Pricing Strategies for Maximizing Viral
Advertising in Social Networks

Bolei Zhang, Zhuzhong Qian®™?), Wenzhong Li, and Sanglu Lu

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China
zhangbolei@dislab.nju.edu.cn, {qzz,lwz,sanglu}@nju.edu.cn

Abstract. Viral advertising in social networks is playing an important
role for the promotions of new products, ideas and innovations. It usually
starts from a set of initial adopters and spreads via social links to become
viral. Given a limited budget, one central problem in studying viral adver-
tising is influence mazimization, in which one needs to target a set of initial
adopters such that the number of users accepting the advertising after-
wards is maximized. To solve this problem, previous works assume that
each user has a fixed cost and will spread the advertising as long as the
provider offers a benefit that is equal to the cost. However, the assump-
tion is oversimplified and far from real scenarios. In practice, it is crucial
for the provider to understand how to incentivize the initial adopters.

In this paper, we propose the use of concave probability functions to
model the user valuation for sharing the advertising. Under the new pric-
ing model, we show that it is NP-hard to find the optimal pricing strategy.
Due to the hardness, we then propose a discrete greedy pricing strategy
which has a constant approximation performance guarantee. We also dis-
cuss how to discretize the budget to provide a good trade-off between the
performance and the efficiency. Extensive experiments on different data
sets are implemented to validate the effectiveness of our algorithm in
practice.
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1 Introduction

The emergence and proliferation of online social networks such as Facebook,
Twitter and Google+ have greatly boosted the spread of information. People
are actively engaged in the social networks and generating contents at an ever-
increasing rate. Viral advertising, which utilizes information diffusion for the
promotions of new products, ideas and innovations, has attracted enormous
attentions from companies and providers. Compared with TVs, newspapers and
radios which broadcast advertising, viral advertising in social networks has the
effect of “word-of-mouth” which is considered to be more trustworthy. More-
over, the information diffusion between users can spread across multiple links
and trigger large cascades of adoption.
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To start a cascade of viral advertising, one would first incentivize a set of
initial adopters and let them spread the advertising further. For example, pop-
ular e-commerce platforms like Amazon, e-Bay and JD' all encourage people to
share information of the products they buy in their social networks for adver-
tising. In JD, users could get vouchers if they comment and share the products
information. Suppose there is a limited budget, a question arising naturally is:
How should we distribute the budget, so that the spread of viral advertising can
be maximized. The process can be described as a two-step pricing strategy:
we first offer each user a discriminative price as incentive; The users who accept
the incentive should then share the advertising in social networks.

JD’s strategy is to offer each user uniform price, regardless of their valuations
and influence. Alternatively, we may allocate the budget proportionally so that
users with high influence can be allocated high price. In general, to determine
who should be offered price and how much should be offered to each of them,
it is crucial to understand both user valuations for being initial adopters and
the information diffusion process. From the perspective of users, their valuations
for being initial adopters usually depend on the price offered. For the advertis-
ers, they may expect more users with high influence to share and spread the
information.

A similar problem that has been extensively studied is influence mazimiza-
tion. The problem aims to select the most influential set of users as initial
adopters to maximize the spread of influence. However, the underlying assump-
tion that each user has an inherent constant value for being initial adopter may
not be reasonable. In practice, users’ decisions are often not deterministic: They
may decline or ignore the offered price, leading to unpredictability of the infor-
mation spread. In comparison, in this work, we address that the user decisions
for being initial adopters are probabilistic rather than constant. Given the prob-
ability distribution, we study optimal pricing strategies to maximize the viral
advertising under some well-studied diffusion models.

1.1 Our Results

The main contributions of this paper are:

— We introduce a concave probabilistic model in which users’ values are dis-
tributed according to some concave functions. The model is practical and
can characterize different users’ preferences for sharing the advertising in
social networks.

— We formalize the optimization problem and show that it can be reduced to
NP-hard quadratic programming problem. Due to the hardness, we propose
an approximate discrete greedy algorithm with near optimal result. We fur-
ther analyze how to discretize the budget to provide a good tradeoff between
the performance and efficiency.

! JD(http://www.jd.com) is the largest online direct sales company in China.
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— Extensive experiments on different data sets are implemented to validate the
effectiveness of our algorithm. Our algorithm significantly outperforms other
algorithms in almost all cases. In addition, we evaluate the discrete greedy
algorithm with respect to different granularity. The results reveal that our
algorithm can converge asymptotically.

