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Abstract. In this work, a novel continuous-time spiking neural network
paradigm is presented. Indeed, because of a neuron can fire at any given
time, this kind of approach is necessary. For the purpose of developing a
simulation tool having such a property, an ad-hoc event-driven method is
implemented. A simplified neuron model is introduced with characteris-
tics similar to the classic Leaky Integrate-and-Fire model, but including
the spike latency effect. The latency takes into account that the firing
of a given neuron is not instantaneous, but occurs after a continuous-
time delay. Both excitatory and inhibitory neurons are considered, and
simple synaptic plasticity rules are modeled. Nevetheless the chance to
customize the network topology, an example with Cellular Neural Net-
work (CNN)-like connections is presented, and some interesting global
effects emerging from the simulations are reported.
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1 Introduction

In recent decades there has been a significant increase in the development, im-
plementation and general purpose use of spiking neural networks [1,2,3]. The
attractiveness of this kind of neural networks lies in the bio-inspired neuron
models and the related peculiar characteristics, such as: subthreshold decay of
the membrane potential, spatio-temporal integration of the incoming synaptic
inputs, excitatory and inhibitory effects, threshold phenomena, spike latency,
synaptic plasticity, etc. Several neuron models have been proposed in the litera-
ture, from the simplest Integrate-and-Fire [4] to the most bio-realistic Hodgkin-
Huxley models [5]. However, these are typically described by means of ODEs
(Ordinary Differential Equations). Usually, the more ODEs are complex, the
more the neuronal membrane potential is faithfully followed. A comparative
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review of the main neuron models is listed in [6]. With the aim of making possi-
ble simulations of very large networks on a PC (Personal Computer), often the
choice fall on the simplest model. Indeed, the latter allows the investigation of
global effects arising only in the case of large networks of spiking neurons, such
as: Polychronization [7,8] or the formation of spontaneous neuronal groups that
can be affected by the Neuronal Group Selection [9,10]. Moreover, in some cases
I&F model can be analytically studied (e.g., [11,12]).

There are two main methods to simulate such networks: clock-driven (or “syn-
chronous”) and event-driven (or “asynchronous”) strategies. In the first one, all
neurons are updated simultaneously at every tick of a clock, whereas in the sec-
ond one, all neurons are updated only when they receive or emit a spike. The
latter kind of strategies is developed for exact simulations, thus allowing a high
precision computation. The obvious drawback of clock-driven methods is that
spike timings are aligned to a grid (ticks of the clock), thus the simulation is
approximated even when the differential equations are computed exactly. Other
specific errors come from the fact that threshold conditions are checked only
at the ticks of the clock, implying that some spikes might be missed. Whereas,
event-driven methods implicitly assume that we can calculate the state of a
neuron at any given time, i.e., we have an explicit solution of the differential
equations [13]. This condition cannot be always satisfied; for instance, the
Hodgkin-Huxley equations have no explicit solution.

However, in the present work we apply an event-driven method in order to im-
plement a novel continuous-time spiking neural network paradigm. The neuron
model is not described using ODEs, but it explicitly makes an algebraic sum of
any incoming inputs to a target neuron. Indeed, both excitatory and inhibitory
effects are considered. Each input is weighted by a synaptic strength, that may
be affected by the synaptic plasticity (see [14] for an overview about the biolog-
ical mechanisms), thus we have implemented simple rules (described in synaptic
plasticity rules section) to take into account this phenomenon. Note that, in this
model when a threshold is crossed, the neuron will fire with a continuous-time
delay called latency [15]. Of course, the threshold crossing is often prevented by
the subthreshold decay. Therefore, a spatio-temporal integration is implemented.
Finally, after the spike generation, the neuron will be reset to its resting poten-
tial, becoming not excitable for a time equal to the absolute refractory period.
Also, we have considered a Cellular Neural Network (CNN)-like topology [16],
in order to arrange the connections among neurons; then, each neuron fires to a
number of target neurons belonging to a fixed neighborhood. In simulation re-
sults section, we will show simulation results about global effects arising thanks
to this kind of model and neuronal paradigm.
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2 Neuron Model

We propose here a simplified neuron model in which the variables are updated
step-by-step (i.e., in correspondence to incoming events). Note that, only nor-
malized real quantities are considered. In addition, we call “firing neuron” an
emitting neuron, and “burning neuron” a receiving one (see Fig. 1). Furthermore,
we define “passive mode” the operating mode of the neuron when its inner state
is less than a threshold, “active mode” otherwise.

