the half-cylinder test device, model tests with water saturated sand are possible.
Model piles with small equivalent diameter can be penetrated into the sand by vibro-
driving. They slide along the acrylic glas front sheet, so that the pile tip and one face
are visible throughout the whole test. A schematic illustration of this test device is
shown in Fig. 2a. The model piles are driven by a small vibrator, Fig. 2b.
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The model pile shaft is an aluminium tube with rectangular cross sections of
30× 30 mm and 2 mm wall thickness. The tip geometry was matched to the 2D-pile
tip in order to provide comparable geometric effects. It has a pyramidal shape with
the same width as the shaft and a cone angle of 60◦ (same angle as 2D-pile tip) resp.
45◦ (back), see Fig. 2c. The front face of the pyramid is vertical and is in contact
with the front sheet (observation window). A layer of felt is bonded to the surface
in contact with the acrylic glas front in order to ensure low friction between the pile
and the window.

2.1 Instrumentation

Substantial force and stress measurements are possible in the case of the large scale
test device. They include measurement of horizontal and vertical support forces on
the wall segments. A detailed discussion on the evaluation of tip resistance and earth
pressure distribution is provided in [12]. The displacement is measured separately
for each wall segment.

In the half-cylinder, only pile head force and pile displacement are measured. The
load cell is placed between vibrator and pile. The displacement is measured with a
rope pulley transducer.

2.2 Evaluation of Soil Deformation

Both test device have glas resp. acrylic glas observation windows allowing the eval-
uation of soil deformations during the tests. In the interface test device, the front and
rear side walls in vicinity to the wall segments are glass windows. The half-cylinder
has a acrylic glas sheet in the symmetry plane. In both cases, the observationwindows
are assumed to behave similarly to symmetry planes.

2.2.1 Digital Photography and Post-processing

Three digital cameras are used in interval mode for the observation of quasi-static
tests. The dynamic model pile penetration is documented using a high frequency
video camera. Information on cameras and picture recording are given in Table 1.

Representative sections of the test are subsequently extracted from the image
sequences. If necessary, the image sequences are post-processed. Post-processing
includes fine rotation with respect to known vertical or horizontal axes. Cropping
the regions of interest is done inside the DIC software JPIV [10]. Figure 3 shows
image material taken from two test using both test devices. It can be seen that a
random pattern is painted on the felt in order to provide a sufficient contrast for DIC.
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Table 1 Camera information

Pressed-in piles Vibro-driven piles

Camera Nikon coolpix P7700 Basler CMOSIS ace
acA2000-340km

File type xxx.jpg xxx.seq

Interval (s) 30 0.007

Images per min 2 8400

Size (Pixel) 2816 × 2112 2040 × 1088

Scale (Pixel/mm) ≈15 ≈10

Scale (Pixel/d50 (mm)) ≈8 ≈5

Color depth (bit) 24 8

Fig. 3 Image material from a 2D-pile penetration and b 3D-vibrodriven pile penetration

A correct evaluation of the pile displacement is important, because it is the only part
of the image where the quality of the evaluation can be proved.

2.2.2 Digital Image Correlation

JPIV [10], a freeware code for Particle Image Velocimetry, is used for the evalua-
tion of the displacement field between two subsequent images. Summation of the
displacements and strain calculation is done afterwards. The evaluation procedure is
described in [8, 16].
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2.3 Test Material, Sample Preparation,
and Uniformity Control

A medium silica (quartz) sand is used in the experiments. Some important granular
properties are given in [11, 14]. The sand is installed in the test device by using a
sand rainer system (described in detail in [8, 16]). Before the test, the uniformity
of the soil sample is controlled by CPTs. The set-up, evaluation procedure and first
results are discussed in [13].

2.3.1 Dry Conditions

Dry samples for the large scale interface test device are obtained by air pluvia-
tion of dry material. Details on the pluviation system and methods can be found in
[8, 16]. Note that the initial stress state before the test is influenced by silo effects.
An investigation of these effects is provided in [13].

2.3.2 Saturated Conditions

Saturated samples in the half-cylindrical test device are obtained by pluviation of
dry material into water. This procedure results in relative densities of about 40%.
Higher densities can be achieved by excitation of the test device with slight hammer
blows against the side walls. The densification was stoppedwhen a relative density of
about 70% has been reached. This method is considered to provide high degrees of
saturation [17]. However, subsequent densification of the soil body is not applicable
in all test devices. In addition to this, the uniformity of the sample has to be ensured.

3 Nomenclature, Coordinates, and Sign Conventions

A schematic illustration of the model pile embedded in sand is shown in Fig. 4
with the relevant geometries and the chosen coordinate system. The pile diameter in
the view plane is denoted bpile. The width of the 2D-pile corresponds to bpile/2. A
local coordinate system is defined relative to the initial pile position. The origin is
located in the symmetry axis/plane of the pile on the vertical level of the pile shoul-
der. Coordinates downwards and to the left are defined negative. In the deformed
configuration, the current vertical distance between an arbitrary sand element and
the pile shoulder is named Δy (also negative towards bottom and left), Fig. 4c. A
sand element below the pile tip has thus a negative Δy. According to [15], this coor-
dinate will be presented in a normalized form: 2Δy/bpile. For selected points on the
displacement trajectory, the deformed element shape will be plotted in the directions
of principal strain. This configuration is schematically illustrated in Fig. 4d.



On Soil Deformation and Stress Redistribution … 47

symmetry 
axis

symmetry 
plane

x

y

Δy

(c)

Δx

bpile

x

y

x0

y0

(b)
bpile

x

y

x0

y0

(a)
0.5bpile

x

y

(d)

soil element in 
initial configuration

deformed 
soil element in principal 
strain directions
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pile position and illustration of displacement trajectory and d element shape in deformed configu-
ration in directions of principal strain

Table 2 Information concerning the compared tests

Test Dim. Tip shape Penetration
mode

ID (%) SR (%) hsand (m) σy,0
(kN/m2)

V18-1 2D 2D-30◦ Monotonic 69 0 1.7 ≈10

V15-4 2D 2D-30◦ Cyclic
(pseudo-
dynamic)

69 0 1.7 ≈10

Vib-01 3D 3D-30◦ Vibro-
driven

69 ≈100 0.9 ≈3–4

4 Displacement and Deformation Around Pile Tips

Three model tests will be compared: V18-1, V15-4 and Vib-01 (internal names).
Some relevant information concerning these tests is listed in Table 2. The test paths
are illustrated schematically in Fig. 5. Note that the “time” axis is strongly stretched
for the vibro-test compared to the two quasi-static tests.

A good comparability of all three tests was achieved due to the similar pile tip
shape and almost equal initial soil density of ID = 69%. Important differences were
the stress level, the water content, the penetration mode and the dimensionality of
the process. The soil displacements and deformations will be compared for all three
tests. A possible evolution of pore pressures in test Vib-01 is not considered in this
study.

4.1 Displacement Trajectories and Deformation Paths

Figure 6a shows displacement trajectories of selected points in vicinity to the 2D-pile
tip during monotonic penetration into dry sand. The axes on the left resp. bottom
are the coordinates with respect to the pile symmetry plane in horizontal and the
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Fig. 6 Selected displacement trajectories during monotonic plane strain model pile penetration
evaluated via DIC: a overview, b detailed figure with deformed elements in principal strain direc-
tions; ID0 = 69% and SR = 0%

pile shoulder in vertical direction, see Fig. 4. These coordinates are normalized with
bpile/2 on the top and right axis. The initial pile position is shown inblue color. The end
position is indicated by solid lines. The region below the pile tip (vertical projection)
corresponds to coordinates x ∈ (−bpile/2, bpile/2). Displacement trajectories for
sand elements in vertical columns (same initial horizontal position) are plotted in the
same line color. Figure 6b is a detailed view on four soil elements in a horizontal
cross section. The current normalized vertical position of the soil elementwith respect
to the current position of the pile shoulder is indicated for four selected moments:
2Δy/b = 2, 2Δy/b = 1, 2Δy/b = 0 and for the end of the test. 2Δy/b = 0 is the
moment where the soil element passes the vertical level of the pile shoulder. In
addition to the trajectories, the current shape of each element is plotted as a cross in
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the principal strain directions, see Fig. 4d. The cross represents the current minimal
and maximal width of the element in the view plane.

Figure 6 indicates that the sand is pushed downwards and to the side as the pile
tip passes the sand elements. The vertical displacement downwards is larger in the
regions under the vertical projection of the pile tip. The outer sand elements have
a predominant horizontal displacement component. Some sand elements show a
slight uplift towards the end of the penetration process. This detail will be taken into
consideration later on.

The two lower rows show very similar displacement trajectories. They can be
treated as representative displacement patterns due to pile penetration. The sand
regions above do not undergo the whole history of the pile penetration process. The
third row (counted from the top) is therefore shown separately in a detailed view
in Fig. 6b. Figure 6b also illustrates the chronology of the process and the occur-
ing deformations. As the pile approaches vertically towards the sand elements the
horizontal displacement component becomes more and more dominant. The further
pile penetration causes only very small displacements. These displacements are ori-
ented upwards for the sand elements outside of the pile projection. The displacement
upwards start before the pile shoulder has passed the sand elements. For the sand
elements in direct vicinity to the pile tip, the displacements are purely downwards.

The deformation mode resulting from pile penetration was often reported: Below
the pile tip, the deformation regime is roughly vertical compression/horizontal exten-
sion and beside the pile tip the opposite, vertical extension/horizontal compression.
A deformation pattern like this was observed in experiments (e.g. in [15]) and is also
obtained qualitatively fromFE analysis [1]. The direction ofminimalwidth (maximal
compression) is oriented approximately tangentially to the displacement trajectory
as long as an element is under the pile projection. When the pile tip passes an ele-
ment, a counter-clockwise rotation of directions of principal strains with respect to
the trajectory can be seen.

Figure 7 shows the same curves for similar points during an alternating or pseudo-
dynamic pile penetration in dry sand. The pile penetration consists in movements
downwards interupted by phases of 3 mm pile displacement upwards, see Fig. 5. The
effective penetration per “cycle” is 10 mm.

The displacement trajectories during cyclic penetration in Fig. 7a are very similar
to the displacement patterns during monotonic penetration. In Fig. 7b, the cycles
can be analysed more clearly. The cycles are like loops attached to the monotonic
path. For small displacements upwards, a positive vertical displacement occurs due
to the stress relief. Subsequently, the soil elements move to the side towards the
symmetry axis. In the new penetration phase, the monotonic path is rapidly reached
and followed.

In Fig. 7a, a problem related toDIC evaluation of pile penetration processes can be
seen. The element in the second row and right column (highest pink trajectory) shows
a strong displacement downwards as the pile tip has already passed this element. This
displacement pattern is anormal and is in distinct contrast to other elements starting
from the same horizontal position. It can be seen, that the considered soil element
ends up close to the pile and actually overlapes the pile shaft, which is physically
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Fig. 7 Selected displacement trajectories during pseudo-dynamic plane strain model pile penetra-
tion evaluated via DIC: a overview, b detailed figure with deformed elements in principal strain
directions; ID0 = 69% and SR = 0%
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Fig. 8 Selected displacement trajectories during vibrodriven model pile penetration evaluated via
DIC: a overview, b detailed figure with deformed elements in principal strain directions; ID0 = 69%
and SR ≈ 100%

not possible. This behaviour results from an erratic DIC evaluation. When a sand
region is located too close to the pile tip, it may happen that parts of the test patch
contain sections of the pile. These sections disturb the evaluation of displacements
and the soil displacement contains erroneously portions of the pile displacement
(rigid body). Thus, the evaluation of regions in vicinity to sand-structure interfaces
have to be treated very carefully.

Figure 8 shows similar displacement trajectories for the vibro-driven 3D-pile pen-
etration. Globally, the displacements are similar the quasistatic 2D-pile penetration.
Quantitative comparison will be made in Fig. 9.
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Fig. 9 Comparison of displacement trajectories for monotonic, cyclic and vibrodriven model pile
penetration

One detail stands in contrast to Figs. 6 and 7: the sand elements near the pile
shaft tend to move downwards along the shaft when the pile tip has already passed
these elements. This calculated displacement was verified and does not result from
an erratic DIC evaluation.

Figure 9 compares the displacement trajectories in the three penetration modes
for selected points. Note that the positions of the selected points are slightly different
because the size of the DIC patches differ. The vertical offset was eliminated in order
to start from one given vertical level. The horizontal position was not altered.

Figure 9 shows a qualitatively similar displacement mechanism for all three pen-
etration modes. The sand elements in the vertical projection of the pile are pushed
down- and sidewardswith a predominant vertical component. They end up next to the
pile shaft as the pile has passed. The outer sand elements are moved more to the side
and show a slight uplift as the penetration continues. The two plane strain tests are in
very good agreement. The vertical displacements downwards of the sand elements
below the pile tip is slightly stronger in the cyclic test. Comparing the 2D tests and 3D
vibrodriven test, important differences can be seen. The horizontal displacements for
the 3D vibrodriven case are significantly lower than in the 2D cases. This difference
is more pronounced for the sand element outside of the pile projection and results at
least in parts from the dimensionality of the problem. In plane strain conditions, a
horizontal displacement of a sand element is not necessarily connected to a volume
change. The 3D case is comparable to a rotationally symmetric process, where a
horizontal displacement results in a strain in the offplane direction (circumferential).
Thus, a smaller horizontal displacement of the outer sand elements is sufficient to
compensate the additional penetrated pile volume and dilation effects. Figure 10
illustrates the dimensionality effects observed in the displacement trajectories.
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Fig. 10 Illustration of the dimensionality effect during pile penetration

Another important difference between the quasi-static and the dynamic test is the
displacement of sand elements in vicinity to the pile shaft when the tip has passed.
As already discussed, these sand elements show the clear tendency to follow the pile
displacement downwards.

Towards the end of the outer displacement trajectories, a small but significant
detail between monotonic and cyclic/vibro-driven penetration can be seen: the outer
sand regions tend to move towards the pile shaft, when the pile tip is located below
these elements. This important detail is discussed in the next chapter.

5 Stress Redistribution Around Pile Tips

The phenomenon of “friction fatigue” (also called the “h/R effect”) is known to be
a governing factor in the penetration process of a pile as well as in the evaluation of
initial capacity of driven piles [7, 16]. “Friction fatigue” is defined as the decrease
of shaft friction at a given depth as the pile penetrates further. It was shown to occur
during cyclic and dynamic penetration. For monotonic penetration, “friction fatigue”
is not to be observed [9]. “Friction fatigue” corresponds to a significant relaxation
of horizontal (radial) stress in the sand regions adjacent to the pile shaft and is at
least partly explained by the soil behaviour under cyclic loading. Thus, the name
“friction fatigue” is not completely correct as the cause is a relief or relaxation of
radial stress and the effect is a decrease of ultimate shaft friction (assuming a constant
contact friction angle). Therefore we prefer to use the term “stress relaxation” in the
following.
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Fig. 11 End (tail) of displacement trajectory for a V18-1, b V15-4 and c Vib-01

5.1 Experimental Evidence of Stress Relaxation
Along the Shaft

The investigation of relaxation effects requires the measurement of the evolution
of displacements and forces resp. stresses and strains. During this study only dis-
placements have been measured. Therefore the results can only used in an indicative
manner and further investigation is needed.

The trend at the end (or tail) of displacement trajectories of elements near to the
pile shaft is considered to be an indicator for the occurence of stress relaxation [16].
Figure 11a–c shows a detailed view on this section of the trajectory for the three tests.
The sand elements in the third row of the first column are compared (red curves in
Figs. 6, 7 and 8). The small arrows indicates the direction of displacement.

The global shape of the trajectories in Fig. 11a–c is similar: the sand is pushed
sidewards and thenundergoes a small uplift.However, the displacement trend towards
the end contrasts sharply. During monotonic penetration (Fig. 11a) the sand element
remains at a constant horizontal position. The distance between sand element and
pile shaft does not change. During cyclic and vibro-driven penetration, a clear trend
of displacement towards the pile shaft is observed.

6 Discussion of the Results

6.1 Comparison with Other Model Tests and FE Simulation

The presented results are in good agreement with other model tests on pile pene-
tration. The global penetration mechanism is found similar, although different pile
diameter, tip inclination and penetration modes were investigated. The observations
in DIC analysis agree with the hypothesis of displacement indicators for friction
fatigue and offer a plausible explanation for effects related to cyclic pile penetration.
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Fig. 12 Measured displacement trajectory for a sand element in direct vicinity to a penetrating
model pile tip (from [15], h = Δy)

White and Bolton [15] reported similar trajectories during monotonic model pile
penetration and related those to the mechanism of stress relaxation, see Fig. 12.

An explanation offers the behaviour of soils under cyclic loading conditions.
Following [15], the mechanism can be described as follows: The soil direct adjacent
to the pile shaft is sheared cyclically due to the cyclic motion of the pile shaft.
As a consequence, it tends to contract so that the outer sand regions can move
towards the pile shaft. The reaction of the sand located at the pile shaft should be a
combined contraction/relaxation mode. Contraction leads to the outer displacements
towards the pile shaft and relaxation leads to a degradation of shaft friction (“friction
fatigue”). This interpretation is in accordance to the experimental observations in
[12] on the soil behaviour adjacent to a cyclically displaced wall segment with rough
surface. It was found that a jamming (opposite case of relaxation) is accompanied by a
displacement trend away from the soil-wall interface. In the 3D-case, circumferential
arching occurs. The circumferential horizontal stress can exceed the radial horizontal
stress. It is not easy to perform measurements of this stress redistribution.

In Fig. 12, it can be seen that a displacement towards the pile tip can occur even
during monotonic pile penetration. In the tests presented here, such displacement
was only observed during cyclic and vibro-driven penetration. One reason could be
that the performed penetration depth was not sufficient.

Although a vast number of numerical simulations of pile driving are available,
comparisons with the presented test results are not easy to be drawn. Either differ-
ent geometries are modelled or displacement patterns are not analysed explicitly.
However, some basic analogies can be seen. Large compressive strains essentially in
vertical direction and extension in horizontal direction are usually observed below
the pile tip, e.g. [1]. The effect of ”friction fatigue” was also observed in numerical
simulations, e.g. [2]. More verification of numerical work using existing model test
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data is necessary in this context. It is the aim in the research unit FOR1136 to use
the presented model tests for the validation of FE simulations.

6.2 Disturbing Boundary Effects

The interaction between side walls resp. observation windows and soil was neglected
until now. The displacement trajectorieswere interpreted as representative for the soil
flow around the pile tip. However, two principal effects of interaction that actually
occur have to be distinguished: the mobilization of friction in the interface side wall-
soil and the deflection of the side walls due to increasing horizontal earth pressure.
The parasitic impact of the observation windows is not easy to evaluate but has to
be taken into account in the interpretation in a qualitative manner. The qualitative
influence of both effects can be summarized as follows:

• Friction on the side walls
Friction between observation window and soil inhibits soil displacements along
the window and leads to off-plane shear deformation of sand elements near to the
window. The soil displacements and deformations can be larger in the inner part
of the soil body.

• Deflection of the side walls
Deflection of the observation windows leads to strains in the off plane direction.
For the 2D-case, volumetric strain can no longer be evaluated assuming plane
strain conditions. This deformation cannot be evaluated with planar DIC.

The influence of frictional effects between glass and soil is considered small due
to the low contact friction angle (≈10◦). By observation of the free sand surface at
the top, no 3D effects or arching were optically identifiable. Nevertheless, in [12] it
was shown that arching effects do have an impact on the experimental results. The
deflection of the side walls was measured for a monotonic test and lies in the range
of 0.3 mm. Therefrom, an off-plane strain of 0.1–0.5 % can be calculated. Occuring
strains during the test results presented here, reach a few % (up to more than 20%)
and are therefore predominant compared to the off-plane strain.

FE back calculation of the experiments can take account for these boundary effects
if the sidewalls are incorporated in themodel. This leads to an important improvement
of comparability between test and simulation and can even enhance the interpretation
of the experiment.

7 Summary and Outlook

In this contribution, the soil displacements and strains occurring during model pile
penetration were investigated. Effects of penetrationmode and dimensionality (plane
strain-like or 3D) were studied using two test facilities: Quasi-static monotonic and
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cyclic plane strain penetrationwas performed in a large scale interface test device and
vibrodriven pile penetration was performed in a half-cylinder test device. Soil defor-
mations were evaluated using DIC. Representative displacement trajectories of sand
elements with different horizontal distances to the pile were compared. The over-
all penetration mechanism is similar although pile penetration mode, tip shape and
degree of saturation differ. A marked dimensionality effect was demonstrated. The
evaluated horizontal soil displacements were significantly larger in plane strain pile
penetration than in 3D-vibro-driven penetration. Indicators for stress relaxation were
shown to appear during cyclic plane strain pile penetration and during vibrodriven
pile penetration. Future investigation will focus on the link between DIC evaluation
of soil deformation and stress measurements on the model pile.

The tests presented include the effect of pile penetration. In subproject 6 of the
research group FOR 1136, the soil liquefaction around vibrating pile tips is inves-
tigated numerically [5, 6]. However, in these simulations, the pile vibrates around
a constant position, the effect of penetration is neglected. In order to compare sim-
ulations and results, future tests will be adapted to that boundary value problem. A
modified pile with flat ended tip will be used for that purpose.
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Modelling of Soil Structure Interaction
by Applying a Hypoplastic Material
Behaviour Within Mortar Contact
Formulation

P. Dziewiecki, C. Weißenfels and P. Wriggers

Abstract The main goal of the project is the realistic simulation of pile installation
processes. By considering this processes prediction of soil behaviour using numer-
ical simulation is used. The boundary conditions, here the external loads, are the
contact forces between soil and structure. For correct prediction of the external loads
a suitable contact and friction model is required. During the relative movement of
a pile or generally a body with a rough surface within sand, a shear zone actually
develops within the sand, directly to the contacting surfaces. Thus the interaction
behaviour between sand and pile results in varying coefficient of friction, which is
assumed as a quantity dependent on the stress state within sand body near to the
contact surface. This assumption leads to an extension of the classical formulation
of friction laws used within the contact mechanics framework related to the inelastic
material behaviour. As constitutive law a hypoplastic material model is used, which
represents volume changing effects of sand due to loading, which are specific for
granular media. The discretisation of the contact constraints based on mortar method
will be described. A robust hypoplastic model will be depicted. A proposed projec-
tion procedure for calculating the coefficient of friction exploiting the mentioned
localisation of the contact surfaces and thus the analogy of simple shear and triax-
ial test behaviour of sand will be described. For the validation of the finite element
model the results are compared with experimental data obtained within a specific
large scale shear test.
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1 Introduction

Installation of construction elements like vibro-driven piles in building grounds may
lead to strong influencing of the soil state. Because of this strong interaction the
behaviour of the soil have to be predicted by using numerical simulation. Though the
boundary conditions and the loads are determined by the contact forces between soil
and structure. Therefore there is a need for precisely understanding of themechanical
system consisting of the installed pile and the surrounding medium soil. Especially
the surrounding soil exhibits a highly non-linear behaviour. Considering thismechan-
ical system, see Fig. 1, at first it is important to take the contact between sand and the
moving pile into account. Implementing contact interaction between soil and struc-
ture the friction behaviour has to modelled realistically. Considering a rough surface
between sand and pile, contact is actually taking place between soil and soil. This
assumption can be made, because the actually unbonding takes place not exactly at
the soil-structure interface but approximately at a distance of a few grain sizes of it,
see Fig. 2. According to this fact correct prediction of the loads occurring requires
a suitable model for contact and friction behaviour. Thus a physically motivated
projection scheme has to be used, exploiting the equivalency of material behaviour
in triaxial loading and direct shear test. On the other hand it is important to apply
a suitable constitutive stress-strain relation for the surrounding medium soil. It is
well known, that the mechanical behaviour of the soil is strongly influenced by its
non-homogeneous fabric. The soil consists usually of sand grains, movement and
interaction of which during loading cause volumetric phenomena like dilatancy and
contractancy. In order to describe these phenomena a robust hypoplastic model is

Fig. 1 Classification of the problems
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(a)

(b)

Fig. 2 a Direct shear test. b Idealisation of contact between sand and a surface

applied, suitable for capturing the specific inelastic behaviour. Since the assumption
of contact between sand and sand is made, a hypoplastic model is also used within
the projection procedure for obtaining the coefficient of friction.

2 Material Behaviour

Since the soils is a granular material, several mechanical phenomena characteristic
for this kind of material are occurring. Due to this they exhibit three characteristic
mechanical phenomena. The first one is the dependency of the behaviour on the
magnitude of the hydrostatic pressure p. The second one is the possible volume
change caused by the reordering of the grain skeleton. Thus the considered sam-
ple can increase its volume (dilatancy) or decrease it (contractancy) due to shearing.
Third important property of granular geotechnical materials is the change of the stiff-
ness caused by a change of loading direction. However applying classical plasticity
models the mentioned volume change can occur only for changing plastic strains. A
hypoplastic material model of type proposed by Niemunis [2], which captures the
important phenomena occurring in the large scale shearing test, is used, Eq. (3). The
stress of the soil is given in a rate form

σ̇ = L : (ε̇ − Y wn ‖ε̇‖), (1)

where L = λE p J is elasticity tensor, which depends on p, with Poisson ratio ν = 0,
J a 4th order unit tensor and λE the barotropy parameter of the model. The quantity
Y is an interpolation of the degree of non-linearity between elasticity and plasticity,
Fig. 3. The degree of non-linearity Y is defined as follows

Y = (B + MpR)(pR − p) +
√

B2(p − pR)2 + (2B/M + pR)pR ‖s‖2
pR(2B + MpR)

for p < pR,

Y = ‖s‖√
(B + Mp)2 − B2

forp > pR,

(2)
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Fig. 3 Used yield surface in
p − q−space

with constants M = √
8/3 sinϕ/(3 + sinϕ), B = √

24 c cosϕ/(3 + sinϕ), where
ϕ is the friction angle, c the cohesion of the soil and s the deviatoric part of the
stress tensor σ. The value pR is a threshold, from which on the used yield surface
is rounded for avoiding tension stresses within the soil, see Fig. 3. The degree of
non-linearity Y is in the limit case of elasticity 0 and in the case of plasticity 1. The
exponent w in Eq. (1) is used for biasing of Y . It determinates the influence of the
inelasticity interpolated by Y . For taking the dependency of the yield surface on the
hydrostatic pressure into account a Drucker-Prager model with rounded cone end is
applied:

f (DP)(σ) ≡ −M(ϕ)p − B(ϕ, c) +
√

‖s‖2 + (B(ϕ, c))2 = 0. (3)

3 Contact Between Sand and Pile

Proper treatment of the contact problems requires a suitable discretisation. Mortar
method turned out to be more robust, than node to segment method. According to
this the mortar method is applied in this work. Next very important point is the
exact as possible constitutive modelling of the mechanical interaction between the
contact partners, especially the friction behaviour. Ahead of a detailed explanation of
used approaches, some basic definitions used will be explained. Considering current
configurationϕ(B) one can distinguish three types of boundaries. Dirichlet boundary
ϕ(∂Bu) where displacements can be applied. Neumann boundary ϕ(∂Bσ). In case
of contact a third type has to be considered, boundary ϕ(∂Bc) at which in case of
contact pressure and tangential forces can be transferred, see Fig. 4. Because of the
interaction between the contacting bodies the weak form of the balance have to be
extended by additional contact terms
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Fig. 4 Capturing the interaction in meanings of contact mechanics framework

G(u,η) = ∫
ϕ(B)

(δε · σ − η · ρ0b)dv

− ∫
ϕ(∂Bσ)

η · tda

− ∫
ϕ(∂Bc)

(tNδgN + tT · δgT)da.

(4)

where the terms tNδgN and tT · δgT represent the virtual work of contact forces.
For solving this extended problem additional constraints have to be defined. First
one regards to the first contact term in Eq. (4) and is called the non-penetration
condition

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gNλN = 0 (with λN =̂ tN)

gN ≥ 0

λN ≤ 0

(5)

which indicates that either the normal gap gN on ϕ(∂Bc) is greater than 0, and hence
the contact pressure λN equal to zero. In the other case the regions are in contact,
gN = 0 which causes contact pressure λN. Furthermore a second constraint, the
stick-slip condition, has to be fulfilled

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ̇ f = 0

γ̇ ≥ 0 (where γ̇ �t = �tγ = �tgT)

f ≤ 0 (with Coulombs friction law f c = ‖λT‖ − μλN ≤ 0)

(6)

which means, that either f < 0 and the bodies are in stick, where γ̇ = 0 or, in

other case, tangential slip occurs, γ̇ > 0, and the slip criterion f
!= 0 has to be

fulfilled. Considered together Eqs. (5) and (6) imply Kuhn-Tucker conditions, which
are treated algorithmically in the meaning of an active set strategy.
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Fig. 5 Comparison of node-to-segment and mortar contact elements

3.1 Mortar Method

Node to segment is a widely used technique for contact discretisation. However the
analyzed mechanical problems with all its components may become highly non-
linear. In this kind of cases node to segment techniques seems to induce unstable
solution behaviour or even fails at all. This behaviour exhibits stronger for coarse
discretisation and large time steps. In opposite to this, the mortar method seems to
be a more robust approach for more complex problems, see [3, 4]. While within the
node to segment method only one slave node and the associated master element yield
contributions to the stiffnessmatrix, themortar procedure takes into account complete
patch of pallets consisting of overlapping areas of the master and associated slave
elements, see Fig. 5. Due to this, the quantities are averaged over a mortar patch. As
an example showing the improved performance an uncomplicated, but significant
simulation setup is chosen, Fig. 6, [7]. Within this test a solid block is placed on
another one while assuming friction between contacting surfaces. Both blocks are of
Neo Hookian material type

σ = λ

2J
(J 2 − 1)g−1 + μ

J
(b − g−1), (7)

where J = det F is the determinant of the deformation gradient F, b = F FT the
left Cauchy-Green strain tensor, g−1 the contravariant metric tensor in the current
configuration and Lamé constants λ and μ [1] (while engineering constants used are
E = 1.0, ν = 0.3). The lower block is supported at the bottom. The lower and the
upper blocks are discretized by 5× 5× 5 and 4× 4× 4 elements respectively. The
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Fig. 6 Geometry of the rotational test
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Fig. 7 Comparison of results of node to segment and mortar discretisation

upper block is then rotated by 90◦ in 5◦ steps. Comparing the results, Fig. 7, one can
see that the node to segment method leads to an unstable solution behaviour, which
doesn’t complete the full rotational movement. In contrast to this, computation using
mortar method runs stable and results in a smooth axial force curve.

3.2 Calculation of the Stress Dependent Friction Coefficient μ

Considering soil-structure interaction the tangential stress behaviour is one of the
most influenting values. It is given by the coefficient of friction μ. Taking into
account the changing behaviour of soil during loading, new friction laws have to
be applied. In reality the coefficient of friction μ depends on different mechanical
quantities. In several applications friction is dependent on the tangential slip rate ġT,
the normal pressure λN, the temperature Θ or on the surface roughness z(x, y). A
detailed overview can be found in [8]. A detailed consideration of Finite-Element
implementation in [9]. Here different modelling approach is assumed where the
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coefficient of friction depends on the actual stress: μ = μ(σ) [7]. The proposed
approach exploits the analogy of triaxial and simple shear test given in the Mohr-
Coulomb and Coulomb friction, see Fig. 2. By applying a suitable numerical proce-
dure the contact layer is treated like a thin limit case of a continuum layer, which is
derived in more detail in the next section.

3.3 Numerical Treatment

A contact area can be treated as a limit case of a thin continuum layer, see [7], which
is used for applying of the described projection procedure. For this purpose it is more
convenient to redefine the contact contribution terms to the weak form (4)

∫
ϕ(∂Bc)

(tNδgN︸ ︷︷ ︸ + tT · δgT︸ ︷︷ ︸)da (8)

in terms of kinematical quantities (Fig. 8). This redefinement is based on descriptions
of shell kinematics. As a first step the position vector and the test function based on
the intrinsic coordinates are introduced

x(ξα, ξ) = x1(ξ1α) + ξ

h

[
x2(ξ2α) − x1(ξ1α)

]

η(ξα, ξ) = η1(ξ1α) + ξ

h

[
η2(ξ2α) − η1(ξ1α)

] (9)

where indices (•)1 and (•)2 are according to slave or master surface, respectively,
and h is the intrinsic height of the contact layer, see Fig. 9. With terms in Eq. (9)
following metric tensors and their virtual counterparts can be derived

gα = ∂x
∂ξα

=
(
1 − ξ

h

)
a1α + ξ

h
a2α, g3 = ∂x

∂ξ
= 1

h

[
x2 − x1

]

Gα = ∂X
∂ξα

=
(
1 − ξ

h

)
A1

α + ξ

h
A2

α, G3 = ∂X
∂ξ

= 1

h

[
X2 − x1

]

δgα = ∂η

∂ξα
=

(
1 − ξ

h

)
η1

,α + ξ

h
η2

,α =
(
1 − ξ

h

)
δa1α + ξ

h
δa2α

δg3 = ∂ξ

∂ξ
= 1

h

[
ξ2 − ξ1

]

(10)
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Fig. 8 Computation of the coefficient of friction μ

which can be used for obtaining components of Almansi strain tensor

2ēα3 = lim
h→0

(
ḡα3 − Ḡα3

) = [
x2 − x1

] · aα − [
X2 − X1

] · Aα

2δēα3 = lim
h→0

δḡα3 = [
η2 − η1

] · aα + [
x2 − x1

] · η,α

ē33 = lim
h→0

1

2

(
ḡ33 − Ḡ33

) = 1

2

[
x2 − x1

]
· n

δē33 = lim
h→0

1

2
δḡ33 =

[
η2 − η1

]
· n

(11)

with ¯(•) :=
∫ h

0
(•) det z dξ the quantity (•) integrated over the height h. The

kinematical terms δgN and δgT can be redefined using components of virtualAlmansi
strain tensor δe = [δe11, δe22, δe33, 2δe12, 2δe23, 2δe13]T
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δgN = (η2 − η1) · n = δe33

δgTα = (η2 − η1) · aα = 2δeα3

(12)

while the in-plane terms are zero

eαβ = 0

δeαβ = 0, (α,β = 1, 2).
(13)

Finally substituting components tN and tT of the contact stress vector in the contact
layer by t = σ · n a solid shell type formulation of contact contribution to the weak
form can be specified as follows

∫
ϕ(Bc)

δe · σdv = lim
h→0

∫
γc

∫ h

0
δedξ · σda =

∫
ϕ(∂Bc)

(tNδgN + tT · δgT)da. (14)

According to the analogy shown in (14) the contact area can be treated like very
thin continuum layer, where the strain tensor has now the form εc = [0, 0, gN, 0,
�tgT1, �tgT2]T. The stress responseσ is given by the hypoplasticmaterial behaviour
(see Sect. 2) with the increment of strain εc. Since the properties of the contact
behaviour strongly depend on the state of contact bodies, here in particular of the
non-linear material behaviour of sand, the crucial point is the derivation of the stress
dependent coefficient of friction μ = μ (σ). Using the observation, that performing a
simple shear test the actually unbonding takes place in a few grain diameter distance
from the moving surfaces, analogy related to the friction angle ϕ obtained from the
triaxial test can be assumed. Following this assumption the common used Coulombs
friction law

f c = ∥∥ t̄T
∥∥ − |λ̄N| tanϕ = 0, (15)

which in three dimensional case leads to the definition of the Mohr-Coulomb yield
criterion, here formulated using invariants of stress tensor and its deviatoric part [5]

f m = √
IIs cos(Θ) +

[
1

3
Iσ −

√
IIs

3
sin(Θ)

]
sin ϕ = 0, (16)

with Iσ , IIs invariants of stress tensor σ and its deviator s respectively, and Θ the
Lode angle. The result is conform with the assumed equivalency of direct shear and
triaxial test, Fig. 10, in case of sand contacting a surface. The Eq. (16) can be solved
for the friction angle ϕ, and thus for the coefficient of friction μ, as follows:



Modelling of Soil Structure Interaction by Applying … 69

Fig. 9 Solid shell element with intrinsic coordinate system used for defining the kinematics of the
contact area

Fig. 10 Principle of direct shear and triaxial test

μ = |tan ϕ| =
∣∣∣∣ tan

⎛
⎝arcsin

⎛
⎝

√
IIs cos(Θ)

1
3 Iσ −

√
IIs
3 sin(Θ)

⎞
⎠

⎞
⎠

∣∣∣∣. (17)

By applying the current strain increment �tε a trial stress state σtr is obtained.
Evaluating the Mohr-Coulomb criterion f mc = f mc(σtr) it is possible to calculate
μ and contact stiffness contributions K contact to the global stiffness K , see Fig. 8.

4 Application to Pull Out of a Wall Experiment

For the verification of the capability of the proposed simulation model a pull out test
is performed. The experimental test was conducted by the Central Project within the
DFG research unit 1136, which provides the experimental data, see also [6]. The
geometry of the model is shown in Fig. 11. The setup consists of a sand body which
is bounded at the bottom by a plate. Three sides are supported perpendicularly to
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Fig. 11 Pull out test geometry

their surfaces. There is no friction between these three walls and sand. The fourth
side has contact with moveable wall section. The wall is divided into four segments.
Each segment has different roughness. The surfaces of the lowest and of the two
upper segments are smooth (μ1 = 0.2). The surface of the middle segment ist rough,
with the coefficient of friction μ = μ(σ) calculated like described in Sect. 3. For
the sand and the contact, for the constitutive behaviour of the rough contact surface,
hypoplastic material model described in Sect. 2 is applied, with material parameter
set

Setting the exponent w = 2 the inelasticity is interpolated by Y quadratically, see
Eq. (1) and Fig. 3. The plate at the bottom and the wall itself are made of the same
material, which is assumed to be linear elastic with modulus E = 210 · 109 N

m2 and
Poisson ratio ν = 0.3. After first step of loading with 1g, in the second the wall
is moved 100mm upwards. In Fig. 12 the tangential force between wall and sand
body for the rough surface is shown. Its according to expectations, that the resistance
within the sand against the movement at the beginning rises. Later with increasing
plastic deformations the resistance within the sand is releasing, which results in a
kind of softening in the tangential force curve. The quantitative difference between
the experimental and the calculated curve is caused by using not fitted material
parameters. The values used here, Table 1, are an example set of parameters.
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Fig. 12 Tangential force in pull out of a wall simulation

Table 1 Material data used for the simulation of the pull out test

Cohesion c Friction angle ϕ Exponent of Y w Barotropy coefficient λE

5 30 2 100

5 Conclusion and Outlook

Within this contribution amethod for considering stress dependent tangential contact
behaviour between sand and a rough structure was shown. Formodelling the granular
medium behaviour as well for the interface modelling a robust hypoplastic material
law was used. Basic procedures within computational contact mechanics as well as
incorporating the inelastic contact body and thus non-linear, stress dependent, evolu-
tion of coefficient of friction have been explained. The proposed approach exploiting
the analogy of friction angle in sand to friction within simple shear test shows good
qualitative ability to model results obtained experimentally. In conjunction with the
mortar method for contact discretisation, the robustness of which has been shown on
a significant example, the proposed model seems to be a well promising simulation
set up. For a better simulation of installation in sand, two important aspects have to
be taken into account. On one side a more precisely identification of material para-
meters is required. On the other hand an even more sophisticated constitutive model
have to be used, which incorporates the changing structure of sand due to volume
change phenomena.
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Vibro-Injection Pile Installation in Sand:
Part I—Interpretation as Multi-material
Flow

D. Aubram, F. Rackwitz and S.A. Savidis

Abstract The installationof vibro-injectionpiles into saturated sandhas a significant
impact on the surrounding soil and neighboring buildings. It is generally character-
ized by a multi-material flow with large material deformations, non-stationary and
new material interfaces, and by the interaction of the grain skeleton and the pore
water. Part 1 in this series of papers is concerned with the mathematical and physical
modeling of the multi-material flow associated with vibro-injection pile installation.
This model is the backbone of a new multi-material arbitrary Lagrangian-Eulerian
(MMALE) numerical method presented in Part 2.

