
Matthias Renz
Cyrus Shahabi
Xiaofang Zhou
Muhammad Aamir Cheema (Eds.)

 123

LN
CS

 9
05

0

20th International Conference, DASFAA 2015
Hanoi, Vietnam, April 20–23, 2015
Proceedings, Part II

Database Systems
for Advanced Applications

Lecture Notes in Computer Science 9050
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Matthias Renz · Cyrus Shahabi
Xiaofang Zhou · Muhammad Aamir Cheema (Eds.)

Database Systems
for Advanced Applications
20th International Conference, DASFAA 2015
Hanoi, Vietnam, April 20–23, 2015
Proceedings, Part II

ABC

Editors
Matthias Renz
Universität München
München
Germany

Cyrus Shahabi
University of Southern California
Los Angeles
USA

Xiaofang Zhou
University of Queensland
Brisbane
Australia

Muhammad Aamir Cheema
Monash University
Clayton
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-18122-6 ISBN 978-3-319-18123-3 (eBook)
DOI 10.1007/978-3-319-18123-3

Library of Congress Control Number: 2015936691

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

It is our great pleasure to welcome you to DASFAA 2015, the 20th edition of the Inter-
national Conference on Database Systems for Advanced Applications (DASFAA 2015),
which was held in Hanoi, Vietnam during April 20–23, 2015. Hanoi (Vietnamese:
Hà Nô. i), the capital of Vietnam, is the second largest city in Vietnam and has col-
lected all the essence, unique features, and diversification of Vietnamese culture. The
city is preserving more than 4000 historical and cultural relics, architecture and beauty
spots, in which nearly 900 relics have been nationally ranked with hundreds of pagodas,
temples, architectural works, and sceneries. Handcraft streets and traditional handcraft
villages remain prominent and attractive to tourists when visiting Hanoi, many of which
centered around the Hoan Kiem Lake in the Old Quarter, close to the conference venue.
Hanoi has recently been included on TripAdvisor’s list of best destinations in the world,
ranked 8th among the world’s top 25 destinations.

We are delighted to offer an exciting technical program, including two keynote talks
by Amr El Abbadi (University of California, Santa Barbara) and Luc Vincent (Google
Inc.); one 10-year best paper award presentation; a panel session on “Big Data Search
and Analysis;” a poster session with 18 papers; a demo session with 6 demonstra-
tions; an industry session with 3 full paper presentations; 3 tutorial sessions; and of
course a superb set of research papers. This year, we received 287 submissions, each
of which went through a rigorous review process. That is, each paper was reviewed by
at least three Program Committee members, followed by a discussion led by the meta-
reviewers, and a final meta-review prepared for each paper. At the end, DASFA 2015
accepted 63 full papers (the acceptance ratio is 22%).

Two workshops were selected by the Workshop Co-chairs to be held in conjunc-
tion with DASFAA 2015. They are the Second International Workshop on Big Data
Management and Service (BDMS 2015), and the Second International Workshop on
Semantic Computing and Personalization (SeCoP 2015). The workshop papers are in-
cluded in a separate volume of proceedings also published by Springer in its Lecture
Notes in Computer Science series.

The conference received generous financial support from the Hanoi University of
Science and Technology (HUST). We, the conference organizers, also received exten-
sive help and logistic support from the DASFAA Steering Committee and the Confer-
ence Management Toolkit Support Team at Microsoft.

We are grateful to all conference organizers, Han Su (University of Queensland) and
many other people, for their great effort in supporting conference organization. Special
thanks also go to the DASFAA 2015 Local Organizing Committee: Tuyet-Trinh Vu,
Hong-Phuong Nguyen, and Van Thu Truong, all from the Hanoi University of Science

VI Preface

and Technology, Vietnam. Finally, we would like to take this opportunity to thank all
the meta-reviewers, Program Committee members, and external reviewers for their ex-
pertise and help in evaluating papers, and all the authors who submitted their papers to
this conference.

February 2015 Quyet-Thang Huynh
Qing Li

Matthias Renz
Cyrus Shahabi
Xiaofang Zhou

Organization

General Co-chairs

Qing Li City University of Hong Kong, HKSAR,
Hong Kong

Quyet-Thang Huynh Hanoi University of Science and Technology,
Vietnam

Program Committee Co-chairs

Cyrus Shahabi University of Southern California, USA
Matthias Renz Ludwig-Maximilians-Universität München,

Germany
Xiaofang Zhou University of Queensland, Australia

Tutorial Co-chairs

Arbee L.P. Chen NCCU, Taiwan
Pierre Senellart Télécom ParisTech, France

Workshops Co-chairs

An Liu Soochow University, China
Yoshiharu Ishikawa Nagoya University, Japan

Demo Co-chairs

Haiwei Pan Harbin Engineering University, China
Binh Minh Nguyen Hanoi University of Science and Technology,

Vietnam

Panel Co-chairs

Bin Cui Peking University, China
Katsumi Tanaka Kyoto University, Japan

Poster Co-chairs

Sarana Nutanong City University of Hong Kong, China
Tieyun Qian Wuhan University, China

VIII Organization

Industrial/Practitioners Track Co-chairs

Mukesh Mohania IBM, India
Khai Tran Oracle, USA

PhD Colloquium

Khoat Than Hanoi University of Science and Technology,
Vietnam

Ge Yu Northeastern University, China
Tok Wang Ling National University of Singapore, Singapore
Duong Nguyen Vu John Von Neumann Institute - VNU-HCMUS,

Vietnam

Publication Chair

Muhammad Aamir Cheema Monash University, Australia

Publicity Co-chairs

Yunjun Gao Zhejiang University, China
Bao-Quoc Ho VNU-HCMUS, Vietnam
Jianfeng Si Institute for Infocomm Research, Singapore
Wen-Chih Peng National Chiao Tung University, Taiwan

Local Organizing Committee

Tuyet-Trinh Vu Hanoi University of Science and Technology,
Vietnam

Hong-Phuong Nguyen Hanoi University of Science and Technology,
Vietnam

Van Thu Truong Hanoi University of Science and Technology,
Vietnam

Steering Committee Liaison

Stephane Bressan National University of Singapore, Singapore

Webmaster

Viet-Trung Tran Hanoi University of Science and Technology,
Vietnam

Organization IX

Program Committees

Senior PC members

Ira Assent Aarhus University, Denmark
Lei Chen Hong Kong University of Science and Technology

(HKUST), China
Reynold Cheng University of Hong Kong, China
Gabriel Ghinita University of Massachusetts Boston, USA
Panos Kalnis King Abdullah University of Science and

Technology, Saudi Arabia
Nikos Mamoulis University of Hong Kong, China
Kyriakos Mouratidis Singapore Management University, Singapore
Mario Nascimento University of Alberta, Canada
Dimitris Papadias Hong Kong University of Science and Technology

(HKUST), China
Stavros Papadoupoulos MIT, USA
Torben Bach Pedersen Aalborg University, Denmark
Jian Pei Simon Fraser University, Canada
Thomas Seidl RWTH Aachen University, Germany
Timos Sellis RMIT University, Australia
Raymond Wong Hong Kong University of Science and Technology

(HKUST), China

PC Members
Nikolaus Augsten University of Salzburg, Austria
Spiridon Bakiras City University of New York, USA
Zhifeng Bao University of Tasmania, Australia
Srikanta Bedathur IBM Research, Delhi, India
Ladjel Bellatreche University of Poitiers, France
Boualem Benatallah University of New South Wales, Australia
Bin Cui Peking University, China
Athman Bouguettaya Commonwealth Scientific and Industrial Research

Organisation (CSIRO), Australia
Panagiotis Bouros Humboldt-Universität zu Berlin, Germany
Selcuk Candan Arizona State University, USA
Jianneng Cao A*STAR, Singapore
Marco Casanova Pontifical Catholic University of Rio de Janeiro,

Brazil
Sharma Chakravarthy University of Texas at Arlington, USA
Jae Chang Chonbuk National University, Korea
Rui Chen Hong Kong Baptist University, China
Yi Chen New Jersey Institute of Technology, USA
James Cheng The Chinese University of Hong Kong (CUHK),

China
Gao Cong Nanyang Technological University (NTU),

Singapore

X Organization

Ugur Demiryurek University of Southern California (USC), USA
Prasad Deshpande IBM Research, India
Gill Dobbie University of Auckland, New Zealand
Eduard Dragut Temple University, USA
Cristina Dutra de Aguiar Ciferri Universidade de São Paulo, Brazil
Sameh Elnikety Microsoft Research Redmond, USA
Tobias Emrich Ludwig-Maximilians-Universität München,

Germany
Johann Gamper Free University of Bozen-Bolzano, Italy
Xin Gao King Abdullah University of Science and

Technology (KAUST), Saudi Arabia
Chenjuan Guo Aarhus University, Denmark
Ralf Hartmut Güting University of Hagen, Germany
Takahiro Hara Osaka University, Japan
Haibo Hu Hong Kong Baptist University, China
Yoshiharu Ishikawa Nagoya University, Japan
Mizuho Iwaihara Waseda University, Japan
Adam Jatowt Kyoto University, Japan
Vana Kalogeraki Athens University of Economy and Business,

Greece
Panos Karras Skoltech, Russia
Norio Katayama National Institute of Informatics, Japan
Sang-Wook Kim Hanyang University, Korea
Seon Ho Kim University of Southern California (USC), USA
Hiroyuki Kitagawa University of Tsukuba, Japan
Peer Kröger Ludwig-Maximilians-Universität München,

Germany
Jae-Gil Lee Korea Advanced Institute of Science and

Technology (KAIST), Korea
Wang-Chien Lee Portland State University (PSU), USA
Sang-Goo Lee Seoul National University, Korea
Hou Leong University of Macau, China
Guoliang Li Tsinghua University, China
Hui Li Xidian University, China
Xiang Lian University of Texas–Pan American (UTPA), USA
Lipyeow Lim University of Hawaii, USA
Sebastian Link University of Auckland, New Zealand
Bin Liu NEC Laboratories, USA
Changbin Liu AT & T, USA
Eric Lo Hong Kong Polytechnic University, China
Jiaheng Lu Renmin University of China, China
Qiong Luo Hong Kong University of Science and Technology

(HKUST), China
Matteo Magnani Uppsala University, Sweden
Silviu Maniu University of Hong Kong (HKU), China
Essam Mansour Qatar Computing Research Institute, Qatar

Organization XI

Marco Mesiti University of Milan, Italy
Yasuhiko Morimoto Hiroshima University, Japan
Wilfred Ng Hong Kong University of Science and Technology

(HKUST), China
Makoto Onizuka Osaka University, Japan
Balaji Palanisamy University of Pittsburgh, USA
Stefano Paraboschi Università degli Studi di Bergamo, Italy
Sanghyun Park Yonsei University, Korea
Dhaval Patel IIT Roorkee, India
Evaggelia Pitoura University of Ioannina, Greece
Pascal Poncelet Université Montpellier 2, France
Maya Ramanath Indian Institute of Technology, New Delhi, India
Shazia Sadiq University of Queensland, Australia
Sherif Sakr University of New South Wales, Australia
Kai-Uwe Sattler Ilmenau University of Technology, Germany
Peter Scheuermann Northwestern University, USA
Markus Schneider University of Florida, USA
Matthias Schubert Ludwig-Maximilians-Universität München,

Germany
Shuo Shang China University of Petroleum, Beijing, China
Kyuseok Shim Seoul National University, Korea
Junho Shim Sookmyung Women’s University, Korea
Shaoxu Song Tsinghua University, China
Atsuhiro Takasu National Institute of Informatics, Japan
Kian-Lee Tan National University of Singapore (NUS), Singapore
Nan Tang Qatar Computing Research Institute, Qatar
Martin Theobald University of Antwerp, Belgium
Dimitri Theodoratos New Jersey Institute of Technology, USA
James Thom RMIT University, Australia
Wolf Tilo-Balke University of Hannover, Germany
Hanghang Tong City University of New York (CUNY), USA
Yongxin Tong Hong Kong University of Science and Technology

(HKUST), China
Kristian Torp Aalborg University, Denmark
Goce Trajcevski Northwestern University, USA
Vincent S. Tseng National Cheng Kung University, Taiwan
Stratis Viglas University of Edinburgh, UK
Wei Wang University of New South Wales, Australia
Huayu Wu Institute for Infocomm Research (I2R), Singapore
Yinghui Wu University of California, Santa Barbara (UCSB),

USA
Xiaokui Xiao Nanyang Technological University (NTU),

Singapore
Xike Xie Aalborg University, Denmark
Jianliang Xu Hong Kong Baptist University, China
Bin Yang Aalborg University, Denmark

XII Organization

Yin Yang Advanced Digital Sciences Center, Singapore
Man-Lung Yiu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Jeffrey Yu The Chinese University of Hong Kong (CUHK),

China
Zhenjie Zhang Advanced Digital Sciences Center (ADSC),

Singapore
Xiuzhen Zhang RMIT University, Australia
Kevin Zheng University of Queensland, Australia
Wenchao Zhou Georgetown University, USA
Bin Zhou University of Maryland, Baltimore County, USA
Roger Zimmermann National University of Singapore (NUS), Singapore
Lei Zou Beijing University, China
Andreas Züfle Ludwig-Maximilians-Universität München,

Germany

External Reviewers

Yeonchan Ahn Seoul National University, Korea
Cem Aksoy New Jersey Institute of Technology, USA
Ibrahim Alabdulmohsin King Abdullah University of Science and

Technology, Saudi Arabia
Yoshitaka Arahori Tokyo Institute of Technology, Japan
Zhuowei Bao Facebook, USA
Thomas Behr University of Hagen, Germany
Jianneng Cao A*STAR, Singapore
Brice Chardin LIAS/ISAE-ENSMA, France
Lei Chen Hong Kong Baptist University, China
Jian Dai The Chinese Academy of Sciences, China
Ananya Dass New Jersey Institute of Technology, USA
Aggeliki Dimitriou National Technical University of Athens, Greece
Zhaoan Dong Renmin University of China, China
Hai Dong RMIT University, Australia
Zoé Faget LIAS/ISAE-ENSMA, France
Qiong Fang Hong Kong University of Science and Technology

(HKUST), China
ZiQiang Feng Hong Kong Polytechnic University, China
Ming Gao East China Normal University, China
Azadeh Ghari-Neiat RMIT University, Australia
Zhian He Hong Kong Polytechnic University, China
Yuzhen Huang The Chinese University of Hong Kong, China
Stéphane Jean LIAS/ISAE-ENSMA, France
Selma Khouri LIAS/ISAE-ENSMA, France
Hanbit Lee Seoul National University, Korea
Sang-Chul Lee Carnegie Mellon University, USA

Organization XIII

Feng Li Microsoft Research, Redmond, USA
Yafei Li Hong Kong Baptist University, China
Jinfeng Li The Chinese University of Hong Kong, China
Xin Lin East China Normal University, China
Yu Liu Renmin University of China, China
Yi Lu The Chinese University of Hong Kong, China
Nguyen Minh Luan A*STAR, Singapore
Gerasimos Marketos University of Piraeus, Greece
Jun Miyazaki Tokyo Institute of Technology, Japan
Bin Mu City University of New York, USA
Johannes Niedermayer Ludwig-Maximilians-Universität München,

Germany
Konstantinos Nikolopoulos City University of New York, USA
Sungchan Park Seoul National University, Korea
Youngki Park Samsung Advanced Institute of Technology, Korea
Jianbin Qin University of New South Wales, Australia
Kai Qin RMIT University, Australia
Youhyun Shin Seoul National University, Korea
Hiroaki Shiokawa NTT Software Innovation Center, Japan
Masumi Shirakawa Osaka University, Japan
Md. Anisuzzaman Siddique Hiroshima University, Japan
Reza Soltanpoor RMIT University, Australia
Yifang Sun University of New South Wales, Australia
Erald Troja City University of New York, USA
Fabio Valdés University of Hagen, Germany
Jan Vosecky Hong Kong University of Science and Technology

(HKUST), China
Jim Jing-Yan Wang King Abdullah University of Science and

Technology, Saudi Arabia
Huanhuan Wu The Chinese University of Hong Kong, China
Xiaoying Wu Wuhan University, China
Chen Xu Technische Universität Berlin, Germany
Jianqiu Xu Nanjing University of Aeronautics and

Astronautics, China
Takeshi Yamamuro NTT Software Innovation Center, Japan
Da Yan The Chinese University of Hong Kong, China
Fan Yang The Chinese University of Hong Kong, China
Jongheum Yeon Seoul National University, Korea
Seongwook Youn University of Southern California, USA
Zhou Zhao Hong Kong University of Science and Technology

(HKUST), China
Xiaoling Zhou University of New South Wales, Australia

Tutorials

Scalable Learning Technologies
for Big Data Mining

Gerard de Melo1 and Aparna S. Varde2

1 Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

gdm@demelo.org
2 Department of Computer Science, Montclair State University, Montclair, NJ, USA

vardea@montclair.edu

Abstract. As data expands into big data, enhanced or entirely novel data mining
algorithms often become necessary. The real value of big data is often only ex-
posed when we can adequately mine and learn from it. We provide an overview
of new scalable techniques for knowledge discovery. Our focus is on the areas of
cloud data mining and machine learning, semi-supervised processing, and deep
learning. We also give practical advice for choosing among different methods and
discuss open research problems and concerns.

Keywords: Big Data · Cloud Data Mining · Deep Learning · Semi-Supervised
Learning

1 Cloud Data Mining and Machine Learning

When moving from data to big data, we often need fundamentally different technologies
for mining and learning. For data mining, one can rely on SQL over Big Data systems
such as Hive, Cloudera’s Impala, and Hortonworks’ Stinger for efficient querying. One
can also opt for more general processing frameworks like Scalding and Apache Spark,
or stream-based alternatives like Apache Storm and Flink.

For cloud-based machine learning, Apache Mahout provides open source
implementations of recommendation, clustering and classification, with MLBase and
its MLLib component as a Spark-based alternative. Applications of this include news
gathering, email classification, and recommender systems. Additionally, custom algo-
rithms can be used for specific applications such as scalable rule mining and frequent
item-set mining.

2 Semi-Supervised Processing and Deep Learning

Since training data is hard to obtain, semi-supervised learning and distant supervision
can be used to exploit large amounts of unlabeled data, e.g. for sentiment analysis
on Twitter. Additional signals for certain tasks can come from specific sources such
as Wikipedia. Web-scale statistics, e.g. from Google’s Web N-Grams, improve perfor-
mance in co-reference analysis and information extraction.

Deep Learning and representation learning aim at learning multiple layers of
abstraction from original features to capture more complex interactions. One can ex-
ploit unlabeled textual data to improve over bag-of-words feature representations or
to create multimodal embeddings that combine words and images in the same space.

XVIII G. de Melo and A.S. Varde

Overall, we see numerous new possibilities arising from the availability of Big Data in
conjunction with such novel methods for exploiting it.

Acknowledgments. Gerard de Melo’s research is in part by the National Basic Research Program
of China Grants 2011CBA00300, 2011CBA00301, and NSFC Grants 61033001, 61361136003.

Large Scale Video Management Using Spatial
Metadata and Their Applications

Seon Ho Kim1 and Roger Zimmermann2

1 Integrated Media Systems Center, Univ. of Southern California, Los Angeles, USA

seonkim@usc.edu
2 Interactive & Digital Media Institute, National University of Singapore, Singapore

rogerz@comp.nus.edu.sg

1 Introduction

Recently, there has been research to utilize spatial metadata of videos for the manage-
ment of large numbers of videos. For example, the location of a camera from GPS and
the viewing direction from an embedded digital compass are captured at the recording
time so that they form the field of view (FOV) model for the coverage of a viewable
scene. These spatial metadata effectively convert the challenging video search prob-
lem to well known spatial database problems, which can greatly enhance the utility of
collected videos in many emerging applications. However, there are still many open
fundamental research questions in utilizing spatial metadata for data collection, in-
dexing, searching, etc., especially in the presence of a large video dataset, as well as
more sophisticated questions such as whether a video database search can accommodate
human friendly views.

This tutorial covers and describes existing technologies and methods in harness-
ing spatial metadata of videos in spatial databases for video applications, especially
for mobile videos from smartphones. The discussion includes types of metadata, their
acquisition, indexing, searching, and potential applications of geo-tagged videos in
scale. Furthermore, a spatial crowdsourcing of mobile media contents is discussed with
regard to the use of geographical information in crowdsourcing. Some use cases of
the implemented techniques are presented too. This tutorial can be a good survey and
summary of the techniques which bridge the spatial database and videos. The target
audience can be any researchers and practitioners who are interested in designing and
managing a large video databases and Big Data in social media.

2 Tutorial Outline

Motivation: why are spatial metadata of videos important?
Types of Geospatial Metadata: types and methods of acquisition.
Modeling the Coverage Area of Scene: Field of View model and its use.
Extracting Textual Keywords Using Metadata: methods to extract.
Spatial Crowdsourcing: crowdsourcing media content.
Indexing and Searching: how to handle a large number of FOVs.
Applications: use cases and futuristics applications.
Open Discussion and Q&A

Querying Web Data

Andrea Calì

1 Dept. of Computer Science
University of London, Birkbeck College

2 Oxford-Man Institute of Quantitative Finance
University of Oxford

andrea@dcs.bbk.ac.uk

Abstract. A vast amount of information is available on the Web, not only in
HTML static pages (documents), but also and especially in more structured form
in databases accessible on the Web in different forms. In the Semantic Web [1],
ontologies provide shared conceptual specifications of domains, so that the data
can be enhanced with intensional semantic information to provide answers to
queries that are consistent with an ontology. Ontological query answering [4]
amounts to returning the answers to a query, that are logically entailed by the
union of a data set (a set of membership assertions) and an ontology, where the
latter is a set of logical assertions. We give an overview of the most important on-
tology formalisms for the Semantic Web, and we illustrate the most relevant query
answering techniques, with particular emphasis on their efficiency [3]. Then we
illustrate techniques specifically developed to access Hidden Web data, which can
be accessed only according to specific patterns, therefore making query answer-
ing a complex and generally inefficient task [2]; we show techniques to improve
efficiency by determining whether an access to a certain source is relevant to a
given query. Finally we show techniques to query Linked Data sets, and to source
relevant data to a certain query in such sets. We show how Linked Data can be
employed in semantic search and recommender systems [5], by extracing onto-
logical information from Linked Data sources.

Acknowledgments. The author acknowledges support by the EPSRC project “Logic-based
Integration and Querying of Unindexed Data” (EP/E010865/1).

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. J. Artif. Intell. Res., 36:1–69, 2009.

2. M. Benedikt, G. Gottlob, and P. Senellart. Determining relevance of accesses at runtime. In
Proc. of PODS 2011, pages 211–222.

3. A. Calì, G. Gottlob, and A. Pieris. Towards more expressive ontology languages: The query
answering problem. Artif. Intell., 193:87–128, 2012.

4. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined approach
to ontology-based data access. In Proc. of IJCAI, pages 2656–2661, 2011.

5. V. C. Ostuni, T. D. Noia, E. D. Sciascio, and R. Mirizzi. Top-N recommendations from implicit
feedback leveraging linked open data. In Proc. of RecSys 2013, pages 85–92.

Contents – Part II

Outlier and Imbalanced Data Analysis

A Synthetic Minority Oversampling Method Based on Local
Densities in Low-Dimensional Space for Imbalanced Learning 3

Zhipeng Xie, Liyang Jiang, Tengju Ye, and Xiao-Li Li

Fast and Scalable Outlier Detection with Approximate Nearest
Neighbor Ensembles . 19

Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel

Rare Category Exploration on Linear Time Complexity 37
Zhenguang Liu, Hao Huang, Qinming He, Kevin Chiew,
and Yunjun Gao

Probabilisstic and Uncertain Data

FP-CPNNQ: A Filter-Based Protocol for Continuous Probabilistic
Nearest Neighbor Query . 57

Yinuo Zhang, Anand Panangadan, and Viktor K. Prasanna

Efficient Queries Evaluation on Block Independent Disjoint
Probabilistic Databases . 74

Biao Qin

Parallel Top-k Query Processing on Uncertain Strings Using
MapReduce . 89

Hui Xu, Xiaofeng Ding, Hai Jin, and Wenbin Jiang

Tracing Errors in Probabilistic Databases Based on the Bayesian
Network . 104

Liang Duan, Kun Yue, Cheqing Jin, Wenlin Xu, and Weiyi Liu

Data Mining II

Mining Frequent Spatial-Textual Sequence Patterns 123
Krishan K. Arya, Vikram Goyal, Shamkant B. Navathe,
and Sushil Prasad

Effective and Interpretable Document Classification Using Distinctly
Labeled Dirichlet Process Mixture Models of von Mises-Fisher
Distributions. 139

Ngo Van Linh, Nguyen Kim Anh, Khoat Than, and Nguyen Nguyen Tat

MPTM: A Topic Model for Multi-Part Documents 154
Zhipeng Xie, Liyang Jiang, Tengju Ye, and Zhenying He

Retaining Rough Diamonds: Towards a Fairer Elimination
of Low-Skilled Workers . 169

Kinda El Maarry and Wolf-Tilo Balke

Spatio-temporal Data II

Skyline Trips of Multiple POIs Categories. 189
Saad Aljubayrin, Zhen He, and Rui Zhang

Keyword-Aware Dominant Route Search for Various User Preferences. 207
Yujiao Li, Weidong Yang, Wu Dan, and Zhipeng Xie

Spatial Keyword Range Search on Trajectories . 223
Yuxing Han, Liping Wang, Ying Zhang, Wenjie Zhang,
and Xuemin Lin

TOF: A Throughput Oriented Framework for Spatial Queries Processing
in Multi-core Environment . 241

Zhong-Bin Xue, Xuan Zhou, and Shan Wang

Query Processing

Identifying and Caching Hot Triples for Efficient RDF Query
Processing . 259

Wei Emma Zhang, Quan Z. Sheng, Kerry Taylor, and Yongrui Qin

History-Pattern Implementation for Large-Scale Dynamic
Multidimensional Datasets and Its Evaluations . 275

Masafumi Makino, Tatsuo Tsuji, and Ken Higuchi

Scalagon: An Efficient Skyline Algorithm for All Seasons 292
Markus Endres, Patrick Roocks, and Werner Kießling

Towards Order-Preserving SubMatrix Search and Indexing 309
Tao Jiang, Zhanhuai Li, Qun Chen, Kaiwen Li, Zhong Wang,
and Wei Pan

Database Storage and Index II

Large-Scale Multi-party Counting Set Intersection Using a Space
Efficient Global Synopsis . 329

Dimitrios Karapiperis, Dinusha Vatsalan, Vassilios S. Verykios,
and Peter Christen

XXII Contents – Part II

Improved Weighted Bloom Filter and Space Lower Bound Analysis
of Algorithms for Approximated Membership Querying 346

Xiujun Wang, Yusheng Ji, Zhe Dang, Xiao Zheng, and Baohua Zhao

Tree Contraction for Compressed Suffix Arrays on Modern Processors 363
Takeshi Yamamuro, Makoto Onizuka, and Toshimori Honjo

Scalable Top-k Spatial Image Search on Road Networks 379
Pengpeng Zhao, Xiaopeng Kuang, Victor S. Sheng, Jiajie Xu,
Jian Wu, and Zhiming Cui

Social Networks II

An Efficient Method to Find the Optimal Social Trust Path
in Contextual Social Graphs. 399

Guanfeng Liu, Lei Zhao, Kai Zheng, An Liu, Jiajie Xu, Zhixu Li,
and Athman Bouguettaya

Pricing Strategies for Maximizing Viral Advertising in Social Networks 418
Bolei Zhang, Zhuzhong Qian, Wenzhong Li, and Sanglu Lu

Boosting Financial Trend Prediction with Twitter Mood Based
on Selective Hidden Markov Models. 435

Yifu Huang, Shuigeng Zhou, Kai Huang, and Jihong Guan

k-Consistent Influencers in Network Data . 452
Enliang Xu, Wynne Hsu, Mong Li Lee, and Dhaval Patel

Industrial Papers

Analyzing Electric Vehicle Energy Consumption Using Very Large
Data Sets . 471

Benjamin Krogh, Ove Andersen, and Kristian Torp

Interactive, Flexible, and Generic What-If Analyses Using In-Memory
Column Stores . 488

Stefan Klauck, Lars Butzmann, Stephan Müller, Martin Faust,
David Schwalb, Matthias Uflacker, Werner Sinzig, and Hasso Plattner

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor
Cloud . 498

Rashmi Dalvi and Sanjay Kumar Madria

Demo

Invariant Event Tracking on Social Networks . 517
Sayan Unankard, Xue Li, and Guodong Long

Contents – Part II XXIII

EmoTrend: Emotion Trends for Events . 522
Yi-Shin Chen, Carlos Argueta, and Chun-Hao Chang

A Restaurant Recommendation System by Analyzing Ratings
and Aspects in Reviews. 526

Yifan Gao, Wenzhe Yu, Pingfu Chao, Rong Zhang, Aoying Zhou,
and Xiaoyan Yang

ENRS: An Effective Recommender System Using Bayesian Model 531
Yingyuan Xiao, Pengqiang Ai, Hongya Wang, Ching-Hsien Hsu,
and Yukun Li

EPSCS: Simulating and Measuring Energy Proportionality
of Server Clusters . 536

Jiazhuang Xie, Peiquan Jin, Shouhong Wan, and Lihua Yue

MAVis: A Multiple Microblogs Analysis and Visualization Tool 541
Changping Wang, Chaokun Wang, Jingchao Hao, Hao Wang,
and Xiaojun Ye

Author Index . 547

XXIV Contents – Part II

Contents – Part I

Data Mining I

Leveraging Homomorphisms and Bitmaps to Enable the Mining
of Embedded Patterns from Large Data Trees . 3

Xiaoying Wu and Dimitri Theodoratos

Cold-Start Expert Finding in Community Question Answering
via Graph Regularization . 21

Zhou Zhao, Furu Wei, Ming Zhou, and Wilfred Ng

Mining Itemset-based Distinguishing Sequential Patterns with Gap
Constraint . 39

Hao Yang, Lei Duan, Guozhu Dong, Jyrki Nummenmaa,
Changjie Tang, and Xiaosong Li

Mining Correlations on Massive Bursty Time Series Collections 55
Tomasz Kusmierczyk and Kjetil Nørvåg

Data Streams and Time Series

Adaptive Grid-Based k-median Clustering of Streaming Data
with Accuracy Guarantee. 75

Jianneng Cao, Yongluan Zhou, and Min Wu

Grouping Methods for Pattern Matching in Probabilistic Data Streams 92
Kento Sugiura, Yoshiharu Ishikawa, and Yuya Sasaki

Fast Similarity Search of Multi-Dimensional Time Series via Segment
Rotation. 108

Xudong Gong, Yan Xiong, Wenchao Huang, Lei Chen, Qiwei Lu,
and Yiqing Hu

Measuring the Influence from User-Generated Content to News
via Cross-dependence Topic Modeling . 125

Lei Hou, Juanzi Li, Xiao-Li Li, and Yu Su

Database Storage and Index I

SASS: A High-Performance Key-Value Store Design
for Massive Hybrid Storage . 145

Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng

An Efficient Design and Implementation of Multi-Level Cache
for Database Systems . 160

Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng

A Cost-aware Buffer Management Policy for Flash-based Storage
Devices . 175

Zhiwen Jiang, Yong Zhang, Jin Wang, and Chunxiao Xing

The Gaussian Bloom Filter . 191
Martin Werner and Mirco Schönfeld

Spatio-Temporal Data I

Detecting Hotspots from Trajectory Data in Indoor Spaces 209
Peiquan Jin, Jiang Du, Chuanglin Huang, Shouhong Wan, and Lihua Yue

On Efficient Passenger Assignment for Group Transportation 226
Jiajie Xu, Guanfeng Liu, Kai Zheng, Chengfei Liu, Haoming Guo,
and Zhiming Ding

Effective and Efficient Predictive Density Queries for Indoor
Moving Objects . 244

Miao Li, Yu Gu, and Ge Yu

Efficient Trip Planning for Maximizing User Satisfaction 260
Chenghao Zhu, Jiajie Xu, Chengfei Liu, Pengpeng Zhao,
An Liu, and Lei Zhao

Modern Computing Platform

Accelerating Search of Protein Sequence Databases
using CUDA-Enabled GPU . 279

Lin Cheng and Greg Butler

Fast Subgraph Matching on Large Graphs using Graphics Processors 299
Ha-Nguyen Tran, Jung-jae Kim, and Bingsheng He

On Longest Repeat Queries Using GPU . 316
Yun Tian and Bojian Xu

Process-driven Configuration of Federated Cloud Resources 334
Denis Weerasiri, Boualem Benatallah, and Moshe Chai Barukh

XXVI Contents – Part I

Social Networks I

An Integrated Tag Recommendation Algorithm Towards Weibo
User Profiling. 353

Deqing Yang, Yanghua Xiao, Hanghang Tong, Junjun Zhang,
and Wei Wang

An Efficient Approach of Overlapping Communities Search 374
Jing Shan, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu

A Comparative Study of Team Formation in Social Networks 389
Xinyu Wang, Zhou Zhao, and Wilfred Ng

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer . . . 405
Senzhang Wang, Honghui Zhang, Jiawei Zhang, Xiaoming Zhang,
Philip S. Yu, and Zhoujun Li

Information Integration and Data Quality

Scalable Inclusion Dependency Discovery . 425
Nuhad Shaabani and Christoph Meinel

Repairing Functional Dependency Violations in Distributed Data 441
Qing Chen, Zijing Tan, Chu He, Chaofeng Sha, and Wei Wang

GB-JER: A Graph-Based Model for Joint Entity Resolution 458
Chenchen Sun, Derong Shen, Yue Kou, Tiezheng Nie, and Ge Yu

Provenance-Aware Entity Resolution: Leveraging Provenance
to Improve Quality . 474

Qing Wang, Klaus-Dieter Schewe, and Woods Wang

Information Retrieval and Summarization

A Chip off the Old Block – Extracting Typical Attributes for Entities
Based on Family Resemblance . 493

Silviu Homoceanu and Wolf-Tilo Balke

Tag-based Paper Retrieval: Minimizing User Effort with Diversity
Awareness . 510

Quoc Viet Hung Nguyen, Son Thanh Do, Thanh Tam Nguyen,
and Karl Aberer

Feedback Model for Microblog Retrieval. 529
Ziqi Wang and Ming Zhang

Contents – Part I XXVII

Efficient String Similarity Search: A Cross Pivotal Based Approach. 545
Fei Bi, Lijun Chang, Wenjie Zhang, and Xuemin Lin

Security and Privacy

Authentication of Top-k Spatial Keyword Queries in Outsourced
Databases. 567

Sen Su, Han Yan, Xiang Cheng, Peng Tang, Peng Xu, and Jianliang Xu

Privacy-Preserving Top-k Spatial Keyword Queries over Outsourced
Database . 589

Sen Su, Yiping Teng, Xiang Cheng, Yulong Wang, and Guoliang Li

Bichromatic Reverse Nearest Neighbor Query without Information
Leakage. 609

Lu Wang, Xiaofeng Meng, Haibo Hu, and Jianliang Xu

Authentication of Reverse k Nearest Neighbor Query 625
Guohui Li, Changyin Luo, and Jianjun Li

Author Index . 641

XXVIII Contents – Part I

Outlier and Imbalanced Data Analysis

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-18123-3_1

A Synthetic Minority Oversampling Method
Based on Local Densities in Low-Dimensional Space

for Imbalanced Learning

Zhipeng Xie1,2(), Liyang Jiang1, Tengju Ye1, and Xiao-Li Li3

1 School of Computer Science, Fudan University, Shanghai, China
{xiezp,13210240017,13210240039}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
3 Institute of InfoComm Research, Fusionopolis Way, Singapore, Singapore

xlli@i2r.a-star.edu.sg

Abstract. Imbalanced class distribution is a challenging problem in many
real-life classification problems. Existing synthetic oversampling do suffer from
the curse of dimensionality because they rely heavily on Euclidean distance. This
paper proposed a new method, called Minority Oversampling Technique based
on Local Densities in Low-Dimensional Space (or MOT2LD in short). MOT2LD
first maps each training sample into a low-dimensional space, and makes clus-
tering of their low-dimensional representations. It then assigns weight to each
minority sample as the product of two quantities: local minority density and local
majority count, indicating its importance of sampling. The synthetic minority
class samples are generated inside some minority cluster. MOT2LD has been
evaluated on 15 real-world data sets. The experimental results have shown that
our method outperforms some other existing methods including SMOTE, Bor-
derline-SMOTE, ADASYN, and MWMOTE, in terms of G-mean and
F-measure.

Keywords: Imbalanced learning · Oversampling method · Local densities ·
Dimensionality reduction

1 Introduction

Imbalanced distribution of data samples among different classes is a common pheno-
menon in many real-world classification problems, such as fraud detection [1] and text
classification [2]. In this paper, we focus on two-class classification problems for imba-
lanced data sets, where the class that contains few samples is called the minority class,
and the other that dominates the instance space is called the majority class. The imba-
lanced data sets have degraded the learning performance of existing learning algorithms
and posed a challenge to them for the hardness to learn the minority class samples.

Confronted with the problem of imbalanced learning, some simple yet effective
methods have been proposed to generate extra synthetic minority samples in order to

4 Z. Xie et al.

balance the distribution between the majority class and the minority class [3][4][5][6],
which are called synthetic oversampling methods. SMOTE[3], Borderline-SMOTE[4],
ADASYN[5], and MWMOTE[6] are typical examples of this kind of algorithms. All
these algorithms generate synthetic minority samples in two main phases. The first
phase is to identify those informative minority class samples, and the second phase is to
interpolate a synthetic minority class sample between those informative minority class
samples and their nearby ones. The difference among them exists in the way of how the
synthetic samples are generated. SMOTE algorithm [3] is the first and simplest synthetic
oversampling method, which treats all the minority class samples equally. To generate a
synthetic minority sample, it first draws seed samples randomly from the whole set of
minority class samples in the seed drawing phase, and then calculates the nearest
neighbors in the minority class for each seed sample and generates new synthetic sam-
ples along the line between the seed sample and its nearest minority neighbors. As an
improvement over SMOTE, Borderline-SMOTE [4] only draw seed samples from those
dangerous minority samples at borderline. A minority class sample is at borderline if
there are more majority class samples than minority ones in its nearest neighbors.
Borderline-SMOTE first identifies the borderline minority class samples, and then uses
them as seed samples for generating the synthetic samples because they are most likely
to be misclassified by a classifier. However, all the borderline samples are treated
equally. To adaptively draw seed samples, ADASYN algorithm [5] adaptively assigns
weights to the minority class samples. A large weight enhances the chance for the
minority class sample serving as a seed sample in the synthetic sample generation
process. Both Borderline-SMOTE and ADASYN share a synthetic sample generation
process that is similar to the one used by SMOTE: the synthetic minority class samples
are generated by interpolation randomly between the seed samples and their K-nearest
neighbors of the minority class. Recently, a new algorithm MWMOTE [6] is proposed
to identify the hard-to-learn informative minority class samples, to assign them weights
according to their Euclidean distance from the nearest majority class samples, and then
to generate synthetic samples inside minority class clusters. It has been illustrated in [6]
that MWMOTE can avoid some situations that the other methods will generate wrong
and unnecessary synthetic samples.