Fig. 1. A Firing Neuron (FN) emitting a pulse to a Burning Neuron (BN). The dashed
lines indicate other connections linking the FN to other BNs or incoming connections
from other FNs to the depicted BN. Of course, each neuron can be both FN and BN,
depending on the direction of the activity.

The state of each burning neuron is evaluated through the following equations:

S = Sp + PrPw − Tl , for S < Sth (1)

S = Sp + PrPw + Tr , for S ≥ Sth (2)

In (1)–(2), S denotes the inner state of the neuron; when S = 0 the neuron is
in its resting state. Sp is the previous state, whereas, Sth represents the spiking
threshold. The latter is conventionally chosen equal to 1+d, where d indicates a
threshold constant. The quantity Pr, “presynaptic weight”, represents the signal
emitted by a firing neuron to a number of burning neurons; this quantity is
conventionally equal to the inverse of the fan-out of the firing neuron, but other
choices can be taken into account. Of course, this is a simplification by which we
only consider inputs with the same amplitude. For the purpose of considering
the inhibitory effect, Pr is chosen negative for inhibitory neurons. The quantity
Pw, “postsynaptic weight”, represents the connection strength between a couple
of neurons. If Pw is equal to 0, the related connection is not present.

Finally, with Tl (leakage term) we take into account the subthreshold decay
for the passive mode (S < Sth). In particular, we have chosen a linear decay
behavior (this kind of decay is used in [17]), then Tl = LdΔt; in which Ld is
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the linear parameter, whereas, Δt represents the temporal distance between a
couple of consecutive input spikes.

In active mode (S ≥ Sth), the neuron is ready to fire: its firing is not instanta-
neous, but occurs after a continuous-time delay called time-to-fire. This quantity
can be affected by inputs, making the neuron sensitive to possible changes in
the network for a time window bounded by the time-to-fire itself. The inner
state and the time-to-fire are related through the following bijective relation-
ship, called firing equation.

tf =
1

(S − 1)
. (3)

Equation (3) represent an approximation of the curve that we have obtained
through the simulation of a membrane patch stimulated by brief current pulses
(0.01 ms of duration), solving the Hodgkin-Huxley equations [5] making use
of NEURON simulator [18]. Similar behaviors have been investigated by other
authors; for example, in Wang et al. [19], using DC inputs (see Fig. 1 in [19]).

In Fig. 2, a qualitatively comparison between the simulated behavior of the
latency and the firing equation is shown.

Fig. 2. The red line indicates the latency as a function of the membrane potential
Vm (red marked scale), or else of the current amplitude Iext, equivalently, obtained
by means of simulations in NEURON environment. The dashed blue line indicates the
rectangular hyperbola (i.e., the firing equation properly shifted for the comparison). In
addition, the normalized scale S is reported (blue marked scale). Note that, below the
Sth value no spike can be generated (fading blue area).

Note that, using (3) under proper considerations, it is possible to obtain Tr

(rise term) in active mode, as follows:

Tr =
(Sp − 1)2Δt

1− (Sp − 1)Δt
. (4)

in which Sp represents the previous state, whereasΔt = tc−tp is the temporal
distance between two consecutive incoming spikes; where tc and tp represent the
times related to current and previous states, respectively.
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Note that, the denominator of (4) must be positive, thus Δt < 1/(Sp − 1)
(i.e., Δt < tfp, in which tfp is the previous time-to-fire value).

Equation (4) allows us to determinate the inner state of a burning neuron at
the moment when it receives further inputs during the tf time window.

Finally, for S = Sth = 1 + d, the time-to-fire is equal to tf,max = 1/d,
representing the upper bound of the time-to-fire. The latter consideration is
crucial in order to have a finite maximum latency [15].

In order to make more clear the behavior of the model, we have depicted the
quantities introduced by means of (1)–(2)–(3) in Fig. 3. The effect of (4) is shown
in Figs. 4a-b.

Fig. 3. In this figure, an example of the qualitatively inner state behavior of a neuron
in passive and active modes is illustrated. An incoming excitatory input at t1 causes an
instantaneous increase of the state from Sp0 to Sp0 +PrPw1. At t2 a second excitatory
input is applied, then the state increase his value from Sp2 to Sp2 + PrPw2 (in this
example, we have chosen Pw2 �= Pw1). Note that, Sp2 < (Sp0 + PrPw1); indeed, under
the spiking threshold (Sth) the neuron is affected by a linear decay. Moreover, due to
the latency effect, the firing is not instantaneous but occurs after tf . Finally, after the
firing, the neuron is reset to its resting potential (i.e., S = 0) for a time equal to tarp
(i.e., absolute refractory period).

