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Preface

This volume contains 86 selected full papers (from 181 submitted ones) presented at
the MCO 2015 conference, held on May 11–13, 2015 at University of Lorraine, France.

MCO 2015 is the third event in the series of conferences on Modelling, Computation
and Optimization in Information Systems and Management Sciences organized by LITA,
the Laboratory of Theoretical and Applied Computer Science, University of Lorraine.

The first conference, MCO 2004, brought together 100 scientists from 21 countries
and was a great success. It included 8 invited plenary speakers, 70 papers presented
and published in the proceedings, “Modelling, Computation and Optimization in In-
formation Systems and Management Sciences”, edited by Thi Hoai An and Pham Dinh
Tao, Hermes Sciences Publishing, June 2004, 668 pages, and 22 papers published in the
European Journal of Operational Research and in the Journal of Global Optimization.
The second conference, MCO 2008 was jointly organized by LITA and the Computer
Science and Communications Research Unit, University of Luxembourg. MCO 2008
gathered 66 invited plenary speakers and more than 120 scientists from 27 countries.
The scientific program consisted of 6 plenary lectures and of the oral presentation of
68 selected full papers as well as 34 selected abstracts covering all main topic areas.
Its proceedings were edited by Le Thi Hoai An, Pascal Bouvry and Pham Dinh Tao in
Communications in Computer and Information Science 14, Springer. Two special is-
sues were published in Journal of Computational, Optimization & Application (editors:
Le Thi Hoai An, Joaquim Judice) and Advance on Data Analysis and Classification
(editors: Le Thi Hoai An, Pham Dinh Tao and Ritter Guntter).

MCO 2015 covered, traditionally, several fields of Management Science and Infor-
mation Systems: Computer Sciences, Information Technology, Mathematical Program-
ming, Optimization and Operations Research and related areas. It will allow researchers
and practitioners to clarify the recent developments in models and solutions for deci-
sion making in Engineering and Information Systems and to interact and discuss how
to reinforce the role of these fields in potential applications of great impact. It would
be a timely occasion to celebrate the 30th birthday of DC programming and DCA, an
efficient approach in Nonconvex programming framework.

Continuing the success of the first two conferences, MCO 2004 and MCO 2008, MCO
2015 will be attended by more than 130 scientists from 35 countries. The International
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Scientific Committee consists of more than 80 members from about 30 countries all the
world over. The scientific program includes 5 plenary lectures and the oral presentation
of 86 selected full papers as well as several selected abstracts covering all main topic ar-
eas. MCO 2015’s proceedings are edited by Le Thi Hoai An, Pham Dinh Tao and Nguyen
Ngoc Thanh in Advances in Intelligent Systems and Computing (AISC), Springer. All
submissions have been peer-reviewed and we have selected only those with highest
quality to include in this book.

We would like to thank all those who contributed to the success of the conference
and to this book of proceedings. In particular we would like to express our gratitude
to the authors as well as the members of the International Scientific Committee and
the referees for their efforts and cooperation. Finally, the interest of the sponsors in the
meeting and their assistance are gratefully acknowledged, and we cordially thank Prof.
Janusz Kacprzyk and Dr. Thomas Ditzinger from Springer for their supports.

We hope that MCO 2015 significantly contributes to the fulfilment of the academic
excellence and leads to greater success of MCO events in the future.

March 2015 Hoai An Le Thi
Tao Pham Dinh

Ngoc Thanh Nguyen



DC Programming and DCA:
Thirty Years of Developments

The year 2015 marks the 30th birthday of DC (Difference of Convex functions)
programming and DCA (DC Algorithm) which were introduced by Pham Dinh Tao
in 1985 as a natural and logical extension of his previous works on convex maximiza-
tion since 1974. They have been widely developed since 1994 by extensive joint works
of Le Thi Hoai An and Pham Dinh Tao to become now classic and increasingly popular.

DC programming and DCA can be viewed as an elegant extension of Convex anal-
ysis/Convex programming, sufficiently broad to cover most real-world nonconvex pro-
grams, but no too in order to be able to use the powerful arsenal of modern Convex
analysis/Convex programming. This philosophy leads to the nice and elegant con-
cept of approximating a nonconvex (DC) program by a sequence of convex ones for
the construction of DCA: each iteration of DCA requires solution of a convex pro-
gram. It turns out that, with appropriate DC decompositions and suitably equivalent DC
reformulations, DCA permits to recover most of standard methods in convex and non-
convex programming. These theoretical and algorithmic tools, constituting the back-
bone of Nonconvex programming and Global optimization, have been enriched from
both a theoretical and an algorithmic point of view, thanks to a lot of their applica-
tions, by researchers and practitioners in the world, to model and solve nonconvex
programs from many fields of Applied Sciences, including Data Mining-Machine
Learning, Communication Systems, Finance, Information Security, Transport Logis-
tics & Production Management, Network Optimization, Computational Biology, Image
Processing, Robotics, Computer Vision, Petrochemicals, Optimal Control and Auto-
matic, Energy Optimization, Mechanics, etc. As a continuous approach, DC program-
ming and DCA were successfully applied to Combinatorial Optimization as well as
many classes of hard nonconvex programs such as Variational Inequalities Problems,
Mathematical Programming with Equilibrium Constraints, Multilevel/Multiobjective
Programming.

DC programming and DCA were extensively developed during the last two decades.
They were the subject of several hundred articles in the high ranked scientific journals
and the high-level international conferences, as well as various international research
projects, and were the methodological basis of more than 50 PhD theses. More than
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90 invited symposia/sessions dedicated to DC programming & DCA were presented
in numerous international conferences. The ever-growing number of works using DC
programming and DCA proves their power and their key role in Nonconvex program-
ming/Global optimization and many areas of applications.

In celebrating the 30th birthday of DC programming and DCA, we would like to
thank the founder, Professor Pham Dinh Tao, for creating these valuable theoretical
and algorithmic tools, which have such a wonderful scientific impact on many fields of
Applied Sciences.

Hoai An Le Thi
General Chair of MCO 2015
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Abstract. In this article, we formulate a new variant of the problem of
finding a maximum clique of minimum weight in a graph applied to the
detection and resolution of conflicts between aircraft. The innovation of
the model relies on the cost structure: the cost of the vertices cannot
be determined a priori, since they depend on the vertices in the clique.
We apply this formulation to the resolution of conflicts between aircraft
by building a graph whose vertices correpond to a set of maneuvers and
whose edges link conflict-free maneuvers. A maximum clique of minimal
weight yields a conflict-free situation involving all aircraft and minimiz-
ing the costs induced. We solve the problem as a mixed integer linear
program. Simulations on a benchmark of complex instances highlight
computational times smaller than 20 seconds for situations involving up
to 20 aircraft.

Keywords: Air Traffic Control, Conflict Resolution, Maximum Clique,
Mixed Integer Linear Programming.

1 Introduction

Developing advanced decision algorithms for the air traffic control (ATC) is of
great importance for the overall safety and capacity of the airspace. Resolution
algorithms for the air conflict detection and resolution problem are relevant
especially in a context of growing traffic, where capacity and safety become an
issue. Indeed, a simulation-based study performed by Lehouillier et al. [1] shows
that the controllers in charge of the traffic in 2035, which will have increased by
50%, would have to solve on average 27 conflicts per hour in a busy sector.

Maintaining separation between aircraft is usually referred to as the air con-
flict detection and resolution (CDR) problem. A conflict is a predicted loss of
separation, i.e., when two aircraft are too close to each other regarding predefined
horizontal and vertical separation distances of 5NM and 1000ft respectively. To
solve a conflict, the controllers issue maneuvers that can consist of speed, head-
ing or altitude changes. Given the current position, speed, acceleration and the

c© Springer International Publishing Switzerland 2015 3
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_1
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predicted trajectory of a set of aircraft, the CDR problem corresponds to iden-
tifying the maneuvers required to avoid all conflicts while minimizing the costs
induced.

The CDR problem is one of the most widely studied problems in air traffic
management. For a comprehensive coverage of the existing literature, the reader
may refer to the review in Mart̀ın-Campo thesis [2]. Exact methods include op-
timal control, which can be associated with nonlinear programming. However,
these methods suffer from the sensitivity to the starting point of the resolution
and the high computational time. Mixed integer linear and nonlinear program-
ming (MILPs and MINLPs) techniques are often considered. Omer and Farges [3]
present a time-discretization of optimal control. Omer [4] also develops a space
discretization using the points of interest for the conflict resolution. Pallottino
et al. [5] develop MILPS solving the problem with speed changes and constant
headings or with heading changes and constant speeds. Alonso-Ayuso et al. [6]
develop a MILP that considers speed and altitude changes. However, MINLPs
suffer from high computational times and do not give any optimality guarantee
in finite time. Besides, the hypotheses made in MILPs to have linear constraints
may not work in all situation. Several heuristics were developed to find a so-
lution rapidly. Examples of techniques developed include ant colony algorithms
like in Durand and Alliot [7], variable neighborhood searches (see Alonso-Ayuso
et al. [8]). Other fast methods include particle swarm optimization, prescribed
sets or neural networks. Heuristics find a solution rapidly, but the hypotheses
can be restrictive and the convergence is not guaranteed. Graph theory is seldom
used in ATC. Generally, conflicts between aircraft are modeled by a graph whose
vertices represent the different aircraft and whose edges link pairs of conflicting
aircraft, like in Vela [9]. Barnier and Brisset [10] assign flight levels to aircraft
with intersecting routes by looking for maximum cliques in a graph where a
proper coloring of the vertices defines an assignment of all aircraft to a set of
flight levels.

The model presented in this article uses the concept of a clique in a graph,
which is a subset of the vertices where each pair of elements is linked by an edge.
Finding a maximum clique in an arbitrary graph is a well-known optimization
problem that is NP-hard. The problem has been thoroughly studied and several
methods, both exact and heuristic, have been developed. For a comprehensive
coverage on the subject, one can refer to Bomze et al. [11] and Hao et al. [12].

We formulate the air conflict detection and resolution problem as a new vari-
ant of the problem of finding a maximum clique of minimum weight in a graph.
To this end, we build a graph whose vertices represent a set of possible maneuvers
and where a clique yields a conflict-free solution involving all the aircraft. On
the one hand, our model is innovative due to the cost structure for the vertices.
With this model, we can maintain a reasonable size for the graph built, hence re-
ducing the computational time. On the other hand, our model significance relies
on its flexibility: a modification of the problem constraintes or objective func-
tion do not jeopardize the validity of the mathematical framework developed.
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Being flexible is critical in ATC: in addition to being able to cover more ground,
it will allow meaningful comparisons with existing models in the literature.

2 Problem Formulation

2.1 Modeling Aircraft Dynamics

To model the flight dynamics, we use the three-dimensional point-mass model
presented in the BADA user manual [13]. Aircraft follow their planned 4D trajec-
tory, which is a sequence of 4D points requiring time and space accuracy, leaving
the remainder of the trajectory almost unconstrained. The non-compliance with
this contract costs penalty fees to companies. As a consequence, an aicraft needs
to recover its initial 4D trajectory after performing a maneuver. We assume
that the planned speed for an aircraft corresponds to its nominal speed, i.e., the
speed minimizing the fuel burn rate per distance unit traveled using the model
described in [13].

Maneuvers are performed dynamically as described in [14], where the author
states that the typical acceleration during a speed adjustment is in the order
of 0.4kn/s. Heading changes are approximated by a steady turn of constant
rate and radius. The changes of flight level are performed with a vertical speed,
whose computation is detailed in [13], as a function of the thrust, drag, and true
airspeed.

2.2 On Cliques and Stables

Let G = (V , E) be an undirected, simple graph with a vertex set V and an edge
set E ⊆ V × V .

A clique in graph G is a vertex set C with the property that each pair of
vertices in C is linked by an edge:

C ⊆ V is a clique ⇔ ∀(u, v) ∈ C × C, (u, v) ∈ E (1)

A maximum clique in G is a clique that is not a subset of any other clique
in G. The cardinality of a maximum clique of G is called clique number and is
denoted by w(G). Let c : V → R be a vertex-weight function associated with G.
A maximum clique of minimum-weight in G is a maximum clique C that mini-

mizes
∑

v∈C
c(v).

A stable set S ⊆ V is a subset of vertices no two of which are adjacent.
A bipartite graph is a graph whose vertices can be partitionned into two distinct
stable sets V1 and V2. Each edge of the graph connects one vertex of one stable
to a vertex in the other stable. This concept is extended to k−partite graphs,
where the vertex set is partitionned into k distinct stable sets.

2.3 Graph Construction

In this subsection, we introduce the graph G = (V , E) used to model the CDR
problem.
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Defining the Vertices. Let F = �1;n� denote the set of the considered aircraft.
We define M = ∪n

f=1Mf as the set of the possible maneuvers, Mf being the
set of maneuvers for aircraft f ∈ F . We consider both horizontal and vertical
maneuvers of the following types:

– NIL refers to the null maneuver, i.e., when no maneuver is performed;
– Hθ corresponds to a heading change by an angle θ ∈ [−π;π];
– Sδ corresponds to a relative speed change of δ%;
– Vδh denotes a change of δh flight levels.

A maneuverm ∈ M is described as a triplet (δχm, δVm, δFLm) corresponding
to the heading, speed and flight level changes induced by m. The set of vertices
is defined as V = �1; |M|�, where |M| is the cardinality of set M. We note Vf

the set of vertices corresponding to aircraft f .
In emergency scenarios where the feasibility of the problem can be an issue, it

is possible to introduce n vertices corresponding to costly emergency maneuvers
to ensure the feasibility of the problem. However, since the feasibility was not an
issue for the tested instances, those vertices were not considered in this article.
The weight of the vertices correspond to the fuel consumption induced by the
corresponding maneuvers. We give further detail in Subsection 2.3.

Defining the Edges. Let (i, j) ∈ V × V be a pair of vertices representing
maneuvers (mi,mj) ∈ M × M of aircraft (fi, fj) ∈ F × F . For i �= j, we
write mi�mj when no conflict occurs if aircraft fi follows maneuver mi while
aircraft fj performs maneuver mj . The set of edges E corresponds to the pairs
of maneuvers performed by two different aircraft without creating conflicts:

E = {(i, j) ∈ V × V , i �= j : mi�mj} (2)

It is important to note that there is no edge between two different maneuvers
of a given aircraft, which yields Proposition 1.

Proposition 1. For all f ∈ F ,Vf is a stable set, i.e there is no edge linking
two distinct vertices of Vf . Hence, the graph G is |F|-partite.

Let (i, j) ∈ V × V be a pair of vertices representing maneuvers (mi,mj) ∈
M×M of aircraft (fi, fj) ∈ F × F . The methodology used to compute if the
edge (i, j) is added to G is described with the following notations:

– T : time horizon for the conflict resolution;
– pfi(t) ∈ R

3: position vector of aircraft fi at time t. pfi,x(t) pfi,y(t) and
pfi,z(t) denote respectively the abscissa, ordinate and altitude components
of the position vector;

– sfi(t) ∈ R
3: speed vector of aircraft fi at time t. sfi,x(t) sfi,y(t) and sfi,z(t)

denote respectively the abscissa, ordinate and altitude components of the
speed vector;

– afi(t) ∈ R
3: acceleration vector of aircraft fi at time t. afi,x(t) afi,y(t) and

afi,z(t) denote respectively the abscissa, ordinate and altitude components
of the acceleration vector;

– pfj (t), sfj (t) and afj (t) are also defined following the same notations.
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The definition of the maneuvers mi and mj applied to fi and fj is used
to project the aircraft trajectory over time. Aircraft fi and fj are said to be
separated at time t if and only if at least one of constraints (3) and (4) holds.
In this paper we choose Dh,min = 5NM and Dv,min = 1000ft.

dhfifj (t)
2 = (pfi,x(t)− pfj ,x(t))

2 + (pfi,y(t)− pfj ,y(t))
2 ≥ D2

h,min (3)

dvfifj (t)
2 = (pfi,z(t)− pfj ,z(t))

2 ≥ D2
v,min (4)

At any time t ∈ T , either none, one or both aircraft are maneuvering. T can
thus be divided into intervals where both fi and fj have a constant acceleration.
For each interval, we compute the time at which the aircraft are the closest
to verify if the separation constraints hold. Let Tk be one of these intervals.
Consider fi and t0 ∈ T be the starting time of maneuver mi. If we assume that
maneuver mi is applied with a constant acceleration, we obtain the position and
the speed vector of fi at time t0 + t with t such that t− t0 ≤ |Tk|:

pfi(t0 + t) = pfi(t0) + (t− t0)sfi(t0) +
(t− t0)

2

2
afi(t0) (5)

sfi(t0 + t) = sfi(t0) + (t− t0)afi(t0) (6)

Let ph
fifj

(respectively shfifj , a
h
fifj

) denote respectively the horizontal position,
the speed and the acceleration of aircraft fj relatively to aircraft fi. We define

dhfifj (t+ τ) = ||ph
fifj (t+ τ)||

= ||ph
fifj (t) + τshfifj (t) +

τ2

2
ah
fifj (t)||

where τ ≥ 0.
Let τfifj ∈ argmin

τ≥0
dhfifj (t+ τ)2 , and thfifj ∈ argmin

t∈T
dhfifj (t)

2.

We have: thfifj =

⎧
⎪⎨

⎪⎩

0 if τfifj = 0

|T | if τfifj ≥ |Tk|
τfifj otherwise

Aircraft fi and fj are horizontally separated during interval T if and only if
(7) holds:

dhfifj (t
h
fifj )

2 ≥ D2
h,min (7)

By a similar reasoning, aircraft fi and fj are vertically separated during in-
terval T if and only if (8) holds:

dvfifj (t
v
fifj )

2 ≥ D2
v,min (8)

If either (7) or (8) holds when aircraft fi and fj apply maneuvers mi and mj ,
then an edge is created between i and j. As explained in 2.1, it is important that
every aircraft initiates a safe return towards its initial trajectory once the conflict
is avoided. For each edge, we compute the minimum time necessary before one
or both aircraft can recover their initial trajectories. The cost of the recovery of
a trajectory is detailed in Subsection 2.3.
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Application to the CDR Problem. As mentioned in Section 1, given the cur-
rent position, speed, acceleration and the planned trajectories of a set of aircraft,
solving the CDR problem consists in finding a conflict-free set of maneuvers that
minimizes the costs. Proposition 2 links the cliques in G to the CDR problem:

Proposition 2. Let C be a clique in graph G. Then C represents a set of conflict-
free maneuvers for a subset of F of cardinality |C|.

Proposition 2 shows that finding a set of conflict-free maneuvers for F is
equivalent to finding a clique of G of cardinality |F|. We derive the following
theorem:

Theorem 1. If a conflict-free solution exists, then ω(G) = |F|. Otherwise, ω (G)
is the maximum number of flights involved in a conflict-free situation.

We define the problem CDRM as the restriction of the CDR problem to the
set of maneuversM. Using both Proposition 2 and Theorem 1, we can state anew
the CDRM problem as follows: solving the CDRM problem consists in finding a
clique of maximum cardinality and minimal cost in graph G. In fact, we consider
a new variant of a clique problem where the weight associated with a vertex is not
known a priori and rather depends on the edges induced by the clique. Indeed,
the cost associated with a maneuver depends on the duration that this maneuver
will be performed before returning towards the planned trajectory. Because this
duration depends on the maneuvers selected for the other aircraft, it cannot be
determined a priori and must be computed as the maximum duration needed to
avoid a loss of separation with all other aircraft given their chosen maneuvers.
To handle such vertex costs, we first define edge costs.

Computing the Cost of the Edges. The cost measure chosen for this article
corresponds to the extra fuel consumption induced by the maneuvers, i.e., the
additional fuel required to return to the 4D trajectory after the maneuver is
performed. We use the model given in [13]. For a jet commercial aircraft f , the
fuel consumption by time and distance unit is given by (9) and (10):

Ct,f (t) = c1,f

(
1 +

Vf (t)

c2,f

)
FT,f (t) (9)

Cd,f(t) =
Ct,f (t)

Vf (t)
(10)

where c1,f and c2,f are numerical constants depending on the type of aircraft f .
We compute the cost of an edge e = (i, j) linking two vertices representing

two maneuvers of aircraft fi and fj , denoted mi and mj , as a pair constituted of

the extra fuel costs for both fi and fj, denoted C
(i,j)
i and C

(i,j)
j . The additional

consumed fuel corresponds to the performed maneuver along with the fuel re-
quired to recover the inital 4D trajectory. After a change of speed of δ% during a
period δt, the aircraft recovers its 4D trajectory by making the opposite change
of speed during δt. After a change of direction δχ during a period δt, the aircraft
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performs a turn with an angle θr in order to recover its physical trajectory along
with a change of speed to retrieve the 4D trajectory. The cost induced is the
extra fuel burnt when the aircraft flies at the recovery speed and the fuel burnt
on the extra distance induced by the maneuver. For a flight level change, we
compute the extra cost as the difference of consumption between the different
flight levels, along with the cost of changing twice of flight level. The distance
flown is also longer, and this extra distance is also accounted for.

Computing the Cost of the Vertices. Several techniques can be followed in
order to determine the vertices cost. The basic one would be to discretize the
duration of the maneuver, and to create the vertices accordingly. In this situation,
computing the costs would be straight-forward. However, the drawback of this
method is that the graph built is huge, which could result in a difficult resolution.
We choose to follow another structure of cost because it is more compact in terms
of graph size.

Let us consider a vertex i which corresponds to a maneuver mi for an aicraft
fi. The cost of each edge linking i to one of its neighbors j, associated to a
maneuver mj for aircraft fj , corresponds to fi applying mi during a time tji ,

which depends on mj . Time tji is the minimum time during which fi must apply
mi in order to avoid any conflict if one or both aircraft return to their initial

trajectory. Following maneuver mi for a duration tji induces a cost C
(i,j)
i . If i is

part of the maximum clique C to be determined, we need to establish the time
ti during which maneuver mi is actually applied in order to determine its cost
ci. ti is obtained by:

ti = max
j∈V∩C

tji (11)

As a consequence, we have that ci is the cost of aircraft fi applying mi dur-
ing ti. If i is not part of the maximum clique C, then no constraint is imposed
on the cost ci. As detailed in Section 3, the optimization model will automat-
ically force the value of ci to 0. To conclude, we have that for any i ∈ V :

ci =

⎧
⎨

⎩
max
j∈V∩C

C
(i,j)
i if i ∈ C

0 otherwise

2.4 Illustrative Example

For the sake of clarity, an illustrative example with three aircraft is given in
Figure 1. If each aircraft follows its planned trajectory, conflicts will happen
between the blue aircraft and the two others. For this example, we assume that,
in addition to the null maneuver, only two heading changes (±30◦) are allowed.
We build the CDR graph shown in Figure 1(b). The graph is 3-partite, as the
vertex set is partitionned into 3 stable sets of 3 vertices each. Solving the CDR
is then equivalent to searching for a minimum-weight clique of 3 vertices, i.e., a
triangle.



10 T. Lehouillier et al.

0

30

-30 -30

-30

0

030

30

(a) Illustrative example

30

30

30-30

-30

-300

00

(b) Resulting graph G

Fig. 1. Illustrative example with three aircraft

3 Methodology

Determining the cost of a vertex i is very specific, since it is correlated to whether
or not i belongs to a maximum clique C. As a consequence, the algorithms usually
used in existing librairies dedicated to graph theory cannot be used for our model.
We formulate the problem as a mixed-integer linear program using the following
variables:

– xi =

{
1 if vertex i is part of the maximum clique

0 otherwise

– ci ∈ R+ is the cost of vertex i.

We describe the clique search by the following linear integer program:

minimize
∑

i∈V
ci (12)

subject to xi + xj ≤ 1, ∀(i, j) �∈ E (13)
∑

i∈V
xi = |F| (14)

ci ≥ C
(i,j)
i (xi + xj − 1), ∀(i, j) ∈ E (15)

xi ∈ {0; 1}, ∀i ∈ V (16)

ci ∈ R+, ∀i ∈ V (17)

The objective function (12) minimizes the cost of the maneuvers. (13) are
clique constraints, and constraint (14) exploits Theorem 1 defining the cardinal-
ity of the maximum clique. Constraints (15) are used to compute the cost of the
vertices: if a vertex is in the maximum clique, then its cost must be greater than
its cost on all edges connecting it to other vertices in the clique.
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4 Results

All tests were performed on a computer equipped with an Intel Core i7-3770
processor, 3.4 GHz, 8-GB RAM. The algorithms were implemented in C++ and
using CPLEX 12.5.1.01.
The headings of the tables presented in these section are given as follows:

– case: case configuration;
– |F|: number of aircraft;
– |V|: number of vertices;
– |E|: number of edges;

– d = 2|E|
|V|(|V|−1) : graph density;

– n: number of variables;
– m: number of constraints;
– zip: optimal value for the problem;
– nodes : number of branch-and-bound nodes;
– tlp: time (in seconds) to continuous relaxation of the MILP;
– tip: time (in seconds) to obtain the zip value;

4.1 Benchmark Description

The benchmark used for this study gathers three types of instances. The first
set is roundabout instances Rn, where n aircraft are distributed on the circum-
ference of a 100NM radius and fly towards the center at the same speed and
altitude. The second set is crossing flow instances Fn,θ,d, where two trails of n
aircraft separated by d nautical miles intersect each other with an angle θ. The
last type of instance is a grid Gn,d constituted of two crossing flow instances
Fn,π2 ,d with a 90◦ angle, one instance being translated 15NM North-East from
the other. An example of these instances is given on Figure 2.

4.2 Computational Results

The first set of simulations considers only horizontal maneuvers, with relative
speed changes of ±3% and ±6% and heading changes of ±5◦,±10◦,±15◦. The
graph remains small when one considers this set of maneuvers, and their small
magnitude makes them less costly. Nevertheless, if these values were to be ineffi-
cient to solve all the conflicts, we could introduce maneuvers of larger magnitude.

Table 1 gathers information about the graph G, the MILP and the main com-
putational results. The solution time for the continuous relaxation is very small,
but the quality of the relaxation is mediocre. Indeed, the fractional solution of
the linear relaxation chooses two maneuvers for each aircraft with a value of
0.5. Constraints (15) force the cost of each vertex to be 0, yielding an optimal
value of 0 and a gap of 100%. Results also display short solution times: problems
known to be complex with 20 aircraft are solved to optimality in less than 15
seconds. This result is very satisfying since the density of the graph is high.

1 See the IBM-ILOG CPLEX v12.5. User’s manual for CPLEX.
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(a) Roundabout

(b) Crossing Flow

(c) Grid

Fig. 2. Examples

Table 1. Dimensions of the instances and computational results

Graph G MILP Resolution

Instance type Case |F| |V| |E| d m n zip nodes tlp tip

Roundabout

R2 2 22 90 0.39 44 225 3.71 6 0 0.02
R4 4 44 492 0.52 88 1073 14.98 73 0 0.02
R6 6 66 1194 0.56 132 2521 22.7 0 0.01 0.15
R8 8 88 2184 0.57 176 4545 31.05 47 0.01 0.53
R10 10 110 3430 0.57 220 7081 112.7 208 0.05 1.56
R12 12 132 4944 0.57 264 10153 189.27 581 0.09 3.41
R14 14 154 6720 0.57 308 13749 224.75 183 0.1 6.98
R16 16 176 8896 0.57 352 18145 261.44 162 0.15 9.5
R18 18 198 11358 0.58 396 23113 636.7 257 0.21 12.1
R20 20 220 14027 0.58 440 28461 740.6 210 0.27 3.2

Flows

F5,30,10 10 110 4522 0.75 220 9265 49.08 405 0.02 1.5
F5,45,10 10 110 4518 0.75 220 9257 41.29 535 0.02 1.52
F5,60,10 10 110 4478 0.75 220 9177 34.49 238 0.02 1.39
F5,75,10 10 110 4492 0.75 220 9205 30.66 496 0.02 1.34
F5,90,10 10 110 4528 0.76 220 9277 28.28 269 0.02 1.41

Grids
G2,3,10 12 132 6645 0.78 264 13555 57.65 564 0.01 3.64
G2,5,10 20 220 19724 0.82 440 39889 121.92 2740 0.2 12.7

In the second simulation set, we introduce altitude maneuvers: aircraft are
allowed to move to an adjacent flight level. Table 2 reports the main results.
The values of the optimal solutions for the roundabout instances remain the
same, highlighting that it is optimal to make simple turns instead of changing
flight levels. For the crossing flows and the grid instances, it is more efficient
for some aircraft to change their flight level instead of turning or changing their
speed. As a consequence, the solutions are less expensive. Solution times tend to
slightly increase, but the solution can still be computed in a short time. These
results are promising since the instances tested are denser than real-life instances.
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Table 2. Dimensions of the instances and computational results

Graph G MILP Resolution

Instance type Case |F| |V| |E| d m n zip nodes tlp tip

Roundabout

R2 2 26 116 0.36 52 285 3.71 7 0 0.05
R4 4 52 832 0.63 104 1769 14.98 272 0 0.41
R6 6 78 2076 0.69 156 4309 22.7 498 0.01 0.25
R8 8 104 3840 0.72 208 7889 31.05 328 0.01 1.12
R10 10 130 6080 0.73 260 12421 112.7 499 0.05 1.41
R12 12 156 9096 0.75 312 18505 189.27 798 0.09 3.42
R14 14 182 12208 0.74 364 24781 224.75 532 0.1 6.88
R16 16 208 16416 0.76 416 33249 261.44 467 0.15 11.45
R18 18 234 20772 0.76 468 42013 636.7 682 0.21 14.12
R20 20 260 25760 0.77 520 52041 740.6 845 0.27 8.12

Flows

F5,30,10 10 130 5102 0.75 260 9956 43.37 784 0.02 1.58
F5,45,10 10 130 5098 0.75 260 9874 38.45 889 0.02 2.13
F5,60,10 10 130 5059 0.75 260 9845 29.78 645 0.02 1.96
F5,75,10 10 130 5134 0.75 260 9899 30.11 897 0.02 1.78
F5,90,10 10 130 5199 0.76 260 10078 23.01 540 0.02 1.45

Grids
G2,3,10 12 156 7320 0.79 312 15087 45.18 945 0.01 4.12
G2,5,10 20 260 20945 0.83 520 45878 99.73 3847 0.2 16.7

5 Conclusions

A new variant of the problem of finding a maximum clique of minimum weight
in a graph and its application to aircraft conflict resolution have been presented.
The innovation of the model comes from the cost structure: the costs of the
vertices cannot be determined a priori since they depend on the vertices in the
clique. As a consequence, we model the problem as a MILP. The model performs
well, since complex instances involving up to 20 aircraft are solved to optimality
in near real-time. The design of the model is flexible, meaning that tuning some
parameters of the model will allow meaningful comparisons with existing models.

These conclusions validate the model as a basis for further research. For in-
stance, techniques reducing the size of the graph are of interest. Adding un-
certainties is also a meaningful extension of the model. Additional benchmarks
including real-life instance and random scenarios will be necessary in order to
challenge the model.
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EPROAD EA 4669, Université de Picardie Jules Verne,
7 rue du Moulin Neuf, 80000 Amiens, France

{firstname.name}@u-picardie.fr

Abstract. In this paper, we propose to solve the k-clustering mini-
mum bi-clique completion problem by using an adaptive neighborhood
search. An instance of the problem is defined by a bipartite graph G(V =
(S, T ), E), where V (resp. E) denotes the set of vertices (resp. edges) and
the goal of the problem is to determine the partition of the set S of V into
k clusters (disjoint subsets) such that the number of the edges that com-
plete each cluster into a bi-clique, according to the vertices of T , should
be minimized. The adaptive search is based upon three complementary
steps: (i) a starting step that provides an initial solution by applying an
adaptation of Johnson’s principle, (ii) an intensification step in which
both exchanging and k-opt strategies are introduced and, (iii) a diversi-
fication step that tries to explore unvisited solutions’ space. The method
is evaluated on benchmark instances taken from the literature, where the
provided results are compared to those reached by recent methods avail-
able in the literature. The proposed method remains competitive and it
yields new results.

Keywords: Bi-clique, combinatorial optimization,heuristic, local search.

1 Introduction

In this paper, we investigate the use of the neighborhood search for solving the so-
called k-Clustering minimum Bi-clique Completion Problem (noted k-CmBCP).
An instance of k-CmBCP is defined by a bipartite graph G(V,E), where V is
the set of n vertices such that V = S ∪ T and S ∩ T = ∅ and, E denotes the set
of edges. We recall that if (S, T ) is a bi-clique graph, then each vertex of S (resp.
T ) is related to all the vertices of T (resp. S). Moreover, if the graph is formed

with k bi-partite graphs (clusters), i.e.,
(
(S1, T1), (S2, T2), . . . , (Sk, Tk)

)
, then

all vertices of each couple (Sj , Tj), j = 1, . . . , k, are interconnected. Because
G(V,E) is a general directed graph, looking for a k-clustering is equivalent to
searching for a k bi-partite subgraphs of G with a minimum additional edges
that do not belong to E. Similarly, the goal of the problem is to find the best
partition of the set S into k clusters with a minimum additional edges.

c© Springer International Publishing Switzerland 2015 15
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_2
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As described in Gualandi et al. [4], such a problem has several real applications
such as bundling channels for multicast transmissions. In such application, given
a set of demands of services from customers, the aim consists of determining the
k multicast sessions that is able to partition the set of the demands. Moreover,
each of the considered service has to belong to a multicast session while each
costumer can appear in several sessions.

The k-Clustering minimum Bi-clique Completion Problem (noted k-CmBCP)
was first introduced by Faure et al. [2] in which the authors proved its NP-
hardness. To our knowledge, very few paper dressing the KCmBCP are available
in the literature. Among these papers, we cite the paper of Faure et al. [2] in
which the authors proposed an integer linear programming model for solving
small sized instances to optimality. In the same paper, a column generation-based
heuristic has been also presented, where some large-scale instances of k-CmBCP
have been tackled. Gualandi [3] tackled the problem by using a hybrid method;
that is, an approach that combines constraint programming and semidefinite
programming. Finally, Gualandi et al. [4] designed a special branch-and-price
based method in order to accelerating the search process and improving the
quality of the provided upper bounds when using the Cplex solver.

In this paper, we propose to solve the k-CmBCP by using an adaptive neigh-
borhood search. Such an approach can be viewed as a variant of both methods
proposed in Hifi and Michrafy [5] and a simplest version of Shaw’s [7] large
neighborhood search. We recall that an instance of k-CmBCP is characterized
by a bipartite graph and the objective is to divide the first set S of vertices into
k disjoint clusters, where the number of edges that must be added to form the
k bi-cliques (representing the cost of the problem), should be minimum.

The rest of the paper is organized as follows. In Section 2, the k-CmBCP is
first illustrated on an example and later its mathematical model is given. Sec-
tion 3 discusses the tailored adaptive neighborhood search for approximately
solving the k-CmBCP. The performance of the proposed algorithm is evaluated
in Section 4, where its obtained results are compared to those reached by re-
cent algorithms available in the literature. Finally, Section 5 summarizes the
contribution of the paper.

2 The k-CmBCP

In this section, k-CmBCP is first illustrated throughout an example with k = 2.
Second and last, the mathematical formulation of the k-CmBCP is given.

Fig. 1 illustrates a small example representing a k-CmBCP: the graph G =
(S, T ) is defined by S = {1, ..., 4} and T = {5, ..., 8} and, the aim is to search
the 2-clustering for G. First, a feasible solution (cf. Fig. 1.(a)) can be builded by
partitioning the first set S as follows: S1 = {1, 2} and S2 = {3, 4}, respectively.
Second, because each partition forms a bipartite graph with its corresponding
links belonging to the second set T, then it is necessary to add some connections
between the cluster at hand and its corresponding links. In this case, Fig. 1.(b)
shows, for both clusters, the added links (represented by the dashed edges for
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Fig. 1. Illustration of an instance of 2-CmBCP and its constructed feasible solution

the first cluster S1 and the bold edges for S2) we need to make the solution
feasible for k-CmBCP. Third and last, one can observe that the resulting cost
is equal to 3, where the first cluster S1 needs 2 additional edges and 1 for the
second cluster S2.

Formally the k-CmBCP can be stated as an Integer Linear Programming
Model (ILPM):

min
∑

p∈K

∑

(i,j)∈E

zijp (1)

s.t. (2)

xip + yjp ≤ 1 + zijp, ∀(i, j) ∈ E, ∀p ∈ K (3)
∑

p∈K

xip = 1; ∀i ∈ S (4)

xip ≤ yjp, ∀(i, j) ∈ E, ∀p ∈ K (5)

xip, yjp ∈ {0, 1}, ∀i ∈ S, ∀j ∈ T, ∀p ∈ K (6)

zijp ∈ {0, 1}, ∀(i, j) ∈ E, ∀p ∈ K (7)

where the objective function Equation (1) minimizes the number of edges that
completes each induced bipartite subgraph into a biclique, in others words, it
minimizes the total cost of all clusters (i.e., the number of edges added in this
case). Equation (3) ensures the link between both variables xip and yjp by setting
zijp to 1 whenever the other two variables are fixed to 1. Equation (4) ensures
that each vertex belonging to the set S should be assigned to a single cluster.
Equation (5) forces each vertex j ∈ T , which is adjacent to another vertex i ∈ S
and assigned to the pth cluster, to be affected to the same cluster (Of course,
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we recall that some vertices can be assigned to several clusters). Finally, Equa-
tions (6) and (7) ensure the integrality of the variables. Note that, the limit of
the formulation described above (equations (1) to (7)) is that any permutation of
the indices p provide s the same optimal solution. The aforementioned issue was
tackled by Fahle [1] by introducing the so-called symmetry-breaking constraints.

3 An Adaptive Neighbor Search for k-CmBCP

In this section, we discuss the principle of the proposed adaptive neighborhood
search for approximately solving the k-CmBCP. The used approach is mainly
based upon three complementary steps. Such an approach has been already used
in Hifi and Michrafy [5] for solving some knapsack type problems. It has also
used by Shaw [7], where the author proposed a general purpose.

Herein, an adaptive method is considered, where the first step is applied in
order to build a quick starting feasible solution. The second step tries to improve
the quality of the starting solution by using the so-called intensification strategy.
The aforementioned strategy alternatively combines both exchanging and 2-opt
procedures. The third step introduces a diversification strategy in order to handle
some sub-spaces with an efficient manner: both degrading and re-optimizing
strategies are introduced for searching next feasible spaces.

3.1 A Starting Solution for k-CmBCP

There exists several ways for defining a starting solution when using heuristics.
Herein, a simple greedy procedure is considered: it is based on the principle of
Johnson’s algorithm (cf., Johnson [6]). Indeed, in a bipartite graph, which can
be considered as a special case of the set covering problem, an adaptation of
Johnson’s algorithm may be described as follows:

(i) Set S′ = S,
(ii) Order all vertices of the first set S′ in decreasing order of their degrees,
(iii) Select a vertex of S′ having the greatest degree and put it into the current

cluster (or into a new cluster to open),
(iv) Define a reduced graph G′ by removing the last vertex from S′,
(v) Stop if S′ = ∅, repeat steps (ii)-(iv) otherwise.

Of course, the above procedure is used in order to partition the set S of the
bipartite graph G. Then, in order to provide the cost of the starting solution
reached by the greedy procedure, an adding step is used in order to complete
each created cluster with the additional edges that forms the k-bicliques for G.

3.2 Improving the Quality of the Solutions: Intensification Step

Generally, improving a solution at hand requires to introduce a local search,
where its aim is to perform an interesting search on a series of neighborhoods.
Herein, the used intensification strategy is is based on combining both exchanging
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Algorithm 1. Improving the quality of the current solution

Require: A starting feasible solution S with its added edges (noted enb).
Ensure: A (new) feasible solution S′.

1: ok ← false;
2: while

(
not(ok) and (a local stopping condition is not met)

)
do

3: for all kj ∈ K do
4: for all si ∈ kj do
5: for all k� ∈ K, � �= j, do
6: Put si ( from kj) in k�;
7: Let S′ be a new solution with its corresponding objective function e�nb;
8: if (e�nb < enb) then
9: S ← S′ and ok =true;

else
10: Exit with the best solution of the neighborhood S∗, if a local stopping

condition is met.
11: end if
12: end for
13: end for
14: end for
15: end while

strategy and a special k-opt procedure. The exchanging is employed between some
services (vertices) of the current clusters (forming the set S), whereas the k-opt
procedure considers several moves between clusters.

Algorithm 1 describes the main steps of the intensification procedure which is
used for improving the quality of the solutions at hand. Indeed, the input of the
algorithm is the solution provided by the greedy procedure (with its objective
value enb that measures the number of edges added to complete the solution)
described in Section 3.1. Second, the main loop while (line 2) is used for stopping
the search whenever the local search is able to provide a new feasible solution
with a better value (in this case, a boolean, namely ok, is introduced in order
to stop the loop). Of course, the stopping criteria is also consolidated with a
runtime limit; that is, a runtime that the loop can take for exploring a series of
neighborhoods (this parameter is experimentally defined). Third, an exchanging
step is considered in lines from 3 to 6: in this case, two cases can be considered:

1. A vertex belonging to a cluster can be exchanged with another vertex that
belongs to another one; the solution is updated when the new solution im-
proves the quality of the best solution of the neighborhood.

2. When the previous step fails to provide a better solution, then a 2-opt pro-
cedure is introduced as follows: (a) exchange two vertices from a selected
cluster and move them to other clusters (when it is possible) and, (b) re-
combine the clusters for providing a k-CmBCP’s feasible solution.

Fourth and last, k-CmBCP’s feasible solution is updated (line 9) if the
current objective function improves the quality of the solution in the visited
neighborhood.
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3.3 Applying a Diversification Step

Now we are going to show how to simulate the diversification principle for search-
ing a series of new solutions. Indeed, the intensification search can improve the
solutions when it explores a series of neighborhoods, or when these neighbor-
hoods are very close. Moreover, changing the space search induces, in some
cases, the exploration of new neighborhoods and so, some new and better so-
lutions may emerge. Herein, an adaptive neighborhood search is introduced,
which is based upon degrading strategy and re-optimization strategy (as used in
Hifi and Michrafy [5]). After applying both strategies, the intensification step
(cf. Algorithm 1) is recalled in order to improve the quality of each solution at
hand.

Now we are going to show how to combine both strategies for searching a
series of new solutions. Let F be the current feasible solution obtained at the
first step (or at internal of the iterative search). Let α be a constant, such that
α ∈ [0, 100], denoting the percentage of free vertices of the set S, i.e., some
vertices are free according to the current solution F . Then, the diversification
procedure can be considered as an alternate approach which is performed by
calling the following two procedures:

– Degrading procedure: Consider F (α) as the free vertices’ set associated to the
current solution F , where α% of vertices belonging to S are unassigned. Let

S
(α)

be the complementary set of S(α) according to the set of services S.
– Re-optimization procedure: Complete the current partial solution by using

Johnson’s algorithm on the subset S
(α)

.

Note that, on the one hand, both degrading and re-optimizing procedures are
combined in order to produce a series of partial feasible solutions of k-CmBCP
and their improved ones. On the other hand, at each time, one can re-call
Algorithm 1 in order to improve the quality of the solutions.

The main steps of such a procedure is detailed in Algorithm 2; that is, a pro-
cess trying to simulate the diversification principle when varying both degrading
and re-optimizing procedures. First, Algorithm 2 starts by setting the initial
solution equals to the solution obtained by Algorithm 1 (of course, the provided
solution can also reached at each internal search). The main loop (line 2: it is
used to stop the search when the stopping criteria is performed; herein, a maxi-
mum number of iterations is considered) describes the principe of the diversifi-
cation procedure when combining both degrading and re-optimizing strategies.
In this case, it always starts with the best solution obtained up to now (initially,
the solution is that reached by Algorithm 1). Next, the degrading procedure is
called (line 6) in a local loop for randomly removing α% of the vertices from
the current solution and trying to improve the quality of the loc al solution
by the re-optimization procedure (line 7). The local loop serves to search the
best solution on a series of neighborhoods an so, a small number of degrading
/ re-optimizing are introduced (herein, ten degrading / removing calls are con-
sidered). At each step of the local loop, the new provided solution is improved by
calling
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Algorithm 2. An adaptive neighborhood search

Require: A starting feasible solution Sstart of value V (Sstart)
Ensure: An approximate solution Sbest of value V (Sbest)

1: Sbest = Sstart;
2: while (a stopping condition is not met) do
3: S′ = Sbest;
4: while (a local stopping condition is not met) do
5: Slocal = S′;
6: Apply the Removing strategy on the current solution Slocal;
7: Call the Re-optimizing strategy for completing the current solution;
8: Let S′ be the new obtained solution;
9: Call Algorithm 1 for improving the current solution S′;
10: If (V (S′ < V (Sbest))), then Sbest = S′;
11: end while
12: end while

Algorithm 1 (lines 8 and 9). Finally, the process is repeated with the best solution
found to far, where the algorithm stops with the best k-CmBCP’s approximate
feasible solution when the maximum number of iterations is performed.

4 Computational Results

This section investigates the effectiveness of the proposed Adaptive Neighbor-
hood Search (noted ANS) on some instances extracted from Gualandi et al. [4].
Preliminary results obtained by the proposed ANS are compared to the best
results available in the literature and to those reached by the ILPM (cf. Sec-
tion 2) when solved with the Cplex solver [8] version 12.5 (limited to one hour
and with the default settings). The proposed ANS was coded in C++ and tested
on Pentium Core Duo 2.9 Ghz

Table 1 describes the main characteristics of the set of instances tested. Col-
umn 1 of the table indicates the instance label. Columns from 2 to 4 display
cardinalities of both sets S (services) and T (costumers) and the number of clus-
tering k needed. Finally, column 5 tallies the density (d) of the graph associated
to each instance. Note also that these instances represent six group of instances,
where each group is composed of three available instances and it depends on the
variation of the number of services (|S|), costumers (|T |), the clusters (k) and
the density d of its corresponding graph.

4.1 Parameter Settings

In the preliminary results, two main parameters should be taken into account by
ANS (cf., Algorithm 2): the stopping criteria and the percentage of the removed
vertices belonging to the current solution. Of course, in order to maintain the
diversity of the solutions, we set the local stopping condition to twenty, which
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Table 1. Description of the instances’ characteristics

Inst. S T k d

I1.1 50 50 5 0.3
I1.2 50 50 5 0.5
I1.3 50 50 5 0.7

I2.1 50 50 10 0.3
I2.2 50 50 10 0.5
I2.3 50 50 10 0.7

I3.1 80 80 5 0.3
I3.2 80 80 5 0.5
I3.3 80 80 5 0.7

I4.1 80 80 10 0.3
I4.2 80 80 10 0.5
I4.3 80 80 10 0.7

I5.1 100 100 5 0.3
I5.2 100 100 5 0.5
I5.3 100 100 5 0.7

I6.1 100 100 10 0.3
I6.2 100 100 10 0.5
I6.3 100 100 10 0.7

means that Algorithm 2 exists either by an improved solution reached before
attaining the maximum number of iterations fixed or by the best solution reached
in the neighborhood.

Because the improved procedure (cf., Algorithm 1) works when each solution
is submitted to degradation and re-optimization, then the maximum number of
global iterations was fixed to fifty. Finally, three values for the parameters α
were considered: α ∈ {2%; 5%; 10%}. On the one hand, limited computational
results showed that the algorithm with the value α = 2% requires more runtime
for improving some instances of the literature. On the other hand, when the
algorithm is run with α = 10%, the obtained results becomes, in some cases,
worse than those published in the literature. Only for α = 5 (or closest to
the aforementioned value) the algorithm seems to get more interesting results.
Hence, the choice with α = 5 is adopted for the rest of this paper.

Table 2 displays the variation of Av Sol representing the average value of all
solutions realized by ANS over all treated instances by fixing the same average
runtime (1000 seconds, on average). It shows the variation of Av Sol denoting
the average value of solutions reached by ANS over all treated instances: the first
column tallies the average results with α = 2% and the third column displays
the average results for α = 5%. One can observe, globally for the same runtime,
the average quality of the solutions realized is better when fixing α to 5%.
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Table 2. Effect of α on the quality of the final solutions

Variation of α
#Inst 2% 5%

I1.1 1319 1319
I1.2 1078 1072
I1.3 672 671
I2.1 938 938
I2.2 876 875,4
I2.3 577 575
I3.1 3820.2 3815
I3.2 2862 2862
I3.3 1769.2 1768.4
I4.1 3202 3202
I4.2 2571 2571
I4.3 1618.4 1618
I5.1 6248 6248
I5.2 4655.6 4650
I5.3 2842 2842
I6.1 4298 4298
I6.2 4298.4 5427.2
I6.3 2644 2644

Av Sol 2644.4 2633.11

4.2 Effect of the Degrading and Re-optimizing Procedures

This section evaluates the effect of the proposed method based upon degrading
and re-optimizing strategies. Recall that the method works as follows. First, it
deteriorates the starting / current solution by removing α% of the variables
fixed to one. Second, it re-optimizes the partial solution reached by using a
greedy procedure and improving it using an intensification search. Third and
last, it re-iterates the same resolution on the last solution until either no better
solution is obtained or a maximum number of iterations is performed.

Table 3 shows the results realized by ANS and those extracted from
Gualandi et al. [4] (noted GMM) and the solutions given by the Cplex solver
12.5 (of course, because the Cplex is tailored for solving the problems to opti-
mality, then the runtime limit was extended to one hour). Column 1 represents
the instance label. Column 2 displays the solution value reached by the Cplex
solver and column 3 tallies Gualandi et al.s’s solution values (representing the
best solutions of the literature). Columns from 4 to 8 display the five solutions
provided by ANS representing the five trials. Finally, columns 9 and 10 show
the average solution values over the five trials and the best solutions reached by
ANS over these five trials.
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Table 3. Performance of ANS vs Cplex and GMM algorithm

ANS’s solution values
Cplex GMM

#Inst VCplex VGMM 1 2 3 4 5 Av Sol Best

I1.1 1423 1321 1319 1319 1319 1319 1319 1319 1319
I1.2 1091 1072 1072 1072 1072 1072 1072 1072 1072
I1.3 676 672 671 671 671 671 671 671 671
I2.1 1135 938 938 938 938 938 938 938 938
I2.2 930 876 875 876 876 875 875 875.4 875
I2.3 587 577 575 575 575 575 575 575 575
I3.1 4166 3819 3815 3815 3815 3815 3815 3815 3815
I3.2 2931 2862 2862 2862 2862 2862 2862 2862 2862
I3.3 1775 1769 1768 1769 1768 1768 1769 1768.4 1768
I4.1 3735 3202 3202 3202 3202 3202 3202 3202 3202
I4.2 2675 2571 2571 2571 2571 2571 2571 2571 2571
I4.3 1634 1618 1618 1618 1618 1618 1618 1618 1618
I5.1 6645 6248 6248 6248 6248 6248 6248 6248 6248
I5.2 4716 4658 4650 4650 4650 4650 4650 4650 4650
I5.3 2854 2842 2842 2842 2842 2842 2842 2842 2842
I6.1 6119 4298 4298 4298 4298 4298 4298 4298 4298
I6.2 9111 5428 5427 5428 5427 5427 5427 5427.2 5427
I6.3 2704 2644 2644 2644 2644 2644 2644 2644 2644

Average 3050.39 2634.17 2633.06 2633.22 2633.11 2633.06 2633.11 2633.11 2633.06

The analysis of Table 3 follows.

1. First, one can observe the inferiority of Cplex solver since it is not able to
match the best solutions of the literature.

2. Second, the best method of the literature (GMM) realizes 10 best solutions
out of 18, representing a percentage of 55.56% of the best solutions. In fact,
GMM matches all the ten instances, but there is no value better than the
new solutions produced by ANS (cf., the last column of Table 3).

3. Third, among the five trials realized by ANS, one can observe that the av-
erage values (see the last line of Table 3) are better than GMM’s average
value. Indeed, ANS is able to realize an average value varying from 2633.22
(trial 2) and 2633.06 (trials 1 and 4) whereas GMM realizes an average value
of 2634.17.

4. Fourth and last, regarding the best solutions realized by ANS (cf., col-
umn 10), one can observe that ANS is able to reach eight new solution values,
which represents a percentage of more than 44% of the tested instances.

5 Conclusion

In this paper, an adaptive neighborhood search was proposed for approximately
solving the k-clustering minimum bi-clique completion problem. The method is
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based upon degrading and re-optimizing strategies. The first strategy is used in
order to diversify the search process and the second one is employed for repairing
the configuration at hand. Both strategies were completed by an intensification
procedure; that is, a neighboring search which tries to improve the quality of
a series of provided solutions. Computational results showed that the proposed
algorithm performed better than both Cplex solver and more recent method
available in the literature by yielding high-quality solutions: it improved most
than 44% of the best solutions of the literature.
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Abstract. An integer programming model for minimizing the cabling
costs of offshore wind farms which allows for branching of the cables is
developed. Model features include upper bounds on the number of cable
branches made at any wind turbine, upper bounds on the cable loads,
and exclusion of crossing cable segments. The resulting model resembles
the capacitated minimum spanning tree problem, with the addition of
degree and planarity constraints. Numerical experiments with realistic
wind farm data indicate that the benefit from branching is small when
using only one cable type, but is up to 13% if allowing for two different
cable types.

Keywords: offshore wind farms, cable routes, integer programming,
constrained minimum spanning tree.

1 Introduction

Offshore wind energy is becoming an increasingly more important energy source.
Up to now, the main development is taking place in Northern Europe, with 6562
MW out of the global installed capacity of 7045 MW installed in Europe at
the end of 2013 [6]. The by far most important countries in this respect are the
United Kingdom and Denmark, with PR China, Belgium, Germany, Netherlands
and Sweden following. The installed capacity in other countries is negligible.

Starting with a yearly annual installed capacity of only 4 MW in 2000, the
industry has been steadily growing to 1567 MW being newly installed in 2013
[4]. With an estimated total installed offshore wind capacity of 23500 MW in
2020, which is almost four times the capacity installed at the end of 2013, the
industry is expected to continue its quick growth [5].

During the planning and construction phase of an offshore wind farm, the
decision on how to choose the cabling routes has a significant influence on the
total cost of the cabling, as the cable as well as the trenching in the seabed
cost per meter are considerably higher offshore than onshore. There are usually
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one or more substations, and each turbine has to be connected to at least one
of these. However, multiple turbines can be connected in series. The maximum
number of turbines on one series circuit is determined by the cable type, and
the maximum power which can be transported by it. Usual numbers of turbines
per cable are between 4 and 8.

This opens an optimization problem of finding cable routes between turbines
and substations with minimum total cable length. If taking into account different
cable types with respectively different power capacities, the objective changes to
minimizing cable cost.

Optimization of cable routes in offshore wind farms was recently addressed
by Bauer and Lysgaard [1], who suggested a model with hop-indexed variables,
resembling a planar open vehicle routing problem. Reflecting the fact that cable
lines are not allowed to cross each other, planarity constraints apply to the model.
For a given cable capacity, as well as fixed turbine and substation locations, the
objective of the model in [1] is to find the cable routes of minimum total length.

An important assumption of [1] is that the turbines are connected to sub-
stations along paths. That is, with the exceptions of the turbine closest to and
most remotely from the substation, all turbines have a direct link with exactly
two other turbines. In practice, however, it is in some cases possible to branch
the power cables at the turbine locations without significant additional effort
or cost, which opens the possibility of a further reduction of the total required
cable length. This has been done for example in the Walney 1 offshore wind farm
[2], which is located on the Northwestern English coast. The branching option
is not captured in [1].

We present a new optimization model incorporating all features of [1]. In
addition, our model allows for branching of the power cables at the wind turbine
locations. Reflecting practical limitations, our model accepts an upper bound
on the number of branches that can be made at any turbine location, which is
dependent on the cable setup and connection possibilities at a turbine. We will
refer to this bound as the branching capacity. We assume that no additional cost
is connected to branching within the branching capacity. Following [1], there is
an upper bound, referred to as the cable capacity, on the number of turbines to
be connected by one cable (to one substation), and no two cable lines may cross
because of the applied cable trenching methods.

The problem, which is presented in detail in section 2, can be defined in terms
of a graph where the node set represents turbines and substations, in addition
to an imaginary node referred to as the root, representing the electrical grid to
which the turbines will supply power. We use the root node for setting the prob-
lem into context with existing literature, but not in our model formulation, as we
do not optimize the grid connection. The edges represent possible connections
between turbines, between turbines and substations, and between substations
and the grid. Each node but the root is associated with a point in the plane, and
each edge but those incident to the root have a weight equal to the Euclidean
distance between its end nodes (the weights of all edges incident to the root are
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negative with sufficiently large absolute value). In this graph, we are asking for
a spanning tree of minimum weight, satisfying the following constraints:

– The number of nodes in each subtree below the root does not exceed the
cable capacity,

– The degree of each turbine node is no more than the branching capacity plus
one,

– When embedding the edges as straight lines between its end nodes, intersec-
tions occur only between edges incident to the same node.

The problem under study combines the features of several well-studied graph
optimization problems. In particular, this applies to the capacitated minimum
spanning tree problem [10], where bounds on the subtree sizes are introduced.
In the special case where the bounds are equal for all nodes, which we assume,
the problem version is referred to as the unitary demand version. The degree-
constrained minimum spanning tree problem [9] addresses the issue of branching
capacities. Adding the degree constraint to the minimum spanning tree problem
renders the problem NP-hard [11], at least for branching capacity no larger than
3, proving that also our problem is NP-hard.

The remainder of this text is organized as follows: In the next section, we
develop an integer programming model based on a set of variables suggested
by Gouveia [8]. After introducing model and notation, we continue in section 3
with a presentation of the numerical results obtained from an implementation
of our model. We give the optimal solutions for different cable capacities, and
by comparing to results from the model allowing only linear cabling [1], we
determine cost savings obtainable by allowing branches.

2 An Integer Programming Model for Minimizing Cable
Lengths

In this section, we develop an integer programmingmodel for the cabling problem
outlined in Section 1. We start with a description of the model parameters and
variables and their meaning in the offshore wind farm context of the problem.
We also relate them to their respective equivalents in the capacitated minimum
spanning tree problem. After the introduction of the variables we continue using
the wind energy context in further discussions.

Consider a graph with nodes set V = Vc∪Vd, where Vc represents a given set of
wind turbines, and Vd represents power substations. The edge set E ⊆ V 2 of the
graph represents the possible connections between a turbine and a substation or
another turbine. The corresponding arc set is denoted AE = {(i, j) : {i, j} ∈ E}.
Each edge and arc has an associated cost cij∀(i, j) ∈ AE . We assume that the
edge cost is proportional to the Euclidean distance between the locations of the
end nodes of the edge, which implies that the costs are symmetric, i.e., cij = cji.
However, validity of the model below does not depend on this assumption.

The maximum cable capacity C ∈ N
+ is the maximum number of turbines

which can be connected by the chosen cable type. It is dependent on the type of
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Fig. 1. Sheringham Shoal layout for C=5; left WM1, right WMB1; circles are turbine
locations, squares are substation locations

cable and determined by a combination of the power output of a single turbine,
the current carrying capacity of the cable, as well as different kinds of power
losses which occur in cables.

The maximum number of cable branches at a turbine location, including all
incoming and outgoing cables, is defined by the branching capacity m ∈ N

+.
The set of crossing routes χ ⊂ E2 is defined such that {{i, j}, {u, v}} ∈ χ if

edges {i, j} and {u, v} cross each other.
Gavish [7] suggested a single-commodity flow model for the capacitated min-

imum spanning tree problem, which later was proved to be equally strong as
the model by Gouveia [8]. It can be argued that the latter model is more ap-
pealing since the number of constraints is smaller, and that it exclusively has
binary variables. It is proved [8] that by use of binary variables indexed by arcs
(i, j) ∈ AE and feasible subtree sizes h = 1, . . . , C, no continuous variables are
needed in the formulation. Following the idea of [8], the integer programming
model below contains only binary decision variables.

As our main focus is to analyze what cost reductions can be obtained when
branched cable routes are allowed, rather than finding the strongest possible
model formulation, we do not incorporate valid inequalities such as those pro-
posed in [8]. For the same reason, we neither make any attempt to integrate
in our model any of the more recent contributions to strong formulations for
the capacitated minimum spanning tree problem, which have emerged since [8].
Interested readers are referred to e.g. the thesis by Ruiz y Ruiz [12].

Define the decision variable xh
ij ∈ {0, 1} ∀(i, j) ∈ AE , h = 1, . . . , C such that

it takes the value 1 if the solution contains the edge {i, j}, with j closer than i to
some substation in the tree, and if h turbines (including i) are connected to the
substation via i. If not all conditions are met, xh

ij = 0. That is, xh
ij = 1 indicates

that (i, j) is an arc in the spanning tree pointing towards the root, and the subtree
rooted at i contains h nodes. Note that in the original capacitated minimum
spanning tree formulation [8], the decision variables are defined such that arcs
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point from the root towards the leaves. Our definition is however adopted for
the purpose of consistency with [1].

min
∑

(i,j)∈AE

C∑

h=1

cijx
h
ij (1)

s.t.
∑

(i,j)∈AE

C∑

h=1

xh
ij = 1 ∀ i ∈ Vc (2)

∑

(i,j)∈AE

C−1∑

h=1

hxh
ij −

∑

(j,k)∈AE

C∑

h=1

hxh
jk = −1 ∀ j ∈ Vc (3)

∑

(i,j)∈AE

C∑

h=1

xh
ij ≤ m ∀ j ∈ Vc (4)

C∑

h=1

(
xh
ij + xh

ji + xh
uv + xh

vu

)
≤ 1 ∀ {{i, j}, {u, v}} ∈ χ (5)

xh
ij ∈ {0, 1} ∀ (i, j) ∈ AE , h = 1, . . . , C

(6)

xC
ij = 0 ∀ (i, j) ∈ AE ∩ {V × Vc}

(7)

We minimize the total cost or distance over all used routes in the objective
function (1). Constraint (2) assures that each turbine has exactly one outgoing
cable directed towards some substation. By equation (3), the load of the cable
outgoing from turbine j equals the sum of the cables entering j, plus the load 1
of turbine j. The cable load is defined as the number of turbines that connect
to some substation via the cable.

A maximum number of branches per turbine location is defined in (4). The
planarity constraints are defined in (5) and assure that no cables cross each
other.

As it is also of interest to investigate optimal cable routes with two different
cable types available, each of these with different cost and capacity, we introduce
a second model. Assume that if the load of any cable (i, j) ∈ AE is no more than
Q ∈ N

+, where Q < C, the connection cost is qij∀(i, j) ∈ AE . A reasonable
assumption is that qij < cij , but validity of our model does not require this to
hold.

The resulting formulation of the alternative objective function is given by:

min
∑

(i,j)∈AE

⎡

⎣
Q∑

h=1

qijx
h
ij +

C∑

h=Q+1

cijx
h
ij

⎤

⎦ (8)
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s.t. (2) – (7). In the computational experiments reported in the next section,
we also apply this objective function to the model from [1] for comparing our
results.

3 Numerical Experiments

The models suggested in Section 2, as well as the model from [1], are implemented
in Python using the Python CPLEX library with CPLEX 12.6.1.0 as the integer
programming solver. Default options with multithreading disabled are used.

The non-crossing constraints of the models are implemented via a lazy con-
straint callback, which only adds the corresponding non-crossing constraint if the
solution contains the respectively crossing routes. This is a necessity resulting
from the large number of constraints, increasing with O(|V |4).

All computational experiments are performed on an i7-4600U CPU with 8GB
of RAM.

We choose four different real wind farm layouts as the data base for our
numerical experiments. In addition to Barrow, Sheringham Shoal and Walney 1,
which have also been used in [1], we also use the data from Walney 2 [3]. With
the turbine and substation locations of the respective farm layouts, the distance
between the turbines are computed and subsequently taken as the edge cost cij .
We allow all possible connections in all wind farms, i.e. E = V 2. The branching
capacity is set to m = 3 in all tests.

Table 1. General information on test case wind farms

Wind farm Number of turbines Number of substations

Barrow 30 1

Sheringham Shoal 88 2

Walney 1 51 1

Walney 2 51 1

In the following, we refer to the original model formulation without branching
from [1] as WM1, and to our model formulation from equation (1) – (7), which
allows for branching, as WMB1. Both of these models use the distances between
turbines cij as the cost in the objective function.

The computational results in Table 2 are computed within 15 minutes each.
Values for Sheringham Shoal for capacities C ≥ 6 are not reported, as no optimal
solution is found after 1.5 hours of calculation for model WMB1. Computations
for C ≥ 8 are also not possible for a part of the other wind farms within one
hour and less than 8 GB of memory consumption and thus not included.

The optimality gap in the root node gWM1 and gWMB1 does not follow a
systematic pattern, while the number of processed nodes nWM1 and nWM1 is
generally higher for the WMB1 model which includes branching.
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Table 2. Optimal values for models with one cable type

Walney 1
C WM1 gWM1 nWM1 WMB1 gWMB1 nWMB1 ρ

4 47802 1.67 1248 47654 59.84 4757 0.31
5 43539 0.04 1 43421 8.24 2676 0.27
6 41587 26.39 483 41420 0.85 554 0.40
7 40789 19.27 1221 40620 62.76 963566 0.42

Walney 2
C WM1 gWM1 nWM1 WMB1 gWMB1 nWMB1 ρ

4 62233 0.86 75 62061 62.04 1418 0.28
5 56572 4.74 8620 56258 3.32 69440 0.56
6 52228 2.15 327 51943 1.70 1887 0.55
7 49788 4.84 666 49568 69.89 422671 0.44

Barrow
C WM1 gWM1 nWM1 WMB1 gWMB1 nWMB1 ρ

4 23568 1.00 62 23568 5.90 406 0.00
5 20739 6.26 114 20738 3.85 326 0.00
6 18375 0.00 1 18374 0.00 1 0.01
7 17781 4.67 564 17781 6.76 7116 0.00

Sheringham Shoal
C WM1 gWM1 nWM1 WMB1 gWMB1 nWMB1 ρ

4 69222 0.00 1 68937 32.19 1087 0.41
5 64828 60.50 6530 64365 60.93 211005 0.72
6 62031 62.18 5585
7 60667 17.42 8152

C is the cable capacity. The columns WM1 and WMB1 are the optimal values given

in m. The relative improvement ρ of the objective value is calculated by ρ = WMB1
WM1

−1

with the WM1 and WMB1 values of the respective row and given in %. gWM1 and

gWMB1 are the optimality gaps at the root nodes of the respective model, given in %,

and nWM1 and nWMB1 the corresponding number of nodes processed for the solution.

For the investigated wind farms and cable capacities the relative savings in
cable length are below 1% in all cases. It is thus only marginally useful to apply
branching in a wind farm if E = V 2, and there is only one cable type available.

The Barrow offshore wind farm turns out to be particularly unsuitable for
branching. The reason for this is that the turbines are located in several rows,
with a significant larger spacing tangential to this row. This favors connecting
the turbines sequentially without branching into another row.

For the investigation of the models allowing for two different cable types,
we set the cost of the cable with lesser capacity qij to the distance between the
turbines, and increase the cost for the cable type with larger capacity by a factor
f , such that cij = fqij .
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Table 3. Optimal values for models with two cable type

Walney 1 Walney 2 Sheringham Shoal
f C Q WM2 WMB2 ρ WM2 WMB2 ρ WM2 WMB2 ρ

1.5 5 2 57055 54958 3.82 74547 72863 2.31 83598 80264 4.15
1.5 5 3 52416 52108 0.59 68770 68165 0.89 75882 75164 0.96
1.5 5 4 47040 46874 0.35 61481 61309 0.28 69182 68897 0.41
1.5 6 2 55460 52027 6.60 70421 67578 4.21
1.5 6 3 51434 49887 3.10 65874 64436 2.23
1.5 6 4 46846 46641 0.44 60483 60312 0.28
1.5 6 5 43400 43282 0.27 55875 55663 0.38

1.7 5 2 62372 59028 5.67 81520 78184 4.27 89857 84685 6.11
1.7 5 3 54178 54095 0.15 72018 71354 0.93 77896 77591 0.39
1.7 5 4 47410 47243 0.35 62129 61957 0.28 69222 68937 0.41
1.7 6 2 60754 55589 9.29 77197 72839 5.98
1.7 6 3 53831 52660 2.22 70668 68644 2.95
1.7 6 4 47410 47198 0.45 61600 61417 0.30
1.7 6 5 43491 43374 0.27 56341 56080 0.47
1.7 7 2 60205 52873 13.87 74572 168828 8.35
1.7 7 3 53647 49354 8.70 53646 49354 8.70 77391 372486 6.51
1.7 7 4 47410 47066 0.73 61409 61001 0.67
1.7 7 5 43491 43374 0.27 56276 256075 0.36
1.7 7 6 41587 41420 0.40 52170 51943 0.44

f is the cost multiplier and C and Q are the cable capacities. The columns WM2 and
WMB2 are the optimal values given in m. The relative improvement ρ is calculated by
ρ = WMB2

WM2
− 1 with the WM2 and WMB2 values of the respective row and wind farm

and given in %. The values with footnotes were not solved to optimality, but with the
following optimality gaps: 1) 1.85%, 2) 1.40%, 3) 0.33%

Fig. 2. Walney 1 layout for C = 7, Q = 2, f = 1.7; left WM2, right WMB2; circles are
turbine locations, squares are substation locations, dashed lines are cables with higher
capacity
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In practice, the actual choice of f depends on the wind farm in question, as
well as the cable capacities C and Q. It is indicated in [1] that a factor of about
f = 1.7 is suitable for Q = 8 and C = 5. We choose this value as well as a
slightly lower value of f = 1.5 for our numerical experiments, to also investigate
the influence of the relative cost factor f .

All numerical results in Table 3 are computed within one hour of computation
time each. The computations for WMB2 are more expensive than for WM2,
and are thus the limiting factor. Most calculations with WM2 were completed
within of less than 10 seconds. The computations for Sheringham Shoal are
limited to C = because of the computation time limit, except for the sample with
C = 7, Q = 3. The optimality gap at the root node and the number of processed
nodes are not included for the sake of brevity, as they are similar to the results
in Table 2.

The numerical results show that relative savings increase in average with an
increasing difference d = C − Q in cable capacities. Only for d ≥ 2 and Q ≤ 3
relative savings of more than 1% are achieved by applying branching. The highest
computed saving of 13.87% by using branching in the two cable type formulation
makes a significant difference in the total cabling cost (see fig. 2).

A selection of Q, C values is computed for f = 1.5 to investigate the influence
of this parameter on the relative improvement. There is no systematic difference
observable between f = 1.5 and f = 1.7. The optimal values are in the same
order of magnitude, but fluctuating in both directions.

4 Conclusion and Further Work

The results in this article show that it is of advantage to consider branching cable
layouts for offshore wind farms utilizing two or possibly more different kinds of
cable types. As the relative cost improvements are below 1% for farms with only
one cable type, branching is not a necessity in these cases.

Possible further work on this model includes a more detailed cost modeling of
the cost parameters cij and qij . This can take into account the physical location
of cables, as well as length, and non-straight routes, for example because of
seabed topography. In addition, the investigation of layouts with forbidden cable
routes, i.e. E ⊂ V 2, is of interest for the modeling of real offshore wind farms.
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Abstract. In this paper, we investigate the MiniMax Weight Matching
(MMWM) problem in a bipartite graph. We develop a belief propagation
algorithm of message complexity O(n3), which can find such a matching
in a graph of size n upon uniqueness of the optimum. The algorithm is
one of a very few fully polynomial time solutions where belief propagation
algorithms are proved correct. Since the algorithm can be distributed,
the convergence time then drops to n unit time if each edge can simul-
taneously compute and pass the messages within one unit time at each
iteration.

1 Introduction

Belief propagation (BP) algorithms (or message passing algorithms) on various
graphical models (GM) have been used in areas like modern coding theory, ar-
tificial intelligence, statistics, and neural networks. The two basic versions of
BP, sum-product algorithms and max-product algorithms [8] are developed cor-
responding to the two main problems in probabilistic inference: evaluating the
marginal distribution and maximum a posteriori (MAP). They are known to
converge to the correct solutions if the GM’s are cycle free. For single-cycle
graphs, the correctness and convergence of BP are investigated in [1] and [10],
while they are still open problems for arbitrary GM’s.

However, even for GM’s with cycles, the belief propagation algorithms are
observed to perform surprisingly well in many cases, some of which are with rig-
orous proof of optimality and convergence. For example, for the maximum weight
matching (MWM) problem in a bipartite graph, Bayati et al. [2] formulated a
max-product algorithm by calculating the MAP probability on a well defined
GM, which encodes the objective and constraints of the optimization problem.
Shortly after, Bayati and Y. Cheng [3] independently simplified the max-product
algorithm to obtain two essentially same algorithms, which reduced the mes-
sage complexity by order of two. Moreover, in [12] and [11], Yuan et. al. pro-
posed message passing algorithms for a constrained assignment problem and the
generalized assignment problem respectively.

Although some belief propagation algorithms can converge to the optimum
in finite iterations, the running time of them is actually pseudo-polynomial even
if the problem itself has other fully polynomial time solutions, like the MWM
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mentioned above. The convergence time of BP usually depends on the difference
of the optimum and the second best solution. This difference could be exponential
on the input size, resulting in pseudo-polynomial running time. In [5], the authors
developed a BP algorithm for the minimum cost flow problem. (In fact, maximum
weight matching is a special case of the minimum cost flow problem.) They also
presented a fully polynomial time randomized approximation scheme for the
problem. However, as they said themselves in the paper, the “near optimal”
solution is “rather fuzzy”.

Our algorithm is therefore one of a very few fully polynomial time solutions
where belief propagation algorithms are proved correct. We will derive the it-
erative belief propagation algorithm and show both its correctness and conver-
gence. There are works on maximum (weight) matching, which is a well studied
problem. There are also works on minimax grid matching [9][6]. However, these
problems are slightly different from the problem in this paper. According to
the best of our knowledge, there are few works directly on the minimax weight
matching problem, hence almost no distributed approaches for MMWM, either.

In practice, a story for MMWM can be: One job consists of n tasks to be
processed on n computers. In order to minimize the job processing time, one can
minimize the maximum processing time of the tasks. For example, for MapRe-
duce [4] jobs, the Reduce jobs usually can not start until all the Map jobs are
finished. To minimize the total processing time for Map jobs, we could optimize
the scheduling using MMWM. In addition, our algorithm can be implemented
on Pregel [7], a system for large-scale graph processing.

The rest of the paper is organized as follows. Section 2 defines and describes
the problem. Section 3 derives the belief propagation algorithm. The proof of
correctness and convergence for the algorithm is given in section 4. We generalize
the algorithm in section 5 and conclude in section 6.

2 Problem Description

Let G = (T, S,E) be a symmetric complete bipartite graph. T and S are the
sets of n nodes in the two partitions respectively, i.e., T = {T1, T2, ..., Tn}
and S = {S1, S2, ..., Sn}. E is the set of edges between T and S. That is,
(Ti, Sj) ∈ E, 1 ≤ i, j ≤ n. Assign a weight wij to each edge (Ti, Sj).

Definition 1. In a symmetric complete bipartite graph, a minimax weight
matching is a perfect matching whose maximum weight is minimized.

Mathematically, if p = {p(1), p(2), ..., p(n)} is a permutation of {1, 2, ..., n},
then the collection of n edges {(T1, Sp(1)), (T2, Sp(2)), ..., (Tn, Sp(n))} is a per-
fect matching. Denote both the permutation and the corresponding matching
by p. The maximum weight of the matching p, represented by Wp, is

Wp = max
1≤i≤n

wip(i). (1)
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The MMWM p∗ is the optimal matching defined as

p∗ = argmin
p

Wp. (2)

Here is an example of MMWM. If the weight matrix is w =

⎛

⎝
2 1 4
4 2 1
3 4 2

⎞

⎠, where

w(i, j)(1 ≤ i, j ≤ 3) is the weight for edge (Ti, Sj). It is not hard to find
that only one MMWM exists in this case, lying at the diagonal, i.e., p∗ =
{(T1, S1), (T2, S2), (T3, S3)} with Wp∗ = 2.

3 Algorithm

In this section, we define the messages, derive the updating rules, and develop
the MMWM algorithm.

Before that, we first introduce the concept of a computation tree. Figure 1
shows a 3 by 3 original graph. The associated computation tree is drawn in
Figure 2. Note that the tree can be extended arbitrarily in depth, so long as all
the relations (who connects to whom) are kept among the nodes.

Fig. 1. Original graph

For each edge e on the computation tree, define a function m(e) on the subtree
below e with e included. Let this function return the maximum weight of the
MMWM on that subtree. Note a perfect tree matching is just one case of the
general graph matchings. That is, each vertex except some leaves, must attach
to one and only one associated edge. Similarly, define m′(e) on the subtree below
e but without e included. Let this function return the maximum weight of the
MMWM on the corresponding subtree. The main idea of the algorithm is to 1)
first let every edge separately make its own decision about itself to be chosen or
not in the optimal tree matching, and 2) at the end gather all these individual
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Fig. 2. Computation tree for Figure 1

decisions to form a global optimal matching in the original graph. In order to
realize this idea, one intuitive way is to check the difference m(e) − m′(e) for
each root edge, like (T1, S1) in Figure 2. If it is greater than 0, the maximum
weight of MMWM on the tree including e will surpass that without e. We should
hence discard e in order to minimize the maximum weight. Otherwise, choose it.

To enable these final decisions for each edge, we should keep passing that
difference (m(e)−m′(e)) along the computation tree. Then at the root edge er,
combine the messages passed up from each of its endpoints left (ml from T1)
and right (mr from S1):

m(er)−m′(er)

= max{ml(er),mr(er)}
−max{m′

l(er),m
′
r(er)} (3)

which is also known as the belief of the root edge. However, according to Eq.
(3), if only passing the difference along the tree, like ml(er)−m′

l(er) or mr(er)−
m′

r(er), we are unable to compute max{ml(er),mr(er)} −max{m′
l(er),m

′
r(er)}

at the final step. So we should pass at least both the m(e) and m′(e), not just
their difference. In the following, these two messages are showed to be enough.

Now consider the updating rules at each node. For an n×n graph, each node,
except the leaves, will have n−1 children in the corresponding computation tree.
Refer to Figure 3 for visualization. Mark the edges between the node and all its
children as i1, i2, ..., ip and the edge between this node and its father as o.

Let w(e) return the weight of edge e. Then

m(o) = max{w(o), max
1≤m≤p

m′(im)} (4)

m′(o) = min
1≤m≤p

{max{m(im),max
n�=m

m′(in)}} (5)

Eq. (4) computes the message for the maximum weight of the minimax tree
matching including edge o. In order to form a valid matching, if o is already
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Fig. 3. Messages passing through Tj

included, all the n− 1 children must be excluded. That is why the second maxi-
mization in Eq. (4) is taken on all the m′(im)’s, not the m(im)’s. Eq. (5) updates
the message for the maximum weight of the minimax tree matching without edge
o. Every node, except the leaves, must belong to one edge in the perfect match-
ing. Since o is not chosen in this case, we thus have to pick up one edge from the
n− 1 children, while abandoning all that child’s n− 2 brothers. In order to find
the minimax matching at the end, we take a minimization of all the maximum
weights in Eq. (5).

Last but not least, let us consider the initialization. Since leaves have no
children, the output messages from the leaves should be m(o) = w(o) and
m′(o) = min(w). Recall that w is the weight matrix. Actually, we can also
set m′(o) to be any value smaller than min(w).

Here is the entire algorithm:

(1)Initialization:

m
(0)
Ti→Sj

= wij (6)

m
′(0)
Ti→Sj

= min(w) (7)

m
(0)
Sj→Ti

= wij (8)

m
′(0)
Sj→Ti

= min(w) (9)

(2)Messages at the kth iteration:

m
(k)
Ti→Sj

= max{wij ,max
m �=j

m
′(k−1)
Sm→Ti

} (10)

m
′(k)
Ti→Sj

= min
m �=j

{max{m(k−1)
Sm→Ti

, max
n�=m,j

m
′(k−1)
Sn→Ti

}} (11)

m
(k)
Sj→Ti

= max{wij ,max
m �=i

m
′(k−1)
Tm→Sj

} (12)

m
′(k)
Sj→Ti

= min
m �=i

{max{m(k−1)
Tm→Sj

, max
n�=m,i

m
′(k−1)
Tn→Sj

}} (13)
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(3)Decisions at the end of kth iteration:

D
(k)
ij = max{m(k)

Ti→Sj
,m

(k)
Sj→Ti

} −max{m′(k)
Ti→Sj

,m
′(k)
Sj→Ti

} (14)

If D
(k)
ij < 0, choose the edge (Ti, Sj); Otherwise, not.

4 Proof of Correctness and Convergence

Theorem 1. For an n by n complete bipartite graph, if the minimax weight
matching is unique, the algorithm converges to the optimal solution after k ≥ n
iterations.

To prove this, we can equivalently investigate the following two statements:

1.1 The root edge er = (Ti, Sj) is not a part of the MMWM in the original
bipartite graph but m(er) < m′(er), meaning the root edge is chosen. We will
show this is impossible for k ≥ n;

1.2 The root edge er = (Ti, Sj) is a part of the MMWM in the original
bipartite graph but m(er) > m′(er), meaning the root edge is not chosen. We
will show this is impossible for k ≥ n.

Proof. For Statement 1.1, Let Ω be the set of all the edges constructing the
perfect tree matching with maximum weight m(er). Ω is therefore a tree match-
ing (All the nodes on the tree, except some leaves, connect to exactly one edge)
and er ∈ Ω by definition. Let X∗ be the MMWM in the original graph. Map
X∗ to the computation tree to get a tree matching Ω∗. By the assumption in
Statement 1.1, er /∈ Ω∗. Construct an alternating path P with respect to Ω
and Ω∗ on the tree starting from er. Then continuously augment P by selecting
each time two edges alternately from Ω∗ and Ω, until it reaches the leaves. For
example, consider the toy example in Figure 1 and 2. Suppose the matching
constructing Ω is {(T1, S1), (T2, S2), (T3, S3)}, while the MMWM in the original
graph constructing Ω∗ is {(T1, S2), (T2, S1), (T3, S3)}. The alternating path can
then be P = [...T2 ← S2 ← T1 ↔ S1 → T2 → S2...]. This path P starts from the
root edge T1 ↔ S1 as shown in the middle of the square brackets. For the first
alternative augmenting, it has to pick up two edges from Ω∗ since the root edge
belongs to Ω. (S2 ← T1) and (S1 → T2) are hence selected. After that, the path
goes through (T2 ← S2) and (T2 → S2), which belong to Ω again. This process
proceeds until P reaches the leaves. According to the definitions of Ω∗ and Ω,
such a path is guaranteed to exist.

Modify Ω to Ω′ by adding edges belonging to P ∩ Ω∗ and removing those
from P ∩Ω. Again by definition, er /∈ Ω′. We know max(Ω) = m(er) (max(X)
returns the maximum weight of edge set X) by definition and m′(er) ≤ max(Ω′)
because Ω′ is just one instance of the tree matchings without er. (Recall that
m(er) is the maximum weight of the minimax tree matching with er, and m′(er)
is that without er ). At this point, if we can show max(Ω′) ≤ max(Ω), then:

m′(er) ≤ max(Ω′) ≤ max(Ω) = m(er) (15)
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and a contradiction is immediately obtained, because at the very beginning the
assumption is m(er) < m′(er). Since the only difference between Ω′ and Ω is
the edges in P , we then only need to show:

max(P ∩Ω∗) < max(P ∩Ω). (16)

It is certainly not true for some starting iterations. We are interested in when
it must be true. To investigate that, first map P back to the original graph. Note
that, if we walk through P step by step in the original graph, we will get a series
of cycles at the beginning and at most one trailing path at the end. For instance,
consider mapping the path constructed above back to its original graph Figure 1.
Suppose this path is only of length five (alternatively augmented twice). Walking
through this path from one endpoint to the other T2 → S2 → T1 → S1 → T2 →
S2, we get a cycle at the beginning (T2 → S2 → T1 → S1 → T2) and a path
(T2 → S2) at the end. Next we will show that once mapping P back forms a
cycle in the original graph, the algorithm must converge to the optimum.

Assume one cycle has already appeared after mapping P back to the origi-
nal graph. Denote the edges in the cycle by C. Now prove by contradiction. If
max(P ∩ Ω∗) ≥ max(P ∩ Ω), then max(X∗) ≥ max(P ∩ Ω∗) ≥ max(P ∩ Ω) ≥
max(C ∩ P ∩Ω). By switching the edges in the cycle, we can therefore use the
edges C∩P ∩Ω and X∗/(C∩P ∩Ω∗) to construct another matching with maxi-
mum weight at most max(X∗). It is impossible, because we assume the MMWM
is unique. Consequently, max(P ∩Ω∗) < max(P ∩Ω).

For Statement 1.2, the reasoning is very similar, hence omitted.
The entire proof will end after answering this question: When does a cycle

have to appear in the original graph after mapping path P back to it? The
answer is simply, “n”. The length of the path P after k iterations is 2k + 1 and
the total number of nodes is 2n. 	 2k+1

2n 
 ≥ 1 yields k ≥ n. Consequently, the
algorithm will converge in n iterations.

Additionally, the number of iterations needed for convergence of the algorithm
Ka actually does not equal to that for the messages Km. What can be derived
directly is:

Ka ≤ Km. (17)

Intuitively, when the messages converge, the decision matrix D will stay the
same, which leads to the convergence of the algorithm. However, the convergence
of the algorithm, i.e., all the signs of the cells in the decision matrix will never
change anymore, does not necessarily ensure the convergence of the messages.
Another question thus arises: Will the messages converge? An intuitive answer is
yes, because both m(er) and m′(er) are nondecreasing and bounded by max(w),
when the number of iterations k increases.

As a result, the message complexity of the algorithm is O(n3) for a graph of
size O(n). To see this, consider a bipartite graph with n nodes in each partition,
hence n2 edges in total. Each edge needs n iterations to make a correct decision.
n3 messages are therefore exchanged before finding the minimax weight match-
ing. Additionally, each of the messages can be computed in at most O(n2) time.
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As a result, it is a fully polynomial time belief propagation algorithm! Upon
distributed implementation, if every edge can compute and pass the messages
simultaneously within one unit time in each iteration, the MMWM can then be
found in n unit time.

5 Extension to General MMWM

In the previous sections, we require the graph to be symmetric and complete.
In this section, we show the algorithm still works in an asymmetric and/or
incomplete bipartite graph as long as the MMWM is unique.

In order to apply the algorithm, repair the graph to a complete and symmetric
one by adding dummy nodes and edges:

– Asymmetric to symmetric:
Add dummy nodes to ensure same number of nodes in each side/partition
of the original bipartite graph.

– Incomplete to complete:
Add edges from the side with initially less nodes to the other side:

• For the dummy nodes and the nodes initially without any edge, add
edges with arbitrary weights as long as they are less than the minimum
of the edge weights in the original graph;

• For the nodes initially with at least one edge connecting to the other
side, add edges with arbitrary weights as long as they are greater than
the maximum of the edge weights in the original graph.

Now the original algorithm is once again able to find the unique MMWM. For
the result, among the selected edges, we can just keep the ones which are initially
in the graph, while discarding all the “artificial” ones. The proof of correctness
is straightforward and hence omitted here.

6 Conclusion

In this paper, we proposed a belief propagation algorithm to solve the MMWM
problem. The algorithm can find the unique optimum with message complexity
O(n3). This is one of a very few fully polynomial time solutions where belief
propagation algorithms are proved correct.
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Decision Support System for the Multi-depot

Vehicle Routing Problem

Takwa Tlili� and Saoussen Krichen
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Abstract. This paper is concerned with designing an integrated trans-
portation solver for multi-depot vehicle routing problem with distance
constraints (MD-DVRP). The MD-DVRP is one of the most tackled
transportation problems in real-world situations. It is about seeking the
vehicle routes that minimize the overall travelled distance. To cope with
the MD-DVRP, a Decision Support System (DSS) is designed based on
the integration of Geographical Information System (GIS) and the Local
Search (LS). The DSS architecture as well as its performance are checked
using a real world case.

Keywords: Multi-depot vehicle routing problem, Metaheuristic, Local
search, Decision Support System.

1 Introduction

In recent decades, many studies have contributed a considerable progress in or-
der to study Vehicle Routing Problems (VRPs), due to its efficiency to solve
logistic distribution problem. However, the VRP should be adjusted when it
addresses more than one depot, that is the real life situation. The Multi De-
pot VRP (MDVRP) considers cases where there is more than one depot. Each
vehicle departs from a depot to serve a set of customers. After the delivery,
each vehicle returns to the depot where they started. Every customer is to be
served by one vehicle on one occasion, and no vehicle can be loaded exceeding
its maximum capacity. Since the MDVRP is NP-hard (Garey & Johnson, 1979),
the literature on exact approaches is sparse (Baldacci & Mingozzi, 2009 and
Contardo & Martinelli, 2014). Most authors have focused on the development
of approximate methods to find near-optimal solutions quickly. Example ap-
proximate approaches include Ant colony optimization (Narasimha et al., 2013),
memetic algorithm (Luo & Chen, 2014), Granular tabu search (Escobar et al.,
2014), and Variable neighborhood search (Kuo & Wang, 2012). A recent survey
paper (Karakatič & Podgorelec, 2015) summarizes the Genetic algorithms de-
signed for solving the MDVRP. Consider an industrial firm with multiple depots
with predetermined locations. Each depot has an enough capacity to store all the
customers’ demands. A fleet of vehicles with limited capacity is used to deliver
the goods from depots to customers. The MD-DVRP consists in designing a set
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of least cost vehicle routes such that, (1) Each customer is served by only one
vehicle, (2) Each route starts and ends at the same depot, (3) The total length
of each route must not exceed the distance constraint assigned to each vehicle,
and (4) Each depot must not surpass assigned vehicles. Due to the complexity
of VRPs (Lenstra & Kan, 1981), there has been a growing interest in the use of
decision support systems (DSS). The integration of a metaheuristic into a DSS
increases the capability to analyze and handle transportation problems.
In the last decades, the world has witnessed a great scientific revolution, thanks
to the growth of information technologies and particularly the digital informa-
tion known by its accuracy, up to date and efficiency. Various softwares have
utilized it. Among the most popular ones, we can refer to Geographical Infor-
mation Systems (GIS) as a main tool that provides the necessary functions to
collect, manage, analyze and generate spatial data. It can generate sophisticated
geographical output easy to be understood in order to guide appropriately the
decision makers in their works (Li et al., 2003).

The main contributions of this paper are (i) to solve a novel variant of the
MD-DVRP which is the MDVRP with distance constraints using the ILS meta-
heuristic. (ii) to model mathematically the MD-DCVRP. (iii) to propose a DSS
based on GIS to aid decision makers on solving the MD-DCVRP. (iii) to validate
the designed DSS using a Tunisia real case study.

The remaining of the paper is organized as follows: Section 2 describes mathe-
matically the problem. Section 3 provides a description of the resolution method-
ology. Section 4 presents a detailed explanation of the proposed DSS architecture.
Section 5 describes the computational results. Section 6 details the case study.

2 Mathematical Model

The MD-DVRP is defined as an undirected graph G = (A,E) where a node
j ∈ A corresponds to either a customer or a depot and an edge e ∈ E ex-
presses a path between a pair of nodes. Let E = {1, ..., n} be the customers
set and F = {1, ...,m} the set of depots. Each customer has a demand qj
(j ∈ {1, 2, 3, ..., n})to be delivered by a vehicle k. Every vehicle is charac-
terized by a maximum capacity Ck and can travel a maximum distance Pk

(k ∈ {1, 2, 3, ..., p}). The travelled distance between node i and node j is dij .
We state in what follows the decision variable used for the development of the
MD-DVRP model.

xijk =

{
1 if the arc (i, j) is traversed by the vehicle k
0 elsewhere

The MD-DVRP can be expressed mathematically as follows.

Min Z(x) =
∑

i∈A

∑

j∈A\{i}

p∑

k=1

dij × xijk (1)
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Subject to

∑

j∈A\{i}

p∑

k=1

xjik = 1, ∀i ∈ E (2)

∑

j∈A\{i}

p∑

k=1

xijk = 1, ∀i ∈ E (3)

∑

i∈F

∑

j∈E

xijk ≤ 1, ∀1 ≤ k ≤ p (4)

∑

j∈E

xijk =
∑

j∈E

xjik,∀1 ≤ k ≤ p,∀i ∈ F (5)

∑

i∈S

∑

j∈S

xijk ≤ |S| − 1, ∀1 ≤ k ≤ p,∀S ⊂ E (6)

∑

i∈A

∑

j∈E\{i}
xijk × qj ≤ Ck,∀1 ≤ k ≤ p (7)

∑

i∈A

∑

j∈E\{i}
xijk × dij ≤ Pk,∀1 ≤ k ≤ p (8)

p∑

k=1

∑

j∈E

xijk ≤ vi,∀i ∈ F (9)

• The objective function (1) expresses the total distance traveled by all vehicles
that must be minimized.

• Constraints (2) and (3) state that each customer is supplied only once.
• Constraints (4) ensure that each vehicle is assigned to only one depot.
• Constraints (5) guarantee that each vehicle originates and terminates at the
same depot.

• Constraints (6) eliminate the sub-tours.
• Constraints (7) explain that the vehicle capacity should be respected, e.g,
the total customers demands assigned to a vehicle should not exceed its
maximum capacity.

• Constraints (8) describe that each vehicle should not exceed a distance
threshold.

• Constraints (9) express that the maximum number of vehicles for each depot
should be respected.

3 Resolution Methodology

Since MD-DVRP is at least as difficult as MDVRP which is known to be NP-
hard problem, therefore, we propose a hybrid optimization heuristic method
called HH, based on Local Search (LS) approach as we are motivated by its
success for a wide range of hard optimization problems such as the Travelling
Salesman Problem (TSP) and the MDVRP. The main idea of LS is to improve the
current solution by searching for a better one in its neighborhood. Our proposed
algorithm includes two iterated phases: construction and improvement.
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3.1 Construction Phase

Once the HH parameters, such as the depots number and customers coordinates
have been set, the assignment sub-phase is performed. In this sub-phase, we at-
tribute each customer to the nearest depot after calculating the distance slacks
of all depots and choosing the shortest one. Distances are obtained using Eu-
clidean method. Then, the routing sub-phase is achieved. It consists of assigning
customers belonging to the same depot to different routes. For this purpose, we
use the Clark and Wright saving method which is considered as a promising one.
This method consists of creating a saving matrix for each depot. For example,
for a depot d, the saving value for customers i and j is calculated by equation
10.

S(i, j) = Distance(d, i) +Distance(d, j)−Distance(i, j) (10)

Then, customers with greatest saving value are assigned to the same route with-
out exceeding the vehicle capacity and the maximum distance to travel. Once
the routing sub-phase is accomplished, we proceed to the scheduling sub-phase.
It yields a better customers sequencing of each route. For this, we use the Itera-
tive Improvement Insertion. This algorithm attempts to enhance the customers
scheduling of each route. In fact, it consists of selecting a customer randomly
without repetition and trying to insert him in the best position (which has the
lowest cost). This is repeated for all customers.

3.2 Improvement Phase

Once the initial solution is generated by the construction phase, we try to yield
better results by combining a set of optimization heuristics following these steps:
① Balancing Step: The purpose of this algorithm is to balance the customers
number distributed over the routes belonging to the same depot. In other words,
it spreads the customers over the routes in a way that their number becomes
roughly equal for each route. This step allows to deteriorate the objective func-
tion while respecting the capacity constraint and the maximum distance to
travel. It allows to browse a larger search space and so to have a better chance
to avoid local minima.
② Exchange Step: This procedure involves two types of moves that are intra-
depot and inter-depot.

– The first move consists of selecting two customers randomly from the same
depot and belonging to different routes. If the permutation between these
two clients yields better solution, the exchange is established.

– The second move has the same principle of the first one except that the ex-
change involves two customers that belong to different depots. The permu-
tation between the clients is done if the move improves the current solution.

③ Iterative Improvement Insertion: This is the same scheduling as men-
tioned in the initial phase.
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Algorithm 1. Iterative Improvement Insertion
Require: π0: customer table
Ensure: Best solution found
1: improve=true;
2: while improve=true do
3: improve=false;
4: for k=1 . . . p do
5: Remove a customer k at random from π0 without repetition;
6: π1 = Best permutation by inserting k in any possible position of π0;
7: if Cmax(π1) ≤ Cmax(π0) then
8: π0 = π1 ;
9: improve=true;
10: end if
11: end for
12: end while

4 Decision Support System Architecture

The DSS is a flexible and interactive tool that aims to facilitate the human
decision-making process in complex environments. The conceptual architecture
of the proposed DSS for solving the MD-DVRP is shown in Fig. 1. The DSS
integrates the ILS solver to get a near-optimal solution and a GIS that acts as a
result viewer. The methodology can be summarized in five interconnected steps.
Such steps are stated as follows.
① Retrieve or create geographical data related to highways, depots, customers
and vehicles from GIS layers. Customers and depots layers are presented as point
and highway layers as lines.
② Generate a minimal distance matrix using Dijkstra shortest path algorithm
(Dijkstra, 1959). It contains minimal distances between customers and depots.
These distance are gathered using GIS.
③ Assign each customer to the nearest depot. For this, we compare distance
between each customer and existing depots, in order to select the nearest one.
④ Establish routing and programming vehicles plan from each depot using LS
metaheuristic. Thereby, we obtain the routing planning, customers sequencings
and vehicles number.
⑤ Generate the geographical report (itinerary for each vehicle) that guides ap-
propriately the decision makers. It describes each vehicle itinerary, starting from
a particular depot to serve a set of customers optimally. The whole scenario is
summarized in figure 1.

5 Computational Results

HH algorithm is implemented in C++ language, based on 2 GHz Intel Core Duo
processor with 3 GO RAM under Windows 7. To evaluate the performance of
our work, we test it on a set of 22 MD-DVRP benchmarks from P01 to P22,
known as Cordeau’s instances. These instances are listed in table 1 where:

– I defines the instance name.
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Fig. 1. DSS architecture based on GIS

– n is the number of customers.
– m presents the number of depots.
– v mentions the number of vehicles assigned for each depot.
– Q indicates the capacity of each vehicle.
– D defines the maximum distance to be traveled by each vehicle.

To measure the performance of our algorithm, we apply the following metrics.

– C(s): Best found total travelled distance
– C∗(s): Best known solution (Cordeau benchmark)
– GAP : percentage between the best known solution C∗(s) and the best found

solution C(s).

Table 1. Instances parameters of Cordeau’s instances

I n m v Q D I n m v Q D

P01 50 4 4 80 ∞ P12 80 2 5 60 ∞
P02 50 4 2 160 ∞ P13 80 2 5 60 200
P03 75 3 3 140 ∞ P14 80 2 5 60 180
P04 100 2 8 100 ∞ P15 160 4 5 60 ∞
P05 100 2 5 200 ∞ P16 160 4 5 60 200
P06 100 3 6 100 ∞ P17 160 4 5 60 180
P07 100 4 4 100 ∞ P18 240 6 5 60 ∞
P08 249 2 14 500 310 P19 240 6 5 60 200
P09 249 3 12 500 310 P20 240 6 5 60 180
P10 249 4 8 500 310 P21 360 9 5 60 ∞
P11 249 5 6 500 310 P22 360 9 5 60 200
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Table 2. Experimental results of the HH on Cordeau’s instances

I C∗(s) C(s) GAP I C∗(s) C(s) GAP

P01 576.87 606.11 5.06 P12 1318.95 1390.04 5.44
P02 473.53 496.45 4.84 P13 1318.95 1400.2 6.16
P03 641.19 675.32 5.32 P14 1360.12 1554.25 13.5
P04 1001.59 1062.6 6.09 P15 2505.42 2766.3 10.4
P05 750.03 782.34 4.32 P16 2572.23 2885.45 12.18
P06 876.50 910.13 3.8 P17 2709.09 2969.45 9.61
P07 885.8 904.4 2.09 P18 3702.85 4202.3 13.48
P08 4437.68 4784.2 7.8 P19 3827.06 4137.07 8.09
P09 3900.22 4102.22 5.17 P20 4058.07 4466.56 9.65
P10 3663.02 3960.01 8.13 P21 5474.84 5770.05 5.39
P11 3554.18 4036.55 13.57 P22 5702.16 6523.85 13.65

Table 2 illustrates the computational results obtained through our approach
HH on 23 instances used by Cordeau et al, (1997) in terms of the best known
solution C∗(s), best optimal solution C(s) and gap GAP. From table 2, we can
point out that, for a considerable number of instances, the results of our approach
are near to those of the best known solution. We can also notice that the gap
varies between 2.09 and 13.65.

6 Real Case Study

In this section, we present a real case study for our approach. We take for our
work a data base example of Ezzahra city in Tunisia that will be applied on
QGIS software to generate its related map. In order to obtain this output, QGIS
combines different layers where each one describes a specific theme such sea,
building, road and islet.

The available database of the studied area contains a layer of roads which
do not allow the movement from one customer to another. So, we create a new
vector layer that is the Transport network consisting on a set of arcs connecting
customers. This layer represents the roads by which a vehicle can deliver items
to a set of customers.

Let us consider an example of 10 customers and 3 depots dispersed around
the Ezzahra city as shown in figure 2.

Different setting parameters of the problem are presented in table 3 and cus-
tomers’ demands are in table 4. In order to pick out the shortest path between

Table 3. Description of example parameters

Parameters

Vehicle capacity (kg) 250
Number of vehicles for each depot 2
Maximum distance traveled by each vehicle (m) 2350
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Table 4. Customer’s demands

Customer C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Demand 80 60 70 95 150 80 60 70 60 120

each couple of customers, we opt for an additional plugin integrable on QGIS
called ROADGRAPH that calculates the minimum distances between two points
on any polyline layer and illustrates this path over the road network. By means
of ROAD GRAPH, we obtain the following matrix that summarizes all shortest
paths between each pair of customers and depots. It consists of round distances
in meter.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 D2 D3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

D1 0 1132 1556 1359 807 639 1261 381 374 1376 579 275 1880
D2 0 2455 760 252 1455 907 784 425 180 500 1407 2779
D3 0 2175 2014 1000 731 1750 1374 2640 2063 1594 324
C1 0 657 1440 1444 1101 1135 968 1411 1645 2285
C2 0 1014 1248 444 712 626 754 988 2089
C3 0 714 750 374 1620 1063 594 1196
C4 0 1464 1088 1874 1777 1499 841
C5 0 521 1069 313 630 1946
C6 0 1475 834 411 1570
C7 0 519 1699 2816
C8 0 948 2259
C9 0 1790
C10 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. Solution of the example

Figure 2 presents a geographical view of the obtained results after solving the
example. It illustrates the best traveling path for each vehicle, while taking into
account the capacity restriction, maximum distance to be traveled by each one
and the limited number of vehicles assigned to each depot. This map is used to
guide vehicles drivers to serve customers through the shortest itinerary presented
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as yellow arrows. In the example of depot 3, two vehicles are used. The first one
leaves the depot to serve in the order C9, C3 then C6 with a cost of 1617. The
second vehicle serves respectively C5 and C8 with a cost of 1273. Both of these
vehicles come back to the depot D1 after serving the corresponding customers.

7 Conclusion

In this paper the Multi Depot Vehicle Routing Problem (MD-DCVRP) is evoked
and solved using the Iterated Local Search approach (ILS). In order to better
visualize the obtained results and make it more intuitive, we proposed to combine
the ILS with a GIS to design a Decision Support System (DSS). The proposed
DSS provides assistance to operating managers in transportation logistics. To
assess the efficiency of our framework, we proposed to solve an application of a
Tunisian case.
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Abstract. In this paper, we address the vehicle routing problem with
mixed fleet of conventional and heterogenous electric vehicles, denoted
VRP-MFHEV. This problem is motivated by a real-life industrial appli-
cation and it is defined by a mixed fleet of heterogenous Electric Vehicles
(EVs) having distinct battery capacities and operating costs, and iden-
tical Conventional Vehicles (CVs) that could be used to serve a set of
geographically scattered customers. The EVs could be charged during
their trips at the depot and in the available charging stations, which
offer charging with a given technology of chargers and propose different
charging costs. EVs are subject to the compatibility constraints with the
available charging technologies and they could be partially charged. The
objective is to minimize the number of employed vehicles and to min-
imize the total travel and charging costs. To solve the VRP-MFHEV,
we propose a Multi-Start Iterated Tabu Search (ITS) based on Large
Neighborhood Search (LNS). The LNS is used in the tabu search of the
intensification phase and the diversification phase of the ITS. Differ-
ent implementation schemes of the proposed method including best-
improvement and first-improvement strategies, are tested on generalized
benchmark instances. The computational results show that ITS produces
competitive results, with respect to results obtained in previous stud-
ies, while the computational time remains reasonable for each instance.
Moreover, using LNS in the intensification phase of ITS seems improv-
ing the generated solutions compared to using other neighborhood search
procedures such as 2opt.

Keywords: Electric vehicle routing problem, Electric vehicle charg-
ing, Meta-heuristics, Iterated Tabu Search, Large Neighborhood Search,
Optimization.

1 Introduction

Nowadays, many cities aim at keeping their streets safe for everyone and sav-
ing the environment while encouraging sustainable driving options such as ride
sharing [1] and Electric Vehicles (EVs) use [2]. In fact, EVs may decrease
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transportation-related emissions and provide for less dependence on foreign oil.
However, electric cars are still facing many weaknesses related to the high pur-
chase prices, battery management and charging infrastructure.

Several research groups are currently working on EV related problems and
the progress in the field is important. The problem of energy-optimal routing
is addressed in [3]. In [4], the authors formulate the Green Vehicle Routing
Problem (GVRP) as a Mixed Integer Linear Program (MIP) and propose two
constructive heuristics to solve this problem. An overview of the GVRP is given
in [5]. Schneider et al. [6] combine a Vehicle Routing Problem with the pos-
sibility of charging a vehicle at a station along the route. They introduce the
Electric Vehicle Routing Problem with Time Windows and Recharging Stations
(E-VRPTW). E-VRPTW aims at minimizing the number of employed vehicles
and total traveled distance. In [7], the Electric Vehicle Routing Problem with
Time Windows and Mixed Fleet to optimize the routing of a mixed fleet of EVs
and Conventional Vehicles (CVs) is addressed. To solve this problem, an Adap-
tive Large Neighborhood Search algorithm that is enhanced by a local search
for intensification is proposed. Almost the same problem is addressed in [8]. The
only difference here is the fact of considering a heterogenous fleet of vehicles that
differ in their transport capacity, battery size and acquisition cost. An Adaptive
Large Neighbourhood Search with an embedded local search and labelling pro-
cedure for intensification is developed. In [9], the authors present a variation of
the electric vehicle routing problem in which different charging technologies are
considered and partial EV charging is allowed.

In this paper, we extend earlier work in the literature with several important
new life aspects regarding the constraints and objective function. In fact, we con-
sider the electric vehicle routing problem with mixed fleet of conventional and
heterogenous electric vehicles that involves the design of a set of minimum cost
routes, starting and terminating at the depot, which services a set of customers.
We consider different charging technologies and partial EV charging. In addition
to the routes construction, EVs charging plans should be determined. We are
also concerned with new constraints. Firstly, EVs are not necessarily compat-
ible with all charging technologies. Secondly, charging stations could propose
different charging costs even if they propose the same charging technology and
they are subject to operating time windows constraints. Our objective function
is also different. In fact, we aim at minimizing total operating and charging costs
involved with the use of a mixed fleet. Our overall objective is to provide en-
hanced optimization methods for EV charging and routing that are relevant to
the described constraints.

The new constraints described above are inspired by a real-life problem that
has been first addressed in the framework of a French national R&D project led
by many companies and research laboratories. Furthermore, this study follows
on from the work presented in [10] where exact and heuristic methods were pre-
sented to solve the joint EV scheduling and charging problem. In [11] and [12], a
mixed integer programming model, heuristic approaches and an Iterated Local
Search metaheuristic were proposed to solve this problem.
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Within this study, we propose an Iterated Tabu Search based on a Large Neigh-
borhood Search (ITS-LNS). ITS has been used in the literature to solve NP-
hard problems such as the Traveling Salesman Problem [13]. To the best of our
knowledge, the ITS hasn’t never been used to solve the electric vehicle routing
problem.

The remainder of the paper is organized as follows. In Section 2, we introduce
the notation in detail. In Section 3, our solving approach is presented. Section 4
summarizes the computational results. Concluding remarks are given in Section 5.

2 Problem Description and Notation

We define the VRP-MFHEV on a complete, directed graph G = (V ′, A). V ′

denotes the set of vertices composed of the set V of n customers, the set F of ex-
ternal charging stations and other chargers located at the depot F = {1, . . . , f}.
The set of arcs is denoted by A = {(i, j) | i, j ∈ V ′, i �= j}.

Our optimization time horizon [0, T ], which represents typically a day, is di-
vided into T equidistant time periods, t = 1, . . . , T , each of length δ, where t
represents the time interval [t − 1, t]. All customers have to be served during
[0, T ]. A nonnegative demand qi is associated with each customer i ∈ V , this
represents the quantity of goods that will be delivered to this customer. With
each customer we also associate a service time si. Each arc (i, j) ∈ A is defined
by a distance di,j and a nonnegative travel time ti,j required to travel di,j . When
an arc (i, j) is traveled by an EV, it consumes an amount of energy ei,j equal to
r × dij , where r denotes a constant energy consumption rate.

The chargers in charging station f are available during the time window
[af , bf ]. Accordingly, the EV must wait if it arrives at charging station f
before time af .

Each charging station f ∈ F can deliver a maximum charging power pf (kW)
and proposes a charging cost cf expressed in (euros/kWh). Note that, within
this study, we consider that the charging stations could propose three different
charging technologies: (i) Level 1 charger which is the slowest charging level that
provides charging with a power of 3.7 kW; (ii) Level 2 charger offers charging
with a power of 22 kW and (iii) Level 3 charger which is the fastest charging
level that delivers a power of 53 kW.

We consider a set MEV = {1, . . . ,mEV} of EVs and a set MCV = {mEV +
1, . . . ,mEV + mCV} of Combustion Engine Vehicles (CVs), needed to serve all
customers. Each EV k operates with a battery characterized by its nominal
capacity of embedded energy CEk(kWh). Each EV (CV) is characterized by a
maximum capacity QEV (QCV) which represents the maximum quantity of goods
that could be transported by the vehicle. Denote by FCEV (FCCV) (euros/ day)
the fixed costs related to EVs (CVs). Denote by OCEV

k (OCCV) the operating
costs (euros/km) related to the maintenance of EV k (CV), accidents, etc. Thus,
if an arc (i, j) is traveled by an EV k (CV), this has an operating cost denoted
by costEV

i,j,k (costCV
i,j ) and is computed as: costEV

i,j,k = di,j × OCEV

k (costCV
i,j =

di,j ×OCCV).
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Each customer i ∈ V should be visited, by either an electric or conventional
vehicle, exactly once during [0, T ]. Each charging station could be visited as
many times as required or not at all. When charging is undertaken in a charging
station f , it is assumed that only the required quantity of energy is injected into
the EV battery. Thus, EVs could be partially charged.

Since we consider many charging technologies (slow and fast charging), we
should also consider the fact that not all EVs technologies are compatible with
fast charging. Thus, when we plan the charging of an EV, only the charging
stations proposing compatible charging technologies should be considered. A
feasible solution to our problem is composed of a set of feasible routes assigned
to adequate vehicles and a feasible EVs charging planning. A feasible route is a
sequence of nodes that satisfies the following constraints:

– Each route must start and end at the depot;
– the overall amount of goods delivered along the route, given by the sum

of the demands qi for each visited customer, must not exceed the vehicle
capacity (QEV or QCV);

– the total duration of each route, calculated as the sum of all travel durations
required to visit a set of customers, the time required to charge the vehicle
during the interval [0, T ], the service time of each customer and, eventually,
the waiting time of the EV if it arrives at a charging station before its opening
time, could not exceed T ;

– no more than mEV EVs and mCV CVs are used;
– each customer should be visited once between 0 and T ;
– the following charging constraints are satisfied:

• when charging is undertaken, each EV should be charged with a com-
patible charging technology;

• at each charging station f , charging could only be undertaken during its
operating time window [af , bf ];

• the battery capacity constraints should be satisfied

We seek to construct a minimum number of routes such that all customers are
served, all EVs are optimally charged and the total cost of routing and charging
is minimized. The objective function, measured in monetary units, consists in
minimizing five costs: (i) the routing cost that depends on the number of kilo-
meters traveled by each vehicle and the vehicle operating cost, (ii) the charging
cost engendered by charging EVs in the charging stations during [0, T ], (iii) the
vehicles total fixed cost and (vi) the total cost engendered by the waiting time
of the EVs if they arrive at a charging station before its opening time.

3 Iterated Tabu Search Based on Large Neighborhood
Search

Our ITS-LNS algorithm uses a Tabu search based on a Large Neighborhood
Search (LNS) in the intensification phase and a LNS in the diversification phase.
The LNS was first proposed by Shaw ([14]), and later adapted by Pisinger and



Iterated Tabu Search for the Mix Fleet Vehicle Routing Problem 61

Ropke ([15]). The ITS algorithm was first proposed by Alfonsas Misevicius to
solve the Traveling Salesman Problem [13]. It combines intensification and di-
versification mechanisms to avoid getting stuck in local optima. The intensifica-
tion phase searches for good solutions in the neighbourhood of a given solution,
whereas diversification is responsible for escaping from local optima and moving
towards new regions of the search space. The ITS algorithm iterates five proce-
dures: (i) Initial solution generation; (ii) a Tabu Search which improves a given
solution; (iii) a Diversification Mechanism that generates a new starting point
through a perturbation of the solution returned by the Tabu Search; (iv) an
Acceptance Criterion that specifies if the solution should be accepted or not and
(v) a Stopping Criterion that specifies when the ITS procedure should stops.
In the following, Algorithm 1 describes our multi-start ITS-LNS algorithm in
detail.

The next subsections describe the different ITS-LNS procedures in detail.

Algorithm 1. ITS-LNS Algorithm

1: Input: A graph G = (V ′, A) and a set of mEV +mCV vehicles
2: Output: A set of routes assigned to at most mEV +mCV vehicles
3: Let Max Restart be the maximum number of iterations to be executed starting

from a new initial solution
4: Let maximpr be the maximum number of consecutive diversification phases allowed

without improvement of the current best solution
5: Let Record be the value of the best solution obtained
6: Initially, Record =: +∞, impr := 0, restart := 0, nIter := 0
7: while restart < Max Restart do
8: Generate an initial solution and let s0 be this solution
9: s1 := TS − LNS(s0)
10: record := costs1
11: while nIter < maxIter AND impr < maximpr do
12: s′ := Perturbation based LNS(s1)
13: s′1 := TS − LNS(s1)
14: if costs′1 < (1 +Dev)× record then

15: s1 := s′1
16: end if
17: if cost(s′1) < Record then
18: Record := cost(s′1), impr := 0
19: else
20: impr := impr + 1
21: end if
22: nIter := nIter + 1
23: end while
24: restart := restart+ 1
25: end while
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3.1 Initial Solution Generation

An initial feasible solution is generated with a Charging Routing Heuristic
(CRH). For each vehicle, the CRH assigns a route composed of a set of customers
and eventually a set of charging stations. The CRH starts from an empty solution
and extends it iteratively until a complete solution is constructed. While at least
one vehicle is still available, the heuristic selects an EV k having a maximum
battery capacity (or a CV if no EV is available). Then, it inserts iteratively the
customers into an active route at the position causing minimal increase in tour
cost until a violation of capacity or battery capacity of the selected EV occurs.
The heuristic anticipates, when possible, any violation due to the battery capac-
ity constraint by inserting charging stations during the tour construction. The
best charging station is selected among the compatible and available charging
stations belonging to the neighborhood V (i) of the current node i, where V (i)
is the set of all nodes within the circle defined by the center i and the radius
α; where α is the maximum distance that could be traveled by the EV using its
current state of charge. If a violation of one of the constraints occurs, the current
route is assigned to the selected vehicle, another EV with a maximum battery
capacity is selected and a new route is activated.

When a customer could not be reached using any of the available EVs, it is
assigned to the CV engendering the minimal cost increase in the solution cost
while satisfying the capacity and the total route duration constraints, until at
most the predefined number of routes is constructed.

Algorithm 2 gives more details about the CRH heuristic.

3.2 Intensification Phase

The intensification phase uses a Tabu Search procedure that is based on a Large
Neighborhood Search (TS-LNS). In this paper, we use a fixed length of tabu
list and we make tabu any moves that have been involved in the solutions that
have been visited in the recent past. The following parameters are useful in the
TS-LNS:

– h: the size of the tabu list Tab
– Iter: parameter that controls the size of the main loop of the TS-LNS
– IterLNS: parameter that specifies the number of times the LNS should be

repeated
– trial: parameter that specifies the number of times the Random Insertion

Method (RIM) (described below) should be repeated in order to find the
best improvement insertion

– Num: parameter that controls the size of the neighborhood list that will be
used in the LNS

The TS-LNS procedure (see Algorithm 3) restarts Iter times and for each new
solution, it seeks for the best solution by performing IterLNS iterations of the
LNS procedure which is based on the following destroy and repair strategies.
A node j and a set of Num − 1 additional nodes located the nearest possible
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Algorithm 2. Charging Routing Algorithm

1: Input: A graph G = (V
′
, A) and a set of mEV +mCV empty routes

2: Output: A set of routes assigned to at most mEV +mCV vehicles
3: while the maximum number of routes is not yet reached AND there exists at least

one customer that is not yet served do
4: Select the EV k with the highest battery capacity among all available EVs not

yet assigned
5: while the total route duration is less than T and the total amount of goods

delivered along the route is less than QEV do
6: Sort the list of nodes randomly and let V (i) be the set of all neighbors of node

i not yet visited and that could be visited using the remaining battery energy
of the current vehicle

7: if V (i) contains at least one customer and either the depot or a charging
station f ∈ V (j) ∩ F (j) then

8: select a node j from V (i) such that costEV
i,j,k is minimal

9: else if (V (j) is empty or it contains only customers or incompatible charging
stations) AND (charging is possible) then

10: the vehicle should get charged before visiting j, in that case insert the
compatible charging station with the lowest cost while ensuring that this
charging station will be available when the EV arrives at this station

11: else
12: Assign i to the CV having a sufficient capacity and engendering a minimum

insertion cost
13: end if
14: end while
15: end while

to j (in terms of costs), are randomly selected (the selected neighbors may be
in different routes). This neighborhood of Num nodes is then ejected from the
solution. The ejected nodes are then re-inserted back into the partial solution us-
ing the Random Insertion Method . Here, we distinguish the First-Improvement
(FI) and the Best-Improvement (BI) strategies. In best-improvement, a large
neighborhood is explored and the best solution is returned. That means that,
for each list of ejected nodes, random permutations of nodes are tested and the
permutation that leads to the best solution is saved. In first-improvement, the
first permutation improving the initial solution is saved.