1.2 Related Work

Our work has a strong tie with the problem influence mazimization, which was
first proposed by Domingos and Richardson [11,19]. Later, Kempe et al. [14] for-
mulated the problem as a discrete optimization problem, and proposed greedy
algorithm with hill-climbing strategies to find the influential nodes. Due to the
monotonicity and submodularity of the information diffusion process, the algo-
rithm can be proved to achieve constant approximation ratio. Following their
work, extensive researches [8-10,15,21] have studied algorithmic improvement
of the spread of influence in social networks. Despite a lot of progress in choosing
which nodes to select, the problem of how to incentivize the initial nodes is often
neglected.

Another thread of our work is inspired by the problem of revenue mazimiza-
tion which was first introduced by Hartline et al. [12]. In order to influence many
buyers to buy a product, a seller could first offer some popular buyers discounts.
The problem then studies marketing strategies like how large the discounts be
and in what sequence should the selling happen. Specifically, the work assumed
that the willingness that each user may pay for a product is drawn from some
given probability distributions. A lot of following works have studied revenue
maximization in social networks. Some of them have considered Nash Equilib-
rium between users for purchasing one product. Different pricing strategies were
designed to maximize the revenue, i.e., uniform pricing [5,7], discriminative pric-
ing [3,22], iterative pricing [1] etc.

In a recent work of Singer [21], the author considered auction based influence
maximization in which each user can bid a cost for being an initial adopter. To
make sure that each user declares the true cost, they designed incentive compat-
ible mechanisms. However, the mechanism requires extra step for each user to
bid a cost and may be cumbersome to implement in practice. Comparatively, we
adopt a pricing strategy with a more natural way for incentivizing each user. In
[10], Demaine et al. proposed partial incentives in social networks to influence
people. The pricing and influence models in our paper generalize the models in
[10] and we further analyze the discrete setting of the problem.

2 Preliminaries

We model the social network as a directed (undirected) graph G = (N, £), where
node set A represents users and edge set £ C N x N represents social relation-
ships between them. Given a limited budget B, a pricing strategy is to distribute
the budget among users to maximize the spread of the viral advertising. In this
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section, we first introduce the pricing model and information diffusion models
respectively. Then, we will formulate our optimization problem and establish its
hardness.

2.1 Pricing Model

After distributing the budget, we use the pricing model to characterize users’
valuations for being initial adopters, i.e., how much price is it need to incentivize
a user? In influence maximization, users are assumed to have some constant value
for being initial adopters. However in general cases, the users’ decisions are often
not deterministic. In comparison, we address that users have different valuations
and the valuations are dependent on the allocated price.

In this paper, we propose a probabilistic model in which the user values are
drawn from some prior known distributions: F = {F;|: € N'}. Suppose that user
1 is offered a price p; as incentive, then F;(p;) is the probability that ¢ will accept
the price for being an initial adopter. Literatures like [13,17] have observed that
the marginal gain of user satisfaction decreases as the price increases, which
arises naturally in practical situations as diminishing returns. Accordingly, we
also regard the cumulative functions F; as concave functions, i.e. for any x and y
in the interval and for any ¢ € [0,1], F;(tz+(1—t)y) > tF;(x)+(1—t)F;(y). Fig. 1
presents some examples of the possible distribution functions. In Fig. 1(a), the

user’s value is distributed uniformly in the range of [0, 7], where 7 is a constant
threshold. In Fig. 1(b), the valuation is drawn from Fj(p;) =,/ 7%7, where d; is
the degree of user i.

F(p)t F(pf

g s

T P; d; +1 »;

Fig. 1. Examples of user valuation distribution function

2.2 Information Diffusion Models

After distributing the budget, a set of initial adopters S will share the advertising
to trigger a cascade. The advertising will spread in the social networks as a piece
of information. In an information cascade, we say that a node is active if it
adopts the information, otherwise it is called inactive. Initially, only the users
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in S are active. The information then spreads via social links to influence more
users. The number of active users after the cascade stops is the spread of the viral
advertising, or the influence of S, denoted as o(S). Modeling the information
diffusion process has been extensively studied [2,4,6,14,16]. We introduce some
of the most widely used models here.

Coverage model. In the Coverage model [21], each user 7 is associated with the
set of its neighbors N (i), which is also the influence of user . The information
will not further spread. So the influence of the S will be o(S) = [{J;c g N()|.