Note that, excitatory (inhibitory) inputs increase (decrease) the inner state
of a burning neuron. Therefore, when this neuron is in active mode, excitatory
(inhibitory) inputs decrease (increase) the related time-to-fire (Fig. 4a and 4b,
respectively).

Moreover, if the inhibitory effect is so strong to pull the burning neuron state
under the spiking threshold, the time-to-fire will be canceled and the state will
come back to the passive mode.
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(a) (b)

Fig. 4. (a) A hypothetical third excitatory input at t3 (dashed pulse) would cause a
reduction of the spike latency; then, the neuron would fire at t = t3+ tf2 (dashed line).
(b) A hypothetical inhibitory input at t3 (dashed pulse) would cause an increase of the
spike latency t = t3 + tf2 (dashed line). In general, the amplitude of the presynaptic
inhibitory input (Pr,inh) is different from the excitatory ones. In this case, a smaller
value of Pr,inh has been chosen. However, since in (a) and (b) we have assumed that
each presynaptic input came from various synapses (implying different Pw values), then
the PrPw product is different. Also, Tr effect is shown.

3 Network Topology and Plasticity Rules

3.1 CNN-like Topology

In order to show behaviors emerging from simulations conducted through the
paradigm here proposed, in this section we present a model characterized by a
CNN-like architecture topology. Therefore, a firing neuron emits its spikes to a
number of burning neurons belonging to a neighborhood, “v”. It is possible to
change the size of the neighborhood by setting the parameter “v”.

In Fig. 5 the grids for both excitatory (Fig. 5a) and inhibitory (Fig. 5b)
neurons are illustrated.

Note that, in order to maintain the balance between excitation and inhibi-
tion, the number of inhibitory neurons is less than the excitatory ones, about
15%-25% of the global neuron population [20]. Typically, this represents a con-
dition necessary but not sufficient to guarantee the network stability, as pointed
out recently [21]. Synaptic plasticity provides a further contribution in order to
maintain stable the network activity.

In the model, we have considered the following synapse classes: excitatory-to-
excitatory (see), excitatory-to-inhibitory (sei), and inhibitory-to-excitatory (sie).
Note that, self-connections are not contemplated.

Since for simplicity we assumed that also inhibitory neurons are integrators,
inhibitory-to-inhibitory synapses are not implemented. In fact, if this class were
present, this would entail a reduction of the number of inhibitory neurons dur-
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(a) (b)

Fig. 5. (a) Synapses grid for excitatory firing neurons (en); xn indicates an excitatory
or inhibitory (in) firing neuron. (b) Synapses grid for inhibitory neurons.

ing the simulation, pushing the network activity toward instability due to an
uncontrolled excitation.

In general, the spiking activity strictly depends on the synaptic circuitry [22],
but in this work we have considered a regular topological structure rather than
a biological one, which is too complex to reproduce. However, this choice does
not affect the basic paradigm.

Finally, in further works we will simulate different topologies such as modular
(e.g., [23]), hierarchical (e.g., [24]), small-world (e.g., [25,26]), etc.

3.2 Synaptic Plasticity Rules

For the purpose of taking into account the synaptic plasticity phenomenon, we
propose the following simple rules. They represent a functional simplification
of the Postsynaptic Rule: in its most general form, this rule states that it is
the positional pattern and timing of heterosynaptic inputs with respect to the
homosynaptic inputs to a given synapse that governs the change in postsynaptic
efficacy induced by a modifying substance at that synapse [27].

– Exponential decay. All postsynaptic weights grow down to the minimum
value in an exponential way with a proper time constant (τ).

Pw = Pw,min + (Pw − Pw,min)e
−Δt

τ . (5)

– Homosynaptic enhancement. When a spiking event occurs from a certain
synapse, the postsynaptic weight grows up, in function of previous spikes on
the same neuron and from the same synapse, occurred in a specified time
window (homosynaptic window).
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– Heterosynaptic enhancement. When a spiking event occurs from a certain
synapse, the postsynaptic weight grows up, in function of previous spikes on
the same neuron, in a specified time window (heterosynaptic window) from
other synapses.

The growing rates related to homo- and heterosynaptic rules are properly applied
using the following equation:

ΔPw = η(Pw,max − Pw) . (6)

with 0 < η ≤ 1, representing the learning rate. Pw,max represents a cut-
off value, but thanks to the exponential decay the saturation of the weights is
avoided.

As show in subsection 4.2, these simple rules, together with the CNN-like topol-
ogy, seem to be suitable to realize a confinement-competition-selection model [9].

