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Abstract. In this paper we address the problem of developing a control
strategy to reduce the building energy consumption and reach indoor
comfort levels. For this multiple and conflicting objectives optimisation
we develop an approach based on stochastic feed-forward neural network
models with ARIMA model predictions considered as input variables for
networks. Studying real data from a sensorised office located in Rovereto
(Italy) we develop the approach and achieve results exhibiting the very
good performance of this predictive procedure.
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1 Introduction

Energy consumption and carbon footprint are most fundamental issues that our
economies and societies are currently addressing to assure a sustainable develop-
ment. Buildings in particular, both residential and commercial, are responsible
for more than 40% of the energy consumption, and this level will rapidly in-
crease if drastic strategies will not be adopted. A critical target of recent EU
policies is to transform existing buildings into nearly zero-energy consumption
by 2020. In the renovation of existing buildings, an important role is played by
building automation systems (BAS) that require new and efficient strategies to
work with low energy levels. Control strategies of these systems have to optimise
multiple and conflicting objectives, such as low energy consumption and indoor
comfort levels. To develop efficient control strategies with these objectives, we
have to address the problem of high dimensionality of the system: a very large
set of parameters (dimensions) and a complex interacting network are known
to affect the dynamical behaviour of the system and have to be involved in any
strategy formulation. In current literature, two main approaches are proposed
for modelling BAS energy consumption [1]. The former is based on the study of
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the physical system and it is formulated with differential equation sets which de-
scribe thermodynamic aspects and features of the environment [2,3]. The latter
consists of models (linear and non-linear) which represent the stochastic pro-
cesses underlying by observed time series with the aim of predicting accurate
future dynamics to incorporate in the control strategy [4,5].

Energy observed time series are usually collected by building automation sys-
tems and modelled considering both auto-regression (AR) and moving average
(MA) components [6,7]. For non-stationary time series, ARIMA models are fre-
quently considered [6], and when exogenous variables are introduced also the AR-
MAX class of models is derived [8]. Non-linearity in observed dynamics is com-
monly modelled with artificial neural networks (ANN) as in [9,10]. Interesting are
the studies on comfort managementwith feed-forward neural networks [11] and on
predicting lighting and heating systems with radial basis function neural networks
[11] or recurrent networks [12]. Other valuable modelling strategies are based on
evolutionary neural networks [13] and fuzzy networks, which combine the advan-
tages of both neural networks and fuzzy logic mostly for blur data [14].

In this paper we develop an approach based on stochastic feed-forward neural
networks to provide accurate predictions for three building automation system
response variables, studying sets of real data recorded in a sensorised office. The
system response variables are: energy consumption, indoor thermal comfort and
indoor lighting comfort. To develop an optimal control strategy we first derive a
selected set of explanatory variables using different statistical variable selection
procedures. We then construct ARIMA predictions on these variables to achieve
a data set which includes both observed data and univariate predictions. On
this composite data set we further construct neural network models and derive
accurate predictions for the three system response variables. The research is
developed on data collected in a sensorised office located in Rovereto (Italy). The
paper is organized as follows: in Section 2 we present the predictive approach by
describing the variable selection procedure adopted to reduce the dimensionality
of the problem and the construction of the neural network models to derive
accurate predictions. In Section 3 we present the case study and the particular
modelling strategy that we adopt. In Section 4 we present the results and we
evaluate the accuracy of the achieved predictions and the global performance of
the approach.

2 The Predictive Approach

Given a set of time series with N observations and denoting by x1,t, . . . , xp,t

the informative variables at time t, t = 1, . . . , N , and by yj,t the j-th system
response variable at time t, we develop a general approach to predict system
responses for energy efficient buildings by means of stochastic neural networks
based on ARIMA model predictions. This approach involves several statisti-
cal procedures that are merged together to enhance the predictive performance
of neural network models. In particular, we derive the predicted values ŷj,t+τ ,
τ = 1, . . . ,T, for each response variable according to the procedure represented
in Fig. 1.
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Fig. 1. The general structure of the predictive approach

2.1 Variable Selection Procedure

Addressing the problem of deriving a design for energy efficient buildings, a large
set of variables has to be considered and modelled. Some variables represent
the endogenous characteristics of a particular state of the system and they are
recorded at fixed time intervals. In estimating statistical models to predict the
dynamical behaviour of BAS responses, this large set of state variables can be in
a sparse space where some variables affect more than others the system response.
To select just the most informative variables from the very large and frequently
noisy set initially collected, we adopt variable selection procedures, combining
three different approaches:

- the physical mathematical formulation of each response variable;
- the Spearman correlation index;
- the non-linear variable selection approach based on Random Forests.

Each system response variable is generally described by a physical mathematical
formulation based on a set of endogenous variables representing the state of the
system [2,3]. Developing our predictive procedure, we decide to select a priori
all the state variables which are involved in the physical formulation of the
system response. Then we identify all the variables that are linearly related
with the response by computing the Spearman correlation coefficient ρ [15]. We
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select those variables that show a significant linear correlation with the response
variable achieving |ρ| > 0.5.

