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Abstract. The self-concordant-like property of a smooth convex func-
tion is a new analytical structure that generalizes the self-concordant
notion. While a wide variety of important applications feature the self-
concordant-like property, this concept has heretofore remained unex-
ploited in convex optimization. To this end, we develop a variable metric
framework of minimizing the sum of a “simple” convex function and a
self-concordant-like function. We introduce a new analytic step-size selec-
tion procedure and prove that the basic gradient algorithm has improved
convergence guarantees as compared to “fast” algorithms that rely on the
Lipschitz gradient property. Our numerical tests with real-data sets show
that the practice indeed follows the theory.

1 Introduction

In this paper, we consider the following composite convex minimization problem:

F � := min
x∈Rn

{F (x) := f(x) + g(x)} , (1)

where f is a nonlinear smooth convex function, while g is a “simple” possibly
nonsmooth convex function. Such composite convex problems naturally arise in
many applications of machine learning, data sciences, and imaging science. Very
often, f measures a data fidelity or a loss function, and g encodes a form of
low-dimensionality, such as sparsity or low-rankness.

To trade-off accuracy and computation optimally in large-scale instances of
(1), existing optimization methods invariably invoke the additional assumption
that the smooth function f also has an L-Lipschitz continuous gradient (cf., [11]
for the definition). A highlight is the recent developments on proximal gradient
methods, which feature (nearly) dimension-independent, global sublinear con-
vergence rates [3,9,11]. When the smooth f in (1) also has strong regularity [15],
the problem (1) is also within the theoretical and practical grasp of proximal-
(quasi) Newton algorithms with linear, superlinear, and quadratic convergence
rates [5,8,17]. These algorithms specifically exploit second order information or
its principled approximations (e.g., via BFGS or L-BFGS updates [13]).

In this paper, we do away with the Lipschitz gradient assumption and in-
stead focus on another structural assumption on f in developing an algorithmic
framework for (1), which is defined below.
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Definition 1. A convex function f ∈ C3(Rn) is called a self-concordant-like
function f ∈ Fscl, if:

|ϕ′′′(t)| ≤ Mfϕ
′′(t) ‖u‖2 , (2)

for t ∈ R and Mf > 0, where ϕ(t) := f(x+ tu) for any x ∈ dom(f) and u ∈ R
n.

Definition 1 mimics the standard self-concordance concept ([10, Definition
4.1.1]) and was first discussed in [1] for model consistency in logistic regres-
sion. For composite convex minimization, self-concordant-like functions abound
in machine learning, including but not limited to logistic regression, multinomial
logistic regression, conditional random fields, and robust regression (cf., the ref-
erences in [2]). In addition, special instances of geometric programming [6] can
also be recast as (1) where f ∈ Fscl.

The importance of the assumption f ∈ Fscl in (1) is twofold. First, it en-
ables us to derive an explicit step-size selection strategy for proximal variable
metric methods, enhancing backtracking-line search operations with improved
theoretical convergence guarantees. For instance, we can prove that our proxi-
mal gradient method can automatically adapt to the local strong convexity of f
near the optimal solution to feature linear convergence under mild conditions.
This theoretical result is backed up by great empirical performance on real-life
problems where the fast Lipschitz-based methods actually exhibit sublinear con-
vergence (cf. Section 4). Second, the self-concordant-like assumption on f also
helps us provide scalable numerical solutions of (1) for specific problems where f
does not have Lipschitz continuous gradient, such as special forms of geometric
programming problems.

Contributions. Our specific contributions can be summarized as follows:

1. We propose a new variable metric framework for minimizing the sum f+g of
a self-concordant-like function f and a convex, possibly nonsmooth function
g. Our approach relies on the solution of a convex subproblem obtained by
linearizing and regularizing the first term f , and uses an analytical step-size
to achieve descent in three classes of algorithms: first order methods, second
order methods, and quasi-Newton methods.

2. We establish both the global and the local convergence of different variable
metric strategies. We pay particular attention to diagonal variable metrics
since in this case many of the proximal subproblems can be solved exactly.
We derive conditions on when and where these variants achieve locally linear
convergence. When the variable metric is the Hessian of f at each iteration,
we show that the resulting algorithm locally exhibits quadratic convergence
without requiring any globalization strategy such as a backtracking line-
search.