In future works, we would also implement alternative strategies such as STDP
(e.g., [28]) or Synaptic Scaling (e.g., [29]).

4 Event-Driven Simulations

4.1 Event-Driven Approach for the Network Simulation

As we have already stressed in the introduction, for the purpose of emulating
a continuous-time behavior an event-driven approach is required [17], [30,31].
Therefore, a simple MATLAB code has been implemented, by means of which
the simulation proceeds searching for the active neuron with the minimum time-
to-fire, in order to determinate the next firing event to be scheduled in the spike
timing array list. Then, the evaluation of firing event effects on all the directly
burning neurons is made. A simulation procedure summary is illustrated below.

1. Pseudo-random inner state assignment for all neurons. Then, some neurons
could be active when the simulation is running.

2. If all neuron states are less than the spiking threshold Sth, no active neuron
is present. In this case, there is no activity.

3. The inputs are applied and the inner states S are computed for each burning
neuron.

4. If a subset of neurons become over threshold, the time-to-fire for all active
neurons will be evaluated, i.e. the following cyclic simulation procedure is
applied:
(a) Find the neuron N0 with the minimum time-to-fire, tf0. Apply to the

global simulation time an increase equal to tf0. According to this choice,
update the time-to-fire and the inner states for each active neuron.

(b) Firing of the neuron N0. According to this event, make N0 passive and
update the states of all directly connected burning neurons. Update the
postsynaptic weights according to the synaptic rules. Finally, the quan-
tity tf0 is subtracted to the time-to-fire of all active neurons.

(c) Update the set of the active neurons. If no active neuron is present the
simulation is terminated. Otherwise, repeat the procedure from step (a).
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4.2 Simulation Results

The whole distribution of the synapses is dynamically stored in a N × M ma-
trix, called Pw (i.e., postsynaptic weights). Each entry of this matrix represents
the weight of the particular synapse linking the firing neuron (j -th column of
the matrix) to the burning one (i.e., i-th row of the matrix). Because of some
synapses are not present (i.e., the network is not fully connected), some entries
are equal to zero.

Defining nen as the number of excitatory neurons, nin as the number of
inhibitory ones, nef as the number of external sources, and nt as the total
number of neurons (including the external sources) the Pw matrix can be divided
into submatrices:

Pw =

(
Pw11 Pw12 Pw13

Pw21 Pw22 Pw23

)

in which:

1. Pw11(pwi,j) represents the submatrix for the excitatory-to-excitatorysynapses
(see), with i = j = 1, ..., nen; since no self-connection is considered, each
entry of the main diagonal is equal to zero.

2. Pw12(pwi,j) represents the submatrix for the inhibitory-to-excitatory synapses
(sie), with i = 1, ..., nen and j = nen+ 1, ..., nen+ nin.

3. Pw13(pwi,j) represents the submatrix for the connections among external
sources and excitatory neurons (sese), with i = 1, ..., nen and j = nen +
nin+ 1, ..., nt.

4. Pw21(pwi,j) represents the submatrix for the excitatory-to-inhibitory synapses
(sei), with i = nen+ 1, ..., nen+ nin and j = 1, ..., nen.

5. Pw22(pwi,j) represents the submatrix for the inhibitory-to-inhibitory (sii),
with i = nen + 1, ..., nen+ nin and j = nen + 1, ..., nen+ nin, and it is a
zero matrix as this class of connections is not considered here.

6. Pw23(pwi,j) represents the submatrix for the connections among external
sources and inhibitory neurons (sesi), with i = nen + 1, ..., nen + nin and
j = nen+ nin+ 1, ..., nt.

Note that, since the input signal cannot back-propagate, then the submatrices
related to excitatory- and inhibitory-to-external sources, and external source
self-connections are not present. Of course, nen, nin and nef can be chosen
arbitrarily large.

Moreover, we have defined a nt×5 matrix, called S, in which are dynamically
stored all the parameters related to all neurons of the network: the state (i.e.,
S(:, 1)), the time-to-fire (i.e., S(:, 2)), the tlastfire (i.e., S(:, 3), representing the
time from the last spike emitted), the tlastburning (i.e., S(:, 4), representing the
time from the last spike received) and the presynaptic weight Pr (i.e., S(:, 5)),
for each neuron. This list includes the external sources, but they are not affected
by the same rules of the neurons (i.e., Eqs. (1)–(2)–(3)–(4)–(5)–(6)). Indeed,
external sources are thought as access nodes by which we provide spike sequences
to the network.
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In the following figures, we show in a 2D map the spiking activity before and
after stimulation. In this case, we have applied random spike sequences. Each
point of the map represents the state level in gray scale: darker points imply a
high activity. Note that, in order to avoid boundary effects, the 2D neuron map
(obtained by the combination of the two grids shown in Figs. 5a–b) has been
folded as a taurus.