For each list of ejected nodes, the RIM procedure is repeated trial times and,
at the end, the ejected nodes are re-inserted in the route positions engendering
either the best or the first improvement in the solution cost. If the solution
becomes infeasible, we insert a new charger, having the lowest cost, in the route
while ensuring that the constraints related to the compatibility of the charging
stations with the EV are satisfied. If it is not possible to insert the ejected node
in an already constructed route, a new route that contains this node and the
depot may be created. In that case, the vehicle ownership cost is added to the
total route cost.
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When all customers have been re-inserted back into the solution, the new so-
lution is compared with the original solution. If the resulting solution is better
than the original solution, then the next iteration continues with the new so-
lution. Otherwise, the next iteration continues with the original solution. After
IterLNS runs, the best solution found by LNS during the search is reported.
This solution is accepted if it is not tabu. TS-LNS restarts.

Algorithm 3. Tabu Search based on LNS procedure

1: Input: a solution S
2: Output: new solution produced S′

3: Let Tab be the tabu list and set S′ := S
4: Initially, best cost := cost(S)
5: for i = 0 to Iter do
6: for j = 0 to IterLNS do
7: Eject a list of Num nodes from the solution S′

8: for k = 0 to trial do
9: Insert the ejected nodes in the cheapest route positions that are not in the

Tabu list, following the RIM and let S” be the obtained solution
10: if cost(S”) < best cost then
11: S”∗ := S”
12: if (First improvement) then
13: goto 17
14: end if
15: end if
16: Eject again the list of Num nodes
17: end for
18: if cost(S”∗) < cost(S′) then
19: best cost := cost(S”∗)
20: end if
21: end for
22: S′ := S”∗

23: update the Tabu list Tab
24: end for

In the following, we detail the Random Insertion Method.

RIM. This method selects randomly a node among the list of ejected nodes and
inserts it in the position that generates the minimal cost increase in the total
solution cost. If the insertion of a customer in a given route position leads to
a violation of the vehicle capacity or total time constraints, this route position
will not be accepted. However, if the insertion of a customer in a given route
position still satisfies the vehicle capacity and total time constraints but leads
to a violation of the energy constraints (in the case where the EV needs more
energy to serve this customer or the time planned for charging decreases since
it depends on the opening time windows of the charging stations), this method
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tries to repair the solution by inserting chargers in the route while ensuring
the compatibility between the EV and the chargers and satisfying the charging
stations’ operating time windows constraints.

3.3 Diversification Phase

The solution generated by the TS-LNS procedure is perturbed to avoid stopping
at a local optimum. The diversification mechanism uses the LNS but it explores a
larger neighborhood space than the one explored by the TS-LNS. In fact, during
the diversification phase, the current solution is destroyed by ejecting a larger
number of nodes than the number of nodes ejected in the intensification phase.
The diversification phase consists in the following steps:

– Eject a random list of Numperturb nodes such that Numperturb > Num.
– Inject randomly the ejected nodes.

3.4 Acceptance Criterion

To escape from a current locally optimal solution, non improving-solutions could
be accepted. Our acceptance criterion is based on the mechanism of accepting
non-improving solutions used by the Record-to-Record algorithm [16]. During
the run of the ITS-LNS procedure, any solution is accepted if its objective value
is lower than (1+Dev)×Record, where the Record is the value of best solution
obtained andDev is a parameter. Initially, Record is equal to the initial objective
function. During the search process, Record is updated with the objective value
of the best solution so far.

4 Computational Experiments and Discussion

Our methods were implemented using C++. All experiments were carried out
on an Intel Xeon E5620 2.4GHz processor, with 8GB RAM memory. We con-
ducted numerical experiments on generalized E-VRPTW Benchmark Instances
proposed in [6], denoted VRP-MFHEV. Each VRP-MFHEV instance is com-
posed of 100 customers and 21 charging stations proposing different charging
technologies and different charging costs. The fleet of vehicles is composed of
50 CVs, 25 EVs having 22 (kWh) battery packs and 25 EVs having 16 (kWh)
battery packs.

4.1 Computational Results

The computational results concerning the different implementation schemes are
summarized in Table 1. Table 2 presents the results generated by the Tabu Ser-
ach procedure and the ILS algorithm presented in [11]. For each implementation
scheme, the entries show the average gap (Gap(%)) and the average computa-
tional time (CPU (s)) for each instance category. The Gap of a generated solution
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(S) is calculated in relation to the initial solution (Gap = SCRH−S
S ). In Table

1, we evaluate the influence of the different components of the ITS-LNS on the
quality of the generated solutions. In Table 2, we compare the results obtained
by the ITS-LNS algorithm with those obtained by the TS-LNS, ITS-2opt and
the Iterated Local Search algorithm.

Preliminary experiments carried out allowed us to fix the values of many
parameters of the algorithm. For all the experiments, the parameter maxIter

was fixed at 10000 iterations, maximpr at 100, trial at 50 and h at 7. For each
instance, we tested our methods following different implementation schemes ob-
tained by varying the parameters of the ITS-LNS algorithm. The different im-
plementation schemes are represented by the quadruplets (Num, Numperturb,
Max Restart, imp) where imp = 0 if the FI strategy is chosen and imp = 1 if
the BI strategy is chosen.

Table 1. Influence of the different ITS-LNS parameters on the quality of generated
solutions

Instance (2,5,1,0) (3,5,1,0) (4,5,1,0) (2,6,1,0) (3,6,1,0) (4,6,1,0)

Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s)
C1 21.77 12.57 25.94 14.39 30.38 15.04 22.26 12.96 25.38 13.12 30.35 9.71
C2 26.21 13.07 29.72 14.34 36.75 11.67 26.21 9.86 31.51 11.11 36.67 16.13
R1 33.81 14.58 39.41 12.32 45.87 13.60 35.38 15.44 40.88 16.30 45.45 14.55

average 27.26 13.40 31.69 13.68 37.65 13.43 27.95 12.75 32.59 13.51 37.49 13.46

Instance (2,7,1,0) (5,7,1,0) (7,8,1,0) (2,5,1,1) (2,5,2,0) (2,5,3,0)

Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s)
C1 21.48 15.23 38.89 16.13 43.21 16.03 21.57 118.88 98.15 22.59 98.60 33.24
C2 25.65 12.15 42.73 13.11 48.77 18.26 25.18 105.13 103.83 24.32 106.71 37.53
R1 34.52 10.87 52.59 11.54 60.17 16.14 34.15 136.43 128.89 23.90 133.62 36.93

average 27.21 12.75 44.73 13.59 50.71 16.81 26.96 120.14 110.29 23.60 112.97 35.90

Table 2. Performance of ITS-LNS compared to TS, ILS and ITS-2opt

Instance TS ILS ITS-LNS ITS-2opt

Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s)
C1 21.85 0.018 21.35 14.08 22.26 12.96 21.97 13.16
C2 24.83 0.0175 25.42 9.58 26.21 9.86 25.73 9.87
R1 32.50 0.017 32.41 14.34 35.38 15.44 33.67 16.22

average 26.39 0.0175 26.39 13.11 27.95 12.75 27.12 13.08

4.2 Discussion

The computational results presented in Table 1 show that the value diff =
NumPerturb − Num and the size of the list of ejected nodes Num impact the
quality of the solutions generated by the ITS-LNS algorithm. In fact, better
solutions are obtained when diff is small (diff = 1, diff = 2) and Num is
high. In the case where Num = 7 and Numperturb = 8 and for the instances R1,
the ITS-LNS improves by around 60% the initial solutions. However, in the case
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where Num = 2 and Numperturb = 5, the ITS-LNS improves by only 33% the
initial solutions. Among the 9 first implementation schemes, the configuration
(7,8,1,0) seems to be the best in terms of quality of the generated solution
with an average gap of 50.71%, and the computational time remains reasonable
(16.81 s). Moreover, ITS-LNS with BI seems to generate better solutions for
the instance class R1 but it consumes much more computational time than
ITS with FI. For the instance classes C1 and C2 , ITS-LNS with FI strategy
generates better solutions than ITS-LNS with BI strategy. Furthermore, it is
obvious that the ITS-LNS with restart improves significantly the quality of the
generated solutions. In fact, the ITS-LNS improves the generated solutions up
to 128% in the case where Max Restart = 2, and up to 133% in the case where
Max Restart = 3. The computational time remains acceptable for both cases.

The computational results presented in Table 2 show that the TS-LNS gener-
ates acceptable solutions in a very short computational time (less than 0.02 s).
Moreover, the ITS-LNS seems producing competitive results with respect to the
results generated by the Iterated Local Search. In fact, the ITS-LNS improves al-
most all solutions generated by the ILS algorithm, while the computational time
remains reasonable for each instance. Furthermore, we can notice that using the
LNS procedure in the intensification phase of ITS-LNS improves the obtained
results compared to using more classical neighborhood search procedure such as
2opt search.

5 Conclusion

In this paper, we considered a new real life vehicle routing problem with mixed
fleet of conventional and heterogenous electric vehicles, denoted VRP-MFHEV.
This problem extends the electric vehicle routing problem studied in the litera-
ture by considering simultaneously a mixed fleet of CVs and heterogenous EVs,
compatibility constraints between EVs and chargers, several charging technolo-
gies and different charging costs. To solve this problem, we developed a Multi-
Start Iterated Tabu Search which uses a LNS in the intensification and diversifi-
cation phases. Our method was tested on generalized benchmark instances. The
computational results show that ITS-LNS produces competitive results, with
respect to results obtained in previous studies, while the computational time
remains reasonable for each instance. Moreover, we concluded that using LNS
in the intensification phase improves the generated solutions compared to other
neighborhood search procedures such as 2opt search. As further work, we will
study lower bounds and we will relax our problem and compare our results with
those of the literature.
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Abstract. Frequent upgrades of equipment in the telecommunications
industry occur due to the emergence of new services or technological
breakthroughs. In this work, we consider a network where each client is
linked to a site and handled by a card located on that site. A technological
migration has to be undertaken within a short horizon of a few years and
it consists of replacing all the existing cards by cards of a new generation
within a fixed number of years. For practical considerations, all the cards
of a site must be replaced in the same year. Furthermore, we can assume
that, because of new offers, the number of clients per site is decreasing
during the planning horizon. This enables us to reuse the new cards that
are not used any more once some clients have left. The optimization
problem consists of deciding, for each year, which sites are migrated and
how many cards are bought or reused, in order to minimize the total
cost. We present an exact solution for this problem, based on an integer
linear programming formulation.

Keywords: Telecommunications, migration, Integer programming,
Practice of OR.

1 An Industrial Issue

A telecommunication operator such as France Telecom is often confronted with
the emergence of new technologies that implies adaptation of the existing net-
works. This problem occurred recently with the growth of Voice Over Internet
Protocol (or VoIP), which is now one of the most important ways of convey-
ing information. In the initial state of the network for fixed telecommunications,
France Telecom is using PSTN technology (Public Switched Telephone Network)
and, in order to reduce operating costs, the operator wishes to replace this tech-
nology by VoIP within a predetermined horizon of a few years. This means that
in each site of the network, the PSTN equipment connected to the client has to
be replaced by a VoIP compatible card. The overall operation has to be realized
at minimal cost. So, we have to determine the optimal replacement year for each
site in order to reduce the total cost. We will call migration the equipment re-
placement process in a site and we will assume that we need one VoIP card per
client.

Furthermore, a particular feature has to be considered. Indeed, with compe-
tition between providers and emergence of new offers inside France Telecom as

c© Springer International Publishing Switzerland 2015 69
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Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_7
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well, clients are more and more subject to cancel their standard contract for of-
fers that combine TV, Internet and phone services. These new offers are directly
using VoIP technology. As a consequence, the number of clients concerned by the
technological change is decreasing. This raises an issue: when a new expensive
VoIP card has been set up for a client who leaves afterwards, the investment
is lost. To secure a return on this investment, cards that become unused be-
fore the end of the planning horizon can be reused. Such cards are disconnected
and installed again for other clients on a site not yet migrated to VoIP. Taking
into account this possibility, we have to determine for each year of the planning
horizon, how many VoIP cards are bought and how many of them are reused.
As reusing a card is less expensive than buying a new one, we will try to maxi-
mize the number of reused cards. This specificity is responsible for the problem’s
difficulty. In fact, without the possibility of reusing cards, we could determine
the optimal year of migration for each site independently and would be closer
to classical equipment replacement problems (see [1], [4] and [5]). However, an
important difference between our problem and equipment replacement is that
we change the equipment only once.

A Basic Example. In order to illustrate this problem, we propose a simple
example of a network composed of only two sites. Without dealing with cost
issues, we present a feasible solution. In Table 1, we give the number of cards,
i.e. of clients, on each site per year during the five-year planning horizon.

Table 1. A basic 2-site example with decreasing number of cards on each site

Year 1 2 3 4 5

Number of clients of site 1 4 4 3 2 1
Number of clients of site 2 5 4 3 3 2

Figure 1 shows a possible solution for the basic example. In this solution, the
first site migrates at year 2 and the second site at year 4. A site uses PSTN
cards before its migration and VoIP cards after its migration. When VoIP cards
become useless for a site because its number of clients (needed cards) decreases,
they are disconnected and placed in a global stock available for further migrations
of other sites. On the first year, no site is migrated so no VoIP card is needed.
On the second year, we have to migrate site 1 and the stock of VoIP cards is
empty, so we buy 4 new VoIP cards, corresponding to the current number of
clients on site 1. From the second to the third year, one client on site 1 has left,
so the corresponding VoIP card is disconnected and put into the stock. At the
beginning of the fourth year, another client has left from site 1, so another VoIP
card is placed into the stock. At this same year, site 2 has to be migrated and
has three clients. As reused cards are cheaper than new ones, we take two cards
from the stock, we buy a new VoIP card and we connect the three cards to site 2.
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Fig. 1. A possible solution for the basic example of Table 1. Site 1 is migrated year 2
and site 2 is migrated year 4

Eventually, at the beginning of the fifth year, two more VoIP cards are put
into the stock, even if they are no more needed, as all the sites have already
been migrated. Such a stock could be used for example to replace some faltering
equipment. �

Another specificity is that a tax has to be paid each year for each kind of
equipment set up in the network: on old PSTN equipment as well as on new
VoIP cards. This tax represents a percentage of the equipment purchasing price.
Therefore, when a site is migrated to VoIP, tax on the PSTN equipment is no
more paid. In contrast, a tax on new equipments (VoIP cards) is to be paid.
Regarding the old equipments (PSTN cards), the amount of tax payable for
each site is divided into two parts: a fixed part and a part associated with each
card. Note that these two parts are site-dependent. As tax is proportional to the
equipments purchase price, and old PSTN equipements were very expensive at
the time they were bought, paying the tax on new VoIP equipments is actually
cheaper than on the old PSTN equipments.

To conclude, we have two types of decisions to make: the year at which each
site is migrated, and the number of cards bought or reused every year. Our
objective is to minimize the total operating costs. We call this optimization
problem MigR (for Migration with Reuse of cards).
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Target Instances to be Solved. France Telecom fixed the migration horizon
to 5 years and estimated the number of sites to about 10000. Even if they did
not provide us with real instances, they gave us their specifications in terms of
number of clients per site and year, intervals of different costs, ... We precise
these specifications in Section 4. We generated instances corresponding to these
specifications and, as we well show, succeeded in solving these instances with an
Integer Linear Programming approach.

The rest of the paper is organized as follows: In Section 2, we show that
problemMigR is NP-hard. In Section 3 we present an integer linear programming
formulation for this problem. Finally, in Section 4, we report some computational
results and analysis of the computed solutions.

2 An NP-hard Optimization Problem

Using a reduction from the Partition problem, which is NP-complete [3], we
prove now the NP-hardness of MigR, even for a 2-year planning horizon.

Theorem 1. The optimization problem MigR is NP-hard.

Proof. We first define the decision problem PARTITION.
PARTITION: Let A = {a1, ..., ap} be a set of p elements and denote by

s(ai) ∈ N the weight of ai. Let B =
∑

ai∈A

s(ai). Is there a subset A′ of A such

that
∑

ai∈A′
s(ai) =

B

2
?

Let Part be an instance of PARTITION. From this instance, let us now
construct an instance DMigR2 of the decision problem associated to MigR with
a 2-year planning horizon.

DMigR2: Let S = {S1, ..., Sp} be the set of p sites of a network such that the
number of clients of any site Si is equal to 2s(ai), the first year, and equal to
s(ai), the second year. Let P > 1 be the price of a new VoIP card. The reuse cost
of a card is 0. The tax gain corresponding to the installation of a new card is of
1 per card the first year and of 0 per card the second year. Is there a migration
solution of total cost less than or equal to PB − B?

– Let us first prove that, if there exist A′ such that
∑

ai∈A′
s(ai) =

B

2
, we can

build a solution of DMigR2 with a cost less than or equal to PB − B. On
the first year, we migrate all sites Si such that ai ∈ A′. The remaining sites
are migrated on the second year. In this solution, we need to buy exactly B
cards on the first year. The associated price is PB and the associated tax
gain is B. On the second year, since half of the migrated clients have left, B

2
cards become available. They can be used for the non-migrated sites. These
remaining sites require precisely B

2 cards. So, no additional cost is needed
on the second year, and the total cost of this solution is PB −B.
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– Now, let us prove that from any solution Sol of DMigR2 with a cost less

than or equal to PB − B, we can build a set A′ such that
∑

ai∈A′
s(ai) =

B

2
.

In solution Sol, all the sites are migrated on the first or second year. Let A′

be the set composed of the elements ai such that, in Sol, site Si is migrated
on the first year. Let X be the number of cards bought and installed on the

first year. This means that
∑

ai∈A′
s(ai) =

X

2
.

– Now, we prove that X = B. At the end of the first year, X
2 cards are

disconnected, since half of the clients have left. At year 2, there remains
only 2B−X

2 = B − X
2 clients to migrate.

• Suppose that X > B. The cost associated to the first year is PX −X .
The cost associated to the second year is non negative since there is no
tax gain. Hence, the total cost is at least PX−X which is strictly greater
than PB − B because P > 1. This contradicts the fact that the cost of
Sol is less than or equal to PB −B.

• Suppose that X < B. On the second year, X
2 cards become available and

the remaining sites require B − X
2 cards. So, B −X new cards have to

be bought at a price equal to P (B−X). Hence, the total cost is equal to
PX−X+PB−PX = PB−X . As PB−X > PB−B, this contradicts
the fact that the cost of Sol is less than or equal to PB −B.

So, X = B and we proved that A′ satisfies
∑

ai∈A′
s(ai) =

B

2
.

3 Integer Linear Programming Formulation

We formulate problem MigR by an integer linear program.

We are given the following data:

m : number of years of the planning horizon dedicated to the migration
p : number of sites to be migrated
ni,t : number of clients (PSTN or VoIP cards needed) on site i at year t
Pt : price of a VoIP card at year t
IAt : cost of reusing a VoIP card at year t
It : unit installation cost of VoIP cards at year t
CCi : fixed cost due to the use of PSTN cards for site i
CIi : unit cost of a PSTN card for site i
T axt : tax at year t, to be paid on the total costs of VoIP or PSTN cards

We denote by M the set {1, ...,m} and by P the set {1, ..., p}.
The aim is to plan the migration of p sites over a horizon of m years. The

migration of a site consists of the replacement of all its PSTN card by VoIP
cards. At year t, if site i is migrated, it requires ni,t VoIP cards. Each card is
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either bought at price Pt or reused for a cost IAt. The actual cost associated
with a new card is Pt plus the taxes that have to be paid starting from year
t. Let PTt = Pt(1 +

∑m
k=t Taxk) be that actual cost. An additional cost comes

from the installation of the cards at the unit cost It. However, a gain comes from
the fact that the company will stop paying taxes on the replaced PSTN cards.
Starting from year t and for any following year k until the end of the planning
horizon, the telecom company will save, for each site i, Taxk(CCi + CIini,k).
For convenience, we will denote by GTi,t the total saving of the company if site i
is migrated at year t, i.e. GTi,t =

∑m
k=t Taxk(CCi +CIini,k). As the number of

cards per site is decreasing over the years, a balance has to be found between a
late migration policy that allows to buy less cards and an early migration policy
that will allow to save more taxes on PSTN cards.

Coming back to the cost of buying a VoIP card, we can observe that there is
no storage cost. It may be more interesting to buy a card a few years before the
year it is needed. Hence, in an optimal migration policy, we can consider that
the cost of a VoIP card at year t is not PTt but the smallest PTk where k varies
from 1 to t. In the following, we will consider PRt = mink=1...tPTk as the cost
of a first use of a VoIP card at year t, regardless to its acquisition year. It can
be easily checked that PRt decreases over the years.

We now introduce three sets of variables:
xi,t ∈ {0, 1} : binary variable equal to 1 if and only if site i is migrated at year t
at ∈ N : number of new VoIP cards needed at year t
rt ∈ N : number of reused VoIP cards at year t

We formulate MigR by the following integer linear program:

(PL0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑
t∈M

PRtat +
∑
t∈M

IAtrt +
∑
t∈M

It
∑
i∈P

ni,txi,t -
∑

t∈M

∑
i∈P

GTi,txi,t (1)

s.t.∑
t∈M

xi,t = 1 ∀i ∈ P (2)

r1 = 0 (3)

at + rt =
∑
i∈P

ni,txi,t ∀t ∈ M (4)

∑
k≤t

rk ≤
∑
k<t

∑
i∈P

(ni,k − ni,t)xi,k ∀t ∈ M − {1} (5)

xi,t ∈ {0, 1} ∀i ∈ P, ∀t ∈ M

at, rt ∈ N ∀t ∈ M

The objective function (1) is composed of the purchase and tax cost, the reuse
cost, the installation cost, and the gain related to the savings of taxes on PSTN
cards.

The main constraints (2) concern the year of migration of the sites and impose
that each site is migrated during the horizon. Constraint (3) says that at the
beginning of the horizon, the stock of available cards is empty. At each year,
the number of VoIP cards needed is equal to the sum of new and reused cards
installed. This is guaranteed by Constraints (4). Eventually, we cannot reuse
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more cards than those available in the stock. Hence, each year, the number of
cards reused since the beginning of the horizon must be lower than the number
of cards that are no longer used. This is imposed by Constraints (5).

In order to lighten our formulation, we suppress in Constraints (4) variables

at that can be viewed as slack variables and we substitute (
∑

i∈P

ni,txi,t − rt) to

at in the objective function. We obtain the following integer linear program:

(PL1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑
t∈M

(IAt − PRt)rt +
∑
t∈M

∑
i∈P

(PRt + It)ni,txi,t -
∑

t∈M

∑
i∈P

GTi,txi,t

s.t.∑
t∈M

xi,t = 1 ∀i ∈ P

r1 = 0∑
k≤t

rk ≤
∑
k<t

∑
i∈P

(ni,k − ni,t)xi,k ∀t ∈ M − {1}

rt ≤
∑
i∈P

ni,txi,t ∀t ∈ M

xi,t ∈ {0, 1} ∀i ∈ P, ∀t ∈ M

rt ∈ N ∀t ∈ M

(6)

We get a compact linear integer programming formulation for problem MigR.
By inspecting the row matrix of problem PL1, one can observe that the sub-

matrix associated to variables rt is a 0-1 matrix and it has the consecutive-ones
property. This sub-matrix is hence totally unimodular (see for example [6]).
Further, as the ni,t coefficients are integers, Constraints (6) can be replaced
by simple non negativity conditions on the rt variables. The rt variables will
have integer values in an optimal solution of the obtained problem. Another
consequence is that, if the migration years are known (i.e. the xi,t variables are
fixed), the problem of finding an optimal solution for buying or reusing VoIP
cards can be solved by linear programming and therefore in polynomial time.
Recall that the decision problem with the x and r variables is NP-hard. It follows
that the difficult part of the decision is only in determining the x variables values,
i.e. the migration year of each site.

4 Computational Results

We now focus more precisely on the problem solution. We implemented the math-
ematical problem (PL1) using the modeling language AMPL [2] and solved it by
the mixed-integer linear solver of CPLEX 12.5 with all parameters set to their
default value. The experiments have been carried out on a PC with an Intel Core
i5-2540M processor having 8 Go of RAM and running Windows 7.

Specifications of the Target Instances. We generate 5 instances following
the specifications given by France Telecom and inspired from real-life instances.
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The number of periods (years) in the planning horizon, m, is equal to 5. The
number of sites, p, is equal to 10000.

For each site i, we first randomly generate ni,1, the number of clients -or PSTN
cards- in the first year in the interval [50, 2500]. Then, for any following year t,
we generate a random coefficient ρ in the interval [0.5, 1] and set ni,t = ρni,t−1.
The obtained ni,t are decreasing over the years as required in our assumptions
on the problem.

For the other data, we consider that the variation from a year to the following
one are small. We first generate P1, IA1, I1, CC1, CI1 and Tax1 in the inter-
vals which bounds are given in Table 2. Then, iteratively for each of them and
for each year, we generate a small coefficient ν in the interval [0.95, 1.05] and
multiply it by the data of the previous year.

Table 2. Intervals used for random generation of the initial values of data

P1 IA1 I1 CC1 CI1 Tax1

lower bound of the interval 40 2 2 10000 50 0.03
upper bound of the interval 70 5 10 50000 100 0.05

Solution Results and Analysis for the Target Instances. We randomly
generate 5 instances following the specifications of the target instances. In Fig-
ure 2, each curve represents an instance and shows the evolution of the cumulated
number of migrated sites over the years of the horizon, in the obtained optimal
solution. This cumulated number is always equal to 10000 at the end of the
horizon meaning that all the sites are migrated. We can observe that the curves
are very different. For some instances, like Instance 3, the optimal solutions is
to migrate very few sites in the beginning of the horizon and to perform more
migrations at the end of the horizon. But for others, like Instance 5, it is the
opposite. None of these optimal solutions consists to simply migrate all the sites
at the end of the horizon. The cost of these simple solutions is 62% higher in
average than the cost of the optimal solutions.

Other aspects of the optimal solutions of the 5 instances are illustrated in
Figure 3. For each year, 3 columns are represented. The first one is the number
of clients of all the sites, as given in the data. Following our assumption, this
number is decreasing over the years. The second column gives the cumulative
number of migrated clients since the beginning of the horizon, in the optimal
solution. The third column gives the cumulative number of purchased cards since
the beginning of the horizon, in the optimal solution. By definition, the two last
numbers are increasing over the years. We can make the following observations:

– Except for the first year, the number of purchased cards is always lower than
the number of migrated clients. This is due to the fact that, starting from
year 2, some cards bought on the previous years may be reused.

– On the last year, the cumulative number of purchased cards is equal or
very close to the number of clients. As this number is the smallest over
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Fig. 2. Optimal solutions: Cumulative number of migrated sites from the beginning of
the horizon

the years, it represents a lower bound on the VoIP cards to be purchased.
This means that, in the optimal solution, we almost never buy useless cards.
Nevertheless, the reuse possibility allows us to migrate more clients.

Fig. 3. For each of the 5 instances, number of clients per year, cumulative number of
migrated clients, and cumulative number of purchased VoIP cards

Let us finally report that CPLEX does not need to perform branching for any
of the instances. The average solution time over the 5 instances is 2 seconds.
Theses averages are also mentioned in Table 3.
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Influence of the Number of Sites and the Number of Periods on the
Resolution of the Problem. As we saw above, in the target instances, the
number of sites p is 10000 and the planning horizon m is 5 years. In a series
of additional tests, we varied these parameters to show their influence on the
resolution of the problem by examining, in each case, the computation time
required to solve (PL1), the number of nodes developed in the search tree and
the structure of the obtained solutions. Our results are summed up in Table 3.

In additional test 1, we first assumed that the number of sites remained equal
to 10000 but that the planning horizon is increased to 10 years. We find that to
consider a 10-period horizon rather than a 5-period horizon does not introduce
difficulties in the resolution: the computation time remains low. We also note
that, for the five considered instances, a large number of sites are migrated during
the last period.

In additional test 2, we consider instances comprising again 10000 sites, but
with a very large number of periods. We can assume, for example, that the
planning horizon is always 5 years but that the period is not the year but the
month. This produces instances with 10000 sites and 60 periods. We can observe
that this large number of periods does not make the resolution impossible. In fact,
the computation times remain relatively low. We can also note that few periods
are concerned by an effective migration and that these periods are mainly at the
beginning and at the end of the planning horizon.

In additional test 3, we study the influence of the number of sites on the
difficulty of the problem. For this we consider 5 instances with 100000 sites
and a management horizon of 5 periods. The results suggest that the significant
increase in the number of sites does not make the problem more difficult to solve.

Finally, in additional test 4, in order to test the limits of our approach, we
consider instances with 20000 sites and 60 periods. The computation time in-
creases significantly compared to the instances considered previously but is still
quite reasonable. Also in this case, few periods are concerned by an effective
migration and these periods are mainly at the beginning and at the end of the
planning horizon.

Table 3. Solution time in seconds and number of nodes for different numbers of sites
and periods (averages for 5 instances of the same size)

Sites (p) Periods (m) time nodes

target instances 10000 5 2 0
additional test 1 10000 10 9 161
additional test 2 10000 60 105 156
additional test 3 100000 5 17 0
additional test 4 20000 60 574 0

Influence of the Costs. We examined the impact of increase the cost of reusing
a VoIP card on optimal solutions. For this, we have drawn the values IA1 in the



Optimal Migration Planning of Telecommunication Equipment 79

same interval as that of P1 ([40,70]) keeping all other intervals. We observed
that the increase in IA1 led to optimal solutions where the migrations focus on
one or two periods: the first one, the last one or another period. In addition, the
average decrease in the cost, compared to the alternative of regularly migrate
the sites, is about 30% over 5 instances with 10000 sites and 5 periods.

We also examined the impact of increase the values of Taxt on optimal solu-
tions. For this, we have strongly increased the values of Tax1 without changing
the values of other parameters. We observed that this increase in Tax1 did not
significantly alter the structure of the optimal solutions.

Possible Extensions of Our Approach. The fact of having been able to
formulate the problem with an integer linear program makes it easy to consider
several extensions. We give two examples below.

First, suppose that, besides the costs already considered, it is interesting for
the company to migrate as soon as possible a client from the old technology to
the new one which offers much more possibilities. To take account of this, we can
consider for example that at each period t of the planning horizon a unit revenue,
gt, is associated with each client still present and alreadymigrated. In this case the
optimal solution of the problem is obtained by solving the program (PL1) in which
the quantity

∑
t∈M gt

∑
i∈P ni,t

∑t
k=1 xi,k is added to the objective function.

A second extension of the model may be to impose the migration of a certain
number of sites, mt, at each period t. For example, it may be interesting for
many reasons to balance the workload related to the migration over time. This
new aspect of the problem can easily be taken into account by adding to (PL1)
the constraints

∑
i∈P xi,t = mt ∀t ∈ M . Some experiments we conducted with

the modified model showed that the introduction of these new constraints does
not significantly slow the resolution of the problem.

5 Conclusion

To sum up, we studied a very specific industrial problem arising in telecommu-
nication networks and proved its NP-hardness. Several integer linear program-
ming formulations are conceivable for this problem. We proposed a relatively
simple one which is very efficient, since it provides an exact solution for real-
life instances within an average time of 2 seconds. We provide an analysis of
the solution, we show the impact of changing several parts of the data, and we
explore possible extensions of the considered problem. The different tests we
performed showed that the retained formulation was robust. Indeed, the model
can be extensively modified (objective function, additional constraints, different
sizes) without compromising the achievement of optimal solutions in a reasonable
time. An important asset of the approach is that it uses exclusively standard,
commercially available software.
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This work was carried out during the PhD of Aurélie Le Mâıtre at Orange
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Abstract. Optimization of testing strategies has numerous facets. Here
we examine the case where tests are one-sided perfect - thus an opti-
mal strategy consists of a sequence of tests, and the remaining problem
is to find an optimal (w.r.t. time, or any other resource) ordering of a
given set of tests. In prior work, we examined conditions under which
statistically independent test sequences can be optimized under prece-
dence constraints. This paper examines conditions under which one can
efficiently find an optimal ordering of tests with statistical dependencies.
We provide low-order polynomial time algorithms for special cases with
non-trivial dependency structures.

1 Introduction

Classifications of objects in real time is one of the most important activities
to be applied in many types of applications. The variety of such applications
ranges from factory inspection lines where fault product manufacturing needs to
be detected, through robotic applications which need to determine whether an
object is an obstacle or not, to security systems that need to detect real time
security threats and act upon them. An important method that addresses this
issue for image classification is the feature cascade architecture for rapid object
detection [5].

The basic sequence optimization problem is defined as follows.

Problem 1. Let X = {x1, x2, . . . , xn} be a set of tests for a certain property,
such as a defect. Each test may return either “reject” or “don’t know”. Each
object is tested by a sequence of tests, until it is rejected by some test, or there
are no more relevant tests. The tests are assumed to be one-sided perfect, i.e., a
“reject” means that the tested object does not have the desired property, with
no errors possible. Also, we are given the execution time ti for each test, and
the “reject” probability ri of each xi. The problem is to find the ordering of the
tests which minimizes the expected runtime.

In the basic sequence optimization problem, we assume that there is no struc-
ture of any sort, i.e. that all sequences are allowed, that all tests are statistically

c© Springer International Publishing Switzerland 2015 81
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independent, and that exactly one test must reject in order to detect the desired
property. Adding precedence constraints was thoroughly examined in [1], where
we use some properties taken from [3] and show that Problem 1 with precedence
constraints on the tests is NP-complete. This paper examines the case without
precedence constraints, but where tests are statistically dependent, in which case
the reject probability is conditional on the outcome of previous tests.

Dependency may lead to some of the tests being irrelevant, in which case they
will be dropped from the sequence. For example, if one test x is dominated by
another test, or by a union of tests, which were already executed and returned
“don’t know”, then redundant test x is dropped. (Here, x is dominated by y1 ∪
y2∪ . . .∪yk if each time x rejects a test, at least one of the tests y1, . . . , yk rejects
it. See Definition 2.) Nevertheless, we assume that testing continues as long as
no previous test in the sequence has rejected, and there still exist unperformed
tests with a positive probability for rejection (given the results of earlier tests in
the sequence).

The problem of dependent test sequence optimization is NP-hard, even under
the simplifying assumption of no precedence constraints [2]. We therefore focus
on some special cases with extreme dependencies, as follows. The first type
of extreme dependency is one test dominating another, simpler test. Namely, it
rejects in every case in which the simpler test rejects, as well as in some additional
cases. (The point in having the simpler test is that it usually takes less time,
despite being less precise, and thus it may make sense to employ this test.) The
second type of extreme dependency is where two tests may be useful only in
disjoint circumstances. For example, one test rejects only if some measurable
feature f takes on some value f1, while another test rejects only if f takes some
other value f2.

In this paper we present some algorithms for cases of extreme dependencies
(“disjoint” tests, and “dominating” tests), and combinations thereof that can
be optimized efficiently. Section 2 presents the main results. Later sections are
devoted for the proofs.

2 Main Results

When referring to a test xi, we indicate its execution time by ti. The notation ri is
used to indicate its prior rejection probability, i.e. the rejection probability given
no previous tests. Conditional rejection probabilities are implied by context, e.g.
if a dominating test xj was previously run and reported “don’t know” then the
rejection probability of xi in this context is zero.

Let Q(x) = rx
tx

be the quality of a test x.
We begin with the simplest case – where all tests are disjoint.

Definition 1. Tests x1 and x2 are disjoint if the events “x1 rejects” and “x2

rejects” cannot both occur (for the same object).

Theorem 1. Let x1, . . . , xn be pairwise disjoint tests. The minimal expected
execution time is obtained by sorting the tests in non-increasing order of quality.
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Our next result deals with the situation where all tests are comparable in
terms of the cases they are able to resolve. More formally, consider

Definition 2. A test x2 dominates a test x1, which we denoted by x1 ⊂ x2, if
it always rejects (at least) every item rejected by x1.

Clearly, this property is (weakly) anti-symmetric. Obviously, in this case r1 ≤ r2.
Note that, if t2 ≤ t1, then it will never make sense to perform x1 at all. Thus,
we may assume that t1 < t2.

Definition 3. X = (x1, x2, . . . , xn) is a domination chain (of tests) if xj dom-
inates xi for 1 ≤ i < j ≤ n.

Theorem 2. Given a domination chain of n tests, Algorithm 1 (see Section 4
below) finds the ordering of tests for which the expected execution time is mini-
mal. The runtime of the algorithm is O(n lg 2n).

We proceed to the case where there are two disjoint chains of dominating
tests.

Let X = (x1, . . . , xn) and Y = (y1, . . . , ym), n ≥ m, be domination chains,
where each test in X is disjoint from each test in Y .

Remark 1. The optimal solution is not necessarily a merge of the optimal so-
lutions of each chain separately. For example, let X = (x1, x2) and Y = (y1),
where rx1 = 0.5, tx1 = 20, rx2 = 0.6, tx2 = 35, and ry1 = 0.25, ty1 = 2. Then the
solution for the chain X by itself is (x2), but the solution for the two disjoint
chains is (y1, x1, x2).

Theorem 3. Given two domination chains of tests, X = (x1, . . . , xn) and Y =
(y1, . . . , ym), where each test in X is disjoint from each test in Y , the algorithm
described in Section 5 below, finds the ordering of tests for which the expected
execution time is minimal. The runtime of the algorithm is O(n2 lg 2n).

Naturally, the dynamic programming algorithm for one and two chains can be
generalized to solve K domination chains of tests. We believe that the improved
results presented in the last theorems, can also be generalized to any number
of K chains, but have not implemented it.

We now proceed to the case where we have some combination of independence
and disjointness as follows. Let d be an integer. Assume we have d sets of tests,
S1, S2, . . . , Sd, where each two tests belonging to the same set are disjoint, and
each two tests from different sets are independent. We present an algorithm for
arranging the tests so that the expected execution time will be minimal.

Theorem 4. Given sets Si = {xi1, xi2, . . . , xini}, 1 ≤ i ≤ d, as described above,

Algorithm 5 finds an optimal ordering in time O(n lgn), where n =
∑d

r=1 nr.
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3 Proof of Theorem 1

Performing the tests according to the original ordering, the expected duration
will be

t1 + (1− r1)t2 + (1− r1 − r2)t3 + . . .+ (1−
n−1∑

i=1

ri)tn.

Assume in contradiction that there exists an optimal solution which is not
sorted according to the quality of tests. Then there exists two tests xi, xj such
that xj follows immediately after xi in this solution, and Qi < Qj. Denote by
Eij the execution time of this ordering, and by Eji the execution time of the
same ordering, replacing only the order of xj and xi. Let A (B, respectively) be
the ordering before (after, respectively) performing xi (xj , respectively). Let TA

(tB, respectively) be, as usual, the execution time of A (B, respectively). Then,

Eij = tA + (1 − rA)ti + (1− rA − ri)tj + (1− rA − ri − rj)tB

Eji = tA + (1− rA)tj + (1− rA − rj)ti + (1− rA − rj − ri)tB,

and

Eij − Eji = rjti − ritj ,

which is greater than 0 if and only if
rj
tj

> ri
ti
, which is true if and only if Qj > Qi,

in contradiction to our first assumption.

4 Proof of Theorem 2

Assume there exists a sequence of tests (x1, x2, . . . , xj) with optimal ordering
ending with xj . Let Lj be such an ordering and let Tj be its expected runtime.

It will be convenient for us to denote by x0 a virtual test with t0 = r0 = 0.
Before presenting our best result for a single domination chain of tests, we

mention briefly a slower algorithm, which will help us in presenting some other
results in the paper. This algorithm, whose runtime is O(n2), is a dynamic
programming algorithm. For each 1 ≤ i ≤ n, it records the optimal list Li and
its expected duration Ti. We start with T0 = 0, and then conclude each Ti in
turn by Ti = min0≤j≤i−1{Tj + (1 − rj)ti}. Recording for each i the j for which
the minimum in the last formula is attained, we easily get the optimal ordering.

The list obtained from L by appending xi to it is denoted by L · xi. Let
pred(k) := j if Lk = Lj · xk. If Lk = (xk), then pred(k) = 0.

Lemma 1. The function pred(k) is non-decreasing.

Proof. Let pred(k) = i. Thus, Tk = Ti + (1 − ri)tk. Similarly, the duration of a
solution Lj · xk, for any j < k, is Tj + (1− rj)tk. Since pred(k) = i,

Ti + (1− ri)tk ≤ Tj + (1 − rj)tk. (1)
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Let pred(�) = j, where � > k. Therefore,

Tj + (1 − rj)t� ≤ Ti + (1− ri)t�. (2)

Adding (1) and (2) by sides, we get that

(1− ri)(tk − t�) ≤ (1− rj)(tk − t�),

and since � > k, this is true if and only if rj ≥ ri, which means that j ≥ i.

The improved algorithm we present below is based on the following three
facts:

1. The function pred(k) is non-decreasing.
2. We keep only places in which pred(k) is changed.
3. We use binary search in order to find pred(k) for some specific k.

Thus, finding pred(k) is done in an efficient way, which finds the optimal
solution in a faster way.

Let us now present the details of our algorithm.
Algorithm 1 builds a table (A[i, j])1≤i≤3,1≤j≤val. In the first row of A we list

those values of k from 2 and above for which pred(k) > pred(k − 1). Here, val
is the number of changes in the sequence (pred(k))nk=1. The other two rows are
defined by A[2, j] = pred(A[1, j]) and A[3, j] = TA[2,j].

Example 1. Suppose n = 5, and the execution time and rejection probability of
the tests are given by Table 1. One can check that A is given by Table 2.

Table 1. Tests for Example 1

j 0 1 2 3 4 5

tj 0 0.01 1.1 2 109 10,000
rj 0 0.01 0.02 0.03 0.04 0.05

Table 2. Table A for the tests of Example 1

k 2 4
pred(k) 1 3
Tpred(k) 0.01 1.99

Algorithm 1 invokes Algorithm 2, which actually fills the table. After the
table is filled, Algorithm 1 uses it to create the required list Ln. It invokes the
procedure findPrev(k), which finds by binary search the largest index p such that
A[1, p] ≤ k. This procedure returns the value A[2, p], which is equal to pred(k).
Clearly, its runtime is O(lg val) = O(lgn).

Algorithm 2, which builds Table A, works as follows. At each step l ≤ n− 1,
it finds the index k such that:
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1. In the problem (x1, x2, . . . , xl, xk) we have pred(k) = l.

2. For k′ ∈ [l+1, k−1], in the problem (x1, x2, . . . , xl, xk′ ) we have pred(k′) < l.

If no such k exists, then k = ∞. Note that an identical proof to that of Lemma 1
yields that, if k′′ > k, then in (x1, x2, . . . , xl, xk′′ ) we have pred(k′′) = l. To this
end, the algorithm first checks whether in the problem (x1, x2, . . . , xl, xA[1,val])
it is better to perform xl instead of xA[2,val] before xA[1,val], namely

Tl + (1− rl)tA[1,val] < A[3, val] + (1− rA[2,val])tA[1,val], (3)

where the calculation of Tl is performed by Algorithm 4. If not, then according
to Lemma 1 we have k > A[1, val], and we can use binary search to find k in
the range [A[1, val] + 1, n]. If (3) holds then k ≤ A[1, val], and we find k in the
range [A[1, v−1]+1, A[1, v]] by binary search. Here, v ≤ val is the minimal index
such that Tl +(1− rl)tA[1,v] < A[3, v] + (1− rA[2,v])tA[1,v], and is again found by
binary search. After the required k was found, the algorithm updates the table
with A[1, val] = k, A[2, val] = l and A[3, val] = Tl.

At each step l of the algorithm, for each test xk we know the value of pred(k)
among all tests 0, . . . , l, namely in the problem (x1, x2, . . . , xl, xk). In particular,
at the last step l = n − 1, for each test xk we know pred(k) among all tests
0, . . . , n− 1, namely in the problem (x1, x2, . . . , xn−1, xn), as required.

Solve1Chain(x1, . . . xn)
Input: A single domination chain of tests
Output: Ln

A ← BuildTableA(x1, . . . xn)
S ← new stack
k ← n
while k > 0

push(S, k)
k ← findPrev(k)

pop all elements from S into the queue Ln

return Ln

Algorithm 1. Computation of the optimum for one chain of tests

Example 2. Table 3 defines a domination chain of tests. The tables in Figure 1
exemplify the execution of Algorithm 2 on this chain. For 6 ≤ l ≤ 8, we get
the same table as in the previous step, except for the value in A[2, 3], which is
enlarged by 1 each time. Hence, these steps are omitted. Note that the algorithm
gives L10 = (3, 8, 10).
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BuildTableA(x1, . . . xn)
Input: A single domination chain of tests
Output: A

// initialize:
A[1, 1] ← n
A[2, 1] ← 0
A[3, 1] ← 0
val ← 1 // index of last valid column in A

for l ← 1 to n− 1 // find k s.t. pred(k) = l and pred(k′) < l
if OptimalTime(A, 1, val, l) + (1− rl)tA[1,val] >

A[3, val] + (1− rA[2,val])tA[1,val]

k ← min{k′ ∈ [A[1, val] + 1, n] :
Time(A, l, k′) < Time(A,findPrev(k′), k′)}

if k = ∞ then break // no k satisfying the inequality
val++
A[1, val] ← k
A[2, val] ← l
A[3, val] ← OptimalTime(A, 1, val, l)

else
if val �= 1

v ← min{v′ ∈ [1, val− 1] :
Time(A, l, A[1, v′]) < Time(A,A[2, v′], A[1, v′])}

k ← min{k′ ∈ [A[1, v − 1] + 1, A[1, v]] :
Time(A, l, k′) < Time(A,findPrev(k′), k′)

if k = ∞ then break
val ← v
A[1, val] ← k
A[2, val] ← l
A[3, val] ← OptimalTime(A, 1, val, l)

if val = 1
k ← min{k′ ∈ [0, A[1, val]] :

Time(A, l, k′) < Time(A,findPrev(k′), k′)
if k < ∞

A[1, val] ← k
A[2, val] ← l
A[3, val] ← tl

return A

Algorithm 2. Build Table A
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Time(A, l, j)
Input: The table A and two indices l < j of tests
Output: The optimal time for performing Ll · xj

return OptimalTime(A, 1, val, l) + (1− r(xl))tj

Algorithm 3. Find the time of performing Ll · xj

OptimalTime(A, k1, k2, l)
Input: The part of Table A from column k1 up to column k2, and an index l
satisfying A[1, k1] ≤ l < A[1, k2]
Output: Tl

k ← maximal index in [k1, k2 − 1] with A[1, k] ≤ l //binary search
return A[3, k] + (1− rA[2,k])tl

Algorithm 4. Find optimal time, according to the current Table A

Table 3. Chain of tests for Example 2

j 1 2 3 4 5 6 7 8 9 10

tj 4 12 13 86 191 357 360 572 1330 10000
rj 0.01 0.02 0.05 0.09 0.11 0.12 0.15 0.18 0.19 1

k 8
pred(k) 1
Tpred(k) 4

a)

k 8 9
pred(k) 1 2
Tpred(k) 4 12

b)

k 6
pred(k) 3
Tpred(k) 13

k 6 10
pred(k) 3 4
Tpred(k) 13 86

k 6 10
pred(k) 3 5
Tpred(k) 13 191

k 6 10
pred(k) 3 8
Tpred(k) 13 556.4

c)

d) e) f)
Fig. 1. Table A after running the algorithm on the tests of Example 2. (a) after step
l = 1, (b) after step l = 2, (c) after step l = 3, (d) after step l = 4, (e) after step l = 5,
(f) after step l = 9
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4.1 Conclusion of the Proof

Algorithm 4 is actually a binary search and therefore its runtime is O(lg val) =
O(lgn). Hence, this is also the runtime of Algorithm 3. Hence, the runtime of
the binary searches performed when finding the minima of k′ or v′ over the
corresponding intervals of Algorithm 2, satisfy the recursion T (n) = T (n2 ) +
O(lgn), whose solution is T (n) = O(lg 2n). The running time of Algorithm 2 is
O(n lg 2n). Algorithm 1 mainly invokes Algorithm 2 and therefore its runtime is
O(n lg 2n).

5 Proof of Theorem 3

The following propositions provide interesting properties of the optimal solution.

Proposition 5. Let the optimal solution include two tests s′ and s′′, belonging
to the same chain, such that s′′ is performed right after s′. Let A be the sequence
of tests performed before s′, and B the set of tests performed after s′′, and x (y,
respectively) be the last element of X (Y , respectively) in A. Then, Qs′ ≥ Qs′′ .

Proposition 6. Let the optimal solution include two tests s′ ∈ X and s′′ ∈ Y ,
such that s′′ is performed right after s′. Let A be the sequence of tests performed
before s′, and B the set of tests performed after s′′, and x (y, respectively) be
the last element of X (Y , respectively) in A. Then, Qs′ − rx

ts′
≥ Qs′′ − ry

ts′′
.

As in Section 4, we begin by presenting a dynamic programming algorithm,
which runs in O(n3) time. The algorithm constructs two tables, optx and opty,
where optx(i, j) (opty(i, j), respectively) records, for each 0 ≤ i ≤ n and 0 ≤ j ≤
m, the optimal ordering of x1, . . . , xi, y1, . . . , yj ending with xi (yj , respectively).
(Note that the last element of Y in optx(i, j) is yj and the last element of X
in opty(i, j) is xi.) Entries optx(i, 0), 0 ≤ i ≤ n (entries opty(0, i), 0 ≤ i ≤
m, respectively) are equal to the values computed by the algorithm described
in Section 4, on Chain X (Y , respectively). Each entry optx(i, j) is computed
by optx(i, j) = mini′<i{optx(i′, j) + (1 − rxi′ − ryj )txi , opty(i

′, j) + (1 − rxi′ −
ryj )txi}. Entries opty(i, j) are computed similarly. The optimal solution is the
one corresponding to the lesser of optx(n,m) and opty(n,m).

Theorem 3 presents a better result. Note that the difference between the
improved algorithm for two domination chains of Theorem 3 below and the
improved algorithm for one domination chain (from Theorem 2) is similar to the
difference between the dynamic programming algorithms for these two problems.

5.1 Conclusion of the Proof of the Theorem

Let TX(i, j) be the minimal expected duration of performing some of the tests
x1, . . . , xi, y1, . . . , yj , where yj must be performed and xi must be performed
last. Denote by LX(i, j) the list of tests performed in the corresponding optimal
solution. TY (i, j) and LY (i, j) are defined analogically, but with yj performed
last.
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Let predX(i, j) := k if k is the index of the latest test (in X or in Y ) performed
before xi in LX(i, j). Let predY (i, j) := k if k is the index of the latest test (in
X or in Y ) performed before yj in LY (i, j).

Lemma 2. The function predX(i, j), considered as a function of i and restricted
to those values of i for which the test right before xi belongs to X, is non-
decreasing. A similar result holds for the analogous restriction of the function
predY (i, j), of j.

Proof. Let predX(i, j) = a, predX(i′, j) = a′ where i′ > i and a, a′ are indices of
tests from X . We need to show that a′ ≥ a. We may assume that a′ < i.

Since predX(i, j) = a, the expected duration of the tests, ending with xi, is

Tx(i, j) = Tx(a, j) + (1− rxa − ryj )txi .

Similarly, the expected duration of the tests, ending with xi′ , is

Tx(i
′, j) = Tx(a

′, j) + (1− rxa′ − ryj )txi′ .

Since predX(i, j) = a and predX(i′, j) = a′, we have

Tx(a, j) + (1− rxa − ryj )txi ≤ Tx(a
′, j) + (1− rxa′ − ryj )txi , (4)

and
Tx(a

′, j) + (1− rxa′ − ryj )txi′ ≤ Tx(a, j) + (1− rxa − ryj )txi′ . (5)

Adding (4) and (5) by sides, we get that

txi(rxa′ − rxa) ≤ txi′ (rxa′ − rxa). (6)

Since i′ > i, we have txi′ > txi , so that (6) holds if and only if rxa′ ≥ rxa , which
means that a′ ≥ a.

The proof for predY (i, j) is equivalent.

The improved algorithm for two disjoint domination chains of tests is very
similar to Algorithm 1, which deals with a single domination chain, and we will
point out only at the differences.

In general, instead of building one table, as in Algorithm 1, here we have two
chains and therefore build two tables. Each table here has one extra dimension,
which integrates the tests of the other chain (as detailed in the next paragraph).
Moreover, to find the optimal solution we have to choose the better out of the
two tables.

Specifically, the algorithm builds two 3×n×val tables AX , AY , where val is as
in Algorithm 1, i.e., val is the number of changes in the sequence (predX(i, j))ni=1

or (predY (i, j))
m
j=1. For each 1 ≤ j ≤ m, AX keeps the minimal i such that

predX(i, j) ≥ �, where � is the index in the outer loop, as in Algorithm 1.
Similarly to Algorithm 1, here we also keep TpredX (i,j) and TpredY (i,j).
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In order to find the expected optimal time, we have to check which one of
xn, ym comes last. This is done by finding the values of predX(n,m) in AX ,
predY (n,m) in AY and their expected durations, and choose the better of these
two options.

Each part of the algorithm is similar to that of the algorithm for one chain,
with minor changes. For example, in the binary search, we have to search twice
– in the two new tables, and choose the best option among the two.

Since the construction of Table AX (respectively, AY ) may be considered
roughly as performing Algorithm 1 for each value of j (respectively, of i), the
runtime here is O(n) times as large as there, namely O(n2 lg 2n).

6 Sketch of the Proof of Theorem 4

It will be convenient to add to each set Si a virtual test xi0, with txi0 = rxi0 = 0.
For convenience, here we write t(xik) and r(xik) instead of txik

and rxik
. Given a

set X ⊆ Si for some i, say X = {xik1 , xik2 , . . . , xikm}, where k1 < k2 < . . . < km,
then the rejection probability of X , namely the probability of rejecting if we only
employ the tests in X , is r(X) =

∑m
p=0 r(xikp ), where k0 = 0. The expected

duration is t(X) =
∑m

p=0(1 −
∑p−1

q=0 r(xikq ))t(xikp ). (Note that here we assume
that the tests are performed not in the optimal order but rather in the “natural”
order.) Let r(Aij) =

∑j−1
k=1 r(xik), for xik ∈ Si ∩ A and A an ordered list of the

tests performed before xij .

For any test xik ∈ Si and set A ⊆
⋃d

i=1 Si (with xik /∈ A), denote by Q′(xik|A)
the conditional quality of xik, given that all tests in Si ∩ A failed:

Q′(xik|A) =
Q(xik)

1− r(Si ∩ A)
.

Let t(D|A) be the expected duration of any list D of tests, given that all tests
in A failed. If A = ∅, we can simply write t(D).

Algorithm 5 sorts each set Si, 1 ≤ i ≤ d, according to non-increasing order of
quality. In the full paper we prove that the optimal ordering must agree with
this ordering of each Si by itself. At each step of the algorithm, it compares the
last elements of all sets and finds the one with minimal conditional quality Q′.
In our proof we show that this element must be the last among all those just
tested.

To implement the choice of the element to be adjoined to the tail of the list
at each stage efficiently, we maintain a minimum heap, consisting of the last
element of each sorted set. The heap consists of those elements with least values
of Q out of each set Si that have not yet joined the list we construct. At each
step, we extract the minimal element of the heap, according to Q′, in O(lgd)
time. This element is inserted into the end of the list L. For each element in the
heap, we have to record the set it was obtained from, so that we can insert into
the heap the next element from that set. Recall that at the beginning of each Si

we have a virtual element; we consider the conditional quality of this element as
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FindOrder(S1, S2, . . . , Sd)
Input: d sets of tests, satisfying the requirements of Theorem 4
Output: an optimal ordering L

for i = 1 to d
sort Si according to non-increasing order of quality
ni ← index of last element of Si

compute conditional quality Q′ of each Si[ni]

n ← ∑d
i=1 ni

n′ ← n
H ← BuildMinimumHeap({Si[n

′
i]}1≤i≤d) by Q′

while n′ > 0
L[n′] ← ExtractMin(H)
let Sk be the set from which the minimum was obtained
n′ ← n′ − 1
nk ← nk − 1
compute conditional quality Q′ of Sk[nk]
Insert(Sk[nk],H)

Algorithm 5. Find an optimal ordering

infinite, so that the heap always consists of one element from each Si, and thus
is of size d. The algorithm stops after n elements are extracted from the heap
and inserted into L.

Runtime of the Algorithm. Sorting each set costs O(ni lgni). Thus, all the
sorting is done in O(n lgn) time. The construction of a minimum heap takesO(d)
time. Now, each pop and push costs O(lgd), and is performed exactly n times.
Therefore, the runtime of the algorithm is O(n lgn) +O(n lgd) = O(n lgn).
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Abstract. We develop a general mixed-integer nonlinear programming
(MINLP) approach for optimizing the on/off operations of pumps in wa-
ter supply systems with multiple reservoirs. The objective is to minimize
the pumping energy cost and, at the same time, the pump maintenance
cost should be kept at certain levels, which is achieved by constrain-
ing the number of pump switches. Due to the fact that pump switching
is represented by a non-smooth function it is impossible to solve the
resulting optimization problem by gradient based optimization meth-
ods. In this work, we propose to replace the switching function with
linear inequality constraints in the formulation of MINLP. The reformu-
lated constraints not only restrict pump switching, but also tighten the
formulation by eliminating inefficient MINLP solutions. Two case stud-
ies with many different scenarios on the user-specified number of pump
switches are taken to evaluate the performance of the proposed approach.
It is shown that the optimized pump scheduling leads to the specified
number of pump switches with reduced pumping energy costs.

Keywords: optimal pump scheduling, water supply system, minlp,
pump switching.

1 Introduction

Due to its dramatic price increases in the recent years, the electricity cost of
pumping takes the most part of the total operating costs of water supply systems.
In the United States, the energy consumption by pumping is 5% of all generated
electricity and similarly high amount of energy consumption in the European
countries [8]. Many measures have been proposed to reduce the pumping energy
cost, among which the optimization of pump scheduling represents one of the
most effective approaches [3]. The basic idea of optimal pump scheduling for
water utilities is to utilize the advantages of low priced tariff periods and shift
the energy load in high priced tariff periods ([9], [3]). It can be shown that
the application of an appropriate optimal pump scheduling can save 10% of the
annual expenditure on energy and related costs [9].

Although optimal pump scheduling to minimize the operating cost is highly
desirable, it leads to a very difficult combinatorial optimization problem, since

c© Springer International Publishing Switzerland 2015 93
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Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_9
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binary variables have to be introduced to represent the on/off operations of the
pumps [9]. Optimal pump scheduling problems can be solved by mixed-integer
linear programming (MINLP) [7], mixed- integer linear programming (MILP)
[1], and simulation based optimization approaches [9].

Instead of using a MINLP solver, Mouatasim in [7] proposed to solve the
optimization problem by a random perturbation of a reduced gradient method.
Better results were shown than those obtained from solving the same problem by
using a global MINLP solver. Although this solution approach is promising, it is
only applied to solve small-scale pump scheduling problems up to 10 pumps with
10 binary variables [7]. In addition, the MINLP problem is only formulated for
several time intervals without considering the dynamic changes of water levels
in reservoirs and moreover, pump switching was not considered in the study.

To utilize the advantage of low priced energy tariff, a time horizon for 24
hours should be considered for optimal pump scheduling [3]. McCormick and
Powell in [6] used a two-stage optimization to minimize the pumping energy
and maintenance costs. In the first stage, the optimal pump scheduling is found
by solving a MILP problem, and it is further improved towards reduction of the
energy cost and number of pump switches in the second stage by using Simulated
Annealing (SA). The Dynamic programming (DP), Scatter search, and Tabu
search were also applied to optimize pump scheduling problems ([1],[9]).

Operating with excessive pump switches will cause wear and tear of the
pumps. This will increase the maintenance and repair costs ([10], [6]). Thus
an optimal pumping schedule should consider the pumping energy cost and the
number of pump switches [10]. For this reason, a constraint to restrict pump
switching is necessary. However, such a constraint is described by a non-smooth
function [10], it cannot be used in the formulation of MINLP or MILP [6]. In
([6],[5]) a penalty function on pump switching is added to the objective function
to address this issue.

The purpose of this paper is twofold. First, we develop a general MINLP
model for optimization of pump scheduling problems in water supply systems
with multiple reservoirs. Second, we propose to use linear inequality constraints
instead of the non-smooth pump switching constraint in formulation of MINLP.
The idea of this kind of formulation comes from solving mixed-integer opti-
mal control problems [11]. To the best of our knowledge, this method has not
been applied to the restriction on pump switching in formulating optimal pump
scheduling problems. The resulting MINLP has a nonlinear objective function
and linear inequality constraints and hence it can be efficiently solved by avail-
able MINLP solvers. The difference between our proposed approach on handling
pump switches and the ones in ([5],[6]) lies in the fact that the maximum num-
ber of pump switches is clearly defined, while it is not the case when a penalty
function is used as in ([5],[6]). Two case studies with different scenarios on spec-
ified number of pump switches with multiple reservoirs are taken to evaluate the
proposed approach. Based on the optimal results, the operators can select the
pump scheduling with both the pumping energy cost and the desirable number
of pump switches.
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The remainder of the paper is organized as follows. Section 2 presents the
MINLP model for optimization of pump scheduling for water supply systems.
Section 3 presents two case studies for determining optimal pump scheduling.
Conclusions of the paper are provided in section 4.

2 Problem Definition and Solution Approach

We consider a water supply system with n pumps and nr reservoirs depicted
in Fig.1. It is supposed that the water demand pattern and electrical tariff are
known. The MINLP problem for optimal pump scheduling is formulated in a
time horizon T=24 (hours).

p1

1 2 n n+1

…….

p2 pn

R1

R2

Rnr

j j+1

...

Fig. 1. A water supply system with multiple reservoirs

2.1 Pumping Energy Cost

For simplification, we at first formulate the MINLP for the system with one
reservoir (i.e., R1). The formulation of MINLP for the system with multiple
reservoirs is then extended.

The electrical power consumption of pump i is calculated by [7]

Pi =
ρgziQiHi

ηi
(1)

where Qi is the flow of pump i (m3/s); Hi is the total dynamic pump head (m);
g is the acceleration to gravity (m/s2); ηi is the efficiency of pump i; zi ∈ {0, 1}
is a binary variable representing on/off operation of the pump.

For a system with n pumps, the pumping energy cost in the time horizon T
will be

E=
T∑

k=1

n∑

i=1

Pi,kγkΔtk (2)
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where γk is electrical tariff at time interval k; Δtk=1 (hour) is length of time
interval k (k =1,...,T ).

In equation (1), the total dynamic head of pump i is calculated by [9]

Hi = Hst +Hr (Q) +ΔHf (Q) +ΔHm (Q) (3)

where Hst is static head and it is equal to the difference between elevation of
reservoir and pump discharge; Hr(Q) is the water level in reservoir. It depends
on the amount of pumping water, water demand, and initial water level in the
reservoir;ΔHm (Q) is local head loss of pump i; ΔHf (Q) is the head loss across
pipe sections from pumps to reservoirs (i.e., pipe sections from pump pi to
reservoir R1 at index n+1 as shown in Fig.1). The sum of local and pipe section
head losses can be approximated by [7]

ΔHf +ΔHm � 1.1ΔHli (4)

with

ΔHli = ΔHpi,i +

n∑

j=i

ΔHj (5)

where ΔHpi,i is the head loss in the pipe section (pi, i); ΔHj is the head loss in
the pipe section (j; j + 1), with j = 1, ..., n, i = 1, ..., n .

ΔHpi,i =
8λiLi(ziQi)

2

gπD5
i

(6)

where Li is the length of pipe section (pi, i); Di is the diameter of the pipe; Here
we use the approximated value of friction factor λi ≈ 0.109 [7]. In addition, head
loss on pipe section (j; j + 1) is calculated by

ΔHj =

8λ
′
jLj

(
j∑

m=1
zmQm

)2

gπD5
j

(7)

with λ
′
j ≈ 0.093 [7] and

j∑
m=1

zmQm is the flow in the pipe section (j; j+1). From

the above equations, we obtain the equation of total head loss on pipe sections
from pump pi to reservoir R1 is

ΔHli =

(
8λiLiQ

2
i

gπ2D5
i

)
zi2 +

n∑

j=i

8λ
′
jLj

(
j∑

m=1
zmQm

)2

gπ2D5
j

(8)
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Replace (3), (8), and (1) into (2), the energy cost by pump i during time
period Δtk is

Ei,k = γk
ρg(zi,kQi)(Hst+Hr,k(zi,k,Q)+1.1ΔHli)

ηi
Δtk

= γkΔtk
ρg(zi,kQi)

ηi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hst +Hr,k (zi,k, Q)

+1.1

⎡

⎢⎣
(

8λiLiQ
2
i

gπ2D5
i

)
z2i,k +

n∑
j=i

8λ
′Lj
j

(
j∑

m=1
zm,kQm

)2

gπ2D5
j

⎤

⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)

2.2 Linear Inequality Constraints

In this work, the hydraulic mass balance model is used to represent the equilib-
rium principle between the amount of water coming to and out of the reservoirs
(i.e., water demand) ([1],[6], [7], [10]). The water levels (Hr,k) of reservoir r with
cross-sectional area Sr is calculated by the following equation:

Hr,k = Hr,1 +

k−1∑

j=1

Δtj
Sr

(
n∑

i=1

(zi,jQi)−Qr,j

)
(10)

and it is bounded by the minimum and maximum allowable water levels (Hmin

and Hmax)
Hmin � Hr,k � Hmax (11)

Moreover, the final water levels in reservoirs should be at least the initial ones.
So that,

Hr,1 � Hr,T (12)

In order to reduce maintenance cost for pumps, a constraint on pump switching
is to be introduced. In this study, we use the following constraint [11]

n∑

i=1

T−1∑

k=1

|zi,k − zi,k+1| � Nmax (13)

This constraint is non-smooth since it contains the absolute term. However, it
can be handled by a set of linear inequalities defining facets of feasible MINLP
solution [11]

swi,k � zi,k − zi,k+1

swi,k � −zi,k + zi,k+1

n∑

i=1

T−1∑

k=1

swi,k � Nmax

(14)
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where swi,k = |zi,k − zi,k+1|; Nmax is maximum number of pump switches and
it is predefined. From the equation of energy cost (9) and constraints (11),(12),
and (14), we have the following MINLP problem for optimal pump scheduling:

min E =

T∑
k=1

Δtkγk

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑
i=1

ρgQi

ηi
zi,k

⎡

⎢⎢⎢⎢⎢⎣

Hst +Hr,k (zi, Q)

+1.1

⎛

⎜⎜⎜⎝

(
8λiQ

2
i

gπ2D5
i

)
z2i,k

+
n∑

j=i

8λ
′
jLk

(
j∑

m=1
zm,kQm

)2

gπ2D5
k

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
s.t.

Hr,k = Hr,1 +
k−1∑
j=1

Δtj
Sr

(
n∑

i=1

(zi,jQi)−Qr,j

)

Hr,1 � Hr,T

swi,k � zi,k − zi,k+1

swi,k � −zi,k + zi,k+1
n∑

i=1

T−1∑
k=1

swi,k � Nmax

i = 1, ..., n; k = 1, ..., T − 1; g = 1, .., k − 1; zi,k ∈ {0, 1}

(15)

The inequality constraints on the variables zi,k in (15) restrict number of
pump switches to Nmax. To simplify the expression, we further represent the
objective function in the following form

E =

T∑
k=1

Δtkγk

⎧
⎪⎨

⎪⎩

n∑
i=1

⎡

⎢⎣ai,k (z) zi,k + ciz
3
i,k + bizi,k

⎛

⎜⎝
n∑

j=i

Lj

(
j∑

m=1
zm,kQm

)

D5
j

⎞

⎟⎠

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
(16)

where ai,k,bi, and ci are defined as:

ai,k (z) = ai (Hst +Hr,k (zi, Q)), ai =
ρgQi

ηi
, ci =

8.8ρλiLiQ
3
i

π2ηiD5
i

, bi =
8.8ρλ

′
iQi

π2ηi
. The

term ai,k can be further expressed as

n∑
i=1

zi,kai,k =

ρgQi

ηi

n∑
i=1

(
zi,k (Hr,1 +Hst) +

k−1∑
g=1

Δtg
Sr

(
n∑

u=1
ziu,kgQu − zi,kQr,g

)) (17)

where ziu,kg = zi,kzu,g, i = 1, ..., n;u = 1, ..., n; g = 1, ..., k − 1. Because zi,k is
binary variable, we have zi,k = z2i,k = z3i,k [12]. In this way, the objective function
in (16) is simplified and generalized to the expression bellows:



Optimization of Pumping Energy and Maintenance Costs 99

E =

T∑

k=1

Δtkγk

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρgQi

ηi

n∑
i=1

⎛

⎝
zi,k (Hr,1 +Hst)

+
k−1∑
g=1

Δtg
Sr

(
n∑

u=1
ziu,kgQu − zi,kQr,g

)
⎞

⎠

+
n∑

i=1

(
ci + biQ

2
i

n∑
j=i

LDj

)
zi,k

+
n−1∑

i=1,i<j<n

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bi

(
n∑

l=j

LDl

)
(
Q2

j + 2QiQj

)
+

bj

(
n∑

l=j

LDl

)
(
Q2

i + 2QiQj

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

zij,k

+2

⎛

⎝
n∑

i=1,i<j<h<n

⎛

⎝
n∑

l=h

(LDl)

⎛

⎝
bhQiQj

+biQhQj

+bjQiQh

⎞

⎠ zijh,k

⎞

⎠

⎞

⎠

⎫
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

In the expression, we define zij,k = zi,kzj,k, zijh,k = zi,kzj,kzh,k, and LDj =
Lj

/
D5

j

2.3 The Formulation of MINLP for Water Supply System with
Multiple Reservoirs

Now the objective function E in (18) is extended for a system with nr reservoirs
as follows:

E =

T∑
k=1

Δtkγk
nr∑
r=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρgQi

ηi

n∑
i=1

⎛

⎝
zi,r,k (Hr,1 +Hst,r)

+
k−1∑
g=1

Δtg
Sr

(
n∑

u=1
ziu,r,k,gQu − zi,r,kQr,g

)
⎞

⎠

+
n∑

i=1

(
ci + biQ

2
i

n∑
j=i

LDj

)
zi,r,k+

n−1∑
i=1,i<j<n

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bi

(
n∑

l=j

LDl

)
(
Q2

j + 2QiQj

)
+

bj

(
n∑

l=j

LDl

)
(
Q2

i + 2QiQj

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

zij,r,k+

2

⎛

⎝
n∑

i=1,i<j<h<n

⎛

⎝
n∑

l=h

(LDl)

⎛

⎝
bhQiQj

+biQhQj

+bjQiQh

⎞

⎠ zijh,r,k

⎞

⎠

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

where zi,r,k, a binary variable which is used to indicate whether pump i supplies
water to reservoir r or not. In addition, following constraints are used to ensure
that at a particular time interval (k) a switched on pump will only supply water
to one of the reservoirs.

nr∑

r=1

zi,r,k � 1, i = 1, ..., n, k = 1, .., T (20)
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The linear inequality constraints on number of pump switches in (14) are
extended as:

swi,r,k � zi,r,k − zi,r,k+1

swi,r,k � −zi,r,k + zi,r,k+1

nr∑

r=1

n∑

i=1

T−1∑

k=1

swi,r,k � Nmax

(21)

To solve the optimization problem formulated above, we employ the MINLP
solver BONMIN [2] in GAMS [4]. All the computation experiments in the fol-
lowing case studies are conducted on an Intel (R) Core (TM) 3.40GHz 2.99GB
RAM desktop.

Table 1. Data for case study 1

ai bi ci Qi(m
3/s) Lk (m) Dk (m)

86.33 0.005 4.8 0.04 938.6 0.25
59.2 0.005 1.89 0.035 1,936.3 0.35
65.18 0.005 4.331 0.04 1,352.6 0.4
55.42 0.005 4.069 0.035 1,191 0.45
70.89 0.005 1.414 0.05 3,684 0.5
64.94 0.005 2.456 0.05 864 0.6
68.09 0.005 0.074 0.05 2,381 0.6
81.61 0.005 5.276 0.07 331.1 0.7
32.07 0.0032 11.693 0.025 625 0.8
28.03 0.005 3.21 0.025 11,3 0.9

3 Case Studies

3.1 Case Study 1

We consider at first a water supply system comprising of ten pumps and one
reservoir. The data for formulating the optimization problem modified from [7]
is given in Table.1. The MINLP problem formulated has 240 binary variables and
507 linear constraints. The base water demand (Qr) for the reservoir is assumed
to be 0.35(m3/s). The demand patterns are assumed to be 0.8 for periods from
1.00 a.m. to 6.00 a.m., 1.0 for periods from 7.00 a.m. to 20.00 , and 0.8 for periods
from 21.00 to 24.00. The energy priced tariff is assumed to be 0.024($/kW) for
periods from 1.00a.m. to 6.00a.m., and 0.1194 ($/kW) for periods from 7.00
a.m. to 24.00. The initial water level in the reservoir (Hr,0) is 15(m). The lower
and upper bounds for water levels in the reservoir are 7.0 (m) and 28.0(m),
respectively.Static heads (Hst) for all pumps are assumed to be 35(m).
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Fig. 2. Optimal pumping schedules with Nmax=7
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Fig. 3. Optimal head trajectories for different values of Nmax

The energy costs with respect to the scenarios on the maximum number of
pump switches are given in Table.2. It can be seen that the pump scheduling
with higher allowable number of pump switches will result in a lower pumping
energy cost, and the same is true reversely. Interestingly, as the allowable number
of pump switches is larger than 6, the optimized pumping schedules produce the
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same pumping energy costs (see in Table.2). The computation time for solving
each of the MINLP problems is also shown in Table 2. It can be seen that while
BONMIN takes 14.352 (s) to solve the optimization problem without using the
pump switching constraint, it requires only 1.529 (s) for solving the one with
the pump switching constraint (Nmax=7). It means that the introduction of the
constraint on the number of pump switches tightens the MINLP by eliminating
inefficient MINLP solutions and therefore the computation time can be reduced.
The optimal solution (for the case Nmax=7) shown in Fig.2 indicates that all

Table 2. Objective function values with number of pump switches

Objective function values Computation time Maximum number
($/day) (s) of pump switches (Nmax)

869.77 0.196 1
825.85 115.924 2
812.25 109.699 3
799.28 172.319 4
787.91 97.298 5
768.73 62.666 6
757.88 1.529 7
757.88 2.901 8
757.88 14.352 −

-: without pump switching constraint

pumps are scheduled to operate in the low tariff periods (e.g., 1 to 6). In the high
tariff periods, the optimized scheduling will use the pumps with higher efficiency
(e.g., low value of ai) which are near the reservoir to operate. In particular, during
the high tariff periods pumps 5,6,7, and 8 are operated, while pump 1 and 2 are
switched off (see Fig.2). The reason for the priority of selecting pumps near
reservoir to be switched on is due to the fact that the total head losses on the
sections of pipes will be much smaller than those located far from the reservoir.
As shown in Fig.3, the optimized pump scheduling also allows the reservoir to
be filled during the low tariff periods and emptied during the high tariff periods
to supply water to the systems. Moreover, the reservoir recovers its initial water
level by the end of scheduling period.

3.2 Case Study 2

Now we extend the same system considered above with two reservoirs. The data
of pumps are the same as used as in case study 1. The diameters of reservoir 1 and
2 are 15.0 and 10.0(m), respectively. The base water demands (Qr) for reservoir
1 and reservoir 2 are assumed to be 0.2(m3/s) and 0.15(m3/s), respectively. The
formulated MINLP has 480 binary variables, 1007 linear constraints. For solving
the problem using GAMS, the time limitation for MINLP is set to 50000.0 (s).
The results of energy costs corresponding to different Nmax are given in Table.
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Table 3. Pumping energy costs and maximum number of pump switches

Objective function values ($/day) Maximum number of pump switches (Nmax)

672.626 5
654.321 10
652.87 13
639.637 15
637.665 20
635.522 25
633.646 −

−: without pump switching constraint
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Fig. 4. Optimal head trajectories of both reservoirs with Nmax=20

3. Again it can be seen that as the allowable number of pump switches increases,
more pumping energy cost is saved. However, the energy cost deceases will be
slow (about 2.0($/day)) as the number of pump switches is larger than 15. The
optimal pump scheduling uses the pumps located near the reservoirs to be turned
on instead of the ones far from the reservoirs. Similar to the results from the
case study 1, due to the optimized pump scheduling, the pumps are operated
intensively to pump water to both reservoirs during low priced tariff periods
as shown in Fig. 4. And the stored water in the reservoirs is supplied to the
system by the gravity of reservoirs during the high priced tariff periods; hence
it significantly relieves operations of the pumps in these periods.

4 Conclusions

In this study, we developed a general MINLP model for optimizing the opera-
tions of pumps in water supply systems with multiple reservoirs. The optimized
pump scheduling will result in a reduction of the pumping energy cost with a
user-specified number of pump switches. We proposed to use linear inequalities
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defining the facets of the feasible MINLP solution for restricting the number
of pump switches. It tightens the formulation of MINLP and helps to reduce
the computational burden in solving the formulated MINLP problem. The ef-
ficiency of the proposed approach was demonstrated by determining optimal
pump scheduling strategies in two case studies with different scenarios on allow-
able numbers of pump switches with different numbers of reservoirs. Our future
work will concentrate on handling the number of pump switches allowable for
each pump using the minimum up/down time constraints in MINLP problem.
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Abstract. In this paper, we consider a well-known problem in the gen-
eral area of search theory: planning a multisensor in multizone search so
as to minimize the probability of non-detection of a moving target under
a given resource effort to be shared. The solution method is based on a
combination of the forward-backward split technique and DC program-
ming. Numerical experiments demonstrate the efficiency of the proposed
algorithm in comparison with the existing method.

Keywords: Search theory, Hierarchical optimization, Combinatorial
optimization, DC programming and DCA, Nonlinear mixed 0-1
programming, Exact penalty.

1 Introduction

Search theory is defined by Cadre and Soiris [3] as a discipline that treats the
problem of how a missing object can be searched optimally, when the amount
of searching time is limited and only probabilities of the possible position of the
missing object are given. The theory of how to search for missing objects has
been a subject of serious scientific research for more than 50 years. It is a branch
of the broader applied science known as operations research [5].

In fact, search theory was first established during World War II by the work
of B. O. Koopman and his colleagues [10] in the Antisubmarine Warfare Op-
erations Research Group (ASWORG). The applications of search theory were
firstly made on military operations [19]. Koopman [9] stated that the principles
of search theory could be applied effectively to any situation where the objective
is to find a person or object contained in some restricted geographic area. After
military applications, it was also applied to different problems such as surveil-
lance, explorations, medicine, industry and search and rescue operations [8].
� Corresponding author.
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The aim of searching in the context of Aeronautical Search and Rescue (ASAR),
for instance, is to find the missing aircraft effectively and as quickly as possible
with the available resources [18].

In this paper we consider an extension of the problem investigated in [12] when
the target is moving. The problem can be described as follows: suppose that a
space of search is partitioned into zones of reasonable size. A unique sensor must
be able to explore efficiently a whole zone. Each zone is itself partitioned into
cells. A cell is an area in which every points have the same properties, according
to the difficulty of detection (altitude, vegetation, etc.). Each sensor has its own
coefficient of visibility over a cell. The visibility coefficients depend also on the
kind of target that is searched. Here, there is a unique target to detect. This study
considers a multi period search of a moving target. This means that information
about the sensors and the target will be now indexed by time (the period index).
The target prior is now trajectorial and we shall consider here a Markovian
(target) prior. Furthermore, assuming that sensors act independently at the cell
level. The target is said undetected for this multiperiod search if it has not been
detected at any period of the search. The objective is allotting sensors to search
zones and finding the search resources sharing of multisensor in multizone at
each time period so as to minimize the probability of non-detection of a target.

This problem is very complicated because of the huge number of possible tar-
get trajectories. For a unique sensor, the problem has been theoretically solved
in [17,20]; while extensions to double layered constraints have been considered
in [7]. In practice, all feasible algorithms are based on a forward-backward split
introduced by Brown [2]. In this case, although the forward-backward split tech-
nique (see [21]) allows us to simplify the main problem, the obtained subproblem
is still very hard since it is hierarchical:

– At upper level: finding the best allotment of sensors to search zones (a sensor
is allotted to a unique zone);

– At lower level: determining the best resource sharing for every sensor, in
order to have an optimal surveillance over the allotted zone.

At the upper level, the objective function can be non-convex or implicitly defined
via an algorithm applied to the lower level. This makes the problem very hard.
In [16], Simonin et al. have proposed a hierarchical approach for solving this type
of subproblem where a cross-entropy (CE) algorithm [1,15] has been developed
for the upper level while an optimization method based on the algorithm of de
Guenin [6] for detecting a stationary target has been used in the lower level.
In [12], we introduced a new method for solving this type of subproblem. This
is a deterministic continuous optimization approach based on DC (Difference
of Convex functions) programming and DCA (DC optimization Algorithms).
Specifically, we proposed a new optimization model that is a nonlinear mixed 0-1
programming problem. This problem was then reformulated as a DC (Difference
of Convex functions) program via a penalty technique. DC programming and
DCA (DC algorithm) ([11,13,14]) have been investigated for solving the resulting
DC program. This motivates us to investigate the combination of the forward-
backward split technique and our proposed method for solving this problem.
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The paper is organized as follows. In Section 2, the problem statement and
the classic “forward-backward split” are presented. In Section 3, we present our
approach developed in [12] for solving the subproblem, then introduce a schema
combining the forward-backward split and DCA. The numerical results are re-
ported in Section 4 while some conclusions and perspectives are discussed in
Section 5.

2 Problem Statement

First, let us introduce the notations employed in the remainder of the paper.
The search periods are indexed by t ∈ {1, 2, ..., T }
E : space of search, Z : number of zones, S : number of sensors
z : zone index
i : cell index
s : sensor index
α : prior on the initial location of the target
ϕt
s(ci,z) : quantity of resource of sensor s allotted to cell i of the zone z at the

time t
Φt
s : quantity of resource available for sensor s to search the space at the time t

wi,z,s : coefficient that characterizes the acuity of sensor s over cell i of the zone
z (visibility coefficient)

We report below the problem statement described in [16] (see [16] for more
details).

The space of search: the search space, named E, is a large space with spatially
variable search characteristics. The search space E is divided into Z search zones,
denoted Ez , z = 1, 2, ..., Z, each of them is partitioned into Cz cells, denoted
{ci,z}Cz

i=1 so that:

E =

Z⋃

z=1

Ez , Ez ∩ Zz′ = ∅, ∀z �= z′,

Ez =

Cz⋃

i=1

ci,z , ci,z ∩ cj,z, ∀i �= j.

A cell ci,z represents the smallest search area in which the search parameters
are constant. For example, it can be a part of land with constant characteristics
(latitude, landscape). Each zone must have a reasonable size in order to be
explored by a sensor within a fixed time interval.

The target : the target is hidden in one unit of the search space. Its location
is characterized by a prior αi,z. Thus, we have

Z∑

z=1

Cz∑

i=1

αi,z = 1.

The means of search: means of search can be passive (e.g. IRST, ESM) or
active sensors (radars). We will consider that searching the target will be carried
out by S sensors. Due to operational constraints, each sensor s ∈ S must be
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allotted to a unique search zone. For example, it could be the exploration time
to share between units of a zone. At the lower level the amount of search resource
allocated to the cell ci,z for the sensor s at the time t -if sensor s is allotted to
zone Ez -is denoted ϕt

s(ci,z). It can represent the time spent on searching the cell
ci,z (passive sensor), the intensity of emissions or the number of pulses (active
sensors), etc. Furthermore, each sensor s has at the time t a search amount Φt

s,
it means that if sensor s is allotted to the zone Ez, we have the constraint:

Cz∑

i=1

ϕt
s(ci,z) ≤ Φt

s.

To characterize the effectiveness of the search at the cell level, we consider the
conditional non-detection probability P̄s(ϕ

t
s(ci,z)) which represents the proba-

bility of not detecting the target given that the target is hidden in ci,z and that
we apply an elementary search effort ϕt

s(ci,z) on ci,z . Some hypotheses are made
to model P̄s(ϕ

t
s(ci,z)). For all sensors, ϕt

s(ci,z) �→ P̄s(ϕ
t
s(ci,z)) is convex and non-

increasing (law of diminishing return). Assuming independence of elementary
detections, a usual model is P̄s(ϕ

t
s(ci,z)) = exp(−wi,z,sϕ

t
s(ci,z)), where wi,z,s is

a (visibility) coefficient which characterizes the reward for the search effort put
in ci,z by sensor s.

An additional assumption is that sensors act independently at the cell level
which means that at the time period t if S sensors are allotted to ci,z the prob-

ability of not detecting a target hidden in ci,z is simply
S∏

s=1
P̄s(ϕ

t
s(ci,z)).

At each time period t, let mt : {1, 2, ..., S} → {1, 2, ..., Z} be a mapping
allotting sensors to search zones. Our aim is to find both the optimal mappings
mt and the optimal local distributions ϕt

s in order to minimize the non-detection
probability, i.e.,

F ((mt, ϕ
t
s)

T
t=1) =

∑

−→ω∈Ω

α(−→ω )

T∏

t=1

∏

s∈m−1
t (z)

P̄s

(
ϕt
s(
−→ω (t))

)
,

where Ω denotes the set of target trajectories, −→ω a target trajectory in Ω, and
−→ω (t) is the cell of the target trajectory −→ω at the time t. That leads to solve the
following constrained problem [16]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
(mt,ϕt

s)
T
t=1

F ((mt, ϕ
t
s)

T
t=1)

s.t. ∀t, ∀z, ∀s ∈ m−1(z),
Cz∑
i=1

ϕt
s(ci,z) ≤ Φs,

∀i ∈ z, ϕt
s(ci,z) ≥ 0,

∀t,mt mapping : {1, 2, ..., S} → {1, 2, ..., Z}.

(1)

In the next part, we give a brief presentation of the forward-backward split
technique which allows us to decompose this problem into smaller problems. For
more detail see [16].
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Forward-backward Split. We can rewrite the objective function F as follows:

F ((mt, ϕ
t
s)

T
t=1) =

Z∑

z=1

Cz∑

i=1

βτ
i,z

∏

s∈m−1
τ (z)

P̄s(ϕ
τ
s (ci,z)),

where
βτ
i,z =

∑

−→ω∈−→ω i,z,τ

α(−→ω )

t�=τ∏

1≤t≤T

∏

s∈m−1
t (z)

P̄s

(
ϕt
s(cit,zt)

)
,

−→ω i,z,τ = {−→ω ∈ Ω : −→ω (τ) = ci,z},

−→ω = (ci1,z1 , ..., ciτ ,zτ , ..., ciT ,zT ),

α(−→ω ) = αi1,z1

T−1∏

t

αt,t+1(cit,zt , cit+1,zt+1).

Here, αt,t+1(cit,zt , cit+1,zt+1) is probability the target move from cell cit,zt to
the cell cit+1,zt+1 .

It remains to have a mean to calculate efficiently the βτ
i,z . To that aim, the tra-

jectory Markov hypothesis is instrumental and we consider the following splitting
of the βτ

i,z :
βτ
i,z = U τ

i,z.D
τ
i,z ,

where U and D are recursively defined by
U τ (i, z) =

∑

j∈z̃

ατ−1,τ(j, i)
∏

s∈m−1
τ−1(z̃)

P̄s

(
ϕτ−1
s (cj,z̃)

)
U τ−1(j, z̃),

Dτ (i, z) =
∑

j∈z̃

ατ,τ+1(j, i)
∏

s∈m−1
τ+1(z̃)

P̄s

(
ϕτ+1
s (cj,z̃)

)
Dτ+1(j, z̃).

In the above equations, we denote by z̃, the zones which can be attained
conditionally to the hypothesis that the target is in the cell i of the zone z at
the period τ and that it has a Markovian prior α. Such a forward-backward split
was introduced by Brown [2].

Now, for a given τ , and considering that the βτ
i,z are known, the multiperiod

search problem is put in the situation: the target is “static” with prior βτ
i,z (called

subproblem). The formulation of subproblem can be described as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
{m,ϕs(ci,z)}

Z∑
z=1

Cz∑
i=1

βi,z

∏
s∈m−1(z)

P̄s(ϕs(ci,z))

s.t. ∀z, ∀s ∈ m−1(z),
Cz∑
i=1

ϕs(ci,z) ≤ Φs,

∀i ∈ z, ϕs(ci,z) ≥ 0,
m mapping : {1, 2, ..., S} → {1, 2, ..., Z}.

(2)

3 Solution Method for the Subproblem

In this section, we present briefly the DC programming approach developed in
[12] for solving the subproblem. For more details, see [12].
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3.1 DC Formulation of the Subproblem (2)

Let us introduce the allocation variable uz,s defined by

uz,s =

{
1 if the sensor s is allotted to the zone z,
0 otherwise.

Let variable xi,z,s = ϕs(ci,z) be the quantity of resource of the sensor s allotted
to the cell ci,z in the zone z. We can rewrite (2) in the following form:⎧

⎨

⎩
min
x,u

f(x, u) =
Z∑

z=1

Cz∑
i=1

βi,z exp(−
S∑

s=1
wi,z,sxi,z,suz,s)

s.t. x ∈ D, u ∈ M,

where D = {x = (xi,z,s) ∈ R
d
+ :

Cz∑

i=1

xi,z,s ≤ Φs, z = 1, ..., Z, s = 1, ..., S, },

d = S.(C1 + C2 + ...+ Cz),

M = {u = (uz,s) ∈ {0, 1}Z.S :

Z∑

z=1

uz,s = 1, s = 1, ..., S},
which is a nonlinear mixed 0-1 programming problem. It is easy to see that the
objective function of (P ), say f , is convex in x for each fixed u, and similarly, it
is convex in u for each fixed x. Moreover, f is infinitely differentiable.

Consider the function p and the bounded polyhedral convex set K defined,
respectively, by:

p(u) =
Z∑

z=1

S∑

s=1

uz,s(1− uz,s),

and

K = {u = (uz,s) ∈ [0, 1]Z.S :

Z∑

z=1

uz,s = 1, s = 1, ..., S}.

We notice that p is finite and concave on R
Z.S , non-negative on K and

M = {u ∈ K : p(u) ≤ 0} .
Hence Problem (P ) can be rewritten as

α = min{f(x, u) : x ∈ D, u ∈ K, p(u) ≤ 0}.

The exact penalty result is given in the following theorem.

Theorem 1. (see [12])
(i) Let

t0 = max{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈ D},

then ∀t > t0 the problem (P)

min{f(x, u) : x ∈ D, u ∈ M} (P )

is equivalent to the next problem
min{f(x, u) + tp(u) : x ∈ D, u ∈ K}. (Pt)

in the following sense: they have the same optimal value and the same optimal
solution set.
(ii) If (x∗, u∗) is a local solution to problem (Pt) then (x∗, u∗) is a feasible solution
to the problem (P ).
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Note that the part (ii) in this theorem is very useful for DCA applied to (Pt)
because DCA usually produces a local minimizer. In the sequel we will investigate

DCA for solving problem (Pt) with t0 = Φβw2
S∑

s=1
Φs ([12]).

3.2 DC Algorithm (DCA)

Outline of DC Programming and DCA: DC programming and DCA,
which constitute the backbone of smooth/nonsmooth nonconvex programming
and global optimization, have been introduced by Pham Dinh Tao in 1985 and
extensively developed by Le Thi Hoai An and Pham Dinh Tao since 1994 to
become now classic and increasingly popular ([11,13,14] and references therein).
They address the problem of minimizing a function f which is a difference of
convex functions on the whole space IRp or on a convex set C ⊂ IRp. Generally
speaking, a DC program takes the form

α = inf{f(x) := g(x)− h(x) : x ∈ IRp} (Pdc) (3)
where g, h are lower semicontinuous proper convex functions on IRp. Such a
function f is called DC function, and g− h, DC decomposition of f while g and
h are DC components of f.

The idea of DCA is simple: each iteration of DCA approximates the concave
part −h by its affine majorization (that corresponds to taking yk ∈ ∂h(xk))
and minimizes the resulting convex function (that is equivalent to determining
xk+1 ∈ ∂g∗(yk)).
Generic DCA scheme
Initialization: Let x0 ∈ IRp be a best guess, 0 ← k.
Repeat

Calculate yk ∈ ∂h(xk)
Calculate xk+1 ∈ argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRp} (Pk)
k + 1 ← k

Until convergence of xk.
It is important to mention the following main convergence properties of DCA:
– DCA is a descent method (the sequences {g(xk) − h(xk)} and {h∗(yk) −

g∗(yk)} are decreasing) without linesearch;
– If the optimal value α of the problem (Pdc) is finite and the infinite sequences

{xk} and {yk} are bounded then every limit point x∗ (resp. y∗) of the
sequence {xk} (resp. {yk}) is a critical point of g − h (resp. h∗ − g∗).

– DCA has a linear convergence for general DC programs.
– DCA has a finite convergence for polyhedral DC programs.

It is worth noting that the general DCA scheme for solving general DC pro-
grams is rather a philosophy than an algorithm. In fact, there is not only one
DCA but infinitely many DCAs for a considered DC program. DCA’s distinctive
feature relies upon the fact that DCA deals with the convex DC components g
and h but not with the DC function f itself. This fact is crucial for nonconvex
nonsmooth programs for which DCA is one of the rare effective algorithms. The
solution of a practical nonconvex program by DCA must have two stages: the
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search of an appropriate DC decomposition and the search of a good initial point.
An appropriate DC decomposition, in our sense, is the one that corresponds to
a DCA which is not expensive and has interesting convergence properties.

Description of the DCA Applied to (Pt)
From the computations, we have

||H(f)||∞ ≤ max{Sβw2 + Sβw2Φ+ βw, 2Φβw2
S∑

s=1

Φs +Nwβ}.

where
N = max{Cz : z = 1, ..., Z}.

Hence, let ρ := max{Sβw2 + Sβw2Φ + βw, 2Φβw2
S∑

s=1
Φs + Nwβ}, a DC

formulation of (Pt) can be
min {g(x, u)− h(x, u) : (x, u) ∈ D ×K} , (4)

where
g(x, u) :=

ρ

2
||(x, u)||2 and h(x, u) :=

ρ

2
||(x, u)||2 − f(x, u)− tp(u).

DCA applied to DC program (4) consists of computing, at each iteration k,
the two sequences

{
(yk, vk)

}
and

{
(xk, uk)

}
such that (yk, vk) ∈ ∂h(xk, uk) and

(xk+1, yk+1) is an optimal solution of the next convex quadratic program :

min
{ρ

2
||(x, u)||2 − 〈(x, u), (yk, vk)〉 : (x, u) ∈ D ×K

}

which can be decomposed into two smaller problems

min
{ρ

2
||x||2 − 〈x, yk〉 : x ∈ D

}
(5)

and
min

{ρ

2
||u||2 − 〈u, vk〉 : u ∈ K

}
. (6)

We are now in a position to summarize the DCA for solving Problem (Pt)

Step 1. Initialization: let (x0, u0) satisfy the constraints of the problem.
Choose ε1 > 0, ε2 > 0 and k = 0.
Step 2. Compute (yk, vk) = ∇h(xk, uk), with

yk = ρxk −∇xf(x
k, uk), vk = ρuk −∇uf(x

k, uk) + t(2uk − e).

Step 3. Compute (xk+1, uk+1) by solving the two convex quadratic problems
(5) and (6).
Step 4. Iterate Step 2 and 3 until

|(g − h)(xk+1, uk+1)− (g − h)(xk, uk)| ≤ ε1(1 + |(g − h)(xk+1, uk+1)|)

or ||(xk+1, uk+1)− (xk, uk)||∞ ≤ ε2(1 + ||(xk+1, uk+1)||∞).

Theorem 2. (Convergence properties of Algorithm DCA, for simplicity’s sake,
we omit here the dual part of these properties (see [12]))

i) DCA generates the sequence
{
(xk, uk)

}
such that the sequence{

(g − h)(xk, uk)
}
is decreasing convergent.

ii) The sequence
{
(xk, uk)

}
converges to a KKT point for the problem (4).
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3.3 The Combination of Forward-Backward Split Technique and
DCA (FAB&DCA)

The multisensor multizone moving target algorithm takes the following form:
1. Initialization:

∀τ, ∀z, ∀i,Dτ
1 (i, z) = 1,

∀k, ∀z, ∀i, U1
k (i, z) = αi,z .

2. Iteration (k index):
o Iteration(τ index)

- ∀z, ∀i, compute the optimal allotment and resource sharing by DCA
with prior

βτ
i,z = U τ

k (i, z).D
τ
k(i, z);

- ∀z, ∀i, compute U τ+1
k (i, z);

o ∀τ, ∀z, ∀i, compute Dτ
k+1(i, z);

o Stop: when the search plan is no more improved.

4 Numerical result

Suppose that the search space is the lake of Laouzas in France [16]. The search
space is divided into Z = 4 and there are n = 30 cells in each zone (see Figure
1). We assume that the target is Markovian and moves south east direction. The
transition matrix describing the target motion is given in Figure 2 and is assumed
to be constant over time. The search is carried out over four time periods by
means of the six sensors. All sensors has the same amount of resource Φ for all
time period. The coefficients are given in Table 1. We take five search plans.

Fig. 1. An aerial photograph of the lake of Laouzas and its partition

The program is written by language C on Microsoft Visual C++ 2008 and
implemented on a notebook with chipset Intel(R) Core(TM) Duo CPU 2.0 GHz,
RAM 3GB.

The starting point (x0, u0) of DCA, where x0 = (x0
i,z,s), u0 = (u0

z,s) are
chosen as follows: x0

i,z,s =
Φ
n , u

0
z,s =

1
Z , s = 1, ..., S, z = 1, ..., Z, i = 1, ..., Cz. The

parameters ρ and t are dynamically adjusted during DCA’s iterations. From an
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Fig. 2. The target transition probability

Table 1. Parameters for dataset

Type of Cell Prior of target Visibility of sensors
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

Forest 0.0085 0.4 0.5 0.6 0.8 0.5 0.1
Water 0.001 0.9 0.1 0.1 0.1 0.3 0.5
Plat Plan 0.0115 0.3 0.1 0.4 0.6 0.5 0.2
Rough plan 0.013 0.2 0.7 0.8 0.2 0.4 0.6
Very rough plan 0.014 0.1 0.6 0.7 0.1 0.3 0.5
Town 0 0.8 0.9 0.1 0.7 0.6 0.2

algorithmic point of view, the smaller the ρ and t are, the more efficient the DCA
are (because the smaller the concave part of the objective function of Problem
(Pt) is, the better its affine approximation is). Hence it would be efficient to
choose the values t and ρ as small as possible. In our experiments, we start DCA
with a quite small value of ρ and t (depending on the parameters Φ), and then
increase both parameters ρ and t by 1% at each iteration of DCA. We take
ε1 = ε2 = 10−7.

In Table 2, we compare, for the case of Φ = 5, the result obtained by
FAB&DCA and by the method of combining the forward-backward split tech-
nique and the Cross-Entropy (CE) method (FAB&CE)(see [12,16]). The main
idea of this CE method is to generate particular allotments of sensors to search
zones that will be evaluated and then selected, in order to obtain a drawing law
which will converge toward the optimal allotment. The parameters for CE are
as follows: for each iteration, θ = 0.3, the number of samples is N = 50, and the
number of iterations is limited to 15. We observe that the FAB&DCA produced
the better solutions than the FAB&CE while the CPU is shorter. Moreover, al-
though we just pay attention to the results at the time 4 of the last search plan
(iteration k = 5), FAB&DCA works better than FAB&CE does in all time of
this search plan.
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Table 2. Non-detection probability with Φ = 5

Table 3 presents additional results with Φ = 10 and Φ = 15. FAB&DCA
produced once again the better solutions than the FAB&CE while CPU time is
shorter. Here, there is a negative relationship between Φ and the non-detection
probability. When Φ = 15, the probability of non-detection obtained by
FAB&DCA is 0.078225.

Table 3. Relation of non-detection probability and amount of resource

5 Conclusion

We have presented a new approach based-DC programming for solving the prob-
lem planning a multisensor multizone search for a moving target. This method
combines the forward-backward split technique with DCA which is applied to the
DC formulation of the subproblem. The table 2 and 3 show that our approach
can solve this problem more effectively than the FAB&CE method, an efficient
algorithm for the considered problem. In a future work, we will investigate this
approach for larger scale problems.



118 H.A. Le Thi, D.M. Nguyen, and T. Pham Dinh

References

1. de Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A Tutorial on The
Cross-Entropy Method. Annals of Operations Research 134, 19–67 (2005)

2. Brown, S.S.: Optimal search for a moving target in discrete time and space. Oper-
ations Research 32(5), 1107–1115 (1979)

3. Cadre, J.P., Souris, G.: Searching Tracks. IEEE Transactions on Aerospace and
Electronic systems 36(4), 1149–1166 (2000)

4. Dobbie, J.M.: Transfer of detection contacts to tracking contacts in surveillance.
Operations Research 14, 791–800 (1966)

5. Frost, J.R.: Principles of search theory, part III: Probability density distributions.
Response 17(3), 1–10 (1999c)

6. de Guenin, J.: Optimum distribution of effort: an extension of the Koopman theory.
Operations Research 9(1), 1–7 (1961)

7. Hohzaki, R., Iida, K.: A concave minimization problem with double layers of con-
straints on the total amount of resources. Journal of the Operations Research
Society of Japan 43(1), 109–127 (2000)

8. Haley, K.B., Stone, L.D. (eds.): Search Theory and Applications. Plenum Press,
New York (1980)

9. Koopman, B.O.: Search and Screening: General Principles with Historical Appli-
cations. Pergamon Press, New York (1980)

10. Koopman, B.O.: Search and Screening: General Principle with Historical Applica-
tions. MORS Heritage Series, Alexandria (1999)

11. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) Program-
ming and DCA revisited with DC models of real world nonconvex optimization
problems. Annals of Operations Research 133, 23–46 (2005)

12. Le Thi, H.A., Nguyen, D.M., Pham Dinh, T.: A DC programming approach for
planning a multisensor multizone search for a target. Submitted in Computers &
Operations Research 41, 231–239 (2014)

13. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming:
Theory, Algorithms and Applications (dedicated to Professor Hoang Tuy on the
occasion of his 70th birthday). Acta Mathematica Vietnamica 22, 289–355 (1997)

14. Pham Dinh, T., Le Thi, H.A.: DC optimization algorihms for solving the trust
region subproblem. SIAM J. Optimization 8, 476–505 (1998)

15. Rubinstein, R.Y., Kroese, D.: The cross-entropy method: a unified approach
to combinatorial optimization. Monté Carlo simulation, and machine learning.
Springer, Berlin (2004)

16. Simonin, S., Cadre, J.P., Dambreville, F.: A Hierarchical Approach for Planning
a Multisensor Multizone Search for a Moving Target. Computers & Operations
Research 36(7), 2179–2192 (2009)

17. Stone, L.D.: Necessary and suffcient conditions for optimal search plans for moving
targets. Mathematics of Operations Research (4), 431–440 (1979); Math. Sci. Net.

18. Stone, L.D.: What’s happened in search theory since the 1975 Lanchester prize?
Operations Research 37(3), 501–506 (1989)

19. Stone, L.D.: Theory of Optimal Search, 2nd edn. Operations Research Society of
America, ORSA Books, Arlington (1989)

20. Stromquist, W.R., Stone, L.D.: Constrained optimization of functionals with search
theory applications. Mathematics of Operations Research 6(4), 518–527 (1981)

21. Washburn, A.R.: Search for a moving target, The FAB algorithm. Operations Re-
search 31(4), 739–751 (1983)



A DC Algorithm for Solving Quadratic-linear

Bilevel Optimization Problems

Aicha Anzi and Mohammed Said Radjef

Laboratory of Modelisation and Optimization of Systems (LAMOS)
University of Bejaia 06000, Algeria
{anzi aicha,msradjef}@yahoo.fr

Abstract. In this paper we propose an algorithm for solving bilevel
programming problems, in which the upper level objective function is
quadratic and the second level is a linear problem. First, we transform the
problem into a corresponding single level optimization problem using the
Karush-Kuhn-Tucker optimality conditions associated with the second
level problem. Then, we solve the resulting problem by an algorithm
which is a combination of the DC algorithm in DC programming and
the exact penalty method.

Keywords: Bilevel programming, exact penalty, DCA, DC program-
ming, KKT optimality conditions.

1 Introduction

Bilevel programming is a tool for modeling two level hierarchical decision mak-
ing. This class of programs constitutes a branch of mathematical programming
in which the constraints are, partially, determined by another optimization prob-
lem. The decision maker at the upper level is termed as the leader, and at the
lower level the follower. The control of variables is partitioned between the de-
cision makers who attempt to optimize their individual objectives. The leader
goes first in order to optimize his/her objective function. The follower observes
the leader’s decision and constructs his/her decision. This kind of problems has
a wide field of applications [1], [13] and [20] and has been increasingly addressed
in the literature [10], [12], [15], [16] and [17].

Bilevel programs are nonconvex problems and have been proved to be NP-
Hard problems [15] even if the objective and constraint functions are all linear.
Numerous algorithms have been developed to solve bilevel problems. A classical
approach proceeds by replacing the lower level’s problem with its associated
Karush-Kuhn-Tucker optimality conditions. The resulting single optimization
problem is solved by a variety of techniques (see [9], [11], [14] and [18]).

In this paper, based on this approach, we propose an algorithm which is a
combination between a nonconvex technique (the DC or Difference of Convex
functions) and the exact penalty method, to solve the quadratic-linear bilevel
programming problem. The DC programming and DCA have been developed
by P.D. Tao and Le T.H. An since 1986 to solve nonconvex and nonsmooth

c© Springer International Publishing Switzerland 2015 119
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programming problems (see [3], [5], [6] and [8]). This method has proved its
efficiency from both theoretical and numerical viewpoints and has been success-
fully applied to a large number of nonconvex and nondifferentiable problems in
various domains [2], [7] and [23].

The rest of the paper is organized as follows. Section 2 is devoted to the prob-
lem formulation. In section 3, we describe how to reformulate the problem via an
exact penalty technique. Section 4 contains the application of DC programming
and DCA for solving the resulting penalized problem. Computational results are
presented in section 5, while some conclusion is presented in the last section.

2 Problem Formulation

We consider the bilevel quadratic linear problem (BQLP) formulated as follows:

min
x

F (x, y) =
1

2
(x, y)TQ

(
x
y

)
+ cTx+ dT y, (1a)

s.t. A1x+B1y ≤ b1, (1b)

x ≥ 0; (1c)

min
y

f(x, y) = cT2 x+ dT2 y, (1d)

s.t. A2x+B2y ≤ b2, (1e)

y ≥ 0, (1f)

where Q ∈ R
(n1+n2)×(n1+n2) is a symmetric indefinite matrix.

x, c2 ∈ R
n1 ; y, d2 ∈ R

n2 ; b1 ∈ R
m1 ; b2 ∈ R

m2 ; A1 ∈ R
m1×n1 ; A2 ∈ R

m2×n1 ;
B1 ∈m1×n2 and B2 ∈m2×n2 .

Now, we give some definitions of the (BQLP):

1. The constraints region

S = {(x, y) ∈ R
n1 × R

n2 : A1x+B1y ≤ b1, A2x+B2y ≤ b2, x ≥ 0, y ≥ 0} .

2. The feasible region of the follower for each fixed x ≥ 0

S(x) = {y ∈ R
n2 : B2y ≤ b2 −A2x, y ≥ 0} .

3. The rational reactions set of the follower for each fixed x ≥ 0

R(x) = {y/y = argmin[f(x, ŷ) : ŷ ∈ S(x)]} .

4. The inducible region

RI = {(x, y) ∈ S, y ∈ R(x)} .
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The inducible region represents the feasible set over which the leader may opti-
mize his/her objective function.

To ensure that problem (1) is well defined, it is assumed that S is nonempty
and bounded.

There are mainly two ways to formulate a bilevel programming problem: the
pessimistic formulation and the optimistic one. In this paper, we consider the
optimistic formulation. In this case, an optimal solution of (BQLP) is defined as
follows:

Definition 1. A feasible solution (x∗, y∗) ∈ RI is optimal for problem (1) if

F (x∗, y∗) ≤ F (x, y), ∀(x, y) ∈ RI.

3 Reformulation and Notations

In this section, we transform the (BQLP) problem into a single optimization
problem and give some useful notations.

Using the Karush-Kuhn-Tucker optimality conditions associated to the lower
level’s problem (1d)-(1f), we obtain the following equivalent problem:

min
x

F (x, y) =
1

2
(x, y)TQ

(
x
y

)
+ cTx+ dT y, (2a)

A1x+B1y + e = b1, (2b)

A2x+B2y + w = b2, (2c)

BT
2 u− v = d2, (2d)

vT y + uTw = 0, (2e)

x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0, w ≥ 0, e ≥ 0, (2f)

where e ∈ R
m1 , u ∈ R

m2 , v ∈ R
n2 and w ∈ R

m2 .
We now introduce some useful notations. Let

z = (xT , yT , eT , wT , vT , uT )T ∈ R
n, p = (cT , dT , 0, 0, 0, 0)T ∈ R

n,

P =

(
Q 0
0 0

)
∈ Rn×n,

Eu = (0, 0, 0, 0, 0, Im2), Ev = (0, 0, 0, 0, In2, 0),
Ew = (0, 0, 0, Im2, 0, 0), Ey = (0, In2 , 0, 0, 0, 0),

A =

⎛

⎝
A1 B1 Im 0 0 0
A2 B2 0 Im2 0 0
0 0 0 0 −In2 BT

2

⎞

⎠ ∈ Rm×n , b =

⎛

⎝
b1
b2
d2

⎞

⎠ ∈ R
m,

where Ik is k × k identity matrix ; 0 is zero matrix with appropriate dimension
for each case, with n = n1 + 2n2 +m1 + 2m2; m = m1 +m2 + n2.

Using these notations, we obtain:
uTw = (Euz)

T (Ewz) = zT (ET
u Ew)z = zTD1z and vT y = (Evz)

T (Eyz) =
zT (ET

v Ey)z = zTD2z.
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It follows that: uTw + vT y = zTD1z + zTD2z = zTDz with D1 +D2 = D.
Note that the elements dij(i = 1, n, j = 1, n) of matrix D are all nonnegative.

Setting Dz = q(z), problem (2) can be written as:

min

{
φ(z) =

1

2
zTPz + pT z : Az = b, zT q(z) = 0, z ≥ 0

}
, (3)

with q(z) ≥ 0, ∀z ≥ 0.
Consider the convex set Z = {z ∈ R

n : Az = b, z ≥ 0}, and let be the function

Ψ : Rn → R defined by Ψ(z) =
n∑

i=1

min{qi(z), zi}.

Property 1. The function Ψ(z) verifies the following properties:

– Ψ is a finite concave function on Z;
– Ψ(z) ≥ 0, ∀z ∈ Z;
– Ψ(z) = 0, ∀z ∈ Zn = {z ∈ Z, ztq(z) = 0} = {z ∈ Z, Ψ(z) ≤ 0}.

From property (1), problem (3) can be rewritten in the following form:

α = min{φ(z) : z ∈ Z, Ψ(z) ≤ 0}. (4)

Now, we give the following proposition whose proof is based on duality in linear
programming and the property of the complementary constraints.

Proposition 1. Let (x̃, ỹ) ∈ RI, then there exist vectors w̃ ∈ R
m2 , ṽ ∈ R

n2 ,
ũ ∈ R

m2 , ẽ ∈ R
m1 such that the vector z̃ = (x̃, ỹ, ẽ, w̃, ṽ, ũ) ∈ R

n verifies

z̃ ∈ Z and Ψ(z̃) = 0.

4 DCA for Solving Problem (4)

This section is devoted to the resolution of problem (4) by DCA.

4.1 DC Programming

Now, we briefly review the basic properties of DC programming and DCA. We
shall work with space X = R

n which is equipped with the canonical inner
product 〈., .〉 and the corresponding euclidean norm ‖.‖. Thus, the dual space
Y of X can be identified with X itself. Let Γ0(X) denotes the set of all lower
semicontinuous proper convex functions on X . A general DC program has the
form:

α = inf{f(x) = g(x)− h(x) : x ∈ X}, (5)

where g, h ∈ Γ0(X) are called DC components of the function f and g − h is
the DC decomposition of f .

The dual of (5) is the DC program

α = inf{h∗(y)− g∗(y) : y ∈ Y }, (6)
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where g∗ and h∗ are respectively the conjugate function of g and h. The conjugate
function of g is given by:

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ X}.

For problem (5), the following necessary local optimality conditions, developed
in [5], have been constantly used:

∅ �= ∂h(x∗) ⊂ ∂g(x∗), (7)

where ∂h(x∗) = {y∗ ∈ Y : h(x) ≥ h(x∗)+ < x − x∗, y∗ >, ∀x ∈ X} is the
subdifferential of h at x∗.

∅ �= ∂g(x∗) ∩ ∂h(x∗). (8)

Such a point x∗ is called critical point of g − h.
DCA is a descent method without linesearch, consisting of the construction

of the two sequences {xi} and {yi} (candidates for being primal and dual solu-
tions, respectively), such that their corresponding limit points satisfy the local
optimality conditions (7) and (8). Recall that there are two forms of DCA: the
simplified DCA (or simply DCA) and the complete DCA. In practice the first is
more used because it is less expensive [3]. The simplified DCA has the following
form ([2] and [6]):

DCA Algorithm
1 : Let x0 ∈ R

n given. Set i = 0.
2 : Compute yi ∈ ∂h(xi).
3 : Compute xi+1 ∈ ∂g∗(yi).
4 : If a convergence criterion is satisfied, then Stop; else set i = i+ 1

and goto step 2.

4.2 A DCA Scheme for Solving Problem (4)

The proposed approach for solving problem (1) is now developed. For this we
have to write problem (4) in the form of a DC program. First, rewrite the func-
tion φ as:

φ(z) = φ1(z)− φ2(z) =
1

2
zT (P + ρIn)z + pT z − 1

2
ρ‖z‖2,

where ρ is a real number such that P + ρIn is positive semidefinite.
So φ is a DC function with DC decomposition φ1 − φ2. Then, from [21] and

[4] and under the assumption of boundedness of the feasible set of problem (4),
there exists k0 ≥ 0 such that for every k > k0, problem (4) is equivalent to the
following penalized problem:

min{φ(z) + kΨ(z) : z ∈ Z}. (9)
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Since Ψ is a concave function on Z, problem (9) is a DC program of the form

min{g(z)− h(z) : z ∈ R
n}, (10)

with

g(z) =
1

2
zT (P + ρIn)z + pT z + χZ(z) and h(z) =

1

2
ρ‖z‖2 − kΨ(z), (11)

where χZ stands for the indicator function of the convex set Z (χZ(z) = 0 if
z ∈ Z, +∞ otherwise).

The application of DCA to problem (10) consists of computing the two se-
quences {ti} and {zi} defined by:

ti ∈ ∂h(zi) and zi+1 ∈ ∂g∗(ti).

Using the rules in convex analysis, we compute {ti} and {zi}.
Computation of ti ∈ ∂h(zi): we choose ti ∈ ∂h(zi) =
(
ρzi − k

(
∂

n∑
j=1

min{qj(zi), zij}
))

as follows:

ti = ρzi + kθi, (12)

where θi ∈
∑n

j=1 ∂
(
max{−qj(z

i), −zij}
)
and qj(z

i) = Djz
i.

Let be

θi = −
n∑

j=1

⎧
⎨

⎩

DT
j , if zij > Djz

i,
ej, if zij < Djz

i,
γej + (1 − γ)DT

j , if zij = Djz
i,

(13)

where Dj is the j-th row of matrix D, ej is the j-th unit vector of R
n and

γ ∈ [0, 1].
Hence θi, given by (13), is an element of

∑n
j=1 ∂

(
max{−Djz

i,−zij}).

Computation of zi+1 ∈ ∂g∗(ti): following [22], we can choose zi+1 as the
solution of the following convex problem

min{
〈
(P + ρIn)z, z

〉
+ (p− ti)T z : z ∈ Z}. (14)

The DCA applied to problem (9) with decomposition (11) can be described as
follows:
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Algorithm DCABQLP
1 : Let z0 = (x0, y0, e0, w0, v0, u0) be an initial guess, ε > 0, k ∈ R+,

γ ∈ [0, 1]. Set i = 0.
2 : Compute ti ∈ ∂h(zi) using (12).
3 : Compute zi+1 = (xi+1, yi+1, ei+1, wi+1, vi+1, ui+1) ∈ ∂g∗(ti)

by solving (14).
4 : If yi+1 ∈ argmin

{
f(xi+1, y) : B2y = b2 −A2x

i+1 − wi+1, y ≥ 0
}
,

then go to 5; otherwise go to 7.
5 : Compute the new components (vi+1, ui+1) of zi+1 by solving the

following dual problem max{ut(b2 −A2x
i+1) : Bt

2u− v = d2, u ≥ 0, v ≥ 0},
6 : If ‖zi+1 − zi‖/(‖zi‖+ 1) ≤ ε, then stop zi+1 is optimal for (9);

and (xi+1, yi+1) is optimal for (1); otherwise go to 7.
7 : Set zi = zi+1, i = i+ 1 and go to 2.

Remark 1. In step 4 of the algorithm, we test the feasibility of the solution
(xi+1, yi+1) for the (BQLP). If the test in step 4 is satisfied, then we have
yi+1 ∈ R(xi+1) (see definition 3 of the (BQLP)). Since (xi+1, yi+1) ∈ S, then
we have (xi+1, yi+1) ∈ RI which implies that (xi+1, yi+1) is a feasible solution
for problem (1).

The following result proves the convergence of the algorithm DCABQLP to a
solution of problem (1).

Theorem 1. Let zi+1 = (xi+1, yi+1, ei+1, wi+1, vi+1, ui+1) be the computed so-
lution of problem (9) by algorithm DCABQLP. Then, (xi+1, yi+1) is a solution
of problem (1).

Proof. Let k = k̃ be the parameter value in (9) associated with the computed
solution zi+1 = (xi+1, yi+1, ei+1, wi+1, vi+1, ui+1) of problem (10). We have

g(zi+1)− h(zi+1) ≤ g(z)− h(z), ∀z ∈ R
n.

and in particular

g(zi+1)− h(zi+1) ≤ g(z)− h(z), ∀z ∈ Zn. (15)

Then, from the definition of set Zn we have

g(zi+1)− h(zi+1) ≤ g(z)− h(z), ∀z ∈ Z, (16)

from which we deduce

1

2
(zi+1)TPzi+1 + pT zi+1 + kΨ(zi+1) ≤ 1

2
zTPz + pT z + kΨ(z), ∀z ∈ Z, (17)

which means that zi+1 is an optimal solution for problem (9) with parameter
value k = k̃. In addition, from remark 1, we have yi+1 ∈ R(xi+1) which means
that yi+1 is an optimal solution of the lower level’s problem (1d)-(1f) with x =
xi+1. Moreover, the computed vector (vi+1, ui+1) at step 5 of the algorithm is
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the optimal solution of the lower level’s dual problem. Then, using the property
of the complementary constraint, we can prove that

Ψ(zi+1) = 0. (18)

Let (x̃, ỹ) ∈ RI be a feasible solution of (1). Then, by proposition 1, there exist
vectors w̃ ∈ R

m2 , ṽ ∈ R
n2 , ũ ∈ R

m2 and ẽ ∈ R
m1 such that

z̃ = (x̃, ỹ, ẽ, w̃, ṽ, ũ) ∈ Z,

and
Ψ(z̃) = 0. (19)

From (17)-(19), we deduce

1

2
(zi+1)TPzi+1 + pT zi+1 ≤ 1

2
z̃TP z̃ + pT z̃ ⇐⇒ F (xi+1, yi+1) ≤ F (x̃, ỹ).

