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2 Università di Genova, DITEN, Via all’Opera Pia, 11 - 16145 Genova (GE), Italy

Abstract. The analysis of vessel behaviors and ship-to-ship interactions
in port areas is addressed in this paper by means of the probabilistic
tool of Dynamic Bayesian Networks (DBNs). The dimensional reduc-
tion of the state space is pursued with Topology Representing Networks
(TRNs), yielding the partitioning of the port area in zones of different
size and shape. In the training phase, the zone changes of interacting
moving vessels trigger different events, the occurrence of which is stored
in Event-based DBNs. The interactions are modeled as deviation from
the common behavior prescribed by a single-ship normality model, in
order to reduce the number of conditional probabilities to calculate and
store in the DBNs. Inference on the networks is then carried on to ana-
lyze the behavior of various ships and vessels maneuvering in the harbor.
The results of the algorithm are showed by using simulated data relative
to a real port.

Keywords: Interaction Analysis, Ship-to-Ship Interactions, Dynamic
Bayesian Networks, Topology Representing Network.

1 Introduction

The sadly famous Costa Concordia accident [1], as other dramatic crashes hap-
pened in recent years in port areas or near the coastlines [2], confirm that the
design of monitoring systems able to supervise complex and crowded areas as
harbors, coastlines, airports, etc., is very far from being considered a closed is-
sue. Nowadays, these areas are monitored by a great number of high-quality
sensors, but the lack of robust methodologies able to combine these volumes of
data hinders to analyze and comprehend what is really happening in the area
under surveillance.

In this paper, we analyze vessels of different kind during the time they reside
in generic port areas. The security of maritime environments may be jeopardized
by a great number of different threats: ships moving too rapidly or too slowly,
pairs of ships sailing too close to each other, small vessels obstructing the passage
for larger ships, and so forth. By understanding and labeling the movements in
the area we could build an intelligent system, capable of providing alerts or
warnings to the human operators (whose presence is obligatory in ports) when
the detected situations are not acknowledged as normal. The issue is that in
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crowded harbors it is likely to find many types of ships (motorboats, tugboats,
container ships, etc.) interacting in many different ways with the other moving
objects in the scene. In general terms, an interaction in maritime environments
[3] occurs when a ship comes too close to another ship, or too close to a river, or
to a canal bank. We focus on ship-to-ship interactions [3] [4] in ports, i.e. when
the presence and the movements of one ship affect the behavior of another, and
vice-versa. The ships type, the navigation rules [5] of the country in which the
port resides, the wind conditions, are all parameters that concur to define a
normal interaction between vessels. We assume the interaction to be over when
the two ships reach their destinations (for entering ships) or leave the port area
(for exiting ships).

In literature the ship-to-ship interaction problem has been mostly approached
by analyzing the hydrodynamic phenomena arising when two or more watercraft
are slightly spaced from each another [6] [4]. Bayesian reasoning [7] [8] [9] has
been extensively used to study the interaction of objects for different applications
and in different scenarios, but little has been done for the behavioral analysis
of pairs of ships. The reduction of the state space, necessary to carry out the
event-based approach described in the paper, is achieved by means of Topol-
ogy Representing Networks (TRNs), among which we choose the Instantaneous
Topological Map [10].

The paper is structured as follows. In Section 2 we analyze the techniques to
reduce the state space and partition the area in zones. Section 3 describes the
probabilistic approach based on the event detection and identification. In Section
4 we drawn some results by using data generated in a simulated environment
that replicates the port of Salerno, Italy. Section 5 is for conclusions and future
developments.

2 Reduction of State Space with Topology Representing
Networks

In this paper the actors in play, namely ships and vessels of different kinds and
shape, are treated as points moving in the 2D space described by the portion
of sea included in the port. For the i-th ship we can define the state vector
sit = (xi

t, y
i
t)

T , representing the position of the moving object at time t. The
analysis of behaviors and interactions between ships (and in general between
moving objects) by evaluating the low-level state space trajectories as they are
(without any modification) turns out to be quite a challenge, given the great
variability of the state space vectors relative to multiple ships in port areas
(even in small ones). However, we can exploit the fact that the “features” of a
port (i.e. the position and the shape of the docks, the common routes of the
ships, etc.) can be easily known a priori and do not change very often. If we
are able to construct a topological map of the harbor, it is possible to design
a higher-level algorithm where behaviors and interactions are emphasized and
emerge with more clarity.