(a) (b)

Fig. 6. (a) Spontaneous spiking activity. (b) Formation of neuronal groups after
stimulation.

For this preliminary study, the network was composed by 18060 excitatory
and 2021 inhibitory neurons; moreover, we have applied 25 external sources in a
pseudo-random fashion when the simulation was already run. The size of the 2D
map was 140× 129 (i.e., the size of the excitatory neuron grid). Finally, we have
chosen a neighborhood v = 4, then each firing neuron could fire to 80 burning
neurons (i.e., [(2v + 1)D − 1], with D = 2).

As regards the neuron model parameters, we have assumed a threshold con-
stant d = 0.04, implying a spiking threshold Sth = 1+d = 1.04, and a maximum
time-to-fire tf,max = 1/d = 25; a linear decay Ld = 0.001. In addition, we have
considered the postsynaptic weights Pw in the range [0.1, 3].

In Fig. 6a a spontaneous activity of the network is depicted, which imply that
some neurons were active when the simulation was run. We have also reported
the spiking activity as a consequence of a stimulation consisting of pseudo-random
spike sequences (Fig. 6b). Notice the emerging of 5 neuronal groups, in which the
activity is higher than the rest of the network.Moreover, when we removed the ex-
ternal input these groups maintained their activity stable, preserving the shapes
depicted in Fig. 6b. We believe that this confinement/selection behavior is due to
both the architecture topology and synaptic plasticity rules implemented.

Of course, by means of proper techniques, further studies on the “memory”
implications are needed (e.g., using statistical tools).
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5 Conclusions

In this paper, we have introduced a simple paradigm in order to realize a
continuous-time spiking neural network simulator. Since the simulations are con-
ducted on a digital PC, we have implemented an ad-hoc event-driven method
based on an array list. In this array, spike times of active neurons are stored
and the algorithm proceeds searching for the minimum spike time in the list.
Thus, a scheduling of the events is performed. Such a method allows us to im-
plement a “continuous-time” behavior and to reduce the computational cost as
well. Note that, event-driven simulations seem to be more suitable for the pur-
pose of emulating the realistic dynamics of biological systems; indeed, as pointed
out in the introduction, clock-driven simulations cause some relevant errors in
the computation, which can mask the real network behavior.

We have taken into account some important neuronal characteristics such as
subthreshold decay, spike latency, synaptic integration, excitatory and inhibitory
effects, and synaptic plasticity. Even though we addressed the network imple-
mentation more from a functional point of view rather than a biological one,
some interesting preliminary results have been obtained. In particular, forma-
tion and maintenance of neuronal groups after stimulation have been observed.

Further works will be focused on the statistical implications about the activity
of these neuronal groups and the chance of storing information, realizing then
analog memories.

References

1. Maass, W.: Networks of spiking neurons: The third generation of neural network
models. Neural Netw. 10(9), 1659–1671 (1997)

2. Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application
of spiking neural networks. Soft Computing - A Fusion of Foundations, Method-
ologies and Applications 11(3), 239–248 (2006)
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T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T.,
Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of
spikingneurons:A reviewof tools and strategies. J.Comput.Neurosci. 23(3), 349–398
(2007)

14. Citri, A., Malenka, R.C.: Synaptic plasticity: multiple forms, functions, and mech-
anisms. Neuropsychopharmacology 33(1), 18–41 (2008)

15. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve mem-
brane. Bull. Math. Biophys. 17(4), 257–278 (1955)

16. Chua, L., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. on Circuits
and Systems 35(10), 1257–1272 (1988)

17. Mattia, M., Del Giudice, P.: Efficient event-driven simulation of large networks of
spiking neurons and dynamical synapses. Neural Comput. 12(10), 2305–2329 (2000)

18. NEURON simulator, http://www.neuron.yale.edu/neuron/
19. Wang, H., Chen, Y., Chen, Y.: First-spike latency in Hodgkin’s three classes of

neurons. J. of Theoretical Biology 328, 19–25 (2013)
20. Okun, M., Lampl, I.: Balance of excitation and inhibition. Scholarpedia 4(8),

7467 (2009), http://www.scholarpedia.org/article/Balance of excitation

and inhibition
21. Pernice, V., Staude, B., Cardanobile, S., Rotter, S.: Recurrent interactions in spik-

ing networks with arbitrary topology. Physical Review E 85, 031916 (2012)
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