To identify the informative variables with a non-linear relationship with the
system response, we develop a selection procedure based on Random Forest ap-
proach. Random Forests have been introduced by [16] and they can be used
to rank the importance of a set of variables in a non linear regression analy-
sis. The principle of Random Forests is to combine many regression trees [17]
built using bootstrap training samples and randomly choosing at each node of
the tree a subset of state variables; successively a prediction performance is com-
puted. Variables that largely influence the prediction error of the regression trees
are considered the most influential for the system response: we select the state
variables whose normalised prediction error is larger than 0.5 [18].

2.2 The Predictive Neural Network Based on ARIMA

The second phase involves the construction of ARIMA models for those vari-
ables selected by the procedure described in Sect. 2.1 and the prediction of each
univariate time series x̂i,t+τ , with i = 1, . . . , p and τ = 1, . . . ,T.

For each of these variables, an ARIMA model is estimated according to the
procedure described in [19], that returns the best model with the lowest AIC
value. Each ARIMA model is then used to predict the univariate time series
for the following τ observations with τ = 1, . . . ,T. In the third phase of the
procedure we build a class of sigmoidal feed-forward neural network models,
one for each system response variable. The sigmoidal neural networks use xi,t

and the ARIMA time series predictions, x̂i,t+τ , as input variables to predict
the system responses ŷj,t+τ , τ = 1, . . . ,T. The network topology involves one
hidden layer with a number of nodes changing in a specific finite interval, a
sigmoidal activation function between the input and the hidden layer and a
linear activation function between the hidden and the output layer [20]. All the
networks are trained by means of back-error propagation algorithm [21].

To identify which neural network topology can be used to predict each sys-
tem response, we adopt a bootstrap procedure with B resamples [22]. At each
bth run, with b = 1, . . . , B, we select a set of nb time series observations of the
input variables (with nb < N) and we predict x̂i,nb+τ observations with the
ARIMA models estimated on the nb observations. We then estimate all the neu-
ral networks, whose number of nodes in the hidden layer changes in the defined
interval, and we evaluate their prediction error for the future unknown T values
of the response. Therefore, at each bth run of the bootstrap procedure we com-
pute a predictive error for each of the chosen topology. We iterate the procedure
for B resamples and we identify the topology which minimises simultaneously
the Bootstrap Mean Absolute Error (BMAE), as presented in Eq. 1, and its
standard deviation.
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Once the topology of the network has been identified with the bootstrap pro-
cedure, we then proceed to estimate its parameters (weights). We generate a
set of different random weights to initialise the network and we train all the
networks on the N −T observed data by means of back-error propagation. Net-
works are tested for their predictive performance on the remaining T values. The
final network is the one which minimises the Mean Absolute Percentage Error
(MAPE) as in Eq. 2.

BMAE =
1

TB

B∑

b=1

T∑

τ=1

|ŷnb+τ,b − ynb+τ,b| (1)

MAPE =
1

T

T∑

τ=1

∣∣∣∣
ŷN−T+τ − yN−T+τ

yN−T+τ

∣∣∣∣ (2)

3 Predicting Building Automation Systems

We construct and test our approach in a real case study addressing a sensorised
office located in Rovereto (Italy). In this office, a set of installed sensors are used
to record the most relevant state variables that affect the energy consumption
and the levels of comfort for the office users. In particular, we consider:

- indoor state variables : internal temperature (x1), humidity (x2), air velocity
(x3), central mean radiant temperature (x4), west luminosity (x5), east lu-
minosity (x6), CO2 concentration (x7), occupancy (x8), window sensor (x9),
door sensor (x10), corridor temperature (x11) and fan coil thermal power
(x12);

- outside state variables : outside temperature (x13), outside illuminance (x14),
outside radiation (x15) and outside humidity (x16).

A set of controllable variables are identified and codified: the power of the
fan coil (fc), the position of the blinder (b) and two dimmable lights (d1 and d2).

As building automation system responses we measure the total electric
power (y1) - which includes thermal and electric consumptions - and two comfort
indices for inhabitants: the Predictive Mean Vote (PMV, y2) and the Daylight
Glare Index (DGI, y3)[23][24]. PMV measures the level of satisfaction of office
users with respect to the thermal environment and it is mostly influenced by
temperature, humidity, air velocity and central mean radiant temperature ob-
served in the room. DGI expresses discomfort glare due to the lighting system
and depends on luminosity inside the room and electromagnetic radiation given
off by the sun.
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4 System Response Predictions

We develop the procedure presented in Sec. 2 to achieve the best sigmoidal feed-
forward neural network models for predicting the three response variables of the
building automation system. Each response variable - Total electric Power (y1),
PMV (y2) and DGI (y3) - is predicted by a different neural network topology.

