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Abstract. To over pass the limits inherent in liner models, suitable aggregation 
operators are required, taking into account interactions among the criteria. This 
becomes more and more crucial in Decision Theory, where all the information 
can be inferred by one or more Experts, using an ad hoc questionnaire. This is 
the case of the FEEM SI sustainability index, a composite geo-referenced index 
which aggregates several economic, social and environmental dimensions-
structured in a decision tree- into a single number between zero (the worst  
sustainable country) and one (the best one). Fuzzy measure (non additive meas-
ures) are here proposed for the aggregation phase. To this purpose, each inter-
mediate node of the structure combines the values of the sub-nodes using a 
model based on second-order non additive measure. To infer the value of the 
measure for each node, a suitable questionnaire has been fulfilled by a set of 
Experts, and the obtained answers were processed using an optimization algo-
rithm. To guarantee the strict convexity of the algorithm, the questionnaire 
needs to be carefully designed. The individual measures are subsequently ag-
gregated and the numerical results permitted to compare the sustainability of all 
the considered territorial units. 

Keywords: Fuzzy measures, non-additive measures, Choquet integral,  
preference structure, sustainability, aggregation operators. 

1 Introduction 

In Multi Attribute problems the Weighted Averaging operator (WA) is widely used to 
aggregate the normalized values of the criteria. Anywise, the linear WA method is 
unable to include interactions (synergies or redundancies) among the criteria. For this 
reason, more specialized algorithms need to be considered. One of the most common-
ly used is based on fuzzy measures (or capacity, or non-additive measures, NAMs for 
brevity), which assigns a weight to every possible coalition of criteria, and not to a 
singleton only. A suitable aggregation operator, the Choquet integral [Beliakov, 
2009], extends the Weighted Averaging (WA) to the computation of an aggregated 
results using NAM. The interested reader can refer to [Grabisch, 2000], [Marichal, 
2000-2] for a methodological analysis of fuzzy measures. In the case of WA only ݊ 
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parameters need to be elicited, if ݊ is the number of the criteria to be aggregated. But 
in NAM the number of the required parameters – the value of the fuzzy measures - 
exponentially increases with ݊, and the numerical complexity becomes crucial, espe-
cially in the case of Decision Theory, where the information can be inferred only by 
one or more Experts. The reduced order model, which considers interactions only 
between subset of limited cardinality, can be applied to reduce the numerical com-
plexity. In particular, the second order model admits interactions only between couple 
of criteria. In this paper we propose an elicitation method based on a suitable ques-
tionnaire. The questionnaire is formed by a set of alternatives, i.e. what ... if... ques-
tions, and the answers can be used to elicit the non-additive measure by means of the 
Least Square optimization algorithm that minimizes the sum of squared distances 
between the answers of the Expert(s) and the solutions of the problem. The procedure 
was applied to a real world case study, the project FEEM SI, a composite Sustainabili-
ty Index including 23 indicators grouped in a tree structure. A team of Experts were 
asked to fulfil a questionnaire, by which the NAMs were implicitly elicited, one for 
each node of the tree. To avoid a too strong mental effort, the number of the questions 
needs to be limited, then a second order model was selected as aggregation operator. 
The paper is organized as follows. Section 2 introduces the concept of fuzzy meas-
ures, included the reduced order model, and the Choquet integral as aggregation oper-
ator. Section 3 describes the proposed elicitation approach, while Section 4 reports its 
application to the FEEM SI sustainability indicator. Some conclusive comments and 
suggestions are reported in Section 5; technical results are briefly reported in the  
Appendix. 