Although these synthetic oversampling methods have achieved some satisfactory
results for imbalanced learning, they still have their deficiencies. Firstly, all of them for
these methods rely heavily on the Euclidean distance in the calculation of K-nearest
neighbors, which may suffer from the curse of dimensionality, especially when the
dimensionality of the sample space is high. Secondly, the synthetic generation process
used by SMOTE, Borderline-SMOTE, and ADASYN does not take the cluster struc-
ture into consideration. Last but not least, we think the local minority density should
have its position in determining the importance of a minority class sample for the
generation of synthetic minority samples.

To solve these problems, we propose a new algorithm, which consists of three main
steps. It first applies t-SNE algorithm to reduce the dimensionality of the training
samples into a two-dimensional space, where each sample is represented as a
two-dimensional vector. Then, a density-peak algorithm is used to learn the cluster
structure of the training samples in the low-dimensional space. The importance of a
minority class sample is measured by taking two factors into consideration: local

 Synthetic Minority Oversampling Method 5

majority count and local minority density. Local majority count indicates how many
majority class samples appear in the K-nearest neighbors of the minority class sample.
The higher the local majority count is, the harder is to make the correct decision for the
sample. The local minority density of a given minority sample indicates the density of
minority class samples around it. The lower the local minority density is, the more
likely is to generate a synthetic sample from the sample. Finally, based on the impor-
tance measurement of the minority samples, synthetic minority samples are generated,
which are located inside some minority cluster.

The whole paper is organized as follows. Section 2 describes our proposed method
MOT2LD (Minority Oversampling Technique based on Local Densities in
Low-Dimensional Space) in detail. Section 3 presents the experimental results. Finally,
we summarize the whole paper and point out possible directions for future work.

2 The Proposed Method

The objective in this paper is to exploit and integrate modern dimensionality reduction
and clustering techniques in order to solve the problems that existing synthetic over-
sampling methods are facing. The proposed algorithm, called Minority Oversampling
Technique based on Local Densities in Low-Dimensional Space (or MOT2LD in
short), consists of five major steps as listed in Table 1.

• The first step is to reduce the dimensionality of the representation of training
samples. By dimensionality reduction, each sample in high-dimensional space
can be mapped into a point in a low-dimensional space. Dimensionality reduc-
tion can be thought of a kind of metric learning technique, leading to a better
distance metric between samples.

• The second step is to discover the cluster structure of the minority class samples
in the low-dimensional space. A new density-based clustering algorithm called
DPCluster is exploited, which is capable of determining the cluster number
automatically. It is desirable that the generated synthetic minority samples are
within some cluster, instead of “between clusters”.

• The third step is to detect and filter out outliers and noises in the set of minority
samples, for the existence of outliers and noises may do harm to the quality of
the generated synthetic minority samples.

• The fourth step is to assign weights to the minority samples, indicating their
importance for oversampling. The weight is measured as the product of the local
majority count and the inverse of local minority density.

• The final step is to generate the synthetic minority samples according to the
importance weights of the training minority samples. We also restrict that the
synthetic minority samples should be inside some minority cluster, to avoid
generating synthetic samples between different clusters.

6 Z. Xie et al.

The details of MOT2LD are described below.

Table 1. The framework of MOT2LD algrorithm

Algorithm: Minority Oversampling Technique based on Local Densities in
Low-Dimensional Space

Input:
 NSamples: A set of majority class samples (Negative class)
 PSamples: A set of minority class samples (Positive class)
 K: The number of nearest neighbors observed when filtering noise samples
 NumToGen: The number of synthetic minority samples to be generated
Output:
 Y: The set of synthetic minority samples that are generated

Procedure Begin
 Step 1: (Dimensionality Reduction)
 Use t-SNE algorithm to reduce the dimensionality of the dataset, where each data

sample x is represented as a low-dimensional image in a low-dimensional space.
 Step 2: (Clustering of Minority Class Samples)
 Use Density Peak Clustering algorithm to partition the set of minority class samples

into a number of clusters Cl1,…,Cls, where s is the number of clusters. As byproduct,
we can also get the local minority density ρi for each minority sample .

 Step 3: (Outlier Detection and Noise Filtering)
 For each minority class sample, if its local minority density is zero, it will be treated as

outlier and get removed. In addition, we also count the number of majority class
samples in its -nearest neighbors. If all the neighbors are from majority class,
then the minority sample is a noise to be filtered.

 Step 4: (Weight Assignment)
 Assign an importance weight () to each minority class sample as a

product of its local majority count γ() and the inverse of its local minority density ρ().
 Step 5: (Synthetic Sample Generation)
 For each minority sample , set () () where ∑ () .

for i := 1 to NumToGen
1) Randomly draw a minority sample as the seed sample, according to the

probability distribution { (): }
2) Choose another minority sample from the minority cluster that

belongs to.
3) Generate one synthetic minority sample α (1) ,

where α is a random number between 0 and 1.
4) Add into Y.

end for
Procedure End

 Synthetic Minority Oversampling Method 7

2.1 Dimensionality Reduction via t-SNE

Due to the curse of dimensionality, the commonly-used distance metrics that work well
in low-dimensional space may have significantly-degraded performance in
high-dimensional space. To alleviate this problem, dimensionality reduction is an
important preprocessing step for many machine learning tasks such as clustering and
classification. A lot of methods have been proposed to embed objects, described by
either high-dimensional vectors or pairwise dissimilarities, into a lower-dimensional
space [7]. Principal component analysis (PCA) [8] seeks to capture as much variance as
possible. Multidimensional scaling (MDS) [9] tries to preserve dissimilarities between
items. Traditional dimensionality reduction methods such as Principal Component
Analysis and Multidimensional Scaling usually focus on keeping the low-dimensional
representations of dissimilar data points far apart. However, for high-dimensional data
that lies on or near a low-dimensional non-linear manifold, it is usually more important
to keep the low-dimensional representations of very similar data points close together.
Locally linear embedding (LLE) [10] attempts to preserve local geometry. Stochastic
Neighbor Embedding (SNE) [11] is an iterative technique that aims at retaining the
pairwise distances between the data points in the low-dimension space, which is similar
to MDS. However, SNE differs from MDS in that it makes use of a Gaussian kernel
such that the similarities of nearby points contribute more to the cost function. As such,
it preserves mainly local properties of the manifold.

In this paper, we adopt a recently developed dimensionality reduction algorithm,
called t-Distributed Stochastic Neighbor Embedding (t-SNE) [12], which is an exten-
sion to the well-known original Stochastic Neighbor Embedding (SNE) algorithm [11].
The t-SNE algorithm was proposed originally for the visualization of high-dimensional
data points, which can transform the high-dimensional data set into two or
three-dimensional data. The reason why we choose to use t-SNE is that it is capable of
capturing much of the local structure of high-dimensional data very well, while also
revealing global structure such as the presence of clusters. The first capability provides
the quality of K-nearest neighbors, while the second capability makes it easy to dis-
cover the cluster structure of the minority class samples. Both these two capabilities are
fundamental to the proposed MOT2LD algorithm. A brief description of t-SNE goes as
follows.

In SNE [11] or t-SNE [12] algorithm, the high-dimensional Euclidean distances
between data points are transformed into conditional probabilities that one data point
would pick another data point as its neighbor.

| exp (2)∑ exp((2)⁄) (1)

where is the variance of the Gaussian that is centered on data point , and

represents the dissimilarities between two data points that are measured as the scaled
squared Euclidean distance. The value of is chosen by a binary search such that the
Shannon entropy H() ∑ | log | of the distribution over neighbors equals
to log , where is a user-specified perplexity with 15 as default value.

8 Z. Xie et al.

In the high-dimensional space, the joint probabilities is defined to be the sym-
metrized conditional probabilities, that is: | |2 (2)

where denotes the number of data points.
In t-SNE, a Student t-distribution with one degree of freedom is employed as the

heavy-tailed distribution in the low-dimensional space. The joint distribution is defined
as: 1∑ (1) (3)

Based on the definitions (2) and (3), the goal of t-SNE is to minimize the difference
between the two joint probability distributions P and Q. The Kullback-Leibler diver-
gence between the two joint probability distributions and , which measures their
difference, is given by: C KL(||) log (log log) (4)

Therefore, we take the Kullback-Leibler divergence as the objective function to be
minimized. Its gradient can be written as: 4 1 (5)

For the detailed derivation procedure of the expression (5), please refer to the
Appendix A in [12].

A gradient descent method can be implemented to find out the map points in the
low-dimensional space that minimizes the Kullback-Leibler divergence, following the
gradient (5). To initialize the gradient descent process, we sample map points randomly
from an isotropic Gaussian with small variance (10 by default) that is centered at the
origin.

Through applying the t-SNE algorithm described above to the training samples in-
clusive of minority class and majority class, each sample is mapped to a point in a
low-dimensional space. The map points in the low-dimensional space can better reveal
the implicit structure of the high-dimensional data, especially when the
high-dimensional data are lying on several different low-dimensional manifolds.

2.2 Density Peak Clustering in Low-Dimensional Space

Dimensionality reduction can be thought of as unsupervised distance metric learning,
in that every dimensionality reduction approach can essentially learn a distance metric
in the low-dimensional space [13]. Equivalently speaking, after high-dimensional data
get mapped to map points in a low-dimensional space, we can derive a new distance

 Synthetic Minority Oversampling Method 9

metric between data points in the low-dimensional space, which is normally of higher
quality than the original distance metric in the high-dimensional space. A better dis-
tance metric usually leads to higher quality of calculated K-nearest neighbors or den-
sity, and in turn yields a better clustering result. The global cluster structure is helpful to
synthetic oversampling methods, because each generated synthetic sample should be
inside some minority cluster. MWMOTE [6] uses an average-linkage agglomerative
clustering algorithm [14] to derive the cluster structure of minority class. In our me-
thod, we use a simple clustering algorithm called Density Peak Clustering (DPCluster
in short) [15]. DPCluster assumes that the cluster centers are defined as local maxima in
the density of data points, or in other words, the cluster centers are surrounded by
neighbors with lower density. It also assumes that the cluster centers are at a relatively
large distance from any points with a higher local density. According to these two
assumptions, DPCluster calculates two quantities for each data point: one is its local
density, and the other is its distance from points of higher density, which play important
roles in the clustering solutions and are defined as follows [15].

Definition 1. (Local Density) The local density of a data point is defined as: () () (6)

where denotes the distance between two data points and , () 1 if 0
and () 0 otherwise, and is a cutoff distance.

In this paper, the distance between two data points is calculated as the Euclidean

distance in the low-dimensional space, the value of is set such that the average local
density over all points equal to 2% of the total number of points. Because the clustering
is applied only on minority class samples, the local density is also called the local
minority density in this paper.

Definition 2. (Distance from points of higher density) For any data point , its dis-
tance from points of higher density is measured as the minimum distance between
the point and any other point with higher density: () min: (7)

For the data point with the highest local density , is defined to be its maximal
distance from any other point, that is, max .

Based on those quantities, the clustering process consists of two steps. The first step
is to identify the cluster centers which are the points with anomalously large value of
and relatively large value of , because cluster centers normally has high densities. In
our implementation, this paper, a point is thought of as a cluster center if its local
density is larger than 80% of all the data points, and its distance from points of higher
density is among the top 5% of all the data points. As such, the number of clusters is
automatically determined as the number of cluster centers identified, where each
cluster center represents a unique cluster. In this step, the points with a high value

10 Z. Xie et al.

and a low can be treated as outliers. The second step is to assign the remaining data
points to the same cluster as its nearest neighbor of higher density. This assignment step
is performed in a single pass, which is much faster than other clustering algorithms
such as k-means [16].

2.3 Outlier Detection and Noise Filtering

In MOT2LD, we detect outliers and filter noises, in the low-dimensional space with
two strategies (Step 3).

• Strategy 1 (Outlier Detection): During the clustering process described in section 2.2,
we calculate the local minority density for each minority class sample . If the local
minority density equals to zero, then the sample is likely to be an outlier, because
there is no minority samples surrounding it. Therefore, it is deleted from the set of
minority class samples, and gets removed from subsequent processing.

• Strategy 2 (Noise Filtering): We calculate the set () of K-nearest neighbors for a
minority class sample in the low-dimensional space. If the K-nearest neighbors of a
minority class sample in the low-dimensional space are all from the majority class,
then the minority sample is likely to be a noise sample because it is surrounded by
only the majority class samples. It is then filtered out of the minority sample set.

2.4 Weight Assignment

As to measuring the importance of a minority class sample for synthetic minority
sample generation, there are three facts that deserve our attention:

• The first fact is that the borderline points of a cluster normally have low local
minority densities ρ, but the interior points usually have high local minority
densities. For classification, the borderline points are more informative than the
interior points. Therefore, the points with lower local densities should be given
higher probabilities when chosen as the seed samples for generating synthetic
minority samples. In other words, for a given minority sample , if the number of
minority class samples, whose distance to is less than the cutoff distance , is
low, then its weight should be increased.

• The second fact is that for two minority clusters of different densities, the samples
in the cluster of lower density should get more chances to serve as seed samples
for generating synthetic minority samples than those in the cluster of higher
density. This fact leads to the same conclusion as the first fact: minority samples
of lower minority density should be given more weight.

• The third fact is that a minority sample is hard to make the correct decision if there
are many majority class samples in its K-nearest neighbors. As such, we use the
local majority count γ() to indicate how many majority samples occur in the
K-nearest neighbors of a given minority sample . Minority samples with higher
local majority count should be given higher probability of serving as seed samples
for generating synthetic minority samples.

 Synthetic Minority Oversampling Method 11

For a given minority class sample i, its importance () is defined as the
product of its local majority count γ() and the inverse of its local minority density (): () ()() (8)

The importance weight of a given minority class sample is an indicator of the impor-
tance for generating synthetic minority sample from it. A large weight implies that the
sample needs to generate many synthetic minority samples nearby it.

To illustrate the rationale behind the weighting scheme, we construct a simple ex-
ample explained as follows. In Fig. 1, there are totally 550 points. Among these points,
500 points represented as blue dots are drawn randomly from a bivariate Gaussian (, Σ), and 50 points as red plus-signs are drawn from another bivariate Gaussian (, Σ), where (1,2), (1, 1), and Σ Σ 2 11 1 . Next, we shall

examine three minority class samples labeled by 1, 2, and 3.

Fig. 1. An example of Gaussian-distributed Minority and Majority Samples

First, let us focus only on the minority class samples. The samples 1 and 3 are at the
borderline of minority class, while the sample 2 is an interior point of minority class. As
illustrated in Fig. 2, where each circle is centered at sample 1, sample 2, or sample 3,
and the radius of each circle equals to the chosen cutoff value . Clearly, the local
minority density of sample 1, ρ(1), equals to 5, because there are five minority class
samples in its circle. Similarly, the local density of sample 2, ρ(2), is 16, while the local
density of sample 3, ρ(3), is only 2.

Next, we examine the local majority count for the three minority samples. For the
sample 1, there are two majority samples in its 5-nearest neighbors, so its majority
count equals to 2, that is γ(1) 2. For the sample 2 and the sample 3, there are no
majority samples appearing in their 5-nearest neighbors, so we have γ(2) γ(3) 0.

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

5

1

2

3

12 Z. Xie et al.

Fig. 2. Local minority densities for three minority class samples

Fig. 3. Local majority counts for three minority class samples

Following the definition of importance weight in Equation (8), we can calculate the
importance weights of the three minority samples: (1) (1)(1) 25 ;

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

5

1

2

3

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

5

1

2

3

 Synthetic Minority Oversampling Method 13

(2) (2)(2) 0;
(3) (3)(3) 0.

Clearly, a minority class sample is given a high importance weight, if it has a high
local majority count and a low local minority density.

2.5 Generation of Synthetic Minority Samples

Before we describe the generation of synthetic samples, we first transform the impor-
tance weights of minority samples into a probability distribution that indicates the
probability that a minority sample is selected as the seed sample: () ()∑ () (9)

To generate a synthetic minority sample, a minority sample is selected ran-
domly as the seed sample according to the probability distribution. Let denote the
cluster that contains . We then select a second minority sample that belongs to
the minority cluster . A new synthetic minority sample is thus generated by random
interpolation between the two minority samples and .

3 Experimental Results

To evaluate the effectiveness of the proposed MOT2LD method, we compare it with
four other synthetic oversampling methods: SMOTE[3], Borderline-SMOTE[4],
ADASYN[5], and MWMOTE[6], on 15 data sets from the UCI machine learning
repository [17]. The data sets with more than two classes are transformed to two-class
problems. Table 2 lists detailed information about the data sets and how the majority
and minority classes.

On each data set, we randomly split it into two parts of (almost) the same size, one
for training set and the other for testing set. Synthetic oversampling method is applied
on the training set.

Accuracy is the most commonly-used evaluation metric for classification problems.
However, the accuracy measure suffers greatly from the imbalanced class distribution,
and thus is not suitable for imbalance classification [18]. To assess the classifier per-
formance on imbalanced two-class classification problem, a confusion matrix is con-
structed as shown in Table 3, where TP denotes the number of true positive, FP denotes
the number of false positive, FN denotes the number of false negative, and TN denotes
the number of true negative. Two evaluation metrics derived from confusion matrix are
used in this paper to assess learning from imbalanced data sets. They are G-mean and
F-measure [18].

14 Z. Xie et al.

Table 2. Characteristics of the experimental data sets

Data Sets
Minority

Class
Majority

Class Features Minority Majority
Imbalance

Ratio
Statlandsat 4 other 37 415 4435 0.09:0.91

Yeast
ME3, ME2,
EXC, VAC,
POX, ERL

other 8 304 1180 0.21:0.79

Ecoli im other 7 77 259 0.23:0.77

PageBlocks
Graphic,
Vert.line,
Picture

other 10 231 5245 0.04:0.96

BreastCancer Malignant Benign 9 239 444 0.34:0.66

Glass 5, 6, 7 other 9 51 163 0.24:0.76

Vehicle van other 18 199 647 0.24:0.76

Libra 1, 2, 3 other 90 72 288 0.20:0.80

Abalone 18 other 7 42 689 0.06:0.94

Vowel 0 other 10 90 900 0.09:0.91

Pima 1 0 8 268 500 0.35:0.65

Ionosphere bad radar
good
radar

34 126 225 0.36:0.64

Segment Grass other 19 330 1980 0.14:0.86

BreastTissue CAR, FAD other 9 36 70 0.34:0.66

Wine 3 other 13 48 130 0.26:0.74

Table 3. Confusion Matrix

 True Class
Positive Negative

Predicted Class
Positive TP FP
Negative FN TN

Based on the confusion matrix in Table 3, the evaluation metrics, G-mean and

F-measure, are defined as follows:

• G-mean is a good indicator for performance assessment of imbalanced learning
by combining the accuracies on the positive class and negative class samples.
 GM

where is the accuracy on the positive class and is the accuracy on

the negative class.

 Synthetic Minority Oversampling Method 15

• F-measure make a combination of precision and recall of the positive samples:
 F 2

where and .

We use the CART [16] decision tree as the classification model in our experiments.

Throughout the experiments, we do not fine-tune the parameters in our algorithm. All
the parameters take default values as indicated in Section 2. Table 4 and Table 5
summarize the results of SMOTE, Borderline-SMOTE, ADASYN, and MOT2LD on
the 15 experimental data sets. The reported performance results are all averaged over
20 independent runs. At each run, the data set is randomly divided into two parts of
approximately equal size: one for training set and the other for testing set. The number
of synthetic minority samples that generated by the compared oversampling methods is
two times the number of minority samples in the training set. On each data set, the best
result is highlighted with underlined bold-face type.

Table 4. Comparison of G-mean on experimental data sets

Data Sets ADASYN
Borderline-

SMOTE
SMOTE MWMOTE MOT2LD

Statlandsat 0.717 0.714 0.723 0.719 0.723

Yeast 0.783 0.781 0.783 0.779 0.778

Ecoli 0.830 0.824 0.844 0.836 0.851

PageBlocks 0.869 0.858 0.861 0.858 0.868

BreastCancer 0.898 0.903 0.909 0.910 0.907

Glass 0.884 0.893 0.887 0.880 0.892

Vehicle 0.891 0.900 0.900 0.894 0.903

Libra 0.744 0.742 0.764 0.761 0.769

Abalone 0.557 0.561 0.5998 0.580 0.619

Vowel 0.947 0.923 0.941 0.927 0.947

Pima 0.664 0.648 0.662 0.658 0.669

Ionosphere 0.835 0.857 0.829 0.849 0.824

Segment 0.997 0.996 0.996 0.997 0.996

BreastTissue 0.717 0.712 0.692 0.681 0.725

Wine 0.949 0.949 0.943 0.947 0.947

16 Z. Xie et al.

Table 5. Comparison of F-measures on experimental data sets

Data Sets ADASYN
Borderline-

SMOTE
SMOTE MWMOTE MOT2LD

Statlandsat 0.513 0.514 0.519 0.507 0.507

Yeast 0.646 0.650 0.647 0.643 0.642

Ecoli 0.741 0.735 0.758 0.749 0.765

PageBlocks 0.728 0.726 0.718 0.682 0.700

BreastCancer 0.890 0.896 0.902 0.904 0.900

Glass 0.835 0.848 0.832 0.828 0.848

Vehicle 0.836 0.845 0.846 0.835 0.847

Libra 0.630 0.641 0.650 0.643 0.636

Abalone 0.304 0.322 0.321 0.334 0.359

Vowel 0.876 0.863 0.867 0.864 0.858

Pima 0.575 0.554 0.573 0.567 0.580

Ionosphere 0.790 0.818 0.781 0.804 0.776

Segment 0.995 0.996 0.995 0.996 0.996

BreastTissue 0.635 0.630 0.605 0.594 0.646

Wine 0.923 0.923 0.917 0.916 0.923

From Table 4 and Table 5, it can be seen that MOT2LD has achieved 8 best results

out of the 15 data sets among all the compared methods, in both G-mean and
F-measure, which is much better than the others including SMOTE, Border-
line-SMOTE, ADASYN, and MWMOTE, which have mostly achieved 2 or 3 best
results out of the 15 data sets.

4 Conclusion and Future Work

In this paper, we propose a new synthetic oversampling method MOT2LD for imba-
lanced learning. MOT2LD first maps samples into a low-dimensional space using
t-SNE algorithm, and discovers the cluster structure of the minority class in the
low-dimensional space by DPCluster. It then assigns importance weights to minority
samples as the products of the local majority count and the inverse of local minority
density.

To finalize this paper, we would like to list several directions for our future work:
Firstly, it may be interesting to study the effect of supervised dimensionality reduc-

tion technique as a proprecessing step. If we could make use of supervised information
in the dimensionality reduction algorithm to maximize the separation between minority
class and majority class, it is expected that a better results would be achieved.

 Synthetic Minority Oversampling Method 17

Secondly, although synthetic oversampling methods have achieved satisfactory re-
sults for imbalanced learning, a lot of other methods do exist. Recently, there are
some model-based oversampling methods such as SPO [20][21] and MoGT [22]. SPO
[20][21] assumes that the minority samples follow a multivariate Gaussian distribu-
tion. It estimates its mean vector and covariance matrix and then draws extra minority
sample from the probability distribution. MoGT [22] assumes another probabilistic
model called mixture of Gaussian Trees. It is similar to the Gaussian Mixture model,
but differs in that Gaussian Tree can be thought of as a restricted kind of Gaussian
distribution, which has much less parameters to be estimated. How to combine syn-
thetic oversampling methods and model-based oversampling ones is a challenging
problem.

Acknowledgements. This work is supported by National High-tech R&D Program of China
(863 Program) (No. SS2015AA011809), Science and Technology Commission of Shanghai
Municipality (No. 14511106802), and National Natural Science Fundation of China (No.
61170007). We are grateful to the anonymous reviewers for their valuable comments.

References

1. Fawcett, T.E., Provost, F.: Adaptive Fraud Detection. Data Min. Knowl. Disc. 3(1),
291–316 (1997)

2. Mladenić, D., Grobelnik, M.: Feature selection for unbalanced class distribution and
naive bayes. In: Proceedings of the 16th International Conference on Machine Learning,
pp. 258−267 (1999)

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority
oversampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

4. Han, H., Wang, W.Y., Mao, B.H.: Borderline-SMOTE: a new oversampling method in
imbalanced data sets learning. In: Proceedings of International Conference on Intelligent
Computing, pp. 878−887 (2005)

5. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for
imbalanced learning. In: Proceedings of IEEE International Joint Conference on Neural
Networks, pp. 1322−1328 (2008)

6. Barua, S., Islam, M.M., Yao, X., Murase, K.: MWMOTE - majority weighted minority
oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng.
26(2), 405–425 (2014)

7. van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a
comparative review. Tilburg University Techical Report, TiCC-TR 2009–005 (2009)

8. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J.
Educ. Psychol. 24, 417–441 (1933)

9. Torgerson, W.S.: Multidimensional scaling I: theory and method. Psychometrika 17,
401–419 (1952)

10. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by Locally Linear Embed-
ding. Science 290(5500), 2323–2326 (2000)

11. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: Advances in Neural
Information Processing Systems, vol. 15, pp. 833−840 (2002)

12. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning
Research 9, 2579–2605 (2008)

18 Z. Xie et al.

13. Liu, Y.: Distance metric learning: a comprehensive survey. Research Report, Michigan
State University (2006)

14. Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for use in
document retrieval. Inf. Process. Manage. 22(6), 465–476 (1986)

15. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344,
1492–1496 (2014)

16. MacQueen, J.: Some methods for classifications and analysis of multivariate observations.
In: Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Probabil-
ity, University of California Press, pp. 281−297 (1967)

17. Bache, K., Lichman, M.: UCI Machine Learning Repository. University of California,
School of Information and Computer Science, 2013 [http://archive.ics.uci.edu/ml]

18. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263–1284 (2009)

19. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees.
CRC press (1984)

20. Cao, H., Li, X.L., Woon, Y.-K., Ng, S.K.: SPO: structure preserving oversampling for
imbalanced time series classification. In: Proceedings of IEEE International Conference on
Data Mining (2011)

21. Cao, H., Li, X.L., Woon, Y.K., Ng, S.K.: Integrated oversampling for imbalanced time se-
ries classification. IEEE Trans. Knowl. Data Eng. 25(12), 2809–2822 (2013)

22. Pang, Z.F., Cao, H., Tan, Y.F.: MOGT: oversampling with a parsimonious mixture of
Gaussian trees model for imbalanced time-series classification. In: Proceedings of IEEE
International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1−6
(2013)

Fast and Scalable Outlier Detection
with Approximate Nearest Neighbor Ensembles

Erich Schubert(B), Arthur Zimek, and Hans-Peter Kriegel

Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538
München, Germany

{schube,zimek,kriegel}@dbs.ifi.lmu.de
http://www.dbs.ifi.lmu.de

Abstract. Popular outlier detection methods require the pairwise com-
parison of objects to compute the nearest neighbors. This inherently
quadratic problem is not scalable to large data sets, making multidi-
mensional outlier detection for big data still an open challenge. Existing
approximate neighbor search methods are designed to preserve distances
as well as possible. In this article, we present a highly scalable approach to
compute the nearest neighbors of objects that instead focuses on preserv-
ing neighborhoods well using an ensemble of space-filling curves. We show
that the method has near-linear complexity, can be distributed to clus-
ters for computation, and preserves neighborhoods—but not distances—
better than established methods such as locality sensitive hashing and
projection indexed nearest neighbors. Furthermore, we demonstrate that,
by preserving neighborhoods, the quality of outlier detection based on
local density estimates is not only well retained but sometimes even
improved, an effect that can be explained by relating our method to out-
lier detection ensembles. At the same time, the outlier detection process
is accelerated by two orders of magnitude.

1 Introduction

Vast amounts of data require more and more refined data analysis techniques
capable to process big data. While the volume of the data often decreases dramat-
ically with selection, projection and aggregation, not all problems can be solved
this way. The domain of outlier detection is a good example where individual
records are of interest, not overall trends and frequent patterns. Summarization
will lose the information of interest here and thus cannot be applied to outlier
detection. In the data mining literature, a large variety of methods is based on
object distances, assuming that outliers will essentially exhibit larger distances
to their neighbors than inliers, i.e., the estimated local density is lower than the
“usual” density level in the dataset. Without employing index structures, this
requires the computation of all pairwise distances in the worst case.

Here we focus on methods for improving generically all such methods by
fast approximations of the relevant neighbors. We demonstrate that the approx-
imation error is negligible for the task of outlier detection. In the literature,
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 19–36, 2015.
DOI: 10.1007/978-3-319-18123-3 2

20 E. Schubert et al.

approximations of neighborhoods and distances have been used as a filter step.
Here, we show that an approximate identification of the neighborhood is good
enough for the common outlier detection methods since these do not actually
require the neighbors as such but only as a means to derive a local density esti-
mate. Notably, the detection accuracy can even improve by using an approximate
neighborhood. We explain this effect and argue that a tendency to improve the
accuracy of outlier detection by approximate neighborhood identification is not
accidental but follows a certain bias, inherent to our method.

In the remainder, we will discuss outlier detection methods and their effi-
ciency variants (Section 2). Then (Section 3), we reason about the theoretical
background of our method and consequences for its performance, and introduce
the core of our method. We demonstrate the effectiveness and efficiency in an
extensive experimental analysis (Section 4) and conclude the paper with rules
of thumb on the expected usefulness of the different methods (Section 5).

2 Related Work

2.1 Outlier Detection

Existing outlier detection methods differ in the way they model and find the
outliers and, thus, in the assumptions they, implicitly or explicitly, rely on.
The fundamentals for modern, database-oriented outlier detection methods (i.e.,
methods that are motivated by the need of being scalable to large data sets,
where the exact meaning of “large” has changed over the years) have been laid
in the statistics literature. A broader overview for modern applications has been
presented by Chandola et al. [10]. Here, we focus on techniques based on comput-
ing distances (and derived secondary characteristics) in Euclidean data spaces.

With the first database-oriented approach, Knorr and Ng [22] triggered the
data mining community to develop many different methods, typically with a
focus on scalability. A method in the same spirit [33] uses the distances to the k
nearest neighbors (kNN) of each object to rank the objects. A partition-based
algorithm is then used to efficiently mine top-n outliers. As a variant, the sum of
distances to all points within the set of k nearest neighbors (called the “weight”)
has been used as an outlier degree [4]. The so-called “density-based” approaches
consider ratios between the local density around an object and the local density
around its neighboring objects, starting with the seminal LOF [7] algorithm.
Many variants adapted the original LOF idea in different aspects [36].

2.2 Approximate Neighborhoods

For approximate nearest neighbor search, the Johnson-Lindenstrauss lemma [19]
states the existence andbounds of a projection ofn objects into a lower dimensional
space of dimensionality O(log n/ε2), such that the distances are preserved within a
factor of 1+ε. Matoušek [26] further improves these error bounds. The most inter-
esting and surprising property is that the reduced dimensionality depends only
logarithmically on the number of objects and on the error bound, but not on the

Fast and Scalable Outlier Detection 21

original dimensionality d. Different ways of obtaining such a projection have been
proposed for common norms such as Manhattan and Euclidean distance. A pop-
ular choice are the “database-friendly” random projections [1], where 2/3 of the
terms are 0 and the others ±1 (along with a global scaling factor of

√
3), which can

be computed more efficiently than the previously used matrices. Another popu-
lar choice are projections based on s-stable distributions [11], where the Cauchy
distribution is known to be 1-stable and the Gaussian distribution to be 2-stable
[44] (i.e., they preserve L1 and L2 norms well). An overview and empirical study
on different variations of the Johnson-Lindenstrauss transform [38] indicates that
a reduced dimensionality of k = 2 · log n/ε2 will usually maintain the pairwise
distances within the expected quality.

2.3 Outlier Detection with Approximate Neighborhoods

Wang et al. [39] propose outlier detection based on Locality Sensitive Hashing
(LSH) [11,14,17]. However—in contrast to what the authors state—it cannot
be used for “any distance-based outlier detection mechanism”, but it will only
be useful for global methods such as kNN-Outlier [4,33]: the key idea of this
method is to use LSH to identify low-density regions, and refine the objects in
these regions first, as they are more likely to be in the top-n global outliers. For
local outlier detection methods there may be interesting outliers within a glob-
ally dense region, though. As a consequence, the pruning rules this method relies
upon will not be applicable. Projection-indexed nearest-neighbours (PINN) [12]
shares the idea of using a random projection to reduce dimensionality. On the
reduced dimensionality, a spatial index is then employed to find neighbor candi-
dates that are refined to k nearest neighbors in the original data space.

Much research aimed at improving efficiency by algorithmic techniques, for
example based on approximations or pruning techniques for mining the top-n
outliers only [6,29]. A broad and general analysis of efficiency techniques for
outlier detection algorithms [30] identifies common principles or building blocks
for efficient variants of the so-called “distance-based” models [4,22,33]. The
most fundamental of these principles is “approximate nearest neighbor search”
(ANNS). The use of this technique in the efficient variants studied by Orair et
al. [30] is, however, different from the approach we are proposing here in a crucial
point. Commonly, ANNS has been used as a filter step to discard objects from
computing the exact outlier score. The exact kNN distance could only become
smaller, not larger, in case some neighbor was missed by the approximation.
Hence, if the upper bound of the kNN distance, coming along with the ANNS, is
already too small to possibly qualify the considered point as a top-n outlier, the
respective point will not be refined. For objects passing this filter step, the exact
neighborhood is still required in order to compute the exact outlier score. All
other efficiency techniques, as discussed by Orair et al. [30], are similarly based
on this consideration and differ primarily in the pruning or ranking strategies.
As opposed to using ANNS as a filter step, we argue to directly use approximate
nearest neighbor search to compute outlier scores without this refinement i.e.,
we base the outlier score on the k approximate nearest neighbors directly.

22 E. Schubert et al.

2.4 Summary

The differentiation between “distance-based” and “density-based” approaches,
commonly found in the literature, is somewhat arbitrary. For both families,
the basic idea is to provide estimates of the density around some point. As
opposed to statistical approaches, that fit specific distributions to the data, the
density-estimates in the efficient database algorithms are, in a statistical sense,
parameter-free, i.e., they do not assume a specific distribution but estimate the
density-level, using typically some simple density model (such as the k nearest
neighbor distance). This observation is crucial here. It justifies our technique also
from the point of view of outlier detection models: the exact neighbors are usually
not really important but just the estimate of the density-level around some point
and the difference from estimated density-levels around other points. In most
cases, this will derive just the same outliers as if the outlier detection model were
based on the exact distances to the exact neighbors, since those outlier scores
will always remain just an estimate, based on the data sample at hand, and
not on the unknown true density-level. The same reasoning relates to ensemble
methods for outlier detection [3,40], where a better overall judgment is yielded
by diversified models. Models are diversified using approximations of different
kinds: subsets of features [23], subsets of the dataset [42], even by adding noise
components to the data points in order to yield diverse density-estimates, the
results for outlier detection ensembles can be improved [41]. As opposed to outlier
detection ensemble methods, here, we push the ensemble principle of diversity
and combination to a deeper level: instead of creating an ensemble from different
outlier models, we create an ensemble of different neighborhood approximations
and use the combined, ensemble approximation of the neighborhood as the base
for the outlier model.

3 Efficient Outlier Detection

Outlier detection methods based on density estimates, such as the kNN [33]
or weighted kNN [4] outlier models, as well as the Local Outlier Factor (LOF)
[7] and its many variants [36], rely on the retrieval of nearest neighbors for
each data object. While the major part of database research on efficient outlier
detection focused on retrieving the exact values of the top n outliers as fast as
possible, using approximate neighborhoods as a filter, we maintain here that
outlier detection methods do not heavily rely on the neighborhood sets to be
exact : they use the distance to the kNN to estimate a density, local methods
additionally use the kNN to compute an average neighbor density as reference.
As long as the distances are not influenced heavily by the approximation, and
the reference (approximate) neighbors still have a similar density, the results
are expected to be similar. For approximations of neighborhoods by space filling
curves the approximation error is not symmetric: it will never underestimate a
k-distance, but by missing some true nearest neighbors it will instead return the
k + e-distance for e ≥ 0. The difference between the k and the k + e distance
is expected to be rather small in dense areas (i.e., for “inliers”), as there are

Fast and Scalable Outlier Detection 23

many neighbors at similar distances. For an object in a sparse area (i.e., an
“outlier”), the k + 1-distance can already be much larger than the k-distance.
We can expect, on average, the scores of true outliers to further increase, which
is well acceptable for the purpose of detecting outliers.

In computer science and data analysis, we rely on mathematics for correctness
of the results. Yet, we also have to deal with the fact that neither our computation
will be perfect—due to limited numerical precision—nor our data are exact: even
unlimited data will still only yield an approximation of reality. With our data
only being a finite sample, chances are that the exact computation will not be
substantially closer to the truth than a good approximation. Of course we must
not give up precision without having benefits from doing so. However, for large
data sets we have an immediate problem to solve: finding the nearest neighbors
by computing a distance matrix, or by repeated linear scans, will not scale to
such data sets anymore. Trading some precision for reducing the runtime from
quadratic to linear may be well worth the effort.

3.1 Approximate Indexing Techniques

There exist capable indexing methods for low-dimensional data such as the k-d
tree and the R*-tree. In order to use such techniques for high dimensional data,
the data dimensionality must be reduced. Approaches in the context of outlier
detection are feature bagging [23] and PINN [12], using Achlioptas’ database-
friendly random projections [1]. Locality Sensitive Hashing (LSH, [14,17]) uses
s-stable random projections [11] for indexing Minkowski distances and found
use in outlier detection as well [39]. LSH (on dense vector data with Lp-norms)
combines multiple established strategies:

1. dimensionality reduction by s-stable random projections to k dimensions;
2. grid-based data binning into N

d bins of width w;
3. reduction of grid size by hashing to a finite bin index;
4. similarity search in the bin of the query point only;
5. ensemble of � such projections.

Individual parts of this approach can be substituted to accommodate different
data types and similarity functions. For example, instead of computing the hash
code on a regular grid, it can be based on the bit string of the raw data, or a
bit string obtained by splitting the data space using random hyperplanes. LSH
is an approximate nearest neighbor search algorithm both due to the use of
random projections (which only approximately preserve distances) but also due
to searching within the same bin as the query point only. The use of hash tables
makes it easy to parallelize and distribute on a cluster.

Projection-indexed nearest-neighbours (PINN) [12] also uses random projec-
tion to reduce dimensionality. A spatial index is then employed to find neighbor
candidates in the projected space:

1. dimensionality reduction using “database friendly” random projections;
2. build a spatial index (R*-tree, k-d tree) on the projected data;

24 E. Schubert et al.

3. retrieve the c · k nearest neighbors in the projection;
4. refine candidates to k nearest neighbors in original data space.

Due to the use of random projections, this method may also not return the true k
nearest neighbors, but it has a high probability of retrieving the correct neighbors
[12]. In contrast to LSH, it is also guaranteed to return the desired number of
neighbors and thus to always provide enough data for density estimation and
reference sets to be used in outlier detection. When a true nearest neighbor is not
found, the false positives will still be spatially close to the query point, whereas
with LSH they could be any data.