The simplest way to build a map is to partition the area in zones of equal
size with a rectangular grid. However, this approach ignores that ships and
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vessels take only certain routes to enter or exit the port. The latter information
is precious because we expect an “intelligent” map to be more precise in the
zones where many ships pass through, and coarser in places rarely touched by
ships. The Topology Representing Networks (TRNs) are an important class of
algorithms that exploits at best the positional information of the actors in play,
by building a map from a dataset of moving objects exploring the scene. The
most famous TRN algorithms are the Self Organizing Maps (SOM) [11], but
in recent times other approaches have been proposed, as the Growing Neural
Gas (GNGs) [12] or the Instantaneous Topological Maps (ITMs) [10]. In this
paper the topological maps are built by means of ITMs, and this is motivated
by the fact that ITMs are quite good in handling strongly-correlated data, as
the one provided by ships and vessels sailing in the port. We do not report the
explanation of the algorithm, as it is a straightforward implementation of the
procedure detailed in [10]. In order to build the map, we need to set only two
parameters, namely the resolution emax and the smoothing parameter εitm.

Therefore we assume to have the map of the environment, i.e. to have a set
of Nn nodes, each of which corresponds to a zone. A zone can be defined as the
portion of the space whose points are closer (respect to a fixed distance definition,
as for example the Euclidean distance) to the generator node (the “center” of
the zone). The Bayesian models defined in Section 3 are based on zones changes
triggered by the moving vessels in the area. More in detail, when the i-th vessel

moves from zone a to zone b, an event εi
(a,b)

t = la → lb is triggered, where la and
lb are the labels identifying two neighboring zones and t ∈ N is the time at which

the event occurs. The events εi
(a,b)

t can be seen as the outcomes of the discrete
random variable E i

t , that will be the state of the Bayesian networks. If the vessel

remains in the same zone a for a Tmax time, a still event εi
(a,a)

t = la → la is
detected.

3 Bayesian Models

By means of an Event-based Dynamic Bayesian Network (E-DBN) [9] [7], we
define a normality model Θ1, relative to a target i-th ship sailing in the port. In
the E-DBN we encode the probability of the event εit, given the previous event
εi
t−Δi

t
through the following conditional probability (CPD),

Θ1 = p(εit|εit−Δi
t
). (1)

If the target ship is alone in the port (or very far from other ships) and does not
behave accordingly to the normality model (zig-zag trajectories, vessels stopping
in the middle of the port, etc.), we can infer that the behavior is abnormal and
a warning can be send to the operator.

Things are different when other vessels are nearby the target ship, because a
deviation from the normality could be due to interactions between the vessels (as
for instance a tugboat towing a cargo ship, a motorboat overtaking a sailboat,
etc.). For this reason it is useful to define the following parameters: (a) the



178 F. Castaldo, F.A.N. Palmieri, and C. Regazzoni

Euclidean distances dij (called influence distances) between the target i-th ship
and the other j-th ships which reside or maneuver in the port area; (b) an
influence threshold τi, that, compared with the dij distances, permits to verify
if the target i-th ship and the other j-th ships are close enough to interact
(dij < τi) or not. Actually, in the experimental part of this paper (Section 4)
we will use pairs of ships that, for simplicity, interact with each other during all
the time they maneuver in the harbor, but in general the influence distances are
very important in a multi-target scenario, where we do not know a priori who
interacts with whom.