3. We apply our algorithms to large-scale real-world and synthetic problems to
highlight the strengths and the weaknesses of our variable-metric scheme.

Relation to Prior Work.Manyof the composite problemswith self-concordant-
like f , such as regularized logistics and multinomial logistics, also have Lipschitz
continuous gradient. In those specific instances, many theoretically efficient algo-
rithms are applicable [3,5,8,9,11,17]. Compared to these works, our framework has
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theoretically stronger local convergence guarantees thanks to the specific step-size
strategy matched with f ∈ Fscl. The authors of [18] consider composite problems
where f is standard self-concordant and proposes a proximal Newton algorithm
optimally exploiting this structure. Our structural assumptions and algorithmic
emphasis here are different.

Paper Organization. We first introduce the basic definitions and optimality
conditions before deriving the variable metric strategy in Section 2. Section 3
proposes our new variable metric framework, describes its step-size selection
procedure, and establishes the convergence theory of its variants. Section 4 il-
lustrates our framework in real and synthetic data.

2 Preliminaries

We adopt the notion of self-concordant functions in [10,12] to a different smooth
function class. Then we present the optimality condition of problem (1).

2.1 Basic Definitions

Let g : Rn → R be a proper, lower semicontinuous convex function [16] and
dom(g) denote the domain of g. We use ∂g(x) to denote the subdifferential of g
at x ∈ dom (g) if g is nondifferentiable at x and ∇g(x) to denote its gradient,
otherwise. Let f : R

n → R be a C3(dom(f)) function (i.e., f is three times
continuously differentiable). We denote by ∇f(x) and ∇2f(x) the gradient and
the Hessian of f at x, respectively. Suppose that, for a given x ∈ dom (f),
∇2f(x) is positive definite (i.e., ∇2f(x) ∈ Sn

++), we define the local norm of a

given vector u ∈ R
n as ‖u‖x := [uT∇2f(x)u]1/2. The corresponding dual norm

of u, ‖u‖∗x is defined as ‖u‖∗x := max
{
uTv | ‖v‖x ≤ 1

}
= [uT∇2f(x)−1u]1/2.

2.2 Composite Self-Concordant-Like Minimization

Let f ∈Fscl(R
n) and g be proper, closed and convex. The optimality condition

for (1) can be concisely written as follows:

0 ∈ ∇f(x�) + ∂g(x�). (3)

Let us denote by x� as an optimal solution of (1). Then, the condition (3) is
necessary and sufficient. We also say that x� is nonsingular if∇2f(x�) is positive
definite. We now establish the existence and uniqueness of the solution x� of (1),
whose proof can be found in [19].

Lemma 1. Suppose that f ∈Fscl(R
n) satisfies Definition 1 for some Mf > 0.

Suppose further that ∇2f(x) � 0 for some x ∈ dom(f). Then the solution x� of
(1) exists and is unique.
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For a given symmetric positive definite matrix H, we define a generalized prox-
imal operator proxH−1g as:

proxH−1g(x) := argmin
z

{
g(z) + (1/2) ‖z− x‖2H−1

}
. (4)

Due to the convexity of g, this operator is well-defined and single-valued. If we
can compute proxH−1g efficiently (e.g., by a closed form or by polynomial time
algorithms), then we say that g is proximally tractable. Examples of proximal
tractability convex functions can be found, e.g., in [14]. Using proxH−1g, we can
write condition (1) as:

x� −H−1∇f(x�) ∈ (I+H−1∂g)(x�) ⇐⇒ x� = proxH−1g(x
� −H−1∇f(x�)).

This expression shows that x� is a fixed point of RH(·) := proxH−1g((·) −
H−1∇f(·)). Based on the fixed point principle, one can expect that the iter-
ative sequence

{
xk

}
k≥0

generated by xk+1 := RH(xk) converges to x�. This

observation is made rigorous below.

3 Our Variable Metric Framework

We first present a generic variable metric proximal framework for solving (1).
Then, we specify this framework to obtain three variants: proximal gradient,
proximal Newton and proximal quasi-Newton algorithms.