Then (xi+1, yi+1) is an optimal solution of problem (1). ��

5 Numerical Example and Computational Experiments

In this section we give a numerical example and present some computational ex-
periments on the performance of our algorithm.The example is taken from [24]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

F (x, y) = −x2 − y2 + 16x+ 5xy

s.t. x ≤ 20
x ≥ 0

max
y

f(x, y) = y

s.t. x+ y ≤ 20
y ≤ 10
y ≥ 0

The results of application of algorithm DCABQLP to this problem, for different
values of the penalty parameter k are given in Table 1. The global solution
is (11.1428, 8.8572) with objective value 469.1429. The solution in Ref. [24] is
(11.14286, 8.85714) with objective value 469.14286.

Table 1. Results for the numerical example

k (x∗; y∗) F ∗

1 (11.1489, 8.8511) 469.1429
10 (10, 10) 460
100 (10, 10) 460
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We tested our algorithm on a collection of 20 problems randomly generated.
We considered an indefinite matrixQ of the formQ = 1

2G
TG, where the elements

of G are random numbers in [−10, 10]. The elements of vectors c, d, c2 and d2
are random numbers in [−10, 10]. The constraints are generated such as the
constraints set, S, of problem (1) is nonempty and bounded in the following way
(see [19]):

Let b =

(
b1
b2

)
∈ R

m̄, Ā =

(
A1

A2

)
∈ R

m̄×n1 and B̄ =

(
B1

B2

)
∈ R

m̄×n2 ,

where m̄ = m1 +m2.
The elements of the matrices Ā and B̄, (āij) and (b̄ij) respectively, for i =

1, ..., m̄−1 and j = 1, ..., n̄ (where n̄ = n1+n2) are random numbers in [−10, 10].
The last row of the constraints matrix is randomly generated in [0, 10], and each
right-hand side b̄i (i = 1, ..., m̄) is generated as follows :

b̄i =

n̄∑

j=1

āij +

n̄∑

j=1

b̄ij + 2μ, i = 1, m̄, μ ∈ [0, 1]

The algorithm is implemented in MATLAB and run on a Intel Core CPU 1.5GHz
with 2 Go of RAM. The commands linprog and quadprog of MATLAB have been
used to solve the linear and quadratic programs. We take ε = 10−4 and γ = 0.5.

Initial point: to initialize the algorithm we use DCA to solve the following con-
cave minimization problem

0 = min{Ψ(z) : Ãz = b̃, z ≥ 0}, (20)

where

Ã =

(
A2 B2 0 Im2 0 0
0 0 0 0 −In2 Bt

2

)
and b̃ =

(
b2
d2

)
.

Choice of penalty parameter: the choice of the penalty parameter k is crucial for
the algorithm. It must be taken large enough to have the equivalence between
problem (4) and problem (9). In our experiments we take k = 104. We note
that, in our several simulations (which are not reported here), the procedure
of starting with a small k and increasing it led to a slow convergence of the
algorithm.

The performance of DCABQLP is reported in Table 2 where #it stands for
the average number of iterations, and time is the average CPU time given in
seconds.

Comments: from the computational results we observe that the algorithm is
very fast for problems of small dimension, but the execution time becomes higher
for problems with a large number of variables. On the other hand we can see
that the number of iterations required to reach the solution is not sensitive to
the dimension of the tested problem and is relatively small. The average number
of iterations is equal to 5.
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Table 2. Computational results of DCABQLP

Problem n1 n2 m̄ #it time

1 10 5 10 2 0.2
2 15 10 10 4 0.60
3 20 10 15 4 0.71
4 25 15 15 6 1.38
5 30 20 20 4 3.67
6 35 25 20 5 2.17
7 40 25 25 4 6.35
8 45 30 25 4 13.91
9 50 30 30 4 31.20
10 55 40 30 5 38.04
11 60 40 35 6 99.98
12 70 50 35 4 141.01
13 80 60 40 5 167.02
14 90 80 45 8 238.92
15 100 100 50 10 588.53
16 110 100 50 6 711.93
17 120 110 45 7 676.01
18 130 110 50 9 1238.1
19 140 120 40 5 819.87
20 150 130 40 7 988.53

6 Conclusion

We have presented a DC optimization approach for solving nonlinear bilevel
optimization problems, in which the upper level objective function is quadratic
nonconvex and the second level is a linear problem. After transformation of
the problem into a DC program, via an exact penalization, we develop a DC
algorithm for its resolution. Computational experiments show the efficiency of
the proposed algorithm, especially for problems of small dimension.
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Abstract. We suggest a novel approach to the sparse covariance matrix
estimation (SCME) problem using the �1-norm. The resulting optimiza-
tion problem is nonconvex and very hard to solve. Fortunately, it can
be reformulated as DC (Difference of Convex functions) programs to
which DC programming and DC Algorithms can be investigated. The
main contribution of this paper is to propose a more suitable DC de-
composition for solving the SCME problem. The experimental results on
both simulated datasets and two real datasets in classification problem
illustrate the efficiency of the proposed algorithms.

Keywords: Sparse covariance matrix, DC programming, DCA.

1 Introduction

Estimation of covariance matrix plays a major role in statistical analysis. Re-
cently, numerous statistical methods require an estimate of a covariance matrix
or its inverse, including principal component analysis (PCA), linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), regression for multivari-
ate normal data, analysis of independence and conditional independence rela-
tionships between components in graphical models, and portfolio optimization.

Suppose that we observe a sample including n observational data points
X1, ..., Xn from a p-dimensional multivariate normal distribution N(0, Σ), with
a mean vector 0 and the covariance matrix Σ. Let S = 1

n

∑n
i=1 XiX

T
i be the

sample covariance matrix. The negative log-likelihood function is

�(Σ) =
n

2

[
log detΣ + tr(Σ−1S) + p log 2π

]
. (1)

The general purpose is to estimate the covariance matrix Σ. However, the
problem is that with the increasing abundance of high-dimensional datasets, the
sample covariance matrix S becomes an extremely noisy estimator of the co-
variance matrix, and besides, the number of parameters used to estimate grows

c© Springer International Publishing Switzerland 2015 131
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quadratically with the number of variables. Intuitively, the most suitable ap-
proach to cope with this problem is finding an estimate of covariance matrix
which is as sparse as possible, since the sparsity leads to the effective reduction
in the number of parameters. Furthermore, the sparsity is visualized by the so-
called covariance graph [6]. In the covariance graph, each node presents a random
variable in a random vector and these nodes are connected by bidirectional edges
if the covariances between the corresponding variables are nonzero. Note that
two random variables are marginally independent if and only if their covariance
is zero. Hence the zeros in a covariance matrix correspond to marginal indepen-
dencies between variables, and a sparse estimate of the covariance matrix is a
covariance graph having a small number of edges.

In the literature, there exists the number of methods that seeks the spar-
sity in the covariance matrix to improve the estimation accuracy and/or to
explore the structure of the covariance graphical model. [1] used a diagonal esti-
mate for the covariance matrix. [6] considered the covariance matrix estimation
problem given a prespecified zero-pattern. [9],[21],[2],[5],[29] proposed some lasso
regression-based methods (and/or combined with the Cholesky decomposition).
[10] formulated a prior for Bayesian inference given a covariance graph structure.
[22] presented the method which can be viewed as an extension of the general-
ized shrinkage operator [28] applied to the sample covariance matrix to achieve
a sparse estimate.

In particular, [11],[3] penalized the off-diagonal elements of the covariance
matrix by adding to the negative log-likelihood (1) an �1 penalty. The resulting
sparse covariance matrix estimation (SCME) problem is

min
Σ�0

{
log detΣ + tr(Σ−1S) + λ||W ◦Σ||1

}
, (2)

where the notation Σ � 0 means that Σ is symmetric positive definite, W is
the matrix with zero diagonal and one off-diagonal, ◦ denotes the Hadamard
product, and λ is a nonnegative tuning parameter. If S is nonsingular, then the
problem (2) is equivalent to the following problem:

min
Σ�δIp

{
F (Σ) := log detΣ + tr(Σ−1S) + λ||W ◦Σ||1

}
, (3)

for some δ > 0 [3]. Here, Ip denotes the p× p identity matrix, and the notation
Σ � δIp means that Σ − δIp is symmetric positive semidefinite. Note that if S
is not full rank, we can replace S with S + εIp for some ε > 0. Solving (3) is a
formidable challenge since it is nonconvex. In [3], Bien and Tibshirani applied
the minorization-maximization (MM) approach for solving this problem.

In this paper, we aim to propose an algorithm based on DC (Difference of Con-
vex functions) programming and DCA (DC Algorithms) for solving the problem
(3). DC programming and DCA were introduced by Pham Dinh Tao in their
preliminary form in 1985. They have been extensively developed since 1994 by
Le Thi Hoai An and Pham Dinh Tao and become now classic and increasingly
popular (see e.g. [18],[26],[27]). Our motivation is based on the fact that DCA is
a fast and scalable approach which has been successfully applied to many large-
scale (smooth or non-smooth) nonconvex programs in various domains of applied
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sciences, in particular in data analysis and data mining, for which it provided
quite often a global solution and proved to be more robust and efficient than
standard methods (see e.g. [18],[17],[26],[27],[15],[20],[16],[19],[7] and the list of
references in http://lita.sciences.univ-metz.fr/~lethi/DCA.html).

The so-called DC program is that of minimizing a DC function F = G −H
over a convex set with G and H being convex functions. The construction of
DCA involves DC components G and H but not the function F itself. More-
over, a DC function F has infinitely many DC decompositions G − H which
have crucial implications on the qualities (speed of convergence, robustness, ef-
ficiency, globality of computed solutions, . . . ) of DCA. Hence, the finding of an
appropriate DC decomposition is important from an algorithmic point of view.
In particular, for the SCME problem, the main contribution of this paper is to
propose a more suitable DC decomposition, and then the corresponding DCA
scheme is developed. To examine the efficiency of our proposed algorithm, we
perform the experiments on both simulated datasets and two real datasets in
the classification problems.

The paper is organized as follows. In Section 2, we present DC programming
and DCA for general DC programs, and illustrate how to apply DCA to solve
the problem (3). The numerical experiments are reported in Section 3. Finally,
the conclusions are given in Section 4.

Notation. In this paper, for matrices A,B ∈ R
n×m, the inner and Hadamard

products of A and B are defined as 〈A,B〉 = tr(ATB), A ◦ B = [AijBij ],

respectively. The spectral and Frobenius norms are ||A||2 =
√
λmax(ATA),

||A||F =
√∑

i,j A
2
ij , respectively, where λmax(A

TA) denotes the maximal eigen-

value of ATA.

2 Solution Method Based on DC Programming and DCA

First, for the reader’s convenience, let us give a brief introduction to DC
programming and DCA.

2.1 DC Programming and DCA

A general DC program is that of the form:

α = inf{F (x) := G(x) −H(x) |x ∈ R
n} (Pdc),

where G,H are lower semi-continuous proper convex functions on R
n. Such

a function F is called a DC function, and G − H a DC decomposition of F
while G and H are the DC components of F . Note that, the closed convex
constraint x ∈ C can be incorporated in the objective function of (Pdc) by using
the indicator function on C denoted by χC which is defined by χC(x) = 0 if
x ∈ C, and +∞ otherwise.

http://lita.sciences.univ-metz.fr/~lethi/DCA.html
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For a convex function θ, the subdifferential of θ at x0 ∈ domθ := {x ∈ R
n :

θ(x) < +∞}, denoted by ∂θ(x0), is defined by

∂θ(x0) := {y ∈ R
n : θ(x) ≥ θ(x0) + 〈x− x0, y〉, ∀x ∈ R

n},

and the conjugate θ◦ of θ is

θ◦(y) := sup{〈x, y〉 − θ(x) : x ∈ R
n}, y ∈ R

n.

Then, the following program is called the dual program of (Pdc):

αD = inf{H◦(y)−G◦(y) | y ∈ R
n} (Ddc).

One can prove (see, e.g. [26]) that α = αD and that there is a perfect symmetry
between primal and dual DC programs: the dual to (Ddc) is exactly (Pdc).

The necessary local optimality condition for the primal DC program,(Pdc), is

∂H(x◦) ⊂ ∂G(x◦). (4)

The condition (4) is also sufficient for many important classes of DC programs,
for example, for DC polyhedral programs, or when function F is locally convex
at x◦ ([18]).

A point x◦ is called a critical point of G−H , or a generalized Karush-Kuhn-
Tucker point (KKT) of (Pdc)) if

∂H(x◦) ∩ ∂G(x◦) = ∅. (5)

Based on local optimality conditions and duality in DC programming, the DCA
consists in constructing two sequences {xl} and {yl} (candidates to be solutions
of (Pdc) and its dual problem respectively). Each iteration l of DCA approxi-
mates the concave part−H by its affine majorization (that corresponds to taking
yl ∈ ∂H(xl)) and minimizes the resulting convex function (that is equivalent to
determining xl+1 ∈ ∂G◦(yl)).

Generic DCA scheme
Initialization: Let x0 ∈ R

n be an initial guess, l ← 0.
Repeat
- Calculate yl ∈ ∂H(xl)
- Calculate xl+1 ∈ arg min{G(x) − 〈x, yl〉 : x ∈ R

n} (Pl)
- l ← l + 1
Until convergence of {xl}.

Convergences properties of DCA and its theoretical basic can be found in
[18],[26]. It is worth mentioning that

– DCA is a descent method (without linesearch): the sequences {G(xl)−H(xl)}
and {H◦(yl)−G◦(yl)} are decreasing.

– If G(xl+1)−H(xl+1) = G(xl)−H(xl), then xl is a critical point of G−H
and yl is a critical point of H◦ −G◦. In such a case, DCA terminates at l-th
iteration.
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– If the optimal value α of problem (Pdc) is finite and the infinite sequences
{xl} and {yl} are bounded then every limit point x (resp. y) of the sequences
{xl} (resp. {xl}) is a critical point of G−H (resp. H◦ −G◦).

– DCA has a linear convergence for general DC programs, and has a finite
convergence for polyhedral DC programs.

A deeper insight into DCA has been described in [18]. For instant it is crucial
to note the main feature of DCA: DCA is constructed from DC components and
their conjugates but not the DC function f itself which has infinitely many DC
decompositions, and there are as many DCA as there are DC decompositions.
Such decompositions play a crucial role in determining the speed of convergence,
stability, robustness, and globality of sought solutions. Therefore, it is important
to study various equivalent DC forms of a DC problem. This flexibility of DC
programming and DCA is of particular interest from both a theoretical and an
algorithmic point of view.

For a complete study of DC programming and DCA the reader is referred to
[18],[26],[27] and the references therein.

In the last decade, a variety of works in Machine Learning based on DCA have
been developed. The efficiency and the scalability of DCA have been proved in a
lot ofworks (see e.g. [18],[17],[26],[12],[15],[20],[16],[7],[13],[14],[24],[23],[30] and the
list of reference in http://lita.sciences.univ-metz.fr/~lethi/DCA.html).
These successes of DCA motivated us to investigate it for solving the SCME
problem.

2.2 DCA for Solving (3)

We consider a special DC formulation of the problem (3) as follows:

min {F (Σ) = G(Σ)−H(Σ) : Σ � δIp} , (6)

where
G(Σ) :=

μ

2
||Σ||2F + λ||W ◦Σ||1, (7)

and

H(Σ) :=
μ

2
||Σ||2F − tr(Σ−1S)− log detΣ (8)

are convex functions when μ is large enough. According to the generic DCA
scheme, at each iteration l, we have to compute a subgradient V l of H at Σl

and then solve the convex program of the form (Pl), namely

min{G(Σ)− 〈V l, Σ〉 : Σ � δIp}. (9)

H is differentiable and V l = ∇H(Σl) is calculated as follows:

V l
ij = μΣij +

[
Σ−1SΣ−1

]
ij
−
[
(Σl)−1

]
ij
. (10)

DCA for solving the problem (6) can be described in Algorithm 1.

http://lita.sciences.univ-metz.fr/~lethi/DCA.html
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Algorithm 1. (DCA applied to (6))

Initialization: Let τ be a tolerance sufficient small, set l = 0 and compute δ, μ.
Choose Σ0 � δIp.
repeat

1. Compute V l by V l
ij = μΣij +

[
Σ−1SΣ−1

]
ij
− [

(Σl)−1
]
ij
.

2. Solve the following convex problem to obtain Σl+1

min
Σ�δIp

{μ

2
||Σ||2F + λ||W ◦Σ||1 − 〈V l, Σ〉

}
(11)

3. l ← l + 1.
until ||Σl+1 −Σl||F ≤ τ

(||Σl||F + 1
)
or |F (Σl+1)− F (Σl)| ≤ τ

(|F (Σl)|+ 1
)
.

Remark 1. For solving the convex problem (11), we use the alternating direc-
tion method of multipliers (ADMM) [4]. The augmented Lagrangian function
of (11) is

L(Σ,X, Y ) =
μ

2
||Σ||2F −〈V l, Σ〉+λ||W ◦X ||1+ 〈Y,Σ−X〉+ ρ

2
||Σ−X ||2F . (12)

More specifically, ADMM solves the following problems at each iteration k:

Σk+1 = arg min
Σ�δIp

L(Σ,Xk, Y k) (13)

Xk+1 = arg min
X∈Rp×p

L(Σk+1, X, Y k) (14)

Y k+1 = Y k + ρ(Σk+1 −Xk+1). (15)

Finally, ADMM for solving (11) can be described as follows:

Initialization: Set k = 0, choose X0, Y 0 ∈ R
p×p, and let ρ > 0.

repeat
1. Compute Σk+1 = UDδU

T where Dδ = diag(max(Dii, δ)) and (V l − Y k +
ρXk)/(μ+ ρ) = UDUT .
2. Compute Xk+1 = S

(
Σk+1 + Y k/ρ, (λ/ρ)W

)
.

3. Compute Y k+1 = Y k + ρ(Σk+1 −Xk+1)
4. k ← k + 1.

until Converge.

Remark 2. For estimating μ, since the function − log detΣ is convex and the
sum of two convex functions is also convex, it is sufficient to take μ such that
μ
2 ||Σ||2F − tr(Σ−1S) becomes convex. For this purpose, we can choose μ greater
than the spectral radius of the Hessian matrix of Λ(Σ) = tr(Σ−1S), i.e., μ ≥
||∇2Λ(Σ)||2 for all Σ � δIp. The gradient and Hessian of Λ(Σ) are respectively

∇Λ(Σ) = −Σ−1SΣ−1, (16)
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and

∇2Λ(Σ) = Σ−1SΣ−1 ⊗Σ−1 +Σ−1 ⊗Σ−1SΣ−1, (17)

where ⊗ denotes the Kronecker product. We can deduce from (17) that

||∇2Λ(Σ)||2 ≤ 2||S||2δ−3,

thus we can assign 2||S||2δ−3 to μ.

3 Numerical Experiments

3.1 Comparative Algorithms

Let W 1 be a matrix defined by W 1
ij = 0 if i = j and 1 otherwise, W 2 be a

matrix defined by W 2
ij = 0 if i = j and W 2

ij =
1

|Sij| otherwise. DCA1 and DCA2

denote Algorithm 1 with W = W 1 and W = W 2, respectively. We will compare
our proposed approaches (DCA1 and DCA2) with the methods proposed in [3]
which used the MM approach (that is in fact a version of DCA) for solving the
problem (3).

SPCOV1 and SPCOV2 denote the MM approach for solving the problem (3)
with W = W 1 and W = W 2, respectively [3]. The R package spcov for SPCOV1
and SPCOV2 is available from CRAN1.

3.2 Experimental Setups

All algorithms are implemented in the R 3.0.2, and performed on a PC Intel i7
CPU3770, 3.40 GHz of 8GB RAM.

In experiments, we set the stop tolerance τ = 10−4 for DCA. The starting
point Σ0 of DCA is the sample covariance matrix S. The value of parameter λ
is chosen through a 5-fold cross-validation procedure on tuning or training set
from a set of candidates {0.01, ..., 0.9}.

The cross-validation procedure is described as follows [3]. For A ⊆ {1, ..., n},
let SA = |A|−1

∑
i∈A XiX

T
i , and Ac

i denotes the component of A. We divide
{1, ..., n} into 5 subsets, A1, ...,A5, and then compute

f(λ) =
1

5

5∑

i=1

�
{
Σ̂λ(SAc

i
);SAi

}
, (18)

where Σ̂λ(SAc
i
) is an estimate of the covariance matrix Σ with the parameter λ

and SAc
i
, and �

{
Σ̂λ(SAc

i
);SAi

}
= − log det Σ̂λ(SAc

i
) − tr

([
Σ̂λ(SAc

i
)
]−1

SAi

)
.

Finally, we choose λ̂ = argmaxλ f(λ).

1 http://cran.r-project.org/web/packages/spcov/index.html

http://cran.r-project.org/web/packages/spcov/index.html
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3.3 Experiments on Synthetic Datasets

We evaluate the performance of DCA1 and DCA2 on three synthetic datasets.
We generate X = [X1, ..., Xn] from a multivariate normal distribution Np(0, Σ),
where Σ is a sparse symmetric positive definite matrix. We consider two types
of covariance graphs and a moving average model as follows (see [3]):

Cliques model: We generate Σ = diag(Σ1, ..., Σ5), where Σ1, ..., Σ5 are dense
matrices.

Random model: In this model, we take Σij = Σji to be nonzero with the
probability 0.02, independently of other elements.

First-order moving average model: We generate Σi,i−1 = Σi−1,i to be nonzero
for i = 2, ..., p.

In the first two cases, the nonzero entries of matrix Σ are randomly drawn
in the set {+1,−1}. In the moving average model, all nonzero values are set to
be 0.4. In this experiment, for each covariance model, we generate ten training
sets and one tuning set with the size n = 200, p = 100. The tuning set is used
to choose the parameter λ.

To evaluate the performance of each method, we consider three loss functions
which are the root-mean-square error (RMSE), the entropy loss (EN), and the
Kullback-Leibler (KL) loss, respectively.

RMSE = ||Σ̂ −Σ||F /p, (19)

EN = − log det(Σ̂Σ−1) + tr(Σ̂Σ−1)− p, (20)

KL = − log det(Σ̂−1Σ) + tr(Σ̂−1Σ)− p, (21)

where Σ̂ is a sparse estimate of the covariance matrix Σ.
The experimental results on synthetic datasets are given in Table 1. In this Ta-

ble, the average of root-mean-square error (RMSE), entropy loss (EN), Kullback-
Leibler (KL) loss, number of nonzero elements (NZ), CPU time in second, and
their standard diviations over 10 samples are reported.

We observe from Table 1 that in terms of root-mean square error and sparsity,
DCA2 gives the best results on all three models. In the random and moving aver-
age models, DCA2 also gives the best entropy loss and the best Kullback-Leibler
loss. In the cliques model, DCA1 attains the lowest entropy and Kullback-Leibler
losses. DCA2 and SPCOV2 perform better than DCA1 and SPCOV1, respec-
tively because these approaches use an adaptive lasso penalty on off-diagonal
elements. The training time shows that SPCOV1 and SPCOV2 are faster than
DCA1 and DCA2.

3.4 Experiments on Real Datasets

We illustrate the use of sparse covariance matrix estimation problem in a real ap-
plication: the classification problem of two datasets from UCI Machine Learning
Repository (Ionosphere,Waveform). All the datasets are preprocessed by nor-
malizing each dimension of the data to zero mean. The detailed information of
these datasets is summarized in Table 2.
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Table 1. Comparative results of DCA1, DCA2, SPCOV1 and SPCOV2 in terms of the
average of root-mean-square error (RMSE), entropy loss (EN), Kullback-Leibler (KL)
loss, number of nonzero elements, CPU time in second, and their standard diviations
over 10 runs. Bold fonts indicate the best result in each row.

DCA1 DCA2 SPCOV1 SPCOV2

Cliques RMSE 0.39 ± 0.005 0.379 ± 0.004 0.395 ± 0.0.005 0.384 ± 0.005
EN 13.82 ± 0.52 14.44 ± 2.73 22.72 ± 0.41 16.85 ± 0.51
KL 21.05 ± 1.46 23.19 ± 1.84 60.46 ± 2.38 34.41 ± 1.99
NZ 2674.4 ± 225.06 2545.4 ± 266.38 7620 ± 45.52 3571 ± 92
CPU 51.41 ± 2.09 78.94 ± 48.18 59.93 ± 12.47 61.15 ± 18.98

Random RMSE 0.077 ± 0.004 0.065 ± 0.007 0.086 ± 0.0.002 0.066 ± 0.002
EN 3.66 ± 0.15 2.46 ± 0.12 3.9 ± 0.16 2.48 ± 0.15
KL 4.88 ± 0.45 2.78 ± 0.2 5.15 ± 0.5 3.07 ± 0.25
NZ 938.4 ± 80.53 516.4 ± 44.79 825.4 ± 54.36 527.6 ± 18.54
CPU 78.05 ± 19.64 100.55 ± 105.91 54.5 ± 11.56 29.78 ± 5.61

Moving RMSE 0.024 ± 0.001 0.012 ± 0.001 0.028 ± 0.0007 0.021 ± 0.0006
EN 6.38 ± 0.7 2.1 ± 0.26 12.75 ± 0.46 10.78 ± 0.51
KL 10.53 ± 1.57 2.46 ± 0.33 28.26 ± 1.89 22.24 ± 1.81
NZ 1881 ± 74.78 641.6 ± 96.65 3834.8 ± 77.34 3004.8 ± 77.57
CPU 88.86 ± 14.35 150.93 ± 159.9 40.98 ± 4.55 38.84 ± 5.09

In this experiment, we need to estimate a covariance matrix with respect to
each method, and then we use the linear discriminant analysis (LDA) for these
classification problems. Suppose that the samples are independent and normally
distributed with a common covariance matrix Σ. The LDA classification rule is
obtained by using Bayes’s rule to estimate the most likely class for a test sample,
i.e., the predicted class for a test sample x is

argmax
k

xT Σ̂−1μ̂k − 1

2
μ̂T
k Σ̂

−1μ̂k + lognk,

where Σ̂ is an estimate of the covariance matrix Σ, μ̂k is the k-th class mean
vector, and nk is the number of samples in the class k. The detailed information
on LDA can be found in [25],[8].

The training set is used to estimate a covariance matrix Σ̂ by each approach
and

μ̂k =
1

nk

∑

i∈classk

Xi.

Table 2. Real datasets used in experiments

Data No. of features No. of samples No. of classes

Ionosphere 34 351 2
Waveform 40 5000 3
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Table 3. Comparative results of DCA1, DCA2, SPCOV1 and SPCOV2 in terms of the
average of percentage of accuracy of classifiers (ACC) and its standard deviation, the
average of number of nonzero elements (NZ) its standard deviation, and the average
of CPU time in second and its standard diviation over 10 training/test set splits. Bold
fonts indicate the best result in each row.

DCA1 DCA2 SPCOV1 SPCOV2

Ionosphere ACC 87.18 ± 1.45 87.6 ± 1 85.12 ± 2.42 86.15 ± 02.19
NZ 1061.2 ± 19.3 448.8 ± 156.9 1079 ± 3.12 534.8 ± 16.55
CPU 3.46 ± 1.52 6.04 ± 4.71 4.62 ± 0.19 14.02 ± 1.27

Waveform ACC 85.35 ± 0.73 85.04 ± 0.39 84.75 ± 0.7 84.82 ± 0.6
NZ 1518.2 ± 38.85 460 ± 10.28 1538.2 ± 15.9 473.8 ± 9.63
CPU 0.09 ± 0.07 3.39 ± 0.67 1.22 ± 0.22 1.78 ± 0.08

For the experiment, we use the cross-validation scheme to validate the per-
formance of various approaches. The real datasets are split into a training set
containing 2/3 of the samples and a test set containing 1/3 of the samples. This
process is repeated 10 times, each with a random choice of training set and test
set. The parameter λ is chosen via 5-fold cross-validation.

The computational results given by DCA1, DCA2, SPCOV1 and SPCOV2
were reported in Table 3. We are interested in the efficiency (the accuracy of
classifiers and the sparsity in covariance matrix) as well as the rapidity of these
algorithms.

We observe from computational results that in terms of accuracy of classi-
fiers, DCA1 and DCA2 are comparable and they are better than SPCOV1 and
SPCOV2 on both Ionosphere and Waveform datasets. DCA2 not only provides
a high accuracy of classifiers, but also gives the best performance in terms of
sparsity. In terms of CPU time, DCA1 is the fastest.

4 Conclusions

We have investigated DC programming and DCA for solving the sparse covari-
ance matrix estimation problem using �1-norm. We proposed a more suitable DC
formulation for this problem. The robustness and the effectiveness of our DCA
based algorithms have been demonstrated through the computational results on
both the simulated and real datasets.

As a part of future work, we plan to study more extensive applications of the
sparse covariance matrix estimation problem. In particular, a natural way to deal
with sparsity in machine learning is using the �0-norm in the regularization term.
The resulting optimization problem is nonconvex, discontinuous, and NP-hard.
We will study DC programming and DCA for solving this problem.
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Abstract. In traffic signal control, the determination of the green time
and the cycle time for optimizing the total delay time is an important
problem. We investigate the problem by considering the change of the as-
sociated flows at User Equilibrium resulting from the given signal timings
(rerouting). Existing models are solved by the heuristic-based solution
methods that require commercial simulation softwares. In this work, we
build two new formulations for the problem above and propose two meth-
ods to directly solve them. These are based on genetic algorithms (GA)
and difference of convex functions algorithms (DCA).

Keywords: DC algorithm, Genetic algorithm, Traffic signal control,
Bi-level optimization model.

1 Introduction

Traffic signal control plays an important role to reduce congestion, improve safety
and protect environment [23]. The determination of optimal signal timings have
been continuously developed. At the beginning, researchers studied isolated junc-
tions [28]. Thus, an urban network is signalized by considering all its junctions
independently. Some work study the group of junctions such as the problem of
green wave in which the traffic light at a junction depends on the others [21],[29].
Normally, after finding an optimal signal timing, it is fixed. Some systems, how-
ever, use real time data to design signal timing that leads to a non-fixed time
signal plan [8].

This work focuses on the fixed time plan process. Signal timings are optimized
by using historical flows observed on links. This bases on the assumption that
the flow rates will not change after the new optimal timing is set. Almond and
Lott in 1968 showed that the assumption is not valid anymore for a wide area
[1]. The signal time makes a change on journey time on a certain route and thus
the users may choose another route that is better. It is theoretically explained by
Wardrop user equilibrium condition [27]. To reflect the dependency of flow rates
on signal timing change, when formulating optimization problem, an equilibrium
model may be integrated as constraints to the problem.

The problem of determining optimum signal timing is usually formulated as a
bi-level optimization problem. In the upper level, the objective function is often

c© Springer International Publishing Switzerland 2015 143
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non-smooth and non-linear that optimizes some measures such as total delay,
pollution, operating cost,... This upper level problem is constrained by the lower
level equilibrium problem in which transport users try to alter their travel choices
in order to minimize their travel costs. Such an optimization problem may has
multiple optima and finding an efficient method to even get local optima is diffi-
cult [17]. Many solution methods are studied to devise an efficient technique for
solving the above problem: heuristic methods ([24],[5]), linearization methods
([10], [2]), sensitivity based methods ([7],[30]), Krash-Kuhn-Tucker based meth-
ods ([26]), marginal function method ([18]), cutting plan method ([9]), stochastic
search methods ([6], [4], [3]).

One of the impressive researches is of Ceylan and Bell ([3],[5]). They use a
signal timings optimization method in which rerouting is taken in to account.
Recall that the problem is formulated as a bi-level optimization problem in
which the upper level objective is to minimize total travel time and the lower
level problem is a traffic equilibrium problem. The proposed solution method was
heuristic, namely, a genetic algorithm (GA) for the upper level problem and the
SATURN package for the lower level one. SATURN is a simulation-assignment
modeling software package [25] that gives an equilibrium solution by solving
heuristically sub-routines. Since SATURN is heuristic- based and a commercial
software as well, it is necessary to find a more-efficient approach to solve the
problem.

In order to overcome the difficulty and to aim at getting a good equilibrium
solution, we propose two new formulations that are directly solved by some effi-
cient methods. The first formulation is then solved by genetic algorithms (GA)
while the second one is done by a combination of GA and DCA (Difference of
Convex functions Algorithm). As known, DCA was first introduced by Pham
Dinh Tao in 1985 and has been extensively developed since 1994 by Le Thi
Hoai An and Pham Dinh Tao in their common works. It has been successfully
applied to many large-scale (smooth or nonsmooth) nonconvex programs in var-
ious domains of applied science, and has now become classic and popular (see
[11],[12],[15] and references therein). This motivates us using DCA to improve
the solution quality in GA-DCA scheme.

The paper is organized as follows. After the introduction in Section 1, the
mathematical problem is described in Section 2. Section 3 is devoted to the GA-
based solution method. A combined GA-DCA is presented in Section 4. Section
5 gives some conclusions.

2 Mathematical Model

In this section, we present new mathematical models for optimizing traffic sig-
nals in a network considering rerouting. The problem is first formulated as an
optimization problem with complementarity constraints. The objective function
is the total travel time of all vehicles in the network.

For the formulation, we use the following notations (see Table 1, Table 2).
The parameters and variables are respectively defined in Table 1 and 2.
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Table 1. Parameters

p path p = ip1 → ip2 → .... → ipn(p) ,

w = (i, j) pair of origin i and destination j (OD pair),
Pw set of paths from i to j,
P = ∪Pw set of all paths,
dw demand of origin destination pair w,
a = (u, v) link a,
δa,p parameter equal to 1 if link a belongs to path p, 0 otherwise,
h junction h,
Sh total number of stages at junction h,
Ir,h inter-green between the end of green time for stage r and the start of the next green,
�h,r,p parameter equal to 1 if the vehicles on path p can cross junction h at stage r,
Cmin minimum of cycle time,
Cmax maximum of cycle time,
φh,r,min minimum of duration green time of stage r at junction h,
φh,r,max maximum of duration green time of stage r at junction h,

Table 2. Variables

qa flow on link a,
ta travel time on link a,
tp travel time on path p,
fp flow on path p,
tw travel time for OD pair w,
WTh,p waiting time at junction h associated to path p,
WT 0

h,p initial waiting time at junction h associated to path p,
zh,p integer variables, that is used to calculate WT 0

h,p,
STh,r starting time of stage r at junction h,
θh offset of junction h,
C common cycle time,
φh,r duration of the green time for stage r at junction h

The total travel time is calculated by

TT =
∑

p

tp.fp =
∑

w

dw.tw.

The cycle time, the green time and the offset must satisfy the following
conditions:

Cmin ≤ C ≤ Cmax, (1)

0 ≤ θh ≤ C − 1, ∀h, (2)

φh,r,min ≤ φh,r ≤ φh,r,max. (3)

The total of green time and inter-green time is equal to the cycle time.

C =

Sh∑

r=1

φh,r +

Sh∑

r=1

Ih,r, ∀h. (4)
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The flow on link (u, v) is the total of flows on all path p where (u, v) ∈ p.

q(u,v) =
∑

p

δu,v,p.fp. (5)

The travel time on a path is the sum of the travel on links and the waiting
time at junctions.

tp =

n(p)−1∑

k=1

t(ipk,i
p
k+1)

+

n(p)−1∑

k=2

WTipk,p
∀p. (6)

The travel time on link (u, v), t(u,v), linearly depends on flow qu,v.

t(u,v) = t0(u,v) + αu,v.qu,v ∀(u, v), (7)

where αu,v is a constant.
For each OD pair, the demand is the total of the flows on used paths

∑

p∈Pw

fp = dw ∀w. (8)

For each OD pair, the travel time tw is equal to the one of all used paths and
the travel time on non-used path is greater than tw (user equilibrium).

tp ≥ tw ∀p ∈ Pw (9)

fp(tp − tw) = 0 ∀p ∈ Pw (10)

Constraints (11)-(13) are introduced to determine the starting time of stages

ST1,1 = 0 (11)

STh,1 = STh−1,1 + θh ∀h ≥ 2 (12)

STh,r = STh,r−1 + φh,r−1 + Ih,r−1 ∀h, ∀r ≥ 1 (13)

At junctions, vehicles must spend an initial waiting time that is the time
from the arrival time to the beginning of the stage at which vehicle can cross the
intersection to continue its journey. Constraints (14)-(15) are used to estimate
the initial waiting times for the junction after the second one of a path. The
integer variables zipk,p are used in order to assure that the initial waiting time is
always smaller than the common cycle time.
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∑

r

�ipk,r,p
.STipk,r

−
∑

r

�ipk−1,r,p
.STipk−1,r

− t(ipk−1,i
p
k)
− zikp ,p.C = WT 0

ipk,p
, ∀p, k

(14)

0 ≤ WT 0
ip
k
,p ≤ C, ∀p, k = 3, .., n(p)− 1. (15)

Under the assumption that the arrival flow is under an uniform distribu-
tion, the initial waiting time at the first junction on a path is estimated by
constraints (16).

WT 0
ip2 ,p

=
1

2
[C −

∑

r

�ip2 ,r,p
.φip2 ,r

] ∀p (16)

The delay time at junctions depends on the initial waiting time and the
number of vehicles crossing the junction. This relation can be expressed by
constraint (17).

WTipk,p
= WT 0

ipk
+ βipk,p

.
∑

p1

�ipk,r,p1
.fp1 , ∀p, (17)

where βipk,p
is a constant.

The flows and the travel time are non-negatives, variables zipk,p are integers.

fp, tp, tw ≥ 0 ∀p, w (18)

zipk,p ∈ Z ∀p, k (19)

The aim of problem is to minimize the total travel time TT in the network.
Therefore, it is formulated as the following optimization problem

(P1)
min{TT =

∑
w
dw.tw}

s.t.(1)− (19)

This is a mixed integer non-linear program. It is very difficult to solve due to
the complementarity constraint (10) and the integer variables zh,p. In order to
overcome the difficulty above, Problem (P1) is transformed to Problem (P2) by
using penalty techniques.

Firstly, we define set D as below:

D = {ξ = (C, θh, φh,r, fp, tp, tw, t(u,v), zh,p)|(1)− (9), (11)− (18)}

μ(ξ) =
∑

p

min{fp, tp − tw}, ν(ξ) =
∑

h,p

sin2(zh,p.π)

We see that constraint (10) and constraint (19) can be replaced by μ(ξ) ≤ 0
and ν(ξ) ≤ 0, respectively. We consider the following problem

(P2)
min{TT (ξ) =

∑
w
dw.tw + λ.

∑
p
min{fp, tp − tw}+ λ.

∑
h,p

sin2(zh,p.π)}

s.t. (1)− (9), (11)− (18)

where λ is a sufficiently large number.
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It is clear that if an optimal solution ξ∗ to (P2) satisfies μ(ξ∗) = 0, ν(ξ∗) =
0 then it is an optimal solution to the original problem. On the other hand,
according to the general result of the penalty method (see [16], pp. 366-380),
for a given large number λ, the minimizer of (P2) should be found in a region
where μ(ξ), ν(ξ) are relatively small. Thus, we will consider in the sequel the
problem (P2) with a sufficiently large number λ. Problem (P2) can be handled
by a genetic algorithm (in the next section).

Another way, to remove the difficulty in Problem (P1), is to transform it into
an equivalent problem as below.

Since min
ξ∈D

ν(ξ) = 0, Problem (P1) is equivalent to

(P3)

min{TT (ξ) =
∑
w
dw.tw}

s.t (1)− (4)
ξ ∈ argmin{

∑
h,p

sin2(zh,p.π)}

s.t. (5)− (9), (11)− (18)
μ(ξ) ≤ 0.

In the lower level of Problem (P3), the constraint μ(ξ) ≤ 0 is still hard. It is
tackled by using exact penalty techniques. Theorem 1 is in order.

Theorem 1. [13] Let Ω be a nonempty bounded polyhedral convex set, f be a
finite DC function on Ω and p be a finite nonnegative concave function on Ω.
Then there exists η0 ≥ 0 such that for η > η0 the following problems have the
same optimal value and the same solution set

(Pη) α(η) = min
{
f(x) + η.p(x) : x ∈ Ω

}
,

(P ) α = min
{
f(x) : x ∈ Ω, p(x) ≤ 0

}
.

For given (C, θh, φh,r), denote Ω = {x = (fp, tp, tw, qu,v, tu,v, zh,p) |(5) −
(9), (11) − (18)}. It is easy to see that μ(ξ) is concave and non negative on Ω.
Hence, the lower problem can be rewritten as a DC program.

(Plower)
min{

∑
h,p

sin2(zh,p.π) + η.μ(ξ)}

s.t. (5)− (9), (11)− (18)

where η > 0 is a sufficiently large number.
The original problem is equivalent to the following one

(P4)

min{TT (ξ) =
∑
w
dw.tw}

s.t (1)− (4)
(fp, tp, tw, qu,v, t(u,v), zh,p) ∈ argmin{

∑
h,p

sin2(zh,p.π) + η.μ(ξ)}

s.t. (5)− (9), (11)− (18)

The lower problem in (P4) is a DC program. It can be solved by a deterministic
method.
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3 A GA-Based Solution Method

3.1 Introduction to Genetic Algorithm

Genetic algorithm (GA) is a branch of evolutionary computation in which one
imitates the biological processes of reproduction and natural selection to solve
for the fittest solutions. GA allows one to find solutions to problems that other
optimization methods cannot handle due to a lack of continuity, derivatives,
linearity, or other features. Although GA may not provide a global solution, but
the quality of solutions obtained by GA are acceptable in practice. Moreover,
GA can be easily implemented and the executable time is reasonable. Today
genetic algorithms have become a classic in the field of computer science and
applied successfully to solve a lot of problems in different areas. The basic steps
to solve a problem using a genetic algorithm can be presented as follows:

Initialization
Coding each solution as an individual in the population. One has different

ways to do this. One of the most popular way is using binary coding. In the
binary coding, each individual is encoded by a sequence of bits 0 or 1.

Randomly generating an initial population.
Repeat
Step 1: Decoding and Evaluating the quality of the population by a fitness

function. In reality, we can choose the objective function as the fitness function.
If stopping criteria are satisfied then STOP else goto Step 2.
Step 2: Improving the quality of population through crossover and mutation

procedure (evolution). Goto Step 3.
Step 3: Selecting a new population. Go to Step 1.
In the next sub-session, we introduced a genetic algorithm for solving problem

(P2). The chromosome encoding and decoding are presented in Subsection 3.2
while the procedure of fitness function computation is described in Subsection
3.3. The crossover, mutation and selection are similar to the one in [5].

3.2 Chromosome Encoding and Decoding

Firstly, note that if the values of common cycle time C, duration of green time
φh,r, offset θh, flow fp are given then the others variables are computed. In this
study, an individual is (C, θh, φh,r, fp). We use the binary coding for variables
C, θh, φh,r, fp. Each variable is coded by a sequence of 8 bits. Suppose that
C, θh, φh,r, fp are respectively the representations of variables C, θh, φh,r, fp.

In the next paragraph, the decoding procedure is showed.
Cycle time: is the proportion of the difference Cmax − Cmin plus Cmin:

C = Cmin +
�(C)

28 − 1
.(Cmax − Cmin),

where �(X) is 10 base equivalent of X .
Offset: for a junction h, it is the proportion of the cycle time

θh =
�(θh)

28 − 1
.(C − 1)
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Green times: for a stage at junction h, are defined as the sum of the minimum
stage length and the proportion of the remaining green time, φh,r,max−φh,r,min,
as follows:

φh,r = φh,r,min +
�(φh,r)

Sh∑
r=1

�(φh,r)

.(φh,r,max − φh,r,min).

Here, φh,r,min is a given constant and φh,r,max is a parameter calculated by

φh,r,max = C −
Sh∑
r=1

Ih,r −
Sh∑

y=1,y �=r

φh,r,min. By this way, constraint (4) is always

satisfied.
Flow on path: for a path p ∈ Pw flow on path p is defined as the proportion

of demand dw as follows:

fp =
�(fp)∑
p∈Pw

.dw.

By this way, constraint (8) always holds.

3.3 Computing Other Variables and the Fitness Function

Variables qu,v are computed via fp by equation (5).
Variables t(u,v) are computed via qu,v by equation (7).
Variables Sh,r are computed via θh, φh,r, Ih,r by equations (11-13).
Variables WT 0

ipk,p
and zipk,p are calculated by equation (14). Specifically, WT 0

ipk,p

and zipk,p ∀k ≥ 3 are respectively the residual and integer part of number

1

C
.[
∑

r

�ipk,r,p
.STipk,r

−
∑

r

�ipk−1,r,p
.STipk−1,r

− t(ipk−1,i
p
k)
].

Variables WT 0
ip2 ,p

, WTipk,p
and tp are calculated via (16),(17),(6).

Variables tw = min
p∈Pw

{tp}.
The fitness function FF is the objective function

FF = TT (ξ) =
∑

w

dw.tw + λ.
∑

p

min{fp, tp − tw}+ λ.
∑

h,p

sin2(zh,p.π) (20)

4 Combination of GA and DCA

In order to improve the quality of individuals in GA, we use DCA for solving
the lower problem in Problem (P4).
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4.1 A Brief Presentation of DC Programming and DCA

To give the reader an easy understanding of the theory of DC programming
& DCA and our motivation to use them, we briefly outline these tools in this
section.

Let Γ0(IR
n) denotes the convex cone of all lower semi-continuous proper con-

vex functions on IRn. Consider the following primal DC program:

(Pdc) α = inf{f(x) := g(x)− h(x) : x ∈ IRn}, (21)

where g, h ∈ Γ0(IR
n).

Let C be a nonempty closed convex set. The indicator function on C, denoted
χC , is defined by χC(x) = 0 if x ∈ C, ∞ otherwise. Then, the problem

inf{f(x) := g(x)− h(x) : x ∈ C}, (22)

can be transformed into an unconstrained DC program by using the indicator
function of C, i.e.,

inf{f(x) := φ(x) − h(x) : x ∈ IRn}, (23)

where φ := g + χC is in Γ0(IR
n).

Recall that, for h ∈ Γ0(IR
n) and x0 ∈dom h := {x ∈ IRn|h(x0) < +∞}, the

subdifferential of h at x0, denoted ∂h(x0), is defined as

∂h(x0) := {y ∈ IRn : h(x) ≥ h(x0) + 〈x− x0, y〉, ∀x ∈ IRn}, (24)

which is a closed convex set in IRn. It generalizes the derivative in the sense that
h is differentiable at x0 if and only if ∂h(x0) is reduced to a singleton which is
exactly {∇h(x0)}.

The idea of DCA is simple: each iteration of DCA approximates the concave
part −h by its affine majorization (that corresponds to taking yk ∈ ∂h(xk)) and
minimizes the resulting convex problem (Pk).

Generic DCA scheme
Initialization: Let x0 ∈ IRn be a best guess, 0 ← k.
Repeat

Calculate yk ∈ ∂h(xk)
Calculate xk+1 ∈ argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRn} (Pk)
k + 1 ← k

Until convergence of xk.
Convergence properties of the DCA and its theoretical bases are described in

[11,15,19,20].

4.2 DCA for Solving (Plower) and GA-DCA Algorithm

In Problem (Plower), the objective function f(x) =
∑
h,p

sin2(zh,p.π) + η.μ(ξ) is a

DC function. Consider function fh,p(x) = sin2(zh,p.π), there exists a DC decom-
position fh,p(x) = τ.z2h,p−(τ.z2h,p−sin2(zh,p.π)), where τ > 2π2. Hence, we obtain
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a DC decomposition of the objective function f(x) = g(x)− h(x) where g(x) =
τ.
∑
h,p

z2h,p and h(x) = τ.
∑
h,p

z2h,p −
∑
h,p

sin2(zh,p.π) + η.
∑
h,p

max{−fp,−tp + tw}. We

see that the subdifferential of h(x) can be easily computed.
DCA applied to (Plower) can be described as follows:

DCA
Initialization
Let ε be a sufficiently small positive number. Set � = 0 and x0 is a starting point
Repeat
Calculate y� ∈ ∂h(x�)
Calculate x�+1) by solving a convex quadratic program min{g(x) s.t. x ∈ Ω}
� ←− �+ 1
Until ‖x�+1 − x�‖ ≤ ε or ‖f(x�+1)− f(x�)‖ ≤ ε.

In the combined GA-DCA, an individual is (C, θh, φh,r). The chromosome en-
coding and decoding are similar to GA presented in Section 3 while the values of
the other variables (fp, tp, tw, qu,v, t(u,v), zh,p) are the optimal solution of P(lower)

by using DCA.
The combined GA-DCA scheme is described as follows:

GA-DCA
Initialization

Randomly generate an initial population P.
For an individual Idi = (Ci, θih, φ

i
h,r) ∈ P, we solve problem (Plower) by DCA

to obtain (f i
p, t

i
p, t

i
w, q

i
u,v, t

i
(u,v), z

i
h,p).

Compute the fitness of Idi by formula (20).
Repeat

Step 1: Check the stopping criteria. If it is satisfied then STOP else go to
Step 2.

Step 2: Launch crossover and mutation procedure (evolution) for improving
the quality of population.

For a new individual Idl = (Cl, θlh, φ
l
h,r) ∈ P, we solve problem (Plower) by

DCA to obtain (f l
p, t

l
p, t

l
w, q

l
u,v, t

l
(u,v), z

l
h,p).

Compute the fitness of Idl by formula (20).
Go to Step 3.
Step 3: Select a new population. Go to Step 1.

5 Conclusions

The work studied the problem of optimizing traffic signals considering rerouting.
The main contribution is to build two new formulations that are probably solved
by efficient methods. We also proposed two algorithms to directly solve them.
GA and a combination of GA-DCA are investigated and described in detail.
The effect of the parameters of the models and the algorithms on the numerical
results are planned in the future work.
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Abstract. The self-concordant-like property of a smooth convex func-
tion is a new analytical structure that generalizes the self-concordant
notion. While a wide variety of important applications feature the self-
concordant-like property, this concept has heretofore remained unex-
ploited in convex optimization. To this end, we develop a variable metric
framework of minimizing the sum of a “simple” convex function and a
self-concordant-like function. We introduce a new analytic step-size selec-
tion procedure and prove that the basic gradient algorithm has improved
convergence guarantees as compared to “fast” algorithms that rely on the
Lipschitz gradient property. Our numerical tests with real-data sets show
that the practice indeed follows the theory.

1 Introduction

In this paper, we consider the following composite convex minimization problem:

F � := min
x∈Rn

{F (x) := f(x) + g(x)} , (1)

where f is a nonlinear smooth convex function, while g is a “simple” possibly
nonsmooth convex function. Such composite convex problems naturally arise in
many applications of machine learning, data sciences, and imaging science. Very
often, f measures a data fidelity or a loss function, and g encodes a form of
low-dimensionality, such as sparsity or low-rankness.

To trade-off accuracy and computation optimally in large-scale instances of
(1), existing optimization methods invariably invoke the additional assumption
that the smooth function f also has an L-Lipschitz continuous gradient (cf., [11]
for the definition). A highlight is the recent developments on proximal gradient
methods, which feature (nearly) dimension-independent, global sublinear con-
vergence rates [3,9,11]. When the smooth f in (1) also has strong regularity [15],
the problem (1) is also within the theoretical and practical grasp of proximal-
(quasi) Newton algorithms with linear, superlinear, and quadratic convergence
rates [5,8,17]. These algorithms specifically exploit second order information or
its principled approximations (e.g., via BFGS or L-BFGS updates [13]).

In this paper, we do away with the Lipschitz gradient assumption and in-
stead focus on another structural assumption on f in developing an algorithmic
framework for (1), which is defined below.

c© Springer International Publishing Switzerland 2015 155
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Definition 1. A convex function f ∈ C3(Rn) is called a self-concordant-like
function f ∈ Fscl, if:

|ϕ′′′(t)| ≤ Mfϕ
′′(t) ‖u‖2 , (2)

for t ∈ R and Mf > 0, where ϕ(t) := f(x+ tu) for any x ∈ dom(f) and u ∈ R
n.

Definition 1 mimics the standard self-concordance concept ([10, Definition
4.1.1]) and was first discussed in [1] for model consistency in logistic regres-
sion. For composite convex minimization, self-concordant-like functions abound
in machine learning, including but not limited to logistic regression, multinomial
logistic regression, conditional random fields, and robust regression (cf., the ref-
erences in [2]). In addition, special instances of geometric programming [6] can
also be recast as (1) where f ∈ Fscl.

The importance of the assumption f ∈ Fscl in (1) is twofold. First, it en-
ables us to derive an explicit step-size selection strategy for proximal variable
metric methods, enhancing backtracking-line search operations with improved
theoretical convergence guarantees. For instance, we can prove that our proxi-
mal gradient method can automatically adapt to the local strong convexity of f
near the optimal solution to feature linear convergence under mild conditions.
This theoretical result is backed up by great empirical performance on real-life
problems where the fast Lipschitz-based methods actually exhibit sublinear con-
vergence (cf. Section 4). Second, the self-concordant-like assumption on f also
helps us provide scalable numerical solutions of (1) for specific problems where f
does not have Lipschitz continuous gradient, such as special forms of geometric
programming problems.

Contributions. Our specific contributions can be summarized as follows:

1. We propose a new variable metric framework for minimizing the sum f+g of
a self-concordant-like function f and a convex, possibly nonsmooth function
g. Our approach relies on the solution of a convex subproblem obtained by
linearizing and regularizing the first term f , and uses an analytical step-size
to achieve descent in three classes of algorithms: first order methods, second
order methods, and quasi-Newton methods.

2. We establish both the global and the local convergence of different variable
metric strategies. We pay particular attention to diagonal variable metrics
since in this case many of the proximal subproblems can be solved exactly.
We derive conditions on when and where these variants achieve locally linear
convergence. When the variable metric is the Hessian of f at each iteration,
we show that the resulting algorithm locally exhibits quadratic convergence
without requiring any globalization strategy such as a backtracking line-
search.

3. We apply our algorithms to large-scale real-world and synthetic problems to
highlight the strengths and the weaknesses of our variable-metric scheme.

Relation to Prior Work.Manyof the composite problemswith self-concordant-
like f , such as regularized logistics and multinomial logistics, also have Lipschitz
continuous gradient. In those specific instances, many theoretically efficient algo-
rithms are applicable [3,5,8,9,11,17]. Compared to these works, our framework has



Composite Convex Minimization Involving Self-concordant-Like Cost 157

theoretically stronger local convergence guarantees thanks to the specific step-size
strategy matched with f ∈ Fscl. The authors of [18] consider composite problems
where f is standard self-concordant and proposes a proximal Newton algorithm
optimally exploiting this structure. Our structural assumptions and algorithmic
emphasis here are different.

Paper Organization. We first introduce the basic definitions and optimality
conditions before deriving the variable metric strategy in Section 2. Section 3
proposes our new variable metric framework, describes its step-size selection
procedure, and establishes the convergence theory of its variants. Section 4 il-
lustrates our framework in real and synthetic data.

2 Preliminaries

We adopt the notion of self-concordant functions in [10,12] to a different smooth
function class. Then we present the optimality condition of problem (1).

2.1 Basic Definitions

Let g : Rn → R be a proper, lower semicontinuous convex function [16] and
dom(g) denote the domain of g. We use ∂g(x) to denote the subdifferential of g
at x ∈ dom (g) if g is nondifferentiable at x and ∇g(x) to denote its gradient,
otherwise. Let f : R

n → R be a C3(dom(f)) function (i.e., f is three times
continuously differentiable). We denote by ∇f(x) and ∇2f(x) the gradient and
the Hessian of f at x, respectively. Suppose that, for a given x ∈ dom (f),
∇2f(x) is positive definite (i.e., ∇2f(x) ∈ Sn

++), we define the local norm of a

given vector u ∈ R
n as ‖u‖x := [uT∇2f(x)u]1/2. The corresponding dual norm

of u, ‖u‖∗x is defined as ‖u‖∗x := max
{
uTv | ‖v‖x ≤ 1

}
= [uT∇2f(x)−1u]1/2.

2.2 Composite Self-Concordant-Like Minimization

Let f ∈Fscl(R
n) and g be proper, closed and convex. The optimality condition

for (1) can be concisely written as follows:

0 ∈ ∇f(x�) + ∂g(x�). (3)

Let us denote by x� as an optimal solution of (1). Then, the condition (3) is
necessary and sufficient. We also say that x� is nonsingular if∇2f(x�) is positive
definite. We now establish the existence and uniqueness of the solution x� of (1),
whose proof can be found in [19].

Lemma 1. Suppose that f ∈Fscl(R
n) satisfies Definition 1 for some Mf > 0.

Suppose further that ∇2f(x) � 0 for some x ∈ dom(f). Then the solution x� of
(1) exists and is unique.
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For a given symmetric positive definite matrix H, we define a generalized prox-
imal operator proxH−1g as:

proxH−1g(x) := argmin
z

{
g(z) + (1/2) ‖z− x‖2H−1

}
. (4)

Due to the convexity of g, this operator is well-defined and single-valued. If we
can compute proxH−1g efficiently (e.g., by a closed form or by polynomial time
algorithms), then we say that g is proximally tractable. Examples of proximal
tractability convex functions can be found, e.g., in [14]. Using proxH−1g, we can
write condition (1) as:

x� −H−1∇f(x�) ∈ (I+H−1∂g)(x�) ⇐⇒ x� = proxH−1g(x
� −H−1∇f(x�)).

This expression shows that x� is a fixed point of RH(·) := proxH−1g((·) −
H−1∇f(·)). Based on the fixed point principle, one can expect that the iter-
ative sequence

{
xk

}
k≥0

generated by xk+1 := RH(xk) converges to x�. This

observation is made rigorous below.

3 Our Variable Metric Framework

We first present a generic variable metric proximal framework for solving (1).
Then, we specify this framework to obtain three variants: proximal gradient,
proximal Newton and proximal quasi-Newton algorithms.

3.1 Generic Variable Metric Proximal Algorithmic Framework

Given xk ∈ dom (F ) and an appropriate choice Hk ∈ Sn
++, since f ∈ Fscl, one

can approximate f at xk by the following quadratic model:

QHk
(x,xk) := f(xk) + 〈∇f(xk),x− xk〉+ 1

2
〈Hk(x− xk),x− xk〉. (5)

Our algorithmic approach uses the variable metric forward-backward framework
to generate a sequence

{
xk

}
k≥0

starting from x0 ∈ dom(F ) and update:

xk+1 := xk + αkd
k (6)

where αk ∈ (0, 1] is a given step-size and dk is a search direction defined by:

dk := sk − xk, with sk := argmin
x

{
QHk

(x,xk) + g(x)
}
. (7)

In the rest of this section, we explain how to determine the step size αk in the
iterative scheme (6) optimally for special cases of Hk. For this, we need the
following definitions:

λk := ‖dk‖xk , rk := Mf‖dk‖2, and βk := ‖dk‖Hk
= 〈Hkd

k,dk〉1/2. (8)
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3.2 Proximal-Gradient Algorithm

When the variable matrix Hk is diagonal and g is proximally tractable, we can
efficiently obtain the solution of the subproblem (7) in a distributed fashion or
even in a closed form. Hence, we considerHk = Dk := diag(Dk,1, · · · ,Dk,n) with
Dk,i > 0, for i = 1, · · · , n. Lemma 2, whose proof is in [19], provides a step-size
selection procedure and proves the global convergence of this proximal-gradient
algorithm.

Lemma 2. Let
{
xk

}
k≥0

be a sequence generated by (6) and (7) starting from

x0 ∈ dom (F ). For λk, rk and βk defined by (8), we consider the step-size
αk as:

αk :=
1

rk
ln

(
1 +

β2
krk
λ2
k

)
, (9)

If β2
krk ≤ (erk − 1)λ2

k, then αk ∈ (0, 1] and:

F (xk+1) ≤ F (xk)− β2
k

rk

[(
1 +

λ2
k

rkβ2
k

)
ln

(
1 +

β2
krk
λ2
k

)
− 1

]
. (10)

Moreover, this step-size αk is optimal (w.r.t. the worst-case performance).

By our condition, the second term on the right-hand side of (10) is always
positive, establishing that the sequence

{
F (xk)

}
is decreasing. Moreover, as

erk − 1 ≥ rk, the condition β2
krk ≤ (erk − 1)λ2

k can be simplified to βk ≤ λk.
It is easy to verify that this is satisfied whenever Dk  ∇2f(xk). In such cases,
our step-size selection ensures the best decrease of the objective value regarding
the self-concordant-like structure of f (and not the actual objective instance).
When βk > λk, we scale down Dk until βk ≤ λk. It is easy to prove that the
number of backtracking steps to find Dk,i is time constant.

Now, by using our step-size (9), we can describe the proximal-gradient algo-
rithm as in Algorithm 1.

Algorithm 1. (Proximal-gradient algorithm with a diagonal variable metric)

Initialization: Given x0 ∈ dom(F ), and a tolerance ε > 0.
for k = 0 to kmax do

1. Choose Dk ∈ Sn
++ (e.g., using Dk := LkI, where Lk is given by (11)).

2. Compute the proximal-gradient search direction dk as (7).
3. Compute βk := ‖dk‖Dk , rk := Mf‖dk‖2 and λk := ‖dk‖xk .
4. If βk ≤ ε then terminate.

5. If β2
krk ≤ (erk−1)λ2

k, then compute αk := 1
rk

ln
(
1 +

β2
krk
λ2
k

)
and update xk+1 :=

xk + αkd
k. Otherwise, set xk+1 := xk and update Dk+1 from Dk.

end for

We combine the above analysis to obtain the following proximal gradient al-
gorithm for solving (1). The main step in Algorithm 1 is to compute the search
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direction dk at Step 2, which is equivalent to the solution of the convex sub-
problem (7). The second main step is to compute λk = 〈∇2f(xk)dk,dk〉1/2.
This quantity requires the product of Hessian ∇2f(xk) of f and dk, but not the
full-Hessian. It is clear that if βk = 0 then dk = 0 and xk+1 ≡ xk and we obtain
the solution of (1), i.e., xk ≡ x�. The diagonal matrix Dk can be updated as
Dk+1 := cDk for a given factor c > 1.

We now explain how the new theory enhances the standard backtracking
linesearch approaches. For simplicity, let us assume Dk := LkI, where I is the
identity matrix. By a careful inspection of (10), we see that Lk = σmax(∇2f(xk))
achieves the maximum guaranteed decrease (in the worst case sense) in the
objective. There are many principled ways of approximating this constant based
on the secant equation underlying the quasi-Newton methods. In Section 4, we
use Barzilai-BenTal’s rule:

Lk :=
‖yk‖22
〈yk, sk〉 , where sk := xk − xk−1 and yk := ∇f(xk)−∇f(xk−1). (11)

We then deviate from the standard backtracking approaches. As opposed to,
for instance, checking the Armijo-Goldstein condition, we use a new analytic
condition (i.e., Step 5 of Algorithm 1), which is computationally cheaper in
many cases. Our analytic step-size then further refines the solution based on
the worst-case problem structure, even if the backtracking update satisfies the
Armijo-Goldstein condition.

Surprisingly, our analysis also enables us to also establish local linear con-
vergence as described in Theorem 1 under mild assumptions. The proof can be
found in [19].

Theorem 1. Let
{
xk

}
k≥0

be a sequence generated by Algorithm 1. Suppose that

the sub-level set LF (F (x0)) :=
{
x ∈ dom(F ) : F (x) ≤ F (x0)

}
is bounded and

∇2f is nonsingular at some x ∈ dom(f). Suppose further that Dk := LkI � τIn
for given τ > 0. Then,

{
xk

}
converges to x� the solution of (1). Moreover,

if ρ∗ := max {Lk/σ
∗
min − 1, 1− Lk/σ

∗
max} < 1

2 for k sufficiently large then the
sequence

{
xk

}
locally converges to x� at a linear rate, where σ∗

min and σ∗
max are

the smallest and the largest eigenvalues of ∇2f(x�), respectively.

Linear convergence: According to Theorem 1, linear convergence is only pos-
sible when the condition number κ of the Hessian at the true solution satisfies
κ = σ∗

max/σ
∗
min < 3. While this seems too imposing, we claim that, for most

f and g , this requirement is not too difficult to satisfy (see also the empirical
evidence in Section 4). This is because the proof of Theorem 1 only needs the
smallest and the largest eigenvalues of ∇2f(x�), restricted to the subspaces of
the union of x� − xk for k sufficiently large, to satisfy the conditions imposed
by ρ∗. For instance, when g is based on the �1-norm/the nuclear norm, the dif-
ferences x� − xk have at most twice the sparsity/rank of x� near convergence.
Given such subspace restrictions, one can prove, via probabilistic assumptions on
f (cf., [1]), that the restricted condition number is not only dramatically smaller
than the full condition number κ of the Hessian ∇2f(x�), but also it can even
be dimension independent with high probability.
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3.3 Proximal-Newton Algorithm

The case Hk ≡ ∇2f(xk) deserves a special attention as the step-size selec-
tion rule becomes explicit and backtracking-free. The resulting method is a
proximal-Newton method and can be computationally attractive in certain big
data problems due to its low iteration count.

The main step of the proximal-Newton algorithm is to compute the proximal-
Newton search direction dk as:

dk := sk − xk, where sk := argmin
x

{
Q∇2f(xk)(x,x

k) + g(x)
}
. (12)

Then, it updates the sequence
{
xk

}
by:

xk+1 := xk + αkd
k = (1− αk)x

k + αks
k, (13)

where αk ∈ (0, 1] is the step size. If we set αk = 1 for all k ≥ 0, then (13)
is called the full-step proximal-Newton method. Otherwise, it is a damped-step
proximal-Newton method.

First, we show how to compute the step size αk in the following lemma, which
is a direct consequence of Lemma 2 by taking Hk ≡ ∇2f(xk).

Lemma 3. Let
{
xk

}
k≥0

be a sequence generated by the proximal-Newton scheme

(13) starting from x0 ∈ dom(F ). Let λk and rk be as defined by (8). If we choose
the step-size αk = r−1

k ln (1 + rk) then:

F (xk+1) ≤ F (xk)− r−1
k λ2

k

[(
1 + r−1

k

)
ln (1 + rk)− 1

]
. (14)

Moreover, this step-size αk is optimal (w.r.t. the worst-case performance).

Next, Theorem 2 proves the local quadratic convergence of the full-step
proximal-Newton method, whose proof can be found in [19].

Theorem 2. Suppose that the sequence
{
xk

}
k≥0

is generated by (13) with full-

step, i.e., αk = 1 for k ≥ 0. If rk ≤ ln(4/3) ≈ 0.28768207 then it holds that:

(
λk+1/

√
σk+1
min

)
≤ 2Mf

(
λk/

√
σk
min

)2

, (15)

where σk
min is the smallest eigenvalue of ∇2f(xk). Consequently, if we choose

x0 such that λ0 ≤ σmin(∇2f(x0)) ln(4/3), then the sequence

{
λk/

√
σk
min

}
con-

verges to zero at a quadratic rate.

Theorem 2 rigorously establishes where we can take full steps and still have
quadratic convergence. Based on this information, we propose the proximal-
Newton algorithm as in Algorithm 2.

The most remarkable feature of Algorithm 2 is that it does not require any
globalization strategy such as backtracking line search for global convergence.

Complexity Analysis. First, we estimate the number of iterations needed when
λk ≤ σ to reach the solution xk such that λk√

σk
≤ ε for a given tolerance ε > 0.
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Algorithm 2. (Prototype proximal-Newton algorithm)

Initialization: Given x0 ∈ dom (F ) and σ ∈ (0, σmin(∇2f(x0)) ln(4/3)].
for k = 0 to kmax do

1. Compute sk by(12). Then, define dk := sk − xk and λk := ‖dk‖xk .
2. If λk ≤ ε, then terminate.
3. If λk > σ, then compute rk := Mf‖dk‖2 and αk := 1

rk
ln (1 + rk); else αk := 1.

4. Update xk+1 := xk + αkd
k.

end for

Based on the conclusion of Theorem 2, we can show that the number of iterations

of Algorithm 2 when λk > σ does not exceed kmax :=
⌊
log2

(
ln(2Mf ε)
ln(2σ)

)⌋
. Finally,

we estimate the number of iterations needed when λk > σ. From Lemma 3, we
see that for all k ≥ 0 we have λk ≥ σ and rk ≥ σ. Therefore, the number of

iterations is
⌊
F (x0)−F (x�)

ψ(σ)

⌋
, where ψ(τ) := τ

(
(1 + τ−1) ln(1 + τ)− 1)

)
> 0.

3.4 Proximal Quasi-Newton Algorithm

In many applications, estimating the Hessian∇2f(xk) can be costly even though
the Hessian is given in a closed form (cf., Section 4). In such cases, variable met-
ric strategies employing approximate Hessian can provide computation-accuracy
tradeoffs. Among these approximations, applying quasi-Newton methods with
BFGS updates for Hk would ensure its positive definiteness. Our analytic step-
size procedures with backtracking automatically applies to the BFGS proximal-
quasi Newton method, whose algorithm details and convergence analysis are
omitted here.

4 Numerical Experiments

We use a variety of different real-data problems to illustrate the performance
of our variable metric framework using a MATLAB implementation. We pick
two advanced solvers for comparison: TFOCS [4] and PNOPT [8]. TFOCS hosts
accelerated first order methods. PNOPT provides a several proximal-(quasi)
Newton implementations, which has been shown to be quite successful in lo-
gistic regression problems [8]. Both use sophisticated backtracking linesearch
enhancements. We benchmark all algorithms with performance profiles [7].

A performance profile is built based on a set S of ns algorithms (solvers) and a
collection P of np problems. We first build a profile based on computational time.
We denote by Tp,s := computational time required to solve problem p by solver s.
We compare the performance of algorithm s on problem p with the best perfor-
mance of any algorithm on this problem; that is we compute the performance ra-
tio rp,s :=

Tp,s

min{Tp,ŝ:ŝ∈S} . Now, let ρ̃s(τ̃ ) :=
1
np

size {p ∈ P : rp,s ≤ τ̃} for τ̃ ∈ R+.

The function ρ̃s : R → [0, 1] is the probability for solver s that a performance
ratio is within a factor τ̃ of the best possible ratio. We use the term “perfor-
mance profile” for the distribution function ρ̃s of a performance metric. In the



Composite Convex Minimization Involving Self-concordant-Like Cost 163

following numerical examples, we plotted the performance profiles in log2-scale,
i.e. ρs(τ) :=

1
np

size {p ∈ P : log2(rp,s) ≤ τ := log2 τ̃}.

4.1 Sparse Logistic Regression

We consider the classical logistic regression problem of the form [20]:

min
x,μ

{
N−1

N∑

j=1

log
(
1 + e−yj(〈w(j),x〉+μ)

)
+ ρN−1/2 ‖x‖1

}
, (16)

where x ∈ R
p is an unknown vector, μ is an unknown bias, and y(j) and wj are

observations where j = 1, · · · , N . The logistic term in (16) is self-concordant-like
with Mf := max ‖w(j)‖2 [1]. In this case, the smooth term in (16) has Lipschitz
gradient, hence several fast algorithms are applicable.

Figure 1 illustrates the performance profiles for computational time (left) and
the number of prox-operations (right) using the 36 medium size problems1. For
comparison, we use TFOCS-N07, which is Nesterov’s 2007 two prox-method; and
TFOCS-AT, which is Auslender and Teboulle’s accelerated method, PNOPT
with L-BFGS updates, and our algorithms: proximal gradient and proximal-
Newton. From these performance profiles, we can observe that our proximal
gradient is the best one in terms of computational time and the number of prox-
operations. In terms of time, proximal-gradient solves upto 83.3% of problems
with the best performance, while these numbers in TFOCS-N07 and PNOPT-
LBFGS are 2.7%. Proximal Newton algorithm solves 11.1% problems with the
best performance. In prox-operations, proximal-gradient is also the best one in
75% of problems.
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Fig. 1. Computational time (left) and number of prox-operations (right)

1 Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 2. Left : rcv1 train.binary, and Right: real-sim.

We now show an example convergence behavior of our proximal-gradient
algorithm via two large-scale problems with ρ = 0.1. The first problem is
rcv1 train.binary with the size p = 20242 and N = 47236 and the second
one is real-sim with the size p = 72309 and N = 20958. For comparison, we
use TFOCS-N07 and TFOCS-AT. For this example, PNOPT (with Newton,
BFGS, and L-BFGS options) and our proximal-Newton do not scale and are
omitted.

Figure 2 shows that our simple gradient algorithm locally exhibits linear con-
vergence whereas the fast method TFOCS-AT shows a sublinear convergence
rate. The variant TFOCS-N07 is the Nesterov’s dual proximal algorithm, which
exhibits oscillations but performs comparable to our proximal gradient method
in terms of accuracy, time, and the total number of prox operations. The com-
putational time and the number of prox-operations in these both problems
are given as follows: Proximal-gradient: (15.67s, 698), (13.71s, 152); TFOCS-
AT: (20.57s, 678), (33.82s, 466); TFOCS-N07: (17.09s, 1049), (22.08s, 568), re-
spectively. For these data sets, the relative performance of the algorithms is
surprisingly consistent across various regularization parameters.

4.2 Restricted Condition Number in Practice

The convergence plots in Figure 2 indicate that the linear convergence condi-
tion in Theorem 1 may be satisfied. In fact, in all of our tests, the proximal
gradient algorithm exhibits locally linear convergence. Hence, to see if Remark
1 is grounded in practice, we perform the following test on the a#a dataset1,
consisting of small to medium problems. We first solve each problem with the
proximal-Newton method up to 16 digits of accuracy to obtain x�, and we calcu-
late ∇2f(x�). We then run our proximal gradient algorithm until convergence,
and during its linear convergence, we record ‖∇2f(x�)(x� − xk)‖2/‖x� − xk‖22,
and take the ratios of the maximum and the minimum to estimate the restricted
condition number for each problem.
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Fig. 3. Restricted condition number (left), and condition number (right) estimates

Figure 3 illustrates that while the condition number of the Hessian ∇2f(x�)
can be extremely large, as the algorithm navigates to the optimal solution x�

through sparse subspaces, the restricted condition number estimates are in fact
very close to 3. Given that algorithm still exhibit linear convergence for the
cases # = 2, 3, 4, 5, 6, 8 (where our condition cannot be met), we believe that
the tightness of our convergence condition is an artifact of our proof and may
be improved.

4.3 Sparse Multinomial Logistic Regression

For sparse multimonomial logistic regression, the underlying problem is formu-
lated in the form of (1), which the objective function f is given as:

f(X) := N−1
N∑

j=1

[
log

(
1 +

m∑

i=1

e〈w
(j),X(i)〉

)
−

m∑

i=1

y
(j)
i 〈w(j),X(i)〉

]
. (17)

where X can be considered as a matrix variable of size m × p formed from
X(1), · · · ,X(m). Other vectors, y(j) and w(j) are given as input data for j =
1, . . . , N . The function f has closed form gradient as well as Hessian. However,
forming a full hessian matrix ∇2f(x) is especially costly in large scale problems
when N � 1. In this case, proximal-quasi-Newton methods are more suitable.
First, we show in Lemma 4 that f satisfies Definition 1, whose proof is in [19].
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Fig. 4. Computational time (left), and number of prox-operations (right)

Lemma 4. The function f defined by (17) is convex and self-concordant-like in
the sense of Definition 1 with the parameter Mf :=

√
6N−1 max

j=1,...,N
‖w(j)‖2.

The performance profiles of 20 small-to-medium size problems1 are shown in
Figure 4 in terms of computational time (left) as well as number of prox-
operations (right), respectively. Both proximal-gradient method and proximal-
Newton method with BFGS have good performance. They can solve unto 55%
and 45% problems with the best time performance, respectively. These methods
are also the best in terms of prox-operations (70% and 30%).

4.4 A Sytlized Example of a Non-Lipschitz Gradient Function for (1)

We consider the following convex composite minimization problem by modifying
one of the canonical examples of geometric programming [6]:

min
x∈Ω

{
f(x) :=

m∑

i=1

ea
T
i x+bi + cTx

}
+ g(x), (18)

where Ω is a simple convex set, ai, c ∈ R
n and bi ∈ R are random, and g

is the �1-norm. After some algebra, we can show that f satisfies Definition 1
with Mf := max {‖ai‖2 : 1 ≤ i ≤ m}. Unfortunately, f does not have Lipschitz
continuous gradient in R

n.
We implement our proximal-gradient algorithm and compare it with TFOCS

and PNOPT-LBFGS. However, TFOCS breaks down in running this example
due to the estimation of Lipschitz constant, while PNOPT is rather slow. Several
tests on synthetic data show that our algorithm outperforms PNOPT-LBFGS.
As an example, we show the convergence behavior of both these methods in
Figure 5 where we plot the accuracy of the objective values w.r.t. the number of
prox-operators for two cases of ε = 10−6 and ε = 10−12, respectively. As we can
see from this figure that our prox-gradient method requires many fewer prox-
operations to achieve a very high accuracy compared to PNOPT. Moreover, our
method is also 20 to 40 times faster than PNOPT in this numerical test.
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5 Conclusions

Convex optimization efficiency relies significantly on the structure of the objec-
tive functions. In this paper, we propose a variable metric method for minimizing
the sum of a self-concordant-like convex function and a proximally tractable con-
vex function. Our framework is applicable in several interesting machine learn-
ing problems and do not rely on the usual Lipschitz gradient assumption on
the smooth part for its convergence theory. A highlight of this work is the new
analytic step-size selection procedure that enhances backtracking procedures.
Thanks to this new approach, we can prove that the basic gradient variant of
our framework has improved local convergence guarantees under certain condi-
tions while the tuning-free proximal Newton method has locally quadratic con-
vergence. While our assumption on the restricted condition number in Theorem
1 is not deterministically verifiable a priori, we provide empirical evidence that
it can hold in many practical problems. Numerical experiments on different ap-
plications that have both self-concordant-like and Lipschitz gradient properties
demonstrate that the gradient algorithm based on the former assumption can
be more efficient than the fast algorithms based on the latter assumption. As a
result, we plan to look into fast versions of our gradient scheme as future work.
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Abstract. We study the computational properties of solving a con-
strained L1-L2 minimization via a difference of convex algorithm (DCA),
which was proposed in our previous work [13, 19] to recover sparse sig-
nals from a under-determined linear system. We prove that the DCA
converges to a stationary point of the nonconvex L1-L2 model. We clar-
ify the relationship of DCA to a convex method, Bregman iteration [20]
for solving a constrained L1 minimization. Through experiments, we dis-
cover that both L1 and L1-L2 obtain better recovery results from more
coherent matrices, which appears unknown in theoretical analysis of ex-
act sparse recovery. In addition, numerical studies motivate us to consider
a weighted difference model L1-αL2 (α > 1) to deal with ill-conditioned
matrices when L1-L2 fails to obtain a good solution.

1 Introduction

Compressive sensing (CS) [7,9] is about acquiring or recovering a sparse signal (a
vector with most elements being zero) from an under-determined linear system
Au = b, where b is the data vector and A is a M × N matrix for M < N .
Mathematically, it amounts to solving a constrained optimization problem,

min ‖u‖0 s.t. Au = b, (1)

where ‖ · ‖0 is the L0 norm, which counts the number of non-zero elements.
Minimizing the L0 norm is equivalent to finding the sparsest solution. Since L0

minimization is NP-hard [14], a popular approach is to replace L0 by a convex L1

norm, which often gives a satisfactory sparse solution. A major step for CS was
the derivation of the restricted isometry property (RIP) [3], which guarantees to
recover a sparse signal by minimizing the L1 norm. It is also proved in [3] that
Gaussian random matrices satisfy the RIP with high probability. A deterministic
result in [6,8,11] says that exact sparse recovery via L1 minimization is possible
if

‖u‖0 <
1 + 1/μ

2
, (2)

where μ is the mutual coherence of A, defined as

μ(A) = max
i�=j

|aTi aj |
‖ai‖‖aj‖

, with A = [a1, · · · , aN ]. (3)
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The inequality (2) suggests that L1 may not perform well for highly coherent
matrices in that if μ ∼ 1, then ‖u‖0 is 1 at most.

Recently, there has been a surge of activities in deploying nonconvex penalties
to promote sparsity while solving the linear system, because the convex L1 norm
may not perform well on some practical problems with coherent sensing matrices.
In our previous studies [13,19], we advocate the use of a nonconvex functional L1-
L2, as opposed to Lp for p ∈ (0, 1) in [5,12,18]. To minimize L1-L2, a difference
of convex algorithm (DCA) [16] is applied. In [13], we conduct an extensive
study comparing the sparse penalties, L0, L1, Lp(0 < p < 1), L1 − L2, and their
numerical algorithms. Numerical experiments demonstrate that L1-L2 is always
better than L1 to promote sparsity, and using DCA for L1-L2 is better than
iterative reweighted algorithms for Lp minimization [5, 12] when the sensing
matrix exhibits high coherence.

The contributions of this work are four-fold. First, we prove that the DCA iter-
ations for a constrained minimization converge to a stationary point (Section 2).
Second, we clarify the relation of DCA to the Bregman iteration [20], which is
designed for convex functional minimization (Section 3). Third, we analyze how
coherence, sparsity and minimum separation (MS) contribute to exact recovery
of a sparse vector from an under-determined system, and discover that both L1

and L1-L2 get better recovery results towards high coherence (Section 4). Lastly,
we demonstrate that exact recovery is highly correlated with DCA converging in
a few steps, and then propose a weighted difference model, minimizing L1-αL2

for α > 1, to improve the reconstruction accuracy when L1-L2 fails to find the
exact solution (Section 5).

2 Constrained L1-L2 Minimization

Replacing L0 in (1) by L1-L2, we get a constrained minimization problem,

min
u∈RN

‖u‖1 − ‖u‖2 s.t. Au = b. (4)

The idea of DCA [16] involves linearizing the second (nonconvex) term in the
objective function at the current solution, and advancing to a new one by solving
a L1 type of subproblem, i.e.,

un+1 = argmin {‖u‖1 − 〈qn, u〉 s.t. Au = b} , (5)

for qn = un

‖un‖2
. We introduce two Lagrange multipliers y, z in an augmented

Lagrangian,

Lλ,ρ(u, v, y, z) = λ‖v‖1−λ qTnu+ρyT (u−v)+zT (Au−b)+
ρ

2
‖u−v‖2+1

2
‖Au−b‖2.

Then an alternating direction of multiplier method (ADMM) [1] is applied to
solve eq. (5), by alternatively updating each variable (u, v, y and z) to minimize
Lλ,ρ. Please refer to Figure 1 for pseudo-code. Note that the update of v can
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be solved efficiently by a soft shrinkage operator: v = shrink(u + y, λ/ρ), where
shrink(s, γ) = sgn(s)max{|s| − γ, 0}.

Next we will prove that the DCA sequence {un}, defined in eq. (5), converges
to a stationary point of eq. (4). The convergence proof of an unconstrained L1-L2

minimization can be found in [19]. For general DCA, convergence is guaranteed if
the optimal value is finite and the sequence generated by DCA is bounded [16,17].
Here we can prove that the DCA sequence is bounded with probability 1, due
to degree-1 homogeneity of L1-L2 and the fact that a nonzero signal is 1-sparse
if and only if its L1-L2 is zero (see Lemma 1).

Lemma 1. Suppose u ∈ R
N \ {0} and ‖u‖0 = s, then

‖u‖1 − ‖u‖2 = 0 if and only if s = 1.

Please refer to [19] for the proof.

Lemma 2. The objective function E(u) = ‖u‖1 − ‖u‖2 is monotonically
decreasing for the DCA sequence {un} defined in eq. (5).

Proof. We want to show that

0 � E(un)− E(un+1) = ‖un‖1 − ‖un‖2 − ‖un+1‖1 + ‖un+1‖2. (6)

The first-order optimality condition for a constrained problem (5) can be formu-
lated as

∂L
∂u

= 0 and
∂L
∂ν

= 0, (7)

where L(u, ν) = ‖u‖1 − qTn u + νT (Au − b) is the Lagrangian. Since L1 norm is
not differentiable, we consider a subgradient pn+1 ∈ ∂‖un+1‖1, and hence eq. (7)
is equivalent to

pn+1 − qn +AT ν = 0 and Aun+1 = b. (8)

Left multiplying the first equation in (8) by un − un+1 gives

0 = 〈pn+1 − qn +AT ν, un − un+1〉
= 〈pn+1, un〉+ 〈qn, un+1〉 − ‖un+1‖1 − ‖un‖2, (9)

where we use 〈pn+1, un+1〉 = ‖un+1‖1, 〈qn, un〉 = ‖un‖2, and Aun = Aun+1 = b.
Substituting eq. (9) into eq. (6), we get

E(un)− E(un+1) = (‖un‖1 − 〈pn+1, un〉) + (‖un+1‖2 − 〈qn, un+1〉). (10)

Since any subgradient of L1 norm has the property that |p(i)n+1| � 1 for all
1 ≤ i ≤ N , we have ‖un‖1 ≥ 〈pn+1, un〉. The second term in eq. (10), ‖un+1‖2−
〈qn, un+1〉 � 0 is due to Cauchy-Schwarz inequality. Therefore, we proved that
E(un) � E(un+1). 	
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Lemma 3. The DCA sequence {un} is bounded with probability 1.

Proof. It follows from Lemma 2 that E(un) is bounded, and hence there exists
a constant C so that

‖un‖1 − ‖un‖2 ≤ C. (11)

Write un = ‖un‖2 · un/‖un‖2, or a polar decomposition into amplitude and
phase. By degree-1 homogeneity, eq. (11) is:

‖un‖2(‖
un

‖un‖2
‖1 − ‖ un

‖un‖2
‖2) ≤ C.

Suppose ‖un‖2 diverges (up to a sub-sequence, but denoted the same), then

‖ un

‖un‖2
‖1 − ‖ un

‖un‖2
‖2 → 0, as n → ∞.

Since un/‖un‖2 is compact (on unit sphere), it converges to a limit point, denoted
as u∗, on the unit sphere (up to a sub-sequence). Hence, ‖u∗‖1 − ‖u∗‖2 = 0,
implying ‖u∗‖0 = 1 by Lemma 1.

On the other hand, the DCA sequence satisfies Aun = b. Dividing by ‖un‖2 →
∞, we find that Au∗ = 0, so u∗ is in Ker(A). Unless A has a zero column (or
one component of u is absent in the constraint), Ker(A) does not contain a
one-sparse vector, which is a contradiction.

So if A has no zero column (which happens with probability 1 for random
matrices from continuous distribution), we conclude that un is bounded.

Theorem 1. Any non-zero limit point u∗ satisfies the first-order optimality con-
dition, which means u∗ is a stationary point.

Proof. The objective function E is monotonically decreasing by Lemma 2, and
bounded from below, so E(un) converges and hence we have ‖un+1‖2−〈qn, un+1〉
→ 0, which implies that un − un+1 → 0 as un = 0.

As the sequence {un} is bounded by Lemma 3, there exists (by definition) a
subsequence of {un} converging to a limit point u∗. The subsequence is denoted
as {unk

}. The optimality condition at the nk−th step of DCA is

qnk−1 −AT ν ∈ ∂‖unk
‖1 and Aunk

= b. (12)

Since unk
→ u∗ and subgradient of L1 norm is a closed set, we have ∂‖unk

‖1 ⊆
∂‖u∗‖1. Letting nk → ∞, we get

q∗ −AT ν ∈ ∂‖u∗‖1 and Au∗ = b, (13)

which means that u∗ satisfies the first-order optimality condition and hence it
is a stationary point. 	
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3 Study A: DCA v.s. Bregman Iteration

We want to point out that DCA is related to Bregman iteration, which was
derived from Bregman divergence [2], defined as

Dp
J(u, v) := J(u)− J(v) − 〈p, u− v〉, (14)

where J(·) is a convex functional, and p ∈ ∂J(v) is a subgradient of J at the
point v. For constrained L1 minimization,

min
u∈RN

‖u‖1 s.t. Au = b, (15)

Bregman iteration incorporates the Bregman divergence into an unconstrained
formulation, and advances to a new solution un+1 based on a Taylor expansion
of J(u) = ‖u‖1 at current step, i.e., un+1 = argminu λD

p
J (u, un) +

1
2‖Au− b‖22.

The optimality condition is

λ(pn+1 − pn) +AT (Aun+1 − b) = 0. (16)

Summing from 0 to n+ 1, we have λpn+1 +
∑n+1

k=0 A
T (Auk − b) = 0, or

{
λpn+1 +AT (Aun+1 − vn) = 0
vn =

∑n
k=1(b−Auk),

(17)

for p0 = u0 = 0, which is equivalent to
{
un+1 = argminλ‖u‖1 + 1

2‖Au− vn‖22
vn+1 = vn + b−Aun+1.

(18)

We consider the same idea for L1-L2. In particular, we get an optimality
condition by lagging the second term,

λ(pn+1 − pn)− λ(qn − qn−1) +AT (Aun+1 − b) = 0, (19)

where p and q be subgradients of ‖u‖1 and ‖u‖2 respectively. Summing from 0
to n+ 1 and letting p1 = q0 = z1 = 0, we obtain

{
λpn+1 − λqn +AT (Aun+1 − zn) = 0
zn+1 = zn + (b−Aun+1),

(20)

for zn =
∑n

k=1 b − Auk. The first equation in (20) is equivalent to un+1 =
argminλ‖u‖1 − λ〈qn, u〉+ 1

2‖Au− zn‖22, which can be solved via ADMM.
DCA+ADMM(Alg.1) andBregman+ADMM(Alg.2) are summarized inFig. 1,

which shows that their difference lies in the update of z and q (compare boxed lines
in Figure 1). For DCA, z is updated MaxOuter iterations and then q is updated,
while Bregman iteration updates z and q simultaneously.We plot relative errors of
each inner solution to the ground-truth versus computational time in Fig. 2, which
illustrates that DCA is more computationally efficient than Bregman iteration.

The update of z is to account for the constraint Au = b, which is enforced
by DCA at every inner iteration. This constraint also plays an important role in
proving DCA’s convergence (see Theorem 1). As for Bregman iteration, Osher
et. al. [15] proved that Bregman iteration (18) converges if the regularization
function is convex, while convergence analysis for nonconvex formulation (20) is
subject to future investigation.
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Fig. 1. Pseudo-codes for DCA+ADMM (left) and Bregman+ADMM (right)

4 Study B: Sparsity v.s. Coherence

Theoretically, the success of L1 depends on the RIP or incoherence condition.
Unfortunately, RIP is difficult to verify for a given matrix, while incoherence is
not strong enough to account for exact recovery. Therefore, we are interested
in non-RIP conditions to evaluate the performance of L1 or L1-L2, which will
contribute a better characterization of sparse solutions.

We consider a family of randomly oversampled partial discrete cosine trans-
form (DCT) matrices of the form

A = [a1, · · · , aN ] ∈ R
M×N with aj =

1√
M

cos(
2πwj

F
), j = 1, · · · , N, (21)

where w is a random vector uniformly distributed in [0, 1]M . This matrix arises
in spectral estimation [10], if the cosine function in (21) is replaced by complex
exponential. The coherence of this type of matrices is controlled by F in the
sense that larger F corresponds to larger coherence.

We then generate random sparse vectors as ground-truth, denoted as ug,
whose sparsity (L0 norm) is S with nonzero elements being at least R distance
apart, referred to as minimum separation. Let b = Aug, and u∗ is a reconstructed
solution, from L1 minimization using Bregman iteration (18) or L1-L2 minimiza-
tion using DCA (5). We consider the algorithm successful, if the relative error

of u∗ to the ground truth ug is less than .001, i.e.,
‖u∗−ug‖

‖ug‖ < .001.

We analyze whether success rates (based on 100 random realizations) are
related to coherence (F ), sparsity (S), and minimum separation (R) using ran-
domly oversampled DCT matrices of size 100× 2000. We include the discussion
of MS here, due to the work of [4], which suggests that sparse spikes need to be
further apart for more coherent matrices. However, we observe that MS seems
to play a minor role in sparse recovery when it is above 2F , a theoretical lower
bound [4], as indicated by the first plot in Fig. 3 showing that success rates as
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Fig. 2. Comparison between DCA and Bregman in terms of relative errors to the
ground-truth solution versus computational time (sec.), which shows that DCA is more
effiient than Bregman iteration. The stopping condition for outer iterations is ‖xn −
xn−1‖/‖xn−1‖ < 1e− 4, and Bregman stops eariler than DCA after about 8 seconds.

a function of S are almost identical for different R. The second plot in Fig. 3 is
success rates as a function of F for different S while R = 50, which suggests that
sparsity is the most important factor that contributes to exact sparse recovery,
compared to MS and coherence.

In Fig. 4, we examine the success rates of using L1 and L1-L2 as a function
of R, while S is fixed to be 25. The two plots illustrate that the success rates
of F = 10, 15 are higher than that of F = 5, which implies that more coherent
matrices yield better recovery rates for both L1 and L1-L2. This phenomenon
appears new in L1 sparse recovery, which is worthy of future study.

5 Study C: Exact Recovery v.s. DCA Convergence

We find that if DCA converges in a few iterations (say 3-5), the reconstructed
solution coincides with the ground-truth solution with high probability. It follows
from Theorem 1 that DCA sequence always converges to a stationary point. We

consider a stopping condition of DCA to be ‖un+1−un‖2

‖un‖ < .001. In this section,

we say DCA converges if the number of iterations is less than 10. Table 1 is the
confusion matrix or joint occurrence of whether DCA converges and whether
the algorithm finds the exact solution, which illustrates exact recovery is highly
correlated with DCA converging in a few steps.
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Fig. 3. Success rates of recovering sparse signals from randomly oversampled partial
DCT matrices of size 100 × 2000 as a function of S for different R while F = 10
(left) and as a function of F for different S while R = 50 (right). Both plots suggest
that sparsity is the most important factor in sparse recovery, compared to MS and
coherence.
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Fig. 4. Success rates of using L1 (left) and L1-L2 (right) as a function of R while fixing
S = 20 for different F showing that larger coherence yields better recovery rates

Table 1. Confusion matrix of whether DCA converges and whether the algorithm finds
the exact solution.

converge not converge

exact 8104 17

not exact 445 5732
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Fig. 5. Relative errors (in logarithmic scales) betweent two consecutive DCA iterations
for converging (left) and non-converging (right) cases. If DCA converges in a few steps
(3-5), it gives an exact recovery with high probability.

Table 2. Success rates (%) of L1-L2 and L1-2L2

F = 10, R = 50, S = 18 21 24 27 30 Total

L1-L2 97 78 34 10 0 219

L1-2L2 98 81 40 17 4 240

improve 1.03 3.85 17.65 70.00 inf 9.59

F = 10, S = 25, R = 20 30 40 50 60 Total

L1-L2 28 33 25 36 26 216

L1-2L2 37 37 34 41 32 266

improve 32.14 12.12 36.01 13.89 23.08 23.15

We examine the relative errors between two consecutive DCA iterations for
both converging and non-converging cases. Fig. 5 shows that the relative errors
monotonically decreases, and DCA stops in 3-5 steps. On the other hand, if
the relative errors are oscillatory, it often implies that the algorithm does not
converge (within 10 iterations).

We found that one reason that DCA does not converge is that L1-L2 of
the exact solution is larger than that of some DCA iterates un, and hence the
algorithm jumps among these local mimima. This observation suggests that L1-
L2 is unable to promote sparsity in some degenerate cases. As a remedy, we
propose a weighted difference model L1-αL2 with more weight on the nonconvex
term (α > 1). We find that the weighted difference model sometimes improves
the recovery rate, though there is no convergence proof for α > 1, as the objective
function is not bounded from below. To illustrate this phenomenon numerically,
we consider to apply the DCA for L1-2L2, if the DCA for L1-L2 does not converge
within 10 iterations; otherwise, we use the solution of L1-L2 to be the one in
lieu of L1-2L2. The success rates for both α = 1 and α = 2 are then recorded in
Tables 2, which report at least 10% improvement for most testing cases.
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6 Study D: Constrained V.S. Unconstrained

We now compare the constrained L1-L2 minimization (4) with the unconstrained
version, i.e.,

min
u∈RN

λ(‖u‖1 − ‖u‖2) +
1

2
‖Au− b‖22, (22)

which is studied thoroughly in [19]. The constrained formulation is a parameter-
free model, while two auxiliary variables are introduced in the ADMM algorithm.
In all experiments, we choose λ = 2, ρ = 10. For the unconstrained formulation,
a small λ is chosen to enforce Au = b implicitly. Here we choose λ = 10−5 in
(22). The comparison between constrained and unconstrained formulations for
both L1 and L1-L2 is given in Fig. 6, which shows that the two optimization
problems yield similar performance when λ is small.
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Fig. 6. The comparison between constrained and unconstrained formulations for F = 5
(left) and F = 20 (right), which shows that they give similar performance with the
model parameter in unconstrained minimization problem properly chosen

7 Conclusion and Future Work

This paper studied the computational aspects of a constrained L1-L2 minimiza-
tion, as an alternative to the conventional L1 approach, to recover sparse signals
from an under-determined system. The DCA is applied to solve this nonconvex
model with guaranteed convergence to a stationary point. The relation of DCA
for a nonconvex model with a convex method, Bregman iteration, was also pre-
sented. Numerical experiments demonstrated that more coherent matrices give
better recovery results and we proposed a weighted difference model to improve
the reconstruction results, when L1-L2 is not sharp enough to promote sparse
solution.

As for future directions, we will analyze the convergence of Bregman itera-
tion applied to a nonconvex model, i.e., eq. (20). Furthermore, we will devote
ourselves to the understanding of the peculiar phenomenon of larger coherence
giving better results. As for the weighted difference model, we will further explore
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the possibilities of stabilizing the resulting algorithm, and adaptively choosing
the weighting parameter α with respect to the matrix A in eq. (1).
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Abstract. Discrete DC programming with convex extensible functions
is studied. A natural approach for this problem is a continuous relax-
ation that extends the problem to a continuous domain and applies the
algorithm in continuous DC programming. By employing a special form
of continuous relaxation, which is named “lin-vex extension,” the op-
timal solution of the continuous relaxation coincides with the original
discrete problem. The proposed method is demonstrated for the degree-
concentrated spanning tree problem.

1 Introduction

DC programming [8], [16,17], minimization of a difference of two convex functions,
is an established area in nonconvex optimization. There are many useful theorems
such as the Toland–Singer duality theorem, and practically efficient algorithms.
Moreover, most of the optimization problems can be represented as a DC pro-
gramming problem [2], [16], [18]. Recently, Maehara and Murota [9] proposed a
framework of discrete DC programming. A function f : Zn → Z ∪ {−∞,+∞} is
defined to be a discrete DC function if it can be represented as f = g−h with two
discrete convex (M�-convex and/or L�-convex) functions g, h : Zn → Z ∪ {+∞}.
This framework containsminimization of a difference of two submodular functions,
which often appears in machine learning [3, 4], [14].

In this paper, we are dealing with a larger class of discrete convex functions,
convex extensible functions. A discrete-variable real-valued function g : Zn →
R ∪ {+∞} is said to be convex extensible if it can be interpolated by a convex
function ĝ : Rn → R ∪ {+∞} in continuous variables. M�-convex and L�-convex
functions are known to be convex extensible. Convex extensibility is a natural
property required of discrete convex functions, but it is considered too weak for
a rich theory. In fact, any function g defined on a unit cube {0, 1}n is convex
extensible. Not much theory has been developed so far for convex extensible
functions.
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Here, we study a discrete DC programming problem for f = g − h with
convex extensible functions g and h. This class of discrete optimization problems
arise in many applications. For example, a discrete optimization problem with a
continuous objective function restricted to the integer domain usually falls into
this category.

A natural approach for such problem is continuous relaxation, which extends
the discrete functions to the continuous domain and applies a continuous op-
timization method. As the continuous extension of f = g − h, we employ a
special form, which we call a lin-vex extension f̃ = g − ĥ, where g is the convex
closure (largest convex extension, usually piecewise linear) of g and ĥ is any
(often smooth) convex extension of h. Our main result (Theorem 3) shows that
no integral gap exists between the discrete optimization problem for f and the
continuous optimization problem for its lin-vex extension f̃ . This approach is
useful in solving a discrete optimization problem having a “nice” DC represen-
tation. If an objective function f is represented as f = g − h such that the
discrete optimization problem with g is efficiently solved and the subgradient of
h is efficiently obtained, then the continuous DC algorithm for the lin-vex exten-
sion can be efficiently implemented and the obtained solution for the continuous
relaxation is guaranteed to be an integral solution.

Use of continuous extension for discrete optimization problems is a standard
technique. Integer programming problems are solved successfully via linear pro-
graming. In discrete convex analysis, in particular, we can design theoretically
and practically faster algorithms by using continuous extensions and proximity
theorems for M�-convex and L�-convex functions [10, 11].

To demonstrate the use of the proposed framework, we consider a variant
of the spanning tree problem, to be called degree-concentrated spanning tree
problem, that finds a spanning tree with the maximum variance of degrees. This
problem has an application in network routing [15]. We formulate this problem as
a DC programming problem, and adopt the DC algorithm. Our experiment for a
real-world network shows the DC algorithm works pretty well for this problem.

2 Existing Studies of DC Programming

2.1 Continuous DC Programming

Let g : Rn → R ∪ {+∞} be a convex function. The effective domain of g is
defined by domR g := {x ∈ R

n : g(x) < +∞}. Throughout the paper, we always
consider functions with domR g �= ∅. A vector p ∈ R

n is a subgradient of g at
x ∈ domR g if

g(y) ≥ g(x) + 〈p, y − x〉 (y ∈ R
n), (1)

where 〈p, x〉 =
∑n

i=1 pixi denotes the inner product. The set of all subgradients
of g at x is called the subdifferential of g at x and denoted by ∂Rg(x). Every
convex function g has a subgradient at each x ∈ relint(domR g), where relint
denotes the relative interior.
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Algorithm 1 DC algorithm

Let x ∈ domR g be an initial solution.
repeat find p ∈ ∂Rh(x), find x ∈ ∂Rg

∗(p) until convergence

The Fenchel conjugate g∗ : Rn → R ∪ {+∞} of a convex function g : Rn →
R ∪ {+∞} is defined by

g∗(p) := sup
x∈Rn

{〈p, x〉 − g(x)}, (2)

which is a convex function. When g is a closed proper convex function (with all
level sets closed), we have g∗∗ = g. This property is called biconjugacy.

A function f : Rn → R ∪ {+∞,−∞} is called a DC function if it can be
represented as a difference of two convex functions g and h, i.e., f = g − h. To
guarantee f > −∞, we always assume domR g ⊆ domR h, and define (+∞) −
(+∞) = +∞. A DC programming problem is a minimization problem for a DC
function. The most important fact in DC programming is the Toland–Singer
duality.

Theorem 1 (Toland–Singer duality). For closed convex functions g, h :
R

n → R ∪ {+∞}, we have

inf
x∈Rn

{g(x)− h(x)} = inf
p∈Rn

{h∗(p)− g∗(p)}. (3)

The Toland–Singer duality can be shown by a direct calculation using biconju-
gacy.

DC algorithm [8], [16] is a practically efficient algorithm for finding a lo-
cal optimal solution of a DC programming problem. It starts from an initial
solution x(0) ∈ domR g, and repeats the following process until convergence.
Let x(ν) be the ν-th solution. DC algorithm approximates the concave part h
by its subgradient, h(x) ≈ h(x(ν)) + 〈p, x − x(ν)〉, and minimize the convex
function g(x) − h(x(ν)) − 〈p, x − x(ν)〉 to find the next solution x(ν+1). Since
x ∈ argminy∈Rn

(
g(y)− h(x(ν))− 〈p, y − x(ν)〉

)
is equivalent to x ∈ ∂Rg

∗(p), the
algorithm is simply expressed as in Algorithm 1. When the algorithm terminates,
we obtain a pair of vectors (x, p) such that p ∈ ∂Rg(x) ∩ ∂Rh(x). If both g and
h are differentiable, this condition is equivalent to p = ∇g(x) = ∇h(x), which
implies ∇f(x) = ∇g(x) − ∇h(x) = 0. Thus the DC algorithm terminates at a
stationary point.

It should be emphasized that the theory of DC programming relies on the
biconjugacy (for the Toland–Singer duality) and the existence of subgradient
(for DC algorithm). See [16,17] for more details of continuous DC programming.

2.2 Discrete DC Programming

Extending DC programming to discrete setting is a natural idea to conceive.
But we must specify what we mean by “convex functions” in a discrete space.
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Table 1. Complexity of discrete DC programming min{g(x)− h(x)} [9]

(a) x ∈ Z
n

g\h M� L�

M� NP-hard NP-hard

L� open NP-hard

(b) x ∈ {0, 1}n
g\h M� L�

M� NP-hard [5] NP-hard

L� P NP-hard

Moreover, as mentioned above, such discrete convex functions should satisfy
“existence of subgradient” and “biconjugacy.” Here, discrete versions of the sub-
gradient and Fenchel conjugate are defined similarly to (1) and (2) with “R”
replaced by “Z.”

A theory of discrete DC programming has been proposed recently by Maehara
and Murota [9] using discrete convex analysis [1], [12, 13]. A function g : Zn →
Z ∪ {+∞} is called M�-convex if it satisfies a certain exchange axiom. A linear
function on a (poly)matroid is a typical example of M�-convex functions, and a
matroid rank function is an M�-concave function. A function g : Zn → Z∪{+∞}
is called L�-convex if it satisfies the translation submodularity. A submodular
set function is a typical example of L�-convex functions. M�-convex and L�-
convex functions are endowed with nice properties related to subgradient and
biconjugacy. A discrete DC function means a function f : Z

n → Z ∪ {+∞}
that can be represented as a difference of two discrete convex functions g and
h, i.e., f = g − h. Since there are two classes of discrete convex functions (M�-
convex functions and L�-convex functions), there are four types of discrete DC
functions (an M�-convex function minus an M�-convex function, an M�-convex
function minus an L�-convex function, and so on).

Minimization problems of discrete DC functions are referred to as discrete DC
programming problems. According to the four classes of discrete DC functions,
we have four classes of discrete DC programming problems. The computational
complexity of these four classes is summarized in Table 1. It is noted that the
NP-hardness of M�−M� DC programming has been shown recently [5] through
a reduction from the maximum clique problem.

The Toland–Singer duality is extended to the discrete case.

Theorem 2 (Discrete Toland–Singer duality [9]). For M�- and/or L�-
convex functions g, h : Zn → Z ∪ {+∞}, we have

inf
x∈Zn

{g(x)− h(x)} = inf
p∈Zn

{h∗(p)− g∗(p)}. (4)

A discrete version of the DC algorithm can also be defined similarly with R

in Algorithm 1 replaced by “Z.” Each step of the algorithm, p ∈ ∂Zh(x) and
x ∈ ∂Zg

∗(p), can be executed efficiently by using the existing algorithms in
discrete convex analysis. Moreover, by exploiting polyhedral properties of M�-
convex and L�-convex functions, we can guarantee a stronger local optimality
condition. See [9] for more details of discrete DC programming.
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Fig. 1. Convex extension and convex closure

3 Continuous Relaxation for Discrete DC Programming

A framework of DC programming for the difference of two convex extensible
discrete functions is presented in this section.

3.1 Lin-vex Extension of Discrete DC Function

Let g : Zn → R∪{+∞} be a real-valued function in discrete variables. A convex
extension ĝ : Rn → R∪{+∞} of g is a convex function (in continuous variables)
that satisfies

ĝ(x) = g(x) (x ∈ Z
n). (5)

Note that there are (possibly) many convex extensions for a discrete function.
The convex closure g : Rn → R ∪ {+∞} of g is the point-wise maximum of all
affine functions that are global underestimators of g, i.e.,

g(x) := sup{�(x) : � affine, �(y) ≤ g(y) (y ∈ Z
n)}. (6)

Under mild assumptions (e.g., if the effective domain is bounded), the convex
closure of a function on Z

n is a piecewise linear function. In this paper, we say
that g is convex extensible if g(x) = g(x) for x ∈ Z

n, although it really means
that g is extensible to a closed convex function. Fig. 1 illustrates the difference
between the convex extension and the convex closure.

We consider a discrete DC programming problem that is represented in terms
of two convex extensible functions g and h: minimizex∈Znf(x) = g(x)− h(x). A
natural approach to this problem is continuous relaxation that extends the ob-
jective function to the continuous domain and solves the continuous optimization
problem by some existing method in continuous optimization.

A special form of continuous relaxation plays a crucial role. Let g be the
convex closure of g and ĥ be any convex extension of h. A lin-vex extension of
f = g − h is defined as a function f̃ given by

f̃(x) = g(x) − ĥ(x), (7)

where “lin-vex” is intended to mean “piecewise linear for g and general convex for
h.” By definition, we have f(x) = f̃(x) for all x ∈ Z

n; therefore infx∈Zn f(x) ≥
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infx∈Rn f̃(x). In discrete (or integer) optimization, in general, the optimal values
of the original problem and that of the continuous relaxation are different, and
the discrepancy between these optimal values are referred to as the integrality
gap. Fortunately, however, our continuous relaxation based on lin-vex extension
does not suffer from integrality gap. This is our main result.

Theorem 3. For convex extensible functions g, h : Zn → R∪{+∞} with domZ g
bounded and domZ g ⊆ domZ h, we have

inf
x∈Zn

{g(x)− h(x)} = inf
x∈Rn

{g(x) − ĥ(x)}. (8)

Proof. Let x∗ ∈ R
n be a minimizer of g−ĥ. Since g is a piecewise linear function,

we can take a convex polyhedron R such that g is linear on R and x∗ ∈ R. Since
g is linear on R, g − ĥ is concave on R; therefore its minimum is attained at an
extreme point of R, which is integral.

The lin-vex extension of f has two kinds of freedoms. First, it depends on
the DC representation f = g − h. For an arbitrary convex extensible function
k : Zn → R, we can obtain another DC representation f = (g + k) − (h + k),
and the corresponding lin-vex extension may change. Second, it depends on the
choice of convex extension ĥ of h. The convex closure h is eligible for ĥ, but in
some cases, there can be a more suitable choice for ĥ. For example, if h is defined
by the restriction of a continuous (smooth) convex function ϕ : Rn → R∪{+∞},
i.e., h(x) = ϕ(x) for x ∈ Z

n, then ϕ is a reasonable candidate ĥ. We intend to
make use of these freedoms to design an efficient algorithm.

Remark 1. Theorem 3 does not hold for a continuous extension of the form ĝ−ĥ.
For example, let us consider ĝ(x) = (x − 1/2)2 and ĥ(x) = 0 for x ∈ R, and

g(x) = ĝ(x) and h(x) = ĥ(x) for x ∈ Z. Then we have infx∈Z{g(x) − h(x)} =

1/4 �= 0 = infx∈R{ĝ(x)− ĥ(x)}.

Remark 2. In convex analysis, the Legendre–Fenchel duality

inf
x∈Rn

{g(x) + h(x)} = − inf
p∈Rn

{g∗(p) + h∗(−p)} (9)

is frequently used and a discrete version of (9) is also known in discrete convex
analysis. It should be clear that the Toland–Singer duality (3) deals with the
infimum of g − h, but the Legendre–Fenchel duality (9) deals with the infimum
of g + h. For the Legendre–Fenchel duality, there is an integrality gap, i.e.,

inf
x∈Zn

{g(x) + h(x)} �= inf
x∈Rn

{g(x) + ĥ(x)}, (10)

in general. For example, let g(x1, x2) = |x1+x2−1| and h(x1, x2) = |x1−x2| for
(x1, x2) ∈ Z

2, and g(x1, x2) = |x1+x2−1| and ĥ(x1, x2) = |x1−x2| for (x1, x2) ∈
R

2. Then, the left-hand side of (10) is inf{g(x1, x2) + h(x1, x2)} = 1 and the

right-hand side is inf{g(x1, x2) + ĥ(x1, x2)} = 0 with (x1, x2) = (1/2, 1/2).
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3.2 DC Algorithm for lin-vex Extension

By Theorem 3, solving a convex extensible DC problem (left-hand side of (8)) is
equivalent to solving its lin-vex relaxation problem (right-hand side of (8)), which
is a continuous DC programming problem. Here, we consider an implementation
of the DC algorithm for this continuous DC programming problem.

As shown in Algorithm 1, the DC algorithm for infx∈Rn{g(x)− ĥ(x)} repeats

the dual step p ∈ ∂Rĥ(x) and the primal step x ∈ ∂Rg
∗(p). We consider situations

where these two steps can be done efficiently. For the dual step, we assume that a
subgradient p of ĥ at x can be computed efficiently. For example, if h : Zn → R

is given by h(x) = x�Ax (x ∈ Z
n) for some positive-definite A, we can take

the convex extension ĥ(x) = x�Ax (x ∈ R
n), whose subgradient is explicitly

obtained as ∂Rĥ(x) = {2Ax}. For the primal step, recall that x ∈ ∂Rg
∗(p) is

equivalent to

x ∈ argmin
y∈Rn

{g(y)− 〈p, y〉}. (11)

Since g is a piecewise linear function and its linearity domain is an integral poly-
tope, the problem (11) has an integral optimal solution; therefore it is essentially
equivalent to the discrete optimization problem

x ∈ argmin
y∈Zn

{g(y)− 〈p, y〉}. (12)

We assume that theminimization problem (12) can be solved efficiently. This is the
case, for example, if g is an M�-convex or L�-convex function, or if g corresponds
to some efficiently-solvable discrete optimization problem, such as matching on a
graph, maximum independent set on a tree, knapsack problem, etc.

4 Application to Degree-Concentrated Minimum
Spanning Tree Problem

We consider a problem in network routing. Let G = (V,E) be an undirected
graph that represents a computer network. Here, V denotes a set of computers
and E represents the connection of the computers, i.e., (i, j) ∈ E if computer
i communicates with computer j. The spanning tree routing [15] is a routing
system determined by a spanning tree T such that all packets are sent along the
spanning tree.

Here, we consider monitoring of network communications. If a routing sys-
tem, which is specified by a spanning tree, has large-degree vertices, we can
obtain much information by observing packets on these vertices. Thus, for effi-
cient monitoring, we want to construct a spanning tree with some high-degree
vertices. To construct such spanning tree, we solve the following problem, to be
named degree-concentrated spanning tree problem:

max
T :spanning tree

∑

v∈V

degT (v)
2, (13)
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where degT (v) is the degree of a vertex v in the tree T . This problem is NP-hard
because, for a cubic graph, it can be reduced from the maximum leaf spanning
tree problem, which is known to be NP-hard in a cubic graph [7].

The above problem can be formulated in a DC programming problem as
follows. Let B ∈ R

|V |×|E| be the incidence matrix of graph G, i.e., Bie = 1 if an
edge e is incident to a vertex i. Then, for x ∈ {0, 1}|E| and T = {e ∈ E : xe = 1},
we have

Bx = (degT (v1), . . . , degT (v|V |))
�. (14)

Therefore, for A = B�B ∈ R
|E|×|E|, we have

x�Ax =
∑

v∈V

degT (v)
2. (15)

We define the concave part by h(x) = x�Ax and the convex part by

g(x) =

{
0, {e ∈ E : xe = 1} is a spanning tree,

+∞, otherwise.
(16)

Then we have

g(x)− h(x) =

{
−
∑

v∈V degT (v)
2, T = {e ∈ E : xe = 1} is a spanning tree,

+∞, otherwise.

(17)

Thus the minimization problem for f(x) = g(x)−h(x) coincides with the degree-
concentrated spanning tree problem.

In this representation, both g and h are convex extensible. The gradient of
ĥ(x) = x�Ax is explicitly obtained as ∂Rĥ(x) = {p} = {2Ax}; here (Ax)(u,v) =
degT (u) + degT (v). The minimization of g(x)− 〈p, x〉 is performed by solving a
maximum spanning tree problem with edge weight pe for e ∈ E; see Figure 2
for the illustration of the algorithm. If there are two or more optimal solutions
in this minimization problem, we randomly choose one of them. Thus, the local
optimal solution for the degree-concentrated spanning tree problem can be found
efficiently by the DC algorithm. The complexity of the algorithm is O(|E| log |E|)
for each iteration.

To evaluate the performance of the above DC algorithm and the quality of
solutions, we conduct the following experiment. We use a real-world network,
p2p-Gnutella08, obtained from Stanford Large Network Dataset Collection,1

representing a network of a peer-to-peer communication network. For compari-
son, we also implemented the greedy algorithm that iteratively selects an edge
e∗ randomly from argmine�∈T f(T ∪{e}) and updates the solution T to T ∪{e∗}.

Figure 3a shows the objective values in the first 10-iterations of the DC
algorithm. Here, each plot corresponds to a single run of the algorithm, and

1 http://snap.stanford.edu/data/ For other real-world networks in this collection,
we performed the same experiments, to obtain similar results.

http://snap.stanford.edu/data/
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Fig. 2. Illustration of the DC algorithm for the degree-concentrated spanning tree
problem. For a current solution shown in (a), the gradient p is given as (b), and the
updated solution (c) is a maximum spanning tree with respect to p.
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Fig. 3. DC algorithm for the degree-concentrated spanning tree problem

the horizontal line shows the best greedy solution from among 1000 runs. In
the DC algorithm, a solution quickly approaches the optimal solution in the
first few iterations. The greedy solution is outperformed in the second iteration.
Since the converged solutions are different in different runs, the algorithm only
finds a local optimal solution. We adopted the rule that the algorithm should
terminate if f(x(ν+1)) = f(x(ν)). The number of iterations for convergence and
the obtained objective values are shown in Figures 3b and 3c, respectively. Since
the number of iterations is small, the DC algorithm is efficient and scales to large
instances. Moreover, the quality of the obtained solutions is not much diverged.
Thus the DC algorithm works pretty well for the degree-concentrated spanning
tree problem.
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Solving Relaxation Orienteering Problem

Using DCA-CUT
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Abstract. Orienteering problem is well-known as a NP-hard problem
in transportation with many applications. This problem aims to find a
path between a given set of control points, where the source and desti-
nation points are specified with respect to maximize the total score of
collected points and satisfy the distance constraint. In this paper, we
first analyze the structure of a generalized orienting problem and a new
solution method, based on DC programming, DCA and Cutting plane
method, is introduced. Preliminary numerical experiments are reported
to show the efficiency of the proposed algorithm.

Keywords: Orienteering problem, DC programming, DC Algorithm,
Binary Linear Integer Program.

1 Introduction

Given a set of control points with associated scores along with the start and
end points, the orienteering problem (OP) deals with finding a path between
the start and end points, visiting each points at most one in order to maximize
the total score subject to a given distance budget, denoted by Dmax. Due to the
fact that distance is limited, tours may not include all points. It should be noted
that the OP is equivalent to the Traveling Salesman Problem (TSP) when the
time is relaxed just enough to cover all points and the start and end points are
not specified.