Independent Cascade model. In IC model [14], the information starts from S as
follows: At step t, the newly activated nodes in S; try to activate their neigh-
bors independently. Each active node u succeeds in activating its neighbor v
with probability i(,,,). The newly activated nodes are added into set S;;1. The
process continues until Sy = 0.

Linear Threshold model. In LT model [14], for each neighbor w a node v asso-
ciates a weight w, ,, > 0 where ZwGN(U) Wy, < 1, and chooses some thresh-
old 6, € [0,1] uniformly at random. The node v is activated at time step t if
ZweNt(v) Wy, > By, where Ny (v) denotes the neighbors of v that are active at
time step t.

2.3 Problem and Optimization Objective

Given a budget B, a pricing strategy will identify a price vector p =
(p1,D2s s Pn), X1 pi = B), where p; € Rx is the price offered to user i. We
use p_; as the price list offered to users except . There are two ways for a user
i to get active: On one hand, 7 may accept the offered price p; with probability
F;(p;); On the other hand, i could be influenced by other users with probabil-
ity q(S,i), where ¢(S,%) is a reachability function of the probability that the
nodes in S could influence ¢ under some diffusion models. The function can also
be written as ¢(S(p-i), ), representing the probability that users accepted p_;
could influence i. Thus, the probability w;(p) that ¢ could get active after the
cascade, can be formulated as:

wi(p)=1-( 1-Fp) )1-q(S(p-i)i)) (1)

i does not take p; i is not influenced

Given the probability that each user gets active, the objective can be formulated
as an optimization problem in which the goal is to maximize overall expected
number of active users after the cascade:

max f(p) = Y _ wi(p)

iEN

s.t.: ZpigB

iEN
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Hardness. Now we show that the above optimization problem is NP-hard. In
particular, it is NP-hard even if the social network forms a line structure.

Theorem 1. Identifying the optimal pricing strategy is NP-hard even when the
social network forms line structure.

Proof. Consider an instance of the quadratic programming problem:

, 1
min g(p) = inpT +cp”

n
s.t. : Zpi <B
i=1

010---00
101---00
010---00
where Q= 1|. .. .. andc:(—2,—2,...,—2,—1).SinceprT:2Z?:2pipi_1,
000---01
000---10

Q is indefinite. According to [20], the quadratic programming function g(p) is
NP-hard. We show that the programming can be viewed as a special case of the
pricing function f(p).

Given the instance of the quadratic programming problem, we define a cor-
responding instance of the pricing function under the Coverage model where the
social network G forms a line structure as presented in Figure 2.

Fig. 2. Line structure of the social network

In this case, the probability that a user gets active with pricing vector p is
P1 =1
w;(p) = .
® = {1 (- i 2

In this way, f(p) = 2./ pi — 1o PiPi—1 is the negative of g(p). So maxi-
mizing function f(p) is equivalent to minimizing the function g(p), which is also
NP-hard.

3 A Continuous Greedy Process

Due to the hardness result from Theorem 1, no polynomial algorithm exists
for the optimization problem unless P = N P. To motivate our approximation
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algorithm, in this section, we present a continuous greedy process with constant
approximation ratio. Even though the process takes infinite steps for implemen-
tation, it provides analytic picture behind our main algorithm. Intuitively, the
process allocates the budget smoothly to the users with high influence and low
valuation. It can be formally regarded as a particle p(t) starting from p(0) = 0
and following a certain flow over a unit time interval:

dp _

i v(p)

where v(p) is defined as

fp+pi)— f(p)
= P = 0 3
v(p) = arg max( . ) (pi=e¢—0) 3)
until ¢t = 1.
At each interval, we allocate a small unit of budget (¢ — 0) to the user with
maximal marginal gain. Since the marginal gain of each user is a function of
the allocated budget, we have to run the process continuously to get the local

optimum. This process provides good approximation :

Lemma 1. Let the optimal value be OPT, the continuous greedy process has
1 —1/e approzimation ratio, i.e., f(p(1)) > (1 —1/e)OPT.

The proof of Lemma 1 borrows idea from the problem of maximization of smooth
submodular functions. For the completeness of the proof, we first introduce the
concept of smooth submodular function.

