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Abstract. Data Envelopment Analysis (DEA) is a mathematical pro-
gramming approach for measuring efficiency of Decision Making Units
(DMUs). In traditional DEA, a ratio of weighted outputs to inputs is
examined and, for each DMU , some optimal weights are obtained. The
method of cross-efficiency is an extension to DEA by which a matrix of
scores is computed. The elements of the matrix are computed by means of
the weights obtained via usual models of DEA. The cross-efficiency may
have some drawbacks, e.g., the cross-efficiency scores may be multiple
due to the presence of several optima. To overcome this issue, secondary
goals are used. However, this method has never been used for peer eval-
uation of DMUs with undesirable outputs. In this paper, our objective is
to bridge this gap. For this end, we introduce a new secondary goal, test
it on an empirical example with undesirable outputs, report the results,
and finally, we give some concluding remarks.

Keywords: Data Envelopment Analysis, Cross-Efficiency, Secondary
Goals, Undesirable Outputs.

1 Introduction

In mathematical programming, Data Envelopment Analysis (DEA) is known
as a methodology that is used for evaluating the efficiency of decision making
units (DMUs). In general, DMUs have multiple inputs and multiple outputs.
The pioneer work of Charnes et al. [3] (well known as model CCR) uses the
ratio of weighted multiple outputs over weighted multiple inputs for comput-
ing the efficiency scores of each DMU . The BCC model of Banker et al. [1] is

� Corresponding author.

c© Springer International Publishing Switzerland 2015 487
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 360, DOI: 10.1007/978-3-319-18167-7_42



488 M. Moeini, B. Karimi, and E. Khorram

another classical model in DEA. Following these models, different variants of
CCR and BCC as well as some new models have been proposed for evaluat-
ing DMUs [5]. Despite the efficiency and wide usage of DEA in identifying the
most performant DMUs, the classical models have some drawbacks. For exam-
ple, self-evaluation character of DEA models is considered as an important issue
[15]. In order to overcome these flaws, other approaches have been proposed
[4, 7, 15, 19]. One of them is the technique of cross-efficiency. In this approach,
a peer evaluation replaces the self-evaluation of DMUs and the efficiency scores
are computed through linking each DMU to all DMUs [15]. The performance
of cross-efficiency has been approved through numerous applications (see e.g.,
[2, 15, 19], and more references therein). However, cross-efficiency, at its turn,
suffers from a major drawback: in general, the cross-efficiency scores are not
unique [7, 15]. In order to overcome this problem, several secondary goals have
been proposed and studied [7, 15–17, 19, 21].

Furthermore, among different applications of DEA, we find some applications
related to sustainable development and environmental aspects. More precisely,
among the usual outputs of a DMU , there may exist some outputs that are
known as undesirable outputs. As an example, one can cite the excessive carbon
emissions (as undesirable outputs) of a manufacturing firm. Due to importance
of this class of problems, there have been several studies about undesirable in-
puts/outputs. The first paper is due to Fare et al. [9] that has been followed by
some other researchers (see e.g., [10, 12, 18, 20, 23]).

There were some studies concerning the application of cross-efficiency in peer
evaluation of DMUs with undesirable inputs/outputs [24]. However, to the best
of our knowledge, in all of such studies there is no emphasize on the drawbacks
of the cross-efficiency approach. This paper aims at bridging the gap between
cross-efficiency with secondary goal and the DEA models addressing undesirable
outputs. In order to attain this objective, we bring together all necessary ma-
terials, such as suitable production possibility set (PPS) and a new secondary
goal. This procedure produces a multi-objective model for which we use max-
min model that focuses on worst-case evaluations [8, 11]. Some experiments have
been carried out on a practical data set [22]. A comparative study on the re-
sults demonstrates interesting observations about the usefulness of the proposed
approach.

The current paper is organized as follows: In Section 2, we present notations,
the prerequisites, and the concept of cross-efficiency. Section 3 is an introduction
to data envelopment analysis with undesirable outputs. In this section, a self-
evaluation model as well as cross-efficiency models for undesirable outputs are
presented. Section 4 is devoted to the numerical experiments on a practical data
set and some comments on the observations are provided. Section 5 includes the
concluding remarks as well as some directions for future research.
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2 Technical Materials: Prerequisites, Cross-Efficiency
and Secondary Goal

In this section, we present the technical materials and notations that we are
going to use through out this paper. Furthermore, we present a new secondary
goal that will be used in used in evaluating DMUs.

