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Abstract. The paper presents main features of the conic scalarization
method in multiobjective optimization. The conic scalarization method
guarantees to generate all proper efficient solutions and does not require
any kind of convexity or boundedness conditions. In addition the prefer-
ence and reference point information of the decision maker is taken into
consideration by this method. In this paper, relations with other scalar-
ization methods are investigated and it is shown that some efficient solu-
tions computed by the Pascoletti-Serafini and the Benson’s scalarization
methods, can be obtained by the conic scalarization method.
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1 Introduction

In general, scalarization means the replacement of a multiobjective optimization
problem by a suitable scalar optimization problem which is an optimization
problem with a real valued objective function.

In this paper we give main features of the conic scalarization method. The
conic scalarization method enables to completely characterize the whole set
of efficient and properly efficient solutions of multiobjective problems without
convexity and boundedness conditions.

In this paper we present theorems which establish relations between the conic
scalarization and the Pascoletti-Serafini and the Benson’s scalarization methods.
It is shown that some efficient solutions computed by the Pascoletti-Serafini and
the Benson’s scalarization methods, can be obtained by the conic scalarization
method.
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The rest of the paper is organized as follows. Section 2 gives some pre-
liminaries. Main characteristics of the conic scalarization method are given in
Section 3. In section 4, new relations between the conic scalarization method and
Pascoletti-Serafini and Benson’s scalarization methods are established. Finally,
Section 5 draws some conclusions from the paper.

2 Preliminaries

We begin this section with standard definitions from multi-objective optimiza-
tion.

Let R
n
+ := {y = (y1, ..., yn) : yi ≥ 0, i = 1, . . . , n}, and let Y ⊂ R

n be a
nonempty set.

Throughout the paper, R+ denotes the set of nonnegative real numbers. cl(Y),
bd(Y), int(Y), and co(Y) denote the closure, the boundary, the interior, and the
convex hull of a set Y, respectively.

A nonempty subset C of Rn is called a cone if y ∈ C, λ ≥ 0 ⇒ λy ∈ C.
Pointedness of C means that C ∩ (−C) = {0Rn}.

We will assume that Rn is partially ordered by a convex pointed cone C ⊂ R
n.

Definition 1. 1. An element y ∈ Y is called a minimal element of Y (with
respect to the ordering cone C) if ({y} − C) ∩ Y = {y}.

2. An element y ∈ Y is called a weakly minimal element of Y if ({y}− int(C))∩
Y = ∅.

3. An element y ∈ Y is called a properly minimal element of Y in the sense of
Benson [1] if y is a minimal element of Y and the zero element of Rn is a
minimal element of cl(cone(Y+C−{y})), where cone(Y) := {λy : λ ≥ 0, y ∈
Y}.

4. An element y ∈ Y is called a properly minimal element of Y in the sense
of Henig [11] if it is a minimal element of Y with respect to some convex
cone K with C \ {0Rn} ⊂ int(K).

Henig proved that in the case when the vector space is partially ordered by a
closed pointed cone, the two definitions of proper efficiency given in Definition
1, are equivalent (see [11, Theorem 2.1]). Therefore, in the sequel we simply will
use the notion of proper efficiency.

Consider a multiobjective optimization problem (in short MOP):

min
x∈X

[f1(x), ..., fn(x)], (1)

where X is a nonempty set of feasible solutions and fi : X → R, i = 1, ..., n
are real-valued functions. Let f(x) = (f1(x), . . . , fn(x)) for every x ∈ X and let
Y := f(X).

Definition 2. A feasible solution x ∈ X is called efficient, weakly efficient or
properly efficient solution of multi-objective optimization problem (1) if y = f(x)
is a minimal, weakly minimal or properly minimal element of Y, respectively.
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Let y = (y1, . . . , yn) ∈ R
n. ‖y‖1 =

∑n
i=1 |yi|, ‖y‖2 = (y21 + · · · + y2n)

1/2, and
‖y‖∞ = max{|y1|, . . . , |yn|} denote the l1, l2 (Euclidean), and l∞ norms of y,
respectively.

Let C be a given cone in R
n. Recall that the dual cone C

∗ of C and its
quasi-interior C# are defined by

C
∗ = {w ∈ R

n : wT y ≥ 0 for all y ∈ C} (2)

and
C

# = {w ∈ R
n : wT y > 0 for all y ∈ C \ {0}}, (3)

respectively, where wT denotes the transpose of vector w, and wT y =
∑n

i=1 wiyi
is the scalar product of vectors w = (w1, . . . wn) and y = (y1, . . . , yn). The ele-
ments of these cones define monotone and strongly monotone linear functionals
whose level sets (hyperplanes) are used to characterize support points of convex
sets.