Definition 1. A function f :[0,1]%X — R is smooth monotone submodular

if

— [ € Cy([0,1]%), i.e., it has second partial derivatives everywhere.
— For each j € X, g@f > 0 everywhere (monotonicity).
J

— For any i,5 € X (possibly equal), % < 0 everywhere (submodularity).
i0Yj

In Definition 1, %«J’;yj < 0 indicates that a function is smooth submodular if it is
concave along any non-negative direction. Examining the objective formulation
2, it can be easily proved that f satisfies the above conditions so is smooth
submodular. Vondrék et al. [23] showed that the continuous greedy process as
presented above can achieve 1 — 1/e approximation ratio to maximize a smooth
submodular function, which concludes Lemma 1.

4 Pricing Strategies for Viral Advertising

Following the idea of the continuous greedy process, in this section, we consider
discretizing the budget so that the process can run in polynomial time. Our
main result is a discrete greedy algorithm with constant approximation ratio. We
further discuss how the discrete granularity affects the result of the algorithm.
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4.1 A Discrete Greedy Strategy

In our discrete pricing strategy, we first divide the budget B into m equal pieces,
denoted as B = {b1,b2,...,bn}, where b; = B/m for all j € {0,1,2,...,m}.
In this setting, the prices offered to each user are disjoint subsets from B,
namely A; C B,A;, N A; = & for all i,j € N. Thus, the pricing strategy
can be regarded as a mapping problem in which m elements of the budget
set are to be allocated to m users. The objective is then a set function where
the input is a subset from the ground set: For the user set N and pricing set
B, define the new ground set as X = N x B. By associating the variable a;;
with user-price pairs, i.e., a;; means assigning price b; to user 4, the ground set
X ={a11,a12, oy A1, G421, G220y A2y ooy A1y An2, -y G } 1S the set of all price
elements that can be chosen. Note that each piece of price is replicated n times in
the set X, e.g. the price b; is replicated as a;, asj, ..., anj, only one of them can
be chosen for the solution. Slightly abusing notations, we use o(4) : 2%X — R,
as the expected number of active users after the cascade by choosing price set
A = U,en Ai,|A| = m. The problem of finding the optimal pricing strategy
in discrete setting can be described as choosing a set A (|A] = m, A C X)
of m elements from X to maximize the the expected number of active users
o(A), with the constraint that only one of {a1;,agj, ..., an;} can be chosen for
all j € {1,2,...,m}.

Coverage Model. We begin by maximizing the objective function under Cov-
erage model. There are two reasons we first consider the Coverage model. On one
hand, the diffusion process under the Coverage model can be regarded as infor-
mation exposures to users, i.e, a user is influenced if and only if one of his/her
neighbors is an initial adopter; Moreover, the Coverage model is simplistic and
exhibits similar properties as the IC and LT model.

To optimize the spread of viral advertising, we first prove that the pricing
function o(-) is monotone and submodular in the discrete setting. A function
o(+) is submodular if for any element a € X, for all V' C T, there is o(V U{a}) —
o(V) > o(T U {a}) — o(T). Submodularity implies that the marginal gain of
choosing an element decreases as the number of chosen elements increases.
Theorem 2. The pricing function o(-) : 2% — Ry is monotone submodular
under Coverage model if the cumulation distribution functions of user valuation
functions F;(+) : Ry — [0,1],% € N are non-decreasing concave functions.

Proof. Monotonicity Obviously, by adding a new pricing element a;; to the
outcome set A, namely assigning the jth piece of price to user i, the probability
that user ¢ could get active will not decrease. Accordingly, the probability that
user ¢ influences other users ¢({i}, -) will also not decrease, which concludes that
o(+) is non-decreasing monotone.

Submodularity For submodularity, let 6(a;;) denote the marginal gain of
o(-) by adding the element a;;. It can be formulated as the sum of increased
probability from all users:
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8(aij) = o (A Ufay}) —o(A7) = Siai) + Y Oklaiy) (4)
keN\{i}

where A7 is set of first j — 1 price elements that have been allocated, and &;(a;;)
is the marginal gain of user i. As the class of submodular functions is closed
under non-negative linear combinations, we only need to prove that the function
for each user is submodular respectively.

For user 4, by adding a price element a;;, the increased probability is:

8i(aij) = wi(A U {ay}) —wi(A7)
= (Fi(A U{ai;}) — Fi(A)(1 — q(S(47),1))

Since submodularity is the discrete analog of concavity, there is F;(V U {a;;}) —
Fy(V) > Fi(T U{ai;}) — Fi(T) if V C T. Meanwhile, 1 — ¢(S(A7),i) does not
change with a,;, we can conclude that w;(V U {a;;}) — w;(V) > w; (T U{a;;}) —
w;(T) if V. C T, which indicates that w;(-) is submodular.