2.1 Prerequisites

Suppose that we have a set of DMUs and each DMUj (for j ∈ {1, . . . , n})
produces s different outputs from m different inputs. The following optimization
model describes the multiple form of the well known CCR model for evaluating
DMUd (where d ∈ {1, . . . , n}):

(CCR) : E∗
dd = max

∑s
r=1 urdyrd∑m
i=1 vidxid

(1)

s.t: Edj =

∑s
r=1 urdyrj∑m
i=1 vidxij

≤ 1 : j = 1, . . . , n, (2)

urd ≥ 0 : r = 1, . . . , s, (3)

vid ≥ 0 : i = 1, . . . ,m. (4)

The optimal value of this model, i.e., E∗
dd, is the optimal relative CCR efficiency

score of DMUd (where d ∈ {1, . . . , n}).
Let us suppose that (v∗d , u

∗
d) is the vector of optimal weights for DMUd. Using

these optimal weights, the cross-efficiency of DMUj is computed as follows:

E∗
dj :=

∑s
r=1 u

∗
rdyrj∑m

i=1 v
∗
idxij

: j = 1, . . . , n.

We observe that E∗
dj reflects a peer evaluation of DMUj with respect to DMUd.

If we consider DMUd as a target DMU and solve the CCR model for each
d = 1, . . . , n, we will get n CCR scores and their corresponding optimal weights.
Using these optimal weights, we can compute (n − 1) cross-efficiency values. If
we put all of these CCR and cross-efficiency values in a single n × n matrix,
we get [Ece], that is the cross-efficiency matrix of the set of DMUs. For each
column j of [Ece], we can compute the average of its elements that is considered
as the overall performance of DMUj [15, 21] and is known as the cross-efficiency
score of DMUj. These average scores can then be used for ranking DMUs.

It is well-known that the optimal weights obtained through the CCR model
are not necessarily unique [7, 15, 17, 21]. Due to this fact, we may have dif-
ferent cross-efficiency scores and, consequently, this drawback may reduce the
usefulness of cross-efficiency as a ranking method. In order to overcome this is-
sue, the general approach consists in introducing secondary goals [7, 15–17]. More
precisely, a complementary model is introduced and solved for the aim of screen-
ing out the alternative solutions and getting solutions that satisfy the conditions
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imposed by the secondary goals. Introducing secondary goals will produce new
models to solve and make possible to screen out and select suitable weights.
However, this approach is not as perfect as we expect and consequently, different
tries have been done to find the best secondary goals [7, 15–17]. In the sequel,
we propose a new secondary goal by taking into account some technical points.

2.2 A Linear Model as Secondary Goal

In the sequel, we present a model as secondary goal. The objective of introducing
a secondary goal consists in screening multiple optima in order to get a suitable
efficiency score. First of all, we solve the CCR model for evaluating DMUd and
assume that E∗

dd is the CCR-efficiency score of DMUd. Then, we consider the
following linear programming model:

(LP − CCR) : max

(
s∑

r=1

urdyrd − E∗
dd

m∑

i=1

vidxid

)

(5)

s.t:

s∑

r=1

urdyrj − E∗
jj

m∑

i=1

vidxij ≤ 0 : j = 1, . . . , n, (6)

s∑

r=1

urd +

m∑

i=1

vid = 1, (7)

urd ≥ 0 : r = 1, . . . , s, (8)

vid ≥ 0 : i = 1, . . . ,m.(9)

Where E∗
jj is the efficiency score for DMUj (for j ∈ {1, . . . , n}) and the

constraint (7) is a normalization constraint. In fact, the contraint (7) excludes
the null vector from the set of feasible solutions. Suppose that (v∗d , u

∗
d) is the

vector of optimal weights for (LP − CCR). The following theorem states that
the optimal value of this model is equal to zero.