The following three cones called augmented dual cones of C were introduced in
[14], and it was proven that the elements of these cones define monotone sublinear
functionals with conical level sets. Due to this property, these functionals are
used to generate efficient solutions of nonconvex multiobjective problems.

C
a∗ = {(w,α) ∈ C

# × R+ : wT y − α‖y‖ ≥ 0 for all y ∈ C}, (4)

C
a◦ = {(w,α) ∈ C

# × R+ : wT y − α‖y‖ > 0 for all y ∈ int(C)}, (5)

and

C
a# = {(w,α) ∈ C

# × R+ : wT y − α‖y‖ > 0 for all y ∈ C \ {0}}, (6)

where C is assumed to have a nonempty interior in the definition of Ca◦.

3 Conic Scalarization (CS) Method

The history of development of the CS method goes back to the paper [5], where
Gasimov introduced a class of monotonically increasing sublinear functions on
partially ordered real normed spaces and showed without convexity and bound-
edness assumptions that support points of a set obtained by using these functions
are properly minimal in the sense of Benson [1]. The question of ”can every prop-
erly minimal point of a set be calculated in a similar way”, was answered only in
the case when the objective space is partially ordered by a certain Bishop–Phelps
cone. Since then, different theoretical and practical applications by using the sug-
gested class of sublinear functions have been realized [3,6,7,8,9,12,13,14,17,20,22].
The theoretical fundamentals of the conic scalarization method in general form
was firstly explained in [14]. The full description of the method is given in [15].

The idea of the CS method is very simple: choose preference parameters which
consist of a weight vector w ∈ C

# and a reference point a ∈ R
n, determine an

augmentation parameter α ∈ R+ such that (w,α) ∈ C
a∗ (or (w,α) ∈ C

a◦, or
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(w,α) ∈ C
a#), where for a convenience the l1−norm is used, and solve the scalar

optimization problem:

min
x∈X

n∑

i=1

wi(fi(x)− ai) + α
n∑

i=1

|fi(x)− ai| (CS(w,α, a))

The set of optimal solutions of this scalar problem will be denoted by
Sol(CS(w,α, a)). Reference point a = (a1, . . . , an) may be identified by a de-
cision maker in cases when she/he desires to calculate minimal elements that
are close to some point. The CS method does not impose any restrictions on
the ways for determining reference points. The reference point can be chosen
arbitrarily.

The following theorem quoted from [15] explains main properties of solutions
obtained by the conic scalarization method in the case when C = R

n
+. This

special case for the cone determining the partial ordering, allows one to explic-
itly determine augmented dual cones which are used for choosing scalarizing
parameters (w,α). For the general case of this theorem see [14, Theorem 5.4].

Theorem 1. [15, Theorem 6] Let a ∈ R
n be a given reference point, and let

C = R
n
+. Assume that Sol(CS(w,α, a)) 
= ∅ for a given pair (w,α) ∈ C

a∗. Then
the following hold.

(i) If

(w,α) ∈ C
a◦ = {((w1, . . . , wn), α) : 0 ≤ α ≤ wi, wi > 0, i = 1, . . . , n

and there exists k ∈ {1, · · · , n} such that wk > α},
then every element of Sol(CS(w,α, a)) is a weakly efficient solution of (1).

(ii) If Sol(CS(w,α, a)) consists of a single element, then it is an efficient solu-
tion (1).

(iii) If

(w,α) ∈ C
a# = {((w1, . . . , wn), α) : 0 ≤ α < wi, i = 1, . . . , n},

then every element of Sol(CS(w,α, a)) is a properly efficient solution of (1),
and conversely, if x is a properly efficient solution of (1), then there exists
(w,α) ∈ C

a# and a reference point a ∈ R
n such that x is a solution of

Sol(CS(w,α, a)).

The following theorem gives simple characterization of minimal elements.

Theorem 2. [15, Theorem 7] Let Y ⊂ R
n be a given nonempty set and let

C = R
n
+. If y is a minimal element of Y, then y is an optimal solution of the

following scalar optimization problem:

min
y∈Y

{
n∑

i=1

(yi − yi) +

n∑

i=1

|yi − yi|}. (7)
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By using assertions of Theorems 1 and 2, we arrive at the following con-
clusion. By solving the problem (CS(w,α, a)) for “all” possible values of the
augmentation parameter α between 0 and min{w1, . . . , wn}, one can calculate
all the efficient solutions corresponding to the decision maker’s preferences (the
weighting vector w = (w1, . . . , wn) and the reference point a).