Keywords Multi-material flow · Large deformations · Mixture · Soil mechanics ·
Sand · Averaging · Homogenization · Closure law · Arbitrary Lagrangian-Eulerian
Symbols and Operators
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`(·)k
Material time derivative of a k-phase-related field along vk

˙(·)βk
Material time derivative of β-species-k-phase-related field along vβk

�
(·) Zaremba-Jaumann rate
∇(·) Covariant derivative
A Corotated set of material state variables
b Microscopic body force per unit mass
bβk Average body force per unit mass of the β-species of the k-phase
〈b〉 Average body force per unit mass of the mixture
c Convective velocity
c Generic fourth-order material tangent tensor
cfk Material tangent tensor for the fluid species of the k-phase
ck′

, ck′′
Material tangent tensor for the k-phase effective Cauchy stress

csk Material tangent tensor for the solid species of the k-phase
d(·) Differential, gradient
dfk Average spatial rate of deformation of the k-phase fluid species
dk k-phase mean spatial rate of deformation
dsk Average spatial rate of deformation of the k-phase solid species
〈d〉 Mean spatial rate of deformation of the mixture
div(·) Divergence
dv Volume form on the ambient Euclidian space
e Void ratio
E, Ep Young’s modulus, plastic modulus
f k k-phase volume fraction
f Relative incremental deformation gradient
f Constitutive response function
Fl(·) Averaged convective volume flux
h Generic set of material state variables
hk′

, hk′′
Set of material state variables for k-phase effective Cauchy stress

hsk Set of material state variables for the solid species of the k-phase
I Second-order unit tensor
k Index for the kth phase of the mixture, k ∈ {1, . . . , nmat}
K Microscopic bulk modulus
K fk Average bulk modulus of the fluid species of the k-phase
K k Average k-phase bulk modulus (undrained)
K k
d Average k-phase bulk modulus (drained)

K k
uj Average k-phase unjacketed bulk modulus

K sk Average bulk modulus of the solid species of the k-phase
〈K 〉 Mean bulk modulus of the mixture
lmacro Characteristic length at the macroscale
lmeso Characteristic length at the mesoscale
lmicro Characteristic length at the microscale
nk k-phase fluid fraction, k-phase porosity
nmat Number of material phases in the mixture
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n∗ Outward normals on an interface
p Microscopic pressure
pfk Average pressure in the fluid species of the k-phase
pk Average k-phase pressure
pk′

, pk′′
k-phase mean effective stress

psk Average pressure in the solid species of the k-phase
pβk Average pressure in the β-species of the k-phase
Pk Phase function, indicator function
Pk Sβ Phase-species function, indicator function
q Generic scalar-, vector-, or tensor-valued microscopic spatial field
q̂ Referential or ALE description of the field q
R Rotation related to a corotational rate
s Microscopic extra stress
sfk Average extra stress in the fluid species of the k-phase
sk Average k-phase extra stress
sk′

, sk′′
k-phase effective extra stress

ssk Average extra stress in the solid species of the k-phase
sβk Average extra stress in the β-species of the k-phase
〈s〉 Average extra stress of the mixture
Sβ Species function, indicator function
S Ambient Euclidian space
S Corotated Cauchy stress
t Time
tn, tn+1 Time at the beginning, at the end of a time step
tn+θ Intermediate time in a time step, with θ ∈ [0, 1]
tr(·) Trace of a second-order tensor
u Mean spatial displacement field of the mixture
v Microscopic spatial velocity
vfk Mean spatial velocity of the fluid species of the k-phase
vI Interface velocity
vk k-phase mean spatial velocity
vsk Mean spatial velocity of the solid species of the k-phase
vβk Mean spatial velocity of the β-species of the k-phase
〈v〉 Mean spatial velocity of the mixture
V ′ Volume measure of V ′ in the ambient Euclidian space
Vj Volume measure of the j th control volume
V Spatial domain of interest
V ′ Representative volume element (RVE)
x, x ′ Points in the ambient Euclidian space
z Penetration depth
αk k-phase Biot-Willis coefficient
β index for the βth species of the mixture, β ∈ {s, f}
Γ βk Momentum transfer onto the k-phase β-species due to drag forces
δ
βk
I Dirac delta picking out the β-species-k-phase interface
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�E Corotated algorithmic finite strain increment
�r Algorithmic finite rotation increment
�R Incremental rotation
�S Corotated Cauchy stress increment
�t Time increment
�ε Algorithmic finite strain increment
ε̇svol Average volumetric strain rate of solid grains
Πβk Mass transfer onto the β-species of the k-phase
ρ Microscopic spatial mass density
ρfk Average mass density of the fluid species of the k-phase
ρk Average k-phase mass density
ρsk Average mass density of the solid species of the k-phase
ρβk Average mass density of the β-species of the k-phase
〈ρ〉 Average spatial mass density of the mixture
σy,σy0 Yield stress, initial yield stress in uniaxial tension
σ Microscopic Cauchy stress
σfk Average Cauchy stress in the fluid species of the k-phase
σk Average k-phase Cauchy stress
σk′

,σk′′
k-phase effective Cauchy stress

σsk Average Cauchy stress in the solid species of the k-phase
σβk Average Cauchy stress in the β-species of the k-phase
〈σ〉 Average Cauchy stress of the mixture
Φ Relative motion of the ALE reference domain
ω Vorticity tensor

Abbreviations

ALE Arbitrary Lagrangian-Eulerian
CFD Computational Fluid Dynamics
FEM Finite Element Method
MMALE Multi-Material Arbitrary Lagrangian-Eulerian
PIV Particle Image Velocimetry
RI-pile Vibro-injection pile (“Rüttelinjektionspfahl”)
RVE Representative Volume Element

1 Introduction

Vibro-injection piles, in German called “Rüttelinjektionspfähle (RI-Pfähle)”, are
used in sandy soil to tie back the base slab of deep excavations in urban area with
high groundwater level. They consist of an H-section steel pile equipped with an
injection tube and a welded-on collar located at the pile toe (Figs. 1 and 2). During
the installation of the pile into the water-saturated sand by vibration the soil loses
its shear strength (“soil liquefaction”) and the annular gap generated by the collar is
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Fig. 1 Grid of vibro-injection piles to tie back an excavation base slab. Deep excavation of about
20m in urban area (left) and recovered pile (right)

continuously injected with grout. The installation process of a vibro-injection pile
interacts to a great extent with its neighborhood [32, 34]. This is why the numerical
modeling of the installation process is of high practical relevance for the realistic
prediction of the deformations and the load bearing behavior of the wall.

Sufficiently realistic computational models must be able to reproduce the basic
installation phenomena (Fig. 2, detail A). These include the shearing and liquefaction
of the locally undrained saturated soil, the displacement of the liquefied soil by the pile
and the grout, as well as the mixing of the grout with the liquefied soil. Stated more
generally, the installation of vibro-injection piles can be characterized by a multi-
material flow with large material deformations, by free surfaces and non-stationary
contact interfaces, and by the complex coupled behavior of the grain skeleton and
the pore water. The numerical simulation of such problems is very challenging.
Even the penetration of the steel profile alone could not be handled by using the
classical Lagrangian formulations of the finite element method (FEM) [44, 47]. It
is no surprise, therefore, that up to date there are no FE prediction models for the
installation of RI-piles and for the related time-histories of the stress and density
states within the soil.

It is the aim of the Subproject 5 as part of the DFG Research Unit FOR 1136
to make a significant contribution to this area through the development of a so-
called multi-material arbitrary Lagrangian-Eulerian (MMALE) method. Objectives
are, firstly, to predict both qualitatively and quantitatively the stress and density
time-histories within the soil in the vicinity of the vibro-injection pile and hence the
effects of its installation process on close-by structures and, secondly, the realistic
simulation of the load bearing and deformation behavior of the completed pile. Based
on a continuum mechanical description, especially the single installation phenom-
ena (driving of the steel profile by vibration, liquefaction and displacement of the
undrained soil during vibratory pile driving, grouting of the emerging annular gap
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Fig. 2 Illustration of the installation of a vibro-injection pile in saturated sand to tie back an exca-
vation base slab. Detail A Phenomenology at the pile base, Detail B typical zone of the considered
multi-material flow including macroscopic interfaces

between the steel profile and the liquefied soil; see also Fig. 2) should be modeled
by using an MMALE finite element method.

MMALEmethods fall into the category of arbitrary Lagrangian-Eulerianmethods
[2, 4, 23, 35] and have no limitations concerning material deformations and the evo-
lution or generation of material interfaces. The mesh can move independently of the
material such that material interfaces (boundaries) may flow through the mesh. Ele-
ments cut by interfaces contain a mixture of two or more materials and are referred
to as multi-material elements. The mixture is treated as an effective single-phase
material or homogenized mixture on the element level. Hence, quantities related to
each material must be “mixed” in a certain way to yield the corresponding homog-
enized element quantities. As the latter should be based on physical principles, the
development of an MMALE method for vibro-injection pile installation in sand has
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to start with themathematical and physical modeling of the associatedmulti-material
flow, which is the content of Part 1 in this series of papers. Details of the newmethod
and of our numerical and experimental investigations concerning vibro-injection pile
installation will be presented in Part 2.

Part 1 is structured as follows. In Sect. 2 we introduce the three different spatial
scales (microscale, mesoscale, macroscale) of the continuum mechanical problem
and formulate the balance principles and jump conditions of the microscopic multi-
material flow. This flow is homogenized in Sect. 3 to yield a macroscopic multi-
material flow forming the physical model of the numerical method. One of the basic
techniques to achieve this homogenization is spatial averaging, a theory which is
widely used in the field of multiphase flow and the modeling of porous media.
Section4 then addresses the closure of the resulting system of equations by making
reasonable assumptions and establishing interfacial transfer laws, constitutive laws,
and topological laws. The final form of the macroscopic model for multi-material
flow is derived in Sect. 5 throughmodel reduction based on additional, a priori closure
assumptions. The paper closes with concluding remarks and outlook in Sect. 6.

2 Spatial Scales and Balance Principles

2.1 Three Spatial Scales

Consider the process of vibro-injection pile installation into sand as illustrated in
Fig. 2. Detail B of that figure can be regarded as a still image of a multi-material
flow recorded through a spatially fixed observation window. We take this zone as
characteristic of themulti-material (multi-constituent) flow and assume that the basic
features of the flow are independent of the specific arrangement resp. distribution
of the constituents. The characteristic zone is filled with an immiscible mixture
consisting of a bulk solid phase (steel), a bulk fluid phase (grout), and a compound
phase consisting of a solid species and a fluid species which represents the fluid-
saturated porous material (sand)—the term “species” is used here to distinguish
these constituents from the bulk solid and bulk fluid phases. Void (empty space) is
considered as a particular bulk fluid phase in our model. Immiscibility of the mixture
is characterized by the fact that the constituents are separated by interfaces.

Three spatial scales are introduced in accordance with [6]; see Fig. 3. The porous
material is constituted by an assembly of sand grains, whose typical diameter defines
the microscale of the problem, lmicro. However, in the present research we have to
properly reproduce the nonlinear coupledmechanical behavior of thewater-saturated
sand. In this regard the best models currently available are phenomenological two-
phase models that rely on a continuum representation of the soil and not on micro-
mechanics. Therefore, we introduce the characteristic length at which the saturated
sand can be represented by a continuum as the mesoscale lmeso. A similar issue of
upscaling, but on a larger scale, has to be faced in multi-material elements of the
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Fig. 3 Three spatial scales to model vibro-injection pile installation in saturated sand

MMALEmethod.Accordingly, we postulate the existence of a representative volume
element (RVE) at some macroscale, lmacro, through which the immiscible mixture of
mesoscale continua (bulk solid, bulk fluid, and saturated sand) can be equivalently
modeled as an effective single-phase material (homogenized immiscible mixture)
treated by the MMALE method. The real world is modeled on an even larger scale;
in the literature this is sometimes called the megascale.

To make this point clear, we remark that our definitions of a constituent, a phase,
and a species is comparable to those generally used in chemistry and thermody-
namics. Constituents are called the individual (chemically-independent) materials
composing the mixture on the microscale (constituent = micro-continuum). The het-
erogeneous mixture consists of different material phases separated by macroscopic
interfaces. A phase is physically distinct andmechanically separable and, in our case,
might be identified with a constituent if there would be no saturated porous medium
in the mixture. However, we generally define a phase to be a compound material
consisting of solid species and a fluid species, and which can be regarded homoge-
neous on a mesoscale (phase = meso-continuum). Finally, as indicated by Fig. 3, on
the postulated macroscale the mixture of phases can be addressed as a homogeneous
mixture (macro-continuum).
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2.2 Microscopic Balance Principles

On the microscale all constituents of the mixture can be regarded as micro-continua
(Fig. 3), governed by the equations of continuum mechanics [1, 20, 27, 28, 38, 39].
Generally these include conservation of mass

∂ρ

∂t
+ div(ρv) = 0 (1)

and balance of momentum

∂ρv

∂t
+ div(ρv ⊗ v) = ρb + divσ, (2)

assumed to hold in a domain of interest V ⊂ S in the ambient Euclidian space and
time interval [0, T ] ⊂ R. In the equations, v denotes the material velocity in the
spatial description, ρ is the mass density, b is a prescribed body force per unit mass
(e.g. gravity), σ = σT is the symmetric Cauchy stress, div is the spatial divergence
operator, and ⊗ is the tensor product. The notation is found at the beginning of this
paper.

In the process of vibro-injection pile installation, the velocities are moderate and
thermal effects can be ignored, so that Eqs. (1) and (2) alone serve as the balance
principles of that initial boundary value problem. At significantly larger velocities,
on the other hand, thermal and strain rate effects may constitute an important part
of the solution. In this case balance of energy must be added to the set of governing
equations.

While the balance principles hold in the interior of each constituent, the jump
conditions for mass and momentum given by

[[ρ(v − vI)]] · n∗ = 0 and [[ρv ⊗ (v − vI) − σ]] · n∗ = 0, (3)

respectively, must hold at the interfaces; the jump conditions express the balance

principles at an interface. Here · denotes the single contraction of tensors and [[q]] def=
q[l] − q[k] the jump of q across the interface between material l and material k,
with q[k] being the limit value of q on the k-side of the interface, vI is the interface
velocity, and n∗ is the field of normals on the interface pointing outward of the kth
micro-continuum. In the jump condition for momentum (3)2, no surface tension is
taken into account.

We remark that the balance principles (1) and (2) are in the so-called Eulerian
conservation form, and that all equations in this section refer to a spatial reference
volume instantaneously occupied by the material on the microscale. The quantities
ρ(x, t), v(x, t), etc., represent microscopic (non-averaged) time-dependent spatial
fields, with x ∈ V and t ∈ [0, T ]. This means that a spatial point is viewed as being
currently occupied by a single constituent.
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3 Macroscopic Multi-material Flow

3.1 Fundamentals of Spatial Averaging

In our approach the effective multi-material dynamics on the macroscale is derived
from physical principles by making use of spatial averaging [6, 20, 26, 42]. Spatial
averaging results in continuum mechanical equations which are similar to those that
can be derived using the continuum theory of mixtures and the theory of porous
media [16, 18, 22, 38]; see also Subproject 2 of this research unit. However, the
advantage of the averaging approach is that information available at a smaller scale
is transferred to the larger scale with respect to which averaging is carried out.

Let V ′ ⊂ V be a time-independent RVE having the characteristic length lmacro,
and q(x, t) be an arbitrary time-dependent spatial microscopic field for all x ∈ V
and t ∈ [0, T ]. Then, the volume average of q is defined through

〈q〉(x, t)
def= 1

V ′

∫
V ′

q(x + ξ, t) dv. (4)

Here dv is the volume form on S and V ′ def= ∫
V ′ dv is the volume measure of V ′.

Moreover, ξ = x ′ − x and x ′ ∈ V ′. By (4) and the definition of the RVE, averaged
quantities always refer to the macroscale.

A phase function (or indicator function) is defined by

Pk(x, t)
def=

{
1 if x is in phase k at time t ,

0 else
(5)

for all x ∈ V and t ∈ [0, T ], where k ∈ {1, . . . , nmat} and nmat being the number
of phases in the mixture. The phase function is a so-called generalized function
resp. distribution and picks out the generally time-dependent k-phase volume Vk ⊂
V ′. By the definition of a volume average (4), then, the volume fraction of the kth
phase with respect to V ′ is defined through

f k def= 〈Pk〉 = 1

V ′

∫
V ′

Pk dv = 1

V ′

∫
Vk

dv = V k

V ′ ∈ [0, 1], (6)

where V k def= ∫
Vk dv. Equation (6) is a natural, that is, derived definition of vol-

ume fraction. By contrast, volume fraction is postulated in the continuum theory of
mixtures and the theory of porous media.

We now assume that all material phases of the considered mixture are composed
of a solid species (denoted by β = s) and a fluid species (denoted by β = f). In
fact the portion of one of these species in a particular phase might be zero. For all
x ∈ V and t ∈ [0, T ], we then define another indicator function Sβ , called species
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function, which equals zero everywhere except on the spatial region occupied by the
β-species at time t , where it is equal to one. Concerning the RVE, we denote this
region by Vβ ⊂ V ′. Therefore, by the property of indicator functions, the product
Pk Sβ is the phase-species function picking out the partial volume occupied by the
β-species in the k-phase:

(Pk Sβ)(x, t) =
{
1 if x ∈ V is in species β of phase k at t ∈ [0, T ],
0 else.

(7)

The volume fraction of the β-species in the k-phase is then obtained from

πβk def= 〈Pk Sβ〉
f k

= 1

f k V ′

∫
V ′

Pk Sβ dv = 1

V k

∫
Vβk

dv = V βk

V k
∈ [0, 1], (8)

where Vβk def= Vk ∩ Vβ and V βk def= ∫
Vβk dv is the volume of the β-species in the

k-phase in the RVE. The macroscopic β-species fraction in the mixture is πβ def=∑
k f kπβk , and

∑
k

f k = 1 and
∑
β

πβk = 1. (9)

As we are concerned with phases solely composed of a solid species and a fluid
species, we simply define the fluid fraction (or porosity) of the k-phase through

nk def= πfk (10)

so that the solid fraction within the k-phase becomes πsk = 1− nk by using (9)2. If
the k-phase consists of a solid without significant porosity (e.g. steel), then nk = 0. If
on the other hand the k-phase is a fluid, then nk = 1 applies. Pure solid mixtures are
characterized by nk = 0 and pure fluid mixtures by nk = 1 for all k ∈ {1, . . . , nmat},
that is, n

def= ∑
k nk = 0 or 1 respectively. The mixture represented by a single fluid-

saturated porous medium is characterized by f k = 1 (nmat = 1) and 0 < nk < 1.
Spatial averaging of microscopic physical fields on the constituents is done in a

similar way as in (8) in conjunction with (4) and (6). For example, the averaged mass
density and velocity of the solid species in the k-phase are given by

ρsk
def= 〈Pk Ssρ〉

f k(1 − nk)
and vsk

def= 〈Pk Ssρv〉
f k(1 − nk)ρsk

, (11)

indicating thatvsk in fact is amass-weightedvolumeaverage.Whileρsk is the intrinsic
(or material) mass density, the bulk mass density of the k-phase solid species with
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respect to the RVE is obtained from f k(1−nk)ρsk . The mass density of the mixture,
by the properties (9), can be computed from

〈ρ〉 =
∑

k

∑
β

f kπβkρβk =
∑

k

f kρk =
∑

k

f k
(
(1 − nk)ρsk + nkρfk

)
, (12)

where ρk is the (intrinsic) mass density of the k-phase in the mixture. As an example,
consider a specimen of dry sand in which the pores are filled with gas of negligible
density such that ρfk ≈ 0 and nmat = 1. Then, ρsk = ρs represents the grain mass
density and (1 − n)ρs ≈ 〈ρ〉 is the bulk mass density, which is approximately equal
to the mass density 〈ρ〉 of the solid-gas mixture.

We emphasize that k, β, etc., are labels and not coordinate indices. No summation
on repeated labels in a term is enforced unless the sigma notation is employed.

Based on (11) and (12) the mean spatial velocity of the mixture is related to the
momentum and mass densities of the constituents by

〈v〉 =
∑

k
∑

β f kπβkρβkvβk

∑
k
∑

β f kπβkρβk
=

∑
k f kρkvk∑

k f kρk
= 〈ρ〉−1

∑
k

f kρkvk, (13)

where

vk def= 〈Pkρv〉
f kρk

=
∑
β

f kπβkρβk

f kρk
vβk = 1

ρk

(
(1 − nk)ρskvsk + nkρfkvfk

)
(14)

is themean spatial velocity of the k-phase. It should be pointed out here that averaged
quantities are defined for all x ∈ V and t ∈ [0, T ]. In other words, the mixture after
averaging is represented by a superposition of continuous bodies with independent
motions (i.e. overlapping and interpenetrating continua), as in the continuum theory
of mixtures according to [38].

Averaging of the stress field is not straightforward; see [6], or [26, Chap. 2] for
the case where Sβ ≡ 1. For example, the averaged microscopic Cauchy stress within
the solid species of the k-phase is given by

σsk def= 〈Pk Ssσ〉
f k(1 − nk)

− 〈Pk Ssρv̄sk ⊗ v̄sk〉
f k(1 − nk)

, (15)

in which v̄sk denotes the deviation of the microscopic velocity of the solid species
in the k-phase from its spatial average vsk . If, as in the case considered here, the
solid species of the k-phase is formed by a grain skeleton, then σsk represents the
microscopic Cauchy stress within the grains averaged with respect to the RVE. The
second term on the right hand side of (15) is a residual stress, called Reynolds stress,
due to mass flux relative to the averaging volume. The averaged stress in the grain
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skeleton, σsk , should not be confused with Terzaghi’s effective stress whose proper
definition is given below.

Our three-scale approach to obtain the macroscopic fields differs significantly
from that in [6]. Consider a representative volume elementV ′′ smaller thanV ′ for each
phase k having the characteristic length lmeso at which the mixture of the two species
β ∈ {s, f} in the k-phase can be represented by a continuum. Then, spatial averaging
over V ′ after averaging over V ′′ will result in the same averaged (i.e. macroscopic)
physical field as spatial averaging over V ′ alone. Therefore, we do not introduce a
separate operator for averaging over V ′′, as done in [6], so that stressing the term
“mesoscale” is somewhat superfluous; the averaged equations of a binary mixture
are obtained from those presented herein simply by setting Pk ≡ 1 (resp. f k ≡ 1).
In our approach we use only onemacroscopic averaging operator in conjunction with
a composition of indicator functions, called the phase-species function, which picks
out a particular species in a particular phase. A detailed comparison our approach
and that in [6] is left to future work.

3.2 Macroscopic Balance Principles for Each Species

By using spatially averaged fields and taking into account basic averaging theorems,
the macroscopic (averaged) balance principles for each species in the mixture can
be derived. In particular, conservation of mass and balance of momentum of the
βth species of the kth phase with respect to the whole mixture in the representative
volume element read

∂ f kπβkρβk

∂t
+ div( f kπβkρβkvβk) = Πβk

∂ f kπβkρβkvβk

∂t
+ div( f kπβkρβkvβk ⊗ vβk) = f kπβkρβk bβk + div( f kπβkσβk)

+ Πβk v̄
βk
I +Γ βk (16)

in which β ∈ {s, f}, k ∈ {1, . . . , nmat}, and

Πβk def=
〈
δ
βk
I ρ[βk](v − vI)

[βk] · nβk∗〉 ,

Πβk v̄
βk
I

def=
〈
δ
βk
I ρ[βk]v[βk] ⊗ (v − vI)

[βk] · nβk∗〉 , (17)

and Γ βk def= −〈δβk
I σ[βk] · nβk∗〉.

〈·〉 is the spatial average as defined by (4), δβk
I is a Dirac delta function which picks

out the interface of the βth species of the kth phase, and nβk∗ is the field of outward
normals on that interface.Moreover, for themicroscopic fieldq,q[βk] is the restriction
to the side of the interface lying in the β-species of the k-phase.
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The terms Πβk , Πβk v̄
βk
I , and Γ βk are due to the interaction between the species

and phases and can be interpreted as follows. Πβk describes the (average) mass
transfer onto the β-species of the k-phase by all other constituents of the mixture
through chemical reactions or erosion, for example. The momentum transfer term
Γ βk includes drag force densities per unit volume generated by the relative motion
of the constituents. It accounts for surface forces, but not for momentum exchange
owing to transfer of inertial mass (i.e. diffusion) which is described by the term
Πβk v̄

βk
I . Concerning locally drained fluid-saturated porous media a specific consti-

tutive equation for Γ βk will result in Darcy’s law for the fluid flow. Further details
about the derivation of (16) will be given in a future paper [3].

3.3 Mixture Balance Principles

Summation of conservation of mass (16)1 and balance of momentum (16)2 over
all species and phases in consideration of (9) yields the corresponding macroscopic
balance principles of the homogenized mixture:

∂〈ρ〉
∂t

+ div〈ρv〉 = 0

∂〈ρv〉
∂t

+ div〈ρv ⊗ v〉 = 〈ρb〉 + div〈σ〉. (18)

Here we have used the fact that the sum of the transfer terms over all constituents
vanishes, that is,

∑
k

∑
β

Πβk = 0 and
∑

k

∑
β

(
Πβk v̄

βk
I + Γ βk

)
= 0 (19)

in accordance with the microscopic jump conditions (3). Only averaged quantities
will be considered in the remainder of this paper.

It proofs convenient to display the balance principles derived so far in a different
form. Note that each of (16) and (18) provides the so-called Eulerian conservation
form of the balance principle with respect to fixed spatial points. An equivalent
representation more common in solid mechanics is the (updated) Lagrangian form
referring to the current configuration of the mixture in the ambient space. Conserva-
tion of mass and balance of momentum of the mixture then read

〈ρ̇〉 + 〈ρ〉 div〈v〉 = 0 and 〈ρv̇〉 = 〈ρb〉 + div〈σ〉, (20)

respectively. Here 〈q̇〉, in which q is an arbitrary time-dependent spatial field, is used
as an abbreviation for

〈q̇〉 def=
∑

k

∑
β

f kπβk q̇βk =
∑

k

f k
(
(1 − nk)q̇sk + nkq̇fk

)
, (21)
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where

q̇βk def= ∂qβk

∂t
+ vβk · ∇qβk (22)

denotes thematerial timederivative of aβ-species-k-phase-related quantity following
the individual motion with velocity vβk . The term 〈ρ〉 div〈v〉 in (21)1 is defined as
the difference between (18)1 and 〈ρ̇〉. We note that (20)2 is equivalent to (18)2 if and
only if conservation of mass (20)1 resp. (18)1 is satisfied. We also remark that (22)
is generally different form the material time derivative of a k-phase-related quantity
qk along the k-phase mean velocity, which is denoted by

q̀k def= ∂qk

∂t
+ vk · ∇qk . (23)

4 Closure of the Model

The two equations (18) in conjunction with (19), (16), and (17) are the balance prin-
ciples governing the flow of a mixture of multiple materials with several species,
by including the flow of a single-phase material as a special case. Modeling the
specific multi-material flow associated with vibro-injection pile installation, how-
ever, requires closure of this set of equations, which is otherwise underdetermined.
Generally the following closure laws (or closure models) have to be specified
[14, 15]:

1. Transfer laws expressing the physics at the material interfaces.
2. Constitutive laws characterizing the physical behavior of each material.
3. Topological laws accounting for the evolution of variables characterizing the

interfacial structure.

Restrictions on the form of the closure laws result from the principles of con-
stitutive theory (e.g. objectivity) and from the fact that a material phase containing
fractions of both a solid species and a fluid species must represent a fluid-saturated
porous medium.

4.1 Interfacial Transfer Closure Laws

With regard to the transfer laws for the mixture it is assumed that no momentum
transfer occurs, i.e. Γ βk = 0 for all β ∈ {s, f} and k ∈ {1, . . . , nmat}, resulting
in uncoupled constituents at this stage of the derivation. Microscopic or molecular
shear resistance within a constituent (e.g. grain contact forces, fluid viscosity) has to
be modeled by the associated constitutive equation. Furthermore, any mass transfer,
no matter between which constituents, phases, or species of the mixture, remains
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unconsidered such that Πβk = 0 for all β ∈ {s, f} and k ∈ {1, . . . , nmat}. That is
to say, constituents do not chemically react, no diffusion and dispersion occurs, and
interfaces are impermeable. As a result the injection of grout into the pore space of
the soil is not described by the model and fluid-saturated porous media in the mixture
are regarded locally undrained; the drained case including consolidation effects will
be considered in future research.We are aware that this is a drastic simplification, but
is deemed necessary concerning the development from scratch of the new MMALE
method outlined in Part 2.

Notwithstanding this, inflow and outflow of the homogenized mixture across non-
Lagrangian boundaries of the computational domain are generally allowed. More-
over, no limitations whatsoever exist with regard to the miscibility of the water-
saturated soil with grout material on the macro level, in which the material phases
maintain their original properties. The underlying averaged description of the multi-
material flow likewise captures separated mixtures (analogy: oil on water) as well as
disperse mixtures (analogy: emulsion of oil and water).

4.2 Constitutive Closure Laws

The constitutive closure laws summarized next characterize the mechanical behavior
of the material phases during vibro-injection pile installation (cf. Fig. 2, detail B),
namely of the bulk solid phase, the bulk fluid phase, and the phase forming a fluid-
saturated porous medium (sand). The objective is to determine for each phase k the
Cauchy stress given by

σk =
∑
β

πβkσβk = (1 − nk)σsk + nkσfk, (24)

with the fluid fraction being either πfk = nk = 0 (bulk solid, σk = σsk), nk = 1
(bulk fluid, σk = σfk), or 0 < nk < 1 (fluid-saturated porous medium). In order to
treat the mechanics of all materials of the problem (cf. Fig. 2, detail B) in a unified
fashion, we recall from [27, 39] that the Cauchy stress tensor of any material can
be decomposed into a pressure stress −pβk I and an extra stress sβk , but also into a

spherical part and the stress deviator σ
βk
dev

def= σβk − 1
3 (trσ

βk)I according to

σβk = −pβk I + sβk = − p̄βk I + σ
βk
dev, (25)

where I is the second-order unit tensor and p̄βk def= − 1
3 trσ

βk is referred to as

the (negative) mean stress. Generally one has pβk �= p̄βk unless sβk = σ
βk
dev

resp. tr sβk = 0, which is usually assumed for pure solids. Fluids may possess a
non-deviatoric sβk through volume viscosity but this is not considered here; cf. (27)2.
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The decomposition of stress (25) is useful to model both compressible and nearly
incompressibile materials. We then assume for phases composed of a single species
(i.e. πβk ≡ 1), like bulk fluid or bulk solid, that there is a compression model of the
form

− 1

V βk

∂V βk

∂ pβk

∣∣∣∣∣
Mβk

= 1

ρβk

dρβk

dpβk
def= 1

K βk
resp. ṗβk def= K βk

ρβk
ρ̇βk (26)

for each constituent, relating the rate of pressure to the rate of mass density through

a finite bulk modulus K βk . In (26), V βk and Mβk def= ρβk V βk are the volume and
intrinsic mass of the β-species in the k-phase in the RVE, respectively, and |Mβk

means that mass is kept constant along with differentiation.
First, let us consider the bulk solid and bulk fluid phases, whose behavior is

assumed to be the same at all length scales defined (micro, meso, or macro). The
following constitutive assumptions are made. Effects of turbulence in the bulk fluid
are currently neglected. Bulk solid is either rigid or hypoelasto-plastic, and bulk fluid
is a Newtonian fluid with deviatoric viscous stress. The latter two assumptions can
be formalized as

�
σsk def= csk(σsk, hsk) : dsk

σfk def= −pfk I + cfk : dfk with tr(cfk : dfk) = 0, (27)

respectively, where h
def= {h1, . . . , hm} is a set of material state variables,

�
σ

def=
σ̇ + σ · ω − ω · σ denotes the Zaremba-Jaumann rate of the considered second
order tensor, ω

def= 1
2 (∇v − (∇v)T) is the vorticity tensor, d

def= 1
2 (∇v + (∇v)T) is

the spatial rate of deformation tensor, tr(·) returns the trace of a second-order tensor,
and : indicates double contraction. The bulk fluid phase representing macroscopic
void zones (e.g. ambient atmosphere) is modeled by

σfk def= −pfk I, with ṗfk = −K fk div dfk and K fk ≈ 0, ρfk ≈ 0. (28)

The application of (25) in conjunction with (26) to a rate constitutive equation of
the form (27)1 generally results in

�
s sk = �

σsk
dev

def= csk(σsk, hsk) : dsk
dev and ṗsk

def= ρ̇sk

3ρsk
I : csk : I . (29)

Clearly, the rate of the extra stress (rate of stress deviator) in the bulk solid can be
calculated from the usual rate constitutive equation by using the deviatoric rate of
deformation, and the corresponding bulkmodulus can be calculated from thematerial
tangent tensor as 3K sk = I :csk : I .

It should be noted that in amixture ofmaterials thematerial time derivative and the
velocity v entering the previous relations are those related to the macroscopic motion
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of the actual constituent, in accordance with (22). We also remark that compressive
stress is taken with negative sign, but pressure has positive sign whenever stress is
compressive. This corresponds to the sign convention of general mechanics.

Two different approaches can be employed to model the mechanical behavior of
sand, or porous media in general, on the mesoscale. The first approach describes
the behavior on the microscale of grain size and then applies spatial averaging to
obtain the behavior on the mesoscale [43]. In the second approach, which is followed
here, each species is regarded as a continuum at the mesoscale defined over all
space. Concerning fluid-saturated porous media in the mixture, we first notice that
vfk = vsk = vk due to the locally undrained conditions assumed. The pore fluid

is taken ideal (non-viscous) such that σfk def= −pfk I , in contrast to (27)2. As a
consequence, the solid species velocity and pore fluid pressure are the only degrees
of freedom of the undrained fluid-saturated porous medium.

Terzaghi’s principle of effective stress [45, 46] is introduced as

σk′ = σk + pfk I, (30)

where σk′
is Terzaghi’s effective stress and σk is the total Cauchy stress acting on

the saturated porous medium representing the k-phase. Using (30) in conjunction

with (25), the k-phase mean effective stress pk′ def= − 1
3 trσ

k′
can be obtained from

pk′ = (1 − nk)(psk − pfk) = pk − pfk, so that ṗk′ = ṗk − ṗfk . (31)

Hence, the mean effective stress divided by the solid fraction equals the averaged
excess pressure in the solid species, that is, pk′

/(1−nk) = psk − pfk ; in a suspension
each sand grain is completely surrounded by water such that psk = pfk and pk′ = 0.
The second equation in (31) is the rate form of the first equation. The superposed
dot indicates the material time derivative along the velocity vsk of the solid species
in the k-phase (which equals the velocity of the fluid species at locally undrained
conditions, see above).

The solid and fluid species of a fluid-saturated porous medium are generally
compressible. This particularly means that the density of both the water and the
grain material of water-saturated sand can change due to pressure loading. The mass
density of the pore fluid can be considered as a function of the pore fluid pressure
alone, that is, ρfk = ρ̃fk(pfk) such that (26) holds. The compressibility resp. the
bulk modulus of pore water generally depends not only on pressure and temperature,
but also on the gas content indicating partial saturation. A small air content reduces
the bulk modulus of an air-water mixture considerably, hence should be considered
in the calculation of the pore fluid pressure. In the present research we use the
relation [25]

K fk =
(

Sk

K fk
0

+ 1 − Sk

pfk

)−1

, (32)
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where K fk is the bulk modulus of an air-water mixture, Sk is the degree of water sat-
uration, K fk

0 is the bulk modulus of pure water (Sk = 1.0; K fk
0 = 4.78×10−10 Pa−1

under atmospheric pressure at 10 ◦C), und pfk is the absolute fluid pressure.
As opposed to the pore fluid the mass density of the solid species (grain material)

in saturated porous media not only depends on the pressure but also on the porosity
[7–9, 21]:

ρsk = ρ̃sk(psk, nk), or, equivalently, psk = p̃sk(ρsk, nk). (33)

Therefore, the total change in pressure within the solid species in the k-phase,

dpsk = ∂ psk

∂ρsk

∣∣∣∣
nk
dρsk + ∂ psk

∂nk

∣∣∣∣
ρsk

dnk, (34)

consists of a pressure change due to compression of the grains leaving the porosity
unchanged and a pressure change due to rearrangement of the grains (configurational
compression) at constant mass density of the grain material. In the partial derivatives
the superposed ˜ is omitted for notational brevity.

Because the porosity is not directly measurable, we choose a different set of inde-
pendent variables in (33) which can be combined to back out the original variables. In
consideration of (31), we replace in (33)1 the set of independent variables (psk, nk)

by the equivalent set (pk′
, pfk), so that ρsk = ρ̃sk(pk′

, pfk) = ρ̃sk(pk − pfk, pfk).
Then, the total change of volume of the k-phase solid species can be calculated from

− dV sk

V sk

∣∣∣∣
Msk

= dpsk

K sk = dρsk

ρsk
= 1

ρsk
∂ρsk

∂(pk − pfk)

∣∣∣∣
pfk

dpk′ + 1

ρsk
∂ρsk

∂ pfk

∣∣∣∣
pk′

dpfk

= 1

ρsk
∂ρsk

∂ pk

∣∣∣∣
pfk

dpk′ + 1

ρsk
∂ρsk

∂ pfk

∣∣∣∣
pk′

dpfk = dpk′

K k
d

+ dpfk

K k
uj

. (35)

K sk is the material bulk modulus of the solid species, which is assumed to be a
function of the mass density ρsk alone so that (26) applies. Note that in general, the
solid species bulk modulus is also a function of the porosity. The bulk moduli K k

d
and K k

uj have likewise been introduced in accordance with (26) and are referred to
as the drained bulk modulus and unjacketed bulk modulus of the k-phase porous
medium, respectively [8]. K k

uj is approximately equal to K sk under the assumption

that the solid species volume changes only little during an unjacketed test. K k
d is the

bulk modulus of the drained porous medium as measured in a jacketed test.
By replacing in (35) the total differential with the material time derivative along

the velocity vsk , and noting that V̇ sk/V sk |Msk = div vsk , one obtains

ṗk′ = −K k
d

(
div vsk + ṗfk

K k
uj

)
= ṗk′′ − K k

d

K k
uj

ṗfk . (36)
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where ṗk′′ def= −K k
d div vsk . Using (31)2 and K k

uj ≈ K sk one arrives at

ṗk = ṗk′′ + αk ṗfk, where αk def= 1 − K k
d

K sk . (37)

The coefficient αk is due to [12, 13] and accounts for the compressibility of the solid
material forming the porous medium. A common approximation for sand is αk = 1,
meaning that the grain material is incompressible. A suspension of sand and water
is characterized by K k

d = 0, leading to αk = 1 likewise. From (36) together with
ṗsk/K sk = −div vsk we also have

ṗsk = ṗk′ K sk

K k
d

+ ṗfk . (38)

We now turn to the mechanical behavior of sand under general deformations. In
the present work, sand is modeled as a hypoplastic porous medium, in accordance
with Subproject 1 of the DFG Research Unit FOR 1136. A widely-used hypoplastic
model for sand neglecting viscous effects is due to [41] and has been extended by
[33]. Its general form,

�
σk′ def= ck′

(σk′
, hk′

) : (dsk − ε̇svol I)
def= �

σk′′ − ε̇svolc
k : I, (39)

provides a spatial rate constitutive equation for the effective Cauchy stress, but here
we subtracted from dsk the average volumetric strain rate ε̇svol I of the solid grains
under the assumption of a compressible solid species. The stress tensor σk′′

whose
Zaremba-Jaumann rate is defined in (39) is responsible for all deformation of the
solid species in the k-phase. The particular form of ck′

(σk′
, hk′

) can be found in the
references and is assumed to be valid for dry, fully-saturated drained, and locally
undrained sand. Moreover, we postulate ck′

(σk′
, hk′

) ≡ ck′′
(σk′′

, hk′′
) because in

soil mechanics the grain material is usually taken incompressible.

A basic property of the Zaremba-Jaumann rate is tr
�
σ = I : �

σ = I : σ̇ [5, p. 139],
so that the trace of (39) yields

ṗk′ = ṗk′′ + ε̇svol
3

I :ck : I, (40)

where ṗk′′ def= − 1
3 tr σ̇

k′′ = − 1
3 tr(c

k : dsk). Comparison with (36) shows that

ε̇svol = ṗfk

K k
uj

≈ ṗfk

K sk and K k
d = I :ck : I

3
. (41)
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Here ck is the hypoplastic material tangent of (39), but it can be any other material
tangent representing generally non-isotropic porous media.

In (39) the generally unsymmetric tensor ck : I is replaced with its average K k
d I

derived from (41)2 [45]. Then, by taking the Zaremba-Jaumann rate of (30),

�
σk = �

σk′′ − αk ṗfk I . (42)

Integrating this equation by starting from a zero initial state (σk′′ |t=0 = 0 and
pfk |t=0 = 0) yields the modified principle of effective stress [12, 45, 46]

σk′′ = σk + αk pfk I . (43)

We will use this principle instead of (30) in what follows despite the fact that, strictly
speaking (43) in contrast to (30) holds only if the porous medium is characterized by
linear isotropic behavior. However, for sand the coefficient αk is indeed very close
to unity.

Based on (25) and (43), it can be shown that the effective stress is related to the
pressures and stresses in the constituents of the saturated porous media through

σk′′ = (1 − nk)σsk + (αk − nk)pfk I

= −((1 − nk)psk − (αk − nk)pfk)I + (1 − nk)ssk, (44)

with ssk = σsk
dev = σk′′

dev/(1 − n) = sk′′
/(1 − n) = sk/(1 − n), and

�
sk′′ = �

σk′′
dev = ck(σk′′

, hk′′
) : dsk

dev (45)

by (39). Since locally undrained conditions have been assumed, the rate of pore fluid
pressure can be determined from the deformation of the porous medium as [45, 46]

ṗfk = −αk Qk div vsk, with
1

Qk
def= αk − nk

K sk + nk

K fk , (46)

This relation can be derived using conservation of mass for each species. Therefore,

ṗk = −K k div vsk (47)

by (37), in which

K k = K k
d

(
1 + (αk)2

αk K k
d/K sk + nk

(
K k
d/K fk − K k

d/K sk
)
)

(48)

represents, in the most general case, the bulk modulus of an undrained saturated
porous material with compressible constituents [19]. The remaining cases are:
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• Bulk solid phase (nk = 0, K k
d = K sk , αk = 0), for which K k = K sk .

• Bulk fluid phase (nk = 1, K k
d = 0, αk = 1), for which K k = K fk .

• Dry porous medium (0 < nk < 1, K fk ≈ 0), for which K k = K k
d .

• Suspension of sand and water (K k
d = 0, αk = 1), for which psk = pfk and

K k = (
(1 − nk)/K sk + nk/K fk

)−1
.

In concluding this section, we remark that the velocity vk and pressure pk of each
phase k represent its degrees of freedom (primary unknowns). Each phase can be a
solid, a fluid, or a fluid-saturated porous medium depending on the fluid fraction nk

assigned at the outset. Accordingly, the developed model is able to describe the flow
and large deformation of mixtures of solids, fluids, and porous media in a unified
fashion.

4.3 Topological Closure Laws

The application of spatial averaging to multi-material flows entails a loss of informa-
tion as it smoothes out details of the flow structure, like the geometry of the material
interfaces [14, 15]. The topological closure laws should restore the lost information.
Because the flow structure results from quantities related to the problem as a whole
and not from intrinsic material properties alone, topological closure laws are not
closure laws in a strict sense. Concerning the multi-material flow associated with
vibro-injection pile installation and the assumptions and restrictions made so far, the
only topological laws required are those that account for the evolution of the k-phase
volume fraction f k and fluid fraction nk . To show this, we analyze the governing
equations (16) subject to the constraints (9).

The external loads bsk and bfk are assumed to be given, and the unknowns for
each phase k are the mass densities ρsk and ρfk , the velocities vsk and vfk , the stresses
σsk and σfk , the volume fraction f k , the fractions of the solid and fluid species πsk

and πfk , respectively, the mass transfer terms Π sk and Π fk , as well as the momen-
tum transfer terms Γ sk and Γ fk . Mass and momentum transfer was assumed zero,
and the constraint (9)2 yields πsk = 1 − πfk = 1 − nk . Since the stress tensors are
symmetric one is left with a total of 22nmat unknowns in three-dimensional space:
2nmat mass densities (resp. pressures, by (26)), 6nmat velocity components, 12nmat
stress components, nmat volume fractions, and nmat fluid fractions (porosities). These
unknowns are accompanied by the 2nmat equations of conservation ofmass and 6nmat
equations of balance of momentum for both species in all material phases, and by the
constraint (9)1. The balance principles of the mixture (18) do not provide additional
information, but for the 12nmat stress components of σsk and σfk , respectively of
combinations of these, the constitutive equations of the previous section are substi-
tuted. Therefore, the number of unknowns is finally reduced to 2nmat − 1, namely
nmat − 1 volume fractions and nmat porosities.