Theorem 1. The optimal value of (LP − CCR) model is equal to zero.

Proof: Since E∗
dd is the optimal value for CCR with the optimal vector (u∗, v∗)

≥ 0, we have
∑s

r=1 u
∗
rdyrd∑m

i=1 v
∗
idxid

= E∗
dd and

∑s
r=1 u

∗
rdyrj∑m

i=1 v
∗
idxij

≤ 1 : j = 1, . . . , n; j �= d.

If we define E∗
jj as the optimal value of CCR for DMUj, then

∑s
r=1 u

∗
rdyrj∑m

i=1 v
∗
idxij

≤ E∗
jj : j = 1, . . . , n; j �= d.

In other words

s∑

r=1

u∗
rdyrd − E∗

dd

m∑

i=1

v∗idxid = 0 and

s∑

r=1

u∗
rjyrd − E∗

jj

m∑

i=1

v∗idxij ≤ 0 : ∀j �= d.
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Let us define k = 1∑s
r=1 u∗

rd+
∑m

i=1 v∗
id

(we know that
∑s

r=1 u
∗
rd +

∑m
i=1 v

∗
id �= 0).

We observe that (ku∗, kv∗) is a feasible solution for LP − CCR, with 0 as the
objective value. Furthermore, (LP −CCR) in a maximization problem of a non-
positive objective function. Hence, we come up with the conclusion that the
optimal value of (LP − CCR) is equal to 0. �
Corollary: According to Theorem 1, we conclude that the efficiency score ob-
tained by (LP − CCR) is equal to the efficiency score provided by the model
CCR.

In order to screen the multiple optima of CCR, we consider the following
Multi-Objective model as the Secondary Goal (MO-SG).

(MO − SG) :

max
j=1,...,n;j �=d

(
s∑

r=1

urdyrj − E∗
jj

m∑

i=1

vidxij

)

s.t.
s∑

r=1

urdyrj − E∗
jj

m∑

i=1

vidxij ≤ 0 : j = 1, . . . , n; j �= d,

s∑

r=1

urdyrd − E∗
dd

m∑

i=1

vidxid = 0,

s∑

r=1

urd +

m∑

i=1

vid = 1,

urd ≥ 0 : r = 1, . . . , s,

vid ≥ 0 : i = 1, . . . ,m.

Where E∗
dd represents the amount of efficiency score forDMUd and is obtained

by solving CCR. The purpose of (MO-SG) model consists in providing optimal
weights for DMUd with fixing the efficiency of this unit and maximizing the
efficiency score of other DMUs.

The scientific literature in multi-objective optimization includes different ap-
proaches for solving (MO-SG) (see e.g., [8]).

3 Undesirable Outputs

In this section, we present an approach for peer evaluation of DMUs in presence
of undesirable outputs. Undesirable outputs can be in different forms. Perhaps,
some of the most notable examples of undesirable outputs are excessive carbon
emissions in a manufacturing firm and tax payments in business operations.
Due to importance of these factors, it is necessary to study the ways of reducing
undesirable outputs and ranking the most efficient firms in terms of the least un-
desirable productions. In this paper, we aim at introducing a procedure for peer
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evaluation of DMUs (having some undesirable outputs). This becomes possible
by means of the technique of cross-efficiency and using the new secondary goal
that we presented in Section (2.2).

3.1 Data Envelopment Analysis for Undesirable Outputs

For j ∈ {1, . . . , n}, suppose that DMUj is a unit with the input vector xi such
that the vectors vj and wj are, respectively, the desirable and undesirable output
vectors of DMUj. Each DMUj uses m inputs xij (i = 1, . . . ,m) to produce s
desirable outputs vrj (r = 1, . . . , s) and h undesirable outputs wtj (t = 1, . . . , h).
Kousmanen et al. [13, 14] introduced the following linear programming model
for evaluating DMUd (where d ∈ {1, . . . , n})

min θ (10)

s.t.

n∑

j=1

(ηj + μj)xij ≤ θxid : i = 1, . . . ,m, (11)

n∑

j=1

ηjvrj ≥ vrd : r = 1, . . . , s, (12)

n∑

j=1

ηjwtj = wtd : t = 1, . . . , h, (13)

n∑

j=1

(ηj + μj) = 1, (14)