The selective traveling salesperson problem ([1]), the maximum collection
problem ([2]), and the bank robber problem ([3]) are introduced in the form
of the OP.

The OP also has applications in vehicle routing and production schedul-
ing. Golden et al. (1984) ([4]) discussed certain applications of the OP to cus-
tomer/vehicle assignment and inventory/routing problems. Golden et al. (1987)
([5]) also applied the OP to a vehicle routing problem in which oil tankers are
routed to service stations in different locations. The total score of the route
is maximized while minimizing the route distance without violating the Dmax

constraint. Balas (1989) ([9]) modeled certain types of production scheduling
problems as the OP. These problems are concerned with product-mix planning
of production to maximize the total profit without violating the production time
constraints. Keller (1989) ([6]) modified his multi-objective vending problem as

c© Springer International Publishing Switzerland 2015 191
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the OP in which there is a trade off between maximizing reward potential and
minimizing the travel cost. Kantor and Rosenwein (1992) ([7]) presented the
OP with time windows in which a point can only be visited within a specified
time interval. This approach seems to be promising for potential applications
such as bank and postal delivery, industrial refuse collection, dial-a-ride services
and school bus routing. Golden et al. (1987) ([5]) have shown that the OP is
NP-hard.

In recent years, in the survey ([8]), Vansteenwegen et al. (2011) summa-
rizes many practical applications of orienteering problems and many exact and
heuristic solution approaches were proposed.

In this paper, we consider a relaxation of orienteering problem. It is the OP
without subtour elimination constraints. This is also a hard problem and our
proposed method, based on DC programming, DCA and cutting method, can
be applied to general OP in a similar way.

The paper is organized as follows. Section 2 introduces the problem statement
and mathematical model. The solution method based on DC programming and
DCA, DCA combine with cutting plane method and how to choosing initial point
for DCA are presented in Section 3 while the numerical simulation is reported
in Section 4. Finally, the conclusion is presented in Section 5.

2 Mathematical Model

To model the orienteering problem, we denote V as the set of control points
and, E as the set of edges between points in V . Then, the complete graph can
be defined by G = (V,E). Each control point, i, in V has an associated score
si ≥ 0 whereas the start point 1 and the end point n have no scores. The distance
dij , between the points i and j is the nonnegative cost for each edge in E or
the cost of traveling between points i and j. So, the objective is to find a path
P from the start point 1 to the end point n through a subset of control points,
visiting each points at most one such that the total score collected from the
visited points will be maximized without violating the given distance constraint.

Assumption that tij is the travel time from node i to node j and ai is the
arrival time at node i (ai = 0 if the optimal path do not visit node i)

We define binary variable as follows,

xij =

{
1 if (i, j) ∈ P, ( direction i → j)
0 otherwise.

The mathematical model of the OP is given as follows

max

n∑

i=1

n∑

j=1

sixij (1)

subject to

n∑

i=2

x1j = 1, (2)
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n−1∑

i=1

xin = 1, (3)

n−1∑

i=2

xik −
n−1∑

j=2

xkj = 0, k = 2, · · · , n− 1, (4)

n−1∑

i=2

xik ≤ 1, k = 2, · · · , n− 1 (5)

n∑

i=1

n∑

j=1

dijxij ≤ Dmax (6)

xij ∈ {0, 1} i, j = 1, · · · , n. (7)

We defined a directed graph G∗ = (V,E∗) as follows, the vertex set V is the
same with graph G, the arc set E∗ = {(1, i) : i = 2, · · · , n, and (j, n) : j =
1, · · · , n− 1, and (i, j), (j, i) : ∀i, j = 2, · · · , n− 1, i �= j} and set |E∗| = m.

Let us set A1 ∈ IRn×m be the vertices-arcs incidence matrix of G∗,

ai,(u,v) =

⎧
⎨

⎩

1 if i ≡ u and (i, v) ∈ E∗,
−1 if i ≡ v and (u, i) ∈ E∗,
0 otherwise.

∀i = 1, · · · , n, (u, v) ∈ E∗ (8)

We define vector b1 = (1, 0, · · · , 0,−1) ∈ IRn and variable vector x ∈ IRm such
that the constraints (2),(3) and (4) can be presented as A1x = b1.

Let us define A2 be a (n−2)×m matrix and vector b2 = (1, 1, · · · , 1) ∈ IRn−2

such that the constraints (5) is presented by A2x ≤ b2.
Define vector d = (dij) ∈ IRm such that the constraints (6) is rewritten as

〈d, x〉 ≤ Dmax.
The problem (1)-(7) is a Binary Integer Linear Program (BILP), DC program-
ming and DC Algorithm for solving this problem is presented as follows.

3 Solving Orienteering Problem by DCA CUT

3.1 Solving Orienteering Problem by DCA

By using an exact penalty result, we can reformulate the problem (1)-(7) in the
form of a concave minimization program. The exact penalty technique aims at
transforming the original problem into a more tractable equivalent DC program.
Let K := {x ∈ IRm : A1x = b1, A2x ≤ b2, 〈d, x〉 ≤ Dmax, x ∈ [0, 1]m}. The
feasible set of the original problem is then S = {x : x ∈ K, x ∈ {0, 1}m}. The
original program is rewritten as problem (P),

min{−〈s, x〉 : x ∈ S}. (P ) (9)
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Let us consider the function p : IRn → IR defined by: p(x) =
∑m

i=1 min{xi, 1−xi}.
It is clear that p(x) is concave and finite on K, p(x) ≥ 0 ∀x ∈ K and that:

{
x : x ∈ S

}
=

{
x : x ∈ K, p(x) ≤ 0

}
. (10)

Hence the problem OR can be rewritten as:

min
{
〈s, x〉 : x ∈ K, p(x) ≤ 0

}
. (11)

The following theorem can then be formulated.

Theorem 1. Let K be a nonempty bounded polyhedral convex set, f be a finite
concave function on K and p be a finite nonnegative concave function on K.
Then there exists η0 ≥ 0 such that for η > η0 the following problems have the
same optimal value and the same solution set:

(Pη) α(η) = min
{
f(y) + ηp(y) : y ∈ K

}
,

(P ) α = min
{
f(y) : y ∈ K, p(y) ≤ 0

}
.

Furthermore

– If the vertex set of K, denoted by V (K), is contained in x ∈ K : p(y) ≤ 0,
then η0 = 0.

– If p(y) > 0 for some y in V (K), then η0 = min
{

f(y)−α(0)
S0

: y ∈ K, p(y) ≤ 0
}
,

where S0 = min
{
p(y) : y ∈ V (K), p(y) > 0

}
> 0.

Proof. The proof for the general case can be found in [10].

From Theorem 1 we get, for a sufficiently large number η (η > η0), the equivalent
concave minimization problem:

min{fη(x) := 〈s, x〉 + ηp(x) : x ∈ K},

which is a DC program of the form:

min
{
g(x)− h(x) : x ∈ IRm

}
, (12)

where: g(x) = χK(x) and h(x) = −fη(x) = −〈s, x〉 − ηp(x).
We have successfully transformed an optimization problem with integer vari-
ables into its equivalent form with continuous variables. Notice that (12) is a
polyhedral DC program where g is a polyhedral convex function (i.e., the point-
wise supremum of a finite collection of affine functions). DCA applied to the
DC program (12) consists of computing, at each iteration k, the two sequences{
xk

}
and

{
yk

}
such that yk ∈ ∂h(xk) and xk+1 solves the next linear program

of the form (Pk).

min
{
g(x)− 〈x− xk, yk〉 : x ∈ IRm

}
⇔ min{−〈x , yk〉 : x ∈ K}. (13)

From the definition of h, a sub-gradient yk ∈ ∂h(xk) can be computed as follows:

yk =

{
−si − η if xi � 1/2

−si + η if xi < 1/2
(14)

The DCA scheme applied to (12) can be summarized as follows:
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Algorithm 1.

Initialization:
Choose a initial point x0, set k = 0;
Let ε1, ε2 be sufficiently small positive numbers;

Repeat
Compute yk via ( 14);
Solve the linear program ( 13) to obtain zk+1;
k ← k + 1;

Until either ‖xk+1 − xk‖ ≤ ε1(‖xk‖+ 1) or |fη(xk+1)− fη(x
k)| ≤ ε2(|fη(xk)|+ 1).

Theorem 2. (Convergence properties of Algorithm DCA)

– DCA generates the sequence {xk} contained in V (K) such that the sequence
{fη(xk)} is decreasing.

– The sequence {xk} converges to x∗ ∈ V (K) after a finite number of itera-
tions.

– The point x∗ is a critical point of Problem (12). Moreover if x∗
i �= 1

2 for all
i ∈ {0, . . . ,m}, then x∗ is a local solution to (12).

– For a number η sufficiently large, if at iteration r we have xr ∈ {0, 1}m, then
xk ∈ {0, 1}m for all k ≥ r.

Proof. Immediate consequences of the DCA applied to concave quadratic zero-
one programming whose proof can be found in [10].

3.2 Initial Point for DCA

Totally unimodular matrices
A matrix A is called totally unimodular matrix if each subdeterminant of A is
0, +1 or -1. So, each element of A is 0, +1 or -1. The relation of integer linear
program and totally unimodular matrix is presented as the following theorem:

Theorem 3. Let A be a totally unimodular matrix and let b be an integral vec-
tor. Then the polyhedron P := {x : Ax ≤ b} is integral.

Proof. See Theorem 19.1 in [11].

The fundamental characteristic of totally unimodular matrix is introduced as
follows.

Theorem 4. Let A be the matrix with entries 0, +1 or -1. The following are
equivalent:

(i) A is totally unimodular, i.e;, each square submatrix of A has determinant
0, +1 or -1;

(ii) for each integral vector b the polyhedron {x : x ≥ 0, Ax ≤ b} has only
integral vertices;

(iii) for all integral vector a, b, c, d the polyhedron {x : c ≤ x ≤ d, a ≤ Ax ≤ b}
has only integral vertices;
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(iv) each collection of columns of A can be split into two parts so that the sum
of the columns in one part minus the sum of the column in the other part
is a vector with entries only 0, +1 or -1;

(v) each nonsingular submatrix of A has a row with an odd number of non-zero
components;

(vi) the sum of the entries in any square submatrix with even row and column
sums is divisible by four;

(vii) no square of A has determinant +2 or -2.

Proof. See Theorem 19.3 in [11].

As a result in [11], the vertices-arcs incidence matrixA1 (8) is totally unimodular.

Moreover, we will prove that matrix A0 =

[
A1

A2

]
is totally unimodular.

Theorem 5. Let matrix A0 =

[
A1

A2

]
be totally unimodular where A1, A2 defined

as in previous section.

Proof. As the definition of matrix A1 and A2, the matrix A1 has n row cor-
responding with vertices form 1 to n. Each column of A1 there are exact two
non-zero elements, one +1 and one -1. In row 1, all the no-zero elements equal
to +1. In row n, all the non-zero elements equal to -1. Matrix A2 is presented
for the constraints (5), then A2 is (n−2)×m-matrix presents the flow condition
at n− 2 vertices 2, 3, · · · , n− 1, a row of A2 (for instance, row i-associated with
vertex i+1) is created by copied row i+1 at matrix A1 (associated with vertex
i+ 1) and then replaced all -1 elements in this rows by 0.

We consider now matrix A0 =

[
A1

A2

]
, obviously each column of A0 there are

exact two or three non-zero elements. If there are exact two non-zero elements
then one +1 and one -1. If there are exact three non-zero elements, then two ele-
ments +1, and one -1. Let us set R be a collection of rows of A0, we do partition
R into two part R1 and R2 by the following rule:

1. all the rows in R which are selected from A1 are belong to R1;
2. for one row i (associated with vertex j) in R which selected from A2, we

consider that if the row associated with vertex j is in R1 then row i belong
to R2, if not row i belong to R1.

By doing this way, we have a partition R1, R2 of R, which satisfies sum of all the
rows in R1 minus sum of all the rows in R2 is a vector with entries only 0, +1 or
-1. In the other hand, matrix A is totally unimodular if and only if its transpose
matrix AT is totally unimodular. Therefore, from property iv) in Theorem 4, the
role of column is equivalent with the role of row, then this implies A0 is totally
unimodular.

Initial point for DCA
We consider a subproblem (P1) as follows,

D = min{〈d, x〉 : A0x ≤ b0, x ∈ [0, 1]m}, (P1) (15)
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where b0 =

[
b1
b2

]
.

By Theorem 4 and Theorem 5, the solution xP1 of linear problem (P1) is
integral (0-1) solution. Thus, if D > Dmax then the feasible set of the original
problem is empty set, we STOP the algorithm. If D ≤ Dmax, so the solution xP1

of problem (P1) is a feasible point of the original problem and we use xP1 as an
initial point of DCA. Thanks to a nice property of DCA in Theorem 2, we see
that when we use xP1 as an initial point of DCA, the result of DCA is always
a local optimal solution, and recall that this problem is a polyhedral DC then
DCA is finite convergence.

3.3 DCA-Cut for Global Solution

Let us consider the following problem:

min{χK(z) + cTx+ dT y + tp(x) : z = (x, y) ∈ IRn × IRp}, (16)

where

χK(z) :=

{
0 si z ∈ K,
+∞ otherwise

(17)

is the indicator function on K.

We set g(z) := χK(z) and

h(z) := −cTx− dT y + t(−p)(z) = −cTx− dT y + t

n∑

j=1

max{−xj , xj − 1}. (18)

Thus, the problem is equivalent with a DC program:

min{g(z)− h(z) : z = (x, y) ∈ IRn × IRp}. (19)

We define a valid inequality for all point of S from a solution of penalty
function p on K. Let z� ∈ K, we define:

I0(z
�) = {j ∈ {1, . . . , n} : x�

j ≤ 1/2 } , I1(z
�) = {1, . . . , n} \ I0(z�).

and

lz�(z) ≡ lz�(x) =
∑

i∈I0(z�)

xi +
∑

i∈I1(z�)

(1− xi).

Lemma 1. (see [12]) Let z� ∈ K, we have

(i) lz�(x) ≥ p(x) ∀x ∈ IRn.
(ii) lz�(x) = p(x) if and only if

(x, y) ∈ R(z�) := {(x, y) ∈ K : xi ≤ 1/2, i ∈ I0(x
�); xi ≥ 1/2, i ∈ I1(x

�) }.
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Lemma 2. (see [12]) Let z� = (x�, y�) be a local minimum of function p on K,
then the inequality

lz�(x) ≥ lz�(x�) (20)

is valid for all (x, y) ∈ K.

Theorem 6. (see [13], [12]) There exists a finite number t1 ≥ 0 such that, for
all t > t1, if z

� = (x�, y�) ∈ V (K) \ S is a local minimum of problem (19) then

lz�(x) ≥ lz�(x�), ∀(x, y) ∈ K. (21)

Construction of a cut from an infeasible solution
Let z� be a solution that is not a feasible point of S such that lz�(z) ≥

lz�(z�) ∀z ∈ K. In this case, there exists at least one index j0 ∈ {1, . . . , n}
such that x�

j0
is non binary. We consider two following cases:

Case 1: The value of lz�(z�) is not integer.
As lz�(z) is integer for all z ∈ S, we have immediately:

{
lz�(z) ≥ ρ := lz�(z�)�+ 1, ∀z ∈ S
lz�(z�) ≤ ρ.

(22)

In other words, the inequality

lz�(z) ≥ ρ (23)

is a strictly separate cut z� of S

Case 2: the value of lz�(z�) is integer. It is possible that there are feasible
points z′ such that lz�(z′) = lz�(z�). If such a point exists, we could update the
best solution (PLM01) and also improve the upper bound of the optimal value.

Otherwise, for all z ∈ S, we have lz�(z) > lz�(z�). That is to say,

lz�(z) ≥ lz�(z�) + 1 (24)

is a separate cut z� of S.

We consider below a procedure (called Procedure P) is providing a cut, or a
feasible point, or a potential point.

Let us set IF (z
�) := {i ∈ I : x�

i /∈ {0, 1}}.
Let us set IF (z

�) := {i ∈ I : x�
i ∈ {0, 1}}, then I = IF (z

�) ∪ IF (z
�) and

IF (z
�) ∩ IF (z

�) = ∅.

We observe that if we can find z1 such that lx�(x1) = lx�(x�) and there exists
i1 ∈ IF and x1

i1 = 1 − x�
i1 (there are only two possibilities x1

i1 = 1 − x�
i1 or

x1
i1 = x�

i1) then z1 /∈ R(z�).
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By Lemma 1 we have:

p(x�) = lx�(x�) = lx�(x1) > p(x1).

Step 1. Let us set K1 = {z = (x, y) ∈ K; xi = x�
i ∀i ∈ IF }.

Step 2. Choose is ∈ IF (z
�).

Step 2.1. If is ∈ I0(x
�) then we solve the linear program:

(Pmax1) xis = max{xis : z = (x, y) ∈ K1; lx�(x) = lx�(x�)}. (25)

– If xis = 1 then z /∈ R(z�) and by Lemma 1 we have:

p(x�) = lx�(x�) = lx�(x) > p(x).

– If xis < 1 then xis = 0 and we update the indices set IF (z
�) = IF (z

�)∪{is},
IF (z

�) = IF (z
�)\{is} and

K1 = K1 ∩ {z = (x, y) ∈ K; xis = 0}.

– If Problem (Pmax1) is infeasible then added a cut lx�(x) ≥ lx�(x�) + 1 in
our problem.

Step 2.2. If is ∈ I1(x
�) then we solve the linear program:

(Pmin2) xis = min{xis : z = (x, y) ∈ K1; lx�(x) = lx�(x�)}. (26)

– If xis = 0 then z /∈ R(z�) and by Lemma 1 we have:

p(x�) = lx�(x�) = lx�(x) > p(x).

– If xis > 0 then xis = 1 and we update the indices set IF (z
�) = IF (z

�)∪{is},
IF (z

�) = IF (z
�)\{is} and

K1 = K1 ∩ {z = (x, y) ∈ K; xis = 1}.

– If Problem (Pmin2) is infeasible then added a cut lx�(x) ≥ lx�(x�) + 1 in
our problem.

4 Numerical Result

To globally solution, we combine DCA and Cutting plane method which pre-
sented in Section 3. The initial point of DCA procedure is used for first iteration
of DCA. The results are compared with CPLEX 12.2. The algorithm has been
coded in VC++ and implemented on a Intel Core i3 CPU 2.3 Ghz, RAM 4GB.
The benchmark instances are presented in [16], [15] and [14]. All these bench-
mark instances are available via www.mech.kuleuven.be/cib/op.
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Table 1. Results of DCA - CUT of data in Tsiligirides 1984

Data DBCut TimeD (s) Gap % Cplex12.2 Data DBCut TimeD (s) Gap% Cplex12.2

T101 45 0.34 0.05 45 T110 240 1.00 0.54 240

T102 70 5.64 0.17 70 T111 250 2.92 1.38 250

T103 95 63.52 1.91 95 T112 265 2.15 0.44 265

T104 120 16.84 1.89 120 T113 270 1.91 2.43 275

T105 140 106.04 1.99 140 T114 280 2.51 1.59 280

T106 165 0.89 0.47 165 T115 285 3.57 0.0 285

T107 180 1.22 3.49 180 T116 285 4.75 0.0 285

T108 200 0.54 2.67 200 T117 285 4.75 0.0 285

T109 225 1.12 3.45 225 T118 285 0.22 0.0 285

T201 265 1.37 4.52 270 T207 420 0.72 1.60 430

T202 330 2.83 2.70 330 T208 450 0.11 0.0 450

T203 360 0.49 2.27 360 T209 450 0.12 0.0 450

T204 370 1.94 4.95 370 T210 450 1.09 0.0 450

T205 400 0.70 1.89 400 T211 450 0.13 0.0 450

T206 420 0.73 1.60 420

Table 2. Results of DCA - CUT of data in Tsiligirides 1984

Data DBCut TimeD (s) Gap % Cplex12.2 Data DBCut TimeD (s) Gap% Cplex12.2

T301 260 16.85 2.87 260 T311 700 1.16 2.25 710

T302 330 1.57 3.92 330 T312 740 0.57 0.93 740

T303 380 0.49 2.27 390 T313 760 6.63 1.40 760

T304 440 1.57 0.55 440 T314 790 0.38 0.06 790

T305 470 0.62 4.03 480 T315 790 2.72 1.21 790

T306 530 1.61 1.84 530 T316 800 1.58 0.0 800

T307 550 0.50 4.41 560 T317 800 2.22 0.0 800

T308 600 1.79 2.02 600 T318 800 0.21 0.0 800

T309 630 0.86 2.95 640 T319 800 0.21 0.0 800

T310 670 1.57 1.91 670 T320 800 0.21 0.0 800

Reference N. of test N. of vertices
Tsiligirides (1984) ([14]) 18 32

11 21
20 33

Chao (1993) ([16]) and Chao et al. (1996) ([15]) 26 66
14 64

In Tables of results, Data, DBCut, TimeD, Gap and Cplex 12.2 stands for
name of data, objective value of DCA-CUT, running time by DCA-CUT, Gap
and objective value of Cplex 12.2 (the global optimal value), respectively, where

Gap =
Upper bound - Lower bound

Upper bound
.
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Table 3. Results of DCA - CUT of data in Chao 1983 and Chao et al. 1996

Data DBCut TimeD (s) Gap % Cplex12.2 Data DBCut TimeD (s) Gap% Cplex12.2

C101 360 1.72 5.05 360 C108 972 11.96 2.51 972

C102 480 1.59 0.88 480 C109 1044 2.07 1.54 1044

C103 540 9.11 8.39 570 C110 1116 1.66 0.69 1116

C104 648 7.25 4.49 648 C111 1170 49.21 0.98 1170

C105 744 2.17 2.41 744 C112 1212 13.89 1.48 1224

C106 840 2.05 0.81 840 C113 1260 32.63 0.98 1260

C107 912 26.92 4.91 912 C114 1308 2.12 0.26 1308

C201 70 235.35 3.60 70 C214 1130 2.15 2.21 1130

C202 140 1263.10 2.5 140 C215 1205 33.98 3.18 1205

C203 210 4940.92 25 245 C216 1280 0.53 0.0 1280

C204 350 3.66 0.0 350 C217 1330 2.09 2.17 1340

C205 420 1.89 4.16 420 C218 1380 5.9 1.81 1380

C206 490 1.43 7.14 490 C219 1430 3.48 2.62 1455

C207 560 35.21 9.37 595 C220 1510 0.52 0.0 1510

C208 700 9.18 0.0 700 C221 1540 1.69 0.49 1540

C209 770 1.01 2.22 770 C222 1470 1.84 0.96 1570

C210 840 18.86 4.16 840 C223 1600 6.68 1.40 1615

C211 910 17.41 5.76 945 C224 1660 0.50 0.0 1660

C212 1030 0.64 0.0 1030 C225 1670 1.81 0.15 1670

C213 1080 2.29 1.16 1080 C226 1680 0.88 0.0 1680

From the numerical results, we observe that:

– DCA-CUT always provides an integer solution and it converges after a few
number of iterations.

– The GAPs are small. It means that the objective value obtained by DCA-
CUT are rather close to the global optimal value. In all of experiments
• in Table 1 and Table 2, almost of GAP is not larger than 3.0%,
• in Table 3, almost of GAP is less than 4.5%.

5 Conclusion and Future Work

In this paper, we consider the BILP formulation of a relaxation orienteering
problem. An efficient approach based on DC algorithm (DCA) and Cutting plane
method is proposed for solving this problem. The computational results obtained
show that this approach is efficient and original as it can give integer solutions
while working in a continuous domain. From the promising result, in a future
work we plan to combine DCA, Branch-and-Bound and Cutting plane method
to globally solve the general orienteering problem.

Acknowledgment. This research is funded by Vietnam National Foudation
for Science and Technology Development (NAFOSTED) under grant number
101.01-2013.19.
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Yi-Shuai Niu1, Joaquim Júdice2, Hoai An Le Thi3, and Tao Pham Dinh4

1 Shanghai JiaoTong University, Maths Departement and SJTU-Paristech,
Shanghai, China

niuyishuai@sjtu.edu.cn
2 Instituto de Telecomunicações, Lisbon, Portugal

judice@co.it.pt
3 University of Lorraine, Metz, France
hoai-an.le-thi@univ-lorraine.fr

4 National Institute of Applied Sciences, Rouen, France
pham@insa-rouen.fr

Abstract. We present in this paper some results for solving the
Quadratic Eigenvalue Complementarity Problem (QEiCP) by using
DC(Difference of Convex functions) programming approaches. Two
equivalent Nonconvex Polynomial Programming (NLP) formulations of
QEiCP are introduced. We focus on the construction of the DC pro-
gramming formulations of the QEiCP from these NLPs. The correspond-
ing numerical solution algorithms based on the classical DC Algorithm
(DCA) are also discussed.

Keywords: EigenvalueProblem,ComplementarityProblem,Nonconvex
Polynomial Programming, DC Programming, DCA.

1 Introduction
Given three matrices A,B,C ∈ R

n×n, the Quadratic Eigenvalue Complemen-
tarity Problem (QEiCP) consists of finding a λ ∈ R and an associated nonzero
vector x ∈ R

n such that

w = λ2Ax+ λBx+ Cx
xTw = 0, x ≥ 0, w ≥ 0

(1)

This problem and some applications have been firstly introduced in [19] and is
usually denoted by QEiCP(A,B,C). In any solution (λ, x) of QEiCP(A,B,C),
the λ-component is called a quadratic complementary eigenvalue, and the vector
x-component is a quadratic complementary eigenvector associated to λ.

QEiCP is an extension of the well-known Eigenvalue Complementarity Prob-
lem (EiCP) [18], which consists of finding a complementary eigenvalue λ ∈ R

and an associated complementary eigenvector x ∈ R
n \ {0} such that

w = λBx − Cx
xTw = 0, x ≥ 0, w ≥ 0

(2)

where B,C ∈ R
n×n are two given matrices.

c© Springer International Publishing Switzerland 2015 203
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Clearly, EiCP is a special case of QEiCP where the matrix A is null. During
the past several years, many applications of EiCP have been discussed and a
number of algorithms have been proposed for the solution of this problem and
some extensions [1,2,3,6,7,8,9,10,11,15,16].

EiCP has at least one solution if the matrix B of the leading λ-term is positive
definite (PD) [9,18]. Contrary to the EiCP, the QEiCP may have no solution even
when the matrix A of leading λ-term is PD. For instance, if B = 0, A,C are
PD matrices, there is no solution for QEiCP since xTw = λ2xTAx + xTCx >
0, ∀λ ∈ R, x ∈ R

n \ {0}.
The existence of a solution to QEiCP depends on the given (A,B,C). If

the matrix A is PD, QEiCP has at least a solution if one of the two following
conditions holds:

(i) C /∈ S0 [4], where S0 is the class of matrices defined by

C ∈ S0 ⇔ ∃x ≥ 0, x �= 0, Cx ≥ 0.

(ii) co-hyperbolicity[19] : (xTBx)2 ≥ 4(xTAx)(xTCx) for all x ≥ 0, x �= 0.

In practice, investigating whether C ∈ S0 reduces to solving a special lin-
ear program [4]. On the other hand, it is relatively hard to prove that co-
hyperbolicity holds. However, there are some sufficient conditions which imply
the co-hyperbolicity. For instance, this occurs if A and −C are both PD matrices.

A number of algorithms have been proposed for the solution of QEiCP when
A ∈PD and one of the conditions C /∈ S0 or co-hyperbolicity holds [1,4,5,6,19]. As
discussed in [4,5,6], some of these methods are based on nonlinear programming
(NLP) formulations of QEiCP such that (λ, x) is a solution of QEiCP if and
only if (λ, x) is a global minimum of NLP with an optimal value equal to zero.
In this paper, we introduce two nonlinear programming formulations and their
corresponding DC programming formulations when co-hyperbolicity holds, and
we briefly discuss the DC Algorithm for the solution of these DC programs.

The paper is organized as follows. Section 2 contains the nonlinear program-
ming formulations of QEiCP, and the corresponding dc formulations mentioned
before. A new result on lower and upper bounds estimation of the quadratic
complementary eigenvalue is given in section 3. The numerical solution algo-
rithms for solving these DC programming formulations are discussed in section
4. Some conclusions are presented in the last section.

2 DC Programming Formulations for QEiCP

In this section, we introduce two DC programming formulations of QEiCP when
A ∈PD and the co-hyperbolic property holds. These DC programs are based
on two NLP formulations of QEiCP. The construction of the DC programming
problem requires lower and upper bounds on the λ-variable which can be com-
puted by the procedures discussed in [6]. We will also present a new procedure
for such a goal in the section 3.
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2.1 Nonlinear Programming Formulations

As discussed in [6], QEiCP is equivalent to the following NLP:

(P ) 0 = min f(x, y, z, w, λ) := ‖y − λx‖2 + ‖z − λy‖2 + xTw
s.t. w = Az +By + Cx

eTx = 1, eT y = λ
x ≥ 0, w ≥ 0, z ≥ 0.

(3)

As (x, y, z, w, λ) is an optimal solution of the problem (P ) if and only if (λ, x)
is a solution of QEiCP. In fact, for any solution of QEiCP (λ, x) that does not
satisfy eTx = 1, we can always construct a solution (λ, x

eT x ) of QEiCP satisfying
such a constraint.

The problem (P ) is a polynomial programming problem where a nonconvex
polynomial function f(x, y, z, w, λ) is minimized subject to linear constraints.
Due to the fact that any polynomial function is a dc function, we can reformulate
the problem (P ) as a dc program.

On the other hand, observing that the complementarity constraint wTx =
0, x ≥ 0, w ≥ 0 holds if and only if wTx =

∑n
i=1 min(xi, wi) = 0, we have the

following equivalent nonlinear programming formulation of (P ):

(P ′) 0 = min f ′(x, y, z, w, λ) = ‖y − λx‖2 + ‖z − λy‖2 +
∑n

i=1 min(xi, wi)
s.t w = Az +By + Cx

eTx = 1, eT y = λ
x ≥ 0, w ≥ 0, z ≥ 0.

The problems (P ) and (P ′) have the same set of linear constraints. The difficulty
for solving (P ) and (P ′) relies on the non-convexity on their objective functions.

2.2 DC Programming Formulations

The polynomial function f in (P ) can be decomposed into four parts:

f(x, y, z, w, λ) = ‖y‖2 + ‖z‖2 − 2λyT (x+ z) + λ2(‖x‖2 + ‖y‖2) + xTw
= f0(y, z) + f1(x, y, z, λ) + f2(x, y, λ) + f3(x,w)

with ⎧
⎪⎪⎨

⎪⎪⎩

f0(y, z) = ‖y‖2 + ‖z‖2
f1(x, y, z, λ) = −2λyT (x+ z)
f2(x, y, λ) = λ2(‖x‖2 + ‖y‖2)
f3(x,w) = xTw

The function f0 is convex quadratic function, while f1, f2, f3 are nonconvex
polynomial functions. Similarly, the objective function f ′ in (P ′) is also decom-
posed into the following four terms as:

f ′(x, y, z, w, λ) = f0(y, z) + f1(x, y, z, λ) + f2(x, y, λ) + f̃3(x,w)

where f̃3(x,w) defined by
∑n

i=1 min(xi, wi) is a polyhedral concave function.

Both the bilinear function f3 and the polyhedral concave function f̃3 are
classical dc functions whose dc decompositions are as follows:
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1. DC decomposition of bilinear function f3:

f3(x,w) =
‖x+ w‖2

4
− ‖x− w‖2

4
(4)

in which ‖x+w‖2

4 and ‖x−w‖2

4 are both convex quadratic functions.

2. DC decomposition of polyhedral function f̃3:

f̃3(x,w) =
n∑

i=1

min(xi, wi) = (0)− (−
n∑

i=1

min(xi, wi)) (5)

where −
∑n

i=1 min(xi, wi) is a convex polyhedral function.

To obtain a dc decompositions of the nonconvex polynomial functions f1 and
f2, we first obtain the expressions of their gradients and hessians:

1. Gradient and Hessian of f1:

∇f1(x, y, z, λ) =

⎡

⎢⎢⎣

∇xf1(x, y, z, λ)
∇yf1(x, y, z, λ)
∇zf1(x, y, z, λ)
∇λf1(x, y, z, λ)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−2λy
−2λ(x+ z)

−2λy
−2yT (x+ z)

⎤

⎥⎥⎦ .

∇2f1(x, y, z, λ) =

⎡

⎢⎢⎣

0 −2λI 0 −2y
−2λI 0 −2λI −2(x+ z)
0 −2λI 0 −2y

−2yT −2(x+ z)T −2yT 0

⎤

⎥⎥⎦ .

2. Gradient and Hessian of f2:

∇f2(x, y, λ) =

⎡

⎣
∇xf2(x, y, λ)
∇yf2(x, y, λ)
∇λf2(x, y, λ)

⎤

⎦ =

⎡

⎣
2λ2x
2λ2y

2λ(‖x‖2 + ‖y‖2)

⎤

⎦ .

∇2f2(x, y, z, λ) =

⎡

⎣
2λ2I 0 4λx
0 2λ2I 4λy

4λxT 4λyT 2(‖x‖2 + ‖y‖2)

⎤

⎦

The spectral radius of the hessian matrices ∇2f1 and ∇2f2 (denoted by
ρ(∇2f1) and ρ(∇2f2)) can be bounded above by the induced 1-norm as follows:

ρ(∇2f1) ≤ ‖∇2f1‖1 = 2max{|λ|+ |yi|, |xi + zi|+ 2|λ|,
∑

i

(2|yi|+ |xi + zi|)}

ρ(∇2f2) ≤ ‖∇2f2‖1 = 2max{λ2 + 2|λ||xi|, λ2 + 2|λ||yi|, ‖x‖2 + ‖y‖2 + 2|λ|
∑
i

(|xi|+ |yi|)}

Thus ρ(∇2f1) and ρ(∇2f2)) are bounded when the variables (x, y, z, w, λ) of
(P ) and (P ′) are bounded.

The next proposition shows that if the quadratic complementary eigenvalue
λ of QEiCP is bounded, then the variables x, y, z, w are bounded with respect
to the bounds of λ.
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Proposition 1. If the quadratic complementary eigenvalue λ of QEiCP is
bounded in an interval [l, u], then any optimal solution of (P ) and (P ′) satisfies:

x ∈ [0, 1]n; y ∈ [min{0, l},max{0, u}]n; z ∈ [0,max{u2, l2}]n;

0 ≤ w ≤

⎡

⎢⎣
max{u2, l2}

∑
j |A1j |+max{|l|, |u|}

∑
j |B1j |+

∑
j |C1j |

...
max{u2, l2}

∑
j |Anj |+max{|l|, |u|}

∑
j |Bnj |+

∑
j |Cnj |

⎤

⎥⎦ .

Proof. Suppose that we could determine some values l and u such that λ-
component of QEiCP is located in the interval [l, u].

1. eTx = 1, x ≥ 0 implies x ∈ [0, 1]n.
2. y = λx, x ∈ [0, 1]n and λ ∈ [l, u] imply y ∈ [min{0, l},max{0, u}]n.
3. z = λy, y = λx ⇒ z = λ2x, with x ∈ [0, 1]n, λ ∈ [l, u], leads to z ∈

[0,max{u2, l2}]n.
4. Sincew ≥ 0, the upper bound ofw is obtained from the definition ofw asAz+

By + Cx. As x ∈ [0, 1]n, y ∈ [min{0, l},max{0, u}]n, z ∈ [0,max{u2, l2}]n,
then w is also bounded:

|w| ≤

⎡

⎢⎣
max{u2, l2}

∑
j |A1j |+max{|l|, |u|}

∑
j |B1j |+

∑
j |C1j |

...
max{u2, l2}

∑
j |Anj |+max{|l|, |u|}

∑
j |Bnj |+

∑
j |Cnj |

⎤

⎥⎦ .

�

Let us define the convex polyhedral set:

C := {(x, y, z, w, λ) : w = Az +By + Cx, eTx = 1, eTy = λ, x ∈ [0, 1]n,

y ∈ [min{0, l},max{0, u}]n, z ∈ [0,max{u2, l2}]n, w ≥ 0, l ≤ λ ≤ u}.

The problems (P ) and (P ′) defined on C have the same set of optimal solutions,
and ρ(∇2f1) and ρ(∇2f2) are bounded. In fact, the following proposition holds:

Proposition 2. For (x, y, z, w, λ) ∈ C,

ρ(∇2f1) ≤ 2 + 2n(p2 + 2p) = ρ1

ρ(∇2f2) ≤ 2(3np2 + 2p+ 1) = ρ2

where p = max{|l|, |u|}.

Proof. Since λ ∈ [l, u], then |λ| ≤ max{|l|, |u|} = p. Hence,

ρ(∇2f1) ≤ 2max{|λ|+ |yi|, |xi + zi|+ 2|λ|,
∑

i

(2|yi|+ |xi + zi|)}.

But, ∑

i

|yi| ≤ np.
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∑

i

|xi + zi| ≤
∑

i

|xi|+
∑

i

|zi| ≤ 1 + np2.

Hence,

ρ(∇2f1) ≤ 2max{2p, 1 + p2 + 2p, 1 + n(p2 + 2p)} = 2 + 2n(p2 + 2p) = ρ1

Similarly,

ρ(∇2f2) ≤ 2max{λ2 + 2|λ||xi|, λ2 + 2|λ||yi|, ‖x‖2 + ‖y‖2 + 2|λ|
∑

i

(|xi|+ |yi|)}

≤ 2max{p2 + 2p, 3p2, 3np2 + 2p+ 1} = 2(3np2 + 2p+ 1) = ρ2.

�
Thus, we get a dc decomposition for f1 and f2 as follows:

f1(x, y, z, λ) =
ρ1
2
‖(x, y, z, λ)‖2 − (

ρ1
2
‖(x, y, z, λ)‖2 − f1(x, y, z, λ))

f2(x, y, λ) =
ρ2
2
‖(x, y, λ)‖2 − (

ρ2
2
‖(x, y, λ)‖2 − f2(x, y, λ))

where ρ1

2 ‖(x, y, z, λ)‖2 and ρ2

2 ‖(x, y, λ)‖2 are quadratic convex functions. While
ρ1

2 ‖(x, y, z, λ)‖2 − f1(x, y, z, λ) and
ρ2

2 ‖(x, y, λ)‖2 − f2(x, y, λ) are locally convex
restricted on C.

Using the dc decompositions of f1,f2,f3 and f̃3 derived in this section, we get
the following dc decomposition for the objective functions f and f ′.

1. A dc decomposition for f is given by:

f(x, y, z, w, λ) = g(x, y, z, w, λ)− h(x, y, z, w, λ)

where

g(x, y, z, w, λ) =
‖x + w‖2

4
+

ρ1 + ρ2

2
‖x‖2 + (

ρ1 + ρ2

2
+ 1)‖y‖2 + (

ρ1

2
+ 1)‖z‖2 +

ρ1 + ρ2

2
λ2,

h(x, y, z, w, λ) = g(x, y, z, w, λ)− f(x, y, z, w, λ).

2. A dc decomposition for f ′ is given by:

f ′(x, y, z, w, λ) = g′(x, y, z, w, λ)− h′(x, y, z, w, λ)

where

g′(x, y, z, λ) =
ρ1 + ρ2

2
‖x‖2+(

ρ1 + ρ2
2

+1)‖y‖2+(
ρ1
2

+1)‖z‖2+ ρ1 + ρ2
2

λ2,

h′(x, y, z, w, λ) = g′(x, y, z, λ)− f ′(x, y, z, w, λ).

The functions g and g′ are both convex quadratic functions, while h and h′

are locally convex functions restricted on the convex polyhedral set C.
Finally, we get the following equivalent DC programs of (P ) and (P ′) as below:

(PDC) 0 = min g(x, y, z, w, λ)− h(x, y, z, w, λ)
s.t. (x, y, z, w, λ) ∈ C. (6)

(P ′
DC) 0 = min g′(x, y, z, λ)− h′(x, y, z, w, λ)

s.t. (x, y, z, w, λ) ∈ C. (7)
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3 Lower and Upper Bounds for the Quadratic
Complementary Eigenvalue λ

Since the bounds of the variables x, y, z, w in C, as well as the dc decompositions
given in the previous section depend on the bounds of λ, we need to estimate
its upper and lower bounds. The following theorem gives these values.

Proposition 3. IfA ∈PD and the co-hyperbolic condition holds, the λ-component
of any solution of QEiCP satisfies

l = β −
√
α ≤ λ ≤ γ +

√
α = u

with s = min{xTAx : eTx = 1, x ≥ 0}, α = max{γ2, β2}+ maxi,j{−Cij}
s ,

β =

{
min{−Bij}
2max{Aij} , if min{−Bij} > 0;
min{−Bij}

2s , if min{−Bij} ≤ 0.

γ =

{
max{−Bij}

2s , if max{−Bij} > 0;
max{−Bij}
2max{Aij} , if max{−Bij} ≤ 0.

Proof. Since A ∈PD and the co-hyperbolic condition holds, the λ-component of
any solution of QEiCP satisfies

λ =
−xTBx±

√
(xTBx)2 − 4(xTAx)(xTCx)

2xTAx
.

Let U = {eTx = 1, x ≥ 0}. For a given matrix M ∈ R
n×n and for any x ∈ U ,

we next prove that:

min
i,j

Mij ≤ xTMx ≤ max
i,j

Mij , ∀x ∈ U. (8)

If fact, let (Mx)i denote the i-th element of the vector Mx. Then

xTMx =

n∑

i=1

xi(Mx)i

But, (Mx)i is bounded by

min{
n∑

j=1

Mijxj : x ∈ U} ≤ (Mx)i ≤ max{
n∑

j=1

Mijxj : x ∈ U}, ∀x ∈ U.

Since the linear programs min{
∑n

j=1 Mijxj : x ∈ U} and max{
∑n

j=1 Mijxj :
x ∈ U} have optimal solutions on vertices, the optimal values of the above
linear programs are exactly minj{Mij} and maxj{Mij}. Hence, we can compute
bounds for xTMx on U as follows:

min
i,j

{Mij} = min{
∑

i

ximin
j

{Mij} : x ∈ U} ≤
∑

i

xi min
j

{Mij} ≤
∑

i

xi(Mx)i
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= xTMx ≤
∑

i

xi max
j

{Mij} ≤ max{
∑

i

xi max
j

{Mij} : x ∈ U} = max
i,j

{Mi,j}.

Hence, (8) is true.
Using the bounds (8) for the matrices B and C, we have:

min
i,j

{−Bij} ≤ −xTBx ≤ max
i,j

{−Bij},

min
i,j

{−Cij} ≤ −xTCx ≤ max
i,j

{−Cij}

Since A ∈PD, we have

0 < s = min{xTAx : x ∈ U} ≤ xTAx ≤ max
i,j

{Aij}, ∀x ∈ U.

Accordingly, −xTBx
2xTAx is bounded by:

min{−Bij}
2xTAx

≤ −xTBx

2xTAx
≤ max{−Bij}

2xTAx
≤ γ =

{
max{−Bij}

2s , if max{−Bij} > 0;
max{−Bij}
2max{Aij} , if max{−Bij} ≤ 0.

and
min{−Bij}
2xTAx

≥ β =

{
min{−Bij}
2max{Aij} , if min{−Bij} > 0;
min{−Bij}

2s , if min{−Bij} ≤ 0.

Then

(
−xTBx

2xTAx
)2 +

−xTCx

xTAx
≤ max{γ2, β2}+ max{−Cij}

s
= α.

Finally, we can compute bounds for λ as follows:

β −
√
α ≤ −xTBx

2xTAx
−
√
(
−xTBx

2xTAx
)2 +

−xTCx

xTAx
≤

λ ≤ −xTBx

2xTAx
+

√
(
−xTBx

2xTAx
)2 +

−xTCx

xTAx
≤ γ +

√
α.

�

In practice, it is interesting to compare in the future the bound proposed here
with the one given in [6]. The bounds given in this paper have been designed
such that they can be computed in a small amount of effort, even for large-scale
problems.

4 DC Algorithms for Solving PDC and P ′
DC

In this section, we investigate how to solve the DC programming formulations
(PDC) and (P ′

DC).
Given a general DC program:

min{g(x)− h(x) : x ∈ C},
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where C is a non-empty convex set, the general DC algorithm (DCA) consists
of constructing two sequences {xk} and {yk} via the following scheme[12,13,14]:

xk → yk ∈ ∂h(xk)
↙

xk+1 ∈ ∂g∗(yk) = argmin{g(x)− 〈x, yk〉 : x ∈ C}.

The symbol ∂h stands for the sub-differential of the convex function h, and
g∗ is the conjugate function of g. These definitions are fundamental and can be
found in any textbook of the convex analysis (see for example [17]).

The sequence {xk} and {yk} are respectively candidates for optimal solutions
of the primal and dual DC programs.

In DCA, two major computations should be considered:

1. Computing ∂h(xk) to get yk.
2. Solving the convex program argmin{g(x)− 〈x, yk〉 : x ∈ C} to obtain xk+1.

Now, we investigate the use of DCA to solve the DC programs (PDC) and (P ′
DC).

Concerning to (PDC), since the function h is differentiable, ∂h(x, y, z, w, λ) is
reduced to a singleton {∇h(x, y, z, w, λ)}, where

∇h(x, y, z, w, λ) = ∇g(x, y, z, w, λ)−∇f(x, y, z, w, λ)

=

⎡

⎢⎢⎢⎢⎣

x+w
2 + (ρ1 + ρ2)x+ 2λy − 2λ2x− w
(ρ1 + ρ2 − 2λ2)y + 2λ(x + z)

ρ1z + 2λy
w−x
2

(ρ1 + ρ2 − 2(‖x‖2 + ‖y‖2))λ+ 2yT (x + z)

⎤

⎥⎥⎥⎥⎦
.

(9)

For (P ′
DC), since the function h′ is non-differentiable, we compute the convex

set ∂h′(x, y, z, w, λ) as follows:

∂h′(x, y, z, w, λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎣

(ρ1 + ρ2)x+ 2λy − 2λ2x− u
(ρ1 + ρ2 − 2λ2)y + 2λ(x + z)

ρ1z + 2λy
−v

(ρ1 + ρ2 − 2(‖x‖2 + ‖y‖2))λ+ 2yT (x+ z)

⎤

⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(10)

where

u = (ui)i=1,...,n, ui =

⎧
⎨

⎩

1, xi < wi;
{0, 1}, xi = wi;
0, xi > wi.

v = (vi)i=1,...,n, vi =

⎧
⎨

⎩

0, xi < wi;
{0, 1}, xi = wi;
1, xi > wi.

Finally, DCA applied to (PDC) and (P ′
DC) requires solving respectively one

convex quadratic program over a polyhedral convex set in each iteration.
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The following two fixed-point schemes describe our dc algorithms:

(xk+1, yk+1, zk+1, wk+1, λk+1) = argmin{g(x, y, z, w, λ)
−〈(x, y, z, w, λ),∇h(xk, yk, zk, wk, λk)〉 : (x, y, z, w, λ) ∈ C} (11)

with g(x, y, z, w, λ) = ‖x+w‖2

4 + ρ1+ρ2

2 ‖x‖2 + (ρ1+ρ2

2 + 1)‖y‖2 + (ρ1

2 + 1)‖z‖2 +
ρ1+ρ2

2 λ2.

(xk+1, yk+1, zk+1, wk+1, λk+1) = argmin{g′(x, y, z, λ)
−〈(x, y, z, w, λ), Y k〉 : (x, y, z, w, λ) ∈ C} (12)

with Y k ∈ ∂h′(xk, yk, zk, wk, λk) and g′(x, y, z, λ) = ρ1+ρ2

2 ‖x‖2 + (ρ1+ρ2

2 +

1)‖y‖2 + (ρ1

2 + 1)‖z‖2 + ρ1+ρ2

2 λ2.

These convex quadratic programs can be efficiently solved via a quadratic
programming solver such as CPLEX, Gurobi, XPress, etc.

DCA should terminate if one of the following stopping criteria is satisfied for
given tolerances ε1, ε2 and ε3.

(1) The sequence {(xk, yk, zk, wk, λk)} converges, i.e.,

‖(xk+1, yk+1, zk+1, wk+1, λk+1)− (xk, yk, zk, wk, λk)‖ ≤ ε1

(2) The sequence {f(xk, yk, zk, wk, λk)} (resp. {f ′(xk, yk, zk, wk, λk)})
converges, i.e.,

‖f(xk+1, yk+1, zk+1, wk+1, λk+1)− f(xk, yk, zk, wk, λk)‖ ≤ ε2

(resp. ‖f ′(xk+1, yk+1, zk+1, wk+1, λk+1)− f ′(xk, yk, zk, wk, λk)‖ ≤ ε2).

(3) The sufficient global ε-optimality condition holds, i.e.,

f(xk, yk, zk, wk, λk) ≤ ε3 (resp. f ′(xk, yk, zk, wk, λk) ≤ ε3).

The following theorem indicates the convergence of DCA:

Theorem 1 (Convergence theorem of DCA). DCA applied to QEiCP
generates convergence sequences {(xk, yk, zk, wk, λk)} and {f(xk, yk, zk, wk, λk)}
(resp. {f ′(xk, yk, zk, wk, λk)}) such that:

– The sequence {f(xk, yk, zk, wk, λk)} (resp. {f ′(xk, yk, zk, wk, λk)}) is decreas-
ing and bounded below.

– The sequence {(xk, yk, zk, wk, λk)} converges either to a solution of QEiCP
when the third stopping condition is satisfied or to a general KKT point of
(PDC) (resp. (P

′
DC)).

Proof. The proof of the theorem is an obvious consequence of the general con-
vergence theorem of DCA [12,13,14]. The sufficient global optimality condition
is due to the fact that the optimal value of the dc program is equal to zero. �
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5 Conclusions

In this paper, we have presented two DC programming formulations of the
Quadratic Eigenvalue Complementarity Problem. The corresponding numerical
solution algorithms based on the classical DCA for solving these dc programs
were briefly discussed.

The numerical results and the analysis of the performance of DCA for solving
QEiCP will be given in a future paper. We will discuss a new local dc decom-
position algorithm that is designed to speed up the convergence of DCA. Fur-
thermore, that paper will also be devoted to the solution of QEiCP when the
condition A ∈PD and C /∈ S0 holds. A new DC formulation of QEiCP based
on the reformulation of an equivalent extended EiCP will be introduced to deal
with this case and the corresponding DC Algorithm will be discussed.
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Abstract. In this paper, we are interested in studying the maximum
ratio clique problem (MRCP) that is a variant of the classical maximum
weight clique problem. For a given graph, we suppose that each vertex
of the graph is weighted by a pair of rational numbers. The objective
of MRCP consists in finding a maximal clique with the largest ratio
between two sets of weights that are assigned to its vertices. It has been
proven that the decision version of this problem is NP-complete and it
is hard to solve MRCP for large instances. Hence, this paper looks for
introducing an efficient approach based on Difference of Convex functions
(DC) programming and DC Algorithm (DCA) for solving MRCP. Then,
we verify the performance of the proposed method. For this purpose,
we compare the solutions of DCA with the previously published results.
As a second objective of this paper, we identify some valid inequalities
and evaluate empirically their influence in solving MRCP. According to
the numerical experiments, DCA provides promising and competitive
results. Furthermore, the introduction of the valid inequalities improves
the computational time of the classical approaches.

Keywords: Maximum Ratio Clique Problem, Fractional Programming,
DC Programming, DCA.

1 Introduction

In this paper, we are given a simple undirected graph. We denote this graph by
G = (V,E), where V is the set of vertices and E is the set of edges. We denote
the vertices of G by i such that i ∈ {1, . . . , n}. In such a graph, a subset C
of V defines a clique if C induces a complete subgraph of G. The concept of
clique is very important in graph theory and its applications (see e.g., [1,16,21]
and references therein). There are several variants of cliques: a maximal clique
is defined as a clique that cannot be extended to another clique by adding new
vertices (and consequently, adding new edges). For a given graph, a clique that
has the maximum cardinality of vertices, is called a maximum clique. Finding
a maximum clique of a graph is a classical combinatorial optimization problem.

c© Springer International Publishing Switzerland 2015 215
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_19
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There are other optimization problems related to the concept of clique. For
example, if we associate a weight wi ≥ 0 with each vertex i of the graph G, then
we have the maximum weight clique problem (MWCP) that looks for a clique
for which the sum of vertex weights is maximized.

In this paper, we suppose that we are given a graph G such that rational
weights ai ≥ 0 and bi ≥ 0 are assigned to each vertex i ∈ V . We are interested
in finding a maximal clique C in the graph G, such that the fractional quantity∑

i∈C ai∑
i∈C bi

is maximized. This problem is called the Maximum Ratio Clique Problem

(MRCP) [21]. The Maximum Ratio Clique Problem (MRCP) has various appli-
cations: e.g., portfolio optimization, social networks, etc. In these applications
the interactions between different members of a set or society may be measured
by means of a fractional function. This function focuses on the influence of the
each member of the set or society on its neighbors. The objective consists in
measuring the overall outcome of the influences.

Sethuraman et al. [21] formulated MRCP as an integer fractional program-
ming problem. We know that unconstrained fractional 0− 1 programming prob-
lem is NP-hard [20] and Sethuraman et al. proved that the decision version of
MRCP is NP-complete [21]. For solving MRCP, three solution approaches have
been proposed: the first one is based on linearizing the fractional programming
problem and the other methods are binary search and Newton’s method. These
methods have already been introduced for solving fractional programming prob-
lems [2,3,5].

In this paper, we are interested in studying MRCP. For this purpose, the
objective of this paper is twofold: at first, in a similar way as Le Thi et al. [7],
we investigate a novel approach based on techniques of non-convex programming.
More precisely, for solving MRCP, we propose an approach based on Difference
of Convex functions (DC) programming and DC Algorithm (DCA) (see [7,8,9]).
This approach has a rich history of applications for solving a wide variety of
problems and it proved to be efficient and robust; particularly, in solving large
scale optimization problems (see e.g., [4,6,8,10,11,12,13,14,15,17,18,19]). As the
second objective, in this paper, we study some mathematical properties of MRCP
and propose some valid inequalities. Finally, we investigate the role of the valid
inequalities in reducing computational time for solving the linearized MRCP.

We organize this paper as follows: In Section 2, the mathematical formulation
of MRCP as well as some mathematical properties of the model are presented.
This section is completed by linearizing MRCP. Section 3 is devoted to the
basic concepts of DC programming, a DC formulation of MRCP, and the DC
Algorithm (DCA) for solving MRCP. The computational experiments and nu-
merical results are presented in Section 4. Finally, some conclusions are drown
in Section 5.
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2 Formulation of the Maximum Ratio Clique Problem
(MRCP)

In order to present the mathematical model of MRCP, we define the decision
variables xi ∈ {0, 1} (∀i ∈ V ), such that xi is 1 if i belongs to the solution clique,
otherwise xi = 0. Furthermore, we suppose that A = (aij) is the adjacency
matrix of the graph G = (V,E). More precisely, aij ∈ {0, 1} and aij = 1 iff the
vertices i and j are connected (i �= j). Assuming this notation, MRCP can be
formulated as the following integer fractional programming model:

(MRCP ) : max

n∑
i=1

aixi

n∑
i=1

bixi

(1)

Such that: xi + xj ≤ 1 : ∀(i, j) /∈ E, i �= j, (2)
n∑

i=1

(1− aij)xi ≥ 1 : ∀j ∈ V, (3)

xi ∈ {0, 1} : ∀i ∈ V. (4)

In this model, the objective consists in maximizing the ratio
∑n

i=1 aixi∑
n
i=1 bixi

. Con-

forming to any specific application, this ratio can have different interpretations.
It is important to note that for the classical maximum weight clique problem
(MWCP), it is sufficient to consider only the constraints (2). Indeed, in the case
of MWCP, by the non-negativity of the weights and the variables, any optimal
solution will be a maximal clique. However, for MRCP, we need to add the con-
straints (3). In fact, if we ignore these constraints, it will be sufficient to take
any single vertex k satisfying the following condition:

ak
bk

= max
i∈V

{ai
bi
}.

because such a vertex can be considered as an optimal solution for the fractional
program [21]. But the constraints (3) ensure that the optimal solution is a maxi-
mal clique. More precisely, for any optimal solution C of MRCP, the constraints
(3) guarantee that:

j ∈ V \ C ⇒ ∃i ∈ C : aij = 0,

that is, such a vertex j cannot be added to C.

2.1 Some Mathematical Properties of MRCP

In this section, we explore, briefly, the mathematical structure of MRCP and we
introduce some valid inequalities.

Property 1: Suppose that there are three different vertices i, j, and k in V
such that any of edges (i, j), (i, k), and (j, k) satisfy the constraints (2), then
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the following inequality is valid for MRCP:

xi + xj + xk ≤ 1. (5)

Proof: Since the conditions of the constraints (2) are met, in the optimal
solution, just one of the variables xi, xj , xk can be equal to 1. Hence, xi+xj+xk

can be at most equal to 1. �
Clearly, the statement of Property 1 can be extended for a larger number of

vertices. However, from computational point of view, such a set of valid inequal-
ities (with larger number of vertices) is challenging and impractical.

Property 2: Let {i, j, k} ⊂ V be any 3-tuple of different vertices. Suppose that
{i, j, k} does not make a 3-clique (triangle) in G, then the following inequality
is valid for MRCP:

xi + xj + xk ≤ 2. (6)

Proof: Since {i, j, k} ⊆ V do not make a 3-clique (triangle) in G; hence, at
least, one of the edges (i, j), (i, k), (j, k) do not belong to E. This is equivalent
to that just one of the following cases may be true

(xi+xj ≤ 2 and xk = 0) or (xi+xk ≤ 2 and xj = 0) or (xj+xk ≤ 2 and xi = 0).

If we consider any possible case and sum up the terms, we obtain (6). �

2.2 Linearization of MRCP

The formulation (1)-(4) is an integer fractional programming model that can be
linearized by using the following classical method [21,22]: the first step of this
linearization method consists in introducing supplementary variables as follows:

y =
1∑n

i=1 bixi
and zi = yxi : ∀i ∈ V.

Since zi is described by a quadratic term, we need the following linear constraints
that replace zi = yxi

zi ≥ Lxi and zi ≤ Uxi : ∀i ∈ V, (7)

zi ≤ y − L(1− xi) and zi ≥ y − U(1− xi) : ∀i ∈ V, (8)

where L and U are some constants defining, respectively, lower and upper bounds
on y. These bounds can be easily obtained through the following formulas:

L =
1∑n

i=1 bi
and U =

1

mini∈V bi
.

By gathering these materials, we obtain the following mixed integer linear
programming (MILP) formulation for MRCP:

(MRCP −MILP ) : max

n∑

i=1

aizi (9)
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Such that: xi + xj ≤ 1 : ∀(i, j) /∈ E, i �= j, (10)
n∑

i=1

(1− aij)xi ≥ 1 : ∀j ∈ V, (11)

n∑

i=1

bizi = 1 : ∀j ∈ V, (12)

zj ≤ Uxj : ∀j ∈ V, (13)

zj ≥ Lxj : ∀j ∈ V, (14)

zj ≤ y − L(1− xj) : ∀j ∈ V, (15)

zj ≥ y − U(1− xj) : ∀j ∈ V, (16)

xj ∈ {0, 1};L ≤ y ≤ U ; zj ≥ 0 : ∀j ∈ V. (17)

Any standard MILP-solver can be used for solving (9)-(17). In this paper, we
are interested in investigating a non-convex programming approach for solving
(9)-(17). The detailed description of the basic materials as well as the proposed
algorithm are presented in the next section.

3 DC Programming and DC Formulation for MRCP

3.1 DC Programming: A Short Introduction

In this section, we review some of the main definitions and properties of DC
programming and DC Algorithms (DCA); where, “DC” stands for “difference of
convex functions”.

Consider the following primal DC program

(Pdc) βp := inf{F (x) := g(x)− h(x) : x ∈ IRn},

where g and h are convex and differentiable functions. F is a DC function, g and
h are DC components of F , and g − h is called a DC decomposition of F .

Let C be a nonempty closed convex set and χC be the indicator function of
C, i.e., χC(x) = 0 if x ∈ C and +∞ otherwise. Then, by using χC , one can
transform the constrained problem

inf{g(x)− h(x) : x ∈ C}, (18)

into the following unconstrained DC program

inf{f(x) := φ(x) − h(x) : x ∈ IRn}, (19)

where φ(x) is a convex function defined by φ(x) := g(x) + χC(x).
Hence, without loss of generality, we can suppose that the primal DC program

is unconstrained and in the form of (Pdc).
For any convex function g, its conjugate is defined by g∗(y) := sup{〈x, y〉 −

g(x) : x ∈ IRn} and the dual program of (Pdc) is defined as follows

(Ddc) βd := inf{h∗(y)− g∗(y) : y ∈ IRn}. (20)
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One can prove that βp = βd [19].
For a convex function θ and x0 ∈ dom θ := {x ∈ IRn|θ(x) < +∞}, the

subdifferential of θ at x0 is denoted by ∂θ(x0) and is defined by

∂θ(x0) := {y ∈ IRn : θ(x) ≥ θ(x0) + 〈x− x0, y〉, ∀x ∈ IRn}. (21)

We note that ∂θ(x0) is a closed convex set in IRn and is a generalization of the
concept of derivative.

For the primal DC program (Pdc) and x∗ ∈ IRn, the necessary local optimality
condition is described as follows

∂h(x∗) ⊂ ∂g(x∗). (22)

This condition is also sufficient for many important classes of DC programs, for
example, for the polyhedral DC programs [18] (in order to have a polyhedral DC
program, at least one of the functions g and h must be a polyhedral convex
function; i.e., the point-wise supremum of a finite collection of affine functions).

We are now ready to present the main scheme of the DC Algorithms (DCA)
[18,19] that are used for solving the DC programming problems. The DC Al-
gorithms (DCA) are based on local optimality conditions and duality in DC
programming, and consist of constructing two sequences {xl} and {yl}. The el-
ements of these sequences are trial solutions for the primal and dual programs,
respectively. In fact, xl+1 and yl+1 are solutions of the following convex primal
program (Pl) and dual program (Dl+1), respectively:

(Pl) inf{g(x)− h(xl)− 〈x− xl, yl〉 : x ∈ IRn}, (23)

(Dl+1) inf{h∗(y)− g∗(yl)− 〈y − yl, xl+1〉 : y ∈ IRn}. (24)

One must note that, (Pl) and (Dl+1) are convexifications of (Pdc) and (Ddc),
respectively, in which h and g∗ are replaced by their corresponding affine mi-
norizations. By using this approach, the solution sets of (Pdc) and (Ddc) are
∂g∗(yl) and ∂h(xl+1), respectively. To sum up, in an iterative scheme, DCA
takes the following simple form

yl ∈ ∂h(xl); xl+1 ∈ ∂g∗(yl). (25)

One can prove that the sequences {g(xl)− h(xl)} and {h∗(yl)− g∗(yl)} are de-
creasing, and {xl} (respectively, {yl}) converges to a primal feasible solution (re-
spectively, a dual feasible solution) satisfying the local optimality conditions. For
a complete study of DC programming and DCA, readers are referred to [8,18,19]
and the list of references on http://lita.sciences.univ-metz.fr/ lethi/

DCA.html.

3.2 DC Programming For Solving MRCP

In order to solve the maximum ratio clique problem, we investigate a novel
approach based on DC programming and DCA. For this purpose, we need a

http://lita.sciences.univ-metz.fr/~lethi/DCA.html
http://lita.sciences.univ-metz.fr/~lethi/DCA.html
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reformulation of MRCP with a DC objective function that is minimized over
a convex set. In this section, we explain the mathematical operations that we
need for transforming MRCP to an equivalent DC programming model. Then,
we present a DCA for solving the proposed DC program. More precisely, in a
similar way as Le Thi et al. [7], by using an exact penalty result (presented in
[7,9]) we can formulate (MRCP-MILP) as a DC minimization problem subject
to linear constraints, which is consequently a DC program. At the first step, in
order to simplify the notations, we define:

A := {(x, y, z) ∈ [0, 1]n × [L,U ]× IRn : (x, y, z) satisfies (10)− (16)} .
Let p(x, y, z) be the concave function defined as follows

p(x, y, z) :=

n∑

i=1

xi(1− xi).

Since p(x, y, z) is non-negative on A, (MRCP-MILP) can be re-written as follows

min

{
−

n∑

i=1

aizi : p(x, y, z) ≤ 0, (x, y, z) ∈ A

}
. (26)

Moreover, the objective function of (26) is linear, A is a bounded polyhedral con-
vex set, and the concave function p(x, y, z) is non-negative on A; consequently,
we can use the exact penalty result presented in [9] and we obtain the following
equivalent formulation of MRCP

min

{
F (x, y, z) := −

n∑

i=1

aizi + tp(x, y, z) : (x, y, z) ∈ A

}
, (27)

where t > t0 and t0 ∈ IR+ is a sufficiently large positive number. Furthermore,
the function F is concave in variables x and linear in variables y and z; hence,
F is a DC function. A natural DC formulation of the problem (27) is

(MRCP-DC): min
{
F (x, y, z) := g(x, y, z)− h(x, y, z) : (x, y, z) ∈ IR2n+1

}
,

where

g(x, y, z) = −
n∑

i=1

aizi + χA(x, y, z)

and

h(x, y, z) = t

n∑

i=1

xi(xi − 1).

Here, χA is the indicator function on A, i.e. χA(x, y, z) = 0 if (x, y, z) ∈ A and
+∞ otherwise.



222 M. Moeini

3.3 DCA for solving (MRCP-DC)

According to the general scheme of DCA, firstly, we require a point in the sub-

differential of the function h(x, y, z) defined by h(x, y, z) = t
n∑

i=1

xi(xi−1). From

the definition of h(x, y, z) we have

(uk, sk,wk) ∈ ∂h(xk, yk, zk) ⇔ sk = 0, wk
i = 0, uk

i := t(2xk
i − 1) : i = 1, . . . , n.

(28)
Secondly, we need to find (xk+1, yk+1, zk+1) in ∂g∗(uk, sk,wk). Such a point can
be an optimal solution of the following linear program:

min

{
−

n∑

i=1

aizi − 〈(x, y, z), (uk, sk,wk)〉 : (x, y, z) ∈ A

}
(29)

To sum up, the DCA applied to (MRCP-DC) can be summarized as follows:

Algorithm DCA for solving (MRCP-DC)

1. Initialization: Choose (x0, y0, z0) ∈ IR2n+1, ε > 0, t > 0, and set k = 0.
2. Iteration:

• Set sk = 0, wk
i = 0, and uk

i := t(2xk
i − 1) for i = 1, . . . , n.

• Solve the linear program (29) to obtain (xk+1, yk+1, zk+1).
3. If

∥∥(xk+1, yk+1, zk+1)− (xk, yk, zk)
∥∥ ≤ ε then stop the algorithm and take

the vector (xk+1, yk+1, zk+1) as an optimal solution, otherwise set k ←− k+1
and go to step 2.

Finding a suitable initial point for DCA:
One of the key questions in DCA consists in finding a good initial point for
starting DCA. In this work, for a given graph G = (V,E), we took a maximal

clique C̃ in G [21]. Such a clique can be found as follows:

1. Select a vertex having the maximum value for the ratio of its weights,
2. Add its neighbors in decreasing order of the ratio of their weights,
3. After adding a new vertex, make sure that the new set of vertices is still a

clique.

Once the maximal clique C̃ is formed, we construct (x0, y0, z0) as follows:

• x0
i = 1 ⇐⇒ i ∈ C̃ for i = 1 . . . , n.

• y0 = 1∑
n
i=1 bix0

i
.

• z0i = y0x0
i for i = 1 . . . , n.

In fact, we tested different initial points for starting DCA, some of them are:

• The point obtained by the above procedure;
• (x, y, z) = (0, . . . , 0) ∈ IR2n+1;



The Maximum Ratio Clique Problem: Some New Results 223

• (x, y, z) = (1, . . . , 1) ∈ IR2n+1;
• The optimal solution of the relaxed (MRCP-MILP) problem obtained by re-

placing the binary constraints xi ∈ {0, 1} by 0 ≤ xi ≤ 1 for all i = 1, . . . , n.

According to our experiments, the initial point provided by the first procedure
gives the best results.

4 Computational Experiments

This section is devoted to the computational experiments and the numerical
results. Through the experiments, we are interested in:

• evaluating the performance of DCA in solving (MRCP-DC),
• investigating the influence of valid inequalities (5) and (6) in solving (MRCP−

MILP ) by means of the standard MILP-Solver IBM CPLEX.

The experiments have been carried out on two types of data sets: randomly
generated instances and real-world data related to construction of wind turbines.
A more detailed description of the test instances can be found in [21].

We compared our solutions with the results from earlier studies. Indeed,
Sethuraman et al. [21] proposed three approaches for solving MRCP: solving
(MRCP-MILP) by the standard MILP-Solver IBM CPLEX, an adaptation of
the Binary search [2,5], and an adaptation of the Newton’s method [3]. We did
our experiments (under same conditions) by using these methods as well as DCA.
More precisely, we implemented all of the algorithms by C++ and ran the codes
on a DELL laptop equipped with Linux operating system, Intel Core 2 Duo CPU
of 2.53GHz and 3.8 GB of memory. The standard solver IBM CPLEX 12.5.1 has
been used as the MILP/LP solver.

Concerning the parameters that we need to set for DCA, we chose ε = 10−6

as the precision of the solutions, and for a test instance of size n, the penalty
parameter (i.e., t) is set to n/4.

Table 1 shows some information about each of the test instances: number
of vertices (|V |) and number of edges (|E|). Also, for each instance (instance),
the best optimal values (best val.) and the size of their corresponding maximum
ratio clique (C.Size) are reported. These values correspond to the solutions of
the exact methods.

4.1 Numerical Results of DCA for Solving MRCP

The first set of results concerns the assessment of DCA in solving (MRCP-DC)
versus the other methods (i.e., IP-Solver, Binary Search, and Newton’s method).
The results are presented in Table 1. In this table, the computational CPU time
(in seconds) of all solving methods are shown. A separate section of Table 1 is
dedicated to the results of DCA algorithm: for each instance, the objective value
provided by DCA (dc val.), the size of the maximum ratio clique found by DCA
((C.Size)), the computational time of DCA (CPU ) in seconds, and its number
of iterations (iter.) are presented.
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Table 1. The results of the DCA in comparison to the other methods: IBM CPLEX,
Binary Search, and Newton’s method

Computational Time(s.) DCA

instance |V | |E| best val. C.Size CPLEX Binary Newton dc Val. C.Size CPU iter.

random-1 100 2266 3.28 10 1.69 1.00 0.64 1.85 6 0.06 2
random-2 150 5212 4.69 8 2.12 1.79 1.79 1.31 11 0.30 4
random-3 200 10008 4.21 5 11.14 4.10 3.48 0.96 7 0.17 2
random-4 400 40786 4.83 7 2348.76 57.91 41.04 0.98 11 1.06 2
random-5 500 63789 3.65 9 14674.00 235.80 488.826 0.91 13 2.37 2
random-6 100 2655 1.15 13 1.50 0.71 0.47 1.04 10 0.05 2
random-7 150 5767 1.20 9 16.02 4.05 3.53 0.90 14 0.10 2
random-8 200 10220 1.19 10 103.14 12.67 8.96 0.84 14 0.17 2
random-9 400 38942 1.32 7 1076.10 29.43 29.77 0.95 13 1.11 2
wind-2004 500 10277 92736.30 3 87.24 39.87 17.97 92736.30 3 8.78 4
wind-2005 500 10516 94686.60 2 65.93 18.36 9.13 91999.40 3 2.16 2
wind-2006 500 9681 98471.00 2 45.15 16.59 15.48 93666.00 3 2.22 2

The presented DCA algorithm has produced satisfactory results in compar-
ison to the other methods. The exact methods are efficient in solving some
small/medium sized instances; however, they need longer time for solving the
other instances. Among the tested instances, we observe that DCA has a very
good performance in solving random-6, ..., random-9, wind-2004, wind-2005,
and wind-2006. The results are particularly interesting for the test instance wind-
2004, for which the proposed DCA method gives the same results as the exact
methods, but in a significantly shorter CPU time.

4.2 Numerical Results of the Valid Inequalities

In the second part of experiments, we assess the influence of the valid inequalities
(5) and (6) in improving the performance of the IP-Solver. More precisely, we
add (5) and (6) to (MRCP-MILP) and solve the augmented models. Depending
on the size of instance, the number of these inequalities can be huge (indeed,
O(n3)). Consequently, if we include all of the constraints (5) and/or (6), the
model becomes intractable. Hence, we use a simple heuristic in order to include
a smaller number of them. For this purpose, we define a “size limit” and for
{i, j, k} ⊂ V , we add (5) and/or (6) iff i, j, k ≤size limit. In our experiments,
size limit is set to 10 and 5 for (5) and (6), respectively. The results are shown in
Table 2. In this table, the performance of CPLEX is assessed, in terms of CPU
time, against the exclusion/inclusion of each set of the valid inequalities (5)
and (6). The column “only (5)” (respectively, “only (6)”) concerns the model
(MRCP-MILP) after adding the valid inequalities (5) (respectively, (6)). The
number of added inequalities are represented by #(5) (respectively, #(6)). The
last column shows the results for the case of including both types of inequalities.

According to the results, we observe that the valid inequalities (5) have more
positive influence in reducing computational time of CPLEX for solving (MRCP-
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MILP). Furthermore, when we add both types of inequalities (5) and (6), the
computational time is relatively improved but adding only clique inequalities (5)
gives a better performance to the exact method.

Table 2. The computational time (in seconds) of IBM CPLEX in solving (MRCP-
MILP) with/without valid inequalities (5) & (6).

Computational Time(s.) of IP-Solver IBM CPLEX

instance |V | |E| (MRCP-MILP) only (5) #(5) only (6) #(6) both (5) & (6)

random-1 100 2266 1.69 1.75 180 1.68 60 1.74
random-2 150 5212 2.12 2.01 90 2.47 96 2.03
random-3 200 10008 11.14 8.51 114 14.60 60 8.52
random-4 400 40786 2348.76 2240.64 294 1897.80 60 1743.53
random-5 500 63789 14674.00 10820.70 186 24585.80 60 20348.30
random-6 100 2655 1.50 1.31 72 1.47 60 1.30
random-7 150 5767 16.02 16.08 258 57.89 60 12.59
random-8 200 10220 103.14 83.91 66 103.73 84 177.93
random-9 400 38942 1076.10 834.26 60 1461.94 60 1326.18
wind-2004 500 10277 87.24 66.55 519 113.71 60 53.23
wind-2005 500 10516 65.93 48.09 504 66.46 60 48.44
wind-2006 500 9681 45.15 33.75 720 35.84 60 37.58

5 Conclusion

In this paper, we presented a new approach based on DC programming and
DCA for solving the maximum ratio clique problem (MRCP). We saw that DCA
provides competitive results in comparison to the other methods and shows to be
computationally quick and efficient in giving high quality solutions. Furthermore,
we investigated the mathematical properties of MRCP and we proposed two sets
of valid inequalities. Finally, we presented the numerical experiments on some
data sets and described our observations. Our experiments confirms that adding
clique inequalities can have significant improvement in computational time of
exact methods.

The computational results suggest to us extending the numerical experiments
in higher dimensions and combining the proposed approach as well as the most
promising valid inequalities in the framework of an exact approach (such as
Branch-and-Bound algorithms) for globally solving MRCP. Works in these di-
rections are currently in progress and the results will be reported in future.
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ale: Théorie, Algorithmes et Applications. Habilitation à Diriger des Recherches,
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Abstract. This paper is devoted to new approach to increase level of time con-
sistency of heuristics and propose Dynamic Adaptive Large Neighborhood 
Search (DALNS) algorithm to improve solutions generated by ALNS. 

To evaluate effectiveness of DALNS implementation computational experi-
ments were performed on benchmark instances. It was shown that the number 
of tests in which solution was improved equals 5236 (46% of total amount).  

Keywords: time consistency, inventory routing problem (IRP), heuristic algo-
rithms, adaptive large neighborhood search (ALNS), dynamic adaptive large 
neighborhood search (DALNS). 

1 Introduction 

The main purpose of this paper is to describe new method which could help to im-
prove performance of heuristics used for Inventory Routing Problems (IRP). Heuristic 
methods are very popular for solving this type of problems, since they are NP-hard 
and arise in large-scale systems.  

Heuristics do not guarantee the obtained solution to be optimal. If the solution is 
not optimal, then there exist at least one period such that continuation of this solution 
is not optimal in corresponding subproblem. While reducing the scale of subproblem 
compare to initial one, the probability to get better route (if the algorithm includes 
randomization, of course) could increase, in general. Thus, there is a possibility to 
improve already obtained solution using the same heuristic algorithm.  

We describe in this paper general model of IRP and implementation of Adaptive 
Large Neighborhood Search (ALNS) heuristic algorithm. Then, we discuss the idea of 
time consistency and suggest its possible application for improving performance of 
used heuristics, and present results of computing experiments. 

2 Literature Review 

Inventory routing problem arises as generalization of VRP, more exactly its capaci-
tated version (CVRP), by the way of including in consideration multiple periods and 
holding costs. 
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First papers on this problem are practical research studies: propane distribution in 
study by Golden, Dror et al. in 1982 [1] and following theoretical paper in 1985 [2]; 
distribution of industrial gases in study by Bell, Dalberto, Fisher et al. in 1983 [3]; 
reducing logistics costs at General Motors in study by Blumenfeld, Burns et al.,  
theoretical paper in 1985 [4] and practical research report in 1987 [5]. 

2.1 Typology of the Problem 

We consider one-to-many case of IRP. Namely, we examine joint routing and distri-
bution planning over  periods from one depot to  customers, using a single ve-
hicle. Optimization objective is to minimize total transportation and holding costs. 
Such model is also considered in papers by Bertazzi et al. in [6, 7]. 

Different modifications of the problem have been studied over the years. Natural 
modifications are generalization for several vehicles [3], [8] or several products [3], 
[9], [10]. 

Depending on considered demand model, there are deterministic (with constant 
demand), stochastic (when probability distribution or its parameters are known [11, 
12, 13]) and dynamic (when demand is known only at current time [11]) versions of 
problem. 

Along with the basic version, in which stock-outs at customers are not allowed, 
there are some studies, dealing with shortage [12, 13]. 

Versions of the problem differ by objective function. Most of the researches con-
sider total transportation and holding costs as objective function, but some examine 
the problem of multicriteria optimization [14]. 

Some researchers modify the form of feasible solution in order to simplify solution 
search procedure. Such modifications are IRP with direct deliveries [4, 5], with trans-
shipments [15] and order-up-to level policy [7, 15, 17]. 

Aside from others, maritime IRP is being considered. Specifications of this prob-
lem include relatively small amount of ports (customers/depots), travel and operations 
time accounting, consideration of discharging and waiting costs, heterogeneous fleet 
[10], [16]. 

2.2 Algorithms 

First studies on the problem utilized exact methods combined with existing algorithms 
for VRP [1, 2, 3], and analytical study possibilities also were considered [4, 5]. 

Among used exact algorithms, the most popular are brunch-and-cut algorithm 
modifications [7, 8, 9], but other algorithms also used (like column generation or 
Lagrangian relaxation), along with special packages, like CPLEX. Exact algorithms 
often used for solving subproblem, combining with heuristic [3], [17]. 

Because of large scale and complexity of the problem, most studies use heuristic 
methods. At this point, almost every popular global optimization method was  
applied, such as genetic algorithm [18], particle swarm algorithm [19] or Monte Carlo 
simulation [13]. 



 Dynamic Adaptive Large Neighborhood Search for Inventory Routing Problem 233 

 

Various complicated heuristic search algorithms have been developed for the IRP. 
Popular examples are tabu search based hybrid algorithm [17] or adaptive large 
neighborhood search [11], [15]. 

2.3 Recent Papers 

Recent studies are focused mostly on exploring of new formulations for the problem. 
Used algorithms are mostly adaptations of well-known local search methods, but 
some researchers examine exact methods [22]. 

Several studies modify the model by tightening restrictions in order to accelerate 
search procedure [23, 24]. 

Some new formulations appears with practical applications, such as ATMs refilling 
[25], bikes transportation [26] and waste oil collection [27]. 

Other notable problem formulations in recent studies are cyclic IRP [28, 29], IRP 
with pick-ups [25, 26], IRP with fixed routing decisions [29, 30, 31], “green” ap-
proach [32] and multi-objective IRP [33]. 

More detailed and wide literature review can be found in recent review papers 
“thirty years of inventory routing” [34] and “formulations for an inventory routing 
problem” [35]. 

3 Mathematical Problem Definition 

Let ,  be the graph, where 0,1,2, … ,  is set of nodes (points), 0 for 
depot and 1,2, … ,  for customers, and ,  | ,  is set of arcs (di-
rect paths). Each arc has its travel cost . There is also the Euclidean version of the 
problem in which  is given with corresponding coordinates set , ,  and 

travel cost is defined as Euclidean distance: . 

At each node  one can store some amount  of the product which is integer 
value. Holding cost  is known for each node. Stored amount of product is bounded: 0 . 

Time horizon consists of  periods. At each period vehicle can perform one route 
which starts and ends in the depot. At the beginning of each period  units of product 
is being produced at the depot and  units is being consumed at each customer   . 

Routes and deliveries are variables in the problem. 
Product amount loaded in the vehicle is restricted by its capacity . 
The problem objective function is total transportation and holding costs during 

time horizon. 
Suppose  is a binary variable which is equal to one if route at period t passes 

the arc , , and zero otherwise, and  is an integer variable for amount of delivery 
to customer  at period . Initial inventory level is given by ,

. Then the problem can be defined in the form of linear program as follows: 
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subject to: 

, , 1, … ,  

, , 1, … , , 1, … ,  0 , , 1, … ,  , 1, … ,   
, , 1, … ,  

1, 1, … ,  

Where the restrictions are, respectively: inventory dynamic at depot and at customers, 
inventory restrictions, vehicle capacity restrictions, route continuity restrictions and 
single vehicle restrictions. 

4 Adaptive Large Neighborhood Search Algorithm 

This algorithm has been described in details in [15]. 
The algorithm is adaptive randomized local search in large solution neighborhood, 

including elements of simulated annealing. 
Solution neighborhood here is defined as all solutions, obtained from applying one 

of elementary moves, such as random insertion/removal customers in the route, best 
insertion/removal, cluster insertion/removal or routes re-assign. 

Because of largeness of such neighborhood, the move to apply is chosen randomly, 
respectively to their weights, which accounts the successiveness of recent applica-
tions. 

Simulated annealing is used to include possibility of move to worse solution with 
probability, depends on current “temperature”. 

In this implementation, a system of penalties has been added to the objective func-
tion in order to exclude unfeasible solution in result. 

Initial solution is obtained using “greedy” algorithm to construct route which 
passes all customers at each period, all  is set to . 

Following values of algorithm parameters were used in this implementation: 30000, 0,9994, 10, 5, 2, 200. 
We present general scheme of ALNS algorithm below. 
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 :  ALNS   1:  Initialization: set 1 and 0 for each move   2:  Set initial solution:    3:  Set initial temperature:    4:   0.01    5:             6:          Randomly select move  and apply it to    8:          Fix routing decisions for  and solve the remaining problem    9:             10:                   11:                     12:                             13:                             14:                   15:                            16:          0; 1   18:                    19:                    20:         21:         the iteration count is a multiple of   22:                  update the weights and reset the scores 23:                  perform 2‐opt  procedure for each route 

Remaining problem in the algorithm consists in choosing of delivery volumes, 
while routes are fixed. To solve it a simple heuristic based on inventory function 
analysis was developed. 

We consider inventory level function  on the interval ;  between two ve-
hicle visits. This function decreases monotonically on such interval. Delivering y units 
of product to the customer at  means that  increases by this value in all succes-
sive periods. Therefore, maximum delivery value is leftover capacity at period  and 
minimum is deficit (negative inventory level) at period , regarding the capacity.  :  Heuristic for the remaining problem 0:  Initialization:  nullify deliveries:  , : 0,   recalculate ·  1:      2:           3:                   1, … , ,     is visited at   4:                             ,   recalculate ·  5:           6:                    interval between visits ; ,   incuding   7:                              0  8:                                        1 , ,   recalculate ·  9:  Fix the solution to satisfy capacity restrictions: ,    
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5 Time Consistency and Heuristic Algorithms 

Bellman in 1957 [20] formulated the optimality principle. According to it, “an optim-
al policy has the property that whatever the initial state and initial decision are, the 
remaining decisions must constitute an optimal policy with regard to the state result-
ing from the first decision”. Therefore, we can conclude that for any step restriction of 
optimal solution for remaining time interval is optimal for corresponding current  
subproblem. 

If the solution is obtained with a heuristic algorithm, its optimality for the main 
problem is not guaranteed, and the same is for restricted solutions and corresponding 
subproblems. However, subproblems are smaller in scale, therefore algorithm work-
ing time decreases and the probability of obtaining better solution could increase.  

5.1 Algorithm Quality Criterion: Time Consistency 

This criterion can be used for general routing problems, because their solutions 
(routes) can be represented as consequence of nodes visited during time horizon. The 
same representation also can be used for IRP. 

Let us consider set of benchmark instances  for the IRP class. Suppose that for 
each instance  we can obtain a set of different solutions  generat-
ed by an algorithm. Length of the consequence of nodes corresponding to  is 
denoted by . Define ,  as remaining consequence of nodes after 
step 1, … , . Suppose   to be executed in period . At step  we 
construct the subproblem  on interval ;  where nodes already visited at 
period  are excluded for visit in current period, their initial inventory level is 
equal to ,  and ,  for others. Then we obtain solution  for the 
subproblem using the same algorithm.  

Definition. Solution  is time consistent, if for each 1, … ,  the fol-
lowing inequality holds: , , where  is the objective function 
in the current problem. 

Let us perform  experiments for each solution . Each experiment 
consists in c hecking whether solution is time consistent or not.   Let ,  be the 
number of experiments, in which time consistency is violated for the solution  at 
step . If  is optimal, then regarding Bellman’s principle of optimality we would 

have the following quality: ∑ , 0. Since heuristics do not guarantee opti-

mality of the solution, we can only have ∑ , . 

Definition. Assume experimental level of heuristic time consistency ( ) to be the 
value calculated as follows 1  1| | 1| | 1 ,  
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One can note that 0 1. Higher value of experimental level of time con-
sistency for heuristic forms expectation that this heuristic generates solutions which 
appear to be “more” time consistent compare to other heuristics having less value of 
the defined criterion. 

5.2 Dynamic Adaptive Large Neighborhood Search (DALNS) 

Iterative method for improving solution of VRP (more exactly, CVRG – cooperative 
vehicle routing game) was proposed in paper [21]. Using its main idea, we upgrade 
this method for the class of inventory routing problems. 

We introduce the following notation. Suppose ·  is the ALNS algorithm 
function,  is the solution obtained with the algorithm,  is the consequence of 
passed nodes of the solution s,  is the consequence of remaining nodes, C is con-
stants of the problem, f is the objective function of the problem. Then, we can present 
the general scheme of the Dynamic Adaptive Large Neighborhood Search (DALNS).  :  DALNS 0:    Initialization:    initial solution ,   ,    1:         2:              ,     3:                   4:            1 , 1 , 1  

6 Computational Results 

All algorithms were programmed in C++. Experiments were performed at HPC-
cluster of Electromechanical and Computer Systems Modelling department, faculty of 
Applied Mathematics and Control Processes, SPbU. Cluster specifications: operating 
system Linux SLES 11 SP1, 12 nodes × 2 processors Intel Xeon 5335 × 4 cores, 16 
GB RAM per node. 

To perform experiments, 20 instances were taken from resource http://www.leandro-
coelho.com/instances/inventory-routing/. They originate from [6], and have been consi-
dered in number of IRP studies. Chosen instances differ in level of holding cost ( : low or 
high), number of periods ( : 3 or 6) and number of customers ( : 10/20/30/40/50/100). 
These characteristics are also presented in Table 1 in column “instance”.  

We have calculated the experimental level of time consistency for ALNS  
algorithm: 0,545424 

For each instance, 100 solutions have been obtained, among them  were dif-
ferent. For each solution DALNS has been implemented   times (one for large 
instances: 6×50 and 6×100; ten for others). 
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We use following additional notation. 1 is the number of violations of time con-
sistency among all  tests. 2 is the number of time inconsistent solutions, 
i.e. solutions that were time inconsistent in all  tests. In the same sense, 3 is the 
number of time consistent solutions. Note that 2 3 . This values are 
presented in Table 1.  

In the last columns of this table, we compare ALNS and DALNS performance. We 
present average (Avg. ) and standard deviation ( ) of objective function vaules of 
generated solutions set for each instance. 

Table 1. Results of DALNS implementation 

Instance 
N(p) M N1 N2 N3 

ALNS DALNS 

h T n Avg.   Avg.   

lo
w

 

3 

10 7 10 0 0 7 1625,04 56,5964 1625,04 56,5964

20 26 10 0 0 26 2695,07 351,649 2695,07 351,649

30 72 10 18 1 67 3770,14 406,636 3770,07 406,12

40 74 10 73 5 61 4284,57 483,59 4267,39 448,406

50 92 10 38 2 85 4647,59 375,56 4638,27 347,246

6 

10 51 10 323 25 10 3787,11 172,105 3716,21 152,237

20 100 10 783 68 13 6143,56 459,988 5922,44 384,808

30 100 10 827 61 4 8113,19 597,666 7807,11 471,044

50 100 1 90 90 10 10526,8 624,891 10209,2 709,574

100 100 1 75 75 25 16873 938,445 16507,2 912,191

hi
gh

 

3 

10 7 10 0 0 7 3663,97 55,3075 3663,97 55,3075

20 30 10 17 0 24 6040,8 266,576 6039,99 265,39

30 87 10 125 4 64 10140,3 361,031 10129,3 330,997

40 87 10 180 14 62 11398,7 445,25 11377 392,563

50 91 10 197 13 67 12360,4 305,425 12348,1 290,239

6 

10 72 10 585 48 6 7574,81 191,467 7484,25 193,026

20 100 10 833 70 8 13045,5 361,751 12900,8 333,288

30 100 10 884 81 5 20357,3 527,622 20165,1 422,808

50 100 1 94 94 6 27358,4 656,647 27109,8 635,106

100 100 1 94 94 6 52188,2 780,861 51821,9 698,469

7 Conclusions 

The main purpose of the study was to explore the idea of heuristic solution time con-
sistency. One can notice that level of time consistency of the solution generated by 
ALNS is little bit more than 0.5, that is about half of generated solutions appears to be 
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time inconsistent. We have suggested in the paper a new approach to find level of 
time consistency of heuristics and proposed the Dynamic Adaptive Large Neighbor-
hood Search (DALNS) algorithm which can generate better solutions than ALNS. 

DALNS shows itself well in computational experiments: the value of improvement 
reaches 22% of primary solution and the number of tests in which solutions generated 
by ALNS were improved equals 5236 (46% of total amount). Note, that effectiveness 
of the method increases with the scale of problem. 
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Abstract. This paper deals with the flexible job-shop scheduling prob-
lem (FJSP): an amount of jobs have to be executed by a limited number
of resources that can be exchanged for some tasks. Solving such a sched-
ule consists in allocating a resource for each task in the jobs. But one
must be able to cope with unexpected changes in the model, i.e. un-
certainties such as a modification of the duration of some tasks, or an
additional job, or a resource that is added or removed... Yet, for oper-
ational reasons, the change in the schedule must remain little. We pro-
pose a domain-independent plan adaptation algorithm satisfying those
requirements, which principle is to move tasks within the plan like sliding
puzzle pieces. This algorithm is also able to cope with uncertainties on
the tasks duration. It does not need the initial solver. This local search
approach is compared to another, a classical tabu search [7] in which we
introduced several criteria.

1 Introduction

We are interested in temporal planning problems of resource allocation such as
in the crisis management context [1,2], where one must organize the rescuers
intervention after a disaster. There are several independent goals (to rescue each
victim). So there is a job (ordered list of tasks) to execute for each victim. And
one has several resources that cannot be shared at the same time (e.g. different
types of ambulances, vehicles...). There are resources that can be exchanged
(e.g. there are several ambulances). Such a problem where a set of jobs must be
scheduled on resources (or machines) is classically called a job-shop problem. In
our case, there are several alternative resources that can be allocated to some
tasks: it is a flexible job-shop problem (FJSP) [7].

We suppose that a schedule, i.e. is a timed list of tasks, has already been
computed by an external solver. It is being executed, but a problem occurs
suddenly: a task is delayed or ending at an unexpected time, or a new estimation
is provided for a future task duration. The disruption corresponds to a change
in the FJSP model. The schedule is thus no more valid. It must be repaired or
adapted.

c© Springer International Publishing Switzerland 2015 243
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The aim of this work is to propose a plan repair method. The ongoing tasks
must not be stopped. The initial planning solver is supposed not to be reasonably
available, so one cannot replan entirely from scratch. One must propose a solution
which is executable and reaches the goals minimizing the makespan (overall plan
duration). There must also be few changes between the original plan and the
repaired one, since the agents, who are humans, must not be disrupted. We
will thus consider multiobjective approaches to cope with these two criteria
(makespan and distance to the original schedule).

Local search approaches are well suited to this kind of problem since their
principle is to choose a solution which is close to a previous one. In this paper
we will present an approach derived from a classical tabu search that was pro-
posed by Gambardella et al.[7], and a new approach using the computation of
potentials: the 15 puzzle potential algorithm. It has been proposed in order to
improve the time computation.

2 Problem Modelling

2.1 Model for the Flexible Job-Shop Problem (FJSP)

A job-shop problem is a very classical scheduling problem consisting of jobs that
have to be executed on a set of resources (or machines). Each job is composed of
tasks. Each task has a given duration and must be executed by one resource, and
each resource can perform only one task at a time. Solving the job-shop problem
consists in determining a start time of each task by optimizing a criterion –
which is generally the makespan (overall duration).

A FJSP is a job-shop problem where the resource that can be used to perform
a given task can be chosen in a set of possible alternative resources. Formally,
the FJSP is defined by

– a finite set of resources R,
– a set {R1, R2, ...Rk, ...} of subsets of R (classes of resources),
– a set of jobs Ji, each one being defined by a ordered sequence of tasks,
– all the tasks of all the jobs are denoted as a = ap with 1 ≤ p ≤ Np; each p
represents the task belonging to a job Ji at a rank j,

– class(a) the class of resource needed for each task,
– τ(a) the time duration of each task.

To solve a FJSP, one must find for each task a a start time tstart(a) and a
resource r(a) = r ∈ Rk such that class(a) = k. A solution to the FJSP is a
schedule (plan). It can be denoted as Π = (tstart, r).

The subplan (i.e. a subset of tasks of a plan) using one given resource is called
a queue. Each task a of the plan belongs to at most one job and at most one
queue.

In the job shop scheduling problem formalism, the tasks ap are vertices of
the associated disjunctive graph G(V,C ∪D) ([7]) with the set of vertices V =
Π ∪ {a0, aNp+1} (one adds dummy vertices with 0 duration at the beginning
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and the end of the plan). The precedence constraints represented by the directed
edges C correspond to the order that must be respected in each job. Since the
resources cannot be used by more than one task at the same time, one has
additional constraints in each queue. So we can express all of them by a direct
dependence relationship between tasks: D(ap, aq) = 1 if and only if ap precedes
aq in a job or in a queue. D(ap, aq) = 0 otherwise.

2.2 Extension of the FJSP Model to Duration Uncertainty Intervals

We will consider also an extension of the FJSP by introducing an uncertainty
about the duration of the tasks. In that case, each task a will have a duration
uncertainty interval [τmin(a), τmax(a)].

2.3 Existing Techniques

In the literature, there are several plan repair strategies that do not use the initial
solver; in [12] the dilemma of repairing a plan is discussed; in [3,10], a theoretical
formalism of causality is studied. Some plan adaptation with search techniques
use the LPG (Local search for Planning Graphs) algorithm [8,6], which is a local
search-based on a graph. Many other approaches use partial plans, such as refine-
ment planning [11], which proceeds in two phases: first removing the tasks that
prevent the plan from reaching its goal, then planning to extend the partial plans.

Apart from the plan repair issue, the problem of handling uncertainties on
task durations has also been studied in the literature [4,5]. These approaches are
stochastic (they are interested in the probability of satisfying a goal). In these
approaches time is a constraint in models involving concurrency between tasks.

Gambardella [7] proposed a local search approach for FJSP scheduling. It
is based on an intuitive heuristics that we will apply to plan repair and plan
adaptation in this paper. It has also been associated to genetic approaches ([14]).
Huang [9] proposed a repair method for FJSP by formulating as a constraint
satisfaction problem.

The proposed domain-independent plan repair approach, where the overall
duration of the plan is a criterion to minimize and not a constraint, handles
uncertainties about tasks durations within a simple theoretical model of the
plan – a set of jobs. It is an empirical sub-optimal strategy including an original
method to shortlist solutions. The merit of our new approach is to reduce the
computation time.

2.4 Expression of the “Few Changes” Criterion

In order to evaluate the changes between two plans, one must define a distance
criterion. There exists a criterion for the distance between two plans Π and Π ′

that was proposed by Fox et al. [6], which is the number of tasks that are in Π ′

and not in Π plus the number of tasks that are in Π and not in Π ′:

D(Π,Π ′) = �(Π ′ \Π) + �(Π \Π ′)
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This criterion can be used locally and it expresses what the authors call the
plan stability. It is adapted to plans that are repaired by local modifications, e.g.
where a local subplan has been replaced by another. Thus this distance criterion
is equal to the sum of the lengths of the two subplans.

In our approach the modifications of the plan will not be local. The changes
will affect the parameters of some tasks. So, it is thus more relevant to consider
the distances between jobs and to average them on the jobs. We thus chose the
quadratic distance between times in order to fulfill the mathematical properties
of a distance:

Dt(Π,Π ′) =

√∑

i

dt(ap, a′p)

where ap are the tasks of Π , a′p are the tasks of Π ′, and

dt(ap, a
′
p) =

(
tstart(ap)− tstart(a

′
p)
)2

+
(
tend(ap)− tend(a

′
p)
)2

is the square distance between the initial time tstart(ap) and final times
tend(ap) of corresponding tasks ap and a′p before and after a plan modification.
In practice, we used the minimum duration: tend(ap) = tstart(ap) + τmin(ap).

3 The Two Multiobjective Local Search Approaches

In this section we describe the two approaches to be compared: the Gam-
bardella’s tabu search [7] extended to multiple criteria, and the 15 puzzle po-
tential algorithm, which is orignial. Both methods use some common issues that
will be described first.

3.1 Common Issues for the Two Approaches

Plan Analysis. Before running the algorithm, an initial plan analysis phase
extracts the resource it uses and the job it belongs to (if any). The initial plan is
supposed to be compressed, i.e. each task is dated as soon as possible according
to the previous tasks it depends on. Then the plan is decomposed into jobs and
queues (see Section 2.1). One computes the durations Ti of each job Ji. The
maximum among them, Tmax, is the duration of the plan.

Moving a Task. The idea is to apply so-called elementary modifications in
the plan and to choose good candidates iteratively. They consist in replacing
the resource r of a task by another one r′ belonging to the same class. Each
elementary modification can be seen as “moving” a task from one queue to
another within the plan like moving a piece in a 15 puzzle1. An elementary
modification will be denoted as d = (r, n, r′, n′). The moved task was formerly
located at rank n on the queue of resource r, and it is moved onto the queue of
resource r′ at rank n′.
1 The most famous sliding puzzle.
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Critical Path. A critical path of a planΠ is a subplanΠ ′ ofΠ of tasks blocking
each other and ending at Tmax. In other words, Π ′ = {a′p, p = 1...N ′

p ≤ Np} in
which a′p+1 cannot be performed before a′p is finished and tend(a

′
p) = tstart(a

′
p+1)

for 1 ≤ p ≤ N ′
p− 1 and tend(a

′
N ′

p
) = Tmax. An example is illustrated in Figure 1.

In the two approaches examined in this paper, one computes all the elementary
modifications obtained by moving a task from the critical paths only. It is obvious
that moving a task from a non-critical path is less relevant.

Fig. 1.Optimal schedule for the jobs of Table 1. An example of critical path is indicated
(tasks pointed by arrows).

Hierarchical Multi-criteria Optimization. In both studied approaches, we
want to take into account two criteria: the makespan Tmax and the distance to
the original plan, which is will be represented by Dt(Π,Π ′) but can be replaced
by another distance criterion or the total number of elementary modifications.
To introduce these two criteria in the algorithms, we will use hierarchy: the
makespan is optimized first. In there are several ex-aequo solutions, the second
criterion is optimized.

There is also another criterion: the computation time (CPU). It will be eval-
uated afterwards and of course it is not an optimization criterion.

3.2 The Multicriteria Tabu Search Approach

The idea of tabu search is to start from one solution and find successive new
solutions. The solutions that have already been examined are eliminated and
listed in a so-called tabu list. Each new solution is chosen as being the best one
in a neighborhood of the previous solution out of the tabu list.

We will use Gambardella’s neighborhood ([7]), which is the set of solutions
obtained by moving one task (see Paragraph 3.1).

And we use also his tabu list, i.e.: when moving a task a onto the queue of
resource r′ behind task aprev, one adds the triple =aprev, a, r

′) to the tabu list.
If the tabu list is too long its size is limited by forgetting the oldest triples.
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3.3 The 15 Puzzle Potential Algorithm

Principle. The idea of this new approach is to use an approximate criterion –
the potential – which is faster to compute than the actual makespan, in order
to reduce the computational time. Some solutions are shortlisted on the basis of
the potentials, and then the overall computation is performed on the shortlist
only (and not on all the possible solutions).

The algorithm examines successively a growing number Nmodif of elemen-
tary modifications. At each iteration, we have a set of selected plans containing
Nmodif − 1 modifications.

For each of them, we examine all possible additional elementary modification
and reject it if it does not satisfy the precedence constraints; otherwise, we com-
pute a function called potential. Then we shortlist the Nshortlist modifications
who have the best potentials; then we compute and store their associated plans.

When all the plans containing Nmodif − 1 modifications have been examined,
we select the Nselect best solutions among all the shortlists.

Computation of the Potentials. We are considering here a possible elemen-
tary modification, which consists in moving a given task a from its original queue
to queue Π(r) at rank k. First one must eliminate some cases: already seen cases,
impossible cases due to cycles, or impossible cases due to the fact that the user
may have imposed that some tasks cannot move.

In an elementary modification, one must:

– delay if necessary the task a2 following ap in its new queue;
– delay if necessary the task anext following ap in its job Ji;
– move forward if possible the task a1 following ap in its former queue;
– move forward anext (if it has not been delayed).

Is is possible to compute a lower bound for the new start time : t′start(a1),
t′start(a2) and t′start(anext). We thus introduce the following variables:

δ1 = t′start(a1)− tstart(a1) δ2 = t′start(a2)− tstart(a2)

δnext = t′start(anext)− tstart(anext)

and to obtain the potential of the elementary modification, we compute the
uncertainty interval Ii for the durations of all the jobs Ji that are depending on
a1, a2 or anext. The overall duration will be inside the interval defined by

Tmax = maxi (inf(Ii))) and Tmax = maxi (sup(Ii)))

and the potential, which is our criterion including the risk aversion α, is

V = αTmax + (1− α)Tmax (1)
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Thus, for a given number of elementary modifications, we select the Nshortlist

candidate plans who have the best value for V . Then, we store each of them, and
compute exactly their Tmax.

When this has been done for all the numbers of elementary modifications,
we choose the minimal Tmax among all the stored plans. If several plans have
the same minimal value, we choose the plan with least temporal distance to the
initial plan.

This expression of the potentials has been chosen such that it is representative
of the makespan of a schedule, which can be seen in Figure 2 and however it is
faster to compute than the real makespan (since one must not compute all the
values of tstart).

Fig. 2. Relationship between the potential ane the corresponding makespan (computed
in one of the test plans of Section 4.1

Structure of the Algorithm. So, there are two levels for selection: the el-
ementary modifications are shortlisted from their potential; the best plan is
chosen among the shortlists according to its computed criteria. Here below is
the pseudo-code (Algorithm 1).

4 Results

4.1 Comparison of the Two Approaches

The proposed tabu search approach and the 15 puzzle potential algorithm are
suited to repair plans for various types of disruptions. One idea to test its ca-
pacity to repair plans is to compare its results on various random disruptions
of a same plan. To do that, we took as a reference a given set of jobs (that was
generated randomly), and a given set of resources.

The Test Sample. The performances of the studied plan adaptation ap-
proaches have been studied by Monte-Carlo on randomly generated schedules.
This test sample was built in the same way than the first test sample used in [7].
It consists in Ns jobs that were generated randomly for a total number Mp of
tasks, for each task a class of resource is determined randomly. The total number
of resources is Nr.
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Algorithm 1. 15 Puzzle Potential Algorithm

1. Σ0 = {Π0} // Initial schedule
2. Σ′ = Σ0 // Shortlist of solutions
3. for 1 ≤ k ≤ kmax do // number of modifications
4. Σk = ∅ // set of solutions with k modifications
5. for Π ∈ Σk−1 do
6. for d = (r, n, r′, n′) do
7. if Π ′ = f(Π, d) is possible then
8. D(Π) = D(Π) ∪ {d} // set of possible modifications
9. COMPUTE V (Π,d)
10. keep the Nshortlist elements of D(Π) that have best V (Π,d)
11. for d ∈ D(Π) do
12. COMPUTE Π ′ = f(Π, d)
13. COMPUTE Σk = Σk ∪ {Π ′}
14. keep the Nselect best elements of Σk

15. Σ′ = Σ′ ∪Σk

16. keep the best Π ∈ Σ′

For each job, we generated randomly:

– a number of tasks;
– a resource class needed for each task;
– a duration τ for each task, with average τ0 = 10 and max variation rate
max(τ − τ0)/τ0 = 0.8.

The set of jobs is then fixed but we generate randomly a great number of
allocations (picking a resource in each class). The time of each task is chosen as
soon as possible such that the plan is feasible.

It this series of tests we had Ns = 7 jobs that were generated randomly for a
total number Mp = 50 of tasks. The total number of resources is Nr = 11, with
4 classes of resources, each one containing respectively 4, 3, 2 and 2 resources.
The jobs and the classes of resources are given in Table 1.

Table 1. The jobs used in the tests. The numbers are the classes of resources to be
used in the tasks. One supposes that two consecutive tasks may be different however
they use the same class of resource.

J1: 3 4 2 3 J5: 1 2 1 3
J2: 3 2 1 J6: 3 1 3 3 2 4
J3: 2 2 J7: 1 1 4 1 2 4 3 4 1
J4: 2 4

The optimal solution was computed using the CPT solver [13]. It is shown in
Figure 1. Its makespan is 101. To use CPT, we had to generate the description
of the jobs in PDDL language.

To do the Monte-Carlo evaluation, we generated a set of 10 schedules by
random allocations on these jobs. We ran the algorithms on each of them and
compared the averaged performances the obtained schedules.
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Obtained Performance. For the 15 puzzle algorithm, we adjusted experi-
mentally the parameters: α = 0.5 and Nselect = 1. To study the influence of the
shortlist size Nshortlist, we obtained the results shown in Table 2, and the cor-
responding curves are shown in Figure 3. When Nshortlist is too small, Table 2
even shows that there are failures (the algorithm does not find a solution). We
conclude that we must choose Nshortlist < 10.

Finally, if we consider independently the 3 performance criteria (the makespan,
the temporal distance, and the CPU), the comparison of the tabu search and
the 15 puzzle approaches is summarized in Table 3:

Table 2. Obtained performances with various values for Nshortlist

Tabu 15puzzle

Nshortlist 1 1 2 3 5 10 15
makespan 101 112.5 108.6 104.9 105.3 103.7 103.7
CPU 2.53 0.85 1.03 1.36 1.80 2.82 3.89
Dt 98.55 75.14 74.33 80.02 73.72 76.04 74.15
Nmodifs 4.7 4.3 5.1 4.6 3.4 4.0 4.4
optimal 100 % 30 % 50 % 60 % 60 % 80 % 80 %
failure 0 % 10 % 10 % 0 % 0 % 0 % 0 %

Table 3. Best approach for each criterion

Tabu 15puzzle

makespan X
temporal distance x
CPU X

Fig. 3. (Left) Average CPU versus makespan for various values of Nshortlist.
(Right)Average temporal distance versus makespan for various values of Nshortlist
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Fig. 4. (Top) Initial plan with 2 ships allocated on 7 resources of the harbor. (Middle)
New process (job) for a new ship arriving at the harbor at t = 30. (Bottom) Adapted
plan for the 3 ships, after running the 15-puzzle algorithm.

4.2 Application to a Flow of Arriving Jobs

The 15 puzzle potential algorithm can be applied to assess a flow of jobs that
arrive randomly and must be dispatched to a limited number of resources, as for
example ships arriving in a harbor. When a ship comes, it needs to be processed
with an ordered sequence of tasks : disembark passengers, unload, oil supply,
maintenance... Each task uses a resource: platform, crane, manpower... Each
ship is represented by a job.

In the following numerical example, the jobs were generated randomly as
in the tests below but one at a time. We also used the same model for the 7
resources in the harbor. At a given time, one has an initial plan with 2 ships.
At time t = 30, a 3rd ship arrives: it is randomly allocated and simply added to
the previous plan without optimizing the overall plan duration. After running
the 15 puzzle algorithm, the overall duration has been shortened (see Figure 4).
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5 Conclusion

We have examined two approaches for plan repair and adaptation for FJSP.
They are based on a local search consisting in moving tasks from one resource
to another. One is derived from a classical tabu search, the other one – the 15
puzzle algorithm – is an original approach based on potentials. Both work from
a given initial plan without using the initial solver. One of the main operational
advantages is that these algorithms handle a criterion to maintain little distance
to the initial plan. The 15 puzzle is less optimal than the tabu search but it often
obtains a solution which is close to the optimum in a shorter time and with less
distance to the initial plan. The 15 puzzle can also a larger class of problems
since it can address uncertainties about the durations of the tasks. Note that the
approaches were implemented with an additional operational constraint: some
tasks were fixed.

Implementation and validation tests show that this new algorithm works, pro-
viding repaired plans that are shorter in time duration than the single compres-
sion of a disrupted plan. It often finds an optimal solution with few modifications.
And if is well suited to manage a flow of demands.

Its capability to involve uncertainty about tasks duration can be exploited
more in further works. We just showed theoretically in this paper that an uncer-
tainty about task durations can be taken into account in the potential function.
But one could do more testing, and also introduce a fuzzy model for the tasks
durations.
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Abstract. The paper discusses a new approach to developing tools for quantita-
tively analyzing the financial behavior of small and medium price-taking trad-
ers each possessing abilities to predict share price values for a set of financial 
securities traded in a stock exchange. Tools for forming and managing a trad-
er’s portfolio of securities from this set are proposed. Particularly, it is shown 
that when the trader can treat share price values from the portfolio as random 
variables with known (to her) distributions, an optimal portfolio composition is 
found by solving a linear programming problem. Otherwise, this optimal  
composition is found as the trader’s equilibrium strategy in an antagonistic  
two-person game with the stock exchange being the other player. In this game 
on polyhedra of disjoint player strategies, described by systems of linear equa-
tions and inequalities of a balance kind, calculating saddle points is reduced to 
solving linear programming problems forming a dual pair. 

Keywords: dynamics of financial securities, linear programming, portfolio, 
price-taking traders, random variable distribution, saddle points, two-person 
games on polyhedral sets of disjoint player strategies.  

1 Introduction 

Stock exchanges are an economic phenomenon affecting the economy in every coun-
try, and this fact contributes to a great deal of attention to studying the stock exchange 
behavior, which has been displayed for years by a wide spectrum of specialists (ex-
perts), especially by financiers, economists, sociologists, psychologists, politicians, 
and mathematicians. What becomes known as a result of their studies, what these 
experts can (and wish to) explain and interpret from findings of the studies to both 
interested individuals and society as a whole to help them understand how the stock 
exchanges work, and how good (or bad) these explanations are make a difference. 
Indeed, economic issues and policies, the financial stability and the financial security 
of every country and the personal financial status of millions of individuals in the 
world who invest their personal money in sets of financial instruments traded in stock 
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exchanges are affected by the stock exchange behavior. The existing dependency of 
the above “customers” on the ability (or inability) of the experts to provide trustwor-
thy explanations of this behavior makes advances in developing tools for quantitative-
ly analyzing the work of stock exchanges important for both the financial practice and 
economic science.  

These tools seem indispensible, first of all, for specialists in economics and 
finance, since they let them a) receive, process, analyze, and interpret available in-
formation on the financial behavior of both stock exchanges and their participants, b) 
form, test, and analyze both scientific and experience-based hypotheses on the stock 
exchange behavior, along with mathematical models for its description, and c) study, 
evaluate, and generalize the experience of successful traders. So developing the tools, 
especially those being easy to operate, widely available, and producing results of their 
work that are easy to understand presents interest for a sizable number of individuals. 

The present paper discusses a new approach to developing such mathematical 
tools. The idea of the approach is to propose models for forming and managing a 
trader’s portfolio of securities that would let one use linear programming techniques 
for finding an optimal composition of the portfolio, and two models are proposed to 
this end. The first model is applied when at the time of making a decision on forming 
the portfolio, the trader possesses information that allows her to treat changes of each 
security as those of a random variable with a known (to her) distribution, and an  
optimal portfolio composition is found by solving a linear programming problem. The 
second model covers the case in which no information on the probability distribution 
of the above random variable is available to or can be obtained by the trader. In this 
case, the trader’s decision is sought as that of a player in a two-person game on poly-
hedra of disjoint player strategies, described by systems of linear equations and in-
equalities of a balance kind, where the stock exchange is the other player. In this 
game, an optimal trader’s strategy is a vector component of a saddle point of the 
game, which can be found by solving linear programming problems forming a dual 
pair.  

2 Detecting the Ability of a Price-Taking Trader to Predict 
Future Prices of a Financial Security and to Succeed  
in Using this Ability in a Standard and in a Margin Trading 

The ability of a trader to predict (or to divine) the price dynamics for a set of particu-
lar financial securities traded in a stock exchange is a determining factor in forming 
her optimal portfolio. However, even for a person gifted in predicting either values of 
any time series in general or only those describing the dynamics of particular financial 
securities with a probability exceeding 50%, this ability as such may turn out to be 
insufficient for successfully trading securities in a long run or even in a short period 
of time. Thus, tools for detecting the ability of a potential trader to predict share price 
values for a set of financial securities with a probability exceeding 50% and those for 
testing this ability from the viewpoint of the final financial result (that the trader may 
expect to achieve by trading particular financial securities within any particular period 
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of time) are needed. These tools may give the potential trader the impression of what 
she should expect by embarking the gamble of trading in stock exchanges and may 
warn those who do not display the ability to success in trading financial securities 
either in general or in a margin trading with a particular leverage to abstain from  
participating in these activities. 

A software complex for estimating the probability with which a potential trader can 
predict the upward and downward directions of changing the share price values of a 
financial security works as follows: The trader is offered a set of segments of a time 
series describing these values for a financial security of her choice, and the result of a 
trial (consisting of the trader’s prediction made at the end point of a chosen segment 
of the time series) is compared with the real value of the share price. The set contains 
segments of the same length to secure the same conditions of conducting the trials, 
and the segments are chosen in a manner securing the independence of each trial out-
come of those of the other trials. Meeting both conditions lets one consider the ratio 
of the number of the correct predictions to the total number of trials an estimate of the 
above probability [1].  

Another software complex lets a potential trader estimate possible final financial 
results of trading a particular security with a detected probability to predict the direc-
tions of changing the share price values of this security. The trader predicts the direc-
tion of the share price values of the security at a consequent set of moments (at which 
the real values of the security share prices constitute a time series) and chooses the 
number of shares that she wishes to trade (to buy or to sell) at each moment from the 
set. The financial result of both activities is compared with that calculated at the real 
share price values for the sets (time series segments) of various lengths of the trader’s 
choice. Also, the trader can see financial results of simulations conducted for a sizable 
number of “artificial traders,” each of who predicts share price values of a particular 
security with the same probability as does the trader, along with the average final 
financial result for the whole group [2, 3]. 

3 Two Mathematical Models for Analyzing the Interaction  
of a Price-Taking Trader with a Stock Exchange 

Consider a price-taking trader who buys and sells financial securities on a stock ex-
change, whose ability to predict the direction of changing the share price values of the 
securities with the probability exceeding 50% for each of them has been tested and 
confirmed for a set of financial securities traded there. Let a)  be this set for which | | elements, where for any set , | | is the number of elements in , b) 0.5, 1,  be the above probabilities and c)  be the amount of financial 
resources that the trader can spend at the moment  both on buying additional shares 
of financial securities from the set  and on margin trading. Let the trader know share 
price values for financial securities from the set  for a period of time up to the mo-
ment , and let us assume that the trader is ‘careful,’ meaning that this trader trades 
financial securities from the set  at the moment  only if the inequality 0 /2 has been held for all 0 , where 0  is the amount of money that the 
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trader had at the time of forming her portfolio. Finally, let us assume that at any  
moment , the trader can implement her decisions on changing the structure of her 
portfolio of financial securities from  without a delay, either directly or via a broker. 

3.1 Analyzing Financial Strategies of a Price-Taking Trader under a Known 
Probability Distribution of Share Price Values for Each Financial Security 
from the Portfolio 

Let  be a subset of securities from the set  such that for each security from 
, the trader expects its share price value to change upwards at the  moment 1, \  be a subset of securities from the set  such that for each security 

from , the trader expects its share price value to change downwards at the mo-
ment 1, and \  be a subset of  such that for each securi-
ty from , the trader is not certain about the direction of changing its share price 
value at the moment 1. 

Let  be the number of shares of security  that the trader possesses at the mo-
ment , 1, ,  is the share price value for security  at the moment ,  , 

 is the maximum share price value for security  that the trader has seen up to 
the moment , ,  is the minimum share price value for security  that the 
trader has seen up to the moment , , 1  is the share price value for securi-
ty  that the trader expects to be at the moment , ,  be the number of shares 
of security  that the trader intends to buy at the moment , ,  be the 
number of shares of security  that the trader intends to sell at the moment , ,  be the number of shares of security  that the trader intends to receive 
from brokers to open a short position based upon the size of her collateral, , and let the following assumptions on the dynamics of changing the share 
price values of securities from the set  hold: 

a) at the moment , the value of the share price of security  changes upwards 
(compared with its value ) as a continuous random variable  that is uniformly 
distributed on the segment ,  with the probability density  1 ,  , ,0,  , ,  

b) at the moment , the values of the share price of security  changes downwards 
(compared with its value ) as a continuous random variable  that is uniformly 
distributed on the segment ,   with the probability density 1 ,  ,  ,0,  , ,  

and c)  and  are independent random variables. 
Further, let  be the event consisting of the trader’s prediction that the share 

price value of security  will change upwards at the moment 1 compared with the 
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value , , i.e. the inequality 1  will hold,  be the event 
consisting of the trader’s prediction that the share price value of security  will change 
downwards at the moment 1 compared with the value , , i.e. the inequa-
lity 1  will hold. 