The basic equations to tackle this problem of closure are the constraints (9) as
well as the mass conservation equation of the β-species of the k-phase (16)1, with
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β ∈ {s, f} and k ∈ {1, . . . , nmat}, under the assumption of zeromass transfer between
the constituents. First, we notice that time derivation of the constraints (9) and the
application of a basic averaging rule [20] results in

∑
k

∂ f k

∂t
= 0 and

∑
β

∂πβk

∂t
= 0. (49)

The second condition is automatically satisfied since πsk = 1 − πfk . Moreover, due
to the fact that vfk = vsk = vk under the assumption of locally undrained conditions
the nmat unknown porosities can be determined. This is done by expanding (16)1 for
the case where nmat = 1, so that f k = 1:

∂πβkρβk

∂t
+ div(πβkρβkvβk) = ρβk π̇βk + πβk ρ̇βk + πβkρβk div vβk = 0. (50)

Hence, the porosity πfk = nk is updated by

ṅk = (1 − nk)

(
ρ̇sk

ρsk
+ div vsk

)
= (1 − nk)

(
ṗsk

K sk + div vsk
)

. (51)

Next, we consider (16)1 for arbitrary nmat > 1 but we take the sum over all species
in consideration of (9)2:

0 =
∑
β

∂ f kπβkρβk

∂t
+

∑
β

div( f kπβkρβkvβk)

= ∂

∂t

∑
β

f kπβkρβk + div
∑
β

f kπβkρβkvβk = ∂ f kρk

∂t
+ div( f kρkvk) (52)

= ρk
(

∂ f k

∂t
+ d f k · vk

)
+ f k

(
∂ρk

∂t
+ div(ρkvk)

)

= ρk f̀ k + f k ρ̀k + f kρk div vk,

where d(·) returns the differential (or gradient) of a scalar-valued function. That is,

f̀ k = − f k
(

ρ̀k

ρk
+ div vk

)
. (53)

The equality of thefirst and second lines in (52) can again be shownbybasic averaging
rules [20], and the material time derivative q̀k of a k-phase-related quantity qk has
been defined through (23).

It is crucial to note that (53) neither yields additional information nor defines a
topological closure law for the volume fraction. Equation (53) is just a rearranged
form of conservation of mass with regard to the k-phase of the mixture. A proper
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closure law for volume fraction instead has to account for the physics of the problem
and particularly has to specify how the volumetric distribution of the bulk solid,
the bulk fluid, and the saturated porous medium evolves during vibro-injection pile
installation. Further research is needed to establish such a topological closure law.

4.4 Resulting Model for Multi-material Flow

The derivations presented so far result in a macroscopic model for the mechanics of
the multi-material flow associated with vibro-injection pile installation in saturated
sand:

div〈s − p I〉 + 〈ρb〉 − 〈ρv̇〉 = 0〈
ṗ

K

〉
+ div〈v〉 = 0, (54)

where

〈s〉 =
∑

k

f k sk =
∑

k

f k
(
(1 − nk)ssk + nk sfk

)
=

∑
k

f k sk′′
,

〈p〉 =
∑

k

f k pk =
∑

k

f k
(
(1 − nk)psk + nk pfk

)
=

∑
k

f k
(

pk′′ + αk pfk
)
,

〈ρ〉 =
∑

k

f kρk =
∑

k

f k
(
(1 − nk)ρsk + nkρfk

)
, 〈ρv̇〉 =

∑
k

f kρk v̀
k
,

〈
ṗ

K

〉
=

∑
k

f k

K k
p̀k, div〈v〉 =

∑
k

(
f̀ k + f k div vk

)
,

K k = K k
d

(
1 + (αk)2

αk K k
d/K sk + nk

(
K k
d/K fk − K k

d/K sk
)
)

, αk = 1 − K k
d

K sk.

(55)

This model, in conjunction with (19), (16), and (17), is closed by the constitutive
equations for the bulk solid, bulk fluid, porous medium, pore fluid, and void, and by
the evolution equations (topological closure laws) for the porosities nk and volume
fractions f k . The necessary topological closure laws for the nmat−1 volume fractions
are yet unspecified. It will be shown in the next section, however, that a priori closure
respecting the assumptions underlying the applicability of an MMALE method give
rise to proper relations.
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5 Two-Equation Reduced Model

5.1 A Priori Closure (Subcell Model)

In addition to the closure laws related to the continuous problem addressed in Sect. 4,
the application of an MMALE numerical method calls for a special closure model
for multi-material elements, referred to as the subcell model, in order to render the
discretized problem well-posed [10, 11, 17, 29, 30, 36]. This subcell model solves
the problem of relating the evolution of the individual materials in multi-material
elements to the macroscopic degrees of freedom of the element. In developing the
subcell model we keep things as simple as possible and a priori assume homogeneous
distributions of pressure and velocity in the mixture at each instant of time:

pk = 〈p〉 and vk = 〈v〉 for all k ∈ {1, . . . , nmat} and t ∈ [0, T ]. (56)

A direct consequence of these two assumptions is that each element also has a single
deviatoric strain rate, that is, dk

dev = 〈ddev〉 for all k ∈ {1, . . . , nmat}.
From a physical viewpoint (56) means that everything is in homogeneous ther-

modynamic equilibrium [17, 29, 37]. The assumption of pressure equilibrium is
reasonable because pressure is continuous across a material interface. Pressure dis-
equilibration is associated with highly-dynamic compaction or other processes not
considered here. If (56)1 holds, then the adjustment of volume fractions and the
transfer of pressure and pressure changes is infinitely fast. The requirement that each
element has a single velocity, on the other hand, is not appropriate because equilibra-
tion of velocity differences is driven by drag forces onmaterial interfaces (momentum
transfer). Assumption (56)2 results in fully-bondedmaterial phases without a contact
mechanism. However, it is commonly accepted because tangential contact with or
without friction is difficult to model in MMALE and multi-material Eulerian meth-
ods [40]. As a consequence, shear resistance is accounted for only by the constitutive
equation inside of the phases next to the interface.

Based on the assumptions (56), the continuum mechanical two-equation model
summarized in Sect. 4.4 can now be reduced; see also [17, 29]. In particular (53)
under the assumption (56)2 becomes

ḟ k + f k div〈v〉 = − ρ̇k

ρk
= − f k ṗk

K k
, (57)

in which the superposed dot now represents thematerial time derivative of any spatial
field q along the mean velocity 〈v〉 of the mixture:

q̇
def= ∂q

∂t
+ 〈v〉 · ∇q. (58)
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The assumption (56)1 yields

〈
ṗ

K

〉
=

∑
k

f k ṗk

K k
= 〈 ṗ〉

〈K 〉, with
1

〈K 〉 =
∑

k

f k

K k
. (59)

Moreover,
K k

ρk
ρ̇k = ṗk = 〈 ṗ〉 =

〈
K

ρ
ρ̇

〉
= 〈K 〉

〈
ρ̇

ρ

〉
, (60)

so that (57) in conjunction with conservation of mass of the mixture, 〈ρ̇〉 +
〈ρ〉div〈v〉 = 0, results in the self-consistent balance equation

ḟ k + f k div〈v〉 = − f k 〈K 〉
K k

〈
ρ̇

ρ

〉
= f k 〈K 〉

K k
div〈v〉, (61)

that is,

ḟ k = f k
( 〈K 〉

K k
− 1

)
div〈v〉. (62)

This is the remaining topological closure law for the volume fraction. Note that
it naturally provides for a void collapse mechanism because the material with the
smallest bulk modulus contributes most to the total volume change. This feature is
of particular importance in cases where the compressibilities of the materials phases
are widely different, as for example in a mixture of void and steel.

Because of (60) and the basic constraint
∑

k f k = 1, summation of (62) over the
nmat phases in the mixture results in (59). Therefore, the topological closure law also
satisfies the constraint

∑
k ḟ k = 0.

5.2 Application to the Developed Model

The macroscopic model for the multi-material flow associated with vibro-injection
pile installation summarized in Sect. 4.4 and the subcell model developed in the
previous section result in following two-equation (two-field) reduced model:

div〈s − p I〉 + 〈ρb〉 − 〈ρ〉〈v̇〉 = 0

〈 ṗ〉/〈K 〉 + div〈v〉 = 0, (63)
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where

〈s〉 =
∑

k

f k sk =
∑

k

f k((1 − nk)ssk + nk sfk) =
∑

k

f k sk′′
,

〈p〉 =
∑

k

f k pk =
∑

k

f k((1 − nk)psk + nk pfk) =
∑

k

f k
(

pk′′ + αk pfk
)
,

〈ρ〉 =
∑

k

f kρk =
∑

k

f k((1 − nk)ρsk + nkρfk),

(64)

〈K 〉−1 =
∑

k

f k/K k, αk = 1 − K k
d/K sk,

and K k = K k
d

(
1 + (αk)2

αk K k
d/K sk + nk

(
K k
d/K fk − K k

d/K sk
)
)

.

The model is closed by the general constitutive equations for the

bulk solid:
�
σsk = csk(σsk, hsk) : 〈d〉,

bulk fluid: σfk = −pfk I + cfk : 〈d〉 subject to

tr(cfk : 〈d〉) = 0 and ṗfk = −K fk div〈d〉,
porous medium:

�
σk′′ = ck′′

(σk′′
, hk′′

) : 〈d〉,
pore fluid: σfk = −pfk I subject to

ṗfk = −αk Qk div〈d〉 and
1

Qk
= αk − nk

K sk + nk

K fk ,

void: σfk = −pfk I subject to

ṗfk = −K fk div〈d〉 and K fk ≈ 0, ρfk ≈ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(65)

and by the evolution equations for the porosities,

ṅk = (1 − nk)

(
ṗsk

K sk + div〈v〉
)

, where ṗsk = ṗk′ K sk

K k
d

+ ṗfk, (66)

and volume fractions,

ḟ k = f k
( 〈K 〉

K k
− 1

)
div〈v〉. (67)

Finally, the mass density of the mixture is updated by 〈ρ̇〉 = ∑
k f k ρ̇k using the

k-phase compression model

ρ̇k = ρk

K k
〈 ṗ〉. (68)
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We remark that the reduced model might be derived by an asymptotic analysis of
the unreduced model in the limit of zero relaxation (equilibration) times instead of
using a priori closure through (56) [24, 31].

6 Conclusions and Outlook

We have derived a continuum mechanical model to describe the multi-material flow
associatedwith vibro-injection pile installation in saturated sand. Themodel has been
derived frommicroscopic balance principles through spatial averaging and treats the
mixture of multiple materials as an effective single-phase material or homogenized
mixture on the macroscale. In doing so, we have assumed that each phase of the
mixture is composed of a solid species and a fluid species, with the portion of the fluid
being zero in a pure solid phase (bulk solid) and the portion of the solid being zero in a
pure fluid phase (bulk fluid). In general, each phase represents a solid-fluid compound
in which the solid species is constituted of grains of a granular material; sand in the
present case. The solid-fluid compound might thus represent a fluid-saturated porous
medium or a suspension. Each constituent is assumed compressible.

An important step in the development of the macroscopic continuum mechanical
model has been the closure of the underlying set of equations in such a way that
the specific multi-material flow associated with vibro-injection pile installation in
saturated sand is described. General closure models have been defined in order to
account for the physics of each material and at the material interfaces. In particu-
lar, the macroscopic mechanical behavior of a porous medium representing sand is
described by a hypoplastic rate constitutive equation advanced in the Subproject 1
of this research unit. Closure models are also required for the evolution of variables
characterizing the interfacial structure. These latter models, called topological clo-
sure laws, had been initially left uncompleted because no evolution equation could
be specified for the volume fractions of the phases in the mixture. By assuming a pri-
ori homogeneous distributions of pressure and velocity for all phases of the mixture
the set of equations have finally been closed, resulting in a two-equation (two-field)
reducedmodel. Thismodelwill be employed inPart 2 to develop a newmulti-material
arbitrary Lagrangian-Eulerian (MMALE) numerical method particularly suitable to
simulate pile installation.
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Vibro-Injection Pile Installation in Sand:
Part II—Numerical and Experimental
Investigation

S.A. Savidis, D. Aubram and F. Rackwitz

Abstract In Part 1 of this series of papers a macroscopic two-equation (two-field)
reduced model for the mechanics of the multi-material flow associated with vibro-
injection pile installation in saturated sandwas derived.Herewe employ thismodel to
develop a so-calledmulti-material arbitraryLagrangian-Eulerian (MMALE)method.
MMALE avoids the disadvantages of the classical approaches in computational con-
tinuum mechanics concerning large deformations and evolving material interfaces.
The numerical implementation of this method will be outlined, and then the experi-
mental investigations will be presented that have been carried out in order to validate
the computational model. Among these investigations, small-scale model tests in
chambers with observing window have been designed step-by-step to reveal pene-
tration and vibro-injection pile installation phenomena.

Keywords Arbitrary Lagrangian-Eulerian · Multi-material · Large deformations ·
Finite element method · Operator-split · Soil mechanics · Sand

1 Introduction

Subproject 5 as part of the DFG Research Unit FOR 1136 is concerned with the
numericalmodeling of vibro-injection pile installation intowater-saturated sand. The
motivation arises from the fact that there are currently no numerical models to accu-
rately predict the effects of this process on the stress and density states within the soil
or on close-by structures. However, such a prediction would be of high practical rele-
vance. In Part 1 of our contribution we interpreted the process of vibro-injection pile
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installation as the flow of an immisciblemixture with interfaces (multi-material flow)
consisting of a bulk solid phase (steel pile), a bulk fluid phase (injection grout), and
a compound phase consisting of a solid species and a fluid species which represents
the fluid-saturated porous material (sand). Application of the technique of spatial
averaging to the governing equations led to a macroscopic two-equation (two-field)
model. In Part 2we continue our investigation and employ this continuummechanical
model to develop a multi-material arbitrary Lagrangian-Eulerian (MMALE) method
for the numerical simulation of vibro-injection pile installation.

MMALEfalls into the category of arbitraryLagrangian-Eulerian (ALE)numerical
methods in which the mesh is not fixed as in the Eulerian methods but can move
independently of the material [6, 8, 30, 49]. MMALEmethods, including the subset
of multi-material Eulerian methods, generalize the classical approaches according
to Lagrange and Euler in the context of finite element or finite difference methods
and are able to address the problems mentioned [11–14, 19, 20, 24, 37–39, 44,
56, 61]. No limitations concerning material deformations do exist because in these
methods material boundaries may flow through the mesh. Therefore, elements may
arise which contain two or more materials separated by interfaces.

Both MMALE and the subset of multi-material Eulerian methods were originally
developed in the defence sector for the numerical simulation of highly dynamical
physical problems in which high strain rates appear and new interfaces are generated
(hypervelocity multi-material flow). Information is often hard to access because of
the classification restriction imposed on many program codes and the related devel-
opments. Typical application areas are underwater explosions with fluid-structure-
interaction and impact problems. However, with the application ofMMALEmethods
to water-saturated sand at relatively low velocities this subproject has entered new
territory on both national and international level.

The change from the Lagrangian to a non-Lagrangian viewpoint inherent to
MMALE methods introduces three problems: (i) tracking material interfaces, (ii)
treatment of multi-material elements intersected by interfaces, and (iii) advection
of the solution variables across element boundaries. Due to the potential presence
of multiple materials in a single element, MMALE requires the solution of a multi-
material flow problem in consideration of solid mechanical, fluid dynamical, and
interaction phenomena. Consequently, the theoretical basis includes aspects of both
continuum mechanics and multiphase flow theory. The numerical treatment, on the
other hand, requires FEM technology as well as methods from the field of compu-
tational fluid dynamics (CFD). This renders MMALE highly interdisciplinary and
complex, as visualized in Fig. 1.

Themixture ofmultiplematerials inmulti-material elements is treated as an effec-
tive single-phasematerial or homogenizedmixture on the element level; empty space
(void) is considered as a type of material having vanishing stiffness andmass density.
The degrees of freedom of the homogenized mixture solved for at the element nodes
are the same for all individual phases of the mixture. In the present model all phases
share a common velocity and pressure. Such an approach calls for appropriate mix-
ing rules which relate quantities associated with each material to the corresponding
“mixed” (homogenized) variables, and vice versa. The mixing rules play a crucial
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Fig. 1 Mind map of the developed MMALE method to visualize its interdisciplinarity and com-
plexity

role and should be governed by the physics of the problem. In particular, the saturated
sand in vibro-injection pile installation must be modeled as a two-phase material in
order to account for consolidation and liquefaction phenomena. During the remap
step of the method the partial material volumes in multi-material elements must be
transported through the mesh. In order to achieve a reasonable accuracy of the pro-
cedure, the material volume fluxes across the element boundaries are computed as
truncation volumes which requires material interfaces to be tracked along with the
flow field.

Part 2 in this series of papers is structured as follows. The development and
implementation of the MMALE computational method will be outlined in Sect. 2.
It consists of several algorithms specific to multi-material methods which will be
briefly addressed. The conception and realization of a model test chamber with
observingwindowand the conducted experimental small-scale testswill be described
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in Sect. 3. These experimental investigations are undertaken supplementary to the
central project of this research unit in order to validate theMMALEmethod. Section4
presents example applications of the numerical algorithms as well as preliminary
results of back-calculations. The paper closes with concluding remarks and outlook
in Sect. 5.

2 Numerical Method and Implementation

2.1 ALE Formulation and Solution Strategy

The governing equations of the two-equation (two-field) reduced model derived in
Part 1,

div(s − p I) + ρb − ρv̇ = 0

ṗ/K + div v = 0, (1)

are in the so-called updated Lagrangian form, meaning that the current configuration
of the material in space is taken as the reference domain deforming with the material
as time elapses. The entire model has been formulated by Eqs. (63)–(68) in that
paper. Herein we consider only averaged quantities, so that the angle brackets 〈·〉 can
be dropped for reasons of notational brevity. The basic notation is found in Part 1.

Since the reference domain is represented by the finite element mesh in numer-
ical implementations, large material deformations may cause severe distortion of
Lagrangian elements which slows down or even terminates the calculation. The
ALE formulation has been developed in order to circumvent these problems by
introducing an independently moving reference domain [5, 6]. Accordingly, the spa-
tial description of any scalar-, vector- or tensor-valued physical field q is related to
its referential or ALE description q̂ by the composition q̂ = q ◦ Φ, where Φ, called
the relative motion, is an embedding that maps the reference points onto the spatial
points currently occupied by the material.

The material time derivative of q = q̂ ◦ Φ−1 leads to the fundamental ALE
operator

q̇ = ∂q̂

∂t
◦ Φ−1 + c · ∇q , with q̇

def= h(. . .), (2)

and h(. . .) representing an evolution equation for the field q under consideration.
The first term on the right side represents the time derivative of q with respect to
fixed reference points. The second term, called the convective term, stems from the
relative motion between the material and the reference domain defining the so-called
convective velocity c for each material; as we assumed homogeneous distribution of
velocity in the mixture, c is the same for all constituents. Note that (2) generalizes
the classical Lagrangian (c = 0; Φ = motion of the body) and Eulerian (c = v;

http://dx.doi.org/10.1007/978-3-319-18170-7_5
http://dx.doi.org/10.1007/978-3-319-18170-7_5
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after the Lagrangian step after the remap stepinitial configuration

Fig. 2 Schematic diagram of the Lagrange-remap MMALE method. The blue area indicates a
material zone whose initial configuration is assigned to an element patch highlighted in red

Φ = id) formulations of continuum mechanics. On the other hand, replacing with
the ALE operator (2) every material time derivative in the derived model for multi-
material flow results in an ALE formulation of that model which can be treated by an
MMALEmethod. The resulting system of equations can be brought into a convenient
conservation form [6], but this is not shown here.

The MMALE method developed in this research work is an extension of the
simplified or single-material ALE method [6, 8, 49] in which material interfaces are
explicitly resolved by element edges. An operator-split or Lagrange-remap strategy
[6, 11] is applied to enable the use of simpler and more robust algorithms compared
to a monolithic solution approach. It divides the incremental solution of the highly
nonlinear problem into a Lagrangian step and remap step, as schematically shown in
Fig. 2. Concerning the fundamental ALE operator (2), the Lagrange-remap strategy
can be written conceptually as

Lagrangian step: q̇ = h(. . .), (3)

remap step:
∂q̂

∂t
◦ Φ−1 + c · ∇q = 0. (4)

Equation (3) represents the updatedLagrangian formof theEqs. (63)–(68) inPart 1
governing the considered multi-material flow of vibro-injection pile installation into
water-saturated sand. During the Lagrangian step the set of equations is solved with
common finite element methods for the two-field mixed element formulation by
accounting for large deformations [10, 36, 60, 62, 63]. For this purpose the system
of Eq. (1) is brought into a weak form, and then this weak form is approximated
by discretizing the computational domain. The so-called MINI or P1+/P1 element
[3, 18] serves as a basis for the developments. It is a mixed triangle element using
linear approximations for the spatial pressure field p and spatial displacement field
u, with u̇ = v. An additional bubble function for the displacement field stabilizes
the element. The MINI Element is equipped with a multi-material option during the
research project for the purposes of MMALE implementation (Fig. 3).

In theLagrangian step the parametrization of the variables of the problem is chosen
such that the element mesh follows the deformation of themixture and the convective

http://dx.doi.org/10.1007/978-3-319-18170-7_5
http://dx.doi.org/10.1007/978-3-319-18170-7_5
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displacement node

pressure node

interface intersecting element

Fig. 3 An essential part of the MMALE method is the stable MINI element [3] which is enriched
during this research by a multi-material option in order to account for interfaces intersecting the
element

terms disappear. The evolution equations of the variables take the form of (3). That
is to say, the Lagrangian step considers the sources, constitutive equations of each
material, and topological closure laws for each phase as in standard nonlinear finite
element analysis. The remap step accounts for the convective terms by solving (4),
which represents the linear advection equation without a source. For this purpose, the
nodes are relocated in such away thatmesh distortion is reduced and then the solution
variables obtained after the Lagrangian step are transported through the mesh using
conservative CFD advection algorithms. If the nodes are simply relocated to their
original positions a multi-material Eulerian formulation is obtained. In this case, (4)
reduces to

∂q

∂t
+ v · ∇q = 0. (5)

A flow chart of the developed MMALE method is shown in Fig. 4. The program
steps will be explained in the following.

2.2 Initialization Phase

Before the actual calculation starts the computational domain of the considered ini-
tial boundary value problem is discretized with finite elements. Depending on the
problem definition, the computational domain has to cover empty space which might
be occupied by material during the course of the calculation. Empty space (void) is
considered as a type of material within the model; see constitutive equations sum-
marized as Eq. (65) in Part 1. The remap step requires additional information about
the mesh connectivity, such as the elements sharing a common node or the adjacent
elements of an element. However, this information has to be gathered and stored
only once during the initialization phase because the mesh connectivity, by defini-
tion, does not change in ALE methods. Furthermore, the material properties must be
assigned to the elements. The initialization phase is completed with the specification
of the initial conditions and boundary conditions.

http://dx.doi.org/10.1007/978-3-319-18170-7_5
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Fig. 4 Flow chart of the developed MMALE method for finite element programs
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2.3 Lagrangian Step

A calculational cycle or time increment begins in the Lagrangian step with the
re-initialization of the FE system of equations. Solution is advanced implicitly in
time by using the Newmark-β method in conjunction with Newton’s method. This
time integrator is unconditionally stable, hence imposes no restriction on the size of
the time step in contrast to the explicit procedures applied in almost all other multi-
material Eulerian and MMALE methods. However, the system of equations must be
delivered in linearized form which generally requires the determination of the geo-
metric stiffness matrix of each element and of the material tangent being consistent
with the stress integration procedure, and not simply the continuum tangent [10, 60].
However, these are not essential for problem solution but at most influence the rate
of solution convergence. Therefore, in order to simplify numerical implementation
the element stiffness matrix is derived from the continuum material tangent alone by
neglecting the geometric stiffness matrix, as this has been done in [14].

The treatment of multi-material elements in the Lagrangian step makes use of the
subcell model derived in Part 1 and starts with the determination of the number of
materials in each element. Afterwards the state of each material phase is updated. In
particular, the volume fraction, porosity, stress, state variables, andmaterial tangent of
each material are updated by integrating the related evolution equations in time. The
rotational terms of the stress rate at finite deformation render the integration of rate
constitutive equations expensive compared to the infinitesimal case. In this context,
the restrictions related to the axiom of material frame indifference [54] have led to
the notion of incremental objectivity of the integration method over finite time steps
[31]. Incremental objectivity requires that if the motion of the material body over a
time increment �t = tn+1 − tn is rigid, then the stress is exactly updated without
generation of spurious stresses. The same is required for tensor-valued material state
variables.

The stress integration in the Lagrangian step of the MMALE method employs
the incrementally objective algorithm of [32]. Accordingly, the stress integration is
carried outwith respect tomaterial points in the corotated (unrotated) configuration of
the material body. A time-centered approximation over the incremental time interval
[tn, tn+1] is used in accordance with [31], through which algorithmic finite strain and
rotation increments are computed as

�εn+1/2
def= dn+1/2�t = 1

2

(
∇n+1/2u + (∇n+1/2u)T

)
and

�rn+1/2
def= ωn+1/2�t = 1

2

(
∇n+1/2u − (∇n+1/2u)T

)
, (6)

respectively, and

∇n+1/2u = 2( fn+1 − I)( fn+1 + I)−1. (7)
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fn+1 is the relative incremental deformation gradient of the configuration at time
t = tn+1 with respect to the configuration at time t = tn .

Now, consider the general rate constitutive equation

�
σ = c(σ ,α) : d, (8)

where σ� = σ̇ + σ · ω − ω · σ denotes the corotational Zaremba-Jaumann rate of
σ defined by the spin ω representing the vorticity tensor. Since the spin generates a
one-parameter group of rotations through Ṙ = ω ·R, withR|t=0 = I , the Cauchy
stress is objectively updated by the general integration algorithm

σ n+1 = Rn+1 · (Sn + �Sn+θ ) · RT
n+1 , with θ ∈ [0, 1] , (9)

and

Sn
def= RT

n · σ n · Rn , �Sn+θ
def= fn+θ (Sn+θ ,An+θ ,�En+1/2),

�En+1/2
def= RT

n+1/2 · �εn+1/2 · Rn+1/2 , Sn+θ
def= RT

n+θ · σ n+θ · Rn+θ ,

(10)

andAn+θ representing the set α of material state variables under the transformation
Rn+θ . The stress increment �Sn+θ is calculated using the response function fn+θ .
The response function depends on the choice of θ ∈ [0, 1] and basically represents an
explicit (θ = 0) or implicit (θ = 1) stress-point algorithm for the case of infinitesimal
deformations. The rotation and half-step rotation are defined through

Rn+1 = �R · Rn and Rn+1/2 = �R1/2 · Rn, (11)

where

�R = (I − 1
2�rn+1/2)

−1(I + 1
2�rn+1/2) (12)

is an approximation to the incremental rotation over the time increment [tn, tn+1]
according to [31]. If the configuration at time t = tn is taken as the reference
configuration, as in an updated Lagrangian description of motion [6, 10], thenRn =
I , otherwise Rt=0 = I is set.

Algorithm (9) is applied to each material phase whose mechanical behavior is
characterized by a rate constitutive equation of the form (15). According to (52) in
Part 1, this would be the case for bulk solid and porous media. In particular, the
behavior of sand is described by an advanced hypoplastic rate constitutive equation
[40, 57]. This constitutive equation is advanced in Subproject 1 of the Research Unit
FOR 1136. For a reliable numerical simulation of vibro-injection pile installation it
is indispensable to carry over new developments to the MMALE method.

http://dx.doi.org/10.1007/978-3-319-18170-7_5
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After the material-associated variables were updated, their element-associated
averaged values can be determined in accordance with (64) in Part 1. The balance
between the internal forces and the external loads at the end of the time step, which
expresses the identity of the vector of residuals with the null vector, is iterated by
means of Newton’s method. Elements that partially or completely cover empty space
require special treatment in implicit multi-material Eulerian and MMALE calcula-
tions [14]. Void elements practically do not have any stiffness or mass density. There-
fore, their nodes remain unconsidered when setting up the finite element system of
equations. Elements located at material boundaries are partially filled with void.
The stiffness of the mixture inside these elements might be low, causing large dis-
placement increments during the equilibrium iterations. Therefore, in order to avoid
inverted elements, the incremental nodal displacements of partially filled elements
are uniformly scaled.

2.4 Remap Step

When the equilibrium iteration converges, the quality of all elements in the mesh is
evaluated. The quality measure employs the radius ratio of the element’s incircle and
circumcircle. The remap step is initialized if at least one element fails the quality
check, and then the nodes of those elements are flagged. Only the flagged nodes and
the elements that share these nodes are processed during the remap step for reasons
of computational efficiency. Therefore, all algorithms of the remap step are required
to work on a local level.

After the initialization of the remap step the geometry of the FEmodel is updated,
so that the totality of nodes in their current position defines the reference domain. In
order to increase the quality of the mesh deformed during the Lagrangian step, the
flagged nodes are relocated by employing a suitable local mesh smoothing algorithm.
Users can choose between different heuristic procedures and an extremely robust
optimization-based smoothing algorithmwhich works on arbitrarily shaped domains
[6, 7]. Amulti-material Eulerian formulation (c = v;Φ = id) is obtained if the nodes
are simply relocated to their original positions.

One of the crucial and at the same time most extensive steps of the MMALE
method is the transport (advection) of the variables through the mesh. Technically
speaking this means a remap of the solution variables obtained after the Lagrangian
step onto the smoothed mesh. Because the mesh topology does not change during
the smoothing step, elements have the same neighbors throughout the calculation,
so that conservative CFD algorithms can be applied. The remap must be carried
out for element-associated variables (e.g. deformation gradient), material-associated
variables (e.g. stress and state variables), and nodal variables. The latter are dictated
by the primary unknowns of the problem and the underlying balance equations.
Concerning the two-equation model considered here (see Part 1), the nodal variables
are represented by the total momentum and total volume change of the mixture.

http://dx.doi.org/10.1007/978-3-319-18170-7_5
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For unstructured meshes, transport algorithms which are based on the finite vol-
ume method [9, 35] are best suited. Finite volume (FV) methods solve the integral
form of the advection Eq. (1) as an integral conservation law. Hence, they are conser-
vative by definition, leading to mechanically consistent results. In order to solve the
integral conservation law for the generic variable q under consideration, a control
volume tessellation has to be constructed based on the finite element mesh that is
used in the overall MMALE solution procedure. Moreover, a pseudo-time interval
[t−, t+] ⊂ R is introduced because physical time elapses during the Lagrangian step
but remains fixed during the remap step. The distribution of the variables at the end
of the Lagrangian step (t = t−) is assumed to be given, that is, q|t=t− = q−. Then,
if a first-order accurate integration in time is applied, the variable in the j th control
volume after the remap step at t = t+ is obtained by the general formula

q+
j = q−

j V −
j − ∑

facets Fl(q)�t

V +
j

. (13)

Here Vj and q j denote the volume measure and the average of q associated with the
j th control volume, respectively, Fl(q) is the averaged convective volume flux of q

across a facet of the control volume boundary, and�t
def= t+−t−. The control volume

geometries to compute V −
j and V +

j can be determined from the mesh geometries
known at t = t− and t = t+, respectively.

Inevitably connected with FVmethods is the computation of the flux of a solution
variable across the boundary of the control volumes; cf. (13). Depending on the
accuracy in space of the schemeused for theflux calculation, advection algorithms are
divided into first-order, second-order, and higher-order accurate methods. Moreover,
the flux of a solution variable can be a linear or nonlinear function of the transported
volume, leading to a linear or nonlinear procedure. Despite this, most finite volume
advection schemes in ALE methods apply explicit first-order accurate methods to
advance solution in time.

A weighted donor-cell linear advection scheme [4, 6, 11, 30, 44, 47] of the
Godunov-type is currently implemented. It possesses an accuracy of first order and
is stable, conservative, and monotonicity-preserving. The linear procedures of first-
order are in fact the most robust and the easiest to implement, but they tend to
excessive numerical diffusion through which solution details are smeared. Though
with linear schemes of higher order this tendency is less pronounced, the solution
can oscillate. Modern nonlinear algorithms can avoid spurious oscillation and at the
same time achieve a maximum accuracy of second or higher order in space. The state
of the art in the field of MMALE are high-resolution nonlinear schemes, for example
total variation diminishing (TVD) algorithms [11, 24, 27, 35]. Such an algorithm
will be also implemented into the developed MMALE method.

Concerning multi-material elements cut by one or more non-intersecting inter-
faces, material-associated variables must be treated separately for each individual
material. Accordingly, the field to be used in (2)–(4) is the material-associated
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variable weighted by the volume fraction, i.e. q
def= f kqk . If one would simply

use this definition in the general finite volume-based transport algorithm (13), how-
ever, the initially coherent material phases would disperse after a few advection steps
because the interfacial structure is not accounted for [24].

In order to achieve a reasonable accuracy of the remap procedure and to conserve
the volume of the individual phases, the volume fractions and thematerial-associated
fields have to be transported by considering the spatial distribution of the mater-
ial phases and the locations of the interfaces in every multi-material element. This
requires specialized methods to resolve material interfaces during an MMALE or
multi-material Eulerian calculation. Such methods, which can be divided into inter-
face tracking and interface reconstruction methods, have been reviewed in [15, 33,
46, 48, 50].

Interface tracking methods update the locations of the material interfaces at each
time step. Basic approaches use Lagrangian marker particles [25, 26, 55] or level set
functions [42, 43, 52]. Both approaches are extensively used in CFD and computer
graphics but they are prone to numerical difficulties when the interfaces experience
severe stretching or tearing. In particular, level set methods do not locally conserve
volume. Interface reconstruction methods like the volume of fluid (VOF) [29, 45,
61] and moment of fluid (MOF) methods [22, 23], on the other hand, are generally
conservative because they track the volume resp. moment (i.e. volume and centroid)
of a partial material zone (subcell) in multi-material elements.

Once the interface locations in each multi-material element have been determined
by any of the methods mentioned, the material transport volumes across the element
facets can be computed as truncation volumes, and then the partial material volumes
are integrated to a new time level. The actual calculation is largely geometrical in
nature and includes basic algorithms like the point-in-polygon test, intersection tests,
area computation, and clipping. Clipping identifies that portion of a material zone
which lies inside a mesh element. An example application is shown in Fig. 5; see also
[34]. In this example, the TUBerlin logo represents a pseudo-material domain which
is clipped against a triangle mesh. The resulting intersection polygons highlighted
in different colors correspond to the partial material volumes in each element.

An interface reconstruction procedure will be implemented into the MMALE
method developed in this research. Compared to VOF approaches the MOF method
is local, that is, it does not require information from neighboring elements or the
computation of any terms related to these. Moreover, MOF interface reconstruction
works on unstructured meshes and provides an automatic ordering of the materials
if an element contains two or more interfaces [2, 23]. The basic equation for both
VOF and MOF methods is the volume fraction advection equation

∂ f k

∂t
+ v · ∇ f k = 0 resp.

∂ f̂ k

∂t
◦ Φ−1 + c · ∇ f k = 0, (14)

with f̂ k def= f k ◦ Φ. Finite volume discretization and first-order approximation in
time yields a formula similar to (13),
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material 0 (void)

material 1

Fig. 5 Clipping of the TU Berlin logo against a triangle mesh. Pseudo-material domains (left) and
resulting intersection polygons representing partial material volumes (right); after [34]

f k+
j = f k−

j V −
j − ∑

facets Flk( f k)�t

V +
j

, (15)

where Flk is the convective volume flux across a facet of the element boundary which
is aware of the spatial distribution of the kth material, i.e. of the interface locations.
The material transport volume across a facet is represented by the term Flk( f k)�t .
After the volume fraction has been updated, the material-associated variable at the
end of the remap step can be computed from

qk+
j = f k−

j qk−
j V −

j − ∑
facets Flk( f kqk)�t

f k+
j V +

j

, (16)

which is a particular form of (13).

3 Experimental Model Tests

The following section is concerned with the experimental model tests that have been
carried out in order to observe themulti-material flowfield during vibro-injection pile
installation into sand. The main purposes are (i) the verification of the assumptions
underlying the theoretical and numerical investigations and (ii) the validation of the
MMALE computational models through back-calculation of the model tests. The
latter particularly requires a sufficiently detailed description of the properties of the
test sand in such a way that material constants of the hypoplastic rate constitutive
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equation can be determined. To the best knowledge of the authors, however, there are
no qualified experimental tests reported in the literature that could be used. Therefore,
a completely new model test equipment had to be designed and manufactured, and
series of tests had to be conducted and analyzed during the course of our research.
Preliminaryworkwas donewithin the scope of student projects and theses at theChair
of Soil Mechanics and Geotechnical Engineering, Technische Universität Berlin
[16, 17, 41, 51].

No attempts have been made to reproduce processes of vibro-injection pile instal-
lation in the field. Consequently no scalemodels or other similitude theoretical issues
to achieve field-scale equivalence needed to be considered. Therefore, tests could be
conducted at 1g and the use of special test sand could be avoided. The absence of
scale effects will also facilitate the validation process without placing any further
restrictions on the applicability of the MMALE method. MMALE computational
models will be built to back-calculate selected experimental tests “as is”, that is,
without any scaling.

3.1 Test Set-Up and Measurement Concept

The test set-up is shown in Fig. 6. Its main components are a waterproof chamber
with glass panel serving as a viewing window, a special model pile, and a device
for vibratory pile driving. All components are in-house developments. The vibrator
consists of two counter-rotating and synchronously revolving imbalances whose
mass and rotational speed are adjustable. The dead weight of the vibrator mounted
on the pile head is about 100 kg, so that a counter balance becomes necessary in order
to keep the penetration velocity of the driven pile acceptable. The model pile is made
up of a 50 mm× 50 mm stainless steel square tube equipped with a welded-on collar
at the pile toe as well as a built-in injection tube whose opening is located directly
above the collar (Fig. 6c); deflector plates that can be attached to the collar are not
shown. The tapering of the toe prevents deviation of the pile from the vertical. Just
as with the vibro-injection piles in practice, the shaft annulus created by the collar
can be injected with grout material while the pile is being driven into the water-
saturated sand. Pressurized injection is enabled by a diaphragm pressure vessel with
a maximum operation pressure of 10 bar.

During the tests the pile was guided alongside the glass panel, so that the vibra-
tion and grouting process could be digitally filmed through the viewing window of
the chamber. A standard Full HD camcorder (Panasonic HDC-SD900) was used to
record a series of consecutive still images at 50 Hz with a maximum resolution of
1920× 1080 pixels. The scene was illuminated by two 500 W halogen floodlights,
which were placed in a large enough distance to the camera in order to minimize
heating. Measurement of details of the multi-material flow field without on-sample
instrumentation then was enabled by analyzing the recorded image sequence using
image correlation software.
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1500 mm

1030 mm

730 mm

model pile
50 x 50 mm

1500 mm

(a) (b)

(d)

(c)

Fig. 6 Experimental investigation of vibro-injection pile installation. a Filled test chamber with
glass panel and model pile. b Detailed view of the glass panel, pile guide, and model pile. c
Tapered pile toe with welded-on collar and bolt closing the injection tube. d Self-made vibrator
with controller (frequency converter)

In the present research we use GeoPIV [58] for image correlation, a MATLAB
toolbox based on particle image velocimetry (PIV). PIV is a two-dimensional mea-
suring technique for the whole instantaneous spatial velocity field resp. incremental
displacement field of a moving and deforming material sample [1, 6, 59]. This is
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achieved by tracking the texture within areas of an image through a sequence of
images. The PIV workflow is as follows. Two images from consecutive configura-
tions of the material sample are subdivided into patches, and then the pixel intensity
(luminance) of each pair of patches is cross-correlated in terms of an image displace-
ment vector. The highest correlation occurs when the image displacement vector
coincides with the image of the averaged incremental displacement of the material
zone captured on the image patch. The totality of local incremental displacement
vectors associated with all patches represents the incremental displacement field.
From this, the incremental strain field can be obtained through postprocessing.

3.2 Experimental Program

The sand employed in the experimental model tests is a quartz sand with well-
rounded to angular grains identified as fine-gravelly coarse Sand (fgrCSa) according
to [21]. Its grain size distribution curve is plotted in Fig. 7. The limit void ratios
are emin = 0.482 and emax = 0.779, with the void ratio related to the porosity by
e = n/(1 − n). Further granulometric properties are listed in [6]. In that thesis the
same sand was used for quasi-static penetration tests.

Series with a total of 10 tests have been conducted (Table1). Parameters varied
were the counter balance, the degree of saturation, the groutingmaterial, the grouting
pressure, and the load amplitude of the vibrator. The vibration frequency was about
20 Hz for all tests and the load amplitude of the vibrator varied between 1.9 and
2.56 kN. The static force, that is, the dead weight of the vibrator and the pile was
varied between the tests by using different counter balances.

In all tests the chamber was filled with air dried sand by dry sieve pluviation. Each
sand model was prepared in several layers of equal thickness in order to achieve a
homogeneous distribution of initial density. The minimum height of pluviation for
the first layer of sand is restricted by the inner height of the chamber such that the
initial mean relative density was always larger than 85 % (very dense). Two tests

Fig. 7 Grain size
distribution curve of the
model test sand
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Table 1 Details of conducted vibro-injection pile (RI-pile) installation tests

Test ID Date Saturation Grouting mater-
ial/pressurization
(bar)

Frequency
(Hz)/load
amplitude (kN)a

RI-1-D 2011 Air dried None 20.7/2.56

RI-2-F Water flooded 20.0/2.39

RI-3-F 20.0/1.90

RI-4-F

RI-5-Bb Bentonite
slurry / —c

20.0/2.39

RI-6-D 2012 Air dried None 20.0/2.39

RI-7-B Water flooded Bentonite
slurry/—c

RI-8-B Bentonite
slurry/1.0

RI-9-Hb Hydraulic
binder/3.0

RI-10-H 2013 Water flooded Hydraulic
binder/3.0

20.0/2.39

D Dry; F Flooded; B Bentonite; H Hydraulic binder
In all tests the initial mean relative density was >85% (very dense)
aWith respect to the vibrator; the static force (dead weight) varies between the tests
bAnalyzed by using particle image velocimetry
cLoaded under its own weight

were run in air dried sand, whereas the other were carried out in sand which had
been water flooded.

In three tests the pile shaft annulus created by the welded-on collar was injected
with pigmented bentonite slurry. In two other experiments we tested a hydraulic
binder commonly used in geotechnical engineering for filling, sealing, and solidifi-
cation.

