
Simulink Implementation of Belief Propagation

in Normal Factor Graphs

Amedeo Buonanno and Francesco A.N. Palmieri

Seconda Università di Napoli (SUN)
Dipartimento di Ingegneria Industriale e dell’Informazione,

via Roma 29, 81031 Aversa (CE) - Italy
{amedeo.buonanno,francesco.palmieri}@unina2.it

Abstract. A Simulink Library for rapid prototyping of belief network
architectures using Forney-style Factor Graph is presented. Our approach
allows to draw complex architectures in a fairly easy way giving to the
user the high flexibility of Matlab-Simulink environment. In this frame-
work the user can perform rapid prototyping because belief propagation
is carried in a bi-directional data flow in the Simulink architecture. Re-
sults on learning a latent model for artificial characters recognition are
presented.

Keywords: Belief Propagation, Factor Graph, Pattern Recognition,
Machine Learning.

1 Introduction

Graphical models are a ”marriage between probability theory and graph the-
ory” [1] as they compactly encode complex distributions over a high-dimensional
space. When a problem can be formulated in the form of a graph, it is very ap-
pealing to study the variables involved as part of an interconnected system where
the reached equilibrium point is the solution. The similarities with the working
of the nervous system makes this paradigm even more fascinating [2]. Bayesian
inference on graphs, pioneered by Pearl [3], has become a very popular paradigm
for approaching many problems in different fields such as communication, signal
processing and artificial intelligence [4]. The Factor Graph is a particular type
of Graphical model and represents an interesting way to model the interaction
between stochastic variables. Following the formulation of Forney-style Factor
Graphs (FFG) [5] (or normal graphs), Bayesian graphs can be drawn as block
diagrams and probability distribution easily transformed and propagated. In this
paper we report the results of our work in which we have designed and imple-
mented a Simulink Library for quick prototyping of several network architectures
using the FFG paradigm.

In Section 2 we briefly review the Factor Graph paradigm introducing the
building blocks of our proposed Simulink Library. In Section 3 the two operating
modes are introduced. In Section 4 we present the application of this tool to an
artificial character recognition task.

c© Springer International Publishing Switzerland 2015 11
S. Bassis et al. (eds.), Recent Advances of Neural Networks Models and Applications,
Smart Innovation, Systems and Technologies 37, DOI: 10.1007/978-3-319-18164-6_2

12 A. Buonanno and F.A.N. Palmieri

2 Simulink Factor Graph Library

Factor Graphs model the interaction among stochastic variables. In the FFG
approach there are blocks, variables and directed edges [5]. Even if edges have a
defined direction, probability flows in both directions (foward and backward) [4].
To associate to each stochastic variable two messages, we have used the built-in
Two-Way Connection block that in Simulink allows bidirectional signal flow. In
our Simulink implementation all the architectures can be built with just three
main functional blocks: Variable, Factor and Diverter (Figure 1) that will be
described in the folllowing. In our notation, we avoid the upper arrows [4] and
use explicit letters: b for backward and f for forward.

Fig. 1. Functional Blocks: (a) Variable, (b) Diverter, (c) Factor

2.1 Variable

For a variable X (Figure 1(a)) that takes values in the discrete alphabet
X = {x1, x2, ..., xMX}, forward and backward messages are in function form:

bX(xi), fX(xi), i = 1 : MX

and in vector form

bX = (bX(x1), bX(x2), ..., bX(xMX))T

fX = (fX(x1), fX(x2), ..., fX(xMX))T

All messages are proportional (∝) to discrete distributions and may be nor-
malized to sum to one. Comprehensive knowledge about X is contained in the
distribution pX obtained through the product rule (in function form):

pX(xi) ∝ fX(xi)bX(xi), i = 1 : MX

or pX ∝ fX � bX , in vector form, where � denotes the element-by-element
product.