It is clear that if the event  takes place at the moment  for security , then 
the expectation of the share price value of security  at the moment 1 equals 1  , , whereas if the event  takes place at the mo-

ment  instead, then 1  , .  
If the event  occurs with the probability , then the opposite event  oc-

curs with the probability 1 . The event  is a sum of two incompatible events 
 and , where  is the event consisting of changing the share price val-

ue for security  at the moment 1 downwards, whereas  is the event consist-
ing of holding the equality 1 . Assuming the events  and  
are equally possible, one can conclude that the expectation of the share price value for 
security  is a discrete random variable with the values  ,  

 and  and with the probabilities of these values equaling ,   and , respectively. Analogously, if the event  occurs with the 

probability  for security  from the set , the probability distribution of the 
share price value for security  is a discrete random variable with the values  ,  

 and  and with the probabilities ,   and , 

respectively. Finally, the expectation of the share price value for security  is 
a discrete variable with the probability distribution described by the values ,  ,  

 that are assumed with the probabilities ,   and , 

respectively.  
At every moment  the trader a) divides all the securities from the set  into three 

groups so that , where ,, , b) buys shares of securities from the set , sells shares of 
securities from the set  and invests the revenue from this sell into buying shares 
of securities from the set , c) holds all the shares of securities from the set , 
and d) may to decide to borrow shares of securities from the set  (using her total 
financial resources as a collateral) to open short positions. Thus, her financial strategy 
at the moment  is determined by the numbers of shares of securities from the set  
that she intends to buy, to sell, to borrow, and to hold. Let , , ,

, and ,  be the numbers of shares from the first three of the above 
four categories, and let  be the value of the leverage in the margin trading of se-
curities from the ser  offered by a broker to the trader at the moment . One can 
easily be certain that the expected share price values for securities from the sets , , and  at the moment 1 are  

1  2 1 2  2 1 2 , , 
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1  2 1 2  2 1 2 , , 
1 1 2  2 1 2  2 , . 

If the optimal financial strategy of the trader at the moment  is understood in the 
sense of her expected amount of total financial resources (associated with trading 
securities) at the moment 1, this strategy can be found by solving the following 
linear programming problem:  1 1 max   

1 1 1
1 , 1  

1 , 
, 

0, , 0, , 0, . 
Let , , , , ,  be a solution to problem 

(1). Then the number  1 1 1
1 , 

determines the expected total amount of the financial resources of the trader at the 
moment 1. 

To verify whether the system of constraints of problem (1) is compatible, one can 
use a technique, proposed in [4], whose application requires solving an auxiliary li-
near programming problem with a wittingly compatible system of constraints. More-
over, if system (1) is incompatible, the use of the technique proposed in [4] also  
allows the trader to find out a) whether under her expectations on the probability val-
ues for the share price values 1 , , she can increase the total amount of  
her financial resources (associated with trading securities) at the moment 1  
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(compared with ), and b) how much she should expect to lose by making the 
transactions at the moment  as she planned. 

One should bear in mind that, generally, problem (1) should be formulated as an 
integer programming problem, since the numbers , , ,  and ,  are integers. However, since usually, all these numbers are substan-
tially larger than unit, problem (1), which is a relaxation of the corresponding integer 
programming problem, can be solved instead, and non-integer values of the variables 
in the solution can be rounded-off. Certainly, for a relatively small number , problem 
(1) can be solved as an integer programming problem (with the additional constraints 0 , , 0 , , 0 , , 
where  is the set of all natural numbers). 

Remark 1. The uniform distribution for changing share price values of the securi-
ties from the set  is the basic assumption on analyzing the financial behavior of the 
price-taking traders who rely on their own intuition regarding the dynamics of these 
share price values more than on any statistical regularity of the dynamics of their 
changes. However, any other trustworthy probability distributions can be used for 
calculating the numbers 1 , , 1 , , 1 ,

, as long as these probability distributions are known to the trader. 
Remark 2. The consideration of the share price values of security  at the moment  

as those of two random variables (one for the upward changes and the other for the 
downward ones) reflects the fact that the regularities underlying these changes are, 
generally, different and usually correspond to the prevailing of a particular  
type of the market (such as, for instance, the ‘bull market’ and the ‘bear market,’  
respectively). 

3.2 Analyzing Financial Strategies of a Price-Taking Trader in the Absence of 
Assumptions on the Probability Distributions of Share Price Values of 
Financial Securities from the Trader’s Portfolio 

The assumption on the uniformity of the distribution of the share price values for 
securities from the trader’s portfolio reflects a kind of uncertainty that the trader may 
have on the regularities of changes of these prices. Another kind of uncertainty cor-
responds to the case in which no information on the probability distributions of the 
above share price values becomes available to the trader, and constraints of the bal-
ance kind describing the ‘ranges’ of these price changes are all the trader can assume 
about  them, mostly from her personal trading experience and observations. In this 
case, a game-theoretic approach to choosing trader’s strategies on managing her port-
folio seems reasonable to apply. Under this approach, at the moment , the trader 
plays against the stock exchange by choosing the volumes of shares of securities from 
the portfolio that she would like to have at the moment 1, whereas as a player, the 
stock exchange ‘chooses’ the share price values for these securities. Such a game 
resembles games with the nature in which the trader should consider the worst case 
scenario for her and choose a strategy aimed at obtaining a certain guaranteed result 
(should this scenario be the case). As is known, in games with the nature, the latter is, 
generally, insensitive to the person’s move (if the person is a ‘small” player with  
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respect to her ability to affect the nature, and the same is the case in the game between 
a small trader and the stock exchange). However, both the person (in the game with 
the nature) and the trader (in the game with the stock exchange) try to develop their 
best strategies to counteract the worst case scenario that the nature and the stock  
exchange can “offer” (according to the person’s and to the trader’s knowledge and  
expectations), respectively. 

For some classes of such games in industry, agriculture, transportation, brokerage, 
investment, public administration, and energy, which are games on polyhedral sets of 
either disjoint or connected player strategies and the payoff functions being a sum of 
two linear and a bilinear function of vector variables, the possibility to use linear pro-
gramming techniques for finding the best players’ strategies has been proven [4, 5]. 
The aim of this section of the paper is to demonstrate the possibility to extend this 
result for the game of the interaction of a price-taking trader with a stock exchange 
under some natural assumptions.  

Assumptions. At each moment , the trader expects all the share price values of se-
curities from the group  to change in the same direction (i.e., either upwards or 
downwards). The same expectation holds for all the share price values of securities 
from the group , whereas the trader expects share price values of securities from 
the group  to change in different directions. Depending on whether these expec-
tations hold for all the securities from each group, their share price values are compo-
nents of one of two polyhedra whose descriptions in the form of linear equations and 
inequalities are known to the trader, and parts of these linear inequalities describe 
parallelepipeds in the corresponding spaces (so that all these polyhedra are subsets of 
the corresponding parallelepipeds). 

To simplify the notation to follow and to bring it closer to traditional descriptions 
of the game to be considered, in particular, to the description of the games in [4,5], 
some variables and parameters in this notation (being different from the one used in 
the previous section of this paper) are introduced. 

Let | | be the vector whose component  is the number of 

shares of security  that the trader intends to buy at the moment , 1 | | be the vector whose component 1  is the (expected by the 
trader) share price value for security  at the moment 1, | | be the vector whose component  is the number of shares of security 

 that the trader intends to sell at the moment , 1 | | be the 

vector whose component 1  is the (expected by the trader) share price 

value for security  at the moment 1, 1  be the vector 

whose component 1  is the share price value for security  that 
would go downwards at the moment 1, contradictory to the trader’s (mistaken) 

expectations, 1 | | be the vector whose component 1  is 
the share price value for security  that would go upwards at the moment 1 contradictory, to the trader’s (mistaken) expectations, | | be the 

vector whose component  is the number of shares of security  about 
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which the trader is not certain on whether its share price value will go upwards or 

downwards at the moment 1, 1 | | be the vector whose compo-

nent 1  is the share price value for security  at the moment 1 if 

this price value goes upwards (with the probability ½), and 1 | | be 

the vector whose component 1  is the share price value for security 

 at the moment 1 if this share price value goes downwards (with the 
probability ½). 

Further, let , 1 , 1 | |, , 1 , 1 | | , and , 1 , 1 | | be 

polyhedra for which the inclusions , , 
, 1 1 , 1 1 , 1 1 , 1 1 , 11 , 1 1  hold.  

Theorem. At each moment , the above interaction between the trader and the stock 
exchange can be described by the game on polyhedra  and 1  of disjoint 
player strategies, where  is the set of trader’s strategies and 1  is that of 
the stock exchange, with the payoff function , 1 , where , ,  ,  1 1 , 1 , 1 11 1  1 , 
and  is a matrix of corresponding dimensions,  1 11 , 1 Ω 1 Λ 1 , 11 1 ,  are polyhedra and 1  1 ,1 1 , 1  1 , 11 , 1  1 , 1 1  are vec-

tors, and the saddle point in this game is formed by vector components of solutions to 
linear programming problems forming a dual pair.  

Proof 
1. From the definition of the sets  and  it follows that at the moment 1, 
the trader expects the share price values for all the securities from the set  to 
change upwards and the share price values for all the securities from the set  to 
change downwards, whereas share price values for the securities from the set  
can change either way.  

Let us consider first the set of securities  from the trader’s portfolio at the 
moment . If the trader predicted the directions of changing the share price values for 
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all the securities from this set correctly, then her best strategy of choosing the num-
bers of shares of securities to buy would be determined by a solution to the problem min , 1 max  

If the trader did not predict the direction of changing the share price values for all the 
securities from the set  correctly, then her best strategy would be determined by 
a solution to the problem min , 1 max  

Since the trader correctly predicts the direction of changes of the share price values of 
securities from the set  only with a certain probability, say, , the expectation of the 
financial result of her prediction (which is a discrete random variable) can be written as max min , , 1 1  

where  and 1  are | | | |–diagonal matrices 
whose all elements on the main diagonal equal  and 1 , respectively, and , 1  is a | | 2| | – matrix that is formed by writing the 

matrix 1  next to the matrix  from the right. 
Analogously, for securities from the set , the expectation of the financial re-

sults of the trader’s prediction can be written as max min , | | , 1 1  

where | | , 1  is a | | 2| | matrix of the same structure 

as is the matrix , and all the elements on the main diagonals of the matrices | |  and | | 1  equal  and 1 , respectively. 
2. The same reasoning for securities from the set  allows one to assert that the 

expectation of the financial result of the trader’s prediction at the moment  (regard-
ing the changes of the share price values for securities from ) can be written as  max min , 12 , 12 1 , 
where , , where  is a | || |- diagonal matrix, all whose elements on the main diagonal equal ½. 

Further, let  , 1 0 00 | | , 1 00 0 12 , 12 . 
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3. Finally, let : , 1 1: 1 1 1 , where , 1 , and , 1  are 
matrices and vectors of corresponding dimensions.  

Taking into account the notation introduced before, the antagonistic game between 
the trader and the stock exchange that is played at the moment  can be written as that 
with the payoff function , 1  on the polyhedra  and 1 , 
which are sets of disjoint player strategies (of the trader and of the stock exchange), 
respectively. 

4. Saddle points in games on (generally unbounded) polyhedral sets Ω [4] of 
disjoint player strategies with the payoff function , , , , 
where , Ω,  is a matrix, and ,  are vectors of corresponding dimensions, 
are formed by vector components of solutions to a dual pair of linear programming 
problems [4], which for the game under consideration with the payoff function , 1  on the set 1  take the form  d t 1 , h t max, Q , 2  

b t , s t 1 min, P ,  

Where , 1 , 0 1 ,  , , 1 1 , 1 0 1  1 ,1 1 1 . 
The Theorem is proved.  
Let , , 1 , 1  be a solution be a solution to the pair of li-

near programming problems (2). Then the vectors ,  and 

 from the supervector , ,  

determine the optimal trader’s strategy in the game, which is attained at the saddle 
point of the game and delivers max min , 1 . 
This number determines how many shares of each security from the sets  and 

 the trader should buy and sell at the moment , respectively, as well as what is 
the financial result of her decision to change the portfolio at the moment  according 
to her predictions of the direction of changing share price values of all the three sets 
of the securities forming her portfolio at the moment . 

4 Concluding Remarks 

1. A new approach to modeling the financial behavior of small and medium price-
taking traders with respect to managing their portfolios of securities for each of which 
they possess a tested and confirmed ability to predict the direction of changing the 
share price values is proposed. This approach is based on considering two models 
reflecting what information on the dynamics of the above share price values the trader 
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possesses, and the use of each model allows one to determine an optimal trader’s 
strategy by using linear programming techniques. As is known, these techniques have 
enormous computational potential, which is critical for studying large-scale systems, 
stock exchanges being one of them. Both models, along with the techniques for de-
tecting the probability with which the trader can predict the direction of changing the 
share price values of each security from the portfolio at any moment, constitute ele-
ments of the tools for quantitatively analyzing the financial behavior of small and 
medium price-taking traders and that of the stock exchange as a whole.  

2. The proposed tools seem to be helpful for quantitatively analyzing the particular 
markets that the stock exchange often exhibits, particularly, the ‘bull market’ and the 
‘bear market,’ as well as financial bubbles, by conducting corresponding simulations.  

3. While the proposed approach opens new research opportunities for studying 
stock exchanges, first of all, from the viewpoint of the financial behavior of small and 
medium price-taking traders, the question on to what extent this approach can help 
study the financial behavior of large traders remains open and will be the subject of 
further research of the authors. 
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Abstract. In this study, we address the social interaction process in
which PT (Prospect Theory) preferences are influenced by other mar-
ket participants, e.g., regular CRRA (Constant Relative Risk Averse)
investors or other PT investors, and study then the long run wealth con-
vergence of the two trading parties: one PT agent vs. one CRRA agent
or both agents of PT types. In the model with one PT agent vs. one
CRRA agent, the PT agent knows the CRRA agent’s optimal terminal
wealth and takes it as his/her reference point. If the PT agent starts with
an initial wealth level higher than that of the CRRA agent, he/she will
always do better than the CRRA agent by imitating the CRRA agent’s
policy. On the other hand, if the PT agent starts with a wealth level
lower than that of the CRRA agent, he/she can still do better than the
CRRA agent by adopting a “gambling policy”. When both trading par-
ties are of PT type, we consider two types of reference points: either both
PT agents take their average wealth as their reference point or they are
mutually reference dependent. Under both situations, we give sufficient
conditions on the long run wealth convergence.

Keywords: Portfolio optimization, reference point, prospect theory,
social comparison, relative wealth concern.

1 Introduction

In daily life, our choices and decisions are inevitably influenced by our friends
and neighbors in our social networks. For example, the households will put more
effort in energy saving when knowing that their neighbors are more efficient
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(see [1]). High school students will performance better when they are provided
relative performance feedback (see [2]). A fund manager has incentives to out-
perform her peers to increase fund flows and in turn her compensation (see [3]).

Prospect theory (PT, see [4] and [5]) provides a proper framework to incorpo-
rate such features of social interactions and social comparison into the formation
and updating of the reference point, thus enabling us to investigate whether (and
how) these social features affect the behavior of the investor.1 More specifically,
different people may have different reference points. How do these differences
interact and evolve? This paper represents a preliminary work aiming to answer
this question.

We start with a simple model, where a PT investor takes the CRRA (Constant
Relative Risk Averse) agent’s optimal terminal wealth level as his/her reference
point. By carrying out theoretical analysis and providing numerical examples,
we show that if the PT agent starts with an initial wealth level higher than
that of the CRRA agent, he/she will take a “conservative policy” and always be
better than the CRRA agent; conversely, if the PT agent starts with an initial
wealth level lower than the CRRA agent, he/she will take a “gambling policy”
and keep gambling until he/she is better than the CRRA agent. In the second
model, both agents are of PT types, and they either take their average wealth
as a reference point or mutually take the other one’s wealth as his/her reference
point. Under both situations, we provide sufficient conditions under which their
wealth levels converge.

A recent paper by Jin and Zhou [7] solves a behavioral portfolio choice problem
in a continuous-time complete market, with a general utility function and a
general non-linear transformations in probability distortion. We start in this
paper by reviewing the method in [7]. We then apply their method in our study
to consider interactions between a rational (CRRA) investor and a PT investor
or between two PT investors.

2 Preliminary

Assume that the PT investor has an S-shaped value function and an inverse-S-
shape probability distortion with the following elements,

u+(x) = xγ , u−(x) = λ · xγ , x ≥ 0, (1)

T (p) =
pα

(pα + (1− p)α)1/α
, (2)

where loss aversion coefficient satisfies λ > 1, risk aversion coefficient satisfies
0 < γ < 1, and distortion coefficient α takes value α+ in the gain region and
value α− in the loss region with 0 < α+ < 1 and 0 < α− < 1. Let the reference
point be 0, and the investor’s initial wealth be x0. Under this PT framework, the

1 The dynamics of the reference point and its impact on investors’ behavior have been
studied in [6].
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behavioral portfolio selection problem is to find the most preferable portfolio in
terms of maximizing the value V (XT ) as shown below,

(P ) max E[V (XT )]

s.t. E[ξTXT ] = x0, x0 is given,

where ξT is the state price density, and

V (X) := V+(X
+)− V−(X

−)

V+(Y ) :=

∫ +∞

0

T+(P{u+(Y ) > y}) dy, V−(Y ) :=

∫ +∞

0

T−(P{u−(Y ) > y}) dy.

Because the behavioral type model is easy to be ill-posed, we need to add the
following two assumptions to make the problem itself well-posed:

– Condition on gain part distortion T+(·):

F−1(z)

T
′
+(z)

is nondecreasing. (3)

– Condition on loss part distortion T−(·):

inf
c>0

k(c) ≥ 1. (4)

where

φ(c) = E

⎡

⎣
(
T

′
+(F (ξT ))

ξT

)1/(1−γ)

ξT1ξT≤c

⎤

⎦ , k(c) =
λ · T−(1− F (c))

φ(c)1−γ (E[ξT1ξT≥c])
γ ,

with F (·) being its distribution function.

Remark 1. The second condition has an intuitive interpretation: the variable
k(c) is a “benefit/cost” measure, showing the cost of short selling “bad state” to
finance “good state” investment, and balancing the trade-off between the gain-
part problem and the loss-part problem. When k(c) ≥ 1, it is not worth short
selling “bad state” to finance “good state”. Suppose that there exists some c such
that k(c) < 1, and there is no bankruptcy constraint, what would the PT investor
do? The investor will keep short selling “bad state”, without any fear about big
loss. So, in this situation, there will be an infinite solution, and then the problem
is ill-posed.

Theorem 1. (Jin and Zhou 2008) Assume that x0 ≥ 0 and condition (3) holds.

– If condition (4) also holds, then the optimal portfolio is the replicating port-
folio for the contingent claim

X∗ =
x0

φ(+∞)

(
T

′
+(F (ξT ))

ξT

)1/(1−γ)

. (5)

– If condition (4) does not hold, then the problem is ill-posed.
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Theorem 2. (Jin and Zhou 2008) Assume that x0 < 0 and condition (3) holds.

– If condition (4) also holds, then the optimal portfolio is the replicating port-
folio for the contingent claim

X∗ =
x∗
+

φ(c∗)

(
T

′
+(F (ξT ))

ξT

)1/(1−γ)

1ξT≤c∗ −
x∗
+ − x0

E [ξT1ξT≥c∗ ]
1ξT≥c∗ , (6)

where x∗
+ = −x0

k(c∗)1/(1−γ)−1
and c∗ solves

min
c≥0

v(c) =
[
k(c)1/(1−γ) − 1

]
· φ(c).

– If condition (4) does not hold, then the problem is ill-posed.

3 CRRA Agent vs. PT Agent

3.1 Theoretical Model

We first apply the method in [7] to a game model with one CRRA agent, whose

utility is of a power form u(x) = (x)γ

γ , and one PT agent. For their different utility

functions u(·) and V (·), both investors solve the following respective myopic
problem in each round,

(MyopicCRRA) max E[u(WT )] (MyopicPC) max E[V (WT )]
s.t. E[ξTWT ] = w0, s.t. E[ξTWT ] = w0,

where w0 is given. The CRRA agent starts with initial wealth wCRRA
0 , and solves

the above problem with the power utility, resulting in the following optimal
terminal wealth,

WCRRA
T =

wCRRA
0

E[ξ
−γ/(1−γ)
T ]

(
1

ξT

)1/(1−γ)

.

Note that the CRRA agent always behaves his/her own way, i.e., his/her decision
is not affected by other participants in the market.

The PT agent starts with initial wealth wPT
0 , knows the distribution of the

CRRA agent’s optimal terminal wealth and takes this random terminal wealth
as his/her reference point, i.e. θT = WCRRA

T . Then he/she solves the above my-
opic problem with an S-shaped value function and an inverse S-shape distortion
function. Denote XT = WPT

T − θT and x0 = wPT
0 − wCRRA

0 . For XT , we can
directly use the method suggested in [7]. Based on different initial wealth levels,
there are two different situations for our PT investor:
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– If PT agent’s initial wealth satisfies wPT
0 ≥ wCRRA

0 , the optimal terminal
wealth WPT

T takes the form in (5):

WPT
T = θT +

x0

φ(+∞)

(
T

′
+(F (ξT ))

ξT

)1/(1−γ)

(7)

= WCRRA
T +

wPT
0 − wCRRA

0

φ(+∞)

(
T

′
+(F (ξT ))

ξT

)1/(1−γ)

.

– If PT agent’s initial wealth satisfies wPT
0 < wCRRA

0 , the optimal terminal
wealth WPT

T takes the form in (6):

WPT
T = θT +

x∗
+

φ(c∗)

(
T

′
+(F (ξT ))

ξT

) 1
1−γ

1ξT≤c∗ −
x∗
+ − x0

E [ξT1ξT≥c∗ ]
1ξT≥c∗ (8)

= WCRRA
T +

x∗
+

φ(c∗)

(
T

′
+(F (ξT ))

ξT

) 1
1−γ

1ξT≤c∗ −
x∗
+ − x0

E [ξT1ξT≥c∗ ]
1ξT≥c∗ ,

where x∗
+ =

−(wPT
0 −wCRRA

0 )

k(c∗)1/(1−γ)−1
and c∗ solves

min
c≥0

v(c) =
[
k(c)1/(1−γ) − 1

]
· φ(c).

We can summarize these two different results as follows:

– If PT agent starts with an initial wealth larger than the reference point, then
he/she would set a “conservative” target and take a “conservative policy”.
More specifically, he/she would split the initial wealth wPT

0 into two parts:
using the first part, wCRRA

0 , to replicate CRRA’s optimal terminal wealth
and investing the remaining part, wPT

0 −wCRRA
0 , in the market in a hope of

gaining more.
– If PT agent starts with an initial wealth smaller than the reference point,

then he/she would aspire for an “aggressive” target and thus take a “gam-
bling policy”. More specifically, he/she needs to short sell “bad state” con-
tingent claim, generating (x∗

+−x0), to finance the “good state” investments.

3.2 Toy Example-1: One-Step Success?

When a PT agent takes the CRRA’s optimal terminal wealth as his/her reference
point, what the PT agent aspires is to do better than the CRRA agent. A natural
question is: can the PT agent achieve his/her target in one round? If not, how
about the situation in long run? We will use the following numerical example to
answer these questions.

Assume that the state price density ξT follows a lognormal distribution, i.e.,
ln ξT ∼ N(μ, σ). We take S&P 500 yearly return as our market setting, μ =
0.1, σ = 0.2, r = 0.03, and T = 1 yr, where r is the risk-free rate. Considering
the two key assumptions in [7], we set the preference and distortion parameters
of investors as follows.
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– With respect to condition (3), we set:

α+ = 1, i.e. T+(x) = x, no probability distortion on gain part.

– With respect to condition (4), we set2:

α− = 0.69, γ = 0.88, λ = 9 or α− = 0.6, γ = 0.75, λ = 10.

If PT agent starts with an initial wealth larger than the initial wealth of the
CRRA agent, he/she will take the “conservative” policy in (7). After some simple
calculations, we have

WPT
T = θT +

x0

E[ξ
−γ/(1−γ)
T ]

(
1

ξT

)1/(1−γ)

=
wPT

0

E[ξ
−γ/(1−γ)
T ]

(
1

ξT

)1/(1−γ)

,

which essentially follows the same conservative policy as the CRRA agent. Fur-
thermore, the PT agent will always have a higher wealth level than the CRRA
agent at time T, as a result of positive ξT . In plain language, the PT agent, who
starts with an initial wealth higher than that of the CRRA agent, can always do
better than the CRRA agent by imitating what the CRRA agent does.

Between the two situations presented above, the latter situation with the PT
agent starting with an initial wealth level smaller than that of the CRRA agent
is more interesting. In such a situation, he/she must take some gambling policy
according to (8), and keep gambling until the situation reverses when his/her
wealth is larger than the CRRA’s. Assume that ξn, n = T, 2T, · · · , are i.i.d. for
each round. We can interpret every gambling of PT agent in each round as a
Bernoulli trial with a success probability ps given by

ps = P (WPT
n ≥ WCRRA

n ) = P (ξn ≤ c∗), n = T, 2T, · · · .

As c∗ is independent of the initial wealth, the success probability ps is also
independent of the initial wealth level. From our numerical experiments, ps is
usually a large number, for example, 1−1.6×10−5 in this example. Denote N as
the first “success” time when the wealth of the PT agent surpasses the wealth of
the CRRA agent. Then the random number N follows the following geometrical
distribution,

P ( succed after m years ) = P (N = m) = (1− ps)m−1ps.

Note also that once the PT agent attains his/her target, i.e., he/she attains a
wealth level which is higher than the wealth level of the CRRA agent, he/she
will then switch to the conservative policy in (7) immediately. Figure 1 shows
one such an instance: the PT agent starts with an initial wealth of $50, which is
smaller than the initial wealth of the CRRA agent, $100, but he/she can succeed

2 Parameters α− = 0.69 and γ = 0.88 are the suggested numbers from Tversky and
Kahneman (1992). But we need to set λ as larger as 9 to satisfy condition (4) when
ξT follows a lognormal distribution.
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Fig. 1. One Step Success: CRRA $100 vs. PT $50

in one step. The black star stands for the different scenarios of ξT (scaled by
10 times). The blue diamond represents different realizations of WCRRA

T under
different scenarios of ξT ; and the red circle represents different realizations of
WPT

T under different scenarios of ξT . The PT agent always has a higher wealth
than the CRRA agent after the first round, regardless of the different scenarios.
Furthermore, good scenarios (small ξT ) correspond to high wealth levels for both
the CRRA agent and PT agent.

From the above results, it seems that the optimal policy is always to gamble.
With a high probability, the PT agent can do better than the CRRA agent by
“gambling”, no matter what initial wealth he/she starts with. Why do we have
such results? The first reason comes from the fact that our result is for a model
of a complete market. “Completeness” means that every policy can be carried
out, no matter how crazy the contingent claim is, such as in (8), you want to
short sell. The second reason may be due to our two-agent model setting. In our
setting, the CRRA agent is in some passive position. The PT agent knows the
CRRA’s optimal terminal wealth and takes it as his/her reference point, and
then he/she takes an advantagious position. In contrast, the CRRA agent can
only passively accept his/her position. A more interesting problem would be to
consider a situation where the CRRA agent modifies his/her behavior style with
a consideration of market interaction too. In the following text we will consider
a two-agent model, in which both agents are of PT-type.



276 Y. Shi, D. Li, and X. Cui

4 PT-1 Agent vs. PT-2 Agent

4.1 Average Wealth as the Reference Point

Suppose that both investors are of PT-type and both take the average of their
wealth as the reference point:

θ1T = θ2T = θT =
w10 + w20

2
erT ,

where w10 and w20 are the initial wealth of PT-1 agent and PT-2 agent, respec-
tively. Without loss of generality, we assume that w10 ≥ w20. Denote x1T =
w1T − θT , x2T = w2T − θT , x10 = w10−w20

2 and x20 = w20−w10

2 . Once again,
we can directly apply the method proposed in [7] in this situation. Based on
their different initial wealth levels, PT-1 agent and PT-2 agent will adopt two
different policies.

– PT-1 agent starts with a larger initial wealth (or a positive state of x10 ≥ 0):

w10 ⇒ w1T = θT +A1 · ξ
−1
1−γ

T · w10 − w20

2
.

– PT-2 agent starts with a smaller initial wealth (or a negative state of x20 ≤
0):

w20 ⇒ w2T = θT +B1 · ξ
−1
1−γ

T · w10 − w20

2
1ξT≤c∗ −B2 ·

w10 − w20

2
1ξT≥c∗ ,

where A1 = 1
φ(+∞) , B1 = 1

v(c∗) , B2 =

[
1

k(c∗)
1

1−γ −1
+ 1

]
1

E[ξT 1ξT >c∗ ]
.

Remark 2. Someone may criticize the rationality of taking “average wealth” as
a reference point. Question could be raised as: In a two-agent model, the poorer
one takes average wealth as his/her reference point, which means that he/she
strives to be better and it seems to be a reasonable behavior. But, why does the
richer person want to take average wealth (a lower wealth level than that of
his/her status quo) as his/her reference point? The reason could be as follows:
humans rarely choose things in their absolute terms; rather, they focus on the
relative advantage of one thing over another, and estimate value accordingly.
Here, we are considering neighborhood influence when people make decisions.
Some people at the bottom of society, may set high wealth levels as their targets
with a hope to have a better tomorrow. At the same time, the others, who are
already in the upper class, take average wealth as their reference point in the
sense of that relative wealth concern makes them happier.

When both PT agents set the average wealth as their targets, a natural ques-
tion is: whether their long-run wealth levels converge or not. In the first round,
we denote the gap of the initial wealth levels of the two PT agents by Δw0 :=
w10 − w20 and the gap of their terminal wealth levels by Δw1 := w1T − w2T .
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In the second round, taking the previous terminal wealth gap as the initial
wealth gap Δw1 := w1T − w2T , and then their terminal wealth gap becomes
Δw2 := w1,2T − w2,2T . Generally, the dynamics of their wealth gap is governed
by

Δwn := ηn ·Δwn−1, n = 1, 2, · · · ,

where Δwn := w1,nT − w2,nT and ηn, n = 1, 2, · · · , are i.i.d. random variables,

η =
A1 −B1

2
· ξ

−1
1−γ · 1ξ≤c∗ +

1

2

(
A1ξ

−1
1−γ +B2

)
· 1ξ≥c∗ .

In particular, we have

Δw1 = η1 ·Δw0, Δw2 = η2 ·Δw1, · · ·Δwn = ηn ·Δwn−1, · · ·

If the random variables ηn, n = 1, 2, · · · , satisfy the following sufficient conver-
gence condition, we can claim that the wealth levels of the two PT investors
converge.

Theorem 3. (Sufficient Convergence Condition) Assume that Condition 3 and
Condition 4 in [7] hold. If both PT investors take their average wealth as their
reference points, then we have

E[|η|] < 1 =⇒ w1,nT − w2,nT
L1−−→ 0 ⇐⇒ w1,nT − w2,nT

a.s.−−→ 0.

Proof. Please refer to [8].

4.2 Toy Example-2: Converge or Diverge?

We still use S&P 500 yearly return as our market setting:

μ = 0.1, σ = 0.2, r = 0.03, T = 1.
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Fig. 2. Average Wealth as Reference Point
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In order to satisfy the two key assumptions for well-posedness, we set investors’
preference parameters as

T+(x) = x, α− = 0.6, γ = 0.75, λ = 10.

Under these parameters, we have E[|η|] = 0.7194 < 1, which satisfies the suf-
ficient condition in Theorem 3. Figures 2(a) and 2(b) illustrate two convergent
instances. In both figures, PT-1 agent starts with $100 and PT-2 agent starts
with $1. They take their average wealth as their reference points and their wealth
levels quickly converge to some common level, which depends on the market re-
alizations of each year ξi. Generally, a better market (such as smaller ξi in Figure
2(b)) makes the two agents ending up with a higher common wealth level, while
a worse market (such as larger ξi in Figure 2(a)) makes the society ending up
with a lower common wealth level. Actually, what Theorem 3 really means is
that: as long as the random variable η satisfies the convergence condition, their
wealth will converge, no matter how large their initial wealth gap is. It seems
that we find a “communist world”. In this “communist world”, investors’ wealth
will converge, when they all hope so (by setting the average wealth level as the
reference point).

As you probably imagine, this sufficient convergence condition heavily de-
pends on the characteristics of participants (preference parameters). In fact,
if we consider some “aggressive” investors instead, the convergence result will
change. “Aggressiveness” means less distortion (larger α−) on the loss part, less
risk aversion (larger γ) and less loss aversion (smaller λ). For example, if we set

α− = 0.69, γ = 0.88, λ = 9 ⇒ E[|η|] = 4.6711 > 1,

which violates the sufficient condition in Theorem 3. Their wealth levels may
diverge.

4.3 Mutual Reference Dependence

In this subsection, both investors are still of PT type, but they are mutually
reference dependent, i.e.,

θ1T = w20 · erT , θ2T = w10 · erT ,

where w10 and w20 are the initial wealth levels of PT-1 agent and PT-2 agent,
respectively. Once again, we assume that w10 ≥ w20, and also denote x1T =
w1T − θ1T , x2T = w2T − θ2T , x10 = w10 − w20 and x20 = w20 − w10. Applying
the method proposed in [7] to the current situation, our two PT investors will
apply the following two different policies:

– PT-1 agent starts with a larger initial wealth (or a positive state variable of
x10 ≥ 0),

w10 ⇒ w1T = θ1T +A1 · ξ
−1
1−γ

T · (w10 − w20).
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– PT-2 agent starts with a smaller initial wealth (or a negative state variable
of x20 ≤ 0)

w20 ⇒ w2T = θ2T +B1 · ξ
−1
1−γ

T · (w10 −w20)1ξT≤c∗ −B2 · (w10 −w20)1ξT≥c∗ ,

where A1 = 1
φ(+∞) , B1 = 1

v(c∗) , B2 =

[
1

k(c∗)
1

1−γ −1
+ 1

]
1

E[ξT 1ξT >c∗ ]
.

Similarly, we denote the dynamics of their wealth gap by Δwn := η̃n ·Δwn−1,

n = 1, 2, · · · , where η̃ = −erT + (A1 − B1) · ξ
−1
1−γ · 1ξ≤c∗ +

(
A1ξ

−1
1−γ +B2

)
·

1ξ≥c∗ . With similar arguments, we have the following sufficient condition for
convergence.

Theorem 4. (Sufficient Convergence Condition) Assume that Condition 3 and
Condition 4 in [7] hold. If both PT investors are mutually reference dependent,
then we have

E[|η̃|] < 1 =⇒ w1,nT − w2,nT
L1−−→ 0 ⇐⇒ w1,nT − w2,nT

a.s.−−→ 0.

Proof. Please refer to [8].

4.4 Toy Example-3: Converge or Diverge?

We still use S&P 500 yearly return as our market setting:

μ = 0.1, σ = 0.2, r = 0.03, T = 1.

In order to satisfy the two assumptions for well-posedness, we set investors’
preference parameters as

T+(x) = x, α− = 0.6, γ = 0.72, λ = 10 ⇒ E[|η̃|] = 0.8364 < 1.

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Years

W
ea

lth
 le

ve
l f

or
 tw

o 
ag

en
ts

 in
 e

ac
h 

ye
ar

 

 

PT agent−1 wealth level

100 ξ
i
 for each year

PT agent−2 wealth level
PT agent−1 initial wealth
PT agent−2 initial wealth

(a) convergence example

0 5 10 15

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Years

W
ea

lth
 le

ve
ls

 fo
r 

tw
o 

ag
en

ts
 in

 e
ac

h 
ye

ar

 

 
PT agent−1 wealth

200 ξ
i
 for each year

PT agent−2 wealth
PT agent−1 initial wealth
PT agent−2 initial wealth

(b) divergence example

Fig. 3. Mutual Reference Dependence



280 Y. Shi, D. Li, and X. Cui

By Theorem 4, the wealth levels of these two investors will converge. Figure
3(a) shows one instance of such a convergence: PT-1 agent starts with $200 and
PT-2 agent starts with $100. From Figure 3(a), we can see that each of the
two investors takes the other’s wealth level as his/her reference point and their
wealth levels indeed converge. It seems that we find another “communist world”
here. But if we change the parameters a little as follows,

α− = 0.6, γ = 0.71, λ = 10 ⇒ E[|η̃|] = 5.5873 > 1,

we can see that their wealth levels diverge as shown in Figure 3(b). The PT-1
agent starts with $200 and PT-2 agent starts with $199. Even with such a small
initial wealth gap, their wealth levels eventually diverge.

5 Conclusion

An investor’s reference point is not only affected by his/her own investment
experience, but also affected by other investors’ wealth levels, especially his/her
“neighbors” in his/her “social network” who are close to him/her. By carrying
out theoretical analysis and providing numerical examples, we show that the
comparison of the initial wealth levels between a PT agent and a CRRA agent
matters greatly to the PT agent, as its sign dictates whether the PT agent will
take a “conservative policy” or a “gambling policy”. When both agents are of
PT-type, we provide sufficient convergence conditions for two types of reference
points: average wealth as their reference points and mutual reference dependence.
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Abstract. In this paper, a general multi-sector, multi-instrument model
of financial flows and prices is developed, in which the utility function for
each sector is assumed to be quadratic and constraints satisfy a certain
accounting identity that appears in flow-of-funds accounts. Each sector
uses conjectures of its influence upon the prices of instruments. The equi-
librium conditions are first derived, and then the governing variational
inequality is presented. Subsequently, a qualitative analysis of the model
is conducted, and a concept of consistent conjectures is introduced and
examined.

Keywords: Consistent conjectures, consistent equilibrium, financial
models.

1 Introduction

Consider an economy consisting of m sectors, with a typical sector denoted
by i, and with n instruments, with a typical instrument denoted by j. Denote
the volume of instrument j held in sector i’s portfolio as an asset, by xij , and
the volume of instrument j held in sector’s i’s portfolio as a liability, by yij . The
assets in sector i’s portfolio are grouped into a column vector xi ∈ Rn, and the
liabilities are grouped into the column vector yi ∈ Rn. Further group the sector
asset vectors into the column vector x ∈ Rmn, and the sector liability vectors
into the column vector y ∈ Rmn.

Each sector’s utility can be defined as a function of the expected future port-
folio value. The expected value of the future portfolio may be described by two
characteristics: the expected mean value and the uncertainty surrounding the
expected mean. In this model, the expected mean portfolio value of the next pe-
riod is assumed to be equal to the market value of the current period portfolio.
Each sector’s uncertainty, or assessment of risk, with respect to the future value

c© Springer International Publishing Switzerland 2015 281
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Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_24
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of the portfolio is based on a variance-covariance matrix denoting the sector’s
assessment of the standard deviation of prices for each instrument. The 2n× 2n
variance-covariance matrix associated with sector i’s assets and liabilities is
denoted by Qi.

Since each sector’s expectations are formed by reference to current market
activity, sector utility maximization can be written in terms of optimizing the
current portfolio. Sectors may trade, issue, or liquidate holdings in order to
optimize their portfolio compositions.

In this model, it is assumed that the total volume of each balance sheet side
is exogenous. Let rj denote the price of instrument j, and group the prices into
the column vector r ∈ Rn. In contrast to the model by A.Nagurney [1] that
makes use of the assumption of perfect competition, i.e., supposes that each
sector will behave as if its actions cannot affect the instruments’ prices and thus
the behaviour of the other sectors, we examine the simplest oligopoly model. In
other words, we assume that each sector i expects the price of instrument j to
grow up together with the (positive) gap yij −xij between his liability and asset
holdings, and the rate of this grow is wij ≥ 0 that will be referred to as sector
i’s coeficient of influence upon the price of instrument j. This assumption is the
main novelty of our model compared to that studied in [1].

The rest of the paper is arranged as follows. The quadratic-type portfolio op-
timization problem is specified and studied in Section 2. Section 3 deals with
the exterior conjectural variations equilibrium (CVE) in the financial model
with general utility functions of the sector, and the exterior CVE properties
are examined in Section 4. Finally, a new concept of consistent (interior) conjec-
tural variations equilibrium is introduced and discussed in Section 5. Concluding
remarks, acknowledgments, and a list of references complete the paper.

2 Model Specification

Define each sector’s portfolio optimization problem as follows. Sector i seeks to
determine its optimal composition of instruments held as assets and as liabilities,
so as to minimize the risk while at the same time maximizing the value of its asset
holdings and minimizing the value of its liabilities. The portfolio optimization
problem for sector i is, hence, given by:

Minimize

(
xi

yi

)T

Qi

(
xi

yi

)
−

n∑

j=1

rij(xij − yij)

subject to
n∑

j=1

xij = si,

n∑

j=1

yij = si, (1)

xij ≥ 0, yij ≥ 0, j = 1, . . . , n, (2)

where
rij = rij(xij , yij) = rj − wij(xij − yij). (3)
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Here, the instrument price vector r ∈ Rn is exogenous to the individual sector
optimization problem, whereas the quotient wij ≥ 0 reflects the degree of influ-
ence of sector i on the price of instrument j conjectured by this sector itself. That
is, sector i conjectures the expected price for its liability to equal rij determined
by (3).

Constraints (1) represent the accounting identity reflecting that the accounts
for sector i must balance, where si is the total financial volume held by sector i.
Constraints (2) are the usual non-negativity restrictions. LetΩi denote the closed
convex subset of (xi, yi) formed by constraints (1) and (2). Since Qi is a variance-
covariance matrix, it will be assumed that this matrix is positive definite and,
therefore, the objective function for each sector i’s portfolio optimization problem
is strictly convex.

Necessary and sufficient conditions for a portfolio (x∗
i , y

∗
i ) ∈ Ωi to be optimal

is that it satisfy the following system of inequalities and equalities called the
linear complementarity problem (LCP).

For each instrument j (j = 1, . . . , n):

ϕ1
ij(x

∗, y∗) ≡ 2Qi
(11)j

T
x∗
i + 2Qi

(21)j

T
y∗i − r∗j+

+2wij(x
∗
ij − y∗ij)− μ1

i ≥ 0,

ϕ2
ij(x

∗, y∗) ≡ 2Qi
(22)j

T
y∗i + 2Qi

(12)j

T
x∗
i + r∗j−

−2wij(x
∗
ij − y∗ij)− μ2

i ≥ 0, (4)

x∗
ij · ϕ1

ij(x
∗, y∗) = 0,

y∗ij · ϕ2
ij(x

∗, y∗) = 0,

where r∗j denotes the price for instrument j, which is assumed to be fixed from

the perspective of all the sectors. Note that Qi has been partitioned as Qi =(
Qi

11 Qi
12

Qi
21 Qi

22

)
, and is symmetric. Furthermore,Qi

(αβ)j denotes the j-th column of

Qi
(αβ), with α = 1, 2;β = 1, 2. The terms μ1

i and μ2
i are the Lagrange multipliers

of constraints (1).
A corresponding LCP will be solved by each of the m sectors.

2.1 Definition of Equilibrium

The inequalities governing the instrument prices in the economy are now de-
scribed. These prices provide the feedback from the economic system to the
sectors regarding the equilibration of the total assets and total liabilities of each
instrument. Here, it is assumed that there is free disposal and, hence, the in-
strument prices will be nonnegative. The economic system conditions ensuring
market clearance then take on the following form.

For each instrument j; j = 1, . . . , n:

m∑

i=1

(x∗
ij − y∗ij)

{
= 0, if r∗j > 0;
≥ 0, if r∗j = 0. (5)
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In other words, if the price is positive, then the market must clear for the instru-
ment; if there is an excess supply of an instrument in the economy, then its price
must be zero. Combining the above sector and market inequalities and equalities
yields the following.

Definition 1. (Exterior equilibrium in the financial model)
For a fixed set of conjectures described by the m × n matrix W = (wij)

m n
i=1,j=1,

a vector (x∗, y∗, r∗) ∈
∏m

i=1 Ωi × Rn
+ is called the exterior equilibrium of the

financial model if and only if it satisfies the system of equalities and inequalities
(4) and (5), for all sectors 1 ≤ i ≤ m, and for all instruments 1 ≤ j ≤ n,
simultaneously.

Now we are ready to deduce the variational inequality problem governing the
exterior equilibrium conditions of our financial model.

Theorem 1. (Variational Inequality Formulation of Exterior Financial
Equilibrium)
For a fixed set of conjectures described by the m × n matrix W = (wij)

m n
i=1,j=1,

a vector (x∗, y∗, r∗) ∈
∏m

i=1 Ωi ×Rn
+ of sector assets, liabilities, and instrumen-

tal prices is the exterior financial equilibrium if and only if it solves the following
variational inequality problem: Determine an
(x∗, y∗, r∗) ∈

∏m
i=1 Ωi ×Rn

+, satisfying:

m∑

i=1

n∑

j=1

[
2Qi

(11)j

T
x∗
i + 2Qi

(21)j

T
y∗i − r∗j + 2wij(x

∗
ij − y∗ij)

]
×

×
(
xij − x∗

ij

)
+

+

m∑

i=1

n∑

j=1

[
2Qi

(22)j

T
y∗i + 2Qi

(12)j

T
x∗
i + r∗j − 2wij(x

∗
ij − y∗ij)

]
×

×
(
yij − y∗ij

)
+

n∑

j=1

[
m∑

i=1

(x∗
ij − y∗ij)

]
×
[
rj − r∗j

]
≥ 0,

∀(x, y, r) ∈
m∏

i=1

Pi ×Rn
+. (6)

Proof. The proof being quite long will be published elsewhere.

The qualitative analysis of the variational inequality (6) governing the finan-
cial equilibrium model introduced in this section is presented in Section 2 in the
framework of a more general model, of which the quadratic model introduced
here is a special case.

3 General Utility Functions

In this section, the quadratic financial model is extended, and a variational
inequality formulation of the (exterior) equilibrium conditions presented.
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Assume that each sector seeks to maximize its utility, where the utility
function, Ui(xi, yi, ri), is given by:

Ui(xi, yi, ri) = ui(xi, yi) + 〈rTi , xi − yi〉, (7)

where ui : R
n × Rn → R is a differentiable function, and ri = ri(xi, yi) ∈ Rn

is the price vector with its components rij , j = 1, . . . , n, defined in (3). Taking
that into account, we can rewrite (13) as follows:

Ui(xi, yi, ri) = ui(xi, yi) + 〈rT , xi − yi〉 −
n∑

j=1

wij(xij − yij)
2. (8)

Then the optimization problem for sector i can be specified as:

Maximize(xi,yi)∈Ωi
Ui(xi, yi, ri), (9)

where Ωi is a closed, convex, nonempty, and bounded subset of R2n, denoting
the feasible set of asset and liability choices. Note that in this model, we no
longer require the constraint set Ωi to be of the form defined by equalities (1)
and inequalities (2). Nevertheless, the model introduced in this section captures
the general financial equilibrium model of Section 1 as a special case, where

ui(xi, yi) = −
(
xi

yi

)T

Qi

(
xi

yi

)
.

Assuming that each sector’s utility function is concave, necessary and suffi-
cient conditions for an optimal portfolio (x∗

i , y
∗
i ), given a fixed vector of instru-

ment prices r∗, are that (x∗
i , y

∗
i ) ∈ Ωi, and satisfy the inequality:

−〈∇xiUi(x
∗
i , y

∗
i , r

∗
i )

T , xi − x∗
i 〉−

−〈∇yiUi(x
∗
i , y

∗
i , r

∗
i )

T , yi − y∗i 〉 ≥ 0, ∀(xi, yi) ∈ Ωi, (10)

where ∇xiUi(·) denotes the gradient of Ui(·) with respect to xi, or, equivalently,
in view of (7)–(8),

−〈(∇xiui(x
∗
i , y

∗
i ) + r∗)T , xi − x∗

i 〉+

+2

n∑

j=1

wij(x
∗
ij − y∗ij)(xij − x∗

ij)−

−〈(∇yiui(x
∗
i , y

∗
i )− r∗)T , xi − x∗

i 〉−

−2
n∑

j=1

wij(x
∗
ij − y∗ij)(yij − y∗ij) ≥ 0, ∀(xi, yi) ∈ Ωi. (11)

A respective variational inequality must hold for each of the m sectors.
The system of equalities and inequalities governing the instrument prices in

the economy as in (5) is still valid. Hence, one can immediately write down the
following economic system conditions.
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For each instrument j; j = 1, . . . , n:

m∑

i=1

x∗
ij −

m∑

i=1

y∗ij

{
= 0, if r∗j > 0,
≥ 0, if r∗j = 0. (12)

In other words, as before, if there is an excess supply of an instrument in the
economy, then its price must be zero; if the price of an instrument is positive,
then the market for this instrument must clear.

Combining the above sector and market inequalities and equalities yields the
following.

Definition 2. (Exterior Financial Equilibrium with General Utility
Functions)
For a fixed set of conjectures described by the m × n matrix W = (wij)

m n
i=1,j=1,

a vector (x∗, y∗, r∗) ∈
∏m

i=1 Ωi × Rn
+ is the exterior conjectural variations equi-

librium (CVE) in the financial model developed above if and only if it satisfies
inequalities (11) and (12), for all sectors 1 ≤ i ≤ m, and for all instruments
1 ≤ j ≤ n, simultaneously.

The variational inequality formulation of the equilibrium conditions of the
model is now presented. The proof of this theorem is similar to that of Theorem 1.

Theorem 2. (Variational Inequality Formulation of Exterior Financial
Conjectural Variations Equilibrium with General Utility Functions)
For a fixed set of conjectures described by the m×n matrix W = (wij)

m n
i=1,j=1, a

vector of assets and liabilities of the sectors, and instrument prices (x∗, y∗, r∗) ∈∏m
i=1 Ωi × Rn

+ is the exterior financial conjectural variations equilibrium if and
only if it solves the variational inequality problem:

−
m∑

i=1

〈(∇xiui(x
∗
i , y

∗
i ) + r∗)T , xi − x∗

i 〉+

+2
m∑

i=1

n∑

j=1

wij(x
∗
ij − y∗ij)(xij − x∗

ij)−

−
m∑

i=1

〈(∇yiui(x
∗
i , y

∗
i )− r∗)T , yi − y∗i 〉−

−2

m∑

i=1

n∑

j=1

wij(x
∗
ij − y∗ij)(yij − y∗ij)+

+

n∑

j=1

[
m∑

i=1

x∗
ij −

m∑

i=1

y∗ij

]
×
[
rj − r∗j

]
≥ 0,

∀(x, y, r) ∈
m∏

i=1

Ωi ×Rn
+. (13)
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4 Qualitative Properties

In this section, certain qualitative properties of the exterior CVE in the model
outlined in Section 2 are examined.

Theorem 3. (Existence)
For any fixed set of conjectures described by the m×n matrix W = (wij)

m n
i=1,j=1,

if (x∗, y∗, r∗) ∈
∏m

i=1 Ωi×Rn
+ is the exterior CVE in the model, that is, it solves

the variational inequality (13), then the equilibrium asset and liability vector
(x∗, y∗) is a solution to the variational inequality:

−
m∑

i=1

〈(∇xiui(x
∗
i , y

∗
i ))

T , xi − x∗
i 〉+

+2

m∑

i=1

n∑

j=1

wij(x
∗
ij − y∗ij)(xij − x∗

ij)−

−
m∑

i=1

〈(∇yiui(x
∗
i , y

∗
i ))

T
, yi − y∗i 〉−

−2

m∑

i=1

n∑

j=1

wij(x
∗
ij − y∗ij)(yij − y∗ij) ≥ 0, ∀(x, y) ∈ S, (14)

where the subset

S ≡
{
(x, y) ∈

m∏

i=1

Ωi :

m∑

i=1

(xij − yij) ≥ 0; j = 1, . . . , n

}

is nonempty.
Conversely, if (x∗, y∗) is a solution of (14), there exists an r∗ ∈ Rn

+, such that
(x∗, y∗, r∗) is a solution of (13), and, thus, the exterior CVE in the financial
model.

Proof. The proof being quite long will be published elsewhere.

At last, we show that if the utility functions ui are strictly concave for all i,
then the exterior equilibrium asset and liability pattern (x∗, y∗) is also unique
for any fixed conjectures W .

It is clear that if the functions ui are strictly concave then the functions Ui

defined by (8) are also strictly concave with respect to the variables (xi, yi).
Assume now that for the same fixed conjectures W , there are two distinct

exterior equilibrium solutions (x1, y1, r1) and (x2, y2, r2). Then

−
m∑

i=1

〈
(
∇xiui(x

1
i , y

1
i ) + r1

)T
, x′

i − x1
i 〉+



288 V.V. Kalashnikov, N.I. Kalashnykova, and F.J. Castillo-Pérez

+2

m∑

i=1

n∑

j=1

wij(x
1
ij − y1ij)(x

′
ij − x1

ij)−

−
m∑

i=1

〈
(
∇yiui(x

1
i , y

1
i )− r1

)T
, y′i − y1i 〉−

−2

m∑

i=1

n∑

j=1

wij(x
1
ij − y1ij)(y

′
ij − y1ij)+

+

n∑

j=1

[
m∑

i=1

x1
ij −

m∑

i=1

y1ij

]
(
r′j − r1j

)
≥ 0,

∀(x′, y′, r′) ∈
m∏

i=1

Ωi ×Rn
+, (15)

and

−
m∑

i=1

〈
(
∇xiui(x

2
i , y

2
i ) + r2

)T
, xi − x2

i 〉+

+2

m∑

i=1

n∑

j=1

wij(x
2
ij − y2ij)(xij − x2

ij)−

−
m∑

i=1

〈
(
∇yiui(x

2
i , y

2
i )− r2

)T
, yi − y2i 〉−

−2
m∑

i=1

n∑

j=1

wij(x
2
ij − y2ij)(yij − y2ij)+

+

n∑

j=1

[
m∑

i=1

x2
ij −

m∑

i=1

y2ij

]
(
rj − r2j

)
≥ 0,

∀(x, y, r) ∈
m∏

i=1

Ωi ×Rn
+. (16)

Now select (x′, y′, r′) = (x2, y2, r2) and substitute it to (15); symmetrically, set
(x, y, r) = (x1, y1, r1) and put it into inequality (16). Summing up the resulting
inequalities, we come to

−
m∑

i=1

〈
(
∇xiui(x

1
i , y

1
i )−∇xiui(x

2
i , y

2
i )
)T

, x2
i − x1

i 〉−

−
m∑

i=1

〈
(
∇yiui(x

1
i , y

1
i )−∇yiui(x

2
i , y

2
i )
)T

, y2i − y1i 〉−
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−2

m∑

i=1

n∑

j=1

wij

[
(x1

ij − x2
ij)− (y1ij − y2ij)

]2 ≥ 0, (17)

which contradict (23). Hence, we have thus established the following result.

Theorem 4. (Uniqueness of Exterior Equilibrium Asset and Liability
Pattern)
If the utility functions ui are strictly concave for all sectors i, then for any fixed
conjectures matrix W , the exterior CVE asset and liability pattern (x∗, y∗) exists
uniquely.

Remark 1. Theorem 4 clearly implies that under its assumptions, the exterior
CVE involving the asset and liability pattern (x∗, y∗) also exists uniquely for
any fixed conjectures matrix W .

Remark 2. Observe that in the above analysis, if the utility function Ui had been
assumed to be concave, rather than strictly concave with respect to the variables
(xi, yi), then existence would still have been established, but one would no longer
be able to guarantee the uniqueness of the (exterior) conjectural variations equi-
librium (CVE) asset and liability pattern for a fixed conjectures matrix W .

5 Consistent Conjectures

In all the previous sections, we implicitly assumed that the conjectures W are
given exogenously for the model. However, in a series of recent publications by
the authors [4], [5], [6], a concept of consistent conjectures has been proposed
and justified. Although this concept is impossible to apply to our financial model
immediately, Theorem 4 allows one to construct an upper level game and define
consistent conjectures W indirectly. This procedure works as follows.

Under assumptions of Theorem 4, define a many-person game Γ = (N,W, V )
by the following rules:
(i) N = {1, . . . ,m} is the set of the same sectors as in our financial model;
(ii) the set of feasible conjectures W = (wij)

m n
i=1,j=1 ∈ Rm×n

+ is the set of possible
strategies in the upper level game;
(iii) V = V (W ) = (V1, . . . , Vm) are payoff functions used by the sectors i =
1, . . . ,m, in order to estimate their payoffs as the result of being stuck to their
strategies wi = (wi1, . . . , win). These functions are well-defined via Theorems 3
and 4 as follows: For each matrix W , according to those theorems, there exists
uniquely an exterior CVE (x∗, y∗, r∗). Now the payoff function Vi = Vi(W ) is
well-defined as the optimal value of the utility function Ui(x

∗, y∗, r∗), introduced
in (14), i.e.,

Vi(W ) = Ui(x
∗, y∗, r∗), i = 1, . . . ,m. (18)

Indeed, the payoff values (18) are defined by formula (8), where the (equi-
librium) assets and liabilities holdings (x∗, y∗), as well as the equilibrium price
r∗, are the elements of the exterior CVE whose existence and uniqueness is
guaranteed by Theorem 4 of Section III.
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Now if the strategies set W in the upper level game is a compact (i.e., closed
and bounded) subset of Rm×n

+ , one can guarantee the existence of the classical
(Cournot-Nash) equilibrium in this game [3]. Then we name this Cournot-Nash
equilibrium in the upper level game a consistent, or interior CVE in the original
financial model.

Definition 3. (Consistent, or Interior Financial CVE with General
Utility Functions)
The asset, liabilities, and price vector (x∗, y∗, r∗) generated in the Cournot-Nash
equilibrium of the upper level game is called the interior equilibrium in the fi-
nancial model, and the corresponding conjectures W ∗ involved in the upper level
game Cournot-Nash equilibrium, are named consistent.

The section is finished with the following result.

Theorem 5. (Existence of Interior CVE in Our Financial Model)
Under assumptions of Theorem 4, and for a compact feasible set of conjectures
W , there exists the consistent (interior) CVE in the financial model (9).

Proof. It is straightforward (cf. [3]).

6 Conclusion

In the paper, a general multi-sector, multi-instrument model of financial flows
and prices is developed, in which the utility function for each sector is assumed
to be quadratic and constraints satisfy a certain accounting identity that appears
in flow-of-funds accounts. Each sector uses conjectures of its influence upon the
prices of instruments. The equilibrium conditions are first derived, and then the
governing variational inequality is presented. Subsequently, a qualitative analysis
of the model is conducted.

Finally, a criterion of consistency of the influence coefficients wij is introduced,
and the existence of at least one interior (consistent) CVE in the financial model
for a compact feasible conjectures set W , is established.
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Abstract. Due to the time inconsistency issue of multiperiod mean-
CVaR model, two important policies of the model with finite states, the
pre-committed policy and the time consistent policy, are derived and dis-
cussed. The pre-committed policy, which is global optimal for the model,
is solved through linear programming. A detailed analysis shows that the
pre-committed policy doesn’t satisfy time consistency in efficiency either,
i.e., the truncated pre-committed policy is not efficient for the remaining
short term mean-CVaR problem. The time consistent policy, which is the
subgame Nash equilibrium policy of the multiperson game reformulation
of the model, takes a piecewise linear form of the current wealth level
and the coefficients can be derived by a series of integer programming
problems and two linear programming problems. The difference between
two polices indicates the degree of time inconsistency.
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1 Introduction

Conditional value at risk (CVaR) is a widely used risk measure in financial
institutions. Different from value at risk (VaR), CVaR is a coherent risk measure
(see [1]). Mathematically, CVaR is defined as the conditional expected loss,

νC(ξ, α) := E[ ξ| ξ ≥ ν(ξ, α)],

where ξ is the loss, α is the confidential level and ν(ξ, α) is the VaR of ξ
(see [9] ). In [9], Rockafellar and Uryasev showed the CVaR, νC(ξ, α), has the
following representation

νC(ξ, α) = min
z

[
z +

1

1− α
E
[
(ξ − z)+

]]
, (1)
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where y+ = max{y, 0} is the positive part of y ∈ R. With the help of the repre-
sentation, CVaR has been successfully applied in static (single period) portfolio
selection models.

However, CVaR has been seldom discussed in dynamic portfolio selection
problem. As the dynamic mean-CVaR model does not satisfy the Bellman’s
principle of optimality of dynamic programming, the global optimal policy for
the entire investment time horizon is NOT consistent with the local optimal
policies at different time instants for the corresponding tail parts of the time
horizon, which results in time inconsistency (see [6], [2]).

If the investor only concerns the global interests, he/she may adopt the global
optimal policy, which is called pre-committed policy following the term used in
Basak and Chabakauri (2010) ([3]). While, if the investor totally ignores the
global interests and bows to local interests, the dynamic mean-CVaR problem
can be modelled as a multiperson game, in which the investor at any time in-
stance acts as a Stackelberg leader and makes his/her “best” investment policy
by taking into account his/her policies in future time instances. The correspond-
ing subgame Nash equilibrium policy is called time consistent policy (see [4], [5]).

In this paper, we study multiperiod mean-CVaR portfolio selection model
with finite states. Instead of adopting martingale method and making complete
market assumption (see [8]), we derive the pre-committed policy via linear pro-
gramming in Section 2. Then, we study the time inconsistent property of the
truncated pre-committed policy in Section 3. In Section 4, we show that the
time consistent policy takes a piecewise linear form of wealth level, and derive
the coefficients via linear programming and integer programming. Finally, we
conclude our paper in Section 5.

2 Pre-committed Policy

The capital market under consideration consists of n risky assets with random
rates of returns and one riskless asset with deterministic rate of return. The
deterministic rate of return of the riskless asset at time period t is r0t > 0, and
the rates of return of n risky assets at time period t are denoted by a vector
rt = [r1t , · · · , rnt ]′, where rit is the random return for asset i at time period t. It is
assumed in this paper that vectors rt, t = 0, 1, · · · , T − 1, are statistically inde-
pendent, and rt has a discrete distribution with Nt finite states. We use rt(ωt)
to denote the possible realization of rt and pt(ωt) to denote its corresponding
probability, where ωt takes value from the scenario set {ω1

t , · · · , ωNt
t }. Then, the

sequence {ωj}t−1
j=0 denotes a possible path up to time t.

For a given path {ωj}t−1
j=0, let ut({ωj}t−1

j=0) be the vector of dollar amounts in-

vested in risky assets. Then, the amount invested in riskless asset isWt({ωj}t−1
j=0)−

1′ut({ωj}t−1
j=0), where 1 is the n-dimensional vector of ones and Wt({ωj}t−1

j=0) is
the wealth level at time t. An investor of mean-CVaR type who only concerns
the global interests, is seeking the pre-committed policy, {uPre

t ({ωj}t−1
j=0)}T−1

t=0 ,
according to
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(PT
0 )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min νC(B −WT , α),

s.t. E[WT ] = d,

Wt+1({ωj}tj=0) = r0tWt({ωj}t−1
j=0) + [et(ωt)]

′ut({ωj}t−1
j=0),

ut({ωj}t−1
j=0) ∈ R

n, t = 0, 1, · · · , T − 1,

(2)

where B is a pre-specified benchmark which is used to define the loss, α is
the confidential level, d is the preselected expected investment target and et =
rt − r0t 1 is the excess rates of return of risky assets. It is worth to point out
that when we choose two constants, B1 and B2, as benchmarks, the derived pre-
committed policies for two cases are identical and there is a constant difference
B1 − B2 between corresponding optimal CVaRs. Therefore, we just choose the
expected investment target d as the benchmark, i.e., B = d.

Inspired by Rockafellar and Uryasev’s linear programming formulation for
CVaR ([9]), we can reformulate the multiperiod mean-CVaR problem (PT

0 ) into
the following linear programming form,

(LPT
0 )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min z +
1

1− α

∑

{ωj}T−1
j=0

vT ({ωj}T−1
j=0 )pT ({ωj}T−1

j=0 ),

s.t.
∑

{ωj}T−1
j=0

WT ({ωj}T−1
j=0 )pT ({ωj}T−1

j=0 ) = d,

vT ({ωj}T−1
j=0 ) ≥ d−WT ({ωj}T−1

j=0 )− z,

vT ({ωj}T−1
j=0 ) ≥ 0,

Wt+1({ωj}tj=0) = r0tWt({ωj}t−1
j=0) + [et(ωt)]

′ut({ωj}t−1
j=0),

ut({ωj}t−1
j=0) ∈ R

n, t = 0, 1, · · · , T − 1,

(3)

where z, vT ({ωj}T−1
j=0 ) are 1 +

∏T−1
j=0 Nj auxiliary variables, pT ({ωj}T−1

j=0 ) =
∏T−1

j=0 pj(ωj) is the probability of return path {ωj}T−1
j=0 and the summation is

calculated over all possible return paths. Denote the terminal wealth achieved
by the pre-committed policy as WPre

T and the corresponding optimal objective
value of (LPT

0 ) as νC(d−WPre
T , α). By changing d among (−∞,+∞), the mean-

CVaR pairs (d, νC(d−WPre
T , α)) form the minimum CVaR set. While confining

d in
[∏T−1

j=0 r0jW0,+∞
)
, the mean-CVaR pairs form the efficient frontier.

Example 1. There are one riskless asset and two risky assets in the market.
The rate of return of riskless asset is r00 = r01 = 1.01. The rates of return of risky
assets are given as follows

r0(ω
1
0) = [0.85, 0.75]′, p0(ω

1
0) = 0.4, r0(ω

2
0) = [0.92, 0.91]′, p0(ω

2
0) = 0.1,

r0(ω
3
0) = [1.06, 1.04]′, p0(ω

3
0) = 0.4, r0(ω

4
0) = [1.08, 1.11]′, p0(ω

4
0) = 0.1;

r1(ω
1
1) = [0.89, 0.85]′, p1(ω

1
1) = 0.25, r1(ω

2
1) = [0.92, 0.91]′, p1(ω

2
1) = 0.25,

r1(ω
3
1) = [1.06, 1.04]′, p1(ω

3
1) = 0.25, r1(ω

4
1) = [1.08, 1.11]′, p1(ω

4
1) = 0.25.
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The market is an incomplete market and arbitrage free.
We consider a two-period mean-CVaR portfolio selection model. Assume that

the initial wealth level is W0 = 1 and confidential level is chosen as α = 0.85.
By changing d among (0.8, 2.5) and solving (LPT

0 ), we can derive the minimum
CVaR set, which is represented in Figure 1. The upper line is the efficient frontier.
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Fig. 1. Minimum CVaR set associated with W0 = 1

Next, fixing d = 2.2, we derive the pre-committed policy and the corresponding
wealth levels at time 1 and time 2 as follows,

uPre
0 = [16.9372,−18.2401], uPre

1 ({ω1
0}) = [175.0136,−140.0108]′ ,

uPre
1 ({ω2

0}) = [0, 0]′, uPre
1 ({ω3

0}) = [0, 0]′, uPre
1 ({ω4

0}) = [40.9123,−36.6057]′ ;

WPre
1 ({ω1

0}) = 3.0425, WPre
1 ({ω2

0}) = 1.3097,

WPre
1 ({ω3

0}) = 1.3097, WPre
1 ({ω4

0}) = 0.3716,

WPre
2 ({ω1

0 , ω
1
1}) = 4.4730, WPre

2 ({ω1
0 , ω

2
1}) = 1.3228,

WPre
2 ({ω1

0 , ω
3
1}) = 7.6232, WPre

2 ({ω1
0 , ω

4
1}) = 1.3228,

WPre
2 ({ω2

0 , ω
1
1}) = WPre

2 ({ω2
0 , ω

2
1}) = WPre

2 ({ω2
0 , ω

3
1}) = WPre

2 ({ω2
0 , ω

4
1}) = 1.3228,

WPre
2 ({ω3

0 , ω
1
1}) = WPre

2 ({ω3
0 , ω

2
1}) = WPre

2 ({ω3
0 , ω

3
1}) = WPre

2 ({ω3
0 , ω

4
1}) = 1.3228,

WPre
2 ({ω4

0 , ω
1
1}) = 1.3228, WPre

2 ({ω4
0 , ω

2
1}) = 0.3538,

WPre
2 ({ω4

0 , ω
3
1}) = 1.3228, WPre

2 ({ω4
0 , ω

4
1}) = −0.4214.

3 Time Inconsistency of Truncated Pre-committed Policy

When comes to time k, a particular return path up to time k, {ω̄s}k−1
s=0 is realized.

If the investor adopts pre-committed policy up to time k, the investor faces a
short term mean-CVaR problem (LPT

k ),
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(LPT
k )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min z +
1

1− α

∑

{ωj}T−1
j=k

vT ({ωj}T−1
j=k )pT ({ωj}T−1

j=k ),

s.t.
∑

{ωj}T−1
j=k

WT ({ωj}T−1
j=k )pT ({ωj}T−1

j=k ) = dk,

vT ({ωj}T−1
j=k ) ≥ d−WT ({ωj}T−1

j=k )− z,

vT ({ωj}T−1
j=k ) ≥ 0,

Wt+1({ωj}tj=k) = r0tWt({ωj}t−1
j=k) + [et(ωt)]

′ut({ωj}t−1
j=k),

ut({ωj}t−1
j=k) ∈ R

n, t = k, k + 1, · · · , T − 1,

(4)

where the initial wealth level is the wealth level at time t, i.e.,Wk=W
Pre
k ({ω̄s}k−1

s=0 )
and the conditional expected investment target is dk. And the truncated
pre-committed policy is denoted as

{uPre
t ({ωs}t−1

s=k)}
T−1
t=k .

Boda and Filar (2006) ([6]) had shown that multiperiod mean-CVaR model is
time inconsistent, which means that the truncated pre-committed policy is NOT
optimal for the short term mean-CVaR problem (LPT

k ). But, as multiperiod
mean-CVaR model is a multi-objective optimization problem, it is better to
consider efficiency instead of optimality. Therefore, we study the time consistency
in efficiency property of the pre-committed policy as suggested by Cui et. al.
(2012) ([7]), which examines whether the truncated pre-committed policy is still
efficient or not for the short term problem (LPT

k ).
To do this, we can derive the efficient frontier of problem (LPT

k ). And then
check whether the conditional mean and conditional CVaR pair achieved by the
truncated pre-committed policy lies on the efficient frontier or not. The con-
ditional mean and conditional CVaR achieved by the truncated pre-committed
policy can be computed easily,

E(WPre
T | {ω̄j}k−1

j=0 ) =
∑

{ωs}T−1
s=k

WPre
T ({ω̄j}k−1

j=0 , {ωs}T−1
s=k )pT ({ωs}T−1

s=k ), (5)

νC(d−WPre
T , α| {ω̄j}k−1

j=0 )

=min
z

z +
1

1− α

∑

{ωs}T−1
s=k

(
d−WPre

T ({ω̄j}k−1
j=0 , {ωs}T−1

s=k )− z
)+

pT ({ωs}T−1
s=k ),

(6)

where pT ({ωs}T−1
s=k ) =

∏T−1
s=k ps(ωs) is the conditional probability of return path

{ωs}T−1
s=k . The following example shows that in general, multiperiod mean-CVaR

model is NOT time consistent in efficiency.
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Example 2. We continue to study Example 1. At time 1, according to (5) and
(6), we have

E(WPre
2 | {ω1

0}) = 3.6854, νC(d−WPre
2 , α| {ω1

0}) = 0.8772;

E(WPre
2 | {ω2

0}) = 1.3228, νC(d−WPre
2 , α| {ω2

0}) = 0.8772

E(WPre
2 | {ω3

0}) = 1.3228, νC(d−WPre
2 , α| {ω3

0}) = 0.8772;

E(WPre
2 | {ω4

0}) = 0.6445, νC(d−WPre
2 , α| {ω4

0}) = 2.5937.

After deriving the efficient frontiers of (LP 2
1 ) with different initial wealth levels,

we find that the conditional mean-CVaR pair of {ω4
0} does not lie on the corre-

sponding efficient frontier (see Figure 2). Point ‘A’ is the conditional mean-CVaR
pair achieved by truncated pre-committed optimal policy, which is below the effi-
cient frontier of one-period mean-CVaR problem. Therefore, for the fourth return
path {ω4

0}, the truncated pre-committed optimal policy becomes inefficient .
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Fig. 2. The efficient frontier and the conditional mean-CVaR pair

It is hard to get the exact conditions under which truncated pre-committed
optimal policy is inefficient for short term mean-CVaR problem (LPT

k ). But
we can still have some rough results to describe the property of the truncated
pre-committed optimal policy.

Proposition 1. If the pre-committed policy is efficient and the following condition
holds,

d− ρTkW
Pre
k ({ω̄s}k−1

s=0 ) ≤ ν(d−WPre
T , α), (7)

where ρTk =
∏T−1

j=k r0j is the riskless accumulative factor, then the conditional
mean of terminal wealth achieved by the truncated pre-committed policy must
satisfy

E(WPre
T | {ω̄s}k−1

s=0 ) ≥ ρTkW
Pre
k ({ω̄s}k−1

s=0 ).
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Proof: We prove the result by contradiction. Assume that the following
condition holds

E(WPre
T | {ω̄s}k−1

s=0 ) < ρTkW
Pre
k ({ω̄s}k−1

s=0 ). (8)

Consider a revised portfolio policy {ūt({ωj}t−1
j=0)}T−1

t=0 ,

ūt({ωj}t−1
j=0) =

{
uPre
t ({ωj}t−1

j=0), if {ωs}k−1
s=0 �= {ω̄s}k−1

s=0 ,

0, if {ωs}k−1
s=0 = {ω̄s}k−1

s=0 ,

where 0 denotes the n-dimensional vector of zeros. This revised policy is different
from the pre-committed policy only for the particular return paths following
{ω̄s}k−1

s=0 . Then, the conditional mean of terminal wealth achieved by the revised
policy is

E(WT | {ω̄s}k−1
s=0 ) = ρTk W

Pre
k ({ω̄s}k−1

s=0 ).

Now let us compare the mean CVaR pairs achieved by pre-committed pol-
icy and the revised policy. Due to condition (8) and the smooth property of
expectation operator, we have

E(WPre
T )

=E(WPre
T |{ω̄s}k−1

s=0 )pT ({ω̄s}k−1
s=0 ) +

∑

{ωs}k−1
s=0 �={ω̄s}k−1

s=0

E(WPre
T |{ωs}k−1

s=0 )pT ({ωs}k−1
s=0 )

<ρTkW
Pre
k ({ω̄s}k−1

s=0 )pT ({ω̄s}k−1
s=0 ) +

∑

{ωs}k−1
s=0 �={ω̄s}k−1

s=0

E(WPre
T |{ωs}k−1

s=0 )pT ({ωs}k−1
s=0 )

=E(WT ).

On the other hand, for given path {ω̄s}k−1
s=0 , the terminal wealth achieved by

the revised policy is a constant

ρTkW
Pre
k ({ω̄s}k−1

s=0 ).

Condition (7) implies that following the path {ω̄s}k−1
s=0 , the loss achieved by the

revised policy is less than ν(d −WPre
T , α), which further implies

νC(d−WT , α) ≤ νC(d−WPre
T , α).

This finding contradicts to the fact that the corresponding pre-committed
policy achieves an efficient mean-CVaR pair. Therefore, the assumption (8) is
incorrect and the conclusion holds. �
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4 Time Consistent Policy

When the investor totally ignores the global interests and bows to local interests,
we reformulate multiperiod mean-CVaR model into a multiperson game and
derive the time consistent policy. The multiperson game can be represented as
the following nested problem,

(NLPT
t )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ut

z +
1

1− α

∑

{ωj}T−1
j=t

vT ({ωj}T−1
j=t )pT ({ωj}T−1

j=t ),

s.t.
∑

{ωj}T−1
j=t

WT ({ωj}T−1
j=t )pT ({ωj}T−1

j=t ) = d,

vT ({ωj}T−1
j=t ) ≥ d−WT ({ωj}T−1

j=t )− z,

vT ({ωj}T−1
j=t ) ≥ 0,

Wτ+1({ωj}τj=t) = r0τWτ ({ωj}τ−1
j=t ) + [eτ (ωτ )]

′uτ ({ωj}τ−1
j=t ),

uτ ({ωj}τ−1
j=t ) solves (NLPT

τ ), τ = t+ 1, t+ 2, · · · , T − 1,

Wt+1({ωt}) = r0tWt + [et(ωt)]
′ut,

ut ∈ R
n,

with the problem in the final time period given as

(NLPT
T−1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
uT−1

z +
1

1− α

∑

{ωT−1}
vT ({ωT−1})pT ({ωT−1}),

s.t.
∑

{ωT−1}
WT ({ωT−1})pT ({ωT−1}) = d,

vT ({ωT−1}) ≥ d−WT ({ωT−1})− z,

vT ({ωT−1}) ≥ 0,

WT ({ωT−1}) = r0T−1WT−1 + [eT−1(ωT−1)]
′uT−1,

uT−1 ∈ R
n.

The time consistent policy, i.e., subgame Nash equilibrium policy of the mul-
tiperson game, can be characterized by the following theorem.

Theorem 1 The time consistent policy of multiperiod mean-CVaR problem is
given as, for t = 0, 1 · · · , T − 1,

uTC
t (Wt) =

(
K+

t 1{(ρT
t )−1d≥Wt} +K−

t 1{(ρT
t )−1d<Wt}

)
[(ρTt )

−1d−Wt], (9)

where 1{·} is the indicator function, vectors K+
T−1 and K−

T−1 are determined
through the following linear programming problems, respectively,
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(TC±
T−1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
KT−1

z +
1

1− α

∑

{ωT−1}
vT ({ωT−1})pT ({ωT−1}),

s.t.
∑

{ωT−1}
(r0T−1 − [eT−1(ωT−1)]

′KT−1)pT ({ωT−1}) = 0,

vT ({ωT−1}) ≥ ±
[
r0T−1 − [eT−1(ωT−1)]

′KT−1

]
− z,

vT ({ωT−1}) ≥ 0,

KT−1 ∈ R
n,

and vectors K+
t and K−

t (t < T−1) are determined through the following integer
programming problems, respectively,

(TC±
t )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Kt

z +
1

1− α

∑

{ωj}T−1
j=t

vT ({ωj}T−1
j=t )pT ({ωj}T−1

j=t ),

s.t.
∑

{ωj}T−1
j=t

YT−1({ωj}T−1
j=t )pT ({ωj}T−1

j=t ) = 0,

vT ({ωj}T−1
j=t ) ≥ ±YT−1({ωj}T−1

j=t )− z,

vT ({ωj}T−1
j=t ) ≥ 0,

Yj({ωs}js=t) = Yj−1({ωs}j−1
s=t )

{
ζj−1({ωs}j−1

s=t )(r
0
j − [ej(ωj)]

′K+
j )

+[1− ζj−1({ωs}j−1
s=t )](r

0
j − [ej(ωj)]

′K−
j )

}
,

Yj−1({ωs}j−1
s=t ) ≤ Mζj−1({ωs}j−1

s=t ),

−Yj−1({ωs}j−1
s=t ) ≤ M [1− ζj−1({ωs}j−1

s=t )],

ζj−1({ωs}j−1
s=t ) ∈ {0, 1}, j = t+ 1, t+ 2, · · · , T − 1,

Yt(ωt) = r0t − [et(ωt)]
′Kt,

Kt ∈ R
n,

where M is a large number.

Proof: We prove the main result by backward induction.
First, consider the problem in the final period (NLPT

T−1). When (ρTT−1)
−1d >

WT−1, by denoting uT−1 = KT−1[(ρ
T
T−1)

−1d − WT−1] and noticing the posi-

tive homogeneity of CVaR, (NLPT
T−1) can be reduced into (TC+

T−1). Thus, we

have uTC
T−1 = K+

T−1[(ρ
T
T−1)

−1d − WT−1]. Similarly, when (ρTT−1)
−1d < WT−1,

by denoting uT−1 = KT−1[(ρ
T
T−1)

−1d − WT−1] and noticing the positive ho-

mogeneity of CVaR, (NLPT
T−1) can be reduced into (TC−

T−1). Thus, we have

uTC
T−1 = K−

T−1[(ρ
T
T−1)

−1d − WT−1]. When (ρTT−1)
−1d = WT−1, we can choose

uTC
T−1 = 0. Therefore, (9) holds for time T − 1.
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Assume that (9) holds from time t+1 to time T − 1. We prove that (9) holds
for time t also. At time t, by denoting ut = Kt[(ρ

T
t )

−1d−Wt], we have

(ρTj+1)
−1d−Wj+1({ωs}js=t) = [(ρTj )

−1d−Wj({ωs}j−1
s=t )]Yj({ωs}js=t),

j = t, t+ 1, · · · , T − 1,

where

Yj({ωs}js=t) =Yj−1({ωs}j−1
s=t )

{
1{Yj−1({ωs}j−1

s=t )≥0}(r
0
j − [ej(ωj)]

′K+
j )

+ 1{Yj−1({ωs}j−1
s=t )<0}(r

0
j − [ej(ωj)]

′K−
j )

}
,

and Yt(ωt) = (r0t − [et(ωt)]
′Kt). Then, when (ρTt )

−1d ≥ Wt, (NLPT
t ) can be

reduced into
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Kt

z +
1

1− α

∑

{ωj}T−1
j=t

vT ({ωj}T−1
j=t )pT ({ωj}T−1

j=t ),

s.t.
∑

{ωj}T−1
j=t

YT−1({ωj}T−1
j=t )pT ({ωj}T−1

j=t ) = 0,

vT ({ωj}T−1
j=t ) ≥ YT−1({ωj}T−1

j=t )− z,

vT ({ωj}T−1
j=t ) ≥ 0,

Yj({ωs}js=t) = Yj−1({ωs}j−1
s=t )

{
1{Yj−1({ωs}j−1

s=t )≥0}(r
0
j − [ej(ωj)]

′K+
j )

+1{Yj−1({ωs}j−1
s=t )<0}(r

0
j − [ej(ωj)]

′K−
j )

}
, j = t+ 1, · · · , T − 1,

Yt(ωt) = r0t − [et(ωt)]
′Kt,

Kt ∈ R
n,

which can be transfer into integer programming problem (TC+
t ). Thus, we have

uTC
t = K+

t [(ρ
T
t )

−1d − Wt]. Similarly, when (ρTt )
−1d < Wt, (NLPT

t ) can be
reduced into (TC−

t ). Thus, we have uTC
t = K−

t [(ρ
T
t )

−1d−Wt]. When (ρTt )
−1d =

Wt, we can also choose uTC
t = 0. Therefore, (9) holds for time t. �

In the following example, we derive the time consistent policy for Example 1
and compare the efficient frontiers achieved by pre-committed policy and time
consistent policy.

Example 3. We continue to study Example 1. When fixing d = 2.2, according
to Theorem 1, we can derive

K+
1 = [288.5714,−230.8571]′, K−

1 = [153.5200,−137.3600]′.

Then, at time 0, (TC±
0 ) can be rewritten as the following integer programming

problems,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
K0

z +
1

1− α

∑

{ω0,ω1}
v2({ω0, ω1})p2({ω0, ω1}),

s.t.
∑

{ω0,ω1}
Y1({ω0, ω1})p2({ω0, ω1}) = 0,

v2({ω0, ω1}) ≥ ±Y1({ω0, ω1})− z,

v2({ω0, ω1}) ≥ 0,

Y1({ω0, ω1}) = Y0(ω0)
{
ζ(ω0)(r

0
1 − [e1(ω1)]

′K+
1 )

+[1− ζ(ω0)](r
0
1 − [e1(ω1)]

′K−
1 )

}
,

Y0(ω0) ≤ Mζ(ω0),

−Y0(ω0) ≤ M(1− ζ(ω0)),

ζ(ω0) ∈ {0, 1},
Y0(ω0) = r0t − [e0(ω0)]

′K0,

K0 ∈ R
n,

where M is a large number. We can derive

K+
0 = [0, 0]′, K−

0 = [0, 0]′.

This means that under the time consistent policy, the investor does not invest
the risky assets in the first period.

The following Figure 3 shows the efficient frontiers achieved by pre-committed
policy and time consistent policy. We can see that applying pre-committed pol-
icy has a better long term investment performance than time consistent pol-
icy. The difference between the efficient frontiers represents the degree of time
inconsistency.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

CVaR

E
xp

ec
te

d 
te

rm
in

al
 w

ea
lth

 

 

pre−committed policy

time consistent policy

Fig. 3. The efficient frontiers achieved by pre-committed policy and time consistent
policy
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5 Conclusion

In this paper, we study the multiperiod mean-CVaR model with finite states.
As the model suffers time inconsistency, i.e., the truncated global optimal policy
(pre-committed policy) is not optimal for the remaining short term problem, we
derive both the pre-committed policy and time consistent policy.

We use linear programming to derive the pre-committed policy, and show
that the pre-committed policy doesn’t satisfy time consistency in efficiency. We
also provide a proposition describing the property of the truncated efficient pre-
committed policy. Then, we prove that the time consistent policy, subgame Nash
equilibrium policy of the multiperson game reformulation, takes a piecewise lin-
ear form of the current wealth level and the corresponding coefficients can be
derived by a series of integer programming problems and two linear programming
problems. The numerical example shows that by adopting the time consistent
policy, the investor suffers a loss in long term investment performance.
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Abstract. In this study, we have developed a multi echelon and multi objective 
supply chain network model for a company which sells high quality household 
goods to its customers in different cities. The first objective of the proposed ma-
thematical model tries to minimize the total supply chain network cost while the 
other objective tries to maximize the service level. We also used a specific 
transportation cost function which takes care about the distance economy. This 
specific cost function makes the mathematical model and its results more accu-
rate and realistic. We have concluded the study by solving this real-life problem 
with the proposed approach. The computational results showed that the pro-
posed approach finds the Pareto optimum solution within a very short time and 
can be adapted to any company’s problem easily. 

Keywords: Supply chain network design, multi objective optimization,  
distance economy. 

1 Introduction 

A supply chain is a network of suppliers, manufacturing plants, warehouses, and dis-
tribution channels organized to acquire raw materials, convert these raw materials to 
finished products, and distribute these products to customers [1]. The structure of the 
supply chain may differ from a company to another one. As an example, some com-
panies may use a network including suppliers, production plants, warehouses and 
markets. Some other companies may not use warehouses and instead, they may prefer 
to ship from the production plant to the customers via the distribution centers. In fact, 
these differences come from different objectives of companies. Each company de-
signs their supply chain network according to one or a few objectives. Some of them 
may focus on total supply chain network cost while designing the network, some 
others may focus on speed and some others may focus on another performance indica-
tor and this makes the supply chain network different from the others.  

The main objective of the supply chain management is to achieve suitable econom-
ic results together with the desired consumer satisfaction levels [2]. For this reason  
a model should also focus on the service level or customer satisfaction level beside 
the total cost but most of the models in the literature have only one objective [3], [7], 
[8], which is either minimizing the total cost or maximizing the after tax profit.  
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For example, Tsiakis, Shah and Pantelides [3] developed a single objective multi eche-
lon supply chain network design model which includes suppliers, plants, warehouses, 
distribution centers and customers. Their objective was minimizing the total cost by 
determining the number, capacity and location of warehouses and distribution centers.  

There are also some models in the literature which have two or more objectives. 
For example, Pazhami, Rankumar, Narendran and Ganesh [4] developed a bi-
objective supply chain network design model. Their objective was minimizing the 
total supply chain network cost and maximizing the service level. In order to measure 
the service level they used Multiple Criteria Decision Making techniques like AHP 
and TOPSIS. They have found an efficiency score for each warehouse and hybrid 
facility and as a second objective they have tried to maximize the total efficiency 
score. They also used different variations of goal programming and compared the 
results. Wang, Lai and Shi [5] focused on an important but rarely focused issue. They 
have developed a multi objective green supply chain network design model. One of 
their objectives was environmental influence and the other was total cost. They tried 
to find a tradeoff between the cost and environmental influence. Hiremath, Sahu and 
Tiwari [6] developed a model for outbound logistics network which includes three 
objectives. Their objectives were minimizing the total cost, maximizing the unit fill 
rates and maximizing the resource utilization. Production plants, central distribution 
centers, regional distribution centers and customer zones were the scope of their 
supply chain network model.  

In the rest of the article, in second part, the problem is defined and the methodolo-
gy to solve this problem is introduced. In third part, the proposed mathematical model 
is given with all its details. In fourth part, the computational results are given and 
some analysis about the computational results are made. Finally, in last two parts 
conclusion and future agenda for interested researchers are given.  

2 Problem Definition and Methodology 

We have tried to optimize the supply chain network of a household goods company. 
The company is located in Bilecik, a small city in Turkey. It has enough capacity to 
produce up to 10000 pallets of products in a month. It has customers in 29 different 
cities in Turkey. Those cities, their monthly demands (in pallets) and total monthly 
renting, operating cost of opening a warehouse (ROCW) in each city are summarized 
in Table 1 on the next page. In fact, the total monthly renting and operating cost of 
opening a warehouse is the cost which must be accepted by the company if the com-
pany wants to open a warehouse in that city. This cost is in Turkish Liras just like all 
the costs in the model. The demands of the customers can be thought as stable be-
cause it changes at most one or two pallets for a city in different months. 

The company provides the goods to the customers via the warehouses. According 
to the company policy, direct shipment from the company to the customers is prohi-
bited. Every month, the company ships enough products from the production plant 
located in Bilecik to each warehouse which satisfies the monthly demand of all cus-
tomers assigned to that warehouse. The location of the company is fixed just like the 
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location of the customers. The warehouses can be opened in one or a few of the cities 
which are given in Table 1. The company does not want to open a warehouse in the 
city of production plant because of firm policy.   

Table 1. Customers, Their Demands and ROCW’s 

City Adana Ankara Antalya Balikesir Bursa Edirne 
Demand 315 493 680 137 367 66 
ROCW 28000 44000 27000 19000 26000 21000 
City Eskisehir G.Antep Hatay Mersin Istanbul Izmir 
Demand 55 51 154 112 2097 432 
ROCW 27000 16000 11000 22000 51000 43000 
City Kayseri Kocaeli Konya Malatya Mugla Ordu 
Demand 158 370 247 69 251 77 
ROCW 32000 34000 19000 16000 29000 23000 
City Sakarya Samsun Sivas Tekirdag Trabzon S.Urfa 
Demand 60 351 94 40 123 48 
ROCW 17000 33000 21000 21000 27000 14000 
City Van Kirikkale Bartin Karabuk Duzce  
Demand 79 34 17 19 23  
ROCW 9000 17000 19000 21000 19000  

 
In addition to the information given in Table 1, distances between the cities are al-

so needed for the model. Those distances are obtained from the web site of Republic 
of Turkey, General Directorate of Highways [9]. 

All in all, the company has the following questions to answer.  

• Where should they locate their warehouses? 
• How many warehouses should they open?  
• Which customer should be assigned to which warehouse? 
• What should be the inventory level in each warehouse?  

The answers of these questions change according to the objective or objectives of the 
company. For example, if the company focuses on only cost then they probably de-
cide to open only one warehouse but it brings lots of problems like capacity problems, 
promised lead time problems etc. From another perspective, if the company focuses 
on only lead time, they probably decide to open a warehouse in all the cities in order 
to give the fastest service but this will certainly increase the cost. For this reason, it 
becomes necessary to create a multi objective supply chain network design model 
which tries to find a tradeoff between these two objectives.  

To find the tradeoff point and answer the questions above, we have proposed a 
goal programming model which determines the number, location and inventory level 
of warehouses and assigns the customers to each warehouse. We have written the  
cost and service level goals as constraints and we tried to minimize the deviation  
from each goal. In fact, there are lots of definition of service level but in this study we 
define the service level as closeness to the customers. Because, being close to a  
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customer decrease the lead time and gives the opportunity of fast service. Fast service 
can even be a reason for a customer to choose the company. Secondly, closeness pro-
vides better communication with customers. For all these reasons, our second objec-
tive forces the model to open a warehouse as close as possible to the customers who 
have high monthly demand. 

3 The Proposed Mathematical Model 

In this part of study, we introduced the mathematical model but before it we briefly 
explained the concept of distance economy and its importance in transportation cost. 
We also explained how we will use the distance economy in the model.   

3.1 The Concept of Distance Economy 

Distance economy (economies of distance) is one of the most important things to take 
care about while modeling the supply chain network. Most of the models in the litera-
ture do not put the distance economy into account but in fact it effects the transporta-
tion cost directly. In order to make the model more realistic we also put the distance 
economy into account.  

In fact, transportation cost mainly depends on distance and quantity. Even, it can 
be thought as the product of distance and quantity. For this reason, if the quantity is 
fixed, it only changes according to distance. However, this change is not a linear 
change because of distance economy. According to distance economy rule, the dis-
tance based unit cost decreases when the distance increases. Therefore, the cost  
does not increase linearly. In order to put this rule into account we define a distance 
economy multiplier. It changes according to distance and determined by using the 
company data for only some certain distances like in Table 2. 

Table 2. Distance Economy Multiplier 

Distance (km) 1 200 400 600 800 

Multiplier 1,00 0,83 0,81 0,80 0,79 

 
As an example if the distance between two city is 200 km and if we want to trans-

port just one product then the transportation cost is 166 TL (1x0,83x200) but if the 
distance is 400 km then the cost is 324 TL, not 332 TL (166x2). As it can be seen 
easily, the transportation cost does not increase linearly. This multiplier makes the 
model and the cost more realistic. However, the multiplier given in Table 2 is for only 
some certain distance values, but the distances in our problem can be any number.  
For example the distance between two cities can be 324 km another one can be 467 
km. In these cases, what should be the multiplier? In order to answer these questions 
we need to find a function for this multiplier which fits best with the data in Table 2. 
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Our analysis showed that this data fits best to an exponential function  ,  
where  is the multiplier and  is the distance. We could not show the curve fitting 
process due to the space limit but briefly, this function is obtained by minimizing the 
sum of squares of errors.  

3.2 The Proposed Mathematical Model 

A multi-objective multi echelon mixed integer supply chain network design model 
has been developed with the following model parameters, decision variables, con-
straints and objectives. 

Sets 
: Production plant 

: Warehouses (  = 1… ) 
: Customers ( = 1…m) 

Parameters 
: Distance between warehouse opened in  city and customer in    city 
: Distance between production plant and warehouse opened in  city 

: Average monthly demand of  city 
: Average monthly renting and operating cost of warehouse opened in  city 

Decision Variables 
: Amount of product transported from warehouse opened in  city to customer        

in  city 
: Amount of product transported from production plant to warehouse opened in  

city 
: Demand of warehouse opened in  city 

Binary Variables 
: If a warehouse is opened in  city it is 1 otherwise it is 0 

Transportation Cost 
Since we have found the distance economy multiplier ,  where  is the distance 
between two cities, we can write the transportation cost between the warehouse 
opened in  city and customer in  city as follows.  

 , . .  (1) 

Let , .  be  then the equation will be as follows. 

 .  (2) 
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Transportation cost between the production plant and warehouse opened in  city is 
written by the same way. Finally, the model can be written as follows. 

 min  0,6. 0,4.  (3) 

   

 ∑ .  + ∑ ∑ .  + ∑ .  +  -  = 2629703 (4) 

 ∑ ∑  .   -  = 0 (5) 

 4000.     ,  (6) 

 10000.    (7) 

 ∑    (8) 

       (9) 

 ∑   (10) 

 4000   (11) 

 ∑ 3 (12) 

 ,  ,  0    0,1  (13) 

The third equation is the objective function which tries to minimize the total positive 
deviations from the cost goal and service goal. The weighted sum scalarization me-
thod is used to scalarize the objectives. We gave 0,6 weight to the first objective (cost 
goal) and 0,4 weight to the second objective (service goal). These weights are given 
according to the managers’ preferences. 

The fourth equation is the cost goal. First part of it, includes the transportation cost be-
tween the plant and warehouse opened in  city. The second part of it includes the 
transportation cost between the warehouse located in  city and customer located in  
city. The third part of it is monthly warehouse renting and operating cost of opening a 
warehouse in  city. As it can be seen easily, the model adds this cost only if the ware-
house is opened in that city. In fact, the fourth equation includes total supply chain net-
work cost (transportation cost, warehouse renting cost and warehouse operating cost). 
Here the value of 2629703 TL is the ideal cost and this cost was determined as goal. 

The fifth equation is the service level equation. As it is mentioned before, we have 
defined the service level as closeness to the customer. Therefore, the model is forced to 
satisfy the demand of each customer from a warehouse as close as possible to the cus-
tomer. The model will probably open warehouses especially near the customers who 
have high demands in order to minimize the  .  value. Although opening ware-
houses close to the customers will decrease the lead time and increase the service level, 
it also increases the total supply chain network cost.  For example, as an ideal solution, 
if a warehouse in each customer’s city is opened, then the fifth equation will be zero as 
we wish but in this case the transportation cost of first echelon (from the production 
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plant to the warehouse) and warehouse renting and operating costs will be too much. 
For this reason the fifth equation contradicts the fourth equation and the mathematical 
model will find a tradeoff point.   Last but not least, as it is seen in fifth equation, the 
equation is  .  instead of .  because this equation is not about cost. 

The sixth equation forces the model to open a warehouse in order to make a ship-
ment from a warehouse. If the warehouse is not opened in  city, then it becomes 
impossible to make any shipment from  city but if a warehouse is opened in  
city then it can be made shipment up to 4000 products (the capacity of warehouse). 

The seventh equation is just like the previous one. If the warehouse is not opened 
in  city then the company cannot send product to that city and similarly if the 
warehouse is opened in  city then the company can send up to 10000 products (the 
capacity of the company) to that city. 

The eighth equation ensures that the amount of product which has been sent to  
customer is equal to the demand of that customer.   

The ninth equation guarantees that the amount of product which has been sent to 
 warehouse from the production plant is equal to the demand of that warehouse. 
The tenth equation is a flow logic constraint. It ensures that, the demand of a ware-

house must be equal to the amount of product shipped from that warehouse to all its 
customers. 

The eleventh equation limits the maximum capacity of each warehouse. This con-
straint is added because of firm policy.  

The twelfth equation limits the maximum number of warehouses. This constraint is 
a company policy too just like the previous one.  

Finally, the thirteenth equation forces the decision variables to be positive and integer. 

4 Computational Results 

In order to show its efficiency we have tested the proposed mathematical model by 
using the firm’s data. We used GAMS optimization software and Baron Solver to solve 
the proposed model. The results showed that the positive deviation from the cost goal 
( ) is found as 232656 and the positive deviation from the service goal ( ) is found 
as 1954618. The deviation from the service goal seems high because our ideal value 
was zero and it needs to open warehouses in all the cities to be zero. From another pers-
pective, there is a maximum number of warehouses limit. The model cannot open more 
than 3 warehouses. For this reason the model tried to find the minimum possible devia-
tion as 1954618. The positive deviation from the ideal cost (first objective) is actually 
the money which must be accepted by the company to give faster service. Because the 
ideal cost is found by solving the model with single (cost) objective. 

The supply chain network created by the model can be seen in Figure 1 on the next 
page. As it is seen, the model decided to open 3 (maximum number allowed) ware-
houses. One of them is opened in Adana, a city in south of Turkey. This warehouse is 
used in order to satisfy the demand of some cities which are in south or east of Tur-
key. Another warehouse is opened in Eskisehir, nearly in the middle of Turkey. This 
warehouse satisfies the demand of a few city which are close to it. Finally, the last 
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warehouse is opened in Sakarya, a city in North of the Turkey and it satisfies the de-
mand of some cities which are in north of the Turkey. It also satisfies the demand of 
Istanbul, which is the most crowded city in Turkey and has the biggest demand (2097 
Pallets)  Sakarya is so close to Istanbul that a truck can come to Istanbul within at 
most 3 or 4 hours. In addition, the warehouse renting and operating cost in Sakarya is 
three times cheaper than Istanbul. For this reason the model results are really logical. 
Opening a warehouse not in Istanbul but just near the Istanbul is a really good strate-
gy for cost and fast service.  

 

Fig. 1. The Obtained Supply Chain Network 

The warehouses and the customers assigned to each warehouse are summarized in 
Table 3, Table 4 and Table 5 respectively. 

Table 3. Warehouse 1 and Assigned Customers 

Warehouse  
Location 

Monthly Flow Cities Assigned to 
This Warehouse 

Product Sent 
From This Ware-
house 

Sakarya 3243 pallets Edirne 66 pallets 
Istanbul 2097 pallets 
Kocaeli 370 pallets 
Ordu 77 pallets 
Sakarya 60 pallets 
Samsun 351 pallets 
Tekirdag 40 pallets 
Trabzon 123 pallets 
Bartin 17 pallets 
Karabuk 19 pallets 
Duzce 23 pallets 



 A Multi Objective Multi Echelon Supply Chain Network Model 315 

When we analyze the warehouse located in Sakarya (by taking care about dis-
tances) we see that demands of lots of cities assigned to this warehouse including 
Istanbul, Kocaeli, Sakarya, Tekirdag, Edirne, Bartin, Karabuk and Duzce can be satis-
fied within less than six hours.  Demands of Ordu and Samsun can be satisfied within 
less than ten hours. Demand of the farthest city to the warehouse, Trabzon (916 km to 
the warehouse) can be satisfied within 13 hours. Briefly, it is seen that beside the 
lowest possible cost our model provides fast service and short lead time.  

Table 4. Warehouse 2 and Assigned Customers 

Warehouse  
Location 

Monthly Flow Cities Assigned to 
This Warehouse 

Product Sent 
From This Ware-
house 

Eskisehir 
 
 

2948 pallets Ankara 493 pallets 
Antalya 680 pallets 
Balikesir 137 pallets 
Bursa 367 pallets 
Eskisehir 55 pallets 
Izmir 432 pallets 
Kayseri 158 pallets 
Konya 247 pallets 
Mugla 251 pallets 
Sivas 94 pallets 
Kirikkale 34 pallets 

 
The same analysis can be done for warehouse 2 and warehouse 3 and it can be 

again seen that lots of cities’ demands can be satisfied within less than six hours, only 
the demands of a few cities needs more than six hours to be satisfied.    

Table 5. Warehouse 3 and Assigned Customers 

Warehouse  
Location 

Monthly Flow Cities Assigned to 
This Warehouse 

Product Sent 
From This Ware-
house 

Adana 828 pallets Adana 315 pallets 
G.Antep 51 pallets 
Hatay 154 pallets 
Mersin 112 pallets 
Malatya 69 pallets 
S.Urfa 48 pallets 
Van 79 pallets 

 



316 M. Alegoz and Z.K. Ozturk 

5 Comparing the Model Results with the Existing Company 
Policy  

In the existing situation, the company has only one warehouse which is located in 
Sakarya. They have opened that warehouse in order to give fast service especially to 
Istanbul and the cities near the Istanbul. They take care about only the cities which 
have high demands. From another perspective, since some cities like Van, Gaziantep 
Malatya etc. are far from Sakarya, it takes more than one day to satisfy the demand of 
them. In addition, in this case the positive deviation from the cost goal becomes 
368876 and the deviation from the service goal becomes 2847515.  

The proposed mathematical model showed that opening a warehouse in Sakarya is 
a good strategy but it is not enough. The model also opened two more warehouses in 
Eskisehir and Adana respectively. A brief comparison between the supply chain net-
work created by the model and the existing policy is shown in Table 6. 

Table 6. Comparison of Model Results and Existing Policy 

 Model Results Existing Policy 
Number of Warehouses 3 1 
Locations of 
Warehouses 

Sakarya, Eskisehir 
Adana 

Sakarya 

Positive Deviation From 
The Cost Goal 

232656 368876 

Positive Deviation From 
The Service Goal 

1954618 2847515 

 
Since, we are trying to minimize the sum of positive deviations, we see that the 

supply chain network obtained from the mathematical model is better than the exist-
ing company policy. In other words, as it can be seen easily in Table 6, the supply 
chain network created by the mathematical model gives faster service with lower cost. 
It also proves that, opening more warehouses does not always increase the cost.  

6 Conclusion 

Supply chain networks can be designed by focusing on numerous objectives. Cost, 
quality, service level, capacity and communication are just a few of the objectives to 
focus on while designing the supply chain network. Beside the single objective opti-
mization models, there are also some multi objective models which tries to find a 
tradeoff between the objectives. We have proposed a multi objective model for a 
household goods company. Since, our problem was a real life problem we tried to 
make our model as realistic as possible. We used a specific transportation cost func-
tion to put the distance economy into account. We also applied some company  
policies to the model. We prohibited direct shipment from the production plant to  
the customers, added capacity constraint for warehouses and limited the maximum 
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number of warehouses. All these things made our model a multi objective, multi eche-
lon real life model.  

According to the new supply chain network which is designed by the model, the 
company can satisfy the demands of lots of their customers within less than six hours. 
In fact, this fast service makes the total supply chain network cost exceed the ideal 
cost which was 2629703 TL. However, the deviation is only 232656 TL which is 
acceptable for the company to give the fastest possible service. Because, accepting 
this cost will increase the customer satisfaction and loyalty. In long term, the compa-
ny will increase its income and find new customers as a result of this fast service and 
loyalty. Briefly, it is sometimes beneficial to accept a few excessive cost for long term 
earnings. Companies should not only focus on cost but also they should focus on oth-
er performance indicators like lead time, customer satisfaction and loyalty. Compa-
nies must follow a long term strategy and sometimes they should accept some exces-
sive costs for its strategic benefits as our model shows that satisfaction of customers is 
more important than an excessive 232656 TL cost.  

Finally, this model is developed for a company but it can be adapted to any com-
pany’s problem easily by making only some minor changes in the constraints and/or 
goals. Because there is not any test problem in the literature, we could not show  
its adaptability to other problems but by changing some parameters (for example  
the demands of cities) or some constraints (for example the maximum number  
and capacities of warehouses), it is possible to adapt the model to any company’s 
problem. 

7 Future Agenda 

In spite of the fact that this mathematical model is very effective, it may become real-
ly difficult (and sometimes impossible) to find an optimum solution when the number 
of cities increases. For example if we want to solve this model for a company which 
has customers in 276 cities inside and outside the country, it is almost impossible to 
find an exact solution in an acceptable time by using any of the optimization software 
including GAMS. For this reason, it is necessary to adopt a metaheuristic for big 
problems. That metaheuristic must be suitable both to the problem and to the model.  
If necessary, the metaheuristic must be modified for the problem and/or model. We 
currently have been working on developing such an algorithm which includes a meta-
heuristic (or a few metaheuristics) and gives high quality solutions in a reasonable 
time for big dimensional problems. 
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Abstract. The paper presents main features of the conic scalarization
method in multiobjective optimization. The conic scalarization method
guarantees to generate all proper efficient solutions and does not require
any kind of convexity or boundedness conditions. In addition the prefer-
ence and reference point information of the decision maker is taken into
consideration by this method. In this paper, relations with other scalar-
ization methods are investigated and it is shown that some efficient solu-
tions computed by the Pascoletti-Serafini and the Benson’s scalarization
methods, can be obtained by the conic scalarization method.
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1 Introduction

In general, scalarization means the replacement of a multiobjective optimization
problem by a suitable scalar optimization problem which is an optimization
problem with a real valued objective function.

In this paper we give main features of the conic scalarization method. The
conic scalarization method enables to completely characterize the whole set
of efficient and properly efficient solutions of multiobjective problems without
convexity and boundedness conditions.

In this paper we present theorems which establish relations between the conic
scalarization and the Pascoletti-Serafini and the Benson’s scalarization methods.
It is shown that some efficient solutions computed by the Pascoletti-Serafini and
the Benson’s scalarization methods, can be obtained by the conic scalarization
method.
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The rest of the paper is organized as follows. Section 2 gives some pre-
liminaries. Main characteristics of the conic scalarization method are given in
Section 3. In section 4, new relations between the conic scalarization method and
Pascoletti-Serafini and Benson’s scalarization methods are established. Finally,
Section 5 draws some conclusions from the paper.

2 Preliminaries

We begin this section with standard definitions from multi-objective optimiza-
tion.

Let R
n
+ := {y = (y1, ..., yn) : yi ≥ 0, i = 1, . . . , n}, and let Y ⊂ R

n be a
nonempty set.

Throughout the paper, R+ denotes the set of nonnegative real numbers. cl(Y),
bd(Y), int(Y), and co(Y) denote the closure, the boundary, the interior, and the
convex hull of a set Y, respectively.

A nonempty subset C of Rn is called a cone if y ∈ C, λ ≥ 0 ⇒ λy ∈ C.
Pointedness of C means that C ∩ (−C) = {0Rn}.

We will assume that Rn is partially ordered by a convex pointed cone C ⊂ R
n.

Definition 1. 1. An element y ∈ Y is called a minimal element of Y (with
respect to the ordering cone C) if ({y} − C) ∩ Y = {y}.

2. An element y ∈ Y is called a weakly minimal element of Y if ({y}− int(C))∩
Y = ∅.

3. An element y ∈ Y is called a properly minimal element of Y in the sense of
Benson [1] if y is a minimal element of Y and the zero element of Rn is a
minimal element of cl(cone(Y+C−{y})), where cone(Y) := {λy : λ ≥ 0, y ∈
Y}.

4. An element y ∈ Y is called a properly minimal element of Y in the sense
of Henig [11] if it is a minimal element of Y with respect to some convex
cone K with C \ {0Rn} ⊂ int(K).

Henig proved that in the case when the vector space is partially ordered by a
closed pointed cone, the two definitions of proper efficiency given in Definition
1, are equivalent (see [11, Theorem 2.1]). Therefore, in the sequel we simply will
use the notion of proper efficiency.

Consider a multiobjective optimization problem (in short MOP):

min
x∈X

[f1(x), ..., fn(x)], (1)

where X is a nonempty set of feasible solutions and fi : X → R, i = 1, ..., n
are real-valued functions. Let f(x) = (f1(x), . . . , fn(x)) for every x ∈ X and let
Y := f(X).

Definition 2. A feasible solution x ∈ X is called efficient, weakly efficient or
properly efficient solution of multi-objective optimization problem (1) if y = f(x)
is a minimal, weakly minimal or properly minimal element of Y, respectively.
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Let y = (y1, . . . , yn) ∈ R
n. ‖y‖1 =

∑n
i=1 |yi|, ‖y‖2 = (y21 + · · · + y2n)

1/2, and
‖y‖∞ = max{|y1|, . . . , |yn|} denote the l1, l2 (Euclidean), and l∞ norms of y,
respectively.

Let C be a given cone in R
n. Recall that the dual cone C

∗ of C and its
quasi-interior C# are defined by

C
∗ = {w ∈ R

n : wT y ≥ 0 for all y ∈ C} (2)

and
C

# = {w ∈ R
n : wT y > 0 for all y ∈ C \ {0}}, (3)

respectively, where wT denotes the transpose of vector w, and wT y =
∑n

i=1 wiyi
is the scalar product of vectors w = (w1, . . . wn) and y = (y1, . . . , yn). The ele-
ments of these cones define monotone and strongly monotone linear functionals
whose level sets (hyperplanes) are used to characterize support points of convex
sets.

The following three cones called augmented dual cones of C were introduced in
[14], and it was proven that the elements of these cones define monotone sublinear
functionals with conical level sets. Due to this property, these functionals are
used to generate efficient solutions of nonconvex multiobjective problems.

C
a∗ = {(w,α) ∈ C

# × R+ : wT y − α‖y‖ ≥ 0 for all y ∈ C}, (4)

C
a◦ = {(w,α) ∈ C

# × R+ : wT y − α‖y‖ > 0 for all y ∈ int(C)}, (5)

and

C
a# = {(w,α) ∈ C

# × R+ : wT y − α‖y‖ > 0 for all y ∈ C \ {0}}, (6)

where C is assumed to have a nonempty interior in the definition of Ca◦.

3 Conic Scalarization (CS) Method

The history of development of the CS method goes back to the paper [5], where
Gasimov introduced a class of monotonically increasing sublinear functions on
partially ordered real normed spaces and showed without convexity and bound-
edness assumptions that support points of a set obtained by using these functions
are properly minimal in the sense of Benson [1]. The question of ”can every prop-
erly minimal point of a set be calculated in a similar way”, was answered only in
the case when the objective space is partially ordered by a certain Bishop–Phelps
cone. Since then, different theoretical and practical applications by using the sug-
gested class of sublinear functions have been realized [3,6,7,8,9,12,13,14,17,20,22].
The theoretical fundamentals of the conic scalarization method in general form
was firstly explained in [14]. The full description of the method is given in [15].

The idea of the CS method is very simple: choose preference parameters which
consist of a weight vector w ∈ C

# and a reference point a ∈ R
n, determine an

augmentation parameter α ∈ R+ such that (w,α) ∈ C
a∗ (or (w,α) ∈ C

a◦, or
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(w,α) ∈ C
a#), where for a convenience the l1−norm is used, and solve the scalar

optimization problem:

min
x∈X

n∑

i=1

wi(fi(x)− ai) + α
n∑

i=1

|fi(x)− ai| (CS(w,α, a))

The set of optimal solutions of this scalar problem will be denoted by
Sol(CS(w,α, a)). Reference point a = (a1, . . . , an) may be identified by a de-
cision maker in cases when she/he desires to calculate minimal elements that
are close to some point. The CS method does not impose any restrictions on
the ways for determining reference points. The reference point can be chosen
arbitrarily.

The following theorem quoted from [15] explains main properties of solutions
obtained by the conic scalarization method in the case when C = R

n
+. This

special case for the cone determining the partial ordering, allows one to explic-
itly determine augmented dual cones which are used for choosing scalarizing
parameters (w,α). For the general case of this theorem see [14, Theorem 5.4].

Theorem 1. [15, Theorem 6] Let a ∈ R
n be a given reference point, and let

C = R
n
+. Assume that Sol(CS(w,α, a)) 
= ∅ for a given pair (w,α) ∈ C

a∗. Then
the following hold.

(i) If

(w,α) ∈ C
a◦ = {((w1, . . . , wn), α) : 0 ≤ α ≤ wi, wi > 0, i = 1, . . . , n

and there exists k ∈ {1, · · · , n} such that wk > α},

then every element of Sol(CS(w,α, a)) is a weakly efficient solution of (1).
(ii) If Sol(CS(w,α, a)) consists of a single element, then it is an efficient solu-

tion (1).

(iii) If

(w,α) ∈ C
a# = {((w1, . . . , wn), α) : 0 ≤ α < wi, i = 1, . . . , n},

then every element of Sol(CS(w,α, a)) is a properly efficient solution of (1),
and conversely, if x is a properly efficient solution of (1), then there exists
(w,α) ∈ C

a# and a reference point a ∈ R
n such that x is a solution of

Sol(CS(w,α, a)).

The following theorem gives simple characterization of minimal elements.

Theorem 2. [15, Theorem 7] Let Y ⊂ R
n be a given nonempty set and let

C = R
n
+. If y is a minimal element of Y, then y is an optimal solution of the

following scalar optimization problem:

min
y∈Y

{
n∑

i=1

(yi − yi) +

n∑

i=1

|yi − yi|}. (7)
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By using assertions of Theorems 1 and 2, we arrive at the following con-
clusion. By solving the problem (CS(w,α, a)) for “all” possible values of the
augmentation parameter α between 0 and min{w1, . . . , wn}, one can calculate
all the efficient solutions corresponding to the decision maker’s preferences (the
weighting vector w = (w1, . . . , wn) and the reference point a).

The following two remarks illustrate the geometry of the CS method.

Remark 1. It is clear that in the case when α = 0 (or, if f(X) ⊆ {a} ± C) the
objective function of the scalar optimization problem (CS(w,α, a)) becomes an
objective function of the weighted sum scalarization method. The minimization
of such an objective function over a feasible set enables to obtain only those
efficient solutions x (if the corresponding scalar problem has a solution), for
which the minimal vector f(x) is a supporting point of the objective space with
respect to some hyperplane

H(w) = {y : wT y = β},

where β = wT f(x). It is obvious that minimal points which are not supporting
points of the objective space with respect to some hyperplane, cannot be detected
by this way. By augmenting the linear part in (CS(w,α, a)) with the norm term
(using a positive augmentation parameter α), the hyperplane H(w) becomes a
conic surface defined by the cone

S(w,α) = {y ∈ R
n : wT y + α‖y‖ ≤ 0}, (8)

and therefore the corresponding scalar problem (CS(w,α, a)) computes solution
x, for which the corresponding vector f(x) is a supporting point of the objec-
tive space with respect to this cone. The change of the α, leads to a different
supporting cone. The supporting cone corresponding to some weight vector w
becomes narrower as α increases, and the smallest cone (which anyway contains
the ordering cone) is obtained when α equals its maximum allowable value (for
example, min{w1, . . . , wn}, if (w,α) ∈ C

a#). This analysis shows that by chang-
ing the α parameter, one can compute different minimal points of the problem
corresponding to the same weight vector. And since the method computes sup-
porting points of the decision space with respect to cones (if α 
= 0), it becomes
clear why this method does not require convexity and boundedness conditions
and why it is able to find optimal points which cannot be detected by hyper-
planes. Since the cases α = 0, or f(X) ⊆ {a}±C leads to the objective function
of the weighted sum scalarization method, we can say that the CS method is a
generalization of the weighted sum scalarization method.

Remark 2. It follows from the definition of augmented dual cone that wT y −
α‖y‖ ≥ 0 for every (w,α) ∈ C

a∗ and all y ∈ C. Hence

C ⊂ C(w,α) = {y ∈ R
n : wT y − α‖y‖ ≥ 0}, (9)

where C(w,α) is known as the Bishop-Phelps cone corresponding to a pair
(w,α) ∈ C

a∗. It has been proved that, if C is a closed convex pointed cone
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having a weakly compact base, then

C = ∩(w,α)∈Ca∗C(w,α),

see [14, Theorems 3.8 and 3.9].
On the other hand, since wT y−α‖y‖ ≥ 0 for every (w,α) ∈ C

a∗ and all y ∈ C,
then clearly wT y + α‖y‖ ≤ 0 for every y ∈ −C. Thus we conclude that all the
cones S(w,α) = {y ∈ R

n : wT y+α‖y‖ ≤ 0} (see (8)) with (w,α) ∈ C
a∗, contain

the ordering cone −C. Moreover if (w,α) ∈ C
a# then we have [14, Lemma 3.6]

− C \ {0} ∈ int(S(w,α)) = {y ∈ R
n : wT y + α‖y‖ < 0}. (10)

Due to this property, the CS method guarantees to calculate ”all” properly
efficient solutions corresponding to the given weights and the given reference
point. That is, every solution of the scalar problem (CS(w,α, a)), is a properly
efficient solutions of the multi-objective optimization problem (1), if (w,α) ∈
C

a#, see Theorem 1 (iii).
In some cases for a given cone C and a given norm, there may be available to

find a pair (w,α) ∈ C
a∗ such that C = C(w,α). For example if C = R

n
+ then

R
n
+ = C(w1, α1) = {y ∈ R

n : (w1)T y − α1‖y‖1 ≥ 0}, (11)

where w1 = (1, ..., 1) ∈ R
n, α1 = 1, and the l1 norm is used in the definition (see

[15, Lemma 4]). Similarly, Rn
− can be represented as a level set S(w1, α1) (see

(8)) of the function

g(w1,α1)(y) = y1 + . . .+ yn + |y1|+ . . .+ |yn| (12)

in the form:

R
n
− = S(w1, α1) = {(y1, . . . , yn) ∈ R

n : y1+ . . .+yn+ |y1|+ . . .+ |yn| ≤ 0}. (13)

Hence, it becomes clear that the presented scalarization method enables one
to calculate minimal elements which are ”supporting” elements of f(X) with
respect to the conic surfaces like S(w,α) (see (8)). In practice, one can divide
the interval between 0 and min{w1, . . . , wn} into several parts, and for all these
values of the augmentation parameter α, the scalar problem (CS(w,α, a)) can be
solved for the same weights and the same reference point chosen. This will enable
decision maker to compute different efficient solutions (if any) with respect to
the same set of weights. The scalar problem (CS(w,α, a)) is nonsmooth and
nonconvex if the original problem is not convex. Such a problem can be solved
by using some standard softwares (see, for example [9,12,22]), or special solution
algorithms can be applied, see for example [6,8,16].