2 Fuzzy Measures and the Choquet Integral  

A fuzzy measures or NAM, defined over the set of criteria ܰ ൌ ሼ1,2, … , ݊ሽ, is a  
set function ߤ: 2ே ՜ ሾ0,1ሿ  satisfying the following boundary and monotonicity  
conditions: 

ቐߤሺ׎ሻ ൌ ሺܰሻߤ0 ൌ 1ܵ ك ܶ ك ܰ ֜ ሺܵሻߤ   ൑ ሺܶሻߤ ൑ ,ܵ ׊  1 ܶ ك ܰ             (1) 

A NAM assigns to every subset (coalition) of criteria a measure that is not necessarily 
the sum of the measures of their singletons. Namely, if the measure of a coalition is 
greater (smaller) than the sum of the measures of their singletons, that measure 
represents a synergic (redundant) interaction among the criteria belonging to the coa-
lition. Instead when the measure of a coalition equals the sum of the measures of the 
singletons belonging to it, the NAM collapses to the linear aggregation (WA) and no 
interaction exists among the criteria. Given a NAM ߤ, its Möbius representation is the 
following set function, see [Marichal, 2000-2]: ݉ሺܵሻ ൌ ∑ ሺെ1ሻ௦ି௧ߤሺܶሻ்كௌ , ,ܵ ׊ ܶ ك ܰ                  (2) 
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where ݏ ൌ ݐ ,ሺܵሻ݀ݎܽܿ ൌ -ሺܶ). Moreover the following boundary and the mono݀ݎܽܿ
tonicity conditions are required, see [Marichal, 2000-2]: 

ቐ݉ሺ׎ሻ ൌ 0 ∑ ݉ሺܶሻ்كே ൌ 1∑ ݉ሺܶሻ ൒ 0, ܵ ׊ ك ݅ ׊   ,ܰ א ௜דௌ்ك்ܵ                   (3) 

Let ߤ be a NAM defined on ܰ and ܺ ൌ ሼݔଵ, ,ଶݔ … ,  ௡ሽ the normalized values of theݔ
criteria belonging to N; the (discrete) Choquet integral with respect to ߤ is given by 
[Grabisch, 2000]: ܥఓሺݔଵ, . . . , ௡ሻݔ ൌ ∑ ሺݔሺ௜ሻ௡௜ୀଵ െ  ሺ௜ሻ൯                 (4)ܣ൫ߤሺ௜ିଵሻሻݔ

where ሺ݅ሻ means that the indices have been permutated in such a way that ݔሺଵሻ ൑ڮ ൑ ሺ௜ሻܣ ሺ௡ሻ, whileݔ ൌ ൛ݔሺଵሻ, … , ሺ଴ሻݔ ሺ௡ሻൟ andݔ ൌ 0. Using the Möbius representation 
the Choquet integral can be written as:  ܥ௠ሺݔଵ, . . . , ௡ሻݔ ൌ ∑ ݉ሺܶሻ ٿ ேك்்א௜௜ݔ                      (5) 

being ר the minimum operator. To define a capacity ߤ on ܰ, 2ேିଵ parameters are 
required. If the capacity represents the preference structure of an Expert, it needs to be 
directly or implicitly elicited using a suitable questionnaire. In the case of a complete 
model, the number of parameters exponentially increases with ݊, usually a prohibi-
tive task, thus a reduced order model is proposed [Grabisch, 1997], satisfying the 
compromise between criteria interaction and  numerical complexity. A capacity ߤ on ܰ is said to be k-additive if its Möbius representation satisfies ݉ሺܶሻ ൌ ܶ׊ 0 ك ܰ 
such that ݐ ൐ ݇, and there exists at least one subset ܶ with ܿܽ݀ݎሺܶሻ ൌ ݇ such that ݉ሺܶሻ ് 0. In this way a k-additive capacity with ݇ א ሼ1,2, … , ݊ሽ is completely de-

fined by the identification of ∑ ቀ݆݊ቁ௞௝ୀଵ  parameters. If ݇ ൌ 2  we have a second order 

model (2-order model for brevity) and only 
௡ሺ௡ାଵሻଶ  parameters are required. 

2.1 Behavioural Analysis 

We limit to mention the two most popular indices developed in order to have a direct 
interpretation of non additive measures: the Shapley value [Shapley, 1953] and the 
Interaction index [Grabisch, 1997]. 

