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Abstract This paper presents a new and computationally efficient method for the
modelling of flexible robot manipulators. The proposed method avoids the global
dynamics by decomposing it to the component dynamics. The component dynamics
is established, and is linearized based on the acceleration-based state vector. The
transfer matrices for different type of components are created, and the systematic
dynamics of a flexible robot manipulator is then established by transferring the state
vector from the base to the end-effector without increasing the order of the system
matrices. The numerical simulations of a flexible manipulator are conducted for
verifying the proposed methodologies.
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1 Introduction

In contrast to the rigid manipulators, light weight manipulators offer advantages
such as higher speed, better energy efficiency, improved mobility, and higher
payload-to-arm weight ratio. However, at high operational speeds, inertial forces of
moving components become quite large, leading to considerable deformation in the
light links, and generating unwanted vibration phenomena. Hence, elastic vibrations
of light weight links must be taken into account in the modelling, design, and
control of the robot manipulators. In the past decades, significant progresses have
been made into the dynamic modeling of manipulators with flexible components
[1]. Different discretization techniques, such as the finite element method (FEM)
[2, 3], the assumed mode method (AMM) [4, 5], and the lumped parameter method
(LPM) [6, 7], have been reported extensively for modeling the dynamics of flexible
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robot manipulators. However, the matrix size of global dynamic model of a robot
manipulator increases with the number of the Degree of Freedom, and therefore
heavy computation of dynamic modelling is still a big concern in terms of real-time
control.

Alternatively, the transfer matrix method can be used to model linear and
continuous parameter systems without discretization [8, 9]. Using the integration
procedure, the discrete-time transfer matrix method (DT-TMM) was presented to
perform the dynamic analysis of large systems that consists of large subsystems,
each of which is a simple dynamic element. The DT-TMM was further developed
to model multi-body system dynamics using linearization and integral schemes.
With the TD-MM, the local dynamics is transmitted and concatenated through the
transfer matrix of each subsystem. As a result, the matrix size of the dynamic
equations does not increase with the DOF of multi-body systems as the traditional
procedure of establishing the global dynamic equations are avoided. Therefore, the
computation efficiency can be significantly improved. In this work, the DT-transfer
matrix method is extended to the dynamic modeling of lightweight robot manip-
ulators with the consideration of link flexibility. The procedure of DT-TMM pre-
sented in this work for modeling the dynamics of flexible manipulators is: (1) a
robot manipulator is decomposed into subsystems or elements: links, motors, and
connections between a link and motors; (2) the dynamics model of each element or
subsystem is established; (3)the state vector of the input board and the output board
of the element is defined, the dynamics of each element is linearized in terms of the
defined state vector of the inboard and the outboard, and the transfer matrix is
formulated to transform the state vector of the element from the inboard to the
outboard; (4) the boundary conditions between the links is applied, and the trans-
formation of the state vector is generated from one link to the neighboring links so
that the dynamics of links is connected with motors and fixed mounting; (5)
the transformation of the dynamics of the robot manipulator are conducted from the
base to the last link, and hence the global transfer matrix is obtained base on
the transformation of the input state vector at the base and the output state vector at
the tip of the manipulator. The global dynamics is avoided using the proposed
method. The matrix size of the robot manipulator dynamics does not increase with
the DOF of the robot manipulator, and hence significantly reduce the computation
cost.

2 State Vectors and Transformation

The state vector is a column vector that represents the internal forces (force
qx; qy; qz; and moment Mx;My;Mz) and displacement (rigid motion x; y; z; hx; hy; hz
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and deformation w1;w2; . . .;wn) at a particular location within a system. In this
work, the acceleration-based integral scheme is selected as

z ¼ ½ €x;€y;€z
zffl}|ffl{acceleration

; €hx; €hy; €hz|fflfflfflffl{zfflfflfflffl}
angular acceleration

;Mx;My;Mz; qx; qy; qz; €w
1; €w2; . . .; €wn

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{modal acceleration

; 1�T ð1Þ

The sign convention of the elements in the state vector related to the reference
coordinate system is illustrated in Fig. 1. The position coordinates and orientation
angles are defined as positive when they are in the positive directions of the
coordinate axes. The inboard forces and outboard moments applied on the elements
are positive if they are in the positive directions of the coordinate axes, and the
outboard forces and inboard moments acted on the elements are negative if they are
in the positive directions of the coordinate axes.

