
A Memetic-GRASP Algorithm for the Solution

of the Orienteering Problem

Yannis Marinakis, Michael Politis, Magdalene Marinaki,
and Nikolaos Matsatsinis

School of Production Engineering and Management,
Technical University of Crete, Chania, Greece

{marinakis,nikos}@ergasya.tuc.gr, magda@dssl.tuc.gr

Abstract. The last decade a large number of applications in logistics,
tourism and other fields have been studied and modeled as Orienteer-
ing Problems (OPs). In the orienteering problem, a standard amount of
nodes are given, each with a specific score. The goal is to determine a
path, limited in length, from the start point to the end point through
a subset of locations in order to maximize the total path score. In this
paper, we present a new hybrid evolutionary algorithm for the solution of
the Orienteering Problem. The algorithm combines a Greedy Random-
ized Adaptive Search Procedure (GRASP), an Evolutionary Algorithm
and two local search procedures. The algorithm was tested in a number
of benchmark instances from the literature and in most of them the best
known solutions were found.

Keywords: Orienteering Problem, Memetic Algorithm, Greedy Ran-
domized Adaptive Search Procedure, Local Search.

1 Introduction

In this paper, we present an algorithm for the solution of the Orienteering Prob-
lem. The Orienteering Problem was introduced by Golden et al. [5] when they
described a game played in the mountains. The idea behind this game is that
we have a number of players that they start from a specified control point, they
have a map that informs them about a number of checkpoints and the scores
associated with each one of them and they try to pass from as many checkpoints
as possible adding to their total score the score of the specific point and to re-
turn to the control point (or to go to a different control point) within a specific
time period [2]. The winner is the one that maximizes its total collected score
[16]. This problem is one of the first problems that belongs in a category that
is called Vehicle Routing Problems with Profit, where in each node (customer)
except of the demand of the point, a profit is associated and, thus, the main
goal is instead of (or in addition to) the minimization of the total distance or
the total travel time, the maximization of the additive profit of visiting of the
most profitable customers. In all these problems, it is possible not to visit all
the customers but there is a selection of the customers that we have to visit as

c© Springer International Publishing Switzerland 2015 105
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 360, DOI: 10.1007/978-3-319-18167-7_10

106 Y. Marinakis et al.

there is usually a time limit in order to perform the service of the customers.
The most known variant of the Orienteering Problem is the Team Orienteering
Problem where instead of one path, a number of P paths should be determined
where the total collected score should be maximized [3,12]. Other variants of the
Orienteering Problem are the Orienteering and the Team Orienteering Problems
with Time Windows [7,9] where, also, time windows are assigned in each arc of
the graph.

The Orienteering Problem has many applications in real life problems. One
of them is its use for creating a Tourist Guide for a museum or for a specific
city [11,14]. When a tourist visits a museum or a city it is often impossible
to visit everything, thus, he should select the most interesting exhibitions or
landmarks, respectively. If the tourist has plenty of time to visit everything inside
the museum, then, the problem that he has to solve is only the finding of the
sequence of visiting of the paintings or the sculptures. However, if the tourist has
limited time, then, he has to make a selection of the most important parts of the
museum for him. Thus, an ideal way to visit as more of his interesting exhibition
parts in the museum as possible is to add, initially, a score to everything that
exists in the museum (based on his personal preferences) and, then, to try to
maximize this score by visiting the exhibition parts that have the highest scores.
Thus, it has to solve a classic Orienteering Problem. One problem that may
arise from the formulation of a routing problem in a museum as an orienteering
problem is that the visiting time in each exhibition part cannot be calculated
exactly as either the tourist would like to stay more or there is a lot of people
around it and, thus, another constraint have to be added to the Orienteering
Problem. There is a number of ways to solve this problem. One way is to add a
specific time to the traveling time. However, this is not the most representative
way as this time is not fixed for every visitor. Another way is to add a stochastic
variant in each node of the graph which will correspond to the time that a visitor
will stay to this exhibition part of the museum. Finally, a third way is the way
that the authors of [17] formulate their problem as an Open Shop Scheduling
problem in which they divide the visitors in different groups where they all are
together and spend the same time in the exhibition rooms. The visitors are the
jobs while the exhibition rooms are the machines. The time each visitor group
spends in an exhibition room is considered analogous to the processing time
required for each job on a particular machine [17].