The Shapley value is a measure of the relative importance of a criterion, computed 
averaging all the marginal gains between any coalition not including the criterion, and 
the one which includes it. In terms of Möbius representation the Shapley value of 
criterion i is defined as following: ߮ሺ݉; ݅ሻ ൌ ∑ ଵ௧்ד௜ ݉ሺܶ ሻ  ׊  ܶ ك ܰ                       (6) 
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When fuzzy measures are not additive, interaction among criteria exists; in terms 
of Möbius representation the Interaction index among a combination ܵ of criteria, 
can be formulated as: ܫௌሺ݉; ܵሻ ൌ ∑ ଵ௧ି௦ାଵ ݉ሺܶሻ்لௌ ܵ  ׊   ك ܰ                                     (7) 

In a 2-order model the interaction index of a coalition coincides with its Möbius 
representation. 

3 The Least Square Elicitation Approach 

The specialized literature reports several approaches to elicit fuzzy measures. Among 
them, we limit to recall the Least Square (LS) and the Heuristic Least Square (HLS) 
[Grabisch, 1995], the approach of Marichal and Roubens (MR) [Marichal, 2000-1],  
the Minimum Variance (MV) [Kojadinovic, 2007] and Minimum Distance (MD)  
[Kojadinovic, 2000]. Such methods differ together by the required information (for 
instance, cardinal or ordinal type), the objective function, and the applied algorithm. 
The LS and the HLS require cardinal information about the alternatives, that is, a 
global evaluation (sometimes defined as utility), assigned by an Expert. For this rea-
son, we define these methods as cardinal-based models. Conversely, the MR, MV and 
MD method require only a preference order of the alternatives; they can be defined 
ordinal-based models. In this contribution we applied the LS, after having designed 
carefully the questionnaire, in such a way that the optimization problem is strictly 
convex and thus the LS can return a unique solution1. 
To this purpose, let be: 

ܤ .1 ൌ ሼܿଵ, ܿଶ, … , ܿ௡ሽ the set of the criteria; 

ܣ .2 ൌ ሼܽଵ, ܽଶ, … , ܽ௩ሽ a scenario, that is a set of ݒ alternatives; 

܆ .3 ൌ ൭ݔଵሺ1ሻ, … , …௡ሺ1ሻݔ … … … … ,ሻݒଵሺݔ… … ,  ሻ൱ the normalized values of the criteria for each alternativeݒ௡ሺݔ

(or the criteria utility for each alternative); 

  ܽ ሺܽሻ: the utility assigned by the Expert to alternativeݕ .4

,௠ሺ݆ሻܥ .5 ݆ ൌ 1, , .  the value of the ݆-th alternative computed through the 2-order : ݒ

model, with the elicited parameters, ܥ௠ሺܽሻ ؠ ,ଵሺܽሻݔ௠൫ܥ … ,  ;ଵሺܽሻ൯ݔ

We now briefly formalize the LS optimization algorithm which minimizes the sum 
squared differences between the evaluation of the Expert and the ones computed by 
the k-order model. 

                                                           
1  If the optimization problem is not strictly convex, the solution is not unique [P. Miranda,  

M. Grabisch, 1999]. Nerveless the strict convexity depends on the questionnaire structure, 
see Subsection 3.1. 
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௠ሺ்ሻܰܫܯ :܁ۺ ∑ ቀܥ௠ሺܽሻ– .ݏሺܽሻቁଶ௩௔ୀଵݕ ∑൝.ݐ ݉ሺܶሻ ൒ ௜דௌ்ك0் ܵ ׊  ك ܰ, ݅ ׊ א ܵ∑ ݉ሺܶ ሻ ൌ ேك1் ൡ  (8)           ݏ݊݋݅ݐ݅݀݊݋ܿ ݕݐ݅ܿ݅݊݋ݐ݋݊݋݉ ݀݊ܽ ݕݎܽ݀݊ݑ݋ܤ    

If an algebraic condition is satisfied about the scenario’s values proposed in the ques-
tionnaire -see Subsection 3.1- the solution to problem (8) is unique. 