The following two remarks illustrate the geometry of the CS method.

Remark 1. It is clear that in the case when α = 0 (or, if f(X) ⊆ {a} ± C) the
objective function of the scalar optimization problem (CS(w,α, a)) becomes an
objective function of the weighted sum scalarization method. The minimization
of such an objective function over a feasible set enables to obtain only those
efficient solutions x (if the corresponding scalar problem has a solution), for
which the minimal vector f(x) is a supporting point of the objective space with
respect to some hyperplane

H(w) = {y : wT y = β},
where β = wT f(x). It is obvious that minimal points which are not supporting
points of the objective space with respect to some hyperplane, cannot be detected
by this way. By augmenting the linear part in (CS(w,α, a)) with the norm term
(using a positive augmentation parameter α), the hyperplane H(w) becomes a
conic surface defined by the cone

S(w,α) = {y ∈ R
n : wT y + α‖y‖ ≤ 0}, (8)

and therefore the corresponding scalar problem (CS(w,α, a)) computes solution
x, for which the corresponding vector f(x) is a supporting point of the objec-
tive space with respect to this cone. The change of the α, leads to a different
supporting cone. The supporting cone corresponding to some weight vector w
becomes narrower as α increases, and the smallest cone (which anyway contains
the ordering cone) is obtained when α equals its maximum allowable value (for
example, min{w1, . . . , wn}, if (w,α) ∈ C

a#). This analysis shows that by chang-
ing the α parameter, one can compute different minimal points of the problem
corresponding to the same weight vector. And since the method computes sup-
porting points of the decision space with respect to cones (if α 
= 0), it becomes
clear why this method does not require convexity and boundedness conditions
and why it is able to find optimal points which cannot be detected by hyper-
planes. Since the cases α = 0, or f(X) ⊆ {a}±C leads to the objective function
of the weighted sum scalarization method, we can say that the CS method is a
generalization of the weighted sum scalarization method.

Remark 2. It follows from the definition of augmented dual cone that wT y −
α‖y‖ ≥ 0 for every (w,α) ∈ C

a∗ and all y ∈ C. Hence

C ⊂ C(w,α) = {y ∈ R
n : wT y − α‖y‖ ≥ 0}, (9)

where C(w,α) is known as the Bishop-Phelps cone corresponding to a pair
(w,α) ∈ C

a∗. It has been proved that, if C is a closed convex pointed cone
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having a weakly compact base, then

C = ∩(w,α)∈Ca∗C(w,α),

see [14, Theorems 3.8 and 3.9].
On the other hand, since wT y−α‖y‖ ≥ 0 for every (w,α) ∈ C

a∗ and all y ∈ C,
then clearly wT y + α‖y‖ ≤ 0 for every y ∈ −C. Thus we conclude that all the
cones S(w,α) = {y ∈ R

n : wT y+α‖y‖ ≤ 0} (see (8)) with (w,α) ∈ C
a∗, contain

the ordering cone −C. Moreover if (w,α) ∈ C
a# then we have [14, Lemma 3.6]

− C \ {0} ∈ int(S(w,α)) = {y ∈ R
n : wT y + α‖y‖ < 0}. (10)

Due to this property, the CS method guarantees to calculate ”all” properly
efficient solutions corresponding to the given weights and the given reference
point. That is, every solution of the scalar problem (CS(w,α, a)), is a properly
efficient solutions of the multi-objective optimization problem (1), if (w,α) ∈
C

a#, see Theorem 1 (iii).
In some cases for a given cone C and a given norm, there may be available to

find a pair (w,α) ∈ C
a∗ such that C = C(w,α). For example if C = R

n
+ then

R
n
+ = C(w1, α1) = {y ∈ R

n : (w1)T y − α1‖y‖1 ≥ 0}, (11)

where w1 = (1, ..., 1) ∈ R
n, α1 = 1, and the l1 norm is used in the definition (see

[15, Lemma 4]). Similarly, Rn
− can be represented as a level set S(w1, α1) (see

(8)) of the function

g(w1,α1)(y) = y1 + . . .+ yn + |y1|+ . . .+ |yn| (12)

in the form:

R
n
− = S(w1, α1) = {(y1, . . . , yn) ∈ R

n : y1+ . . .+yn+ |y1|+ . . .+ |yn| ≤ 0}. (13)

Hence, it becomes clear that the presented scalarization method enables one
to calculate minimal elements which are ”supporting” elements of f(X) with
respect to the conic surfaces like S(w,α) (see (8)). In practice, one can divide
the interval between 0 and min{w1, . . . , wn} into several parts, and for all these
values of the augmentation parameter α, the scalar problem (CS(w,α, a)) can be
solved for the same weights and the same reference point chosen. This will enable
decision maker to compute different efficient solutions (if any) with respect to
the same set of weights. The scalar problem (CS(w,α, a)) is nonsmooth and
nonconvex if the original problem is not convex. Such a problem can be solved
by using some standard softwares (see, for example [9,12,22]), or special solution
algorithms can be applied, see for example [6,8,16].