In this paper, we solve the Orienteering Problem (OP) as a first step for cre-
ating a Tourist Guide either for a museum or for a specific city. The city that
the algorithm will be applied is the city of Chania, Crete in Greece which is a
very popular tourist destination. The idea behind this paper is to develop an
algorithm that it could solve satisfactory the Orienteering Problem, with very
good results in classic benchmark instances and in short computational time.
In this algorithm, the waiting time of the tourists was added in the traveling
time of an arc and it was thought constant for every tourist. The reason that we
developed the algorithm with this assumption is that as we do not have bench-
mark instances for the museum (or tourist) routing problem that we would like

Memetic-GRASP Algorithm for the OP 107

to formulate and solve, we begin with the application of the algorithm in a
well known problem with well known benchmark instances and, then, we are
going to proceed in the more demanding problem. Thus, we propose an algo-
rithm that is an efficient hybridization of three algorithms, a Greedy Randomized
Adaptive Search Procedure (GRASP) [4] for the creation of part of the initial
solutions, an Evolutionary Algorithm as the main part of the algorithm and two
local search phases (2-opt and 1-1 exchange) in order to improve each of the
individuals of the population separately and, thus, to increase the exploitation
abilities of the algorithm. The algorithm is denoted as Memetic-GRASP algo-
rithm (MemGRASP). The algorithm is denoted as memetic algorithm [8] as it is
an evolutionary algorithm with a local search phase. The reason that we use an
evolutionary algorithm is that as the final application of the algorithm will be in
the design of an tourist guide planner where the tourist will have the best option
(meaning the visiting sequence of as many as possible points of interest) based
on his preferences, the use of an evolutionary algorithm give us the possibility to
give to the tourist alternative, very effective, options if for some reason his pre-
ferences change during his exhibition. Thus, the ability of a memetic algorithm
to increase the exploration abilities of the procedure by searching in different
places of the solution space give us the possibility of having good solutions in
different solution space. The rest of the paper is organized as follows: In the next
section a formulation of the Orienteering Problem is presented while in Section
3 the proposed algorithm is analyzed in detailed. In Section 4 the results of the
proposed algorithm in the classic benchmark instances from the literature for
the Orienteering Problem are given and in the last section the conclusions and
the future research are presented.

2 Orienteering Problem

The Orienteering Problem (OP) can be described using a graph G = (V,A),
where V, i = 1, · · · , N denotes the set of nodes, each one having a score ri and A
is the set of arcs between points in V . There are two fixed points, the starting
point (usually node 1) and the ending point (usually node N), where these two
nodes could be the same or not and where these two nodes have zero score.
There is a symmetric nonnegative cost cij associated with each arc, where cij
denotes the time between point i and point j. Each node can be visited at most
once and the total time taken to visit all points cannot exceed the specified limit
Tmax [16]. The main target of the solution of the OP is to determine a path,
limited by Tmax, that visits some of the nodes in order to maximise the total
collected score. The scores are assumed to be entirely additive and each node
can be visited at most once [16].

Making use of the notation introduced above, the OP can be formulated as
an integer problem. The following decision variables are used: xij equal to 1 if a
visit to node i is followed by a visit to node j, otherwise the value of xij is zero;
yi equal to 1 if node i is in the path or zero otherwise.