3.3 Preliminary Test Results

Figure8 shows a digital photograph of test RI-8-B through the viewing window of
the chamber right after the installation of the pile has completed. It can be seen
from the figure that the bentonite slurry infiltrated into the pore space of the test
sand although the mass concentration of bentonite in the slurry is pretty high. It
fails in keeping open the shaft annulus. In contrast to that, the hydraulic binder
has a sufficiently high shear strength to stabilize the shaft annulus while possessing
excellent flowability during pressurized grouting. Concerning test RI-9-H shown in
Fig. 9, this is indicated by the clear soil-grout interface which is almost vertical along
the pile shaft. Infiltration of the coarse test sand cannot be completely avoided, that
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Fig. 8 Digital photograph of
the configuration of test
RI-8-B (bentonite slurry
injection) through the
viewing window of the
chamber right after pile
installation has completed

infiltrated grout

pile

Fig. 9 Digital photograph of
the configuration of test
RI-9-H (hydraulic binder
injection) through the
viewing window of the
chamber about half an hour
after pile installation has
completed

infiltrated
grout

pile

pile

infiltrated
grout

soil-grout
interface

soil-grout
interface
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is to say, the model assumption of an impermeable soil-grout interfaces does not
appear as a reasonable one. However, it should be noted that the amount of infiltrated
hydraulic binder increased with time and that the still images in Fig. 9 were recorded
about half an hour after the pile installation has completed.

The results of a PIV analysis of test RI-5-B using bentonite slurry injection is dis-
played in Fig. 10. Figure10a shows the time history of the vertical displacement of
the pile tip. Those configurations where image capturing took place are marked with
black squares. Concerning a time-averaged motion the pile continuously penetrates
the soil due to its self-weight. During a vibration cycle, however, the pile moves
upward and downward. The displacement increments in the soil which occurred dur-
ing the downward motion of the pile between image 1 and image 2 are displayed in
Fig. 10b using arrows with scaled length. It is clearly visible that the soil is not only
displaced below the pile toe and underneath the collar in a predominantly vertical
direction but also moves downward above the collar. Figure10c shows the displace-
ment increments due to upward motion of the pile between image 5 and image 6.
Qualitatively the same soil motion can be observed as in Fig. 10b but with reverse
signs, indicating that the soil located at the pile shaft is dragged along with the pile
motion. The heavings beneath the pile toe and the collar result from the release of
the previously compressed soil.

4 Numerical Examples and Validation

The following section presents some numerical examples which belong to a veri-
fication and validation (V&V) process controlling and ensuring quality of our new
MMALE method. Particular algorithms of the method, like the transport algorithm
in the remap step, are verified by running patch tests and basic initial boundary
value problems. The validation of the complete MMALEmethod is enabled through
back-analysis of data resulting from the experimental model tests carried out or from
example problems found in the literature. Since the numerical implementation of the
multi-material option of themethod (interface reconstruction, etc.) is still in progress,
all the examples shown here consider only a single material per element and time
step. Therefore, the computational models used do not utilize all features ofMMALE
but have to be considered as simplified ALE models.

4.1 Verification of the Transport Algorithm

Example problems towards verification of the advective transport algorithm use a
fixed (Eulerian) mesh and prescribe a steady velocity field of the material in con-
junction with an initial distribution of a scalar field. The scalar field has no specific
physical meaning but represents the quantity being advected through the mesh. In
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Fig. 10 Results of model
test RI-5-B using bentonite
slurry injection. a Schematic
time history of vertical pile
displacements. PIV results
showing soil displacement
increments (b) at upward
motion of the pile
(image 1–image 2), and (c)
at downward motion of the
pile (image 5–image 6)
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the present case it can be associated with the solution obtained at the end of the
Lagrangian step, e.g. a stress component.

Figure11a shows the almost uniform unstructured mesh used in the example.
The initial signal (Fig. 11b) is a cylindrical pulse implemented as follows. The color
function is set to zero in all elements except for those in the circular zone highlighted
in Fig. 11a, where the color function is set to 100. For visualization the element-
centered values are copied to the nodes and then averaged. In the next step, a steady
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(a) (b)

(c) (d)

Fig. 11 Rotational advection of a cylindrical pulse by the implemented first-order transport algo-
rithm. The analytical solution is indicated by the dashed circle. a Mesh, b initial scalar distribution,
c after one half rotation, d after a full rotation

velocity field is prescribed in such a way that the material performs a full 360◦
clockwise rigid rotation about the center of the square domain in 720 advection steps.
Thismeans that the analytical solution at the final state and the initial cylindrical pulse
are identical. The mesh is kept fixed, meaning that the MMALE method is run in the
purely Eulerian mode.

The results of the implemented first-order transport algorithm after one half rota-
tion and after a full rotation are plotted in Fig. 11c, d, respectively. The dashed circle
represents the analytical solution. The gradual increase of the area were the color
function has values greater than zero indicates numerical diffusion introduced by the
finite volume approximation. The plateau erodes and the steep gradients present in
the initial signal are getting smeared during the course of rotation. Moreover, the
peak moves radially inward, and its maximum value after a full rotation is reduced
to only 57 % of its initial value. As already mentioned, numerical diffusion would
be less pronounced if a second- or higher-order advective transport algorithm would
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be used. However, we note that rotation of a cylindrical pulse constitutes an acad-
emic extreme example as the solution variables in practical soil mechanical problems
often have smaller gradients. Moreover, in the operator-split MMALEmethod, every
transport step is followed by a Lagrangian step that should bring back the solution
variables to an admissible state.

4.2 Piercing Test

Piercing is test problem borrowed from the metal forming community which can be
employed to validate theMMALEmethod. In this quasi-static process a billet is held
in a heavy walled container and hollowed out by a flat punch (Fig. 12). The example
is a plane strain problem and assumes the punch to be rigid and perfectly rough. The
vertical and horizontal walls of the container are smooth to ensure sliding contact
conditions in the container-billet interface. For the case of plastic-rigid material and
a container to punch breadth ratio of S/B = 0.5, the maximum penetration pressure,
p, in a steady piercing process is related to yield stress in uniaxial tension through
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Fig. 12 Simulation of a piercing process. Problem statement and coarse structured mesh (left),
deformed domain and velocity field at z/B = 0.25 (right)
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p/σ y = (2+π)/
√
3 [28]. This is the same relation as for the ultimate bearing capacity

of a strip footing on the plane surface of a weightless and frictionless cohesive soil.
The two finite element models used for back-calculation of the analytical solution

take advantage of symmetry and differ only in the coarseness of the mesh. The
model and the coarse mesh are shown in Fig. 12 left. No contact elements were used.
The plastic-rigid material of the billet is modeled by a hypoelasto-J2-plastic rate
constitutive equation (von Mises plasticity). The set of material constants chosen
for the simulations consists of Young’s modulus E = 2600 kPa, Poisson’s ratio
ν = 0.3, initial yield stress σ y0 = 20 kPa, and plastic modulus Ep = 0 kPa (ideal
plastic response).

Figure12 on the right plots the deformed computational domain at a relative
penetration depth of z/B = 0.25 togetherwith the velocity field on the billet obtained
with the coarse mesh. The sudden change in flow direction below the punch is related
to a slip line that intersects the axis of symmetry at 45◦. A second, less apparent slip
line intersects the wall of the container at 45◦. The unrealistic deformation of the
unconstrained material boundary lateral to the punch (Fig. 12 right) is partly due to
its simplified treatment in the ALE method without the multi-material option, but
the problem could be resolved in this example by using a finer mesh.

The calculated load-displacement curves and the analytical solution are plotted
in Fig. 13. In contrast to the plastic-rigid material behavior assumed in [28], the
rate equation governing hypoelastic response in the ALE simulation results in a
gradual increase of the punch pressure alongwith increasing indentation. The relative
pressure p/σ y = 2.97 of the analytical solution is, however, reached at relative
penetration depths of less than z/B = 0.05 in all calculations. Beyond that point, the
simulated pressure is always larger than the plastic-rigid solution, but the difference
decreases with decreasing element size.

Fig. 13 Simulation of
a piercing process.
Analytical solution
p/σ y = (2 + π)/

√
3 for

plastic-rigid material [28]
and results of an ALE
simulation using the
hypoelasto-J2-plastic model
(von Mises plasticity)
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4.3 Pile Penetration into Sand

Until today the realistic simulation of pile penetration into sand is one of the most
challenging problems in soil mechanics because of the complex material behavior,
large deformations, and contact constraints. Stable and robust simulations are hard
to achieve, even when ALEmethods are employed. Loading has to be increased very
slowly, and adjusting the contact parameters at the beginning of the simulation only
is a science of its own.

Recent numerical results of a succeeded ALE simulation of quasi-static pile pen-
etration into sand are shown in Fig. 14. The pile is assumed smooth and rigid, and
the initial void ratio of the sand was chosen to e0 = 0.678 (initial relative density
Dr0 = 0.34). The initial configuration has a very simple geometry because the pen-
etration was started at the ground surface. Contact elements are attached to the pile
and soil surfaces, and a Lagrange multiplier contact algorithm enforces zero pen-
etration of the pile elements when contact is closed. The number of axisymmetric
solid elements used for the simulation is approximately 36,000, with the centerline
of the pile serving as the axis of radial symmetry. All nodes at the lower boundary
of the mesh are fixed in vertical direction, and the nodes of both vertical boundaries
are fixed in radial direction. The initial stress state within the sand was prescribed as
a K0-state.

Figure14plots the deformed configuration and the predicted void ratio distribution
at a relative penetration depth of z/D = 5.0, where D is the pile diameter. Recall
that void ratio is a material state variable in the formulation of the hypoplastic rate
constitutive equation used to model the mechanical behavior of sand. Hence, its

Fig. 14 Quasi-static
penetration of a smooth rigid
pile into medium dense sand
(initial void ratio e0 = 0.678
resp. initial relative density
Dr0 = 0.34). Edges of the
undeformed configuration,
deformed configuration, and
predicted void ratio
distribution at a relative
penetration depth of
z/D = 5.0
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Fig. 15 Quasi-static
penetration of a smooth rigid
pile into medium dense sand
(initial void ratio e0 = 0.678
resp. initial relative density
Dr0 = 0.34). Comparison of
measured and predicted
load-displacement curves
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spatial distribution is generally affected by advection during the ALE remap step.
Thefigure indicates a significant densificationof the sand immediately underneath the
pile base at that stage of penetration. The hemispherical shape and the smooth skin of
the pile prevents soil frombeing trapped in a core zone aheadof the pile base. The sand
continuously expands through shearing once the pile base has passed. Consequently,
the pile shaft is surrounded by a loosening zone. Since the pile displaces the soil,
soil heaving occurs lateral to the pile.

As shown in Fig. 15, the predicted load-displacement curve of the quasi-static
pile penetration is in good agreement with experiments [6]. However, the curves
considerably differ in relative penetration depths of z/D < 1 and z/D > 5. The
difference at small penetration depths is related to the undesired restraining forces
in the experimental set-up not accounted for in the numerical model as well as to
the problem of modeling the behavior of sand at very low effective stress levels. In
larger depths, the predicted load-displacement curves show a characteristic zig-zag
form which stems from the contact interface approximation [53].

5 Conclusions and Outlook

We have developed a multi-material arbitrary Lagrangian-Eulerian (MMALE)
method to numerically model and simulate vibro-injection pile installation in water-
saturated sand. Because of its applicability on low-velocity problems related to
porousmedia formed by granularmaterial themethod is unique on national aswell on
international level and offers great potential for future research. MMALE describes
the motion of the computational mesh independent of the material motion. Mate-
rial interfaces can flow through the mesh, so that mesh elements may arise which
contain two or more materials. Concerning these multi-material elements the two-
equation reduced model derived in Part 1 of these papers is applied in order to relate
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in a mechanically consistent way the element-associated variables with those of the
multi-material flow.

The numerical implementation of the method is based on a Lagrange-remap strat-
egy through which each calculational cycle is divided into a Lagrangian step and
a remap step. This allows for simpler and more robust algorithms compared to the
monolithic problem as well as the implementation into Lagrangian finite element
programs. As the remap step contributes most to the overall cost of the calculation,
several Lagrangian steps can be performed before the total transport associated with
those steps is accounted for in a single remap step.

The Lagrangian step is largely identical to the standard step for advancing
solution in time in implicit Lagrangian finite element programs. Themesh follows the
material as it deforms, and the rate constitutive equations of the particular materials
are integrated over the time step by taking into account the requirement of incre-
mental objectivity. In order to realistically model the behavior of water-saturated
sand, especially the tendency to liquefy under cyclic loads, the MMALE method is
combined with a highly-developed hypoplastic rate constitutive equation advanced
in the Subproject 1 of this DFG Research Unit. Furthermore, in multi-material ele-
ments the evolution of the volume fractions must be taken into account because every
constituent is generally compressible.

In the remap step the nodes of the element mesh are either moved back to their
original positions (Eulerian mode) or relocated such that the overall mesh quality is
kept in an acceptable range (ALE mode). The relocation of nodes must be supple-
mented by a numerical transport of material resp. solution variables relative to the
mesh, so as to achieve mechanically consistency. This is implemented by using first-
order linear and high-resolution non-linear conservative transport algorithms from
the field of computational fluid dynamics. The simple first-order transport algorithm
of the Godunov-type currently implemented is, however, sufficient for many appli-
cations. In order to precisely determine the amount of lost or gained material volume
during the remap step in multi-material elements, interfaces are reconstructed and
tracked along with the flow field by using VOF resp. MOF methods.

Parallel to the theoretical and numerical investigations, experimental model tests
concerning the installation of vibro-injection piles in sand have been carried out
in order to investigate the relevant installation phenomena and to provide data that
can be back-calculated using the MMALE method. A test chamber with viewing
window together with a special model pile have been designed and manufactured
for this purpose. The model pile, like the steel profiles used for vibro-injection piles
in practice, allows for the pressurized injection of the pile shaft above a welded-on
collar located at the pile toe. During the tests installation process has been digitally
filmed through the viewing window, and then the recorded image sequence has been
analyzed by using particle image velocimetry. The tests reveal that the grains in a
body of sand usually entail adequate image texture for PIV analysis, but not the
grouting material unless it would be seeded with marker particles.

The research work reported here is still in progress. Open issues include the com-
pletion of theMMALE implementation, the development ofMMALE computational
models for the simulation of grouting and vibro-injection pile installation in sand,
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as well as the validation of the computational models through back-calculation of
selected experimental model tests.
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Numerical Modelling of the Effective-Stress
Evolution in Saturated Soil Around
a Vibrating Pile Toe

V.A. Osinov

Abstract The paper presents results of the numerical modelling of the
effective-stress evolution in saturated granular soil around the toe of a vertically
vibrating pile. The problem is solved in a spherically symmetric formulation using
two different types of constitutive models. An incremental hypoplasticity model is
used to calculate the stress state after a limited number of cycle at the beginning of
the vibration. Further changes in stresses for a large number of cycles are calculated
with an explicit cyclic model. The influence of soil permeability and relative density
is investigated. It is shown that the cyclic soil deformation results in the reduction
of the effective stress around the pile in spite of the pore pressure dissipation in the
case of high soil permeability.

Keywords Saturated soil · Pile · Vibration · Liquefaction

1 Introduction

Vibratory pile driving produces cyclic deformation in the surrounding soil and thus
brings about permanent changes in the soil stresses and density. These changes may
influence neighbouring piles and structures, the bearing capacity of the driven pile and
the pile installation process. Although the modelling of pile installation processes
is not a novel issue, a survey of the literature reveals a lack of reliable numerical
investigations of the soil deformation around a vibratory driven pile. This issue is
complicated not only because of numerical difficulties (mesh distortion resulting
from large deformations, contact conditions at the pile-soil interface, thousands of
loading cycles to be simulated), but also because of stringent requirements to be
satisfied by the constitutive model used. On the one hand, the model has to correctly
describe cyclic soil deformation with large strain amplitudes (up to several per cent) in
the immediate vicinity of the pile, where the constitutive soil behaviour determines
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the soil reaction and the pile penetration rate. On the other hand, the model has
to correctly reproduce weak accumulation effects such as compaction under drained
conditions and effective-stress reduction under undrained conditions at smaller strain
amplitudes (below 10−3). The weak accumulation effects become important for a
large number of cycles and are responsible for permanent changes in the soil stresses
and density at distances of up to few metres around the pile.

Cyclic soil deformation can be simulated with the use of either conventional
plasticity models of incremental type (usually written in rate form) or so-called
explicit cyclic models (e.g. [1]). In the latter case, stresses and strains are represented
as the sum of an average value and a small oscillating part. The model establishes a
rate-type relation between the average values of stresses and strains and also involves
the current strain amplitude. The accumulation rates are defined with respect to the
number of cycles.

In regard to the pile vibration problem, both types of models—incremental and
explicit cyclic—have certain limitations. A drawback of incremental models is the
impossibility of calibration for the weak accumulation effects. There is no definite
algorithm of how to choose the constitutive parameters in such a way as to obtain the
correct accumulation effects and, at the same time, to keep the correct behaviour for
large deformation amplitudes. The difficulty of calibration concerns, in particular,
the strong dependence of the accumulation effects on the relative soil density for a
given strain amplitude. Another drawback of incremental models is a possible loss
of accuracy in the calculation of stresses or deformations due to the accumulation
of numerical errors during incremental integration. This happens when the numeri-
cal error is comparable with the residual stress or deformation accumulated in one
cycle. Moreover, incremental models entail high computational costs because of the
necessity to integrate each cycle incrementally. This drawback may be important for
parametric studies with a large number of calculations.

In view of the limitations of incremental models, explicit cyclic models may be
more reliable and convenient for the calculation of a large number of cycles with
small strain amplitudes. Such models allow us to calculate tens of thousands of
cycles in a reasonable computing time and thus to cover the whole pile installation
process. Since the constitutive parameters control the accumulation rates rather than
incremental stiffness, it is easier to take into account the influence of various factors
(strain amplitude, relative density, principal-stress ratio) on the accumulation effects
and to calibrate the model. The main limitation of explicit cyclic models is that they
are inapplicable to large strain amplitudes over 10−3. For this reason they cannot be
applied to the immediate vicinity of a pile where strain amplitudes are large.

In the present study, in order to better understand how the effective stresses in
the soil change during vibratory pile driving, we perform the numerical modelling
of the deformation of saturated granular soil around a pile toe caused by the vertical
vibration of the pile (without penetration). Following an approach proposed in [2, 3],
the problem is solved in two steps using both types of constitutive models mentioned
above, Fig. 1. In the first step, which will be subsequently referred to as low-cycle
problem, the boundary-value problem is solved for a limited number of cycles (<100)
with an incremental plasticity model. The boundary of the computational domain
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Fig. 1 Low-cycle problem (left) and high-cycle problem (right)

consists of the soil-pile interface with appropriate boundary conditions, and a remote
boundary with non-reflecting boundary conditions for outgoing waves. In the second
step, which will be referred to as high-cycle problem, the boundary-value problem
is solved for a large number of cycles with an explicit cyclic model and an auxiliary
boundary introduced at a certain distance from the pile. The auxiliary boundary must
be chosen in such a way that the strain amplitude in the computational domain does
not exceed 10−3 and the explicit model can therefore be used. The main question in
the formulation of the high-cycle problem is how to quantify boundary conditions at
the auxiliary surface, as they cannot be directly deduced from the physical problem
under study. This issue is discussed in Sect. 3.

The low-cycle problem for a vibrating pile in saturated sand was investigated in [3]
under the assumption of locally undrained conditions with the use of a hypoplastic
constitutive model. Figure 2 shows the distribution of the mean effective stress around
the toe of a cylindrical closed-ended pile after 30 cycles of vibration (compressive
stresses are negative). The darkest area in the figure can be considered as a liquefaction
zone. The mean effective stress in this zone changes only slightly during a cycle and
does not exceed 2 % of the initial effective stress. The permanent liquefaction zone
develops around the pile after several cycles of vibration and then grows slowly with
the increasing number of cycles. The further evolution of the liquefaction zone for a
large number of cycles was studied numerically in [2] with an explicit cyclic model.
The problem was solved with locally undrained conditions under the simplifying
assumption of spherical symmetry. As seen in Fig. 2, a spherically symmetric problem
can serve as an approximation for the lower part of the domain around the pile toe.
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Fig. 2 Mean effective stress
in saturated sand around a
pile after 30 cycles of
vibration calculated with
locally undrained conditions
for a cylindrical pile with a
diameter of 30 cm, a pile
displacement amplitude of
2 mm, a hydrostatic initial
effective stress of −50 kPa
and a frequency of 34 Hz [3]

Axis of rotational 
symmetry

  [kPa] 

Soil-pile interface 

The constitutive models used in [2, 3] correspond to granular soil whose per-
meability is rather high as compared, for instance, with that of clay. The high pore
pressure gradients obtained in the solutions suggest that the pore pressure would
quickly dissipate in a real granular soil. This could presumably lead to soil densifi-
cation rather than the effective-stress reduction. The question remained open as to
whether taking the real soil permeability into account would give a similar effective-
stress distribution or would change the solution substantially. In the present paper,
both the low-cycle and the high-cycle problems for a vibrating pile are solved in a
spherically symmetric formulation without the assumption of locally undrained con-
ditions. Emphasis is placed on the influence of soil permeability and relative density
on the effective stresses around the pile toe.

2 Low-Cycle Problem

The spherically symmetric low-cycle problem is formulated for a computation
domain bounded by an inner radius RP and an outer radius RB , Fig. 3 (left). The
inner radius is taken to be equal to the pile radius, whereas the outer radius repre-
sents a remote boundary. The equations of motion for a two-phase medium [4] in the
spherical coordinates (r,ϕ, θ) reduce to
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∂ pf
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(
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) + 1
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Fig. 3 Spherical low-cycle
problem (left) and high-cycle
problem (right)

RP

RB

RA

RB

where σr,σϕ are the effective-stress components (negative for compression), pf is
the fluid pressure (positive for compression), vs, vf are the radial velocities of the
skeleton and the fluid, the dot stands for the material time derivative, �s, �f are the
densities of the solid and fluid phases, n is the porosity, k [m/s] is the soil permeability,
and g is the acceleration due to gravity.

The constitutive equation for the fluid phase is (neglecting ∂n/∂r )

ṗ f = −K f
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)
− K f
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)(
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+ 2

vs

r

)
, (3)

where Kf is the compression modulus of the pore fluid.
The constitutive behaviour of the skeleton is described within the framework of

the hypoplasticity theory. As is well-known, the versions of hypoplastic relations
which contain only stresses and density as state variables (e.g. [5]) are unable to
correctly describe cyclic deformation. An extended version with so-called intergran-
ular strain as an additional state variable [6] exhibits much more adequacy in the
description of the cyclic deformation of granular soil. This version was extensively
used for the numerical modelling of dynamic processes in soil with multi-cycle load-
ing (see e.g. references in [3]). Numerical calculations performed in this study with
the intergranular-strain extension of hypoplasticity have revealed a drawback of the
model which attracted no attention until now—either because this drawback did
not manifest itself or because it was overlooked. Hypoplasticity with intergranular
strain [6] reduces to hypoelasticity (linearly elastic behaviour with stress-dependent
stiffness) when the intergranular-strain tensor vanishes. This occurs under small-
amplitude cyclic deformation and also holds true in the presence of additional
monotonic deformation superimposed on the cyclic deformation. If the monotonic
part of the deformation has a deviatoric component, the hypoelastic constitutive
response may produce an unrealistically high principal-stress ratio or even a tensile
principal stress. The eventual stress ratio depends not only on the number of cycles
but also on the additional intergranular-strain parameters in the extended model. A
steadily increasing principal-stress ratio was observed in the numerical solutions to
the spherically symmetric problem with finite soil permeability.

The unlimited growth of the principal-stress ratio indicates that hypoplasticity
needs further revision. For the time being, rather than resort to another constitutive
theory, we propose a simple modification within the existing framework of hypoplas-
ticity by writing the constitutive relation in the form
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Table 1 Constitutive parameters of Karlsruhe sand [7]

ϕc(
◦) hs (MPa) ec0 ed0 ei0 α β n

30 5800 0.84 0.53 1.0 0.13 1.0 0.28

Table 2 Additional constitutive parameters for intergranular strain [8]

R m R mT βr χ

4 × 10−5 5.0 5.0 0.05 1.5

σ̇ = w F (ε̇) + (1 − w) H (ε̇), (4)

where the tensor-valued functions F and H represent the stress rates obtained, respec-
tively, with the extended intergranular-strain model [6] and the original hypoplastic
model [5], and w is a weight function which depends on the current stress ratio. For
the spherical symmetry considered here, we define a stress ratio ζ as the maximum of
σr/σϕ, σϕ/σr . The function w(ζ) used in the present study is shown in Fig. 4, where
we put ζ0 = 4. The constitutive equation (4) corresponds to the intergranular-strain
version of hypoplasticity if the stress state is close to a hydrostatic state, and turns
into the original version of hypoplasticity without intergranular strain if ζ ≥ ζ0. The
constitutive parameters used in the calculations are given in Tables 1 and 2.

The inner boundary RP, Fig. 3, is associated with the soil-pile interface and is
assumed to be impermeable with the prescribed displacement

us(RP, t) = 0.5 uamp (1 − cos ωt) , (5)

where ω is angular frequency, and uamp is taken to be equal to the displacement
amplitude of the pile.

The outer boundary RB should be transparent for outgoing waves. A non-reflecting
boundary condition for spherical waves in elastic medium is known [9]. It can be
directly used for a two-phase medium with zero permeability substituting σr − pf

for the radial stress:
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where λ,μ are the Lamé constants of the skeleton, � is the soil density, and
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A two-phase medium with nonzero permeability requires two boundary conditions
at RB . Considering outgoing spherical waves in a one-phase medium and treating σr

and pf as independent stress components with their own constitutive equations, we
can obtain two conditions instead of (6):

σ̇r + c

r
σr + λ + 2μ

c
v̇ + 4μ

r
v + 4μc

r2 u = 0, (8)

− ṗ f − c

r
pf + K f

nc
v̇ = 0. (9)

Equations (8), (9) can be adapted for the case of nonzero permeability by putting
v = vs, u = us in (8) and v = vf in (9). Note that the non-reflecting boundary
condition (6) for zero permeability is exact, whereas the non-reflecting boundary
conditions (8), (9) for nonzero permeability are approximate. The elastic constants
λ,μ can be calculated from the small-strain stiffness of the hypoplastic medium in
the far field.

The low-cycle problem was solved with the finite-difference method. Parameters
which were not varied in the numerical calculations are given in Table 3. Figure 5
(left) shows an example with zero permeability. Shown in the figure are the maxi-
mum and minimum values of the mean effective stress within one cycle after 100
cycles of vibration. Similar to the two-dimensional low-cycle solution in Fig. 2, a
liquefaction zone with vanishing effective stresses forms at a certain distance from
the inner boundary. Figure 5 (right) shows the solution to the same problem with
finite permeability. The distribution of the mean effective stress is similar, although
the liquefaction zone is not as wide as in the previous case. It can be therefore con-
cluded that finite permeability does not prevent the effective-stress reduction and the
formation of a liquefaction zone in the low-cycle problem.

Table 3 Parameters of the low-cycle problem

RP (m) RB (m) �s (kg/m3) �f (kg/m3) Kf (GPa) ω/2π (Hz)

0.15 5.0 2650 1000 2.2 34
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Fig. 5 Mean effective stress variation after 100 cycles in the spherical low-cycle problem for dense
sand with uamp = 4 mm. Left k = 0, right k = 10−3 m/s

3 Auxiliary Boundary

The solution of the high-cycle problem requires an auxiliary boundary with appro-
priate boundary conditions. The main difficulty in the formulation of the high-cycle
problem is that we cannot immediately obtain boundary conditions on the auxiliary
boundary from the parameters of the physical problem, e.g. from the pile vibra-
tion amplitude, because the auxiliary boundary is to be located in the soil. A way
to quantify boundary conditions is to use the low-cycle solution obtained with the
incremental model. In principle, we could take any surface in the soil as an auxiliary
boundary if we know from the low-cycle solution that the strain amplitude in the
computational domain does not exceed the threshold of the cyclic model (10−3).
However, as the low-cycle solutions show, the stresses and displacements in the soil
are in general rather complicated functions of time. The question is how to find an
auxiliary boundary with simple and yet correct boundary conditions.

Consider the spherical low-cycle problem from Sect. 2 with k = 10−3 m/s.
Figure 6 shows the displacements of the solid and fluid phases as functions of time
at a radius of 0.69 m. It is seen that, after a certain time, there is no relative motion
between the solid and fluid phases, and the average displacement is zero. Assum-
ing that this holds true for later times as well and taking this radius as an auxiliary
boundary, we obtain simple boundary conditions, namely impermeability and zero
average displacement. An additional boundary condition required for the high-cycle
problem is a stress or displacement amplitude obtained from the low-cycle problem.

The radius which corresponds to impermeability and zero average displacement
in the low-cycle solution depends on the parameters of the problem. Therefore, the
location of the auxiliary boundary with these boundary conditions also depends on
the parameters. Figure 7 shows the radius of the auxiliary boundary, denoted by RA,
as a function of the void ratio, the permeability and the displacement amplitude at
the inner boundary RP . The radius RA increases with increasing amplitude and turns
out to be independent of the void ratio.
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Fig. 6 Displacements of the
solid and fluid phases as
functions of time at
r = 0.69 m
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4 High-Cycle Problem

The spherical problem for a large number of cycles is posed for the domain between
RA (auxiliary boundary) and RB (remote boundary), Fig. 3 (right). The problem is
solved with the high-cycle accumulation model elaborated in [1, 10]. Displacements,
effective stresses and pore pressure represent average values in the sense of the high-
cycle model, i.e. values averaged over a cycle. The stress field is quasi-static and must
satisfy static equilibrium. The initial distributions of the effective stresses and pore
pressure should approximate the eventual values in the low-cycle problem averaged
over a cycle.

The determination of stresses and deformations consists in the concurrent solution
of two boundary value problems called the first and the second boundary value
problems as shown in Fig. 8. Given spatial distributions of the effective stresses and
pore pressure at time t , an integration step over a time increment �t begins with
the determination of the current strain amplitude εamp from the first boundary value
problem formulated as a steady-state problem for an elastic medium with time-
harmonic functions. The small-strain stiffness of the skeleton is assumed to be a
function of the effective stress with the Lamé constants

λ = λ0

(
σ

σ0

)m

, μ = μ0

(
σ

σ0

)m

(10)
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periodic
boundary
conditions

quasi-static
boundary
conditions

first boundary value problem second boundary value problem

Fig. 8 Solution scheme of the high-cycle problem

(not to be confused with the Lamé constants in Sect. 2), where σ is the mean effective
stress, and λ0,μ0,σ0, m are parameters. Numerical calculations were performed
with λ0 = 120 MPa, μ0 = 80 MPa, σ0 = −100 kPa, m = 0.6.

According to the choice of the auxiliary boundary RA as described in Sect. 3, this
boundary is considered to be impermeable. The second condition prescribed at this
boundary is either a constant displacement amplitude (displacement-controlled case)
or a constant radial-stress amplitude (stress-controlled case). These two cases give
different solutions and are considered for comparison purposes. The amplitudes are
taken from the solution to the low-cycle problem at r = RA. The remote boundary
RB is made transparent for outgoing waves by prescribing non-reflecting boundary
conditions.

The spherical steady-state problem with locally undrained conditions was solved
in [2]. For the purposes of the present study, the numerical algorithm has been
modified to take finite permeability into account. Comparison of the solutions in the
drained and undrained cases has shown that the difference in strain amplitudes is
insignificant up to permeability of 10−2 m/s. In the numerical examples presented
below, the first boundary value problem is solved with locally undrained conditions.

The strain amplitude required for the high-cycle model is calculated in the spher-
ically symmetric case as

εamp =
√(

ε
amp
r

)2 + 2
(
ε

amp
ϕ

)2
, (11)

where ε
amp
r , ε

amp
ϕ are the radial and circumferential strain amplitudes. The strain

amplitude determines a strain accumulation rate ε̇acc through the tensorial relation

ε̇acc = M(εamp, e,σ), (12)

which involves the void ratio, the effective-stress tensor and also depends on the
current number of cycles. For details, see [1, 10]. Parameters of (12) used in the
calculations are given in Table 4.
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Table 4 Constitutive parameters of the cyclic model (sand L12 from [11])

Camp ε
amp
re f CN1 CN2 CN3 Ce ere f C p pre f (kPa)

1.6 10−4 3.6 × 10−3 0.016 1.05×10−4 0.48 0.829 0.44 100

The second boundary value problem, Fig. 8, is quasi-static and is formulated for
the average values of displacements and stresses. The constitutive relation between
the effective-stress tensor σ and the strain tensor ε of the skeleton is written in rate
form as

σ̇ = E(σ) : (
ε̇ − ε̇acc), (13)

where E is a stress-dependent stiffness tensor. It is proposed in [10] to take the tensor
E as in an isotropic elastic solid with a Poisson ratio of 0.2 and a pressure-dependent
bulk modulus

K (σ) = A p1−n
atm (−σ)n, (14)

where σ is the mean effective stress, A = 467, n = 0.46 and patm = 100 kPa.
A drawback of the constitutive equation (13) is that it allows the unlimited growth

of the principal-stress ratio. This drawback is eliminated by introducing a bounding
surface in the stress space and projecting the stress state on this surface if the stress
state falls outside. The bounding surface is defined by the Matsuoka-Nakai yield
condition with a given friction angle.

The stresses and displacements must satisfy the equilibrium equations

∂σr

∂r
+ (n − 1)

∂ pf

∂r
+ 2

r

(
σr − σϕ

) + 1

k
�f gn2(vf − vs) = 0, (15)

∂ pf

∂r
+ 1

k
�f gn(vf − vs) = 0, (16)

the constitutive equation (3) for the pore pressure and the constitutive equation (13)
for the effective stress written for the stress components σr ,σϕ. Boundary conditions
prescribed at RA and BR are impermeability and zero displacement. The first and
the second boundary value problems are solved with the finite-difference method.

In what follows we will be interested in the dependence of the solutions on the
soil permeability and relative density. All numerical solutions below correspond to
a pile displacement amplitude of 4 mm (uamp at RP in the low-cycle problem). The
initial effective stresses and pore pressure approximate the time-averaged values in
the solution to the low-cycle problem after 100 cycles. The initial mean effective
stress and pore pressure are shown in Fig. 9.

The initial relative density is assumed to be spatially homogeneous. We first fix
its value at 0.75 and vary the permeability. Solutions in the displacement-controlled
case are shown in Fig. 10. Comparison with the initial distributions shows that the
mean effective stress is further reduced. The influence of the soil permeability is most
noticeable for r < 1.5 m where the effective stress is definitely nonzero in distinction
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Fig. 9 Initial distributions of the mean effective stress (left) and pore pressure (right) in the high-
cycle problem
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Fig. 10 Mean effective stress distribution in the displacement-controlled case after 1 min (left) and
2 min (right)

to the locally undrained case. The effective stress at farther distances is reduced
to nearly the same extent as in the undrained case. Note also that the difference
between the distributions after 1 and 2 min is insignificant. We can conclude that
taking permeability into account prevents full liquefaction in the near field but does
not prevent the effective-stress reduction in general.

Assuming that the stress amplitude at RA remains constant, we observe a remark-
able difference in the influence of permeability as compared with the displacement-
controlled case, Fig. 11. The reduction of the mean effective stress becomes larger
as the permeability is changed from 10−5 to 10−3 m/s. Thus, finite permeability
may increase the effective-stress reduction in the stress-controlled case. This is a
consequence of larger strain amplitudes in the soil. The strain amplitudes in the
displacement-controlled case remain constant because they are controlled by the
boundary condition. The strain amplitudes in the stress-controlled case vary with
time. They depend on the soil stiffness determined by the current effective stress.

In order to see how the effective-stress reduction depends on the relative soil
density, consider the point at which the mean effective stress is equal to 50 % of its
value in the far field. The coordinate of this point will be denoted by R50. Figure 12
shows R50 after 1 and 2 min of vibration for various values of the relative density, ID ,
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Fig. 11 The same as in Fig. 10 in the stress-controlled case
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and permeability, k. In the displacement-controlled case shown in the left column of
the figure, R50 changes linearly with ID and depends only slightly on k. As expected,
the radius R50 is greater for looser soil. For each value of permeability there exists
a relative density at which there is no increase in R50 in the high-cycle problem.
The radius R50 may even decrease if the soil is dense enough. The curves in the
stress-controlled case shown in the right column of Fig. 12 look different: they have
a jump at a certain density. The overall dependence on the density and permeability
becomes rather complicated. For instance, R50 increases monotonically with k if
ID = 0.75, and has a maximum at k = 10−4 m/s if ID = 0.85.

5 Conclusion

The requirements imposed on the description of the soil behaviour for the mod-
elling of vibratory pile driving can hardly be fully satisfied by the existing constitu-
tive models. To circumvent this difficulty, the problem of the vibration-induced soil
deformation is solved in this study using two constitutive models: the incremental
hypoplasticity model for a limited number of cycles in the first step, and the explicit
high-cycle accumulation model for a large number of cycles in the second step.

Numerical modelling of the effective-stress evolution around a vibrating pile toe
was performed recently in [2, 3] assuming locally undrained conditions. The solu-
tions obtained in the present paper show that the influence of permeability on the
effective-stress changes is not as strong as it might be expected. Although a zone of
full liquefaction near the pile does not develop under locally drained conditions, the
effective-stress reduction is not prevented. The extent to which the effective stress is
reduced may be the same or even larger. The effective-stress reduction in the high-
cycle problem is smaller for denser soil. There is no reduction in the effective stress
in the high-cycle problem if the soil is dense enough.

It should be mentioned that the spherical symmetry assumed in this study is a
simplification which restricts the soil displacement to the radial direction and thus
reduces the possibility of densification—in particular, densification due to vertical
settlement. Additional degrees of freedom in the soil displacement will change the
effective stresses. Answering the question of whether these changes are essential
requires the solution of two- or three-dimensional problems.
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A Numerical Approach to the Solution
of Dynamic Boundary Value Problems
for Fluid-Saturated Solids

V.A. Osinov and C. Grandas-Tavera

Abstract A dynamic boundary value problem for a fluid-saturated solid can be
represented as two coupled boundary value problems for one-phase media. This
allows us to solve the problem with a commercial computer program without a
built-in procedure for the solution of dynamic problems with non-zero permeability,
provided that the user is able to establish the required coupling between the two
problems. This approach has been implemented in the present paper with the com-
puter program Abaqus/Standard using the dynamic analysis for one-phase media as
a built-in procedure without the need to construct a user-defined finite element.

Keywords Fluid-saturated solid · Dynamic problem

1 Motivation

Dynamic boundary value problems for fluid-saturated porous solids are dealt with
in various branches of mechanics, including soil and rock mechanics. However,
most commercial computer codes do not provide a built-in solution procedure for
such problems. In particular, this is true for the widely used finite-element program
Abaqus. As far as Abaqus is concerned, these limitations can be overcome by the
implementation of the subroutine UEL which allows us to construct a user-defined
finite element with the desired degrees of freedom. The construction of a user-defined
element requires a thorough knowledge of the finite-element method and entails
careful debugging. In this regard, alternative ways of solving the problem without
resort to the UEL subroutine may be useful (e.g. [1]).

This paper presents a numerical approach to the solution of the dynamic ini-
tial boundary value problem for a two-phase porous medium. The approach itself
is not related to a specific discretization method such as the finite-element or
finite-difference method. It consists in the representation of the boundary value
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problem for a two-phase medium as two coupled problems for one-phase media.
Using this approach, the original problem for a two-phasemedium can be solvedwith
a computer program which solves boundary value problems for one-phase media,
provided that the user is able to establish the required coupling between the two prob-
lems and to solve them concurrently. The proposed method has been implemented
with Abaqus/Standard. Since Abaqus performs the dynamic analysis for one-phase
media as a built-in procedure, a user-defined finite element is not needed.

2 Governing Equations

Assuming that the solid phase of a two-phase medium is much stiffer than the skele-
ton, the total stress is represented as the sum of the effective stress σ (compressive
stresses are negative) and an isotropic stress −pf I, where pf is the fluid pressure
(positive for compression) and I is the unit tensor. We write the dynamic equations
in the small-strain approximation neglecting the convective terms and replacing the
material time derivatives with the partial ones. The equations of motion for the solid
and fluid phases without mass forces are [2, 3]

divσ + (n − 1) grad pf + ξ(vf − vs) = (1 − n)�s
∂vs

∂t
, (1)

−n grad pf − ξ(vf − vs) = n�f
∂vf

∂t
, (2)

where vs, vf are the velocities of the skeleton and the fluid, �s, �f are the densities
of the solid and fluid phases, and n is the porosity of the skeleton. The coefficient ξ
is inversely proportional to the permeability of the skeleton: ξ = �f gn2/k, where k
is the permeability (m/s), and g is the acceleration due to gravity.

A constitutive equation for the skeleton can be written in the general form

∂σ

∂t
= F (Ds,σ, S), (3)

where

Ds = 1

2

[
grad vs + (grad vs)

T
]

(4)

is the stretching tensor of the skeleton, and the tensor-valued function F corresponds
to an elasticity or plasticity model. In the latter case, Eq. (3) may contain a set S =
(S1, ..., Sm) of additional state variables which have their own evolution equations
denoted here by a function M :

∂S

∂t
= M (Ds,σ, S). (5)
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Pore pressure changes are determined by the constitutive equation (neglecting
grad n)

∂ pf

∂t
= −K f tr D f − K f

(1 − n)

n
tr Ds, (6)

where

D f = 1

2

[
grad vf + (

grad vf
)T

]
(7)

is the stretching tensor of the fluid phase, and K f is the compression modulus of the
fluid.