Each message b, f or p in the data flow is an nT×M matrix with nT the num-
ber of realizations and M the variable cardinality. Two-way connection blocks

Simulink Implementation of Belief Propagation in Normal Factor Graphs 13

allow the construction of a bi-directional data flow. The implementation for an
Internal Variable block is shown in Figure 2 where the forward message on the
port up (f b up) is transmitted on the port down (f b down) and conversely the
backward message on the port down is transmitted on the port up. All distribu-
tion flow can be saved to workspace.

Fig. 2. The implementation of the Internal Variable block. The icon in the library (a)
and its detailed scheme (b)

Similarly Figure 3 shows the detailed schemes of Source and Sink Variable blocks.

Fig. 3. The implementation of the Source Variable block and of the Sink Variable
block. The icon in the library (a,c) and its detailed scheme (b,d) respectively for the
Source and for the Sink

2.2 Diverter Block

The diverter block (Figure 1(b)) in the Bayesian model represents the equality
constraint with the variable X replicated D + 1 times. Messages for incom-
ing and outgoing branches carry different forward and backward information.

14 A. Buonanno and F.A.N. Palmieri

Messages that leave the block are obtained as the product of the incoming ones
(in function form):

bX(0)(xi) ∝
D∏

j=1

bX(j)(xi)

fX(m) ∝ fX(0)(xi)

D∏

j=1,j �=m

bX(j)(xi), m = 1 : D, i = 1 : MX

In vector form:

bX(0) ∝ �D
j=1bX(j) ,

fX(m) ∝ fX(0) �D
j=1,j �=m bX(j) , m = 1 : D

Figure 4 shows the detailed scheme of our implementation of the Diverter Block.
Each port is connected to a variable in the network. After element-wise prod-
uct among variables each variable is returned after normalization to one (each
message is normalized to be a valid distribution).

Fig. 4. Simulink implementation of a Diverter Block with three ports. The icon in the
library (a) and its detailed scheme (b)

2.3 Factor Block

The factor block (Figure 1(c)) is the main block that represents the conditional
probability matrix of Y given X . More specifically if X takes values in the
discrete alphabet X = {x1, x2, ..., xMX} and Y in Y = {y1, y2, ..., yMY }, P (Y |X)
is the MX ×MY row-stochastic matrix:

P (Y |X) = [Pr{Y = yj|X = xi}]j=1:MY

i=1:MX
= [θij]

j=1:MY

i=1:MX
= θ

Simulink Implementation of Belief Propagation in Normal Factor Graphs 15

Outgoing messages are (in function form):

fY (y
j) ∝

MX∑

i=1

θijfX(xi), bX(xi) ∝
MY∑

j=1

θijbY (y
j)

In vector form:
fY ∝ P (Y |X)T fX , bX ∝ P (Y |X)bY

The above rules are rigorous translation of Bayes’ theorem and marginalization
(a complete review and proofs can be found in classical papers [4], [6]).

Figure 5 shows our implemention of the Factor Block with a Level2-MATLAB
S-Function that wraps the Maximum Likelihood (ML) algorithm described in
[7]. The system learns locally using nT realizations of the forward message of
variable X , the nT realizations of backward message of variable Y and an initial
value of matrix P . During learning, a new value of P is produced on each epoch
and nT realizations of backward message for variable X and forward message
for Y are sent to the adjacent blocks.

If the number of iteration is set to 0, the Block simply computes the nT
realizations of backward of variableX and the nT realizations of forward message
of variable Y (using the results in [8]).

Fig. 5. Simulink implementation of the Factor Block. The icon in the library (a) and
its detailed scheme (b) - During learning phase, given the initial value of Conditional
Probability Matrix (Hin), the bacward messages for variable Y , the forward messages
for variable X and the learning mask (L), a new value of H is computed applying Nit
iterations of ML algorithm. If the Nit is set to 0, the block works in inference mode.