108 Y. Marinakis et al.

z = max
∑

j∈V

rjyj (1)

s.t.∑

j∈V

x1j = 1, (2)

∑

j∈V

xin = 1, (3)

∑

(i,j)∈A

xij +
∑

(j,k)∈A

xjk = 2yj ∀j ∈ V, (4)

∑

(i,j)∈A

cijxij ≤ Tmax (5)

∑

(i,j)∈S

xij ≤ |S| − 1 ∀S ⊆ V (6)

3 Memetic-Greedy Randomized Adaptive Search
Procedure (MemGRASP) for the Orienteering
Problem

In this section, the proposed algorithm is described in detail. Initially, in the
MemGRASP algorithm we have to create the initial population. The first mem-
ber of the population is produced by using a Greedy Algorithm. The path begins
from node 1, which represents the starting point of each solution. Then, two dif-
ferent conditions are taken into account, the most profitable node and the near-
est node to the last node inserted in the path. As there is a possibility the most
profitable node not to be the nearest node to the last node inserted in the path
and vice versa, we have to select which one of these two conditions is the most
important. The most important condition is considered the condition of the
profitable node as this is used for the calculation of the fitness function of the
problem. However, as it is very important not to select a distant node, we have to
add in the path a node as near as possible to the last added node in the path. In
the case where more than one possible nodes have the same score (profit), which
is a very possible situation in the instances the algorithm was tested, then, the
nearest node is selected to be inserted in the path. Thus, the Greedy algorithm
uses a hierarchical procedure where the most important condition is the profit
of the node and the second most important is the distance.

At the end of the Greedy Algorithm, when no other node can be inserted in
the path due to the fact that the constraint that restricts the length of the path
has been violated, a complete solution is produced. We have to mention that
in the formulation of the problem, described in Section 2, we mentioned that in
the problem each tourist has a time limit and not a distance limit. However, in
general we can consider that these two constraints could have the same role in
the problem, meaning that if we have data that correspond to distance from one
node to another and a limit in the length of the path, the constraint (5) could

Memetic-GRASP Algorithm for the OP 109

have the same role in the OP as if we had the time traveled from one node to
another and a maximum time limit for the path. The solution is represented with
a path representation only of the nodes that have been selected to construct the
path and the 2 nodes corresponding to the starting node and the ending node (for
example, the entrance and the exit of the museum (these two nodes could be the
same node)). Thus, the vector corresponding to each member of the population
could have different length as there is a possibility in two solutions different
number of nodes to be selected. Then, for the solution the fitness function is
calculated which is the summation of the profit (score) of each of the node
added in the path.

Next the initial path (solution), as every other path (solution) of the popula-
tion, is tried to be improved using a combination of two local search algorithms,
one is a type of exchange algorithm inside the path and the other is an insertion
algorithm of a node that is not in the path between two nodes that are already
in the path. The first one is used in such a way that the nodes of the path do not
change but only the sequence of the nodes in the selected path may change. The
reason that this procedure is used is that by finding a new sequence with shorter
length (or less time) it is possible to add a new node in the path without viola-
ting the constraint (5) and, thus, to increase the summation of the score (profit)
and to improve the solution. The second local search procedure takes the path
produced by the first local search and tries to improve the fitness function of the
solution by adding new nodes in the path. This procedure is applied even if the
previous local search does not improve the initial path. In this procedure, an arc
is removed and between the two nodes a new node is inserted (without violation
of the constraint (5)) in order to improve the solution. With this procedure we
ensure that if one successful move is realized, then, the fitness function of the
solution will be improved, as the only condition in order to improve a solution
is to add a new node in the path without deleting some of the existing nodes. If
an improvement in the solution is achieved, then, the first local search algorithm
is applied again in order to see if there is a possibility of more improvement in
the solution. This local search algorithm is applied in every solution during the
whole iterations of the algorithm.

The next step is the calculation of the solution of the rest members of the
population. From member 2 to NP/2, where NP is the population number, the
members of the population are calculated with a random procedure in order to
spread the solutions in the whole space. In the random procedure, the solution
begins from the starting node and, then, a node is selected at random with-
out violating the limit (either time or distance) constraint and is added in the
path. When the constraint is violated, the path is ended in the exit node. Then,
the solution is tried to be improved using the local search procedure described
previously. The last members of the population are calculated using Greedy
Randomized Adaptive Search Procedure (GRASP). In the GRASP algorithm,
a solution is created step by step where the best node is not added in the path
but a list, the Restricted Candidate List - RCL with the most possible for in-
clusion nodes in the path, is created and one of them is selected randomly to

110 Y. Marinakis et al.

be included in the path. In the proposed algorithm, the RCL contains the most
profitable nodes (based on their score (profit)) taking into account not to vio-
late the limit (either time or distance) constraint and, then, in each step of the
algorithm one of them is selected at random and is added in the path. Then, the
RCL is updated with one node not in the path in order to keep its size (number
of candidate nodes) constant. Finally, the local search described previously is
applied.