The type of random projections discussed here are not a general purpose
technique: the Johnson-Lindenstrauss lemma only gives the existence of a ran-
dom projection that preserves the distances, but we may need to choose different
projections for different distance functions. The projections discussed here were
for unweighted Lp-norm distances. Furthermore it should be noted, as pointed
out by Kabán [20], that random projection methods are not suitable to defy
the “concentration of distances”-aspect of the “curse of dimensionality” [43]:
since, according to the Johnson-Lindenstrauss lemma, distances are preserved
approximately, these projections will also preserve the distance concentration.

3.2 Space-Filling Curves

Space-filling curves are a classic mathematical method for dimensionality reduc-
tion [15,31]. In contrast to random projections, by space-filling curves the data
are always reduced to a single dimension. In fact, the earliest proposed space-
filling curves, such as the Peano curve [31] and the Hilbert curve [15], were
defined originally for the two dimensional plane and have only later been gener-
alized to higher dimensionality. A space-filling curve is a fractal line in a bounded
d dimensional space (usually [0; 1]d) with a Hausdorff dimensionality of d that
will actually pass through every point of the space.

The first curve used for databases was the Z-order. Morton [27] used it
for indexing multidimensional data for range searching, hence the Z-order is
also known as Morton code and Lebesgue curve. This curve can be obtained
by interleaving the bits of two bit strings xi and yi into a new bit string:
(x1y1x2y2x3y3x4y4 . . .). The first mathematically analyzed space-filling curve
was the Peano curve [31], closely followed by the Hilbert curve [15] which is
considered to have the best mathematical properties. The Peano curve has not
received much attention from the data indexing community because it splits the
data space into thirds, which makes the encoding of coordinates complex. The
Hilbert curve, while tricky in high dimensional data due to the different rotations
of the primitives, can be implemented efficiently with bit operations [8], and has
been used, e.g., for bulk-loading the R*-tree [21] and for image retrieval [28].

Indexing data with space-filling curves as suggested by Morton [27] is straight-
forward: the data are projected to the 1-dimensional coordinate, then indexed
using a B-tree or similar data structure. However, querying such data is challeng-
ing: while this index can answer exact matches and rectangular window queries

Fast and Scalable Outlier Detection 25

well, finding the exact k nearest neighbors is nontrivial. Thus, for outlier detection,
we will need query windows of different size in order to find the k nearest neigh-
bors. A basic version of this method for high dimensional similarity search [37]
used a large number of “randomly rotated and shifted” curves for image retrieval.
A variant of this approach [25] uses multiple systematically shifted – not rotated
– copies of Hilbert curves and gives an error bound based on Chan’s work [9]. To
retrieve the k nearest neighbors, both methods look at the preceding and succeed-
ing k objects in each curve, and refine this set of candidates.

Chan [9] gave approximation guarantees for grid-based indexes based on shift-
ing the data diagonally by 1/(d + 1) times the data extent on each axis. The
proof shows that a data point must be at least 1/(2d + 2) · 2−� away from the
nearest border of the surrounding cell of size 2−� (for any level � ≥ 0) in at
least one of these curves due to the pigeonhole principle. Within at least one
grid cell, all neighborhoods within a radius of 1/(2d + 2) · 2−� therefore are in
the same grid cell (i.e., nearby on the same curve). By looking at the length of
the shared bit string prefix, we can easily determine the � which we have fully
explored, and then stop as desired. An approximate k-nearest neighbor search
on such curves – by looking at the k predecessors and successors on each of the
d + 1 curves only – returns approximate k nearest neighbors which are at most
O(d1+1/p) farther than the exact k nearest neighbors, for any Lp-norm [25]. For
the 1st-nearest neighbor, the error factor is at most d1/p(4d + 4) + 1 [25].

In our approach, we divert from using the systematic diagonal shifting for
which these error bounds are proved. It can be expected that the errors obtained
by randomized projections are on a similar scale on average, but we cannot
guarantee such bounds for the worst case anymore. We do however achieve better
scalability due to the lower dimensionality of our projections, we gain the ability
to use other space filling curves, and are not restricted to using d + 1 curves.
Similar to how diversity improves outlier ensembles [35,40], we can expect diverse
random subspaces to improve the detection result.

Space filling curves are easy to use in low dimensional space, but will not
trivially scale up to high dimensionality due to the combinatorial explosion (just
as any other grid based approach) [43]. They work on recursive subdivisioning
of the data space, into 2d (3d for the Peano curve) cells, a number which grows
exponentially with the dimensionality d. In most cases, the ordering of points will
then be determined by binary splits on the first few dimensions only. HilOut [4]
suffers both from this aspect of the curse of dimensionality, and from the distance
concentration which reduces its capability to prune outlier candidates: since all
distances are increasingly similar, the set of outlier candidates does not shrink
much with each iteration of HilOut. For this top-n method to perform well, it
must be able to shrink the set of candidates to a minimum fast, so that it can
analyze a wider window of neighbors.

3.3 Fast Approximate kNN Search

Our proposed method to search for nearest neighbors is closely inspired by
the methods discussed before, such as HilOut. However, it is designed with

26 E. Schubert et al.

Algorithm 1. Phase 1: Projection and Data Rearragement
distributed on every node do // Project data locally

foreach block do
foreach curve do

project data to curve
store projected data
send sample to coordination node

on coordination node do // Estimate distribution for sorting

foreach curve do
Read sample
Sort sample
Estimate global data distribution
send global quantiles to every node

distributed on every node do // Rearrange data in cluster

foreach curve do
foreach projected block do

split according to global quantiles

shuffle to new blocks

parallelism and distributed computation in mind: where HilOut uses a nested
loops approach to refine the current top candidates for a single outlier detec-
tion model, we focus on a method to compute the k nearest neighbors of all
objects (often called kNN-self-join), so that we can then use an arbitrary kNN-
based outlier detection method. At the same time, our method becomes easy to
parallelize.

The principle of the proposed method is:

1. Generate m space-filling curves, by varying
(a) curve families (Hilbert, Peano, Z-curve),
(b) random projections and/or subspaces,
(c) shift offsets to decorrelate discontinuities.

2. Project the data to each space-filling-curve.
3. Sort data on each space-filling-curve.
4. Using a sliding window of width w × k, generate candidates for each point.
5. Merge the neighbor candidates across all curves and remove duplicates.
6. Compute the distance to each candidate, and keep the k nearest neighbors.

The parameter m controls the number of curves, and w can be used to control
the tradeoff between recall and runtime, with w = 1 being a reasonable default.
The proposed algorithm can be broken into three phases. We assume that the
data are organized in blocks in a distributed file system such as HDFS (which
provides built-in functionality for data chunking) or Sparks sliced RDDs.

In the first phase (Algorithm 1), the data are projected to each space-filling
curve. The resulting data are stored on the local node, and only a sample is
sent to the central node for estimating the data distribution. The central node
then reads the projected samples, and estimates the global data distribution.

Fast and Scalable Outlier Detection 27

Algorithm 2. Phase 2: Compute kNN and RkNN
distributed on every node do // Process sliding windows

foreach curve do
foreach projected, shuffled block do

Sort block
foreach object (using sliding windows) do

emit (object, neighbors)

shuffle to (object, neighbor list)
distributed on every node do // compute kNN and build RkNN

foreach (object, neighbor list) do
Remove duplicates from neighbor list
Compute distances
emit (object, neighbors, ∅) // Keep forward neighbors

foreach neighbor do
emit (neighbor, ∅, [object]) // Build reverse neighbors

shuffle to (object, kNN, RkNN)

The resulting split points are then distributed to each node, and the data are
read a second time and reorganized into the desired partitions via the shuffle
process in map-reduce. This sorting strategy was shown to scale to 100 TB
in TritonSort [34]. While this is not a formal map-reduce process (requiring
the transmission and use of auxiliary data), an implementation of this sorting
process can be found in the Hadoop “terasort” example. The first phase serves as
preprocessing to avoid having to project the data twice, and partially sorts the
data according to the spatial curves. The required storage and communication
cost is obviously O(n · m), i.e., linear in the data size and number of curves.

Algorithm 2 reads the output of the first phase. Each block in this data is
a contiguous part of a space filling curve. We first finish the distributed sorting
procedure within this data block. Then we can use a sliding window over the
sorted data set to obtain neighbor candidates of each point. By emitting (object,
neighbor) pairs to the map-reduce shuffle, we can easily reorganize the data to a
(object, neighbor list) data layout and remove duplicates. For many local outlier
detection algorithms, we will also need the reverse k-nearest neighbors (RkNN)
to orchestrate model redistribution. This can be achieved by emitting inverted
triples (neighbor, ∅, object). The shuffle process will then reorganize the data
such that for each object we have a triple (object, neighbors, reverse neighbors).

In the third phase (Algorithm 3), we then compute the outlier scores using
the generalized model of Schubert et al. [36]. In the experiments, we will use
the LOF [7] model in this phase. Obviously, one can run other kNN-, SNN- [16],
and reverse-kNN-based [18,32] algorithms on the precomputed neighborhoods
as well in the same framework. The reverse-kNNs are computed by simple list
inversion to optimize data communication: this makes it easy to transmit an
object’s density estimate to the neighbor objects for comparison.

28 E. Schubert et al.

Algorithm 3. Phase 3: Compute Outlier Scores
distributed on every node do // Compute models

foreach (object, kNN, RkNN) do
Compute model for object // Build own model

emit (object, (object, model)) // Retain own model

emit (reverse neighbor, (object, model)) // Distribute model

shuffle to (object, model list) // Collect models

distributed on every node do // Compare models

foreach (object, (neighbor, model)) do
Compare model to neighbor models
Store outlier score for model
Collect outlier score statistics // (for normalization)

emit Send statistics to coordination node

on coordination node do // Normalize Outlier Scores

Merge outlier score statistics
send statistics to every node

distributed on every node do
foreach (object, score) do

Normalize Outlier Score
if score above threshold then

emit (outlier, normalized score)

3.4 Favorable Bias of the Approximation

There exists an interesting bias in the approximation using space-filling curves
(SFCs), which makes them particularly useful for outlier detection. The error
introduced by SFCs scales with the density of the data: if the bit strings of two
vectors agree on the first d · � bits, the vectors are approximately within a cube
of edge length 2−� times the original data space.

For query points in a dense region of the data, the explored neighbors will
be closely nearby, whereas for objects in less dense areas (i.e., outliers) the error
introduced this way will be much larger on average. Furthermore, for an object
central to a cluster, “wrong” nearest neighbors tend to be still members of the
same cluster, and will just be slightly farther away.

For an outlier however, missing one of the true nearest neighbors – which
may be another outlier with low density – and instead taking an even farther
object as neighbor actually increases the chance that we end up using a cluster
member of a nearby cluster for comparison. So while the approximation will
likely not affect inlier scores much, we can expect it to emphasize outliers.

This effect is related to an observation for subsampling ensembles for outlier
detection [42]: when subsampling a relative share of s objects from a uniformly
distributed ball, the kNN-distances are expected to increase by a relative factor
of (1 − s1/d)/s1/d. Since for outliers this distance is expected to be higher, the
expected increase will also be larger, and thus the outlier will become more
pronounced with respect to this measure.

Fast and Scalable Outlier Detection 29

For other use cases such as density based cluster analysis, the effects of this
approximation may be much more problematic. Such methods may fail to dis-
cover connected components correctly when a cluster is cut into half by a dis-
continuity in the space-filling curve: in contrast to outlier detection which only
requires representative neighbors, such methods may rely on complete neighbors.

3.5 Discussion

Though our approach and the related approaches, PINN [12] and LSH-based
outlier detection [39], can all be used to find the approximate nearest neighbors
efficiently, they are based on subtly different foundations of approximation.

Random projections are designed to approximately preserve distances, while
reducing dimensionality. Using an exact index on the projected data, as done in
PINN, will therefore find the k nearest neighbors with respect to the approximate
distance. The index based on locality sensitive hashing (LSH) in contrary is lossy:
it is designed to have a high chance of preserving regions of a fixed size w, where
the size w is a critical input parameter: the smaller the size that needs to be
preserved, the faster the index; when the parameter is chosen too high, all objects
will be hashed into the same bin, and the index will degenerate to a linear scan.

Space-filling curves on the contrary neither aim at directly preserving dis-
tances, nor do they try to preserve regions of a given radius. Instead, space-filling
curves try to preserve closeness: the nearest neighbors of an object will often be
nearby on the curve, while far neighbors in the data space will often be far away
on the curve as well. For the purpose of density-based outlier detection, this
yields an important effect: the index based on space-filling curves is better at
adapting to different densities in the data set than the other two indexes, which
makes it more appropriate for local density-based outlier detection methods.

4 Experiments

For the experiments, all methods were implemented in ELKI [2]. We tested the
behavior of our method as well as the related approaches PINN [12] and LSH-
based outlier detection on several datasets. As a reference, we have also LOF
results based on an exact index, using the R*-tree in different variants (i.e.,
different page sizes, different bulkload strategies).

In our experiments, we used a number of larger data sets. From the image
database ALOI [13], containing 110,250 images, we extracted 27 and 64 dimen-
sional color histogram vectors. In order to obtain an outlier data set, a random
subset of the classes were downsampled, so that the final data set contains only
75,000 images, of which 717 are labeled as outliers [16]. We also extracted all geo-
graphic coordinates from DBpedia [24] (Wikipedia preprocessed as RDF triples).
This 2-dimensional data set does not have labeled outliers, and thus we used the
top-1% according to LOF as outliers. This allows to see how close methods based
on approximate neighborhoods come to the exact LOF results. However, as it is
a low dimensional dataset, runtime results demonstrate that R*-tree indexes can

30 E. Schubert et al.

work well. The forest covertype data set from the UCI machine learning repos-
itory [5] is a well known classification data set. The type cottonwood/willow is
used as outlier class. In the following, we analyse the results on the 27 dimen-
sional ALOI dataset in detail, as this data set has labeled outliers and is only of
medium dimensionality. For the other datasets, we can draw similar conclusions
and show only some sample results.

Figure 1 visualizes the results for running the LOF algorithm on the ALOI
data set with k = 20 on a single CPU core. In total, we evaluated over 4,000
different index variations for this data set. To make the results readable we
visualize only the skyline results in Figure 1a. The skyline are all objects where
no other result is both faster and has a higher score at the same time (upper
skyline) or where no other result is both slower and scores less at the same time
(lower skyline). The upper skyline is useful for judging the potential of a method,
when all parameters were chosen optimal, whereas the lower skyline indicates
the worst case. In Figure 1c, we give a sample of the full parameter space we
explored. Obviously, all 4,000 runs will be an unreadable cloud of points, thus
we filter the results to LSH and only one variant of SFC (random curve families
and random subspaces), which are about 700 runs. To show the continuity of
the explored parameter space, we connected similar parametrizations with a line,
more specifically for SFC indexes we connected those that differ only in window
width w and for LSH we connect those that vary the number of hash tables �.
For exact indexes, different results arise for different page sizes. Note, though,
that the skylines used typically represent hundreds of experiments. The skylines
for LSH in Figure 1a represent the same set of results as in Figure 1c whereas
the results for SFC in Figure 1c are restricted to the random variant and the
skylines for SFC in Figure 1a include the other variants. Based on the systematic
exploration of the parameter space as sampled in Figure 1c, it is interesting to see
that with SFC we repeatedly were able to get higher outlier detection quality
at a more than 10-fold speedup over the exact indexes. Merely when using a
single space-filling curve, the results were not substantially better. Figure 1a
visualizes the skyline of outlier detection quality vs. runtime, whereas Figure 1b
is an evaluation of the actual index by measuring the recall of the true 20 nearest
neighbors. In both measures, the SFC based method has the best potential –
it can even be better than the exact indexes – while at the same time it is
usually an order of magnitude faster than PINN and two orders of magnitude
faster than LSH (both at comparable quality). Even if the parameters are chosen
badly (which for SFC usually means using too few curves), the results are still
comparable to LSH and PINN. However, there is a surprising difference between
these two charts. They are using the same indexes, but the LOF ROC AUC
scores for the SFC index start improving quickly at a runtime of 1,000-2,000 ms.
The recall however, starts rising much slower, in the range of 1,500-10,000 ms.
When we choose an average performing combination for the SFC index, e.g.,
8 curves of different families combined with a random subspace projection to
8 dimensions and a window width of w = 1, we get a runtime of 4,989 ms,
a ROC AUC of 0.747, and an average recall of the true nearest neighbors of

Fast and Scalable Outlier Detection 31

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

103 104 105

L
O

F
R

O
C

 A
U

C

Runtime [log]

SFC
LSH

PINN
1-d RP

(a) Skyline results by basic method

 0

 0.2

 0.4

 0.6

 0.8

 1

103 104 105

R
ec

al
l

Runtime [log]

SFC
LSH

PINN
1-d RP

(b) Skyline results for recall of true 20 NN

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

103 104 105

L
O

F
R

O
C

 A
U

C

Runtime [log]

RP SFC
LSH

Exact Index

(c) Sample of results: random subspace
SFC vs. LSH

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

103 104 105

L
O

F
R

O
C

 A
U

C

Runtime [log]

SFC
R SFC

RP SFC

(d) Skyline results by SFC projection

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
er

ro
r

of
 2

0N
N

-d
is

t

Recall

SFC
LSH

PINN
1-d RP

(e) Relative 20-dist error, compared to
recall.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
O

F
R

O
C

 A
U

C

Recall of true nearest neighbors

RP SFC
LSH

Exact Index

(f) Sample of results: Recall of 20NN vs.
ROC AUC.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

L
O

F
R

O
C

 A
U

C

Recall

SFC
LSH

PINN
1-d RP

(g) Skyline results for ROC AUC vs. recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

103 104 105

R
ec

al
l

Runtime [log]

1
2
3
4
8
9

12
15
18

(h) Ensemble effect combining multiple
SFC

Fig. 1. Experiments on 27d ALOI data set. SFC : Space filling curves (proposed
method), R SFC : Random features + SFC, RP SFC : Random projections + SFC,
LSH : Locality sensitive hashing, PINN : Projection indexed nearest neighbors, 1-d RP :
one-dimensional random projections. Exact index : R*-tree

32 E. Schubert et al.

0.132. For an explanation for such a good performance despite the low recall,
we refer the reader back to the reasoning provided in Section 3.4. In Figure 1d,
we explore the effect of different random projections. The skyline, marked as
“SFC”, does not use random projections at all. The curves titled “R SFC” are
space filling curves on randomly selected features only (i.e., feature bagging),
while “RP SFC” uses full Achlioptas style random projections. As expected, the
variant without projections is fastest due to the lower computational cost. Using
randomly selected features has the highest potential gains and in general the
largest variance. Achlioptas random projections offer a similar performance as
the full-dimensional SFC, but come at the extra cost of having to project the
data, which makes them usually slower. Figure 1e visualizes the relative error
of the 20-nearest neighbor distance over the recall. The SFC curves, despite a
very low recall of less than 0.2, often suffer much smaller relative error than
the other approaches. While the method does make more errors, the errors are
less severe, i.e., the incorrect nearest neighbors have a smaller distance than
those retrieved by the other methods. This is again evidence for the outlier-
friendly bias of space filling curves (Section 3.4). Figure 1f is the same sample
as Figure 1c, but projected to LOF ROC AUC quality and recall. One would
näıvely expect that a low recall implies that the method cannot work well. While
algorithm performance and recall are correlated for locality sensitive hashing, the
SFC approach violates this intuition: even with very low recall, it already works

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1000 10000 100000

L
O

F
R

O
C

 A
U

C

Runtime [log]

SFC
LSH

PINN R*
PINN STR

PINN k-d
Exact R*

Exact STR
Exact k-d

(a) Results for ROC AUC vs. Runtime on
64d ALOI

 0.5

 0.6

 0.7

 0.8

 0.9

 1

103 104 105 106

L
O

F
R

O
C

 A
U

C

Runtime [log]

SFC
LSH

PINN R*
PINN STR

PINN k-d
Exact R*

Exact STR

(b) Results for ROC AUC vs. Runtime on
DBpedia

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106

R
ec

al
l

Distance Computations [log]

Z-Curve
Peano

Hilbert
Random SFC

LSH
PINN k-d

R*-tree
STR tree

(c) Results for Recall vs. Dist. Calc. on
Covertype

Fig. 2. Sample results on other datasets

Fast and Scalable Outlier Detection 33

surprisingly well; some of the best results have a recall of only around 0.25 –
and outperform the exact solution. The bias (Section 3.4) again proves to be
positive. When looking at the skylines of the complete data in Figure 1g, this
even yields an upper skyline that ends at a recall of 0.2 – no result with a higher
recall performed better than this. As particular 1-dimensional projections, space
filling curves are by design more apt for low dimensional data rather than for
high dimensional data. However, by combining multiple curves, i.e., building an
ensemble of approximate neighborhood predictors, the performance gain is quite
impressive also for high dimensional data. We show skylines for different numbers
of curves combined in Figure 1h. While single curves are performing badly and
remain unstable, combinations, here of up to 18 curves, improve considerably.

For other datasets, we show samples in Figure 2. For the 64 dimensional
variant of ALOI (Figure 2a), including all variants of the exact indexes, backing
PINN and backing LOF (i.e., “exact”), we can draw the same conclusions as
for the 27d ALOI dataset. Again, our method is performing typically better
at a shorter runtime. On the 2-dimensional DBpedia dataset (Figure 2b), as
expected, we cannot beat the exact indices. However, in comparison with the
other approximate methods, our method is performing excellent. For the large
forest covertype dataset, let us study another aspect than those discussed before.
We see in Figure 2c a reason for the faster runtime behavior of our method: we
reach a good recall with far less distance computations than PINN or LSH.

5 Conclusion

We proposed a method, based on space filling curves (that can be used in combi-
nation with other approximation methods such as random projections or LSH),
for highly scalable outlier detection based on ensembles for approximate nearest
neighbor search. As opposed to competing methods, our method can be easily
distributed for parallel computing. We are hereby not only filling the gap of
possible approximation techniques for outlier detection between random projec-
tions and LSH. We also show that this particular technique is more apt for outlier
detection. Its competitive or even improved effectiveness is explained by a bias of
space-filling curves favourable for outlier detection. Furthermore, the principle of
combining different approximations is related to ensemble approaches for outlier
detection [40], where the diversity is created at a different level than usual.

We rely on the same motivation as outlier detection ensembles: diversity
is more important than getting the single most accurate outlier score because
the exact outlier score of some method is not more than just some variant of
the estimate of the density-level around some point and the difference from
estimated density-levels around other points. Therefore, an approximate density
estimate, based on approximate neighborhoods, will be typically good enough
to identify just the same outliers as when computing the exact distances to the
exact neighbors which will still be only an estimate, based on the data sample at
hand, of the true but inevitably unknown density-level. Often, the results based
on approximate neighborhoods are even better.

34 E. Schubert et al.

Based on our reasoning and experimental findings, we conclude with the
following rules of thumb for the practitioner:

1. If the data dimensionality is low, bulk-loaded R*-trees are excellent.
2. If the exact distances are of importance, PINN is expected to work best.
3. If neighborhoods for a known, small radius w are needed, LSH is expected

to work best.
4. If k-nearest neighborhoods are needed, as it is the case for the most well-

known outlier detection methods, SFC is the method of choice.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. JCSS 66, 671–687 (2003)

2. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with
3D-parallel-coordinate-trees. In: Proc. SIGMOD, pp. 1009–1012 (2013)

3. Aggarwal, C.C.: Outlier ensembles. SIGKDD Explor. 14(2), 49–58 (2012)
4. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE

TKDE 17(2), 203–215 (2005)
5. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://www.

archive.ics.uci.edu/ml
6. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time

with randomization and a simple pruning rule. In: Proc. KDD, pp. 29–38 (2003)
7. Breunig, M.M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based

local outliers. In: Proc. SIGMOD, pp. 93–104 (2000)
8. Butz, A.R.: Alternative algorithm for Hilbert’s space-filling curve. IEEE TC

100(4), 424–426 (1971)
9. Chan, T.M.: Approximate nearest neighbor queries revisited. Disc. & Comp. Geom.

20(3), 359–373 (1998)
10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM CSUR

41(3), Article 15, 1–58 (2009)
11. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing

scheme based on p-stable distributions. In: Proc. ACM SoCG, pp. 253–262 (2004)
12. de Vries, T., Chawla, S., Houle, M.E.: Density-preserving projections for large-scale

local anomaly detection. KAIS 32(1), 25–52 (2012)
13. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library

of object images. Int. J. Computer Vision 61(1), 103–112 (2005)
14. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-

ing. In: Proc. VLDB, pp. 518–529 (1999)
15. Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math.

Ann. 38(3), 459–460 (1891)
16. Houle, M.E., Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Can shared-

neighbor distances defeat the curse of dimensionality? In: Gertz, M., Ludäscher,
B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 482–500. Springer, Heidelberg (2010)

17. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proc. STOC, pp. 604–613 (1998)

18. Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking outliers using symmetric
neighborhood relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.)
PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg (2006)

http://www.archive.ics.uci.edu/ml
http://www.archive.ics.uci.edu/ml

Fast and Scalable Outlier Detection 35

19. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. In: Conference in Modern Analysis and Probability, Contemporary Mathe-
matics, vol. 26, pp. 189–206. American Mathematical Society (1984)

20. Kabán, A.: On the distance concentration awareness of certain data reduction
techniques. Pattern Recognition 44(2), 265–277 (2011)

21. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using fractals. In:
Proc. VLDB, pp. 500–509 (1994)

22. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: Proc. VLDB, pp. 392–403 (1998)

23. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proc. KDD,
pp. 157–166 (2005)

24. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web J. (2014)

25. Liao, S., Lopez, M.A., Leutenegger, S.T.: High dimensional similarity search with
space filling curves. In: Proc. ICDE, pp. 615–622 (2001)

26. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Struc-
tures & Algorithms 33(2), 142–156 (2008)

27. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing. Tech. rep, International Business Machines Co. (1966)

28. Nguyen, G., Franco, P., Mullot, R., Ogier, J.M.: Mapping high dimensional features
onto Hilbert curve: applying to fast image retrieval. In: ICPR12, pp. 425–428 (2012)

29. Nguyen, H.V., Gopalkrishnan, V.: Efficient pruning schemes for distance-based
outlier detection. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor,
J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 160–175. Springer,
Heidelberg (2009)

30. Orair, G.H., Teixeira, C., Wang, Y., Meira Jr., W., Parthasarathy, S.: Distance-
based outlier detection: Consolidation and renewed bearing. PVLDB 3(2),
1469–1480 (2010)

31. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36(1),
157–160 (1890)

32. Radovanović, M., Nanopoulos, A., Ivanović, M.: Reverse nearest neighbors in unsu-
pervised distance-based outlier detection. IEEE TKDE (2014)

33. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. In: Proc. SIGMOD, pp. 427–438 (2000)

34. Rasmussen, A., Porter, G., Conley, M., Madhyastha, H., Mysore, R., Pucher, A.,
Vahdat, A.: TritonSort: a balanced large-scale sorting system. In: Proceedings of
the 8th USENIX Conference on Networked Systems Design and Implementation
(2011)

35. Schubert, E., Wojdanowski, R., Zimek, A., Kriegel, H.P.: On evaluation of outlier
rankings and outlier scores. In: Proc. SDM, pp. 1047–1058 (2012)

36. Schubert, E., Zimek, A., Kriegel, H.P.: Local outlier detection reconsidered: a gen-
eralized view on locality with applications to spatial, video, and network outlier
detection. Data Min. Knowl. Disc. 28(1), 190–237 (2014)

37. Shepherd, J.A., Zhu, X., Megiddo, N.: Fast indexing method for multidimensional
nearest-neighbor search. In: Proc. SPIE, pp. 350–355 (1998)

38. Venkatasubramanian, S., Wang, Q.: The Johnson-Lindenstrauss transform: an
empirical study. In: Proc. ALENEX Workshop (SIAM), pp. 164–173 (2011)

39. Wang, Y., Parthasarathy, S., Tatikonda, S.: Locality sensitive outlier detection: a
ranking driven approach. In: Proc. ICDE, pp. 410–421 (2011)

36 E. Schubert et al.

40. Zimek, A., Campello, R.J.G.B., Sander, J.: Ensembles for unsupervised outlier
detection: Challenges and research questions. SIGKDD Explor. 15(1), 11–22 (2013)

41. Zimek, A., Campello, R.J.G.B., Sander, J.: Data perturbation for outlier detection
ensembles. In: Proc. SSDBM, vol. 13, pp. 1–12 (2014)

42. Zimek, A., Gaudet, M., Campello, R.J.G.B., Sander, J.: Subsampling for effi-
cient and effective unsupervised outlier detection ensembles. In: Proc. KDD,
pp. 428–436 (2013)

43. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection
in high-dimensional numerical data. Stat. Anal. Data Min. 5(5), 363–387 (2012)

44. Zolotarev, V.M.: One-dimensional stable distributions. Translations of Mathemat-
ical Monographs, vol. 65. American Mathematical Society (1986)

Rare Category Exploration on Linear
Time Complexity

Zhenguang Liu1, Hao Huang1,2(B), Qinming He1, Kevin Chiew3,
and Yunjun Gao1

1 College of Computer Science and Technology,
Zhejiang University, Hangzhou, China

{zhenguangliu,hqm,gaoyj}@zju.edu.cn
2 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

haohuang@whu.edu.cn
3 Singapore Branch, Handal Indah Sdn Bhd, Johor Bahru, Malaysia

kchiew@handalindah.com.my

Abstract. Rare Category Exploration (in short as RCE) discovers the
remaining data examples of a rare category from a seed. Approaches to
this problem often have a high time complexity and are applicable to
rare categories with compact and spherical shapes rather than arbitrary
shapes. In this paper, we present FREE an effective and efficient RCE
solution to explore rare categories of arbitrary shapes on a linear time
complexity w.r.t. data set size. FREE firstly decomposes a data set into
equal-sized cells, on which it performs wavelet transform and data density
analysis to find the coarse shape of a rare category, and refines the coarse
shape via an MkNN based metric. Experimental results on both synthetic
and real data sets verify the effectiveness and efficiency of our approach.

1 Introduction

Starting from a seed which is a known data example of a rare category, Rare
Category Exploration (RCE) helps discover the remaining data examples from
the same rare category of the seed. Different from classification and clustering,
RCE pays more attention to the interestingness of data examples. Meanwhile,
in RCE a data set is normally imbalance, i.e., the data examples from majority
categories dominate the data set and the data examples of interest to users con-
stitute a rare category. For example, fraud transactions are usually overwhelmed
by millions of normal transactions.

The motivation and aims of RCE have enabled RCE to have a wide variety
of applications. For example, after detecting a criminal (i.e., a data example of
a rare category), RCE makes it possible to find out other members of the crim-
inal gang by investigating this criminal’s communication network. In financial
security as another example, after detecting a fraud transaction, finding out the
fraud transactions of the same type can help us analyze the security leaks of the
system and prevent new fraud transactions.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 37–54, 2015.
DOI: 10.1007/978-3-319-18123-3 3

38 Z. Liu et al.

Given the practical importance of RCE, various solutions have been proposed
with different constraints. For example, He et al. [5] converted RCE to a convex
optimization problem and tried to represent the rare category with a hyperball.
Huang et al. [6] formulated RCE as a local community detection problem and
introduced a solution based on the compactness and isolation assumption of rare
categories. Nonetheless, in many real-world data sets, rare categories may form
arbitrary shapes in a high-dimensional feature space [14], i.e., the data cluster
of a rare category may be long and narrow and may have holes inside or may
possess concave shapes. The existing algorithms however tend to work well only
on convex shaped rare categories, and either require a certain number of training
data examples or assume that the rare category is isolated to all other categories.
These constraints may hinder their applications on real world data sets.

Given this situation, in this paper we propose a novel algorithm FREE (Fast
Rare catEgory Exploration by zooming) for RCE, which achieves linear time
complexity w.r.t. data set size and is capable to handle rare categories of arbi-
trary shapes. More importantly, FREE does not require either any number of
training data examples nor the prior knowledge of the data set. In brief, FREE
is carried out by two steps, i.e., (1) finding out the coarse shape of the objective
rare category from the whole feature space using coarse-grained metrics, and (2)
refining the coarse shape by fine-grained metrics.

2 Related Work

The related work of RCE can be classified into three groups, i.e., (1) rare cat-
egory detection, (2) imbalanced classification, and (3) the approaches to RCE
which can be further classified into two subgroups, i.e., (a) optimization-based
approaches and (b) community-detection-based approaches.

Rare category detection is proposed to find out at least one data example for
each rare category to prove the existence of this category. The existing paradigms
usually utilize the compactness characteristic to find data examples of rare cate-
gories, and can be classified into three groups, i.e., the model-based [11,12], the
neighbor-based [3,4,7,8], and the hierarchical-clustering-based [16]. RCE is an
intuitive follow-up action of rare category detection, i.e., after detecting a data
example of a rare category, the challenge becomes how to discover the remaining
data examples in the rare category [5].

Imbalanced classification aims to construct a classifier which can determine
the boundary of each category in an imbalanced data set [10,15]. There are three
types of methods proposed for imbalanced classification, i.e., sampling-based,
ensemble-based, and adaptive-learning-based. These methods can be used for
RCE by returning the data examples which are classified as from rare category.
Nonetheless, since they are not specially designed for RCE, they do not perform
satisfactorily due to not taking full advantage of the rare category characteristics.

Optimization-based approaches convert RCE problem to a convex optimiza-
tion problem [5], and try to enclose the rare category data examples with a
minimum-radius hyperball. These approaches (such as RACH [5]) can handle

Rare Category Exploration on Linear Time Complexity 39

the scenario where the objective rare category overlaps with a majority cat-
egory. Nevertheless, to build a training set, they require a certain number of
labeled data examples which are usually difficult and expensive to acquire in
practice, and their computational costs are high due to their high number of
iterations in solving convex optimization problem.

Community-detection-based approaches transform RCE problem to a local
community detection problem [6]. These approaches keep absorbing external
data examples until there is no improvement of the quality of the local commu-
nity. Meanwhile, they require the data examples of a rare category being isolated
from other data examples. Besides, their time complexity is quadratic w.r.t. data
set size because they need to construct the kNN graph of data examples.

3 Problem Statement and Assumptions

RCE can be formulated as follows [5,6].
Input: (1) An unlabeled data set S = {x1,x2, . . . ,xn}, where xi ∈ R

d for
1 � i � n and d is the data dimension; and (2) a seed s0 ∈ O ⊂ S, which is a
known data example of rare category O that is of interest to us.

Objective: Find out the other data examples in the objective rare category O.
For RCE, we have the following assumptions which are commonly used explic-

itly or implicitly by the existing work [3,4,7,8,11,16].

Assumption 1. Data examples of rare category O are very similar to each other.

In many applications this assumption is reasonable [5,6,11]. For example,
network attacks utilizing the same security leak are usually similar to each other;
patients of the same rare disease share similar clinical manifestations.

Assumption 2. Data distribution of O is different from that of other categories.

This assumption implies that rare category O does not share the same data
distribution with other categories [11,12]. This is reasonable because different
categories usually have different data distributions. For example, panda sub-
species have quite different data distributions in fur color and tooth size com-
paring to giant panda [12].

Besides the assumptions, most of the existing approaches (e.g., [6–8]) also
assume that rare category O is isolated from other categories. However, in appli-
cations like transaction fraud detection, frauds are often disguised as legal ones
and often overlap with normal transactions from the majority category [3]. In
this paper, we conduct study on RCE without assuming that rare categories are
isolated from other categories.

Figs. 1(a) & 1(g) show two examples of data sets each of which contains three
majority categories with green plotted data examples and one rare category
with red plotted data examples. In Fig. 1(a), the rare category is isolated from
the majority categories; whereas in Fig. 1(g), the rare category overlaps with a
majority category.

40 Z. Liu et al.

−20 0 20 40 60
−20

−10

0

10

20

30

40

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(e)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(f)

−10 0 10 20 30 40 50
−20

−10

0

10

20

30

40

(g)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(h)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(i)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(j)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(k)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(l)

Fig. 1. Examples

4 FREE Algorithm

Throughout the paper, we use bold letters to denote vectors, normal letters
to denote scalars, and calligraphic bold letters to denote sets as elaborated in
Table 1. Our FREE algorithm is outlined in Algorithm 1. It takes as inputs
an unlabeled data set S, the seed data example s0 and parameter τ , which is
the threshold of data density similarity when determining whether two nearby
clusters are from the same category. The output of FREE is Y3 which is the set
of potential data examples from rare category O.

FREE is carried out by four phases, namely (1) phase 1, data pre-processing
(lines 1–2), (2) phase 2, feature space partition (line 3), (3) phase 3, search space
reducing (lines 4–5), and (4) phase 4, refinement (line 6). Phase 1 removes out-
liers in data set S (line 1) and normalizes the set (line 2), and phase 2 partitions
the feature space V of the normalized data set S2 into non-overlapped and equal-
sized hyper rectangles (line 3) each of which is called a cell corresponding to a set
of data examples. In phase 3, FREE reduces the search space by (1) finding out
the local cluster Y1 surrounding the seed using wavelet transform (line 4) and
removing cells not in Y1, and (2) removing from Y1 those cells having low data
density similarity as compared with the cell containing the seed (line 5). Lastly
in phase 4, by adjusting its view from cells to individual data examples, FREE
refines the coarse shape of the rare category and identifies each data example of
the objective rare category O via an MkNN (mutual kNN) based metric (line 6).

The above four phases, which will be elaborated in the following subsections,
allow FREE to effectively identify rare categories of arbitrary shapes from data
set S on linear time complexity w.r.t. the data set size n.

Rare Category Exploration on Linear Time Complexity 41

Table 1. Symbols and meanings

Symbol Meaning

S The set of unlabeled data examples
S1 The set of non-outlier data examples in S

S2 The set of data examples after normalization of S1

V the feature space of data set S2

V1 the new feature space after performing wavelet transform on V

G The set of cells generated by feature space partition on V

O The objective rare category
s0 The original seed data example
s The seed data example after normalization
Cs the cell containing the seed s
Y1 The set of cells which are in the local cluster surrounding s
Y2 The set of cells that form the coarse shape of rare category O

Y3 The set of data examples found for rare category O

τ Threshold of data density similarity
n The number of non-outlier data examples
d The data dimension

Algorithm 1. FREE Algorithm

Input: S, s0, τ
Output: Y3

1 S1 = remove outliers(S); // phase 1
2 [S2, s] = normalize(S1, s0); // phase 1
3 G = feature space partition(S2, s); // phase 2
4 Y1 = find local cluster(G, s); // phase 3
5 Y2 = find coarse shape(Y1, s, τ); // phase 3
6 Y3 = refine the coarse shape(Y2, s); // phase 4

4.1 Phase 1: Data Pre-processing

In this phase, FREE removes outliers in the data set and normalizes the data
set. This can benefit FREE in terms of saving computational cost and improving
accuracy.

To remove outliers effectively and efficiently, we adopt an outlier detection
algorithm proposed in [2] which has a linear time complexity.

After removing outliers, we normalize data set S1 by the following equation.

x′
j =

xj − 0.5 × (maxj + minj)
0.5 × (maxj − minj)

(1)

where xj is the value of data example x (x ∈ S1) on jth dimension, x′
j is the

new value after normalization, maxj is the maximum value of x ∈ S1 on jth
dimension, and minj is the minimum value of x ∈ S1 on jth dimension. By
Eq. (1), the distribution range of S1 on each dimension is normalized within the
closed interval [−1, 1].