Using the implemented library, simply by dragging and connecting, the user
can define a wide range of architectures that otherwise would have required the

16 A. Buonanno and F.A.N. Palmieri

Fig. 6. A complex architecture designed using the proposed library

writing of a custom algorithm of belief propagation. Figure 6 shows a complex
network drawn using the building blocks previously introduced.

3 Flow Control

During the simulation, each block uses messages coming from connected blocks
and evolves producing new messages. The distributions exchanged among blocks
are bi-directional and simultaneous, but the network flow is controlled from the
top by a MATLAB script that sets parameters, triggers execution and collects
results. The network can work in Inference Mode, when the block parameters
are fixed, and in Learning Mode, when the block parameters are learned. In the
Learning Phase (Figure 7(a)), based on epochs, after the Network Initialization
(set to uniform all the variables, set the dimension of the messages), the model
simulation is started defining purposely the Simulation Time and Model Param-
eters (values of Factors). At the end of simulation the new Model Parameters
are used as initialization values for next epoch. This is done until the Maximum
Number of Epochs is reached. In the Evolution Phase (Figure 7(b)), in the Pa-
rameter Initialization, the user has to adopt the correct values of parameters
learned during Learning Phase.

The Model Simulation step is performed in the Simulink environment that has
to be purposely configured using Fixed-Step Solver Type and with a Fixed Size
Time Step. During the updating phase of simulation, Simulink determines the
order in which the block methods must be triggered. The user cannot explicitly
change this order, but he can assign priorities to non virtual blocks to indicate to
Simulink their execution order relative to other blocks. Simulink tries to honor

Simulink Implementation of Belief Propagation in Normal Factor Graphs 17

Fig. 7. Scheme for model simulation in the Inference mode (a) and in the Learning
mode (b)

block priority settings, unless there is a conflict with data dependencies [9]. We
have verified that Simulink automatically assigns the correct execution order,
evaluating the From Workspace block (in the source blocks) and then the other
blocks. To avoid wrongly assigned variables, each variable in each block is ini-
tialized with an uniform distribution. Each block automatically determines the
dimension of the variable to which it is connected. During the simulation, each
block uses the inputs coming from other blocks and evolves producing output to
connecting blocks using the rules outlined in [8].

4 Characters Recognition Example

We have used the proposed Library in several applications. In this work we
present the result obtained with a simple Latent Model applied to a recognition
task on the Artificial Characters Dataset [10]. This dataset is formed by thou-
sands of 12x8 black and white images representing the characters {’A’, ’C’, ’D’,
’E’, ’F’, ’G’, ’H’, ’L’, ’P’, ’R’}. The network we have implemented is composed
of 96 factors (a factor for each pixel) and only one hidden variable.

An image is a matrix of pixels, where each pixel can be considered as a stochas-
tic variable that can assume value in a finite alphabet (2 symbols for black and
white images). We have a set of random variables {X1, X2, ..., Xn} that belong to

18 A. Buonanno and F.A.N. Palmieri

Fig. 8. The designed network for Artificial Characters recognition task using the
implemented Library

a same finite alphabet X . This set of variables is fully characterized by its joint
probability mass function p(X1, X2, ..., Xn). All the mutual interactions among
the variables is contained in the structure of p. A variable can be: 1) known
(instantiated): the backward message is the delta distribution; 2) completely
unknown (erased): the backward message is a uniform distribution; 3) known
softly: the backward message is a density. In all cases after message propaga-
tion the system responds with a forward message that is related to information
stored in the system during the learning phase [11]. We use a simple Latent
Model where each variable Xi (pixel) is connected to a Latent Variable (Figure
8) and there is also a Variable that contains the information of the presented
character (X101). In the Learning Phase the instantiated variables of training
examples are injected in the network and using the ML algorithm in [7] the
matrices P (Y |X)− i are learned.

4.1 A Simulation

Using the Artificial Characters Dataset [10] we have trained our network with
800 training images of 12x8 black and white images representing the characters:
{’A’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’L’, ’P’, ’R’} (Figure 9). The dimension of the
embedding space is set to 150. The number of epochs for learning phase is set
to 20 and each epoch is formed by 10 evolution steps.