3.1 Generic Variable Metric Proximal Algorithmic Framework

Given xk ∈ dom (F ) and an appropriate choice Hk ∈ Sn
++, since f ∈ Fscl, one

can approximate f at xk by the following quadratic model:

QHk
(x,xk) := f(xk) + 〈∇f(xk),x− xk〉+ 1

2
〈Hk(x− xk),x− xk〉. (5)

Our algorithmic approach uses the variable metric forward-backward framework
to generate a sequence

{
xk

}
k≥0

starting from x0 ∈ dom(F ) and update:

xk+1 := xk + αkd
k (6)

where αk ∈ (0, 1] is a given step-size and dk is a search direction defined by:

dk := sk − xk, with sk := argmin
x

{
QHk

(x,xk) + g(x)
}
. (7)

In the rest of this section, we explain how to determine the step size αk in the
iterative scheme (6) optimally for special cases of Hk. For this, we need the
following definitions:

λk := ‖dk‖xk , rk := Mf‖dk‖2, and βk := ‖dk‖Hk
= 〈Hkd

k,dk〉1/2. (8)
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3.2 Proximal-Gradient Algorithm

When the variable matrix Hk is diagonal and g is proximally tractable, we can
efficiently obtain the solution of the subproblem (7) in a distributed fashion or
even in a closed form. Hence, we considerHk = Dk := diag(Dk,1, · · · ,Dk,n) with
Dk,i > 0, for i = 1, · · · , n. Lemma 2, whose proof is in [19], provides a step-size
selection procedure and proves the global convergence of this proximal-gradient
algorithm.

Lemma 2. Let
{
xk

}
k≥0

be a sequence generated by (6) and (7) starting from

x0 ∈ dom (F ). For λk, rk and βk defined by (8), we consider the step-size
αk as:

αk :=
1

rk
ln

(
1 +

β2
krk
λ2
k

)
, (9)

If β2
krk ≤ (erk − 1)λ2

k, then αk ∈ (0, 1] and:

F (xk+1) ≤ F (xk)− β2
k

rk

[(
1 +

λ2
k

rkβ2
k

)
ln

(
1 +

β2
krk
λ2
k

)
− 1

]
. (10)

Moreover, this step-size αk is optimal (w.r.t. the worst-case performance).

By our condition, the second term on the right-hand side of (10) is always
positive, establishing that the sequence

{
F (xk)

}
is decreasing. Moreover, as

erk − 1 ≥ rk, the condition β2
krk ≤ (erk − 1)λ2

k can be simplified to βk ≤ λk.
It is easy to verify that this is satisfied whenever Dk 
 ∇2f(xk). In such cases,
our step-size selection ensures the best decrease of the objective value regarding
the self-concordant-like structure of f (and not the actual objective instance).
When βk > λk, we scale down Dk until βk ≤ λk. It is easy to prove that the
number of backtracking steps to find Dk,i is time constant.

Now, by using our step-size (9), we can describe the proximal-gradient algo-
rithm as in Algorithm 1.

Algorithm 1. (Proximal-gradient algorithm with a diagonal variable metric)

Initialization: Given x0 ∈ dom(F ), and a tolerance ε > 0.
for k = 0 to kmax do

1. Choose Dk ∈ Sn
++ (e.g., using Dk := LkI, where Lk is given by (11)).

2. Compute the proximal-gradient search direction dk as (7).
3. Compute βk := ‖dk‖Dk , rk := Mf‖dk‖2 and λk := ‖dk‖xk .
4. If βk ≤ ε then terminate.

5. If β2
krk ≤ (erk−1)λ2

k, then compute αk := 1
rk

ln
(
1 +

β2
krk
λ2
k

)
and update xk+1 :=

xk + αkd
k. Otherwise, set xk+1 := xk and update Dk+1 from Dk.

end for

We combine the above analysis to obtain the following proximal gradient al-
gorithm for solving (1). The main step in Algorithm 1 is to compute the search
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direction dk at Step 2, which is equivalent to the solution of the convex sub-
problem (7). The second main step is to compute λk = 〈∇2f(xk)dk,dk〉1/2.
This quantity requires the product of Hessian ∇2f(xk) of f and dk, but not the
full-Hessian. It is clear that if βk = 0 then dk = 0 and xk+1 ≡ xk and we obtain
the solution of (1), i.e., xk ≡ x�. The diagonal matrix Dk can be updated as
Dk+1 := cDk for a given factor c > 1.