Let us introduce new velocities v(1), v(2) and stresses σ(1),σ(2) defined as

v(1) = a11vs + a12vf , (8)

v(2) = a21vs + a22vf , (9)

σ(1) = a11σ + (n − 1)

(
a11 + �s

�f
a12

)
pf I, (10)

σ(2) = a21σ + (n − 1)

(
a21 + �s

�f
a22

)
pf I, (11)

where a11, a12, a21, a22 are constant coefficients. Provided that

a11a22 − a12a21 �= 0, (12)

transformation (8)–(11) from vs, vf ,σ, pf I to v(1), v(2),σ(1),σ(2) can be inverted
to give

vs = a22
a0

v(1) − a12
a0

v(2), (13)

vf = −a21
a0

v(1) + a11
a0

v(2), (14)

σ = κ1σ
(1) + κ2σ

(2), (15)

pf I = �f

(1 − n)�sa0

(
a21σ

(1) − a11σ
(2)

)
, (16)

where

a0 = a11a22 − a12a21, (17)

κ1 = 1

a0

(
a22 + �f

�s
a21

)
, (18)

κ2 = − 1

a0

(
a12 + �f

�s
a11

)
. (19)
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In numerical calculations, pf can be taken as a diagonal component of the right-hand
side of (16), or as

pf = �f

3(1 − n)�sa0

(
a21trσ

(1) − a11trσ
(2)

)
. (20)

Substituting (13)–(16) into (1), (2), we obtain

divσ(1) + b11ξv(1) + b12ξv(2) = (1 − n)�s
∂v(1)

∂t
, (21)

divσ(2) + b21ξv(1) + b22ξv(2) = (1 − n)�s
∂v(2)

∂t
, (22)

where

b11 = (a21 + a22)

a0

(
−a11 + (1 − n)�s

n�f
a12

)
, (23)

b12 = (a11 + a12)

a0

(
a11 − (1 − n)�s

n�f
a12

)
, (24)

b21 = (a21 + a22)

a0

(
−a21 + (1 − n)�s

n�f
a22

)
, (25)

b22 = (a11 + a12)

a0

(
a21 − (1 − n)�s

n�f
a22

)
. (26)

Equation (21) can be viewed as the equation of motion of a one-phase medium
with the stress tensorσ(1), the velocity vector v(1) and the density (1−n)�s . Similarly,
Eq. (22) can be viewed as the equation of motion of a one-phase medium with the
stress tensor σ(2), the velocity vector v(2) and the same density (1 − n)�s . Each
equation contains two additional terms that play the role of a mass force. One term
is proportional to the velocity of the same medium, while the other is proportional
to the velocity of the other medium (a coupling term).

Defining the stretching tensors

D(1) = 1

2

[
grad v(1) +

(
grad v(1)

)T
]

, (27)

D(2) = 1

2

[
grad v(2) +

(
grad v(2)

)T
]

, (28)

and using the transformation relations, we can write constitutive equations for
σ(1),σ(2) in terms of D(1), D(2),σ(1),σ(2):

∂σ(1)

∂t
= a11

∂σ

∂t
+ (n − 1)

(
a11 + �s

�f
a12

)
∂ pf

∂t
I, (29)
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∂σ(2)

∂t
= a21

∂σ

∂t
+ (n − 1)

(
a21 + �s

�f
a22

)
∂ pf

∂t
I, (30)

where
∂σ

∂t
= F

(
a22
a0

D(1) − a12
a0

D(2), κ1σ
(1) + κ2σ

(2), S

)
, (31)

∂ pf

∂t
= K f

a0

(
a21 − (1 − n)

n
a22

)
tr D(1)− K f

a0

(
a11 − (1 − n)

n
a12

)
tr D(2). (32)

Equation (29) expresses the rate of σ(1) as a function of the stretching tensor
D(1) of the same medium, σ(1) itself and the state variables S. As distinct from
conventional constitutive equations, it contains external terms with D(2) and σ(2).
The same holds for Eq. (30): it expresses the rate ofσ(2) as a function ofD(2),σ(2), S
and contains external terms with D(1) and σ(1). In this way the original system (1)–
(3), (6) for a two-phase medium is split into two systems, namely (21), (29) and
(22), (30), for two one-phase media. The two systems are coupled with each other
through the mass-force terms in the equations of motion and the additional terms
in the constitutive equations. In the case of a plastic skeleton, the two systems are
supplemented by Eq. (5) written as

∂S

∂t
= M

(
a22
a0

D(1) − a12
a0

D(2), κ1σ
(1) + κ2σ

(2), S

)
. (33)

Thus, we have shown that a boundary value problem for a two-phase medium can
be represented as two boundary value problems for one-phase media to be solved
in parallel. Note that the splitting of the original problem into two coupled one-
phase problems and the correspondingnumerical implementation could beperformed
only for the particular trivial case v(1) = vs , v(2) = vf with a11 = a22 = 1 and
a12 = a21 = 0 in (8), (9). The reason why this may be insufficient is possible
numerical instabilitywhichmaydependnot only on the discretizationmethodbut also
on the choice of the transformation coefficients ai j . For this reason, it is advantageous
to develop a numerical algorithm for the general case.

3 Boundary Conditions

The two boundary value problems for one-phase media are coupled not only through
the additional terms in the governing equations but also through boundary conditions.
In what follows, τ , τ (1), τ (2) will denote the traction vectors corresponding to the
stress tensors σ,σ(1),σ(2). Vectors n, p, q will denote an orthonormal basis, where
n is the outer normal unit vector and p, q are tangential unit vectors on the boundary.
The projections of a vector on n, p, q will be written with the subscripts n, p, q. For
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example, vsn = vs · n, vsp = vs · p. Known quantities in the boundary conditions
will be marked with a tilde.

The following boundary conditions may be prescribed (in combination) at the
boundary of a two-phase media: impermeable boundary, velocity of the solid phase,
effective-stress vector, fluid pressure. These conditions can be written for the two
one-phasemediawith the help of the transformation formulae of the previous section:

• impermeable boundary, vf n − vsn = 0,

(a21 + a22)v
(1)
n − (a11 + a12)v

(2)
n = 0, (34)

• given velocity of the solid phase, vs = ṽ,

a22
a0

v(1) − a12
a0

v(2) = ṽ, (35)

• given effective-stress vector, τ = τ̃ ,

κ1τ
(1) + κ2τ

(2) = τ̃ , (36)

• given fluid pressure, pf = p̃f ,

�f

(1 − n)�sa0

(
a21τ

(1)
n − a11τ

(2)
n

)
= p̃f. (37)

The numerical solution of problems formulated originally for infinite domains
may require non-reflecting boundary conditions prescribed on an artificial bound-
ary in order to imitate the infinite domain. In this study we consider non-reflecting
boundary conditions for plane normally incident waves in a two-phase medium with
an isotropic elastic skeleton. These boundary conditions are (see Eqs. (44), (71), (72)
in [4])

τn = −λ + 2μ

c1
vsn, (38)

τp = − μ

c2
vsp, (39)

τq = − μ

c2
vsq , (40)

pf = K f

nc1

[
(1 − n)vsn + nvf n

]
, (41)

where

c1 =
√(

λ + 2μ + K f

n

)
1

�
, (42)
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c2 =
√

μ

�
, (43)

� = (1 − n)�s + n�f , (44)

and λ,μ are the Lamé constants of the skeleton.
Equations (38)–(41) written for the two one-phase media become

κ1τ
(1)
n + κ2τ

(2)
n = −λ + 2μ

c1a0

(
a22v

(1)
n − a12v

(2)
n

)
, (45)

κ1τ
(1)
p + κ2τ

(2)
p = − μ

c2a0

(
a22v

(1)
p − a12v

(2)
p

)
, (46)

κ1τ
(1)
q + κ2τ

(2)
q = − μ

c2a0

(
a22v

(1)
q − a12v

(2)
q

)
, (47)

a21τ
(1)
n − a11τ

(2)
n

= K f (1 − n)�s

n�f c1

{
[(1 − n)a22 − na21] v

(1)
n − [(1 − n)a12 − na11] v

(2)
n

}
. (48)

The correct formulation of a boundary value problem for a fluid-saturated solid
in the general three-dimensional case requires four scalar boundary conditions. A
boundary value problem for a one-phase solid involves three scalar boundary con-
ditions. Hence, two problems for one-phase media would require six boundary con-
ditions (three for each problem). Nevertheless, the two boundary value problems
for one-phase media considered here are well-posed with four boundary conditions,
namely those derived from the four original boundary conditions for the two-phase
medium. This is because the two problems are not independent but coupled and
must be solved concurrently. In this connection, difficulties may arise in numerical
implementation when using available software with limited possibilities of modifica-
tion. The computer program that solves the boundary value problem for a one-phase
medium will demand three boundary conditions from the user, so that we will need
six boundary conditions altogether to be able to use the software. It might seem that a
simple way to overcome this difficulty is to use two of the four boundary conditions
in both problems and thus to gain six boundary conditions. However, this would lead
to a wrong numerical solution (see Appendix for detail).

The required additional boundary conditions can be obtained from Eq. (16) which
shows that the tensor on the right-hand side is spherical. This gives two boundary
conditions

a21τ
(1)
p − a11τ

(2)
p = 0, (49)

a21τ
(1)
q − a11τ

(2)
q = 0. (50)

If boundary conditions (49), (50) are used in the first boundary value problem, they
represent conditions imposed on τ

(1)
p , τ

(1)
q with given τ

(2)
p , τ

(2)
q . If (49), (50) are used
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in the second boundary value problem, then τ
(1)
p , τ

(1)
q are known and the conditions

are imposed on τ (2)
p , τ (2)

q .
Plane-strain and axisymmetric problems involve three scalar boundary conditions

for a fluid-saturated medium and two scalar boundary conditions for a one-phase
medium. In the implementation of the present method, two boundary conditions are
required for each one-phase medium, and hence, one additional boundary condition
in the form (49), (50) for the tangential stress component is needed.

4 Numerical Implementation with Abaqus

The proposed approach has been implemented with the finite-element program Aba-
qus/Standard. Each of the two boundary value problems is solved in a separate
Abaqus job. The two problems have the same mesh and element type. They have
independent input files, user subroutines and do not share variables in memory. The
first boundary value problem (BVP1) is described byEqs. (21), (29), while the second
one (BVP2) is described byEqs. (22), (30). The twoBVPs are coupledwith each other
through the mass-force terms in the equations of motion (21), (22), the additional
terms in the constitutive Eqs. (29), (30), and also through boundary conditions.

The coupling algorithm is presented schematically in Fig. 1. Each BVP is solved
within a time increment between times tk and tk+1 using the required coupling quan-
tities of the other BVP at time tk . The calculation cycle of each BVP consists of
the numerical integration over the increment to obtain the solution at time tk+1, a
waiting phase if the solution of the other BVP has not yet been completed, and a
phase for reading the data of the other BVP calculated for time tk+1. This solution
procedure can be made possible with the user subroutine UEXTERNALDB in each
BVP. The subroutine allows the user to introduce waiting and reading phases imme-
diately before proceeding to the next time increment. Quantities necessary for the
coupling are read by each BVP from the Abaqus result file (*.fil) of the other
BVP during the reading phase and saved in a global Fortran module accessible to
all user subroutines. The global module also contains quantities of the same BVP
necessary for the calculation of the next increment, e.g. velocities.

tk tktk-1 tk+1

BVP1 RSW R

BVP2 S R S W R

tk tk+1tk-1 tk

S

Wall-clock time 

Fig. 1 Concurrent solution of two boundary value problems. Notation: S solving for a time incre-
ment, W waiting for the results of the other problem, R reading the results of the other problem
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The mass-force terms bi jξv( j) in the equations of motion (21), (22) are treated as
an inhomogeneously distributed load. This load is computed at the integration points
with the help of the user subroutine DLOAD. Velocities available at the nodal points
are interpolated to obtain values at the integration points. Constitutive Eqs. (29),
(30) are implemented in the user subroutines UMAT. The global module of BVP j
contains the deformation fields of BVPi for the last two times. This allows the UMAT
subroutine of BVP j to calculate the external term D(i) in the constitutive equations.
The global module of BVP j also contains the external stressσ(i) of BVPi whichmay
appear in the constitutive equation of BVP j . Additional state variables governed by
Eq. (33) can be calculated in either of the BVPs and stored in the global module. In
the numerical example presented below in Sect. 5, the constitutive equation for the
solid skeleton is linearly elastic and has no additional state variables.

Boundary conditions (34), (35) for velocity are implementedwith the user subrou-
tine DISP. Boundary conditions (36), (37), (49), (50) for tractions are implemented
with the user subroutine UTRACLOAD. This subroutine is also used to implement
non-reflecting boundary conditions (45)–(48). According to the scheme shown in
Fig. 1, a boundary condition written for velocity or traction for time tk+1 contains
a given quantity (with a tilde) for time tk+1 and known quantities for time tk taken
from the global module.

It should be mentioned that a somewhat similar approach to the solution of
dynamic problems for two-phase media was implemented in [1] with Abaqus/Expli-
cit. The problemwas solvedwith a singleAbaqus job using two identicalmeshes: one
for the fluid phase and the other one for the skeleton. This corresponds to v(1) = vs ,
v(2) = vf . The mass-force terms bi jξv( j) were introduced with the help of con-
nector elements acting between the collocated nodes. In relation to the algorithm
described in [1], two advantages of the present approach can be noticed. First, the
use of connector elements requires sophisticated programming prior to the solution
of the problem. Second, for a given time integration method (explicit or implicit), the
calculation of one time increment with a double mesh as in [1] requires more time
than the calculation of one increment with two Abaqus jobs operating in parallel
with single meshes.

5 Numerical Verification

The present approach implemented with Abaqus/Standard has been tested on the
solution of a two-dimensional plane-strain dynamic problem for an elastic medium
for the domain shown in Fig. 2. The medium is at rest at t = 0 with zero stresses and
pore pressure. Boundary conditions for t > 0 (BC1, BC2 and BC3) are prescribed
as follows.

• BC1 represents an impermeable boundary with a given velocity of the solid phase

vs1(t) = 0, (51)
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Fig. 2 Computational
domain of the boundary
value problem
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BC3

BC3

-1 m 
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Fig. 3 Boundary condition
(52) for the vertical velocity

-1

-0.5

 0

 0.5

 1

 0  0.005  0.01  0.015  0.02

v s
2 

[m
/s

]

t [s]

vs2(t) =
{

vamp sin(2πt/t0) sin(πt/t0) if t ≤ t0,
0 if t > t0,

(52)

where vamp = −0.3π m/s and t0 = 5 × 10−3 s. The function vs2(t) is shown in
Fig. 3. This boundary condition imitates the prescribedmotion of a rigid foundation
on a half space x2 < 0.

• BC2 corresponds to a free surface with zero pore pressure and zero traction.
• BC3 describes a non-reflecting boundary as discussed in Sect. 3.

The solid skeleton is assumed to be linearly elastic and isotropic with the Lamé
constants λ and μ. The parameters of the medium are shown in Table 1. The com-
pression modulus of the pore fluid is taken to be equal to the modulus of pure water
and is much higher than the shear modulus of the skeleton (a situation typical of
soils). The size of the finite elements in the mesh varies between 3 and 9 cm. The
time step is equal to 10−5 s.

Figures 4 and 5 show the solution to this boundary value problem as a function
of time at Point A with the coordinates x1 = 1.5 m, x2 = −1.5 m, see Fig. 2. For
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Table 1 Parameters of the medium

λ (MPa) μ (MPa) K f (MPa) k (m/s) �s (kg/m3) �f (kg/m3) n

120 80 2200 10−2 2650 1000 0.4
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Fig. 4 Solutions obtained with the present approach and with the finite-difference method (FDM).
Velocity components at Point A (see Fig. 2) are shown as functions of time

comparison, the figures also show the solution obtained independently by the finite-
difference method for the original system (1)–(3), (6) without the decomposition into
two coupled problems.

Calculations with the present method have shown that numerical solutions may
exhibit instabilities in the form of spurious oscillations increasingwith time. Stability
has been found to depend on the time integration method and on the choice of the
coefficients ai j , see (8)–(11). Abaqus/Standard offers two implicit time integration
schemes: the Hilber-Hughes-Taylor and the backward Euler schemes. Numerical
experiments with the boundary value problem presented in this section revealed
instability of the Hilber-Hughes-Taylor scheme for all combinations of ai j that were
tested. The solution shown in Figs. 4 and 5 could be obtained only with the backward
Euler method. The dependence of stability of the backward Euler method on the
coefficients ai j is shown in Fig. 6 for some combinations of the coefficients. In the
stable cases, there is no dependence of the solutions on the choice of ai j . Note that
stability of the proposed method in its general form presented in Sect. 2 may depend
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Fig. 5 The same as in Fig. 4 for the stresses

Fig. 6 Stable and unstable
combinations of the
coefficients ai j
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on the numerical implementation of the coupling and the solution method for the
one-phase problems. The present findings apply to the algorithm described in Sect. 4.



A Numerical Approach to the Solution of Dynamic Boundary … 161

6 Concluding Remarks

The system of dynamic equations for a porous fluid-saturated solid can be written
as two coupled systems, each of them describing the deformation of a one-phase
medium. This decomposition offers the possibility of solving boundary value prob-
lems for two-phase fluid-saturated solids with a computer program which can per-
form a dynamic analysis for one-phase solids only (as, for instance, the commercial
program Abaqus). The necessary condition for the numerical implementation of this
approach is the ability to establish the required coupling between the two problems
within the available software and to solve them concurrently. The approach has been
realized in the present study with the finite-element program Abaqus/Standard and
verified by the comparison of the solution with that obtained independently by a
different method.

Acknowledgments The study was financed by the Deutsche Forschungsgemeinschaft as part of
the Research Unit FOR 1136 ‘Simulation of geotechnical construction processes with holistic
consideration of the stress strain soil behaviour’, Subproject 6 ‘Soil deformations close to retaining
walls due to vibration excitations’.

Appendix

As mentioned in Sect. 3, the use of the same boundary condition in the two coupled
boundary value problems would lead to a wrong numerical solution. Here we will
show this fact by a simple example.

Write a boundary condition in the form

g(1)(t) + g(2)(t) = f (t), (53)

where the unknown terms g(1), g(2) contain quantities of the first and the second
boundary value problems, and f (t) is a given function. Obviously, two unknown
functions g(1)(t), g(2)(t) cannot be found from one Eq. (53). They are determined
not only by this boundary condition but also from the solution of the two boundary
value problems. Suppose that boundary condition (53) is used in both boundary value
problems. Let the numerical scheme be such that the values of g(1), g(2) at time t +Δt
are calculated as

g(1)(t + Δt) = f (t + Δt) − g(2)(t), (54)

g(2)(t + Δt) = f (t + Δt) − g(1)(t), (55)

where g(1)(t), g(2)(t) at time t are known, and Eqs. (54), (55) are used as boundary
conditions in the first and the second boundary value problems, respectively. As
a result of the numerical solution, we will find two functions g(1), g(2) from one
Eq. (53). Considering the limit Δt → 0, it is easy to see that the functions g(1), g(2)
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obtained in such a way approximate the solution

g(1)(t) = 1

2
f (t) − 1

2
f (0) + g(1)(0), (56)

g(2)(t) = 1

2
f (t) − 1

2
f (0) + g(2)(0) (57)

to Eq. (53), where g(1)(0), g(2)(0), f (0) are given initial values satisfying (53). The
numerical scheme with

g(2)(t + Δt) = f (t + Δt) − g(1)(t + Δt) (58)

instead of (55) gives a different solution to (53):

g(1)(t) = f (t) − f (0) + g(1)(0), (59)

g(2)(t) = g(2)(0). (60)

We see that the use of one boundary condition twice results in the numerical determi-
nation of two unknown functions involved in the boundary condition independently
of the solutions to the two boundary value problems.
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Neohypoplasticity—Estimation of Small
Strain Stiffness

I. Loges and A. Niemunis

Abstract Behaviour of soils under small cycles is examined in the triaxial apparatus
and the results are used for the calibration of several constitutive relations. The small
strain relation is not exactly linear and stiffness Eijkl in σ̇ij = Eijkl ε̇kl is not constant.
The popular hypoplastic (HP) model describes the small strain behaviour using the
intergranular strain (Niemunis, Herle, Mech Cohesive-Frictional Mater 2(4):279–
299 1997). However, this idea with an additional strain has several shortcomings. A
better approach is the paraelastic (PE) model (Niemunis et al, Acta Geotech 6(2):67–
80 2011; Prada Sarmiento, Paraelastic description of small-strain soil behaivour
2012). In this study the paraelasticity has been used already while evaluating of
the raw data from triaxial test results. Similarly a simplified high cycle accumulation
(HCA) formula (Niemunis et al, Comput Geotech 32(4):245–263 2005) and a simple
assumption of stress dependence of Eijkl have been used to purify the measured test
data. A general curve-fitting strategy for testing of different constitutive models is
developed. Some shortcomings of PE and HCA could be observed.

Keywords Small strain stiffness · Paraelasticity · Hyperelasticity · Curve fitting

1 Introduction

1.1 Notation

For evaluation of triaxial tests the Cartesian components σij, εij or Roscoe invariants
p, q, εvol, εq of stress σ and strain ε (compression is positive) are less convenient
than the isomorphic components:
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= isotropic  compression
= isotropic extension
= isochoric  shearing
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QQε

ε

constitutive mapping  

Fig. 1 Concept of response envelopes. Left applied strain increments (equal in all directions).Right
stress increments obtained as the material response

P = (σ11 + σ22 + σ33)/
√
3 = p

√
3, Q = (2σ11 − σ22 − σ33)/

√
3 =

√
3
2q,

εP = (ε11 + ε22 + ε33)/
√
3, εQ = (2ε11 − ε22 − ε33)/

√
3. Isomorphic variables

preserve the orthogonality and distance contrarily to Roscoe invariants, e.g. ‖σ‖ =√
P2 + Q2 �= √

p2 + q2, wherein ‖ ‖ is the Euclidean norm. For brevity we denote
the isomorphic components of stress, strain and stiffness as σA, εA,EAB with the
usual summation convention, e.g. σA = EABεB. Accordingly, δAB is a 2 × 2 version
of the Kronecker symbol.

In the paraelastic (PE) model [7, 9] the reversals of stress and strain paths are of

essential importance. The abbreviation
�� = � − �R denotes the span of � measured

from the most recent reversal value �R and h� = ‖ �� ‖ is the size of the span.

1.2 On Evaluation of Stiffness

Stiffness Eijkl used to describe stress rates σ̇ij = Eijkl ε̇kl at small strains is an impor-
tant element of the hypoplastic model [5, 6]. Triaxial data dealing with the small
deformation response allows for evaluation of the components of the small strain
stiffness. At first, the triaxial testing programme was intended to reproduce experi-
mentally the so-called response envelopes, to compare them (graphically) with the
ones obtained from the HP and to conclude some improvements of the model from
this comparison. Eventually a different approach based on the error of curve fitting
has been proposed.

The polar representation of stiffness with the response envelopes [2, 4] is a well
established graphic tool for modelling of soil behaviour. At a given state, a consti-
tutive model obtains small perturbations, usually strain increments ε̇A of the same
length ‖ε̇‖ = const but in different directions. The resulting stress increments σ̇A are
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plotted, Fig. 1. The obtained response envelope1 is a valuable graphic representation
of stiffness. For example, the response envelopes should be continuous,2 otherwise
the jumps would render the constitutive model unstable.

Tests with very small amplitudes (εampl < 10−5) are technically not feasible
in a standard triaxial apparatus. A direct measurement of stiffness is too strongly
blurred by inaccuracies from the testing device. At too large amplitudes various
non-linear effects as accumulation, hysteretic phenomena, barotropy, anisotropy etc.
overly distort the response envelope andunreliable small strainmodels are concluded.
Therefore, we use cycles with intermediate amplitudes (εampl ≈ 5×10−4) and apply
various purification procedures to remove the nonlinearities and the accumulation.

Primarily, the constitutive curve-fitting procedure is used to purify the results.
After different purifying operation the net small-strain response remains. Beside
the components of the elastic stiffness various material constants of PE and HCA
etc. are calibrated in the course of the purification. Judging by the fitting error (after
optimal calibration), we may also easily discover, which versions of these model are
better suited for a given material and a given test. The error of fitting seems to be
a convenient quantitative criterion for testing of a constitutive model. A graphical
comparison of experimental and theoretical response envelopes is very subjective.
Nevertheless, the response envelopes may be used for general visualization of the
final results.

A reliable curve fitting requires an extensive experimental database. We use stress
and strain paths from several triaxial stress controlled low-cycle tests (asterisk tests)
performed at different initial stress levels with different polarizations. For example,
Fig. 2 shows a typical asterisk (around the average stress Pav = 521.05kPa and
Qav = 124.05kPa). Theprescribed stress path, Fig. 2 left, consists of six polarizations
απ , each composed of regular stress cycles with 180◦ reversals. Such reversals are
chosen to simplify the pertaining PE equation. If the average stress σav was overlaid
by a chaotic stress path (a randomwalk)we could still use the curve fitting procedures
but the complicated full versions of PE and HCA models would be indispensable.

The high quality laboratory tests were performed on the cubical triaxial sam-
ples with local strain measurement by Espino [1]. A single asterisk is intended for
evaluation of a single small strain stiffnessEmax

AB atσav. The calibration of thematerial
constants of PE and HCA and evaluation of these models is obtained as a by-product
just for this stress level.

The curve-fitting algorithm is based on the minimization of error which is the sum
of discrepancies between the experimental points and proposed constitutive relation.
This is described in Sect. 2. In Sect. 3 we discuss some remedies of some problems
appearing due to inaccuracies in raw data. The results of curve fitting can be found
in Sect. 4. Having determined the constitutive relation between stress and strain, the
response envelopes are drawn at different stress points (for illustration).

1It is common to consider that the form of response-envelope is an ellipse, but in general it is not.
2Some authors require also the convexity of response-envelopes, but the necessity of this condition
is not proven.
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Fig. 2 Stress controlled low-cyclic asterisk test and corresponding strain response (provided in
master thesis by Espino [1]). Reversal points are marked in green. Left Stress cycles. Right Strain
response (problem with accumulation)

2 Linear Approximation of the Small Strain Stiffness

In order to estimate the small strain stiffness from the triaxial test we consider stress
and strain values measured from the most recent reversal point R. These quantities

are termed spans and are denoted as
�
σij = σij − σR

ij and
�
εij = εij − εR

ij . A reversal
is established at the current state whenever the distance h of this state from the most
recent reversal begins to decrease, see PE [7, 9]. Only uniaxial cycles with 180◦
reversals are applied in tests, so that the general definition of distance given in [7, 9]
simplifies to the Euclidean distance. Only two stress and two strain components can
bemeasured in the triaxial tests and therefore it suffices to use isomorphic (with sign)
components εP, εQ, P and Q. For uniaxial cycles we use the Euclidean measures of
distance:

hε =
√
(
�
εP)2 + (

�
εQ)2 or hσ =

√
(
�
P)2 + (

�
Q)2. (1)

Given the first reversalR = (PR,QR, εR
P, ε

R
Q) and the test results in the form of a list of

numbered m = 1, 2, . . .M records (quadruples) (P,Q, εP, εQ)
m one can determine

all subsequent reversal points (updating sequentially the record R) using following
Mathematica script:

findRever[data_,AnzahlP_:100]:=Module[{m,n,k,i,j,l,P,Q,EP,EQ,hS,spanS,begin,

iReverAll,P0,Q0,jdel},

m = Length[data]; iReverAll = {{1, data[[1, 1 ;; 4]]}}; {P0, Q0} = data[[1, 1 ;; 2]];

hSlast = 0;

Do[{P, Q, EP, EQ} = data[[i, 1 ;; 4]];

Label[begin]; spanS = {P, Q} - iReverAll[[-1, 2, 1 ;; 2]]; hS = Norm[spanS];

If[hS < hSlast, AppendTo[iReverAll, {i - 1, data[[i - 1, 1 ;; 4]]}];

hSlast = 0; Goto[begin], hSlast = hS];

, {i, 1, m}]; iReverAll = Drop[iReverAll, 1]; n = Length[iReverAll]; jdel = {};

(*Delete not true reversal points*)
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Do[If[iReverAll[[j+1,1]]-iReverAll[[j, 1]]<AnzahlP,

If[Flatten[Position[Ordering[{Norm[iReverAll[[j, 2, 1 ;; 2]]-{P0,Q0}],

Norm[iReverAll[[j+1, 2, 1;;2]]-{P0,Q0}]}],2]][[1]]==1,

jdel = AppendTo[jdel, j + 1], jdel = AppendTo[jdel, j]]

(*jdel = index of reversal point to be deleted*)];

,{j, 1, n - 1}]; k = Length[jdel];

Do[iReverAll = Drop[iReverAll, {jdel[[-1 - l]]}], {l, 0, k - 1}];

iReverAll];

Note that the reversals of the stress and strain path should coincide. Some
discrepancies appear presumably due to measurement errors in the lab. Next we

may append to each quadruple a list of spans
�
P,

�
Q,

�
εP,

�
εQ and their sizes hσ , hε

followed by the void ratio e:

(P,Q, εP, εQ,
�
P,

�
Q,

�
εP,

�
εQ, hσ, hε, e)m. (2)

This is done with the following Mathematica procedure:

createFullList[data_, Rever_] := Module[{n,P,Q,EP,EQ,hS,hE,spanS,spanE,i,outline,

dataf,ReversAll,iR},

n = Length[data]; ReversAll = Rever; dataf = {}; iR = 1;

ReversAll = PrependTo[ReversAll, {1, data[[1, 1 ;; 4]]}];

ReversAll = AppendTo[ReversAll, ReversAll[[-1]]];

Do[{P, Q, EP, EQ} = data[[i, 1 ;; 4]]; If[i == ReversAll[[iR+1,1]],iR += 1;];

spanS = {P, Q} - ReversAll[[iR, 2, 1 ;; 2]]; hS = Norm[spanS];

spanE = {EP, EQ} - ReversAll[[iR, 2, 3 ;; 4]]; hE = Norm[spanE];

outline = Join[data[[i, 1 ;; 4]], Flatten[{spanS, spanE, hS, hE}]];

AppendTo[dataf, outline];, {i, 1, n}];

{dataf, Rever}];

In this paper we are considering a nearly linear (paraelastic) relation between the
stress and strain spans. For triaxial case it is describedwith isomorphic components as

⎧⎨
⎩

�
P
�
Q

⎫⎬
⎭ =

[
EPP EPQ

EQP EQQ

]
·
{ �

εP
�
εQ

}
or briefly

�
σA = Es

AB
�
εB (3)

withEs
AB �= const.The stiffness tensor is reduced to three independent (andunknown)

components EPP,EQQ and EPQ = EQP. If these components were constant we could
determine them defining the squared error

F0 =
∑

m

(
�
σA − Es

AB
�
εB)(

�
σA − Es

AC
�
εC), (4)

wherein the sum is takenover the recordsm = 1, 2, . . .M of interest. The components
EAB are found using the stationarity condition

(∂F0/∂Es
RS) = −2

∑
m

�
εS(

�
σR − Es

RC
�
εC) = 0RS and hence (5)
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Es
RC =

[∑
m

�
εC

�
εS

]−1 [∑
m

�
εS

�
σR

]
. (6)

Equation (6) has been implemented in theMathematica routine getConstApprox

getConstApprox[espan_, sspan_] := Module[{ee, es, m, Estiffav, F},

m = Length[espan];

ee = Sum[Outer[Times, espan[[i]], espan[[i]] ], {i, 1, m}]; (*dyad eps x eps*)

es = Sum[Outer[Times, espan[[i]], sspan[[i]] ], {i, 1, m}]; (*dyad eps x sig*)

Estiffav = (Inverse[ee].es ) // Transpose;

F = Sum[(sspan[[i]] - Estiffav.espan[[i]]).(sspan[[i]] - Estiffav.espan[[i]]), {i, 1, m}];

{F, Estiffav}];

Note that expressions in the square brackets are sums of dyads (having only one non-

zero eigenvalue) so it is essential to have spans
�
εC in different directions to avoid

singularity. Of course, the first expression is symmetric. If the material response is
elastic then the second expression should be also symmetric.

Usually, the secant stiffness Es is not a constant within the experimental data.
The stress components σK = (P,Q), especially in the first cycle, may considerably
deviate from the average valueσav

K = (Pav,Qav) during the test. Therefore the (linear,
in Eq. (7)) influence of stress σK on the stiffness should be also considered:

Es
ijkl (σ) ≈ E0

ijkl + ∂Es
ijkl

∂σrs

(
σrs − σav

rs

)
. (7)

With isomorphic components and Es(av) = Es(Pav,Qav) we obtain

Es
AB (P,Q) ≈ Es(av)

AB + ∂Es
AB

∂P

(
P − Pav) + ∂Es

AB

∂Q

(
Q − Qav). (8)

In Eq. (8) we allow the resulting secant stiffness Es
RC to vary depending on the

amplitude, on stress and on the void ratio only

Es
RC = Es

RC(hε,P,Q, e). (9)

Es
RC does not depend on the direction of deformation (a so-called polarization).

Suppose, we have an average stress level (Pav,Qav) around which the test has been
done. We may approximate stiffness in the vicinity of (Pav,Qav) using the following
Taylor series (here only the barotropy):

[
EPP EPQ

EQP EQQ

]s

=
[

EPP EPQ

EQP EQQ

]av
+ (P − Pav)

[
EPP,P EPQ,P

EQP,P EQQ,P

]
(10)

or Es
AB = Eav

AB + P̃ E′
AB

the unknown derivatives EPP,P, EPQ,P . . . of stiffness components with respect to
pressure P are abbreviated with E′

AB. The average stiffness Eav
AB (components EPP,
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EPQ, . . . ) is taken from (6) and it is assumed to hold exactly at the average stress
(Pav,Qav). Additional parametersEPP,P,EPQ,P . . . should improve theminimization
of error F. The error function (4) takes now the form

F1 =
∑

m

(sA − P̃ E′
AB

�
εB)(sA − P̃ E′

AC
�
εC), (11)

wherein sA = �
σA − Eav

AB
�
εB and P̃ = P − Pav denotes the deviation of pressure P

from Pav (with sign) for each record m. The components E′
AB are found using the

stationarity condition

(∂F1/∂E′
RS) = 0RS = −2

∑
m

P̃
�
εS(

�
sR − P̃ E′

RC
�
εC) hence (12)

E′
RC =

[∑
m

P̃2�
εC

�
εS

]−1 [∑
m

P̃
�
εS

�
sR

]
. (13)

Equation (13) is implemented in getPApproxMathematica routine:

getPApprox[espan_,sspan_,Estiffav_,Ppoint_,Pav_]:=Module[{ee,es,m,F,EstiffP,sPspan},

m = Length[espan];

sPspan=Table[sspan[[i]]-Estiffav.espan[[i]],{i,1,m}];

ee=Sum[(Ppoint[[i]]-Pav)ˆ2*Outer[Times,espan[[i]],espan[[i]]],{i,1,m}]; (*dyad*)

es=Sum[(Ppoint[[i]]-Pav)*Outer[Times,espan[[i]],sPspan[[i]]],{i,1,m}]; (*dyad*)

EstiffP = (Inverse[ee].es ) // Transpose;

F=Sum[(sPspan[[i]]-(Ppoint[[i]]-Pav)*EstiffP.espan[[i]]).(sPspan[[i]]-(Ppoint[[i]]-Pav)*

EstiffP.espan[[i]]), {i, 1, m}];

{F, EstiffP}];

Having found the influence ofPwemayapply the analogous strategy to investigate
the influence of Q. These improvements can be made one by one.

getQApprox[espan_,sspan_,Estiffav_,EstiffP_,Ppoint_,Pav_,Qpoint_,Qav_]:=

Module[{ee, es, m, F, EstiffQ, sPspan, sQspan},

m = Length[espan];

sPspan = Table[sspan[[i]] - Estiffav.espan[[i]], {i, 1, m}];

sQspan = Table[sPspan[[i]] - (Ppoint[[i]] - Pav)*EstiffP.espan[[i]], {i, 1, m}];

ee=Sum[(Qpoint[[i]]-Qav)ˆ2*Outer[Times,espan[[i]],espan[[i]]],{i, 1, m}]; (*dyad*)

es=Sum[(Qpoint[[i]]-Qav)*Outer[Times,espan[[i]],sQspan[[i]]],{i,1,m}]; (*dyad*)

EstiffQ=(Inverse[ee].es)//Transpose;

F=Sum[(sQspan[[i]]-(Qpoint[[i]]-Qav)*EstiffQ.espan[[i]]).(sQspan[[i]]-(Qpoint[[i]]-Qav)*

EstiffQ.espan[[i]]), {i, 1, m}];

{F, EstiffQ}];

Finally we obtain the constitutive stiffness function

Es
RC(σK ) = Eav

RC + P̃E′
RC + Q̃E′

RC, (14)
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which is performed inMathematica as:

findStiffnessPQ[dataff_,{Pav_,Qav_},{P_:P,Q_:Q}]:=Module[{F1,F2,F3,Estiffav,EstiffP,EstiffQ,

Estiff, EstiffP4, EstiffQ4, F4, Pexp, Qexp, spanE, spanS },

spanE=dataff[[All,7;;8]]; spanS=dataff[[All,5;;6]];

{Pexp,Qexp}=dataff[[All,1;;2]]//Transpose;

{F1, Estiffav} = getConstApprox[spanE, spanS];

{F2, EstiffP} = getPApprox[spanE, spanS, Estiffav, Pexp, Pav] // FullSimplify;

{F3, EstiffQ} = getQApprox[spanE, spanS, Estiffav, EstiffP, Pexp, Pav, Qexp, Qav];

Estiff = Estiffav + (P - Pav)*EstiffP + (Q - Qav)*EstiffQ // FullSimplify;

{F3, Estiff}];

3 Problems with Small-Strain Measurements
and their Remedies

Apart from the stress dependence the rawdatamay include a number of other undesir-
able effects, which can affect the evaluation of small strain stiffness. All fitting proce-
dures described below have been carried out usingMathematica internal functions
FindFit, NMinimize or FindMinimum.

3.1 Strain Accumulation

It is evident, e.g. Fig. 2, that during first cycles of each polarization material expe-
riences strong accumulation of strain. It becomes less pronounced in subsequent
cycles. The decline of accumulation rate in the first polarization is shown in Fig. 3.
Individual cycles have been plotted with different colour. The smaller the strain
amplitude εampl the less accumulation is observed, see Fig. 3 for comparison.

Fig. 3 Strain accumulation
within the first polarization
depending on the loading
amplitude. Top No strain
accumulation within 5 cycles
with lower stress amplitude.
Bottom Strain accumulation
within 7 cycles with higher
stress amplitude
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In order to purify the experimental data from the cumulative phenomena all irreg-
ular cycles (from the so-called conditioning phase) were manually removed so that
the subsequent ones could have been approximated with the simplified HCA-model
[8, 11]. This operation is needed in each polarization (απ = 0◦, 30◦, 60◦, 90◦, 120◦,
150◦) defined in Fig. 2. The simplified expression for the accumulate strain rate is:

ε̇
π(acc)
AB (ti) = mπ

AB(C
π
1 + Cπ

2 ti). (15)

In order to find unknown flow direction mπ
AB and HCA parameters Cπ

1 and Cπ
2 we

approximate experimental strain points at ti with following expression:

επ
P(ti) = Aπ

P cos
(
ωπti + θπ

P

) +
(

Aπ(acc)
P + Bπ(acc)

P ti/2
)

ti, (16)

επ
Q(ti) = Aπ

Q cos
(
ωπti + θπ

Q

) +
(

Aπ(acc)
Q + Bπ(acc)

Q ti/2
)

ti, (17)

where the second summand in each line corresponds to the cumulative part, i.e.
Aπ(acc)
(P,Q) = mπ

(P,Q)C
π
1 andBπ(acc)

(P,Q) = mπ
(P,Q)C

π
2 . In order to remove the accumulationwe

minimize the squared error between the experimental data and the fitting expressions
(16, 17). This is implemented in the following Mathematica procedure:

detrendAcct[{eP_, eQ_}, time_] := Module[{m,err=0,aP,aQ,w,APacc,BPacc,AQacc,BQacc,thetaP,

thetaQ, eExp, eApp, i, out, solu, time0},

m = Length[eP ]; time0 = time[[1]];

Do[eExp={eP[[i]],eQ[[i]]};

eApp={aP*Cos[w*(time[[i]]-time0)+thetaP],aQ*Cos[w*(time[[i]]-time0)+thetaQ]}

+{APacc+BPacc*(time[[i]]-time0)/2,AQacc+BQacc*(time[[i]]-time0)/2}*(time[[i]]-time0);

err += (eExp - eApp).(eExp - eApp),

{i, 1, m}];

solu = FindMinimum[err, {aP, aQ, {w, 0.0063}, thetaP,thetaQ, APacc, BPacc, AQacc, BQacc}];

out = {aP, aQ, w, thetaP, thetaQ, APacc, BPacc, AQacc,BQacc} /. solu[[2]];

{solu[[1]]/m, out}];

The calculated components
{
mP,mQ

}
and the parameters C1 and C2 are given in

Table1 for each polarization. It can be seen that the flowdirection changes frompolar-
ization to polarization. This behaviour contradicts the assumption of HCAmodel that

Table 1 Approximated HCA parameters for each polarization

Polarization Flow direction HCA parameters

Number mP mQ C1 ∗ 107 C2 ∗ 1011

Polarization απ = 0◦ 0.5761 −0.8174 2.3174 −7.3276

Polarization απ = 30◦ 0.1931 −0.9812 1.1320 −3.4493

Polarization απ = 60◦ 0.3190 −0.9477 0.9378 −2.8483

Polarization απ = 90◦ 0.0069 −0.9999 3.0960 −0.1260

Polarization απ = 120◦ 0.3473 −0.9377 −0.1507 0.6563

Polarization απ = 150◦ 0.5286 −0.8489 −0.3552 1.2726
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Fig. 4 Strain path before and after subtraction of accumulated strain. Left Original strain path.
Right Strain path with subtracted strain accumulation according to Eq. (15)

the flow rule is a function of stress only. Moreover, it has been shown that C1 does
not decrease from polarization to polarization. According to the HCA model such
decrease is a consequence of the cyclic pre-loading history of the sample.

The raw experimental data and experimental data with subtracted strain accumu-
lation are compared in Fig. 4.

3.2 Measurement Noise

Apart from accumulation described in Sect. 3.1 we need to remove the noise in the
raw data due to the measurement technology. The smaller is the strain amplitude
the higher is the data impurity with respect to the signal. The removal of the noise
is provided by a convolution of the raw data with a discrete Gauss distribution as a
smoothing function. This is implemented in the followingMathematica procedure:

smoothData[data_, nGlPoints_: 2] := Module[{ker, t, n, i, EPtime, EQtime,

smoothD, dataExtendB, dataExtendE, smoothDstep},

ker = Table[Exp[-nˆ2/10.0]/Sqrt[10.0 \[Pi]], {n, -nGlPoints, nGlPoints}];

ker /= (Plus @@ ker);

Fig. 5 Measurement noise:
original (in blue) and
smoothed (in red) strain
εP(t) diagram
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smoothD = ( ListCorrelate[ker , #] & /@ Transpose[data] ) // Transpose ;

dataExtendB = Array[{0, 0} &, nGlPoints]; dataExtendE = Array[{0, 0} &, nGlPoints];

Do[dataExtendB={data[[nGlPoints-i+1,1]],Interpolation[smoothD,data[[nGlPoints-i+1,1]]]};

dataExtendE={data[[Length[data]-nGlPoints+i,1]],

Interpolation[smoothD,data[[Length[data]-nGlPoints+i,1]]]};

PrependTo[smoothD, dataExtendB]; AppendTo[smoothD, dataExtendE];

,{i, 1, nGlPoints}];

smoothD];

We avoid smoothing across the reversal points. Therefore all reversals have to
be determined a priori. Figure 5 shows the experimental data with subtracted strain
accumulation befor and after the smoothing procedure.

