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Abstract. Spectral clustering can provide surprising performances. As all kernel
methods, is uses a similarity matrix, whose size grows with n2, and it requires
to solve a possibly large eigenproblem. In this paper we focus on a method for
spectral embedding of stream data, modeled as an unbounded quantity of input
observation. A second purpose of this work is to analyze the proposed method and
compare it with traditional neural network implementations: current knowledge
about computations in neurons and the brain does not contrast with the comput-
ing primitives required for a local implementation of the proposed technique. A
hypothesis stemming from this work could be that concept formation and dis-
crimination in neurons and the brain could be explained by a spectral embedding
framework.

Keywords: Spectral clustering, Online learning, Concept formation, Unsuper-
vised learning, Neural networks.

1 Introduction

Spectral clustering is a family of unsupervised machine learning techniques capable of
providing surprising performances, such as the detection of clusters of more or less ar-
bitrary shape [26]. From the cognitive modeling standpoint, two weaknesses of spectral
clustering are that solutions in non-clusterable data sets tend to be less meaningful than
with other, more traditional techniques such as k means; and that, especially with data
embedded in R

d where the heat kernel

K(x,y) = e−‖x−y‖/σ 2
(1)

is commonly used, in the presence of clusters of different densities the choice of the
parameter σ is critical and it may not be possible to find a unique optimal value [28,15].
Generalization, or “out-of-sample extension”, is not directly provided by these methods,
but several techniques can be used to this purpose [4,10,8]

The present work, however, is concerned with one specific computational limitation
of the method. Spectral clustering, as all kernel methods [9], is based on the use of a
Gram (or similarity) matrix, whose size grows with n2 (where n is the data set cardi-
nality), and therefore computations usually scale as n3. The methods require solving an
eigenproblem, with related computational complexity.
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In this paper we focus on the problem of providing a spectral embedding solution to
the problem of clustering stream data, which can be modeled as an unbounded quantity
of input observation (n → ∞). This is motivated by the growth of available raw stream
data. For instance, some applications currently receiving a lot of attention are wearable
sensors for health monitoring, data from mobile devices in crowd and traffic manage-
ment in “smart city” projects, and sensors for ambient-assisted living. Clearly, solving
this problem requires some approximations to the method, which will be introduced in
Section 4. We provide a technique that, while not directly tested here on stream data, is
nevertheless optimized by online training, making it suitable in this framework.

A second purpose of this work is to analyze the proposed method and compare it with
traditional neural network implementations. We will see that current knowledge about
computations in neurons and about the structure of several brain areas, for instance
those related to early vision, does not contrast with the computing primitives required
for a local implementation of the proposed technique.

A hypothesis stemming from this work could be that, contrary to what is suggested
by many “canonical” models of computation in the brain based on simple maximum
similarity matching (e.g., the “prototype effect” [12] in perception and recognition),
concept formation and discrimination could be explained by a more flexible and pow-
erful spectral embedding framework.

2 Spectral Clustering

Spectral clustering is a clustering criterion that can be justified as arising from spectral
graph partitioning [6] or from several other principles, such as random walks, diffusion
phenomena and the heat equation, or Laplacian-of-Gaussian filters for edge detection.
In the case of data embedded in R

d , it uses a similarity matrix W to construct a neigh-
borhood graph, and then it analyzes the spectral properties of this graph by studying the
eigenvalues and eigenvectors of the graph Laplacian L =D−W or one of its normalized
versions, Lrw = I−D−1W or Lsym = I−D−1/2WD−1/2, where D is the diagonal degree
matrix whose values are the row (or column) sums of W .

The eigenvectors and eigenvalues of graph Laplacians provide information about the
number of connected components of the graph, although in different forms depend-
ing on the normalization. In particular, L and Lrw have piece-wise constant eigenvec-
tors, all corresponding to eigenvalue 0, and whose multiplicity equals the number of
connected components of the graph. These eigenvectors are indicator vectors of the
connected components, being 0/1 valued. If clusters are defined in a more general and
realistic way, i.e., as sub-graphs which are not connected components, but have stronger
within-group connectivity than between-group connectivity, then the eigenvectors are
still
approximate indicator vectors.

The algorithm by Ng, Jordan and Weiss [16] is slightly different in that it uses a
complementary but equivalent definition of Lsym, which is L′

sym = I −Lsym and has the
same eigenvectors; moreover if λi is an eigenvalue for Lsym then 1− λi is an eigen-
value for L′

sym, so that this approach studies the largest-valued (ideally 1), as opposed
to smallest-valued (ideally 0), eigenvalues of the Laplacian spectrum.
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After computing the eigendecomposition of the Laplacian, the top eigenvectors are
arranged as the columns of a matrix; then a spectral embedding is performed, where the
l-th data point is represented by the l-th row of the matrix. Finally these representations,
after having been row-normalized, are clustered with a simple method (often k means).