All these solutions construct the initial population of the algorithm. Then,
with the roulette wheel selection procedure the two parents are selected. A very
interesting part of the algorithm is the crossover operator that is used in the next
step. A 1-point crossover is used but it was very difficult to use it directly to the
solutions as each solution contains the sequence of the nodes that a tourist will
visit and, thus, two different solutions are possible to have different number of
nodes. In order to solve this problem, each solution is mapped in a new vector
with zeros and ones where a value equal to zero means that the node is not
visited and a value equal to one means the opposite. Thus, the new vectors
of two parents have the same size and the crossover operator can easily be
applied and the two offspring are produced. In these vectors (either the parent
vector or the offspring vector) the sequence of the nodes is not appeared. In
the offspring in order to calculate the sequence of the nodes we produce a new
vector using the nodes that have value equal to one and we apply the greedy
algorithm described previously until the solution violates the constraint (5).
Next the mutation operator is applied. The role of the mutation operator in this
algorithm is either to improve a feasible solution or to transform an infeasible
solution to feasible or, finally, to reject an infeasible solution that could not be
transformed to a feasible one. If the limit constraint is violated, then, initially
we apply the local search algorithm in order to find a solution which contains
all the nodes without violating the limit constraint and if we could not find such
a solution, then, we remove the less profitable nodes until the solution becomes
feasible. On the other hand if all nodes of the offspring construct an feasible
solution, then, all of them are selected. In order to improve the offspring, the
local search described previously is applied.

Finally, the new population for the next generation is constructed. The new
population contains the best solutions of the parents and of the offspring based
on their fitness function taking into account not to have two solutions with the
same path in order to avoid a fast convergence of the algorithm and the size
of the population to remain constant in all generations. Then, the procedure
continues with the selection of the new parents. All the steps of the algorithm
(besides the creation of the initial population) are repeated until a maximum
number of generations have been reached.

4 Computational Results

In this section, the computational results of the algorithm are presented and
discussed in detail. As it was mentioned previously, we formulate the tourist

Memetic-GRASP Algorithm for the OP 111

(or museum) routing problem discussed in this paper as an Orienteering Prob-
lem with the waiting time in each node to be equal for all tourists and to be
added in the traveling time between two nodes. Thus, as we would like to test
the effectiveness of the algorithm, we have a number of sets of benchmark in-
stances in the literature to be used for the comparisons. Thus, in the webpage
http://www.mech.kuleuven.be/en/cib/op/ there is a number of benchmark in-
stances for different variants of Orienteering Problem. We select five sets of
benchmark instances, three of them proposed in [13] and two of them proposed
in [1]. The three sets of Tsiligirides [13] have 18, 11 and 20 instances, respectively,
with number of nodes 32, 21 and 33, respectively, each one having different value
in Tmax in the limit constraint of the problem. For example, for the first set of
instances of Tsiligirides the value of Tmax varies between 5 to 85. The increase
of the value allows more nodes to be visited in the best route. For each set of
benchmark instances the value of Tmax is presented in the corresponding Table.
Finally, the last two sets of benchmark instances have 26 and 14 instances with
66 and 64 nodes, respectively.