ηj ≥ 0, μj ≥ 0 : j = 1, . . . , n. (15)

Where ηj , μj ≥ 0 (for j = 1, . . . , n) are structural variables for the production
possibility set (PPS) (see [13, 14]). This model seeks for decreasing the inputs
of DMUd by rate of θ. The model (10)-(15) is an input oriented model with an
optimal value of θ∗ ∈ (0, 1]. If θ∗ = 1, we say that DMUd is technical efficient.
If we write the dual of (10)-(15), we get the following model that we name it
Undesirable Multiple Form (UMF):

E∗
dd = max

(
s∑

r=1

qrdvrd +

h∑

t=1

πtdwtd + αd

)

(16)

s.t.

−
m∑

i=1

pidxij +

s∑

r=1

qrdvrj +

h∑

t=1

πtdwtj + αd ≤ 0 : j = 1, . . . , n, (17)

−
m∑

i=1

pidxij + αd ≤ 0 : j = 1, . . . , n, (18)
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m∑

i=1

pidxid = 1, (19)

pid ≥ 0 : i = 1, . . . ,m, (20)

qrd ≥ 0 : r = 1, . . . , s. (21)

Where the dual variables pid (for i = 1, . . . ,m) are defined as the weights
for the inputs of DMUd and qrd (for r = 1, . . . , s) (respectively, πtd (for t =
1, . . . , h)) are the weights for desirable outputs (respectively, undesirable out-
puts) of DMUd.

Let us suppose that (p∗d, q
∗
d, π

∗
d, α

∗
d) is the optimal solution vector of UMF

model in evaluating DMUd (where d ∈ {1, . . . , n}). The cross-efficiency of
DMUj, by using the profile of weights that has been provided by DMUd, is
computed as follows [6]:

E∗
dj =

∑s
r=1 q

∗
rdvrj +

∑h
r=1 π

∗
tdwtj + α∗

d∑m
i=1 p

∗
idxij

: j = 1, . . . , n (22)

By solving UMF model for each d ∈ {1, . . . , n} and using (22), we can construct
an n× n matrix [E∗

ce] that is the matrix of cross-efficiency.
We know that the UMF model may have alternative solutions and conse-

quently, we may have several cross-efficiency matrices. In order to overcome this
problem, we can proceed as we explained in Section 2. To this end, we do a cross-
efficiency evaluation with secondary goal for eachDMUd (for d = 1, . . . , n). First
of all, we solve the UMF model for each DMUj (j = 1, . . . , n) and we get E∗

jj ,
then we consider the (MO-SG) model as the following version in which the un-
desirable outputs are taken into account:

(MO − SG)undesirable :

max
j=1,...,n;j �=d

(
s∑

r=1

qrdvrj +

h∑

t=1

πtdwtj + αd − E∗
jj

m∑

i=1

pidxij

)

(23)

s.t.
s∑

r=1

qrdvrd +

h∑

t=1

πtdwtd + αd − E∗
dd

m∑

i=1

pidxid = 0, (24)

s∑

r=1

qrdvrj +
h∑

t=1

πtdwtj + αd − E∗
jj

m∑

i=1

pidxij ≤ 0 : j = 1, . . . , n, (25)

−
m∑

i=1

pidxij + αd ≤ 0 : j = 1, . . . , n, (26)

s∑

r=1

qrd +

h∑

t=1

πtd +

m∑

i=1

pid = 1, (27)
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pid ≥ 0 : i = 1, . . . ,m, (28)

qrd ≥ 0 : r = 1, . . . , s. (29)

We note that this model is similar to (MO-SG); however, this model takes
into account the undesirable factors of DMUs. By keeping the score of DMUd

at its own level, the model (23)-(29) seeks for the optimal weights such that the
efficiency scores of other DMUs are maximized. In order to solve this multi-
objective model, many approaches can be chosen from the literature of multi-
objective programming. One of the classical approaches consists in using the
max-min method [8, 11]. In this approach, we introduce a supplementary vari-
able, e.g., φ for transforming the multi-objective model (23)-(29) to the following
linear programming (LP) model (where J = {1, . . . , n}).

maxφ (30)

s.t.