A very good introduction to the different flavors of spectral clustering is provided in
[26]. In ref. [9] an overall survey of the properties of spectral, as well as kernel-based
clustering is provided.

3 Online and Incremental Versions of Spectral Clustering

Due to the mentioned computational limitations, spectral clustering has been the sub-
ject of several modifications. These fall into two typical broad categories. The first one
is that of exact algorithms which exploit the sparsity of graph data, i.e., the fact that
the number of edges is less than n(n− 1)/2. The second category is approximated al-
gorithms, where the approximation may apply to the data (not all data are kept), to the
similarity matrix, or to other aspects. Many of these modifications are iterative and can
be used for online training, although not all are suitable for the clustering of stream
data.

An instance of the first category is the approach by H. Ning [17] which directly up-
dates the eigenvectors and eigenvalues by decomposing the graph and identifying only
the individual elements that need updating. It applies only to cases of graph with lim-
ited connectivity; the approach is suitable for instance for studying the Internet graph,
although it relies on some hypotheses on the extent of modifications required at each
updating step, which should be limited.

The second category is represented by the “Nyström method”, i.e., the use of the
Nyström formula to obtain a reduced-rank approximation of a Gram (similarity) matrix,
which has been proposed for use in spectral clustering in [10]. The “fast approximate”
method from [27] approximates the data rather than the eigensystem by using a pre-
clustering step, to which spectral clustering is then applied.

4 An Approximated, Online Spectral Clustering Method

Rather than approximating the data or the eigensystem, in this work we propose to ap-
proximate the matrix W and therefore the normalized Laplacian. The technique includes
two steps: approximation and eigendecomposition.

For the first step, approximation, we assume that the input data x are satisfactorily
described as realizations of a stationary, discrete-time, stochastic vector process

x = c j +ν, j ∈ {1 . . .m} , (2)

where j is a random integer between 1 and m and ν is a random (noise) term for which
we assume a reasonable probability distribution, i.e., unimodal, symmetric, and zero-
centered. Therefore we approximate the data with a set {c1, . . . ,cc} of reference or land-
mark [7] points which are optimized to minimize a mean squared distortion criterion

J =

∫
(x− c(x))2 p(x)dx , (3)
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where c(x) is the nearest landmark to data point x. This is a vector quantization problem.
We require that its solution approximately reflect the data distribution p(x), but it does
not necessarily have to pinpoint any structure (clusters) within it. A vector quantization
problem is usually solved by stochastic approximation methods.

The landmark points are then used for approximating the asymmetric normalized
Laplacian

Lrw = D−1W (4)

by replacing the computation of the similarity K(x,x′) of any given data point to the
remaining points x′, a set of possibly infinite cardinality in our hypotheses, with the
similarity of the same point x to each landmark c j, a set of finite cardinality m. The
chosen similarity function K(·, ·) can be for instance the heat kernel (1). The task is
therefore that of identifying the similarity matrix Wjk = K(c j,ck) from a possibly un-
bounded sequence of observed samples x generated according to model (2). Note that,
according to the asymmetric normalization chosen, if the current sample is x = c j +ν
we have

Ljk =
Wjk

∑h Wjh
≈ K(x,ck)

∑h K(x,ch)
, (5)

which depends only on x, not on other samples as it would in the case of the symmetrical
normalization D−1/2WD−1/2.

In the second step the structure of the data distribution is analyzed by means of the
eigendecomposition of the normalized Laplacian. Since in this setting the Laplacian is
noisy (random) and given by a sequence of row vectors, each of the form

[
K(x,c1)

∑h K(x,ch)
, . . . ,

K(x,cm)

∑h K(x,ch)

]
,

then we may use Oja’s subspace rule [19,18] which gives the eigendecomposition of
a matrix ST S, known through a sequence of noisy samples of S; the eigenvectors of
ST S are the same as the right eigenvectors of S (while the eigenvalues are squared w.r.t.
those of S). Note that, since this algorithm requires centered data, the mean input vector
is also learned as a set of bias terms, and then subtracted.

To complete the spectral clustering process, the embedded data should be clustered,
usually by k means. However, due to the properties of the spectral embedding, this last
step is usually almost trivial. In this work we will mainly focus on embedding.