4 Relations with Other Methods

In this section we present theorems which establish relations between the CS,
the Pascoletti-Serafini (PSS) and the Benson’s (BS) scalarization methods. It is
shown that some efficient solutions computed by the PSS and the BS methods,
can be obtained by the CS method.
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4.1 Relations between the Conic Scalarization (CS) and the
Pascoletti-Serafini Scalarization (PSS) Methods

The method known as the Pascoletti-Serafini scalarization method, is studied in
[10,18,21] by Tammer, Weidner, Winkler, Pascoletti and Serafini.

The scalar problem of the PSS method is defined as follows:

minimize t (PSS(a, r))

s.t. a+ tr − f(x) ∈ C

x ∈ X, t ∈ R,

where a ∈ R
n and r ∈ C are parameters of (PSS(a, r)). The problem (PSS(a, r))

can also be written in the form (see [4])

minimize t (14)

s.t. a+ tr − C ∩ f(X) 
= ∅, t ∈ R.

This problem can be interpreted in the following form. The ordering cone C is
moved in direction −r along the line a + tr till the set (a + tr − C) ∩ f(X) is
reduced to the empty set. The smallest value t̄ for which (a+ t̄r−C)∩f(X) 
= ∅
is the solution of (14). If the pair (t̄, x̄) is a solution of (PSS(a, r)) the element
ȳ = f(x̄) with ȳ ∈ (a+ t̄r−C)∩f(X) will be characterized as a weakly minimal
solution of (1).

Theorem 3. Assume that C is a closed convex pointed cone with nonempty inte-
rior, and that a ∈ R

n, r ∈ int(C) and (t̄, x̄) is an optimal solution of (PSS(a, r)).
Then, there exists a weight vector w̄ = (w̄1, ...w̄n) ∈ C

# and an augmentation
parameter ᾱ ≥ 0 with (w̄, ᾱ) ∈ Ca◦ such that

min
x∈X

w̄T (f(x)− a) + ᾱ‖f(x)− a‖ ≤ t̄.

Proof. Let (w,α) ∈ Ca◦. By definition of Ca◦ (see also (9)), C ⊂ C(w,α). Then
problem (PSS(a, r)) can be written in the following form with possibly a broader
set of feasible solutions:

minimize t (PSSC(w,α)(a, r))

s.t a+ tr − f(x) ∈ C(w,α)

x ∈ X,

By definition of C(w,α), the inclusion a+ tr − f(x) ∈ C(w,α) implies

wT (a+ tr − f(x))− α‖a+ tr − f(x)‖ ≥ 0,

or
wT (f(x)− a− tr) + α‖f(x)− a− tr‖ ≤ 0.

Obviously,
α(‖f(x)− a‖ − ‖tr‖) ≤ α‖f(x)− a− tr‖.
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Then if we change the norm term by the left hand side in the above inequality,
the set of feasible solutions of (PSSC(w,α)(a, r)) will again be extended:

wT (f(x)− a) + α‖f(x)− a‖ ≤ twT r + |t|α‖r‖. (15)

In dependence on the sign of t̄ we can consider only positive or only negative
range for t in (15). If only negative (or only positive) values of t will be considered
then the right hand side of (15) becomes t(wT r−α‖r‖) (or t(wT r+α‖r‖)). Since
r ∈ int(C) and (w,α) ∈ Ca◦ we have wT r − α‖r‖ > 0 (or wT r + α‖r‖ > 0).

Thus, by dividing both sides of (15) with wT r−α‖r‖ > 0 (or wT r+α‖r‖ > 0)
and denoting w̄ = w/(wT r−α‖r‖) and ᾱ = α/(wT r−α‖r‖) (or w̄ = w/(wT r+
α‖r‖) and ᾱ = α/(wT r+α‖r‖)), we obtain that the problem (PSSC(w,α)(a, r))
can be written (with a possibly broader feasible set) in the form:

minimize t (16)

s.t w̄T (f(x)− a) + ᾱ‖f(x)− a‖ ≤ t (17)

x ∈ X, (18)

This problem is equivalent to the following problem (CS(w̄, ᾱ, a)):

min
x∈X

[w̄T (f(x) − a) + ᾱ‖f(x)− a‖].

Since the set of feasible solutions of problem (16) - (18) is larger than the one of
(PSS(a, r)), we obtain

min
x∈X

[w̄T (f(x)− a) + ᾱ‖f(x)− a‖] ≤ t̄,

which completes the proof of theorem.

4.2 Relationship between the Conic Scalarization (CS) and the
Benson’s (BS) methods.

In this section we explain relationship between the BS and the CS methods.
The idea of the BS method is to choose some initial feasible solution x0 ∈ X
and, if it is not itself efficient, produce a dominating solution that is. To do so,
nonnegative deviation variables li = fi(x

0) − fi(x) are introduced, and their
sum is maximized. This results in an x dominating x0, if one exists, and the
objective ensures that it is efficient, pushing x as far from x0 as possible. The
corresponding scalar problem for given x0 is:

max
∑n

i=1 li (BS(x0))

s.t.

fi(x
0)− li − fi(x) = 0, i = 1, . . . , n

l � 0, x ∈ X.
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Theorem 4. Let x̄ be an efficient solution to (1). Suppose that x̄ is an optimal
solution of Benson scalar problem (BS(x0)) for a feasible solution x0 ∈ X. Then
x̄ is an optimal solution of the conic scalar problem CS(w1, α1, f(x0)), where
w1 = (1, . . . , 1) ∈ R

n, α1 = 1, and the l1 norm is used:

minx∈X

n∑

i=1

(fi(x)− fi(x
0)) +

n∑

i=1

|fi(x)− fi(x
0)|.

Proof. Since f(x0) ∈ f(X), f(x̄) ∈ f(x0)−Rn
+ and (see (13))

−Rn
+ = {y : (w1)T y + α1‖y‖1 ≤ 0},

we have:
n∑

i=1

(fi(x)− fi(x
0)) +

n∑

i=1

|fi(x)− fi(x
0)| = 0

for all x ∈ X0 = {x ∈ X : f(x) ∈ f(x0) − Rn
+}, and in particular for x = x̄.

Obviously,
n∑

i=1

(fi(x)− fi(x
0)) +

n∑

i=1

|fi(x)− fi(x
0)| > 0

for all x ∈ X \X0 which completes the proof.

Theorem 5. Let x̄ be an optimal solution of Benson scalar problem (BS(x0))
for a feasible solution x0 ∈ X. Assume that x̄ is a properly efficient solution to
(1). Then there exists ᾱ ∈ [0, 1) such that x̄ is an optimal solution of the conic
scalar problem CS(w1, ᾱ, f(x̄)), where w1 = (1, . . . , 1) ∈ R

n with the l1 norm:

minx∈X

n∑

i=1

(fi(x) − fi(x̄)) + ᾱ

n∑

i=1

|fi(x) − fi(x̄)|. (19)

Proof. We have:
−Rn

+ = {y : (w1)T y + α1‖y‖1 ≤ 0},
and clearly

−R
n
+ \ {0} ∈ int({y ∈ R

n : (w1)T y + α‖y‖ ≤ 0}),

for every α ∈ [0, 1) (see (10)), where

int({y ∈ R
n : (w1)T y + α‖y‖ ≤ 0}) = {y ∈ R

n : (w1)T y + α‖y‖ < 0}).
Since x̄ is a properly efficient solution to (1), there exists ᾱ ∈ [0, 1) such that

{f(x̄)}+ {y ∈ R
n : (w1)T y + ᾱ‖y‖ ≤ 0} ∩ f(X) = {f(x̄)}.

This leads

{y ∈ R
n : (w1)T (y − f(x̄)) + ᾱ‖y − f(x̄)‖ ≤ 0} ∩ f(X) = {f(x̄)}.

The last relation means that

(w1)T (f(x)− f(x̄)) + ᾱ‖f(x)− f(x̄)‖ ≥ 0

for every x ∈ X. which proves the theorem.
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5 Conclusion

In this paper, the conic scalarization method is analyzed and main properties
of solutions obtained by this method are explained. Additionally simple charac-
terization of minimal elements is given. It has been emphasized that the conic
scalarization method guarantee to generate the proper efficient solutions while it
does not require any kind of convexity and/or boundedness assumptions. In ad-
dition the preference and reference point information of decision maker is taken
into consideration by this method.

The paper also discussed relations between the conic scalarization method and
Pascoletti-Serafini and Benson’s scalarization methods. It has been shown that
some solutions obtained by the Pascoletti-Serafini and Benson’s scalarization
methods, can also be obtained by the conic scalarization method.

Acknowledgments. The authors thank the Anadolu University Scientific Re-
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Abstract. In a previous work [M.O. Bibi and M. Bentobache, A hybrid
direction algorithm for solving linear programs, International Journal of
Computer Mathematics, Vol. 92, N◦1, pp. 201–216, 2014], a new search
direction for the adaptive method, called hybrid direction, was suggested.
For testing optimality, the optimality estimate was defined and used.
However, a suboptimality criterion was not given and the updating for-
mula, when we change the support, was not derived. In this paper, we
overcome all the difficulties encountered in previous works. Indeed, by
using the suboptimality estimate of the current solution, we derive a
more general updating formula for the suboptimality estimate when we
change the feasible solution and when we change the support too. Fur-
thermore, we present a long step rule procedure to change the support
in our method. Finally, the adaptive method with hybrid direction and
long step rule is described and computational experiments showing the
efficiency of our algorithm are presented.

Keywords: linear programming, adaptive method, hybrid direction, sub-
optimality estimate, long step rule, computational experiments.

1 Introduction

In [11], the authors developed the support method which is a generalization of
the simplex method [10] for solving Linear Programming (LP) problems. The
principle of this method is to start by a support feasible solution comprising
a basis and a feasible solution and to go through interior or extreme points to
achieve an optimal one. Later, they have developed the adaptive method to solve,
particularly, linear optimal control problems [12]. This method is generalized to
solve general linear and convex quadratic problems [6,9,13,14].

In [1,3,4,7,8], we suggested a new search direction for the adaptive method.
This direction is called a hybrid direction because it takes for some solution
components extreme values in order to bring them to their bounds and it takes
for others the reduced gradient values. For testing optimality, the optimality

c© Springer International Publishing Switzerland 2015 333
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estimate is defined and used. However, a suboptimality criterion was not given
and the updating formula, when we change the support, was not derived.

In this work, we overcome all the difficulties encountered in previous works.
Indeed, by using the suboptimality estimate of the current solution, we derive a
more general updating formula for the suboptimality estimate when we change
the feasible solution and when we change the support too. Hence, the updating
formula given in [11] is a special case of our formula. In the previous work [1],
the long step rule is not described. In this paper, we describe the long step
rule for our method and we suggest a procedure for updating appropriately the
parameter η.

The paper is organized as follows: in Section 2, we give some definitions. In
Section 3, we present theoretic aspects of the suggested algorithm and we give
some numerical examples for illustration purpose. In Section 4, we give some
computational experiments which show the efficiency of the suggested method.
Finally, Section 5 concludes the paper and provides some perspectives.

2 Problem Statement and Definitions

Consider the linear programming problem with bounded variables presented in
the following standard form:

max z = cTx,

subject to Ax = b, l ≤ x ≤ u,
(1)

where c and x are n-vectors; b an m-vector; A an (m×n)-matrix with rankA =
m < n; l and u are finite-valued n-vectors. The symbol (T ) is the transposition
operation. We define the following sets of indices:

I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}, J = JB ∪ JN , JB ∩ JN = ∅, |JB| = m.

• If v is an arbitrary n-vector and M an arbitrary (m× n)-matrix, then we can
write

v = v(J) = (vj , j ∈ J) and M = M(I, J) = (mij , i ∈ I, j ∈ J).

Moreover, we can partition v and M as follows:

vT = (vTB , v
T
N ), where vB = v(JB) = (vj , j ∈ JB), vN = v(JN ) = (vj , j ∈ JN );

M = (MB,MN), where MB = M(I, JB), MN = M(I, JN ).

• A vector x verifying the constraints of problem (1) is called a feasible solution.
• A feasible solution x0 is called optimal if

z(x0) = cTx0 = max cTx,

where x is taken from the set of all feasible solutions of the problem (1).
• A feasible solution xε is said to be ε-optimal or suboptimal if

z(x0)− z(xε) = cTx0 − cTxε ≤ ε,
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where x0 is an optimal solution for the problem (1) and ε is a positive number
chosen beforehand.
• We consider the index subset JB ⊂ J such that |JB| = |I| = m. Then the set
JB is called a support if det(AB) �= 0.
• The pair {x, JB} comprising a feasible solution x and a support JB will be
called a support feasible solution (SFS).
• An SFS is called nondegenerate if lj < xj < uj, j ∈ JB .
• We define the m-vector of multipliers π and the n-vector of reduced costs Δ
as follows:

πT = cTBA
−1
B , ΔT = πTA− cT = (ΔT

B , Δ
T
N ),

where ΔT
B = cTBA

−1
B AB − cTB = 0, ΔT

N = cTBA
−1
B AN − cTN .

For an SFS {x, JB}, we make the following partition: JN = J++
N ∪ J−−

N ∪ J0
N ,

where

J++
N = {j ∈ JN : Δj > 0}, J−−

N = {j ∈ JN : Δj < 0} and J0
N = {j ∈ JN : Δj = 0}.

(2)

• The quantity β(x, JB) defined by

β = β(x, JB) =
∑

j∈J++
N

Δj(xj − lj) +
∑

J−−
N

Δj(xj − uj) (3)

is called the suboptimality estimate [11]. Thus, we have the following results [11]:

Theorem 1. (Sufficient condition for suboptimality). Let {x, JB} be an SFS for
the problem (1) and ε an arbitrary positive number. If β(x, JB) ≤ ε, then the
feasible solution x is ε-optimal.

Corollary 1. Let {x, JB} be an SFS for the problem (1). The condition β(x, JB)
= 0 is sufficient for the optimality of the feasible solution x.

3 An Iteration of the Adaptive Method with Hybrid
Direction (AMHD)

Let {x, JB} be an SFS for the problem (1) and η ∈ [0, 1]. Let x+ ∈ R
n
+ and

x− ∈ R
n
− be two vectors defined as follows:

x+ = η(x− l) and x− = η(x− u).

We introduce the following set of indices:

J+
N = {j ∈ JN : Δj > x+

j }, J−
N = {j ∈ JN : Δj < x−

j },

JP+

N = {j ∈ JN : 0 < Δj ≤ x+
j }, JP−

N = {j ∈ JN : x−
j ≤ Δj < 0},

JP
N = {j ∈ JN : x−

j ≤ Δj ≤ x+
j } = JP+

N ∪ JP−
N ∪ J0

N .

(4)
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Thus,

J++
N = J+

N ∪ JP+

N , J−−
N = J−

N ∪ JP−
N , JN = J+

N ∪ J−
N ∪ JP

N .

Let us define the nonnegative quantities γ = γ(η, x, JB) and μ as follows:

γ =

⎧
⎨

⎩

1
η

[∑
j∈J+

N
Δjx

+
j +

∑
j∈J−

N
Δjx

−
j +

∑
j∈JP+

N ∪JP−
N

Δ2
j

]
, if η > 0;

β(x, JB), if η = 0,

(5)

μ =

⎧
⎨

⎩

1
η

[∑
j∈JP+

N
Δj(x

+
j −Δj) +

∑
j∈JP−

N
Δj(x

−
j −Δj)

]
, if η > 0;

0, if η = 0.

(6)

The quantity γ(η, x, JB) is called the optimality estimate [1] and we recall that
the SFS {x, JB} is optimal if γ(η, x, JB) = 0.

Remark 1. When η −→ 0, we get JP+

N = JP−
N = ∅. Then limη−→0 μ = 0.

Lemma 1. For all η ≥ 0, the optimality estimate can be written as follows:

γ = β − μ ≤ β. (7)

Proof. For η = 0, we have μ = 0 and γ = β, so γ = β − μ. For η > 0,

β = β(x, JB) =
∑

j∈J++
N

Δj(xj − lj) +
∑

j∈J−−
N

Δj(xj − uj)

=
1

η

∑

j∈J+
N∪JP+

N

Δjx
+
j +

1

η

∑

j∈J−
N∪JP−

N

Δjx
−
j

=
1

η

∑

j∈J+
N

Δjx
+
j +

1

η

∑

j∈J−
N

Δjx
−
j +

1

η

∑

j∈JP+
N

Δjx
+
j +

1

η

∑

j∈JP−
N

Δjx
−
j

= γ − 1

η

∑

j∈JP+

N ∪JP−
N

Δ2
j +

1

η

∑

j∈JP+

N

Δjx
+
j +

1

η

∑

j∈JP−
N

Δjx
−
j

= γ +
1

η

∑

j∈JP+

N

Δj(x
+
j −Δj) +

1

η

∑

j∈JP−
N

Δj(x
−
j −Δj)

= γ + μ.

Since μ ≥ 0, we get γ = β − μ ≤ β.
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3.1 Change of the Feasible Solution

Let {x, JB} be an SFS for the problem (1) and η ∈ [0, 1]. When γ(η, x, JB) > 0,
we define the feasible direction d as follows:

dj = lj − xj , if j ∈ J+
N ; dj = uj − xj , if j ∈ J−

N ;

dj =
−Δj

η , if j ∈ JP
N and η > 0;

dj = 0, if j ∈ JP
N = J0

N and η = 0;

dB = −A−1
B ANdN .

(8)

This direction, with respect to the standard direction of the adaptive method
is called a hybrid direction. Contrarily to the direction used in the adaptive
method, which takes only extreme or zero values, the hybrid direction takes
extreme values for components with relatively big values of the reduced cost
vector and it takes for others the reduced gradient values.

In order to improve the objective function while remaining in the feasible
region, we compute the step length θ0 along the direction d as follows:
θ0 = min{θj1 , 1}, where

θj1 = min{θj, j ∈ JB} and θj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(uj − xj)/dj , if dj > 0;

(lj − xj)/dj , if dj < 0;

∞, if dj = 0.

(9)

Then the new feasible solution is x̄ = x + θ0d. Since Ad = 0, the vector d is a
feasible direction. Furthermore, in [1], we proved that d is an ascent direction:
the objective function increment is given by

z̄ − z = θ0γ(η, x, JB) ≥ 0, θ0 ∈ [0, 1]. (10)

By replacing the expression of γ(η, x, JB) in (10), we get

z̄ − z = θ0(β − μ). (11)

Lemma 2. For all η ≥ 0, the quantity β̄ = β(x̄, JB) can be computed as follows:

β̄ = (1− θ0)β + θ0μ ≤ β. (12)
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Proof. For η > 0, we have

β̄ =
∑

j∈J++
N

Δj(x̄j − lj) +
∑

j∈J−−
N

Δj(x̄j − uj)

=
∑

j∈J++
N

Δj(xj − lj) +
∑

j∈J−−
N

Δj(xj − uj) + θ0
∑

j∈J++
N

Δjdj + θ0
∑

j∈J−−
N

Δjdj

= β + θ0
∑

j∈J+
N∪JP+

N

Δjdj + θ0
∑

j∈J−
N∪JP−

N

Δjdj

= β + θ0
∑

j∈J+
N

Δjdj + θ0
∑

j∈J−
N

Δjdj + θ0
∑

j∈JP+

N

Δjdj + θ0
∑

j∈JP−
N

Δjdj

= β − θ0
∑

j∈J+
N

Δj(xj − lj)− θ0
∑

j∈J−
N

Δj(xj − uj)−
θ0

η

∑

j∈JP+
N ∪JP−

N

Δ2
j

= β − θ0

η

∑

j∈J+
N

Δjx
+
j − θ0

η

∑

j∈J−
N

Δjx
−
j − θ0

η

∑

j∈JP+

N ∪JP−
N

Δ2
j

= β − θ0γ ≤ β.

Since for η ≥ 0, γ = β − μ, then we find

β̄ = (1− θ0)β + θ0μ.

For η = 0, we have μ = 0. Hence, we find the classical updating formula of
β(x, JB) [11]: β̄ = β(x̄, JB) = (1− θ0)β(x, JB).

Theorem 2. (Sufficient conditions for optimality and suboptimality of x̄)
If θ0 = 1 and μ = 0, then the feasible solution x̄ is optimal.
If θ0 = 1 and μ ≤ ε, then the feasible solution x̄ is ε-optimal.

Proof. We assume that θ0 = 1 and μ = 0. Following Lemma 2, we have β̄ = 0.
By using Corollary 1, we deduce the optimality of x̄. If θ0 = 1 and μ ≤ ε, then
Lemma 2 yields β̄ = μ ≤ ε. By using Theorem 1, we deduce the suboptimality
of x̄.

If θ0 = θj1 < 1 and β̄ > ε, then we change the support JB.

3.2 Change of the Support

Short Step Rule. We define the n-vector κ and the real number α0 as follows:

κ = x+ d and α0 = κj1 − x̄j1 ,

where j1 is the leaving index computed in (9). So the dual direction is

tj1 = −sign(α0); tj = 0, j �= j1, j ∈ JB; tTN = tTBA
−1
B AN . (13)
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Remark 2. We have α0 = κj1 − x̄j1 = xj1 +dj1 −xj1 − θ0dj1 = (1− θ0)dj1 . Since
0 ≤ θ0 < 1, then tj1 = −sign(α0) = −sign(dj1).

Remark 3. The dual direction t and the primal direction d are orthogonal.
Indeed,

tTd = tTNdN + tTBdB = (tTBA
−1
B AN )dN + tTB(−A−1

B ANdN ) = 0.

Let us define the following sets:

J0+

N = {j ∈ J0
N : tj > 0} and J0−

N = {j ∈ J0
N : tj < 0}, (14)

and the quantity:

α = −|α0|+
∑

j∈J0+

N ∪JP+

N

tj(κj − lj) +
∑

j∈J0−
N ∪JP−

N

tj(κj − uj). (15)

The new reduced cost vector and the new support are computed as follows:

Δ̄ = Δ+ σ0t and J̄B = (JB \ {j1}) ∪ {j0},

where

σ0 = σj0 = min
j∈JN

{σj}, with σj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Δj

tj
, if Δjtj < 0;

0, if j ∈ J0−
N and κj �= uj ;

0, if j ∈ J0+

N and κj �= lj ;

∞, otherwise.

(16)

Remark 4. If σ0 = ∞, then the problem (1) is infeasible.

We assume that σ0 < ∞. The suboptimality estimate corresponding to the new
feasible solution and the new support is given by

¯̄β = β(x̄, J̄B) =
∑

j∈J̄N ,Δ̄j>0

Δ̄j(x̄j − lj) +
∑

j∈J̄N ,Δ̄j<0

Δ̄j(x̄j − uj).

Lemma 3. The suboptimality estimate β(x̄, J̄B) can be written as follows:

β(x̄, J̄B) = β(x̄, JB) + σ0α. (17)

Remark 5. If η = 0 and JP
N = J0

N = ∅, then α = −|α0|. So we find the classical
updating formula of β(x̄, JB) [11]: β(x̄, J̄B) = β(x̄, JB)− σ0|α0|.

If α ≤ 0, then ¯̄β ≤ β̄. However, when α > 0 we update appropriately the value
of the parameter η by applying the following procedure:



340 M. Bentobache and M.O. Bibi

Procedure 1 (Procedure of updating the value of η)

(1) Compute x̄+ = η(x̄− l), J̄P+

N = {j ∈ JN : 0 < Δj ≤ x̄+
j };

(2) compute x̄− = η(x̄ − u), J̄P−
N = {j ∈ JN : x̄−

j ≤ Δj < 0};
(3) if J̄P+

N ∪ J̄P−
N = ∅, then set η̄ = η;

else compute η0 = min
j∈J̄P+

N

Δj

x̄j−lj
, η1 = min

j∈J̄P−
N

Δj

x̄j−uj
;

(4) if J̄P+

N �= ∅ and J̄P−
N = ∅, then set η̄ = η0;

(5) if J̄P+

N = ∅ and J̄P−
N �= ∅, then set η̄ = η1;

(6) if J̄P+

N �= ∅ and J̄P−
N �= ∅, then set η̄ = min{η0, η1}.

Proposition 1. After applying Procedure 1, we get a new value η̄ which satisfies
η̄ ≤ η.

Proof. We prove that if J̄P+

N ∪ J̄P−
N �= ∅, then η̄ ≤ η. Indeed, three cases can

occur:
Case 1: if J̄P+

N �= ∅ and J̄P−
N = ∅, then

∃j ∈ J̄P+

N : 0 < Δj ≤ η(x̄j − lj) ⇒ η ≥ Δj

x̄j − lj
≥ min

j∈J̄P+
N

Δj

x̄j − lj
= η0 = η̄.

Case 2: if J̄P+

N = ∅ and J̄P−
N �= ∅, then

∃j ∈ J̄P−
N : η(x̄j − uj) ≤ Δj < 0 ⇒ η ≥ Δj

x̄j − uj
≥ min

j∈J̄P−
N

Δj

x̄j − uj
= η1 = η̄.

Case 3: if J̄P+

N �= ∅ and J̄P−
N �= ∅, then

∃j ∈ J̄P+

N : 0 < Δj ≤ η(x̄j − lj) ⇒ η ≥ Δj

x̄j − lj
≥ min

j∈J̄P+

N

Δj

x̄j − lj
= η0 ≥ η̄,

and

∃j ∈ J̄P−
N : η(x̄j − uj) ≤ Δj < 0 ⇒ η ≥ Δj

x̄j − uj
≥ min

j∈J̄P−
N

Δj

x̄j − uj
= η1 ≥ η̄.

Therefore, in all the cases we have proved that η̄ ≤ η.

Long Step Rule. In this paper, thanks to the updating formula of the subopti-
mality estimate, we can modify the procedure presented in [12], called long step
rule, in order to compute the dual step length in our method. This procedure is
described in the following steps:

Procedure 2 (Long step rule procedure for AMHD)

(1) Compute σj , j ∈ JN , σ0 = minj∈JN σj and j0 with (16);
(2) if σ0 = ∞, then the problem (1) is infeasible;
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(3) sort the indices {i ∈ JN : σi �= ∞} by the increasing order of the numbers
σi:

σi1 ≤ σi2 ≤ · · · ≤ σip ; ik ∈ JN , σik �= ∞, k = 1, . . . , p;

(4) if p = 1, then j0 = i1; go to step (8);
(5) for all ik, k = 1, . . . , p, compute ΔVik = |tik |(uik − lik);
(6) compute Vik , k = 0, . . . , p, where

{
Vi0 = V0 = α,

Vik = V0 +
∑k

s=1 ΔVis = Vik−1
+ΔVik , k = 1, . . . , p;

(7) choose the index j0 = iq such that Viq−1 < 0 and Viq ≥ 0;
(8) let j1 be the index computed by (9). Set J̄B = (JB \ {j1}) ∪ {j0}, σ0 = σj0

and Δ̄ = Δ+ σ0t;
(9) compute β(x̄, J̄B) = β(x̄, JB) +

∑q
k=1(σik − σik−1

)Vik−1
, with σi0 = 0.

3.3 Scheme of the Algorithm

Let {x, JB} be an initial SFS for the problem (1), ε be a nonnegative number
and η ∈ [0, 1]. The scheme of the adaptive method with hybrid direction and
long step rule (AMHDLS) is described in the following steps:

Algorithm 1 (AMHDLS for solving linear programs with bounded variables)

(1) compute πT = cTBA
−1
B , ΔT

N = πTAN − cTN ;
(2) compute the suboptimality estimate β with (3);
(3) if β = 0, then the algorithm stops with the optimal SFS {x, JB};
(4) if β ≤ ε, then the algorithm stops with the ε-optimal SFS {x, JB};
(5) compute the vectors x+ = η(x − l) and x− = η(x− u);

(6) compute the sets J+
N , J−

N , JP+

N and JP−
N with (4);

(7) compute μ with (6);
(8) compute the primal search direction d with (8);
(9) compute the primal step length θ0 with (9);
(10) compute x̄ = x+ θ0d and z̄ = z + θ0(β − μ);
(11) if θ0 = 1, then

(11.1) if μ = 0, then x̄ is optimal. Stop;
(11.2) if μ ≤ ε, then x̄ is ε-optimal. Stop;
(11.3) else, compute the value η̄ with Procedure 1; set η = η̄, x = x̄, z = z̄,

β = μ and go to step (5);
(12) if θ0 = θj1 < 1, then compute β̄ = (1 − θ0)β + θ0μ; if β̄ ≤ ε, then the

algorithm stops with the ε-optimal SFS {x̄, JB};
(13) compute κ = x+ d and α0 = κj1 − x̄j1 ;
(14) compute the dual direction t with (13);

(15) compute J0
N with (2), J0+

N and J0−
N with (14);

(16) compute α with (15); if α > 0 then
(16.1) if J0

N �= ∅, then choose an index j0 ∈ J0
N with tj0 �= 0, set Δ̄ = Δ,

J̄B = (JB \ {j1}) ∪ {j0}, ¯̄β = β̄ and go to step (18);
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(16.2) if J0
N = ∅, then compute the value η̄ with Procedure 1; set η = η̄,

x = x̄, z = z̄, β = β̄ and go to step (5);
(17) compute the dual step length σ0, the new reduced costs vector Δ̄, the new

support J̄B and the new suboptimality estimate ¯̄β with the long step rule
(Procedure 2);

(18) set x = x̄, JB = J̄B, JN = J̄N , z = z̄, Δ = Δ̄, β = ¯̄β, go to step (3).

4 Experimental Results

In order to compare the Adaptive Method with Hybrid Direction and Long
Step Rule (AMHDLS) with the Adaptive Method with Hybrid Direction and
Short Step Rule suggested in [1] (AMHDSS), and the Primal Simplex Algo-
rithm with Dantzig’s rule (PSA), we have developed an implementation under
the MATLAB programming language. The implementation details of the three
algorithms and the randomly generated test LP problems are similar to those
presented in [1]. The test problems have constraints matrix A of size n×n, where
n ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} and each size contains ten
generated test problems.

We have solved the randomly generated set of test problems with the three
considered algorithms on a computer with Intel(R) Core(TM) i5 CPU M560 @
2.67GHz machine with 4 GB of RAM, working under the Windows 7 operating
system. We have initialized AMHDLS, AMHDSS and PSA with the same pair
{x, JB}, where x = (l; b−Al) and JB = {p+ 1, p+ 2, . . . , p+m}. Moreover, we
have set η = 1 in AMHDLS and AMHDSS.

Numerical results are reported in Table 1, where ”CPU” and ”Niters” rep-
resent respectively the mean CPU time in seconds and the average number of
iterations of the ten problems generated for each problem size. We plot the CPU
time and the number of iterations for the three algorithms. The graphs are shown
in Figure 1.

Table 1. CPU time and number of iterations for AMHDLS, AMHDSS and PSA

AMHDLS AMHDSS PSA

Size CPU Niters CPU Niters CPU Niters

100×100 0.06 61.80 0.03 68.20 0.05 66.90
200×200 0.34 257.60 0.23 341.10 0.55 588.40
300×300 0.93 620.90 0.95 987.10 5.69 3094.50
400×400 2.53 991.10 2.46 1695.40 20.13 5991.40
500×500 5.57 1444.90 5.80 2606.50 65.27 10355.40
600×600 12.75 1917.90 13.85 3679.60 168.76 14492.70
700×700 24.37 2417.80 26.27 4708.30 378.29 20424.90
800×800 46.18 2965.30 53.30 6055.80 738.57 25756.90
900×900 74.58 3532.60 84.09 7146.30 1381.86 34083.70
1000×1000 122.60 4105.10 134.39 8375.10 2347.92 41118.70

Mean 28.99 1831.50 32.14 3566.34 510.71 15597.35



A Hybrid Direction Algorithm with Long Step Rule for Linear Programming 343

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

Problem size

C
P

U
 ti

m
e

 

 

100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

Problem size

Ite
ra

tio
ns

 n
um

be
r

 

 
AMHDLS
AMHDSS

AMHDLS
AMHDSS

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Problem size

C
P

U
 ti

m
e

 

 
AMHDLS
PSA

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Problem size

Ite
ra

tio
ns

 n
um

be
r

 

 

AMHDLS

PSA

Fig. 1. Graphs of CPU time and iterations number of the three algorithms

We remark that AMHDLS outperforms AMHDSS and PSA particularly in
solving LP problems with higher dimensions. So we expect a good performance
of our method in solving practical problems. However, a robust implementation
and further numerical experiments are needed to prove its efficiency on solving
real benchmarks LP problems.

5 Conclusion

In addition to [1,3,4,7,8] where we use the optimality estimate to test the opti-
mality of the current feasible solution, in this work the conditions used to charac-
terize the optimality are based on the suboptimality estimate. A general formula
for updating the suboptimality estimate is derived. A long step rule is used for
changing the support in our method and a procedure which updates, when nec-
essary, the parameter η is suggested. Hence, an algorithm called the adaptive
method with hybrid direction and long step rule is described. Finally, numerical
experiments have shown the efficiency of our method in solving randomly gener-
ated test problems. In future work, we will apply some crash procedure like that
presented in [2] in order to initialize AMHDLS with a good initial SFS, then we
will test its performance on solving practical LP test problems.
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Abstract. In this paper we introduce a monotone Newton-like method
for the computations of fixed points of a class of nonlinear operators in
ordered Banach spaces. We use a Lakshmikantham’s fixed point theorem
[4, Theorem 1.2] and the classical Banach fixed point theorem to prove
the convergence of this method. We prove also that under a suitable
condition, the rate of convergence of the proposed method is superlinear.
As an application we consider a class of nonlinear matrix equations.

1 Introduction

Let E be a Banach space, L(E) denote the space of bounded linear operators
on E. Let D be a non empty closed subset of E and T : D → D a contractive
operator. The classical Banach fixed point theorem assure that T has a unique
fixed point w∗ = Tw∗ in D and assure the convergence to w∗ of the sequence
(wn)n≥0 defined by

w0 ∈ D , wn+1 = Twn (1.1)

The convergence of (wn)n≥0 may be quite slow however if the constant of con-
traction of T is close to 1; more rapid convergence can be achieved, for example
by application of Newton method to the nonlinear equation

x− Tx = 0

This procedure lead to consider the sequense (xn)n≥0 defined by ( assume that
T is Fréchet derivable on D )

x0 ∈ D , xn+1 = xn − [I − T ′(xn)]
−1(xn − Txn) (1.2)

The calculation of the approximation xn+1 by scheme (1.2) require the knowledge
of [I − T ′(u)]−1for every u ∈ D, or equivalently solve at every iteration the
equation

[I − T ′(xn)]yn = xn − Txn

where yn is the unknown.

c© Springer International Publishing Switzerland 2015 345
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
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To avoid this situation we propose to replace [I − T ′(u)]−1 by an approximated
operator. Since ‖T ′(u)‖L(E) ≤ q < 1 for every u ∈ D, then we have

[I − T ′(u)]−1 =
∞∑

k=0

T ′(k)(u) (1.3)

where T ′(0)(.) = I , and T ′(k)(.) = T ′(.) ◦ T ′(k−1)(.) for k ≥ 1
Consider now for any nondecreasing integer sequence (an)n≥0 the following

operator

San(.) =

an∑

k=0

T ′(k)(.) (1.4)

The idea is to replace the convergent series (1.3) by its partial sum San(u). This
idea lead to a Newton-like Method for computing fixed point of T , defined by
the sequence (xn)≥0 such that x0 ∈ D and

xn+1 = xn − San(xn)(xn − Txn) (1.5)

We remark that if an = 0 then xn+1 = Txn. This means that the basic fixed
point method (1.1) is particular case of the proposed Newton-like method (1.5).
In this paper, using a Lakshmikantham’s fixed point theorem and the classical
Banach fixed point theorem, we prove that in ordered Banach space setting and
under some hypotheses on T , the sequence (xn)n≥0 defined by relation (1.5) is
monotone and convergent to fixed point of T with superlinear rate.

2 Preliminaries

Thoughout this paper E := (E, ‖.‖) Stands for real Banach space. We denote
the zero element of E by 0 as in R. Let K �= {0} be always a closed nonempty
subset of E. K is called cone if ax + by ∈ K for all x, y ∈ K and nonnegative
real numbers a, b where K ∩ (−K) = {0}. For a given cone K one can define a
partial ordering ( denoted by 
 ) with respect to K by : x 
 y ( or y � x) if
and only if y − x ∈ K. The notation x ≺ y means that x 
 y and x �= y
The cone K is called:

1. Normal if there exists a positive constant δ such that for every (x, y) ∈ E×E,
we have:

0 
 x 
 y ⇒ ‖x‖ ≤ δ ‖y‖ (2.1)

The least positive number satisfying (2.1) is called the normal constant of
K. If δ = 1; then the norm ‖.‖ is called a monotonic norm.

2. Regular if any increasing sequence and bounded from above is convergent.
That is if {xn}n≥1 is a sequence such that x1 
 x2 
 ... 
 y for some y ∈ E
then there is x ∈ E such that limn→∞ ‖xn − x‖ = 0
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It is well known that any regular cone is normal and the converse is true if the
Banach space E is reflexive. See [1,2,3] for more details. If u, v are two elements
of an ordered Banach space, such that u 
 v, then the order interval [u, v] is
defined as

[u, v] = {z ∈ E : u 
 z 
 v}
The following result is proved in [1]

Proposition 1. Let (E,K) be an ordered Banach space by a cone K The fol-
lowing statements are equivalent

1. The cone K is normal
2. Any decreasing sequence and bounded from below is convergent
3. Any order interval [u, v] is bounded
4. xn 
 yn 
 zn , n ≥ 1 , ‖xn − l‖ → 0 , ‖zn − l‖ → 0, then

‖yn − l‖ → 0

An operator S : D ⊂ E → E defined on an ordered Banach space (E,K) is
called:

1. Positive if S(D ∩K) ⊂ K.
2. Increasing if for every (x, y) ∈ D×D, such that x 
 y, we have S(x) 
 S(y)

3 Main Result

Let (E,K) be an ordered Banach space by a regular cone K. Let T : E → E be
a nonlinear operator. Asume the following hypotheses :

(H1) There exists x0 , y0 ∈ E such that x0 ≺ y0 and x0 
 Tx0 , Ty0 
 y0.
(H2) The Fréchet derivative T ′(u) of T exists for every u ∈ [x0, y0] and the

mapping u �→ T ′(u)h is increasing for every h ∈ K , u ∈ [x0, y0].
(H3) T ′(u) is positive operator for each u ∈ [x0, y0] and there exist 0 < q < 1

such that ‖T ′(u)‖L(E) ≤ q for every u ∈ [x0, y0].

(H4) The mapping u ∈ [x0, y0] �→ T ′(u) is η- lipschitzian

It is clear that if hypothesis (H3) is satisfied, then hypothesis (iii) of theorem
[4, Theorem 1.2] is fulfilled. This is a direct consequence of Neumann series and
positivity of the operator T

′
(u). Moreover in this case the uniqueness of fixed

points is assured.
We define the operator San : [x0, y0] → L(E) by

San(u) =

an∑

k=0

T ′(k)(u) (3.1)

where (an)n≥0 is any nondecreasing integer sequence, and

T ′(0)(u) = I , T ′(k+1)(u) = T ′(u) ◦ T ′(k)(u)
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It is clear that if the hypothesis (H3) is satisfied, then San(u) is positive operator
for every u ∈ [x0, y0] and

San(u)h 
 [I − T ′(u)]−1h for every h ∈ K

Now we present the main result

Theorem 1. Let (E,K) be an ordered Banach space by a regular cone K. Let
T : E → E be a nonlinear operator satisfying the hypotheses (H1) − (H3).
Consider the Newton-like method defined by the sequence (xn)n≥0 such that

xn+1 = xn − San(xn)(xn − Txn) (3.2)

Then (xn)n≥0 is an increasing sequence wich converge to the unique fixed point
u∗ ∈ [x0, y0] of T. Moreover if the hypothesis (H4) is satisfied, then the rate of
convergence of (xn)n≥0 is

1. Linear if (an)n≥0 is a constant sequence.
2. Superlinear if an → +∞ and η < 1.

Remark 1. If we choose an = 0, then San = S0 = I, and consequently xn+1 =
Txn. So the basic fixed point method is a particular case of a monotone Newton-
like method defined by relation (3.2).

To prove Theorem 1 we need the following important two Lemmas

Lemma 1. [4] If the hypothesis (H2) is satisfied then

Tx− Ty 
 T ′(x)(x − y) and (3.3)

Ty − Tx 
 T ′(y)(y − x) (3.4)

whenever x0 
 x ≺ y 
 y0

Lemma 2. Consider the sequence (xn)n≥0 defined in Theorem 1. Then for all
n ∈ N we have

xn 
 Txn

Proof. We use the induction principle. By hypothesis (H1) we have x0 
 Tx0.
Now assume that for some k, xk 
 Txk and we prove that xk+1 
 Txk+1. To
show this we prove at first that

xk+1 
 Txk + T ′(xk)(xk+1 − xk) (3.5)

In fact by definition of the sequence (xn)n≥0 we have

xk+1 − xk = Sak
(xk)(Txk − xk)



A Monotone Newton-Like Method for the Computation of Fixed Points 349

Let zk = Txk − xk , Ran :=
∑∞

k=an+1 T
′(k)(xk). Then

Sak
(xk) +Rak

=

∞∑

k=0

T ′(k)(xk) = [I − T ′(xk)]
−1

So
Sak

(xk) = [I − T ′(xk)]
−1 −Rak

Hence the relation (3.5) became

xk+1 − xk = [I − T ′(xk)]
−1zk −Rak

zk

So
[I − T ′(xk)](xk+1 − xk) = zk − [I − T ′(xk)] ◦Rak

zk

Thus
xk+1 = Txk + T ′(xk)(xk+1 − xk)− rk

where rk = [I − T ′(xk)] ◦Rak
zk. Next we show that rk � 0. In fact

rk = Rak
zk − T ′(xk) ◦Rak

zk

So

rk =

∞∑

j=ak+1

T ′(j)(xk)zk −
∞∑

j=ak+1

T ′(j+1)(xk)zk

Hence
rk = T ′(ak+1)(xk)zk

Since T ′(ak+1)(xk) is positive linear operator and zk � 0 we have rk � 0. So the
relation (3.5) is true. Now using Lemma 1 we obtain

xk+1 − Txk+1 
 Txk − Txk+1 + T ′(xk)(xk+1 − xk)


 T ′(xk)(xk − xk+1)− T ′(xk)(xk+1 − xk) = 0

Consequently xn 
 Txn for all n ∈ N.

Remark 2. The sequence (xn)n≥0 defined in Theorem 1 is increasing. In fact,
since San(.) is positive linear operator, by Lemma 2 we have for every n ∈ N

xn+1 − xn = San(xn)(Txn − xn) � 0

Proof of Theorem 1.
Part one : Existence and uniqueness of fixed point of T
First we show that T has a unique fixed point in [x0, y0]. Since T ′(u) is positive
for every u ∈ [x0, y0], the relation (3.3) implies that

Tx 
 Ty whenever x0 
 x ≺ y 
 y0

Then for every z ∈ [x0, y0] we have

x0 
 Tx0 
 Tz 
 Ty0 
 y0
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So Tz ∈ [x0, y0] or equivalently T ([x0, y0]) ⊂ [x0, y0]. Next let x, y be in [x0, y0],
then x + t(y − x) ∈ [x0, y0] for all t ∈ [0, 1]. This is due to convexity of [x0, y0].
By the mean value Theorem we get

‖T (y)− T (x)‖ ≤ sup
0≤t≤1

‖T ′(x+ t(y − x))‖L(E) ‖y − x‖ ≤ q ‖y − x‖

Hence T is contraction mapping on [x0, y0]. So by the Banach fixed point theorem,
T has a unique fixed point u∗ ∈ [x0, y0]. Moreover the sequence (wn)n≥0 such
that

w0 = x0 wn+1 = Twn

converge to u∗.
Part two : Convergence of (xn)n≥0 to u∗

Let (un)n≥0 , (wn)n≥0 be two sequences defined by : u0 = w0 = x0 and for every
n ∈ N

un+1 = un − [I − T ′(un)]
−1(un − Tun) and wn+1 = Twn

It is easy to show that for every n ∈ N

un+1 = Tun − T ′(un)(un+1 − un)

Then by the Lakshmikantham Theorem [4, Theorem 1.2], we conclude that the
sequence (un)n≥0 converge to the unique fixed point u∗ of T. Now we will show
that for every n ∈ N

wn 
 xn 
 un (3.6)

For this purpose we use the induction. For n = 0, relation (3.6) is true. Next
assume that for k ∈ N wk 
 xk 
 uk. Then we have

xk+1 − wk+1 = xk − Sak
(xk − Txk)− Twk

= Txk +

ak∑

j=1

T ′(j)(xk)(Txk − xk)− Twn

Hence by lemma 1 we get

xk+1 − wk+1 � T ′(wk)(xk − wk) +

ak∑

j=1

T ′(j)(xk)(Txk − xk) (3.7)

Since T ′(wk) is positive, and xk 
 Txk by Lemma 2, the second side of (3.7) is
positive. So xk+1 � wk+1. Now we show that xk+1 
 uk+1. In fact we have

uk+1 − xk+1 = uk − [I − T ′(uk)]
−1(uk − Tuk)− xk + Sak

(xk − Txk)

= (uk − xk) +

+∞∑

j=0

T ′(j)(uk)(Tuk − uk)−
ak∑

j=0

T ′(j)(xk)(Txk − xk)

� (uk − xk) +

+∞∑

j=0

T ′(j)(xk)(Tuk − uk)−
ak∑

j=0

T ′(j)(xk)(Txk − xk)

= (uk − xk) +
+∞∑

j=ak+1

T ′(j)(xk)(Tuk − Txk + uk − xk)
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Now since xk 
 uk by Lemma 1 we obtain

Tuk − Txk � T ′(xk)(uk − xk)

Hence

T ′(j)(xk)(Tuk − Txk + uk − xk) � T ′(j+1)(xk)(uk − xk)− T ′(j)(xk)(uk − xk)

So
+∞∑

j=ak+1

T ′(j)(Tuk − Txk + uk − xk) 	
+∞∑

j=ak+1

[T ′(j+1)(xk)(uk − xk) − T ′(j)(xk)(uk − xk)]

= T ′(ak+1)(xk)(uk − xk) − (uk − xk)

Consequently
uk+1 − xk+1 � T ′(ak+1)(xk)(uk − xk) � 0

So by the induction principle we deduce that for every n ∈ N, the relation (3.6)
is true. Now since limn→+∞un = limn→+∞wn = u∗ ; wn 
 xn 
 un and the
cone K is normal, then the proposition 1 implies that limn→+∞xn = u∗.
Part three: The rate of convergence
Assume that hypothesis (H1)− (H4) are satisfied. Let

en := en(an) = u∗ − xn

be the error of approximation of the fixed point u∗ by the sequence (xn)n≥0. It
is clear that en � o. Now for every n ∈ N we have

en+1 = u∗ − xn+1 = Tu∗ − [xn − San(xn)(xn − Txn)]

= Tu∗ − [Txn +

an∑

k=1

T ′(k)(xn)(Txn − xn)]

= Tu∗ − Txn −
an∑

k=1

T ′(k)(xn)(Txn − Tu∗ + u∗ − xn)

Thus, by lemma 1 we get

en+1 
 T ′(u∗)(u∗ − xn) +

an∑

k=1

T ′(k)(xn)(Txn − Tu∗)−
an∑

k=1

T ′(k)(xn)(u
∗ − xn)


 T ′(u∗)en +

an∑

k=1

T ′(k)(xn) ◦ T ′(u∗)en −
an∑

k=1

T ′(k)(xn)en


 T ′(u∗)en +

an∑

k=1

T ′(k+1)(u∗)en −
an∑

k=1

T ′(k)(xn)en

=

an+1∑

k=1

T ′(k)(u∗)en −
an∑

k=1

T ′(k)(xn)en

=

an∑

k=1

[T ′(k)(u∗)− T ′(k)(xn)]en + T ′(an+1)(u∗)en
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Now, hypothesis (H4) implies that

∥∥∥T ′(k)(u∗)− T ′(k)(xn)
∥∥∥
L(E)

≤ ηk ‖en‖

Since the cone K is normal with constant of normality δ, since the hypothesis
(H3) is satisfied, we get the following estimation

‖en+1‖ ≤ δ[(

an∑

k=1

ηk) ‖en‖+ qan+1] ‖en‖

Hence
‖en+1‖
‖en‖

= αn ‖en‖+ βn (3.8)

Where

αn = δ(

an∑

k=1

ηk) βn = δqan+1

then we have the following two cases :

1. First case: If there exists a constant a such that an = a for every n ∈ N then

limn→+∞αn ‖en‖ = 0 and βn := β = δqa+1 < 1

So there exists an integer N such that for every n ≥ N we have

‖en+1‖
‖en‖

≤ β (3.9)

The relation (3.9) means that the rate of convergence of (xn)n≥0 is linear
2. Second case: If an → +∞ and η < 1, then

αn ≤ δ

1− η
and βn → 0

Consequently we have

limn→+∞
‖en+1‖
‖en‖

= 0 (3.10)

The relation (3.10) means that the rate of convergence of (xn)n≥0 is super-
linear.

4 Application to a Nonlinear Matrix Equation

In this section we apply the monotone Newton like method (3.2) to the following
nonlinear matrix equation

X +A∗X−1A+B∗X−1B = I (4.1)
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where A, B are two nonsingular complex matrices, and the positive definite
solution is required.
The problem of solving the matrix equation (4.1), is related to problems of solv-
ing system of linear equations Px = f , arising in solving discretized elliptic
partial differential equations [5]. It is proved in [5] that equation (4.1) has pos-
itive definite solution, and two iterative algorithms for finding positive definite
solution of equation (4.1) are proposed.

For a complex matrix A, we use A∗, λmax(A
∗A), λmin(A

∗A), ‖A‖ = λ
1
2
max(A∗A)

to denote respectively the conjugated transpose of A, the maximal eigenvalue
and the minimal eigenvalue of A∗A, the spectral norm of the matrix A.
By a simple manipulations we can prove that equation (4.1) is equivalent to the
following fixed point equation

Y = TY := I + Y (A∗Y A+B∗Y B) (4.2)

where Y = X−1.
Let E = Hn be the Banach space of n×n complex hermitian matrices normed by
the spectrale norme, and ordered by the cone K = Hn

+ of positive semi definite
matrices. Consider the operator T : Hn → Hn defined by (4.2).

Lemma 3. If

λmax(A
∗A) + λmax(B

∗B) <
1

4
(4.3)

Then there exists X0 , Y0 in Hn
+ such that

X0 ≺ Y0 and X0 
 TX0 , TY0 
 Y0

where X0 = s1I , Y0 = s2I and s2, s1, (1 < s1 ≤ s2 < 2) are the smallest positive
real solutions of the equations

(λmax(A
∗A) + λmax(B

∗B)) .x2−x+1 = 0 and (λmin(A
∗A) + λmin(B

∗B)) .x2−
x+ 1 = 0 respectively.

Proof. Let t ∈ R, by a simple calculus we obtain

T (tI)− tI = (1− t) I + t2(A∗A+B∗B).

Hence
T (tI)− tI �

[
1− t+ (λmin(A

∗A) + λmin(B
∗B)) .t2

]
.I

and
T (tI)− tI 


[
1− t+ (λmax(A

∗A) + λmax(B
∗B)) .t2

]
.I

Putting

λmin = λmin(A
∗A) + λmin(B

∗B)

λmax = λmax(A
∗A) + λmax(B

∗B)

p (t) = 1− t+ λmint
2,

q (t) = 1− t+ λmaxt
2.
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Let ϕ be a numerical functions defined on
]
0, 1

4

[
as follow :

ϕ (t) =
1−

√
1− 4t

2t

It is easy to show that ϕ is increasing on
]
0, 1

4

[
, and that for every t ∈

]
0, 1

4

[
, we

have
1 < ϕ (t) < 2

On the other hand, the smallest solutions of equations p (t) = 0 and q (t) = 0,
are respectively:

s1 = ϕ (λmin) , s2 = ϕ (λmax) (4.4)

It follows that
1 < s1 ≤ s2 < 2

Let be X0 = s1I , Y0 = s2I, then we have X0 ≺ Y0 and

TX0 −X0 = (1− s1)I + (A∗A+B∗B)s21 � p(s1)I = 0

and
TY0 − Y0 = (1− s2)I + (A∗A+B∗B)s22 
 q(s2)I = 0

Theorem 2. If

λmax(A
∗A) + λmax(B

∗B) <
1

4
(4.5)

Then the equation (4.2) has a unique solution Y+ in [s1I, s2I] where s1 , s2
are defined in Lemma 3. Thus the equation (4.1) has a unique solution X+ in[

1
s2
I, 1

s1
I
]
. Morover the monotone Newton-like method, defined by the sequence

(xn)n≥0 where

x0 = s1I and xn+1 = xn − San(xn)(xn − Txn) (4.6)

and T is the matricial operator defined by (4.2), converge to Y+ with superlinear
rate of convergence. Hence we can compute X+ since X+ = Y −1

+ .

Proof. By lemma 3 there exists X0 , Y0 in Hn
+ such that

X0 ≺ Y0 and X0 
 TX0 , TY0 
 Y0

Hence hypothesis (H1) is satisfied. In the other hand, T is Fréchet derivable on
[X0, Y0] and for every h ∈ Hn, Z ∈ [X0, Y0] we have

T ′(Z)h = ZF (h) + hF (Z)

where
F (X) = A∗XA+B∗XB , X ∈ Hn

Let Z1, Z2 ∈ Hn, such that Z1 
 Z2 and h ∈ K, then we get

T ′ (Z1)h− T ′ (Z2)h = (Z1 − Z2)F (h) + hF (Z1 − Z2) 
 0 (4.7)
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Hence the mapping Z �→ T ′ (Z)h is increasing for every h ∈ K. Then hypothesis
(H2) also satisfied.
Now let Z ∈ [X0, Y0] and h ∈ Hn, then

‖T ′(Z)h‖ ≤ 2 ‖Z‖ ‖F‖ ‖h‖

Since the spectral norm is monotone we have ‖Z‖ ≤ ‖Y0‖ = s2 < 2 and ‖F‖ ≤
λmax (A

∗A) + λmax (B
∗B) < 1

4 . So we conclude that

‖T ′(Z)‖ ≤ q := 4 [λmax (A
∗A) + λmax (B

∗B)] < 1

Hence the hypothesis (H3) is satisfied. Now, the relation (4.7) implies that for
every Z1,Z2 ∈ Hn

‖T ′ (Z1)− T ′ (Z2)‖ ≤ 2 ‖F‖ ‖Z1 − Z2‖ <
1

2
‖Z1 − Z2‖

Hence (H4) is satisfied with η = 1
2 . Consequently, Theorem 1 is applicable.

4.1 Numerical Examples

In this subsection we give a numerical example to illustrate Theorem 2. All
numerical experiments are run in MATLAB version R2010a. We recall that if X+

and Y+ are solutions of equations (4.1) and (4.2) respectively, then X+ = Y −1
+

We denote the residual error by

er(X) =
∥∥X +A∗X−1A+B∗X−1B − I

∥∥ (4.8)

Consider the equation (4.1) with:

A =
1

452

⎛

⎜⎜⎜⎜⎜⎜⎝

30 22 23 35 40 52
22 17 19 66 30 10
23 19 11 13 25 21
35 66 13 19 17 6
40 30 25 7 20 15
52 10 21 6 15 9

⎞

⎟⎟⎟⎟⎟⎟⎠
, B =

1

452

⎛

⎜⎜⎜⎜⎜⎜⎝

11 12 15 17 20 45
12 7 19 21 51 13
15 19 65 44 23 18
17 21 44 31 32 33
20 51 23 32 13 41
45 19 18 33 41 24

⎞

⎟⎟⎟⎟⎟⎟⎠

We have
λmax (A

∗A) + λmax (B
∗B) = 0.2483

and
s1 = 1.0046 , s2 = 1.6991 (s1 and s2 are defined by (4.4))

Let u0 = s1I. We fixe the number of iterations n = 6. We obtain the following
solution:

X+ := X+(an) =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

0.9186 −0.0667 −0.0594 −0.0649 −0.0682 −0.0571
−0.0667 0.9244 −0.0564 −0.0601 −0.0591 −0.0560
−0.0594 −0.0564 0.9268 −0.0700 −0.0654 −0.0592
−0.0649 −0.0633 −0.0700 0.9133 −0.0744 −0.0645
−0.0682 −0.0591 −0.0654 −0.0744 0.9205 −0.0646
−0.0571 −0.0560 −0.0592 −0.0645 −0.0646 0.9303

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠
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With different choices of the sequence (an)n≥0, we obtain the following results

Table 1. Residual error according to choice of an

an er(X+)

5 1.4 × 10−3

10 4.86 × 10−5

15 2.57 × 10−6

n2 2.64 × 10−8

n2 + 5n 5.58 × 10−12

n3 3.42 × 10−16

Now taking the matrices A and B as in example 4.2 of [5]. We choose an = 3n,
we get the following results

Table 2. Residual errors with an = 3n

n er(X+)

2 3.50× 10−3

3 6.77× 10−5

4 3.73× 10−8

5 1.14× 10−14

6 1.27× 10−16
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Abstract. In this paper, we define a new barrier function and propose a
new primal-dual interior point methods based on this function for linear
optimization. The proposed kernel function which yields a low algorithm
complexity bound for both large and small-update interior point meth-
ods. This purpose is confirmed by numerical experiments showing the
efficiency of our algorithm which are presented in the last of this paper.
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1 Introduction

We consider the standard linear optimization

(P ) min{ctx : Ax = b, x ≥ 0},

where A ∈ R
m×n, rank(A) = m, b ∈ R

m, and c ∈ R
n, and its dual problem

(D) max{bty : Aty + s = c, s ≥ 0}.

In 1984, Karmarkar [13] proposed a new polynomial-time method for solving
linear programs. This method and its variants that were developed subsequently
are now called interior point methods IPMs. For a survey, we refer to [17]. The
primal-dual interior point algorithm which is the most efficient for a computa-
tional point of view [1]. It is known, before the reference [9], that the iteration com-
plexity of an algorithm is in an appropriate measure for its efficiency. At present,
the best known theoretical iteration bound for small-update IPMs is better than
the one for large-update IPMs. However, in practice, large-update IPMs are

c© Springer International Publishing Switzerland 2015 357
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_30
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much more efficient than small-update IPMs [16,17]. Many researchers are pro-
posed and analyzed various primal-dual interior point methods for linear opti-
mizationLO based on the logarithmic barrier function [1,11,12]. Peng et al [14,15]
introduced self-regular barrier functions for primal-dual IPMs for LO and ob-
tained the best complexity result so farO

(√
n logn log n

ε

)
for large-update primal-

dual IPMs with some specific self-regular barrier functions. Recently, Bai et al
[2− 7], Ghami et al [9,10] and G. M. Cho [7] proposed new primal-dual IPMs for
LO problems based on various kernel functions to improve the iteration bound
for large-update methods fromO

(
n log n

ε

)
toO

(√
n logn log n

ε

)
. For its part, EL

Ghami et al [8] used a new kernel function with a trigonometric barrier term and
proposed a new primal-dual IPMs and proved that the iteration bound of large-

update methods is O
(
n

3
4 log n

ε

)
. Motivated by their work, we define a new ker-

nel function and propose a new primal-dual IPMs based on this kernel function

for LO. We show that the iteration bounds are O
(√

n (logn)
2
log n

ε

)
for large-

update methods and O
(√

n log n
ε

)
for small-update methods.

Without loss of generality, we assume that (P ) and (D) satisfy the interior
point condition IPC, i.e., there exist (x0, y0, s0) such that

Ax0 = b, x0 > 0, Aty0 + s0 = c, s0 > 0. (1)

It is well known that finding an optimal solution of (P ) and (D) is equivalent to
solve the following system:

Ax = b, x ≥ 0,
Aty + s = c, s ≥ 0,
xs = 0.

(2)

The paper is organized as follows. In Section 2, we recall how a given kernel
function defines a primal-dual corresponding IPMs, and we present the generic
form of this algorithm. In Section 3, we define a new kernel function and give
its properties which are essential for the complexity analysis. In Section 4, we
derive decrease of the barrier function during an inner iteration result for both
large-update and small-update methods. In Section 5, we present some numerical
results. Finally, concluding remarks are given in Section 6.

We use the following notations throughout the paper. Rn
+ and R

n
++ denote the

set of n-dimensional nonnegative vectors and positive vectors respectively. For
x, s ∈ R

n, xmin and xs denote the smallest component of the vector x and the
vector componentwise product of the vector x and s, respectively. We denotes
by X = diag(x) the n × n diagonal matrix with the components of the vector
x ∈ R

n are the diagonal entries. e denotes the n-dimensional vector of ones. For
f (x) , g (x) : Rn

++ → R
n
++, f (x) = O (g (x)) if f (x) ≤ C1g (x) for some positive
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constant C1 and f (x) = Θ (g (x)) if C2g (x) ≤ f (x) ≤ C3g (x) for some positive
constant C2 and C3 and finally, ‖‖ denotes the 2-norm of a vector.

2 The Prototype Algorithm

The basic idea of primal-dual IPMs is to replace the equation of complemen-
tarity condition for (P ) and (D) define in (2), by the parameterized equation
xs = μe, with μ > 0. Thus we consider the system

Ax = b, x ≥ 0,
Aty + s = c, s ≥ 0,
xs = μe.

(3)

If the IPC is satisfied, then there exists a solution, for each μ > 0, and this
solution is unique. It is denoted as (x(μ), y(μ), s(μ)), and we call x(μ) the μ-
center of (P ) and (y(μ), s(μ)) the μ-center of (D). If μ → 0, then the limit of
the central path exists, and since the limit points satisfy the complementarity
condition, the limit yields optimal solutions for (P ) and (D). From a theoretical
point of view, the IPC can be assumed without loss of generality. In fact, we may,
and will, assume that x0 = s0 = e. In practice, this can be realized by embedding
the given problems (P ) and (D) into a homogeneous self-dual problem which has
two additional variables and two additional constraints. For this and the other
properties mentioned above, see [16].

2.1 The Search Directions

Without loss of generality, we assume that (x(μ), y(μ), s(μ)) is known for some
positive μ. For example, due to the above assumption, we assume that for μ = 1,
x(1) = s(1) = e. We then decrease μ to μ = (1 − θ)μ for some fixed θ ∈ ]0, 1[,
and we solve the following Newton system:

AΔx = 0,
AtΔy +Δs = 0,
sΔx+ xΔs = μe− xs.

(4)

This system uniquely defines a search direction (Δx,Δy,Δs). If necessary,we
repeat the procedure until we find iterates that are close to (x(μ), y(μ), s(μ)).
Then μ is again reduced by the factor 1 − θ, and we apply Newton’s method
targeting the new μ−centers, and so on. This process is repeated until μ is
small enough, i.e., until nμ ≤ ε; at this stage, we have found an ε−optimal
solution of problems (P ) and (D). The result of a Newton step with stepsize α
is defined as:
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x+ = x+ αΔx, y+ = y + αΔy, s+ = s+ αΔs, (5)

where the stepsize α satisfies (0 < α ≤ 1).
Now, we introduce the scaled vector v and the scaled search directions dx and

ds as follows:

v =
√

xs
μ , dx = vΔx

x , ds =
vΔs
s . (6)

The system (4) can be rewritten as follows:

Adx = 0,

A
t
Δy + ds = 0,

dx + ds = v−1 − v,

(7)

where A = 1
μAV

−1X, V = diag(v). Note that the right-hand side of the third

equation in (7) equals to the negative gradient of the logarithmic barrier function
Φ (v) , i.e.,

dx + ds = −∇Φ (v) , (8)

where the barrier function Φ (v) : Rn
++ → R+ is defined as follows:

Φ (v) = Φ (x, s;μ) =

n∑

i=1

ψ (vi) , (9)

where

ψ (vi) =
v2i − 1

2
− log vi. (10)

ψ (t) is called the kernel function of the logarithmic barrier function Φ (v). In this
paper, we replace ψ (t) by a new kernel function ψM (t), which will be defined
in Section 2. It is clear from the above description that the closeness of (x, s) to
(x(μ), s(μ)) is measured by the value of Φ (v) , with τ > 0 as a threshold value.
If Φ (v) ≤ τ , then we start a new outer iteration by performing a μ−update;
otherwise, we enter an inner iteration by computing the search directions at the
current iterates with respect to the current value of μ and apply (5) to get new
iterates. If necessary, we repeat the procedure until we find iterates that are in
the neighborhood of (x(μ), s(μ)). Then μ is again reduced by the factor 1 − θ
with 0 < θ < 1, and we apply Newton’s method targeting the new μ−centers,
and so on. This process is repeated until μ is small enough, i.e., until nμ < ε.
The choice of the stepsize α, (0 < α ≤ 1) is another crucial issue in the analysis
of the algorithm.
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Prototype Algorithm for LO

Begin algorithm
a proximity the function ΦM (v);
A threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
begin
x = e ; s = e ; μ = 1; v = e.
while nμ ≥ ε do
begin (outer iteration)
μ = (1− θ)μ;
while ΦM (x, s;μ) > τ do
begin (inner iteration)

Solve the system (7) via (6) to obtain (Δx,Δy,Δs);
choose a suitable a stepsize α and take

x = x+ αΔx;
y = y + αΔy;
s = s+ αΔs;

v =
√

xs
μ ;

end (inner iteration)
end (outer iteration)
End algorithm.

Fig 1. Algorithm

3 The New Kernel Function and Its Properties

In this section, we define a new kernel function and give its properties which are
essential to our complexity analysis.

We call ψ (t) : R++ → R+ a kernel function if ψ is twice differentiable and
satisfies the following conditions:

ψ′(1) = ψ(1) = 0,
ψ′′(t) > 0,
limt→0+ ψ (t) = limt→+∞ ψ (t) = +∞.

(11)

Now, we define a new function ψM (t) as follows:

ψM (t) =
p

2
t2 + exp(p(

1

t
− 1))− (1 +

p

2
), p > 0. (12)

For convenience of reference, we gives the first three derivatives with respect to
t as follows:

ψ′
M (t) = pt− p

t2 exp(p(
1
t − 1)),

ψ′′
M (t) = p+

(
2p
t3 + p2

t4

)
exp(p(1t − 1)),

ψ′′′
M (t) = −

(
6p
t4 + 6p2

t5 + p3

t6

)
exp(p(1t − 1)).

(13)
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Obviously, ψM (t) is a kernel function and

ψ′′
M (t) > p. (14)

In this paper, we replace the barrier function Φ (v) in (8) with the function
barrier ΦM (v) as follows:

dx + ds = −∇ΦM (v) , (15)

where

ΦM (v) =

n∑

i=1

ψM (vi) , (16)

ψM (t) is defined in (12). Hence, the new search direction (Δx,Δy,Δs) is ob-
tained by solving the following modified Newton system:

AΔx = 0,
AtΔy +Δs = 0,
sΔx+ xΔs = −μv∇ΦM (v) .

(17)

We use ΦM (v) as the proximity function to measure the distance between the
current iterate and the μ−center for given μ > 0. We also define the norm-based
proximity measure, δ(v) : Rn

++ → R+, as follows:

δ(v) = 1
2 ‖∇ΦM (v)‖ = 1

2 ‖dx + ds‖ . (18)

Lemma 1. For ψM (t), we have the following results.

(i) ψM (t) is exponentially convex for all t > 0; that is,

ψM

(√
t1t2

)
≤ 1

2
(ψM (t1) + ψM (t2)) .

(ii) ψ′′
M (t) is monotonically decreasing for all t > 0.

(iii) tψ′′
M (t)− ψ′

M (t) > 0 for all t > 0.
(iv) ψ′′

M (t)ψ′
M (βt)− βψ′

M (t)ψ′′
M (βt) > 0, t > 1, β > 1.

Lemma 2. For ψM (t), we have

p

2
(t− 1)

2 ≤ ψM (t) ≤ 1

2p
[ψ′

M (t)]
2
, t > 0 (19)

ψM (t) ≤ p2 + 3p

2
(t− 1)

2
, t > 1 (20)

Let σ : [0,+∞[ → [1,+∞[ be the inverse function of ψM (t) for t ≥ 1 and
ρ : [0,+∞[ → ]0, 1] be the inverse function of −1

2 ψ′
M (t) for all t ∈ ]0, 1]. Then

we have the following lemma.
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Lemma 3. For ψM (t), we have

1 +

√
2

p2 + 3p
s ≤ σ (s) ≤ 1 +

√
2

p
s, s ≥ 0 (21)

ρ (z) >
1√

2
pz + 1

, z ≥ 0. (22)

Let ρ : [0,+∞[ → ]0, 1] be the inverse function of

ϕM (t) =
p

t2
exp(p(

1

t
− 1)), p > 0, for all t ∈ ]0, 1] .

Then, we have the following lemma.

Lemma 4. For ϕM (t), we have

ρ (z) >
1

1 + log
(

z
p

) 1
p

, z ≥ 0 (23)

ρ (z) ≥ ρ (p+ 2z) , z ≥ 0. (24)

Lemma 5. Let 0 ≤ θ < 1, v+ = v√
1−θ

, If ΦM (v) ≤ τ then, we have

ΦM (v+) ≤
(
θnp+ 2τ + 2

√
2τnp

)

2 (1− θ)
.

Denote

(ΦM )0 =

(
θnp+ 2τ + 2

√
2τnp

)

2 (1− θ)
= L (n, θ, τ) , (25)

then, (ΦM )0 is an upper bound for ΦM (v+) during the process of the algorithm.

4 Decrease of the Barrier Function during an Inner
Iteration

In this section, we compute a default, stepsize α and the resulting decrease of
the barrier function. After a damped step we have

x+ = x+ αΔx; y+ = y + αΔy; s+ = s+ αΔs; Using (6),wehave

x+ = x

(
e + α

Δx

x

)
= x

(
e+ α

dx
v

)
=

x

v
(v + αdx) ,

s+ = s

(
e+ α

Δs

s

)
= s

(
e+ α

ds
v

)
=

s

v
(v + αds) ,
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So, we have

v+ =

√
x+s+

μ
=

√
(v + αdx) (v + αds).

Define, for α > 0,

f (α) = ΦM (v+)− ΦM (v) .

Then f (α) is the difference of proximities between a new iterate and a current
iterate for fixed μ. By Lemma 1 (i), we have

ΦM (v+) = ΦM

(√
(v + αdx) (v + αds)

)
≤ 1

2
(ΦM (v + αdx) + ΦM (v + αds)) .

Therefore, we have f (α) ≤ f1 (α), where

f1 (α) =
1

2
(ΦM (v + αdx) + ΦM (v + αds))− ΦM (v) . (26)

Obviously, f (0) = f1 (0) = 0. Taking the first two derivatives of f1 (α) with
respect to α, we have

f ′
1 (α) =

1

2

n∑

i=1

(ψ′
M (vi + αdxi) dxi + ψ′

M (vi + αdsi) dsi) ,

f ′′
1 (α) =

1

2

n∑

i=1

(
ψ′′
M (vi + αdxi) d

2
xi + ψ′′

M (vi + αdsi) d
2
si

)
,

Using (15) and (18), we have

f ′
1 (0) =

1

2
∇ΦM (v)

t
(dx + ds) = −1

2
∇ΦM (v)

t ∇ΦM (v) = −2δ(v)2. (27)

Lemma 6. Let δ(v) be as defined in (18). Then, we have

δ(v) ≥
√

p

2
ΦM (v). (a)

From Lemmas 4.1−4.4 in [3], we have the following Lemma 7.

Lemma 7. The largest stepsize α satisfying

α ≥ 1

ψ′′
B (ρ (2δ))

.

and, we have

f1 (α) ≤ 0, for α ≤ α
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Lemma 8. Let ρ and α be as defined in Lemma 7. If

ΦM = ΦM (v) ≥ τ ≥ 1,

then we have

α ≥ 1

p+
[
(2 + p) (p+ 4)

√
p
2ΦM

] [
1 + log

(
1 + 4

p

√
p
2ΦM

) 1
p

]2 .

Denoting

˜̃α =
1

p+
[
(2 + p) (p+ 4)

√
p
2ΦM

] [
1 + log

(
1 + 4

p

√
p
2ΦM

) 1
p

]2 . (28)

We have that ˜̃α is the default stepsize and that ˜̃α ≤ α.

Lemma 9. Let ˜̃α be the default stepsize as defined in (28) and let

(ΦM )0 ≥ ΦM (v) ≥ 1.

Then

f
(
˜̃α
)
≤

−
√p

2 [(ΦM )0]
1
2

[√
2
pp+ (2 + p) (p+ 4)

] [
1 + log

(
1 + 4

p

√
p
2 (ΦM )0

) 1
p

]2 (29)

After the update of μ to (1− θ)μ, we have

ΦM (v+) ≤ (ΦM )0 =

(
θnp+ 2τ + 2

√
2τnp

)

2 (1− θ)
= L (n, θ, τ) .

Lemma 10. Let K be the total number of inner iterations in the outer iteration.
Then we have

K ≤
4
√
p+ 2

√
2 (2 + p) (p+ 4)
√
p

[
1 + log

(
1 +

4

p

√
p

2
(ΦM )0

) 1
p

]2

[(ΦM )0]
1
2 .

Theorem 1. Let an LO problem be given, let (ΦM )0 be as defined in (25) and
let τ ≥ 1. Then, the total number of iterations to have an approximate solution
with nμ < ε is bounded by

4
√
p+ 2

√
2 (2 + p) (p+ 4)
√
p

[
1 + log

(
1 +

4

p

√
p

2
(ΦM )0

) 1
p

]2

[(ΦM )0]
1
2
log n

ε

θ
.
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For large-update methods with τ = O (n) and θ = Θ (1), we distinguish the
two cases:

The first case: if p ∈ [1,+∞[, we get for large-update methods (ΦM )0 = O (pn)

and O
(√

n (p logn)2 log n
ε

)
iterations.

The second case: if p ∈ ]0, 1[, we get for large-update methods (ΦM )0 = O (n)

and O

(√
n
p5

(
log n

p

)2

log n
ε

)
iterations.

In case of a small-update methods, we have τ = O (1) and θ = Θ
(

1√
n

)
.

Substitution of these values into theorem 1 does not give the best possible bound.

ΦM (v+) ≤ nψM

(
1√
1− θ

σ

(
ΦM (v)

n

))
≤

(
p2 + 3p

)

2 (1− θ)

(
θ
√
n+

√
2

p
τ

)2

=(ΦM )0 ,

Using this upper bound for (ΦM )0, we get the following iteration bound:

4
√
p+ 2

√
2 (2 + p) (p+ 4)
√
p

[
1 + log

(
1 +

4

p

√
p

2
(ΦM )0

) 1
p

]2

[(ΦM )0]
1
2
log n

ε

θ
.

The first case: if p ∈ [1,+∞[, we get for small-update methods (ΦM )0 =

O
(
p2
)
and O

(√
np5 log n

ε

)
iterations.

The second case: if p ∈ ]0, 1[, we get for small-update methods (ΦM )0 = O (1)

and O
(√

n
p5 log

n
ε

)
iterations.

5 Numerical Tests

In this section, we present some numerical results. We consider the following
example: n = 2m,

A (i, j) =

{
0 if i 
= j or j 
= i +m
1 if i = j or j = i +m

c (i) = −1, c (i+m) = 0 and b (i) = 2, for i = 1, ...,m.

Point of departure (Installation):

x0 (i) = x0 (i+m) = 1, s0 (i)=1, s0 (i+m) = 2 and y0 (i)=−2, for i = 1, ...,m.

We take μ0 = 1, τ = 1 and ε = 10−4. Furthermore, the parameters m, p and
θ are taken as follows: m ∈ {5, 15, 25, 35, 50}, p ∈ {0.5, 1, 4}, θ ∈ {0.1, 0.5, 0.9}.

In the table of results, (ex (m,n)) represents the size of the example, (Inn Itr)
represents the total number of inner iterations and (Out Itr) represents the total
number of outer iterations. We summarize these numerical study in the tables
1, 2, 3.
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p = 0.5 θ = 0.1 θ = 0.5 θ = 0.9
ex (m,n) Inn Itr Out Itr Inn Itr Out Itr Inn Itr Out Itr
(5, 10) 3243 117 7244 19 43395 7
(15, 30) 5297 125 14893 20 99326 7
(25, 50) 6960 129 22501 21 149611 7
(35, 70) 8474 132 29042 21 197663 7
(50, 100) 10559 135 40447 22 311676 8
table 1

p = 1 θ = 0.1 θ = 0.5 θ = 0.9
ex (m,n) Inn Itr Out Itr Inn Itr Out Itr Inn Itr Out Itr
(5, 10) 1438 115 2538 19 8641 7
(15, 30) 2408 124 4673 20 16268 7
(25, 50) 3145 128 6583 21 22241 7
(35, 70) 3802 131 8035 21 27491 7
(50, 100) 4671 134 10501 22 40309 8
table 2

p = 4 θ = 0.1 θ = 0.5 θ = 0.9
ex (m,n) Inn Itr Out Itr Inn Itr Out Itr Inn Itr Out Itr
(5, 10) 2028 112 3194 18 8893 7
(15, 30) 3545 122 5962 20 15325 7
(25, 50) 4677 127 8073 21 19900 7
(35, 70) 5619 130 9568 21 23652 7
(50, 100) 6837 133 12028 22 33136 8
table 3

Comments
These numerical tests for different dimensions confirm our purpose and consoli-
dates our theoretical results.

6 Concluding Remarks

In this paper, we have analyzed large-update and small-update versions of the
primal-dual interior point algorithm described in Fig 1 that are based on the new
function (12). The proposed function is not logarithmic and not self-regular. We
proved that the iteration bound of a large-update interior point method based

on the kernel function considered in this paper is O
(√

n (logn)
2
log n

ε

)
and

for small-update methods, we obtain the best know iteration bound, namely
O

(√
n log n

ε

)
, just take p = Θ (1). These results are an important contribution

to improve the computational complexity of the problem studied.
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Abstract. We investigate a method to solve NP-hard problem of min-
imizing �0-norm of a vector over a polyhedral set P . A simple approx-
imation is to find a solution of the problem of minimizing �1-norm.
We are concerned about finding improved results. Using a family of
smooth concave functions θr(.) depending on a parameter r we show that
min
x∈P

∑n
i=1 θr(xi) is equivalent to min

x∈P
||x||0 for r sufficiently small and

min
x∈P

||x||1 for r sufficiently large. This gives us an algorithm based on

a homotopy-like method. We show convergence results, error estimates
and numerical simulations.

Keywords: smoothing functions, �0-minimization, sparsity, concave
minimization.

1 Introduction

Consider a polyhedron P such that P = {x ∈ IRn| b ∈ IRm, Ax ≤ b}∩IRn
+ which

is non-empty and does not contain just a single element. The system Ax ≤ b
is said underdetermined, m < n, so it has an infinite number of solutions. One
should note that the hypothesis of considering polyhedron in the nonnegative or-
thant is not a loss of generality, it just simplifies the presentation as the absolute
value disappear in the norm expressions. We are interested in finding the spars-
est solution over this polyhedron, which is equivalent to minimize the �0-norm

∀x ∈ IRn, ||x||0 =

n∑

i=1

s(|xi|), where s(t) =

{
0 si t = 0

1 sinon
. (1)

We will study in this document the following NP-hard problem

(P0) min
x ∈ P

||x||0 . (2)

This problem has several applications, the most notable are in machine learn-
ing and compressed sensing [3,4]. This problem being difficult to solve, a more
simple approach is often used, which consists in solving the convex problem in
�1-norm

(P1) min
x ∈ P

||x||1 . (3)

c© Springer International Publishing Switzerland 2015 369
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_31
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This can be seen as a convexification of (P0). We are interested in finding a
method to improve the solution we get by solving (P1). In this way several
relaxation of ||.||0 have been tried, for instance in [5] they consider a concave
minimization problem reformulating �0-norm with �p-norm, in [8] and [9] they
also consider a concave minimization problem using concave function to relax �0-
norm such that (t+ r)p, −(t+ r)−p, log(t+ r) or 1− e−rt with r > 0 and p ∈ IN.
The purpose of this paper is to provide a theoretical context of a relaxation
method giving concave minimization problem in a more general way, meaning
using a general family of concave reformulation functions. This family has already
been used in the different context of complementarity [6]. These functions are
non-decreasing continuous smooth concave functions such

θ : IR →]−∞, 1[ with θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1 . (4)

We introduce a nonnegative parameter r, so

θr(t) = θ

(
t

r

)
with θr(0) = 0 ∀r > 0 and lim

r→0
θr(t) = 1 ∀t > 0 . (5)

Examples of this family are θ1r(x) =
x

x+r or θ2r(x) = 1 − e−
x
r . In this paper we

will consider the following concave optimization problem

(Pr) min
x ∈ P

n∑

i=1

θr(xi) . (6)

This document will be organised as follow : section 2 presents convergence results,
then, section 3 shows a sufficient convergence condition, finally, section 4 gives
the algorithm with, in section 5, numerical results.

2 Convergence

In this section, we will show the link between problems (Pr), (P0) and (P1).
Theorem 1 gives convergence of (Pr) to (P0) for r sufficiently small.

Theorem 1 (Convergence to �0-norm). Given S∗
||.||0 the set of solutions of

(P0) and S∗
r the set of solutions of (Pr). Every limit point of any sequence {xr}r,

such that xr ∈ S∗
r , is an optimal point of (P0).

Proof. Suppose x̄ = lim
r→0

xr the limits of a subsequence of {xr}r and x∗ ∈ S∗
||.||0,

we have for r sufficiently small

n∑

i=1

θr(x̄i) ≤
n∑

i=1

θr(x
∗
i ) . (7)

With the definition of θr(.)’s function, for r > 0 and t ∈ IRn

n∑

i=1

lim
r→0

θr(ti) = ||t||0 . (8)



A Smoothing Method for Sparse Optimization over Polyhedral Sets 371

Replacing into (7) we get

||x̄||0 ≤ ||x∗||0 , (9)

thanks to the definition of x̄

||x̄||0 = ||x∗||0 . (10)

�	

Remark 1. Now we can wonder whether there exist for each x̄ ∈ S∗
||.||0 a sequence

of {xr}r which converges to this point. We don’t give formal proof here, but with
the hypothesis that our polyhedron contains no half-line, we have that x̄ is then
necessary one of the extreme points of P. Moreover there is a finite number of
extreme points so we can build an infinite subsequence which goes by x̄.

The next theorem shows for r sufficiently large that solutions of (Pr) are the
same than solutions of (P1). We will denote lim

r→+∞
S∗
r the set of limit points of

subsequence of a sequence {xr}r, with xr optimal solution of (Pr).

Theorem 2 (Convergence to �1-norm). Given S∗
||.||1 the set of solutions of

(P1) and S∗
r the set of solutions of (Pr). Passing to the limit when r is going to

+∞ we have

lim
r→+∞

S∗
r ⊂ S∗

||.||1 . (11)

Proof. As r > 0, we can use a scaling technique for S
∗(2)
r = argmin

x∈P

∑n
i=1 rθr(xi)

min
x∈P

n∑

i=1

θr(xi) ⇐⇒ min
x∈P

n∑

i=1

rθr(xi)

S∗
r = S∗(2)

r .

Given xr ∈ S
∗(2)
r and x̄ ∈ S∗

||.||1. We use the first order Taylor’s theorem for θ(t)
in 0 :

θ(t) = tθ′(0) + g(t), where lim
t→0

g(t)

t
= 0 . (12)
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Functions θ are concave, so we have θ′(0) > 0. By definition of x̄ and then using
(12) we have

n∑

i=1

rθr(x
r
i ) ≤

n∑

i=1

rθr(x̄i)

n∑

i=1

xr
i θ

′(0) + rg(
xr
i

r
) ≤

n∑

i=1

xr
i θ

′(0) + rg(
x̄i

r
)

n∑

i=1

xr
i −

n∑

i=1

x̄i ≤
r

θ′(0)

n∑

i=1

g(
x̄i

r
)− r

θ′(0)

n∑

i=1

g(
xr
i

r
)

≤ 1

θ′(0)

∣∣∣∣∣

n∑

i=1

g( x̄i

r )
x̄i

r

x̄i

∣∣∣∣∣+
1

θ′(0)

∣∣∣∣∣

n∑

i=1

g(
xr
i

r )
xr
i

r

xr
i

∣∣∣∣∣

≤ 1

θ′(0)

(
n∑

i=1

∣∣∣∣
g( x̄i

r )
x̄i

r

∣∣∣∣

)(
n∑

i=1

x̄i

)

+
1

θ′(0)

(
n∑

i=1

∣∣∣∣∣
g(

xr
i

r )
xr
i

r

∣∣∣∣∣

)(
n∑

i=1

xr
i

)

n∑

i=1

xr
i ≤

(
n∑

i=1

x̄i

)
1 + 1

θ′(0)

(∑n
i=1

∣∣∣ g(
x̄i
r )

x̄i
r

∣∣∣
)

1− 1
θ′(0)

(∑n
i=1

∣∣∣∣
g(

xr
i
r )

xr
i
r

∣∣∣∣

) .

We have

lim
r→+∞

x̄

r
= 0 , (13)

and now,

n∑

i=1

θr(x
r
i ) ≤

n∑

i=1

θr(x̄i) (14)

lim
r→+∞

n∑

i=1

θr(x
r
i ) ≤ lim

r→+∞

n∑

i=1

θr(x̄i) (15)

≤ 0 (16)

lim
r→+∞

n∑

i=1

θr(x
r
i ) = 0 . (17)

As for r > 0 : θr(xi) ∈ [0, 1[ and θ−1
r (0) = 0, we have

lim
r→+∞

xr
i

r
= 0 ∀i . (18)
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Using (13) and (18) it becomes

lim
r→+∞

x̄i

r
= 0 =⇒ lim

r→+∞

g( x̄i

r )
x̄i

r

= 0 (19)

lim
r→+∞

xr
i

r
= 0 =⇒ lim

r→+∞

g(
xr
i

r )
xr
i

r

= 0 . (20)

And then going to the limit

lim
r→+∞

n∑

i=1

xr
i ≤

n∑

i=1

x̄i . (21)

So, with (21) and by definition of x̄ we have the equality and then the result. �	

Finally, the next theorem gives a monotonicity result, which gives a relation
between the three problems (Pr), (P0) and (P1).

Theorem 3 (Monotonicity of solutions). Given x ∈ P , we set y = x
||x||∞+ε

where ε > 0, so y ∈ [0, 1[n. We define a function Ψr(t) as

Ψr(t) =
θr(t)

θr(1)
, (22)

where θr(t) is the smooth function described in the introduction, which we will
consider here as convex in r. For r and r̄ such that 0 < r̄ < r < +∞, we have
the following inequality

||y||1 ≤
n∑

i=1

Ψr(yi) ≤
n∑

i=1

Ψr̄(yi) ≤ ||y||0 . (23)

Proof. We start with first inequality

||y||1 ≤
n∑

i=1

Ψr(yi) , (24)

n∑

i=1

Ψr(yi)− ||y||1 =

n∑

i=1

(
θr(yi)

θr(1)
− yi) (25)

≥ 0 . (26)

Because we have by subadditivity of θ (concave and θ(0) = 0)

θr(yi) ≥ yi θr(1) . (27)

We continue with the second inequality showing that Ψr(y) functions are non-
increasing in r,

n∑

i=1

Ψr(yi) ≤
n∑

i=1

Ψr̄(yi) . (28)
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Ψr(y) function is non-increasing in r if its derivative to r is negative,

Ψ ′
r(y) =

θ′r(y)θr(1)− θ′r(1)θr(y)

θ2r(1)
. (29)

Using convexity of θr(y) in r, we have

θr(y) < 0 (30)

θ′r(y)

θ′r(1)
> 1 . (31)

Moreover as θr(y) is non-decreasing in y

θr(y)

θr(1)
< 1 . (32)

So, in (29) the derivative in r is negative and then we have (28). Finally, we
move to the last inequality,

n∑

i=1

Ψr̄(yi) ≤ ||y||0 . (33)

The following expression is positive, because θr(y) is non-decreasing in y and
y ∈ [0, 1[

||y||0 −
n∑

i=1

Ψr̄(yi) =

n∑

i=1: yi �=0

1− θr̄(yi)

θr̄(1)
≥ 0 . (34)

Associating the three inequalities we have the theorem. �	
All this results leads us to the general behaviour of the method. First, we start
from one solution of (P1) then by decreasing parameter r the solution of (Pr)
becomes closer of the desired solution, a solution of (P0).

3 Error Estimate

In this section we focus on what happened when r becomes sufficiently small.

Lemma 1. Consider θ functions where θ ≥ θ1, with θ1r(t) =
t

t+r for t, r ∈ IR.
Let k = ||x∗||0 < n be the optimal value of problem (P0). Set I(x, r) = {i|xi ≥
kr}. Then, we have

xr ∈ argmin
x∈P

n∑

i=1

θr(xi) ⇒ card(I(xr , r)) ≤ k . (35)

Proof. We use a proof by contradiction. Consider that card(I(xr , r)) ≥ k + 1
and we have xr ∈ argmin

x∈P

∑n
i=1 θr(xi), then

n∑

i=1

θr(x
r
i ) ≥ (k + 1)θr(kr) ≥ (k + 1)θ1r(kr) = (k + 1)

kr

kr + r
= k , (36)

which is in contradiction to the definition of xr. �	
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This lemma gives us a theoretical stopping criterion for the decrease of r, as for

r < r̄ =
minxr

i
�=0 xr

i

k , xr becomes an optimal solution. In the following lemma we
look at the consequences for the evaluation of θ function.

Lemma 2. Consider θ functions where θ ≥ θ1, with θ1r(t) =
t

t+r for t, r ∈ IR.

Let k = ||x∗||0 < n be the optimal value of problem (P0) and r̄ =
minxr

i
�=0 xr

i

k .
Then, we have

r ≤ r̄ ⇐⇒ θr(min
xr
i �=0

xr
i ) ≥

k

k + 1
. (37)

Proof. We just have to develop expression of θ1,

θ1r(min
xr
i �=0

xr
i ) =

minxr
i �=0 x

r
i

minxr
i �=0 xr

i + r
≥ k

k + 1
(38)

⇐⇒ min
xr
i �=0

xr
i (k + 1) ≥ k(min

xr
i �=0

xr
i + r) (39)

⇐⇒ min
xr
i �=0

xr
i ≥ kr (40)

⇐⇒ r̄ =
minxr

i �=0 x
r
i

k
≥ r , (41)

so we have the results. �	

Both previous lemma lead us to the following theorem, which is a sufficient
condition for our method.

Theorem 4 (Sufficient condition). Consider θ functions where θ ≥ θ1, with
θ1r(t) = t

t+r for t, r ∈ IR. Let k = ||x∗||0 < n be the optimal value of problem

(P0) and xr ∈ Sr. Then, θr(minxr
i �=0 x

r
i ) ≥ k

k+1 is a sufficient condition to have
xr solution of S∗

||.||0, i.e

θr(min
xr
i �=0

xr
i ) ≥

k

k + 1
=⇒ xr ∈ S∗

||.||0 . (42)

Proof. Lemma [2] gives with r̄ defines as in the lemma

θr(min
xr
i �=0

xr
i ) ≥

k

k + 1
⇐⇒ r ≤ r̄ , (43)

then by lemma [1] and using xr ∈ Sr we have

xr ∈ argmin
x∈C

n∑

i=1

θr(xi) ⇒ card(I(xr , r)) ≤ k . (44)

Using r ≤ r̄ and the fact that k is the optimal value of problem in �0-norm, we
have the results. �	
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4 Algorithm

The previous study allows us to build a generic algorithm

[Algorithm 1]

⎧
⎨

⎩
{rk}k∈IN, r0 > 0 and lim

k→+∞
rk = 0

find xk : xk = inf
x∈P

∑n
i=1 θrk(xi)

. (45)

Now, as we can see several questions remain about initialization, choice of the
sequence {rk} and the method used to solve the concave minimization problem.
In the previous section, we have shown a sufficient condition to converge, which
will help us building a stopping criterion. We make a few remarks about these
questions, note that interesting related remarks can be found in [8].

Remark 2 (On the behaviour of θ functions). These concave functions are acting,
for r sufficiently small, as step function. So we have the following behaviour

θr(t) �
{
1 if t >> r

0 if t << r
(46)

which gives us a strategy to update r. Let xk be our current iterate and rk the
corresponding parameter. We divide our iterate into two sets those with indices
in I = {i | xk

i >= rk} and the others with indices in Ī = {i | xk
i < rk}. We

can see I as the non-zero components and Ī the zero components of xk. So we
will choose rk+1 around max

i∈Ī
xk
i to ask whether or not it belongs to zeros and

we repeat this operation until r is sufficiently small to consider Ī the set of real
zeros. Also this is a global behaviour, to be sure to have decrease of r we can
choose a fixed parameter of decrease.

Remark 3 (Initialization). It is the main purpose of our method to start with
the solution x0 of the problem (P1) which is a convex problem. So, we need to
find the r0 which corresponds to this x0. A natural way of doing this is to find
the parameter which minimizes the following problem

min
r>0

||
N∑

i=1

θr(x
0
i )− ||x0||1 ||22 . (47)

A simpler idea is to be inspired from last remark and put r0 as a value which is
just beyond the top value of x0

i .

Remark 4 (Stopping criterion). It has been shown, in the previous section, a
sufficient condition to have convergence, which uses the quantity k

k+1 , which
depends on the solution we are looking for. Numerically, we can make more
iterations but being sure to satisfy this criterion using the fact that ||x0||0 ≥ k,
which gives us the following criterion

θr(min
xr
i �=0

xr
i ) ≥

||x0||0
||x0||0 + 1

≥ k

k + 1
. (48)
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5 Numerical Simulations

Thanks to the previous sections we have keys for an algorithm, we will show
now some numerical results. These simulations have been done using Python
programming language with the free software package for convex optimization
CVXOPT, [1].
In the same way as in [5] and [9] we will use SLA (successive linearisation algo-
rithm) algorithm to solve our concave minimization problem at each iteration in
r. This algorithm is a finitely timestep Franck & Wolf algorithm, [7].

Proposition 1 (SLA algorithm for concave minimization). Given ε suf-
ficiently small and rk. We know xk and we find xk+1 as a solution of the linear
problem

min
x∈P

xt∇θrk(x
k) , (49)

with x0 a solution of the problem (P1). We stop when

xk+1 ∈ P and (xk+1 − xk)t∇θrk(x
k) ≤ ε . (50)

This algorithm generates a finite sequence with strictly decreasing objective
function values.

Proof. see [[7], Theorem 4.2].

We note that this algorithm didn’t provide necessarily a global optimum, as it
ends in a local solution. For the precision in our simulations we choose ε = 1e−8.

Wemake simulations on various polyhedronP = {x ∈ IRn| b ∈ IRm, Ax ≤ b}∩
IRn

+ with m < n. In the same way as in [5] we choose n = (500, 750, 1000) and
in each case m = (40%, 60%, 80%). For each n and m we choose randomly one
hundred problems. We take a random matrix A of sizem× n and a default sparse
solution xinit (sparsity : 5% of non-zeros).We get b by calculating the product b =
Axinit. At the end we will compare the sparsity of our solution using θ1r(t) =

t
t+r

(#θ1), the sparse default solution (#�0) and the initial iterate (#�1). We get the
initial iterate as a solution of problem (P1). The item # indicates the number of
non-zeros components in a vector.

We can see the results in table (1). First we must say that in many cases
the �1-norm minimization solution solve the problem in �0-norm, which is not
completely surprising according to [3]. This results confirm the interest of this
method, as in every case it manages to find an equivalent solution to the default
sparse solution. Also it improves in every case the solution we get by �1-norm
minimization problem, which was our principle aim.



378 T. Migot and M. Haddou

Table 1. Numerical results for minx∈P ||x||0 with P = {x ∈ IRn
+| b ∈ IRm, Ax ≤ b},

dimensions of the problem are first 2 columns. Then, we compare a default sparse
solution with sparsity 5% of non-zeros, the initial iterate solution of minx∈P ||x||1 and
the solution by θ-algorithm with function θ1. The item # indicates the number of
non-zeros.

n m #�0 = #θ1 #�1 = #�0 #θ1 < #�1 #θ1 = #�1

1000 800 100 97 3 97
1000 600 100 89 11 89
1000 400 100 52 48 52
750 600 100 98 2 98
750 450 100 82 18 82
750 300 100 48 52 48
500 400 100 81 19 81
500 300 100 82 18 82
500 200 100 38 62 38

6 Conclusion and Outlook

We have shown a general method to solve NP-hard problem of minimizing �0-
norm. This method requires to find a sequence of solution from concave mini-
mization problem, which we solved with a successive linearization algorithm. We
gave convergence results, a sufficient convergence condition and keys to imple-
ment the method. To confirm that we improved the solution obtained from the
�1-norm problem we gave some numerical results.

Further studies can investigate the case where the �1-norm solve the �0-norm
problem, to find an improved stopping condition. We can also study a very
similar problem [4,2] which is the minimizing �0-norm problem with noise.
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Abstract. The bilevel programming problems are useful tools for solv-
ing the hierarchy decision problems. The purpose of this paper is to
find the optimality conditions and a solution procedure to solve a
bilevel quadratic fractional-quadratic programming problem in which the
leader’s objective is quadratic fractional and the follower’s objective is
quadratic. The variables associated with both the level problems are
related by linear constraints. The proposed method is based on Karush-
Kuhn-Tucker conditions and a related bilevel linear fractional-quadratic
problem is constructed in which the leader’s objective is linear fractional
and the follower’s objective is quadratic in order to obtain an optimal so-
lution of a bilevel quadratic fractional-quadratic programming problem.
The main idea behind our method is to scan the basic feasible solutions of
the related bilevel linear fractional- quadratic programming problem in
a systematic manner till an optimal solution of the problem is obtained.

Keywords: linear fractional programming, Bilevel Programming,
quadratic fractional programming, Karush-Kuhn-Tucker conditions.

1 Introduction

Bilevel problems can be formulated as

(P ) max
(x,y)∈S

F (x, y) (1)

where y ∈ arg max
y∈S(x)

f(x, y).

where
x ∈ IRn1 and y ∈ IRn2 (2)

are variables controlled by the first level and the second level decision maker,
respectively;

F, f : IRn �−→ IR, n = n1 + n2; S ⊂ IR (3)

defines the common constraint region and

S(x) =
{
y ∈ IRn2 : (x, y) ∈ S

}
. (4)

c© Springer International Publishing Switzerland 2015 381
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Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_32
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Let S1 be the projection of S onto IRn1. For each x ∈ S1, the second level decision
maker solves problem (P1):

(P1)

⎧
⎨

⎩

max f(x, y)
s.t

y ∈ S(x).
(5)

The feasible region of the first level decision maker, called inducible region IR,
is implicitly defined by the second level optimization problem:

IR = {(x, y∗) : x ∈ S1, y
∗ ∈ M(x)}

where M(x) denotes the set of optimal solutions to (P1). We assume that S is
not empty and that for all decision taken by the first level decision maker, the
second level decision maker has some room to respond, i.e M(x) �= ∅.

Bilevel optimization problems have seen a rapid development and broad in-
terests both from the practical and the theoretical point of view [17].

A large number of possible applications have been reported: principal-agency
problems in economy [15,16], the coordination of multidivisional firms [1], neural
network training [9] and many others. Considering some of these applications,
it seems to be imaginable that one level objective function is nonlinear.
On the other hand, fractional programming and quadratic programming when
there exists only one level of decision have received remarkable attention in the
literature [8,7]. It is worth mentioning that objective functions which are ratios
frequently appear, for instance, when an efficiency measure of a system is to be
optimized or when approaching a stochastic programming problem.

Quadratic problems arise directly in such applications as least-squares regres-
sion with bounds or linear constraints, portfolio optimization, or robust data
fitting. They also arise as subproblem in optimization algorithms for stochastic
nonlinear programming [14]. Fractional bilevel problems have been considered
in [3,4,5]. Quadratic bilevel problems have been addressed in [10,12,17].

Calvete and Galé [3] studied optimality conditions for the linear fractional/
quadratic bi-level programming problem based on Karush Kuhn Tucker con-
ditions and duality theory. For a largest class of fractional/quadratic bi-level
problem, we are interested to bilevel quadratic fractional/quadratic program-
ming (BQFQP) problem, where the first level objective function is fractional
quadratic [6] and the second level objective function is quadratic. The variables
associated with both the level problems are related by linear constraints. For
solving the problem, we construct the related bilevel linear fractional/quadratic
problem and use Kuhn -Tucker optimality conditions with duality conditions [1],
by applying some propositions, we are able to determinate an optimal solution
for (BQFQP). The contents of the paper is as follows: In Section 2 the BQFQP
problem is formulated. Section 3 provides the main theoretical results on opti-
mality conditions. A more detailed description of the algorithm for the whole
problem is given in Section 4. Section 5 concludes the paper.
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2 Notations and Definitions

Let S the set of the feasible solutions (x, y) : x ∈ IRn1 , y ∈ IRn2 satisfying the

constraints

{
Ax+By ≤ r
x ≥ 0, y ≥ 0

where A is m×n1 matrix, B is m×n2 matrix and r a vector of IRm. Let C,H, P
vectors of IRn1 , D,M,R vectors of IRn2 ; E,F, L,G,Q are real symmetric matri-
ces and α, β two elements of IR.

The Bilevel quadratic fractional/quadratic programming problem (BQFQP )
[13], intended to be studied can be mathematically stated as:

(BQFQP )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

F (x, y) =
CTx+ xTEx+DT y + yTFy + α

HTx+ xTLx+My + yTGy + β
where y solves⎧

⎨

⎩

max f(x, y) = Px+Ry + (x, y)TQ(x, y)
s.t (x, y) ∈ S

(x, y) ≥ 0

(6)

Definition 1. The set of feasible solutions (x, y) of (BQFQP) problem is the
set S defined by :

S = {(x, y) : Ax+By ≤ r, x, y ≥ 0} .

Definition 2. The projection of S onto the leader’s decision space is

S(x) = {x ≥ 0 : ∃y ∈ IRn2 : (x, y) ∈ S}.

In order to ensure that the problem (6) is well posed we make an assumption
that S is non empty and bounded and

CTx+ xTEx+DT y + yTFy + α ≥ 0,
HTx+ xTLx+My + xTGy + β > 0 for all (x, y) ∈ S

In the problem (6), let

Q =

(
Q3 QT

2

Q2 Q1

)
where Q1, Q2 and Q3 are matrices of conformal dimensions.

Then f(x, y) is transformed into

f(x, y) = PTx+ xTQ2x+ yTQ1y + (R+ 2Q2x)
T y

Because x is fixed prior to the maximization of f , the follower’s problem is
equivalent to

(Px)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
y

f(x, y) = yTQ1y + (R+ 2Q2x)
T y

s.t
By ≤ r −Ax
(x, y) ≥ 0

(7)
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For all x ∈ S1 (S1 the projection of S onto IRn1), we assume that Q1 is positively
definite so as there will be a unique optimal solution to the second level problem.
That is to say, M(x) is a singleton for all S1, where M(x) is the set of optimal
solutions to (Px). For each x ∈ S1, S(x) is also nonempty compact polyhedron.
Finally, the inducible region, or the feasible region of the first level decision
maker, called inducible region IR, is implicitly defined by the second level opti-
mization problem:

IR = {(x, y∗) : x ∈ S1, y
∗ ∈ M(x)}

Therefore (BQFQP ) is equivalent to:

(BQFQP ′)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
x

F (x, y) =
CTx+ xTEx+DT y + yTFy + α

HTx+ xTLx+My + yTGy + β
where y solves⎧

⎪⎨

⎪⎩

max
y

f(x, y) = yTQ1y + (R+ 2Q2x)
T y

s.t By ≤ r −Ax
(x, y) ≥ 0

(8)

Definition 3. . A point (x∗, y∗) is said to be optimal to (BQFQP ′) if (x∗, y∗) ∈
IR and F (x∗, y∗) ≥ F (x, y) for all (x, y) ∈ IR

A (BQFQP ′) may be written:

(BQFQP ′)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

F (x, y) =
CTx+ xTEx+DT y + yTFy + α

HTx+ xTLx+My + yTGy + β
s.t

(x, y) ∈ IR
(9)

To find an optimal solution of problem (BQFQP ′), a related bilevel linear frac-
tional/quadratic programming (BLFQP ) problem is constructed.

(BLFQP )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max g(x, y) =
aTx+ bT y + α

cTx+ dT y + β
s.t

(x, y) ∈ IR
(10)

where

a = max
x∈IR

(C + xTE) and b = max
x∈IR

(D + yTF ).

c = min
x∈IR

(H + xTL) and d = min
x∈IR

(M + yTG).
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3 Some Results

Proposition 1.

g(x, y) ≥ F (x, y), for all (x, y) ∈ IR. (11)

Proof. By definition of a, b, c and d, we have for all (x, y) ∈ IR:
a ≥ C + xTE
b ≥ D + yTF

and
c ≤ H + xTL
d ≤ M + yTG

.

As (x, y) ≥ 0,
aTx ≥ (CT + xTE)x and bT y ≥ (DT + yTF )y , for all (x, y) ∈ IR
Then
aTx+ bT y ≥ (CT + xTE)x+ (DT + yTF )y, ∀(x, y) ∈ IR.
In the same way: cTx+ dT y ≤ (Hj +xTLj)x+(Mj + yTGj)y, for all (x, y) ∈

IR.
Clearly it follows that g(x, y) ≥ F (x, y), for all (x, y) ∈ IR.

Recall that the bilevel linear fractional/quadratic programming problem
(BLFQP ) can be solved by applying the optimality condition based on duality
and Karush-Kuhn-Tucker conditions [8].

Consider the problem (BLFQP ):

(BLFQP )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max g(x, y) =
aTx+ bT y + α

cTx+ dT y + β
s.t

(x, y) ∈ IR
(12)

By applying Karush-Kuhn-Tucker necessary and sufficient conditions to (Px),
there exists ω ∈ IRm, such that(x, y, ω) satisfies:

Ax+By ≤ r (13)

ωT (Ax+By − r) = 0 (14)

2Q2x+ 2Q1y +BTω = −RT (15)

ω ≥ 0 (16)

Similarly, if (x, y, ω) satisfies (13)− (16) then (x, y) ∈ IR

Thus, the given (BLFQP ) problem becomes a linear fractional programming
(LFP ) problem given by:

(LFP )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
(x,y,ω)

g(x, y) =
aTx+ bT y + α

cTx+ dT y + β
s.t Ax+By ≤ r

2Q2x+ 2Q1y +BTω = −RT

x, y, ω ≥ 0

(17)
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with the condition
ωT (Ax+By − r) = 0 (18)

Theorem. (x, y) is an optimal solution to the (BLFQP ) problem if and only of
there exists ω∗ ∈ IRm such that (x∗, y∗, ω∗)is an optimal solution to the following
one level nonlinear programming problem:

(NLP )

⎧
⎪⎪⎨

⎪⎪⎩

max
(x,y,ω)

g(x, y) =
aTx+ bTy + α

cTx+ dT y + β
s.t (13)− (16)

(19)

Using duality theory, we conclude the existence of ω∗ ∈ IRm such that (x∗, y∗, ω∗)
is optimal solution of the (NLP )[8]. Hence, from Theorem [8] we get that (x∗, y∗)
is an optimal solution to the (BLFQP ) problem [8].

The nonlinear programming (NLP ) can be rewrite as:

(LFP )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
(x,y,ω)

g(x, y) =
aTx+ bT y + α

cTx+ dT y + β
s.t Ax+By ≤ r

2Q2x+ 2Q1y +BTω = −RT

x, y, ω ≥ 0

(20)

with the condition
ωT (Ax+By − r) = 0 (21)

So, for determine the optimal solution of (BLFQP ), we solve the linear fractional
problem (LFP ) with the condition (21).

As the objective function is linear fractional, therefore, it is both pseudo-
concave and pseudoconvexe and thus, its optimal solution will be basic feasible
solution. We focus to find a basic feasible solution which satisfies the condition

ωT (Ax+By − r) = 0 (22)

Recall that, for obtaining the basic feasible solutions, the linear fractional pro-
gram (LFP ) is transformed into a linear program (LP) by Charnes and Cooper’s
method [2]. Murty’s method [11] is applied to a linear program (LP ) to deter-
mine all basic feasible solutions. This method is based by generating an objective
coefficient vector in each iteration, such that the optimization of this objec-
tive function subject to the specified constraints by linear programming tech-
niques leads to a new basic feasible solution, until all basic feasible solutions are
obtained.

3.1 Notations

Δi =Set of the ith best feasible solution of (BLFQP ),
gi the value corresponding at Δi



Bilevel Quadratic Fractional/Quadratic Problem 387

Clearly
Δ1 =Set of optimal solution (first best feasible solution) of (BLFQP ),

g1 the optimal value corresponding at Δ1 and
Δ2 = Set of the 2nd best feasible solution of (BLFQP ), g2 the value corre-

sponding at Δ2.
It follows that g1 > g2.
Obviously for i = k we have gk > gk+1.
Introduce the notations

T k = Δ1 ∪Δ2 ∪ ... ∪Δk,
max {F (x, y) | (x, y) ∈ IR} = F (x�, y�) = F1

Proposition 2. If for some k ≥ 1, gk ≤ max
{
F (x, y) | (x, y) ∈ T k

}
= F (x̂, ŷ),

then (x̂, ŷ) is the optimal solution of (BQFQP ′).

Proof. We have

∀(x, y) ∈ T k F (x̂, ŷ) ≥ F (x, y) (23)

On the other hand from Proposition 1 and our hypothesis it follows that

∀(x, y) ∈ IR/T k F (x, y) ≤ g(x, y) ≤ gk+1 < gk ≤ F (x̂, ŷ). (24)

Conditions (23) and (24) implies that (x̂, ŷ) is the optimal solutionof (BQFQP ′)
problem.

Next proposition shows that when the hypothesis of Proposition 2 is not
satisfied, we have information about the maximum value of the initial problem
(BQFQP ′).

Proposition 3. If gk > max
{
F (x, y) | (x, y) ∈ T k

}
, then

gk > F1 ≥ max
{
F (x, y) | (x, y) ∈ T k+1

}
.

Proof. The second inequality is obvious. For the first part, we note as in propo-
sition 2 that

for all (x, y) ∈ IR/T k , F (x, y) ≤ g(x, y) ≤ gk+1 < gk (25)

Therefore

max
{
F (x, y) : (x, y) ∈ IR/T k

}
< gk (26)

By hypothesis,

max
{
F (x, y) : (x, y) ∈ T k

}
< gk (27)

Then conditions (26) and (27) imply that F1 < gk.
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3.2 Algorithm

Step 0 Solving the bilevel linear-quadratic problems (using Karush-Kuhn-
Tucker necessary and sufficient conditions[1]):

⎧
⎨

⎩

a = max
(x,y)∈IR

(C + xTE), b = max
(x,y)∈IR

(D + yTF ),

c = min
(x,y)∈IR

(H + xTL), d = min
(x,y)∈IR

(M + yTG).
(28)

and construct the related bilevel linear fractional/quadratic programming
problem (BLFQP ), go to step 1.

Step 1 Solve The linear fractional programming problem (LFP ) .

(LFP )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
(x,y,ω)

g(x, y) =
aTx+ bTy + α

cTx+ dT y + β
s.t Ax+By ≤ r

2Q2x+ 2Q1y +BTω = −RT

x, y, ω ≥ 0

(29)

Let (x∗, y∗, ω∗) be its optimal solution. Set l = 1 and go to step 2.
Step 2 . If the solution obtained is such that: ω∗(Ax∗ + By∗ − r) = 0, then

(x∗, y∗) = (xl, yl) is an optimal solution of (BLFQP ) problem,
let Δl =

{
(xl, yl)

}
, compute g(xl, yl) = gl. Go to step 4.

Otherwise, go to step 3.
Step 3 Find the next best basic feasible solution to the (LFP ) problem using

murty’s method [11] and go to step 2.
Step 4 Test

– if gl ≤ max
{
F (x, y) | (x, y) ∈ T l

}
= F (x̂, ŷ). Then (x̂, ŷ) is the optimal

solution of problem (BQFQP ).
– If gl > max

{
F (x, y) | (x, y) ∈ T l

}
, l = l + 1 and go to step 3.

As seen previously, the algorithm converges in a finite number of steps since the
number of basic feasible solutions in S is finite and once a point is tested for
optimality of (BQFQP ), it is deleted from the set and hence does not reappear
in the process.

4 Conclusion

In this paper, we have studied the bilevel quadratic fractional/quadratic pro-
gramming problem. Our procedure is based on related bilevel linear fractional
/quadratic programming problem and Karush-Kuhn-Tucker conditions. These
conditions have been used in literature for solving a large number of nonlinear
programming problems. Bilevel linear fractional/quadratic programming prob-
lem related to the main problem is formulated and its basic feasible solutions
are scanned in a systematic manner till an optimal solution of the problem is
obtained. Our new procedure can be applied to bilevel linear/quadratic pro-
gramming problems since they are special cases of this mathematical program.
we hope that this article motivates the researchers to develop better solution
procedures for this problem.
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285–294 (2004)

9. Mangasarian, O.L.: Misclassification minimization. Journal of Global Optimiza-
tion 5, 309–323 (1994)

10. Migdalas, A., Pardalos, P.M., Värbrand, P.: Multilevel optimization: Algorithm
and applications. Kluwer Academic Publishers, Dordrecht (1998)

11. Murt, K.G., Chung, S.J.: Extreme Point Enumeration. College of engineering, Uni-
versity of Michigan. Technical Report 92–21 (1992)

12. Muu, L.D., Quy, N.V.: A global optimization method for solving convex quadratic
bilevel programming problems. J. of Global Optimization 26, 199–219 (2003)

13. Mishra, S., Ghosh, A.: Interactive fuzzy programming approach to Bi-level
quadratic fractional programming problems. Ann. Oper. Res. 143, 251–263 (2006)

14. Ozaltin, O.Y., Prokopyev, O.A., Schaefer, A.J.: Two-Stage Quadratic Integer Pro-
grams with Stochastic Right-Hand Sides. Optimization Online Stochastic Program-
ming, 1–53 (October 2009)

15. Rees, R.: The theory of Principal and Agent-Part I. Bulletin of Economic Re-
search 37(1), 3–26 (1985)

16. Rees, R.: The theory of Principal and Agent–Part II. Bulletin of Economic Re-
search 37(2), 75–97 (1985)

17. Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: A bibliography
review. Journal of Global Optimization 5, 291–306 (1994)



Derivative-Free Optimization

for Population Dynamic Models

Ute Schaarschmidt1,�, Trond Steihaug1, and Sam Subbey2

1 Department of Informatics, University of Bergen, Bergen, Norway
{ute.schaarschmidt,trond.steihaug}@ii.uib.no

2 Institute of Marine Research, Bergen, Norway
samuel.subbey@imr.no

Abstract. Quantifying populations in changing environments involves
fitting highly non-linear and non-convex population dynamic models to
distorted observations. Derivatives of the objective function with respect
to parameters might be expensive to obtain, unreliable or unavailable.

The aim of this paper is to illustrate the use of derivative-free op-
timization for estimating parameters in continuous population dynamic
models described by ordinary differential equations. A set of non-linear
least squares problems is used to compare several solvers in terms of ac-
curacy, computational costs and robustness. We also investigate criteria
for a good optimization method which are specific to the type of objective
function considered here. We see larger variations in the performances
of the derivative-free methods when applied for parameter estimation in
population dynamic models than observed for standard noisy benchmark
problems.

1 Introduction

In this paper, we consider the problem of finding a parameter vector θ ∈ Θ ⊂
IRm, which minimizes the least squares error (1) between a solution x(t; θ) of an
ordinary differential equation (ODE) (2)–(3) and a set of r data points d(tj),
j = 1, . . . , r.

min
θ∈Θ

f(θ) =

r∑

j=1

‖x(tj ; θ)− d(tj)‖22 (1)

s.t.
d

dt
x(t; θ) = g(x(t; θ), θ) (2)

x(t0) = d(t0) . (3)

This might be a challenging task, when the objective function is highly non-
linear, non-convex and derivatives of the objective function f with respect to
parameters θ are expensive to obtain, unavailable or can only be calculated
with modest accuracy. Even if a unique solution of the differential equation
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exists, its numerical approximation might not be differentiable. In addition, the
ODE solver might fail to return a proper value for x(t; θ), a case of hidden
constraints.

Derivative-free optimization methods utilize the objective function, but not
its gradients. In general, two main classes of derivative-free methods may be
distinguished. Direct search methods explore the parameter space by generating
trial points according to pre-defined geometric patterns. The second class com-
bines trust region methods with local models obtained by interpolating sample
points. For an introduction to derivative-free methods, see [4]. A recent review
of algorithms and software implementations may be found in [13].

The literature on derivative-free optimization includes examples of objective
functions, which are defined by (partial) differential equations. In [8], a set
of methods has been employed for minimizing costs for groundwater supply.
Derivative-free solvers have also been used for parameter estimation in energy
density functionals in computational nuclear physics [9]. In both cases, simula-
tion of the model involves numerical solution of a partial differential equation.

The following criteria for a good derivative-free method have been established
(see e.g., [12]): the ability to improve the objective function using few function
evaluations, the accuracy of the solution, when a higher computational budget
is available, and the robustness to the initial iterate for the parameter vector.
Benchmarking of derivative-free solvers often relies on the process described
in [12] and involves the use of data and performance profiles. Results of bench-
mark processes for derivative-free solvers (such as in [13]) depend on the set of
problems and the set of solvers used for comparison, and can in general not be
extrapolated.

In [12], perturbation of objective function values is introduced to simulate nu-
merical noise. Problems of the form (1)–(3) and defined by differential equations
exemplify objective functions subject to numerical noise.

We employ several derivative-free solvers and compute data and performance
profiles. Similarities and dissimilarities of the results with performances for the
set of noisy benchmark problems are investigated. Such a comparison is of con-
siderable interest, [12].

This paper illustrates how the benchmark procedure can be applied to non-
linear least squares problems defined by a set of differential equations describing
population dynamics. We address challenges specific to this class of problems.
The set of differential equations investigated here is able to represent several
classes of dynamic behaviour. This gives us the opportunity to examine what
effect the non-linearity of the solution of the differential equation has on the
quality of the parameter estimates.