Given these distances, it is possible to see the interactions between ships as
deviation from the normality described by the model defined in Equation (1).
More specifically, if the j-th ship is very close to the target ship (i.e. dij < τi),
the following interaction model can be defined

Θm = p(εit|εit−Δi
t
, εj

t−Δj
t

), (2)

where m = 2, ..,M denotes the type of interaction and εj
t−Δj

t

is the event relative

to the j-th ship, with t < Δj
t ≤ Δi

t. Equation (2) can be written as

p(εit|εit−Δi
t
, εj

t−Δj
t

) =
p(εit, ε

i
t−Δi

t
, εj

t−Δj
t

)

p(εi
t−Δi

t
, εj

t−Δj
t

)
=

p(εj
t−Δj

t

|εit, εit−Δi
t
)p(εit|εit−Δi

t
)

p(εj
t−Δj

t

|εi
t−Δi

t
)

, (3)

where p(εit|εit−Δi
t
) is the conditional probability defining the normality model

of Equation (1). In other words, we can define the interaction as deviation
from the normal model Θ1, by adding two CPDs, namely p(εj

t−Δj
t

|εit, εit−Δi
t
)

and p(εj
t−Δj

t

|εi
t−Δi

t
), and in this way we can reduce the number of CPDs to store

and use. In this paper we focus on a very common type of ship-to-ship inter-
action between two vessels, but the proposed approach can be extended to the
(unlikely) case of three and more interacting ships by adding the correspondent
events in the model defined in (2). For instance, in the case of three ships we
may define the CPD p(εit|εit−Δi

t
, εj

t−Δj
t

, εnt−Δn
t
), where n denotes the third ship

and t < Δn
t ≤ Δi

t.
The Bayesian networks just introduced can be used to infer the behavior

of ships maneuvering in the port, but only after an initial training process, in
which the conditional probabilities within the models are estimated and stored.
The latter CPDs describe the probability of a cause-effect relation between the
events of nearby vessels, and are calculated with a maximum likelihood training
algorithm [7], equivalent to counting the number of occurrences of the outcomes
of the CPDs in the dataset, normalized to the total number of occurrences.

The training of the network is performed with different datasets, related to
behavior and interaction models. We point out that in large port areas different
normality models (e.g. relative to different docks of the port) could exist, and
the same for the interaction models. In such cases the number of models could
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significantly grow, and this is the main reason we decided to model the interac-
tions as deviation from the normal path prescribed by the normality model.

If we assume to have M models Θm, m = 1, ..,M , in order to calculate the
probability that a new target ship behaves accordingly with the Θm model, the
following cumulative normalized measure is proposed

αm
k =

(
k − 1

k

)
αm
k−1 +

1

k
Θm, (4)

where k ∈ N denotes the number of detected events for the target ship and with
0 < αm

k < 1. The normality model Θ1 can be always evaluated with the data of
the target ship, while the interaction models Θ2,.., ΘM are used only if at least
another vessel is nearby the target ship (information provided by the evaluation
of the influence distances dij). Given the vessels trajectories, for each couple of
events we calculate αm

k and compare each model Θm with a threshold τn. If
none of the models is compatible with the trajectory (i.e. the αm values result
above the threshold for each m-model), we can infer that the ship behavior is
abnormal. We point out that αm

k is a function that takes into account the past
history along with the probability of the current events, and its trend can be
analyzed in real time to infer the behavior of the ship during the time period it
resides in the harbor.

4 Preliminary Results

In the following we report results of behavior analysis of ships in the Port of
Salerno, Italy. The data are provided by a realistic simulator of trajectories,
which reproduces the real structure of the port and generates the movements of
ships entering the port (for simplicity we assume only entering ships, but the
same reasoning can be applied when we have at the same time exiting ships).
Figure 1 left depicts an image of the harbor of Salerno, and indicates in black
the dock on which we focus our behavioral analysis. Figure 1 right depicts a
frame of the simulator.

As explained in Section 3, the first step is to build the normality model Θ1.
This is accomplished with Nitm = 150 noisy trajectories of vessels heading to the
dock. These trajectories are used at first to build the Instantaneous Topological
Map defined in Section 2, with emax = 5 and εitm = 0.1, and then to store the
CPDs of Equation (1) for different consecutive events. In Figure 1 left the ITM
is superimposed to the port image.