To sum up, the following is an outline of the proposed online algorithm:

1. Input one pattern x
2. Compute similarities from landmarks: K(x,c j)

3. Compute the corresponding row of the normalized Laplacian: λ j =
K(x,c j)

∑h K(x,ch)

4. Update landmarks
5. Compute one subspace step using Laplacian row as input
6. Update subspace projection
7. Go to step 1
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Fig. 1. Graphical representation of the method. Small circles are inputs; large circles compute
similarities, each unit storing one prototype c j; triangles compute eigendecomposition of the
approximated Laplacian, each unit computing the projection on one dimension of the embedding
space. For clarity not all connections between inputs and similarity units are shown.

Fig. 2. Iris data: The spectral embedding obtained. Crosses is Setosa, circles is Virginica, and
squares is Versicolor; ”out1”, ”out2” and ”out3” indicate three output components.
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5 Experimental Results

Some experiments have been performed to check the consistency of the proposed method
with standard approaches, rather than proving its quality in absolute terms. The data
sets used are Anderson’s Iris data [2], a data set composed of two concentric circles
(“circles”, see left of Fig. 3), and a data set of random samples from the letters W I R N
(“WIRN”, see top of Fig. 4).

Anderson’s Iris data needs little presentation. It is a three-class dataset with 4 inputs
(petal width, petal length, sepal width, sepal length, all expressed in centimeters) and
50 instances per class, for a total of 150 patterns. The data set was downloaded from
the UCI Machine Learning repository [3].

The circles and WIRN data were generated by randomly sampling points from 2-
dimensional geometrical structures within the (dimensionless) square [0,1]× [0,1], as
shown in the respective figures, so they are both 2-input data sets. The circles data has
two clusters and 200 instances per cluster (total cardinality: 400), whereas the WIRN
data has four clusters and instances distributed as follows: 499 in cluster ”W”, 226 in
”I”, 469 in ”R” and 376 in ”N” (total cardinality: 1570). The different cardinalities are
due to sampling different shapes and sizes with uniform random density.

The latter two experiments can be directly compared with the results presented in
[16] on similar data. Note, however, that both in traditional approaches and in the online
version proposed here the results are strongly dependent on the choice of σ , therefore
comparisons, even those contained in [16], are not necessarily fair.

The method was implemented in C++. Vector quantization was performed with a
centroid optimization heuristic similar to online k means, with some degree of inter-
action between the best-matching vector and the remaining ones, to reduce the risk of
false minima; the interaction degree was annealed during training with an exponential

Fig. 3. The ”Circles” data set. Left, data; ”x1” and ”x2” indicate two input components. Right:
Spectral embedding (learned representation), log-log scale; ”out1” and ”out2” indicate two output
components.
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rule. Eigendecomposition and mapping was performed with Oja’s generalized Hebb
rules plus an orthogonalization step (a method roughly equivalent to Sanger’s GHA
rule [24]). Both steps are purely online, with no memory required in addition to the
already described quantities: landmarks, eigenvectors, bias terms.

The figures show the data and the results of the spectral embeddings obtained. These
are graphs with axes representing the two or three components of the embeddings them-
selves (actually the plotted values are the outputs of the network corresponding to each
input pattern presented). From the figures it is clear that the subsequent, actual cluster-
ing is trivial with circles and WIRN, while for Iris, which only contains two separable
clusters, some misattributed data remain, as it is to be expected.

Fig. 4. The ”WIRN” data set. Top, data labeled after the clustering result; ”x1” and ”x2” indicate
two input components. Bottom, spectral embedding (learned representation); ”out1”, ”out2” and
”out3” indicate three output components.
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For the WIRN data also the result of the final clustering step, using k means on the
normalized output patterns, is presented.

In general, the embeddings have a dimensionality that equals the number of clusters
sought, so for Iris all three components are shown. For WIRN we show three of the four
components.

6 A Neural Implementation

An intriguing property of the method presented is that it is completely local and, as
already noted, it requires constant memory w.r.t. data cardinality, therefore it is a good
candidate for a distributed implementation. But we will go as far as showing that the re-
quired computational primitives are indeed not incompatible with commonly accepted
input-output response models found in the nervous system, for instance in early vi-
sion stages. This suggests that the operating mechanism of some areas in the nervous
system could be actually implementing a form of spectral embedding for learning
representations.

Regarding the landmark set
{

c j
}

, a basic competitive update rule was used, as de-
scribed in the experimental section.

