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Abstract. MRgFUS (Magnetic Resonance guided Focused UltraSound) is a 
new and non-invasive technique to treat different diseases in the oncology field, 
which uses Focused Ultrasound (FUS) to induce necrosis in the lesion. Tem-
perature change measurements during ultrasound thermo-therapies can be per-
formed through magnetic resonance monitoring by using Proton Resonance 
Frequency (PRF) thermometry. It measures the phase variation resulting from 
the temperature-dependent changes in resonance frequency by subtracting one 
phase baseline image from actual phase. Referenceless thermometry aims to  
reduce artefacts caused by tissue motion and frequency drift, fitting the back-
ground phase outside the heated region. The aim of this contribution is to pro-
pose a novel background phase reconstruction method using Radial Basis Function 
(RBF) interpolation. The effectiveness of the method has been demonstrated by 
comparing it against the classical PRF shift and polynomial referenceless approach. 
The comparison evaluates temperature rises in uterine fibroids during MRgFUS 
treatments on a set of 10 patients. 

Keywords: Radial Basis Function, Interpolation, Referenceless Thermometry, 
Artificial Neural Network, MRgFUS. 

1 Introduction 

Hyperthermia is a type of clinical treatment in which body tissues are exposed to high 
temperatures that can kill pathological lesion, like uterine fibroids [2]. In MRgFUS 
treatments [7][8], high temperatures are applied on local and small areas by using 
ultrasound beams that deliver energy to heat the tumour. MRgFUS treatment is per-
formed using the ExAblate 2100 equipment (InSightec, Haifa, Israel), integrated with 
a Signa HTxt MR scanner (GE Medical Systems, Milwaukee, WI). Thermal ablation 
of fibroids tissue is done using sonication process: the tissue is heated with Focused 
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where φ(T) is the phase map in the current temporal instant, φ(T0) is the baseline 
phase at a known temperature (i.e. 37°C), γ is the gyromagnetic ratio, α=-0.01ppm/C° 
is the PRF change coefficient, B0 is the strength of the magnetic field, and TE is the 
echo time of the MR acquisition protocol. 

Motion of anatomical region undergone to the MRgFUS treatment is one of the 
most prevalent problems for temperature monitoring with PRF phase mapping. Intra-
scan motion is caused by movement of an object during MR image acquisition, result-
ing in a poor quality image with typical blurring and ghosting artefacts. Inter-scan 
motion is due to motion or displacement of an object between the acquisitions of con-
secutive images. Methods for temperature estimation in presence of motion can be 
divided into two categories: (i) methods based on a multi-baseline strategy and  
(ii) methods based on a referenceless strategy. 

Multi-baseline methods take background phase information before heating at vari-
ous position of the organs during the respiratory and/or cardiac cycle. The selection of 
the corresponding baseline image is performed by determining the organ’s position 
[9][10][11]. 

Referenceless methods estimate heating from a treatment image itself, without a 
baseline image used as temperature reference. Supposing that the phase image has a 
smooth tendency under the heated area, this kind of methods fit polynomial functions 
[3] or uses a weighted least-squares fit [4] to the surrounding phase. The extrapolation 
of the reconstructed piece of baseline image is useful for background phase estima-
tion, which is then subtracted from the actual phase to evaluate the phase difference 
after the heating caused by ultrasound sonication. 

Considering that in classical PRF shift thermometry there are obvious problems of 
artefacts, most prevalently due to motion, and in referenceless thermometry the accu-
racy of the interpolation lacks in precision, a novel interpolation method is applied to 
the issue of the referenceless thermometry. This method has been successfully tested 
[16] using MRgFUS ablation on a ex-vivo animal muscle and reconstructing tempera-
ture maps using RBF interpolation methods. In this paper method has been applied to 
real in-vivo treatments of uterine fibroids, evaluating the baseline phase maps with 
great results. 