42 Z. Liu et al.

4.2 Phase 2: Feature Space Partition

After data pre-processing, feature space partition is performed to partition the
normalized feature space into equal-sized cells each of which corresponds to a
set of data examples and has a list of associated statistical properties (e.g., mean
and variance).

Formalization. Let S2 be the set of data examples after normalization, Aj be
the domain for the jth dimension of S2, and V = A1 × A2 × · · · × Ad be the
d-dimensional feature space. Then each data example corresponds to a point in
the feature space V [14].

FREE partitions V into equal-sized and non-overlapped hyper rectangles each
of which is called a cell by segmenting each dimension Aj into mj number of
equal-sized bins [14]. Each cell C has the form 〈[�1, r1), [�2, r2), · · ·, [�d, rd)〉, where
�j and rj stand for the left and right interval endpoint of C on jth dimension
respectively1. A data example x is contained in a cell C iff �j � xj < rj for
1 � j � d, where xj is the value of x (x ∈ S2) on jth dimension. Each cell C has
a list of statistical parameters P (C) associated with it. In this paper, we choose
bin count nc, which is the number of data examples in C, and data density of C
as P (C).

Definition 1. (Populated Cell) A cell C is a populated cell iff its bin count nc

is above a certain threshold ε1 in feature space V.

For a non-populated cell, the data density calculated based on the very a
few data examples is meaningless, so we only consider the data density of pop-
ulated cells in the remaining sections. Data density of a populated cell C can be
measured as follows.

Definition 2. (Data Density) The data density t of cell C is defined as t =∑

x∈C

nc

‖x−c‖2
where c defined as c = 1

nc

∑

x∈C

x is the cluster center of C.

Definition 3. (Data Density Similarity) The data density similarity between
two populated cells Ci and Ck is defined as min

(
ti

tj
,

tj

ti

)
, where ti and tj are the

data densities of Ci and Ck respectively.

Bandwidth Selection. In feature space partition, the structure of cells relies
on how we partition each dimension of S2 into non-overlapped bins, i.e., how we
select the bandwidths h = (h1, h2, · · ·, hd) for all d dimensions. Let Cs be the
cell containing the seed, the objectives of h selection are (1) after feature space
partition using h, data examples of rare category O should be in a few cells and
1 If the data distribution range on jth dimension is e, and the bandwidth of bins on

jth dimension is hj , then the jth dimension is tabulated into e/hj + 1 bins if e|hj

or �e/hj� bins if otherwise. Note that the bin origin is the smallest value on jth
dimension and each bin is of the same bandwidth hj .

Rare Category Exploration on Linear Time Complexity 43

these cells especially Cs should not contain too many data examples from other
categories, and (2) the number of cells should not be too large; otherwise a cell
may contain too few data examples.

Given the above discussion, we propose an automatic selection of h by two
steps, i.e., (1) select the initial hj(1 � j � d) by histogram density estimation
(HDE for short) on the jth dimension, and (2) modify hj to ensure the purity
of Cs.

(1) HDE. HDE [13] is a non-parametric density estimation which tabulates
a single dimension of a data set into non-overlapped bins. Bandwidth plays the
key role in HDE. A very small bandwidth results in a jagged histogram with each
data example lying in a separate bin (under-smoothed bin partition), whereas
a very large bandwidth results in a histogram with a single bin (over-smoothed
bin partition) [17].

For hj selection, Scott [13] established a theoretical criterion of bandwidth
selection for non-parametric density estimation, which assumes that optimal
bandwidth should minimize the mean integrated squared error MISE defined as

MISE =
∫ +∞

−∞
bias2 (f(x)) + var (f(x)) dx

where f(x) refers to the data density function, bias2 (f(x)) the squared bias and
var (f(x)) the variance. By utilizing cross validation, MISE is estimated as [13]

Γ (hj) =
5

6nhj
+

1
12n2hj

∑

k

(υk−1 − υk)2 (2)

where υk stands for the number of data examples in the kth bin.
In practice, the optimal bandwidth h∗

j that minimizes Γ (hj) in Eq. (2) is
selected, which can avoid under-smoothed and over-smoothed bin partition. In
this paper, we use h∗

j as the initial bandwidth hj .
(2) h modification. Since the seed cell Cs will be used as a fingerprint cell

in finding the coarse shape of rare category O, it should not contain too many
data examples from other categories. To ensure the purity of Cs, h is modified
as follows.

Step 1: On each dimension, select hj = h∗
j for 1 � j � d.

Step 2: Perform feature space partition using current bandwidths h = (h1, h2,
· · · , hd).

Step 3: Perform K-means clustering on the data examples in Cs to divide the
data examples into K subclusters (usually K is set to 3), and choose
the K initial centers as (1) the seed s and (2) the data examples with
maximum distance to the selected centers.

Step 4: After K-means clustering, data examples in Cs are grouped into K
subclusters. Calculate the minimum data density similarity ∂ between
each two of the K subclusters. If ∂ � τ (τ is similarity threshold), then
it is likely that the K subclusters are from the same category, thus the
current h is returned as the final bandwidths. Otherwise, update hj

(1 � j � d) by setting hj = hj × β (0 < β < 1) and go to Step 2.

44 Z. Liu et al.

The reason for hj becoming smaller and smaller is that the support region
of rare category O is usually small due to the rareness and compactness of rare
category O.

Figs. 1(b) & 1(h) show the feature space partition of the two data sets (i.e.,
Figs. 1(a) & 1(g)) respectively. The red plus sign in each figure shows the position
of the seed s.

4.3 Phase 3: Search Space Reducing

Intuitively, cells containing data examples from rare category O should be con-
nected to the seed cell Cs in location and be comparable in data density with
Cs. Given this understanding, FREE reduces search space by (1) finding out
the local cluster Y1 surrounding seed s using wavelet transform and removing
the cells not in Y1, and (2) removing from Y1 those cells with low data density
similarity to Cs.

Wavelet Transform. Wavelet transform is a commonly used tool for signal
processing. The motivation of adopting wavelet analysis comes from the obser-
vation that the bin count values in V the feature space of normalised data set
can be considered as a d-dimensional signal. One scale wavelet transform on a
1D signal S is illustrated in Fig. 2(a). That is, S is passed through two filters,
the low and high pass filters L and H, and is decomposed into two frequency
sub-bands, i.e., high and low frequency sub-bands D and A. The low frequency
parts with high amplitude correspond to the regions where data examples are
concentrated, i.e., the basic cluster structures [14], whereas the high frequency
parts correspond to the regions of rapid change in the data distribution of data
examples, i.e., the boundaries of clusters.

Passing a signal through filter F can be explained as follows. For a 1D signal
g, the filtering process is conducted by convolving the filter F with g. Formally,
let f̂k be the kth coefficient of F, M the length of F, g′ the new signal generated
by filtering and g′

i the ith component of g′, then

g′
i =

M∑

k=1

f̂kgi+k−�M
2 � (3)

An adequately wavelet such as the Reverse biorthogonal 4.4 (Rbio4.4 for
short) wavelet as shown in Fig. 2(b), can act as an enhancer for the cells with high

S

low filter L

high filter H D

A

(a) One scale transform

0

(b) Rbio 4.4

Fig. 2. Wavelet transform

Rare Category Exploration on Linear Time Complexity 45

bin counts and a suppresser for the cells with low bin counts. Thus by applying
wavelet transform with such a wavelet, the cluster structures can automatically
stand out in the transformed feature space V1 [14].

The 1D wavelet transform in Eq. (3) can be generalized for d-dimensional fea-
ture space, where 1D wavelet transform will be applied d times, i.e., 1D wavelet
transform is applied to each of the d dimensions in turn.

Definition 4. (Significant Cell) A cell C is a significant cell iff its new bin
count value after wavelet transform is above or equal to a threshold ε2.

(1) In the transformed feature space V1, each cell has its bin count, which is
the new bin count value obtained by wavelet transform on the bin count values
in V. (2) In contrary to a significant cell, an insignificant cell is a cell with its bin
count value in V1 lower than ε2. Insignificant cells usually correspond to noise
cells (cells with too few data examples) or cells at the boundary of a cluster.
Removing them can help us clean the cluster boundary and save computational
cost. (3) Threshold ε2 plays the key role in determining significant cells. Instead
of setting a fixed ε2, we propose an automatic and data-based selection method
of ε2 in the next subsection.

Threshold ε2 Selection

Step 1: Initialize P to be the set of bin count values in transformed feature space
V1.

Step 2: For positive values in P, calculate their average value a1 and find the
maximum positive value a2.

Step 3: Using a1 and a2 as the initial cluster centers, perform K-means cluster-
ing with K = 2 to divide P into two clusters, one cluster of high values
and the other of low values. Let ε3 be the average value of the two cluster
centers.

Step 4: If bin count value of Cs belongs to the high value cluster, return ε2 = ε3.
Otherwise, remove the bin count values higher than ε3 from P, and go
to step 2.

In step 2, cells with negative or zero values in V1 are ignored because these
cells correspond to regions with too few data examples or local drops of data
density; whereas due to the compactness characteristic of rare category O, cells
containing data examples from O usually correspond to local increases of data
density.

In step 4, if the bin count value of the seed cell Cs belongs to the low value
cluster, then there are cells with bin count values dramatically higher than that
of Cs. Usually these cells contain data examples in the center of a category, thus
they are significant cells and will be reserved. Nonetheless, it is unnecessary to
reserve them in the ε2 selection procedure. So we remove these values from set P
and return to step 2 to find the correct threshold. In Figs. 1(c) & 1(i), the blue
and red cells are significant cells (the red cell is the seed cell).

46 Z. Liu et al.

In the transformed feature space V1, each cell forms a hyper rectangle. Let-
ting the sides of the hyper rectangle be the sides of the cell, we have the following
definitions.

Definition 5. (Adjacent Cells) Given two cells Ci and Cj where i �= j with
respective centers Ci = (ci1, ci2, . . . , cid) and Cj = (cj1, cj2, . . . , cjd), assume the
side length of a cell on dimension k is �k where 1 � k � d. Cells Ci and Cj are
adjacent cells iff |cik − cjk| � �k (i.e., either cik = cjk or |cik − cjk| = �k) for
1 � k � d.

Definition 6. (Connected Cells) Two cells E and F are connected iff there exists
a sequence of cells 〈C1,C2, · · ·,Cj〉, where C1 = E and Cj = F, and Ci is adjacent
to Ci+1 for 1 � i � j − 1.

Definition 7. (Connected Cluster from a Cell) The connected cluster from cell
E is the set of connected cells of E.

Given the above definitions, the local cluster surrounding s is exactly the
connected cluster from seed cell Cs. In Figs. 1(d) & 1(j), the blue and red cells
show the detected local cluster Y1 surrounding s. In Fig. 1(d), since rare category
O is isolated from other categories, Y1 contains only the cells containing data
examples in rare category O. In Fig. 1(j), since rare category O overlaps with a
majority category, both the clusters of the majority category and rare category
O are reserved for further study.

After identifying local cluster Y1, cells not in Y1, including insignificant cells
and significant cells unconnected to seed cell Cs, can be removed. Thus the search
space is reduced dramatically to Y1 to which the subsequent operations will be
applied.

Data Density Analysis. Since rare category O may overlap with other major-
ity categories, Y1 may contain both O and the dense part of other categories
(e.g., see Fig. 1(j)). The following data density analysis will further reduce the
current search space Y1.

Definition 8. (Peak) A cell is a peak iff its bin count value in V1 is higher
than that of all its adjacent cells.

In Figs. 1(d) & 1(j), the red cells show peaks in the local cluster. Given
Definition 8, FREE figures out the coarse shape of rare category O from local
cluster Y1 as follows. (1) Find out peaks in Y1. (2) Calculate the data density
similarities between seed cell Cs and all peaks by Definition 32. (3) Divide peaks
into two groups, namely group M1 of cells with high similarities to Cs and
the other group M2 of low similarities. This is done by performing K-means
clustering with K = 2. (4) For each cell C ∈ Y1, calculate its average data
2 If the data density similarity of any two peaks is not less than threshold τ , then it is

very likely that all cells in Y1 are from the same category, and Y1 will be returned
as the coarse shape Y2 of rare category O.

Rare Category Exploration on Linear Time Complexity 47

density similarity to the cells in M1 and M2. Remove cells that is more similar to
M2 from Y1. (5) From the remaining cells after the above four steps of selection,
save the cells connected to Cs to set Y2.

The blue cells in Figs. 1(e) & 1(k) show the result Y2 of phase 3 for the data
sets shown in Figs. 1(a) & 1(g) respectively.

4.4 Phase 4: Refinement

After the aforementioned three phases, the search space is reduced to Y2, namely
the coarse shape of rare category O. One can return the set of data examples
in Y2 as the potential set Y3 of rare category data examples because there are
very a few false negative and false positive data examples in Y2. Nonetheless, to
achieve higher accuracy, FREE continues to refine the result by zooming in its
view from cells to individual data examples.

Let n′ be the number of data examples in coarse shape Y2. Due to the rareness
of rare category O, n′ 	 n. Thus fine-grained metrics can be used in this phase
to refine the result obtained by Y2. FREE adopts MkNN (mutual kNN) metric
since it is capable of identifying compact clusters and can handle rare categories
of arbitrary shapes.

Set Y3 of potential data examples from rare category O is initialized as {s}.
It keeps absorbing external data examples in Y2 that are MkNN of at least one
data example in Y3 until convergence, and is returned as the potential set of
rare category O.

k Selection. Parameter k plays an important role in MkNN. The objectives of
k selection are (1) k should be relatively large to absorb as many data examples
as possible because data examples in Y2 have high probabilities to be from rare
category O, and (2) k should not be extremely large to avoid absorbing too many
false positives.

For k selection, FREE first performs K-means clustering on data examples
in seed cell Cs to divide them into K subclusters (usually K is set to 3). Let
u be the center data example in the subcluster containing seed s. We have the
following claim [6].

Claim 1. If Y2 contains false positive data examples, then there is an abrupt
increase on m-covering radius of data example u when m exceeds a threshold,
where m-covering radius of u refers to the distance between u and its mth nearest
neighbor.

Proof. For the convenience of explanation, we assume that rare category O

overlaps with majority category T if O is not isolated from other categories.
Similar analysis applies to the case that O overlaps with a few categories.

If Y2 contains false positive data examples, then there are two cases. Case 1:
Rare category O is isolated from other categories or O overlaps with majority
category T but the data density of T in the overlapped area is neglectable. For
this case, the false positive data examples are very a few and will become local

48 Z. Liu et al.

outliers in Y2. Case 2: O overlaps with a majority category T and the data
density of T in the overlapped area is not neglectable. For this case, Y2 contains
a few data examples from T.

Let nr be the number of data examples of O in ground truth. For case 1, the
threshold is nr − 1 because (1) when m � nr − 1, data example u finds its mNN
in the compact cluster of O with small m-covering radius due to the compactness
of O, and (2) when m = nr, u must find its nrth nearest neighbor from the local
outliers outside O. Thus there must be an abrupt increase in m-covering radius.

For case 2, let a be the data density of T in the overlapped area, b the data
density of O and ζ the number of data examples located in the compact cluster
of O but are actually from T. Then the threshold is nr + ζ − 1 because (1)
when m � nr + ζ − 1, data example u finds its mNN in the compact cluster
of O with small m-covering radius, and (2) when m = nr + ζ, u must find its
(nr + ζ)th nearest neighbor from outside O. Since (i) the data density at the
compact cluster of O is a + b, (ii) data density at the region of data examples
from T is b, and (iii) a is a relatively large value due to the compactness of rare
category O, there must be an abrupt increase in m-covering radius. �

Following the above discussion, the optimal k value is such selected that the
relative increase on m-covering radius r(k+1)−r(k)

r(k) (where 2 � k � n′) can be
maximized [6], where r(k) stands for the k-covering radius of data example u.

If there is no abrupt increase on m-covering radius of data example u, then
Y2 must contain only data examples from rare category O. Thus we can just
return Y2 as the potential set Y3. The red points in Figs. 1(f) & 1(l) show the
data examples in the potential set Y3 explored for the rare category shown in
Figs. 1(a) & 1(g) respectively.

4.5 Dimension Segmenting and Pruning

When the data dimension goes too high, there may be some noisy dimensions
where data examples from rare category O are not so compact, and the cell
number may be extremely large resulting that most cells have very few data
examples. In this case, our algorithm may not achieve satisfactory performance.
On the contrary, if we keep only the most compact dimensions where the com-
pactness characteristics of rare category O preserve, the accuracy and efficiency
of FREE will be highly improved. Given this, to handle high dimensional data
sets, we propose to extend the framework of FREE with dimension segmenting
and pruning, i.e., iterate the four phases of RCE and remove the worst (most
incompact) dimensions. The objective is to segment all dimensions and prudently
prune away the most incompact dimension in each segment.

The detailed dimension segmenting and pruning process is carried out by four
steps as follows. (1) Build the initial list of ordered dimensions by appending all
dimensions into the list one by one, denote the list as L = (D1,D2, . . . , Dd). (2)
Divide list L into k segments and denote all segments as G1 = (D1,D2, . . . , Dg1),
G2=(Dg1+1,Dg1+2, . . . , Dg1+g2),. . ., Gk= (Dg1+g2+...+gk−1+1,Dg1+g2+...+gk−1+2,
. . . , kDd−1,Dd). Let �i be the number of cells in the partitioned feature sub-
space formed by dimensions in segment Gi. The k segments must satisfy that �i

Rare Category Exploration on Linear Time Complexity 49

(1 � i � k) is maximized and �i � δ ·n where δ is a coefficient smaller than 3. (3)
Run the four phases of RCE on each segment to find the potential set Y3 for rare
category O, sort the dimensions in each segment on an ascending (or descend-
ing) order based on the compactness measurement defined in what follows, and
prune away the least compact dimension from the segment. (4) Rebuild L by
collecting the sorted and size-reduced segments together and keeping the order
of dimensions in each segment, recursively apply the same operations of steps
(2) & (3) to this newly built list L until it cannot be further segmented.

The most compact dimension in each segment is called the candidate dimen-
sion. The rebuilding of dimension list in the above steps tries to avoid two
candidate dimensions being assigned into one segment.

Compactness Measurement. The measurement for compactness of dimen-
sion j is defined as

wj =

(
d∑

�=1

(
var(j)
var(�)

) 1
β−1

)−1

(4)

where β is the amplification factor and is set to 1.5 in our solutions [9], and
var(i) is the normalized variance on the ith dimension, which is defined as

var(i) =
∑

x∈Y3

(xi − oi)
2
/

∑

y∈S2

(yi − si)
2

where oi and si are the cluster center of Y3 and S2 on the ith dimension respec-
tively, and xi and yi are the values of x and y on the ith dimension respectively.

In Eq. (4), wj measures the compactness of the data examples in Y3 on
the jth dimension, namely, wj will get a high value if data examples in Y3 are
compact on the jth dimension and a low value if otherwise.

4.6 Time Complexity Analysis

Phase 1 has a linear time complexity w.r.t. data set size n. The time complexity
of phase 4 is very low because the number n′ of data examples in phase 4
satisfies n′ << n. For phase 2, operations can be done by a few times of passing
through all data examples with O(n) time complexity; for phase 3, the most
time consuming step is wavelet transform on feature space V.

Theorem 1. The time complexity of wavelet transform on feature space V is
O(dn).

Proof. Wavelet transform on feature space V is done by applying the 1D
wavelet transform to each dimension of V in turn. Letting aj be the number of
bins on jth dimension and zj be the number of signals on jth dimension, we
have zj = (

∏d
i=1 ai)/aj . Let γ be the number of operations in wavelet transform

and c the number of cells in V, then the following equation holds.

γ = λ × Σd
j=1zj < λ × d ×

d∏

i=1

ai = λ × d × c

50 Z. Liu et al.

where λ is a small constant. In summary, γ < λ×d×c. Since in FREE, c � δ×n
always holds where δ is a coefficient, we have γ < λ×d× δ ×n. Thus Theorem 1
is proven. �

Following Theorem 1, the time complexity of phase 3 is O(dn). Thus the
overall time complexity of FREE is O(dn).

5 Experimental Evaluation

In this section, we conduct experiments to verify the effectiveness and efficiency
of FREE from three aspects, namely (1) accuracy, (2) efficiency, and (3) ability to
discover rare categories of arbitrary shapes. We compare our method with RACH
[5] and FRANK [6] the state-of-the-art algorithms among the existing RCE
approaches of the same type. All algorithms are implemented with MATLAB
7.11 and executed on a server computer with Intel Core 4 2.4 GHz CPU and 20
GB RAM.

(1) Effectiveness Study Effectiveness study is first conducted on six UCI data
sets [1] which are commonly used in the existing rare category study [3,4,7,8,12].
Specifically, the six data sets are sub-sampled to create RCE scenario. The left
part of Table 2 shows the detailed information about six data sets, in which m
stands for the number of categories, #y the category index of rare category O

out of all categories and nr the number of data examples in rare category O.
For each data set, we first run each of three rare category detection algorithms

(NNDM [3], HMS [16] and FRED [12]) to select different data examples from
rare category O as three seeds, and run each of three RCE algorithms (RACH,
FRANK and FREE) using the three seeds and record their average F-scores.
Parameter τ in FREE is set to 0.75 for all six data sets.

The average F-score of each tested algorithm is reported in Fig. 4. The ver-
tical axis is F-score, i.e., the harmonic mean of precision and recall, and the
horizontal axis is the six data sets. Page Blocks set is in short as Page in all fig-
ures. From the figure, we can see that on all six data sets, the F-score of FREE
is dramatically higher than those of other tested algorithms.

The reasons of the observations are that the rare categories in UCI data sets
have different shapes and may overlap with other categories, whereas RACH tries

Table 2. Properties of UCI data sets

Data set n d m #y nr FREE RACH FRANK

Iris 104 4 3 1 5 0.0019 0.0028 0.0022

Glass 123 7 5 2 10 0.0028 0.0030 0.0037

Ecoli 288 5 8 3 4 0.0036 0.0039 0.0045

Page blocks 4067 8 5 4 29 0.0231 0.0310 0.0421

Bank 33631 2 2 2 8 0.2334 0.8414 2.5391

Abalone 43193 9 8 7 5 0.5081 723.8544 477.5160

Rare Category Exploration on Linear Time Complexity 51

(a) Leaf (b) Remote (c) Face (d) Result 1 (e) Result 2 (f) Result 3

Fig. 3. Experiments on vision data sets

Table 3. Properties of vision data sets

Data set n (number of pixels) d FREE RACH FRANK

Leaf 51700 = 235 × 220 2 1.7039 timeout timeout

Remote 60630 = 258 × 235 2 1.8899 timeout timeout

Face 85767 = 339 × 253 2 5.6718 timeout timeout

to enclose the rare category data examples with a minimum-radius hyperball and
FRANK requires the rare category to be isolated from other categories.

Vision Data Sets. Effectiveness study is also conducted on three vision data
sets which are real-world pictures shown in Figs. 3(a)–(c). Fig. 3(a) is a picture of
a leaf, Fig. 3(b) is a remote sensing picture where blue parts are lakes and green
parts are land, and Fig. 3(c) is a human face picture. In the vision data sets,
each picture corresponds to a data set and each pixel in the picture corresponds
to a data example. The goal is to identify pixels that are similar to a given pixel.
The left part of Table 3 shows the detailed information about the three vision
data sets. Each data example has two dimensions (or attributes), i.e., its gray
value and distance to the seed data example.

Figs. 3(d)–(f) illustrate the mining result of FREE on the three data sets
respectively, where white pixels are the data examples found by FREE. In
Fig. 3(d), FREE detects the leaf shape from a pixel in the green parts of the
original picture; In Fig. 3(e), FREE detects the water distribution from a pixel
in the blue parts of the original picture; and In Fig. 3(f), FREE detects the
lady’s face from a pixel within the face of the lady. We do not present the results
of RACH and FRANK because they fail to obtain a result for any of the three
pictures with 24 hours of the given time threshold.

From the figures, we have the following conclusions. (1) The results further
verify the effectiveness of our algorithm, and show the promising applications of
FREE on vision data sets. (2) Because this experiment is mainly to verify the
effectiveness of FREE, we only extract two attributes for each data example. One
can select different features as attributes to mine the information of interest from
the pictures.

(2) Efficiency Study. The runtime of FREE, RACH, and FRANK on both
UCI and vision data sets are reported in the right part of Tables 2 & 3, where
the time unit is minute and the time threshold for timeout is 1440 minutes (24
hours). We also depict the time curve of each algorithm in Fig. 5 using these

52 Z. Liu et al.

Fig. 4. F-scores

0 2 4 6 8

x 10
4

0

100

200

300

400

500

600

700

R
un

tim
e

(m
in

ut
es

)

data set size

FREE
RACH
FRANK

Fig. 5. Runtime Fig. 6. F-scores

−15 −10 −5 0 5

−12

−10

−8

−6

−4

−2

0

2

4

(a) K shape

−15 −10 −5 0 5

−12

−10

−8

−6

−4

−2

0

2

4

(b) Parabola shape

−15 −10 −5 0 5

−12

−10

−8

−6

−4

−2

0

2

4

(c) Ring shape

−15 −10 −5 0 5

−12

−10

−8

−6

−4

−2

0

2

4

(d) Polygon shape

−15 −10 −5 0 5

−12

−10

−8

−6

−4

−2

0

2

4

(e) Concave shape

−15 −10 −5 0 5

−12

−10

−8

−6

−4

−2

0

2

4

(f) Sine shape

Fig. 7. Arbitrary shaped rare categories

data. From the figure, we can see that FREE is much efficient than other tested
algorithms. For example, on Abalone set with 43193 data examples, the runtime
of FREE is 0.5081 minutes, whereas FRANK takes 477.5160 minutes and RACH
723.8544 minutes.

The above observation results from that FREE has a linear time complexity
w.r.t. data set size n, whereas FRANK has a quadratic time complexity and
RACH has too many iterations in solving convex optimization problem.

(3) Arbitrary Shaped Rare Categories. In this experiment, we use data
sets generated by our own synthetic generator and the ones used in [14] and [11].
To clearly express the arbitrary shape problem, in our settings there are only
one majority category and one rare category. The data examples of the majority
category are generated according to a 2D Gaussian distribution, whereas data
examples of the rare category are generated randomly within a specific shape.
We generate six different data sets each of which has a rare category of specific
shape including K shape, parabola shape, ring shape, polygon shape, concave
shape, and sine shape as shown in Figs. 7(a)–7(f). The majority category of each
data set consists of 2000 data examples and the number of data examples in the
rare category of different data sets varies from 60 to 190.

Rare Category Exploration on Linear Time Complexity 53

Fig. 6 shows the comparison results in terms of F-score on the data sets of
arbitrary shapes. Note that the vertical axis is F-score and the horizontal axis
is the six data sets. From the figure, we can see that the F-score of FREE is
dramatically higher than those of other tested algorithms. The results further
justify the effectiveness of our solution which does not a priori assume the shape
of the rare categories.

6 Conclusion

We have proposed FREE for RCE, which achieves linear time complexity w.r.t.
data set size and is able to handle rare categories of arbitrary shapes. FREE
can carry out RCE tasks without certain number of training data examples or
prior knowledge of the data set. This has been achieved by (1) finding out the
coarse shape of the objective rare category using coarse-grained metrics, and (2)
refining the coarse shape by fine-grained metrics. Extensive experiments have
verified the efficiency and effectiveness of FREE.

Acknowledgments. This work was partly supported by the NSFC Grant 61472359,
and the Key Science and Technology Innovation Team Fund of Zhejiang under Grant No.
2010R50041.

References

1. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)
2. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time

with randomization and a simple pruning rule. In: KDD, pp. 29–38, Washington,
DC, USA, August 24–27, 2003

3. He, J., Carbonell, J.: Nearest-neighbor-based active learning for rare category
detection. In: Advances in Neural Information Processing Systems 20 (NIPS 2007),
pp. 633–640, Vancouver, British Columbia, Canada, December 3–6, 2007

4. He, J., Carbonell, J.: Prior-free rare category detection. In: Proceedings of the
SIAM International Conference on Data Mining (SDM 2009), pp. 155–163, Sparks,
Nevada, USA, April 30-May 2, 2009

5. He, J., Tong, H., Carbonell, J.: Rare category characterization. In: The 10th IEEE
International Conference on Data Mining (ICDM 2010), pp. 226–235, Sydney,
Australia, December 14–17, 2010

6. Huang, H., Chiew, K., Gao, Y., He, Q., Li, Q.: Rare category exploration. ESWA
41(9), 4197–4210 (2014)

7. Huang, H., He, Q., Chiew, K., Qian, F., Ma, L.: CLOVER: A faster prior-free
approach to rarecategory detection. Knowledge and Information Systems 35(3),
713–736 (2013)

8. Huang, H., He, Q., He, J., Ma, L.: RADAR: Rare category detection via compu-
tation of boundary degree. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD
2011, Part II. LNCS, vol. 6635, pp. 258–269. Springer, Heidelberg (2011)

9. Huang, J.Z., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means
type clustering. TPAMI 27(5), 657–668 (2005)

54 Z. Liu et al.

10. Li, S., Z. Wang, Zhou, G., Lee, S.: Semi-supervised learning for imbalanced sen-
timent classification. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, pp. 1826–1831 (2011)

11. Liu, Z., Chiew, K., He, Q., Huang, H., Huang, B.: Prior-free rare category detection:
More effective and efficient solutions. ESWA 41(17), 7691–7706 (2014)

12. Liu, Z., Huang, H., He, Q., Chiew, K., Ma, L.: Rare category detection on O(dN)
timecomplexity. In: The 18th Pacific-Asia Conference on Knowledge Discovery and
Data Mining(PAKDD 2014), pp. 498–509, Tainan, Taiwan, May 13–16, 2014

13. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley, New York (1992)

14. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: A wavelet-based clus-
tering approach for spatial data in very large databases. The VLDB Journal 8(3–4),
289–304 (2000)

15. Tang, Y., Zhang, Y., Chawla, N., Krasser, S.: SVMs modeling for highly imbalanced
classification. IEEE Transactions on systems, man, and cybernetics 39(1), 281–288
(2009)

16. Vatturi, P., Wong, W.: Category detection using hierarchical mean shift. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 2009), pp. 847–856, Paris, France,
June 28-July 1, 2009

17. Wand, M.P.: Data-based choice of histogram bin width. The American Statistician
51(1), 59–64 (1997)

Probabilisstic and Uncertain Data

FP-CPNNQ: A Filter-Based Protocol
for Continuous Probabilistic Nearest

Neighbor Query

Yinuo Zhang1(B), Anand Panangadan2, and Viktor K. Prasanna2

1 Department of Computer Science, University of Southern California,
Los Angeles, California, USA

{yinuozha,anandvp,prasanna}@usc.edu
2 Ming Hsieh Department of Electrical Engineering,

University of Southern California, Los Angeles, California, USA

Abstract. An increasing number of applications in environmental mon-
itoring and location-based services make use of large-scale distributed
sensing provided by wireless sensor networks. In such applications, a
large number of sensor devices are deployed to collect useful information
such as temperature readings and vehicle positions. However, these dis-
tributed sensors usually have limited computational and communication
power and thus the amount of sensor queries should be reduced to con-
serve system resources. At the same time, data captured by such sensors
is inherently imprecise due to sensor limitations. We propose an effi-
cient probabilistic filter-based protocol for answering continuous nearest
neighbor queries over uncertain sensor data. Experimental evaluation on
real-world temperature sensing data and synthetic location data showed
a significant reduction in the number of update messages.

1 Introduction

A range query is a test of whether a variable has its value within a specified range.
When the variable is to be monitored so that a result is returned whenever its
value enters the specified range, the range query is typically registered at a
server and the process is called a continuous range query. Continuous queries,
in particular continuous range queries, has attracted significant research interest
with the development of wireless sensor networks and moving object databases.
For example, a query to an environment monitoring sensor network could be to
continuously return the identity of all temperature sensors with their readings
above a certain threshold (if the temperature reading is above this limit, it
could indicate a fire at the sensor location). A range query is a special case of
a non-aggregate query as the answer only depends on the value of the object
being queried (for instance, a sensor measurement or location). On the other
hand, an aggregate query is one where accessing a single object does not provide
enough information to answer the query. For example, whether vehicle v is in
a specific region only depends on its own position (non-aggregate query), while

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 57–73, 2015.
DOI: 10.1007/978-3-319-18123-3 4

58 Y. Zhang et al.

whether v is the nearest vehicle to building b also depends on other vehicles
(aggregate query). Such continuous nearest neighbor queries are important in
location-based services. For example, a query that can continuously report the
nearest ambulance to an accident site can enable rapid response to accidents.

An additional complication in practical sensor network deployments is the
inherent uncertainty in the measurement process due to reasons such as sen-
sor inaccuracy, discrete sampling intervals, and network latency. In previous
work [31], we adopted the attribute uncertainty model to formalize the query-
ing of uncertain data sources. The attribute uncertainty model assumes that
the true value of the object being queried is within a closed region with a non-
zero probability density function (PDF) for the value of interest. This region
of uncertainty is an interval for the one-dimensional case, while it is a closed
2D region (e.g., circle or rectangle) for the two-dimensional case. The PDF can
take on any distribution such as uniform distribution or Gaussian distribution.
Figure 1 illustrates an example of attribute uncertainty for one-dimensional and
two-dimensional data.

(a)

pdf

(Gaussian)

uncertainty
region

location
Reported by
sensor

(b)

25oC

pdf (uniform)

temp.

uncertainty
region

27oC

temp.
reported by

sensor

26oC

Fig. 1. Uncertainty of (a) temperature and (b) location

Queries can be issued over such uncertain data sources. Incorporating attribute
uncertainty in continuous query processing results in continuous probabilistic
queries (CPQ). In this context, “probabilistic” refers to a threshold condition
definedas aprobability bound that is providedwith the query.For example, instead
of a query requesting the identity of all temperature sensors having their readings
within a specific range, a probabilistic query requests the identity of all sensors that
are likely to have readings within that range with a probability higher than some
pre-defined threshold.

As previously described, continuous queries over uncertain data can be object-
independent as in the case of continuous probabilistic range queries (CPRQ) or
be of an aggregate type, as in continuous probabilistic nearest neighbor queries
(CPNNQ).

In [31], we comprehensively investigated object-independent queries with
emphasis on range queries. We proposed a probabilistic filter protocol that

FP-CPNNQ: A Filter-Based Protocol 59

reduces both communication and computational cost during query execution.
Efficient concurrent query execution is also enabled with a multiple query pro-
tocol. In this paper, we extend the filter-based approach to the case of object-
dependent queries over uncertain data. Such aggregate queries are more difficult
to answer compared to object-independent queries since it requires accessing
more information. We evaluate our approach for the special case of CPNNQ.
Our main contributions in this paper are:

– Formalization of continuous probabilistic nearest-neighbor query (CPNNQ)
– A filter-based protocol to efficiently answer CPNNQs
– Evaluation of the proposed approach with comprehensive experiments on

real sensor datasets

The rest of this paper is organized as follows. Section 2 presents related
work. Section 3 describes the proposed data system and query model. A novel
probabilistic filter protocol for CPNNQ is proposed in Section 4. In Section 5,
we describe our experimental setup for evaluation and discuss the results. We
conclude this paper in Section 6.

2 Related Work

In this section, we first summarize current research in efficient continuous query
processing followed by progress in probabilistic query execution.

2.1 Continuous Query Processing

Efficient continuous query execution has been widely studied in the database
community. Most of this work focuses on reducing the update frequency and
computation load during query execution. In wireless sensor networks (WSNs),
in-network processing is a common strategy to provide energy-efficient query exe-
cution in terms of communication cost [1,13]. Research has resulted in efficient
protocols for a single type of query execution including aggregate query [18],
top-k query [29] and spatio-temporal query [8]). In [15], a general framework
was proposed to find the maximum lifetime for continuous innetwork evaluation
of expression trees and can efficiently execute continuous queries in WSNs. How-
ever, in-network processing demands a large query processing capability at all
sensors. In order to alleviate this requirement, [24] proposed a technique which
does not require that a sensor be able to resolve a query and also supports multi-
ple types of queries. In order to reduce transmission power, [2] also presented an
optimized query routing tree which can provide a path to transmit query results
to the querying node.

Most of the above works focus on the resolution of a single query. Prabhakar
et al. introduced an efficient indexing framework to handle query arrival and
removal for multiple query execution [23]. Xiong et al. [30] proposed an incre-
mental algorithm for reducing query re-evaluation cost by sharing execution

60 Y. Zhang et al.

effort among concurrently-executing queries. Muller et al. proposed a network
query approach which combines multiple requests [20]. The results for a specific
user are then extracted from the results for the corresponding network query. Li
et al. developed an algorithm for evaluating multiple queries, which exploit the
sharing of data movement among different queries [16]. [17] provided a scalable
energy-efficient multi-query processing framework which enables sharing infor-
mation among different queries.

Another technique for reducing system load is stream filter [6,7,10,22,29],
in which some query answering tasks are deployed to remote streaming sources
(e.g., sensors and mobile devices). Each remote source is associated with filter
constraints derived from a given continuous query. These constraints are used to
decide whether an object needs to report its newest value to the server. Since the
filter prevents all values from being sent to the server, a substantial amount of
communication effort can be saved. However, data uncertainty is wide-spread in
real-world applications and this issue is not addressed in existing work. In this
paper, we investigate the problem of efficiently executing attribute-uncertain
queries. Specifically, we develop probabilistic filters for continuous probabilistic
nearest-neighbor queries which utilize the uncertainty information associated
with sensor measurement.

2.2 Uncertainty Management in Query Execution

Chen et al. [4] studies the problem of updating answers for continuous probabilis-
tic nearest neighbor queries in the server. They developed an efficient algorithm
to update the answers without re-evaluating the whole query. [27,28] investigated
the problem of efficiently executing continuous nearest neighbor (NN) queries for
uncertain moving objects trajectories. [21] addressed probabilistic nearest neigh-
bor queries in uncertain trajectories databases using a Markov chain model. Note
that these works only handle continuous queries on the server and do not use fil-
ters to reduce communication and energy costs. Farrell et al. [11,12] proposed the
notion of spatial and temporal tolerance, and examined the use of these semantics
to support energy-efficient sensing of location data. The uncertainty in location
value is modeled by a uniform uncertainty region; the possibility of a non-uniform
PDF representing the uncertainty within the region is not considered. Moreover,
the results of the queries studied in those works are not probabilistic. In this paper,
we consider attribute-uncertain data and probabilistic queries.

In our preliminary work [32], we developed a filter protocol for single continu-
ous non-aggregate query execution. In [31], we examined how to handle multiple
queries efficiently. We also proposed slack filters to approximate filter regions
that are hard to represent. We used range query, a typical aggregate query, as a
case study in these works. In [14], we investigated efficient continuous aggregate
query execution over uncertain data. However, this work mainly focus on possi-
ble instead of probabilistic queries (this is the special case where the probability
threshold specified in the query condition is either 0 or 1). In this paper, we
explore the problem of probabilistic aggregate query execution. Specifically, we

FP-CPNNQ: A Filter-Based Protocol 61

will develop a filter-based protocol for continuous nearest neighbor queries over
uncertain data.