In order to speed up the calculation one may decrease the number of experimental
points. In the following example each nth point is processed:

pickPoints[data_, time_, step_: 1] := Module[{dataRed = {}, timeRed = {}},

Do[AppendTo[dataRed,data[[i]]];AppendTo[timeRed,time[[i]]],{i,1,Length[time],step}];

{dataRed, timeRed}];

3.3 Hysteretic σ–ε Behaviour

Triaxial tests with intermediate strain amplitudes show hysteretic σ–ε behaviour (see
e.g. Fig. 6). It means that for the same stress state we obtain different strain states
depending on loading direction (or vice versa). In order to take this effect into account
we use the paraelasticity. The PE formulation for 1D cycles can be simplified as a
secant [7, 9] stiffness decreasing with the amplitude (or span hε = ∥∥ε − εR

∥∥):
Es

RC ≈ (1 − fhχ
ε )E

max
RC (18)

The unknownmaterial constants f andχ can be determined in the course of the fitting
of experimental data. For hε < 0.02% this paraelastic dependence should work well.
The desired small stain stiffness Emax is obtained from the extrapolation at hε → 0.
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Fig. 6 Hysteretic behaviour simulated for low cyclic tests
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Fig. 7 Anisotropy of stiffness varies with hε

3.4 Anisotropy of Stiffness Depending on hε

In some tests, despite uniaxial stress path along the prescribed polarization, an occur-
rence of oval strain paths could be observed, Fig. 7. This effect should not be mixed
up with the commonly observed σ–ε hysteresis. This ovality described as a variable
anisotropy of stiffness. This phenomenon is not accounted for in any extant small
strain model.

In order to capture the hε-dependent anisotropy of stiffness a minor modification
of PE is proposed by introducing of a small hε-dependent tensorial correction C(hε)

to secant stiffness:

Es ≈ (1 − fhχ
ε )E

max + C(hε). (19)

Unlike the scalar modification of Es proposed in PE model (19) allows for a hε-
dependent anisotropy. Equation (19) can be rewritten in the form

Es ≈ Emax − fhχ
ε Ecorr (20)

with non-proportional tensors Emax �∼ Ecorr . Here, apart from f and χ, we have
8 unknown components of matrices Emax and Ecorr which should be found by fit-
ting. The effect of variable stiffness anisotropy can be alternatively captured using a
“rotation” tensor R:

Es ≈ Emax − fhχ
ε RT : Emax : R (21)

In the case of isomorphic components we obtain:

Es
RC ≈ (δRAδCB − fhχ

ε RRARCB) Emax
AB (22)

which generates strain loops from linear stress path. The improvement can be con-
cluded judging by the significant reduction of fit errors. The rotation tensorR = R(hε)

is defined as:
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R(hε) =
[

cos(khε) sin(khε)

− sin(khε) cos(khε)

]
. (23)

Beside four (or three due to symmetry) unknowns components of matrix Emax
AB we

need just one additional parameter k to be found while fitting procedure.

4 Numerical Results and Discussions

The experimental data provided for this analysis by Espino [1] consist of 7 asterisk-
shaped stress paths performed at different stress levels as shown in Fig. 8. Material
parameters are fitted for each stress level separately. Numerical results and error
ranges are therefore independent.

First we read the experimental raw data including information about the time for
each measured point from the input file and reorganize it to the form of quadru-
ples (P,Q, εP, εQ). After subtracting strain accumulation (if necessary), the reversal
points are found using findRever. Between the reversals the smoothing proce-
dure smoothData is carried out. The essential steps for determination of unknown
material parameters, among them the parameters of small strain stiffness itself, are
provided below:

a. Filtering of experimental points. In order to determine the dependence of Eson
the span hε the measured records are grouped depending on the size of the span
hε. A filter function filterExperPoints picks out the records containing spans
(=increments) of the required size hε ( hDesired ± Acc):

filterExperPoints[dataf_, hEdesired_, Accuracy_: 10.ˆ(-8)] := Module[{dataff,i,Pav,Qav},

dataff = Select[dataf, Abs[#[[10]] - hEdesired] < Accuracy &];

If[Length[dataff] == 0 || Length[dataff] == 1,

Fig. 8 Stress asterisks at
different stress levels chosen
for small strain analyse
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Fig. 9 Filtered strain points

- 0.04 - 0.02 0.00 0.02 0.04

- 0.03

- 0.02

- 0.01

0.00

0.01

0.02

0.03

 [%]

 [%
] 

εP

ε Q
Print[Style["Error: Zero records passed the filter. Analysis will be stopped.

Check the defined value of hEdesired or the accuracy", 14, Red, Bold]]; Abort[]];

If[Length[dataff] < 10,

Print["Warning: Only", Length[dataff] - 1, "records passed the filter \n"]];

{Pav, Qav} = Mean[dataff[[2 ;; -1, 1 ;; 2]]]; Print["{Pav,Qav} =", {Pav, Qav}];

{dataff[[2 ;; -1]], {Pav, Qav}}];

For example, in Test 3 (see Fig. 8) this procedure could filter out 159 strain points
at the distance hε = 0.0001 ± 2 × 10−6 from the most recent reversals. They
are shown in orange in εP–εQ diagram in Fig. 9. The number of the experimental
points (mf ) after filtering procedure available for further analysis for the chosen
test and hε is given in Table2. The accuracy increases with number of points, of
course.

b. Calculating stiffness. Linear approximation of the small strain secant stiffness
Es

AB(P,Q) for a given hε is carried out according to Eq. (14). For example, for
hε = 0.9 × 10−4 ± 2 × 10−6 the values of stiffness components from different
tests are given in Table3 for the average stress level (Pav,Qav). Squared errors,
e.g. F1 form Eq. (11), can be expressed as a ratio of standard error deviation per
pure measurement to hσ:

Table 2 Number of filtered points available for small stiffness analysis for chosen hε range

Number of filtered points (mf ) for

Chosen hε ± 2 × 10−6 Test 1 Test 3 Test 5 Test 7 Test 8 Test 11 Test 14

hε = 0.9 × 10−4 161 175 125 96 51 113 231

hε = 2.1 × 10−4 122 132 84 75 32 88 176

hε = 3.3 × 10−4 110 110 73 58 28 78 163

hε = 4.5 × 10−4 119 123 80 91 38 76 174

hε = 5.1 × 10−4 166 138 94 32 26 58 203
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Table 3 The components of small strain stiffness tensor Es
AB = Es

AB(P,Q) for hε = 0.9× 10−4 ±
2 × 10−6

Test number Stress level (kPa) Small strain stiffness (kPa) Fitting error (%)

P Q Es
PP Es

PQ = Es
QP Es

QQ F

Test 1 521.06 246.96 351 547 110 778 282 050 1.26

Test 3 521.05 124.05 430 211 66 077.6 246 056 0.65

Test 5 521.12 1.09 477 436 −6 762.28 218 573 0.95

Test 7 525.01 −116.51 471 363 −122 052 161 716 1.83

Test 8 349.35 −77.43 343 273 −86 897.9 113 112 1.52

Test 11 179.42 −0.38 268 915 −34 837.7 109 468 2.20

Test 14 347.97 83.06 361 681 156.29 179 567 0.45

F =
√

F1

mf hσ
. (24)

Commonly used in statistic coefficient of determination R2 (e.g. [10]) is obtained
as R2 ≈ 1 − mf F2. Calculated here average relative fitting error (F) varies from
0.5 to 2.2% per measurement for all tests. Some discrepancies mean non-linear
dependence of the small strain stiffness on stress and they are to be removed
taking into account hysteretic σ–ε behaviour (18) and the variable anisotropy of
stiffness approximated by (23).

c. Determination of paraelastic material parameters f and χ. Paraelastic para-
meters f and χ are determined separately for all stress levels from Fig. 8. For this
purpose stiffness components for different hε must be evaluated. Given the fol-
lowingMathematica skript we may find the paraelastic parameters from results
similar to Table3 but for different hε:

FindFit[{hList,EnormsList},(1-f*hˆ\[Kappa])*Emax,{{f,-3},{\[Kappa],0.2},{Emax,1.5}},h]

The results of fitting analysis are presented in Table4. Except for the Test 5 the
values of paraelastic parameters are considerably lower than expected from earlier
calibration of the PE model (e.g. f ≈ 300 and χ ≈ 0.9 in [9]). It means that for
chosen a hε range (from hε = 0.9 × 10−4 to hε = 5.1 × 10−4) the material is

Table 4 Paraelastic parameters f , χ and ‖Emax‖
Parameter Test 1 Test 3 Test 5 Test 7 Test 8 Test 14

f 0.48 3.15 154.74 0.84 1.40 0.68

χ 0.05 0.40 0.93 0.02 0.01 0.03

‖Emax‖ 1.42 1.08 1.03 3.57 1.86 2.10
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Fig. 10 The secant stiffness∥∥Ehε
∥∥ / ∥∥Eh1

∥∥ decreases
with the distance hε from the
most recent reversal here
shown for Test 3 only. The
expected PE curve is shown
for f = 300 and χ = 0.9
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nearly elastic with a very weak hysteretic effect. A comparison is shown in Fig. 10
for Test 3 only.
We presume that the weak hysteretic behaviour is a consequence of the experi-
mental errors (relatively high cyclic frequency, low number of cycles, temperature
effects during loading, etc.)

d. Response envelopes. The elastic stiffness has been evaluated from experimental
data for each stress level. The constitutive response at small strain can be visual-
ized in the form of response envelopes, Fig. 11. As expected, the ellipses rotate
and change their size depending on P and Q. The ellipses also become narrow
for triaxial extension.
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5 Summary

A general algorithm for determination of stress-dependent small strain stiffness has
been presented. This algorithm is insensitive to the method how the tests are per-
formed and controlled (stress-, strain- or mixed-controlled tests can be used). The
assumption of a linear dependence of the secant stiffness on stress can be easily
extended to non-linear forms. It has been shown that problems of data analysis, such
as an accompanying measurement noise or a residual strain accumulation, can be
removed using the proposed algorithms. Implementing paraelastic model with some
minor modification for variable anisotropy allows to reduce number of laboratory
tests, instead concentrating only on one stress (strain) amplitude. The small strain
stiffness evaluated from the raw data by fitting the constitutive model can be graphi-
cally represented in the isomorphic stress diagram in the form of response envelopes.
However, it seems that the direct implementation of constitutive equations into fit-
ting algorithm is of advantage compared with the graphical method, in particular
when advanced and well established models are available. We do not recommend
the response envelopes as intermediate results between laboratory tests and the con-
stitutive modelling. In future we intend to apply the proposed algorithm to the more
experimental data of better quality (e.g. from SP 8, DFG FOR1136 [3]) and to com-
pare our stiffness calculation method with a graphical description of small strain
stiffness.
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Improved Integration of High-Cycle
Accumulated Strain Using Hierarchical
and EAS Finite Elements

A. Niemunis and I. Melikayeva

Abstract The spatial variability of high-cycle accumulated strain is larger than the
variability obtained from monotonic loading. Gradients of strain cause that the fit of
a given strain field εaccij is difficult for the conventional elements (if no refinement is
used). Usage of identical mesh for monotonic and cumulative deformations leads to
numerical self-stresses in elements. More flexible elements are therefore examined.
They can reduce the self-stresses considerably.

Keywords High-cycle accumulation · Self-stress · EAS-element · Hierarchical
element · Locking

1 Introduction

1.1 Notation

A fixed orthogonal Cartesian coordinate system x1, x2, x3 is used. A repeated
(dummy) index implies summation. We use the Kronecker’s symbol δij and the
permutation symbol eijk . The fourth order identity tensor is (J)ijkl = δikδjl and its
symmetrizing part is Iijkl = 1

2 (δikδjl +δilδjk). Proportionality of tensors is denoted by
tilde, ∼. The components of diagonal matrices (with zero off-diagonal components)
are written as diag[ , , ], for example 2nd order identity tensor can be expressed
as diag[1, 1, 1]. The operator (�)→ or �� denotes normalization of �, for example
�εij = εij/

√
εklεkl. The superposed dot �̇ denotes thematerial time derivative of�. The

superposed breve �̆ denotes the prescribed value of �. The superscript �e refers to �
inside the element number e. Virtual displacements, strains or stresses are denoted
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as δ�. Finite increments of � are denoted by
��. The superscripts �acc and �ampl

denote the cumulative part of � or the amplitude of �, respectively. Small strains
εij = u(i,j) = 1

2

(
ui,j + uj,i

)
and mechanical sign convention (tension positive) are

used. The lower Greek indices refer to the number of node or a number of a nodeless
variable. The lower Latin indices refer to the number of the Cartesian component,
e.g. uαi denotes a component i of displacement of the node α. For both Greek and
Latin letters apply the summation convention over repeated dummy indices. In the
case of nodes the summation runs over all nodes of a given element.

The following symbols are of importance:

Aωi = ∫Ve Nω,jEijklε
acc
kl , force-RHS due to initial strain εaccij

Āα = ∫Ve MαijEijklε
acc
kl dV , stress-RHS due to initial strain εaccij

Bijαk Strain-displacement matrix for εij = Bijαkuαk
cαi Nodeless displacement parameter
cαi Nodeless displacement parameter
Dαβ = ∫Ve MαijEijklMβkldV , stress-EAS stiffness
Eijkl = ∂σij/∂εkl stiffness (links relaxation with creep in HCA)
fi Volume force
J Jacobian for dimensionless coordinates J = det(@x/@ξ)

ni Unit outer normal vector to the boundary
Kωiγk = ∫Ve Nω,jEijklNγ,ldV , force-displacement stiffness
LT

ωiα = ∫Ve Nω,jEijklMαkldV , force-EAS stiffness
Lαγk = ∫Ve MαijEijklNγ,ldV , stress-displacement stiffness
Nα, Nα,i Shape function of node α or its Cartesian gradient wrt xi

Mαij Interpolator for assumed strain field ε̃ij = Mαij ε̃α

Ma
αij Mαij scaled by J0/J for orthogonality

Pα Interpolator for stress, P1(ξ) ≡ 1 in EAS-Element
Pn(ξ), Pn(η) Legendre polynomial of degree n wrt ξ or η
Rωi = ∫Ve NωfidV + ∫Set Nω t̆idS from tractions and body forces
sij Difference between stress as primary function and stress as a slave

function of ui and ε̃ij

ti = σijnj, stress vector
ui, uαi Field of ith components of displacement or its nodal value
γ12 = ε12 + ε21, shear strain (Voigt notation)
εij Strain (small, tension positive)
ε̃ij, ε̃α Enhanced strain field and its “nodal” value
ξ = (ξ, η) Dimensionless coordinates in an element , ξ, η ∈ [−1, 1]
ξα = ξα1 = ±1, a dimensionless coordinate of node α
σij,σαij Cauchy stress (tension positive) field and its “nodal” value
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1.2 FE Implementation of the High Cycle
Accumulation Model

According to the high cycle constitutive model [4] (HCA) for soils

σ̇ij = Eijkl(ε̇kl − ε̇acckl − ε̇
pl
kl) (1)

the rate of accumulation ε̇acc is proportional to the square of the amplitude.
For a typical punch problem of a shallow foundation in soil mechanics the stress

amplitude due to a vertical point load Pampl on the surface of the elastic half-space
can be roughly estimated using the well known formulas by Boussinesq (3D case)
or by Flamant line load P̄ampl (2D)

σ
ampl
rr = −3Pampl

2πr2
cos θ or σ

ampl
rr = −3P̄ampl

2πr
cos θ, (2)

wherein cos θ = �x · diag{0,−1}. In plane strain problems εampl decreases linearly in
space and hence ε̇accij decreases with the square of the distance r from the foundation.

According to some recent triaxial tests [7] the exponent n in εaccij ∼ (
εampl

)n
can

be smaller than two, typically 1.4< n < 2.0. On the other hand, however, some
additional spatial variability of εaccij results from the barotropic stiffness (deformation
amplitude is larger at the ground surface), from the stress obliquity (in the vicinity of
the foundation the accumulation is larger due to larger mobilized friction angle) and
from the barotropy of the accumulation (εaccij is larger at low effective mean stress,
i.e. at the ground surface). Taking into account all these effects we may conclude that
the plane stain finite elements used with HCA should be able to reproduce at least
all strain fields which vary proportionally to r2. It turns out that this requirement is
of crucial importance for the results of the FE-analysis with HCA and it is not just
a matter of inaccurate predictions of settlements. Another important problem is a
feed back phenomenon caused by self-stresses which appear in overly constrained
elements. The numerical errors seem to amplify themselves.

Choosing a FE formulation we should eliminate numerical self-stresses. However
we should not eliminate any self-stress appearing in the FE solution. For example,
under conditions ε̇ij = 0 and at a small stress obliquity that guarantees ε

pl
kl any high

cycle loading leads, according to Eq. (1), to the relaxation σ̇ij = −Eijklε
acc
kl which

should be preserved in the FE simulations. Similarly, some self-stresses may appear
due to kinematic incompatibility

ηij = eimkejnlε
acc
kl,mn 	= 0.

These self-stresses are of physical nature and they should not be artificially elimi-
nated. In all examples presented in this paper the prescribed 2D strain fields εaccij are
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+    +

+    +

+     +

+     +

CPE4

+
+

CPE4R

Fig. 1 Number of degrees of freedom (DOF) and number of constraints per element. Left Full
integration with 2 DOFS (u1, u2) and 12 constraints ε11 = εacc11 , ε22 = εacc22 and γ12 = γacc

12 in four
integration points. Right Reduced integration with 2 DOFS (u1, u2) and 3 constraints ε11 = εacc11 ,
ε22 = εacc22 , and γ12 = γacc

12 in one integration point

assumed to be kinematically compatible, that is they satisfy1

εacc11,22 + εacc22,11 − γacc
12,12 = 0 (3)

Moreover, only statically determinate supports are chosen so that the only self-
stresses appearing in our examples are of numerical origin.

1.3 Spatial Integration of Prescribed a Strain Field

For prediction of settlements due to high-cycle loading we calculate the fields εampl,
εaccij and thenwe need to integrate εaccij (x) to a displacement field uacci (x). The problem
of artificial self-stresses in conventional elements can be expected by counting the
number of DOFs and the number of constraints (Fig. 1).

Discrepancies u(i,j) = εij 	= εaccij result in stresses

�
σij = Eijkl(

�
εkl − �

ε
acc

kl ).

Further in the text we omit
�� for simplicity. We deal with increments only. The

average quadratic discrepancy can be declared to be a target function T

T =
∑

e

∫
Ve

1

2
(
�
u(i,j) − �

ε
acc

ij )(
�
u(i,j) − �

ε
acc

ij ) dV (4)

1Obtained from uacc1,122 + uacc2,211 − (uacc1,212 + uacc2,212) = 0.
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5 10 15

5

10

15

ε acc
ij (x  ,x  )1 2

CPE8
CPE8R

Fig. 2 Example: integration of the accumulation field εaccij (x1, x2) given in (5)

can be discretized with nodal displacements uαi:

�
ui(x) = Nα(x)

�
uαi

�
u(i,j) = Bijαk

�
uαk = 1

2
Nα,n(δniδjk + δnjδik)

�
uαk

and minimized under Dirichlet BC. Minimization of error ∂T/∂uαk = 0 leads to a
simple FE problem

∑
Elem.

∫
V (e)

[
BijαkBijβl

]
dV uβl =

∑
Elem.

∫
V (e)

Bijαkε
acc
ij dV = 0

corresponding to a static equilibrium problem with elastic parameters E = 1 and
ν = 0.

As an example we consider a kinematically compatible, freely supported strain
field, Fig. 2, with

⎧⎪⎨
⎪⎩

εacc11 = 0.001 x1(x1 + x2),

εacc22 = 0.001 x2(x1 + x2),

γacc
12 = 0.001 (x1 + x2)

(5)

It will be spatially integrated using plane strain 8-node elements CPE8 and CPE8R
with full and reduced Gauss quadrature. Analytical integration leads (without rota-
tion) to (6).

⎧⎪⎪⎨
⎪⎪⎩

u1 = 0.001

(
x31
3 + x21x2

2 − x32
6 + x22

2

)

u2 = 0.001

(
− x31

6 + x21
2 + x1x22

2 + x32
3

) (6)
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Fig. 3 Components of strain field (5), in columns: analytically, with CPE8 and with CPE8R.
The displacement of the upper right corner was exact = 0.010371, CPE8 = 0.010285, CPE8R =
0.010370. The fields in CPE8 and CPE8R are quantitative almost identical, but the integration error
is significantly different

Minimization of the target function T with a single CPE8 element with full or
reduced Gauss integration result in

∫
V (u(i,j) − εaccij )2dV∫

V (εaccij )2dV
≈
{
1% if 9GPs
0% if 4GPs

a relatively small error because our element has no neighbours in this test. The strain
fields from CPE8 and CPE8R in Fig. 3 are similarly poor. In the reduced integration
in CPE8R elements the errors are overlooked, which is of advantage because they
are not converted to stresses (Figs. 4, 5, 6, 7).

The HCAmodel implemented as a user’s material routine works with the conven-
tional finite element. Such elements integrate the accumulated strain (a fields which
often vary proportional to r2, given in integration points) into the displacement field
(given as nodal variables). The essential problem is not the inaccuracy of the result-
ing predictions of settlement but the fact that a portion of accumulated strain cannot
be approximated by nodal displacements and this portion is converted to stress. This
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Fig. 4 Vertex shape functions N1, N2, N3 and N4

Fig. 5 Interpolation functions N5, N9, N13, N17 and N21 with non-vanishing values on edge 1-2.
Further 15 functions for edges 2-3, 3-4 and 4-1 are also used. They are not shown here

Fig. 6 Bubble functions N25, N26 and N27 vanishing on all edges

Fig. 7 And some more bubble functions (N28, N29 and N30) built of polynomials of higher degree

self-stress is of numerical origin and may systematically grow. In subsequent incre-
ments the errors in stress may become large so that they can decisively affect the rate
of accumulation and completely distort the results. Even positive feedback phenom-
enon may be observed. Therefore the first step towards a better implementation of
HCA should be the elimination of the numerical self stress rather than the improve-
ment of the accuracy of strain integration. Two numerical strategies are considered
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1. weaken the link between strain and displacement (allowing for errors in εij ≈
u(i,j))

2. improve the flexibility of the element by using high order polynomials in the
interpolation functions

2 Three-Field Potential Energy

Given a field of accumulated strains εaccij we solve a static equilibrium problem to find

the stresses σij, strains εij and displacements ui (or their increments
��). Assuming

elasticity σij = Eijkl(uk,l − εacckl ) in which stiffness tensor satisfies minor symmetries
(Eijkl = Eijlk and Eijkl = Ejikl) the static equilibrium equation σij,j + fi = 0i with
Neumann BC t̆i = Eijkl(uk,l−εacckl )nj on St and Dirichlet BC ui = ŭi on Su has the
weak form

∫
V

ϕi (σij,j + fi)dV = 0 with ui = ŭi and ϕi = 0i on Su (7)

i.e. the test functions ϕi(x) must vanish on the Dirichlet boundary. Using the diver-
gence theorem this weak form is conveniently expressed by

∫
V

ϕi,jEijkl(uk,l − εacckl )dV =
∫

St
ϕi t̆idS +

∫
V

ϕifidV (8)

An equivalent variational form can be obtained from the potential energy

Π(ui) =
∫

V

1

2
(ui,j − εaccij )Eijkl(uk,l − εacckl ) − uifidV −

∫
St

uit̆idS (9)

with a single unknown field ui(xj). The stationarity condition δΠ = 0 under assump-
tion Eijkl = Eklij leads to

δΠ =
∫

V
δui,jEijkl(uk,l − εacckl ) − δuifidV −

∫
St

δuit̆idS = 0 (10)

with the virtual displacements δui = ϕi and with δui,j = δ(ui,j − εaccij ).
Following the general concept by Hu [3] and Washizu [6] we introduce strain

εij(x) as an independent unknown field (master field, to be discretized with FE with
additional nodal variables). It should be possibly similar (but not necessarily iden-
tical) to the strain εu

ij = u(i,j) obtained2 from the displacement field. We say that
ui(x) is the master field for the slave field εu

ij and that they are strongly connected
εu

ij = u(i,j). The desired compatibility conditions εij − εu
ij ≈ 0 will be treated as a

weak link to be added using Lagrange multipliers λε
ij to the potential energy Π . This

2The brackets in the index part denote symmetrization u(i,j) = 1
2

(
ui,j + uj,i

)
.
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means that the compatibility condition is required only via stationarity condition
δΠ∗ = 0 of the extended potential Π∗ = Π − λε

ij(εij − εu
ij) of the form

Π∗(ui, εij,λ
ε
ij) =

∫
V

[
1

2
εel

ij Eijklε
el
kl − uifi

]
dV −

∫
St

uit̆idS

−
∫

V
λε

ij(εij − u(i,j))dV (11)

and with unknown Lagrange multiplier −λε
ij. For brevity εel

ij = εij − εaccij is used.

In (11) we have obtained a three-field (ui, εij,λ
ε
ij) potential.

3 From the stationarity
condition δΠ∗ = 0 follows

∫
V

[
δεijEijklε

el
kl − δuifi

]
dV

−
∫

St
δuit̆idS −

∫
V

[
λε

ij(δεij − δu(i,j)) + δλε
ij(εij − u(i,j))

]
dV = 0 (12)

in which δεij = δεel
ij is used. We may rewrite (12) collecting coefficients at

δεij, δui, δλ
ε
ij. Each of these coefficients should vanish independently because the

variations δεij, δui, δλ
ε
ij are independent. Choosing all variations equal zero except

δεij 	= 0 simplifies (12) to

∫
V

Eijklε
el
kl − λε

ijdV = 0 (13)

and provides an interpretation4 λε
ij = Eijklε

el
kl = σij. Further we can either introduce

the stress field λε
ij = σij as a new master field σij(x) or continue using εel

kl and replace

λε
ij = Eijklε

el
kl. We choose σij(x) as an independent field.

3Similarly one could also weaken the constitutive relationship and instead of the usual strong
connection σij = Eijkl(uk,l−εacckl ) we could introduce an independent unknown field of stress σij
which should be compatible with the constitutive stress σε

ij = Eijkl(εkl − εacckl ). This σε
ij would be

treated as a slave of the master field εkl . The weak for of the connection σij − σε
ij is λσ

ij(σij − σε
ij)

with the Lagrangian multipliers λσ
ij .

Similarly, we may also proceed with the essential BCs in the form ui − ŭi = 0 defined on
Su. They will be added to the functional with the help of Lagrange multipliers λu

i in the form
− ∫Su

λu
i (ui − ŭi)dS

This term should be added to the extended potential. The result is called the Hu-Washizu func-
tional.
4Note that λε

ij = σij must be symmetric and hence λε
ijδu(i,j) = λε

ijδui,j i.e. symmetrization may be
omitted in (11), (12).
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Equation (12) with λε
ij = σij generates a system of three equations obtained by

setting different two of three independent variations δui, δεij, δσij to zero:

−
∫

V
δuifidV −

∫
St

δuit̆idS +
∫

V
δui,jσijdV = 0 (14)

∫
V

δσij(εij − ui,j)dV = 0 (15)
∫

V
δεij

[
Eijklε

el
kl − σij

]
dV = 0 (16)

3 Enhanced Assumed Strain

Following Simo and Rifai [5] we decompose the strain field within an element into

εij = u(i,j) + ε̃ij = εu
ij + ε̃ij (17)

The superscript in εu
ij the portion of strain obtained from the strong link εu

ij = u(i,j).
The independent strain field εij in (11) may be replaced by (17) with the independent
portion ε̃ij. The stationarity condition (12)written outwith δεel

ij = δεij = δu(i,j)+δε̃ij,

with λε
ij = σij and with εel

ij = u(i,j) + ε̃ij − εaccij takes the form

∫
V
(δu(i,j) + δ ε̃ij)Eijklε

el
kldV −

∫
V

δuifidV −
∫

St
δuit̆idS −

∫
V

δ ε̃ijσijdV −
∫

V
ε̃ijδσijdV = 0 (18)

Choosing different combinations of the independent variations δu(i,j), δ ε̃ij or δσij

Eq. (18) may generate the following system

∫
V

δu(i,j)Eijklε
el
kldV =

∫
V

δuifidV +
∫

St
δuit̆idS (19)

∫
V

δσij ε̃ijdV = 0 (20)
∫

V
δ ε̃ijEijklε

el
kldV −

∫
V

δ ε̃ijσijdV = 0 (21)

Following Simo and Rifai [5], we make the following restrictions:

1. Bubnov-Galerkin interpolation method is used, i.e. the solution function of a
variable � and the test function of the corresponding variation δ� have identical
basis functions, e.g. σij = Pασαij and δσij = Pαδσαij with the same interpolation
functions Pα.
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2. The enhancement ε̃ij of strain and (virtual) stress δσij are expressed with their
own basis functions, namely

ε̃ij = Mαij ε̃α and δσij = Pβij δσβ (22)

The orthogonality (20) is satisfied

∫
V

ε̃ijδσijdV = ε̃α

[∫
V

MαijPβijdV

]
σβ = 0 (23)

by choice of orthogonal basis functions alone,
∫

V PβijMαijdV = 0 for any com-
bination of α and β (also for α = β) and irrespectively of the coefficients ε̃β and
σα.

3. At least the constant distribution stress across the element should exist, i.e.
P1(x) = 1. Let it be the only basis function for the independent stress field.
For the basis functions of ε̃ij this implies5

∫
�

Mαij(ξ)Jdξ = 0, (24)

wherein ξ = {ξ, η} is the pair of natural coordinates and J(ξ) = det(∂x/∂ξ) is
the Jacobian. Finding Mαij(ξ) can be eased introducing Ma

αij(ξ) such that

Mαij = Ma
αij

J0
J

(25)

The Jacobian J(ξ) = det(∂x/∂ξ) varies inside the element but J0 = J|ξ=η=0
is its (fixed) value evaluated in the middle of the element. If we find Ma

αij that
satisfies ∫

�
Ma

αijdξ = 0 (26)

then (24) will be also satisfied. Note that only Mαij are the basis functions and
Ma

αij are not. By the definition of Ma
αij we have simply cancelled the usual

J-multiplication of Gauss quadrature6 shown in (24).
4. No basis functionsMαij may reappear as one of the derivatives ofNβ , in particular,

no Mαij = const is allowed for.

With these restrictions (20) is satisfied a priori and need not be further considered.
Moreover we may drop the second integral in (21). We write out εel

kl = u(k,l) + ε̃kl −
εacckl in (19) and (21) obtaining

5The enforcement of full orthogonality of ε̃ij with σij = Eijklε
el
kl would imply ε̃ij = 0.

6
∫
� . . . dξ represents

1∫
−1

1∫
−1

. . . dξdη.
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⎧⎪⎨
⎪⎩

∫
V δu(i,j)Eijkl

(
uk,l + ε̃kl

)
dV = ∫V δuifidV + ∫St δuit̆idS

+ ∫V δu(i,j)Eijklε
acc
kl∫

V δ ε̃ijEijkl
(
uk,l + ε̃kl

)
dV = ∫V δ ε̃ijEijklε

acc
kl dV

(27)

The following discretization is used

ui = Nωuωi, ui,j = Nω,juωi and ε̃ij = Mαij ε̃α (28)

wherein Nω,j denotes the cartesian derivative Nω,j = ∂Nω
∂ξ

∂ξ
∂xj

+ ∂Nω
∂η

∂η
∂xj

in the 2D
case. Substituting the discretized fields into (27) we obtain

⎧⎪⎨
⎪⎩

δuωi
∫

V

(
Nω,jEijklNω,luωk + Nω,jEijklMαkl ε̃α

)
dV = δuωi

[∫
V Nω fidV
+ ∫St Nω t̆idS + ∫V Nω,jEijklε

acc
kl

]
δ ε̃α

∫
V

(
MαijEijklNω,luωk + MαijEijklMβkl ε̃β

)
dV = δ ε̃α

∫
V MαijEijklε

acc
kl dV

(29)
provided Eijkl have both minor symmetries.7 Due to the arbitrariness of the variations
δuωi and δ ε̃αij of the nodal values we may bracket them out so that (29) generates
the following system of equations (here written in a block form for brevity)

{
Kωiγkuγk + LT

ωiαε̃α = Rωi + Aωi

Lαγkuγk + Dαβε̃β = Āαij
(30)

with abbreviations

Kωiγk =
∫

V
Nω,jEijklNγ,ldV (31)

LT
ωiα =

∫
V

Nω,jEijklMαkldV (32)

Lαγk =
∫

V
MαijEijklNγ,ldV (33)

Dαβ =
∫

V
MαijEijklMβkldV (34)

Rωi =
∫

V
NωfidV +

∫
St

Nω t̆idS (35)

Aωi =
∫

V
Nω,jEijklε

acc
kl (36)

Āα =
∫

V
MαijEijklε

acc
kl dV (37)

7hence we may omit symmetrization brackets in u(i,j).
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with Lαγk = LT
γkα from comparison of (33) and (32) using minor and major

symmetries of Eijkl. Evidently the transposition pertains to the index α and the
pair γk .

Sometimes wemaywant to eliminate the discrete enhancement of strain ε̃βkl from
the set of unknowns. For this purpose we use static condensation. First we find

ε̃β = D−1
αβ Āα − D−1

αβLαγkuγk (38)

from the second equation in (30) and then we substitute ε̃β into the first equation
in (30)

Kωiγkuγk + LT
ωiβ

(
D−1

ηβ Āη − D−1
ηβ Lηγkuγk

)
= Rωi + Aωi or (39)[

Kωiγk − LT
ωiβD−1

ηβ Lηγk

]
uγk = Rωi + Aωi − LT

ωiβD−1
ηβ Āη (40)

The EAS-element stiffness is given in the square brackets. Static condensation is
not obligatory but it is useful in elastic problems because judging by the degrees of
freedom the element looks like a conventional (single-field) displacement element.

3.1 Smart Enhancements ε̃ij(x) to the Strain Field

In order to satisfy the restriction (24) we propose Ma
αij that satisfies (26) for example

Ma
αij = ξ or = η or = ξη etc. Indeed, they guarantee the orthogonality condition

with a constant stress thanks to
∫
�

Ma
αijdξ = 0 (41)

Further restriction on Mαij was that it should differ all from derivatives Nα,J of
interpolation functions Nα of displacements. This pertains to Mαij as well as to Ma

αij
because of J = const in rectangular elements. The well-known basis functions for
displacement at node α of a quadrilateral element are

Nα(ξ, η) = (1 + ξξα)(1 + ηηα)/4 with ξα, ηα = ±1 for α = 1, 2, 3, 4 (42)

They contain components linear in ξ and η so Ma
αij = const are forbidden (except for

Ma
αij = 0, of course). The basis functions (42) contain also the product ξη and hence

the derivatives Nα,1 appearing in ε11 contain η and the derivatives Nα,2 appearing
in ε22 contains ξ. In order to preclude identical basis functions in ε̃ij as obtained for
u(i,j) one cannot use Ma

α11 = η or Ma
α22 = ξ.
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The following base functions can be found in the literature for four nodeless para-
meters ε̃α, α = 1, 2, 3, 4

⎡
⎢⎣

← Ma
α11 →

← Ma
α22 →

← Ma
α12 →

⎤
⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

ε̃α=1
ε̃2
ε̃3
ε̃4

⎫⎪⎪⎬
⎪⎪⎭

=
⎡
⎣ ξ 0 0 0
0 η 0 0
0 0 ξ η

⎤
⎦
⎧⎪⎪⎨
⎪⎪⎩

ε̃1
ε̃2
ε̃3
ε̃4

⎫⎪⎪⎬
⎪⎪⎭

(= Ma
αij ε̃α) (43)

Some authors use seven nodeless parameters ε̃α, α = 1, 2, . . . 7

⎡
⎢⎣

← Ma
α11 →

← Ma
α22 →

← Ma
α12 →

⎤
⎥⎦ =

⎡
⎣ ξ 0 0 0 ξη 0 0
0 η 0 0 0 ξη 0
0 0 ξ η 0 0 ξη

⎤
⎦ (44)

3.2 Stress Recovery

After an FE calculation we are given the nodal displacements uαi and hence the
approximation of the displacement function ui. Using these values we will find the
optimal stress field σij. The discrepancy

sij = σij − Eijkl(u(k,l) + ε̃kl − εacckl ) (45)

between the stress σij understood as an independent (element-wise constant) field
and the slave stress field Eijkl(u(k,l) + ε̃kl − εacckl ) obtained from enhanced strains
should give possibly small complementary energy

∫
Ve

1

2
sijE

−1
ijkl sijdV → min or

∫
Ve

δsijE
−1
ijkl skldV = 0 (46)

Substituting (45) into (46) and choosing δσij 	= 0 and δε̃ij = 0 or vice versa we
obtain

∫
Ve

δσijE
−1
ijkl skldV = 0 or

∫
Ve

δσijE
−1
ijkl

[
σkl − Eklrs(u(r,s) + ε̃rs − εaccrs )

]
dV = 0 (47)

and
∫

Ve
δε̃mnEijmnE−1

ijkl skldV = 0 or (48)
∫

Ve
δε̃mnEmnijE

−1
ijkl

[
σkl − Eklrs(u(r,s) + ε̃rs − εaccrs )

]
dV = 0 (49)
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respectively. These results may be simplified to

∫
Ve

δσij

[
E−1

ijklσkl − (u(i,j) + ε̃ij − εaccij )
]
dV = 0 (50)

∫
Ve

δε̃kl
[
σkl − Eklrs(u(r,s) + ε̃rs − εaccrs )

]
dV = 0 (51)

and making use of the orthogonality condition (20) further to

∫
Ve

δσij

[
E−1

ijklσkl − (u(i,j) − εaccij )
]
dV = 0 (52)

∫
Ve

δε̃klEklrs(u(r,s) + ε̃rs − εaccrs )dV = 0 (53)

We use the discretized forms δσij = Pαδσαij and σij = Pβσβij with the single basis
function P1 = 1. Moreover, we approximate u(i,j) = Nα,juαi obtaining the nodeless
stress parameter σ1ij from (52)

δσ1ij

∫
Ve

[
E−1

ijklσ1kl − (Nα,juαi − εaccij )
]
dV = 0 or (54)

σ1kl = 1

Ve
Eijkl

[∫
Ve

Nα,juαidV −
∫

V
εaccij dV

]
(55)

The remaining additional strain field ε̃rs = Mαij ε̃α can be found from using the
nodeless parameters ε̃α from (38). In the Mma script calculating an EAS-element
the names of variables follow the notation used in this paper.

getStiffEAS[e_]:=Module[{xxe,xxG,Emod,nu,Estiff,BB, KK,DD,LL, Na,Ma,x,y, w,

nnode = Length[elements[[e]] ]; nGauss =4;

xxe = xx[[#]] & /@ elements[[e]];

maxG=1; {Na,dNadx,dNady,dV0} = getCartD[xxe,1, maxG] ;(* jacobian of shape in the middle *)

maxG=4; maxE=4;

DD = Array[0&, {maxE,maxE}];

LL = Array[0&, {maxE,nnode*2}] ;

KK = Array[0&,{ nnode*2, nnode*2}] ;

A = Array[0&, nnode *2 ] ;

Ab= Array[0&, maxE ] ;

{Emod,nu}=getMatConstants[e, (Plus @@xxe)/nnode ];

Estiff=getElasticPlaneStrainStiffness[Emod,nu] ;

For[iG=1,iG<=nGauss,iG++, (* Print["iG=",iG];*)

{Na,dNadx,dNady,dV} = getCartD[xxe,iG, maxG] ;

xxG = Na. xxe;

BB = {{dNadx[[1]],0, dNadx[[2]],0,dNadx[[3]],0, dNadx[[4]],0},

{0,dNady[[1]], 0,dNady[[2]],0,dNady[[3]],0,dNady[[4]] },

{ dNady[[1]],dNadx[[1]] , dNady[[2]],dNadx[[2]] , dNady[[3]],

dNadx[[3]] , dNady[[4]],dNadx[[4 ]] }};

{{x,y}, w} = getGP[iG, nGauss] ;

If[maxE==4, Ma = {{x,0,0,0},{0,y,0,0},{0,0,x,y} } ] ; (*4 enhancements rows: e11,e22,g12 *)

If[maxE==7,Ma = {{x,0,0,0 ,x* y, 0,0},{0,y,0,0,0, x *y, 0},{0,0,x,y,0 ,0, x *y} } ];

If[maxE==13,Ma = {{x,0,0,0 ,x* y, 0,0,xˆ2 Sign[x],0,0,yˆ2 Sign[y],0,0},

{0,y,0,0,0, x *y, 0,0,xˆ2Sign[x],0,0,yˆ2Sign[y],0},

{0,0,x,y,0 ,0, x *y,0,0,xˆ2Sign[x],0,0,yˆ2Sign[y]} } ];

Ma *= (dV0/dV);
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KK += Transpose[BB].Estiff.BB *dV;

DD += Transpose[Ma]. Estiff. Ma * dV;

LL += Transpose[Ma].Estiff.BB *dV;

A += Transpose[BB]. Estiff. getEpsilon0[xxG]*dV ;

Ab += Transpose[Ma]. Estiff.getEpsilon0[xxG]*dV;

] ; (* iG *)

KK -= Transpose[LL].Inverse[DD].LL ; (* static condensation *)

A -= Transpose[LL].Inverse[DD].Ab; (* static condensation *)

{splitToSquareBlocks[ KK , 2 ] ,Partition[A,2] }

]

4 Hierarchical Element

Flexibility of a finite element can be improved using the concept of hierarchical
element (HE) also known as p-refinement [1, 2, 9]. A single displacement field is
used. Its approximation within an element is improved using additional interpolation
functions rather than splitting the element into smaller ones (so called h-refinement).
The major advantage of the p-refinement results from the fact that we continue
using of the initial coarse mesh (in our case mesh of CPE4 elements). Contrarily
to the alternative remeshing techniques, no additional nodes will be added in the
HE and the geometry of the root element remains unchanged. The refinement of
an existing element is achieved by adding nodeless interpolation polynomials to the
basic set of interpolation functions. An indispensable procedure in theHE is the static
condensation in which all nodeless parameters are eliminated before aggregation.
Although the hierarchical elements are computationally rather expensive they are
expected to reduce the self-stress obtained from the HCA model because of the high
order of polynomial approximation.