4 Relations with Other Methods

In this section we present theorems which establish relations between the CS,
the Pascoletti-Serafini (PSS) and the Benson’s (BS) scalarization methods. It is
shown that some efficient solutions computed by the PSS and the BS methods,
can be obtained by the CS method.
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4.1 Relations between the Conic Scalarization (CS) and the
Pascoletti-Serafini Scalarization (PSS) Methods

The method known as the Pascoletti-Serafini scalarization method, is studied in
[10,18,21] by Tammer, Weidner, Winkler, Pascoletti and Serafini.

The scalar problem of the PSS method is defined as follows:

minimize t (PSS(a, r))

s.t. a+ tr − f(x) ∈ C

x ∈ X, t ∈ R,

where a ∈ R
n and r ∈ C are parameters of (PSS(a, r)). The problem (PSS(a, r))

can also be written in the form (see [4])

minimize t (14)

s.t. a+ tr − C ∩ f(X) 
= ∅, t ∈ R.

This problem can be interpreted in the following form. The ordering cone C is
moved in direction −r along the line a + tr till the set (a + tr − C) ∩ f(X) is
reduced to the empty set. The smallest value t̄ for which (a+ t̄r−C)∩f(X) 
= ∅
is the solution of (14). If the pair (t̄, x̄) is a solution of (PSS(a, r)) the element
ȳ = f(x̄) with ȳ ∈ (a+ t̄r−C)∩f(X) will be characterized as a weakly minimal
solution of (1).

Theorem 3. Assume that C is a closed convex pointed cone with nonempty inte-
rior, and that a ∈ R

n, r ∈ int(C) and (t̄, x̄) is an optimal solution of (PSS(a, r)).
Then, there exists a weight vector w̄ = (w̄1, ...w̄n) ∈ C

# and an augmentation
parameter ᾱ ≥ 0 with (w̄, ᾱ) ∈ Ca◦ such that

min
x∈X

w̄T (f(x)− a) + ᾱ‖f(x)− a‖ ≤ t̄.

Proof. Let (w,α) ∈ Ca◦. By definition of Ca◦ (see also (9)), C ⊂ C(w,α). Then
problem (PSS(a, r)) can be written in the following form with possibly a broader
set of feasible solutions:

minimize t (PSSC(w,α)(a, r))

s.t a+ tr − f(x) ∈ C(w,α)

x ∈ X,

By definition of C(w,α), the inclusion a+ tr − f(x) ∈ C(w,α) implies

wT (a+ tr − f(x))− α‖a+ tr − f(x)‖ ≥ 0,

or
wT (f(x)− a− tr) + α‖f(x)− a− tr‖ ≤ 0.

Obviously,
α(‖f(x)− a‖ − ‖tr‖) ≤ α‖f(x)− a− tr‖.
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Then if we change the norm term by the left hand side in the above inequality,
the set of feasible solutions of (PSSC(w,α)(a, r)) will again be extended:

wT (f(x)− a) + α‖f(x)− a‖ ≤ twT r + |t|α‖r‖. (15)

In dependence on the sign of t̄ we can consider only positive or only negative
range for t in (15). If only negative (or only positive) values of t will be considered
then the right hand side of (15) becomes t(wT r−α‖r‖) (or t(wT r+α‖r‖)). Since
r ∈ int(C) and (w,α) ∈ Ca◦ we have wT r − α‖r‖ > 0 (or wT r + α‖r‖ > 0).

Thus, by dividing both sides of (15) with wT r−α‖r‖ > 0 (or wT r+α‖r‖ > 0)
and denoting w̄ = w/(wT r−α‖r‖) and ᾱ = α/(wT r−α‖r‖) (or w̄ = w/(wT r+
α‖r‖) and ᾱ = α/(wT r+α‖r‖)), we obtain that the problem (PSSC(w,α)(a, r))
can be written (with a possibly broader feasible set) in the form:

minimize t (16)

s.t w̄T (f(x)− a) + ᾱ‖f(x)− a‖ ≤ t (17)

x ∈ X, (18)

This problem is equivalent to the following problem (CS(w̄, ᾱ, a)):

min
x∈X

[w̄T (f(x) − a) + ᾱ‖f(x)− a‖].