We now explain how the new theory enhances the standard backtracking
linesearch approaches. For simplicity, let us assume Dk := LkI, where I is the
identity matrix. By a careful inspection of (10), we see that Lk = σmax(∇2f(xk))
achieves the maximum guaranteed decrease (in the worst case sense) in the
objective. There are many principled ways of approximating this constant based
on the secant equation underlying the quasi-Newton methods. In Section 4, we
use Barzilai-BenTal’s rule:

Lk :=
‖yk‖22
〈yk, sk〉 , where sk := xk − xk−1 and yk := ∇f(xk)−∇f(xk−1). (11)

We then deviate from the standard backtracking approaches. As opposed to,
for instance, checking the Armijo-Goldstein condition, we use a new analytic
condition (i.e., Step 5 of Algorithm 1), which is computationally cheaper in
many cases. Our analytic step-size then further refines the solution based on
the worst-case problem structure, even if the backtracking update satisfies the
Armijo-Goldstein condition.

Surprisingly, our analysis also enables us to also establish local linear con-
vergence as described in Theorem 1 under mild assumptions. The proof can be
found in [19].

Theorem 1. Let
{
xk

}
k≥0

be a sequence generated by Algorithm 1. Suppose that

the sub-level set LF (F (x0)) :=
{
x ∈ dom(F ) : F (x) ≤ F (x0)

}
is bounded and

∇2f is nonsingular at some x ∈ dom(f). Suppose further that Dk := LkI � τIn
for given τ > 0. Then,

{
xk

}
converges to x� the solution of (1). Moreover,

if ρ∗ := max {Lk/σ
∗
min − 1, 1− Lk/σ

∗
max} < 1

2 for k sufficiently large then the
sequence

{
xk

}
locally converges to x� at a linear rate, where σ∗

min and σ∗
max are

the smallest and the largest eigenvalues of ∇2f(x�), respectively.

Linear convergence: According to Theorem 1, linear convergence is only pos-
sible when the condition number κ of the Hessian at the true solution satisfies
κ = σ∗

max/σ
∗
min < 3. While this seems too imposing, we claim that, for most

f and g , this requirement is not too difficult to satisfy (see also the empirical
evidence in Section 4). This is because the proof of Theorem 1 only needs the
smallest and the largest eigenvalues of ∇2f(x�), restricted to the subspaces of
the union of x� − xk for k sufficiently large, to satisfy the conditions imposed
by ρ∗. For instance, when g is based on the �1-norm/the nuclear norm, the dif-
ferences x� − xk have at most twice the sparsity/rank of x� near convergence.
Given such subspace restrictions, one can prove, via probabilistic assumptions on
f (cf., [1]), that the restricted condition number is not only dramatically smaller
than the full condition number κ of the Hessian ∇2f(x�), but also it can even
be dimension independent with high probability.
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3.3 Proximal-Newton Algorithm

The case Hk ≡ ∇2f(xk) deserves a special attention as the step-size selec-
tion rule becomes explicit and backtracking-free. The resulting method is a
proximal-Newton method and can be computationally attractive in certain big
data problems due to its low iteration count.

The main step of the proximal-Newton algorithm is to compute the proximal-
Newton search direction dk as:

dk := sk − xk, where sk := argmin
x

{
Q∇2f(xk)(x,x

k) + g(x)
}
. (12)

Then, it updates the sequence
{
xk

}
by:

xk+1 := xk + αkd
k = (1− αk)x

k + αks
k, (13)

where αk ∈ (0, 1] is the step size. If we set αk = 1 for all k ≥ 0, then (13)
is called the full-step proximal-Newton method. Otherwise, it is a damped-step
proximal-Newton method.

First, we show how to compute the step size αk in the following lemma, which
is a direct consequence of Lemma 2 by taking Hk ≡ ∇2f(xk).

Lemma 3. Let
{
xk

}
k≥0

be a sequence generated by the proximal-Newton scheme

(13) starting from x0 ∈ dom(F ). Let λk and rk be as defined by (8). If we choose
the step-size αk = r−1

k ln (1 + rk) then:

F (xk+1) ≤ F (xk)− r−1
k λ2

k

[(
1 + r−1

k

)
ln (1 + rk)− 1

]
. (14)

Moreover, this step-size αk is optimal (w.r.t. the worst-case performance).