Therefore we try out a 4-nodal plane strain element with hierarchical expansion
of the displacement field by the polynomials up the p = 6th order. In place of the
conventional nodal approximation

ui(ξ) =
4∑

α=1

Nα(ξ) uαi with ξ = (ξ, η) and (56)

Nα(ξ, η) = 1

4
(1 + ξαξ)(1 + ηαη) with α = 1, . . . 4 (57)

of the CPE4 element we use the extended superparametric form

ui(ξ) =
4∑

α=1

Nα(ξ)uαi +
30∑

α=5

Nα(ξ)cαi (58)

x(ξ) =
4∑

α=1

Nα(ξ)xα (59)
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where

• uαi = conventional nodal displacements (at node α in direction i) for shape func-
tions Nα(ξ), α = 1, 2, 3, 4

• cαi = internal multipliers of polynomials Nα(ξ), α = 5, . . . 4p − 4 allowing for
displacements on edges

• cαi = internal multipliers of polynomials Nα(ξ), α = 4p−3, . . . (p−2)(p−3)/2
vanishing on edges

Summing up, we use in our CPE4HE element (4+ 20+ 6) · 2 = 60 parameters and
30 interpolation functions.

Note that the displacements need not be continuous across the element borders
anymore. The jumps in u may be caused by different cβ coefficients in neighbouring
elements. Therefore it is necessary to perform a patch test to be sure that the elements
can reproduce arbitrary constant strain fields.

1. Nodal (vertex) shape functions Nα are associated with vertrices η by
Nα(ξη) = δαη . From this condition one obtains

Nα(ξ, η) = 1

4
(1 + ξαξ)(1 + ηαη) for α = 1, . . . 4

nb1[xi_]:= (1 - xi)/2; nb2[xi_] := (1 + xi)/2;

nb[xi_] := {nb1[xi], nb2[xi]};

Nv1[xi_, eta_] := Outer[Times, nb[xi] , nb[eta]];

{eN[[1]], eN[[2]], eN[[3]], eN[[4]]} = {Nv1[xi,eta][[1,1]], Nv1[xi,eta][[2,1]],

Nv1[xi,eta][[2,2]], Nv1[xi,eta][[1,2]] };

2. Additional hierarchical functions Nβ with non-zero edge values (so called edge
functions) are defined by:

Nβ(ξ, η) = 1

2
(1 + ξβξ)(1 + ηβη)Fβ(ξ, η) for β = 5, . . . 24

whereinF(ξ, η) are integrated from someLegendre polynomialsPn(ξ) andPm(η)

wherein n, m denote the degree of the polynomial

P[xi_]:= Array[LegendreP[#, xi] &, 5];

F[xi_]:= Table[ If[ k==1, 0, Sqrt[(2k-1)/2] Integrate[P[t][[k-1]],{t,-1,xi}]],{k,1,6}];

Nek31 = nb1[eta]F[xi]; Nek32 = nb2[eta]F[xi];

Nek13 = nb1[xi] F[eta]; Nek23 = nb2[xi] F[eta];

For[k=1, k<=p-1, k++,

eN[[5+4(k-1)]] = Nek31[[k+1]];

eN[[5+4(k-1)+1]]= Nek23[[k+1]];

eN[[5+4(k-1)+2]]= Nek32[[k+1]];

eN[[5+4(k-1)+3]]= Nek13[[k+1]];];

Exemplarily one get N9 (3rd order of approximation, not vanishing on the edge
1-2) and N15 (4th order of approximation, not vanishing on the edge 3-4) as
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following:

N9(ξ, η) = 1
4

√
5
2ξ(1−η)(ξ2−1) and N15(ξ, η) = 1

16

√
7
2ξ(1+η)(5ξ4−6ξ2+1)

3. Hierarchical bubble functions Nγ vanish on all element edges and have the form

Nγ(ξ, η) = (1 − η2)(1 − ξ2)Pn(ξ)Pm(η) for γ = 25, . . . 30

with some additional Legendre polynomials Pn(ξ) and Pm(η) of degree n and m.

eN[[25]] = (1-xiˆ2)(1-etaˆ2); eN[[26]] = eN[[25]] P[xi][[1]];

eN[[27]] = eN[[25]] P[eta][[1]]; eN[[28]] = eN[[25]] P[xi][[2]];

eN[[29]] = eN[[25]] P[xi][[1]]P[eta][[1]]; eN[[30]] = eN[[25]] P[eta][[2]];

Exemplarily one can get for internal approximation functionsN27 andN30 following:
N27(ξ, η) = η(1 − η2)(1 − ξ2) and N30(ξ, η) = 1

2 (3η
2 − 1)(1 − η2)(1 − ξ2)

The discretization of the balance of momentum with the constitutive relation

�
σij = �

σ
0

ij + Eijkl(
�
εkl − �

ε
acc

kl ) (60)

gives us the usual system of linear equations:

Kηiβjaβj = Rηi,with aβj =
{

uβj, forβ = 1, . . . 4
cβj, forβ = 5, . . . 30

(61)

that is the generalized list of coefficients aαi consists of nodal parameters uαi and
nodeless parameters cαi (both for i = 1, 2). Moreover we have

Kηaβb =
∫

V
BijηaEijklBklβbdV with η,β = 1, . . . 30 and a, b = 1, 2 (62)

Rηa =
∫

V
BijηaEijklε

acc
kl dV+

∫
V

Bijηaσ
0
ijdV+

∫
V

Nη b̆adV +
∫

S
Nη t̆adS. (63)

ThematrixBijηk computes strain from εij(ξ) = Bijηk(ξ) aηk , in particular under plane
strain condition with deformation (ε11, ε22, γ12) we could use

B11ηk = Nη,1δ1k (64)

B22ηk = Nη,2δ2k (65)

B12ηk + B21ηk = Nη,2δ1k + Nη,1δ2k (66)

MatrixBijηk is built at eachGauss integration point ξG. At this point it should be noted
that the order of Gauss quadrature integration has to be chosen to provide a sufficient
precision. It is especially important for integrals of higher order polynomials. In our
case of p = 6 the Gauss quadrature of at least 7th order is required. In other words,
we need at least 49 integration points per element. Their position and their weighting
coefficients can be found with the following script
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getAllGPs[maxG_, maxDim_ , edge_: 1] :=

Module[ {Pn, p, x, w, coordsGP, weightsGP, CoordEdge1m, CoordEdge1p},

Pn = 1/(2ˆmaxG*maxG!)*D[(pˆ2 - 1)ˆmaxG, {p, maxG}]; (* Legendre polynomial *)

x = p /.( Solve[Pn == 0, p]// N // Chop // Sort ); (* 1-D coordinate *)

w = 2./((1 - xˆ2)*(D[Pn, p] /.{p -> x})ˆ2); (* weight coefficient *)

If[ maxDim == 1,

CoordEdgeM = Array[-1 &, maxG]; CoordEdgeP = Array[1 &, maxG];

If[edge == 1, coordsGP = Transpose[{x, CoordEdge1m} ]];

If[edge == 2, coordsGP = Transpose[{CoordEdge1p, x} ]];

If[edge == 4, coordsGP = Transpose[{CoordEdge1m, x} ]];

weightsGP = w; ];

If[maxDim == 2 ,

coordsGP = Flatten[ Outer[List, x, x], 1];

weightsGP = Flatten[ Outer[Times, w, w]];];

Transpose[{coordsGP , weightsGP }]];

Equation (61) can be rewritten in the block-matrix form:

[
Kαiβj Kαiγj

Kηiβj Kηiγj

]
·
{

uβj
cγj

}
=
{

Rαi

Rηi

}
with α,β = 1, ..4; γ, η = 5, ..30 (67)

and with summation over all dummy indices. Using single-indexed variables uA and
cB we obtain

[
Kuu

AB Kuc
AC

Kcu
DB Kcc

DC

]
·
{

uB

cC

}
=
{

Ru
A

Rc
D

}
with A, B = 1, ..8; C, D = 1, ..52 (68)

in which we distinguish the respective parts of stiffness matrix K and loading R with
superscripts.

Kuu = K[[1;;8, 1;;8]]; Kuc = K[[1;;8, 9;;60]];

Kcu = K[[9;;60,1;;8]]; Kcc = K[[9;;60 9;;60]];

Ru = R[[1;;8]]; Rc = R[[9;;60]];

In order to decrease the number of unknowns, the static condensation procedure
is performed on the element level. System (67) of 60 equations can be reduced to a
system

K red
AB uA = Rred

A (69)

of 8 equations in which only the nodal displacements appear and the 52 variables cC

have been eliminated from

K red
AB = Kuu

AB − Kuc
AM

(
Kcc)−1

MN Kcu
NB (70)

Rred
A = Ru

A − Kuc
AM

(
Kcc)−1

MD Rc
D (71)

Reduced stiffness K red
AB and reduced loading Rred

A obtained from (70) and (71) can
be aggregated to the respective global quantities from which, under consideration of
Dirichlet BC the nodal displacements uA or uαi and hence

cC = (Kcc)−1
CD

(
Rc

D − Kcu
DAuA

)
(72)
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can be found. Typical Dirichlet BCs, for example by ones which fix the whole edge
of an element are now briefly discussed. According to (58) some uαi and some cβi
influence the displacement of the edge and hence all of them must be restricted.

For example, let the displacement ui(ξ,−1) = ŭi(ξ) be prescribed on the element
edge η = −1, and hence

4∑
α=1

Nα(ξ,−1) uαi +
30∑

α=5

Nα(ξ,−1) cαi = ŭi(ξ) (73)

One may note that displacement of the first edge depends only on Nα for α =
1, 2, 5, 9, 13, 17, 21, which simplifies (73). For practically important case ŭi(ξ) = 0
on the element edge (fixed displacement in i-direction) we can find solution for cβi
with the script:

uBC = 0; edgeBC = 1; iBC = 2;

If[edgeBC == 1, {xiBC, etaBC} = {xi, -1}; v = xi;];

If[edgeBC == 2, {xiBC, etaBC} = {1, eta}; v = eta;];

If[edgeBC == 3, {xiBC, etaBC} = {xi, 1}; v = xi;];

If[edgeBC == 4, {xiBC, etaBC} = {-1, eta}; v = eta;];

Cbetai = Array[c, {26, 2}, {5, 1}]; Cedge = {};

For[k = 1, k < 6, k++, Cedge = Append[Cedge, Cbetai[[1 + 4*(k - 1) + (edgeBC - 1)]]];];

cb = {Transpose[Cbetai][[1]], Transpose[Cbetai][[2]]};

{NN, Nx, Ny} = getNshape4ddHE[xiBC, etaBC];

Eq = CoefficientList[NN[[5 ;; 30]].cb[[iBC]], v];

unknowns = Transpose[Cedge][[iBC]];

Solve[{Eq == uBC}, unknowns]

Obtaining following restrictions on the edge 1-2: c5i = c9i = c13i = c17i =
c21i = 0. The remaining parameters cβi are free. Analogously, conditions for fixed
displacement in i-direction can be obtained on the remaining edges:

• edge 2-3: c6i = c10i = c14i = c18i = c22i = 0
• edge 3-4: c7i = c11i = c15i = c19i = c23i = 0
• edge 4-1: c8i = c12i = c16i = c20i = c24i = 0

Note that in the case of uniform displacement of the element edge (ŭi(ζ)=const)

Eq. (73) reduces due to the “partition of unity” property

(
4∑

α=1
Nα(ξ) = 1

)
to

30∑
α=5

Nα(ξ,−1) cαi = 0, (74)

which leads to the results mentioned above for the case of fixed displacements.
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4.1 Stress Recovery

After an FE calculation the nodal displacements uαi and internal parameters cαi are
known and so the approximation of the displacement function ui. The strain ε and
stress fields σ can be calculated as

εij(ξ) = Bijηk(ξ) aηk − εaccij (ξ) (75)

σkl(ξ) = Eklijεij(ξ) + σ0
kl(ξ) (76)

where matrix Bijηk is defined by (64)–(66) and vector aηk by (61).

5 Test Results

The comparison of the EAS andHE elements are carried out using a prescribed strain
field εacc

⎧⎪⎨
⎪⎩

εacc11 = 0.01 x22/4,

εacc22 = 0.01 x21/4,

γacc
12 = 0.01 x1x2

defined upon a freely supported quadratic area presented in Fig. 8. In this example
all strain components vary quadratically in space as expected in HCA applications.

The strain field is compatible and hence no self stress appears in analytical solu-
tion. The exact displacement field (without rotation) can be easily integrated assum-
ing u1,2 = u2,1 and ui(0) = 0

uacc1 = 0.01(x1x22)/4 and uacc2 = 0.01(x21x2)/4 (77)

Fig. 8 Analytically
integrable strain field

5 10 15

5

10

ε acc
ij (x  ,x  )1 2
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Fig. 9 Strain components from 1 element. In columns: exact, CPE4, CPE4R, EAS. HE
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Fig. 11 Strain components from 100 elements. In columns: exact, CPE4, CPE4R, EAS. HE
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Fig. 12 Stress components from 100 elements. In columns: exact, CPE4, CPE4R, EAS. HE
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The displacement of the upper right support according to analytical solution is
2.5m in each direction (u1 = u2). Discretization with one CPE4 element leads to
u1 = 2.0833, CPE4R to u1 = 1.875, CPE4EAS to u1 = 2.0833 and CPE4HE gives
us the best approximation with u1 = 2.5. Refinement of the mesh up to 100 elements
provides better displacement approximations: in the case of CPE4 discretization the
displacement of the upper right node is u1 = 2.504, from CPE4R discretization
u1 = 2.494, for CPE4EAS u1 = 2.496 and for CPE4HE one get u1 = 2.5. The
behaviour of the stress and strain fields are shown in Figs. 9, 10, 11 and 12. One can
notice that CPE4 and CPE4R discretizations lead to numerical self-stresses, while
CPE4(EAS) and CPE4(HE) provide good approximation of displacements and allow
to avoid non-physical high stress gradients.

6 Conclusion and Outlook

We have demonstrated that both HE and EAS elements generate much less arti-
ficial stress than the conventional CPE4 and CPE4R elements. Unfortunately, HE
elements fail the patch test so they cannot be recommended. Moreover, the defi-
nition of Dirichlet BC may appear troublesome and the HE elements seen to be
computationally expensive.

EAS is a promising method to develop FEs for HCA. They preserve simple geom-
etry and the self-stresses are negligible. However, we have not tested this elements in
theAbaqus� environment yet. However, one can find an application of EAS-element
to geotechnical plasticity problems (including consolidation) in [8].Mathematica
is a pleasant tool for preliminary testing of new FEs. Compared with Abaqus� we
have a possibility to control all intermediate results, evaluation of stiffness terms
including their spectral analysis and fast analytical derivations of necessary expres-
sions. Both Abaqus� andMathematica can produce similar high-quality graphic
results. In future we intend to implement soil as a two-phase medium but our present
u − p − w formulation is not stable yet.
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Simulation of Soils Under Rapid Cyclic
Loading Conditions

W. Ehlers, M. Schenke and B. Markert

Abstract The stability of structures strongly relies upon the strength and stiffness
of the foundation soil underneath. If fluid-saturated or nearly saturated soils are
subjected to rapid cyclic loading conditions, for instance, during earthquakes, the
intergranular frictional forces might be dramatically reduced. Subsequently, the load-
bearing capacity decreases or even vanishes, if the soil grains loose contact to each
other. This phenomena is often referred to as soil liquefaction. Drawing our atten-
tion to fluid-saturated granular materials with heterogeneous microstructures, the
modelling is carried out within a continuum-mechanical framework by exploiting
the macroscopic Theory of Porous Media (TPM) together with thermodynamically
consistent constitutive equations. In this regard, the present contribution proceeds
from a fully saturated soil, composed of an elasto-plastic solid skeleton and a mate-
rially incompressible pore fluid. The governing material parameters of the solid
skeleton have been identified for the research-unit sand. The underlying equations
are used to simulate soils under rapid cyclic loading conditions. In this regard, the
semi-infinite domain is split into a near field, which usually the domain of inter-
est, and a far field, which extents the simulated domain towards infinity. In order
to avoid wave reflections at the near-field boundaries an energy-absorbing layer is
introduced. Finally, several simulations are carried out. Firstly, a parametric study of
the particular far-field treatment is performed and, secondly, soil liquefaction is simu-
lated, where the underlying initial-boundary-value problem is inspired by practically
relevant scenarios.
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1 Introduction

From a continuum-mechanical point of view, granular materials, such as soils, can
neither be classified as solids nor fluids. Their macroscopic observed state (solid-
or fluid-like) is a direct consequence of the microstructural intergranular frictional
forces and, thus, strongly depends on the loading conditions. If fluid-saturated soils
are subjected to rapid cyclic loading conditions, depending on the amplitude and
the frequency of the excitation, its load-bearing capacity may decrease dramatically
causing the soil to exhibit a fluid-like behaviour, i. e. it liquefies. For instance, build-
ings on the surface may tilt, which is referred to as structural overturning, or even
entirely collapse. In the related literature, the general term “liquefaction” comprises
more specific liquefaction-related phenomena, in particular, “flow liquefaction” and
“cyclic mobility” [1]. The term “flow liquefaction” addresses an instability phenom-
enon, which is associated with loose soils with a low shear strength. Therein, the
intergranular frictional forces are reduced dramatically by an increasing pore pres-
sure until the residual shear strength cannot sustain static equilibrium anymore. In
contrast, the term “cyclic mobility” is associated with medium dense to dense soils
and refers to a limited plastic deformation under cyclic loading conditions, where
the overall stability of the granular assembly is maintained.

When describing liquefaction phenomena, on the one hand, a comprehensive
understanding of the mutual interactions of the various components, in particular,
the solid skeleton, composed of the grains, and the pore fluid, which itself can be a
mixture of various interacting components, is decisive. On the other hand, special
attention also needs to be paid to the description of the contractant (densification)
and dilatant (loosening) behaviour of the solid skeleton under pure shear deforma-
tion, which is a consequence of the sliding and the rolling of the grains. In particular,
depending on the initial density, the soil exhibits a macroscopically contractant (loose
soil) or dilatant behaviour (medium-dense to dense soil) under shear loading. Note
that the dilatant behaviour of medium-dense and dense soils is preceded by a slightly
contractant behaviour [2]. As a consequence, medium-dense and dense soils exhibit
a contractant behaviour if they are subjected to small shear deformations. In order to
explain, soil liquefaction, attention is drawn to a fluid-saturated soil with a low Darcy
permeability subjected to rapid cyclic shear deformations. Therein, in contrast to a
dry soil, the materially incompressible pore fluid (here water) has no time to evacuate
from the reducing pore space. As a consequence, an excess of pore pressure accumu-
lates, thereby reducing the intergranular normal forces, and thus, the intergranular
frictional forces. Therefore, the load-bearing capacity of the whole fluid-saturated
soil is weakened or might be lost entirely.

Aiming at the simulation of liquefaction phenomena, there are several models
available (e.g. [3–7]) most of which are based on Biot’s theory [8]. However, these
models proceed from different approaches in order to describe the behaviour of
the solid skeleton. In this regard, some are associated with the Cam-Clay-based
descriptions (e.g. [9, 10]) and others with the hypoplasticity framework (e.g. [11]).
Furthermore, it is also worth to mention the more phenomenological approaches, such



Simulation of Soils Under Rapid Cyclic Loading Conditions 209

as [12, 13], which employ a direct stress-strain relation that distinguishes between
loading and unloading stages.

The present contribution proceeds from a thermodynamically consistent approach
based on the Theory of Porous Media (TPM) (e.g. [14–16]), where the solid skeleton
is described as an elasto-plastic material including isotropic hardening and a stress-
dependent failure surface. The governing equations comprise the balance equations
of [17] and the elasto-plastic solid-skeleton description of [18]. Following this, the
governing balance equations are discretised with respect to space and time, thereby
accounting for the transient loading conditions. In this regard, the semi-infinite half-
space is spatially discretised, by splitting the analysed domain into a near field,
which is, in general, the domain of interest, and a far field, which extents towards
infinity. However, truncating the semi-infinite half-space at the near field, which is
often sufficient in quasi-static simulations, introduces artificial boundaries at which,
in a dynamic analysis, the incident waves are reflected back into the domain of
interest. In order to overcome this problem, several methods have been proposed in the
literature. In general, they can be classified into so-called coupling methods, such as,
for instance, the combined finite-element-infinite-element-method (FEM-IEM), and
so-called absorbing-boundary-condition (ABC) methods. The present contributions
proceeds from the approach proposed in [19]. Therein, the near and the far field are
spatially discretised by mixed Taylor-Hood finite elements (FE) and infinite elements
(IE), respectively, and, additionally, an energy-absorbing layer at the FE-IE interface
has been introduced. In the next step, the temporal discretisation is carried out,
thereby, accounting for the special requirements of the global (spatial discretisation)
and the local system (plastic evolution). In particular, the Hilber-Hughes-Taylor
method is used for the global system, whereas, the implicit (backward) Euler is
used for the local system. Following this, the discretised governing equations are
implemented into the coupled finite-element solver PANDAS, which is linked to
the commercial FE package Abaqus via a general interface. This coupling allows
the definition of complex initial-boundary-value problems through Abaqus, thereby
using the material models of PANDAS. The material parameters of the solid-skeleton
model have been identified for the sand used in the research-unit FOR 1136, by the
commonly used Least-Squares approximation. The numerical model will be used,
firstly, to perform a parametric study of the far-field treatment and, secondly, to
simulate flow liquefaction in a loose soil. Finally, future aspects are addressed in the
conclusions.

2 Description of the Fluid-Saturated Soil

A suitable framework for the description of fully-saturated soils is provided by the
TPM. Following this, the individual components are described separately through
their respective mass and momentum balances, but joined together to a holistic for-
mulation by incorporating suitable production terms.
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Within the macroscopic TPM approach, one assumes a homogeneous distribution
of overlaid individual components ϕα, which, in the present case, are the materially
incompressible solid skeleton (α = S) and the materially incompressible pore fluid
(α = F), both within a representative elementary volume (REV) dv. The compo-
sition of the bulk volume element is defined through respective volume fractions
nα = dvα/dv, where dvα is the partial volume of the component ϕα within the
REV. Note that the saturation condition

∑
α nα = nS + nF = 1 must hold. Follow-

ing this, two density functions are defined. The material (realistic or effective) density
ραR = dmα/dvα relates the components local mass dmα to its volume dvα, while
the partial (global or bulk) density ρα = dmα/dv is associated with the bulk volume.
Moreover, both density definitions are related to each other through ρα = nαραR . As
we assume materially incompressible and uncrushable grains, the realistic density of
the solid remains constant under the prescribed isothermal conditions, but the bulk
density can still change through a changing volume fraction nα.

In the framework of the TPM, the solid ϕS and the pore fluid ϕF are treated
as superimposed continua where each spatial point is simultaneously occupied by
particles of both components and each components particle is moving according to
its own motion function and, thus, have their own velocity and acceleration field. In
this regard, it is convenient to express the solid motion in the Lagrangean or material
setting through the solid displacement uS and the fluid motion in the Eulerian or
spatial setting through the seepage velocity wF relative to the solid motion. Following
this, the displacement, velocity and acceleration functions read [17]:

• solid motion: uS = x − XS, vS = (uS)′S = ′
xS, (vS)′S = ′′

xS,

• fluid motion: wF = ′
xF − ′

xS, (vF )′F ≈ (vF )′S .
(1)

Therein, XS denotes the position of a solid material point in the reference con-
figuration (t = t0), while x is the position of a point in the current configura-
tion (t > t0). Moreover, (·)′S and (·)′F denote material time derivatives following
the motion of the solid skeleton and the pore fluid, respectively. Note that accord-
ing to [8], for the lower frequency range ( f ≤ 30 Hz), which is the case within
the scope of the present contribution, the convective terms can be neglected. Thus,
(vF )′F = (vF )′S + grad vF wF ≈ (vF )′S .

According to [17], the governing balance equations are the convective-less total
momentum balance of the overall porous material, the convective-less momentum
balance of the pore fluid and the total volume balance of the overall porous material.
They read:

ρS(vS)′S + ρF (vF )′S = div (TS
E − p I) + (ρS + ρF )b, (2)

ρF (vF )′S = div(−nF p I) + ρF b
(nF )2γF R

k F
wF + p grad nF , (3)

0 = div(vS + k F

γF R
{ρF R[b − (vF )′S] − grad p}). (4)
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Therein, b is the unique mass-specific body force, k F is the hydraulic conductivity
(Darcy permeability) and γF R = gρF R is the effective fluid weight with g = |b| =
const. as the scalar gravitational acceleration. Moreover, TS

E is the effective solid
stress, which is associated with the intergranular forces, p is the pore-fluid pressure
and I is the second-order identity tensor. The corresponding primary variables of
the resulting three-field formulation are the solid displacement uS , the pore-fluid
velocity vF and the pore-fluid pressure p.

In order to complete the model, a constitutive description of the effective solid
stress TS

E is necessary. In extension of [17], which proceeds from a purely elastic
description, we continue with an elasto-plastic model, in particular, with an elasto-
(visco)plastic solid skeleton including isotropic hardening and a stress-dependent
failure surface (cf. [18] for details). Restricting the presentation to the small-strain
regime, the linear solid strain tensor is given by

εS = 1

2
(grad uS + gradT uS) −→ εS = εSe + εSp, (5)

which in the framework of elasto-plasticity is additively split into an elastic εSe and a
plastic part εSp. Following this, the solid volume fraction can be written as (cf. [20]),

nS = nS
0S(1 − εV

S ) = nS
0S(1 − εV

Sp)(1 − εV
Se) = nS

p(1 − εV
Se). (6)

Therein, nS
0S denotes the initial solid volume fraction and εV

S = div uS = εS · I is the
volumetric solid strain, which is split into its corresponding elastic part εV

Se = εSe · I
and plastic part εV

Sp = εSp ·I. Note that, as we proceed from a continuum-mechanical
framework, in contrast to geomechanics, volumetric compression corresponds to
negative volumetric quantities, i.e. TS

E · I < 0 and εV
S < 0, whereas volumetric

expansion corresponds to positive volumetric quantities, i.e. TS
E · I > 0 and εV

S > 0.

2.1 Elastic Domain

In order to capture the non-linear behaviour of sand, even in the geometrically linear
regime, the following stress-strain relation, based on a non-linear elastic potential,
has been introduced [18]:

TS
E = 2 μS εD

Se +
[

kS
0 + kS

1 (
εV

Se crit

εV
Se crit − εV

Se

− 1)

]
εV

Se I. (7)

Therein, εD
Se = εSe − 1/3 εV

Se I denotes the deviator of the elastic strain tensor.
Moreover, μS is the constant elastic shear modulus, kS

0 and kS
1 are volumetric bulk

moduli, and εV
Se crit is the critical volumetric strain, which is given by
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εV
Se crit = 1 − nS

max

nS
P

, (8)

where nS
max is a material parameter defining the densest packing.

2.2 Plastic Domain

Within the framework of elasto-plasticity, the elastic domain is bounded by an appro-
priate yield surface. For soils, or granular matter in general, a suitable criterion is
provided in [21]. It reads:

F =
√

Γ IID + 1

2
αI2 + δ2I4 + βI + εI2 − κ = 0,

where Γ = (1 + γ
IIID

(IID)3/2
)m .

(9)

Therein, I, IID and IIID are the first principal invariant of TS
E , and the (negative)

second and third principal invariants of the effective stress deviator (TS
E )D . The

material parameter sets Sh = (δ, ε,β,α,κ)T and Sd = (γ, m)T define the shape of
the yield surface in the hydrostatic (Sh) and deviatoric plane (Sd ).

Following the concept of non-associated plasticity for frictional geomaterials, a
suitable plastic potential, which describes the contractant and dilatant behaviour of
the soil, is given by

G =
√

ψ1IID + 1

2
α I2 + δ2I4 + ψ2β I + ε I2. (10)

Therein, ψ1 and ψ2 are material parameters, which serve to relate the dilatation angle
to experimental data. The flow rule governing the plastic strain rate (εSp)

′
S reads

(εSp)
′
S = Λ

∂G

∂TS
E

. (11)

Therein, Λ is the so-called plastic multiplier, which in the framework of viscoplas-
ticity using the overstress concept of Perzyna [22] is determined from

Λ = 1

η

〈 F

σ0

〉r
, (12)

where
〈·〉 are the Macaulay brackets, η is the relaxation time, σ0 is the reference stress

and r is the viscoplastic exponent. Note that the overstress concept also regularises
ill-posed problems, for instance during the onset of shear bands (cf. [23] and the
references therein), through a careful choice of the parameters η and r .
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Any dilatant or compactive behaviour of soils is accompanied by macroscopic
softening or hardening effects resulting in a shrinkage or an expansion of the yield
surface in the principal stress space. Therefore, suitable evolution laws (pi )

′
S for the

parameter subset pi ∈ {β, δ, ε, γ} of the yield surface are used (cf. [20]):

(pi )
′
S = (pV

i )′S + (pD
i )′S = (

∗
pi − pi )[CV

pi (εV
Sp)

′
S + C D

pi ‖(εD
Sp)

′
S‖],

where pi (t = 0) = pi0. (13)

Note that the yield-surface-parameter evolution is split into volumetric (pV
i )′S and

deviatoric parts (pD
i )′S , which are driven by the corresponding volumetric and devi-

atoric plastic strain rates, (εV
Sp)

′
S and (εD

Sp)
′
S . Moreover, pi0 and

∗
pi denote the yield-

surface parameters at the initial and the saturated state, respectively, where the latter
are associated with the failure surface.

Having cyclic loading conditions in mind, one has to take care of the mutual
interlocking of the grains as a consequence of a preloading and their release during
a subsequent reloading at a lower isotropic stress state. This influence has been
observed during triaxial experiments and is considered in the model through a stress-
dependent failure surface (cf. [18] for details)

∗
ε(I) = ∗

ε0(1 + ∗
Cε I) with

∗
ε ≥ ∗

εlim . (14)

Therein,
∗
Cε is a constant evolution parameter of the failure surface,

∗
ε0 theoretically

defines the failure surface for the unloaded virgin material and
∗
εlim defines the limit

of the failure-surface parameter.

3 Numerical Treatment

3.1 Spatial Discretisation

The spatial discretisation of the semi-infinite domain is based on the finite-element
method (FEM). In this connection, following a variational approach of Bubnov-
Galerkin-type, the governing strong forms are multiplied by test function and are
integrated over the spatial domain yielding the weak forms. However, in contrast
to the standard FEM, the semi-infinite halfspace is spatially split into the near field
(domain of interest) and far field (extension towards infinity) discretised by finite
elements (FE) and infinite elements (IE), respectively.

At first, the attention is drawn to the spatial discretisation of the near field, which
is carried out by the FEM. Therein, the governing strong forms (2)–(4) are multiplied
with the test functions δuS , δvF and δ p and are integrated over the spatial domain
Ω . The particular weak forms are taken from [17] and read
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0 =
∫

Ω

δuS · {ρS(vS)′S + ρF (vF )′S − (ρS + ρF )b} dv

+
∫

Ω

grad δuS · (TS
E − p I) dv −

∫

Γt

δuS · t da,
(15)

0 =
∫

Ω

δvF · [ρF (vF )′S − b] dv +
∫

Ω

δvF · [ (n
F )2γF R

k F
wF − p grad nF ] dv

+
∫

Ω

div δvF (−nF p)dv +
∫

ΓtF

δvF · tF
da,

(16)

0 = −
∫

Ω

grad δ p · k F

γF R
{ρF R[ b − (vF )′S] − grad p}dv +

∫

Ω

δ p div vS dv

+
∫

Γv

δ p v̄ da.

(17)

Therein, t = (TS
E − p I)n and tF = −nF p n denote the external loading vectors

acting on the Neumann boundaries Γt and ΓtF of the overall aggregate and the
pore fluid, respectively, and v = nF wF n is the volume efflux draining through the
Neumann boundary Γv with n as the outward oriented unit surface normal.

In contrast to the near field, the far field is discretised via infinite elements (IE).
Additionally, in order to achieve energy-absorbing properties, dashpots are intro-
duced at the FE-IE interface. This procedure is often referred to as visco-damped
boundaries (VDB) and originates from [24]. According to [19], the governing weak
form, composed of a quasi-static and a viscous damped part, is given by

∫
Ω

grad δuS · (TS
E − p I)dv −

∫
Ω

δuS · ρ b dv

︸ ︷︷ ︸
quasi−static part

+
∫

ΓI

δuS · r da

︸ ︷︷ ︸
visous−damped part

= 0

where r = PT

⎡
⎣ aρcp 0

0 bρcs

0 bρcs

⎤
⎦ P(uS)′S .

(18)

Therein, ρ = ∑
α ρα denotes the density of overall aggregate, Ω denotes the volume

of the infinite element, ΓI the area of the FE-IE interface and P a projection matrix
relating the global solid velocity components to the local coordinate system (normal
and shear direction) onΓI . Furthermore, r represents an area-weighted 3-dimensional
force vector containing the nodal contributions of the dashpots to the nodes associated
with the area at the FE-IE interface. They depend on the compression- and shear-
wave velocities, cp = √

(2μS + λS)/ρ and cs = √
μS/ρ (cf. [19]), and on the

dimensionless compression- and shear-wave damping coefficients a and b.
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In a second step, the unknown fields (uS, vF , p) and the corresponding test func-
tions (δuS, δvF , δ p) of the weak forms (15–18) are approximated by suitable test
and ansatz functions, which, in the present scope, for the sake of stable solution pro-
cedure, need to fulfil the inf-sup condition (Ladyshenskaya-Babuška-Brezzi (LBB)
condition) [25]. In particular, uS and δuS are approximated by quadratic shape func-
tions, whereas linear shape functions are used for vF , p, δvF and δ p. Note that the
test and ansatz functions of the finite and the infinite elements are not given here,
instead, the interested reader is referred to [26, 27] for the FE and IE approximation,
respectively.

Following this, the spatially discretised formulation combining the near and the
far field can be summarised as

Fh =
[

Gh(t, y, y′, y′′, q)

Lh(t, q, q ′, y)

]
=

[
M y′′ + C y′ + k( y, q) − f

Aq ′ + r(q, y)

]
!= 0. (19)

Therein, y = [ûS, v̂F , p̂]T is a vector containing the nodel degrees of freedom of
the finite-element mesh (global system Gh) and a vector q = [εSp, Λ, p]T , which
gathers the internal variables plastic strains (εSp), plastic multiplier (Λ) and yield-
surface evolution parameters (p) at the Gauss points of the finite-element mesh (local
system Lh). Note that for the sake of convenience the abbreviation (·)′ = (·)′S is used.
Moreover, M and C are the generalised mass and damping matrices, k( y, q) and
r( y, q) denote the static residual vectors of the global and local system, respectively,
and f is the generalised force vector acting on the Neumann boundaries.

3.2 Temporal Discretisation

In the next step, the temporal discretisation of Eq. (19) is carried out. In order to
account for the specific requirements regarding numerical properties (e.g. stability,
numerical damping) of the global and the local system, different time-integration
schemes are deployed. In particular, the global system benefits from a numerical-
damping-free procedure, whereas unconditional stability is desired for the local
system.

In this regard, Gh is discretised through the implicit Hilber-Hughes-Taylor (HHT)
method (cf. [28]) which is a generalisation of Newmarks method (cf. [29]) but allows
for the explicit control of the numerical damping. Note that the for dynamic problems
desired explicit schemes, which are more efficient, are not applicable within the
current setting, as the incompressibility of the constituents leads to a singular and,
thus, a non-invertible mass matrix (cf. [17] for details). The time-discrete form of
Eq. (19)1 is given by
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M y′′
n+1 + (1 + α)(C y′

n+1 + k( yn+1, qn+1) − f n+1)

− α(C y′
n + k( yn, qn) − f n)

!= 0

with yn+1 = yn + �t y′
n + �t2((1

2
− β) y′′

n + β y′′
n+1

)
, (20)

y′
n+1 = y′

n + �t
(
(1 − γ) y′′

n + γ y′′
n+1

)
.

Therein, the parameter α controls the numerical damping, on the one hand, by adding
the quasi-static residual contributions from the previous state (at tn) to the current
residual (at tn+1) and, on the other hand, by the parameters β and γ, which are inherit
from Newmarks method, and are given by

β = 1

4
(1 − α)2, γ = 1

2
(1 − α). (21)

A suitable choice of the parameter α ranges from α = −1/3 (significant damping) to
α = 0 (no damping), whereby, in the latter, the trapezoidal rule (β = 1/4, γ = 1/2)
is obtained. Note that a value of α = −0.05 is in general considered as good choice
as the inevitably time-stepping-induced high-frequency noise is quickly removed
without a significant effect on the low-frequency response of the system.

The local system Lh , in order to ensure unconditional stability, the implicit (back-
ward) Euler scheme is exploited. In this regard, the time-discrete representation of
(19)2 is given by

Aq ′
n+1 + r(qn+1, yn+1)

!= 0 with q ′
n+1 = qn+1 − qn

�t
. (22)

3.3 Solution Procedure

The solution of the coupled system (19) is carried out with respect to its block-
structured nature through a generalisation of the Block Gauß-Seidel-Newton method,
which is also know as multilevel or, in this particular case, as two-stage Newton
method. This procedure results in two nested Newton iterations. In this connection,
at each global iteration, which seeks the solution of the global variables yn+1, the
nonlinear local system is iteratively solved for the internal variables qn+1 at each
Gauss integration point with frozen global variables (e.g. cf. [30] and reference
therein).

The discretised system is implemented into the FE package PANDAS1 and linked
through a general interface to the commercial FE package Abaqus [31]. This coupling

1Porous media Adaptive Non-linear finite-element solver based on Differential Algebraic Systems,
www.get-pandas.com.

www.get-pandas.com
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allows for the definition of complex initial-boundary-value problems in terms of
features, such as kinematic coupling and tie constraints, and in terms of large-scale
analyses through parallelisation.

4 Parameter Identification

In order to identify the solid-skeleton material parameters for the sand of the research-
unit FOR 1136 the course of actions is basically following the procedure described
in [18]. Therein, a staggered identification scheme has been carried, in which, at
first, the elastic shear modulus μS and the compression-extension-ratio parameter of

the failure surface
∗
γ are determined straightforward from triaxial loading-unloading

loops and from compression and extension experiments at different confining pres-
sures. The remaining model parameters are found through a minimisation of the
squared error between simulation and experiment, which is commonly known as
Least-Squares optimisation method. In particular, a gradient-based constrained opti-
misation is used, in which the Hessean matrix is approximated through BGFS (Broy-
den, Fletcher, Goldfarb, Shannon) (cf. [32] and references) and and the parameter
constraints are considered via the sequential-quadratic-programming (SQP) tech-
nique [33]. The identified solid-skeleton material parameters of the research-unit
sand FOR 1136 are summarised in the Appendix.

5 Simulations

5.1 Parametric Studies

The following section addresses several parametric studies related to the numerical
treatment of the semi-infinite unbound-domain. In particular, in the first investigation
the macroscopic damping properties of a fully-saturated soil, which is mainly gov-
erned by the Darcy permeability, is investigated. The second set of studies servers
as a parametric study of the present far-field treatment, in particular, of its energy-
absorbing capabilities in relation to certain wave types. In this regard, as the fol-
lowing simulation are solely related to the elastic wave-propagation problem, the
elasto-plastic solid is simplified to a purely elastic material governed by the material
parameters given in Table 1. Note that the material parameters μs and ks

0 are chosen
arbitrarily and result in comparatively low compression- and shear-wave propagation
velocities. The remaining material parameters, in particular, k F and γF R , are defined
in the related sections.
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Table 1 Material parameters of the numerical parametric study of the far-field treatment

μS k0
S k1

S ρS R ρF R nS
0S

0.26 m2/MN 0.40 m2/MN 0.0 m2/MN 2700 kg/m3 1000 kg/m3 0.6

5.1.1 Parametric Study of the Damping Characteristics
of a Fluid-Saturated Soil

When subjecting a soil to rapidly changing loading conditions waves are emitted at
the source and propagate through the domain. The resulting, in general, complex par-
ticle motion can be considered as a superposition of two fundamental wave types, in
particular, compression or primary waves (p-waves) and shear or secondary waves
(s-waves). By the assumption of a purely elastic solid and by neglecting viscous
shear forces within the pore fluid, its macroscopic observed damping properties are
solely related to the solid-skeleton-pore-fluid interaction, in particular, to the solid-
fluid momentum exchange (cf. Eq. 3). Therein, the momentum exchange is mainly
driven by the solid volume fraction, nS = 1 − nF , and, thus, by the volumetric
deformations (cf. Eq. 6). As deviatoric deformations do not provide significant vol-
umetric strains within the small strain regime, the dissipative properties due to pure
shear deformations can be neglected in the following parametric study. Hence, the
damping-property study is solely applied to compression waves.

In this regard, the displacement amplitude of the solid skeleton is investigated at
different depths with varying Darcy-permeability. Note that the specific pore-fluid
weight is set to γF R = 104 N/m3. The underlying initial-boundary-value problem
(IBVP) is depicted in Fig. 1 (left). Therein, a 3-dimensional soil column, which
as simplified to a 1-d problem via suitable boundary conditions, is subjected to a
displacement impulse applied on the top of the soil column given by

u(t) = u0 sin (2πt/T0)[H(t) − H(t − τ )] (23)

with T0 = 1s, τ = T0/2, u0 = 5 · 10−3 m and H(t − τ ) as the Heaviside step
function.

The evolution of the solid-skeleton displacement amplitude of the triggered p-
wave for different Darcy permeabilities k F = {10−1, 10−3, 10−3} m/s is depicted
in Fig. 1 (right). It can be seen that with decreasing permeability, which increase
the viscous friction between the soil grains and the pore fluid, the amplitude of
the compression wave reduces rapidly. Thus, already for a relatively high Darcy
permeability of k F = 10−3 m/s, the influence of the p-wave can be neglected already
one meter below the surface.
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Fig. 1 IBVP to investigate the influence of the Darcy permeability on the p-wave penetration depth

Fig. 2 Initial-boundary-
value problem of the
far-field-treatment
parametric study

5.1.2 Parametric Study of Numerical Far-Field Treatment

The second example addresses a parametric study of the far-field treatment. In partic-
ular, the influence of the damping coefficients and of the quasi-static contribution on
the energy-absorbing capabilities are investigated. The governing IBVP is depicted
in Fig. 2.