3 System Architecture

In this section, we present the system model for query execution and the prob-
abilistic query definition.

3.1 System Model

We adopt the system model defined in [31]. Figure 2 shows the system framework
which has following components.

– Uncertainty Database stores an error model (e.g., attribute uncertainty
model with region and distribution) for each type of sensor and the most
recent value reported by each sensor.

– Query Manager receives query requests from users and evaluates them
based on the data in the uncertainty database (e.g., [5]).

– Filter Manager derives filter constraints: the query information and data
uncertainty is sent to the sensors which use this information to decide if they
should report any updated value. This step reduces the energy and network
bandwidth consumption.

– Each sensor has a data collector which retrieves data values (e.g., tempera-
ture or position coordinates) from external environments and a set of filter
constraints, which are boolean expressions for determining whether the value
obtained from the data collector is to be sent to the server.

User

Query

Manager

Filter

Manager

Uncertain

Database

query

request

answer

update

Server Sensors

insert/delete

filter constraints

sensor

value

Filter
Data

Collector

error model

query

request

Fig. 2. System Architecture

Table 1 summarizes the symbols used throughout this paper. We describe a
one-dimensional data uncertainty model (e.g., Figure 1(a)) to illustrate our tech-
niques. However, the techniques can be directly applied to the multi-dimensional
case since we can project the distance between the sensed value of a sensor and
the query position to one dimension.

62 Y. Zhang et al.

Table 1. Symbols used in the paper

Symbol Description

oi ID of the i-th sensor, where 1 ≤ i ≤ n

vi(t) Sensed value of oi at time t

P Probability threshold for q

pi(t) Qualification probability of oi at time t for q

bi = [li, ui] 1D probabilistic filter of oi for qj

3.2 Continuous Probabilistic Queries

Let o1, . . . , on be the IDs of n sensing devices monitored by the system. A Con-
tinuous Probabilistic Query (CPQ) [31] is defined as:

Definition 1. Given a time interval [t1, t2], a real value P ∈ (0, 1], a CPQ q
returns a set of IDs {oi|pi(t) ≥ P} at every time instant t, where t ∈ [t1, t2], and
pi(t) is the probability that the value of oi satisfies query q at time t.

We also call [t1, t2] the lifetime of q. In this paper, we focus on a special case
of CPQ called continuous probabilistic nearest neighbor query (CPNNQ), as
defined below:

Definition 2. Given a time interval [t1, t2], a real value P ∈ (0, 1], a CPNNQ
q returns a set of IDs {oi|pNN

i (t) ≥ P} at every time instant t, where t ∈ [t1, t2],
and pNN

i (t) is the probability that oi is the nearest neighbor of q at time t.

An example of such a query is: “During the time interval [1PM, 2PM], what
are the IDs of sensors, whose temperature values are closest to (nearest neighbor
of) 13oC with probability p > 0.2, at each point of time?” Another example in
2D case is: “During the next one hour, what are the IDs of vehicles, whose
probabilities of being the nearest neighbor of Staples Center are more than P =
0.3, at each point of time?” Notice that the answer can be changed whenever a
new value is reported.

At any time t, the qualification probability of a sensor oi for a query q can
be computed by performing the following operation:

pNN
i (t) = Pr(∀oj ∈ O, oj �= oi, |oi(t) − q| ≤ |oj(t) − q|) (1)

where |q − o(t)| is the distance between query q and sensor o’s value at time
t. Note that o(t) represents sensor o’s most recently updated value instead of
sensed value at time t. However, we know that the value of sensor o is modeled
using attribute uncertainty. So Equation 1 can be rewritten as:

pNN
i (t) =

∫ f

ni

Pr(|oi(t) − q| = r)Pr(|oj(t) − q| > r)dr (2)

=
∫ f

ni

pdfi(r)
n∏

k=1∧k �=i

(1 − cdfk(r))dr (3)

FP-CPNNQ: A Filter-Based Protocol 63

where r is a variable denoting the distance to q, f is the distance between
the nearest far-point among all sensor values to q, ni is the distance between
the nearest point of sensor oi’s value to q, pdfi and cdfi are the probability
density function and the cumulative density function of oi’s value respectively.
For example,

cdfk(r) =
∫ r

nk

pdfk(r)dr (4)

Basic CPNNQ Execution. A naive approach for answering a CPNNQ is
to assume that each sensor’s filter has no constraints. When a sensor’s value
is updated at time t′, its new value is immediately sent to the server, and the
qualification probabilities of all sensors are re-evaluated. Then, after all pNN

i (t′)
have been computed, the IDs of devices whose qualification probabilities are not
smaller than P are returned to the user. The query answer is recomputed during
t1 and t2, whenever a new value is received by the server.

However, this approach is inefficient because:

– Every sensor has to report its sensed value to the server periodically, which
wastes a lot of energy and network bandwidth;

– Whenever an update is received, the server has to compute the qualification
probability of each sensor with Equation 1, which can be slow.

In the next section, we will present our efficient probabilistic filter-based
solution for handling continuous nearest neighbor queries.

4 The Probabilistic Filter Protocol

In this section, we present a filter-based protocol for answering continuous near-
est neighbor query.

4.1 Protocol Design

Let us discuss the protocol for server side and sensor side separately.
In the server side (Algorithm 1), once a query q is registered, it comes to

the initialization phase. The server requests the latest value (i.e., temperature
reading) from each sensor. Based on the values and uncertainty model, the server
computes a probabilistic filter for each sensor and deploy on the sensor side. How
the filter is derived will be elaborated in Section 4.2. The server initializes the
answer set using the uncertain database. In the maintenance phase, once the
server receives an update from a sensor, it requests the latest value from each
sensor. The probabilistic filters are recomputed in the server side and sent back
to each sensor. Based on the latest values in the uncertain database, the server
refreshes the answer set.

In the sensor side, it is quite similar to [31]. The only task is to check whether
the sensed value violates its filter constraint or not. In order to do this, each sensor

64 Y. Zhang et al.

1 Initialization:
2 Request data from sensors o1, . . . , on;
3 for each sensor oi do
4 UpdateDB(oi);
5 Compute filter region bi;
6 Send(addFilterConstraint, bi, oi);

7 Initialize the answer set;
8 Maintenance:
9 while t1 ≤ currentTime ≤ t2 do

10 Wait for update from oi;
11 Request data from sensors o1, . . . , on;
12 for each sensor oi do
13 UpdateDB(oi);
14 Compute filter region bi;
15 Send(addFilterConstraint, bi, oi);

16 Update the answer set;

17 for each sensor oi do
18 Send(deleteFilterConstraint, oi);

Algorithm 1. Probabilistic filter protocol for CPNN query(server side)

needs to continuously sense its value and compare with the filter constraint. The
filter constraint is in the form of an interval in one dimensional case and an annulus
in two dimensional case. If the sensed value is within that interval or annulus, the
sensor does not need to send an update to the server. Otherwise, update is sent.
Intuitively, this protocol can reduce the number of communication messages sent
from sensors to server, but still provides a correct query result set.

4.2 Filter Derivation

In this section, we will present how the probabilistic filter is derived. We use one
dimensional filter constraint as a case study.

For the filter constraint of oi, it consists of two boundaries bi = [li, ui]. For
convenience, li denotes the boundary near to the query point, while ui denotes
the boundary far from the query point.

Preprocessing Phase. Once the server receives the latest values and uncer-
tainty model from all sensors, it computes the qualification probability pNN

i (t0)
(pi for short in the following discussions) for each sensor oi. Based on the qualifi-
cation probabilities, the server classifies the sensors into three sets S, L (answer
set) and Z.

S ← {oi|0 < pi < P} (5)
L ← {oi|pi ≥ P} (6)
Z ← {oi|pi = 0} (7)

FP-CPNNQ: A Filter-Based Protocol 65

We now describe how to derive bi for the sensors in each set.

Deriving ui for S. Algorithm 2 illustrates the derivation of far boundary for
sensors in set S.

1 pdiff = minoi∈S(P − pi);
2 for each sensor oi ∈ S do
3 si = max(pi − pdiff

|S|−1
, 0);

4 ui = zi(si);

Algorithm 2. Deriving ui for S

In Algorithm 2, zi(x) is a function defined as: given that all other sensor
values do not change, the qualification probability of oi will be exactly p, when
the distance from oi’s sensed value to the query point is zi(p), where 0≤ p ≤
1. Notice that sometimes zi(p) may not exist when p is large (i.e. if another
sensor value’s uncertainty region overlaps with q, oi cannot have its qualification
probability to be 1).

The intuition behind Algorithm 2 is as follows: if oi’s sensed value moves
far away from query q, pi becomes smaller. This may increase the qualification
probability of other sensors in S or L since the sum of p is equal to 1. The filter
boundary ui ensures that the qualification probability of any sensor in S will
not increase to a value above P . It means that no sensor in S changes its status
from non-answer to answer if the filter constraint is not violated.

Deriving li for L. Algorithm 3 illustrates the derivation of near boundary for
sensors in set L.

1 pdiff = minoi∈L(pi − P);
2 for each sensor oi ∈ L do
3 si =

pdiff

|L|−1
;

4 p′
i = {pi|ci = 0};

5 yi = min(pi + si, p
′
i);

6 li = zi(yi);

Algorithm 3. Deriving li for L

Similar to Algorithm 2, the filter boundary derived from Algorithm 3 guar-
antees that if oi’s value moves close to query q, all other sensors in L have no
chance to switch their status from answer to non-answer. In other words, the
filter constraint limits the increase on pi so that others’ qualification probability
cannot decrease to a value below P .

66 Y. Zhang et al.

Deriving li for S. The next two cases (li for S and ui for L) are more com-
plicated than the previous two. Let us imagine, if the value of a sensor oi ∈ S
moves towards query q, it may affect the status of the sensors in L since the
increase in pi causes the decrease in the qualification probability for sensors in
L. It is possible that some L sensors have their qualification probability less than
P . But this never happens in the first two cases.

For convenience, we first sort all sensors. We have sensors in L as o1,...oh in
descending order of p, and sensors in S as oh+1,...,om in descending order of p.
ci denotes the distance from the latest sensed value vi to q. In order to derive li
for S, we define two functions Zi(w,C[1...m]) and CalQPh(C[1...m]) as follows,

Given a sensor oi, the distance from its sensed value to the query point is
Zi(w,C[1...m]) where w = pi ∈ [0, 1] and C[k] = |vk − q|.

Given a sensor oh, its qualification probability is CalQPh(C[1...m]) where
C[k] = |vk − q|.

Let us design the algorithm by considering the worst case. Suppose we allow
pi increase by at most δi. To ensure the correctness, δi must satisfy following
conditions,

p′
h −

m∑

i=h+1

δi ≥ P (8)

where p′
h = CalQPh(C[1...m]) and C[k] = li, k = 1...h − 1 and C[k] = ck, k =

h...m.

pi +
m∑

k=h+1,k �=i

(p′
k − pk) + δi < P (9)

where p′
k = CalQPk(C[1...m]) and C[t] = ct, t = 1...h, i and C[t] = ut, t =

h + 1...m, t �= i.
Equation 8 guarantees that if all sensor values move to their inner filter

boundary except oh, then oh’s ph is still larger than or equal to P . Equation 9
guarantees that if all S sensors values move to their outer filter boundary except
oi and oi moves to its inner boundary, then oi’s pi is still less than P .

As a result, the increase for pi should satisfy

δi ≤ p′
h − P

|S| (10)

δi < P − Pi −
m∑

k=h+1,k �=i

(p′
k − pk) (11)

If P − Pi −
m∑

k=h+1,k �=i

(p′
k − pk) ≥ p′

h−P
|S| , the maximum allowed qualification

probability pmax
i = pi + δi, where δi = p′

h−P
|S| , and li = Zi(pmax

i , C[1...m]), where
C[k] = lk and k = 1...h − 1 and C[k] = ck, k = h...m.

FP-CPNNQ: A Filter-Based Protocol 67

If P − Pi −
m∑

k=h+1,k �=i

(p′
k − pk) <

p′
h−P
|S| , the maximum allowed qualification

probability pmax
i = pi + δi, where δi = P − Pi −

m∑

k=h+1,k �=i

(p′
k − pk), and li =

Zi(pmax
i , C[1...m]), where C[k] = ck and k = 1...h, i and C[k] = uk, k = h +

1...m, k �= i.
According to Equation 10 and 11, the qualification probability of oi can reach

pmax
i = pi + δi, but no larger than pmax

i . Then the filter boundary can be safely
set as li = Zi(pmax

i , C[1...m]). The derivation is formalized in Algorithm 4.

1 Compute p′
h = CalQPh(C[1...m]) and C[k] = li, k = 1...h − 1 and C[k] = ck, k

= h...m;
2 Compute p′

k = CalQPk(C[1...m]) and C[t] = ct, t = 1...h, i and C[t] = ut, t =
h + 1...m, t �= i;

3 for each sensor oi ∈ S do

4 pmax
i = pi + min(

p′
h−P

|S| , P − Pi −
m∑

k=h+1,k �=i

(p′
k − pk));

5 li = Zi(p
max
i , C[1...m]);

Algorithm 4. Deriving li for S

Deriving ui for L. We omit the detailed derivation here since it is similar to
the previous case (li for S). Algorithm 5 illustrates the derivation steps.

1 Compute p′
h+1 = CalQPh+1(C[1...m]) and C[k] = ck, k = 1...h and C[k] = lk, k

= h + 2...m and C[k] = lk, k = h + 1;
2 Compute p′

k = CalQPk(C[1...m]) and C[t] = ut, t = 1...h, t �= i and C[t] = lt, t
= h + 1...m;

3 for each sensor oi ∈ L do

4 pmin
i = pi - min(

p′
h+1−P

|L| , P − Pi −
m∑

k=1,k �=i

(p′
k − pk));

5 ui = Zi(p
min
i , C[1...m]);

Algorithm 5. Deriving ui for L

Deriving Filter for Z. So far, we have derived the filters for sensors in S and L.
Now we investigate Z set, which is the largest set among all three in most cases.
However, the filter derivation for this set is much simpler than the previous two.
We first define a cut off value cutoff = f+n

2 where f is the farthest uncertainty
boundary of non-zero qualification probability sensors (minimum maximum dis-
tance) and n is the nearest uncertainty boundary of zero qualification probability

68 Y. Zhang et al.

sensors (maximum minimum distance). The filter boundary for oi ∈ Z can be
set as [li, ui] = [cutoff+ ri

2 ,+∞] where ri is the length of oi’s uncertain region.
The one dimensional filter constraint can be easily extended to support two

dimensional data. The filter constraint region is an annulus centered at the query
point with two radii as li and ui.

Intuitively, with the deployment of the probabilistic filters, the updates
between sensors and server can be saved compared with basic CPNNQ execution
protocol.

5 Experiments

In this section, we describe the results of evaluating our protocol using a set of
real temperature sensor data (Section 5.1) and a location database (Section 5.2).

Fig. 3. Update Frequency on Temperature Data

5.1 Temperature Data

Experiment Setting. The same set of data in [31] is used for experimental eval-
uation. Specifically, we have 155,520 one-dimensional temperature readings cap-
tured by 54 sensors on 1st March 2004, provided by the Intel Berkeley Research
lab. The temperature values are collected every 30 seconds. The lowest and the
highest temperature values are 13oC and 35oC respectively. The domain space
is [10oC, 40oC]. The uncertainty region of a sensor value is in the range of ±
1oC [19]. By default, the uncertainty PDF is a normal distribution, with the
mean as the sensed value, and the variance as 1. Also, the energy for sending
an uplink message is 77.4mJ, while that for receiving a downlink message is
25.2mJ [9]. Each data point is obtained by averaging over the results of 100

FP-CPNNQ: A Filter-Based Protocol 69

random queries. Each query point is generated randomly within the domain.
A query has a lifetime uniformly distributed between [0, 24] hours. A query’s
probability threshold value, P , varies from 0.05 to 0.25. We compare our pro-
tocol with the basic protocol in which no filter is deployed. The reason we only
consider no filter case is that no other work focuses on communication cost for
continuous probabilistic nearest neighbor query.

Fig. 4. Energy Consumption on Temperature Data

Experiment Results. We evaluate the probabilistic filter protocol for answer-
ing nearest neighbor query in terms of update frequency and energy consump-
tion. As shown in Figure 3, the probabilistic filters reduce update frequency by
31% on average. When the probability threshold is 0.25, the reduction on update
frequency is 36%. Similar results can be observed while evaluating energy con-
sumption (Figure 4). The probabilistic filters reduce energy consumption on
sensors by 1295 mJ per sampling interval (30 seconds) on average. The reason
we have reduction in both the update frequency and energy consumption is that
in some sampling periods, all sensor values stay within their corresponding filter
region. As a result, no update is generated. We also observe that as the proba-
bility threshold increases, the probabilistic filters decrease the number of update
messages and thus reduce energy. This is because the answer set for the queries
with larger probability thresholds often has fewer qualified objects. Therefore,
these answer sets are updated less frequently than that of queries with a smaller
probability threshold. For example, when the probability threshold is 1.0, the
answer set has at most one object.

70 Y. Zhang et al.

5.2 Location Data

Experiment Setting. In this experiment, we also use the same set of location
data in [31]. We simulate the movement of vehicles in a 2.0 x 2.0 km2 European
city. We use the CanuMobiSim simulator [26] to generate 5000 vehicles, which
follow a smooth motion model in the streets of the city [3]. The following error
model is applied to a position obtained with a (simulated) GPS device: the
sensing uncertainty is obtained from a statistical error model with imprecision
of 6.3m, with 95% probability [25]. The vehicles have a maximal velocity of
vmax = 30m/s. The maximal sensing uncertainty is 10m and the sampling time
interval is 1s. Thus, the radius of the uncertainty region of the vehicle is 40m.
We simulate the movement of 5,000 objects over 90s, or 450,000 records. Each
query point is generated randomly within the map. Each query has a lifetime
uniformly distributed between [0, 90] seconds. Next, we present the results for
expriments using this location dataset.

Fig. 5. Update Frequency on Location Data

Experiment Result. We also use update frequency and energy consumption
as the metrics to evaluate the probabilistic filter protocol for answering nearest
neighbor query over location data. As shown in Figure 5, the probabilistic filters
reduce update frequency by 8% on average. For energy consumption (Figure 6),
it is reduced by 30.4 J per sampling interval (1s) on average. When the prob-
ability threshold is 0.25, the reduction in both update frequency and energy
consumption approaches 11%. Similar to the results on temperature data, in
some sampling periods, no moving object crosses the boundary of their filter
region. Update messages are not sent in these cases. However, the improvement
is not as much as that for temperature data. The reason is that temperature
readings, compared with vehicle locations, are relatively steady so that the filter
constraints are not typically violated.

FP-CPNNQ: A Filter-Based Protocol 71

However, the performance of probabilistic filter for CPRQ [31] is much better
than that for CPNNQ. This is because of the differences in their filter protocols.
For CPRQ, only the sensor whose filter constraint is violated needs to send an
update to the server. For CPNNQ, once a filter constraint is violated, all sensors
need to send a message to the server. In the future, we will consider locality in
value in order to send updates to only a subset of sensors.

Fig. 6. Energy Consumption on Location Data

6 Conclusions

We investigated continuous nearest neighbor query execution over uncertain data.
The proposed probabilistic filter protocol for processing such queries reduced com-
munication cost and energy consumption of wireless sensors. Experimental eval-
uation on real-world temperature sensing data showed a reduction in the number
of update messages by upto 36%. Evaluation on querying of synthetic 2D location
dataset showed a reduction in both update frequency and energy consumption
of 11%. The reduction in updates for continuous nearest neighbor queries is also
significantly greater than that of continuous range queries.

One future direction is to extend our protocol to efficiently support multiple
aggregate query execution. Another direction is to introduce tolerance in query
answers in order to further reduce communication cost at sensor side.

Acknowledgments. We would like to thank Prof. Reynold Cheng (University of Hong
Kong) for providing support in the early stage of this research.

72 Y. Zhang et al.

References

1. Ahmad, M.B., Asif, M., Islam, M.H., Aziz, S.: A short survey on distributed
in-network query processing in wireless sensor networks. In: First International
Conference on Networked Digital Technologies, NDT 2009, pp. 541–543, July 2009

2. Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P.K., Samaras,
G.: Optimized query routing trees for wireless sensor networks. Inf. Syst. 36(2),
267–291 (2011)

3. Bettstetter, C.: Mobility modeling in wireless networks: categorization, smooth
movement, and border effects. Mobile Computing and Communications Review
5(3), 55–66 (2001)

4. Chen, J., Cheng, R., Mokbel, M.F., Chow, C.-Y.: Scalable processing of snapshot
and continuous nearest-neighbor queries over one-dimensional uncertain data. 18,
1219–1240 (2009)

5. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries
over imprecise data. In: SIGMOD (2003)

6. Cheng, R., Kao, B., Kwan, A., Sunil Prabhakar, Y.T.: Filtering data streams for
entity-based continuous queries. IEEE TKDE 22, 234–248 (2010)

7. Cheng, R., Kao, B., Prabhakar, S., Kwan, A., Tu, Y.-C.: Adaptive stream filters
for entity-based queries with non-value tolerance. In: VLDB (2005)

8. Coman, A., Nascimento, M.A., Sander, J.: A framework for spatio-temporal query
processing over wireless sensor networks. In: Proceedings of the 1st Workshop on
Data Management for Sensor Networks, in conjunction with VLDB, DMSN 2004,
Toronto, Canada, 30 August, pp. 104–110 (2004)

9. Crossbow Inc.: MPR-Mote Processor Radio Board User’s Manual
10. Elmeleegy, H., Elmagarmid, A.K., Cecchet, E., Aref, W.G., Zwaenepoel, W.:

Online piece-wise linear approximation of numerical streams with precision guar-
antees. PVLDB 2(1), 145–156 (2009)

11. Farrell, T., Cheng, R., Rothermel, K.: Energy-efficient monitoring of mobile
objects with uncertainty-aware tolerances. In: IDEAS (2007)

12. Farrell, T., Rothermel, K., Cheng, R.: Processing continuous range queries with
spatio-temporal tolerance. IEEE TMC 10, 320–334 (2010)

13. Gehrke, J., Madden, S.: Query processing in sensor networks. IEEE Pervasive
Computing 3(1), 46–55 (2004)

14. Jin, Y., Cheng, R., Kao, B., Lam, K.Y., Zhang, Y.: A filter-based protocol for
continuous queries over imprecise location data. In: CIKM, pp. 365–374 (2012)

15. Kalpakis, K., Tang, S.: Maximum lifetime continuous query processing in wireless
sensor networks. Ad Hoc Netw. 8(7), 723–741 (2010)

16. Li, J., Deshpande, A., Khuller, S.: Minimizing communication cost in distributed
multi-query processing. In: ICDE (2009)

17. Li, J., Shatz, S.M.: Remote query processing in wireless sensor networks using
coordinated mobile objects. In: DMS, pp. 82–87. Knowledge Systems Institute
(2010)

18. Madden, S., Szewczyk, R., Franklin, M.J., Culler, D.E.: Supporting aggregate
queries over ad-hoc wireless sensor networks. In: WMCSA, pp. 49–58 (2002)

19. Microchip Technology Inc.: MCP9800/1/2/3 Data Sheet
20. Muller, R., Alonso, G.: Efficient sharing of sensor networks. In: MASS (2006)
21. Niedermayer, J., Züfle, A., Emrich, T., Renz, M., Mamoulis, N., Chen, L., Kriegel,

H.-P.: Probabilistic nearest neighbor queries on uncertain moving object trajec-
tories. PVLDB 7(3), 205–216 (2013)

FP-CPNNQ: A Filter-Based Protocol 73

22. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over
distributed data streams. In: SIGMOD (2003)

23. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query
indexing and velocity constrained indexing: Scalable techniques for continuous
queries on moving objects. IEEE Trans. Comput. 51, 1124–1140 (2002)

24. Rahman, Md.A., Hussain, S.: Energy efficient query processing in wireless sensor
network. In: AINA Workshops (2), pp. 696–700 (2007)

25. Rankin, J.: Gps and differential gps: an error model for sensor simulation. In:
PLANS, pp. 260–266 (1994)

26. Stepanov, I., Marrón, P.J., Rothermel, K.: Mobility modeling of outdoor scenarios
for manets. In: Annual Simulation Symposium, pp. 312–322 (2005)

27. Trajcevski, G., Tamassia, R., Cruz, I.F., Scheuermann, P., Hartglass, D.,
Zamierowski, C.: Ranking continuous nearest neighbors for uncertain trajecto-
ries. VLDB J. 20(5), 767–791 (2011)

28. Trajcevski, G., Tamassia, R., Ding, H., Scheuermann, P., Cruz, I.F.: Continuous
probabilistic nearest-neighbor queries for uncertain trajectories. In: EDBT, pp.
874–885 (2009)

29. Minji, W., Jianliang, X., Tang, X., Lee, W.-C.: Top-k monitoring in wireless sensor
networks. IEEE Trans. Knowl. Data Eng. 19(7), 962–976 (2007)

30. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In: ICDE (2005)

31. Zhang, Y., Cheng, R.: Probabilistic filters: A stream protocol for continuous prob-
abilistic queries. Information Systems 38(1), 132–154 (2013)

32. Zhang, Y., Cheng, R., Chen, J.: Evaluating continuous probabilistic queries over
imprecise sensor data. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010. LNCS, vol. 5981, pp. 535–549. Springer, Heidelberg (2010)

Efficient Queries Evaluation on Block
Independent Disjoint Probabilistic Databases

Biao Qin(B)

School of Information, Renmin University of China, Beijing 100872, China
qinbiao@ruc.edu.cn

Abstract. Probabilistic data management has recently drawn much
attention of the database research community. This paper investigates
safe plans of queries on block independent disjoint (BID) probabilistic
databases. This problem is fundamental to evaluate queries whose time
complexity is PTIME. We first introduce two new probabilistic table
models which are the correlated table and the correlated block table, and
a hybrid project which executes a disjoint project and then performs an
independent project in an atomic operation on BID tables. After that,
we propose an algorithm to find safe plans for queries on BID probabilis-
tic databases. Finally, we present the experimental results to show that
the proposed algorithm can find safe plans for more queries than the
state-of-the-art and the safe plans generated by the proposed algorithm
are efficient and scale well.

1 Introduction

A diverse class of applications needs to manage large volumes of uncertain data,
such as incompletely cleaned data, sensor and RFID data, information extrac-
tion, data integration, blurred data, missing data, and etc. Probabilistic data
management has recently drawn much attention of the database research com-
munity [2,8,19,20]. Three probabilistic table models have been proposed. They
are tuple independent model [4], block independent disjoint model [5,14] and
partial block independent disjoint (p-BID) [5,14]. The p-BID model captures
many representations previously discussed in the literature (e.g. p-or tables [7],
?-tables and x-relations [20]). We further introduce correlated tables and corre-
lated block tables, which can not be classified into either tuple independent, BID
or p-BID [5] table. Dalvi and Suciu’s work [4] on the evaluation of conjunctive
queries on tuple independent probabilistic databases showed that the class of
conjunctive queries can be partitioned into ′′easy′′ queries (PTIME) and ′′hard′′

(#P-complete) queries.
The intensional method adopts lineage [20] and probabilistic reference [12,17]

for query evaluation on correlated probabilistic databases. The Find-Plan algo-
rithm [14] uses three conditions to find the safe plans of queries on probabilistic
databaseswith theBID tuplemodels. SinceRé et al. [14] did not elaborate all cases,
they did not prove that the Find-Plan algorithm is complete. Because project on
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 74–88, 2015.
DOI: 10.1007/978-3-319-18123-3 5

Efficient Queries Evaluation 75

BID tables has different properties from tuple independent tables, we introduce a
new project, hybrid project (πH), which executes a disjoint project [14] and then
performs an independent project [14] in an atomic operation. We further introduce
two new table models. Based on these findings, we propose a new algorithm to find
safe plans of conjunctive queries without self-joins on BID probabilistic tables. The
main contributes are as follows.

– We first introduce two new probabilistic table models which are the corre-
lated table and the correlated block table, and a hybrid project for queries
on BID tables.

– We propose an algorithm to find safe plans for queries on BID tables.
– Our experimental results show that the proposed algorithm can find safe

plans for more queries than the state-of-the-art and the safe plans generated
by the proposed algorithm are efficient and scale well.

The rest of this paper is organized as follows: Section 2 outlines query evalua-
tion on probabilistic databases. Section 3 introduces two new probabilistic table
models and a new probabilistic database operation. Section 4 describes an algo-
rithm to generate safe plans for queries on BID probabilistic databases. Section
5 reports the experimental results. Section 6 discusses related work. Section 7
concludes and outlines future research.

2 Preliminaries

In this paper, we only consider conjunctive queries without self-join on prob-
abilistic databases, unless otherwise stated. Tuple independent tables [4] and
BID tables [15] are two famous uncertain data models. BID tables have the
following properties: any two tuples that differ on the K̄ attributes are indepen-
dent and any two tuples that agree on the K̄ attributes are disjoint. Moreover,∑n

i=1 pi ≤ 1 in each block. Since K̄ �→ V̄ in BID tables, K̄ is not the key of
R and Rp.Key = {K1, . . . , Kn, A1, . . . , Am}. If

∑n
i=1 pi = 1 in every block of a

BID Rp, we call Rp a full BID (f -BID) table. For example, T p in Figure 1 is a
tuple independent table [4] while Rp is a BID table [15]. If any two tuples in Rp

have the same values of the key attributes {n, l} then they are disjoint events;
otherwise they are independent. Moreover, tAp and tBp are f -BID tables.

In a probabilistic database, a query answer is correct only if the resulting
data and their confidences are both correct. Therefore, query evaluation on a
probabilistic database includes not only data computation but also confidence
computation. Safe plan [4] is based on modifying the query operators to com-
pute probabilities rather than complex events. Select σe [4] acts like σ, which
propagates the probabilities of tuples from the input to the output; ��e [4] com-
putes the probability of every tuple (t, t′) as p × p′. πe includes disjoint project
(πD

Ā
) and independent project (πI

Ā
) [14]. πD

Ā
performs as follows: If n tuples with

probabilities p1, . . . , pn have the same value, ā, for their Ā attributes, the dis-
joint project will associated the answer tuple with the probability p1 + · · · + pn.
The disjoint project is correctly applied if any two tuples that share the same

76 B. Qin

Cp(c; n; p)
c n p

Maths Smith 0.4 c11
Zhang 0.6 c12

CS Smith 0.8 c21
Zhang 0.2 c22

L(b, l)
b l

Building 1 Maths l1
Building 2 DB l2
Building 3 English l3

Rp(n, l; r; p)
n l r p

Smith Maths High 0.8 r11
Low 0.1 r12

Zhang Databases High 0.3 r21
Low 0.7 r22

Smith English High 0.6 r31
Low 0.3 r32

T p(n, b; ; p)
n b P

Smith Building 1 0.9 t1
Smith Building 2 0.7 t2
Zhang Building 3 0.8 t3

tAp(A; B; Θb|a)
A B Θb|a
1 1 0.2 a11

1 0 0.8 a12

0 1 0.4 a21

0 0 0.6 a22

tBp(B; C; Θc|b)
B C Θc|b
1 1 0.3 b11
1 0 0.7 b12
0 1 0.5 b21
0 0 0.5 b22

Fig. 1. A probabilistic database Dp

value of the Ā attributes are disjoint events. πI
Ā

performs as follows: If n tuples
with probabilities p1, . . . , pn have the same value, ā, for their Ā attributes, then
the independent project πI

Ā
will associated the answer tuple with the probability

1 − (1 − p1)(1 − p2) . . . (1 − pn). The independent project is correctly applied if
any two tuples that share the same values of the Ā attributes are independent.
Ré et al. [14] used independent project and disjoint project to find safe plan
in BID tables. Ré and Suciu [15] further gave the definition of p-BID tables as
follows.

Definition 1. A p-BID table is a relational schema with the attributes parti-
tioned into four classes separated by semicolons: R(K̄; K̄1; V̄ ; p).

– Rp is K̄-block independent if any two tuples ti and tj such that ti.K̄ �= tj .K̄
(i �= j) are independent.

– Rp is K̄K̄1-block disjoint if any two tuples such that ti.K̄K̄1 = tj .K̄K̄1 are
disjoint.

– ti and tj (ti, tj ∈ Rp) are correlated if ti[K̄] = tj [K̄] but ti[K̄1] �= tj [K̄1].

We note that the p-BID table includes the BID table as a special case and
the BID table further includes the tuple independent table as a special case.
We can use possible world semantics to compute correct probabilities for result
tuples. Let t1, . . . , tn be the BID tuples of D and W have m tuples. Then m1

(m1 = n − m) tuples do not appear in W . So the probability of W occurring
is P (W) = Πm

i=1P (ti)Πm1
j=1(1 − ∑

P (tj)). If ti ∈ W , we use its probability
P (ti). Otherwise, we use the probability 1 − ∑

P (ti). Given a query q and a
probabilistic database D, the confidence of every answer tuple t is P (t ∈ q(D)) =∑

t∈W,W∈W P (q(W)), where W is a set of all possible worlds of D.

Example 1. Assume the database shown in Figure 1 has the constraint that
every teacher can work in only one building. We have the following query on the
database: q(r) = πI

r (R
p), whose result is shown in Figure 2(a).

Efficient Queries Evaluation 77

(b) πe
r(R

p) = πI
r (R

p)

r p symbolic prob.

High 0.944 1 − (1 − r11)
(1 − r21)(1 − r31)

Low 0.811 1 − (1 − r12)
(1 − r22)(1 − r32)

πH
n (Rp) =

n p symbolic prob.
to1 Smith 0.99 1 − (1 − (r11 + r12))

(1 − (r31 + r32))
to2 Zhang 1 1 − (1 − (r21 + r22))

Fig. 2. (a) the answers of πI
r (R

p), (b) the answers of πe
n(Rp) = πH

n (Rp)

Table 1. tmp(A; B, C; p)

A B C p lineage
1 1 1 0.06 a11b11
1 1 0 0.14 a11b12
1 0 1 0.4 a12b21
1 0 0 0.4 a12b22
0 1 1 0.12 a21b11
0 1 0 0.28 a21b12
0 0 1 0.3 a22b21
0 0 0 0.3 a22b22

3 New Probabilistic Table Models and Operation

From Figure 2(a), we find its values for attribute r are distinct. However, their
lineages are correlated by events. So we give the definition of a new kind of table
as follows.

Definition 2. Assume that a table Rp
i (C̄; p) has distinct values for attributes

C̄. Since their lineages are correlated by events, this kind of tables is not tuple
independent, BID or p-BID. Thus they are called correlated tables.

From the above definition, we know that the table shown in Figure 2(a) is a
correlated table. The following example illustrates another new table model.

Example 2. If we perform the following query q = tAp �� tBp on BID tables
shown in Figure 1, the result is shown in Table 1. We find Table 1 is a new kind
of table, whose property is described in the following definition.

Definition 3. A correlated block table (CBT) is a relational schema with the
attributes partitioned into three classes separated by semicolons: Rp(C̄; V̄ ; p).

–
∑n

i=1 pi = 1 in each C-block.
– Rp is C̄-block correlated if any two tuples ti and tj such that ti.C̄ �= tj .C̄

(i �= j) are correlated.
– Rp is C̄-block disjoint if any two tuples ti and tj such that ti.C̄ = tj .C̄ are

block disjoint.

78 B. Qin

Table 2. Frequently Used Notations

Symbols Meaning
Attr(Rp

i) all attributes in Rp
i

Attr(q) all attributes involved in q

BLi a block of BID table
Rp

i .Key the key of a table
Head(q) the set of attributes in the output of the query q

|Rels(q)| the number of relations in the query q

X̄ a set of query variable
x̄ a set of value for X̄

(X̄)+ the transitive closure under a set of FD
πI(Rp

i) independent project
πD(Rp

i) disjoint project
πH(Rp

i) hybrid project

From the above definition, we know that Table 1 is a correlated block table.
In this paper, the symbols and their meanings are shown in Table 2. In order
to perform project on BID tables and p-BID tables, We further introduce a new
project operation as follows.

Definition 4. Hybrid project is an atomic operation, which executes a disjoint
project during every block and then performs an independent project across blocks
in an atomic operation. For a BID table Rp

i (K̄; V̄ ;p), πH
Ā

(Rp
i) = πI

Ā
(πD

Ā∪K̄
(Rp

i)).
For a p-BID table Rp

i (K̄; K̄1; V̄ ; p), πH
K̄1

(Rp
i) = πI

K̄1
(πD

K̄K̄1
(Rp

i)).

If we have a query q = πH
n (Rp), neither πD

n (Rp) nor πI
n(Rp) can give a correct

answer. While πH
n (Rp) gives the correct answer as shown in Figure 2(b). We give

the following theorem for processing the correlated tables.

Theorem 1. Assume we have a correlated table Rp
i (C̄; p). If Ā ⊂ C̄, πI

Ā
(Rp

i) is
not safe.

Proof. Let Rp
j = πI

Ā
(Rp

i). If Ā ⊂ C̄, then ∃r ∈ Rp
j and r comes from i1 and

i2 (i1, i2 ∈ Rp
i). Because i1 and i2 are correlated as shown in Figure 3, the

confidence of r is wrong by extensional evaluation method. Hence the theorem
is proved.

Assume that we project on a CBT Rp
i . If the project attributes are subset of

Rp
i .C̄, then the project is unsafe by Theorem 1. The following theorem discusses

a situation whose disjoint project is safe for CBTs.

Theorem 2. Assume we have a correlated block table Rp
i (C̄; V̄ ; p). If Ā ⊇ C̄,

πD
Ā

(Rp
i) is safe.

Proof. For any two tuples t1 and t2 of Rp
i , if t1.C̄ = t2.C̄ then they are block

disjoint. Since Ā ⊇ C̄, πD
Ā

(Rp
i) is safe. This proves the theorem.

Efficient Queries Evaluation 79

t
1

s
1 t

2

r

i
1

i
2

Fig. 3. The correlations among tuples

Corollary 1. For every BID table Rp
i (K̄; V̄ ; p), if Ā �⊇ Rp

i .K̄, then the result of
πH
Ā

(Rp
i) is a correlated table.

Proof. Assume that Rp
i is a BID table. From Definition 4, πH

Ā
(Rp

i) executes a
disjoint project and then performs an independent project in an atomic oper-
ation. Assume that the result has two tuples t1 = (ā, p) and t2 = (b̄, p). Then
∃BLi ∈ Rp

i , BLi has two tuples ti1 and ti2, which are the source of t1 and t2,
respectively. So t1 and t2 come from the same block but they can not be in a
new block. Thus they are correlated. Hence, the result of πH

Ā
(Rp

i) is a correlated
table. This proves the theorem.

4 Safe Plans of Queries on Probabilistic Databases

In this section, we introduce an algorithm to find safe plans of queries evaluation
on BID tables.

4.1 The Preprocessing of the Queries

With a similar method in [13], we classify projections into simple projection
which involves only one table and complex projection which involves two or
more tables. We first give the following lemma to show that any execution plan
for a conjunctive query without complex projections is safe, that is, it yields
correct data as well as probability without requiring special treatment.