Next, Theorem 2 proves the local quadratic convergence of the full-step
proximal-Newton method, whose proof can be found in [19].

Theorem 2. Suppose that the sequence
{
xk

}
k≥0

is generated by (13) with full-

step, i.e., αk = 1 for k ≥ 0. If rk ≤ ln(4/3) ≈ 0.28768207 then it holds that:

(
λk+1/

√
σk+1
min

)
≤ 2Mf

(
λk/

√
σk
min

)2

, (15)

where σk
min is the smallest eigenvalue of ∇2f(xk). Consequently, if we choose

x0 such that λ0 ≤ σmin(∇2f(x0)) ln(4/3), then the sequence

{
λk/

√
σk
min

}
con-

verges to zero at a quadratic rate.

Theorem 2 rigorously establishes where we can take full steps and still have
quadratic convergence. Based on this information, we propose the proximal-
Newton algorithm as in Algorithm 2.

The most remarkable feature of Algorithm 2 is that it does not require any
globalization strategy such as backtracking line search for global convergence.

Complexity Analysis. First, we estimate the number of iterations needed when
λk ≤ σ to reach the solution xk such that λk√

σk
≤ ε for a given tolerance ε > 0.
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Algorithm 2. (Prototype proximal-Newton algorithm)

Initialization: Given x0 ∈ dom (F ) and σ ∈ (0, σmin(∇2f(x0)) ln(4/3)].
for k = 0 to kmax do

1. Compute sk by(12). Then, define dk := sk − xk and λk := ‖dk‖xk .
2. If λk ≤ ε, then terminate.
3. If λk > σ, then compute rk := Mf‖dk‖2 and αk := 1

rk
ln (1 + rk); else αk := 1.

4. Update xk+1 := xk + αkd
k.

end for

Based on the conclusion of Theorem 2, we can show that the number of iterations

of Algorithm 2 when λk > σ does not exceed kmax :=
⌊
log2

(
ln(2Mf ε)
ln(2σ)

)⌋
. Finally,

we estimate the number of iterations needed when λk > σ. From Lemma 3, we
see that for all k ≥ 0 we have λk ≥ σ and rk ≥ σ. Therefore, the number of

iterations is
⌊
F (x0)−F (x�)

ψ(σ)

⌋
, where ψ(τ) := τ

(
(1 + τ−1) ln(1 + τ)− 1)

)
> 0.

3.4 Proximal Quasi-Newton Algorithm

In many applications, estimating the Hessian∇2f(xk) can be costly even though
the Hessian is given in a closed form (cf., Section 4). In such cases, variable met-
ric strategies employing approximate Hessian can provide computation-accuracy
tradeoffs. Among these approximations, applying quasi-Newton methods with
BFGS updates for Hk would ensure its positive definiteness. Our analytic step-
size procedures with backtracking automatically applies to the BFGS proximal-
quasi Newton method, whose algorithm details and convergence analysis are
omitted here.

4 Numerical Experiments

We use a variety of different real-data problems to illustrate the performance
of our variable metric framework using a MATLAB implementation. We pick
two advanced solvers for comparison: TFOCS [4] and PNOPT [8]. TFOCS hosts
accelerated first order methods. PNOPT provides a several proximal-(quasi)
Newton implementations, which has been shown to be quite successful in lo-
gistic regression problems [8]. Both use sophisticated backtracking linesearch
enhancements. We benchmark all algorithms with performance profiles [7].

A performance profile is built based on a set S of ns algorithms (solvers) and a
collection P of np problems. We first build a profile based on computational time.
We denote by Tp,s := computational time required to solve problem p by solver s.
We compare the performance of algorithm s on problem p with the best perfor-
mance of any algorithm on this problem; that is we compute the performance ra-
tio rp,s :=

Tp,s

min{Tp,ŝ:ŝ∈S} . Now, let ρ̃s(τ̃ ) :=
1
np

size {p ∈ P : rp,s ≤ τ̃} for τ̃ ∈ R+.