Similarly, for any other user k, the increased probability can be formulated
as:

Sk(aiz) = (¢(S(A7 U{ai;}), k) — q(S(A7), k) (1 — Fi.(A7))

In the Coverage model, ¢(5,7) = 1 means i is a neighbor of S, and 0 otherwise.
According to the monotonicity of S(-), S(V) C S(T) if V C T. So by adding
an element a;;, the smaller set S(V U {a;;}) — S(V) is more likely to influence
a node k, i.e., g(S(V U {ag;}), k) — a(S(V), k) = a(S(T U {ass}), k) — a(S(T), k).
So wg(+) is also submodular.

Summing up the increased probabilities of all users, we have o(V U {a;;}) —
o(V)>o(T U{as}) —o(T) if V C T, showing that o(-) is submodular. O

According to the work of Nemhauser et al. [18], finding a set A of with uniform
matroid (m) to maximize the monotone submodular function is NP-hard and
a greedy algorithm with hill-climbing strategy approximates the optimal to a
factor of 1 — 1/e. Let the optimal value in the discrete setting be OPT}, we can
conclude our main theorem as:

Theorem 3. A greedy hill-climbing strategy can achieve 1 —1/e approximation
ratio of the optimal pricing strategy in the discrete setting, i.e., f(A) > (1 —
1/e)OPT,.

Following Theorem 3, we now present our greedy pricing strategy in Algorithm
1. In each step of the algorithm, we greedily choose the user that has the largest
marginal gain by allocating a piece of price.

IC Model and LT Model. As for the IC model and LT model, we show
that the pricing function o is still monotone and submodular. By adopting a
different diffusion model, we have a different diffusion function g. Recall that
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Algorithm 1. DiscreteGreedy(G, B)
A —

for j «— 1 to m do

s «— 0, mazx «— —1;
for i € N do
§(aiz) — o(A7 U{ay}) — o(A%);
if §(aij) > max then
s — i, max — 6(ai;);

| A< AU{as};

return A

by adding a new pricing element a;;, the marginal gain of o(-) is the sum of
the increased probability from all users. For user i, the function o;(-) is still
submodular since the reachability function remains the same. For any other user
k (k # i), the marginal gain is 0x(a;;) = (¢(S(47 U {ai;}), k) — q(S(A7), k))(1 —
Fy(A%)). Since S(-) is monotone, o(-) is submodular if and only if the reachability
function ¢(S, k) is submodular. In [14], Kempe et al. have already showed that
the functions are submodular under the IC and LT model [14]. So the pricing
function o is also submodular.

Lemma 2. For submodular influence functions like IC and LT model, the pric-
ing function o is also monotone and submodular, and Algorithm 1 approximates
the optimal to a factor of 1 —1/e.

4.2 How to Choose m?

Despite the near optimal results from Algorithm 1, for more general situations,
we would like to know how it approximates the optimal value OPT. In this
section, we will discuss how to choose the discrete granularity m to achieve a
good tradeoff between the performance and efficiency.

Apparently, by increasing m to oo, the discrete greedy algorithm is close
to the continuous greedy process which also takes infinite steps. To the other
extreme, if m decreases to 1, the algorithm is simply choosing one user to allo-
cate. To achieve a good trade-off between the performance and the algorithm effi-
ciency, we focus on deriving the gap between the continuous process f(p(1)) and
the discrete greedy strategy f(A), since the continuous greedy process approxi-
mates well to the optimal value OPT.

Lemma 3. Whenm > O(n), f(A) > (1—1/e—0(1))OPT with high probability.

Proof. After allocating first j — 1 pieces of the total budget (4; = %B), the
continuous process will get a price vector p; and the greedy pricing strategy
will get a set of A7+1. Observe the marginal gain by increasing price a = B/m.
For the continuous process, the marginal gain is 6(a*) = f(pj+1) — f(p;), where
a* = pjy1 — pj and |a*| = B/m. For the discrete greedy strategy, we choose
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a;; at the jth step, where i = arg max;en (f(A7 U{a;;}) — f(A7)). Consider the
marginal gain §(a;;) = f(pj + aij) — f(p;). Taking Taylor series and bounding
the lower items, we have:

§(a”) = &(ai;) + R(§) (5)
where £ = (1 — ¢)a* + ca;j, ¢ € [0,1]. For R(£), there is:
00 00 00
R(€) = —z(a" —ay) = > 7—-ag — 5—a;
o€ ¢S &
of of keN(%k ©)
= (ail)j B 8Pj+1)a To6" T Ca

where C' is a constant. So when a < O(1/n), namely m > n, the error R(¢)
is within O(1/n), which concludes that §(a*) ~ 6(a;;). Accordingly, there is
f(A) > (1 —1/e —0(1))OPT with high probability. O

5 Evaluations

In addition to the provable performance guarantee, in this section, we conduct
extensive simulations to evaluate our DiscreteGreedy pricing strategy. We first
compare our proposed algorithm with several intuitive heuristics. Then we will
observe how the discrete granularity of the budget affects the results of the
DiscreteGreedy strategy.

5.1 Experiment Setup

Our experiments are conducted on 3 real social network data sets. The first is
CondMat data set which contains 23,133 nodes and 93,497 undirected edges.
The nodes represent authors and an undirected edge (4,j) represents coauthor
relationships between them. The second is Youtube data set which contains
560, 123 nodes and 1,976,329 undirected edges. The nodes are users and the
edges indicates friendship relationships between them. The last data set is Weibo
data set which has 877,391 nodes and 1,419,850 directed edges. Weibo is a
Twitter-like mirco blog in China. The directed edge (i,7) means that user i is
following j. All 3 data sets exhibit small world, high clustering complex network
structural features.

Since our algorithm is applicable to any forms of concave functions of user
valuations, we manually set the distributions in the experiments. We first con-
sider a uniform symmetric setting in which Fi(p;) = 2. The user values are
distributed uniformly in the range (0,7]. The second distribution function we
consider is F;(p;) = \/? . The function also has a threshold 7 and the accep-
tance probability is proportional to the square root of the offered price. We also
consider differential valuation functions where the user valuation is a function of

their degree: F;(p;) = %gl#. The parameter 7 is used to control the shape



Pricing Strategies for Maximizing Viral Advertising in Social Networks 429

of the curve: a larger value of r indicates a steeper curve. The threshold here is
d; + 1.

For the information diffusion models, since all of them exhibit monotone sub-
modular properties, we mainly conduct experiments under the Coverage model.
In this model, the influence of user ¢ is the set of users that follows 7 in Weibo
data set. In CondMat and Youtube data set, it is the set of friends\coauthors
of user i. We also considered the IC and LT model. As the information diffusion
process under these two models are stochastic processes, we need to take Monte
Carlo methods to generate fixed graphs and take the average influence of differ-
ent probability results. In the IC model, without loss of generality, we assume
uniform diffusion probability p on each edge and assign p to be 0.01. In the LT
model, the weight of a directed edge (i,7) is d%’ so the sum of the weights will
not exceed 1.

Comparison Methods. In our DiscreteGreedy algorithm, we discretize the
budget into O(n) pieces in our DiscreteGreedy pricing strategy to obtain near
optimal pricing solutions. We compare our greedy algorithm with the following
3 heuristics:

— Uniform: The Uniform pricing strategy adopts a simple idea that all users
get the same price p; = %, regardless of users’ influence and valuation.

— Proportional: In the Proportional pricing strategy, the price offered to user
i is proportional to d;, i.e., p; = ﬁB.

— FullGreedy: We use the greedy algojrithm in influence maximization to select
the initial adopters and offer each of them the threshold price.

5.2 Results

The Spread of Viral Advertising. In Fig. 3 to 5, we separately present the
results w.r.t different valuation functions under the Coverage model. The z-axis
represents the total budget that is allocated. The y-axis is the active set size of
the users after cascade, or the spread of the viral advertising.

We first evaluate the viral advertising spread when user values are distributed
as Fi(p;) = 2. In this case, since the valuation function grows linearly to the
threshold 7, the marginal gain of a user will remain the same in the range
p; € (0,7]. Therefore, the FullGreedy algorithm has the same result as the
DiscreteGreedy algorithm, which will not be presented here. Obviously from
Fig. 3(a) to 3(c), our DiscreteGreedy algorithm outperforms other heuristics
significantly. The results of the Proportional strategy grow almost linearly as the
allocated budget increases. There are two reasons for this: First, the probability
for a user to accept the price is linear as F'; Second, there are not much overlap
between the influenced users in this case. There is a large gap between the
DiscreteGreedy and the Proportional strategies, indicating that allocating the
budget more concentratedly may have better result. In the Uniform algorithm,
the price offered to each user is quite low. So few users might accept to be initial
adopters, leading to poor performance of the algorithm in all 3 data sets. This
illustrates that differential pricing strategy is necessary for the viral advertising.
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Fig. 3. The spread of viral advertising with valuation function F;(p;) = %