According to the structure presented in Sec. 2, we identify the set of rele-
vant variables for the prediction of each response variable. For Total Electric
Power (y1) we select the following relevant variables: Internal Temperature, x1;
Humidity, x2; Central mean radiant Temp, x4; CO2, x7; Corridor temperature,
x11; Fan Coil thermal power, x12. For PMV (y2) we select the variables: Internal
Temperature, x1; Humidity, x2; Central mean radiant Temp, x4; Corridor tem-
perature, x11. At last, for the third response variable DGI (y3) we identify the
following relevant variables: Humidity, x2; West luminosity, x5; East luminosity,
x6; Fan Coil thermal power, x12 and Outside Radiation, x15. For each variable,
the specific ARIMA model is estimated and used to achieve predicted values
x̂i,t+τ , τ = 1, . . . , T .

We then proceed in the construction of the general approach by selecting a
sigmoidal feed-forward neural network with one hidden layer, whose number of
nodes ranges from 2 to 20, as described in Sec. 2.2. We select the topology by
means of a bootstrap procedure, that has been run for B = 30, where each
resample uses nB = 5000 time series observations to train the neural network
model and the successive T = 72 (6 hours) time series observations to test and
validate the results of the predictions. After having identified the topology, we
estimate the weights associated to each neural network model, adopting the
complete dataset of N = 29362 except for the last T = 72 observations which
are used as test set. With this general approach, the best model for estimating
the Total Electric Power (y1) involves 12 neurons in the hidden layer and the
predicted values ŷ1(t) can be described as a function of the following variables:

ŷ1(t) = f(d1(t), d2(t), b(t), fc(t), x̂1(t), x̂2(t), x̂4(t), x̂7(t), x̂11(t), x̂12(t),

ŷ2(t), ŷ3(t), y1(t− 1)).

In this expression, d1 and d2 are dimmable lights levels, b is the position of the
blinder, fc is the fan coil level and the others represents the selected input vari-
ables, predicted by ARIMA models. The response variable itself has been used
in the model with a temporal one-lag delay to provide auro-regressive informa-
tion (as suggested in [9]) and the predicted values of y2(t) and y3(t) are also
introduced in the model.

With the same procedure, we identify the best topology for PMV, y2, which
is characterised by 11 neurons in the hidden layer and takes the following form:

ŷ2(t) = f(d1(t), d2(t), b(t), fc(t), x̂1(t), x̂2(t), x̂4(t), x̂11(t), y2(t− 1)),
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Similarly we identify the best topology for DGI, y3. The final model has 13
neurons in the hidden layer and takes the following form:

ŷ3(t) = f(d1(t), d2(t), b(t), fc(t), x̂2(t), x̂5(t), x̂6(t), x̂12(t), x̂15(t), y3(t− 1))

To be confident about the behaviour of the estimated neural network models,
we evaluate a class of radial basis neural networks and a class of recurrent Elman
networks to develop a comparison among different approaches. In the radial
basis neural network models we adopt the same strategy to evaluate the best
predictive models: a three layer topology is created and a number of neurons
from 2 to 20 in the hidden layer is tested. The bootstrap procedure is then run
to obtain the BMAE value for each of the topology on the remaining T = 72
observations. In addition, we build a recurrent neural network topology and
derive the Elman network architecture by adding a context layer (with the same
number of neurons identified for the sigmoidal feed-forward neural networks) to
a standard three layered feed-forward network and train them by means of back
propagation. We compare these network models in their prediction accuracy on
a test set composed of the remaining T = 72 observations (6 hours). The results,
as described in Tab. 1, show that sigmoidal feed-forward neural networks are the
models that better predict all the responses [10,25].

Table 1. Predictive performance metrics of sigmoidal and radial basis neural networks
and Elman networks on a 6 hours prediction. In bold the best results obtained for each
response. Standard deviations are presented in brackets.

Method
y1 y2 (PMV) y3 (DGI)

MAE MAPE MAE MAPE MAE MAPE

Sigmoidal FFN 0.07 (0.04) � 0(� 0) � 0 (� 0) � 0 (� 0) � 0 (� 0) � 0 (� 0)
Radial BFN 11.58 (0.17) 0.08(� 0) 0.51 (0.20) 0.79(0.20) 3.35 (0.23) 5.10 (1.28)
Elman N 0.40 (0.17) � 0(� 0) 0.08 (0.05) 0.14 (0.13) 0.21 (0.09) 0.32 (0.18)

Our approach based on sigmoidal feed-forward neural network gives very good
predictions since all the criteria are equal or very close to 0. The sigmoidal feed-
forward results exhibit also better performances in comparison with the results
obtained using radial basis function network and Elman Network. We present
in Fig. 2 the predicted responses in comparison with the actual values recorded
by the sensors (Figure 2 presents only the subsample of the last 12 hours in
order to make the plots easier to read). We notice that the predicted values for
the three responses are very close to the actual real values. In particular we can
notice that the prediction of y2 and y3 (Figs. 2b and 2c ) perfectly overlaps the
observed values, while only a very small difference can be noticed in Fig. 2a for
the prediction of y1.
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(c) Daylight Glare Index

Fig. 2. Comparison between observed and predicted values for the last 12 recorded
hours of the three responses: (a) The Total Electric Power consumption, (b)The Pre-
dicted Mean Vote, and (c) The Daylight Glare Index.
Black lines describe the observed values recorded by sensors and red lines describe the
predicted values of the sigmoidal feed-forward neural network.
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