The paper is organized as follows: in Section 2 theoretical background on Radial 
Basis Function (RBF) is introduced; in Section 3 the proposed interpolation model is 
presented; Section 5 illustrates the obtained experimental results; finally, in Section 6, 
some conclusions are reported. 

2 Radial Basis Functions 

The idea of RBF Networks derives from the theory of function approximation. One of 
the most used approaches in literature to address the interpolation problem is to fit 
data using a polynomial function. However, an invertible system that defines the in-
terpolator is not guaranteed for all the interpolation points, and often shows spurious 
bumps. The main features of RBF interpolators are: 

• they are two-layer feed-forward neural networks; 
• each hidden nodes implement a radial basis function; 
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The surveys of Powell and Light [14][15] are excellent references for the properties of 
radial basis functions. The σ value (in Multi-Quadric function) is responsible for the 
sensitivity of the interpolator. In the experiments, a very little value (of order 10 ) is 
good for the interpolation purpose. 

Moreover, often the data to interpolate are noisy. In presence of noise, one may 
consider to relax the exact interpolation requirement by means of regularization. This 
is possible by modifying the equation (2) as follows: 

 ∑  (4) 

adding a relaxation parameter λ that controls the amount of smoothing of the interpo-
lation, and I is the identity matrix. In the λ=0 case, the equation is reduced to exact 
interpolation; in case that the parameter is highly regularized, the TPS model degen-
erates to the least-squares affine model [18]. 

3 The Workflow of the Proposed Interpolation Method 

The MRgFUS treatment uses ultrasound beams that hit the interested organ. In this 
paper we have evaluated temperature reconstructions of treatments regarding women 
affected by single/multiple uterine fibroid. In Fig. 3, an uterine fibroid has been high-
lighted before the thermal treatment. 

 

  
(a) (b) (c) 

Fig. 3. An uterine fibroid in sagittal (a), coronal (b) and axial (c) view. The fibroid will be 
ablated with MRgFUS treatment 

Referenceless thermometry estimates baseline phase from each acquired image 
phase and subtracts it from current image as in classical PRF thermometry [3]. 

In this work we have focused our attention to the effectiveness of the referenceless 
thermometry that uses a Polynomial for the interpolation [3], and we compared our 
proposed interpolation, that uses Radial Basis Functions, against the Polynomial one. 
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(a) (b) (c) 

Fig. 4. (a) The area interested by the treatment; (b) Magnification of interested area;  
(c) Thermal map of the MRgFUS treatment. The blue area will be used for interpolation. 

Here, our gold standard is the temperature extrapolated using classic PRF shift 
method [1]. As shown in Fig. 4, estimation is possible because in thermal therapy 
only a small region of the organ is affected by temperature change, and the phase 
outside the heated region can be used to determine the background phase. 

For each temporal instant, the baseline phase below the heated area is evaluated in-
terpolating the surrounding area using the Radial Basis Functions. The selection of a 
Region Of Interest (ROI) inside the treated organ (the female uterus in this case) 
makes possible to extract the heated area from the surrounding (not treated) area. The 
heated area that contains phase variations due to thermal treatments is removed, and 
the remaining area is used as input data to train the artificial neural network, as shown 
in Fig. 5. In correspondence of the sonication spot (Fig. 5a) the phase map shows  
a negative peak that represents a positive temperature variation (because the α  
coefficient is negative). 

The proposed method (Fig. 6) for enhancing the referenceless thermometry by  
using RBF interpolation has been implemented as follows: 

1. once the series of images is acquired, we recover the original phase from the 2π-
wrapped phase images by using the Goldstein, Zebker and Werner’s algorithm [6]; 

2. the RBF artificial neural network takes input data from the region between the 
sonicated area and the uterine contour; 

3. the area to be reconstructed is iteratively interpolated by using RBF, which repre-
sents a practical solution for the problem of interpolating incomplete three-
dimensional surfaces. The implementation of the reconstruction algorithm invokes 
iterative refinement to improve the accuracy of the solution; 

4. for each temporal instant the extrapolated baseline phase that is used together with 
the global (currently heated) image. 