The set of non-linear least squares problems defined by population dynamic
systems is described in Chap. 2. For the purpose of this paper, the number of
derivative-free methods is limited, but we choose a representative for each of the
main classes classified in [4]. Main properties of the derivative-free algorithms
employed are sketched in Chap. 3. Benchmarking of the set of solvers for prob-
lems defined by differential equations is based on the established criteria, which
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are described in Chap. 4. This chapter also includes details about the numerical
experiments. Results and discussions of challenges specific to objective functions
defined by differential equations are given in Chap. 5. Some concluding remarks
can be found in Chap. 6.

2 Test Problems Defined by Dynamic Systems

The systems of differential equations defining the non-linear problems (1)–(3)
investigated here, describe changes of numbers of individuals xi(t) in age-classes
i = 0, 1, . . . , n. Dropping the time-dependency, the (simulation) model in di-
mensionless form is given by (4), with ε > 0.1 The value of parameter γ ≥ 1
influences the curvature and the asymptotic behaviour of the solution of the
differential equation, [14]. The limit of the differential equation as γ → ∞ is im-
plemented using the exponential function and we refer to it as the case γ → ∞.
For details about the dynamic system, which is a parametrised version of a model
introduced in [16], we refer the reader to [14].

d

dt
xi =

{
−x0 +

1
ε

[
−x0

(
1 + 1

γ

∑n
l=1 θn+lxl

)γ

+
∑n

l=1 θlxl

]
, i = 0

xi−1 − θ2n+ixi , i = 1, . . . , n
(4)

Data is generated by the differential algebraic system (5)–(6) assuming the
vector of parameters θ̃ = (θ̃1 . . . θ̃m)t to be given. Each parameter θk, k =
1, . . . ,m determining the simulation model has an equivalent θ̃j associated with

the data generating model. The solution x(t; θ̃) of the differential equation con-
verges for ε → 0 to the solution d̄(t; θ̃) of the differential algebraic system, [14].

d̄0(t) =

(
n∑

l=1

θ̃ld̄l(t)

)(
1 +

1

γ

n∑

l=1

θ̃n+ld̄l(t)

)−γ

, (5)

d

dt
d̄i(t) = d̄i−1(t)− θ̃2n+id̄i(t) , i = 1, . . . , n . (6)

Distorted data points d(tj) are defined by (7). We assume observational er-
rors uj to be additive and normally distributed with zero mean and standard
deviation σ > 0. To avoid zero solutions of the differential equation, data points
are bounded from below by dlow = 10−1. Assuming no observational error and
for ε > 0 but sufficiently small, the residual f(θ̃) of the non-linear least squares
problem (1)–(3) at θ̃ is an upper limit for the solution of the optimization prob-
lem and close to zero. Distorted data points correspond to non-zero residual
problems.

d(tj) = min
{
d̄(tj) + uj ,dlow

}
, with uj ∼ N (0, σ) and j = 1, . . . , r . (7)

We denote by P a set of non-linear least squares problems (1)–(3) defined
by population dynamic systems (4) and (5)–(6). A specific element p of the

1 We use bold symbols to represent vectors, e.g., (θ1 . . . θm)t = θ.
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set P is defined by a curvature γ of models (4) and (5)–(6), an initial condition

d(t0) = x(t0), a level of distortion σ ≥ 0 and a starting point θ(0). The variations
of model and data points aim at representing a broad spectrum of problems.

3 Optimization Methods

FMINSEARCH. The Nelder-Mead algorithm is one of the most popular
derivative-free methods and has for example be described in [4]. A simplex of
m + 1 sample points is iteratively improved by reflections, extractions or con-
tractions. In each iteration, the vertex with highest objective function value is
replaced by a point with a lower function value. The solver can therefore adapt
to the shape of the objective function. Here, we use a Matlab version of the
Nelder-Mead algorithm, which is described in [10].

NOMAD. Directional direct search methods explore the parameter space by
generating sample points on a mesh. Each iteration may consist of search and
poll steps. The search step allows to freely explore the mesh. Convergence is
ensured by the poll step, in which the neighbourhood of the current iterate is
explored. Mesh adaptive direct search (MADS), which was introduced in [2],
allows the set of poll directions to become asymptotically dense in the unit
sphere. The algorithm is globally convergent to a first order critical point. The
version of MADS employed here is called NOMAD and available from [1]. In
addition to a user guide [3], a description of the algorithm can be found in [11].
Bound constraints of the form a ≤ θ ≤ b are obtained by box-projections.

SID-PSM. A generalized pattern search method, which uses simplex gradient
and Hessian information for ordering poll steps has been introduced in [5]. Sim-
plex derivatives are approximations of the gradients and can be considered as co-
efficients of linear multivariate polynomial interpolation models. SID-PSM [5,6]
is a pattern search method guided by simplex derivatives, which uses quadratic
minimum Frobenius norm models to define the search directions. The efficiency
of this ordering for smooth and noisy problems has been shown in [6].

Here, we use version 1.2 of SID-PSM and choose the default option to use the
negative simplex gradient as direction of potential decrease. The poll vectors are
ordered according to the increasing amplitude of their angles to the direction of
potential descent. Bound constraints are obtained by box projections.

ORBIT. ORBIT is a trust region interpolation-based algorithm introduced in
[17], which employs radial basis function models with linear polynomial tails.
Global convergence to first order critical points has been shown in [18,19]. The
same authors illustrate that the method is able to achieve high improvements of
the objective function from the initial iterate.

While several options are available, we use cubic radial basis functions based
on maximal 3m interpolation points, as recommended in [18]. We employ a
version from June, 2014, which handles bound constraints by box-projection.
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4 Description of the Numerical Experiments

4.1 Comparison of Optimization Methods

Two ways of aggregating information about performance of derivative-free solvers
for sets of test problems are data and performance profiles introduced in [12] and
[7], respectively. Regarding the term performance profile, we follow the definition
given in [7,12].

As outlined in [12], the number tp,s of function evaluations required to solve a
problem p ∈ P by solver s ∈ S is an appropriate measure for the computational
costs of derivative-free optimization. Data profiles ds(α) measure the fraction
of problems, which an algorithm s solves with a computational budget corre-
sponding to α simplex gradient evaluations (8). Here, |P | and sizeP denote the
cardinality of a set P , m the number of unknown parameters of problem p and
α > 0 a tolerance.

ds(α) =
1

|P | size
{
p ∈ P :

tp,s
m+ 1

≤ α

}
(8)

Performance profiles have been introduced in [7] as cumulative distribution func-
tion of a performance metric- the ratio between the computational costs of a
specific algorithm s and the minimum effort which allows any solver to achieve
convergence. For derivative-free optimization, performance profiles may base on
measurements of computational costs in terms of numbers of function evalua-
tions, [12]. The performance profile ρs(α) is defined by (9). Data and perfor-
mance profiles can both be interpreted as fraction of problems, which are solved
with a limited computational budget. The difference is that data profiles use
an absolute value of computational costs, while performance profiles employ a
budget proportional to the minimum cost which would allow any solver to solve
a specific problem.

ρs(α) =
1

|P | size
{
p ∈ P :

tp,s
min{tp,s : s ∈ S} ≤ α

}
(9)

The convergence of derivative-free algorithms may be tested by comparing the
decrease of the objective function value to the maximal possible reduction (10),
as suggested in [12]. Here, τ > 0 denotes some tolerance and fL is the minimum
value of the function value. If fL is unknown, it may be approximated by the
smallest objective function value obtained by any solver using the maximum
number of function evaluations.

f(θ(0))− f(θ) ≥ (1− τ)(f(θ(0))− fL) (10)

4.2 Implementation

This section describes details about the implementation of the test problems.
Data points arise from numerical solution of the differential algebraic system (5)–
(6) with n = 2 and for θ̃1 = 6, θ̃2 = 8, θ̃3 = θ̃4 = 0.05, θ̃5 = 2, θ̃6 = 1.5. The set
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Table 1. Characteristics of the test problems.

Initial condition d1(t0) = 25, d2(t0) = 60 and d1(t0) = 0.5, d2(t0) = 0.6
Curvature of model γ = 1, γ = 2 and γ → ∞
Level of distortion σ ∈ {0, 1, 3, 5, 7, 9}
Starting point θ(0) ∈ {1.2θ̃, 0.8θ̃, 1.5θ̃, 0.5(b− a)}

of data points d(tj), j = 1, . . . , r consists of r = 10 equally distributed points in
time tj ∈ [0, 4].

Assuming no observational error and for ε sufficiently small, a close upper
bound for the minimum of the objective function is given by f(θ̃). We assume ε
to be known and fixed with value ε = 0.004. Numerical experiments show that
the residual |d̄i(t; θ̃) − xi(t; θ̃)| is of order 10−1 for all i = 0, 1, 2, t ∈ [0, 4] and
for all undistorted data sets. As described in Chap. 2, a specific problem p ∈ P
is defined by a unique combination of characteristics, which are summarized in
Table 1.

The solution of differential equation (4) may explode for some values of pa-
rameter θ. Then, the ODE solver might return an error message. We explicitly
allow cases of hidden constraints, as they are known to be a common problem
when estimating parameters in population dynamic models. We choose param-
eter space 0 = a ≤ θ ≤ b, with b = (100, 100, 2, 2, 5, 5)t. Whenever the ODE
solver returns an error message, the value ’NaN’ is assigned to the objective func-
tion. For the numerical experiments considered here, all optimization methods
investigated continue after meeting hidden constraints.

The system of differential equations representing the models is singularly per-
turbed and stiff. Thus, it is solved by numerical differentiation formulas (NDFs)
as described in [15]. The ODE solver approximates the solution of the differential
equations at specific points in time tj , j = 1, . . . , r by interpolation. The result-
ing error is of the same order as the local error with an upper bound equal to
10−7. On average, about 100 steps are taken while solving the differential equa-
tion and the global error of the solution of the differential equation is roughly
of order 10−5. The global error of the solution of the ODE is a limit for the
precision τ , which we can expect in the convergence test (10). The components
of the parameter vector may differ significantly in their magnitude. Therefore,
all parameters are linearly transformed to values in interval [0, 1].

All test problems have m = 6 unknown parameters. We employed a maximum
number of 700 function evaluations corresponding to 100 simplex gradient eval-
uations. The choice of values for termination parameters ensures that no solver
terminates before the maximum number of function evaluations is reached. We
use the default options for algorithm parameter values, if not stated otherwise
in Chap. 3. Minimum values of the objective functions are not available and we
compare the solutions with the lowest objective function value fL obtained by
any solver.
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5 Results

In this chapter, we compare the set of solvers described in Chap. 3 for the non-
linear least squares problems defined by ODEs and outlined in Chap. 2. Data
and performance profiles have been computed for τ ∈ {10−1, 10−3, 10−5}. For
the sake of brevity, we present a subset of the results in Fig. 1.

For τ = 10−1, the data profile in Fig. 1(a) displays the number of prob-
lems, for which the objective function is reduced by 90% compared with the
best reduction. For example, for a budget of 30 simplex gradient evaluations,
ORBIT, NOMAD, SID-PSM and FMINSEARCH solve 53%, 72%,79% and 83%
of the problems, respectively. Performance profiles for τ = 10−1 are presented
in Fig. 1(b). FMINSEARCH solves 67% of the problems with at most twice as
many function evaluations as the fastest solver. SID-PSM is fastest to solve 18%
of the problems. This type of information is readily available in performance
profiles and not in data profiles.

Overall, FMINSEARCH solves the highest number of problems, followed by
SID-PSM and NOMAD. The Nelder-Mead algorithm also solves the highest
percentage of problems fastest. For a computational budget of 7 simplex gra-
dient evaluations, ORBIT solves the highest fraction of problems. Data pro-
files for tolerances τ = 10−3 and τ = 10−5 are displayed in Fig. 1(c) and
(d). FMINSEARCH solves the highest fraction of problems, namely 80% and
60%, respectively. SID-PSM performs second best. Further examples, for which
Nelder-Mead found a more accurate solution than ORBIT, while the trust re-
gion interpolation-based method improved the objective function well with few
function evaluations, can be found in [17,18,19].

A solution of the non-linear least squares problem has to satisfy hidden con-
straints and bound constraints. In contrast to the other solvers, the simplicial
direct search method solves unbounded problems. The numerical experiments
indicate that box constraints are only active under assumptions γ → ∞, θ(0) =
0.5b and d1(t0) = 0.5, d2(t0) = 0.6. These assumptions are valid for about 4% of
the problems. Then, FMINSEARCH returns an infeasible solution and none of
the solvers is able to reduce the objective function value to 102 within 100 sim-
plex gradient evaluations. Numerical experiments show that hidden constraints
may be active for the subset of optimization problems defined by γ → ∞ and
θ(0) = 0.5b. This corresponds to about 8% of the problems. These numbers
indicate the influence of constraints on the results.

5.1 Comparison with Noisy Benchmark Problems

The benchmark procedure proposed in [12] investigates a set of noisy benchmark
problems. The objective functions are perturbations of non-linear least squares
functions from the CUTEr collection, see (11). The deterministic noise function
φ : IRn → [−1, 1] is defined in terms of the cubic Chebyshev polynomial. For
details, we refer the reader to [12].

f(θ) = (1 + εfφ(θ))

m∑

k=1

fk(θ)
2 (11)
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(a) Data profile for τ = 10−1
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(b) Performance profile for τ = 10−1
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(c) Data profile for τ = 10−3
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(d) Data profile for τ = 10−5

Fig. 1. Percentage of problems solved and relative performance by a solver for the set
of non-linear least squares problems

The objective functions considered in this paper are noisy due to the numerical
solution of the differential equations defining the parameter estimation problems.
In this section, we investigate whether derivative-free solvers perform similarly
for the set of noisy benchmark problems and the problems defined by population
dynamic models. Data and performance profiles considered rely on comparing
a solution found by a specific solver with the best solution obtained by any
algorithm. Thus, results of the benchmark process depend on the set of solvers
S and we repeat the comparison for the set of solvers used in this paper. We
employ the relative noise level εf = 10−5, as this corresponds the level of noise
of the non-linear least squares problems (see Chap. 4). Data and performance
profiles have been computed for τ ∈ {10−1, 10−3, 10−5}. A representative subset
of results is presented in Fig. 2.

As illustrated in Fig. 2(a), for accuracy τ = 10−1, the Nelder-Mead algorithm
solves the highest percentage of problems employing up to 100 simplex gradi-
ent evaluations. However, SID-PSM solves the highest number of problems for
computational budgets smaller or equal to 10 simplex gradient evaluations. Nu-
merical results for τ = {10−3, 10−5} indicate that the simplex derivative based
search method performs best for all computational budgets and solves the high-
est number of problems in total (see e.g., Fig. 2(b)). Summarizing, we observe
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(a) Data profile for τ = 10−1
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(b) Data profile for τ = 10−3

Fig. 2. Percentage of problems solved and the relative performance by a solver for the
set of noisy benchmark problems

that the Nelder-Mead algorithm achieves better results for the parameter estima-
tion problems than for the noisy benchmark problems, while SID-PSM performs
better for the latter type of objective function.

When comparing Fig. 2(a),(b) and Fig. 1(a),(c) one may observe higher varia-
tions in performances for the problems defined by differential equations than for
the standard test problems. For example, for accuracy τ = 10−3, the algorithms
solve 14%-80% of the problems defined by dynamic systems and 51%-77% of
the noisy benchmark problems. All solvers except for ORBIT solve 92%-98% of
the standard benchmark problems and 87%-96% of the non-linear least squares
problems with accuracy τ = 10−1. The results indicate that the problems defined
by dynamic systems are more challenging than the noisy benchmark problems.

5.2 Non-Linearity of the Differential Equation

The structure of the differential equation depends on parameter γ. For γ → ∞,
the solution of the differential equation explodes for a large set of parameters and
the objective function is highly sensitive to the values of θ3 and θ4. We classify
the set of non-linear least squares problems by the value of γ and compare the
corresponding data profiles.

As illustrated in Fig. 3, all derivative-free methods solve more problems under
assumption γ = 1 than for the case γ → ∞. The solver which is most sensitive
to the high non-linearity of the differential equation is ORBIT. It converges for
94% of the problems defined by γ = 1 and for 34% for the case γ → ∞. We
hypothesize that the approximation of the objective function by radial basis
functions might be sensitive to the high non-linearity of the objective function
for this particular set of problems.

5.3 Robustness to the Starting Point

When knowledge about the parameters is limited, it is important to know how
robust a solver is to the initial iterate. In the same manner as in the previous part,
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(a) Data profile for γ = 1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of simplex gradients

%
 s

o
lv

e
d
 p

ro
b
le

m
s

 

 fminsearch
orbit

sid−psm
nomad

(b) Data profile for γ → ∞

Fig. 3. Percentage of problems solved for the set of non-linear least squares problems,
classified by the structure of the population dynamic model

we investigate the sensitivity of solvers to the initial iterate θ(0) by classifying
the set of parameter estimation problems. Data and performance profiles for the
subsets of problems defined by θ(0) ∈ {1.2θ̃, 0.8θ̃, 1.5θ̃, 0.5b} are compared. For

the sake of brevity, Fig. 4 presents results for θ(0) = 0.8θ̃ and θ(0) = 0.5b. The
latter case corresponds to the highest distance between starting point and θ̃.

Numerical results indicate that FMINSEARCH is the best solver overall for
the cases θ(0)/θ̃ = 0.8, 1.2, 1.5. The performance profiles presented in Fig. 4(a)
illustrate that FMINSEARCH solves almost 90% of the problems defined by
θ(0)/θ̃ = 0.8 fastest. However, the Nelder-Mead algorithm solves less problems,

when the distance between initial iterate and θ̃ increases. For θ(0) = 0.5b, FMIN-
SEARCH solves the least number of problems fastest and in total (see Fig. 4(b)).
We conclude that SID-PSM, NOMAD and ORBIT are more robust to the start-
ing point than FMINSEARCH.
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(a) Performance profile for θ(0) = 0.8θ̃
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(b) Performance profile for θ(0) = 0.5b

Fig. 4. Relative performance for the set of non-linear least squares problems, classified
by the starting point
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6 Conclusion

The optimization problems investigated here indicate that derivative-free op-
timization methods allow to solve parameter estimation problems which are
defined by stiff differential equations. We have compared several solvers based
on standard criteria such as accuracy, computational costs and robustness to
the starting point. In addition, we have described how a set of test problems
may be split into subsets in order to examine questions specific for objective
functions defined by differential equations. For example, the sensitivity of per-
formances to the non-linearity of the solution of the differential equation has
been investigated. A possible extension of the work presented in this paper will
be to examine the challenge of hidden constraints more closely.

We caution that the conclusions drawn here are only valid for the specific set
of solvers and optimization problems. Which solver would achieve best results for
a specific problem, depends on several factors. While the Nelder-Mead algorithm
FMINSEARCH solves the highest fraction of the parameter estimation problems,
it is less robust to the starting point. ORBIT is effective when the computational
budget is small. The limited testing indicates that trust-region interpolation-
based methods may be more sensitive to the non-linearity of the solution of the
differential equation.

Our observations are not completely in accordance with results obtained when
solving the set of standard benchmark problems. In particular, we see larger
variations in the performances of the derivative-free methods for the parameter
estimation problem defined by population dynamic models than for the set of
noisy benchmark problems. This indicates that benchmarking of derivative-free
methods for population dynamic models should be based on problems defined
by differential equations.
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Université de Lorraine, Ile du Saulcy, 57045 Metz, France
{hoai-an.le-thi,ahmed.zidna}@univ-lorraine.fr

Abstract. The aim of this paper is to propose a new underestimator for
solving univariate global optimization problems, which is better than the
underestimator used in the classical αBB method [1], and the quadratic
underestimator developed in [4]. We can propose an efficient algorithm
based on Branch and Bound techniques and an efficient w-subdivision for
branching. A convex/concave test is added to accelerate the convergence
of the algorithm.

Keywords: Global optimization, αBB method, quadratic underestima-
tor, Branch and Bound.

1 Introduction

Univariate global optimization problems attract attention of researchers not only
because they arise in many real-life applications, but also because the methods
proposed to solve them can be extended to the multivariate case. Often problems
in multidimensional case can be reduced to one dimensional case. One class of
deterministic approaches, which called lower bounding method, emerged from
the natural strategy to find a global minimum for sure. The efficiency of a method
is in the construction of tight underestimator and to discard a big regions which
do not contain the global minimum as quickly as possible. In this paper, we
consider the following problem

(P )

{
min f(x),

x ∈ [x0, x1] ⊂ R,

where f(x) is a nonconvex and C2-continuous function on the real interval
[x0, x1].

Several methods have been studied in the literature for univariate global op-
timization problems (see [3] and references therein). We can cite among them
the classical αBB method developed in [1] and the method proposed in [4].
The latter consists in the construction of an explicit quadratic underestimator.
A generalization to the multivariate case is proposed in [5].

c© Springer International Publishing Switzerland 2015 403
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The main contributions of our theoretical paper are: a construction of a new
underestimator which is better than the two underestimators proposed in [1,4])
and a convex/concave test which accelerate the convergence of the proposed
branch and bound algorithm.

The structure of the paper is as follows : In section 2, the two underestimators
developed in [1] and in [4] are given. In section 3, a new underestimator of the
objective function is proposed and the convex/concave test is given. In section
4, the algorithm is described and its convergence is shown.

2 Background

In what follows, we give two underestimators developed by the authors
respectively in [1] and [4].

2.1 Underestimator in αBB Method [1]

The underestimator in αBB method on the interval [x0, x1] is

LBα(x) = f(x)− Kα

2
(x− x0)(x1 − x),

where Kα ≥ max{0,−f ′′(x)}, for all x ∈ [x0, x1].
This underestimator satisfies the following properties :

1. It is convex (i.e. LB′′
α(x) = f ′′(x) +Kα ≥ 0 because Kα ≥ max{0,−f ′′(x)},

∀x ∈ [x0, x1]).
2. It coincides with the function f(x) at the endpoints of the interval [x0, x1].
3. It is a underestimator of the objective function f(x).

For more details see [1].

2.2 Quadratic Underestimator [4]

The quadratic underestimator developed in [4] on the interval [x0, x1] is

LBLO(x) = f(x0)
x1 − x

x1 − x0
+ f(x1)

x− x0

x1 − x0
− K

2
(x − x0)(x1 − x),

where K ≥ |f ′′(x)|, for all x ∈ [x0, x1].
This quadratic underestimator satisfies the following properties:

1. It is convex and quadratic (i.e. LB′′
LO(x) = K ≥ 0).

2. It coincides with the function f(x) at the endpoints of the interval [x0, x1].
3. It is a underestimator of the objective function f(x).

For more details see [4].
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3 A New Underestimator

Let Lhf(x) be the linear interpolant of f(x) on the interval [x0, x1], given by

Lhf(x) = f(x0)
x1 − x

x1 − x0
+ f(x1)

x− x0

x1 − x0
, (1)

and assume that Kq ≥ max{0, f ′′(x)}, ∀x ∈ [x0, x1].

We propose a new underestimator on the interval [x0, x1] as follows

LB(x) =
Kqf(x) +KαLhf(x)

Kα +Kq
− KαKq

2(Kα +Kq)
(x− x0)(x1 − x). (2)

Proposition 1. The following properties hold:

(i) LB(x) coincides with f(x) at the endpoints of the interval [x0, x1].
(ii) LB(x) is convex on the interval [x0, x1].
(iii) LB(x) ≤ f(x), ∀x ∈ [x0, x1].

Proof. (i) Obvious from the construction of LB(x).

(ii) Since Kα ≥ 0, Kq ≥ 0 and (Kα + f ′′(x)) ≥ 0 , and for all x in [x0, x1], we
have

LB′′(x) =
Kq(Kα + f ′′(x))

Kα +Kq
≥ 0.

Then LB(x) is convex on the interval [x0, x1].
(iii) One has for all x in [x0, x1], Kα ≥ 0, Kq ≥ 0, and (Kq − f ′′(x)) ≥ 0, then

(LB(x)− f(x))′′ =
Kα(Kq − f ′′(x))

Kα +Kq
≥ 0.

which implies that (LB(x)− f(x)) is convex, moreover (LB(x)− f(x)) van-
ishes at the endpoints of the interval [x0, x1], hence LB(x)− f(x) ≤ 0, ∀x ∈
[x0, x1].

In the next proposition, we will show that the new underestimator is better
than the classical underestimator developed in αBB method [1] and than the
quadratic underestimator developed in [4].

Proposition 2. For all x in [x0, x1], The following inequalities hold

1. LB(x) ≥ LBα(x),
2. LB(x) ≥ LBLO(x).

Proof. 1. We have

(LB(x)− LBα(x))
′′ = −Kα(Kα + f ′′(x))

Kα +Kq
≤ 0, ∀x ∈ [x0, x1],

since Kα ≥ 0, Kq ≥ 0, and for all x in [x0, x1], (Kα + f ′′(x)) ≥ 0, then
(LB(x)−LBα(x)) is a concave function on [x0, x1]. Moreover it vanishes at
the endpoints of this interval, hence LB(x) ≥ LBα(x), ∀x ∈ [x0, x1].
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2. We have

(LB(x) − LBLO(x))
′′ =

Kqf
′′(x) +KαKq −KKα −KKq

Kα +Kq
.

For the values of K, we have two cases:

case 1:K = Kα ≥ Kq. By a simple calculation, one obtains

(LB(x) − LBLO(x))
′′ = (f ′′(x)−Kq)

Kq

Kα +Kq
≤ 0.

Since (f ′′(x) − Kq) ≤ 0, ∀x ∈ [x0, x1], Kq ≥ 0,Kα ≥ 0 then (LB(x) −
LBLO(x)) is concave on [x0, x1], moreover it vanishes at the endpoints
of the interval. Hence (LB(x) ≥ LBLO(x), ∀x ∈ [x0, x1].

case 2: K = Kq. We have

(LB(x) − LBLO(x))
′′ = (f ′′(x)−Kq)

Kq

Kα +Kq
≤ 0.

Since (f ′′(x) −Kq) ≤ 0, Kq ≥ 0, and Kα ≥ 0 then (LB(x) − LBLO(x))
is a concave function which vanishes at the endpoints of the interval.
Hence LB(x) ≥ LBLO(x), ∀x ∈ [x0, x1].

Example 1. f(x) = sinx, x ∈ [0, 2π].
We propose to compare LBα(x) and LBLO(x) with LB(x).
For x in [0, 2π], we have

LBα(x) = sinx− 1

2
x(2π − x);LB′′

α(x) = − sinx+ 1 ≥ 0, ∀x ∈ [0, 2π],

LBLO(x) = −1

2
x(2π − x);LB′′

LO(x) = 1 ≥ 0,

LB(x) =
1

2
(sinx− 1

2
x(2π − x)) =

1

2
LBα(x);LB

′′(x) =
1

2
(− sinx+ 1) ≥ 0,∀x ∈ [0, 2π].

All this lower bound functions are convex because their second derivatives are
positive, moreover they vanishes at the endpoints of [0, 2π], then

LBα(x) ≤ 0, LBLO(x) ≤ 0, LB(x) ≤ 0.∀x ∈ [0, 2π]

Now we compare LBα(x) and LBLO(x) with LB(x).

i) One has LB(x) = 1
2 (sinx − 1

2x(2π − x)) = 1
2LBα(x). As LBα(x) ≤ 0, we

have LB(x) ≥ LBα(x) which means that LB(x) is better than LBα(x).
ii) For all x in [0, 2π], one has (LB(x) − LBLO(x))

′′ = 1
2 (− sinx + 1) − 1 =

1
2 (− sinx − 1) ≤ 0, then (LB(x) − LBLO(x)) is a concave function which van-
ishes at 0 and 2π, consequently (LB(x) − LBLO(x)) is nonnegative on [0, 2π].
Hence LB(x) ≥ LBLO(x), ∀x ∈ [0, 2π] which means that LB(x) is better than
LBLO(x).
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3.1 Convex/Concave Test

In order to accelerate the convergence of the proposed BB algorithm, we give
the following description of the Convex/concave test.

At iteration k, for all x in [ak, bk], we compute Kk
α and Kk

q by using interval
analysis method.
One has

Kk
α ≥ max{0,−f ′′(x)}, and Kk

q ≥ max{0, f ′′(x)}, ∀x ∈ [ak, bk].

– If Kk
α = 0 then −f ′′(x) ≤ 0, ∀x ∈ [ak, bk], which implies that f(x) is convex

on the interval [ak, bk], hence any local search leads to a global minimum on
this interval.

– If Kk
q = 0 then f ′′(x) ≤ 0, ∀x ∈ [ak, bk], which implies that f(x) is concave

on the interval [ak, bk], hence its global minimum is reached at the endpoints
of [ak, bk].

– If Kk
α = Kk

q = 0 then f(x) is affine on [ak, bk] and its global minimum is
reached at one of the endpoints of this interval.

Remark 1. If the convex/concave test is satisfied for all subintervals, then the
algorithm stops because the global solution for each subinterval is obtained either
at the endpoints of the intervals or by applying a local search.

Example 2. f(x) = sinx, x ∈ [0, π].
We have Kα = 1,K = 1, and Kq = 0.

Since Kq = 0 then f is concave on [0, π], hence its global minimum is reached
at the endpoints of this interval (i.e. at 0 and π). This example shows the use-
fulness of the convex/concave test, It allows us to find the optimal solutions at
the first iteration and the algorithm stops, but the two other methods presented
in [1] and [4] are not able to find the optimal solution at the first iteration.

4 Algorithm and Its Convergence

We now present our efficient branch and bound algorithm.

4.1 Algorithm

Initialization step: – Let ε be a given tolerance number, let [x0, x1] the ini-
tial interval.

– Compute K0
α and K0

q such that K0
α ≥ max{0,−f ′′(x)}, and K0

q ≥
max{0, f ′′(x)}, ∀x ∈ [x0, x1] by using interval analysis method.

– Convex/concave test:
If K0

α = 0 then f is convex, any local search gives an optimal solution
and the algorithm stops
If K0

q = 0 then f is concave, the optimal solution is reached at the
endpoints of [x0, x1] and the algorithm stops.
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– Set k := 0;T 0 = [a0, b0] = [x0, x1];M := T 0.
– solve the convex problem

min
{
LB0(x) : x ∈ T 0

}
,

to obtain an optimal solution x∗
0.

– Set UB0 := min {f(x0), f(x1), f(x
∗
0)} = f(x0).

– Set LB0 = LB(T 0) := LB0(x∗
0).

Iteration step While UBk − LBk ≥ ε do
1. Let T k = [ak, bk] ∈ M be the interval such that LBk = LB(T k)
2. Bisect T k into two intervals into T k

1 = [ak, x
∗
k];T

k
2 = [x∗

k, bk]
Set T k

1 := [a1k, b
1
k] and T k

2 := [a2k, b
2
k]

3. For i = 1, 2 do
(a) Convex/concave test : Compute Kki

α and Kki
q on T k

i .

If Kki
α = 0, f is convex, any local search gives an optimal solution

x∗
ki on T k

i , then update LB(T k
i ) = UB(T k

i ) = f(xk
i ) and goto c).

If Kki
q = 0, f is concave on T k

i , then update LB(T k
i ) = UB(T k

i ) =

min{f(aik, f(bik)} and goto c).
(b) Set T k

i = [aik, b
i
k] and Compute LBki(x).

Set x∗
ki the solution of the convex problem.

min
{
LBki(x), x ∈ T k

i

}
.

(c) To fit into M the intervals T k
i : M ← M

⋃
{T k

i : UBk − LB(T k
i ) ≥

ε, i = 1, 2} \ {T k}.
(d) Update UBk := min{UBk, f(a

i
k), f(b

i
k), f(x

∗
ki)} := f(xk).

4. Update LBk := min{LB(T ) : T ∈ M}
5. Delete from M all intervals T such that LB(T ) > UBk − ε.
6. Set k := k + 1.
End while

Result step : xk is an ε− optimal solution to (P )

4.2 Convergence

In what follows, we establish the convergence of our branch and bound algorithm.

Proposition 3. The sequence {xk} generated by the algorithm converges to an
optimal solution of problem (P ).

Proof. If the algorithm stops at iteration k which may be obtained by the con-
vex/concave test or by the rule UBk − LBk < ε then the solution is exact or
ε−optimal.

If the algorithm is infinite then it generates an infinite sequence {T k} of
intervals whose lengths hk decrease to zero, then the whole sequence {T k} shrinks
to a singleton.
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We must show that
lim
k→∞

(UBk − LBk) = 0.

We have 0 ≤ UBk − LBk = f(xk)− LB(x∗
k) =

f(xk)− Kqf(x
∗
k) +KαLhf(x

∗
k)

Kα +Kq
+

KαKq

2(Kα +Kq)
(x∗

k − ak)(bk − x∗
k) =

Kq(f(x
k)− f(x∗

k)) +Kα(f(x
k)− Lhf(x

∗
k)) +

KαKq

2 (x∗
k − ak)(bk − x∗

k)

Kα +Kq

The terms of the numerator of the above expression can be bounded as follows

– The first term can be bounded by using the mean value theorem

Kq(f(x
k)− f(x∗

k)) = Kqf
′(ξk1 )(f

k − f∗
k ) ≤ KqC1(bk − ak),

where C1 ≥ |f ′(ξk1 )| ≥ 0, and ξk1 is a real number between xk and x∗
k.

– For the second term, we have

Kα(f(x
k)− Lhf(x

∗
k)) ≤ Kα|f(xk)− Lhf(x

∗
k)| ≤ KαC2(bk − ak)

2,

where C2 is a real positif number [2].
– For the third term, we have

KαKq

2
(x∗

k − ak)(bk − x∗
k) ≤

KαKq

2
(bk − ak)

2.

Then, it results that

0 ≤ lim
k→∞

UBk − LBk ≤ lim
k→∞

(bk − ak)
KqC1 +KαC2(bk − ak) +

KαKq

2
(bk − ak)

Kα +Kq
= 0,

i.e. {T k} = {[ak, bk]} shrinks to a singleton. Hence the sequence {xk} converges
to an optimal solution of problem (P ).

5 Conclusion

We proposed in this theoretical paper a new underestimator in branch and bound
algorithm for solving univariate global optimization problems. We showed that
this new underestimator is better than the classical underestimator developed
in αBB method and the quadratic underestimator developed in [4]. The con-
vergence of our algorithm is shown. Tow simple examples are presented to il-
lustrate the superiority of the new underestimator and the usefulness of the
convex/concave test. A future work is to extend this method to the multidimen-
sional case. A work in this direction is currently in progress.
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Abstract. In this paper, our interest is to solve canonical nonlinear
semidefinite programming (NLSDP). First, we give a reformulation of
the (KKT) system associated to the NLSDP as a nonsmooth equation
by using the Fischer-Burmeister (FB) function. The nonsmooth equation
is then solved by the nonsmooth Newton’s method using formulas of the
generalized Jacobian of the FB function given by L. Zhang et al. in
[14]. Under mild conditions, we prove that the convergence is locally
quadratic.
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Jacobian of semismooth function.

1 Introduction

Let Sn denote the space of n × n symmetric matrices endowed with the inner
product 〈X,S〉tr := tr(XS), (where tr(X) denotes the trace of the matrix X).
We use ‖X‖F (resp. ‖λ‖2) to denote the F-norm in Sn (resp. 2-norm in R

m).
For X ∈ Sn, in the following the inequality X � 0 (X � 0) means that X is
positive semidefinite (positive definite) matrix. The cone of symmetric positive
semidefinite matrices is denoted Sn

+.
In this paper, we consider the canonical nonlinear semidefinite programming

(NLSDP ) problem of the form

⎧
⎨

⎩

min f(X)
g(X) = 0
X � 0

(1)

where f : Sn −→ R, g : Sn −→ R
m are twice continuously differentiable

functions.

c© Springer International Publishing Switzerland 2015 411
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If f and g are linear (affine) functions, the NLSDP (1) is reduced to a canon-
ical linear LSDP , which have been extensively studied during the last decades.

Nonlinear semidefinite programming (NLSDP ) is an extension of the linear
semidefinite programming (LSDP ) and arises in various application fields such
as system control and finantial engineering ([4]).

There are several numerical approaches for solving NLSDP , among them we
can cite: the program package LOQO based on primal-dual method ([12],[13]),
the sequential quadratic programming method ([5], [4]) and the interior point
method ([3], [11]). An other approach, consists to reformulate the KKT system
associated to the NLSDP via a semidefinite cone (SDC) complementarity func-
tion and then solve the reformulated system by the nonsmooth Newton method.

Let the Lagrangian function associated to the NLSDP (1) be

L(X,λ, S) = f(X) +

m∑

i=1

λigi(X)− 〈X,S〉 (2)

Under mild assumptions (convexity and regularity), the NLSDP has a solution
if and only if the following optimality conditions (KKT ) hold

⎧
⎪⎪⎨

⎪⎪⎩

∇XL(X,λ, S) = Df(X) +
m∑
i=1

λiDgi(X)− S = 0

g(X) = 0
X � 0, S � 0, 〈X,S〉 = 0

(3)

where λ = (λ1, λ2, ..., λm)T ∈ R
m is the Lagrange multiplier, Df and Dgi are

the Fréchet-derivatives of f and gi respectively.

Definition 1. A function φ : Sn × Sn −→ Sn is called a semidefinite cone
(SDC) complementarity function if

φ(X,S) = 0 ⇐⇒ X � 0, S � 0, 〈X,S〉tr = 0

In [7], the authors used the SDC complementarity function named the natural
residual function defined by

φNR(X,S) = PSn
+
(X − S)−X, ...for all X,S ∈ Sn,

where PSn
+
denote the orthogonal projection onto Sn

+ .

In this paper, we use the Fischer-Burmeister (F-B) function defined by

φFB(X,S) = X + S −
√
X2 + S2, ...for all X,S ∈ Sn (4)

Then, with an (SDC) complementarity function φ the (KKT ) system can be
reformulated as the following nonsmooth equation

Φ(X,λ, S) =

(
ψ(X,λ, S)
φ(X,S)

)
= 0 (5)
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With Φ : Sn × R
m × Sn −→ Sn × R

m × Sn and

ψ(X,λ, S) =

⎛

⎝Df(X) +
m∑
i=1

λiDgi(X)− S

g(X)

⎞

⎠ (6)

Note that the nonsmoothness of Φ is due to φ since the function ψ is smooth.
Then one way to solve Φ(X,λ, S) = 0 is the nonsmooth Newton’s method.
This paper is organized as follows: In section 2, we give the nonsmooth New-

ton’s method for solving NLSDP and prove the convergence quadratic of the
proposed algorithm. Section 3, is devoted to the calculus of the Clarke’s gener-
alized Jacobian of the F-B function.

2 Nonsmooth Newton’s Method for Solving NLSDP

We use the nonsmooth Newton’s method to solve the nonsmooth equation (5):

⎛

⎝
Xk+1

λk+1

Sk+1

⎞

⎠ =

⎛

⎝
Xk

λk

Sk

⎞

⎠− V −1
k Φ(Xk, λk, Sk) (7)

where Vk is the Clarke generalized Jacobian of Φ at the point (Xk, λk, Sk).
Here we need the genaralized Jacobian of φ since the other components are

differentiable.
In this paper, we use the particular choice of φ = φFB , since it is proved

that φFB is globally Lipschitz continuous, continuously differentiable around
any (X,S) ∈ Sn × Sn if [X S] is of full row rank, and strongly semismooth
everywhere in Sn × Sn (see [10]).

Let Y k = (Xk, λk, Sk), ΔY k = (ΔXk, Δλk, ΔSk), where ΔXk = Xk+1 −Xk

and let Y ∗ = (X∗, λ∗, S∗) a KKT point of problem (1). Then (7) is equivalent
to solve

Vk.ΔY k = −Φ(Xk, λk, Sk)

That is
⎧
⎪⎪⎨

⎪⎪⎩

∇2
XL(Y k)(ΔXk) +

m∑
i=1

Δλk
i Dgi(X

k)−ΔSk = −∇XL(Y k)

〈Dgi(X
k), ΔXk〉 = −gi(X

k), ...i = 1, ...,m
Uk(ΔXk) + Vk(Δλk) = −φFB(X

k, Sk)

(8)

where (Uk,Vk) ∈ ∂φFB(X
k, Sk).

Note that for solving the system (8), we get ΔXk from the second equation
then we replace it in the third equation for obtaining Δλk and finally ΔSk is
calculated from the first equation.
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Algorithm 1. Step 0: Choose Y k = (Xk, λk, Sk) ∈ Sn × R
m × Sn, ε � 0, and

set k := 0.
Step 1: If

∥∥Φ(Y k)
∥∥ ≤ ε, STOP. (here

∥∥(Xk, λk, Sk)
∥∥ = (

∥∥Xk
∥∥2
F
+

∥∥λk
∥∥2
2
+∥∥Sk

∥∥2
F
)1/2).

Step 2: Choose (Uk,Vk) ∈ ∂φFB(X
k, Sk) and find ΔY k = (ΔXk, Δλk, ΔSk)

solution of (8).
Step 3: Set Y k+1 = Y k +ΔY k, k := k + 1, and go to step 1.

Theorem 2. Let Y ∗ = (X∗, λ∗, S∗) be a KKT point of problem (1) such that
any V ∈ ∂Φ(Y ∗) is nonsingular. Then, the algorithm (1) converges locally and
quadratically to Y ∗.

Proof. First, since φFB is strongly semismooth then Φ is also strongly semis-
mooth (see [10]). Now, thanks to [Theorem 2.1; [9]] and the assumption that any
V ∈ ∂Φ(Y ∗) is nonsingular then the algorithm converges locally and quadrati-
cally to Y ∗.

Remark 1. To apply the nonsmooth Newton’s method, the major difficulties
are how to calculate a generalized Jacobien of G and how to satisfy the local
convergence conditions. So, the next section is devoted to the calculus of function
φFB .

3 Generalized Jacobian of the Symmetric Matrix-valued
Fischer-Burmeister Function

In ([14]) the authors investigate the differential properties of the matrix-
valued F-B function, including the formulas of the directional derivative, the
B-subdifferential and the generalized Jacobian.

For any m× n matrix A and index sets I ⊆ {1, 2, ...,m} and J ⊆ {1, 2, ..., },
AIJ denotes the submatrix of A with rows and columns specified by I, J, re-
spectively. Particularly, Aij is the entry of A at (i, j) position. We use ” ◦ ” to
denote the Hadamard product between matrices i.e for any matrices A and B,
C = A ◦B with Cij = AijBij . For all X,H ∈ Sn, we define LX(H) by

LX(H) = XH +HX.

For any X ∈ Sn, we use λ1(X) ≥ λ2(X) ≥ ..... ≥ λn(X) to denote the
real eigenvalues of X being arranged in the non-increasing order.Let Λ(X) =
diag(λ1(X), λ2(X), ..., λn(X)) ∈ Sn the diagonal matrix whose i − th diagonal
entry is λi(X), i = 1, ..., n.

Denote by On the set of all n× n orthogonal matrices in R
n×n and On(X) a

subset of On by
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On(X) =
{
P ∈ On/X = PΛ(X)PT

}

Let f [1](Λ(X)) ∈ Sn be the first divided difference matrix whose (i, j) entry is
given by

f [1](Λ(X))ij =

{
f(λi(X))−f(λj(X))

λi(X)−λj(X) if i �= j = 1, 2, .., n

f
′
(λi(X)) if i = j = 1, 2, ..., n

In the following, f is defined by

f(t) =

{ √
t, if t ≥ 0,√
−t, if t ≤ 0,

Let G : Sn × Sn −→ Sn be the function defined by

G(X,Y ) := X2 + Y 2 ∀X,Y ∈ Sn

and σ1 ≥ σ2 ≥ ... ≥ σn be eigenvalues of G.Assume that G(X,Y ) have the
spectral decomposition

G(X,Y ) = PDPT = Pdiag(σ1, σ2, ..., σn)P
T (9)

where P ∈ On(G).
Note that D can be writen as

D =

[
Dα 0
0 0β

]

with
α := {i : σi > 0} and β := {i : σi = 0} (10)

Assume that Z = [X Y ] ∈ R
n×2n admit the following singular value decompo-

sition

Z = P [Σ(Z) 0]QT = P [Σ(Z) 0][Q1Q2]
T = P [Σ(Z) 0]Q1

T (11)

= P [Σ(Z) 0][QαQβ]
T

where Q ∈ On, Q ∈ O2n, Q1, Q2 ∈ R
2n×n, Qα ∈ R

2n×|α|, Qβ ∈ R
2n×|β| and

Q = [Q1Q2] , Q1 = [QαQβ ] and Σ(Z) = diag(
√
σ1,

√
σ2, ...,

√
σn).

3.1 Formulas for B-subdifferential and Generalized Jacobian of φFB

In this subsection, we characterise the B−subdifferential and the generalized
Jacobian of φFB .

Let A ∈ Sn
+ be given and have the eigenvalue decomposition (9). Let

Πβ(A) =

⎧
⎪⎨

⎪⎩
Θ ∈ R

|β|×|β| :

√
λi+|α|(Am)√

λi+|α|(Am)+
√

λj+|α|(Am)
→ Θij ,

Am −→ A with Am � 0

⎫
⎪⎬

⎪⎭
(12)

where α and β are the corresponding subsets given by (10).
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Theorem 3. ([14])For any given X,Y ∈ Sn, let G = X2 + Y 2have the spec-
tral decomposition as in 9 and Z = [X Y ] ∈ R

n×2n admit the singular value
decomposition 9

Let be LZ(H) = LZ(HX , HY ) = LX(HX) + LY (HY ) and

K(HX , HY ) =
{
PT
β [(HX)2 + (HY )

2]Pβ − PT
β LZ(H)PαD

−1
α PT

α LZ(H)Pβ

} 1
2

Then W ∈ ∂BφFB(X,Y ) (resp. ∂φFB(X,Y ))if and only if there exists S ∈
∂BK(0, 0) (resp. ∂K(0, 0)) such that for any (HX , HY ) ∈ Sn × Sn

W (HX,HY ) = HX +HY −P

[
f [1](D)αα ◦ P T

α LZ(H)Pα f [1](D)αβ ◦ P T
α LZ(H)Pβ

f [1](D)βα ◦ P T
β LZ(H)Pα S(HX ,HY )

]
P T

For S ∈ ∂BK(0, 0), there exist (U, V ) ∈ O|β| × On+|β| and Θ ∈ Πβ(G) such
that for any (HX , HY ) ∈ Sn × Sn

S(HX , HY ) = U(Θ ◦ Q̃T
β

[
HX

HY

]
P̃β + (1|β|1

T
|β| −Θ)P̃T

β

[
HX HY

]
Q̃β)U

T

where P̃ =
[
Pα PβU

]
and Q̃ =

[
Qα QᾱV

]

Conclusion 4. We proposed to solve nonlinear semidefinite programming prob-
lem by solving a nonsmooth reformulation to the associated KKT system by
the nonsmooth Newton’s method. We proved that the algorithm converges locally
and quadratically. For linear semidefinite programming, equivalent conditions
are given for the nonsingularity of all elements of the Clarke’s generalized Jaco-
bian of Φ (see, [6]), we want to extend them to the nonlinear case. The question
of implementation of the proposed algorithm and numerical examples are under
considerations.
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Abstract. The paper presents a theorem for representation a given cone
as a Bishop–Phelps cone in normed spaces and studies interior and sep-
aration properties for Bishop–Phelps cones. The representation theorem
is formulated in the form of a necessary and sufficient condition and
provides relationship between the parameters determining the Bishop-
Phelps cone. The necessity is given in reflexive Banach spaces. The rep-
resentation theorem is used to establish the theorem on interior of the
Bishop–Phelps cone representing a given cone, and the nonlinear separa-
tion theorem. It is shown that every Bishop–Phelps cone in finite dimen-
sional space satisfies the separation property for the nonlinear separation
theorem. The theorems on the representation, on the interior and on the
separation property studied in this paper are comprehensively illustrated
on examples in finite and infinite dimensional spaces.

Keywords: Nonlinear Separation Theorem, Bishop–Phelps Cone,
Representation Theorem, Augmented Dual Cone.

1 Introduction

In this paper we present a theorem for representation a given cone as a Bishop-
Phelps cone (BP cone for short) in normed spaces.

This cone was introduced by Bishop and Phelps in 1962 (see [1,13]). Since
then BP cones played a crucial role in many investigations on characterization
of supporting elements of certain subsets of normed linear spaces.

Most remarkable characteristics for BP cones were given in [12,4,5]. Petschke
has shown that every nontrivial convex cone C with a closed and bounded base
in a real normed space is representable as a BP cone [12, Theorem 3.2]. Another
basic result which follows from this theorem says that [12, Theorem 3.4], every
nontrivial convex cone in a finite dimensional space is representable as a BP
cone if and only if it is closed and pointed (see also [4, Theorem 4.4] and [5,
Proposition 2.18, Proposition 2.19]).
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In this paper, we present a necessary and sufficient condition for representation
of a given cone as a BP cone, where we do not impose any condition on the
existence of a base or on a base. Generally, not every cone in infinite dimensional
spaces has a base, or some cones may have a base which is unbounded.

The representation theorem presented in this paper uses the given norm of
the normed space and there is no need to prove the existence of an additional
equivalent norm.

This theorem guarantees not only the availability for a representation of some
class of cones as a BP cone, but also provides relationship between the param-
eters (the linear functional, the norm, and the scalar coefficient of the norm)
determining this BP cone, and explicitly defines the BP cone which equals the
given cone. This is of great importance, because it provides an analytical ex-
pression for the given cone and thus provides a convenient mathematical tool
in investigations. There are many existence and characterization theorems for
optimal solutions in the literature where the objective space is assumed to be
partially ordered by a BP cone (see e.g. [2,3,6]).

In this paper we also prove theorems on interior of the BP cone and by using
the representation theorem we present a detailed discussion on the relationship
between the augmented dual cones and the representation of the interior of BP
cones.

Finally, by using the representation theorem we show that every BP cone
and its conic neighborhood satisfy the nonlinear separation property in finite
dimensional spaces. This property was suggested by R. Kasimbeyli in [7] where
he proved that two cones satisfying the separation property, can be separated by
some BP cone. Such a BP cone is defined by some element from the augmented
dual cone. Note that, the augmented dual cones, BP cones and the nonlinear
separation theorem are used to develop optimality conditions and solution ap-
proaches for a certain class of nonconvex optimization problems both in single
objective optimization theory and in vector optimization (see e.g, [6,8,9,10,11,2]).

The theorems on the representation, on the interior and on the separation
property studied in this paper are comprehensively illustrated on examples in
finite and infinite dimensional spaces.

The paper is organized as follows. Section 2 gives some preliminaries. The
general nonlinear separation property and separation theorems are given in Sec-
tion 3. In this section a sufficient condition for separation property is also pre-
sented. The representation theorem, the theorems on the interior of BP cones
and the relationship between the nonlinear separation property and the BP cones
are given in Section 4. Section 5 presents illustrative examples and detailed dis-
cussions of the representation and characterization theorems in finite and infinite
dimensional spaces. Finally, Section 6 draws some conclusions from the paper.

2 Preliminaries

In this section, we recall some concepts of cones, separability and proper effi-
ciency. Throughout the paper, we will assume always, unless stated specifically
otherwise, that:
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(i) Y is a reflexive Banach space with dual space Y ∗, and C � Y is a cone
which contains nonzero elements;

(ii) cl(S), bd(S), int(S), and co(S) denote the closure (in the norm topology),
the boundary, the interior, and the convex hull of a set S, respectively;

(iii) R+ and R++ denote the sets of nonnegative and positive real numbers,
respectively;

The unit sphere and unit ball of Y are denoted by

U = {y ∈ Y : ‖y‖ = 1} (1)

and

B = {y ∈ Y : ‖y‖ ≤ 1},

respectively.
A nonempty subset C of Y is called a cone if

y ∈ C, λ ≥ 0 ⇒ λy ∈ C.

Pointedness of C means that

C ∩ (−C) = {0Y }.

cone(S) = {λs : λ ≥ 0 and s ∈ S}

denotes the cone generated by a set S.
CU = C ∩ U = {y ∈ C : ‖y‖ = 1} denotes the base norm of the cone C . The

term base norm is justified by the obvious assertion that C = cone(CU ), and is
firstly used in [14].

Recall that the dual cone C∗ of C and its quasi-interior C# are defined by

C∗ = {y∗ ∈ Y ∗ : y∗(y) ≥ 0 for all y ∈ C} (2)

and
C# = {y∗ ∈ Y ∗ : y∗(y) > 0 for all y ∈ C \ {0}}, (3)

respectively.
The following three cones called augmented dual cones of C were introduced

in [7].

Ca∗ = {(y∗, α) ∈ C# ×R+ : y∗(y)− α‖y‖ ≥ 0 for all y ∈ C}, (4)

Ca◦ = {(y∗, α) ∈ C# ×R+ : y∗(y)− α‖y‖ > 0 for all y ∈ int(C)}, (5)

and

Ca# = {(y∗, α) ∈ C# ×R+ : y∗(y)− α‖y‖ > 0 for all y ∈ C \ {0}}, (6)

where C is assumed to have a nonempty interior in the definition of Ca◦.
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3 The Nonlinear Separation Theorem

In this section, we recall the nonlinear separation theorem given by R. Kasimbeyli
in [7]. This theorem enables to separate two cones (which are not necessarily
convex, having only the vertex in common) by a level set of some monotonically
increasing (with respect to the ordering cone) sublinear function. In this section,
we present this theorem without proof.

Definition 1. Let C and K be closed cones of a normed space (Y, ‖ · ‖) with

base norms CU and KU , respectively. Let K
∂
U = KU ∩bd(K), and let C̃ and K̃∂

be the closures of the sets co(CU ) and co(K∂
U ∪{0Y }), respectively. The cones C

and K are said to have the separation property with respect to the norm ‖ · ‖ if

C̃ ∩ K̃∂ = ∅. (7)

Definition 2. Let C and K be nonempty cones of a normed space (Y, ‖·‖) with
int(K) 
= ∅. A cone K is called a conic neighborhood of C if (C \ {0Y }) ⊂
int(K). For a positive real number ε, a cone Cε = cone(CU + εB) is called an
ε-conic neighborhood of C.

The following two theorems proved in [7, Theorems 4.3 and 4.4] concern
the existence of a pair (y∗, α) ∈ Ca# for which the corresponding sublevel
set S(y∗, α) of the strongly monotonically increasing sublinear function g(y) =
y∗(y) + α‖y‖ separates the given cones C and K, where S(y∗, α) is defined as

S(y∗, α) = {y ∈ Y : y∗(y) + α‖y‖ ≤ 0.} (8)

Theorem 1. Let C and K be closed cones in a reflexive Banach space (Y, ‖·‖).
Assume that the cones −C and K satisfy the separation property defined in
Definition 1,

− C̃ ∩ K̃∂ = ∅. (9)

Then, Ca# 
= ∅, and there exists a pair (y∗, α) ∈ Ca# such that the corresponding
sublevel set S(y∗, α) of the strongly monotonically increasing sublinear function
g(y) = y∗(y) + α‖y‖ separates the cones −C and bd(K) in the following sense:

y∗(y) + α‖y‖ < 0 ≤ y∗(z) + α‖z‖ (10)

for all y ∈ −C \ {0Y }, and z ∈ bd(K). In this case the cone −C is pointed.
Conversely, if there exists a pair (y∗, α) ∈ Ca# such that the corresponding

sublevel set S(y∗, α) of the strongly monotonically increasing sublinear function
g(y) = y∗(y) + α‖y‖ separates the cones −C and bd(K) in the sense of (10)
and if either the cone C is closed and convex or (Y, ‖ · ‖) is a finite dimensional
space, then the cones −C and K satisfy the separation property (9).

Remark 1. It follows from Theorem 1 that two cones satisfying the separation
property (9) can be separated by a BP cone defined for some pair (y∗, α) ∈ Ca#,
and conversely, if there exists a pair (y∗, α) ∈ Ca# such that the correspond-
ing BP cone separates the given cones, then these cones satisfy the separation
property (9).



Bishop–Phelps Cones 423

Theorem 2. Let C be a closed cone of a reflexive Banach space (Y, ‖ ·‖Y ), and
let Cε be its ε-conic neighborhood for a real number ε ∈ (0, 1). Suppose that C
and Cε satisfy the separation property given in Definition 1. Then, there exists
a pair (y∗, α) ∈ Ca# such that

− C \ {0Y } ⊂ int(S(y∗, α)) ⊂ −Cε, (11)

where int(S(y∗, α)) can be defined as

int(S(y∗, α)) = {y ∈ Y : y∗(y) + α‖y‖ < 0}. (12)

Remark 2. It follows from definition of the augmented dual cone that every
nontrivial cone C ⊂ Y is a subset of the BP cone

C(y∗, α) = {y ∈ Y : α‖y‖ ≤ y∗(y)}

if (y∗, α) ∈ Ca∗. Theorem 2 strengthens this assertion by saying that for a cone C
satisfying conditions of this theorem, there exists a BP cone which contains the
given cone being contained in the ε-conic neighborhood of C for a real number
ε ∈ (0, 1). In other words, under the conditions of Theorem 2, there exists a BP
cone which is as close to the given cone as possible.

The following theorem is presented in [9, Lemma 3] and gives a general suffi-
cient condition for the separation property in Rn.

Theorem 3. Let C be a closed convex cone in Rn. Assume that there exist a
pair (y∗, α) ∈ Rn ×R++ such that,

cl(co(CU )) = {y ∈ B : y∗(y) ≥ α}. (13)

Then for an arbitrary closed cone K ⊂ Rn with C ∩K = {0}, the cones C and
K satisfy the separation property given in Definition 1.

4 Main Results

In this section, we show that the condition (13) of Theorem 3 is necessary and
sufficient for the representation of a given cone as a BP cone in reflexive Banach
spaces. Moreover, this BP cone is defined for the same norm (which is the given
norm of the normed space) and the same pair (y∗, α) ∈ Y ∗ × R++ used in
condition (13). Thus, the theorem presented in this paper guarantees not only
the availability of a representation of some class of cones as a BP cone, but also
gives its exact expression by explaining properties of parameters determining
this BP cone.

The following definition for BP cones is used in this paper:

Definition 3. Let (Y, ‖ · ‖) be a real normed space. For some positive number
α > 0 and some continuous linear functional y∗ from the dual space Y ∗ the cone

C(y∗, α) = {y ∈ Y : α‖y‖ ≤ y∗(y)} (14)

is called Bishop-Phelps cone. In this definition, the triple (y∗, α, ‖ · ‖) will be
referred to as parameters determining the given BP cone.
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In the original definition of Bishop and Phelps it is required that ‖y∗‖∗ = 1
and α ∈ (0, 1].

Some authors (see for example, [2,4,5]) do not use the constant α and the
assumption ‖y∗‖∗ = 1. This paper follows Definition 3. It easily follows from the
definition that every BP cone is closed and pointed [5,12].

We first present a sufficient condition for characterizing interior of every BP
cone. Then, the representation theorem will be presented. We begin with the
following lemma characterizing the quasi-interior of the augmented dual cone.

Lemma 1. Let C ∈ Y be a nonempty cone. If (y∗, α) ∈ Ca# then ‖y∗‖∗ > α.

Proof. Let (y∗, α) ∈ Ca# and let y ∈ C \ {0}. Then

0 < y∗(y)− α‖y‖ ≤ ‖y∗‖∗‖y‖ − α‖y‖ = ‖y‖(‖y∗‖∗ − α),

which completes the proof.

The following theorem characterizes interior of BP cones. Note that this theo-
rem is given in [7] in a slightly different setting, therefore we present this theorem
without the proof for which we refer reader to [7, Lemma 3.6].

Theorem 4. Let C(y∗, α) = {y : y∗(y) ≥ α‖y‖} be a given BP cone for some
pair (y∗, α) ∈ Ca∗. If (y∗, α) ∈ Ca# then

int(C(y∗, α)) = {y : y∗(y) > α‖y‖} 
= ∅. (15)

Remark 3. A sufficient condition on the characterization of interior of BP cones
was also presented in [5, Theorem 2.5(b)], which is equivalent to that of Theorem
4. Below we present examples which demonstrate that the condition of Theorem
4 is not necessary in general (see, Section 5).

Now we present the representation theorem.

Theorem 5. Let C be a nonempty closed convex cone of a real normed space
(Y, ‖ · ‖. Assume that

cl(co(CU )) = {y ∈ B : y∗(y) ≥ α} (16)

for some (y∗, α) ∈ Y ∗ × R++. Then C is representable as a Bishop–Phelps
cone with the same norm and the same pair (y∗, α) defining the condition (16).
Conversely, if C = {y ∈ Y : y∗(y) − α‖y‖ ≥ 0} is a Bishop–Phelps cone of a
reflexive Banach space (Y, ‖ · ‖), then C satisfies condition (16).

Proof. Necessity. Let y∗ ∈ Y ∗ and let α > 0 be a real number, and let C =
{y ∈ Y : y∗(y)−α‖y‖ ≥ 0} be a given Bishop–Phelps cone in (Y, ‖·‖). Show that
C satisfies condition (16) with the same y∗ ∈ Y ∗, α > 0 and the same norm.

Let

C̃ = cl(co(CU )). (17)
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It is clear that the base norm of C can be represented as

CU = {y ∈ U : y∗(y)− α‖y‖ ≥ 0} = {y ∈ U : y∗(y)− α ≥ 0}. (18)

As α > 0, in particular, it follows from the definition that C is convex and
pointed.

We define the following set

D = {y ∈ B : y∗(y) ≥ α}. (19)

First we show that
co(CU ) = D. (20)

Let y ∈ co(CU ). Then, by definition of convex hull, there exists a set of
nonnegative numbers βi, i ∈ I such that, y can be represented as

y =
∑

i∈I

βiyi, where yi ∈ CU and
∑

i∈I

βi = 1.

Clearly, y ∈ B. On the other hand

y∗(y) =
∑

i∈I

βiy
∗(yi) ≥ α.

Then, from (19) we have y ∈ D; that is, co(CU ) ⊂ D.
Now, let y ∈ D. We will show that y ∈ co(CU ).

If ‖y‖ = 1 then y ∈ U and the inclusion y ∈ CU ⊂ co(CU ) follows from (18).

Consider the case ‖y‖ < 1, that is y ∈ int(B). Denote ν = y∗(y). Clearly
ν ≥ α. Take any non-zero vector b ∈ Y satisfying y∗(b) = 0. Consider

yλ = y + λb, λ ∈ (−∞,∞).

We have
y∗(yλ) = y∗(y) + λy∗(b) = ν ≥ α. (21)

As b 
= 0, we have ‖yλ‖ → ∞ if |λ| → ∞ which means that y /∈ B for
sufficiently large values of λ. On the other hand, since y ∈ int(B), the inclusion
yλ ∈ int(B) holds for sufficiently small in absolute value numbers λ > 0 and
λ < 0. Then, since ‖yλ‖ is a weakly upper semicontinuous function of λ, and
B is weakly compact, there exist numbers λ1 > 0 and λ2 < 0 such that the
corresponding points y1

.
= yλ1 and y2

.
= yλ2 belong to the boundary of B (as

maximum values of ‖yλ‖ w.r.t. λ > 0 and λ < 0 respectively). That is,

yi ∈ U, i = 1, 2.

These inclusions together with (21) and (18) imply that yi ∈ CU , i = 1, 2.
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Finally, denoting λ′ = λ1/(λ1 − λ2), it is not difficult to check that,

λ′ ∈ (0, 1) and y = (1− λ′)y1 + λ′y2.

Therefore, y ∈ co(CU), which means that D ⊂ co(CU).

Thus, we have shown that the relation (20) is true. From this relation, we
have

C̃ = {y ∈ B : y∗(y) ≥ α},
and the proof of Necessity is completed.

Sufficiency. Now let C be a nonempty closed convex cone of Y, and suppose
that condition (16) is satisfied for some (y∗, α) ∈ Y ∗ ×R with α > 0. Show that
C is representable as a Bishop–Phelps cone, that is show that C = C(y∗, α).

Let y ∈ C \ {0}Y . Then there exists a positive real number β such that
βy ∈ CU , and hence βy ∈ cl(co(CU )). Then by condition (16) we have:

y∗(βy) ≥ α.

Then, since βy ∈ CU , we have α = α‖βy‖, and y∗(βy) ≥ α‖βy‖. Thus, y∗(y) ≥
α‖y‖, which means that C ⊂ C(y∗, α).

Now let y ∈ C(y∗, α). Then for every y ∈ C(y∗, α) there exists a scalar β > 0
such that βy ∈ U ∩C(y∗, α) and therefore

y∗(βy) ≥ α‖βy‖ = α,

which implies by condition (16) that βy ∈ cl(co(CU )). Since C is a closed and
convex cone, we obtain y ∈ C, which establishes the inclusion C(y∗, α) ⊂ C, and
the proof of the theorem is completed. �

The next theorem establishes an additional property for parameters of the
BP cone representing the given cone.

Theorem 6. Let C ⊂ Y be a given cone which is representable as a BP cone. If
C(y∗, α) is a BP cone representing the given cone C, then (y∗, α) ∈ Ca∗ \ Ca#.

Proof. Assume that C = C(y∗, α) for some pair (y∗, α) ∈ Ca∗. Then C =
C(y∗, α) = {y ∈ Y : y∗(y) − α‖y‖ ≥ 0, } and clearly (y∗, α) ∈ Ca∗ by the
definition of Ca∗. Obviously, the set {y ∈ Y : y∗(y)− α‖y‖ = 0} represents the
boundary of C, and since C is assumed to contain nonzero elements, there exists
some y ∈ C \ {0} in the boundary with y∗(y) − α‖y‖ = 0 which completes the
proof. �

Theorem 7. Let C ⊂ Y be a given cone and let (y∗, α) ∈ Ca∗ with α > 0,
be the pair for which the representation property (16) is satisfied. Let C(y∗, α)
be the BP cone representing the given cone C. Then (y∗, β) ∈ Ca# for every
β ∈ (0, α), and

(C \ {0}) ⊂ int(C(y∗, β)) = {y : y∗(y) > β‖y‖} 
= ∅.
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Proof. Let C = C(y∗, α), where (y∗, α) ∈ Ca∗ with α > 0. Then by Lemma [7,
Lemma 3.2 (ii)] (y∗, β) ∈ Ca# for every β ∈ (0, α). Now let y ∈ C(y∗, α), and
β ∈ (0, α) be arbitrary elements. Then

y∗(y)− β‖y‖ > y∗(y)− α‖y‖ ≥ 0,

which means by Theorem 4 that y ∈ int(C(y∗, β)) and the proof is completed.

�
The following theorem establishes that every BP cone in Rn, satisfies the

separation property together with its ε conic neighborhood.

Theorem 8. Let C be a BP cone in Rn. Then for every ε ∈ (0, 1), cones C and
bd(Cε) satisfy the separation property given in Definition 1.

Proof. Since C ∩ bd(Cε) = {0}, the proof follows from theorems 5 and 3 and the
definition of the ε conic neighborhood of a cone (see Definition 2).

5 Illustrative Examples

In this section we present illustrative examples for the representation and sepa-
ration theorems, and for the theorem on interior of BP cones in both finite and
infinite dimensional spaces.

5.1 Example 1

Let C = Rn
+. Due to Kasimbeyli [7, Theprem 5.9], this cone satisfies the sepa-

ration property (7) with respect to l1 norm for arbitrary n with y∗ = (1, . . . , 1),
and α = 1. Then by Theorem 8, it satisfies the representation property, and its
BP representation is given by

C(y∗, α)l1 = {(y1, . . . , yn) :
n∑

i=1

yi −
n∑

i=1

|yi| ≥ 0}.

It is evident that int(Rn
+) = {(y1, . . . , yn) : yi > 0, i = 1, . . . , n} 
= ∅. On the

other hand, (y∗, α) ∈ Ca∗ \ Ca# (see, Theorem 6) and thus the interior of the
BP cone C(y∗, α)l1 cannot be represented by

{(y1, . . . , yn) :
n∑

i=1

yi −
n∑

i=1

|yi| > 0},

which is empty set.
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The nonnegative orthant Rn
+ has interesting and different interpretations

for different values of n and different norms. Therefore we consider each case
separately.

In the case n = 1, all three norms l1, l2, l∞ have the same formulation and
therefore the BP representation of R+ for all the three norms is given by
(see also [4, Example 2.6 (a)])

C(1, 1) = {y ∈ R : y − |y| ≥ 0}.

In the case n = 2, the l2 and the l∞ norms representations of R2
+ are

respectively:

C((1, 1), 1)l2 = {(y1, y2) : y1 + y2 −
√
y21 + y22 ≥ 0},

and
C((1, 1), 1)l∞ = {(y1, y2) : y1 + y2 −max(|y1|, |y2|) ≥ 0}.

It is remarkable that, the condition (16) of the representation theorem is not
satisfied for Rn

+ with n ≥ 3 in the cases of l2 and l∞ norms. Hence the nonnega-
tive orthant of Rn with n ≥ 3 can not be represented as a BP cone in the cases
of l2 and l∞ norms. For example, consider the vector y = (−1, 2, 2) ∈ R3. Let
y∗3 = (1, 1, 1) and let α = 1. Then, the relation

y∗3(y) ≥ α‖y‖

is satisfied for both l2 and l∞ norms, but y /∈ R3
+.

Remark 4. The nonnegative orthant of Rn is also considered in [4, Example 2.6
(c)], where the BP cone representation with l1 norm and the interpretation on
the interior are not correct.

5.2 Example 2

Let Y be the Banach space l1, and let C be the nonnegative orthant of l1. Then
(l1)∗ = l∞ and taking y∗(y) =

∑∞
i=1 yi and α = 1 it can easily be shown that

the representation condition (16) is satisfied and the BP cone

C(y∗, α) = {y ∈ l1 :

∞∑

i=1

yi ≥
∞∑

i=1

|yi|}

is a cone representing the nonnegative orthant of l1. The augmented dual cone
Ca∗ and its quasi interior Ca# can easily be calculated for the nonnegative
orthant C of l1.

By definition of the augmented dual cone, we have

C
a∗ =

{
((w1, w2, . . .), α) ∈ C

# × R+ :
∞∑

i=1

wiyi ≥ α
∞∑

i=1

yi

for all (y1, y2, . . .) ∈ C

}
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or

C
a∗ = {((w1, w2, . . .), α) : wi > 0, i = 1, 2, . . . , 0 ≤ α ≤ inf{w1, w2, . . .}}

and
C

a# = {((w1, w2, . . .), α) : 0 ≤ α < inf{w1, w2, . . .}}.
It is evident that (y∗, α) ∈ C

a∗ \ Ca#, where y∗(y) =
∑∞

i=1 yi and α = 1.
Note that similar interpretation on the interior presented in subsection 5.1 for

R2
+ with l1 norm is also valid for the nonnegative orthant of l1.
In this case we have:

{(y1, y2, . . .) :
∞∑

i=1

yi −
∞∑

i=1

|yi| > 0} = ∅,

thus, the relation (15) for the interior of a BP cone is not satisfied. Again, by
[7, Lemma 3.2 (ii)]), we have that the pair (y∗, β) belongs to Ca# for every
β ∈ (0, 1). Then by Theorem 4, the interior of BP cone C(y∗, β) with β ∈ (0, 1),
can be represented in the following form:

int(C(y∗, β)) = {(y1, y2, . . .) :
∞∑

i=1

yi − β

∞∑

i=1

|yi| > 0} 
= ∅

and C \ {0l1} ⊂ int(C(y∗, β)) for every β ∈ (0, 1).

6 Conclusions

In this paper, we present a representation theorem which establishes that ev-
ery cone of a real normed space satisfying condition (16) is representable as a
Bishop–Phelps cone and conversely, every BP cone of a reflexive Banach space,
representing given cone C satisfies this condition. This theorem is formulated
without any conditions neither on the existence of a base, nor on a base itself.
The condition (16) uses the given norm of the normed space (the presented the-
orem does not need to construct another norm for representation) and gives an
explicit formulation of how a given cone can be expressed in the form of a BP
cone. Note that such a representation theorem appears in the literature firstly.
Earlier a representation theorem was given by Petschke, who showed that every
nontrivial convex cone C with a closed and bounded base in a real normed space
is representable as a BP cone.

The paper studies two important properties of BP cones in relation with the
representation theorem. One of them is the interior of BP cones, the other one is
the separation property used in the nonlinear separation theorem for not neces-
sarily convex cones. The paper presents characterization theorems on interior of
BP cones. It has been shown that every BP cone satisfies the separation property
together with its ε conic neighborhood in Rn. This property is very important in
both theoretical investigations and practical applications in nonconvex analysis
(see e.g. [3,6,7,8,9,10,11,2]).
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Abstract. Bernstein polynomials on a simplex V are considered. The expan-
sion of a given polynomial p into these polynomials provides bounds for the
range of p over V . Bounds for the range of a rational function overV can easily
obtained from the Bernstein expansions of the numerator and denominator
polynomials of this function. In this paper it is shown that these bounds con-
verge monotonically and linearly to the range of the rational function if the
degree of the Bernstein expansion is elevated. If V is subdivided then the con-
vergence is quadratic with respect to the maximum of the diameters of the
subsimplices.

Keywords: Bernstein polynomial, simplex, range bounds, rational function,
degree elevation, subdivision.

1 Introduction

During the last decade, polynomial minimization over simplices has attracted the
interest of many researchers, see [1,2], [4], [6,7,8,9,10,11,12]. Special attention was
paid to the use of the expansion of the given polynomial into Bernstein polynomials
over a simplex, the so-called simplicial Bernstein expansion, [2], [4], [8], [10,11,12]. In
[10,11,12], R. Leroy gave results on degree elevation and subdivision of the underly-
ing simplex of this expansion. In [13] the Bernstein form of a polynomial over a box,
the so-called tensorial Bernstein form, was used to find an enclosure of the range of a
given (multivariate) rational function over a box. Convergence properties of this ten-
sorial rational Bernstein form were investigated in [5]. In this paper we present con-
vergence properties of the corresponding simplicial rational Bernstein form based
on Leroy’s results.

The organization of our paper is as follows: In the next section we briefly recall
the simplical polynomial Bernstein form and its basic properties, e.g., their range en-
closing property.We also provide additional properties like sharpness, monotonicity,
and convergence of the bounds which will be used later on. In Section 3 we present
our main results, viz. convergence properties of the simplicial rational Bernstein
form.

With the exception of the range enclosing property of the polynomial and rational
forms, we state the results in each case only for themaximumof the quantities under
consideration because the respective statements for the minimum are analogous.

c© Springer International Publishing Switzerland 2015 433
H.A. Le Thi et al. (eds.),Model. Comput. & Optim. in Inf. Syst.&Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_37
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2 Bernstein Expansion over a Simplex

In this section we present firstly the most important and fundamental properties of
the Bernstein expansion over a simplex we will employ throughout the paper.

We follow the notation and definitions that have been used in [11], [12]. Firstly, we
recall the definition of a simplex.

Definition 1. Let v0, . . . ,vn be n + 1 points of �n . The ordered list V = [v0, . . . ,vn ] is
called simplex of vertices v0, . . . ,vn . The realization |V | of the simplex V is the set of
�n defined as the convex hull of the points v0, . . . ,vn . The diameter of V is the length
of the largest edge of |V |.
Throughout our paper we will assume that the points v0, . . . ,vn are affinely indepen-
dent in which case the simplex V is non-degenerate. We will often consider the sim-
plex Δ := [0,e1, . . . ,en ], called the standard simplex, where 0 is the zero vector in �n
and ei is the i t h vector of the canonical basis of �n , i = 1, . . . ,n . This is no restriction
since any simplex V in �n can bemapped affinely uponΔ.

Recall that any vector x ∈ �n can be written as an affine combination of the ver-
tices v0, . . . ,vn withweightsλ0, . . . ,λn called barycentric coordinates. Ifx= (x1, . . . ,xn )∈Δ, then λ= (λ0, . . . ,λn ) = (1−∑ni=1xi ,x1, . . . ,xn ).

For every multi-index α = (α0, . . . ,αn ) ∈ �n+1 and λ = (λ0, . . . ,λn ) ∈ �n+1 we write
|α| :=α0+. . .+αn andλα :=

∏n
i=0λ

αi
i . The relation≤ on�n+1 is understood entrywise.

For α,β ∈�n+1 with β ≤α we define

�
α

β

�

:=
n∏

i=0

�
αi
βi

�

.

If k is any natural number such that |α|= k , we use the notation
�k
α

�
:= k !
α0!···αn ! .

Definition 2. [3, Section 8] Let k be a natural number. The Bernstein polynomials of
degree k with respect to V are the polynomials (Bk

α )|α|=k , where

Bk
α :=
�
k

α

�

λα. (1)

The Bernstein polynomials of degree k with respect to V take nonnegative values
on V and sum up to 1: 1=

∑
|α|=k Bk

α .
Let p be a polynomial of degree l ,

p (x) =
∑

|β |≤l
aβx

β .

Since the Bernstein polynomials of degree k forma basis of the vector space�k [X]
of polynomials of degree at most k , see, e.g, [10, Proposition 1.6], p can be uniquely
expressed as (l ≤ k )

p (x) =
∑

|α|=k
bα(p ,k ,V )Bk

α . (2)
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The numbers bα(p ,k ,V ) are called the Bernstein coefficients of p of degree k with
respect to V . If V =Δ, we obtain bymultinomial expansion the following representa-
tion of the Bernstein coefficients in terms of the coefficients of p (|α|= k )

bα(p ,k ,Δ)=
∑

β≤α

�α
β

�

�k
β

�aβ . (3)

It is easy to see from (3) that the Bernstein coefficients are linear with respect to p .

Definition 3. Let V = [v0, . . . ,vn ] be a non-degenerate simplex of �n and p ∈�l [X].
– The grid points of degree k associated to V are the points (|α|= k )

vα(k ,V ) :=
1

k
(α0 v0+ . . .+αn vn )∈�n . (4)

– The control points associated to p of degree k with respect to V are the points
( vα(k ,V ),bα(p ,k ,V ))∈�n+1.
The set of control points of p forms its control net of degree k .

– The discrete graph of p of degree k with respect to V is formed by the collection
( vα(k ,V ),p (vα(k ,V )))|α|=k .

In the sequel, (e0, . . . ,en ) denotes the standard basis of�n+1.

Proposition 1. [11, Proposition 2.7] For p ∈�l [X] the following properties hold.

(i) Interpolation at the vertices:

bkei = p (vi ), 0≤ i ≤ n ; (5)

(ii) convex hull property: the graph of p over V is contained in the convex hull of
its associated control points;

(iii) range enclosing property:

min|α|=k bα(p ,k ,V )≤ p (x)≤max|α|=k bα(p ,k ,V ),x∈V. (6)

The following proposition gives necessary and sufficient conditions when equal-
ity holds in (6).

Proposition 2. Let p ∈�l [X]. Then
max
x∈Δ p (x) =max|α|=k bα(p ,k ,Δ) (7)

if and only if

max|α|=k bα(p ,k ,Δ) =bα∗ (p ,k ,Δ) for some α∗ = k ei 0 , i 0 ∈ {0, . . . ,n} . (8)

A similar statement holds for the minimum.
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Proof. Without loss of generality we consider the standard simplex (of dimension
n). If the maximum is attained at an index k ei 0 then the statement holds trivially by
Proposition 1 (i). Conversely, suppose first that thebα(p ,k ,Δ) are equal for all |α|= k .
Then the statement is trivial. Otherwise not allbα(p ,k ,Δ) are equal. Suppose that the
maximum of p (x) occurs at x∗ ∈ Δ with barycentric coordinates λ∗ . If x∗ is in the
interior ofΔ then 0< Bk

α (λ
∗)< 1 for all |α|= k and hence

p (x∗) =
∑

|α|=k
bα(p ,k ,Δ)Bk

α(λ
∗)

< max|α|=k bα(p ,k ,Δ)
∑

|α|=k
Bk
α (λ
∗) =max|α|=k bα(p ,k ,Δ),

a contraction. If x∗ is lying on the boundary of Δ then it is contained in a subsim-
plex of dimension n−1,Δ′ say. The Bernstein coefficients of p overΔ′ coincide with
the respective coefficients contained in the part of the array (bα(p ,k ,Δ), |α| = k )
between the (extreme) coefficients associated with the vertices of Δ′ according to
(5). Now we can apply the arguments used above to Δ′. Continuing in this way of
examining all possible cases, we decrease the dimension of the simplices to be in-
vestigated step by step and arrive finally at the situation in which x∗ is a vertex of Δ
which completes the proof. �

Recall that the barycentric coordinates can be written in terms of the compo-
nents of the variable x ∈ �n . By multiplying both sides of (2) with 1 =

∑n
i=0λi =

(1−∑ni=1xi )+
∑n

i=1xi and rearranging the result we obtain, see also [10, Proposition
1.12],

p (x) =
∑

|β |=k+1
bβ (p ,k +1,V )Bk+1

β , (9)

where

bβ (p ,k +1,V ) =bα+el (p ,k +1,V ) =
1

k +1

n∑

i=0, i �=l
αi bα+el−ei (p ,k ,V )

+
αl +1

k +1
bα(p ,k ,V ). (10)

It is easy to see from (10) that the coefficients bβ (p ,k + 1,V ) are convex combi-
nations of the coefficients bα(p ,k ,V ). Hence the upper bounds decrease monotoni-
cally.

Proposition 3. Let p ∈�l [X]. Then it holds that

max|β |=k+1bβ (p ,k +1,V )≤max|α|=k bα(p ,k ,V ). (11)

In order to relate the control net and the discrete graph of a given polynomial, R.
Leroy [11], [12] suggested to use the so-called second differences which are given in
the following definition.
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Definition 4. Let V = [v0, . . . ,vn ] be a non-degenerate simplex of �n . For |γ| = k − 2
and 0≤ i < j ≤ n, define the second differences of p of degree k with respect to V as

�2bγ,i ,j (p ,k ,V ) := bγ+ei+ej−1 +bγ+ei−1+ej −bγ+ei−1+ej−1 −bγ+ei+ej ,
with the convention e−1 := en . The second differences constitute the collection

�2b (p ,k ,V ) := (�2bγ,i ,j (p ,k ,V ))|γ|=k−2, 0≤i<j≤n . (12)

The maximum of the second differences, i.e.,

||�2b (p ,k ,V )||∞ = max|γ|=k−2, 0≤i<j≤n |�2bγ,i ,j (p ,k ,V )|, (13)

will play an important role in the subsequent convergence analysis.
The following theorem gives the convergence of the control net to the discrete

graph of a given polynomial with respect to degree elevation. Since any simplex can
be mapped upon the standard simplex by an affine transformation, we present the
following statements only for Δ.

Theorem1. [12, Theorem 4.2] Let p ∈�l [X] and l < k . Then

max|α|=k |p (vα(k ,Δ))−bα(p ,k ,Δ)| ≤
n (n +2)l (l −1)

24(k −1) ||�2b (p , l ,Δ)||∞. (14)

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Let p ∈�l [X]. If l < k , then

max|α|=k bα(p ,k ,Δ)−max
x∈Δ p (x)≤ T1

k −1 , (15)

where

T1 :=
n (n +2)l (l −1)

24




�2b (p , l ,Δ)



∞ . (16)

Proof. Assume that the maximum of
�
bα(p ,k .Δ)
�
such that |α| = k is attained at

bα∗ (p ,k ,Δ). Then we have

max|α|=k bα(p ,k ,Δ)−max
x∈Δ p (x) ≤ bα∗ (p ,k ,Δ)−p (vα∗ )

=
�
�bα∗ (p ,k ,Δ)−p (vα∗ )��≤ T1

k −1 .
The second inequality follows since vα∗ is a grid point in Δ, while the last inequality
follows by using Theorem 1. �

Definition 5. Let V = [v0, . . . ,vn ] be a non-degenerate simplex of �n and v′ ∈�n . The
simplices V i generated by subdivision with respect to the point v′ are defined as

V i := [v0, . . . ,vi−1,v
′
,vi+1, . . . ,vn ], 0≤ i ≤n .
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Assume thatΔ has been subdivided with respect to a point v′ inΔ,Δ=V 1∪. . .∪Vσ
say. By using [12, Algorithm 4.6 (de Casteljau)] it is easy to see that the Bernstein
coefficients of p over any V i are contained in the interval [min|α|=k bα(p ,k ,Δ),
max|α|=k bα(p ,k ,Δ)], 1≤ i ≤σ, see [12, Remark 4.7]. The following theorem gives the
convergence of the control net to the discrete graph with respect to subdivision.

Theorem2. [12, Theorem 4.9] Let Δ = V 1 ∪ . . .∪V σ be a subdivision of the standard
simplex Δ and h be an upper bound on the diameters of the V i ’s. Then, for each i ∈
{1, . . . ,σ} and |α|= k , we have

|p (vα(k ,V i ))−bα(p ,k ,V i )| ≤ h2k
n2(n +1)(n +2)2(n +3)

576
||�2b (p ,k ,Δ)||∞.

The following corollary can similarly be proven as Corollary 1.

Corollary 2. Let p ∈�l [X],Δ=V 1 ∪ . . .∪Vσ be a subdivision of the standard simplex
Δ and h be an upper bound on the diameters of the V i ’s. Then

max|α|=k ,
i=1,...,σ

bα(p ,k ,V i )−max
x∈Δ p (x)≤ h2T2, (17)

where

T2 := k
n2(n +1)(n +2)2(n +3)

576




�2b (p ,k ,Δ)



∞ . (18)

3 The Simplicial Rational Bernstein Form

In this section we present our results in the case of rational functions. Throughout
this section we assume that p and q are polynomials of degree less than or equal
to l with Bernstein coefficients bα(p ,k ,Δ) and bα(q ,k ,Δ), |α| = k , respectively, over
the standard simplex Δ, where l ≤ k . We also assume that all Bernstein coefficients
bα(q ,k ,Δ) have the same sign and are non-zero (this implies that q (x) �= 0, for all
x ∈ Δ) and without loss of generality we may assume that all of them are positive.
For the negative case replace q by −q . The following theorem provides bounds for
the range of f := p

q
overΔ. We use the notation

bα( f ,k ,V ) :=
bα(p ,k ,V )
bα(q ,k ,V )

for all α, |α|= k .

Theorem3. [13, Theorem 3.1, Remark 6] The range of f overΔ can be bounded by

min|α|=k bα( f ,k ,Δ)≤ f (x)≤max|α|=k bα( f ,k ,Δ), x∈Δ. (19)

We now extend results from the polynomial to the rational case.

Theorem4. The equality holds in the right inequality in (19) if and only if

max|α|=k bα( f ,k ,Δ)= bα∗ ( f ,k ,Δ) for some α∗ = k ei 0 i 0 ∈ {0, . . . ,n} . (20)

A similar statement holds for the equality in the left inequality.
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Proof. Put M := maxx∈Δ f (x). Suppose that the equality holds in the right inequal-
ity of (19). Then there exists x∗ ∈ Δ and α∗ with |α∗| = k such that f (x∗) = M =
max|α|=k bα( f ,k ,Δ) = bα∗ ( f ,k ,Δ). Hence s (x) := p (x)−Mq (x) ≤ 0 for all x ∈ Δ,
bα(s ,k ,Δ) ≤ 0 for all α with |α| = k (by linearity of the Bernstein coefficients), and
s (x∗) = 0. By Propositions 1 (iii) and 2 there exists i 0 ∈ {0, . . . ,n} such that α∗ = k ei 0
and s (x∗) = bα∗ (s ,k ,Δ) = 0. By linearity, bα∗ (p ,k ,Δ) =Mbα∗ (q ,k ,Δ). Hence the first
implication follows. The converse holds by Proposition 1 (i).�

Theorem5. The upper bounds decreasemonotonically

max|β |=k+1bβ ( f ,k +1,Δ)≤max|α|=k bα( f ,k ,Δ). (21)

Proof. Put

M (k ) :=max|α|=k bα( f ,k ,Δ), and s (x) := p (x)−M (k )q (x).

Then by the linearity of the Bernstein coefficients, we have for all β with |β |= k +1

bβ (s ,k +1,Δ) ≤ max|β |=k+1(bβ (p ,k +1,Δ)−M (k )bβ (q ,k +1,Δ))

≤ max|α|=k (bα(p ,k ,Δ)−M (k )bα(q ,k ,Δ))≤ 0.

The second inequality follows by application of Proposition 3 to the polynomial s
and the last inequality is a consequence of the definition ofM (k ). This implies

bβ (p ,k +1,Δ)≤M (k )bβ (q ,k +1,Δ)

from which the result follows. �

Now we turn to the convergence of the bounds for the range of rational functions
provided by the Bernstein coefficients under degree elevation and subdivision.

Theorem6. For l < k it holds that

max|α|=k bα( f ,k ,Δ)−max
x∈Δ f (x)≤ A1

k −1 , (22)

where

A1 :=
n (n +2)l (l −1)

24B1
(||�2b (p , l ,Δ)||∞+max|α|=l |bα( f , l ,Δ)| ||�2b (q , l ,Δ)||∞) (23)

and B1 :=min|α|=l bα(q , l ,Δ).

Proof. The proof follows by using Corollary 1 and arguments similar to that given in
the proof of the following theorem. �

Remark 1. For any 0<εwe can guarantee that

max|α|=k bα( f ,k ,Δ)−max
x∈Δ f (x)<ε

if we choose A1

ε
+1< k .
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The last theorem shows that the convergence of the bounds to the range is only
linear (in k ) if we elevate the degree. Instead, if we subdivide Δ we obtain quadratic
convergence with respect to the maximum diameter of the subsimplices.

Theorem7. LetΔ=V 1∪ . . .∪Vσ be a subdivision of the standard simplexΔ and h be
an upper bound on the diameters of the V i ’s. Then we have

max|α|=k ,
i=1,...,σ

bα( f ,k ,V i )−max
x∈Δ f (x)≤ h2A2, (24)

where

A2 := k
n2(n +1)(n +2)2(n +3)

576B1
(||�2b (p ,k ,Δ)||∞+ B2||�2b (q ,k ,Δ)||∞), (25)

B1 is given in Theorem 6, and B2 :=
max|α|=k |bα(p ,k ,Δ)|

B1
.

Proof. Suppose that max |α|=k ,
i=1,...,σ

bα( f ,k ,V i ) is attained at bα∗ ( f ,k ,V i 0 ) with |α∗| = k ,

i 0 ∈ {1, . . . ,σ}. Then

max|α|=k ,
i=1,...,σ

bα( f ,k ,V i )−max
x∈Δ f (x)≤ bα∗ ( f ,k ,V i 0 )−max

x∈V i0
f (x)

≤
�
�
�
�

�
p (vα∗ (k ,V i 0 ))−bα∗(p ,k ,V i 0 )

−bα∗ ( f ,k ,V i 0 )
�
q (vα∗ (k ,V i 0 ))−bα∗(q ,k ,V i 0 )



q (vα∗ (k ,V i 0 ))

�
�
�
�

≤ |p (vα∗ (k ,V i 0 ))−bα∗(p ,k ,V i 0 )|+ |bα∗( f ,k ,V i 0 )||q (vα∗ (k ,V i 0 ))−bα∗ (q ,k ,V i 0 )|
|q (vα∗ (k ,V i 0 ))|

≤h2A2,

where the second inequality follows since vα∗ (k ,V i 0 ) is a grid point in V i 0 , the third
follows by using the triangle inequality, and the fourth is a consequence of Theorem
2 and the fact that the Bernstein coefficients of a polynomial over V i 0 are contained
in the interval spanned by the Bernstein coefficients overΔ.�

We conclude the paper with a lower bound on the number of subdivision steps
needed in order to obtain a tolerance ε > 0 between the maximum of the Bernstein
coefficients of the given rational function over the subsimplices and its maximum
overΔ. Before we present our result we need the following definition.

Definition 6. [12, Definition 5.5] Let V be a non-degenerate simplex of �n , S(V ) be a
subdivision of the simplex V , i.e., S(V ) = (V 1, . . . ,V σ)with V = V 1 ∪ . . .∪Vσ.
– By m (S(V )) the largest diameter of the subsimplices V i is denoted.
– The subdivision scheme S is said to have a shrinking factor C , 0 ≤ C ≤ 1, if for

every simplex V ,

m (S(V ))≤Cm (V ). (26)
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Theorem8. Let S be a subdivision schemewith shrinking factor C , 0<C < 1. Then

max|α|=k ,
i=1,...,σ

bα( f ,k ,V i )−max
x∈Δ f (x)<ε, (27)

if
ln ε

2A2

2lnC
<N, where A2 is given in Theorem 7.

Proof. For any 0< ε take N such that 2C 2NA2 < ε. By using Definition 6 and the fact
thatm (Δ) =



2 wemay choose h =



2CN . Hence by using Theorem 7 and 0<C < 1

the result follows. �
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Abstract. Roads are, probably the most important features appearing
in cartography, both digital and analog one. The necessary tasks, to
get accurate roads representation, were traditionally really expensive:
photogrammetry and in situ differential GPS, for example. Nevertheless
nowadays, the web allows people to register waypoints in their navigation
device, with low accuracy and offer them to the rest of community. This
way a lot of traces could be available to infer a mean road axis which,
probably to be much more precise than the individual ones. In this paper
we present three approaches in order to compute the representative axis
above mentioned: a) Fréchet distance concept, b) B-spline least square
fit and c) genetic algorithm spline-based. This paper shows that all our
approaches are suitable to be deployed in a web-based application in
order to support collaborative digital cartography. The dataset we used
in our study is composed of 149 traces captured by a low accuracy user
consumer GPS.

Keywords: geographic information, roads determination, Fréchet dis-
tance, homologous points, B-spline fitting, genetic algorithms.

1 Introduction

Linear features are the objects the more numerous one, around 80% in cartog-
raphy [21], and belonging to that category roads are the most appreciate by
user consulting cartography [17]. For this reason both cartographic agencies and
companies producer consider the roads are strategic objects where focus their at-
tention and where it is worth to invest money. Intelligent Transportation Systems
require high geometric and accurate attributes in their roads digital database
[9,11]. This required accuracy has been reached using different methodologies,

c© Springer International Publishing Switzerland 2015 443
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_38
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e.g. photogrammetry and LiDAR boarding airplanes, like the MTN25 maps in
Spain [12], or capturing directly the waypoints by precise differential GPS tech-
niques [8]. The approach to infer a representative axis from repeated large traces
set has been adopted by several authors [1,2,15,18]. The computation of a rep-
resentative axis from a large dataset of traces lies on the research area of data
mining [14]. Multiple GPS traces is the preferred dataset to be processed in the
axis road determination [2,13,19]. The approaches for deriving the representative
axis use cluster methods [8], lines fusion [19] and centroid-based computation
for every set of points included in a traverse plane to the axis [22].

Nowadays exists a new possibility to produce accurate cartographical roads
using the collaborative tools that are taken place on the world wide web. For
example, some collaborative projects like OpenStreetMap [10,16] allows to up-
load geographical information in both, vector and attribute categories, and on
the same time edit and improve the existing one on the web site. So, it would
be easy to implement a similar system to OpenStreetMap but where the users
just upload their waypoints and an application, which processes those data and
computes the representative axis for the corresponding road or street. In this
paper we present three algorithms to get the mentioned target: estimating the
representative axis.

2 Material and Methodology

Our dataset is composed of 149 traces from a piece of the JV-2227 road located
in Jaén (Spain). The piece road length is around 1460 m and its geometry is
composed by a series of bends (see Figure 1). We have selected this kind of
geometry because if we get a suitable fit in such a complex geometry, using our
methods, it would be expected that suitable results occur in any kind of roads.

The GPS model we used to capture the traces was a Columbus V-990 which
is a low-accuracy user consumer GPS. Although the Columbus had the ability
to perform in differential mode (until 5 m/CEP accuracy in the 95% of time)
we din’t activate it, in order to reproduce the worst scenery, which is the case
when a user takes waypoints with differential mode off (this is the more usual
way to proceed by user consumer). The worst positioning in the traces captured
was observed in the height component as we can see in Figure 1.

The three methodological processes we used for estimating the representative
axis from the dataset of traces were the following:

– Identification of homologous points based on the Fréchet distance concept
using the approach in [6].

– Least square B-spline fitting to a points cloud dataset.
– Genetic algorithmic in order to optimize nodes distribution in defining an

approximating B-spline curve.
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Fig. 1. Perspective view from Google Earth. The heights of all traces have been in-
creased in order to be observed over the ground.

2.1 Identification of Homologous Points Based on the Fréchet
Distance Concept

This method is based on identifying homologous points (Devogele criteria based
on the Fréchet distance concept) between two traces, and computing the mean
point for each couple of matched points, so that the set of new mean points built
the new representative mean axis for the two older traces. The workflow is as
follows:

1. Eliminating outliers (the traces that are far away from the central tendency),
after that we obtain a set of traces called TS (see Figure 2). We considered
three outliers based on the perception that they were ill-placed, i.e. we used
a qualitative criterion. Note that just three outliers were considered with
this criterion.

2. Matching homologous points between traces pairwise based on the discrete
Fréchet distance, and computing the mean point for each couple of matched
points. For each couple of traces compute their mean discrete Fréchet dis-
tance (mdFd).

3. Replacing in the TS the pair with the maximum mdFd by the mean Fréchet
trace (mFt). So, an updated TS is generated, which is diminished in an unit.

4. Repet from step 2 until only one trace remains in TS.
5. Smoothing the final result by an approximating B-spline curve.

The Fréchet distance is traditionally illustrated by a man and his dog linked
by a leash and everyone walking for a different and predefined way (trace). Both
may vary their speed, but backtracking is not allowed. The Fréchet distance
between both traces is the leash minimal length necessary to walk each one its
trace keeping linked by the leash.
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Fig. 2. Outlier (red color) to be deleted from the dataset

Considering two sets t1 = 〈t1,1, . . . , t1,n〉 and t2 = 〈t2,1, . . . , t2,m〉 of ordered
vertices, Devogele proposes in [6] the following recursive computation based on
the Euclidean distance dE :

dFd(t1, t2) = max

�
dE(t1,n, t2,m)

min

�
dFd (〈t1,1, t1,n−1〉 , 〈t2,1, t2,m〉) ∀n �= 1
dFd (〈t1,1, t1,n〉 , 〈t2,1, t2,m−1〉) ∀m �= 1
dFd (〈t1,1, t1,n−1〉 , 〈t2,1, t2,m−1〉)∀n �= 1,∀m �= 1

�Ǳ

This process continues recursively until both traces are reduced to both points
(〈t1,1, t2,2〉) and dFd (〈t1,1, t2,2〉) = dE(t1,1, t2,2).

Devogele proposes matching the homologous points from one of the dFd ways. The
dFd selected is the minimal path, defined as the case in which the average distances
between its pair (t1,i, t2,j) is minimal. A graphical example coming from [18] is shown
in Figure 3.

In the step 3, we combine all possible traces pairwise (ti and tk, 1 ≤ i, k ≤n) and
then we compute the mean Fréchet trace (tik). The tik vertices are the weighted mean
points between the corresponding homologous points (in Figure 4, tik is the red line).
The weight of each trace is equal to the number of traces that participated in its actual
shape. Supposing a trace tik reaches its actual status after 11 matches, then its weight
is 12. The value for the point between two matched points will be

plik =
pliwi + plkwk

wi + wk
,

where l is the l-th matched point in traces i and k; wi and wk are the weights for traces
i-th and k-th, respectively. In Figure 4, the weight for the green trace is 3 and for the
blue trace is 1.

The resulting mean axis is shown on Figure 5 where the inferred axis has red color.
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Fig. 3. Example of homologous points matched according to [18] (criteria based on
Fréchet distance)

Fig. 4. Weighted mean axis from homologous points based on the Fréchet distance

Fig. 5. Representative axis from the Fréchet distance approach
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2.2 Fitting a B-spline Curve to Points Cloud Dataset

In this approach, after eliminating the outliers the workflow is as follows:

First Stage

We divide each original trace ti (1 ≤ i ≤ nt, where nt is the number of traces) in the
same number of segments (m), so that each trace has the same number (n = m + 1)
of vertices (p), where pij is the j-th vertex of the i-th trace. We define the homologous
points set Hj = (p1,j , p2,j , . . . , pnt,j).

Fig. 6. Traces subdivided in equal number of segments in order to facilitate uniform
partition.

The corresponding points cloud derived from this step is shown in Figure 6.

Second Stage

Let H1,H2, . . . ,Hnt be the homologous points sets previously defined. For the case
under study, after eliminating outliers the number of traces is nt = 146, and the
number of points in each trace is equal to n = m + 1 = 300. To fit a parametrized
curve c : [0, 1] −→ R

3 to these nt × n points, we divide the interval [0, 1] into ν + 1
equal parts of length h := 1/ (ν + 1), ν ≥ 1. The knots ti := ih, 0 ≤ i ≤ ν + 1, define
a partition Δ of [0, 1]. Let Sk (Δ), k ≥ 2, the space of all functions s defined on [0, 1],
satisfying the following properties: a) s ∈ Ck−2 ([0, 1]), i.e. s admits derivative s(r)

for all r ≤ k − 2, and s(k−2) is a continuous function; b) on each interval (ti, ti+1),
0 ≤ i ≤ ν, s is a polynomial of degree ≤ k − 1. It is well-known [7] that Sk (Δ) is a
linear space of dimension equal to k + ν. To compute a good basis for Sk (Δ) some
auxiliary knots t−k+1 ≤ · · · ≤ t−1 ≤ 0 and 1 ≤ tν+2 ≤ · · · ≤ tν+k are needed. We
choose t−k+1 = · · · = t−1 = 0 and tν+2 = · · · = tν+k = 1. From the extended partition
Δ∗ := (ti)−k+1≤i≤ν+k, a good basis Bk := (Nj,k)−k+1≤j≤ν of Sk (Δ) can be defined in
terms of divided differences:

Nj,k (t) := (tj+k − tj) [tj , tj+1, . . . , tj+k] (· − t)k−1
+ ,
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where (·)k−1
+ stands for the truncated power of degree k − 1. We recall that

(z)k−1
+ :=

�
zk−1, if z ≥ 0,
0, otherwise.

The B-splines Nj,k ∈ Sk (Δ) are nonnegative on [0, 1] and positive on (tj , tj+k), and
form a partition of unity. It is well-known that the B-splines can be computed by the
recurrence relation

Ni,r (t) =
t− ti

ti+r − ti
Ni,r−1 (t) +

ti+r+1 − t

ti+r+1 − ti+1
Ni+1,r−1 (t) , 2 ≤ r ≤ k,

starting with

Ni,1 (t) =

�
1, ti ≤ t < ti+1,
0, otherwise.

However, Δ is a uniform partition and explicit expressions can be given for all B-splines
with support inside the interval [0, 1], i.e. N0,k, . . . , Nν+1−k,k. More explicitly [20],

Ni,k (t) = B
�
t

h
− i
�
, 0 ≤ i ≤ ν + 1− k,

where

B (t) :=
1

(k − 1)!

k�
�=0

	
k

�



(t− �)k−1

+

is the B-spline of order k and supported on [0, k] associated with the partition of the
real line induced by the integer numbers. The remaining B-splines can be computed
by the given recurrence relation or from the definition in terms of divided differences
taking into account the following properties:

1. If x0 �= xk, then

[x0, x1, . . . , xk] f =
[x1, . . . , xk] f − [x0, . . . , xk−1] f

xk − x0
;

2. For a enough regular function f , it holds

[
(k)

x0, ..., x0]f =
1

k!
f (k) (x0) .

The parametrized curve c can be constructed in the space Sk (Δ) from the basis Bk

and then

c (t) =

ν�
i=−k+1

QiNi,k (t)

for some control points Qi := (qi,1, qi,2, qi,3) ∈ R
3. It can be computed by least-squares

fitting, i.e. by minimizing the objective function

F (Q−k+1, . . . , Qn) :=

m�
j=0

nt�
i=1

‖c (τj)− pi,j‖2 ,

where the evaluation points τj are obtained by dividing the interval [0, 1] into m equal
parts of length λ := 1

m
, i.e. τj = jλ, 0 ≤ j ≤ m. This minimization problem results in

the solution of the corresponding normal equations.
This method provides the solution shown in the Figure 7. The fitted cubic B-spline

curve uses ν + 1 = 53 knots.
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Fig. 7. B-spline (blue color) fitted on the points cloud uniformly distributed

2.3 Optimization of Nodes Distribution in B-spline Using a
Multi-objective Genetic Algorithm

Previous section showed how to obtain the mean road axis by fitting a B-spline curve
over a fixed set of uniformly distributed knots. In this section, we will optimize the
selection of the knots used in the calculation of the B-spline curve (using the same
configuration as in Section 2.2) applying a multi-objective genetic algorithm (MOGA).

As the reader may infer, increasing the number of knots usually give a more precise
B-spline curve with the drawback of a slow computation, and vice versa. We argue that
if we carefully select knots in the proper positions we may be able to reduce the total
number of knots and provide an accurate solution simultaneously.

In this kind of problems where several objectives have to be simultaneously opti-
mized, there is usually not a single best solution solving the problem (i.e., being better
than the remainder with respect to every objective) as in single-objective optimiza-
tion. Instead, there is a set of solutions that are superior to the remainder when all the
objectives are considered, these solutions are known as non-dominated solutions [3,4].
A solution x is said to dominate another solution y using objective function vector
f = (f1, . . . , fk)) if and only if

∀i ∈ {1, . . . , k} , fi (x) ≤ fi (y) ∧ ∃i ∈ {1, . . . , k} : fi (x) < fi (y) ,

(supposing we are minimizing all objectives). Since none of the non-dominated solutions
is absolutely better than the other non-dominated solutions, all of them are equally
acceptable as regards to the satisfaction of all the objectives.

The multi-objective minimization process will be carried out by a MOGA as genetic
algorithms are well suited for this kind of problems [5]. Our MOGA is based on the well
known NSGA-II developed in [5]. In order to customize it for our particular problem
we used a variable-length chromosome composed of a set of real values that represent
the knots positions (e.g., chromosome [0, 0.5, 1] correspond to three knots, the first
and last knots are located at the beginning and end position in 3D of the road, while
the second knot is located in the middle of the road trajectory). We selected a simple
one-point crossover and several mutation operators: add a knot (increases the number
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Fig. 8. A non-dominated solution with 32 knots (blue line). B-spline obtained with a
fixed set of 53 uniform distributed knots is color-coded in red.

Fig. 9. A non-dominated solution with 35 knots (blue line). B-spline obtained with a
fixed set of 53 uniform distributed knots is color-coded in red.

of knots by 1 placing a new knot in a random position), remove a knot (decreases
the number of knots by 1 removing a knot randomly) and move a knot (changes the
position of a knot to the left of right randomly from the original position).

In our road problem, we will minimize k = 2 objectives: number of knots (f1) and
precision (f2). The latter objective is calculated as:

precision =

��
((x̂− x)2 + (ŷ − y)2 + (ẑ − z)2)

n

where n is the number of vertices dividing the original traces, x̂, ŷ and ẑ are the values
of the B-spline evaluation (over the selected knots in the chromosome) on the [0, 1]
interval dividing in n− 1 segments, for each dimension; and x, y and z are the values
in the database for each dimension.

Preliminary results using a population of 50 chromosomes and run for 500 genera-
tions show that solutions with an acceptable accuracy can be achieved with only 30
knots approximately (see Figure 8). In Figures 8 and 9 we can see a solution with
f1 = 32 and f2 = 0.057 and with f1 = 35 and f2 = 0.057, respectively. Notice that
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both f2 values are rounded to the millimeter, thus showing the same precision, but
they are actually not the same original value.

3 Discussion

Future work will be devoted to improve our methodology by including information
about the complexity of each area of the road. Also, we expect to improve the opti-
mization process for the knot positioning using local search strategies.
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Abstract. In this paper we propose a new approach based on Interval-
Newton and Interval-Krawczyk operators for solving non linear systems
of equations given in B-spline form. The proposed algorithm is mak-
ing great benefit of geometric properties of B-spline functions to avoid
unnecessary computations. Since B-spline functions can provide an ac-
curate approximation for a wide range of functions, the algorithm can
be made available for those functions by prior conversion/approximation
to B-spline basis. It has successfully been used for solving various multi-
variate nonlinear equations systems.

Keywords: Nonlinear System equations, Newton-Interval, Krawczyk,
Range computation, B-spline functions.

1 Introduction

Solving nonlinear systems of equations is critical in many research fields. Com-
puting all solutions of a system of nonlinear polynomial equations within some fi-
nite domain is a fundamental problem in computer-aided design, manufacturing,
engineering, and optimization. For example, in computer graphics, it is common
to compute and display the intersection of two surfaces. Also the fundamental
ray tracing algorithm needs to compute intersections between rays and primi-
tive solids or surfaces [14]. This generally results in computing the roots of an
equation or a system of equations, which in general case, is nonlinear. In global
optimization, for equality constraints problem minf(x) s.t. g(x) = 0, where g is
nonlinear and x belongs to a finite domain, we may seek a feasible initial point to
start a numerical algorithm. This requires to compute a solution of ‖g(x)‖ = 0.
In this paper we focus on finding all zeroes of a function f : x → f(x), where x
belongs to a n-dimensional box U , f(x) belongs to R

n and f is C1 over the inside
of U . In [10,11],[19], the authors investigated the application of binary subdi-
vision and the variation diminishing property of polynomials in the Bernstein
basis to eliciting the real roots and extrema of a polynomial within an inter-
val. In [3,4], the authors extended this idea to general non uniform subdivision
of B-splines. In [7], the authors use homotopy perturbation method for solving
systems of nonlinear algebraic equations. The approach of homotopy methods
consists in gradually transforming a starting system of equations whose solution

c© Springer International Publishing Switzerland 2015 455
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is known to the original system. The idea is that the solutions of the successive
systems converge to a solution of the original system. At each step, the cur-
rent system is solved by using a Newton-type method to find a starting solution
for the next stage system. Unfortunately, this approach may not converge to a
finite solution. In [12], a hybrid approach for solving system of nonlinear equa-
tions that combine a chaos optimization algorithm and quasi-Newton method
has been proposed. The essence of the proposed method is to search an initial
guess which should entry the convergent regions of quasi-Newton method. In the
approach presented by the authors in [9], a system of nonlinear equations was
converted to the minimization problem. Also they suggested to solve the min-
imization problem using a new particle swarm optimization algorithm. In [18],
the authors use recursive subdivision to solve nonlinear systems of polynomial
equations in Bernstein basis. They exploit the convex hull property of this basis
to improve the bisection step. In the same context, in [2], the authors propose
to use blending operators to rule out the no-root containing domains resulting
from recursive subdivision. In [6], the authors use recursive subdivision to solve
nonlinear systems of polynomial equations expressed in Bernstein basis. They
use a heuristic sweep direction selection rule based on the greatest magnitude of
partial derivatives in order to minimize the number of sub-boxes to be searched
for solutions. Again, in [16], the authors combine interval Newton operator and
subdivision for solving nonlinear system of polynomial equations in Bernstein
basis.

B-splines functions are commonly used as a low-computation cost extension of
polynomials [5]. For this reason, in [8], the author proposes a method to find all
zeroes of a univariate spline function using the interval Newton’s method. Unlike
the method proposed in [11], interval division is used to speed up bisection. In
previous work [20], we proposed a generalization of the method described in [8].
It results in a hybrid algorithm that combines recursive bisection and interval
Newton method. In this paper, we improve the latter by replacing the Newton
operator by the well known Krawczyk operator.

This paper is organized as follows : In section 2, we briefly recall the spline
function model. In section 3, the main properties of arithmetic interval are pre-
sented. In section 4, the new hybrid algorithm that combines divide-and-conquer
strategy and Krawzcyk operator is described. In section 5, some numerical com-
parisons are presented along with performance results. Finally, in the last section,
we conclude.

2 B-spline Functions

Let m and k be two integer numbers such that 1 ≤ k ≤ m + 1. Let U =
{u0, u1, u2, . . . , um+k} be a finite sequence of real numbers such that :

1. ui ≤ ui+1 ∀i = 0 . . .m+ k − 1,
2. ui < ui+k ∀i = 0 . . .m.

Under these hypotheses, the ui are called knots and U a knot vector. Then, for
any integer numbers r and i such that 1 ≤ r ≤ k and 0 ≤ i ≤ m + k − r, a
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B-spline function N r
i : R → R is defined as follows:

N1
i (u) =

{
0, for ui ≤ u < ui+1,
1, otherwise,

(1)

and for 2 ≤ r ≤ k, we have

N r
i (u) =

u− ui

ui+r−1 − ui
N r−1

i (u) +
ui+r − u

ui+r − ui+1
N r−1

i+1 (u). (2)

The functions u �→ Nk
i (u) for i = 0 . . .m satisfy the following properties :

1. Each B-spline Nk
i is finitely supported on [ui, ui+k[.

2. Each B-spline is positive in the interior of its support.
3. The {Nk

i }mi=0 form a partition of unity, i.e,
∑m

i=0 N
k
i (u) = 1 when u draws

[uk−1, um+1[.

Given a second knot vector V = {v0, v1, v2, . . . , vn+l}, a bivariate B-spline func-
tion f : R2 → R

2 can be defined by tensor product as follows :

f(u, v) =
m∑

i=0

n∑

j=0

cijN
k
i (u)N

l
j(v), (3)

where the coefficients cij are given in the two-dimensional space. u �→ f(u, v),
resp. v �→ f(u, v), is a piecewise polynomial of degree k− 1 in u, resp l− 1 in v.
This above definition can straightforwardly be generalized to higher dimensional
cases. Let us recall that f can be evaluated or subdivided by using Cox-De Boor
algorithm [3],[5] and that the partial derivatives of f are still expressed as B-
spline functions. From properties 2 and 3, it is obvious that, for any (u, v) in
[uk−1, um+1[×[vl−1, vn+1[, f(u, v) is a convex linear combination of the coeffi-
cients cij , thus the graph of f entirely lies in the convex hull of its coefficients
cij . Consequently, the ranges of f and of its derivatives can be calculated at low
computational cost [13]. This last property makes the B-spline functions very
attractive whenever interval arithmetics is involved.

3 Interval Arithmetic

The interval arithmetic was introduced by Moore[15]. Here we give a brief sum-
mary of the necessary definition of interval arithmetic. An interval number is
represented by a lower and upper bound, [a, b] and corresponds to a range of real
values [1][15]. Let I be a set of real intervals given by I = {[a, b]/a ≤ b, a, b ∈ R}.
The basic operations can be defined on I instead of floating point numbers by :

K = I � J = {a � b/a ∈ I and b ∈ J}

where � represents any operations +,−, ∗, /. The width of the interval I = [a, b]
is defined by w(I) = b − a. The midpoint of the interval I is the real number
mid(A) = (a+ b)/2.
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An ordinary real number can be represented by a degenerate interval [a, a].
The basic operations +,−, ∗, / are used on intervals instead of floating point
numbers. Let us remind these 4 operations : let a, b, c, d be 4 real numbers (finite
or infinite) such as a ≤ b and c ≤ d.

1. [a, b] + [c, d] = [a+ b, c+ d]
2. [a, b]− [c, d] = [a− d, b− c]
3. [a, b] ∗ [c, d] = [min(a ∗ c, a ∗ d, b ∗ c, b ∗ d),max(a ∗ c, a ∗ d, b ∗ c, b ∗ d)]

4.
[a, b]

[c, d]
=

⎧
⎪⎨

⎪⎩

]−∞,min(
a

c
,
b

d
)] ∪ [max(

a

d
,
b

c
),+∞[, if 0 ∈ ]c, d[

[a, b] ∗ [ 1
d
,
1

c
], otherwise.

We define the absolute value of a real interval [a, b] as the mignitude function,

that is : |[a, b]| =

⎧
⎨

⎩

a if 0 ≤ a,
−b if b ≤ 0,
0 otherwise.

Let us point out that ∗ and / dramatically increase the interval span. When
used repeatedly, they yield useless results. Associativity is not true with interval
operators + and ∗. Also the distributive multiplication law of real arithmetic is
not valid in general. Only the following so-called sub-distributive law holds in I,

∀I, J,K ∈ I, I ∗ (J +K) ⊆ I ∗ J + I ∗K.

An important and useful property for constructing the inclusion functions in
global optimization method is the so-called inclusion isotonicity property

∀I, J,K, L ∈ I, if I ⊆ K and J ⊆ L, then I � J ⊆ K � L.

Let I = (I1, I2, . . . , In)
T an n-dimensional interval I in I

n, the set of n-
dimensional interval column vectors. The midpoint of I is given by (mid(I1), . . . ,
mid(In)) and the width of I is given by maxni=1 w(Ii).

Definition 1. A function F : In → I is called an inclusion function of f : Rn →
R, provided {f(x)/x ∈ X} ⊆ F (X) for all box X ∈ I

n within the domain of f .

Definition 2. Let f : X → R
n where X ∈ I

n , and let x ∈ X, Jf (x) denote
the Jacobian matrix of f at x, then J(X) is a natural interval extension of the
Jacobian matrix Jf (x) to X, that is, each x is replaced by X in Jf (x).

Different algorithms for inverting an n×n interval matrix M might not find the
same matrix M−1.

4 Root-Finding Algorithm in B-spline Form

In [8], the author proposed an algorithm to find all roots of a spline function f
over an interval I in the one dimensional case. Starting from the interval I, the
algorithm builds a binary tree of searching intervals.



Interval Analysis and Solving Bivariate Systems in B-spline Form 459

4.1 Multivariate Interval Newton Method

In the n-dimensional case, the general form of interval Newton method is given
by :

I1 = I0 ∩N(I0); with N(I0) = mI0 − [f ′(I0)]
−1

f(mI0), (4)

where I0 denotes the current searching hyper-interval, I1 denotes the next search-
ing hyper-interval, and [f ′(I0)]

−1 is n× n interval matrix resulting from calcu-
lating the inverse of the interval jacobian matrix of f over I0. Meaning [f ′(I0)]
is such as if x lies in I0, all the elements of the jacobian matrix [f ′(x)] belong to
the matching interval-elements of the matrix [f ′(I0)]. Accordingly, for all x in
the interval I0, all the elements of the inverse of the jacobian matrix belong to the
matching elements of the n×n interval matrix [f ′(I0)]

−1. The critical step of the
equation (4) is the computation of the inverse of the jacobian matrix. Obviously,
the algorithm to be used to compute the inverse of [f ′(I0)] is the Gauss-Jordan
algorithm, keeping in mind that every operation is done in interval arithmetic.
The jacobian matrix might not be invertible. In the one dimensional version,
this situation was used to split the searching interval. However for n ≥ 2, if the
Jacobian is not invertible, the method fails.

4.2 Multivariate Interval Krawczyk Method

Let assume that, during the elimination process of the Gaussian algorithm ap-
plied to a nonsingular n × n interval matrix f ′(I0) and an n interval vector
f(mI0), no division by an interval containing zero occurs. The interval Newton
method may not converge and its feasibility is not guaranteed. Indeed, even if
the interval arithmetic evaluation f ′(I0) of the Jacobian contains no singular
matrix, (f ′(I0)

−1 ∗ f(mI0)) can in general only be computed if the width of the
interval I0 is sufficiently small. It is why we introduce the Krawczyk operator
instead of the Newton operator:

K(I0) = mI0 − Cf(mI0) + (Id− C ∗ [f ′(I0)])(I0 −mI0), (5)

where C a nonsingular real matrix close to the inverse of the real Jacobian matrix
computed at some point in I0 and where mI0 is the center of I0. Generally C
is chosen as the inverse of the center of the Jacobian matrix over I0. Therefore
equation (4) can be replaced by the following :

I1 = I0 ∩K(I0). (6)

4.3 Range Function and Jacobian Matrix Computing in B-spline
Form

A simple way to verify that an interval can be eliminated as not containing any
root is to use interval extensions for function range testing. Consider a search for
solutions of f(x) = 0 in I0. If an interval extension F (x) of f(x) over I0 does not



460 D. Michel and A. Zidna

contain zero, that is, 0 /∈ F (X), then the range of f(x) over I0 does not contain
zero, and it is not possible for I0 to contain a solution of f(x) = 0. Thus, I0 can
be eliminated from the search space.