The function ρ̃s : R → [0, 1] is the probability for solver s that a performance
ratio is within a factor τ̃ of the best possible ratio. We use the term “perfor-
mance profile” for the distribution function ρ̃s of a performance metric. In the



Composite Convex Minimization Involving Self-concordant-Like Cost 163

following numerical examples, we plotted the performance profiles in log2-scale,
i.e. ρs(τ) :=

1
np

size {p ∈ P : log2(rp,s) ≤ τ := log2 τ̃}.

4.1 Sparse Logistic Regression

We consider the classical logistic regression problem of the form [20]:

min
x,μ

{
N−1

N∑

j=1

log
(
1 + e−yj(〈w(j),x〉+μ)

)
+ ρN−1/2 ‖x‖1

}
, (16)

where x ∈ R
p is an unknown vector, μ is an unknown bias, and y(j) and wj are

observations where j = 1, · · · , N . The logistic term in (16) is self-concordant-like
with Mf := max ‖w(j)‖2 [1]. In this case, the smooth term in (16) has Lipschitz
gradient, hence several fast algorithms are applicable.

Figure 1 illustrates the performance profiles for computational time (left) and
the number of prox-operations (right) using the 36 medium size problems1. For
comparison, we use TFOCS-N07, which is Nesterov’s 2007 two prox-method; and
TFOCS-AT, which is Auslender and Teboulle’s accelerated method, PNOPT
with L-BFGS updates, and our algorithms: proximal gradient and proximal-
Newton. From these performance profiles, we can observe that our proximal
gradient is the best one in terms of computational time and the number of prox-
operations. In terms of time, proximal-gradient solves upto 83.3% of problems
with the best performance, while these numbers in TFOCS-N07 and PNOPT-
LBFGS are 2.7%. Proximal Newton algorithm solves 11.1% problems with the
best performance. In prox-operations, proximal-gradient is also the best one in
75% of problems.
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Fig. 1. Computational time (left) and number of prox-operations (right)

1 Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 2. Left : rcv1 train.binary, and Right: real-sim.

We now show an example convergence behavior of our proximal-gradient
algorithm via two large-scale problems with ρ = 0.1. The first problem is
rcv1 train.binary with the size p = 20242 and N = 47236 and the second
one is real-sim with the size p = 72309 and N = 20958. For comparison, we
use TFOCS-N07 and TFOCS-AT. For this example, PNOPT (with Newton,
BFGS, and L-BFGS options) and our proximal-Newton do not scale and are
omitted.

Figure 2 shows that our simple gradient algorithm locally exhibits linear con-
vergence whereas the fast method TFOCS-AT shows a sublinear convergence
rate. The variant TFOCS-N07 is the Nesterov’s dual proximal algorithm, which
exhibits oscillations but performs comparable to our proximal gradient method
in terms of accuracy, time, and the total number of prox operations. The com-
putational time and the number of prox-operations in these both problems
are given as follows: Proximal-gradient: (15.67s, 698), (13.71s, 152); TFOCS-
AT: (20.57s, 678), (33.82s, 466); TFOCS-N07: (17.09s, 1049), (22.08s, 568), re-
spectively. For these data sets, the relative performance of the algorithms is
surprisingly consistent across various regularization parameters.

4.2 Restricted Condition Number in Practice

The convergence plots in Figure 2 indicate that the linear convergence condi-
tion in Theorem 1 may be satisfied. In fact, in all of our tests, the proximal
gradient algorithm exhibits locally linear convergence. Hence, to see if Remark
1 is grounded in practice, we perform the following test on the a#a dataset1,
consisting of small to medium problems. We first solve each problem with the
proximal-Newton method up to 16 digits of accuracy to obtain x�, and we calcu-
late ∇2f(x�). We then run our proximal gradient algorithm until convergence,
and during its linear convergence, we record ‖∇2f(x�)(x� − xk)‖2/‖x� − xk‖22,
and take the ratios of the maximum and the minimum to estimate the restricted
condition number for each problem.
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Fig. 3. Restricted condition number (left), and condition number (right) estimates

Figure 3 illustrates that while the condition number of the Hessian ∇2f(x�)
can be extremely large, as the algorithm navigates to the optimal solution x�

through sparse subspaces, the restricted condition number estimates are in fact
very close to 3. Given that algorithm still exhibit linear convergence for the
cases # = 2, 3, 4, 5, 6, 8 (where our condition cannot be met), we believe that
the tightness of our convergence condition is an artifact of our proof and may
be improved.