Since the set of feasible solutions of problem (16) - (18) is larger than the one of
(PSS(a, r)), we obtain

min
x∈X

[w̄T (f(x)− a) + ᾱ‖f(x)− a‖] ≤ t̄,

which completes the proof of theorem.

4.2 Relationship between the Conic Scalarization (CS) and the
Benson’s (BS) methods.

In this section we explain relationship between the BS and the CS methods.
The idea of the BS method is to choose some initial feasible solution x0 ∈ X
and, if it is not itself efficient, produce a dominating solution that is. To do so,
nonnegative deviation variables li = fi(x

0) − fi(x) are introduced, and their
sum is maximized. This results in an x dominating x0, if one exists, and the
objective ensures that it is efficient, pushing x as far from x0 as possible. The
corresponding scalar problem for given x0 is:

max
∑n

i=1 li (BS(x0))

s.t.

fi(x
0)− li − fi(x) = 0, i = 1, . . . , n

l � 0, x ∈ X.
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Theorem 4. Let x̄ be an efficient solution to (1). Suppose that x̄ is an optimal
solution of Benson scalar problem (BS(x0)) for a feasible solution x0 ∈ X. Then
x̄ is an optimal solution of the conic scalar problem CS(w1, α1, f(x0)), where
w1 = (1, . . . , 1) ∈ R

n, α1 = 1, and the l1 norm is used:

minx∈X

n∑

i=1

(fi(x)− fi(x
0)) +

n∑

i=1

|fi(x)− fi(x
0)|.

Proof. Since f(x0) ∈ f(X), f(x̄) ∈ f(x0)−Rn
+ and (see (13))

−Rn
+ = {y : (w1)T y + α1‖y‖1 ≤ 0},

we have:
n∑

i=1

(fi(x)− fi(x
0)) +

n∑

i=1

|fi(x)− fi(x
0)| = 0

for all x ∈ X0 = {x ∈ X : f(x) ∈ f(x0) − Rn
+}, and in particular for x = x̄.

Obviously,
n∑

i=1

(fi(x)− fi(x
0)) +

n∑

i=1

|fi(x)− fi(x
0)| > 0

for all x ∈ X \X0 which completes the proof.

Theorem 5. Let x̄ be an optimal solution of Benson scalar problem (BS(x0))
for a feasible solution x0 ∈ X. Assume that x̄ is a properly efficient solution to
(1). Then there exists ᾱ ∈ [0, 1) such that x̄ is an optimal solution of the conic
scalar problem CS(w1, ᾱ, f(x̄)), where w1 = (1, . . . , 1) ∈ R

n with the l1 norm:

minx∈X

n∑

i=1

(fi(x) − fi(x̄)) + ᾱ

n∑

i=1

|fi(x) − fi(x̄)|. (19)

Proof. We have:
−Rn

+ = {y : (w1)T y + α1‖y‖1 ≤ 0},
and clearly

−R
n
+ \ {0} ∈ int({y ∈ R

n : (w1)T y + α‖y‖ ≤ 0}),
for every α ∈ [0, 1) (see (10)), where

int({y ∈ R
n : (w1)T y + α‖y‖ ≤ 0}) = {y ∈ R

n : (w1)T y + α‖y‖ < 0}).
Since x̄ is a properly efficient solution to (1), there exists ᾱ ∈ [0, 1) such that

{f(x̄)}+ {y ∈ R
n : (w1)T y + ᾱ‖y‖ ≤ 0} ∩ f(X) = {f(x̄)}.

This leads

{y ∈ R
n : (w1)T (y − f(x̄)) + ᾱ‖y − f(x̄)‖ ≤ 0} ∩ f(X) = {f(x̄)}.

The last relation means that

(w1)T (f(x)− f(x̄)) + ᾱ‖f(x)− f(x̄)‖ ≥ 0

for every x ∈ X. which proves the theorem.
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5 Conclusion

In this paper, the conic scalarization method is analyzed and main properties
of solutions obtained by this method are explained. Additionally simple charac-
terization of minimal elements is given. It has been emphasized that the conic
scalarization method guarantee to generate the proper efficient solutions while it
does not require any kind of convexity and/or boundedness assumptions. In ad-
dition the preference and reference point information of decision maker is taken
into consideration by this method.

The paper also discussed relations between the conic scalarization method and
Pascoletti-Serafini and Benson’s scalarization methods. It has been shown that
some solutions obtained by the Pascoletti-Serafini and Benson’s scalarization
methods, can also be obtained by the conic scalarization method.
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