Lemma 1. Consider a BID probabilistic database. If the query q only includes
σ, �� or simple projection, then it is safe.

Proof. By possible world semantics, σ, ��, and πH(Rp) are all safe. So the lemma
is proved.

Recall that a probabilistic database may consist both of probabilistic table
names, which have an event attribute E, and deterministic relation names. Before
going to the preprocessing of the queries, the attributes associated with join or
Head(q) in a query is considered first, where Head(q) denotes the set of attributes
that are in the output of the query q.

80 B. Qin

Definition 5. [13] If an attribute is associated with join conditions or Head(q)
in a query q, it is called an association attribute. An association attribution set
of query q is denoted by A2S (q). It includes the following attributes:

– If Rp
i .A ∈ Head(q), then Rp

i .A is put into A2S (q);
– If there is a join predicate Rp

i .B = T p
j .C, then both Rp

i .B and T p
j .C are put

into A2S(q).

The association attribute set of a relation Rp
i is denoted by A2S (Rp

i). It is the
intersection of A2S (q) and Attr(Rp

i), that is, A2S (Rp
i) = A2S(q) ∩ Attr(Rp

i). If
an attribute of Rp

i cannot be inferred from A2S (Rp
i), we call it a non-association

attribute. If Rp
i .Key �⊆ A2S (Rp

i), then Rp
i has non-association attributes. The

following definition is for a query q1 which includes only tuple independent tables.

Definition 6. If q = πe
A1 ,...,Ak

(Rp
1 �� Rp

2 · · · �� Rp
n) where every Rp

i is tuple
independent, then q is called independent query.

The Multiway-Split algorithm [13] makes full use of function dependency
(FD) to extend the safe plan algorithm [4] for generating efficient safe plans
for tuple independent probabilistic databases. We can use the Multiway-Split
algorithm to find out whether an independent query is safe. We give the following
definitions of 1-BID query, 2-BID query and 3-BID query.

Definition 7. Assume that q = Rp
i �� Rp

j , where Rp
i is a BID table and Rp

j is a
tuple independent table. If Attr(Rp

j) ⊇ Attr(Rp
i) and Rp

i .K̄ joins Rp
j .Key, then

the query q is called a 1-BID query.

Definition 8. Assume that q = Rp
i �� Rj, where Rp

i is a BID table and Rj is a
certain table. If Attr(Rj) ⊇ Attr(Rp

i) and Rp
i .K̄ joins Rj .Key, then the query q

is called a 2-BID query.

Definition 9. Assume that q = Rp
i �� Rp

j , where both Rp
i and Rp

j are f-BID
tables. If Rp

i .V̄ = Rp
j .K̄, then the query q is called a 3-BID query.

Theorem 3. The results of both a 1-BID query q1 and a 2-BID query q2 are
tuple independent probabilistic tables.

Proof. In a 1-BID query q1, we know that Attr(Rp
j) ⊇ Attr(Rp

i). Since Rp
j is a

tuple independent probabilistic table, Rp
j .Key → Attr(Rp

j). Then q1 = Rp
i �� Rp

j

becomes a select operation as follows: for every tuple tj in Rp
j , select at most

one tuple in Rp
i . So the result of q1 is a tuple independent probabilistic table.

Similarly, we can prove the result of q2 is also a tuple independent probabilistic
table. This proves the theorem.

Theorem 4. The result of a 3-BID query is a correlated block table.

Proof. Assume that q = Rp
i �� Rp

j , where both Rp
i and Rp

j are f -BID tables.
Since Rp

i .V̄ = Rp
j .K̄, the result of q is correlated when the result tuples have

different values in Rp
i .K̄. Since

∑n
i=1 pi = 1 in every block, Πe

Ā
(q) is disjoint

project if Ā ⊇ Rp
i .K̄. Thus, the result of a 3-BID query is a correlated block

table. This proves the theorem.

Efficient Queries Evaluation 81

Algorithm 1. Preprocessing(q = πe
A1 ,...,Ak

(qi))

1: push down selection predicate Rp
i .Aθc;

2: get A2S(q) from q;
3: for (every relation Rp

i) do
4: A2S(Rp

i) = Attr(Rp
i) ∩ A2S(q);

5: if ((Rp
i is tuple independent) ∩ (A2S(Rp

i) �⊇ Rp
i .Key)) T p

i = πI
A2S(R

p
i)

(Rp
i);

6: if (Rp
i is a BID table) T p

i = πH
A2S(R

p
i)

(Rp
i);

7: end for;
8: if (qj is a 1-BID sub-query or a 2-BID sub-query of qi) then
9: its result forms a tuple independent probabilistic table Rp

j ;
10: else if (qj is a 3-BID sub-query of qi) then
11: its result forms a correlated block table Rp

j ;
12: end if ;
13: for (every independent sub-query qj) do
14: if (Multiway-Split(qj) is safe) its result is a probabilistic table Rp

j ;
15: end for;
16: return πe

A1 ,...,Ak
(qj);

The preprocess function is shown in Algorithm 1, which includes the following
steps:

– We first push down selection predicate Rp
i .Aθc. Based on the new query q,

we derive A2S(q).
– For every tuple independent table, we project out its non-association

attributes if A2S(Rp
i) �⊇ Rp

i .Key .
– For every BID table, we project onto its association attributes.
– For both 1-BID sub-query and 2-BID sub-query, their respective results are

tuple independent probabilistic tables.
– For the 3-BID sub-query, its result is a correlated block tables.
– For every independent sub-query qj , the Multiway-Split algorithm is invoked

to find its safe plan, whose result is a probabilistic table Rp
j .

We use the following example to illustrate the preprocess algorithm.

Example 3. The following query evaluates on the database shown in Figure 1.
q(n) :- Cp(c;n), T p(n, b), L(b, l), Rp(n, l;′ H ′)
First, we perform the selection predicate. Then the query becomes
q(n) :- Cp(c;n),T p(n, b),L(b, l),Rp

1 (n, l , r)
We find Rp

1 is a tuple independent table. Using Definition 5, A2S(q)
= {n, b, l} and the association attribute sets of the tables are as follows:A2S(Cp) =
Attr(Cp) ∩ A2S(q) = {n}, A2S (T p) = Attr(T p) ∩ A2S(q) = {n, b}, A2S (L) =
Attr(L) ∩ A2S(q) = {b, l}, and A2S (Rp

1) = Attr(Rp
1) ∩ A2S(q) = {n, l}.

Because A2S(Cp) �⊇ C p .Key , Cp should project out its non-association
attribute {c}, that is, Cp

1 = πI
n(Cp), which is a correlated table by Corollary 1.

Similarly, Rp
1 should project out its non-association attribute {r}, that is, Rp

2 =
πI
n,l(R

p
1 (n, l , r)). Because A2S (T p) is equal to Attr(T p), T p need not project out

82 B. Qin

any attribute. Similarly, L need not project out any attribute either. After the pre-
processing step, the query becomes:

q(n) :- Cp
1 (n), T p(n, b),L(b, l), Rp

2(n, l)
We further find q includes an independent sub-query q2(n) :- T p(n, b),L(b, l),

Rp
2(n, l). By the Multiway-Split algorithm, q2 has the following safe plan:

P = πI
n(T p �� πI

n,b(L �� Rp
2))

Let the result of plan P be table Rp
2. Then the query becomes:

q(n) :- Cp
1 (n), T p(n, b),L(b, l), Rp

2(n, l)
:- Cp

1 (n), Rp
2(n)

Theorem 5. Algorithm 1 is correct and safe.

Proof. We proves the theorem as follows.
1. Qin et al. [13] proved that simple projection is safe for tuple independent

probabilistic tables. Lemma 1 has proved that simple projection is safe for BID
tables. Thus Steps 5 and 6 are correct and safe.

2. If qj is a 1-BID sub-query or a 2-BID sub-query, its result is a tuple
independent probabilistic table by Theorem 3. So Step 9 is correct and safe.

3. If qj is a 3-BID sub-query, its result is a corrected block table by Theorem
4. So Step 11 is correct and safe.

4. If qj is an independent sub-query and safe, its result is a probabilistic table
by the Multiway-Split algorithm. Otherwise, the tables involved in qj will not
be preprocessed. So Step 14 is correct and safe.

Since every step is correct and safe, Algorithm 1 is correct and safe. This
proves the theorem.

From Algorithm 1, we find the time complexity for the preprocessing step is
O(n2), where n denotes the number of tuples is involved in the query.

4.2 The Algorithm for Generating Safe Plans

Let q be a conjunctive query. Dalvi and Suciu [4] defined Γ as follows.

– Every FD in Γ p is also in Γ p(q).
– For every join predicate Ri.A = Rj .B, both Ri.A → Rj .B and Rj .B → Ri.A

are in Γ p(q).

The following is the base theorem for generating safe plans of queries evalu-
ation on BID probabilistic databases.

Theorem 6. Assume that q = πe
A1 ,...,Ak

(qi), qi = Rp
1 �� Rp

2 . . . �� Rp
m and

Head(qi) = Attr(Rp
1)∪ . . .Attr(Rp

m). After the preprocessing step, q is a complex
projection with the following two cases.

1. All tables are f-BID with Rp
i .V̄ = Rp

i+1.K̄. Then q = πe
A1 ,...,Ak

(qi) is safe
iff {A1 , ...,Ak} ⊇ Rp

1.K̄.
2. At least one table Rp

i is not tuple independent table. Then, q = πe
A1 ,...,Ak

(qi)
is safe iff the following can be inferred from Γ p(q):

A1 , ...,Ak → Head(qi)

Efficient Queries Evaluation 83

Proof. We prove the theorem as follows.
1. Since all tables are f -BID with Rp

i .V̄ = Rp
i+1.K̄, the result of qi is a

correlated block table. By Theorem 2, q = πe
A1 ,...,Ak

(qi) is safe if {A1 , ...,Ak} ⊇
Rp

1.K̄.
Let the result tuples of qi form table Ti. If {A1 , ...,Ak} �⊇ Rp

1.K̄, then any
result tuple of q is derived from different blocks of Ti. Since tuples in different
blocks of Ti are correlated, q is unsafe.

2. If A1, ..., Ak → Head(qi), {A1, ..., Ak} includes the key of every tuple
independent table and all attributes of other kinds of probabilistic tables. So q
is safe.

After the preprocessing step, at least one table is not tuple independent.
Thus, the result of qi is a correlated table. By Theorem 1, if A1, ..., Ak �→
Head(qi), the plan is unsafe.

This proves the theorem.

Before presenting the algorithm for generating safe plans, we need some ter-
minologies.

Definition 10. After the preprocessing step, let a query be q = πe
A1 ,...,Ak

(qj).
Based on Γ p(q), the set of attributes which can be inferred from {A1, ..., Ak} is
represented by {A1 , ...,Ak}+ and we denote it by InfAttr(q).

Definition 11. Let a query be q = πe
A1 ,...,Ak

(qi). If Rp
i ∈ qi and InfAttr(q) ⊇

Attr(Rp
i), Rp

i is covered by InfAttr(q). All tables that are covered by InfAttr(q)
form a set called maximal coverage set (MCS (q)).

By Definition 10, the following corollary and theorem show that we can use
Theorem 6 Item 2 more flexibly.

Corollary 2. Assume that the result of qi is not a correlated block table after
the preprocessing step. q = πe

A1 ,...,Ak
(qi) is safe iff Head(qi) ⊆ InfAttr(q).

Proof. By Theorem 6 Item 2, q = πe
A1 ,...,Ak

(qi) is safe iff A1, ..., Ak → Head(qi).
Using Definition 10, Head(qi) ⊆ InfAttr(q). So q = πe

A1 ,...,Ak
(qi) is safe iff

Head(qi) ⊆ InfAttr(q). This proves the corollary.

Theorem 7. After the preprocessing step, q = πe
Head(q)(R

p
1 �� Rp

2 �� . . . �� Rp
n)

(Head(q) �= {} ∧ n > 1) and the result of qi = Rp
1 �� Rp

2 �� . . . �� Rp
n is not a

correlated block table. If its MCS (q) includes m (1 ≤ m ≤ n) tables (for example
Rp

1, . . . , R
p
m), then:

1. If m is equal to n, then the plan πe
Head(q)(R

p
1 �� Rp

2 . . . �� Rp
m) is safe.

2. If m < n, then the query πe
Head(q)(R

p
1 �� Rp

2 . . . �� Rp
n) has no safe plan.

Proof. 1. Let qi = Rp
1 �� Rp

2 . . . �� Rp
m. Using Theorem 6 Item 2, q = πe

A1 ,...,Ak
(qi)

is safe iff A1, ..., Ak → Head(qi). If m is equal to n, then Head(qi) ⊆ InfAttr(q).
By Corollary 2, the plan is safe.

2. We prove it by contradiction. Since MCS (q) = {Rp
1, . . . , R

p
m}, MCS (q) =

{Rm+1, . . . , Rn}. Let qj = Rp
1 �� Rp

2 . . . �� Rp
m and qi = qj �� πe

Ā
(Rp

m+1 �� . . . ��

84 B. Qin

Rp
n). Assume the plan πe

Head(q)(qj �� πe
Ā
(Rp

m+1 �� . . . �� Rp
n)) is safe. Then using

Theorem 6 Item 2, we can derive as follows.
Head(q) → Attr(qj) ∪ Ā

Ā → Attr(Rp
m+1) ∪ · · · ∪ Attr(Rp

n)
Thus, we can further derive as follows.
Head(q) → Attr(qj) ∪ Attr(Rp

m+1) ∪ · · · ∪ Attr(Rp
n)

→ Attr(Rp
1) ∪ · · · ∪ Attr(Rp

n)
Therefore, |MCS (q)| = n, which contradicts the assumption that |MCS (q)| <

n. Hence the query has no safe plan.
The theorem is proved.

The algorithm to generate safe plans for queries on BID probabilistic databases
is shown in Algorithm 2. It has the following steps.

– If q is boolean, then we use the probabilistic reference method [17].
– If q includes only tuple independent probabilistic tables, then the Multiway-

Split algorithm is invoked.
– If the result of qi = Rp

1 �� · · · Rp
n is a correlated block table and {A1, . . . , Ak} ⊇

Rp
1.K̄, then the query is safe. Otherwise, the query has no safe plan.

– If |MCS (q)| is equal to |Rels(q)|, then the query has a safe plan. Otherwise,
the query has no safe plan. Here |Rels(q)| denotes the number of relations
involved in q.

Algorithm 2. SPlan(q = πe
A1,...,Ak

(Rp
1 �� · · · Rp

n))

1: if (q is boolean) then
2: return (the probabilistic inference method);
3: end if ;
4: q = Preprocessing(q);
5: if (q only includes tuple independent probabilistic tables) then
6: return Multiway-Split(q);
7: else if (q = Rp

1 �� · · · Rp
n is a 3-BID query and {A1, . . . , Ak} ⊇ Rp

1.K̄) then
8: return πD

Head(q)(R
P
1 �� . . . �� Rp

k);
9: else if (|MCS(q)| == |Rels(q)|) then

10: return πe
Head(q)(R

P
1 �� . . . �� Rp

k);
11: else
12: return error(”No safe plans exist”);
13: end if ;

Example 4. Continuing Example 3. We show the preprocessing result below for
convenience.

q(n) :- Cp
1 (n), Rp

2(n)
Using Theorem 6, q(n) has a safe plan, which is P = πI

n(Cp
1) �� πI

n(T p ��
πI
n,b(L �� Rp

2)).

Efficient Queries Evaluation 85

However, by the Find-Plan algorithm [14], the query q(n) shown in Example 3
is unsafe. We state now the soundness of our algorithm: the proof follows easily
from the fact that all operations are safe.

Theorem 8. The SPlan algorithm is complete, that is, any plan that it returns
is safe and the SPlan algorithm can find a safe plan iff the query is safe.

Proof. We prove theorem as follows. The algorithm returns safe plans in the
following cases:

Case 1: If the query is boolean, the probabilistic inference method is invoked
to calculate the confidence of every answer tuple.

Case 2. It returns at Line 6. The Multiway-Split algorithm is invoked to
return a safe plan or return an error. The Multiway-Split algorithm is complete
for tuple independent probabilistic tables.

Case 3. It returns at Line 8. Theorem 6 Item 1 ensures the plan is safe.
Case 4. It returns at Line 10. Theorem 7 ensures the plan is safe. Otherwise,

the query has no safe plan.
So the SPlan algorithm is complete.

From Algorithm 2, we find the time complexity of the algorithm is O(n2),
where n denotes the number of tuples is involved in the query. In this step,
Algorithm 2 only generates safe plan and does not access tables in the database.

5 Experiments

We have developed a prototype for probabilistic query evaluation. Our system
is implemented as a middleware [13], which can work on top of any relational
database engine. We use the TPC-H benchmark [1] with databases TPC-H scale
factors 0.1, 0.5 and 1. The following shorthand notations are used in the queries:
Item: lineitem, Part: part, Sup: supplier, PS: partsupp, Nat: nation, Reg: region,
Ord: orders and Cust: customer. In the experiments, there is no index for any
table. We modified all queries by replacing all the predicates in the WHERE
clause with uncertain matches. All of the following experiments are carried on
the first 10 of the 22 TPC-H queries [4,13]. Dalvi and Suciu [4] had found other
queries to be not very interesting for applying uncertain predicates, since most of
them involves complex aggregates. The experiments were conducted on an intel
core2 1.8GHz/2.0G memory and PostgreSQL as the underlying DBMS, running
Windows 7.0.

Out of the 10 TPCH queries, 7 turned out to have safe plans, while Q7, Q8
and Q10 were unsafe. Since Q2, Q3 and Q5 are not satisfied with the conditions
in the Find-Plan algorithm [14], they are unsafe. However, Q2, Q3 and Q5 are
safe by the proposed algorithm. We will give their safe plans in the next sub-
section. Because Q1, Q4, Q6 and Q9 respective only have one probabilistic table,
the proposed algorithm and the Find-Plan algorithm generate the same safe plan
for them. Thus, we do not compare the performance of our algorithm with the
Find-Plan algorithm.

86 B. Qin

We measured the running times for the seven queries that have safe plans,
shown in Figures 4(a), 4(b) and 4(c). All times are wall-clock. The first column in
the graph shows the time for running bare queries without taking into account
the computation time for the uncertain predicate. The second column is the
running time of the safe plan (SPlan). From those Figures, we find that the
bare queries have better performance than their respective safe plans just as in
[4,13]. However, we find one exception, that is, the safe plan of Q4 has better
performance than its bare query for TPC-H scale factors 0.5 and 1. This is
because the safe plan of Q4 adopts hash join while its bare query uses merge
join. We further find that safe plans scale well on probabilistic databases. Finally,
since Q2, Q3 and Q5 are complex, we further discuss their safe plans as follows.

For Q2, we must create a view tmp first [4]. There are two intermediate BID
tables Rp

i = πH
C̄

(Partp) and Rp
j = πH

B̄
(Regp). The safe plan of Q2 is P = Rp

i ��

πI
C̄

(Rp
j �� πĀ(PS �� Sup �� tmp �� Nat)), where Ā, B̄, C̄ and D̄ denote the

corresponding association attribute sets. The result of qi = Rp
j �� πĀ(PS ��

Sup �� tmp �� Nat) is an independent table Rp
k because Ā ⊃ attr(Rp

j).
For Q3, the safe plan is P = πH

Ā
(Itemp) ��e πD

B̄
(πD

C̄
(Ordp) ��e πD

D̄
(Custp)),

where Ā, B̄, C̄ and D̄ denote the corresponding association attribute sets.
For Q5, the safe plan is P = πI

Head(Q5)(π
I
C̄

(πB̄(Sup �� Nat �� Item) ��

πH
Ā

(Regp)) �� πH
F̄

(πH
D̄

(Ordp) �� Cust)), where Ā, B̄, C̄, D̄, Ē and F̄ denote
the corresponding association attribute sets. The important part of the plan
is that the result of πH

F̄
(πH

D̄
(Ordp) �� Cust) is a BID table and the result of

πI
C̄

(πB̄(Sup �� Nat �� Item) �� πH
A (Regp)) �� πH

F̄
(πH

D̄
(Ordp) �� Cust) is an

independent table Rp
i because C̄ ⊃ F̄ .

Q1 Q2 Q3 Q4 Q5 Q6 Q9
10

0

10
1

10
2

10
3

10
4

10
5

Queries

T
im

e
co

st
 in

 m
se

c
(i

n
lo

g
sc

al
e)

Bare SPlan

(a) TPC-H scale factor 0.1

Q1 Q2 Q3 Q4 Q5 Q6 Q9
10

0

10
1

10
2

10
3

10
4

10
5

Queries

T
im

e
co

st
 in

 m
se

c
(i

n
lo

g
sc

al
e)

Bare SPlan

(b) TPC-H scale factor 0.5

Q1 Q2 Q3 Q4 Q5 Q6 Q9
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Queries

T
im

e
co

st
 in

 m
se

c
(i

n
lo

g
sc

al
e)

Bare SPlan

(c) TPC-H scale factor 1

Fig. 4. The performance of SPlan vs. Bare over BID probabilistic database

6 Related Work

Probabilistic databases have been studied for decades [2,8,19,20]. There are
many uncertain data models. MystiQ [2] can handle three kinds of probabilistic
tables: tuple independent tables, BID tables and p-BID tables. This paper further
introduces two kinds of probabilistic tables which are the correlated table and
the correlated block table.

Efficient Queries Evaluation 87

There are two main ways to compute the result data and their confidences.
One is that extensional method couples data computation and confidence com-
putation together. Because of the rigid restrictions [3,6,10], the systems built
around them can hardly handle queries flexibly. Dalvi and Suciu [4] first intro-
duced safe plans to evaluate on tuple independent probabilistic databases. Using
functional dependencies, Qin and Xia [13] further optimized Dalvi’s algorithm
by keeping only the necessary projections in the safe plans. For BID probabilistic
tables, we propose a new project, Hybrid project (πH), which executes a disjoint
project [14] and then performs an independent project [14] in an atomic oper-
ation. A few papers [5,14] discussed safe plans of queries on BID probabilistic
tables. In this paper, we introduce a new algorithm to find safe plans of conjunc-
tive queries without self-joins on BID probabilistic databases. Our algorithm can
find a safe plan for a query iff the query is safe.

The other is that there are many intensional methods to infer the confi-
dences of answer tuples using lineage. PrDB [17] adopted probabilistic graphical
model to infer the confidences. Trio [16] computed the probability of an arbi-
trary boolean formula of independent events, which is known to have exponen-
tial worst-case complexity. SPROUT [12] adopted its operator conf() to turn
disjunctive normal form formulas into read-one formulas and then computed
their probabilities on the fly. Knowledge compilation [9,11,18] can be used to
compute the probabilities of query results in probabilistic databases. Sen et al.
[18] proved that one only needs to test if the co-occurrence graph is a cograph
to judge whether the boolean formulas of the result tuples produced by con-
junctive queries without self-joins are read-once. Olteanu et al. [11] found that
OBDDs can naturally represent the lineages of IQ queries and the probability of
an OBDD can be computed in PTIME. Jha and Suciu [9] studied the problem
of compiling the query lineage into compact representation and considered four
tractable compilation targets: read-once, OBDD, FBDD, and d-DNNF.

7 Conclusions and Future Work

The field of uncertain databases has attracted considerable attention over the
last few decades and is experiencing revived interest due to the increasing popu-
larity of applications such as data cleaning and integration, information extrac-
tion, scientific and sensor databases, and etc. Dalvi and Suciu’s work [4] on the
evaluation of conjunctive queries on tuple-independent probabilistic databases
showed that the class of conjunctive queries can be partitioned into easy queries
and hard queries. This paper introduces two new probabilistic tuple models and
one new probabilistic operator. Based on the above work, this paper further
proposes an algorithm to find safe plans of conjunctive queries on BID tables.
Thus far we have limited our discussion to safe plans of probabilistic databases.
We plan to do some research work on other directions of probabilistic databases.

Acknowledgments. This work is partially funded by the National Basic Research
Program of China (973 Program) under Grant No. 2012CB316205, the National Nat-
ural Science Foundation of China under Grant No. 61170012 and 61472425.

88 B. Qin

References

1. Transaction Processing Performance Council, TPC BENCHMARKTM H Stan-
dard Specification (revision 2.9.0)

2. Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Re, C., Suciu, D.: Mystiq: a system
for finding more answers by using probabilities. In: SIGMOD, pp. 891–893 (2005)

3. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB,
pp. 71–81 (1987)

4. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic database. The
VLDB Journal 16(4), 523–544 (2007)

5. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges.
In: PODS, pp. 1–12 (2007)

6. Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Transac-
tions on Databases Systems 21(3), 339–369 (1996)

7. Green, T., Tannen, V.: Models for incomplete and probabilistic information. IEEE
Data Engineering Bulletin 29(1), 17–24 (2006)

8. Ives, Z. G., Khandelwal, N., Kapur, A., Cakir, M.: Orchestra: rapid, collaborative
sharing of dynamic data. In: CIDR, pp. 41–46 (2005)

9. Jha, A., Suciu, D.: Knowledge compilation meets database theory: Compiling
queries to decision diagrams. Theory of Computing Systems 52(3), 403–440 (2013)

10. Lakshmanan, L., Leone, N., Ross, R., Subrahmanina, V.: Probview: A flexible
probabilistic database system. ACM Transactions on Database Systems 22(3),
419–469 (1997)

11. Olteanu, D., Huang, J.: Secondary-storage confidence computation for conjunctive
queries with inequalities. In: SIGMOD, pp. 389–402 (2009)

12. Olteanu, D., Huang, J., Koch, C.: Sprout: lazy vs. eager query plans for tuple-
independent probabilistic databases. In: ICDE, pp. 640–651 (2009)

13. Qin, B., Xia, Y.: Generating efficient safe query plans for probabilistic databases.
Data & Knowledge Engineering 67(3), 485–503 (2008)

14. Ré, C., Dalvi, N., Suciu, D.: Query evaluation on probabilistic databases. IEEE
Data Engineering Bulletin 29(1), 25–31 (2006)

15. Ré, C., Suciu, D.: Materialized views in probabilistic databases for information
exchange and query optimization. In: VLDB, pp. 51–62 (2007)

16. Sarma, A., Theobald, M., Widom, J.: Exploiting lineage for confidence computa-
tion in uncertain and probabilistic databases. In: ICDE, pp. 1023–1032 (2008)

17. Sen, P., Deshpande, A., Getoor, L.: Prdb: managing and exploiting rich correlation
in probabilistic databases. The VLDB Journal 18(5), 1065–1090 (2009)

18. Sen, P., Deshpande, A., Getoor, L.: Read-once functions and query evaluation in
probabilistic databases. In: VLDB, pp. 1068–1079 (2010)

19. Singh, S., Mayfield, C., Shah, R., Prabhakar, S., Hambrusch, S.: Database support
for probabilistic attributes and tuples. In: ICDE, pp. 1053–1061 (2008)

20. Widom, J.: Trio: a system for integrated management of data, accuracy, and lin-
eage. In: ICDR, pp. 262–276 (2005)

Parallel Top-k Query Processing on Uncertain
Strings Using MapReduce

Hui Xu, Xiaofeng Ding(B), Hai Jin, and Wenbin Jiang

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China
{chinahui1988,xfding,hjin,wenbinjiang}@hust.edu.cn

Abstract. Top-k query is an important and essential operator for data
analysis over string collections. However, when uncertainty comes into
big data, it calls for new parallel algorithms for efficient query processing
on large scale uncertain strings. In this paper, we proposed a MapReduce-
based parallel algorithm, called MUSK, for answering top-k queries over
large scale uncertain strings. We used the probabilistic n-grams to gen-
erate key-value pairs. To improve the performance, a novel lower bound
for expected edit distance was derived to prune strings based on a new
defined function gram mapping distance. By integrating the bound with
TA, the filtering power in the Map stage was optimized effectively to
decrease the transmission cost. Comprehensive experimental results on
both real-world and synthetic datasets showed that MUSK outperformed
the baseline approach with speeds up to 6 times in the best case, which
indicated good scalability over large datasets.

1 Introduction

Due to the influence of various factors, such as the precision constraints of sen-
sors, typographical errors, and gene mutation, uncertain strings have become
ubiquitous in real life. As ranking in databases with uncertain information or
attributes should concern the tradeoff between the score and the probability,
existing query methods on deterministic data are no longer appropriate any
more. The problem to find the top-k answers on fuzzy information has been
deeply concerned for a long time. However, few literatures have dealt with top-k
queries on uncertain strings, which we focus on in this paper.

Furthermore, the scale of this problem has increased dramatically in the era of
big data. Regarding the limited computational capability and storage of a single
machine, designing new parallel algorithms is the way to deal with the rapidly
growth of both the number and length of strings. Exploiting the parallelism
among a cluster of computing nodes, MapReduce [1] has become a dominant
parallel computing paradigm for processing large-scale datasets, and it is already
well studied and widely used in both commercial and scientific applications [2].

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 89–103, 2015.
DOI: 10.1007/978-3-319-18123-3 6

90 H. Xu et al.

However, most researches on MapReduce were focused on developing MapReduce
versions of standard query algorithms [3], which is mainly dealing with queries
over numerical data. To the best of our knowledge, no work has been done in
the area of top-k queries over uncertain strings.

In this paper, we focus on the top-k query processing on uncertain strings
based on the similarity function expected edit distance (EED) [4], and investi-
gate how this problem can get benefits from the popular MapReduce framework.
Since one of the most expensive operations in MapReduce is moving the data
among different machines, we update the naive method by using combiners exe-
cuted on the same nodes as mappers to pick up its local top-k strings. However,
this method is still prohibitively expensive for large string datasets. To address
this problem, we propose a semantics called gram mapping distance (GMD),
based on which a novel lower bound for EED is derived. Finally, we propose
an optimization algorithm, which seamlessly integrates the lower bound and TA
algorithm to speed up. In summary, the contributions of this paper are as follows:

– We give the definition of top-k query on uncertain strings based on EED
and denote the problem as EED-Topk (Section 3). To solve it, we propose
several MapReduce-based parallel algorithms (Section 5).

– To reduce the overall transmission cost and improve the pruning power in
the Map phase, we derive a novel lower bound for EED from a new distance
semantics GMD (Section 4).

– We demonstrate the superiority of our methods through extensive experi-
ments (Section 6).

In addition, we review related work in Section 2 and conclude the paper in
Section 7.

2 Related Work

Top-k query is an important data analysis tool for many applications, and it
has been exhaustively studied. On the one hand, the Fagin’s Threshold Algo-
rithm (TA) [5] is one of the best known algorithms for answering top-k query
on multi-dimensional numerical data. On the other hand, applying divide and
conquer, n-gram [6] is the most widely used signature to accelerate the string
search procedure. Recently, papers [7,8] proposed efficient filtering methods tak-
ing advantages of inverted n-gram indexes available for finding the top-k approx-
imate strings on determinate strings. Without inverted n-gram index, Deng
et al. [9] proposed a progressive framework by improving the traditional dynamic-
programming algorithm to compute edit distance for top-k query.

When uncertainty comes into the picture, the semantics of ranking becomes
ambiguous, due to the fact that both scores and probabilities of tuples must be
accounted in the ranking. So existing top-k query methods on deterministic data
are inappropriate for this significant challenge. Efficient top-k query processing
for uncertain data in atomic data types have been discussed in [10,11] with
different types of query conditions, but few literatures have dealt with uncertain

Parallel Top-k Query Processing on Uncertain Strings Using MapReduce 91

Table 1. Mainly Used Notations

Notation Description

|S| the size of string dataset S

ls the length of string s

μ the average length of uncertain strings

c [i] the ith character in uncertain string s

Gs the n-gram set of string s

λe(s1, s2) expected edit distance between s1 and s2
g(s1, s2) gram mapping distance between s1 and s2

strings. Jestes et al. [4] focused on the similarity joins on uncertain strings using
EED as measurement, and proposed two probabilistic string models to capture
the fuzziness in string values in real-world applications. Then, Ge and Li [12]
efficiently answered approximate substring matching problem on the character-
level uncertain strings, which is different from our problem.

To deal with the rapid growth of the string number and length, parallelizing
the algorithm is an obvious trend. Much recent research on MapReduce has
focused on developing MapReduce versions of standard algorithms [3]. Vernica
et al. [13] proposed a 3-stage MapReduce-based similarity join method. Then,
a MapReduce-based string similarity joins framework, called MASSJOIN [14],
was given to support both set-based similarity functions and character-based
similarity functions.

Despite of the intensive efforts devoted in processing top-k queries over
numerical data, or similarity joins over spatial or string datasets, to the best
of our knowledge, parallel top-k query processing on uncertain strings is still a
previously unresolved problem in data management.

3 Preliminaries and Problem Definition

In this section, we introduce some preliminaries in uncertain strings and top-k
query. Then, we give the definition of top-k query on uncertain strings. Table 1
summarizes the mainly used notations in this paper.

3.1 Preliminaries

Uncertainty Model. In a character-level uncertain string model [4], for a string
s = c[1] . . . c[ls], each character c[i] is a random variable with a discrete distribu-
tion over its possible world Ω. For i = 1, . . . , ls, c[i] = {(ci,1, pi,1), . . . , (ci,ηi

, pi,ηi
)},

where ci,j ∈ Ω, pi,j ∈ (0, 1], and
∑ηi

j=1 pi,j = 1. Each character c[i] instantiates
into ci,j with probability pi,j independently. In this paper, we separate different
choices in c[i] with “∗” and enclose each c[i] with two “|”. While, if c[i] is determin-
istic, namely it has only one choice with probability 1, we can just write it down
by itself.

92 H. Xu et al.

Expected Edit Distance. Edit distance is one of the most widely accepted
measures to determine similarities between two strings [15]. The edit distance
d(s1, s2) means the minimum number of edit operations to transform string s1
into another string s2. Jestes et al. [4] proposed expected edit distance (EED)
as the similarity function between two uncertain strings. The EED between the
query string q and the uncertain string s is

λe(s, q) =
∑

si∈Ω

p(si) × d(q, si)

The probabilistic string s instantiates into one instance si of the possible
worlds with probability p(si), and d(q, si) is the edit distance between si and q.

Probabilistic N-gram. The n-gram multi-set of the string s, denoted by Gs,
is obtained by sliding a window of length n over the characters in s. Considering
the uncertainty, probabilistic n-gram comes. A probabilistic n-gram of string
s is (�, s[�...� + n − 1], pi,j), where � is the beginning position of the n-gram,
and s[�...� + n − 1] is the probabilistic substring of length n beginning from �
with probability pi,j . Without loss of generality, before dividing s into a set of
n-grams, we extend it to a new string s′ by prefixing (n − 1) copies of “$” and
suffixing (n−1) copies of “#”. If there is one uncertain character with m possible
instances in s, the size of its probabilistic n-gram set will be (ls +m×n−1). For
instance, the probabilistic 3-gram set of s = “appl|e ∗ 0.7 ∗ y ∗ 0.3 ∗ |” is Gs={(0,
$$a, 1), (1, $ap, 1), (2, app, 1), (3, ppl, 1), (4, ple, 0.7), (4, ply, 0.3), (5, le#,
0.7), (5, ly#, 0.3), (6, e##, 0.7), (6, y##, 0.3)}.

MapReduce. In the MapReduce framework, computation is carried out by
using two user defined functions: Map function and Reduce function. In map
phase, each map task reads the input (key, value) pairs as a list of independent
records, and emits intermediate (key, value) pairs. In reduce phase, a reduce
function is invoked with each distinct key and the list of all values sharing the
key. The framework also allows the user to provide a combiner function that
is executed on the same nodes as mappers right after the map functions have
finished. The combiner allows the user to decrease the amount of data sent
through the network.

3.2 Problem Definition

In this paper, we focus on the query problem on the character-level uncertain
strings. Based on the scoring function EED shown above, we now formally define
the top-k query on uncertain strings based on “marriage” of possible worlds and
traditional top-k query semantics.

Definition 1. (EED-Topk) Given a set of uncertain strings S = {si | 1 ≤ i ≤
|S|} with possible worlds associated with probabilities on some positions, a user-
appointed parameter k (the expected size of answer queue), and a query string q,

Parallel Top-k Query Processing on Uncertain Strings Using MapReduce 93

Table 2. An Example of EED-Topk with q =“ACGTATGGAC” and k = 1

id character-level uncertain string s λe(si, q)

s0 |C ∗ 0.5 ∗ G ∗ 0.5∗|ACGTATGGAC 0.5×1+0.5×1=1

s1 ACTAGATCC|A ∗ 0.5 ∗ T ∗ 0.5∗| 0.5×6+0.5×6=6

s2 ACGTAT|G ∗ 0.8 ∗ C ∗ 0.2∗|GAC 0.8×0+0.2×1=0.2

s3 A|A ∗ 0.5 ∗ T ∗ 0.5∗|CCAGCAT 0.5×6+0.5×6=6

s4 GAAG|T ∗ 0.7 ∗ A ∗ 0.3∗|TCATC 0.7×6+0.3×6=6

an EED-Topk query over S should return the k objects, whose λe(si, q) are the
global k-minimums in S. The answer of query is denoted as a k-length array T =
{T1, . . . , Tk}. That is to say, for each Tj ∈ T (1 ≤ j ≤ k), λe(Tj , q) ≤ λe(sx, q),
where sx ∈ S\T , 1 ≤ x ≤ |S|.
Example 1. As shown in Table 2, the string set contains 5 uncertain strings.
According to each string’s EED with q, the answer of top-1 query is T = {s2}.

4 A Novel Lower Bound

Since computing EEDs for every uncertain strings in the data set is prohibitively
expensive, we try to give a new lower bound for EED to avoid enumerating all
strings.

4.1 Gram Mapping Distance

Applying divide and conquer strategy, we propose a novel semantics called gram
mapping distance to evaluate the similarity between the n-gram multi-sets of
two strings.

Definition 2. (Gram Mapping Distance) (GMD) Given two n-gram multi-sets
Gs1 and Gs2 of the strings s1 and s2 with the same cardinality, the gram mapping
distance between s1 and s2 is defined as an optimal mapping between Gs1 and
Gs2 . Assume that P : Gs1 → Gs2 is a bijection. The GMD between s1 and s2,
denoted by μ(s1, s2), is computed as

g(s1, s2) = min
P

∑

grami∈Gs1

λe(grami, P (grami)), P : Gs1 → Gs2

Example 2. The computation of GMD is equivalent to finding an optimal map-
ping between two n-gram multi-sets. Similar to the work in [16], we construct
a weighted matrix for each pair of n-grams from the two strings, and apply the
Hungarian algorithm [17] to find the optimal mapping. As shown in Fig. 1, the
strings s1 and s2 have different lengths with their corresponding probabilistic
n-grams below them. As the definition of GMD requires that the two multi-sets
must have same cardinality, it requires an additional null n-gram in the Gs1

before mapping.

94 H. Xu et al.

1 2

Fig. 1. Compute g(s1, s2) between Gs1 and Gs2 . The optimal mapping is the solid
line with the probability in middle, while other edges linking the n-grams are shown as
dotted line. g(s1, s2) = (0.8×1+0.2×1)+(0.8×1+0.2×2)+(0.8×0+0.2×1)+1×3 = 5.4.

4.2 Lower Bound for EED

Based on GMD, a novel lower bound for EED is proposed as follows.