4.3 Sparse Multinomial Logistic Regression

For sparse multimonomial logistic regression, the underlying problem is formu-
lated in the form of (1), which the objective function f is given as:

f(X) := N−1
N∑

j=1

[
log

(
1 +

m∑

i=1

e〈w
(j),X(i)〉

)
−

m∑

i=1

y
(j)
i 〈w(j),X(i)〉

]
. (17)

where X can be considered as a matrix variable of size m × p formed from
X(1), · · · ,X(m). Other vectors, y(j) and w(j) are given as input data for j =
1, . . . , N . The function f has closed form gradient as well as Hessian. However,
forming a full hessian matrix ∇2f(x) is especially costly in large scale problems
when N � 1. In this case, proximal-quasi-Newton methods are more suitable.
First, we show in Lemma 4 that f satisfies Definition 1, whose proof is in [19].
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Fig. 4. Computational time (left), and number of prox-operations (right)

Lemma 4. The function f defined by (17) is convex and self-concordant-like in
the sense of Definition 1 with the parameter Mf :=

√
6N−1 max

j=1,...,N
‖w(j)‖2.

The performance profiles of 20 small-to-medium size problems1 are shown in
Figure 4 in terms of computational time (left) as well as number of prox-
operations (right), respectively. Both proximal-gradient method and proximal-
Newton method with BFGS have good performance. They can solve unto 55%
and 45% problems with the best time performance, respectively. These methods
are also the best in terms of prox-operations (70% and 30%).

4.4 A Sytlized Example of a Non-Lipschitz Gradient Function for (1)

We consider the following convex composite minimization problem by modifying
one of the canonical examples of geometric programming [6]:

min
x∈Ω

{
f(x) :=

m∑

i=1

ea
T
i x+bi + cTx

}
+ g(x), (18)

where Ω is a simple convex set, ai, c ∈ R
n and bi ∈ R are random, and g

is the �1-norm. After some algebra, we can show that f satisfies Definition 1
with Mf := max {‖ai‖2 : 1 ≤ i ≤ m}. Unfortunately, f does not have Lipschitz
continuous gradient in R

n.
We implement our proximal-gradient algorithm and compare it with TFOCS

and PNOPT-LBFGS. However, TFOCS breaks down in running this example
due to the estimation of Lipschitz constant, while PNOPT is rather slow. Several
tests on synthetic data show that our algorithm outperforms PNOPT-LBFGS.
As an example, we show the convergence behavior of both these methods in
Figure 5 where we plot the accuracy of the objective values w.r.t. the number of
prox-operators for two cases of ε = 10−6 and ε = 10−12, respectively. As we can
see from this figure that our prox-gradient method requires many fewer prox-
operations to achieve a very high accuracy compared to PNOPT. Moreover, our
method is also 20 to 40 times faster than PNOPT in this numerical test.
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Fig. 5. Relative objective values w.r.t. #prox: left : ε = 10−6, and right : ε = 10−12

5 Conclusions

Convex optimization efficiency relies significantly on the structure of the objec-
tive functions. In this paper, we propose a variable metric method for minimizing
the sum of a self-concordant-like convex function and a proximally tractable con-
vex function. Our framework is applicable in several interesting machine learn-
ing problems and do not rely on the usual Lipschitz gradient assumption on
the smooth part for its convergence theory. A highlight of this work is the new
analytic step-size selection procedure that enhances backtracking procedures.
Thanks to this new approach, we can prove that the basic gradient variant of
our framework has improved local convergence guarantees under certain condi-
tions while the tuning-free proximal Newton method has locally quadratic con-
vergence. While our assumption on the restricted condition number in Theorem
1 is not deterministically verifiable a priori, we provide empirical evidence that
it can hold in many practical problems. Numerical experiments on different ap-
plications that have both self-concordant-like and Lipschitz gradient properties
demonstrate that the gradient algorithm based on the former assumption can
be more efficient than the fast algorithms based on the latter assumption. As a
result, we plan to look into fast versions of our gradient scheme as future work.
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