To store all configurations the embedding space should have been set to 296,
but the real configurations are much less. We limited the embedding space to
150 because computational issues. Even if we have used a small dimension of the
embedding space, the system stores relevant structures of the presented images

Simulink Implementation of Belief Propagation in Normal Factor Graphs 19

Fig. 9. 25 samples from the Training Set

Fig. 10. Network answer - An image is retrieved from the Test Set (a), a big percentage
of pixels are erased (gray pixels in (b)) and this information is injected in the network
as backward messages. The network, after evolution, returns the Reconstructed image
(c) and a probability distribution on the character set (d))

and presenting 800 test images, the system recognize the characters presented
with an accuracy of 76%.

In Figure 10 the results of the recognition and completion task are presented.
An image is retrieved from Test Set (Figure 10 (a)), a big percentage of pixels
are erased (gray pixels in (Figure 10 (b))) and this information is injected in
the network as backward messages of Source variables. The information about
the presented character is set to uniform. The network, after the evolution (In-
ference Mode) returns the forward messages of Source variables that, combined

20 A. Buonanno and F.A.N. Palmieri

with the provided backward messages, give us the Reconstructed image
(Figure 10 (c)). The network provides also the probability distribution on whole
vocabulary (Figure 10 (d))

5 Conclusion

We have implemented a Library of Simulink blocks that permits to rapidly design
a wide range of architectures using the Factor Graph paradigm. This approach
allows to experiment on different architectures using Simulink bi-directional con-
nections as probability pipelines. Current efforts are devoted to use this paradigm
for various applications and to find more efficient implementations when the
architectures grow in size and complexity.

References

1. Jordan, M. (ed.): Learning in Graphical Models. MIT Press (1998)
2. Hawkins, J.: On Intelligence (with Sandra Blakeslee). Times Books (2004)
3. Pearl, J.: Probabilistic reasoning in intelligent systems - networks of plausible infer-

ence. Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann
(1989)

4. Loeliger, H.A.: An introduction to factor graphs. IEEE Signal Processing Maga-
zine 21(1), 28–41 (2004)

5. Forney, G.D.: Codes on graphs: Normal realizations. IEEE Transactions on Infor-
mation Theory 47(2), 520–548 (2001)

6. Kschischang, F., Member, S., Frey, B.J., Loeliger, H.-A.: Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory 47, 498–519
(2001)

7. Palmieri, F.A.N.: A Comparison of Algorithms for Learning Hidden Variables in
Normal Graphs. ArXiv e-prints (2013)

8. Palmieri, F.: Notes on factor graphs. In: Apolloni, B., Bassis, S., Marinaro,
M. (eds.) WIRN. Frontiers in Artificial Intelligence and Applications, vol. 193,
pp. 154–162. IOS Press (2008)

9. MATLAB Documentation Center - R2014A, ch. Control and Display the Sorted
Order

10. Guvenir, H.A., Acar, B., Muderrisoglu, H.: Artificial characters data set. In: Bache,
K., Lichman, M. (eds.) UCI Machine Learning Repository (2013),
https://archive.ics.uci.edu/ml/datasets/Artificial+Characters

11. Palmieri, F., Ciuonzo, D., Mattera, D., Romano, G., Rossi, P.S.: From examples to
bayesian inference. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F.C. (eds.)
WIRN. Frontiers in Artificial Intelligence and Applications, vol. 234, pp. 97–104.
IOS Press (2011)

https://archive.ics.uci.edu/ml/datasets/Artificial+Characters

	Simulink Implementation of Belief Propagation in Normal Factor Graphs
	1Introduction
	2Simulink Factor Graph Library
	2.1Variable
	2.2Diverter Block
	2.3Factor Block

	3Flow Control
	4Characters Recognition Example
	4.1A Simulation

	5Conclusion