As the similarity function K(·, ·), up to now we have referred to the Gaussian simi-
larity or heat kernel (1). However, we note that a similar function can be obtained with a
standard linear threshold formal unit, modified to include a sum-of-squared-inputs term
as follows:

r(x) = wqx ·x+w ·x+w0 a(r) =
1

1+ e−r , (6)

where x ·x = ∑d
i=1 x2

i = ‖x‖2, r is the net stimulus and a the activation value, obtaining
what has been termed a circular perceptron [22] due to the hyper-spherical shape of its
discriminant surface. With suitable constraints on the weights wq, w = [w1, . . . ,wd ], and
wq this model can be interpreted as implementing the formal neural function

r(x) =
‖x− c‖2+θ

σ2 a(r) =
1

1+ e−r (7)

by means of the following conversions:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wq =
1

σ 2

w =− c
σ 2

w0 =
‖c‖2−θ

σ 2

⇔

⎧⎪⎪⎨
⎪⎪⎩

σ = 1√
wq

c =− w
wq

θ = ‖w‖2−w0
wq

A network including these “circular neurons” has been shown [23] to be equivalent
in several respects to a vector quantization network. The presence of a quadratic term
introduces a (biologically plausible [11]) dependence of the output response on the
overall input intensity, not only on the net input. Figure 5 shows the excellent degree of
coincidence between the circular activation function and the Gaussian one, attainable
with suitable parameter values.
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Fig. 5. Comparison of circular unit (dotted) and Gaussian (continuous) activations as functions of
their net stimulus.

Competitive learning rules and orthogonalization can also be explained by means of
Heeger and Carandini’s normalization model [5], which explains experimental data that
indicate the presence of a net inhibitory effect of neurons within a group, even in the
absence of inhibitory synapses. This effect in turn can be explained in the framework
of retrograde signaling [1], neural backpropagation [25], and neuromodulation. These
considerations support and reinforce the common idea that both competitive updating
rules and the Hebbian learning rule are biologically plausible and indeed may be a
model of some mechanisms of synaptic plasticity in the central nervous system.

7 Concept Formation

During the experiments it has been observed that, after an initial phase of “ramping
up”, adaptation proceeds quite smoothly. As soon as some structure appears in the set
of landmarks, the second layer can start learning meaningful eigencomponents. These
usually do not change abruptly; it appears that the evolution stays smooth as long as
there is no change in attraction basins of landmarks in the first layer. This makes the
selection of prototypes in the first layer not critical, as also observed in [7] with ex-
periments on the landmark MDS, a method that shares some elements with the present
one.

By performing several experiments it has additionally been observed that, for a suit-
able selection of σ , or equivalent parameters in case of different formulations of the
prototype units, for well separated clusters the embedding tends to be binary, i.e., most
coordinates of the embedded point are zero and only one is significantly different from
zero. This tendency to form sparse representation is a known property of the Lapla-
cian eigensystem. Moreover, except for possible arbitrary axis permutations, the locus
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of embedding points tends to stay about the same regardless of the actual location of
landmarks, which depends on the random initialization.

The proposed model therefore shows some very interesting properties:

– Similarly to its standard counterparts (spectral clustering methods), it automatically
points out interesting structure from fairly complex data distributions, with higher
flexibility than prototype-based models.

– It intrinsically produces sparse internal representations starting from distributed
intermediate representations, that tend to move from analog to binary.

– Different exemplars produce similar internal models. This may provide them with
an ability to develop a “theory of mind”, i.e., a shared representation for concepts
and consequently the possibility to model other individual’s internal state.

It can be noted that all these properties are obtained by only using computational
primitives that are commonly accepted as biologically plausible and have been in use
for decades.

It is interesting to note how the observed behaviour is also compatible with exper-
iments and theories of concept formation as observed in the human brain, as well as
in primates and other mammals. For instance, in the case of vision, the representation
shift from distributed to localized is a well-known organizational aspect: the initial rep-
resentation is obviously completely distributed on the individual receptors of the retina,
then it gets organized into receptive fields [13]; in specific areas of the visual cortex it is
gradually made more selective, where neurons traditionally termed ”complex” and ”hy-
percomplex” cells [14] implement a hierarchy of sparse distributed representations; fi-
nally, there is substantial experimental evidence [21] of the existence of ”concept cells”
in the medial temporal lobe, that implement a completely localist representation indi-
vidually elicited by abstract cognitive tasks such as recognizing the face, or even just
reading the name, of a known person (e.g., ”Jennifer Aniston neurons” [20]).

8 Conclusions and Future Work

The work presented in this paper is just an initial proposal, and several issues should be
further investigated. Among these, the technical problems of selecting a proper value
for σ and a proper scheduling (or online modulation) for the learning steps. This latter
point can be an opportunity to develop a supervised version of the network, as well as to
incorporate some form of novelty detection to modulate the stability/plasticity dilemma.

A combined landmark-eigensystem learning method can also be investigated, to pos-
sibly reduce the number of model parameters.

Finally, the model is especially well suited for being employed in modular and multi-
layer, possibly deep structures, since it is unsupervised and for training it only uses
information local to each layer.
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