3.1 Optimization Issue 

We underline that the LS approach returns a unique vector of Möbius representations 
iff the number of alternatives to be judged and the utilities associated to the criteria 
satisfy the mathematical condition stated in the Property below.  

The property needs the following preliminary definition: let define the full scenario 
matrix ۯ whose elements in the first ݒ rows are partitioned by the matrix ܆ of utili-
ties associated to each criteria for each alternative, and the matrix ઩ containing the 
minimum utilities values of each coalition and for each alternative; all the elements in 
the last row are equal to one (representing the boundary condition): 

ۯ ൌ ቂ ܆ ઩૚Ԣ ૚Ԣቃ ൌ ێێۏ
ଵሺ1ሻݔۍێ … ௡ሺ1ሻݔ ٿ ଵሺ2ሻݔ்א௜ሺ1ሻ௜ݔ … ௡ሺ2ሻݔ ٿ ڭ்א௜ሺ2ሻ௜ݔ ڭ ڭ ሻݒଵሺݔڭ … ሻݒ௡ሺݔ ٿ 1்אሻ௜ݒ௜ሺݔ … 1 ૚Ԣ ۑۑے

 (9)                              ېۑ

with ܿܽ݀ݎሺܶሻ ൑ ݇. 

Property 1 

The LS approach returns a unique vector of Möbius representations iff the question-
naire is designed in such a way that the full scenario matrix has rank equal to the 
number of Möbius representations to be elicited in a k-order model. 

Consider for instance a 2-additive model with two criteria and two alternatives; fol-
lowing the formulation in Section 3, the full scenario matrix has the following struc-
ture: 

ۯ ൌ ൥ݔଵሺ1ሻ ଶሺ1ሻݔ ,ଵሺ1ሻݔሺ݊݅ܯ ଵሺ2ሻݔଶሺ1ሻሻݔ ଶሺ2ሻݔ ,ଵሺ2ሻݔሺ݊݅ܯ ଶሺ2ሻሻ1ݔ 1 1 ൩ 

A necessary and sufficient condition to have ݇݊ܽݎሺۯሻ ൌ 3  is ݔ௜ሺ1ሻ ൐ ௜ሺ2ሻݔ ݀݊ܽ ௝ሺ1ሻݔ ൏  .௝ሺ2ሻݔ
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4 The FEEM SI Composite Index 

The project FEEM Sustainability Index (FEEM SI) started some years ago [FEEM 
Sustainability Index Methodological Report, 2011] with the aim to construct a global 
sustainability index on a national scale. The data generating model is based on a 
Computable General Equilibrium (CGE) dynamic economic model which is able to 
forecast macro-economic variables of interest over a time window of about 20 years. 
The CGE furnishes for each nation and for each year inside the time window, the 
forecasted values of the macro variable. We do not discuss here the CGE methodolo-
gy, see the quoted references for a detailed explanation, but focus the attention on the 
aggregation methodology that, year by year and for every nation, computes a single 
Sustainability Index for any considered nation in the world. Doing so, it permits an 
immediate ranking and comparison of nations putting in evidence possible variation 
of nation sustainability, strength and weakness points. Figure 1 shows the FEEM SI 
composite index, which is split into the three main pillars of sustainability (economic, 
social and environmental). Each pillar is split again into sub-dimension, and so on 
until the 23 leaves that are the sampled indicators. For each node and sub-node, the 
aggregation follows a bottom-up procedure using the 2-order model, from the leaves 
up to the root, the FEEM SI composite index.  