Lemma 1. Given two uncertain strings s1 and s2, the relationship between
g(s1, s2) and λe(s1, s2) satisfies

g(s1, s2) ≤ max{3, (3n − 4)} × λe(s1, s2)

Proof. Let E = {e1, e2, · · · , eK} be a series of edit operations that is needed
to transform s1 into s2. Accordingly, there is a sequence of strings s1 = M0 →
M1 → · · · → MK = s2, where Mi−1 → Mi indicates that Mi is the derived string
from Mi−1 by performing ei for 1 ≤ i ≤ K. Assume that there are K1 insertion
operations, K2 deletion operations and K3 substitution operations respectively,
so we have K1 + K2 + K3 = K = λe. Then, we analyse the detailed influence of
each kind of edit operation as illustrated in Fig. 2.

According to the definition of probabilistic n-gram above, each character in
string s must appear at least n times in Gs. It is clear that an edit operation
will only affect at most m×n probabilistic n-grams of an uncertain string, when
there is one uncertain character with m possible instances. As

∑m
j=1 pj = 1, the

EED between the affected m × n probabilistic n-grams and the query string’s
n-grams have λe =

∑n
i=1

∑m
j=1 pi,j × di,j ≤ ∑n

i=1 max{di,j |j ∈ [1,m]}. So we
can simply consider the affected m × n probabilistic n-grams as only n n-grams
with the maximum edit distance with the corresponding n-grams of the query
string.

– Insertionoperation: Ifwe insert a character into the stringMi−1, as shown in
Fig. 2, we see it changes from (a) to (b)with atmostm×n affected probabilistic
n-grams.Wediscuss the detailed influence in two cases:n = 2andn ≥ 3.When
n = 2, it is clear that no more than 2 for one new derived n-gram and 1 for
another one will be added to the GMD. While, when n ≥ 3, the edit distance

Parallel Top-k Query Processing on Uncertain Strings Using MapReduce 95

Fig. 2. From (a) to (b), we insert the pink character in front of the gray one. From (b)
to (c), the blue character substitute the pink one.

will increase less than n for one new derived n-gram, 1 for both the first one and
the last one n-grams, as well as 2 for the other (n − 3) n-grams. That’s to say,
if n ≥ 3, the GMD will add no more than 1 × 2 + 2 × (n − 3) + n = (3n − 4).
Thus, we conclude that g(Mi−1,Mi) ≤ max{3, (3n − 4)}.

– Deletion operation: Likewise, in Fig. 2 from (b) to (a), deleting the pink
character has the same influence as inserting it.

– Substitution operation: As shown in Fig. 2 from (b) to (c), substitute
the blue for the pink in Mi−1 only lead to at most 1 edit distance for the
affected m × n n-grams. So we have g(Mi−1,Mi) ≤ n.

Above all, we conclude the following relationship:

g(s1, s2) ≤ max{3, (3n − 4)} × K1 + max{3, (3n − 4)} × K2 + n × K3

≤ max{3, (3n − 4)} × (K1 + K2 + K3)
≤ max{3, (3n − 4)} × λe(s1, s2)

5 Parallel Algorithms Using MapReduce

Intuitively, a naive parallel method is to enumerate all strings from the given
uncertain string dataset and use MapReduce to compute the EEDs for them.
Since one of the most expensive operations in MapReduce, denoted as “shuffle”,
is moving the data between different machines, this naive parallel method is quite
time consuming as the growth of the string length, quantity and complexity.

5.1 PUSK

Fortunately, EED-topk query meets the conditions of using combiner function.
So we propose a baseline parallel algorithm using the MapReduce framework as
shown in Algorithm 1. The Map function computes all uncertain strings’ EEDs to
the query string, followed by a combiner function executed on the same nodes as
mappers to pick up its local top-k strings. Then, all the local top-k strings from
different nodes are sent to the Reducer, where the strings with top-k minimum
EEDs from the given dataset are returned in reduce phase. We denote this basic
algorithm as PUSK.

96 H. Xu et al.

Algorithm 1. PUSK
Input: an uncertain string set S = {si | 1 ≤ i ≤ |S|}, a query string q, the size of

answer set k
Output: the answer queue T : the top-k similar strings with q
1: map(k1 = sid, v1 = string)//map phase
2: eed ← compute λe(v1, q);
3: output(k2 = eed, v2 = v1);
4: combiner(k2 = eed, list(v2) = list(string))
5: count ← k;
6: foreach string in list(v2) do
7: if count > 0 then
8: output(k3 = k2, v3 = string);
9: count ← count − 1;

10: reduce(k3 = eed, list(v3) = list(string))//reduce phase
11: count ← k;
12: foreach string in list(v3) do
13: if count > 0 then
14: output(k4 = k3, v4 = string);
15: count ← count − 1;

Although it is very stable and almost not influenced by k, it is clear that
PUSK is still brute-force and have to compute the EEDs of all the strings in
the Map phase. To achieve better performance, we try to optimize the filtering
power by changing the combiner function in Map phase.

5.2 MUSK

Like the original problem, our problem may be solved from scratch by apply-
ing divide-and-conquer strategy and using some TA-like algorithm. Since TA
assumes that each attribute of the multidimensional data space has an index
list, first of all, we design an inverted probabilistic n-gram index for uncertain
strings at first. We store the index in extendible hashing and use each n-gram
as the key. At the same time, we attach related string-id, frequency of n-grams,
the pair of position and corresponding probability to each entries in n-gram’s
posting list.

By combing the lower bound as shown in Lemma 1 with the TA algorithm,
we propose an optimization threshold algorithm for efficient EED-Topk query
processing and name it MUSK. The pseudo-code of MUSK is shown in Algo-
rithm 2.

Fig. 3 shows an example of data flow in MUSK framework. The uncertain
string dataset S is split into some smaller subsets, and each map task handles
one split on the node by taking the string id sid as keys and the string content
as values in parallel. To avoid too much computation and transmission cost,
we optimize the filtering power in the combiner function. As both the map
function and the combiner function process the input (key, value) pairs as a list
of independent records, in Line 2 of Algorithm 2, we unified all the keys k2 = 1.0

Parallel Top-k Query Processing on Uncertain Strings Using MapReduce 97

in the mappers to make sure that all the strings in the same split will be gathered
into the same combiner as a whole after mapper. Fig. 4 shows how the combiner
function works on the EED-Top1 query on uncertain string dataset as shown in
Table 2.

Algorithm 2. MUSK
Input: a probabilistic string set S = {si | 1 ≤ i ≤ |S|}, a query string q, the size of

answer queue k
Output: the answer queue T : the top-k similar strings with q
1: map(k1 = sid, v1 = string)//map phase
2: output(k2 = 1.0, v2 = v1);
3: combiner(k2 = 1.0, list(v2) = list(string))
4: Gq ← gram(q, n); //the n-grams of the query string q
5: foreach string in list(v2) do
6: Gs ← gramIndex(string, n);
7: Construct matrix for TA based on EDs between Gs and Gq in ascending order;

8: Obtain inverted list L from the gramIndex;
9: ω = 0;

10: for (row=1; L! = ∅; row++) do
11: Compute λe(si, q) for the seen strings in current row;
12: Update and maintain the top-k heap;
13: ω = the summation of scores in current row;
14: τ = max{λe(s

′, q)|s′ ∈ top-k};
15: if ω > τ × max{3, (3n − 4)} then
16: All unseen strings are safely pruned;//from Lemma 1
17: T ← the pair of (eed, string)//early halt
18: foreach pair in T do
19: output(k3 = T.eed, v3 = T.string);
20: reduce(k3 = eed, list(v3) = list(string))//reduce phase
21: count ← k;
22: foreach string in list(v3) do
23: if count > 0 then
24: output(k4 = k3, v4 = string);
25: count ← count − 1;

At beginning of the filtering function, it accesses the objects row by row in
the matrix . While some n-gram gi is seen, find the sids based on the index list
of gi and compute the EEDs for these archived strings. Here, we ignore n-grams
in the first and last (n − 1) columns as the n-grams with $ and # have low
selectivity. In Line 13, the algorithm computes the summation of the scores in
the current row as new threshold ω. It gives the minimum value of GMD for
the other uncertain strings in the same split which have not been seen so far. If
there is no gi in the current row, we take the above value in the same column as
its minimum value. Line 15 tests whether the current ω meets the halt condition
ω > τ ×max{3, (3n−4)}. Here, τ is equal to the maximum of EEDs from current

98 H. Xu et al.

Fig. 3. An example of data flow in MUSK framework

top-k strings based on Lemma 1. Running above steps repeatedly until k objects
have been found and meet the halt condition. In this case as shown in Fig. 4,
when running at the second row, it meets the halt condition. The algorithm
stops, and all the other unaccessed strings can be safely pruned.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

TATCG ATCGAGTATC TCGACCACGT CGAC#

ATGGA TATGGCGTAT ATGGA$CACG $ACGT ACGTA AC###TGGAC

$$$$C $$ACT$$$$C

$$$$G $CACG$$$AA

$$$AA $$AAC$$AAC

$$$$A TATGG ATGGAGTATG TGGAC$ACGT ACGTA$$ACG$$$AC CGTAT GAC##GGAC# AC### C####

AT### A####

TC### T####

ATC## AC###

$$$$A

5-gram set Gq of query string q= ACGTATGGAC

TATGG ATGGAGTATG TGGAC$ACGT ACGTA$$ACG$$$AC CGTAT GAC##GGAC#

ED=0

ED=1

ED=2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

AC### C####

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

(3 4)n 0 0.2 (3 5 4) NO!?If ? Go on!

YES!?If ?(3 4)n 11 0.2 (3 5 4)
Stop! &

Return s2

0 20, (,) 1, (,) 0 .2e eand s q s qScan the first row and get

Then scan the second row, 1 1 1 1 0 0 1 1 1 1 1 0 1 1 11, and

Fig. 4. An example of running with n=5 and k = 1 in the combiner

Based on the divide-and-conquer strategy, each combiner outputs the local
EED-Top1 from its own split list(k3 = sed, v3 = string). Then, for each parti-
tion, the pairs are sorted by their keys and sent across the cluster in the shuffle
phase. Finally, in the reduce phase, we use only one reducer to pickup the pairs
after shuffle and return the final EED-Top1 for the given uncertain string dataset.

Note that, the filtering function is an instance optimal as TA algorithm, as
its buffer size is independent of the uncertain string dataset’s size, and it only
stores the current top-k objects, as well as the pointers to last objects accessed in
the sorted list. In order to avoid the worst possible situation, like querying “xyz”
from an “a/b/c/d/e” based dataset, we add one judgement at the beginning of

Parallel Top-k Query Processing on Uncertain Strings Using MapReduce 99

MUSK. If all the first elements in each column (except for the first and last
(n− 1) columns) of the TA matrix are not less than n or user-defined maximum
value of EED, the algorithm stops immediately, and return that “There’s no
proper result in this dataset”.

6 Experimental Evaluation

In this section, we evaluate the performance of the proposed algorithms on real-
world uncertain string datasets by varying different parameters. We used Hadoop
0.20.2 for the MapReduce framework implementation. All the experiments were
run on a 10-node cluster. Each node had two Intel Xeon(R) E5620 2.40GHZ pro-
cessors with 4 cores, 16GB RAM, 1TB disk, and installed 64-bit Linux operating
systems. We set the block size of the distributed file system to 64MB.

6.1 Experimental Setup

To evaluate MUSK’s scalability in terms of string length, we chose four real-world
string datasets with different average string lengths standing for the short strings
and the long strings, respectively. The first two datasets, Author and Title, come
from author names and titles in the real data sources DBLP Bibliography1. We
consider spelling errors and conversion between different character sets as the
uncertainties. A notable difference between the two datasets is the string length.
The average length of strings in Author is 12.8, while, the μ of Title is 105.08.
Query-Log2 contains one million distinct queries from AOL Query Log, with
μ = 20.91. Protein3 sequences, downloaded from Uniprot, has a great deal of
uncertainty [18]. The length of protein is from 52 to 687. We also generate a
few synthetic datasets based on the real-world datasets above by varying some
parameters of these datasets. By default, the size of generated uncertain string
dataset is 20GB. After testing several experiments on the effect of n, we set
n = 3 for short string datasets Author and Query-Log, while n = 7 for long
string datasets Title and Protein. For each group of experimental parameters,
we execute the EED-Topk query for 100 times and compute the average query
time.

6.2 Speedup

In order to evaluate the speedup of MUSK, we fixed the size of datasets with
20GB and varied the number of cluster nodes varying from 2 to 10 as shown in
Fig. 5(a). We can see that with the increase of nodes in the cluster, the perfor-
mance of our algorithm significantly improved. This is attributed to our powerful
lower bound for EED, which can significantly prune dissimilar candidates and
avoid computing the EEDs for all of the uncertain strings.
1 http://www.informatik.uni-trier.de/\simley/db
2 http://www.gregsadetsky.com/aol-data/
3 http://www.uniprot.org/

http://www.informatik.uni-trier.de/$sim $ley/db
http://www.gregsadetsky.com/aol-data/
http://www.uniprot.org/

100 H. Xu et al.

(a) Running time for EED-Top3 query
using MUSK on four datasets with the
number of nodes varying from 2 to 10

(b) Running time for EED-Top3 query
using MUSK on four datasets with
increased size from 10GB to 50GB and a
cluster with 2 to 10 nodes, respectively

Fig. 5. Speedup and Scaleup

6.3 Scaleup

We evaluated the scaleup of our algorithm by increasing both the size of datasets
and the number of cluster nodes with the same factor. Fig. 5(b) shows the
running time for EED-Top3 queries on each of the datasets with increased size
from 10GB to 50GB and a cluster with 2 to 10 nodes, respectively. A perfect
scaleup could be achieved if the running time remains constant. As shown in
Fig. 5(b), MUSK scales up quite well, no matter run on which string dataset.

6.4 Comparison with Baseline Method

In what follows, we compare our method MUSK with the baseline parallel
algorithm PUSK for answering EED-Topk queries on the four uncertain string
datasets, denoted as MUSK and PUSK, respectively. The results of effects on
varying parameters are shown as below.

Effects of µ. It is worth noticing that Fig. 5(b) has shown MUSK’s scalability
in terms of the string length by running on the four uncertain string datasets
with different average string lengths from 12.80 to 302.54. With the same size
of dataset, the running time is very close to each other, no matter for short
strings or long strings. As shown in Fig. 6, it is clear that MUSK is much faster
than PUSK and takes nearly the same run time for datasets with the same size
ignoring the influence of the string length. This is reasonable, since no matter
how long the uncertain string is, MUSK only need to access a few number of
n-grams to get all user-wanted answers.

Effects of |S|. In order to analysis the effect of the database size, we generate
different sizes of synthetic datasets |S| from 1GB to 50GB. It is clear to notice

Parallel Top-k Query Processing on Uncertain Strings Using MapReduce 101

Fig. 6. Running time for different string length

from Fig. 7 that MUSK has much more stable average query time than the base-
line algorithm. This is because the TA-based filtering method in the combiner
stops when it meets the stopping condition, then all the other unseen strings
can be safely pruned, no matter how large the dataset size is. On the contrary,
the baseline method has to access all the strings in the dataset.

Effects of k. To study the query’s sensitivity to user specified answer size k,
a set of comparative experiments are designed by varying k from 1 to 100. As

(a) Author (b) Query-Log

(c) Title (d) Protein

Fig. 7. Average query time for datasets with respect to varying |S|

102 H. Xu et al.

shown in Fig. 8, due to the fact that τ increases along with k, it is difficult to meet
the halt condition. If the number of similar strings in dataset is approximately
equal to k, the filtering performance will tend to be better. The experimental
results show that MUSK has lower time complexity, especially, its efficiency is
improved significantly when the string is longer and more complicate.

(a) Author (b) Query-Log

(c) Title (d) Protein

Fig. 8. Average query time for datasets with respect to varying k

From all the experiments above, the results show that our techniques signifi-
cantly reduce query cost compared to the baseline parallel approach, and achieve
good speedup and scalability in terms of the string length, the size of dataset,
and the complexity of uncertain strings as well.

7 Conclusion

In this paper, we study how the top-k query processing on uncertain strings can
get benefits from the MapReduce framework. We propose MUSK, a one-stage
MapReduce-based parallel algorithm, for answering EED-Topk query efficiently.
We use probabilistic n-grams as signatures to produce key-value pairs in the
framework. To further improve the performance, a new distance measurement
GMD is proposed to drive the novel lower bound of EED. By seamlessly integrat-
ing the proposed bound with TA algorithm in the framework, we optimized the

Parallel Top-k Query Processing on Uncertain Strings Using MapReduce 103

filtering power in the Map phase while not increase the transmission cost. Com-
prehensive experimental results show that our techniques achieve good speedup
compared to the baseline parallel approach, and has good scalability performance
in terms of different experimental settings.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under grant 61100060 and 61472148.

References

1. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

2. Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of MapReduce: An in-depth
study. In: VLDB, pp. 472–483. VLDB Endowment (2010)

3. Li, F., Ooi, B.C., Tamer Özsu, M., Wu, S.: Distributed Data Management Using
MapReduce. ACM Computing Survey 46(3) (2014)

4. Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic string similarity joins. In: SIGMOD,
pp. 327–338. ACM (2010)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS, pp. 102–113 (2001)

6. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: ICDE, pp. 257–266. IEEE (2008)

7. Kim, Y., Woo, K.-G., Park, H., Shim, K.: Efficient processing of substring match
queries with inverted q-gram indexes. In: ICDE, pp. 721–732. IEEE (2010)

8. Wang, X., Ding, X., Tung, K.H., Zhang, Z.: Efficient and effective KNN sequence
search with approximate n-grams. In: VLDB, pp. 1–12. VLDB Endowment (2013)

9. Deng, D., Li, G., Feng, J., Li, W.-S.: Top-k string similarity search with edit-
distance constraints. In: ICDE, pp. 925–936. IEEE (2013)

10. Hua, M., Pei, J., Zhang, W., Lin X.: Efficiently answering probabilistic threshold
top-k queries on uncertain data. In: ICDE, pp. 85–96. IEEE (2008)

11. Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of top-k queries in
uncertain databases. In: ICDE, pp. 1406–1408. IEEE (2008)

12. Ge, T., Li, Z.: Approximate substring matching over uncertain strings. In: VLDB,
pp. 772–782. VLDB Endowment (2011)

13. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapRe-
duce. In: SIGMOD, pp. 495–506. ACM (2010)

14. Deng, D., Li, G., Hao, S., Wang, J., Feng, J., Li, W.-S.: MassJoin: A MapReduce-
based method for scalable string similarity joins. In: ICDE. IEEE (2014)

15. Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1), 31–88 (2001)

16. Wang, X., Ding, X., Tung, K.H., Ying, S., Jin, H.: An efficient graph indexing
method. In: ICDE, pp. 805–816. IEEE (2012)

17. Kugn, H.W.: The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

18. Bandeira, N., Clauser, K., Pevzner, P.: Shotgun Protein Sequencing: Assembly of
peptide tandem mass spectra from Mixtures of Modified Proteins. Molecular and
Cellular Proteomics 6(7) (2007)

Tracing Errors in Probabilistic Databases
Based on the Bayesian Network

Liang Duan1, Kun Yue1(B), Cheqing Jin2, Wenlin Xu1, and Weiyi Liu1

1 Department of Computer Science and Engineering,
School of Information Science and Engineering, Yunnan University, Kunming, China

kyue@ynu.edu.cn
2 Institute of Massive Computing, East China Normal University, Shanghai, China

Abstract. Data in probabilistic databases may not be absolutely cor-
rect, and worse, may be erroneous. Many existing data cleaning meth-
ods can be used to detect errors in traditional databases, but they fall
short of guiding us to find errors in probabilistic databases, especially for
databases with complex correlations among data. In this paper, we pro-
pose a method for tracing errors in probabilistic databases by adopting
Bayesian network (BN) as the framework of representing the correlations
among data. We first develop the techniques to construct an augmented
Bayesian network (ABN) for an anomalous query to represent correla-
tions among input data, intermediate data and output data in the query
execution. Inspired by the notion of blame in causal models, we then
define a notion of blame for ranking candidate errors. Next, we provide
an efficient method for computing the degree of blame for each candidate
error based on the probabilistic inference upon the ABN. Experimental
results show the effectiveness and efficiency of our method.

Keywords: Data cleaning · Probabilistic database · Bayesian network ·
Rejection sampling · Probabilistic inference

1 Introduction

Many real word applications, such as information extraction, data integration,
sensor networks and object recognition etc., are producing large volumes of
uncertain data [1,2]. It is critical for such applications to effectively manage and
query the uncertain data, motivating the research on probabilistic databases
(PDBs) [3–5,17].

In practice, PDBs often contain errors since the data of these databases
has been collected by a great deal of human effort through the consultation,
verification and aggregation of existing sources. It could be worse when using
the Web to extract and integrate data from diverse sources on an unprecedented
scale, which the risks of creating and propagating data errors increased [4,6,
18,19]. Consequently, a user may detect an anomalous query: (1) some of the
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 104–119, 2015.
DOI: 10.1007/978-3-319-18123-3 7

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 105

probabilities of the result tuples are erroneous; and (2) the tuples contributed
to the incorrect output are to be found in the database. To guarantee the data
quality, it is necessary to trace the errors in the input data and prevent the
errors from propagating to other queries. This can be viewed as a strategy of
data cleaning for improving the data quality.

For an anomalous query, it is easy to detect errors in the output by comparing
the output values with the given ground truth values. This means that there are
errors in the input data, but we do not know which one is not correct, and only
know the output is erroneous. In this paper, we show how to trace errors in
PDBs given an anomalous query.

The first step of error tracing is to find out the input data that is related
to the output data. Provenance or lineage has been studied recently to describe
how individual output data is derived from a certain subset of input data, so it is
natural to use lineage to trace all the input data helped to produce the surprising
output data [7]. Meliou et al. [8,9] proposed a method to find the causes for
surprising queries and the first step is the computation of the query’s lineage.
However, most of current lineage-based methods make simplistic assumptions
about the data (e.g., complete independence among tuples), which makes this
kind of methods difficult to be used in real applications that naturally produce
correlated data.

It is well known that Bayesian network (BN) is an effective framework of
representing dependencies among random variables [10]. A BN is a directed
acyclic graph (DAG), where nodes represent random variables and edges repre-
sent dependencies among variables. Each variable in a BN is associated with a
conditional probability table (CPT) to give the probability of each state when
given the states of its parents. Sen and Deshpande [11,12] provided a BN based
framework that can represent probabilistic tuples and correlations. The query
processing problem on this framework is casted as a probabilistic inference prob-
lem in an appropriately constructed BN. This means that the correlations among
output and input data with respect to a certain query can be represented by a
BN. Comparing with the lineage-based methods, this framework can describe not
only how the output data is derived from input data, but also the correlations
among input data. Therefore, we adopt BN as our underlying framework for
probabilistic databases and construct an augmented Bayesian network (ABN)
for the anomalous query to trace errors.

A query may involve large volume of input data, which is overwhelming to
users. Thus, it is necessary to rank the errors in input data by their degree of
contributions to output data. The notion of responsibility is first developed by
Chockler et al. [13,16] to measure the degree of contributions of a cause to a
result event in causal models when everything relevant about the facts of the
world is known (i.e., the context is given). Meliou et al. [8,9] find causes for
surprising queries by ranking candidate errors according to their responsibility
after examining the lineage of the query. But the method is hampered to be
carried on PDBs by two limitations: (1) the context for queries in PDBs is
uncertain; and (2) the lineage cannot represent correlations among data in PDBs.

106 L. Duan et al.

Fortunately, the notion of blame, also developed in [13], can be used when the
context of causal models is unknown. Specifically, the blame of a cause is the
expectation of responsibility under all of uncertain context. A context of causal
models can be viewed as a possible world instance of PDBs. Therefore, inspired
by the above research findings, we define the degree of blame of each node in the
ABN to measure their contributions to the anomalous output. Then, we rank
the candidate errors by their blame degrees for tracing the errors in input data.

Computing the blame has to find out all of possible world instances related to
output data. Since the possible world instances are obtained from probabilistic
inferences executed in exponential time upon the ABN, the computation of blame
is exponential complexity, which is not efficient and suitable enough with respect
to large scale ABNs. Thus, based on the rejection sampling [14], we propose an
approximate inference algorithm to obtain the blame of nodes the ABN.

Generally speaking, our main contributions can be summarized as follows:

– We propose a method to construct an augmented Bayesian network for repre-
senting complex correlation among input data, intermediate data and output
data generated in query processing given an anomalous query.

– We present a definition of blame of nodes in the augmented Bayesian net-
works to measure the degree of contribution of each node to the anomalous
query. Then, we provide an efficient method to compute the degree of the
blame and rank the candidate errors by their blame.

– We implement the proposed algorithms and make preliminary experiments
to test the feasibility of our method.

The remainder of this paper is organized as follows: In Section 2, we describe
the error tracing problem briefly. In Section 3, we construct an ABN for an
anomalous query. In Section 4, we define the blame upon ABNs and rank candi-
date errors by their blame. In Section 5, we show experimental results. In Section
6, we discusses related work. In Section 7, we conclude and discuss future work.

2 Problem Statement

For a query q on a probabilistic database D(R,P) where R is a set of uncer-
tain relations and P is a BN for representing the correlation among data, the
error tracing problem is to detect the errors which cause the anomaly that the
probability P (t) of result tuple t of q is not equal to the truth value P ′(t) [7,8].

If P (t) = P ′(t), then there are no errors, so we will assume that P (t) �= P ′(t)
for the rest of this paper. Clearly, P (t) �= P ′(t) means that P (t) > P ′(t) or
P (t) < P ′(t) . Since P (t) < P ′(t) can be viewed as P (t) > P ′(t), we only take
the case that P (t) > P ′(t) into consideration. Our approach to this problem is
to find all candidate errors X (i.e., tuples in D) for the anomaly, and rank them
by their degree of blame.

Example 1. Figure 1(a) shows a probabilistic database D with two uncertain
relations: S and T . The positive correlation (i.e., if one variable is increased,

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 107

the other variable will also increased and vice versa) among uncertain data is
represented by a BN, whose DAG is shown in Figure 1(b) and the corresponding
CPTs are shown in Figure 1(c). For a query q =

∏
c S ��B T , we can obtain the

result shown in Table 1. If the truth probability of r1 is P ′(r1) = 0 (for ease of
exposition, we assume the truth probability P ′(r1) = 0), errors which lead to
this anomaly have to be found out. It is clear that s1.B, t1.B and s2.B are the
candidate errors and their degree of blame for this anomaly is shown in Table 2.

Fig. 1. (a) A small probabilistic database D with two uncertain relations. (b) DAG of
a Bayesian network. (c) CPTs corresponding to the Bayesian network.

Table 1. The query result of q in D.

Query result C Prob

r1 c 0.48

Table 2. Errors with their degrees of blame.

Error Blame

t1.B 1.0

s1.B 0.89

s2.B 0.55

3 Constructing Augmented Bayesian Network

In this section, we will discuss how to construct an ABN for an anomalous query
on probabilistic databases.

To trace errors in D, we augment P to represent not only the correlations
among the input data, but also the correlations among the input data, interme-
diate data and output data of an anomalous query. Constructing an ABN always
has two steps: first constructing the structure of ABN and then generating the
CPTs. Sen et al. [11] propose a method to construct an ABN for a query q on
PDBs. Answers to query q may contain numerous result tuples, but we only
concern a special tuple t which is anomalous. The ABN for tuple t, denoted by
Gt = (Vt, Et), is a subgraph of the ABN Gq = (Vq, Eq) for query q. Thus, we
provide a method to construct an ABN specific to the anomalous result tuple t.

108 L. Duan et al.

The structure of the ABN is constructed by the following steps:

1. For each random variable v in PDBs, add a node v to Vq.
2. Construct Eq by performing the following steps. For each operation

Oop(XS , xi) obtained during evaluating the operator op on the set of tuples
S to generate the tuple i:

– Add a node xi to Vq and annotate xi with the operator op;
– ∀x ∈ Xs , add an edge e(x, xi) to Eq.

3. Vt = {v|v ∈ Vq, v � xt}, where xt denotes the node corresponding to the
anomalous result tuple t and v � xt is true if there is a path from vi to xt.

4. Et = {e = (vi, vj)|e ∈ Eq, vi, vj ∈ Vt}.

For the nodes that exist in PDBs (i.e., not generated during query process-
ing), we copy their CPTs from the given PDBs. For the other nodes, we gener-
ate CPTs according to the operator annotated with them. For the limitation of
space, we only take select, project and join operations into consideration, while
more operations are discussed in [11,12].

Select: Let σc(R) denote the query, where c is the predicate of the selection.
For each tuple t in R, the probability in the CPT of the node corresponding to
t=1 or t=0 for the case that t satisfies c or not respectively.

Project: Let Πa(R) denote the projection, where a ⊆ attr(R) denotes the
set of attributes that we want to project onto. Let r denote the result of the
projecting t ∈ R, and the probability of the node corresponding to r is 1 or 0
for the case of t.a = r.a or not respectively.

Join: Let R1 ��a R2 denote the join operation where R1 and R2 are two rela-
tions and a ⊆ attr(R1)

⋂
a ⊆ attr(R2). Let r denote the join result of two tuples

t1 ∈ R1, t2 ∈ R2, and the probability of the node corresponding to r is 1 or 0 for
the case of that t1.a equals t2.a or not respectively.

Example 2. For the query
∏

c(S ��B T) on the PDB presented in Figure 1,
the ABN for the result tuple is shown in Figure 2. We introduce intermediates
tuples produced by the join (i1 and i2) and produce a result tuple (r1) from
the projection operation. i1 exists (i.e., i1.e = 1) only when s1.B and t1.B are
assigned the value of 2. Similarly, i2.e is 1 only when s2.B and t1.B are assigned
the value of 2. Finally, r1.e is 1 when i1 or i2 or both exist. The query result is
the tuple r1 with the corresponding probability P (r1.e = 1), which can be com-
puted by many probabilistic inference methods, such as Enumeration algorithm
and Rejection sampling [14].

4 Detecting Errors

In this section, we will discuss how to detect errors for an anomalous query based
on the ABN constructed in Section 3.

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 109

Fig. 2. ABN for query
∏

c(S ��B T).

From Figure 2, we can see that there are three kinds of nodes in the ABN:

1. Original nodes, denoted as No, which exist in the PDBs.
2. Intermediate nodes, denoted as Ni, which are generated during query pro-

cessing. These nodes are Boolean variables used to represent the existence
of the intermediate tuples.

3. Resulting node, denoted as nr, which is a Boolean variables used to represent
the existence of the result tuples.

It is intuitive that errors only exist in No since the other nodes are generated
during query processing, which is not the source of errors. Therefore, we just
need detect errors in No.

The candidate errors for the anomalous query are all nodes in No, but it seems
that the degrees of their contributions to the query result are not equivalent.
This problem is closely related to the responsibility and blame in causal models
[13], where responsibility is developed to measure the contribution of a cause
to a result event when the context of the model is known. Moreover, blame is
defined as the expectation of responsibility of a cause under all contexts when
the context of the model is uncertain. A causal model is a directed acyclic graph
and a context of the model is a set of values of each node in the model [13]. A
context can be viewed as a possible world instance of PDBs. Since the number of
possible worlds is exponential in the number of random variables, it is infeasible
to generate all possible world instances. Fortunately, only a subset of possible
world instances that satisfies the result tuple needs to be generated. We call
these possible world instances as situations. We first compute the situations and
then define the blame upon the ABN and rank the candidate errors by their
blame.

110 L. Duan et al.

For the result tuple r1 in Figure 2, the probability of r1 is the sum of the
probabilities of situations that satisfies r1.e = 1. All of these situations can be
obtained from the probabilistic inferences upon the ABN. We provide an effi-
cient method to generate the situations for the probability P (r1.e = 1) based on
Rejection sampling, which is particularly well-adapted to sampling the posterior
distributions of a BN [14]. Algorithm 1 describes the steps of this method.

Algorithm 1. Situation Computation

Input:
G, an ABN G = (V,E) where V = No

⋃
Ni

⋃{nr};
m, threshold of the total number of samples to be generated

Output:
I, a vector of counts over samples

Variables:
X, a random variable in V ;
s, the current state {x1, x2, ..., xn} where xi is a value of X ∈ V

Steps:
s ← random values of X in V
for j ← 1 to m do

for each Xi ∈ V do
xi ← a random sample from P (Xi|parents(Xi)) given the values of

parents(Xi) in S // parents(Xi) is the set of parent node values of Xi

end for
if s is consistent with nr.e = 1 then

if I contains s then
I[s] ← I[s] + 1

else
insert s into I[s]
I[s] ← 1

end if
end if

end for
I[s] ← I[s]/m
return I

For an ABN with n nodes, the complexity of Algorithm 1 is O(mn).

Example 3. Three situations I1, I2 and I3 obtained from Algorithm 2 for
the query

∏
c(S ��B T) are shown in Table 3.

To measure the degree of blame of each node that induces P (r1.e = 1) = 0.48,
we have to measure all the responsibility degrees under three situations I1, I2
and I3. Intuitively, we say a node has a great responsibility when changing the
value of this node would affect (i.e., decrease or increase) the probability of the
new situation. To describe this influence, we need some technical definitions.

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 111

Table 3. Situations for the ABN in Figure 2.

s1.B t1.B s2.B i1.e i2.e r1.e Prob

I1 2 2 2 1 1 1 0.27

I2 2 2 1 1 0 1 0.18

I3 1 2 2 0 1 1 0.03

Definition 1. Let X be a node of an ABN with the value domain {x1, x2, ..., xn},
I be a situation and Z = No

⋃{nr} − {X}. The values z of Z are assigned from
I, the value xi of X is consistent with I and x ∈ {x1, x2, ..., xi−1, xi+1, ..., xn}.
Changing X = xi to X = x can generate a new situation I ′ = {X = x,Z = z}.
The absolute value of the difference of the probabilities of I and I ′ is

vd(X) =| P (I) − P (I ′) | (1)

If the degree of responsibility of X is greater than that of Y , then changing
the value of X would make the probability vd(X) be greater than changing
the value of Y . Thus, we define a function dr(X, I) to measure the degree of
responsibility of a node X under situation I. The function dr(X, I) ought to
satisfy the following properties:

1. Minimal property: dr(X, I) = 0 when changing the value of X cannot influ-
ence the probability P (I ′).

2. Maximal property: dr(X, I) = 1 when changing the value of X can make the
probability P (I ′) = 0.

3. For two situations I = {X = xi, Z = z} and I ′ = {X = x,Z = z}, if
P (I) > P (I ′) then dr(X, I) > dr(X, I ′).

Definition 2. The degree of responsibility of X under the situation I is defined
as

dr(X, I) = �max{vd(X)}� × P (I)
P (Z)

(2)

Theorem 1. The function dr(X, I) satisfies the above-mentioned properties
(1) ∼ (3).

Proof. Let the value domain of node X be {x1, x2, ..., xn}. The value xi is con-
sistent with I and x ∈ {x1, x2, ..., xi−1, xi+1, ..., xn}. If changing the value of X
to any other values cannot influence P (I ′) then we can get that P (X = x1, Z) =
P (X = x2, Z) = ... = P (X = xn, Z). Therefore, we have dr(X, I) =| P (X =
xi, Z) − P (X = x1, Z) | ×P (X = xi, Z)/P (Z) = 0.

If changing the value of X can make the probability P (I ′) = 0, then we can
obtain that all values x of X such that P (X = x,Z = z) = 0. Then, we have
dr(X, I) =| P (X = xi, Z) − 0 | ×P (X = xi, Z)/P (Z) = 1.

For two situations I = {X = xi, Z = z} and I ′ = {X = x,Z = z}, if P (I) >
P (I ′) then we can obtain P (I)/P (Z) > P (I ′)/P (Z) and �max{vd(X)}� = 1.
Therefore, we have dr(X, I) > dr(X, I ′).

112 L. Duan et al.

Definition 3. The degree of blame of node X, denoted as db(X), is the expec-
tation of the degree of responsibility of X for all situations, where

db(X) =
∑n

i=1(P (Ii) × dr(X, Ii))∑n
i=1 P (Ii)

(3)

Algorithm 2 shows the steps for computing the blame of each node in the
ABN and ranking the nodes by their blame for error detection.

Algorithm 2. Error Detection

Input:
I, set of situations;
X, set of candidate errors //original nodes;

Output:
X ′, set of errors sorted by the decreasing order of their blame degrees

Variables:
B, a vector of blame degrees of x ∈ X

Steps:
for each xi in X do

B[xi] ← 0
for each Ij in I do

B[xi] ← B[xi] + �max{vd(x)}� × P (Ij)/P (Z)
end for
B[xi] ← B[Ij]/

∑
P (Ij)

end for
X ′ ← sort X by the decreasing order of B[xi]
return X ′

For k situations, the computations of each node’s degree of blame is less than
O(k) times. So, the complexity of computing n nodes’ degrees of blame is O(nk).

Example 4. Revisiting Example 3, s1.B, t1.B and s2.B are candidate errors.
According to Equation(1), (2) and (3), we have

dr(s1.B, I1) = �| 0.27 − 0.03 |� × 0.27
0.27 + 0.03

=
0.27
0.3

= 0.9

dr(s1.B, I2) = �| 0.18 − 0 |� × 0.18
0.18

= 1

dr(s1.B, I3)) = �| 0.03 − 0.27 |� × 0.03
0.27 + 0.03

=
0.03
0.3

= 0.1

db(s1.B) =
∑3

i=1 P (Ii) × dr(s1.B, Ii)
P (I1) + P (I2) + P (I3)

=
0.29 × 0.9 + 0.18 × 1 + 0.03 × 0.1

0.27 + 0.18 + 0.03
≈ 0.89

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 113

We can also obtain db(s2.B) = 0.55 and db(t1.B) = 1 by the same way. The
degree of blame of t1.B should be 1 since the joint operation S ��B T requires
t1.B to be 2. Moreover, the value of s1.B is more likely to be 2 than that of
s2.B when t1.B = 1, so db(s1.B) is 0.89 and db(s2.B) is 0.55.

5 Experimental Results

To verify the feasibility of the method proposed in this paper, we implemented
the presented algorithms. We mainly tested the convergence and efficiency of
situation computation, and then we tested the accuracy and efficiency of error
detection.

5.1 Experiment Setup

—Hardware: For the experiments, we used MS SQL Server 2008 on a machine
with 2.27GHz Intel Core i3 CPU and 2GB of RAM, running Window 7 Ultimate
32-bit operating system.
—Data: Our experiments used a probabilistic database with correlations repre-
sented by five classical BNs: Cancer Neapolitan, Chest Clinic, Car Diagnosis2,
Alarm and HailFinder25. For each BN, we generated an original data set of 1000
tuples according to their probability distributions from Norsys 1. To add errors
into the original data sets, we randomly modified their probability distributions
for one, two and three nodes to generate three kinds of test data sets. Finally,
we recorded all the information of those changes as the source of errors.