Table 1. Computational results for Tsilligirides’s Set 1

Tmax MemGRASP GLS OPT D(R - I) S(R - I) Knapsack MVP
1 5 10 10 10 10 10
2 10 15 15 15 15 15
3 15 45 45 45 45 45
4 20 65 55 65 65 65 65 65
5 25 90 90 90 90 90 90 90
6 30 110 80 110 110 110 110 110
7 35 135 135 135 135 135 125 130
8 40 155 145 155 150 150 140 155
9 46 175 175 175 175 175 165 175
10 50 190 180 190 190 190 180 185
11 55 205 200 205 200 205 200 200
12 60 225 220 225 220 220 205 225
13 65 240 240 240 240 240 220 240
14 70 260 260 260 260 245 245 260
15 73 265 265 265 265 265 255 265
16 75 270 270 270 275 275 265 270
17 80 280 280 280 280 280 275 280
18 85 285 285 285 285 285 285 285

In Tables 1-3 the results of the proposed algorithm in the three set of instances
of Tsilligirides are presented. More analytically, in the first column of each one
of the Tables the number of the instance is presented, in the second column
the value of the Tmax for each instance is given, in the third column the value
of the objective function produced by the proposed algorithm (MemGRASP)
is given, in the fourth and fifth columns the values of the objective function
of the algorithm published in [15] and of the best values from the literature
(OPT) published in the same paper are presented and, finally, in sixth to nine
columns the results of four algorithms presented in [6] are given. In Figure 1,
three different solutions having different Tmax for each set of the Tsilligirides

112 Y. Marinakis et al.

instances are presented. In Table 4, the results of the last two data sets are
presented. The structure of the Table is as in the previous Tables, however as
we have less instances from the literature to compare the results of the proposed
algorithm, we separate the Table in two parts, where in the first part the results of
the benchmark instances presented by [1] (denoted as Square-shaped instances)
are given (columns 1 to 6) and in the second part the results of the benchmark
instances presented by [1] (denoted as Diamond-shaped instances) (columns 7
to 12) are given, respectively. In both parts of the Table, besides the results of
the proposed algorithm, the results of the algorithm presented in [15] (denoted
as GLS), the results of the algorithm presented in [2] (denoted as Chao) and
the results of the algorithm presented in [10] (denoted as DStPSO) are given. In
Figure 2, three different solutions having different Tmax for each set of the Chao
instances are presented.

The proposed algorithm is tested in 87 instances in total. The best known
solution from the literature is found by the proposed algorithm in 71 of them.

Table 2. Computational results for Tsilligirides’s Set 2

Tmax MemGRASP GLS OPT D(R - I) S(R - I) Knapsack MVP
1 15 120 120 120 120 120 120 120
2 20 200 200 200 200 200 200 200
3 23 210 210 210 210 210 210 210
4 25 230 230 230 230 230 230 230
5 27 230 220 230 230 230 230 230
6 30 265 260 265 265 260 260 260
7 32 300 300 300 300 300 275 300
8 35 320 305 320 320 320 305 320
9 38 360 360 360 355 355 355 360
10 40 395 380 395 385 395 380 380
11 45 450 450 450 450 450 450 450

Table 3. Computational results for Tsilligirides’s Set 3

Tmax MemGRASP GLS OPT D(R - I) S(R - I) Knapsack MVP
1 15 170 170 170 100 100 170 170
2 20 200 200 200 140 140 200 200
3 25 260 250 260 190 190 250 260
4 30 320 310 320 240 240 320 320
5 35 390 390 390 280 290 380 370
6 40 430 430 430 340 330 420 430
7 45 460 470 470 370 370 450 460
8 50 520 520 520 420 420 500 520
9 55 550 540 550 440 460 520 550
10 60 580 570 580 500 500 580 570
11 65 610 610 610 530 530 600 610
12 70 630 630 640 560 560 640 640
13 75 670 670 670 600 590 650 670
14 80 710 710 710 640 640 700 700
15 85 730 740 740 670 670 720 740
16 90 760 770 770 700 700 770 760
17 95 790 790 790 740 730 790 790
18 100 800 800 800 770 760 800 800
19 105 800 800 800 790 790 800 800
20 110 800 800 800 800 800 800 800

Memetic-GRASP Algorithm for the OP 113

Tsilligirides Set 1 (For Tmax = 40, 60 and 73)

4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

Tsilligirides Set 2 (For Tmax = 25, 30 and 38)