4.1 Methodology 

FEEM SI is based on two main and complementary blocks of operations: the CGE 
model, which processes the macro variables used as input data, and the criteria 
weighting scheme which aggregates the normalized data for each block of criteria 
used. Data input have been normalized by means of suitable functions that transform 
the input criteria data on a scale between zero and one, given suitable thresholds im-
posed by Experts specialized in that field. This is hence a data-insensitive normaliza-
tion approach, necessary to neutralize the risk of potential rank reversal problem, as 
can appear, for example, in the min-max normalization approach. 

The criteria weighting scheme is based on Experts’ opinion elicitation by means of 
an ad-hoc questionnaire satisfying the solution uniqueness condition as explained in 
Subsection 3.1. Subsections below explain how the questionnaire has been developed, 
together with the methodology used to aggregate Experts’ preferences into a single 
“representative” one. 

4.1.1   Ad-Hoc Questionnaire for Fuzzy Experts ‘Opinion Elicitation’ 
Each Expert has been asked to evaluate some hypothetical nations on the base of the 
joint performance of some criteria considered. Given the structure of the decision tree 
whose nodes are formed by different set of criteria, this process has been performed 
for all nodes. Table 1. shows the discrete qualitative scale used in the questionnaire to 
describe the criteria performance (first column) and the Expert choices to evaluate 
alternatives (second column); the third column describes the equivalent numerical 
scale used in the elicitation algorithm. 
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Table 1. Evaluation scheme 

Qualitative Scale Numerical Scale 

Criteria Performance Expert Evaluation  

Very bad Very Dissatisfied 0 

Bad Dissatisfied 0.25 

Fair Nor Diss./ Sat. 0.5 

Good Satisfied 0.75 

Excellent Very Satisfied 1 

 
The criteria performance of each alternative has been set according to Property 1 

(see Subsection 3.1). Table 2 is an example of the FEEM SI main node, where 5 hy-
pothetical nations with different performances in the economic, social and environ-
mental dimension have to been evaluated by each interviewed Expert. 

Table 2. FEEM SI (main node) questionnaire example 

 Criteria Expert 

Nation Economic Social Environment 
Overall 

Evaluation 

1 Excellent Good Bad - 

2 Excellent Bad Good - 

3 Good Excellent Bad - 

4 Bad Excellent Good - 

5 Bad Good Excellent - 

4.1.2   Experts’ Opinion Elicitation and Their Aggregation 
Given that NAM approach is sufficiently general to cover many preference structures, 
Expert’s preference has been weighted according to his/her overall consistency in 
judging the alternatives proposed. This is indeed an important step, especially when a 
survey is conducted without having a direct and immediate control on Expert’s evalu-
ation. We measure Expert’s consistency as a function of the sum of squared distances 
in problem 8), in such a way that the greater (smaller) this sum, the smaller (greater) 
the contribution from the relative Expert. The above conditions can be formalized as 
following. Given ݒ alternatives to be judged, let define the vector ઽ௝ ሺ1 ൈ  ሻ whoseݒ
elements represent the differences between the overall utilities values set by the j-th 
Expert and the respective Choquet values (solution of the problem 8)). 

Let ݃௝ be the sum of squared distances for the j-th Expert: ݃௝ ൌ ઽ௝Ԣઽ௝.                                  (10) 

The sum of squared distances for the j-th Expert is filtered using an exponential 
model: 

௝݄ ൌ ݁ିఘ௚ೕ   with ߩ ൐ 0,                          (11) 
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In such a way that ௝݄ א ሺ0, 1ሿ, being ߩ a suitable positive constant. 
The relative contribution from the j-th Expert  (on a total of ܦ interviewed) is  

defined as the following importance weight: ݓ௝ ൌ ௛ೕ∑ ௛ೕವೕసభ .                                (12) 

The final Möbius representation as the result of the weighted average of each  
Expert’s preference, can be defined in the following: ݉כሼܶሽ ൌ ∑ ௝ݓ ௝݉ሼܶሽ஽௝ୀଵ ܶ ׊   ك ݐ ݀݊ܽ ܰ ൑ ݇              (13) 