This follows the PRF principles used for temperature rise assessment. The RBF 
network interpolates the masked area according to the specific radial basis functions: 
Linear (or Euclidean), Multi-Quadratic, Thin-Plate Spline, etc., solving it by using the 
double precision diagonal pivoting method from Lapack [17]. 
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The natural criterion for assess a reconstructed phase image is how closely it 
matches the baseline surface prior to the removal of the heated area. The interpolator 
fitted to the incomplete phase-map is then compared with the original baseline sur-
face. Obtained temperature assessments in a MRgFUS treatment for the ablation of a 
uterine fibroid are shown in Fig. 8a. In this figure the RMS error shows that RBF 
reconstructions (Linear and Multi-Quadratic) has better results with respect to Poly-
nomial reconstruction, assuming that the PRF temperature is the gold standard. Re-
sults show a huge increase of precision on the whole reconstructed area. These results 
are confirmed in Fig. 8b, where all the mean temperatures of the treated areas related 
to thermal treatments of all patients have been compared to PRF temperature. 

 

 
(a) 

 
(b) 

Fig. 8. (a) RMS errors for different kind of reconstruction methods compared to classical  
PRF Shift thermometry; (b) Mean temperature errors (°C) of the whole area hit by thermal 
treatment. 
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In Fig. 9a is depicted to see the temperatures evaluation in a random chosen point 
of the treatment area. All the RBF-based reconstructed temperatures (the blue, cyan, 
and black lines) runs very close to the gold standard PRF temperature (red line); we 
cannot say the same for the polynomial interpolation (green line). This demonstrates 
that radial basis functions are a very good kind of interpolator for this type of noisy 
data, even if there are large regions with missing data.  

(a) 

(b) 

Fig. 9. Temperature behaviour in a point of the treatment area: (a) temperature rise (in °C) for a 
treatment of about 32 seconds. The red line is the reference PRF temperature, the green line is 
the Polynomial reconstructed temperature; the black (Thin-Plate Spline), blue (Linear) and 
cyan (Multi-Quadratic) lines are the RBF-based reconstructed temperatures. (b) The variation 
(error) of reconstructed temperatures compared with the PRF temperature. 
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Fig. 9b confirms the goodness of the RBF reconstruction: for example, in the ninth 
temporal instant, the PRF temperature is 73.04°C. The RBFs temperatures differs of 
3-4°C, while the Polynomial temperature is about 10°C. less. In a MRgFUS treat-
ment, this can lead to continue the sonication process even if it is not necessary, 
surely causing pain to the patient and possible damages in surrounding tissues. In 
conclusion, the RBF reconstruction method gains all the advantages of referenceless 
thermometry avoiding lacks of precision of the Polynomial interpolation temperature 
reconstruction. 

5 Conclusion 

RBF neural networks are a good and flexible tools that allow for the reconstruction of 
unknown data. The effectiveness of the proposed approach has been demonstrated 
using 10 MR dataset of 10 female patients undergone to uterine fibroids ablation 
MRgFUS treatments. Polynomial reconstruction can over/under estimate the tempera-
tures: this can lead to break the sonication before reaching the temperature estab-
lished. The risk is the missing proteins denaturation, pain inducted in patients, and 
damage to surrounding tissues. RMS errors and temperature differences show a huge 
increase of precision in comparison with other kind of interpolators. 

Future works will investigate the real precision of the PRF method, by measuring 
real temperature rises in MRgFUS treatments using thermocouples or optical fibres 
inserted in a phantom and acquiring the phase variations induced by the heating proc-
ess. Since the reconstruction method is heavily dependent from ROIs selection, we 
are also investigating automatic methods for organ and sonication spot segmenta-
tion[8]. The integration of this RBF-based interpolation method with automatic seg-
mentation approaches could reduce the operator-dependence of the algorithm and, 
consequently, the final error in the temperature reconstruction. 
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