2 4 6 8 10 12 14 16
5

10

15

20

2 4 6 8 10 12 14 16
5

10

15

20

2 4 6 8 10 12 14 16
5

10

15

20

Tsilligirides Set 3 (For Tmax = 30, 60 and 90)

6 8 10 12 14 16 18 20 22 24
5

10

15

20

25

30

35

40

6 8 10 12 14 16 18 20 22 24
5

10

15

20

25

30

35

40

6 8 10 12 14 16 18 20 22 24
5

10

15

20

25

30

35

40

Fig. 1. Representative drawings for Tsilligirides’ Sets

In the other 16 the solution found by the proposed algorithm is near to the best
known solution without large deviation from the best known solution. From
Figures 1 and 2, we can see that as the Tmax is increased the number of nodes
that are included in the best solution is, also, increased. It should be noted
that the convergence time of the algorithm was quite satisfactory as the average
time (Average CPU Time) was 44 seconds with a minimum of 7 seconds and a
maximum of 164 seconds for the more demanding instance. As we observed from
the figures the instances are divided in two categories. In the first one the nodes
are randomly scattered in the solution space (the three first sets of benchmark
instances) while in the second one the nodes are placed in a diamond shape and
in a square shape. These two different distributions were the reason that these
instances were selected for testing the proposed algorithm. The idea behind this
algorithm, as it was analyzed earlier, was the tourists that they would like to

114 Y. Marinakis et al.

Diamond Shaped problem (For Tmax = 50, 70 and 80)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Squared Shaped problem (For Tmax = 30, 70 and 130)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Fig. 2. Representative drawings for Chao Sets

Table 4. Computational results for Square-shaped and Diamond-shaped test sets

Square-shaped test set Diamond-shaped test set
Tmax Mem- GLS Chao DStPSO Tmax Mem- GLS Chao DStPSO

GRASP GRASP
1 5 10 10 10 10 1 15 96 96 96 96
2 10 40 40 40 40 2 20 294 294 294 294
3 15 120 120 120 120 3 25 390 390 390 390
4 20 205 175 195 205 4 30 474 474 474 474
5 25 290 290 290 290 5 35 576 552 570 576
6 30 400 400 400 400 6 40 714 702 714 714
7 35 465 465 460 465 7 45 816 780 816 816
8 40 575 575 575 575 8 50 894 888 900 900
9 45 650 640 650 650 9 55 978 972 984 984
10 50 730 710 730 730 10 60 1062 1062 1044 1062
11 55 825 825 825 825 11 65 1116 1110 1116 1116
12 60 915 905 915 915 12 70 1188 1188 1176 1188
13 65 980 935 980 980 13 75 1230 1236 1224 1236
14 70 1070 1070 1070 1070 14 80 1278 1260 1272 1284
15 75 1140 1140 1140 1140
16 80 1215 1195 1215 1215
17 85 1260 1265 1270 1270
18 90 1340 1300 1340 1340
19 95 1385 1385 1380 1395
20 100 1445 1445 1435 1465
21 105 1515 1505 1510 1520
22 110 1545 1560 1550 1560
23 115 1590 1580 1595 1595
24 120 1610 1635 1635 1635
25 125 1655 1665 1655 1665
26 130 1675 1680 1680 1680

Memetic-GRASP Algorithm for the OP 115

visit a town where a number of places of interest must be selected that are
scattered in the whole town or a museum where all the paintings or sculptures
are placed in rooms the one next to the other. Thus, we would like to present
an efficient and fast algorithm that it will perform equally well in instances that
describe both cases. The results of the proposed algorithm both in quality of the
solutions and in computational time needed to converge to its best solution give
us the possibility to proceed to the next step which is to include this algorithm
to the tourist guide planner.