4.2 Some Results 

We limit to show the results of the elicitation process in the main node of the FEEM 
Si index where the three pillars of sustainability have been jointly considered. Figure 
2 illustrates the results of the weighting scheme with ߩ ൌ 3; from the left to the right 
are shown in decreasing order the weights to be associated to each of the 23 Expert 
interviewed in accordance to their overall coherence in this node. The data row of 
Figure 2 represent the numerical values of equations 10), 11) and 12) respectively. 
Figure 3 illustrates the Shapley values derived by the elicited Möbius representation 
for each Expert. Figure 4 illustrates the Interaction indices derived by the elicited 
Möbius representation. Table 3 shows the results of Experts’ preferences aggregation 
in terms of Shapley values, from which the social dimension appears to be the most 
important pillar (38.6%), followed by the environmental pillar (35.70%), while the 
economic pillar is the least (25.70%). Table 4 shows the relative importance of  
the criteria belonging to the second level of the decision tree; wellbeing is considered 
the most important factor of sustainability and GDP p.c. the least one. 

5 Conclusions 

In this paper we proposed a multi-criteria approach based on the second order Cho-
quet Integral, with the aim to take interaction among the criteria into account and, at 
the same time, to maintain the numerical complexity as low as possible. The fuzzy 
measures are elicited using an ad hoc questionnaire to be fulfilled by a panel of Ex-
perts, and a suitable optimization algorithm based on Least Square approach. In par-
ticular we showed that, when the questionnaire is structured in a particular way, the 
solution of the optimization problem is unique. The method was applied to the FEEM 
SI project, which is a computable geo-referenced sustainability index, organized into 
an hierarchical tree. For each node of the tree, the second order Choquet algorithm 
aggregates the values of the sub-node referring to it, bottom-up moving from the 
leaves up to the root. The aggregated sustainability index is computed for every con-
sidered territorial unit, permitting an immediate comparison. We are going to develop 
other optimization techniques based on alternative algorithms, like Goal Program-
ming, testing the efficiency in comparison with the Least Square method. 
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239 

 

 

3

3

3

3

3

3

3

3



240 L. Farnia and S. Giove 

 

Table 3. Shapley values in each node 

Pillar Node Criteria Shapley (%) 

 

FEEM SI 

Environment 35.70 

Society 38.60 

Economy 25.70 

E
nvironm

ental P
illar 

Environment 

Natural Endowment 35.59 

Energy & Resources 30.70 

Pollution 33.71 

Natural Endowment 
Water 48.59 

Biodiversity 51.41 

Biodiversity 
Animals 51.07 

Plants 48.93 

Energy & Resources 

Material Intensity 32.01 

Energy Intensity 31.93 

Renewables 36.06 

Pollution 

GHG p.c. 37.33 

CO2 Intensity 33.65 

Waste 29.02 

Social P
illar 

Society 

Vulnerability 29.47 

Well-Being 41.19 

Transparency 29.34 

Vulnerability 

Food Relevance 33.91 

Private Health 32.28 

Energy Security 33.81 

Energy Security 
Energy Imported 29.69 

Energy Access 70.31 

Well-Being 

Population Density 21.04 

Education 49.09 

Life Expectancy 29.87 

Transparency 
Corruption 70.47 

ICT Access 29.53 

E
conom

y P
illar 

Economy 

Growth Drivers 38.34 

Exposure 31.42 

GDP p.c. 30.24 

Growth Drivers 
R&D 56.92 

Investment 43.08 

Exposure 
Relative Trade Balance 57.69 

Public Debt 42.31 
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Table 4. Marginal criteria importance in the second level 

Pillar Criteria 
Marginal 

 Importance (%) 

Environment 

Natural Endowment 12.71 

Energy & Resources 10.96 

Pollution 12.03 

Society 

Vulnerability 11.38 

Well-Being 15.90 

Transparency 11.32 

Economy 

Growth Drivers 9.85 

Exposure 8.07 

GDP p.c. 7.77 
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