In the DT-TMM, a transfer matrix is formulated to transform the state vector
form one end of the component to the other end of the component as

zO
½n�1�

¼ U
½n�m�

zI
½m�1�

ð2Þ

For a robot manipulator system, the order of the system transfer matrix Usys

depends on the size of the boundary state vectors of the system.

zO
½n�1�

¼ UjUj�1 � � �U2U1 zI
½m�1�

¼ Usys
½n�m�

zI
½m�1�

ð3Þ

In (3), j is the number of elements divided from the robot manipulator system. It is
clear that the order of the system matrix does not increase when the degrees
of freedom of the manipulator increase, which results in significant reduction of the
computational time and storage requirements. Each component of a robot

Fig. 1 State vectors and coordinate system
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manipulator has a unique transfer matrix based on the physical behavior it models.
The transfer matrices of different elements are established to propagate the state
vectors of flexible robot manipulator components in Sect. 4.

3 Linearization and Integration Schemes

The nonlinearity terms may result from 1st and 2nd second order time derivatives,
trigonometric terms, multiplications and couplings of variables related to the state
vectors. This brings the challenges, if not possible, to formulate the linear trans-
formation between the outboard state vector and the inboard state vector for a
subsystem, as shown in Eq. (3). Additionally if no linearization is performed, the
transfer matrix may contain some terms related to the current values of the stave
vector variables. This would be incompatible with the TMM formulation, as
transfer matrices are only allowed to have state vector variables related to the
previous time steps. Mathematically, linearization is carried using the method of a
Taylor series expansion. The linearization is not detailed in this work due to the
limited space. The dynamic equations of the components usually contain terms of
the displacement (linear and angular) variables, velocity (linear and angular), and
accelerations (linear and angular). To transfer the state vectors with transfer
matrices as in Eq. (3), the displacement and velocity variables need to be described
as the functions of the variables at the previous time step when the acceleration-
based integration scheme. This process can be conducted through an implicit
integration method. The principle of an implicit integration is to find a solution by
solving an equation consisting of both the current step variables and previous step
variables. Assuming i−1 to be the previous time step, and i the current time step, the
general form of an implicit scheme can be written as n ¼ nði�1Þ þ f ðn; tÞ, where n

and nði�1Þ are the current and previous time stable variables respectively, and f is a
function of the current time step variables. Using Newmark-b integration method
[10], this implicit equation can be solved and rewritten in terms of TMM parameters
as

n ¼ bDt2€nþ nði�1Þ þ _nði�1ÞDt þ 1
2
� b

� �
€nði�1ÞDt2 ð4Þ

_n ¼ cDt€nþ _nði�1Þ þ 1� cð Þ€nði�1ÞDt ð5Þ

where the integration parameters c and b are weighting coefficient in the Newmark
method, and the two weighting parameters c and b play a key role in the stability
and convergence of analyses. It was proved that c ¼ 0:5, or else spurious damping
will be added to the system. In general, the Newmark scheme has shown to be
unconditionally stable with the following parameters 2b� c� 1

2.
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4 Transfer Matrix of Components

To establish the system transfer matrix of a robot manipulator, the robot manipu-
lator system is broken down to motors and links. A local transfer matrix is then
formulated for each link, motor, and connection between a motor and a link.

4.1 Dynamics and Transfer Matrix of a Flexible Link
Element

The lightweight links are assumed as a slender beam, and the state vectors and
coordinate system are defined as shown in Fig. 1. The linear transformation is
formulated based on the kinematics, the force and moment balance of an Euler-
Bernoulli beam. The elastic deformation u can then be described by the spatial
mode shape function NðxÞ and the time-dependent modal coordinates wðtÞ as
uðx; tÞ ¼ NðxÞwðtÞ. In this work, only the first three vibration modes are included to
calculated the elastic deformation. The kinematic relation from inboard to outboard
end is established, and then is differentiated twice with respect to time as

€x
€y
€h

2
4

3
5
O

¼
€xI � €h sin hL� _h2 cos hL� €u sin h� 2 _u _h cos h� u€h cos hz þ u _h2z sin hz
€yI þ €h cos hL� _h2 sin hLþ €u cos h� 2 _u _h sin h� u€hz sin hz � u _h2 cos h

€hI

2
4

3
5 ð6Þ

The force and moment balance equations of the flexible beam are conducted
based on the Newton-Euler equations by including the impact of inertial forces and
deformation (the force and moment equations are not detailed due to the limited
space). The dynamic equations are then linearized, reorganized, and combined with
Eq. (6) to generate the transfer formation equation of a flexible link as

zO ¼ UzI

¼

1 0 u1;3 0 0 0 u1;7 u1;8 u1;9 u1;10
0 1 u2;3 0 0 0 u2;7 u2;8 u2;9 u2;10
0 0 1 0 0 0 0 0 0 0

u4;1 u4;2 u4;3 1 0 0 u4;7 u4;8 u4;9 u4;10
u5;1 0 u5;3 0 1 0 u5;7 u5;8 u5;9 u5;10
0 u6;2 u6;3 0 0 1 u6;7 u6;8 u6;9 u6;10
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