Let us point out that the convex hull property of B-spline function makes
the filtering test straightforward. Moreover, In B-spline form, the computation
of the interval extension of f(x) (i.e F (I0) ) is straightforward. Likewise, the
computation of the Jacobian matrix F ′(I0) can easily be performed since the
derivatives are still expressed in B-spline form.

4.4 Proposed Hybrid Algorithm

In multidimensional case, when the jacobian matrix is not invertible, the Gauss-
Jordan algorithm produces a matrix of which the interval elements have infinite
bounds which makes the results useless. Therefore in multidimensional case, we
use recursive bisection to separate the roots. The Gauss-Jordan method is only
used when the jacobian matrix is invertible.

Let {I10 , I20 , . . . , Iα0 }, be a partition of I0, we propose the following hybrid
iterations instead of the previous equations (4) and (6) :

α⊔

j=1

Ij1 =

α⊔

j=1

(
Ij0 ∩N(I0)

)
, or

α⊔

j=1

Ij1 =

α⊔

j=1

(
Ij0 ∩K(I0)

)
. (7)

The above formula is only used when the jacobian matrix is invertible, otherwise
it is replaced by a simple bisection :

α⊔

j=1

Ij1 =

α⊔

j=1

Ij0 . (8)

In the following, either α = 2 or α = 2n. In the former option, I0 is split along
the widest component. In the latter, I0 is equally split along every direction.
The general algorithm for solving nonlinear systems in B-spline form with the
interval Krawczyk method is described by the method Solve in Algorithm 1
while the specific hybrid iteration task is performed by the method Succ in
Algorithm 2. For inverting the n × n interval jacobian matrix, we propose to
use the Gauss-Jordan which has arithmetic complexity of O(n3). The numerical
precision of the elements of the resulting matrix is improved by using total pivot.
This strategy implies, at each step, to seek the input matrix element of greatest
mignitude [15].

5 Numerical Results

The proposed algorithm has been implemented in C + +, using finite precision
floating point numbers. On the next few examples, we compare the Newton
form and the Krawczyk form of the proposed algorithm, for α = 2 and for
α = 2n. In this purpose, several various functions have been selected in the cases
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Algorithm 1. Recursive root finding algorithm

Function Solve(I0,f)
Input: I0 : an n-hyperinterval, f : I0 → R

n

Output:A list of hyper-intervals, each of them contains one solution
begin

If I0 = ∅ or (0, ..., 0) /∈ f(I0) Return ∅
ElseIf | I0 |≤ ε Return I0
Else begin

(* Let L be a list of hyper-intervals of dimension n *)
L ← Succ(I0, f)
Return ∪l∈Lsolve(l, f)

end

end

Algorithm 2. Krawczyk iteration algorithm

Function Succ(Input I0 : an n-hyperinterval,f : I0 → R
n): Output A list of

hyper-intervals
begin

try
begin

(* Let J be the jacobian matrix *)
J ← f ′(I0)
(* Let L be the list of α hyper-intervals resulting from bisection of I0 *)
L ← dichotomie(I0)
R ← K(I0)
return �L∈L(L ∩R)

end
catch(Exception)
begin

(* Capture exception produced when computing the C matrix fails *)
return L

end

end

n = 2, 4 and 5. For performance comparisons, the following criteria are taken
in consideration : the number of iterations, the CPU-time and the number of
hyper-intervals explored.

Example 1. In this example we calculate the intersection points between a
hyperbola and an ellipse given by the following equations :{
−2.077u2 − 2.077v2 + 5.692uv− 5.384u− 5.384v + 17.846 = 0 (Hyperbola)
23.692u2 + 23.692v2 − 41.23uv− 21.538u− 21.538v+ 39.385 = 0 (Ellipse)

The two curves intersect at four points : (1.5, 2.5), (2.5, 1.5), (4.5, 5.5), (5.5, 4.5).
The equations have been translated in B-spline form through quasi-interpolation
techniques [13],[17]. The resulting function is a bi-cubic B-spline with 10 × 10



462 D. Michel and A. Zidna

Fig. 1. Sequences of sub-domains explored

control points. Fig. 1 shows the four sequences of sub-domains converging to-
wards the found roots.

Example 2. In this example, the algorithm has been used to find the extrema of
a functional f(u, v). Here f is bivariate B-spline function of degree 2× 2 defined
by a grid of 5× 5 control points (real numbers) over uniform and clamped knot
vectors. The grid is [(0,−1, 0, 1, 0)(−1,−2, 0, 2, 1)(0, 0, 0, 0, 0)(1, 2, 0,−2,−1)

(0, 1, 0,−1, 0)]. The system of equations to be solved is
∂f

∂u
= 0 and

∂f

∂v
= 0. The

functional has 4 extrema located at (2.466, 2.466), (0.534, 0.534), (2.466, 0.534),
(0.534, 2.466), and a saddle point at (1.5, 1.5).

Example 3. In this example, we compute the intersection of a pyramidal surface
and a line (see Fig. 2). The surface is a biquadratic patch defined by 25 × 25
control points.

Example 4. In this example, eigenvalues and eigenvectors of a 3× 3 matrix are
computed. Given a real d× d square matrix A, let λ be an eigenvalue of it and
v a unit eigenvector associated to λ.

(λ,v) is then a solution of the (d+ 1)× (d+ 1) non linear system :
{
Av − λv = 0
‖v‖2 − 1 = 0

(9)

which yields a B-Spline function of degree 1 × 2 × 2 × 2 over a grid de-
fined by 2 × 3 × 3 × 3 control points. The starting searching hyper-interval is
[−‖A‖∞, ‖A‖∞]× [−1, 1]× · · · × [−1, 1]. A is chosen as A = P ×D × P−1 with

D =

⎛

⎝
4 0 0
0 −2 0
0 0 7

⎞

⎠ and P =

⎛

⎝
−1 11 2
4 0 −5

−13 9 −3

⎞

⎠
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Fig. 2. Computation of the intersection of a pyramidal B-Spline function and a line.
The solution are located at : (21.5, 1.5), (19.5, 3.5), (15.5, 7.5), (13.5, 9.5), (9.5, 13.5),
(7.5, 15.5), (3.5, 19.5), (1.5, 21.5)

Table 1. Performances comparison betwen the proposed Krawczyk algorithm and the
Newton algorithm

Problem and dimension n Nsub Interval Newton method Interval Krawczyk method
Niter time Nexplored Niter time Nexplored

Hyperbola/Ellipse Intersection 2 16 1 235 16 0 203
n = 2 2n 11 0 110 11 0 110

Functional extrema 2 8.8 0 63 9.6 0 79
n = 2 2n 6.6 0 44 7.4 0 54

Line/surface Intersection 2 16 1 311 16 1 315
n = 2 2n 11 1 147 11 0 135

Eigenvalues computation 2 19,33 30 3223 15,33 8 937
n = 4 2n 9,5 11 415 9 10 392

Eigenvalues computation 2 41 46 601619 20,5 1 7349
n = 5 2n 13,75 7 40297 10,44 2 17601

Example 5. Likewise, in this example, the eigen values and the eigen vectors of a
4× 4 matrix are computed. Though, this time, the resulting function is directly
expressed as a quadratic polynomial.

According to the numerical results summarized in table1, we can make the
following observations : For n ≤ 2, the performances of Newton operator and
Krawczyk are similar. Beyond n ≥ 4, the performances of Newton operator de-
teriorate much faster than Krawczyk operator performances. In the same way,
we observe that it is more efficient to associate α = 2 with Krawczyk whereas
it is better to associate α = 2n with Newton method. This is explained by the
fact that the jacobian interval matrix inverse is generally only available for tiny
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hyper-intervals. The combination Krawczyk operator with α = 2 is the overall
best solution amongst all.

6 Conclusion

In this paper we have proposed a new approach for solving a nonlinear system
of equations in B-spline form over a finite hyper-interval. It is based on Inter-
val Krawczyk Method and recursive subdivision. The proposed hybrid method
strongly exploits the B-spline properties such as convex hull and diminishing
variation features. The numerical results show the efficiency of the proposed
method. Further work is to apply this algorithm to surface-surface intersection
problems.
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Abstract. Many problems in systems and control engineering can be
formulated as constrained optimization problems with multivariate poly-
nomial objective functions. We propose algorithms based on polyno-
mial B-spline form for constrained global optimization of multivariate
polynomial functions. The proposed algorithms are based on a branch-
and-bound framework. We tested the proposed basic constrained global
optimization algorithms by considering three test problems from systems
and control. The obtained results agree with those reported in literature.

Keywords: Polynomial B-spline, Global optimization, Polynomial
optimization, Constrained optimization.

1 Introduction

Global optimization of nonlinear programming problems (NLP) is the study of
how to find the best (optimum) solution to a problem. The constrained global
optimization of NLPs is stated as follows:

min
x∈x

f(x) (1)

s.t. gi(x) ≤ 0, i = 1, 2, ..., p (2)

hj(x) = 0, j = 1, 2, ..., q (3)

Branch-and-bound framework is commonly used for solving constrained global
optimization problems [13]. For instance, several interval methods [14–17] use
this framework to find the global minimum of a given NLP. In this work, we
propose B-spline based algorithms for solving nonconvex nonlinear multivariate
polynomial programming problems in systems and control, where the objective
function f and constraints (gi & hj) are limited to being polynomial functions.
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The polynomial objective function and constraints in power form are trans-
formed into the polynomial B-spline form [2–4]. Then, the B-spline coefficients
provide a bound on the range of the objective function and constraints.

In this paper, we investigate three applications of the basic constrained global
optimization algorithm: the robust stability analysis problem, the minimum dis-
tance problem, and the domain of attraction problem. These problems are re-
duced to strict inequalities (or equations) involving multivariate polynomials and
solved using the proposed algorithm for constrained global optimization.

The merits of the proposed approach are: (i) it avoids evaluation of the ob-
jective function and constraints; (ii) an initial guess to start optimization is not
required; only an initial search box bounding the region of interest; (iii) it guar-
antees that the global minimum is found to a user-specified accuracy, and (iv)
prior knowledge of stationary points is not required.

2 Multivariate B-spline Form

Let s ∈ N be the number of variables and x = (x1, x2, ..., xs) ∈ R
s. A multi-index

I is defined as I = (i1, i2, ..., is) ∈ (N ∪ {0})s and multi-power xI is defined as
xI = (xi1

1 , xi2
2 , ..., xis

s ). Given a multi-index N = (n1, n2, ..., ns) and an index r,
we define Nr,−l = (n1, ....., nr−1, nr − l, nr+1, ...., ns), where 0 ≤ nr − l ≤ nr.
Inequalities I ≤ N for multi-indices are meant componentwise, i.e. il ≤ nl, l =
1, 2, ..., s. With I = (i1, ..., ir−1, ir, ir+1, ..., is) we associate the index Ir,l given
by Ir,l = (i1, ..., ir−1, ir + l, ir+1, ..., is), where 0 ≤ ir + l ≤ nr. A real bounded
and closed interval xr is defined as xr ≡ [xr,xr] := [inf xr = minxr, sup xr =
maxxr] ∈ IR, where IR denotes the set of compact intervals. Let widxr denotes
the width of xr, that is widxr := xr − xr.

We will follow the procedure by Lin and Rokne [2, 3] to obtain the B-spline
representation of a multivariate polynomial

p(x) =
∑

I≤N

aIx
I , x ∈ R

s, (4)

of degree N, in order to derive bounds for its range over an s-dimensional box
x = (x1, x2, ..., xs). Firstly, we consider a univariate polynomial

p (x) :=

n∑

t=0

atx
t, x ∈ [a, b] , (5)

to be expressed in terms of the B-spline basis of the space of polynomial splines
of degree m ≥ n (i.e. order m + 1). In the following, we give some preliminary
results about the construction of B-spline bases. First of all, we consider the
following uniform grid partition

u = {x0 < x1 < . . . < xk−1 < xk}

of the interval I = [a, b], where xi = a + ih, 0 ≤ i ≤ k, and h = (b − a)/k. Let
Pm be the space of polynomials of degree at most m. Then the space of splines
of degree m and class Cm−1 on [a, b] associated with u is defined by
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Sm(I,u) = {S ∈ Cm−1(I) : S|[xi, xi+1] ∈ Pm, i = 0, ..., k − 1}.

It is well known that Sm(I,u) is a linear space of dimension equal to k + m
[25]. In order to construct a basis of locally supported splines for Sm(I,u), some
auxiliary knots x−m ≤ · · · ≤ x−1 ≤ a and b ≤ xk+1 ≤ · · · ≤ xk+m are needed.
Taking into account that u is a uniform partition, we choose xi := a + ih for
i ∈ {−m, . . . ,−1} ∪ {k + 1, . . . ,m+ k}.

x−m ≤ · · · ≤ x−1 ≤ a = x0 < x1 < · · · < xk−1 < xk = b ≤ xk+1 ≤ · · · ≤ xk+m.

From the extended partition, a basis
(
Nm

j

)
−m≤j≤k−1

of Sm(I,u) can be defined

in terms of divided differences:

Nm
j (x) := (xj+m − xj) [xj , xj+1, . . . , xj+m+1] (· − x)

m
+ ,

where (·)m+ stands for the truncated power of degree m. It is easy to prove that

Nm
j (x) = Ωm

(
x− a

h
− j

)
, −m ≤ j ≤ k − 1,

where

Ωm (x) :=
1

m!

m+1∑

�=0

(−1)
�

(
m+ 1

�

)
(x− �)

m
+

is the B-spline of degree m associated with the partition of the real line induced
by the integer numbers and supported on the interval [0,m+ 1]. The B-splines
can be computed by the recurrence formula

Nm
i (x) = γi,m(x)Nm−1

i (x) + (1− γi+1,m(x))Nm−1
i+1 (x),m ≥ 1,

where

γi,m(x) =

⎧
⎨

⎩

x− xi

xi+m − xi
, if xi ≤ xi+m,

0, otherwise,

and

N0
i (x) :=

{
1, if x ∈ [xi, xi+1),
0, otherwise.

It is well known that the set {Nm
i }k−1

i=−m is a basis for Sm(I,u) that satis-
fies interesting properties; for example, each Nm

i is positive on its support and
{Nm

i }k−1
i=−m form a partition of unity.

On the other hand, as Pm ⊂ Sm(I,u), the power basis functions {xr}mr=0 can
be expressed in terms of B-splines through the relations

xt =
k−1∑

j=−m

πt
jN

m
j (x), t = 0, . . . ,m, (6)



470 D. Gawali, A. Zidna, and P.S.V. Nataraj

where πt
j are the symmetric polynomials given by

πt
j =

⎛

⎝
∑

j+1≤j1<···<jt≤j+m

xj1xj2 . . . xjt

⎞

⎠ /

(
m

t

)
, for t = 0, 1, . . . ,m.

By substituting (6) into (5) we get

p(x) =

n∑

t=0

at

k−1∑

j=−m

π
(t)
j Nm

j (x) =

k−1∑

j=−m

[
n∑

t=0

atπ
(t)
j

]
Nm

j (x) =

k−1∑

j=−m

djN
m
j (x),

(7)
where

dj �
n∑

t=0

atπ
(t)
j . (8)

Now, we derive the B-spline representation of a given multivariate polynomial

p (x1, x2, ..., xs) =

n1∑

i1=0

...

ns∑

is=0

ai1...isx
i1
1 ...xis

s =
∑

I≤N

aIx
I , (9)

where I := (i1, i2, ..., is), and N := (n1, n2, ..., ns). By substituting (6) for each
xt, (9) can be written as

p (x1, x2, ..., xs) =

n1∑

i1=0

...

ns∑

is=0

ai1...is

k1−1∑

j1=−m1

π
(i1)
j1

Nm1
j1

(x1)...

ks−1∑

js=−ms

π
(is)
js

Nms
js

(xs)

=

k1−1∑

j1=−m1

...

ks−1∑

js=−ms

(
n1∑

i1=0

...

ns∑

is=0

ai1...isπ
(i1)
j1

....π
(is)
js

)

Nm1
j1

(x1) ...N
ms
js

(xs)

=

k1−1∑

j1=−m1

...

ks−1∑

js=−ms

dj1...jsN
m1
j1

(x1) ...N
ms
js

(xs) ,

(10)

we have expressed p as

p(x) =
∑

I≤N

dI(x)N
N
I (x), (11)

with the coefficients dI(x) given by

dj1,...,js =

n1∑

i1=0

...

ns∑

is=0

ai1...isπ
(i1)
j1

....π
(is)
js

. (12)

The B-spline coefficients are collected in an array D(x) = (dI(x))I∈S , where
S = {I : I ≤ N}. This array is called a patch. We denote S0 as a special subset
of the index set S comprising indices of the vertices of this array, that is

S0 := {0, n1 + k1 − 1} × {0, n2 + k2 − 1} × ...× {0, ns + ks − 1} .

The following lemma describes the range enclosure property of the B-spline
coefficients.
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Lemma 1. [2, 3],[18, 19] Let p be a polynomial of degree N and let p̄(x) denote
the range of p on the given domain x. Then, for a patch D(x) of B-spline coef-
ficients it holds

p̄(x) ⊆ [minD(x),maxD(x)]

Obtaining the B-spline coefficients of multivariate polynomials by transforming
the polynomial from power form to B-spline form, provides an enclosure of the
range of the multivariate polynomial p on x. Then by Lemma 1, the minimum
and the maximum values of B-spline coefficient provide lower and upper bounds
for the range of polynomial p. This range enclosure will be sharp if and only
if min(dI(x))I∈S (respectively max(dI(x))I∈S ) is attained at the indices of the
vertices of the array D(x), as described in following lemma,

Lemma 2. [20] Let p be a polynomial of degree N and let p̄(x) = [a, b]. Then
a = min

0≤I≤N
dI(x) iff min

0≤I≤N
dI(x) = min

I∈S0

dI(x)

and
b = max

0≤I≤N
dI(x) iff max

0≤I≤N
dI(x) = max

I∈S0

dI(x).

Based on Bernstein coefficients range enclosure proofs [20], the proofs of Lemma
1 and Lemma 2 are given in [5].

3 Basic B-spline Constrained Global Optimization
Algorithm Summary

The basic B-spline algorithm for constrained global optimization of multivari-
ate nonlinear polynomials [6], is similar to the one described in [21, 22]. The
algorithm can be summarized as follows.

Step 1: The basic algorithm uses the polynomial coefficients array of the objec-
tive function, Ao, the inequality constraints,Agi and the equality constraints,
Ahj . These coefficient arrays are stored in a cell structure Ac.

Step 2: A cell structure Nc, contains degree vectors N, Ngi and Nhj , i = 0, . . . , p,
j = 0, . . . , q, where these degree vector represents the degree of each variable
occurring in objective function, the inequality constraints and the equality
constraints respectively.

Step 3: The vector degree is used to compute the B-spline segment number,
as the B-spline is constructed with the number of segments equal to order
of the B-spline plus one. The vectors Ko, Kgi , and Khj are computed using
degree vectors N, Ngi and Nhj asK = N+2, and stored in a cell structureKc.

Step 4: Then we compute the B-spline coefficients of the objective, inequality
and equality constraint polynomials on the initial search box x. We store
them in arrays Do(x),Dgi (x) and Dhj (x), respectively. The algorithm in [6]
is suggested for the computation of B-spline coefficients.
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Step 5: We initialize the current minimum estimate p̃ to the maximum B-spline
coefficient of the objective function on x, i.e. p̃ = maxDo(x).

Step 6: Next, we initialize a flag vector F with each component to zero as F :=
(F1, . . . , Fp, Fp+1, . . . , Fp+q) = (0, . . . , 0). The flag vector F is used to make
the algorithm more efficient. Consider, ith inequality constraint is satisfied
for x in a the box b, i.e. gi(x) ≤ 0 for x ∈ b. Then there is no need to check
again gi(x) ≤ 0 for any subbox b0 ⊆ b. The same holds true for hj(x). To
handle this information, we use flag vector F = (F1, . . . , Fp, Fp+1, . . . , Fp+q),
where the components Ff , takes the value 0 or 1, as follows
a) Ff = 1 if the f th inequality or equality constraint is satisfied for the box.
b) Ff = 0 if the f th inequality or equality constraint has not yet been verified

for the box.
Step 7: Initialize a working list L with the item L ← {x, Do(x), Dgi (x),

Dhj (x), F}, and a solution list Lsol to the empty list.

Step 8: Sort the list L in descending order of (minDo(x)).

Step 9: Start iteration. If L is empty go to Step 14. Otherwise pick the last item
from L, denote it as {b, Do(b), Dgi(b), Dhj (b), F}, and delete this item en-
try from L.

Step 10: Perform the cut-off test. As mentioned in Lemma 2, the minimum
and maximum B-spline coefficients provide the range enclosure of the func-
tion. Let p̃ be the current minimum estimate, and {b, D(b)} be the current
item for processing, for which p̃ ≤ minD(b). Then, this item surely can-
not contain the global minimizer and can be discarded. Discard the item
{y, Do(y), Dgi (y), Dhj (y), F} if minDo(y) > p̃ and return to Step 9.

Step 11: Subdivision decision. If

(wid b) & (maxDo(b)−minDo(b)) < ε

then add the item {b,min D0(b)} to Lsol and go to step 9. Else go to Step
12. Here ε is a tolerance number.

Step 12: Generate two sub boxes. Choose the subdivision direction along the
longest direction of b and the subdivision point as the midpoint. Subdivide
b into two subboxes b1 and b2 such that b = b1 ∪ b2.

Step 13: For r = 1, 2

1. Set F r := (F r
1 , . . . , F

r
p , F

r
p+1, . . . , F

r
p+q) = F

2. Compute the B-spline coefficient arrays of objective and constraints poly-
nomial on the box br and compute corresponding B-spline range enclo-
sure Do(br),Dgi(br) and Dhj (br) for objective and constraints
polynomial.
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3. Set p̃local = min(Do(br)).
4. If p̃local > p̃ go to sub Step 9.
5. for i = 1, . . . , p if Fi = 0 then

(a) If Dgi(br) > 0 then go to sub Step 6.
(b) If Dgi(br) ≤ 0 then set F r

i = 1.

6. for j = 1, . . . , q if Fp+j = 0 then

(a) If 0 /∈ Dhj (br) then go to sub Step 9.
(b) If Dhj (br) ⊆ [−εzero, εzero] then set F r

p+j = 1.

7. If F r = (1, . . . , 1) then set p̃ := min(p̃,max(Do(br))).
8. Enter {br, Do(br), Dgi(br), Dhj (br), F

r} into the list L.
9. End (of r-loop)

Step 14: Set the global minimum to the current minimum estimate, p̂ = p̃.

Step 15: Find all those items in Lsol for which minDo(b) = p̂. The first entries
of these items are the global minimizer(s) z(i).

Step 16: Return the global minimum p̂ and all the global minimizers z(i) found
above.

4 Numerical Results

In this section, we give three applications of the basic constrained global opti-
mization algorithm: the robust stability analysis problem, the minimum distance
problem, and the domain of attraction problem. These problems are reduced to
strict inequalities (or equations) involving multivariate polynomials and solved
using the basic algorithms for constrained global optimization. The computa-
tions are done on a PC Intel i3-370M 2.40 GHz processor, 6 GB RAM, while
the algorithms are implemented in MATLAB [24]. An accuracy ε = 10−6 is pre-
scribed for computing the global minimum and minimizer(s). The time in second
required to solve the problems is reported.

1. Robust Stability Analysis
It is well known that the roots of the closed loop characteristic equation
determine the stability of the closed loop system. The characteristic equation
with parameter uncertainties can be written as a polynomial equation, and
the uncertainty bounds can be considered as constraints for the system. In
linear system, robust stability analysis means finding the region of parameter
uncertainties for which controller stabilize any disturbance in the system
[7]. Consider GP (s) and GC(s) are the transfer functions of the plant and
controller. The characteristic equation of the feedback system is

det(I −GP (s)GC(s)) = 0.

Now consider that there is parametric uncertainty, with q as the vector of
uncertain parameters. Then, the uncertain transfer functions for the plant
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and controller are GP (s,q) and GC(s,q) respectively. The characteristic
equation with this uncertainties is given by

det(I −GP (s,q)GC(s,q)) = 0.

This determinant can be expanded as a polynomial

F (s,q) = an(q)s
n + an−1(q)s

n−1 + ...+ a1(q)s+ a0(q),

where the coefficients ai(q), i = 0, . . . , n are typically multivariate polyno-
mial functions. A stability margin km can be defined as

km(jω) = inf{k : F (jω,q(k)) = 0, ∀ q ∈ Q}.

Robust stability margin is then guaranteed if and only if km ≥ 1. The prob-
lem of finding robust stability of a linear system with characteristic equation
F (jω,q), becomes the following constrained optimization problem

min
qi,k≥0,ω≥0

k

s.t. �[F (jω,q] = 0,

�[F (jω,q] = 0,

qNi −q−i k ≤ qi ≤ qNi +q+i k, i = 1, ..., n,

where qN is a stable nominal point for the uncertain parameters and q+i ,
q−i are the estimated bounds [7].

The above is a constrained optimization problem involving multivari-
ate polynomial functions. In this problem, it is necessary to find the global
minimum, otherwise the stability margin might be overestimated. An over-
estimate can lead to wrong conclusion that the given system is stable, when
actually it is not [7]. Hence, it is necessary to use a proven global optimiza-
tion technique to ensure that the global minimum of k is indeed found. The
algorithm in [6] can be used to correctly assess the robust stability of the
system, due to its ability to find global minima. We illustrate this ability via
the following example.

Example 1. We examine the l∞ stability margin for a closed-loop system [7].
The global optimization problem is given by

min k

s.t. q41q
4
2 − q41 − q42q3 = 0,

1.4− 0.25k ≤ q1 ≤ 1.4 + 0.25k,

1.5− 0.20k ≤ q2 ≤ 1.5 + 0.20k,

0.8− 0.20k ≤ q3 ≤ 0.8 + 0.20k.
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The problem has 4 continuous variables q1, q2, q3, and k. There are one equal-
ity constraint and six inequality constraints. The basic algorithm for an ac-
curacy of 10−6, finds the global minimum as k = 1.0899 and the global
minimizer as

q1 = 1.1275, q2 = 1.282, q3 = 1.018.

These results agree with those reported in [7]. The time required to solve
this problem is 58.85 seconds.

2. Minimum Distance Problem
Another key problem in system analysis is to determine the minimum dis-
tance of a point to the surface defined by a polynomial constraint p(x) = 0.
We can pose it as the constrained optimization problem

ρ∗ = min
x∈Rn

‖x‖22
s.t. p(x) = 0.

Most methods in literature for solving the minimum distance problem are
based on LMI relaxation techniques [1],[8]. These methods are based on
a suitable representation of the polynomials in homogeneous forms. We
shall next investigate the ability of the basic algorithm to solve a minimum
distance problem.

Example 2. This problem is from [1],[9]. Consider the state-space system

ż = A(x)z(t),

where z ∈ R
n is the state vector and x = (x1, x2, ..., xn)

′ ∈ R
n is the vec-

tor of uncertain parameters. Assuming A(0) to be a Hurwitz matrix, the l2
parametric stability margin is given by

ρ2 =
√
ρ∗ =

√
min{ρR, ρI}.

Where ρR is the solution of the equality constrained optimization problem

ρR = min
x∈Rn

x2
1 + x2

2

s.t. det[A(x)] = 0,

and ρI is the solution of another equality constrained optimization problem

ρI = min
x∈Rn

x2
1 + x2

2

s.t. Hn−1[A(x)] = 0.

If A(x) is a polynomial in x, then this minimum distance problem becomes a
quadratic optimization problem. For the particular example reported in [9],
we have

det[A(x)] = −3x3
1 − 7x2

1x2 − 2x1x
2
2 − 2x3

2 − 4x2
1 + x2

2 + 2x1 + 2x2 − 1,

Hn−1[A(x)] = −8x3
1 − 4x1o

2x2 − 2x1x
2
2 − 28x2

1 + x1x2 − 3x2 − 22x1 − 7x2 + 8,

x1 = [0, 0.5], x2 = [0, 0.5].
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The proposed algorithm finds the global minimum to the first constrained
optimization problem as

ρR = 0.2083,

while it finds the global minimum to the second constrained optimization
problem as

ρI = 0.0664.

The global minimum of the stability margin is therefore

ρ∗ = min{ρR, ρI} = 0.0664,

giving the l2 parametric stability margin as

ρ2 =
√
ρ∗ = 0.2576.

These results agree with those reported in [1],[9]. The first problem is solved
in 83.33 seconds and second in 81.48 seconds.

3. Domain of Attraction
Consider the differential equation with equilibrium point x0 at t0 given by

ẋ = f(x, t), x(t0) = x0,

where x ∈ R
n and t ≥ 0. The domain of attraction of x0 at t0 is the set of

all initial conditions x at time t0, denote g(t, t0, x) satisfying

lim
t→∞

g(t, t0, x) = x0.

The domain of attraction of the equilibrium point x0 is a set that is indepen-
dent of the initial time, since the flow only depends on the time difference
t− t0 [11].
The domain of attraction can be determined by formulating the problem as
an optimization problem. To do this, we need to find a positive invariant
subset on which the time derivative of Lyapunov function is negative [12].
In turn, this leads to the following constrained optimization problem

γ2 = min V (x), (13)

s.t. V̇ (x) = 0, (x �= 0). (14)

We applied the basic algorithm to solve the above optimization problem
and obtain lower bounds on γ which immediately provide the domain of
attraction. The example below demonstrates this application.

Example 3. Consider the following example [12]

ẋ1 = −x1 + x2,

ẋ2 = 0.1x1 − 2x2 − x2
1 − 0.1x3

1.
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Let us choose the Lyapunov function as V = x2
1 + x2

2. The first derivative of
Lyapunov function is then

V̇ = −2x2
1 − 4x2

2 + 2.2x1x2 − 2x3
1x2 − 0.2x3

1x2.

We apply the basic algorithm to solve this problem over the domain
[−3,−0.001]2 to the specified accuracy of 10−6. The algorithm finds the
global minimum value and the global minimizer as

γ = 2.6664, (x1, x2) = (−2.2610,−1.4140).

These results agree with those reported in [12]. The time required to solve
this problem is 353.65 seconds.

5 Conclusion

We solved successfully three well known problems in systems and control engi-
neering with the basic algorithm for constrained global optimization of multi-
variate polynomial function. The algorithm does not need any linearization or
relaxation techniques and solves the problem to specified accuracy.
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Abstract. In this paper, a well-known concept of ε-efficient solution
due to Kutateladze is studied, in order to approximate the weak efficient
solutions of vector optimization problems. In particular, it is proved that
the limit, in the Painlevé-Kuratowski sense, of the ε-efficient sets when
the precision ε tends to zero is the set of weak efficient solutions of the
problem. Moreover, several nonlinear scalarization results are derived to
characterize the ε-efficient solutions in terms of approximate solutions of
scalar optimization problems. Finally, the obtained results are applied
not only to propose a kind of penalization scheme for Kutateladze’s ap-
proximate solutions of a cone constrained convex vector optimization
problem but also to characterize ε-efficient solutions of convex multiob-
jective problems with inequality constraints via multiplier rules.

Keywords: Vector optimization, weak efficient solution, ε-efficient
solution, nonlinear scalarization, Kuhn-Tucker optimality conditions,
ε-subgradients.

1 Introduction

During the last two decades, there has been a growing interest on approximate
solutions of vector optimization problems since, from a theoretical point of view,
they play an important role in many concepts and results of vector optimization,
such as the Ekeland Variational Principle, the well-posedness properties and the
ε-subdifferential (see, for instance, [1,4,7] and the references therein).

In this work, we focus on the concept of ε-efficient solution defined by Ku-
tateladze [9], which is the most popular ε-efficiency notion of the literature.
To be exact, in Section 2 we show that these ε-efficient solutions provide suit-
able approximations to the set of weak efficient solutions by following the ap-
proach introduced in [6]. In Section 3, inspired by Weirbicky’s approach based
on order representation and monotonicity properties (see [10]), we derive non-
linear scalarization results through generic functionals whose sublevel sets at

c© Springer International Publishing Switzerland 2015 481
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zero approximate the ordering cone of the problem. Then, as a consequence
of these results and a new kind of penalization technique, we characterize the
ε-efficient solutions of cone constrained vector optimization problems via the so-
called Tammer-Weidner nonlinear separation functional. Finally, in Section 4,
as an application of the obtained results, we state a type of penalization scheme
for Kutateladze’s approximate solutions of a cone constrained convex vector op-
timization problem and also we derive Kuhn-Tucker optimality conditions for
ε-efficient solutions of nondifferentiable convex Pareto multiobjective problems
with inequality constraints.

2 εv-Efficient Solutions

Let X , Y be real locally convex Hausdorff topological linear spaces. The closure
and the topological interior of a set M ⊂ Y are denoted by clM and intM ,
respectively, and the nonnegative orthant of Rp by R

p
+. Moreover, R+ := R

1
+. In

the sequel, we consider the vector optimization problem

MinD{f(x) : x ∈ S} , (1)

where f : X → Y , ∅ �= S ⊂ X and D ⊂ Y is the ordering cone, which is assumed
to be convex, proper (i.e., D �= Y ) and solid (i.e., it has a nonempty topological
interior). In order to deal with weak solutions of problem (1), we consider the
weak (Pareto) generalized ordering relation:

y1, y2 ∈ Y, y1 <D y2 ⇐⇒ y2 − y1 ∈ intD . (2)

Definition 1. A point x0 ∈ S is said to be a weak efficient solution of problem
(1), denoted by x0 ∈ WE(f, S,D), if there does not exist a point x ∈ S such that
f(x) <D f(x0).

Next, we recall the approximate efficiency notion due to Kutateladze [9].

Definition 2. Let v ∈ Y \{0} and ε ≥ 0. It is said that a point x0 ∈ S is an
εv-efficient solution of problem (1), denoted by x0 ∈ WE(f, S, εv,D), if there
does not exist a point x ∈ S such that f(x) <D f(x0)− εv.

It is clear that for each v, WE(f, S, εv,D) reduces to the set of weak efficient
solutions of problem (1) whenever ε = 0. Moreover, it follows that

WE(f, S, εv,D) = {x0 ∈ S : (f(S)− f(x0)) ∩ (−εv − intD) = ∅} . (3)

The next theorem collects the main properties that relate the sets of εv-efficient
solutions for different precisions ε. Let us underline that these properties work
whenever the direction v belongs to intD. By Limsupε→0WE(f, S, εv,D) and
Limε→0WE(f, S, εv,D) we denote, respectively, the upper limit and the limit of
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the set-valued mapping R+ � ε → WE(f, S, εv,D) in the Painlevé-Kuratowski
sense (see [3]). To be precise,

Limsup
ε→0

WE(f, S, εv,D) := {x0 ∈ X : there exist nets (xi) ⊂ X, (εi) ⊂ R+\{0},

εi → 0 such that xi ∈ WE(f, S, εiv,D), xi → x0} ,

Liminf
ε→0

WE(f, S, εv,D) := {x0 ∈ X : for each net (εi) ⊂ R+\{0}, εi → 0,

there exist (εϕ(j)), (xj) ∈ WE(f, S, εϕ(j)v,D),

xj → x0}

((εϕ(j)) denotes a subnet of (εi)) and

Lim
ε→0

WE(f, S, εv,D) := Limsup
ε→0

WE(f, S, εv,D) = Liminf
ε→0

WE(f, S, εv,D)

whenever

Limsup
ε→0

WE(f, S, εv,D) = Liminf
ε→0

WE(f, S, εv,D) .

Theorem 1. Consider q ∈ intD. The following holds:

1. WE(f, S, ε1q,D) ⊂ WE(f, S, ε2q,D), for all ε1, ε2 ≥ 0, ε1 < ε2.
2. WE(f, S, ε̄q,D) =

⋂
ε>ε̄ WE(f, S, εq,D).

3. Let x0 ∈ S, ε̄ ≥ 0 and nets (xi) ⊂ S and (εi) ⊂ R+ such that xi ∈
WE(f, S, εiq,D), εi → ε̄ and f(xi) → f(x0). Then x0 ∈ WE(f, S, ε̄q,D).

4. Suppose that S is closed, f is continuous and ε̄ ≥ 0. Then WE(f, S, ε̄q,D)
is closed and

Limsup
ε→ε̄

WE(f, S, εq,D) = WE(f, S, ε̄q,D) . (4)

Proof. Parts 1 and 2 follow from the definition of WE(f, S, εq,D).
3. Suppose that x0 /∈ WE(f, S, ε̄q,D). As

ε̄q + intD =
⋃

ε>ε̄

(εq + intD) , (5)

there exist x ∈ S and ε0 > ε̄ such that

f(x)− f(x0) ∈ −ε0q − intD . (6)

Since f(xi) → f(x0) and −ε0q − intD is open, there exists i1 such that

f(x)− f(xi) ∈ −ε0q − intD, ∀i  i1 . (7)

On the other hand, as εi → ε̄ and ε0 > ε̄ there exists i2 such that εi < ε0, for
all i  i2. Let i0 be such that i0  i1, i0  i2. It follows that

f(x)− f(xi0) ∈ −ε0q − intD ⊂ −εi0q − intD , (8)
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which is a contradiction, sincexi0 ∈ WE(f, S, εi0q,D).Thus,x0 ∈ WE(f, S, ε̄q,D)
and part 3 is proved.

4. Let us define

Hx := {x0 ∈ X : f(x)− f(x0) /∈ −ε̄q − intD}, ∀x ∈ S . (9)

For every x ∈ S, the set Hx is closed, since Hx = f−1(Y \(f(x) + ε̄q + intD)).
On the other hand, it is clear that

WE(f, S, ε̄q,D) =

(
⋂

x∈S

Hx

)
∩ S , (10)

and so WE(f, S, ε̄q,D) is closed.
Moreover, if ε0 > ε̄, then

Limsup
ε→ε̄

WE(f, S, εq,D) ⊂ WE(f, S, ε0q,D) . (11)

Indeed, since ε0 > ε̄, if xi → x, with xi ∈ WE(f, S, εiq,D) and εi → ε̄, then there
exists i0 such that xi ∈ WE(f, S, ε0q,D) for all i  i0, and as WE(f, S, ε0q,D)
is closed it follows that x ∈ WE(f, S, ε0q,D).

Finally, taking into account part 2 we obtain that

WE(f, S, ε̄q,D) ⊂ Limsup
ε→ε̄

WE(f, S, εq,D)

⊂
⋂

ε>ε̄

WE(f, S, εq,D) = WE(f, S, ε̄q,D) , (12)

and the proof is complete. ��

By applying these properties we see that the sets of εq-efficient solutions are a
suitable approximation for the set of weak efficient solutions, as it is established
in the following corollary.

Corollary 1. Assume that S is closed, f is continuous and consider q ∈ intD.
Then

Lim
ε→ε̄

WE(f, S, εq,D) =
⋂

ε>0

WE(f, S, εq,D) = WE(f, S,D) . (13)

3 Scalarization

Consider an scalarization mapping ϕ : Y → R and δ ≥ 0. We denote

δ−argminS(ϕ ◦ f) = {x0 ∈ S : (ϕ ◦ f)(x0)− δ ≤ (ϕ ◦ f)(x), ∀x ∈ S} . (14)

Let us observe that (14) is the set of suboptimal solutions with precision δ of
the scalar optimization problem defined by the objective function ϕ ◦ f and the
feasible set S.
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The next two propositions relate the sets WE(f, S, εv,D) and δ−argminS(ϕ◦
f) when ϕ satisfies simple properties. The first one states a sufficient condition
for εv-efficient solutions of problem (1) by a scalarization and the second one a
necessary condition. For each x0 ∈ S, let fx0 : X → Y , fx0(x) = f(x) − f(x0),
for all x ∈ X .

Proposition 1. Consider v ∈ Y \{0} and ε ≥ 0, and suppose that

ϕ(0) ≥ 0, −εv − intD ⊂ {y ∈ Y : ϕ(y) < 0} . (15)

If x0 ∈ ϕ(0)−argminS(ϕ ◦ fx0), then x0 ∈ WE(f, S, εv,D).

Proposition 2. Consider v ∈ Y \(− intD) and ε ≥ 0, and suppose that

{y ∈ Y : ϕ(y) < 0} ⊂ −εv − intD . (16)

If x0 ∈ WE(f, S, εv,D), then x0 ∈ ϕ(0)−argminS(ϕ ◦ fx0).

Let us observe that statement (16) implies that ϕ(0) ≥ 0.
In order to apply the previous scalarization results we need mappings ϕ : Y →

R such that
{y ∈ Y : ϕ(y) < 0} = −εv − intD , (17)

where v /∈ − intD. By the so-called Tammer-Weidner nonlinear separation func-
tional [2] we can define a mapping satisfying this property (in [5] the reader
can find other functionals satisfying (17)). Indeed, denote by ϕe : Y → R the
Tammer-Weidner functional defined by e ∈ intD, i.e.,

ϕe(y) = inf{t ∈ R : y ∈ te− clD}, ∀ y ∈ Y . (18)

It is not hard to check that

{y ∈ Y : ϕe(y) < 0} = − intD (19)

and so we have the following result (see [3] for other properties of ϕe).

Theorem 2. Consider v ∈ Y \(− intD), ε ≥ 0 and the mapping ϕ : Y → R,
ϕ(y) = ϕe(y + εv), for all y ∈ Y . It follows that

x0 ∈ WE(f, S, εv,D) ⇐⇒ x0 ∈ εϕe(v)−argminS(ϕ ◦ fx0) . (20)

Proof. By (19) it is clear that

{y ∈ Y : ϕ(y) < 0} = −εv − intD , (21)

and by Propositions 1 and 2 we deduce that

x0 ∈ WE(f, S, εv,D) ⇐⇒ x0 ∈ ϕ(0)−argminS(ϕ ◦ fx0) . (22)

Moreover, ϕ(0) = ϕe(εv) = εϕe(v), and the proof finishes. ��
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4 An Application

In this last section, we apply Theorem 2 in order to state a kind of penal-
ization scheme for Kutateladze’s approximate solutions of a cone constrained
convex vector optimization problem. To be exact, let Z be a real locally con-
vex Hausdorff topological linear space, K ⊂ Z be a proper convex cone with
nonempty topological interior and consider a mapping g : X → Z and the set
SK = {x ∈ X : g(x) ∈ −K}. It said that f is D-convex if

αf(x1)+(1−α)f(x2) ∈ f(αx1+(1−α)x2)+D, ∀x1, x2 ∈ X, ∀α ∈ (0, 1) . (23)

Then we will characterize the εq-efficient solutions of the vector optimization
problem

MinD{f(x) : g(x) ∈ −K} , (24)

where q ∈ intD, f , g are assumed to be D-convex and K-convex, respectively,
and the so-called Slater constraint qualification is satisfied, i.e., there exists x̄ ∈
SK such that g(x̄) ∈ − intK. The following lemma is needed.

Lemma 1. Let ε > 0.

1. We have that

x0 ∈ WE(f, SK , εv,D) ⇒ x0 ∈ WE((f, g), X, ε(v, (1/ε)g(x0)), D×K)∩SK .
(25)

2. Consider q ∈ intD and suppose that f is D-convex and g is K-convex, and
the Slater constraint qualification is satisfied. Then

x0 ∈ WE(f, SK , εq,D) ⇐⇒ x0 ∈ WE((f, g),X, ε(q, (1/ε)g(x0)), D ×K) ∩ SK .
(26)

Proof. Part 1 follows directly from the definitions.
2. Let us prove the sufficient condition, since the necessary condition is given

by part 1. Consider

x0 ∈ WE((f, g), X, ε(q, (1/ε) g(x0)), D ×K) ∩ SK (27)

and suppose that x0 /∈ WE(f, SK , εq,D). By part 2 of Theorem 1 we deduce
that there exists ε0 > ε such that x0 /∈ WE(f, SK , ε0q,D) and so there exists
x ∈ SK such that

f(x)− f(x0) ∈ −ε0q − intD . (28)

Let x̄ ∈ X be such that g(x̄) ∈ − intK and consider xt := (1−t)x+tx̄, t ∈ (0, 1).
As g is K-convex we have that

g(xt) ∈ (1− t)g(x) + tg(x̄)−K ⊂ − intK . (29)
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Moreover,

f(xt)− f(x0) ∈ (1 − t)f(x) + tf(x̄)− f(x0)−D

= t(f(x̄)− f(x)) + f(x)− f(x0)−D

⊂ t(f(x̄)− f(x))− ε0q − intD

⊂ −εq − intD (30)

for t small enough. Then

(f, g)(xt)− (f, g)(x0) ∈ −ε (q, (1/ε)g(x0))− int(D ×K) , (31)

which is a contradiction. Thus, x0 ∈ WE(f, S, εq,D). ��
Let e ∈ intD and k ∈ intK. Next we consider the mapping ϕe,k : Y × Z → R

defined as follows:

ϕe,k(y, z) = inf{t ∈ R : y ∈ te − clD, z ∈ tk − clK}, ∀ y ∈ Y, z ∈ Z . (32)

Theorem 3. Let q ∈ intD, ε > 0, x0 ∈ SK and suppose that f is D-convex and
g is K-convex, and the Slater constraint qualification is satisfied. Consider the
mapping ϕ : Y × Z → R, ϕ(y, z) = ϕe,k((y, z) + ε(q, (1/ε)g(x0)), for all y ∈ Y ,
z ∈ Z. Then

x0 ∈ WE(f, SK , εq,D) ⇐⇒ x0 ∈ εϕe,k(q, (1/ε)g(x0))−argminX(ϕ ◦ (f, g)x0) .
(33)

In order to illustrate Theorem 3, let us obtain a Kuhn-Tucker multiplier rule for
εq-efficient solutions of nondifferentiable convex Pareto multiobjective problems
with inequality constraints. Some preliminaries are needed.

Definition 3. Let h : Rn → R be convex, x0 ∈ R
n and ε ≥ 0. It is said that

x∗ ∈ R
n is an ε-subgradient of h at x0, denoted by x∗ ∈ ∂εh(x0), if

h(x) ≥ h(x0)− ε+ 〈x∗, x− x0〉, ∀x ∈ R
n . (34)

For a complete description of this concept, the reader can see [8]. In particular,
it follows that:

∂ε(h(·) + c)(x0) = ∂εh(x0), ∀ c ∈ R , (35)

x0 ∈ ε−argminXh ⇐⇒ 0 ∈ ∂εh(x0) . (36)

Theorem 4. Consider x0 ∈ R
n, ε ≥ 0 and Ψ = max1≤l≤r{hl}, where hl : R

n →
R is convex for all l = 1, 2, . . . , r. It follows that

∂εΨ(x0) =

{
r∑

l=1

∂εl(αlhl)(x0) : αl ≥ 0,

r∑

l=1

αl = 1, εl ≥ 0,

r∑

l=1

εl + Ψ(x0)−
r∑

l=1

αlhl(x0) ≤ ε

}
. (37)
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Assume that (24) is a Pareto multiobjective problem with inequality constraints,
i.e., X = R

n, Y = R
p, Z = R

m, D = R
p
+ and K = R

m
+ . Then, we have the

following Kuhn-Tucker multiplier rule for Kutateladze’s approximate solutions
in the convex case. We denote f = (f1, f2, . . . , fp), g = (g1, g2, . . . , gm) and
q = (q1, q2, . . . , qp).

Theorem 5. Suppose that fi, gj are convex for all i, j, qi > 0 for all i, and
the Slater constraint qualification is satisfied. Let ε > 0 and x0 ∈ R

n such
that gj(x0) ≤ 0 for all j. Then x0 ∈ WE(f, SRm

+
, εq,Rp

+) if and only if there
exist ε1, ε2, . . . , εp ≥ 0, γ1, γ2, . . . , γm ≥ 0, λ1, λ2, . . . , λp ≥ 0 not all zero and
μ1, μ2, . . . , μm ≥ 0 such that

∑p
i=1 λi +

∑m
j=1 μj = 1, and

0 ∈
p∑

i=1

∂εi(λifi)(x0) +

m∑

j=1

∂γj (μjgj)(x0) , (38)

p∑

i=1

εi +

m∑

j=1

γj − ε

p∑

i=1

λiqi ≤
m∑

j=1

μjgj(x0) . (39)

Acknowledgments. The authors are very grateful to Prof. Q.T. Bao, Chr.
Tammer and A. Soubeyran for their kind invitation to contribute in the special
session “Variational Principles and Applications”, and also to the anonymous
referees for their helpful comments and suggestions.

This work was partially supported by Ministerio de Economı́a y Competitivi-
dad (Spain) under project MTM2012-30942.

References

1. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto Minimizers for Multiobjective
Problems: Existence and Optimality Conditions. Math. Program. 122, 301–347
(2010)

2. Gerth, C., Weidner, P.: Nonconvex Separation Theorems and Some Applications
in Vector Optimization. J. Optim. Theory Appl. 67, 297–320 (1990)
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Abstract. In this paper we show how a nonlinear scalarization func-
tional can be used in order to characterize set order relations. We will
show that this functional plays a key role in set optimization. As set or-
der relations, we consider the upper set less order relation and the lower
set less order relation introduced by Kuroiwa [10,9] and the set less order
relation which was introduced independently by Young [13] and Nishni-
anidze [11]. Our approaches do not rely on any convexity assumptions
on the considered sets.

Keywords: Nonlinear scalarization functionals, set optimization, set
order relations.

1 Introduction

Set optimization has become a very important field in various applications, see,
for instance, [8]. For some applications, it is necessary to assume a feasible el-
ement to be associated with a whole set of function values instead of just one
vector. For example, certain concepts of robustness for dealing with uncertain-
ties in vector optimization can be described using approaches from set-valued
optimization (see [5]).

Set optimization deals with the process of obtaining minimal sets, where the
map to be minimized is set-valued (see [6]). In order to obtain minimal solutions
of a set optimization problem, one uses set order relations. We are interested
in characterizing certain set relations by using a very broad and manageable
functional. Such characterizations of set order relations via scalarization are
important for deriving numerical methods for solving set-valued optimization
problems.

In Section 2, we recall the nonlinear scalarizing functional and give some im-
portant properties that this functional satisfies under very general assumptions.
In Subsection 2.2 we very shortly discuss how set order relations have been dis-
cussed in the context of scalarization functionals in the literature. Section 3 deals
with the characterization of the upper set, lower set and set less order relations

c© Springer International Publishing Switzerland 2015 491
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_42
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by means of the nonlinear functional introduced in Section 2. Finally, in Section
4 we describe minimal solutions of set optimization problems by means of our
findings.

2 Nonlinear Scalarization Functional

2.1 Preliminaries

Let Y be a linear topological space, k ∈ Y \ {0} and let F , C be proper subsets
of Y . We assume that C is closed and

C + [0,+∞) · k ⊂ C. (1)

Now we introduce the functional zC,k : Y → R ∪ {+∞}∪ {−∞} =: R̄

zC,k(y) := inf{t ∈ R|y ∈ tk − C}. (2)

Then we formulate the problem of minimizing the functional zC,k as

zC,k(y) → inf
y∈F

. (Pk,C,F )

Figure 1 visualizes the functional zC,k for C = R
2
+ and a given vector k ∈

intC. We can see that the set −C is moved along the ray t·k up until y belongs to
tk−C. The functional zC,k is assigned the smallest value t such that the property
y ∈ tk−C is fulfilled. By a variation of the set C and the vector k ∈ Y \ {0} all
Pareto minimal elements of a vector optimization problem without any convexity
assumptions can be found.

C

k

F

y

tk − C

t · k

Fig. 1. Illustration of the functional zC,k(y) := inf{t ∈ R|y ∈ tk −C}
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The scalarizing functional zC,k was used in [1] to prove separation theorems for
nonconvex sets. Applications of zC,k include coherent risk measures in financial
mathematics (see, for instance, [4]). Many properties of zC,k were studied in [1],
[2] and [12]. First let us recall the C-monotonicity of a functional.

Definition 1. Let Y be a linear topological space, C ⊂ Y, C �= ∅. A functional
z : Y → R̄ is C-monotone, if for

y1, y2 ∈ Y : y1 ∈ y2 − C ⇒ z(y1) ≤ z(y2).

Moreover, z is said to be strictly C-monotone, if for

y1, y2 ∈ Y : y1 ∈ y2 − C \ {0} ⇒ z(y1) < z(y2).

Below we provide some properties of the functional zC,k introduced in (2). As
usual, we denote the topological boundary of C with bd C and the topological
interior by int C.

Theorem 1 ([1], [2]). Let Y be a linear topological space, C ⊂ Y a closed
proper set and D ⊂ Y . Furthermore, let k ∈ Y \ {0} be such that (1) is satisfied.
Then the following properties hold for z = zC,k:

(a) z is lower semi-continuous.
(b) z is convex ⇐⇒ C is convex,

[∀ y ∈ Y, ∀ r > 0 : z(ry) = rz(y)] ⇐⇒ C is a cone.
(c) z is proper ⇐⇒ C does not contain lines parallel to k, i.e., ∀ y ∈ Y ∃ r ∈

R : y + rk /∈ C.
(d) z is D-monotone ⇐⇒ C +D ⊂ C.
(e) z is subadditive ⇐⇒ C + C ⊂ C.
(f) ∀ y ∈ Y, ∀ r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk − C.
(g) ∀ y ∈ Y, ∀ r ∈ R : z(y + rk) = z(y) + r.
(h) z is finite-valued ⇐⇒ C does not contain lines parallel to k and Rk−C = Y .

Let furthermore C + (0,+∞) · k ⊂ int C. Then

(i) z is continuous.
(j) ∀ y ∈ Y, ∀ r ∈ R : z(y) = r ⇐⇒ y ∈ rk − bd C,

∀ y ∈ Y, ∀ r ∈ R : z(y) < r ⇐⇒ y ∈ rk − int C.
(k) Assume furthermore that z is proper. Then z is D-monotone ⇐⇒ C+D ⊂

C ⇐⇒ bd C +D ⊂ C.
(l) If z is finite-valued, then z is strictly D-monotone ⇐⇒ C + (D \ {0}) ⊂

int C ⇐⇒ bd C + (D \ {0}) ⊂ int C.
(m) Suppose z is proper. Then z is subadditive ⇐⇒ C + C ⊂ C ⇐⇒ bd C+

bd C ⊂ C.

For the proof, see [2, Theorem 2.3.1].
The following corollary unifies the features given in Theorem 1 in case C is a

proper closed convex cone.
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Corollary 1 ([2, Corollary 2.3.5.]) Let C be a proper closed convex cone and
k ∈ intC. Then z = zC,k, defined by (2), is a finite-valued continuous sublinear
and strictly (intC)-monotone functional such that

∀ y ∈ Y, ∀ r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk − C, (3)
∀ y ∈ Y, ∀ r ∈ R : z(y) < r ⇐⇒ y ∈ rk − intC.

Throughout this paper, let the following Assumption 1 be satisfied.

Assumption 1. Let Y be a linear topological space, C ⊂ Y a proper closed
pointed convex cone and k ∈ intC. Furthermore, let two sets A,B ∈ P(Y ) :=
{A ⊆ Y | A is nonempty} be given. When we consider the terms

sup
a∈A

inf
b∈B

zC,k(a− b),

sup
b∈B

inf
a∈A

zC,k(a− b),

sup
a∈A

sup
b∈B

zC,k(a− b),

inf
a∈A

inf
b∈B

zC,k(a− b)

(4)

for two sets A,B ∈ P(Y ), we assume that the respective suprema and infima
are attained for all k ∈ intC.

The partial ordering in Y will be denoted by ≤C , where for y1, y2 ∈ Y

y1 ≤C y2 :⇐⇒ y1 ∈ y2 − C.

Notice that the suprema and infima in the terms (4) are attained if zC,k is
a lower semi-continuous functional on compact sets A and B (compare [14,
Theorem 38.B]).

In this paper we aim at using the functional zC,k in order to characterize
known set relations. In the following subsection we briefly discuss the literature
on this subject.

2.2 Notes on the Literature

Hernández and Rodríguez-Marín [3] introduced an extension of the functional
zC,k (see equation (2)) in order to characterize the set order relation B ⊆ A+C.
They consider a function

ZC,k(A,B) := sup
b∈B

inf{t ∈ R|b ∈ tk +A+ C}

(= sup
b∈B

z−(C+A),k(b) with the notations from Subsection 2.1)

and they show that

B ⊆ A+ C ⇐⇒ for some k ∈ intC : ZC,k(A,B) ≤ 0,
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compare [3, Thm. 3.10]. We will show in the proceeding section that it is not nec-
essary to introduce such a functional ZC,k to characterize the set order relation
B ⊆ A + C. Instead, it is possible to use the given functional zC,k (see (2)) in
its traditional form to characterize the relation B ⊆ A+C. This approach even
enables us to present a full characterization of other set order relations known
from the literature, as the upper set less order relation and the set less order
relation. Of course, the functional zC,k in (2) has an easier structure than the
functional ZC,k. Furthermore, the functional (2) has nice geometrical interpreta-
tions and useful continuity properties that are important for deriving optimality
condition (see [8, Chapter 5]).

Jahn [7] showed that

A ⊆ B − C ⇐⇒ ∀ l ∈ C∗ \ {0} : sup
a∈A

l(a) ≤ sup
b∈B

l(b) (5)

and
A ⊆ B + C ⇐⇒ ∀ l ∈ C∗ \ {0} : inf

b∈B
l(b) ≤ inf

a∈A
l(a)

if the sets B − C and B + C are closed and convex, where C∗ is the dual cone
of C.

We will show in this paper that is is possible to use the functional zC,k to
characterize the relations A ⊆ B − C and A ⊆ B + C without any convexity
assumptions on the considered sets.

3 Characterizations of Set Order Relations by Means of
the Nonlinear Scalarization Functional zC,k

A well known set order relation is the upper set less order relation introduced
by Kuroiwa [10,9].

Definition 2 (Upper set less order relation, [10,9]). Let Y be a linear
topological space and let C ⊂ Y be a proper closed pointed convex cone. The
upper set less order relation �u

C is defined for two sets A,B ∈ P(Y ) by

A �u
C B :⇐⇒ A ⊆ B − C,

which is equivalent to
∀ a ∈ A ∃ b ∈ B : a ≤C b.

The following theorem shows a first connection between the upper set less
order relation and the nonlinear scalarizing functional zC,k.

Theorem 2. Let Assumption 1 be fulfilled. Then we have the implication

A ⊆ B − C =⇒ ∀ k ∈ intC : sup
a∈A

zC,k(a) ≤ sup
b∈B

zC,k(b).
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(a)

C

B

A

(b)

B − C

C

B

A
B − C

Fig. 2. Illustration of the set B − C and the single-valued set A = {a}

Proof. Let A ⊆ B − C. This corresponds to

∀ a ∈ A ∃ b ∈ B : a ∈ b− C.

Now choose a vector k ∈ intC arbitrarily, but fixed. Because zC,k is C-monotone
(see (d) in Theorem 1), we have

∀ a ∈ A ∃ b ∈ B : zC,k(a) ≤ zC,k(b),

resulting in
sup
a∈A

zC,k(a) ≤ sup
b∈B

zC,k(b).

��

The inverse direction in Theorem 2 is generally not fulfilled, as the following
example illustrates.

Example 1. Consider the special case C = R
2
+, a single-valued set A = {a} and

the set B in Figure 2 (a). Apparently, we have zC,k(a) ≤ supb∈B zC,k(b) for every
k ∈ intC, but obviously A �⊆ B −C. The same holds if the set B−C is convex,
as the illustration in Figure 2 (b) shows.

We can, however, express the inclusion A ⊆ B − C for two arbitrary sets
A,B ∈ P(Y ) by using the nonlinear scalarization functional zC,k, as the following
theorem verifies.

Theorem 3. Let Assumption 1 be fulfilled. Then

A ⊆ B − C ⇐⇒ ∀ k ∈ intC : sup
a∈A

inf
b∈B

zC,k(a− b) ≤ 0 (6)

⇐⇒ sup
k∈intC

sup
a∈A

inf
b∈B

zC,k(a− b) ≤ 0. (7)
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Proof. Choose an arbitrary k ∈ intC and let A ⊆ B − C. This corresponds to

∀ a ∈ A ∃ b ∈ B : a ∈ b− C,

which is equivalent to for all a ∈ A there exists some b ∈ B such that a−b ∈ −C.
Because of Theorem 1 (f) with r = 0 and y = a− b, we have

∀ a ∈ A ∃ b ∈ B : a− b ∈ −C

⇐⇒ ∀ a ∈ A ∃ b ∈ B : zC,k(a− b) ≤ 0,

and this implies
sup
a∈A

inf
b∈B

zC,k(a− b) ≤ 0.

Conversely, let for all k ∈ intC supa∈A infb∈B zC,k(a− b) ≤ 0, and suppose that
A �⊆ B −C. Thus, there exists some a ∈ A such that {a} ∩ (B −C) = ∅. This is
equivalent to

∃ a ∈ A ∀ b ∈ B : {a− b} ∩ (−C) = ∅.
Now consider the functional zC,k with an arbitrary vector k ∈ intC. Due to
Theorem 1 (f) with r = 0 and y = a− b, we obtain

∃ a ∈ A ∀ b ∈ B : zC,k(a− b) > 0,

resulting in
sup
a∈A

inf
b∈B

zC,k(a− b) > 0,

in contradiction to the assumption. The second equivalence (7) is obvious. ��
From Theorem 3 we directly deduce that

∀ k ∈ intC : sup
a∈A,b∈B

zC,k(a− b) ≤ 0

implies that A ⊆ B − C.

Example 2. Consider again Example 1 with C = R
2
+. We can see in Figure 3

that for all b ∈ B, zC,k(a − b) > 0, and thus infb∈B zC,k(a − b) > 0. Due to
Theorem 3, this is equivalent to {a} �⊆ B − C, as it was assumed here.

Example 3. Consider Example 2 with C = R
2
+, but now we assume that A =

{a} ⊆ B − C. We can see in Figure 4 that for all b ∈ B, zC,k(a − b) ≤ 0, and
thus infb∈B zC,k(a− b) ≤ 0.

From Theorem 3 we get directly the following characterization of the upper
set less order relation.

Corollary 1. Let Assumption 1 be satisfied. Then

A �u
C B ⇐⇒ ∀ k ∈ intC : sup

a∈A
inf
b∈B

zC,k(a− b) ≤ 0

⇐⇒ sup
k∈intC

sup
a∈A

inf
b∈B

zC,k(a− b) ≤ 0.

Furthermore, we study the lower set less order relation (see Kuroiwa [10,9]).
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B

A
B −C

A−B

C

Fig. 3. Illustration of the set A−B, where A = {a}. It is obvious that for all k ∈ intC,
infb∈B inf{t ∈ R|a− b ∈ tk − C} > 0.

Definition 3 (Lower set less order relation, [10,9]). Let Y be a linear
topological space and let C ⊂ Y be a proper closed pointed convex cone. The
lower set less order relation �l

C is defined for two sets A,B ∈ P(Y ) by

A �l
C B :⇐⇒ B ⊆ A+ C,

which is equivalent to
∀ b ∈ B ∃ a ∈ A : a ≤C b.

Below we show how the set relation B ⊆ A+C corresponds to the functional
zC,k. We refrain from giving the proofs of the following Theorems 4 and 5, since
they can be deduced in a similar way as the proofs of Theorems 2 and 3.

Theorem 4. Let Assumption 1 be fulfilled. Then

B ⊆ A+ C =⇒ ∀ k ∈ intC : inf
a∈A

zC,k(a) ≤ inf
b∈B

zC,k(b).

Theorem 5. Let Assumption 1 be fulfilled. Then

B ⊆ A+ C ⇐⇒ ∀ k ∈ intC : sup
b∈B

inf
a∈A

zC,k(a− b) ≤ 0

⇐⇒ sup
k∈intC

sup
b∈B

inf
a∈A

zC,k(a− b) ≤ 0.

Theorem 5 directly yields the following characterization for the lower set less
order relation.

Corollary 2. Let Assumption 1 be satisfied. Then

A �l
C B ⇐⇒ ∀ k ∈ intC : sup

b∈B
inf
a∈A

zC,k(a− b) ≤ 0

⇐⇒ sup
k∈intC

sup
b∈B

inf
a∈A

zC,k(a− b) ≤ 0.
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BA

B − C

A−B

C

−C

Fig. 4. Illustration of the set A − B, where A = {a}. It can be seen that for all
k ∈ intC, infb∈B inf{t ∈ R|a− b ∈ tk − C} ≤ 0.

C

A

B

A−B

Fig. 5. Illustration of the set A−B = B − A, where A = {a} ⊆ B

Example 4. Here we set C = R
2
+. Consider the sets {a} = A ⊂ B ∈ P(Y ) in

Figure 5, and we deduce A ⊆ B −C and A ⊆ B+C. Then A−B = B−A and
we conclude with

∀ k ∈ intC : inf
b∈B

zC,k(a− b) ≤ 0 and inf
b∈B

zC,k(b− a) ≤ 0,

in correspondence with Theorems 3 and 5.

Definition 4 (Set less order relation, [13,11]). Let Y be a linear topolog-
ical space and let C ⊂ Y be a proper closed pointed convex cone. The set less
order relation �s

C is defined for two sets A,B ∈ P(Y ) by

A �s
C B :⇐⇒ A ⊆ B − C and A+ C ⊇ B,

being equivalent to

(∀ a ∈ A ∃ b ∈ B : a ≤C b) and (∀ b ∈ B ∃ a ∈ A : a ≤C b).
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Corollary 3. Let Assumption 1 be satisfied. Then we have

A �s
C B ⇐⇒ ∀ k ∈ intC : sup

a∈A
inf
b∈B

zC,k(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zC,k(a− b) ≤ 0

⇐⇒ sup
k∈intC

sup
a∈A

inf
b∈B

zC,k(a− b) ≤ 0

and sup
k∈intC

sup
b∈B

inf
a∈A

zC,k(a− b) ≤ 0

⇐⇒ max

(
sup

k∈intC
sup
a∈A

inf
b∈B

zC,k(a− b), sup
k∈intC

sup
b∈B

inf
a∈A

zC,k(a− b)

)
≤ 0.

Proof. The assertions follow from Theorem 3 and 5. ��

Example 5 (Weighted Sum Scalarization). Let Y := R
m, let A,B be closed

bounded subsets in R
m, w := (w1, . . . , wm)T with wi > 0, i = 1, . . . ,m, C :=

{y ∈ R
m | wT y ≥ 0} (note that C is a convex cone; indeed, a closed half space

and thus C is not pointed) and k := (k1, . . . , km)T ∈ intC. Then we have

zC,k(a− b) = inf{t ∈ R | (a− b) ∈ tk − C}
= inf{t ∈ R | wT (a− b) ≤ wT (tk)}
= inf{t ∈ R | wT (a− b) ≤ t · (wT k)}

k∈intC
= inf{t ∈ R | 1

wT k
·

m∑

i=1

wi(ai − bi) ≤ t}

=
1

wT k
·

m∑

i=1

wi(ai − bi).

This leads to

sup
a∈A

inf
b∈B

zC,k(a− b) = sup
a∈A

inf
b∈B

1

wT k
·

m∑

i=1

wi(ai − bi)

= sup
a∈A

1

wT k
·

m∑

i=1

wiai − sup
b∈B

1

wTk
·

m∑

i=1

wibi

=
1

wT k
·
(
sup
a∈A

m∑

i=1

wiai − sup
b∈B

m∑

i=1

wibi
)
.

Hence, with the above definitions of C and k and different weights wi > 0, i =
1, . . . ,m, condition (6) is equivalent to

A ⊆ B − C ⇐⇒ ∀ k ∈ intC :
1

wT k
sup
a∈A

m∑

i=1

wiai ≤
1

wT k
sup
b∈B

m∑

i=1

wibi

⇐⇒ sup
a∈A

m∑

i=1

wiai ≤ sup
b∈B

m∑

i=1

wibi
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This example shows that the condition (6) coincides with the equivalence (5) in
the special case C = {y ∈ R

m | wT y ≥ 0}, because the sets A − C and B − C
are closed and convex (compare the assertion in [7, Remark 1]).

Example 6 (Natural Ordering). Let Assumption 1 be satisfied. Specifically, let
Y := R

m, C := R
m
+ and k := (k1, . . . , km)T ∈ intC. Then we have

zC,k(a− b) = inf{t ∈ R | (a− b) ∈ tk − C}
= inf{t ∈ R | (a− b)− tk ∈ −C}
= inf{t ∈ R | ∀ i = 1, . . . ,m : (a− b)i − tki ≤ 0}

= inf{t ∈ R | ∀ i = 1, . . . ,m :
(a− b)i

ki
≤ t}

= sup
i=1,...,m

(a− b)i
ki

.

Hence, with the above definitions of C and k and different weights wi > 0,
i = 1, . . . ,m, condition (6) is equivalent to

A ⊆ B − C ⇐⇒ ∀ k ∈ intC : sup
a∈A

inf
b∈B

sup
i=1,...,m

(a− b)i
ki

≤ 0.

4 Characterization of Minimal Elements of Set
Optimization Problems by Means of the Nonlinear
Scalarizing Functional zC,k

Set optimization deals with finding feasible solution sets that are not dominated
by another feasible set w.r.t. a certain set order relation. Here we use the pre-
orders �u

C , �l
C , and �s

C introduced in Definitions 2, 3 and 4.
Thus, here it is our goal to obtain minimal solutions of a system of nonempty

subsets of Y . The following definition introduces minimal solutions (see [8, Chap-
ter 2] and references therein).

Definition 5 (Minimal Solutions). Let A be a system of nonempty subsets
of Y and let � be a preorder. A is called a minimal element of A w.r.t. � if

A � A, A ∈ A =⇒ A � A.

Corollary 4. Let A be a system of nonempty subsets of Y . A is a minimal
element of A w.r.t. �u

C if there does not exist any A ∈ A such that

∀ k ∈ intC : sup
a∈A

inf
a∈A

zC,k(a− a) ≤ 0 and

∃ k̂ ∈ intC : sup
a∈A

inf
a∈A

zC,k̂(a− a) > 0.
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Proof

A is minimal element of A w.r.t. �u
C

⇐⇒ A �u
C A, A ∈ A =⇒ A �u

C A

⇐⇒
(
A ∈ A and ∀ k ∈ intC : sup

a∈A
inf
a∈A

zC,k(a− a) ≤ 0

=⇒ ∀ k ∈ intC : sup
a∈A

inf
a∈A

zC,k(a− a) ≤ 0

)

⇐⇒ �A ∈ A :

(
∀ k ∈ intC : sup

a∈A
inf
a∈A

zC,k(a− a) ≤ 0

and ∃ k̂ ∈ intC : sup
a∈A

inf
a∈A

zC,k̂(a− a) > 0

)
.

��

The following corollary can be established in a similar manner as Corollary 4.

Corollary 5. Let A be a system of nonempty subsets of Y . A is a minimal
element of A w.r.t. �l

C if there does not exist any A ∈ A such that

∀ k ∈ intC : sup
a∈A

inf
a∈A

zC,k(a− a) ≤ 0 and

∃ k̂ ∈ intC : sup
a∈A

inf
a∈A

zC,k̂(a− a) > 0.

Finally, we are able to present a characterization of minimal elements of a
system of sets w.r.t. the set less order relation. This result is deduced from
Corollaries 4 and 5.

Corollary 6. Let A be a system of nonempty subsets of Y . A is a minimal
element of A w.r.t. �s

C if there does not exist any A ∈ A such that

∀ k ∈ intC : sup
a∈A

inf
a∈A

zC,k(a− a) ≤ 0 and sup
a∈A

inf
a∈A

zC,k(a− a) ≤ 0 and

∃ k̂ ∈ intC : sup
a∈A

inf
a∈A

zC,k̂(a− a) > 0 or sup
a∈A

inf
a∈A

zC,k̂(a− a) > 0.

5 Conclusion

In this paper we propose a unifying approach for representing set order rela-
tions via a nonlinear scalarizing functional. It would be interesting to investi-
gate whether other set order relations that are known in the literature can be
comprised by this concept as well. The characterization of set order relations via
scalarization can be used for deriving optimality conditions and corresponding
numerical methods for solving set-valued optimization problems.
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Abstract. This work focuses on scalarization processes for nonconvex
set-valued optimization problems whose solutions are defined by the so-
called l-type less order relation, the final space is normed and the ordering
cone is not necessarily solid. A scalarization mapping is introduced, which
generalizes the well-known oriented distance, and its main properties are
stated. In particular, by choosing a suitable norm it is shown that it coin-
cides with the generalization of the so-called Tammer-Weidner nonlinear
separation mapping to this kind of optimization problems. After that,
two concepts of solution are characterized in terms of solutions of associ-
ated scalar optimization problems defined through the new scalarization
mapping.

Keywords: Set-valued optimization, l-type less order relation, mini-
mal solution, strict minimal solution, scalarization, oriented distance,
optimality conditions.

1 Introduction

Roughly speaking, an optimization problem is said to be “set-valued” if its ob-
jective mapping is set-valued. They are a natural generalization of the vector
optimization problems. In [15] and the references therein, the reader can find a
complete description on this type of optimization problems.

There exist in the literature two approaches to solve a set-valued optimization
problem: the vector criterion and the set criterion. The first one considers the
minimal boundary of the whole image set defined by the feasible set and the
objective mapping (see [3,14,15,17]). The second one is based on minimality

c© Springer International Publishing Switzerland 2015 505
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Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_43
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notions defined by quasi orders on the values (sets) of the objective mapping. In
this paper we focuses on the second approach.

During the last decade, important results of nonconvex vector optimiza-
tion have been extended to set-valued optimization with the set criterion.
In particular, the scalarization processes have been extensively studied (see
[1,9,10,11,12,15,16,19,21]). However, the attained results cannot be applied in
problems whose ordering cone is not solid, i.e., its topological interior is empty.
As it is well-known, the natural ordering of some important spaces (for instance,
the spaces �p and Lp, 1 ≤ p < +∞) have this drawback, and so it is very
important for applications to overcome this handicap.

In vector optimization problems whose final space is normed, one can over-
come the problem by considering the so-called oriented distance (see [13,15,20]).
The main objective of this work is to generalize this scalarization scheme to
set-valued optimization.

The paper is structured as follows. Section 2 collects the main notations, con-
cepts and mathematical tools used in the sequel. In particular, the set-valued
optimization problem and two optimality concepts are fixed, and some well-
known scalarization mappings of vector optimization are recalled, in order to
illustrate their extension to set-valued optimization. In Section 3, a scalariza-
tion mapping for set-valued optimization problems is introduced, which works
for not necessarily solid ordering cones. Its main properties are derived, and
its relation with the generalization of the so-called Tammer-Weidner nonlinear
separation mapping to set-valued optimization is stated. Finally, in Section 4,
some optimality conditions in set-valued optimization are obtained via the new
scalarization scheme.

2 Preliminaries

Let (Y, p) be a normed space. The topological interior and the closure of a set
M ⊂ Y are denoted by intM and clM , respectively. Let K ⊂ Y be the ordering
cone of Y , which is assumed to be convex and proper ({0} �= clK �= Y ). In the
sequel we deal with the following set-valued optimization problem:

Min{F (x) : x ∈ S} , (1)

where F : X → 2Y , X is an arbitrary decision space and ∅ �= S ⊂ X . We denote
by domF and ImF the domain and the image of F , i.e.,

domF = {x ∈ X : F (x) �= ∅} , ImF = {F (x) : x ∈ domF} . (2)

We assume that F is proper in S (i.e., domF ∩ S �= ∅), in order to deal with a
nontrivial problem.

To study (1), we consider optimality concepts based on the next quasi order
on 2Y , which is called l-type less order relation:

A1, A2 ∈ 2Y , A1 � A2 ⇐⇒ A2 ⊂ A1 +K . (3)
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If f : X → Y and F = f (i.e., F is single-valued), then (1) is a usual vector
optimization problem, and relation (3) applied to ImF reduces to the well-known
ordering in linear spaces:

y1, y2 ∈ Y, y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K . (4)

Definition 1. It is said that x0 ∈ S is a minimal (resp. strict minimal) solution
of (1), denoted by x0 ∈ Min(F, S) (resp. x0 ∈ SMin(F, S)), if

x ∈ S, F (x) � F (x0) ⇒ F (x0) � F (x) (5)

(x ∈ S, F (x) � F (x0) ⇒ x = x0) . (6)

It is clear that SMin(F, S) ⊂ Min(F, S). Observe that (5) is equivalent to the
following statement:

x ∈ S, F (x) � F (x0) ⇒ F (x0) +K = F (x) +K . (7)

Let us recall the so-called Tammer-Weidner nonlinear separation mapping
(see [5,6,15]): ϕe,b : Y → R ∪ {±∞},

ϕe,b(y) = inf {t ∈ R : y ≤K te + b} , ∀ y ∈ Y, (8)

where b ∈ Y and e ∈ K\(−clK).
It is well-known for researchers and practitioners in vector optimization that

ϕe,b is useful to scalarize a nonconvex vector optimization problem whenever
e ∈ intK. In other words, Tammer-Weidner mapping works as a scalarization
tool for vector optimization problems whenever the ordering cone is solid, i.e.,
it has nonempty topological interior.

When the ordering cone is not solid and the final space is normed, it is pos-
sible to consider the so-called oriented distance (see [13,15,20]). Let us recall its
definition. Given a set M ⊂ Y and y ∈ Y , we denote

d(y,M) =

{
+∞ if M = ∅

infz∈M{p(z − y)} otherwise
. (9)

Then, the oriented distance is the mapping δp,b : Y → R,

δp,b(y) = d(y − b,−K)− d(y − b, Y \−K), ∀ y ∈ Y , (10)

where b ∈ Y (see [4] and the references therein for computations). This mapping
can be considered as an extension of Tammer-Weidner mapping ϕe,b, since both
of them coincide whenever the ordering coneK is pointed (i.e., K∩(−K) = {0}),
closed and solid. Specifically, we have the following result (see [2,3,14]).

Theorem 1. Assume that K is pointed, closed and solid and let e ∈ intK.

1. The mapping pe : Y → R,

pe(y) = inf{t ≥ 0 : y ∈ (−te+D) ∩ (te−D)}, ∀ y ∈ Y , (11)

is a norm on Y .
2. It follows that ϕe,b(y) = δpe,b(y), for all y ∈ Y .
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3 Scalarization

In [11] (see also [1,10,7,12,16,19,21]), the scalarization mapping ϕe,b has been
generalized to the framework of set-valued optimization with the set criterion
by the mapping Ψe,B : 2Y → R ∪ {±∞},

Ψe,B(A) =

{
+∞ if Λe,B(A) = ∅

inf {t : t ∈ Λe,B(A)} if Λe,B(A) �= ∅ , (12)

where B ⊂ Y , B �= ∅, e ∈ K\(−clK) and

Λe,B(A) = {t ∈ R : A � te+B}, ∀A ∈ 2Y . (13)

Next, we introduce an extension of the scalarization δp,b to the same framework.
In [7], the reader can find the proofs for the results formulated in this section.

Given two sets A,B ⊂ Y , B �= ∅, we denote

d(B,A) = inf
b∈B

d(b, A) , ξB(A) =

{
+∞ if A = ∅

supb∈B d(b, A) otherwise
. (14)

Let us observe that ξB(A) define the excess of B over A (see [18]). Consider a
nonempty set B ⊂ Y . We refer by generalized oriented distance with respect to
B the mapping Δp,B : 2Y → R ∪ {±∞},

Δp,B(A) = ξB(A+K)− d(B, Y \(A+K)), ∀A ∈ 2Y . (15)

It is easy to check that Δp,{b}({y}) = δp,b(y), for all b, y ∈ Y . Moreover, the gen-
eralized oriented distance with respect to a set B coincides with Ψe,B whenever
the norm pe is considered. Next theorem formulates this result, which generalizes
Theorem 1.

Theorem 2. Suppose that K is pointed, closed and solid and let e ∈ intK. It
follows that Δpe,B(A) = Ψe,B(A), ∀A ∈ 2Y .

The following propositions collect the main properties of the scalarization
mapping Δp,B . The first one shows that Δp,B(A) can be defined by assuming
that A, B coincide with their conical extensions.

Proposition 1. Let A ∈ 2Y . The next equalities are true.

1. Δp,B(A) = Δp,B(A+K) = Δp,B+K(A) = Δp,B+K(A+K).
2. Δp,B(A) = Δp,cl(B+K)(A).

With respect to the monotonicity and the sublevel set at zero of mappingΔp,B+K

we have the following general results.

Proposition 2. Let A,A1, A2 ⊂ Y .

1. If A1 � A2 then Δp,B(A1) ≤ Δp,B(A2).
2. If Δp,B(A) < 0 then A � B.
3. If A � B then Δp,B(A) ≤ 0.



Scalarization of Set-Valued Optimization Problems in Normed Spaces 509

Some previous properties are clarified under additional assumptions, as it is
shown in the next proposition. We say that a set A ⊂ Y isK-proper if A+K �= Y
(see [10]) and K-closed if A+K is closed.

Proposition 3. Let A ⊂ Y . The following properties hold:

1. If B is K-proper then Δp,B(B) = 0.
2. If A is K-closed then A � B ⇐⇒ Δp,B(A) ≤ 0.
3. If B is K-proper then Δp,B(A) < 0 ⇒ A � B and A+K �= B +K.

4 Optimality Conditions

In this last section we state minimality and strict minimality conditions through
mapping Δp,B. They are consequence of the properties obtained in Section 3.
We say that mapping F is K-closed (resp. K-proper) valued on S if F (x) is
K-closed (resp. K-proper), for all x ∈ S. Let us recall that x0 ∈ S is a strict
solution of the scalar optimization problem

Min{h(x) : x ∈ S} , (16)

where h : S ⊂ X → R ∪ {+∞}, if h(x0) < h(x), for all x ∈ S\{x0}. The set
of all solutions (resp. strict solutions) of problem (16) is denoted by Sol(h, S)
(resp. Str(h, S)).

Problem (1) is trivial whenever F is not K-proper valued on S, as it is shown
in the following proposition.

Proposition 4. Suppose that there exists x0 ∈ S such that F (x0) is not K-
proper. Then

Min(F, S) = {x ∈ S : F (x) +K = Y } , (17)

SMin(F, S) =

{
{x0} if Min(F, S) = {x0}
∅ otherwise

. (18)

Proof. As F (x0) +K = Y it is clear that

F (x0) � F (x), ∀x ∈ S . (19)

Thus, if x̄ ∈ Min(F, S) then F (x̄) +K = F (x0) +K = Y and

Min(F, S) ⊂ {x ∈ S : F (x) +K = Y } . (20)

Reciprocally, let x ∈ S such that F (x) +K = Y and suppose that there exists
u ∈ S such that F (u) � F (x). Then F (x)+K ⊂ F (u)+K and so F (u)+K = Y .
Thus F (x) +K = F (u) +K and x ∈ Min(F, S).

On the other hand, assume that Min(F, S) = {x0} and consider x ∈ S such
that F (x) � F (x0). Then F (x)+K = F (x0)+K = Y and so x ∈ Min(F, S), i.e.,
x = x0. Therefore, x0 ∈ SMin(F, S) and SMin(F, S) = {x0}, since SMin(F, S) ⊂
Min(F, S).
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In the other case, assume that there exists x ∈ Min(F, S)\{x0} and suppose
that SMin(F, S) �= ∅. Let x̄ ∈ SMin(F, S). Then F (x) � F (x̄) in view of (17),
and F (x0) � F (x̄) by (19). As x̄ is a strict minimal solution of (1) it follows
that x = x̄ and x0 = x̄, and so x = x0, that is a contradiction. This finishes the
proof. ��

In the next two theorems we state minimality and strict minimality conditions
through the generalized oriented distance, when F is K-proper valued on S. Let
us observe that, from a practical point of view, the concept of strict minimal so-
lution of problem (1) is suitable, since they can be characterized by scalarization.
The same fact happens with the notion of weak minimal solution of problem (1)
via the scalarization mapping Ψe,B, whenever the ordering cone K is solid (see
[8]).

Theorem 3. Assume that F is K-closed and K-proper valued on S, and con-
sider x0 ∈ domF . Then x0 ∈ SMin(F, S) if and only if x0 ∈ Str(Δp,F (x0) ◦F, S).

Proof. It is not hard to check that

(Δp,F (x0) ◦ F )(x) = −∞ ⇐⇒ F (x) +K = Y . (21)

Therefore, (Δp,F (x0) ◦ F )(x) > −∞, for all x ∈ S.
Assume that x0 ∈ SMin(F, S) and suppose by contradiction that there exists

x ∈ S\{x0} such that

(Δp,F (x0) ◦ F )(x) ≤ (Δp,F (x0) ◦ F )(x0) = 0 , (22)

since F (x0) is K-proper (see part 1 of Proposition 3). As F is K-closed on S
and x ∈ S we have that F (x) is K-closed, and by part 2 of Proposition 3 we
deduce that F (x) � F (x0). Thus, x0 /∈ SMin(F, S), which is a contradiction.

Reciprocally, assume that

(Δp,F (x0) ◦ F )(x) > (Δp,F (x0) ◦ F )(x0), ∀x ∈ S\{x0} , (23)

and suppose by contradiction that x0 /∈ SMin(F, S). Then, there exists u ∈
S\{x0} such that F (u) � F (x0). By part 2 of Proposition 3 we see that

(Δp,F (x0) ◦ F )(u) = Δp,F (x0)(F (u)) ≤ 0 = (Δp,F (x0) ◦ F )(x0) , (24)

which is a contradiction. Then x0 is a strict minimal solution of problem (1),
and the proof finishes. ��

For each x0 ∈ S we denote

S(x0) = {x ∈ S : F (x) +K �= F (x0) +K} ∪ {x0} . (25)

Theorem 4. Assume that F is K-closed and K-proper valued on S, and let
x0 ∈ domF . The following statements are satisfied.
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1. If x0 ∈ Str(Δp,F (x0) ◦ F, S(x0)), then x0 ∈ Min(F, S).
2. If x0 ∈ Min(F, S), then x0 ∈ Sol(Δp,F (x0) ◦ F, S).

Proof. Part 1. Suppose that x0 /∈ Min(F, S). Then there exists x ∈ S(x0)\{x0}
such that F (x) � F (x0). By parts 1 and 2 of Proposition 3 we deduce that
(Δp,F (x0) ◦ F )(x) ≤ (Δp,F (x0) ◦ F )(x0), which is a contradiction.

Part 2. Suppose that x0 /∈ Sol(Δp,F (x0) ◦ F, S). Then there exists x ∈ S such
that

(Δp,F (x0) ◦ F )(x) < (Δp,F (x0) ◦ F )(x0) = 0 . (26)

By part 3 of Proposition 3, it follows that F (x) � F (x0) and F (x) + K �=
F (x0) + K. Thus, x0 /∈ Min(F, S), that is a contradiction, and the proof is
complete. ��
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6. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially
Ordered Spaces. Springer, New York (2003)
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Abstract. This paper proposes a hybrid approach in establishing vec-
torial versions of Ekeland’s variational principle. It bases on both the
nonlinear scalarization functional in Tammer (Gerth) andWeidner’s non-
convex separation theorem [14] from a scalarization approach and Bao
and Mordukhovich’s iterative scheme in [5] from a variational approach.
Examples are provided to illustrate improvements of new results.

Keywords: Ekeland’s variational principle, nonlinear separation theo-
rem, metric, quasimetric, lower semicontinuity, decreasing closedness.

1 Introduction

Ekeland’s variational principle [12] (which provides a characterization of com-
plete metric spaces) illustrates a method for getting existence results in analysis
without compactness. Let ϕ be a lower semi-continuous function defined on a
complete metric space (X, d), with values in the extended line R ∪ {+∞}, and
bounded from below. Ekeland’s basic principle asserts that there exists a slight
perturbation of ϕ which attains its minimum on X . More precisely, there exists a
point x̄ such that ϕ(x)+ d(x̄, x) > ϕ(x̄) for all x �= x̄; this says that the function
has a strict minimum on X at x̄.

This variational principle has several equivalent geometric formulations. It has
been extended to vector-valued functions and set-valued mappings. To the best
of our knowledge, there are two main approaches: (primal) scalarized and (dual)
variational. The first approach bases on some scalarization technique to convert
a given vector-valued/set-valued mapping into a scalar one. Doing so allows us
to use the original Ekeland’s variational principle. However, we might need some
“more restrictive” assumptions imposed on ordering cones and vector-valued
functions. Among others are: (1) the ordering cone has a nonempty interior and
(2) the vector-valued funtion is bounded from below. These drawbacks were
motivations for Bao and Mordukhovich to propose the second approach in [4,5].
It drops the nonempty interiority condition (1) while weakens the boundedness
condition (2) to quasiboundedness from below.

This paper has a two-fold focus. First, we show that the nonempty interiority
condition is not essential in the scalarization approach in the proof of Theorem 5.

c© Springer International Publishing Switzerland 2015 513
H.A. Le Thi et al. (eds.), Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
Advances in Intelligent Systems and Computing 359, DOI: 10.1007/978-3-319-18161-5_44
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Then, we present a hybrid approach which uses both scalarization and variational
techniques in order to further weaken the boundedness condition in the known
vector-valued versions of Ekeland’s variational principle.

The rest of the paper is organized as follows. Section 2 contains some basic
definitions and preliminaries from nonlinear separation theorems and two vecto-
rial versions of Ekeland’s variational principles in scalarization and variational
approaches. In the main Section 3, we establish new versions of Ekeland’s varia-
tional principles which are better than the known results. Examples are provided
to illustrate improvements.

2 Preliminaries

Let Z be a real linear topological space and C be a nonempty set in Z. The
notations int(C), cl(C), and bd(C) stand for the topological interior, the topo-
logical closure, and the topological boundary of the set C, respectively. The set
C is said to be solid iff int(C) �= ∅, proper iff C �= ∅ and C �= Z, pointed iff
C ∩ (−C) ⊂ {0}, and a cone iff tc ∈ C for all c ∈ C and t ≥ 0. See [16,15,18,19]
for basic definitions and concepts of vector optimization.

Let Θ ⊂ Z be a nonempty subset of a real topological linear space Z. We can
define a binary relation ≤Θ on Z by

z1 ≤Θ z2 if and only if z2 ∈ z1 −Θ.

It is well known that if 0 ∈ Θ, then ≤Θ is reflexive [∀ z ∈ Z : z ≤Θ z],
that if Θ is a convex cone, then ≤Θ is transitive [∀ z1, z2, z3 ∈ Z : z1 ≤Θ

z2 ∧ z2 ≤Θ z3 =⇒ z1 ≤Θ z3], and that if Θ is pointed, then≤Θ is antisymmetric
[∀ z1, z2 ∈ Z : z1 ≤Θ z2 ∧ z2 ≤Θ z1 =⇒ z1 = z2]. When Θ = R

n
+, the

nonnegative orthant of Rn, ≤Θ is the Pareto ordering relation. When Θ is a
convex cone, ≤Θ is known as a generalized-Pareto order. Next, we recall the
concept of efficiency with respect to ≤Θ.

Definition 1. Let Ξ,Θ ⊂ Z be nonempty subsets of Z. An element x̄ ∈ Ξ is
said to be an efficient point of Ξ with respect to Θ if there exists no element
x ∈ Ξ such that x ∈ x̄−Θ \ {0}.

Assume that there is some element k ∈ Θ \ {0} such that Θ + [0,∞) · k ⊂ Θ.
Given ε > 0 and set Θεk := εk + Θ \ {0}. An element x̄ ∈ Ξ is said to be an
εk-efficient point of Ξ with respect to Θ if there exists no element x ∈ Ξ such
that x ∈ x̄−Θεk.

We will denote the efficient point set of Ξ with respect to Θ by Eff (Ξ;Θ)
and the εk-efficient point set by Eff (Ξ;Θεk). These efficiency concepts reduce
to the known Pareto optimality/efficiency ones in vector optimization when Θ
is a convex ordering cone of Z.

Next, let us recall a powerful nonlinear scalarization tool from [14]; cf. [15].
Let A be a nonempty subset of Z and k �= 0 be a nonzero element of Z. The

functional sA,k : Z → R ∪ {±∞} defined by

sA,k(z) := inf{t ∈ R | z ∈ tk −A} (1)
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is called a nonlinear (separating) scalarization function (with respect to the set
A and the direction k). The next lemma provides important properties of sA,k.

Lemma 1. ([15, Theorem 2.3.1]) Let ∅ �= A ⊂ Z and k ∈ Z \ {0} satisfy
A+ [0,+∞) · k ⊂ A. Then the following hold:

(a) The functional sA,k is l.s.c. over its domain domϕA,k = Rk − A iff A is
a closed set. Moreover, its t-level set is given by {z ∈ Z | sA,k(z) ≤ t} =
tk − A, ∀ t ∈ R and the transformation of ϕA,k along the direction k is
calculated by ϕA,k(z + tk) = ϕA,k(z) + t, ∀ z ∈ Z, ∀ t ∈ R.

(b) sA,k is convex if and only if the set A is convex, and sA,k is positively
homogeneous, i.e. sA,k(tz) = tsA,k(z) for all t ≥ 0 and z ∈ Z, if and only if
A is a cone.

(c) sA,k is proper if and only if A does not contain lines parallel to k, i.e.
∀ z ∈ Z, ∃ t ∈ R : z + tk /∈ A.

(d) sA,k is finite-valued, i.e. dom sA,k = Z, if and only if Rk − A = Z and A
does not contain lines parallel to k.

(e) Given B ⊂ Z. sA,k is B-monotone, i.e.
[
a ∈ b−B =⇒ sA,k(a) ≤ sA,k(b)

]

if and only if A+B ⊂ A.
(f) sA,k is subadditive if and only if A+A ⊂ A.

Using the scalarization functional sA,k, Tammer sucessfully established the
next result.

Theorem 1. ([22, Theorem 4.1]) Let B,D ⊂ Z be proper subsets of Z and k be
a nonzero element of D satisfying

(T1) B is an open convex subset of Z with 0 ∈ clB \B and Z = clB + R · k,
(T2) (0,∞) · k ⊂ D \ {0} and 0 ∈ clD \D,
(T3) clB + (D \ {0}) ⊂ B,
(T4) bdB + bdB ⊂ clB.

Assume that f : X → Z is a (k,B)-lower semicontinuous and bounded from
below on a Banach space X. Then, for every ε > 0 and for every x0 ∈ X
satisfying f(x0) ∈ Eff (f(X), Bεk), there exists x̄ ∈ X such that

(i) f(x̄) ∈ Eff (f(X), Dεk),
(ii) ‖x0 − x̄‖ ≤ √

ε,
(iii) fεk(x̄) ∈ Eff(fεk(X), B) with fεk(x) := f(x) +

√
ε‖x̄− x‖k.

It is important to emphasize that although the result was formulated for a Ba-
nach space X , its proof holds for any complete metric space (X, d) where d plays
the role of the norm.

Remark 1. (on the conical property of the sets B and D). Any set B
satisfying concitions (T1) and (T4) is a cone. Arguing by contradiction. Assume
that B is not a cone. Then, there exist b ∈ B and t > 0 such that tb �∈ B.
By (T1), i.e., 0 ∈ clB and B is a convex set, τb ∈ B for all τ ∈ (0, 1]. Set
t := inf{τ > 1| τb �∈ B}. We have tb ∈ bdB, and thus 2tb ∈ bdB due to
(T4). Taking into account the convexity of the set B in (T1), the midpoint of
2tb ∈ bdB and b ∈ B belongs to B, i.e., (1/2 + t)b ∈ B which contradics the
choice of t and thus verifies the conical property of the set B.
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In [4,5] Bao and Mordukhovich proposed a new approach, which is now known
as the variational approach in establishing versions of Ekeland’s variational prin-
ciple for vector-valued functions (indeed, set-valued mappings) without perform-
ing any scalarization technique. One significant feature of their approach is that
the ordering cone does not necessarily have a nonempty interior. Below is a
vectorial version obtained in this direction; cf. [2,3,4,5,6,7,8].

Theorem 2. Let f : (X, d) → Z be a vector-valued function acting from a
complete metric space (X, d) to a real linear spaces Z which is ordered by a
proper, closed, and convex cone Θ ⊂ Z with Θ \ (−Θ) �= ∅, i.e., Θ is not a linear
subspace of Z. Assume furthermore that f is quasibounded from below, i.e., there
is a bounded set M such that f(x) ∈ M + Θ for all x ∈ X, and is decreasingly
closed in the sense that for any convergent sequence {xn} with the limit x̄, if
f(xn+1) ≤Θ f(xn) for all n ∈ N, then f(x̄) ≤Θ f(xn) for all n ∈ N. Then for
any λ > 0, k ∈ Θ \ (−Θ), and x0 ∈ X, there is x̄ ∈ X satisfying

(i) f(x̄) + λd(x0, x̄)k ≤Θ f(x0).
(ii) f(x) + λd(x̄, x)k �≤Θ f(x̄) for all x �= x̄.

If furthermore x0 is an εk-efficient solution of f , i.e., x0 ∈ Eff(f(X);Θε,k), then
x̄ can be chosen such that in addition to (i) and (ii) with ε/λ instead of λ we
have (iii) d(x0, x̄) ≤ λ.

Note that Theorem 2 is valid for a broader class of quasimetric spaces with
notions of convergence, closedness, limit, completeness, and separation in Defi-
nitions 2–7; cf. [3,6,7,8].

Definition 2. A functional q : X ×X → R is said to be a quasimetric iff it
satisfies (q1) q(x, y) ≥ 0 (nonnegativity); (q2) if x = y, then q(x, y) = 0 (equality
implies indistancy); (q3) q(x, z) ≤ q(x, y) + q(y, z) (triangularity).
If a quasimetric q enjoys also (q4) q(x, y) = q(y, x) (symmetry), it is a metric.

A quasimetric space X with a quasimetric q will be denoted by (X, q) and
a metric space X with a metric d will be denoted by (X, d). For example, a
quasimetric on the real numbers can be defined by q(x, y) = x− y if x ≥ y and
1 otherwise.

Definition 3. For a quasimetric space (X, q), a sequence {xn} in X is said to
be left-sequentially convergent to a point x∗ ∈ X, denoted by xn → x∗,
iff the quasidistances q(xn, x∗) tend to zero as n → ∞, i.e. lim

n→∞
q(xn, x∗) = 0.

Definition 4. For a quasimetric space (X, q), a subset Ω ⊂ X is said to be
left-sequentially closed iff for any sequence {xn} ⊂ X converging to x∗ ∈
X, the limit x∗ belongs to Ω.

Definition 5. For a quasimetric space (X, q), a sequence {xn} ⊂ X is said to
be left-sequential Cauchy iff for each k ∈ N there exists Nk ∈ N such that

q(xn, xm) < 1/k for all m ≥ n ≥ Nk.
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Definition 6. A quasimetric space is said to be left-sequentially com-
plete iff each left-sequential Cauchy sequence is left-sequential convergent.

Definition 7. X is said to be Hausdorff iff every left-sequentially convergent
sequence has the unique limit, i.e.

if lim
n→∞

q(xn, x∗) = 0 ∧ lim
n→∞

q(xn, y∗) = 0, then x∗ = y∗.

For simplicity, ‘left-sequential’ in these terminologies will not be mentioned .

3 Main Results

In this section, we first establish a new version of Ekeland’s variational princi-
ple for extended-real-valued functionals with weaker assumptions by using both
the nonlinear scalarization functional (1) and Bao and Mordukhovich’s iterative
procedure in [4,5]. To the best of our knowledge, [7, Corollary 3.3] says that
the original Ekeland’s variational principle still holds for a class of decreasingly
closed functionals defined on quasimetric spaces which is broader than the class
of lower semicontinuous functionals defined on metric spaces.

Definition 8. Let ϕ : X → R ∪ {+∞} be a function. It is said to be decreas-
ingly closed iff for any convergent sequence {xk} ⊂ X with the limit x̄, if the
sequence of numbers {ϕ(xk)} is decreasing and bounded, ϕ(x̄) ≤ ϕ(xk), ∀k ∈ N.

Obviously, if ϕ is lower semicontinuous (known also as level-closed) on domϕ\
Max(ϕ), then it is decreasingly closed, where Max(ϕ) is the collection of all the
local maxima of ϕ.

The first result in this paper can be viewed as a far-going extension of Dancs
et al.’s fixed point theorem [11] which is widely used to prove vectorial versions
of Ekeland’s variational principles; the reader is referred to [9] for discussions
and relations for previous developments in [7,8,17,20,21].

Theorem 3. Let (X, q) be a quasimetric space, and S : X →→ X be a set-valued
map with x ∈ S(x) for all x ∈ X. Given a sequence {xn}∞n=0 ⊂ X. Assume that

(C1) there is x̄ ∈ X such that S(x̄) ⊂ S(xn) for all n ∈ N ∪ {0}.
(C2) lim

n→∞
sup

x∈S(xn)

q(xn, x) = 0.

(C3) lim
n→∞

q(xn, x∗) = lim
n→∞

q(xn, x
∗) = 0 =⇒ x∗ = x∗.

Then, x̄ ∈ S(x0) and S(x̄) = {x̄}.
Proof. The proof of the theorem is complete provided that

⋂

n∈N∪{0}
S(xn) ⊂ {x̄} (2)

due to assumption (C1) and the nonempty images of S. To justify (2), assume,
in addition to x̄, that an element ȳ lies in the intersection of (2). Then, (C2)
ensures that limn→∞ q(xn, x̄) = limn→∞ q(xn, ȳ) = 0 which yields x̄ = ȳ due to
(C3), i.e., (2) holds.



518 Q.B. Truong

Note that the Cantor theorem can not be applied in the proof of Theorem 3
even in the complete metric setting since the images of the mapping are not
imposed to be closed.

Example 1. (on assumptions (C1)–(C2)). Let X = R, q(x, y) = d(x, y) =
|x− y|, xn = 1/(n+ 1), and S1, S2 : R →→ R be defined by

S1(x) =

{
[0, 2x) if x > 0,
{0} if x ≤ 0,

S2(x) =

{
(0, 2x) if x > 0,
{−1} if x ≤ 0,

S3(x) = (−∞, x], ∀ x ∈ R, S4(x) =

{
[−1, 1] if x �= 0,
{0} if x = 0,

Obviously, condition (C3) holds for the usual distance of real numbers.
– S1 satisfying conditions (C1)–(C3) in Theorem 3 has an invariant point x̄ = 0.
– S2 does not satisfy condition (C1), but it has an invariant point at x̄ = −1.
– S3 does not satisfy condition (C2), and it doesn’t have an invariate point.
– S4 does not satisfy condition (C2), but it has an invariate point at x̄ = 0.

Theorem 4. Let (X, q) be a quasimetric space, and let ϕ : X → R∪{+∞} be a
proper extended-real-valued functional. Given x0 ∈ domϕ and λ > 0. Consider
a set-valued mapping Sϕ,λ : X →→ X defined by

Sϕ,λ(x) := {u ∈ X | ϕ(u) + λq(x, u) ≤ ϕ(x)} ∀ x ∈ X. (3)

Assume that

(D1) ϕ is bounded from below on domϕ �= ∅.
(D2) for any Cauchy sequence {xn}∞n=0 with xn ∈ Sϕ,λ(xn−1) for all n ∈ N,

there exists x̄ ∈ domϕ satisfying Sϕ,λ(x̄) ⊂ Sϕ,λ(xn) for all n ∈ N ∪ {0}.
(D3) q enjoys the limit uniqueness respect to the decreasing monotonicity of ϕ,

i.e., for any Cauchy sequence {xn}, if {ϕ(xn)} is decreasing, then
lim
n→∞

q(xn, x∗) = lim
n→∞

q(xn, x
∗) = 0 =⇒ x∗ = x∗.

Then, there is x̄ ∈ X such that

(i) ϕ(x̄) + λq(x0, x̄) ≤ ϕ(x0);
(ii) ϕ(x) + λq(x̄, x) > ϕ(x̄), ∀ x �= x̄.

Proof. Since (i) and (ii) are equivalent to x̄ ∈ Sϕ,λ(x0) and Sϕ,λ(x̄) = {x̄},
respectively, the theorem is proved provided that we can construct a sequence
{xn}∞n=0 satisfying conditions (C1)–(C3) in Theorem 4 with S = Sϕ,λ. Such a
sequence can be defined by induction. Suppose that xn is known, then xn+1 can
be chosen such that

xn+1 ∈ Sϕ,λ(xn) and q(xn, xn+1) ≥ sup
x∈Sϕ,λ(xn)

q(xn, x)− 2−n. (4)
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By the structure of Sϕ,λ, xn+1 ∈ Sϕ,λ(xn) ⇐⇒ ϕ(xn+1) + λq(xn, xn+1) ≤
ϕ(xn) for all n ∈ N ∪ {0}. Summing up these inequalities from n = l to m − 1
gives

λ

m−1∑

n=l

q(xn, xn+1) ≤ ϕ(xl)− ϕ(xm), and thus (5)

λ

∞∑

n=0

q(xn, xn+1) ≤ ϕ(x0)− inf
x∈X

ϕ(x) < ∞ (6)

where the last estimate holds due to the boundedness from below of ϕ in (D1).
The convergence of the series clearly implies that lim

n→∞
q(xn, xn+1) = 0. This

together with the inequality in (4) gives

lim
n→∞

sup
x∈Sϕ,λ(xn)

q(xn, x) ≤ lim
n→∞

(
q(xn, xn+1) + 2−n

)
= 0

which implies that the sequence {xn} satisfies condition (C2).
The convergence of the series in (6) says that for every ε > 0, there is Nε ∈ N

such that for all m > l ≥ Nε we have

q(xl, xm) ≤
m−1∑

n=l

q(xn, xn+1) ≤
∞∑

n=l

q(xn, xn+1) < ε,

i.e., {xn} is a Cauchy sequence in (X, q). Thus, conditions (C1) and (C3) fol-
low conditions (D2) and (D3) applied to the chosen sequence {xn} in (4),
respectively.

Remark 2. (other iterative schemes) The iterative scheme (4) used for the
first time in [4] allows us to work with vector-valued functions since it does not
depend on images of the function under consideration. It is different from other
known procedures; for example, [13, Ekeland and Turnbull (1983)], [1, Aubin
and Frankowska (1990)], and [10, Borwein and Zhu (2005)]. These procedures
heavily depend on the complete order for real numbers and thus it seems to be
not possible to extend them to partially ordered vector spaces.

In [7, Corollary 3.3] the authors worked on complete and Hausdorff quasi-
metric spaces so that they could imposed assumptions on the function ϕ un-
der consideration which are sufficient conditions for (D1)–(D3). Obviously, the
Hausdorff condition imposed on q, i.e.,

∀ {xn}, lim
n→∞

q(xn, x∗) = lim
n→∞

q(xn, x
∗) = 0 =⇒ x∗ = x∗

is more restrictive than (D3).

Proposition 1. (a sufficient condition for (D2)). Assume that the quasi-
metric space (X, q) is complete and ϕ is bounded from below and decreasingly
closed in the sense of Definition 8. Then, condition (D2) in Theorem 4 holds.



520 Q.B. Truong

Proof. Fix a Cauchy sequence {xn}∞n=0 with xn+1 ∈ Sϕ,λ(xn) for all n ∈ N∪{0}.
Then,

ϕ(xn+1) + λq(xn, xn+1) ≤ ϕ(xn) ∀ n ∈ N ∪ {0}. (7)

which clearly implies that ϕ(xn+1) ≤ ϕ(xn) for all n ∈ N ∪ {0}. The complete-
ness of the quasimetric space (X, q) ensures the existence of x̄ ∈ X such that
lim
n→∞

q(xn, x̄) = 0. Then, we get from the decreasing closedness of ϕ that

ϕ(x̄) ≤ ϕ(xn) ∀ n ∈ N ∪ {0}. (8)

Summing up the inequalities in (7) from n = l to m− 1 gives

λ

m−1∑

n=l

q(xn, xn+1) ≤ ϕ(xl)− ϕ(xm). (9)

Adding (8) and (9) while taking into account the triangle inequality gives

λ(q(xl, x̄)−q(xm, x̄)) ≤ λq(xl, xm) ≤ λ

m−1∑

n=l

q(xn, xn+1) ≤ ϕ(xl)−ϕ(xm) ≤ ϕ(xl)−ϕ(x̄)

which reduces, by passingm to infinity, to λq(xl, x̄) ≤ ϕ(xl)−ϕ(x̄), i.e., x̄ ∈ S(xl)
which implies Sϕ,λ(x̄) ⊂ Sϕ,λ(xl) since for any x ∈ Sϕ,λ(x̄) and x̄ ∈ Sϕ,λ(xl) we
have

ϕ(x) + λq(xl, x) ≤
(
ϕ(x) + λq(x̄, x)

)
+ λq(xl, x̄) ≤ ϕ(x̄) + λq(xl, x̄) ≤ ϕ(xl).

Since l was arbitrary, (D2) holds for x̄ as the limit of the sequence {xn}.

This proposition says that Theorem 4 implies [7, Corollary 3.3] and thus the
original Ekeland’s variational principle [12]. Next, let us establish a new vector
version of Ekeland’s variational principle by using the nonlinear scalarization
technique in [14]. It is important to mention that we do not require the solidness
of the ordering cone Θ.

Theorem 5. Let f : X → Z be a vector-valued function acting between a quasi-
metric space (X, q) and a vector space Z equipped with a binary relation ≤Θ,
where Θ be a nontrivial convex cone with vertex in Z. Assume that there is a
nonzero element k ∈ Θ \ {0} and R · k − Θ = H, where H := Θ − Θ is the
spanning space of Θ. Consider the nonlinear scalarization functional s := sΘ,k :
Z → R ∪ {±∞} defined by (1) and the level-set mapping Sf,λ : X →→ X with
respect to λ > 0 defined by

Sf,λ(x) := {u ∈ X | f(u) + λq(x, u)k ≤Θ f(x)}, (10)

Given x0 ∈ X. Impose the following conditions on ϕ := s ◦ (f − f(x0)):
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(H1) ϕ is bounded from below on Sf,λ(x0); in particular, s ◦ f is bounded from
below on it.

(H2) Sϕ,λ is decreasingly closed on Sf,λ(x0).
(H3) q enjoys the limit uniqueness w.r.t. the decreasing monotonicity of ϕ.

Then, there exists some element x̄ ∈ X such that

(i) f(x̄) + λq(x0, x̄)k ≤Θ f(x0),
(ii) f(x) + λq(x̄, x)k �≤Θ f(x̄), ∀ x ∈ X \ {x̄}.

Proof. By Lemma 1 (d), the functional s is finite-valued over H := Θ − Θ
and thus ϕ = s ◦ (f − f(x0)) is finite-valued over Sf,λ(x0) due to the imposed
requirement R · k −Θ = H and f(Sf,λ(x0)) ⊂ H .

Under the imposed conditions (H1)–(H3), the functional ϕ satisfies conditions
(D1)–(D3) of Theorem 4 on the quasimetric space (Sf,λ(x0), q), where the set
Sf,λ(x0) is described in (10). Therefore, the theorem ensures the existence of
x̄ ∈ Sf,λ(x0) satisfying

(
s ◦ (f − f(x0)

)
(x) + λq(x̄, x) >

(
s ◦ (f − f(x0)

)
(x̄), ∀x �= Sf,λ(x0) \ {x̄}.(11)

Taking into account the properties of s in Lemma 1, we get from (11) that

(
s ◦ (f − f(x0)

)
(x) + λq(x̄, x) >

(
s ◦ (f − f(x0)

)
(x̄)

(a)⇐⇒ s(f(x)− f(x0) + λq(x̄, x)k) > s(f(x̄)− f(x0))

(e)
=⇒ f(x)− f(x0) + λq(x̄, x)k �∈ f(x̄)− f(x0)−Θ

def.⇐⇒ f(x) + λq(x̄, x)k �≤Θ f(x̄).

Obviously, (i) holds since x̄ ∈ Sf,λ(x0). Thus, it remains to prove (ii). Arguing
by contradiction, assume that there is some element x ∈ X \ {x̄} such that

f(x) + λq(x̄, x)k ≤Θ f(x̄)
def.⇐⇒ f(x) + λq(x̄, x)k ∈ f(x̄)−Θ. (12)

We get from (12) and x̄ ∈ Sf,λ(x0) that

f(x) + λq(x0, x)k

= f(x) + λq(x̄, x)k + λq(x0, x̄)k − λ
(
q(x̄, x) + q(x0, x̄)− q(x0, x)

)
k

(q3)
∈ f(x) + λq(x̄, x)k + λq(x0, x̄)k −Θ

(12)
⊂ f(x̄)−Θ + λq(x0, x̄)−Θ

(10)
⊂ f(x0)−Θ

which implies x ∈ Sf,λ(x0) contradicting to (ii′) due to Lemma 1(e). Details
below:

(12) ⇐⇒ f(x) + λq(x̄, x)k ∈ f(x̄)−Θ
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⇐⇒
(
f(x)− f(x0)

)
+ λq(x̄, x)k ∈

(
f(x̄)− f(x0)

)
−Θ

(e)
=⇒ s

(
f(x)− f(x0) + λq(x̄, x)k

)
≤ s

(
f(x̄)− f(x0)

)

(a)⇐⇒ s
(
f(x)− f(x0)

)
+ λq(x̄, x) ≤ s

(
f(x̄)− f(x0)

)
.

The proof is complete.

Proposition 1 says that (H2) can be replaced by

(H2′) for every convergent sequence {xn} ⊂ X with the limit x̄, if s
(
f(xn+1)−

f(x0)
)
≤ s

(
f(xn)−f(x0)

)
for all n ∈ N, then s

(
f(x̄)−f(x0)

)
≤ s

(
f(xn)−

f(x0)
)
for all n ∈ N.

In [4,5], Bao and Mordukhovich used the following closedness assumption:

(H2′′) for every convergent sequence {xn} ⊂ X with the limit x̄, if f(xn+1) ≤Θ

f(xn) for all n ∈ N, then f(x̄) ≤Θ f(xn) for all n ∈ N.

By Lemma 1 (e), we have only the validity of the implication a ≤Θ b =⇒ s(a) ≤
s(b), but it is not difficult to show by examples that the reverse implication does
not hold. Therefore, conditions (H1′) and (H1′′) are incomparable. In the next
result we show that (H2′′) is also an alternative of (H2).

Theorem 6. Assume the (X, q) is a complete quasimetric space and (H2) is
replaced by either (H2′) or (H2′′). Then, Theorem 5 holds.

Proof. It is sufficient to prove the case with (H2′′) since the other case follows
from Proposition 1. Since we use arguments in the proofs of Theorem 4 and
Proposition 1, we might omit some details.

We construct a sequence {xn}∞n=0 satisfying conditions (C1)–(C3) in Theo-
rem 3 by using a modified iterative procedure:

xn+1 ∈ Sf,λ(xn) and q(xn, xn+1) ≥ sup
x∈S(xn)

q(xn, x)− 2−n. (13)

Since x ∈ Sf,λ(x) for all x ∈ X , the sequence is well-defined. Let us check
conditions (C1)–(C3).

By the structure of Sf,λ, xn+1 ∈ S(xn) implies f(xn+1) + λq(xn, xn+1)k ≤Θ

f(xn). Summing up these inequalities from n = l to m− 1 gives

λ

m∑

n=l

q(xn, xn+1)k ≤Θ f(xl)− f(xm). (14)

By Lemma 1 (a) and (e) for the functional s := sΘ,k, we have

λ

m−1∑

n=0

q(xn, xn+1) ≤ s(f(x0))− s(f(xm)) (15)
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and thus

λ

∞∑

n=0

q(xn, xn+1) ≤ s(f(x0))− sup
x∈X

s(f(x)) < ∞

where the last estimate holds due to the boundedness from below of s ◦ f in
(H1). The convergence of the series clearly implies that lim

n→∞
q(xn, xn+1) = 0.

This together with the inequality in (13) that

lim
n→∞

sup
x∈Sf,λ(xn)

q(xn, x) ≤ lim
n→∞

(
q(xn, xn+1) + 2−n

)
= 0

clearly verifying that the sequence {xk} satisfies condition (C2).

The convergence of the series

∞∑

n=0

q(xn, xn+1) implies that the sequence {xn}

is a Cauchy sequence in (X, q). Details can be found in Theorem 4. By the
structure of Sf,λ, xn+1 ∈ Sf,λ(xn) =⇒ f(xn+1) ≤Θ f(xn) for all n ∈ N ∪ {0}.
By (H2′′) and the completeness of the space (X, q) there exists an element x̄ ∈ X
such that lim

n→∞
q(xn, x̄) = 0 and

f(x̄) ≤Θ f(xn) for all n ∈ N ∪ {0}. (16)

Adding (16) and (14) while taking into account the triangle inequality we obtain

λ
(
q(xl, x̄)− q(xm, x̄)

)
k ≤Θ λq(xl, xm)k ≤Θ λ

m−1∑

n=l

q(xn, xn+1)k ≤Θ f(xl)− f(x̄)

which reduces, by passing m to infinity, to λq(xl, x̄)k ≤Θ f(xl) − f(x̄), i.e.,
x̄ ∈ Sf,λ(xl). It is not dificult to check that Sf,λ(x̄) ⊂ Sf,λ(xl). Since l was
arbitrary, condition (C1) holds.

As it was justified above, the sequence {xn} is Cauchy and satisfies xn+1 ∈
Sf,λ(xn) for all n ∈ N. Thus, (C3) follows (H3). The proof is complete.

This result improves the corresponding results in [4,5,6,7,8] in which the func-
tion f is required bounded from below by a bounded set; known also as quasi-
bounded.

Proposition 2. (a sufficient condition for (H2)). If f is bounded from below
by a bounded set M and k ∈ Θ \ (−clΘ), then s ◦ (f − f(x0)) is bounded from
below over Sf,λ(x0).

Proof. It is quite straigtforward.

To conclude this section we present a vector-valued function which is not
(quasi)-bounded from below but the scalarization is bounded from below.
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Example 2. Define f : R → R
2 by

f(x) := (ex + 1, ex + 1 + x) ∀ x ∈ R.

Let Θ = R
2+ (the nonnegative orthant), k = (1, 1) ∈ Θ and x0 = 0. It is easy

to check that

sΘ,k ◦ (f(x) − f(0)) = sΘ,k((0, x) + exk) = ex + sΘ,k(0, x) ≥ ex ≥ 0 ∀ x ∈ R.

Therefore, sΘ,k◦(f−f(0)) is bounded from below over R. Fix n > 0 and consider
the output of f at −n. Since the second component of f(−n) is negative and
diverges to negative infinity as n → ∞, f can not be bounded from below by
any bouneded set M in R

2.

References

1. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Systems and Control: Founda-
tions and Applications. Birkhäuser, Boston (1990)
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