5 Conclusions and Future Research

In this paper, an algorithm for the solution of the Orienteering Problem is pre-
sented. The algorithm is the first step of a complete decision support system that
will help a tourist to see the most important, based on his preferences, attrac-
tions of a city or a museum that he would like to visit during his vacations. The
algorithm, denoted as Memetic-GRASP algorithm, is a hybridization of three
well known algorithms, the Greedy Randomized Adaptive Search Procedure, an
Evolutionary Algorithm and Local Search algorithms. The algorithm was tested
in classic sets of benchmark instances for the Orienteering Problem and in most
cases it found the best known solutions. The future steps of our research will
be, initially to change the formulation of the problem and to add a stochastic
variable in each node (point of interest) of the tourist where this variant will
correspond to the waiting time in the specific point of interest and it will be
activated only if this point of interest will be selected from the tourist, to apply
this algorithm in the classic Team Orienteering Problem and in the stochastic
Team Orienteering Problem and, finally, to develop a decision support system
(tourist guide planner) in which the user will add, initially, his preferences and,
then, the algorithm will solve either an Orienteering Problem if he would like to
find one path or a Team Orienteering Problem if he would like to find multiple
paths.

References

1. Chao, I.: Algorithms and solutions to multi-level vehicle routing problems. Ph.D.
Dissertation, Applied Mathematics Program, University of Maryland, College
Park, USA (1993)

2. Chao, I.M., Golden, B.L., Wasil, E.: A fast and effective heuristic for the Orien-
teering Problem. European Journal of Operational Research 88, 475–489 (1996)

3. Chao, I.M., Golden, B.L., Wasil, E.: The team orienteering problem. European
Journal of Operational Research 88, 464–474 (1996)

4. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedure. Jour-
nal of Global Optimization 6, 109–133 (1995)

5. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logis-
tics 34, 307–318 (1987)

6. Keller, C.P.: Algorithms to solve the orienteering problem: A comparison. European
Journal of Operational Research 41, 224–231 (1989)

116 Y. Marinakis et al.

7. Montemanni, R., Gambardella, L.: Ant colony system for team orienteering prob-
lems with time windows. Foundations of Computing and Decision Sciences 34(4),
287–306 (2009)

8. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover,
F., Kochenberger, G.A. (eds.) Handbooks of Metaheuristics, pp. 105–144. Kluwer
Academic Publishers, Dordrecht (2003)

9. Righini, G., Salani, M.: Decremental state space relaxation strategies and initial-
ization heuristics for solving the orienteering problem with time windows with
dynamic programming. Computers and Operations Research 4, 1191–1203 (2009)

10. Sevkli, Z., Sevilgen, F.E.: Discrete particle swarm optimization for the orienteering
problem. In: 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona,
Spain (2010), doi:10.1109/CEC.2010.5586532

11. Souffriau, W., Vansteenwegen, P., Vertommen, J., Vanden Berghe, G., Van Oud-
heusden, D.: A personalized tourist trip design algorithm for mobile tourist guides.
Applied Artificial Intelligence 22(10), 964–985 (2008)

12. Tang, H., Miller-Hooks, E.: A TABU search heuristic for the team orienteering
problem. Computer and Industrial Engineering 32, 1379–1407 (2005)

13. Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of Operational
Research Society 35, 797–809 (1984)

14. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Meta-
heuristics for tourist trip planning. In: Geiger, M., Habenicht, W., Sevaux, M.,
Sorensen, K. (eds.) Metaheuristics in the Service Industry. Lecture Notes in Eco-
nomics and Mathematical Systems, vol. 624, pp. 15–31 (2009)

15. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: A
guided local search metaheuristic for the team orienteering problem. European
Journal of Operational Research 196, 118–127 (2009)

16. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
A survey. European Journal of Operational Research 209, 1–10 (2011)

17. Yu, V.F., Lin, S.W., Chou, S.Y.: The museum visitor routing problem. Applied
Mathematics and Computation 216, 719–729 (2010)

	A Memetic-GRASP Algorithm for the Solution of the Orienteering Problem
	1 Introduction
	2 Orienteering Problem
	3 Memetic-Greedy Randomized Adaptive Search Procedure (MemGRASP) for the Orienteering Problem
	4 Computational Results
	5 Conclusions and Future Research
	References