In Fig. 4, we set the pricing function as F;(p;) \/> In this case, the
users are more likely to be initial adopters with small amount of price. The user
who has the maximal marginal gain at beginning may not hold as the allocated
budget increases. The FullGreedy allocates each user full prices 7, so it has a
worse result than the DiscreteGreedy strategy. Both the Proportional and the
Uniform algorithm perform better than in Fig. 4, due to the reason that users
with low allocated price also have a higher probability to be active. However,
the performance of the 3 heuristics vary distinctly in different data sets.
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Fig. 4. The spread of viral advertising with valuation function Fj(p;) = /2%

Fig. 3 presents the results with the valuation distribution function as F;(p;) =
T+d 'H dpil In this function, users have different valuation distribution functions
Wthh is related with their degree. For a user with degree d;, the threshold will

be d; + 1. We set r = 10 so the valuation function has a steeper curve than
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the above two functions. In this way, the FullGreedy strategy performs even
worse since the marginal gain of each user decreases very quickly when the
allocated price increases. Note that the threshold is actually not necessary in
practice. The FullGreedy strategy is infeasible if users don’t have a threshold.
In the Proportional algorithm, as the price offered increases proportionally with
users’ degree, the probability that different users accept the price are almost the
same. Therefore, it still grows linearly in this case. The Uniform strategy is quite
inefficient in large data sets such as Youtube and Weibo.

.
=
g
N
&
g
&
¢
2«
]
g

T
Budget B

(a) CondMat

o]
0oy
.-"”"m
Budget B B “ * Budget B
(b) Youtube (c) Weibo
Fig. 5. The spread of viral advertising with valuation function F;(p;) = %’jld?—j_l
T 7

In Figure 6(a) and Figure 6(b), we fix the user valuation function as F;(p;) =
\/g and conduct the experiments under the IC model and LT model. As the
information diffusion processes are stochastic, we simulate the graph massive
times (1000) and conduct the experiments on a smaller sample of the Weibo
data set. As shown in Fig 6, our DiscreteGreedy strategy still has the best
performance.

The Accuracy. Finally, we run the DiscreteGreedy strategy in CondMat data
set w.r.t different granularity. We discretize the budget into m pieces where
m ranges from 1 to 10n. The results are presented in Table 1. We start from
m =1 (n/m = 23,333) and gradually increase m to n (n/m ~ 1). Apparently,
the active set size converges when m approaches n, i.e. n/m = 1. When user val-
uations are linear functions, i.e., when Fj(p;) = £, the DiscreteGreedy strategy
is likely to pay the current selected user full price. So the results can converge
when the granularity is the threshold 7. In other cases, though the active set
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Fig. 6. The spread of advertising in the Weibo data set in the IC and LT model

size converges slower, the results can stabilize when m — n. When m > n, the
result is not likely to grow much.

Table 1. Active set size in CondMat data set w.r.t. different granularity

F; pi 7 r+di+1 p;
O(n/m) 5 T r+p; d;+1
23,133 281.00 281.00 277.14
1,000 3309.24 3620.32 1541.26

100 3452.58 5296.93 1605.29

10 3485.00 6939.77 1608.26

1 3485.00 7599.42 1609.14

0.1 3485.00 7600.15 1609.21

6 Conclusion

In this work, we studied optimal pricing strategies in a social network to maxi-
mize viral advertising with budget constraint. We formalized the pricing strategy
as an optimization problem and established its hardness. A novel Discrete Greedy
algorithm with near optimal results was proposed, and the tradeoff between the
performance and efficiency was discussed. Extensive evaluations showed that our
DiscreteGreedy algorithm outperforms other intuitive heuristics significantly in
almost all cases. Moreover, the DiscreteGreedy algorithm can converge to a hight
accuracy if the budget is discretized properly.

For possible future works, we are interested in the following aspects. First, we
would like to study the user valuation distributions empirically, i.e., how much
price does it need to incentivize a user. Second, we aim to improve the algorithm
efficiency, especially in the IC and LT models. Finally, we may consider other
factors that influence users’ decisions to implement real applications.
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