φ ≤
s∑

r=1

qrdvrj +

h∑

t=1

πtdwtj + αd − E∗
jj

m∑

i=1

pidxij : j ∈ J \ {d},(31)

s∑

r=1

qrdvrd +

h∑

t=1

πtdwtd + αd − E∗
dd

m∑

i=1

pidxid = 0, (32)

s∑

r=1

qrdvrj +
h∑

t=1

πtdwtj + αd − E∗
jj

m∑

i=1

pidxij ≤ 0 : j ∈ J, (33)

−
m∑

i=1

pidxij + αd ≤ 0 : j ∈ J, (34)

s∑

r=1

qrd +

h∑

t=1

πtd +

m∑

i=1

pid = 1, (35)

pid ≥ 0 : i = 1, . . . ,m,(36)

qrd ≥ 0 : r = 1, . . . , s. (37)

To sum up, the following procedure outlines the process of forming the ma-
trix of cross-efficiency by using the proposed secondary goal and for evaluating
DMUs having undesirable outputs.

Procedure of Cross-Efficiency with Secondary Goal (PCE-SG) (in
presence of undesirable outputs)

Step 1. For each j = 1, . . . , n, solve the model UMF to obtain E∗
jj .

Step 2. For each d = 1, . . . , n, solve the max-min model (30)-(37) to obtain the
solution vector (p∗d, q

∗
d, π

∗
d , α

∗
d) as the profile of weights for DMUd.
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Step 3. For each d = 1, . . . , n, use the vector (p∗d, q
∗
d, π

∗
d, α

∗
d) in (22) to construct

the dth row of the matrix of cross-efficiency.

Once the matrix of cross-efficiency is formed, we can compute the cross-efficiency
score (CES) of each DMUj (for j = 1, . . . , n). The cross-efficiency score of
DMUj is computed by taking the average of the entries on the jth column of
the matrix (see also [6, 15]), i.e.,

E∗
j :=

n∑

d=1

E∗
dj

n
(38)

4 Numerical Example

In this section, the presented cross-efficiency approach is used to evaluate the
efficiency of Chinese provinces in matter of the environmental criteria [22]. In
this evaluation, the data of 16 Chinese provinces are considered. Table 1 includes
the whole data. In this table, each province is considered as a DMU and it has
two inputs (the total energy assumption (x1) and the total population (x2)) and
four outputs, including one desirable output (GDP, denoted by v) and three
undesirable outputs: the total amounts of industrial emissions of waste water
(w1), waste gas (w2), and waste solids (w3) [22].

We apply the procedure (PCE-SG) to form the matrix of cross-efficiency.
Then, we use (38) to compute the cross-efficiency score (CES) of each DMU .

In order to solve the linear programming (LP) models, we use the standard
solver Lingo 11 on a Pentium Dual-Core CPU, with 4GB RAM and 2.10 GHz.
The computational time for solving LP models is negligible. The results are
presented in Table 2. In this table, we present the meaningful information of the
cross-efficiency matrix. More precisely, for each DMU , we present: minimum
score (min), maximum score (max), average of scores (CES) (that is the Cross-
Efficiency Score (CES) as we defined in previous sections), standard deviation
of scores (SD), range of scores (range), and the rank of the DMU .

The ranking of DMUs is based on the CES values, that is known as the
cross-efficiency score [6, 15]. We note that the max values correspond to the
efficiency scores in conventional CCR model. The CCR model ranks the DMUs
by a self-evaluation procedure. However, by using the cross-efficiency, we take
its advantage as a weighting procedure that helps us to rank DMUs by a peer
evaluation of all DMUs. In this context, we use the new secondary goal that
lets us to consider the best performance of all DMU .