Given the normality model, it is possible to construct ship-to-ship interaction
models Θm, m = 2, ..,M , that are allowed in the portion of the port under
surveillance. For simplicity, we build a single interaction model, and show how
interactions not compatible with that model are robustly recognized. Given the
European maritime rules in harbors [13] [14], we define an interaction model
Θ2 relative to a sailboat and a motorboat trying to enter the port area at the
same time. The navigation rules prescribe that the ship with the highest level
of maneuverability (in this case, the motorboat) stops its engine, lets the other
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Fig. 1. Left: Satellite photo of the port of Salerno. We focus our attention to the
right dock (indicated with black lines) where small vessels as motorboats and sailboats
are allowed to land or depart (the other two major docks on the left are only for
container or cargo ships). On the same image the ITM on which the events are gathered
is superimposed. The green lines connect the neighbor nodes, and for each node we
define the correspondent zone as the locus of points that are closer to that node, with
respect to the others. Right: A picture taken from the simulator used in this paper,
that accurately reproduces the shape of the port and generates realistic trajectories of
ships in the area.

ship pass through the entrance and only after enters the port. We call this a
motorboat-sailboat interaction, because the target ship is always the motorboat
and the other ship is always the sailboat, and we generate the model by using
Nms = 300 noisy trajectories extracted from the simulator. We remark again
that other interactions (for instance two motorboats entering the port in the
same moment, a tugboat towing a container ship, etc.) are possible and can be
easily built in different Θm models. We have chosen empirically the value of
τi = 0.4 and Tmax = 3.

Once the ITM is created and models are assembled, inference on the data
can be carried on. More in detail, a high-quality system has to guarantee two
features: (a) low false alarm rates; (b) robust recognition of uncommon and
abnormal behaviors or interactions. In order to assess the first feature, in the
first experiment we test the Bayesian models with Nt1 = 200 noisy trajectories
of two nearby ships that act as motorboat and sailboat of the interaction model
Θ2. The single trajectories of these ships are compared with the normality model
Θ1, while at the same time the data from the two vessels are combined and
compared with the Θ2 model. In Figure 2 we depict the trend over the events
of the cumulative measure defined in Equation (4). The analysis of the figure
permits to draw the following conclusions: (a) the two trajectories singularly are
almost always recognized as belonging to the normality model (their trends in
very few cases and for little time are below the recognition threshold τi). This
is true because in the model there is no indication of the time spent during
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Fig. 2. This figure depicts the cumulative trends over the trajectories of interacting
motorboats and sailboats. The two plots on top are relative to the single trajectories
compared with the normality model Θ1, while the bottom plots are for the interaction
model Θ2.

the transition between events, therefore the fact that the motorboat stops at
the entrance is not captured by the normality model; (b) the interaction model
recognizes in most cases the motorboat-sailboat coupled behavior. Of course
this is true when the first ship is the motorboat and the other is the sailboat
(bottom left of Figure 2), and not when the ship roles are switched (bottom right
of Figure 2).

In the second experiment we assess the ability of the system to alert the op-
erator of strange or dangerous behaviors. We generate Nt2 = 100 trajectories
relative to an interaction named tugboat-cargo, representative of the situations
in which a large cargo ship is towed in the port by a tugboat. This type of inter-
action is not allowed in the dock we are monitoring, therefore it is a dangerous
situation that should be recognized. Even if the two ships are not a cargo and
a tugboat but two motorboats or sailboats traveling together, this can be con-
sidered still a noteworthy situation because two different ships so close in the
port area could collide and cause relevant damages to the harbor structures. In
Figure 3 are depicted the results, that are quite good and can be interpreted as
follows: the two trajectory, taken singularly, are compatible with the Θ1 model,
but their interaction is not recognized by the Θ2 model, except for very few
cases and only for a few number of events. Such situation (two ships behaving
in a normal way singularly but not interacting in a known way) can be easily
reported to the operator, that can decide to intervene or not.
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Fig. 3. In this figure the models are compared with the data of ships interacting ac-
cording to the tugboat-cargo model, in which one ship (the tug) tows the other (the
cargo) into the port. While singularly the two ships are behaving correctly, this inter-
action is not allowed in the small dock we are observing, and the trends of the various
cumulative measures permit to automatically evaluate such situation and to report it
to the operator.