2
6666666666666666664

3
7777777777777777775

€x

€y
€h

Mz

qx
qy
€w1

€w2

€w3

1

2
6666666666666666664

3
7777777777777777775

I

ð7Þ

The components of the transfer matrix are listed at the Ref. [12].
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4.2 Dynamics and Transfer Matrix of a Rotational Motor
Joint

Physically, the motor (driven joint) is used to generate the rotation between the
mounted inboard and outboard links. The angular acceleration related to the two
attached bodies is expressed as €hIðjþ1Þ ¼ €hIðj�1Þ þ €hD where €hD is the angle driver.
Combining the torque and force relationship at both ends of the motor, the transfer
matrix of a motor is given as

zO ¼ UjzI ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 €hDz
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

2
666666664

3
777777775

x
::

y
::

€h
Mz

qx
qy
1

2
666666664

3
777777775

I

ð8Þ

4.3 Dynamics and Transfer Matrix of Fixed Mountings

In this work, the connection between a motor and its attached links is modeled as a
fixed mounting. The mounting is denoted element j, and inboard and outboard
body are denoted j� 1 and jþ 1, respectively. When both inboard and outboard
links are rigid bodies, the transfer matrix of the fixed mounting is an identity matrix.
However when a flexible beam is inboard and/or outboard body, the mounting
becomes slightly more complex.

4.3.1 Fixed Mounting with Rigid Inboard Body and Flexible
Outboard Beam

EI2:z
@4u
@x42

¼ �f2:y � @

@x2
�Me � qA €y2

O2 þ €hx2 � _h2uþ €u
� �

ð9Þ

Integrating Eq. (9) along the beam length and including the effect of centrifugal
stiffening, and then the equation can be rewritten written in a matrix format by the
linearization, rearrangement, and matrix partition as
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zO ¼ UzI ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
u7;1 u7;2 u7;3 0 0 0 u7;7
u8;1 u8;2 u8;3 0 0 0 u8;7
u9;1 u9;2 u9;3 0 0 0 u9;7
0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

€x
€y
€h
M
qx
qy
1

2
666666664

3
777777775

I

ð10Þ

All the items uði; jÞ in Eq. (10) are detailed in Ref. [12].

4.3.2 Fixed Mounting with a Flexible Inboard Body and a Flexible
Outboard Body

The relationship between inboard and outboard angle of the inboard body j� 1
needs to be included and can be described as

hOzðj�1Þ ¼ hIzðj�1Þ þ
@uyðj�1Þ
@x2

����
x2¼L

¼ hIzðj�1Þ þ N0
y

���ðj�1Þ

x2¼L
wyðj�1Þ

¼ hIzðjþ1Þ

ð11Þ

The second order differentiation of Eq. (11) with respect to time is written as

€hOzðj�1Þ ¼ €hIzðj�1Þ þ N
0
y

���
x2¼L

€wyðj�1Þ

¼ €hIzðjþ1Þ
ð12Þ

The calculation of modal coordinates at the outboard link must be based on the
actual outboard angle of the inboard link. Combining the equations of the elastic
deformation, force, and moment, the transfer matrix is given as
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zO ¼ UzI ¼

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 u3;7 u3;8 u3;9 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
u7;1 u7;2 u7;3 0 0 0 u7;7 u7;8 u7;9 u7;10
u8;1 u8;2 u8;3 0 0 0 u8;7 u8;8 u8;9 u8;10
u9;1 u9;2 u9;3 0 0 0 u9;7 u9;8 u9;9 u9;10
0 0 0 0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

€x
€y
€hz
Mz

qx
qy
€w1

€w2

€w3

1

2
666666666666664

3
777777777777775

I

ð13Þ

All the items uði; jÞ in Eq. (13) are detailed in Ref. [12].

5 Case Studies and Simulations

The simulations of a single link manipulator are carried out using parameters
identical to those used by Shabana and Berzeri in Ref. [11]. The comparison, as
shown in Fig. 2, is made to verify the proposed model in this work. Figure 2 shows
that the tip displacement of the rotating flexible beam calculated from the model in
this work is very close the the result in Ref. [11]. Figure 3 compares the results
based on the DT-TMM method and the traditional Lagrange-Euler method. The
comparison demonstrates that the results of the two methods agree well with each
other.

Fig. 2 Tip-displacement
from a simulation by Shabana
using ANCF elements with
centrifugal stiffening [11]
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6 Conclusion and Discussion

A computationally efficient dynamic modelling approach is presented in this
research. With the proposed method, the computation of the large size dynamic
equations is avoided by dividing the global dynamics to component dynamics. The
methodology of defining state vectors, linearizing the component dynamics, and
deriving transfer matrix for different types of components has been presented with
details. Numerical simulations of flexible manipulators are conducted to verify the
proposed dynamic modelling method.
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