As we observe in Table 2, through the procedure (PCE-SG), the informa-
tion provided by the method of cross-efficiency helps us in ranking DMUs in
an explicite way and (in this example) without any tie. This fact shows the
pure advantage of using a peer evaluation of DMUs through the method of
cross-efficiency and, particularly, the proposed secondary goal. More precisely,
by means of (PCE-SG) we can take into account more information about all
DMUs and the ranking is based on these information.
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Table 1. The data corresponding to 16 DMUs: inputs (total energy assumption, total
population) and desirable outputs (GDP) and undesirable outputs (total industrial
emission of waste water, waste gas, waste solids)

Inputs Desirable Output Undesirable Outputs

DMU x1 x2 v w1 w2 w3

1 6570 15096 12153.03 8713 4408 1242.4
2 5874 10473 7521.85 19441 5983 1515.7
3 15576 30378 7358.31 39720 23693 14742.9
4 19112 38429 15212.49 75159 25211 17221.4
5 7698 24349 7278.75 37563 7124 3940.5
6 23709 68371 34457.30 256160 27432 8027.8
7 15567 45472 22990.35 203442 18860 3909.7
8 8916 32097 12236.53 142747 10497 6348.9
9 19751 83974 19480.46 140325 22186 10785.8
10 13708 50862 12961.10 91324 12523 5561.5
11 13331 56820 13059.69 96396 10973 5092.8
12 24654 84981 39482.56 188844 22682 4740.9
13 7030 25284 6530.01 65684 12587 2551.8
14 16322 72471 14151.28 105910 13410 8596.9
15 8032 40460 6169.75 32375 9484 8672.8
16 8044 33504 8169.80 49137 11032 5546.7

Table 2. The results of cross-efficiency (CE) method for ranking 16 DMUs

DMU min max range SD CES rank

1 0.10 0.94 0.84 0.264 0.48 13
2 0.23 1 0.77 0.267 0.64 7
3 0.12 1 0.88 0.338 0.73 3
4 0.19 1 0.81 0.281 0.71 4
5 0.15 0.88 0.73 0.199 0.54 11
6 0.25 0.92 0.67 0.255 0.61 9
7 0.23 1 0.77 0.298 0.65 6
8 0.19 1 0.81 0.275 0.79 1
9 0.11 0.77 0.66 0.211 0.49 12
10 0.12 0.64 0.52 0.165 0.46 14
11 0.19 1 0.81 0.312 0.77 2
12 0.15 0.68 0.53 0.182 0.44 15
13 0.12 1 0.88 0.328 0.71 5
14 0.09 0.64 0.55 0.168 0.43 16
15 0.07 1 0.93 0.330 0.60 10
16 0.12 0.95 0.83 0.270 0.62 8

As we observe in Table 2, there are 8 efficient DMUs in terms of traditional
efficiency evaluation (see the column “max”) and this is a drawback of self-
evaluation. According to Table 2, there is just one cross-efficient DMU , that is
DMU8. Particularly, DMU8 is efficient not only in the traditional sense, but
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also in terms of the cross-efficiency with secondary goal. In terms of efficiency,
DMU8 dominates the other DMUs. It is important to note that the dominance
of DMU8 with respect to the others has a strong sense, i.e., DMU8 is efficient
by taking into account the best performance of all DMUs.

Finally, in this example, the procedure (PCE-SG) is used for evaluatingDMUs
in presence of undesirable outputs. This procedure helps to identify the best
DMU(s) and produces a ranking approach. By means of these results, we can
recognize the necessary improvements that must be done in the inputs and the
outputs (desirable and/or undesirable) of any inefficientDMU in order to obtain
efficient DMUs with the least undesirable factors.

5 Conclusion

In this paper, we discussed about a cross-efficiency approach for evaluating the
performance of DMUs in presence of undesirable outputs. More precisely, we
studied a cross-efficiency approach by introducing a new secondary goal. This ap-
proach consists in constructing a multi-objective model that can be transformed
to an LP model in many ways, for example, the classicalmax-min method [8, 11].
The introduced approach has been extended (in a natural way) for evaluation of
DMUs with undesirable outputs. We applied our approach on a real-world data
set [22] involving undesirable outputs. According to the results, our approach is
useful in peer-evaluation of DMUs and helps decision makers in ranking units by
taking into account the best performance of all DMUs; particularly, in the case
of ties in conventional DEA scoring systems. The current study is in progress
by considering alternative secondary goals. The complementary results will be
reported in future.
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