Therein, a ellipsoidal domain (first and second minor axis: 20 m, third minor
axis: 10 m) is extended towards infinity by use of infinite elements, whereas the
FE-IE interface is described through viscous-damped boundaries. Note that the infi-
nite elements are not depicted in Fig. 2. The resulting numerical model consists of
approximately 40,000 elements, which results in approximately 700,000 degrees of



220 W. Ehlers et al.

Fig. 3 Contour plot of the
magnitude of the solid
displacement ‖uS‖ on the
deformed geometry (scale
factor: 500) of the truncated
semi-infinite halfspace

t = 1.375 s t =2.75 s

t = 4.125 s t = 5.5 s

0.0 0.002
uS

freedom. Thus, due to the problem size, the simulations have been carried out in
parallel on 40 cores. In order to trigger waves propagating through the domain, a
displacement impulse, given by Eq. (23), is applied at the indicated area. Moreover,
in order to judge the energy-absorbing capabilities, the vertical displacements of the
solid skeleton at A (located at a depth of 5 m) and B (located 10 m from the vertical
symmetry line) are evaluated.

In order to keep this parametric study within more general setting, the damping
properties of the VDB with respect to compressional waves are investigated as well,
although they are, as seen before, not relevant for most practical-oriented geotech-
nical scenarios. Thus, to allow for the induced wave to propagate nearly without a
loss through the domain, the Darcy permeability and the specific weight are set to
k F = 10−2 m/s and γF R = 10−4 N/m3, respectively. Note that, hereby, the quasi-
static contribution has been neglected and the normal and shear damping coefficients
are set to a = b = 1.

The impact on the numerical solution of the specific far-field treatment is quali-
tatively illustrated in Figs. 3 and 4. The displacement impulse on top of the domain
triggers a compression and a surface wave (Rayleigh wave) which, in case of the
truncated domain, is reflected at introduced artificial domain boundaries (cf. Fig. 3).
In contrast, using the special far-field treatment composed of infinite elements and
an energy-absorbing layer at the near-field-far-field transition shows a significant
improvement (cf. Fig. 4).
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Fig. 4 Contour plot of the
magnitude of the solid
displacement ‖uS‖ on the
deformed geometry (scale
factor: 500) of the
semi-infinite halfspace
incorporating VDB

t = 1.375 s t = 2.75 s

t = 4.125 s t = 5.5 s

0.0 0.002
uS

5.1.3 Influence of the Damping Coefficients

The following simulations investigate the influence of the normal- and shear-damping
coefficients, a and b, of the dashpots at the FE-IE interface on the energy-absorption
behaviour. In particular, the proposed values of Lysmer and Kuhlemeyer (LK) [24]
(a = b = 1), which give the best energy absorption if the wave-propagation direction
is normal to the FE-IE interface, is compared to the approach of White et al. [34],
which is based on the maximisation of the dissipated energy over different wave
incidence angles. In the latter approach, the damping coefficients are computed via

a = 8

15π
(5 + 2c − 2c2), b = 8

15π
(3 + 2c) where c =

√
μS/(λS + 2μS).

(24)

By use of the material parameters of Table 1, the damping coefficients can be com-
puted as a = 0.93 and b = 0.69. Note that the quasi-static contribution (cf. Eq. 18)
has been neglected.

The results of the simulation are depicted in Fig. 5. Therein, the gray line is used
as a reference (ref.) showing the result of the truncated domain. It can be seen that
the approach of White et al. (W) gives slightly better results compared to Lysmer and
Kuhlemeyer (LK). However, as the approach of White et al. is exploiting the linear
elastic Hooke an law for the constitutive description of the solid, their proposal is tied
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Fig. 5 Evolution of the vertical displacement of A (right) and B (left) for different damping
parameters

Fig. 6 Evolution of the vertical displacement of A (right) and B (left) for the quasi-static-
contribution-influence study

to the first and second Lamé constants and, thus, may not be suitable for arbitrary
solid material descriptions.

5.1.4 Influence of the Quasi-Static Contribution

The second example studies the influence of the quasi-static contribution. In this
regard, a simulation involving the quasi-static contribution (S) is compared to a
simulation without one (NS). Note that the damping parameters are set to a = b = 1.

The results of the simulation are depicted in Fig. 6. It can be seen that the best
energy-absorbing capabilities are obtained if the quasi-static part is neglected (NS),
which is in accordance with [35]. However, if the simulation contains quasi-static
loading steps, for instance, if the transient load is preceeded by a consolidation step,
the quasi-static contribution has to be considered, as it provides the necessary residual
stiffness to the far-field.

5.2 Liquefaction of Loose Sand

The next example is related to the simulation of flow liquefaction in a loose, water-
saturated sand under cyclic loading conditions, which is a common scenario, for
instance, during earthquakes.
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Fig. 7 Geometry (left) and deduced initial-boundary-value problem (right) of the liquefaction
examples

The initial-boundary-value problem under consideration is inspired by the
liquefaction-prone Wildlife Refuge area in Imperial Valley in southern California,
where the layout of the domain of interest is as follows (Fig. 7, left). From top to
bottom, the soil layers are a clayey silt, a liquefiable sand, a stiff clay and a bedrock
layer. Based on that, a suitable numerical model is deduced (Fig. 7, right), where
the weight of the single-mass structure and the top layer are replaced by uniformly
distributed loads of 150 and 50 kN/m2, respectively. Note that the replacement of
the top layer by its corresponding load, avoids numerical difficulties as it ensures that
the domain below is under compression during the simulation. Below that is a layer
of a liquefiable sand, which is described as an elasto-(visco)plastic material with
isotropic hardening and a stress-dependent failure-surface (cf. Sect. 2). The bedrock
layer at the bottom of the modelled domain is subjected to lateral displacements
according to the records of the Kobe earthquake in 1995 in Japan, which have been
logged at the FUK station. Note that the modelled semi-infinite halfspace has been
truncated without the use of a special far-field treatment. Due to the facts that, on one
hand, the prescribed bedrock-layer displacements mainly initiate shear waves and
that, on the other hand, the fluid-saturated soil exhibits significant damping proper-
ties with respect to compression waves, the size of the numerical problem size has
been reduced, by discarding a special far-field treatment. Note that the finite-element
mesh below structure has been refined in order to account for the expected strain
localisation. Moreover, tie constraints have been imposed at the interface between
the structure and the foundation soil to ensure kinematic compatibility. The result-
ing numerical model consists of approximately 24,000 elements with approximately
110,000 degrees of freedom.
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Table 2 Comparison of the solid-skeleton material parameters for medium-dense FOR 1136 sand
(set 1) to the estimated parameters for a loose sand (set 2)

Material nS
0S ψ1 ψ2

Medium-dense FOR 1136 sand (1) 0.61 1.3 0.53

Loose sand (2) 0.4 0.4 0.1

The loading history of the liquefaction problem can be split into two stages.
At first, the structural and top layer weights are applied in an initialisation step
(0 s < t < 5000 s). Note that during that stage, the permeability is increased from
k F = 10−5 m/s to k F = 10−3 m/s in order to speed up the consolidation process
and to ensure a static equilibrium before proceeding with the second step (5000 s<

t <5016 s), in which the displacement of the bedrock layer is prescribed according
to the records of the Kobe earthquake.

Note that in order to trigger liquefaction phenomena with the available material
parameters, the prescribed displacements are scaled up by a factor of 15. Moreover,
the material parameters of the medium-dense FOR 1136 sand are modified in order
to describe a loose sand. In particular, the initial solid volume fraction nS

0S and the
material parameters governing the dilatation angle, ψ1 and ψ2, are varied such that
liquefiable-prone loose sand can is mimicked (cf. Table 2). The initial solid volume
fraction nS

0S and the material parameters governing the dilatation angle, ψ1 and ψ2,
are varied such that liquefiable-prone loose sand is mimicked (cf. Table 2).

A time sequence of contour plots of the norm of the accumulated plastic strain
tensor ‖εSp‖ on the deformed finite-element mesh (unscaled) are depicted in Fig. 8.
It clearly illustrates the failure of the loose soil foundation beneath the structure. This
particular failure mode is known as punching shear failure [36].

As mentioned earlier, soil liquefaction is consequence of the pore-pressure build-
up due to the contractant tendency of the soil, which reduces the intergranular normal
forces, and thus, the intergranular frictional forces. To make this point clearer, the
interplay between the pore pressure p and the effective volumetric solid stress TS

E · I,
which is associated with the intergranular normal forces, is plotted at point B in
Fig. 9 (left).

As can been seen due to the rapid cyclic motions that the slight pore-pressure build-
up, approximately till t ≈ 5006 s, continues to a dramatic pore-pressure increase
resulting in a drop of the negative volumetric solid stress, which corresponds, accord-
ing to the continuum-mechanical framework, to a decrease of the intergranular normal
forces, and thus, reduces the intergranular frictional forces. Note that the effective
volumetric solid stress may take slight positive values, which is non-physical in a
cohesionless soil, but owed to the elasticity law (7) in case of positive volumetric
solid strains. As a consequence of the reduced intergranular frictional forces, the
foundation soil liquefies and does not recover into a static equilibrium any more.
This is also illustrated in Fig. 9 (right), where the vertical displacement of point A
located on top of the single-mass structure is depicted. Therein, the collapse of the
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0.1

0.0

t = 5005.0 s t = 5005.5 s

t = 5006.0 s t = 5006.5 s

sp

Fig. 8 Contour plots of the norm of the accumulated plastic strain tensor ‖εSp‖ on the deformed
mesh (scale factor: 5) at different times illustrating flow liquefaction

Fig. 9 Evolution of the pore pressure p and the effective volumetric solid stress TS
E · I at point

B (left) and the time history of the vertical displacement of point A (right) in the case of flow
liquefaction

soil foundation is easily recognised by the rapidly increasing vertical displacement
of the single-mass structure.

The computation terminates at approximately t ≈ 5006.5 s due to extremely
distorted finite elements located in the developing shear bands beneath the structure.

6 Conclusions

In this contribution, a modelling approach for the prediction of liquefaction phenom-
ena in saturated soils has been presented. The underlying fluid-saturated soil model
proceeds from a geometrically linear description based on the macroscopic TPM
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Table 3 Elastic material parameters and initial solidity

μS kS
0 kS

1 nS
max nS

0S

190 MN/m2 20 MN/m2 47 MN/m2 0.61 0.623

Table 4 Initial and saturation values of the parameters of the yield surface

δ0 ε0 β0 γ0
∗
δ

∗
ε0

∗
β

∗
γ

0.0009
m2/MN

0.1
m2/MN

0.05 0 0.001
m2/MN

0.01
m2/MN

0.255 1.75

Table 5 Parameters of the yield-surface evolution and the failure surface

CV
δ CV

ε CV
β CV

γ C D
δ C D

ε C D
β C D

γ

∗
Cε

∗
εlim

−93 m2/ −150 m2/ −250 0 23 m2/ 200 m2/ 180 20 0.4 m2/ 0.0001

MN MN MN MN MN

Table 6 Additional yield surface, plastic potential and viscoplastic evolution parameters

κ α m ψ1 ψ2 η r σ0

0.0001 m2/MN 0.01 m2/MN 0.54 1.3 0.53 0.001 s 1.5 0.0001 MN/m2

framework involving an elasto-(visco)plastic solid skeleton with isotropic harden-
ing and a stress-dependent failure surface. The presented numerical results reveal
the capability of the model to mimic the relevant physical behaviour necessary for
the modelling of liquefaction phenomena under rapid cyclic loading conditions. In
particular, the model accounts for the behaviour of granular assemblies undergoing
volumetric strains under pure shear deformation and resulting a in pore-pressure
build-up, which reduces the intergranular frictional forces, and thus, the strength of
the whole soil. However, as the model has so far only been tested under rapid cyclic
loading conditions, statements regarding the behaviour under quasi-static cyclic load-
ing conditions can not made yet. This will be part of ongoing investigations.

Appendix: Material Parameters of the Elasto-Plastic Solid
Describing Medium-Dense FOR 1136 Sand

Below the solid-skeleton material parameters of the research-unit sand FOR 11362

are summarised (Tables 3, 4, 5 and 6).

2Grain size: 0.1–1 mm; sieve retention: d10 = 0.4 mm, d60 = 0.6 mm.



Simulation of Soils Under Rapid Cyclic Loading Conditions 227

References

1. Castro, G., Poulos, S.J.: Factors affecting liquefaction and cyclic mobility. ASCE. J. Geotech.
Eng. Div. 103, 501–506 (1977)

2. Casagrande, J.: The determination of the preconsolidation load and its practical significance.
In: Proceedings 1st International Conference on Soil Mechanics and Foundation Engineering
(1936)

3. Lin, C.-H., Borja, R.I.: Technical Report No. 137. The John A. Blume Eartquake Engineering
Center, Stanford (2000)

4. Prevost, J.H.: Nonlinear transient phenomena in soil media. Mech. Eng. Mater. 30, 3–18 (1982)
5. Prevost, J., Elgamal, A.M., Abdel-Ghaffar, A.M.: Earthquake-induced plastic deformation of

earth dams. In: Proceedings: 2nd International Conference on Soil Dynamics and Earthquake
Engineering, vol. 4, pp. 9–17 (1985)

6. Zienkiewicz, O.C., Bettes, P.: Soil Mechanics—Transient and Cyclic Loads. Wiley, Chichester
(1982)

7. Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media: the generalized
Biot formulation its numerical solution. Int. J. Numer. Anal. Meth. Eng. 8, 71–96 (1984)

8. Biot, M.A.: Theorie of propagation of elastic waves in a fluid-saturated porous solid. J. Acoust.
Soc. Am. 28, 168–178 (1956)

9. Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Geotech-
nique 47, 255–272 (1997)

10. Roscoe, K.H., Burland, J.B.: On the generalized stress-strain behaviour of wet clay. In: Heyman,
J., Leckie, F.A. (eds.) Engineering Plasticity. Cambridge University Press, Cambridge (1968)

11. Wichtmann, T., Niemunis, A., Triantafyllidis, T.: Strain accumulation in sand due to cyclic
loading: drained cyclic tests with triaxial extension. Soil Dyn. Earthq. Eng. 27, 42–48 (2006)

12. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A.: Computational Mechanics—with
Special Reference to Earthquake Engineering. Wiley, Chichester (1998)

13. Zienkiewicz, O.C., Chang, C.T., Hinton, E.: Non-linear seismics reponse and liquefaction. Int.
J. Numer. Anal. Meth. Eng. 2, 381–404 (1978)

14. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J.
Eng. Sci. 18, 1129–1148 (1980)

15. De Boer, R.: Theory of Porous Media. Springer, Berlin (2000)
16. Ehlers, W.: Foundation of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.)

Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin
(2002)

17. Markert, B., Heider, Y., Ehlers, W.: Comparision of monolithic and splitting solutions schemes
for dynamic for dynamic porous media problems. Int. J. Numer. Meth. Eng. 82, 1341–1383
(2010)

18. Ehlers, W., Avci, O.: Stress-dependent hardening and failure surface of dry sand. Int. J. Numer.
Anal. Meth. Geomech. 37, 787–809 (2012)

19. Heider, Y., Markert, B., Ehlers, W.: Dynamic wave propagation in infinite saturated porous
media half spaces. Comput. Mech. 49, 319–336 (2012)

20. Ehlers, W., Scholz, B.: An inverse algorithm for the identification and the sensitivity analysis
of the parameters governing elasto-plastic micropolar granular material. Arch. Appl. Mech.
77, 911–931 (2007)

21. Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259
(1995)

22. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)
23. Ehlers, W., Graf, T., Ammann, M.: Engineering issues of unsaturated soil. In: Brinkgreve,

R.B.J., Schad, H., Schweiger, H.F., Willand, E. (eds.) Geotechnical Innovations (Studies in
Honour of Prof. Dr.-Ing. Pieter Vermeer on Occasion of his 60th Birthday). Verlag Glückauf,
Essen, pp. 505–540 (2004)

24. Lysmer, J., Kuhlemeyer, R.L.: Finite dynamic model for infinite media. ASCE. J. Eng. Div. 95,
859–877 (1969)



228 W. Ehlers et al.

25. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
26. Marques, J.M.M.C., Owen, D.R.J.: Infinite elements in quasi-static materially nonlinear prob-

lems. Comput. Struct. 18, 739–751 (1984)
27. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method—Its Basis and Funda-

mentals. McGraw-Hill, New York (2005)
28. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration

algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 3, 283–292 (1977)
29. Newmark, N.M.: A method of computation of structural dynamics. ASCE. J. Eng. Div. 85,

67–94 (1959)
30. Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic interver-

tebral disc, dissertation: Rep. No.: 09-II-19. Dissertation thesis, Report No. II-19, Institute of
Applied Mechanics (Civil Engineering), University of Stuttgart (2009)

31. Schenke, M., Ehlers, W.: On the analysis of soils using an abaqus-PANDAS interface. Proc.
Appl. Math. Mech. 11, 431–432 (2011)

32. Spellucci, P.: Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser, Basel (1993)
33. Spellucci, P.: A new technique for inconsistent QP problems in the SQP-method. Math. Meth.

Oper. Res. 47, 335–400 (1998)
34. White, W., Vallianppan, S., Lee, I.K.: Unified boundary for finite dynamic models. ASCE. J.

Eng. Div. 103, 949–964 (1977)
35. Häggblad, B., Nordgren, G.: Modelling nonlinear soil-structure interaction using interface

elements, elastic-plastic soil elements and absorbing infinite elements. Comput. Struct. 26,
307–324 (1987)

36. Day, R.W.: Geotechnical Earthquake Engineering Handbook. Mcgraw-Hill, New York (2002)



Experimental Strain Response-Envelopes
of Granular Materials for Monotonous
and Low-Cycle Loading Processes

S. Danne and A. Hettler

Abstract To look onto the stress-path-dependent strain behaviour of granular soils
at low-cycle and monotonous loading processes as a basis for the development of
new, improved or enhanced constitutive models, drained, stress-controlled triaxial-
tests with a fine grained sand have been carried out. The focus was to investigate total
as well as quasi-elastic strains for different stress-states by means of strain-response-
envelopes. By subtracting the quasi-elastic strains from the total strains, a separate
evaluation of plastic strains was also possible. For monotonous loading one separate
soil-specimen has been used for each monotonous loading-direction. The shapes of
the response-envelopes for initially isotropic stress-states were similar to ellipses, for
initially anisotropic stress-states their shape was elongated and shifted away in the
direction of the failure lines. For low-cycle loading, cycles of relatively small stress
increments were applied in different directions in the stress-plane. It is found that
quasi-elastic behaviour can already occur at a low number of cycles. The shapes of
the obtained strain-response-envelopes were similar to symmetrical ellipses. It could
be observed that the size of the ellipses decreases with increasing mean pressure p.
The major axis of the ellipses rotates depending on the initial stress-state η = q/p,
indicating a stress-induced anisotropy. Preloading seems to have little effect on the
stiffness or the directions of the quasi-elastic strains. In the future it is intended to
simulate the observed stress-strain behaviour bymeans of new, improved or enhanced
constitutive models.
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1 Introduction

Due to quasi-static loading with cyclic progression there are plastic, i.e. irreversible,
and elastic, i.e. reversible, deformations in the soil, without reaching fully elastic
behaviour. In the quasi-elastic regime the material behaves asymptotically elastic.
Goldscheider [10] describes this behaviour as “material shakedown”.

Considering the number of cycles one can distinguish between high-cycle and
low-cycle loading processes.

Effects of wind load on foundations of wind energy plants, vehicle crossing
on foundation constructions, vibrating of foundation-elements e.g. retaining-wall-
elements or grouted piles can be related to high-cycle loading. The number of cycles
N during these processes is very high (N � 50). Due to accumulation of numeri-
cal errors and high computing time an implicit calculation of displacements, where
the deformations during one cycle are calculated separately and accumulated, is not
adequate. Instead, deformations due to high-cycle loading are calculated by using
explicit models. Here the calculation of irreversible strains can be treated similar to
creep deformations under constant loads, Niemunis et al. [20].

Low cycle loading processes can be defined for a lower number of cycles with
(N≤ 50), see Danne and Hettler [6]. Deformations in this case are usually calculated
implicitly, i.e. separately for each cycle and then accumulated.

Subject of this paper are low-cycle loading processes, of which it is assumed
that inertial forces are negligible [12]. Un- and reloading for example, occurring
during the construction phase of multiple braced excavation walls, produce stress
paths quite similar to those of cyclically loaded systems at the first cycles before
reaching shakedown. Therefore, these processes are also included within the scope
of low-cycle loading.

An external cyclic load on a foundation for example does not lead to cyclic
behaviour right from the beginning. This is the case only after a certain number of
cycles. Some examples for low-cycle loading processes and related un- and reloading
processes are:

• construction stages of multiple braced or anchored excavation walls
• braced excavation with force-controlled struts (to control deformations)
• temperature exposure of struts
• filling and emptying of locks or silos during first utilisation phase
• summer-/winter position of abutments of integral bridges due to temperature dif-
ferences

The simplified consideration of a soil element behind a strutted retaining wall for
example shows, that monotonous stress-paths as well as repeated low-cycle loading
process with various directions can occur, Fig. 1.

In front of the embedded part of the wall stress-paths are similar, but extension
may be important instead of compression.

Figure 2 shows typical stress-paths of a soil element beneath a watergate’s bottom
during construction and first utilisation phase of the lock. Stress-states in extension
may appear here, too.
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Fig. 1 Typical stress-paths (b) in a soil-element behind an excavation-wall (a)
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Fig. 2 Possible stress-paths during construction and first utilisation phase of a watergate (b) in a
soil element beneath a watergate’s bottom (a)

Element tests investigating the stress-strain behaviour of soils must therefore take
into account any stress-path and monotonous as well as repeated un- and reloading
processes when contributing successfully to the development of new or enhanced
constitutive equations. It is also obvious, that stress-states in compression as well as
in extension have to be considered.
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2 Response-Envelopes

2.1 Stress- and Strain-Components in Triaxial Testing

Figure 3 shows the axisymmetric stress- and strain-components referred to in this
paper.

In axial symmetric conditions �1 denotes the axial component and �3 the lateral
component of stress or strain respectively.

The Roscoe invariants, mean pressure p and the deviatoric stress q, are defined as:

p = (σ1 + 2σ3)/3, (1)

q = σ1 − σ3. (2)

2 vectors, which are orthogonal to each other in the 3-dimensional principal stress
space σ1-σ2-σ3, are not perpendicular to each other anymore in the p-q-plane and
their lengths get distorted. To avoid this, stresses and strains in this paper are presented
in the rendulic plane, which is isomorphic. Its horizontal axis is

√
2σ3 and

√
2ε3

respectively and the vertical axis σ1 and ε1 (Fig. 4). The stress-ratio

σ2 = σ3 
σ3

σ1

σ1

1

3

2 = 3
1

(a) (b)

Fig. 3 Stress-(a) and strain (b)-components in triaxial testing
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Fig. 4 Applied stress �σ increments (a) and corresponding strain responses (b) for different
directions ασ
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η = q/p (3)

describes the stress-state’s position in the p-q-plane.
For all tests described in this paper were carried out drained, all stresses referred

to are effective stresses (σ = σ ′).

2.2 Concept

New or improved constitutive models need to be validated and calibrated. This is
often done with the aid of experimental as well as numerical element tests, for
example triaxial or oedometer tests. So called response-envelopes are a useful tool
for calibrating, validating and comparing constitutive equations [1, 7, 15, 22, 23].

First basics of response-envelopes were presented in the 1970s by Lewin and
Burland [17]. A few years later Gudehus [11] used this concept in context with the
development of constitutive equations.

To obtain a response-envelope, a soil element is subjected to a certain stress- or
strain-increment. The corresponding “response” of the soil in terms of either strain
or stress is determined and presented graphically. The direction of the implied stress
or strain increment with a constant absolute value is varied and leads to different
stress or strain responses, endpoints of which are connected to a response-envelope.
Considering the concept of strain-response-envelopes dealt with in this paper, a
constant stress increment

�σ =
√

�σ 2
1 + 2�σ 2

3 (4)

for at least 8 different stress probe directions ασ is shown in Fig. 4a.
The strains too are plotted in the isomorphic rendulic diagram, where the resulting

total strain-increment is

�ε =
√

�ε21 + 2�ε23 . (5)

The 2 angles, ασ and αε, shown in Fig. 4, are used herein to quantify the direction
of incremental quantities where ασ is the angle between stress probe vector and the
positive

√
2σ3-axis, (6), and αε is the angle between the strain increment vector and

the positive
√
2�ε3-axis, (7). The angles are measured counter clockwise [1]

ασ = arctan
�σ1√
2�σ3

with ασ ∈ [0; 360) (6)

αε = arctan
�ε1√
2�ε3

with αε ∈ [0; 360). (7)



234 S. Danne and A. Hettler

Fig. 5 Absolute value of
strain increment �ε versus
stress probe direction ασ
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As �σ = const. for all directions ασ , one gets a circle in isomorphic diagrams,
Fig. 4a. The red and the green lines in Fig. 4 for example represent triaxial compres-
sion/extension with �σ3 = 0. The brown and the turquoise lines stand for isotropic
compression/extension with �q = 0. A strain response in solely vertical direction
(�ε3 = 0), i.e. a vertical arrow-line in Fig. 4b, would result from a K0-stress path,
which is—for the examined density with Jaky-K0 ≈ 0.37—an arrow line inclined
under ασ ≈ 62◦ in Fig. 4a.

To show the correlation between the stress probe direction ασ and the absolute
value of the strain increment vector �ε defined in (5), an alternative evaluation
method is to plot the strains �ε versus the angle of the stress-probe direction ασ ,
Fig. 5.

FromFig. 5 it can be seen, which loading directions lead to the largest and smallest
absolute strains respectively.

Performing stress-probe-experiments and evaluating the results with the concept
of response-envelopes is a convenient tool to investigate the incremental stress-strain
behaviour during first loading as well as during un- and reloading-processes.

In this paper the total as well as the quasi-elastic part of the strains due to a
relatively low number of un- and reloading-processes (“low-cycle loading”) is inves-
tigated and evaluated by means of strain-response-envelopes.

2.3 Literature

Some experimental tests to investigate the incremental stress-strain behaviour by
means of response-envelopes can be found in literature. On the one hand, there are
experiments which focus on either the total or the plastic strains. On the other
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Fig. 6 Initial stress-states (a) and strain response-envelopes (b) of Lewin and Burland’s experi-
ments [17]

hand, there are experiments where very small stress- or strain-cycles are applied in
different directions e.g. to investigate the cross-anisotropic quasi-elastic properties
of the soil.

2.3.1 Stress- or Strain Probe Experiments Investigating
Total or Plastic Strains

In the 1970s Lewin and Burland [17] performed stress-controlled triaxial tests on a
remoulded, saturated, powdered slate dust. Their tests were performed from 5 initial
stress-states shown in Fig. 6a. Lewin and Burland showed that using the normality
condition of plasticity theory provides a reasonable basis for the prediction of shear
strain behaviour. They found evidence that the direction of the plastic strain increment
vector depends on the direction of the stress probe vector �σ .

Anandarajah et al. [1] performed a series of stress-probe experiments on dense
and medium dense Ottawa sand to investigate the dependence of magnitude and
direction of incremental plastic strain on direction of incremental stress. 6 different
initial stress-states were chosen and stress increments from �σ =9–52 kPa in up to
10 different directions were applied on triaxial sand specimens, Fig. 7. The focus was
set on plastic strains, which were evaluated by subtracting the elastic strains from
the total strains. The elastic strains again were either calculated “by using suitable
elastic properties” [1] or determined by applying a stress cycle and measuring the
elastic strains during reversal. The results conform to the theory of plasticity for
stress-states close to the failure line. It differs from it for stress-states close to the
isotropic axis.
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Fig. 7 Initial stress-states of
Anandarajah’s
experiments [1]
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Royis andDoanh [21] reported of strain-response-envelopes carried out at 3 initial
stress-states for dense Hostun sand, Fig. 8a. The strains due to �σ = 10 kPa were
determined and presented graphically by strain-response-envelopes, Fig. 8b, c. For
each stress probe direction, one soil-sample was used, so that the determined strain
increments can be interpreted as total strains at first loading. Quasi-elastic strains
were not investigated.

Calvetti et al. [4] used Doanh’s results for a large numerical study with their
Discrete-Element-Model (DEM) and compared the obtained with the experimental
results.

Costanzo et al. [5] performed several triaxial tests on a silty clay to obtain strain-
response-envelopes at 2 different initial stress-states, Fig. 9a. The strains were inves-
tigated and plotted for stress-increments between �σ = 20 and 90 kPa, Fig. 9b, c
(envelope for �σ = 90 kPa not shown for sake of clarity). They found the response-
envelopes to be consistent with each other, indicating an inelastic and irreversible
material response, i.e. a strong dependence on the stress increment direction, also
at relatively small strain levels. Quasi-elastic strains were not considered explicitly
here either.

2.3.2 Stress- or Strain Probe Experiments Investigating
Quasi-Elastic Strains

There is hardly any literature where “quasi-elastic” strain-response-envelopes due
to low or high-cycle loading are presented. There are some papers though, in
which quasi-elastic stress-strain-behaviour is investigated after applying very small
axial and radial stress- or strain amplitudes. The object of these experiments is
mainly to investigate the soil’s inherent and stress-state-induced anisotropy at small
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Fig. 8 Initial stress-states (a) and response-envelopes (b, c) of Royis and Doanh’s experiments [21]

strain-regime. Hoque and Tatsuoka [14] for example investigated inherent and stress-
state-induced anisotropy of different sands. They applied very small strain-amplitude
cyclic normal stresses in vertical as well as horizontal direction at different initial
isotropic and anisotropic stress-states, see Sect. 5.6 of this paper.

Ezaoui and Di Benedetto [9] carried out experiments to determine the quasi-
elastic properties of dry Hostun sand. Very small axial cyclic static loadings and
piezoelectric sensor-waves at different levels of the stress-strain curve were applied.
The authors also investigated the influence of 3 different sample preparation-methods
on anisotropic elastic behaviour, see Sect. 5.6 of this paper.

Kuwano et al. [16] imposed small shear waves to cylindrical sand samples at
different stress-states to investigate the effect of stress ratio on anisotropic quasi-
elastic properties.
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Fig. 9 Initial stress-states (a) and corresponding strain-response-envelopes at isotropic stress-state
(b) and anisotropic stress-state (c) of Costanzo’s experiments [5]

3 Experimental Fundamentals

3.1 Triaxial Device and Measuring Technique

The triaxial device used for the presented experiments is equipped with high-
resolution measurement- and control-technology. It is equipped with an external
force transducer to measure the axial strain and a volume-measuring device (burette)
with a highly sensitive pressure sensor to measure the volumetric strain. The force
transducer enters the cell through a ball bushing linear bearing and the force is mea-
sured internally. To avoid tilting, it is connected rigidly to the cell top, Fig. 10.

The confining pressure as well as the axial force can be controlled independently,
so that any stress-path from any initial stress-state can be performed, either monoto-
nously or cyclically. Height and diameter of the soil specimen are 10 cm.
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Fig. 10 Triaxial device

Radial strains are determined indirectly from measured axial and volumetric
strains. For stress-increments �σ ≤ 20 . . . 50 kPa, this procedure has led to plausi-
ble and reproducible experimental results of sufficient accuracy, Costanzo et al. [5],
Anandarajah et al. [1].

To minimise end-friction, the specimen’s end plates were first lubricated with a
thin layer of silicon grease and then covered with a thin latex membrane
(tM = 0.35 mm). This method also contributes to a homogenous distribution of
stress within the specimen.

3.2 Tested Sand

As the volumetric strains εv are measured via in- and out coming pore water and
not only the axial stress σ1, but also the cell pressure is varied, effects of membrane
penetration also have to be taken into account, Nicholson et al. [18] and Baldi and
Nova [2]. To minimise possible errors a fine-grained sand with a low uniformity-
index CU was used, Fig. 11.

3.3 Testing Procedure

The soil sample was fabricated by pluviating the dry sand, thereby maintaining a
constant initial height. This specimen-preparation-method was kept constant for all
tests. The achieved relative densities ID were well reproducible with little deviation
(±0.1).
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Fig. 12 Investigated stress-states (a) and reaching them (b)

The soil sample was then flushed with carbon dioxide (CO2) for about 1h and
saturated with deaired water afterwards. After that a predefined initial stress-state
(Fig. 12a) was reached, either by increasing the vertical stress (for stress-states in
compression, solid line in Fig. 12b) or the horizontal stress (for stress-states in exten-
sion, dashed line in Fig. 12b). The backpressure was kept constant at 200 kPa.
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and in the p-q-plane (b)

4 Experimental Results from Monotonous Loading

To obtain strain response-envelopes from monotonous loading paths, once a cho-
sen initial stress-state is reached and consolidation is finished, a stress path in one
direction is applied until failure, Fig. 13.

Total strains �ε are evaluated for different stress increments �σ = 20, 30, 40, 50
and 100 kPa (circles in Fig. 13a).

Figure 14 shows different strain response-envelopes determined experimentally
for 3 different stress-states located in compression (A), extension (J) and on the
isotropic axis (I), which have the same mean pressure p = 200 kPa, but different
stress-ratios η, Fig. 12.

From the stress-state located on the isotropic axis (I), the shape of the strain
response-envelopes for �σ ≤ 50 kPa is almost similar to a symmetrical ellipse,
Fig. 14b. For the 2 other stress-states (A and J), the strains due to stress probes
indicating towards the failure-lines are significantly larger and the envelopes get
elongated, Fig. 14a, c.

5 Experimental Results from Low Cycle Loading

5.1 Test Procedure to Determine Quasi-Elastic
Strain-Response-Envelopes

To obtain quasi elastic strains for different stress probe directions, after consolidation
at a chosen stress-state (Fig. 12), stress cycles of relatively small stress increments
�σ ≤ 50 kPa are applied in a certain direction ασ (Fig. 3). To avoid pore water
pressure the frequency of the cycles was kept low.
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The cyclic load in the first direction is repeated until themeasured strains are prac-
tically reversible or rather quasi-elastic. The definition of “quasi-elasticity” implies
that during one cycle the plastic strains are less than 1...3% of the total strains, see
Hettler and Danne [13]. It turns out that quasi-elastic behaviour can occur after a low
number of cycles. The strain response of the last cycle of one direction is evaluated
and plotted. After that, the test is continued by applying the same size of stress incre-
ment �σ in a different direction ασ in the stress-space until quasi-elastic behaviour
occurs again. The corresponding strains of the last cycle are plotted in a diagram,
Fig. 15b.

The investigation of

1. the influence of the sequence of the directions,
2. the mean pressure p,
3. a monotonous isotropic prestress and
4. the stress-ratio η

on the shape, size and inclination of the response-envelope, i.e. the direction-
dependent quasi-elastic stiffness, is described in the following.

5.2 Shape of the Quasi-Elastic Strain-Response-Envelopes

Figure 15 shows the quasi-elastic strain response-envelopes evaluated for different
stress increments �σ . In general, the envelopes seem to have the shape of symmet-
rical ellipses for different stress increments �σ and seem to be similar to each other,
which may indicate a certain approximate linearity for investigated strain regime.

The highest absolute values of quasi-elastic strains always occur in the directions
ασ ≈ 125◦ . . . 135◦ and ασ ≈ 305◦ . . . 315◦ (deviatoric un- and reloading with
�p = 0); the smallest absolute values result from directions ασ ≈ 35◦ . . . 45◦ and
ασ ≈ 215◦ . . . 225◦(isotropic un- and reloading with �q = 0).
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Fig. 15 Construction of the strain response envelope (here at stress-state I): a application of �σ =
50 kPa in 8 different directions and b corresponding strain-responses
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Fig. 16 Response-envelopes
due to �σ = 50 kPa for 2
different sequences of
stress-paths from the same
initial stress-state
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5.3 Different Sequences of Stress Paths

To investigate the influence of the sequence of the applied stress-paths on the quasi-
elastic strain-responses, the testing procedure described in Sect. 5.1 was applied
for different sequences of directions ασ . The rotational direction was also varied
(clockwise and counter clockwise). It was found, that—for the investigated initial
stress-states—neither the sequence nor the rotational direction of the applied stress-
paths lead to a substantial influence on the strain response-envelopes, Fig. 16.

Further tests have been carried out which seem to confirm these results.

5.4 Stress-Dependent Stiffness

To investigate the stress-dependencyof the quasi-elastic stiffness at low-cycle loading
tests at 3 different initial stress-states with constant stress-ratios η and different
mean pressures p are performed. The quasi-elastic strains due to stress increments
�σ = 50 kPa were determined and plotted by means of response-envelopes, Fig. 17.

As shown in Fig. 17b the size of the ellipses decreases with increasing mean
pressure p and shows an increasing quasi-elastic stiffness for decreasing mean pres-
sure p. This is especially evident at the stress-probe directions at deviatoric un- and
reloading (ασ = 125◦ and ασ = 305◦). The influence of p on the elastic moduli at
the directions ασ = 35◦ and ασ = 215◦ (isotropic un- and reloading) is much lower.

Figure 18 shows the absolute value of total strains �ε depending on the stress
increment direction ασ for 3 different stress-states at the same initial stress-ratio
η = const. = 0.75.
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5.5 Isotropic Prestress

To examine the influence of a static isotropic preloading on the size and shape of the
quasi-elastic response-envelopes, different tests were carried out starting at the same
initial stress state with and without preloading, Fig. 19.

It seems that the influence of an isotropic preloading is negligible, Fig. 20.
Similar observations were made when applying an anisotropic preloading. It will

be also necessary to investigate the influence of stress histories in general (“histori-
otropy”) on quasi-elastic properties.
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Fig. 20 Response-envelope
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5.6 Anisotropy

To investigate anisotropic material properties, tests were carried out for different
initial stress-ratios η. Figure 21 shows the corresponding envelopes plotted in the
p-q-plane.

A considerable rotation of the main axes of the response-envelopes depending on
the initial stress ratio η can be observed. This influence can be quantified. Figure 22
shows the ratio Ev/Eh of the vertical quasi-elastic stiffness Ev = �σv/�εv and
the horizontal quasi-elastic stiffness Eh = �σh/�εh as a function of the stress-
ratio η. For this purpose data were analysed for stress-probes ασ = 90◦ and 270◦
(axial compression and extension) and ασ = 0◦ and 180◦ (radial compression and
extension).

The dependence of the ratio Ev/Eh on the initial stress-ratio η can be interpreted as
a stress-induced anisotropy. Similar observations are also made when investigating
much smaller stress- or strain-cycles, e.g. Ezaoui and Di Benedetto [9] or Hoque and
Tatsuoka [14]. The coarser the sand, themore distinctive is the difference between Ev
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Fig. 22 Ratio of the
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stress-ratio η

0,0

0,5

1,0

1,5

2,0

-1,0 -0,5 0,0 0,5 1,0 1,5

E
v
/ E

h
[-

]

= q / p [-]

extension compression

and Eh, i.e. the ratio Ev/Eh increases, Hoque and Tatsuoka [14]. A detailed analysis
shows a stronger influence of the stress-ratio η on the vertical than on the horizontal
stiffness, see Bellotti et al. [3].

Figure 22 does not only show a stress induced anisotropy. At the isotropic stress-
state with η = 0 the ratio Ev/Eh is 
= 1. This means, that there are no isotropic
properties at an initial isotropic stress-state, i.e. there also is an inherent anisotropy.
Most authors come to similar conclusions. While Kuwano [16] and Hoque and Tat-
suoka [14] find out Ev/Eh ≥ 1 for all tested sands at isotropic stress-states, Ezaoui
and Di Benedetto [9] also find ratios Ev/Eh < 1 for the preparation-methods pluvia-
tion and vibration and thus demonstrates a dependence of this ratio on the specimen
preparation-method. These discrepancies seem to be due to several factors e.g. the
grain-size distribution, the shape of the specimen and the preparation-method.
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Fig. 23 Example of
accumulation of strains �ε

due to stress-probe-direction
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5.7 Plastic Strains

To investigate the accumulation of strains for small stress increments (�σ ≤ 50 kPa)
one can look separately onto each stress probe direction, where stress cycles are
performed. Figure 23 exemplarily shows the development of strains from loading
and unloading with a stress-amplitude of �σ = ±25 kPa in the direction ασ = 35◦
(isotropic un- and reloading).

As expected, the strains increase with increasing number of cycles N. In Fig. 23
the accumulation of total strains becomes approximately 0 after about N = 15 cycles.
Considering the pure quasi-elastic strains, i.e. the difference between �εloading-
�εunloading, it seems that there is hardly any change of the absolute value of the
quasi-elastic strains with the number of cycles N. For the construction of the strain
response-envelopes shown in the previous sections, this means that the size of the
quasi-elastic envelopes remains approximately constant and is independent of the
number of stress-cycles.

6 Summary and Further Hints

Producing experimental or numerical response-envelopes is a convenient tool to
investigate the soil’s incremental stress-strain behaviour and to compare, calibrate
or validate constitutive equations.

Most available experimental data are typically obtained by testing a soil in few
loading conditions. In this paper an attempt is made to evaluate the incremental
stress-strain behaviour for several loading directions, starting from many different
initial stress-states.

From monotonous loading paths it could be shown, that from the stress-state
located on the isotropic axis, the shapes of the strain response envelopes for
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�σ ≤ 50 kPa are almost similar to symmetrical ellipses. For other stress-states
the strains due to stress probes indicating towards the failure-lines, are significantly
larger and the envelopes get elongated in this direction.

The investigation of the incremental stress-strain behaviour of sand at low-cycle
loading in triaxial testing shows, that for investigated stress-increments�σ ≤ 50 kPa
quasi-elastic behaviour can occur after a low number of cycles. While the influence
of the sequence of the stress-paths as well as isotropic preloading on the quasi-elastic
strains seems to be negligible, a significant influence of the mean pressure p and the
initial stress-state η on the size and the inclination of the strain-response-envelopes
can be observed.

Further triaxial tests are necessary in order to investigate e.g. the influence of the
void ratio, K0-preloading and the stress history in general (historiotropy). It may also
be relevant to find out whether there is an influence of the direction of sedimentation
during pluviating the sand sample on the anisotropic properties.

It is known, that some common constitutive models show deficits when pre-
dicting deformations due to high and low-cycle loading processes, e.g. ratcheting
in hypoplasticity, elastic behaviour after the first un- and reloading in elastoplastic
constitutive models, missing anisotropy. It is intended to use the presented results
together with future tests as a basis for calibrating and validating more complex
constitutive equations especially developed for low-cycle loading processes [8, 19].
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