5 Conclusion

This paper has presented an application of Bayesian networks for behavioral
analysis of multiple ships in port areas. The idea is to preserve the port safety
by classifying the movements of the different actors in the scene. The analysis
is complicated by the fact that multiple ships can interact in many ways, with
a number of interaction models that could become very large: the idea pursued
in this paper is to relate the interactions to normality models, i.e. by modeling
the interaction as deviation from the normal path taken by a ship maneuvering
without other vessels in the port area. In this way we construct interactions
starting from the normality model, reducing in this way the probabilistic data
we have to gather and use for inference. The computational load of the algorithm
is quite low, because after the training step the inference is carried on by simply
updating the cumulative measure for the normality and interaction models.

Other information can be gathered from moving ships and used to enhance the
probabilistic model. For instance, the travel time of the ships into the zones can
be saved along with the zone changes, and this information could be precious to
recognize abnormal behaviors strictly connected with the vessel speed (i.e. ships
that are too fast or slow, that stop into the middle of the port, etc.). Another
useful information could be the initial position of the ship entering in a zone
(i.e. from which part of the zone the ships usually enter), that could be used to
construct, within the zone, a low-level tracking model by which follow the ship.
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The latter information could be used to anticipate the behavioral analysis at the
level of the tracker instead of waiting for consecutive events (that for large zones
could be triggered after quite long times).

References

1. Costa concordia: What happened,
http://www.bbc.com/news/world-europe-16563562

2. Cargo ship crashes into port control tower in genoa killing three,
http://www.theguardian.com/world/2013/

may/08/italian-cargo-ship-crashes-genoa

3. Barrass, B.: Ship Design and Performance for Masters and Mates. Elsevier Science
(2004), http://books.google.it/books?id=2KaLDCpZgbQC

4. Eloot, K., Vantorre, M.: Ship behaviour in shallow and confined water: an overview
of hydrodynamic effects through efd. In: Assessment of Stability and Control Pre-
diction Methods for NATO Air and Sea Vehicles. NATO. Research and Technology
Organisation (RTO), p. 20 (2011)

5. U. N. E. C. for Europe. Working Party on Inland Water Transport. CEVNI:, ser.
TRANS/SC. 3/115/Rev. 2. UN (2002),
http://books.google.it/books?id=RVVsQticMUgC

6. The Second International Conference on Manoeuvring in Shallow & Confined Wa-
ters: Ship to Ship Interaction (May 2011)

7. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University
Press (2012)

8. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

9. Murphy, K.: Dynamic bayesian networks: Representation, inference and learning.
Ph.D. dissertation, UC Berkeley, Computer Science Division (July 2002)

10. Jockusch, J., Ritter, H.: An instantaneous topological mapping model for correlated
stimuli. In: International Joint Conference on Neural Networks, IJCNN 1999, vol. 1,
pp. 529–534 (1999)

11. Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps. In:
Anderson, J.A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of research,
pp. 509–521. MIT Press, Cambridge (1988),
http://dl.acm.org/citation.cfm?id=65669.104428

12. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural
Information Processing Systems 7, pp. 625–632. MIT Press (1995)

13. I. M. Organization, International Convention for the Safety of Life at Sea: consol-
idated text of the 1974 SOLAS Convention, the 1978 SOLAS Protocol, the 1981
and 1983 SOLAS Amendments, ser. IMO Publication. IMO (1986),
http://books.google.it/books?id=_5oTAAAAYAAJ

14. I. M. Organization, ISPS Code: International Ship and Port Facility Security Code
and SOLAS Amendments 2002 Adopted 12 December 2002, ser. IMO publication.
International Maritime Organization (2003),
http://books.google.it/books?id=MdUQAQAAIAAJ

http://www.bbc.com/news/world-europe-16563562
http://www.theguardian.com/world/2013/may/08/italian-cargo-ship-crashes-genoa
http://www.theguardian.com/world/2013/may/08/italian-cargo-ship-crashes-genoa
http://books.google.it/books?id=2KaLDCpZgbQC
http://books.google.it/books?id=RVVsQticMUgC
http://dl.acm.org/citation.cfm?id=65669.104428
http://books.google.it/books?id=_5oTAAAAYAAJ
http://books.google.it/books?id=MdUQAQAAIAAJ

	Application of Bayesian Techniques to Behavior Analysis in Maritime Environments
	1Introduction
	2Reduction of State Space with Topology Representing Networks
	3Bayesian Models
	4Preliminary Results
	5Conclusion