5.2 Convergence and Efficiency of Situation Computation

It is pointed out that the posterior probabilities of the situations computed by
an approximate algorithm for ABN’s inferences are correct only if the sampling
results are converged to a certain probability [14]. Thus, we tested the conver-
gence of Algorithm 1 by recording the results upon the Chest Clinic ABN under
XRay result = abnormal. Prob1 and Prob2 in Figure 3 are the probabilities
obtained from Algorithm 1 and an enumeration-based algorithm. It can be seen
that Prob1 and Prob2 are stable around 0.11 with the increase of the gener-
ated samples. The result shows that the probabilities returned by Algorithm 1
converge to a certain value efficiently with just about 3000 samples.

Following, we recorded the execution time of Algorithm 1 for situation com-
putation shown in Figure 4. It can be seen that the execution time is increased
linearly with the increase of samples and nearly quadratically with the increase
of ABN nodes. This means that the execution time is not sensitive to the scale
of the ABN. Thus, our method for situation computation is efficient.

1 Norsys Software Corporation, http://www.norsys.com/

114 L. Duan et al.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

1 2 3 4 5 6 7 8 9 10 11
Pr

ob
ab

ili
tie

s
Samples (× 1000)

Prob1
Prob2

Fig. 3. Convergence of Algorithm 1

 0

 6

 12

 18

 24

 30

 36

3 4 5 6 7

T
im

e(
se

c)

Samples (× 1000)

8 nodes
18 nodes
37 nodes

(a) Execution time with the increase
of samples

 0

 20

 40

 60

 80

 100

 120

5 8 18 37 56

T
im

e(
se

c)

Nodes

3k samples
5k samples
7k samples

(b) Execution time with increase of
nodes

Fig. 4. Execution time of situation computation

5.3 Effectiveness and Efficiency of Error Detection

To test the effectiveness of our method of error detection, we ran our Algorithm
2 over the test data sets and compared the result to the source of errors using
the mean average precision (MAP) as the metric of comparison [15]. The MAP
is close to 1 when the result of possible errors obtained by Algorithm 2 is close to
the source of errors and it means that the faulty node ranked first in the result
is most likely to be erroneous.

We ran the experiments to detect one, two and three errors in three ABNs
which contain 5, 8 and 18 nodes respectively. Figure 5(a) shows that the pre-
cision of the possible errors obtained by Algorithm 2 is stable above 60% with
the increase of the ABN nodes. Figure 5(b) presents that the precision will be
decreased slowly with the increase of the number of errors. It means that the
precision of error detection is mainly determined by the number of errors in the
original database. From the perspective of real applications of error detection on
a database with a small number of errors, our method can work effectively.

To verify the efficiency of Algorithm 2, we recorded the execution time of error
detection over five ABNs shown in Figure 6. It can be seen that the execution
time is increased linearly with the increase of nodes and situations of the data
sets, which guarantees the efficiency of Algorithm 2.

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 115

6 Related Work

Our work is mainly related to and unifies ideas from work on probabilistic
databases, provenance, causality and data cleaning.

Probabilistic Databases. Several approaches have been proposed for man-
aging uncertainties, such as rule-based systems, Dempster-Shafer theory, fuzzy
sets, rough set, but by 1987 the probability model has been dominant [20]. Plenty
of probabilistic databases have been designed to manage uncertain data where
the uncertainties are quantified as probabilities, and most of those databases are
based on possible world semantics. Benjelloum et al. [21] introduce a framework,
called x-relation, as a representation for databases with uncertainty.
X-relations can be extended to represent and query tuple-independent proba-
bilistic data. Tuple-independent probabilistic databases are insufficient for ana-
lyzing and extracting information from practical applications that naturally
produce correlated data. Wang et al. [22] introduce a probabilistic database
(BAYESSTORE) that draws results from the Statistical Learning literature to
express and reason about correlations among uncertain data. Jha et al. [5] pro-
pose a Markov views based framework both for representing complex correlations
and for efficient query evaluation. Sen et al. [11] provide a framework based on
the probabilistic graphical model that can represent not only probabilistic tuples,
but also complex correlations among tuples. We adopt Sen’s model as our under-
lying probabilistic databases in this paper.

Provenance. Different notions of provenance (also called lineage) for database
queries have been studied in the past few years [24]. The most common forms of
provenance describe correlations between data in the source and in the output,
and can be classified into three categories: (1) explaining where output data
came from in the input; (2) showing inputs to explain why an output record
was produced; (3) describing in detail how and output record was produced [23].
Tracing the lineage of data is an important requirement for improving the quality
and validity of data [7]. Galhardas et al. [25] use a data lineage to improve data

 0
 0.2
 0.4
 0.6
 0.8

 1

5 8 18

Pr
ec

is
io

n

Nodes

error1
error2
error3

(a) Mean average precision of Algo-
rithm 2 with the increase of nodes

 0
 0.2
 0.4
 0.6
 0.8

 1

1 2 3

Pr
ec

is
io

n

Errors

CancerNeapolitan
ChestClinic

CarDiagnosis2

(b) Mean average precision of Algo-
rithm 2 with the increase of errors

Fig. 5. Precision of error detection

116 L. Duan et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 8 18 37 56

T
im

e(
se

c)

Nodes

6 situations
8 situations

10 situations

(a) Execution time of Algorithm 2
with the increase of nodes

 0

 5

 10

 15

 20

30 60 90 120 150 180

T
im

e(
se

c)

Situations

18 nodes
37 nodes
56 nodes

(b) Execution time of Algorithm 2
with the increase of situations

Fig. 6. Execution time of error detection

cleaning quality by enabling users to express user interactions declaratively and
tune data cleaning programs. The first step of finding causes for surprising query
result proposed by Meliou et al. [8,9] is the computation of query lineages.

Causality. Causality is typically treated as the concept that either event A is a
cause of event B or it is not. Halpern and Pearl [26] define a causal model, called
actual causes, in terms of structural equations (i.e., a causal network, which can
be presented by a directed acyclic graph), and the syntax and semantics of a
language for reasoning about causality. Chockler et al. [13] extend the causality
introduced by Haplern to take into account the degree of responsibility of A
for B. The notion of the blame has been defined as the expected degree of
responsibility of A for B when the context of the causal model is uncertain [13].
For a database query, the responsibility of each input tuple for the query output
could be used for error detection [8]. Meliou et al. [9] propose a View-Conditioned
Causality to trace errors in output data of a query back to the input data based
on responsibility.

Data Cleaning. Data cleaning is one of the critical mechanisms for improving
the data quality. Dirty data can be classified into three categories: incorrect or
inconsistent data, missing data and duplicate data [28]. A variety of constraints
have been studied for cleaning incorrect data. Beskales et al. [33] repair incorrect
or missing data by choosing the values satisfying the given functional depen-
dencies. Fan et al. [29] extend functional dependencies to conditional functional
dependencies (CFDs) for capturing and correcting the incorrect data which does
not satisfy the CFDs. Fan et al. [30] propose a method to clean incorrect data
by finding certain fixes based on master data, a notion of certain regions and a
class of editing rules. Aggregate and cardinality constraints have been proposed
by Chen [32] and Cormode [31] to clean uncertain databases. Ma and Fan [34]
extend inclusion dependencies to conditional inclusion dependencies (CINDs) to
detect inconsistent data.

Statistical inference methods have been studied for cleaning missing data or
correcting incorrect data when constraints are not available [35]. We [27] propose

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 117

a method for missing data cleaning by adopting Bayesian network to represent
and infer the probabilities of possible values of missing data. Stoyanovich et al.
[36] present a framework, termed meta-rlue semi-llattices (MRSL), to infer prob-
ability distributions for missing data. Techniques for identifying duplicate data
in probabilistic databases have been developed by Panse [37]. Geerts et al. [38]
develop a uniform data cleaning framework for users to plug-in their preference
strategies when the cleaning process involves different kinds of constraints, and
a commodity data cleaning platform has been developed by Dallachiesa [39].

7 Conclusions and Future Work

In this paper, we propose an ABN-based method for tracing errors in probabilis-
tic databases. Concentrated on the complex correlation among data, we give a
method for constructing an ABN for an anomalous query to represent correla-
tions among input data, intermediate data and output data of the query. Then,
we define the blame for each node in the ABN to measure the contributions of
each node to the anomalous query result. Finally, we provide an efficient method
to compute the blame and rank candidate errors by their blame. However, only
synthetic data test is not enough to verify the feasibility of our methods and the
usability in enterprise applications.

To test our method further, we will make experiments on real life datasets.
As well, we also wish to extend our method to automatically correct errors in
real applications in data integration and ETL tools. These are exactly our future
work.

Acknowledgments. This paper was supported by the National Basic Research (973)
Program of China (No. 2012CB316203), the National Natural Science Foundation of
China (Nos. 61472345, 61232002), the Natural Science Foundation of Yunnan Province
(No. 2014FA023), the Program for Innovative Research Team in Yunnan University
(No. XT412011), and the Yunnan Provincial Foundation for Leaders of Disciplines in
Science and Technology (No. 2012HB004).

References

1. Aggarwal, C., Yu, P.: A Survey of Uncertain Data Algorithms and Applications.
TKDE 21(5), 609–623 (2007)

2. Tong, Y., Chen, L., Cheng, Y., Yu, P.: Mining frequent itemsets over uncertain
databases. PVLDB 5(11), 1650–1661 (2012)

3. Rekatsinas, T., Deshpande, A., Getoor, L.: Theodoros Rekatsinas and Amol Desh-
pande and Lise Getoor. In: SIGMOD, pp. 373–384. ACM (2012)

4. Buneman, P., Cheney, J., Tan, W., Vansummeren, S.: Curated databases. In:
PODS, pp. 1–12. ACM (2008)

5. Jha, A., Suciu, D.: Probabilistic databases with MarkoViews. PVLDB 5(11),
1160–1171 (2012)

6. Fan, W.: Dependencies revisited for improving data quality. In: PODS,
pp. 159–170. ACM (2008)

118 L. Duan et al.

7. Zhang, M., Zhang, X., Zhang, X., Prabhakar, S.: Tracing lineage beyond relational
operators. In: VDLB, pp. 1116–1127. VLDB Endowment (2007)

8. Meliou, A., Gatterbauer, W., Moore, K., Suciu, D.: The complexity of causality
and responsibility for query answers and non-answers. PVLDB 4(1), 34–45 (2010)

9. Meliou, A., Gatterbauer, W., Nath, S., Suciu, D.: Tracing data errors with view-
conditioned causality. In: SIGMOD, pp. 505–516. ACM (2011)

10. Darwiche, A.: Modeling and reasoning with Bayesian networks. Cambridge Uni-
versity Press (2009)

11. Sen, P., Deshpande, A.: Representing and querying correlated tuples in probabilis-
tic databases. In: ICDE, pp. 596–605. IEEE (2007)

12. Deshpande, A., Getoor, L., Sen, P.: Managing and Mining Uncertain Data. Springer
(2009)

13. Chockler, H., Halpern, J.: Responsibility and blame: A structural-model approach.
JAIR 22, 93–115 (2004)

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall (2009)

15. Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant
documents. In: SIGIR, pp. 41–48. ACM (2000)

16. Lian, X., Chen, L.: Causality and responsibility: probabilistic queries revisited in
uncertain databases. In: CIKM, pp. 349–358. ACM (2013)

17. Jin, C., Zhang, R., Kang, Q., Zhang, Z., Zhou, A.: Probabilistic Reverse Top-k
Queries. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A.,
Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol. 8421, pp. 406–419. Springer,
Heidelberg (2014)

18. Liu, J., Ye, D., Wei, J., Huang, F., Zhong, H.: Consistent Query Answering Based
on Repairing Inconsistent Attributes with Nulls. In: Meng, W., Feng, L., Bres-
san, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825,
pp. 407–423. Springer, Heidelberg (2013)

19. Miao, X., Gao, Y., Chen, L., Chen, G., Li, Q., Jiang, T.: On Efficient k-Skyband
Query Processing over Incomplete Data. In: Meng, W., Feng, L., Bressan, S.,
Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825,
pp. 424–439. Springer, Heidelberg (2013)

20. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges.
In: PODS, pp. 1–12. ACM (2007)

21. Benjelloun, O., Sarma, A., Halevy, A., Widom, J.: ULDBs: Databases with uncer-
tainty and lineage. In: VLDB, pp. 953–964. VLDB Endowment (2006)

22. Wang, D., Michelakis, E., Garofalakis, M., Hellerstein, J.M.: BayesStore: managing
large, uncertain data repositories with probabilistic graphical models. PVLDB 1(1),
340–351 (2008)

23. Cheney, J., Chiticariu, L., Tan, W.: Provenance in databases: Why, how, and where.
Foundations and Trends in Databases 1(4), 379–474 (2007)

24. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS,
pp. 31–40. ACM (2007)

25. Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C. A.: Improving
Data Cleaning Quality Using a Data Lineage Facility. In: Workshop of DMDW,
pp. (3)1–13 (2001)

26. Halpern, J., Pearl, J.: Causes and explanations: A structural-model approach. Part I:
Causes. The British Journal for the Philosophy of Science 56(4), 843–887 (2005)

Tracing Errors in Probabilistic Databases Based on the Bayesian Network 119

27. Duan, L., Yue, K., Qian, W., Liu, W.: Cleaning Missing Data Based on the
Bayesian Network. In: Gao, Y., Shim, K., Ding, Z., Jin, P., Ren, Z., Xiao,
Y., Liu, A., Qiao, S. (eds.) WAIM 2013 Workshops 2013. LNCS, vol. 7901,
pp. 348–359. Springer, Heidelberg (2013)

28. Muller, H., Freytag, J.: Problems, methods, and challenges in comprehensive data
cleansing. Professoren des Inst, Fur Informatik (2005)

29. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-
cies for capturing data inconsistencies. TODS 33(2), 6 (2008)

30. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Towards certain fixes with editing rules
and master data. PVLDB 3(1–2), 173–184 (2010)

31. Cormode, G., Srivastava, D., Shen, E., Yu, T.: Aggregate query answering on possi-
bilistic data with cardinality constraints. In: ICDE, pp. 258–269. IEEE (2012)

32. Chen, H., Ku, W., Wang, H.: Cleansing uncertain databases leveraging aggregate
constraints. In: Workshop of ICDE, pp. 128–135. IEEE (2010)

33. Beskales, G., Ilyas, I., Golab, L.: Sampling the repairs of functional dependency vio-
lations under hard constraints. PVLDB 3(1–2), 197–207 (2010)

34. Ma, S., Fan, W., Bravo, L.: Extending inclusion dependencies with conditions. The-
oretical Computer Science 515, 64–95 (2014)

35. Mayfield, C., Neville, J., Prabhakar, S.: ERACER: a database approach for statistical
inference and data cleaning. In: SIGMOD, pp. 75–86. ACM (2010)

36. Stoyanovich, J., Davidson, S., Milo, T., Tannen, V.: Deriving probabilistic databases
with inference ensembles. In: ICDE, pp. 303–314. IEEE (2011)

37. Panse, F., Van Keulen, M., De Keijzer, A., Ritter, N.: Duplicate detection in proba-
bilistic data. In: Workshop of ICDE, pp. 179–182. IEEE (2010)

38. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: The llunatic data-cleaning frame-
work. PVLDB 6(9), 625–636 (2013)

39. Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A., Ilyas, I., Ouzzani,
M., Tang, N.: NADEEF: a commodity data cleaning system. In: SIGMOD,
pp. 541–552. ACM (2013)

Data Mining II

Mining Frequent Spatial-Textual Sequence
Patterns

Krishan K. Arya1, Vikram Goyal1(B), Shamkant B. Navathe2,
and Sushil Prasad3

1 Indraprastha Institute of Information Technology Delhi, New Delhi, India
{krishan1241,vikram}@iiitd.ac.in

2 Georgia Institute of Technology, Atlanta, USA
sham@cc.gatech.edu

3 Georgia State University, Atlanta, USA
sprasad@gsu.edu

Abstract. Penetration of GPS-enabled devices has resulted in the gen-
eration of a lot of Spatial-Textual data, which can be mined or ana-
lyzed to improve various location-based services. One such kind of data is
Spatial-Textual sequential data (Activity-Trajectory data), i.e. a
sequence of locations visited by a user with each location having a set
of activities performed by the user is a Spatial-Textual sequence. Mining
such data for knowledge discovery is a cumbersome task due to the com-
plexity of the data type and its representation. In this paper, we propose
a mining framework along with algorithms for mining Spatial-Textual
sequence data to find out frequent Spatial-Textual sequence patterns.
We study the use of existing sequence mining algorithms in the con-
text of Spatial-Textual sequence data and propose efficient algorithms
which outperform existing algorithms in terms of computation time, as
we observed by extensive experimentation. We also design an external
memory algorithm to mine large-size data which cannot be accommo-
dated in main memory. The external memory algorithm uses spatial
dimension to partition the data into a set of chunks to minimize the
number of false positives and has been shown to outperform the näıve
external-memory algorithm that uses random partitioning.

1 Introduction

Sequential pattern mining is an important and very active research topic in the
area of data mining due to its widespread use in various applications such as cus-
tomer transaction analysis, web logs analytics, mining DNA sequences, mining
e-bank customers financial transactions etc. In a sequential pattern mining task,
a set of frequent sub-sequences is mined from a sequence database. An example
of sequential pattern might be one in which the patterns shows that customers
typically bought a TV, followed by the purchase of an XBOX, and then a pack
of video games.

In this paper, we work on the new type of pattern mining problem called
Spatial-Textual sequence pattern mining, where we mine Spatial-Textual sub-
sequences from a set of Spatial-Textual sequences [9,10,18,22]. A Spatial-Textual
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 123–138, 2015.
DOI: 10.1007/978-3-319-18123-3 8

124 K.K. Arya et al.

sequence is a trajectory of locations with each location having associated with
it a set of activities/ events or some other attributes. Due to the proliferation of
devices enabled with GPS and Internet access, a lot of Spatial-Textual sequence
data is being generated at a fast pace. Such data may be used for improving the
process/ policies etc. in their respective application domains. As an example, we
can see customer transactions as a Spatial-Textual sequence, where a trajectory
is formed using the locations of the stores visited by the customers and a set of
items purchased in a store as a set of events/ activities. Frequent Spatial-Textual
sequence mined from this type of data can be useful for deciding the locations
where a new shop could be opened. Another application having this type of
data is related to movement of animals or birds, in which a trajectory represents
a sequence of locations tracked by the monitoring system and activities at a
location could represent the events related to their reproductive and migration
behavior. In social networks like Foursquare, the check-in sequence of a user
forms a trajectory and important words in a comment given by the user at a
location constitute a set of activities for that location.

Mining Spatial-Textual frequent sub-sequential patterns is one of the major
challenge due to the complexity of the data type, as we have to deal with not
only two different dimensions, but also ordered data. Another challenge lies due
to localization error of GPS devices in terms of defining notion of similarity of
two locations, i.e. two different latitude and longitude values of locations may
belong to the same actual location. To handle the first issue, we design a solution
that considers one of the dimensions in the first phase of pruning the data for
mining the target patterns in the second phase. Specifically we use either the
spatial or the textual data first to filter the data. The remaining data is then
mined for target patterns in the second phase. To handle the second issue of
location similarity, we use an application defined parameter to divide the whole
space into grids and consider every location within a grid cell as if its is the
same location. Another way to resolve this problem may be to partition the
space using an existing geographical boundary map, like zip code, city etc.

A lot of work has been done for mining general sequential patterns which is
discussed in detail in Section 2. We ask two questions in the context of mining
Spatial-Textual sequence data: i) how can we use existing sequence mining algo-
rithms to mine this kind of data, and ii) can we do better than existing sequence
mining algorithms? The answer to both of these questions is YES. To show this,
we adapt an existing sequence mining algorithm called PrefixSpan[16] to mine
this type of data and, we design and implement an efficient mining algorithm
which outperforms the adapted PrefixSpan algorithm in terms of execution time
as well as main memory requirement. We also give an external memory algo-
rithm to mine Spatial-Textual data whereas we give a heuristic to partition
the Spatial-Textual sequence database. Our experiments show that our exter-
nal memory algorithm is efficient and outperforms the näıve external memory
algorithms in terms of computation time.

Mining Frequent Spatial-Textual Sequence Patterns 125

Overall we have following contributions in this paper :

(i) We propose a flexible framework to mine a new kind of sequence pat-
tern called Spatial-Textual subsequence pattern. The framework is flexible
enough to accommodate any basic sequence mining algorithm as a baseline
algorithm in the framework.

(ii) We study three different algorithms to mine patterns, namely Spatial-
Textual, Textual-Spatial and Hybrid algorithm. Spatial-Textual algorithm
considers spatial dimension, i.e. location sequence, in the first phase whereas
Textual-Spatial uses activities in the first phase. The Hybrid version takes
into account both the dimensions simultaneously and has only one phase.

(iii) We design an external memory algorithm that outperforms näıve external
memory algorithm.

The remainder of the paper is structured as follows. Section 2 presents related
work in the area of sequence mining. In Section 3, we formalize our problem and
present the framework. Section 4 presents our proposed algorithms. In Section
5 external memory algorithm is presented. We present our experimental results
in section 6. And finally we conclude our work in section 7.

2 Related Work

In this section we briefly discuss some related work done in this area. The
sequential pattern mining problem was first addressed by Agrawal and Srikant
[1] in which they gave the AprioriAll algorithm to mine frequent patterns by
candidate-generation-and-test-approach. The approach is however simple but
may not be efficient in mining large sequence databases having numerous pat-
terns and/or long patterns. Subsequently, the authors in [19] proposed an algo-
rithm which outperformed AprioriAll algorithm. Ayres et al.[2] used a vertical
bitmap representation to count the supports and mine sequential patterns from
sequence databases.

FreeSpan[11] and PrefixSpan [16] are two algorithms, which use divide and
conquer approach. FreeSpan offers bi-level projection technique to improve per-
formance. The approach given by Jian Pei et al.[16] in their subsequent work
called PrefixSpan is a projection-based, sequential pattern-growth approach for
the mining of sequential patterns. In this approach, a sequence database is recur-
sively projected into a set of smaller projected databases, and sequential pat-
terns are grown in each projected database by exploring only locally frequent
fragments. PrefixSpan outperforms FreeSpan in that only relevant postfixes
are projected. Giannotti et al.[7] demonstrated an approach to mine sequen-
tial patterns with temporal annotations. Another technique given by Zaki et al.
[21] was SPADE algorithm. It searches the lattice formed by id-list intersec-
tions and completes mining in three passes of database scanning. MEMISP[15]
is a memory-indexing approach for fast discovery of sequential patterns. It
discovers sequential patterns by using a recursive find-then-index technique.
Leleu et al. [14] proposed a Go-SPADE method, which extends SPADE [21]

126 K.K. Arya et al.

to efficiently mine sequences containing consecutive repetitions of items. It may
be noted that all these works focus mainly on itemsets sequences without any
spatial dimension.

Koperski and Han et al.[13] extended the concept given by Srikanta et al.
to spatial databases by introducing spatial predicates like close to and near by.
Tsoukatos and Gunopulos[20] proposed an Aprioi-based method for mining spa-
tial regions sequences. Hwang et al.[12] presented an algorithm for mining a
group of moving objects with the same movement patterns. Cao et al.[4] pro-
posed a trajectory mining algorithm. Chung et al.[5] proposed an Apriori-based
method to mine movement patterns, where the moving objects are transformed
using a grid system and then frequent patterns are generated level by level.
Giannotti et al.[8] focuses on a method for extracting trajectory patterns con-
taining both spatial and temporal information. These works focus mainly on
spatial and temporal dimension and do not consider Spatial-Textual data for
their working.

Savasere and Navathe[17] proposed an external memory algorithm for
mining association rules in large databases. They used partition-and-validation
technique for mining the association rules out of the large databases. They did
simple partitioning as well as random partitioning and showed that performance
of external memory algorithm increases if we do random partitioning of the data.
Through partition-and-validation technique of MEMISP[15] algorithm, one can
mine an extremely large database in two or more database scans. However the
study in [17] and [15] were limited to simple transaction database and itemset-
sequences, respectively.

3 Problem Overview

Now we formalize our problem in this section.

3.1 Problem Definition

Let I = {i1, i2, . . . , in} be a set of items and L = {l1, l2, . . . , lm} is a set of
locations. An itemset X is a non-empty subset of I. A Spatial-Textual sequence
s is an ordered list of location-itemset pairs, i.e. s= 〈(li,Xi), . . . , (lj ,Xj)〉. As
an example, 〈((20.5, 30.6),{Bread, Butter, Beer}), ((20.66, 30.5), {Jam, Milk,
Sauce}), ((23,23.5),{Bread, Milk, Coke})〉 is a Spatial-Textual sequence. For
brevity, the brackets are omitted around an itemset if the itemset has only one
item.

The number of instances of location-item pairs in a sequence is called the
length of the sequence. A sequence with length l is called an l − sequence.
A sequence α = 〈a1, a2, . . . , an〉 is called a sub-sequence of another sequence
β = 〈b1, b2, . . . bm〉 and β a super-sequence of α, denoted as α � β, if there
exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that items(a1) ⊆ items(bj1)
and loc(a1) = loc(bj1), items(a2) ⊆ items(bj2) and loc(a2) = loc(bj2), . . .,

Mining Frequent Spatial-Textual Sequence Patterns 127

items(an) ⊆ items(bjn) and loc(an) = loc(bjn). Here items(p) returns the item-
set of pair p and loc(p) returns the location of pair p.

A sequence database S is a set of tuples 〈sid, s〉, where sid is a sequence-id
and s a sequence.

The support of a sequence α in a sequence database S is the number of tuples
in the database containing α, i.e.,

supports(α) = |〈sid, s〉|(〈sid, s〉 ∈ S) ∧ (α � s)| (1)

It can be denoted as support(α) if the sequence database S is clear from the con-
text. Given a min support (in percentage) as the support threshold, a sequence α
is called a frequent sequential pattern in a sequence database S if supportS(α) ≥
min support. A sequential pattern with length l is called an l − pattern.

The problem here is to find frequent Spatial-Textual patterns from given
Spatial-Textual sequence database S and a support threshold min support.

3.2 Framework

We propose a flexible framework to mine frequent Spatial-Textual patterns from
a database of Spatial-Textual sequences. The framework is flexible in terms of
allowing use of any basic sequence mining algorithm for its working, such as GSP
[19], PrefixSpan [16], SPADE [21] etc. The framework is shown in figure 3.1.

Input

Spatial−Textual Sequences

Statistics
Extractor

Prepare
Plan Executor

Plan

Basic
Seq. Mining
Algorithm

Output

Spatial−Textual

Patterns
SequenceSupport

Fig. 3.1. A Framework for Mining Spatial-Textual subsequences

The framework contains a Statistics Extractor (SE) module which scans the
Spatial-Textual sequences in the database and collects different statistics of data,
such as selectivity (frequency) of the locations, selectivity of items etc. The
SE module passes this information to the Prepare Plan (PP) module, which
on the basis of statistics prepare an execution plan. We have three different

128 K.K. Arya et al.

algorithms namely Spatial-Textual Mining (ST-Mining), Textual-Spatial Min-
ing (TS-Mining) and Hybrid Mining (H-Mining) algorithms supported by the
framework. The PP module specifically chooses an algorithm out of the three
algorithms on the basis of data statistics. The algorithm ST-Mining (TS-Mining)
considers spatial dimension (textual dimension) in the first phase to prune non-
candidate pairs from each sequence to produce only relevant data for the 2nd
phase. The Hybrid approach takes both the dimensions simultaneously and may
be applied directly or in the 2nd phase of ST-mining or TS-mining. We assume
the Basic Sequence Mining Algorithm module as a repository of sequence min-
ing algorithm such as Prefix-span, Spade etc. Plan Executer (PE) chooses one
basic sequence mining algorithm from the repository of basic algorithms for its
working. We choose Prefix-Span[16] algorithm (Baseline source code from [6])
for our study for illustrative purposes only; our framework allows use of any
basic sequence-mining algorithm.

4 Algorithms

We propose three algorithms, namely Spatial-Textual mining (ST-Mining),
Textual-Spatial mining (TS-Mining) and Hybrid mining (H-Mining) to mine
frequent Spatial-Textual sub-sequences. The ST-Mining (TS-Mining) algorithm
consists of three steps, which are :

(i) Label locations in database S using some grid partitioning algorithm.
(ii) Determine frequent locations (terms) for the given min support.
(iii) Prune database S to S′ using the obtained frequent locations (terms) and

mine the filtered sequences S′ to finally get the frequent Spatial-Textual
sequence patterns.

The H-Mining algorithm uses simply the basic sequence mining algorithm over
the whole database S and considers both the dimensions simultaneously.

4.1 Location Labeling

The Spatial-Textual sequences contain trajectories of users with associated activ-
ities on each of the location in trajectories. Two locations in trajectories may not
have same values for latitudes and longitudes even if they represent the same real
location due to various reasons, different localization technology, device specific
characteristics etc. Therefore assigning the same location label to two locations
representing the same real location needs to be fixed first. It is an important and
difficult problem and is still an active research area. For our purposes we use the
Grid structure with grid size being defined by passing application parameter,
i.e., locations in a grid are given the same label. It may be noted that locations
can also be clustered using some standard clustering algorithm like DBScan [3]
to get location labels, whereas a cluster-id becomes the label of all locations in
that cluster.

Mining Frequent Spatial-Textual Sequence Patterns 129

4.2 Algorithms

This section discusses the proposed sequence mining algorithms to mine fre-
quent Spatial-Textual sub-sequences to be used in the framework 3.1. The first
algorithm that we discuss is H-Mining algorithm given in 1. Next we discuss
ST-Mining algorithm 2.

The hybrid approach first converts the data to a specific format required to
run a given baseline algorithm. Basic algorithms run on one dimension, therefore
the spatial-textual data is mapped to one dimension form but still preserves
the actual data semantics, so that frequent Spatial-Textual sequences can be
extracted back. Conversion/ mapping mainly assigns each unique pair of location
and item a new symbol. The operation can be done in two steps: First, create
a hash-table to map each location-item pair to a symbol (may be an integer)
by scanning the sequence database. Then in the second step, the hash-table is
used to map each Spatial-Textual sequence to an itemset sequence where each
itemset is consisting of a set of symbols. We can then use any base sequence
mining algorithm like PrefixSpan to mine frequent itemset sequences. These
frequent itemset sequences then can be mapped back to the original Spatial-
Textual sequences using the hash-table.

Algorithm H-Mining(Sequences S, min support σ)
1 Convert Spatial-Textual sequence database S to itemset sequence form S′.
2 Call CoreAlgo(Sequences S′, Support σ) over itemset sequences.
3 return

Procedure CoreAlgo(Sequences S′, Support σ)
1 Mine sequences S′ using chosen baseline algorithm and find each frequent

sequential patterns.
2 return

Algorithm 1. Hybrid Mining

4.3 ST-Mining and TS-Mining Algorithms

In Spatial-Textual approach, the spatial dimension is used in the first phase to
prune non-candidate location-itemset pairs. We then run basic sequence mining
algorithm over this pruned Spatial-Textual sequences to find the final set of
frequent Spatial-Textual sequence patterns.

The motivation for ST-Mining algorithm comes from the fact that if a spa-
tial location is not frequent then that location with textual extension would
also not be frequent. Therefore instead of working on the complete database of
sequences, only trajectory (location sequence) data from the sequences database
can be mined first to get frequent locations. The trajectory data being of much
smaller size than the whole sequence database may provide a benefit in terms of

130 K.K. Arya et al.

Algorithm ST-Mining(Sequences S, min support σ)
1 Process database sequences to get frequent locations.
2 Prune Spatial-Textual sequence database using frequent locations to get

pruned Spatial-Textual sequence database S′
p.

3 Call H-mining(Sequences S′
p, min support σ) to get frequent

Spatial-Textual sequence patterns.
4 return

Algorithm 2. Spatial-Textual Mining

processing time as well as total memory requirement later in the second phase
due to pruning of non-candidate pairs.

Observation-1: A non-frequent location cannot appear in any of the frequent
Spatial-Textual sequence.

Table 4.1 shows an example database of Spatial-Textual sequences. Each
sequence has sequence-id associated with it. In this example, we have 4 Spatial-
Textual sequences.To reiterate, the l′s are locations and the a, b, ., ..g are the
textual items/events/properties/attributes pertaining to those locations.

Table 4.1. Example Spatial-Textual sequence Dataset

10 < l1, a (l2, a, b, c)(l3, a, c)l1, d (l4, c, f) >

20 < (l2, a, d) l4, c(l1, b, c)(l7, a, e) >

30 < (l1, e, f)(l2, a, b)(l4, d, f)l3, c l2, b >

40 < l3, e l6, g (l2, a, f) l5, c l3, b l4, c >

To finally get the frequent Spatial-Textual sub-sequences, we use the frequent
locations to prune out the non-candidate location-itemset pairs.

Initially, only the spatial dimension is considered from the given Spatial-
Textual sequence database. For this purpose, the textual dimension i.e., the
itemsets are not considered. Table 4.2 shows the spatial sequences of the given
Spatial-Textual example database.

Table 4.2. Spatial sequences

10 < l1 l2 l3 l1 l4 >

20 < l2 l4 l1 l7 >

30 < l1 l2 l4 l3 l2 >

40 < l3 l6 l2 l5 l3 l4 >

After processing trajectories in Table 4.2 with min support = 85%, we get
the l2 and l4 as frequent locations.

Candidate Location-Itemset Pair (p): A pair p is a candidate location-
itemset pair if its location label is present in some frequent trajectory.

Mining Frequent Spatial-Textual Sequence Patterns 131

In the pruning step we retain all the candidate location-itemset pairs and
prune out all other non-candidate pairs. For our example case, the state of
Spatial-Textual sequence database after pruning is shown in table 4.3.

Table 4.3. Pruned Spatial-Textual sequences

10 < (l2, a, b, c)(l4, c, f) >

20 < (l2, a, d) l4, c >

30 < (l2, a, b)(l4, d, f)l2, b >

40 < (l2, a, f)(l4, c) >

To show that the ST-Mining algorithm would not miss any frequent Spatial-
Textual sequence pattern, we prove the following lemma.

Lemma-1. Any Location-itemset pair p pruned in the pruning step is a non-
candidate pair and would not contribute to any frequent Spatial-Textual sub-
sequence.

Proof. Suppose a Spatial-Textual pair p contributes to a frequent Spatial-
Textual pattern and is pruned by our pruning step. If p is in a frequent Spatial-
Textual sequence then there should be at least k Spatial-Textual sequences, say
S′ ⊂ S, that contribute to the pair p. Each sequence s ∈ S′ would have at
least one location-itemset pair with matching location label. In the pruning step
using frequent trajectories’ locations, all candidate location-itemset pairs are not
pruned. Hence p should not be pruned in our pruning step. Q.E.D.

After pruning the whole Spatial-Textual sequence database, we find all the
frequent Spatial-Textual sub-sequences, i.e. the sub-sequences whose occurrence
frequency in the set of pruned Spatial-Textual sequences is no less than mini-
mum support (Here min support = 85% is considered) by the use of any basic
sequence mining algorithm. For our example, we will get < l2, a > as frequent
Spatial-Textual sequence.

Till now we have discussed about the Spatial-Textual sequence data in which
a user visits a sequence of locations and performs some activities at each location.
But another case of the Spatial-Textual sequence data can have users visiting
a sequence of locations but do perform activities very rarely. In this scenario,
it may happen that the textual (itemset) sequences may become smaller in size
and hence selectivity of textual dimension becomes low. Our framework in this
scenario would choose TS-Mining approach where textual dimension would be
used first to get the frequent items. Then using frequent textual items, the
sequence database is pruned similar to the ST-Mining approach and finally the
pruned sequence data is mined to get the frequent Spatial-Textual sub-sequences.
The approach is symmetrical to the ST-Mining approach except that the order
now is text followed by location; hence, we just present our results for the ST-
Mining approach.

132 K.K. Arya et al.

5 External Memory Algorithm

The size of the main memory available with a computing workstation is nowadays
increasing very rapidly, however the size of data which is being generated is
also increasing at a high pace. Therefore it is highly likely to have scenarios
where data to be processed cannot fit in main memory. In such cases algorithms
designed with the assumption of availability of complete data in main memory,
cannot work. An example of this is a PrefixSpan [16] algorithm. In addition to
the assumption of complete availability of data in main memory, this algorithm
makes many recursive calls and requires a lot of main memory for its working.

As discussed earlier, the ST-Mining algorithm initially in its first phase runs
on only spatial sequences which is smaller in size, and then in second phase it
runs on pruned Spatial-Textual sequence data. It makes our algorithm to mine
large datasets consisting of Spatial-Textual sequences which was not otherwise
possible using the Hybrid approach. We design an external memory algorithm
to mine larger size data that cannot fit in main memory and in fact will work
for the scenario where even spatial sequences may also not fit in main memory.
The algorithm discovers sequential patterns using a partition-and-validation app-
roach similar to the approach proposed for frequent itemset mining in [17]. The
approach, first, partitions the itemset database into a set of chunks and then
each chunk is locally mined for determining local frequent itemsets. Each of the
local frequent itemsets thus obtained from any chunk is then verified on the
whole transaction database. The main issue with such an approach is to design
a partitioning method so that number of locally frequent itemset that need to be
verified is small in number. We use a similar approach for our external memory
algorithm. However we propose a novel heuristic of using the spatial dimension
for partitioning of data to reduce the number of patterns to be verified finally.
We call this heuristic as spatial-partition. We use the ST-Mining algorithm for
mining local chunks, as discussed in the previous section.

The spatial dimension is used in the following way for partitioning of data
into chunks. To minimize the number of false positives, i.e., non-candidate pat-
terns that need to be verified, we try to put most dissimilar sequences in a
specific chunk. We term this rule as spatial-partition heuristic. To implement
the heuristic, we use a grid structure to assign a label to each trajectory, first. A
trajectory is assigned a grid label on the basis of the label of the most frequent
grid that it passes through, i.e., the label of a sequence is the grid label which
contains maximum number of locations of that sequence. In case of conflict for
labels due to more than one grid with the same frequency, we choose one grid
label arbitrarily. Though more complicated approaches can be devised for label-
ing, we see this simple approach to be working well for our case. However, the
success of the approach depends on the grid size and distribution of locations
for each grid. After labeling, these sequences are partitioned such that a par-
tition/chunk has a minimum number of sequences with the same labels. This
problem can also be modeled as a trajectory clustering problem where the dis-
tance function is defined in such a way that the two most dissimilar trajectories
have the smallest distance between them so that they will be assigned the same

Mining Frequent Spatial-Textual Sequence Patterns 133

cluster with high probability. The number of clusters obtained is equal to the
number of partitions/chunks.

The steps of external memory algorithm are as follows:

(i) Generate K partitions of Spatial-Textual sequences using spatial-partition
heuristic.

(ii) For each partition, generate locally frequent Spatial-Textual sequence pat-
terns using ST-Mining algorithm.

(iii) Validate locally frequent Spatial-Textual sequence patterns obtained in the
second step over complete sequential database S.

The number of partitions, K, are determined on the basis of available main
memory. The chunk size should not be more than the memory required for its
processing. The patterns mined from a chunk are called locally frequent spatial-
textual sequence patterns. A locally frequent spatial-textual pattern is called a
false pattern if it is not frequent over the complete sequence database. The main
issue therefore in this approach is to cleverly partition the data so that number
of false positive patterns is minimized.

6 Experiment Results

6.1 Dataset and Data Preprocessing

We conduct our experiments on two real datasets, namely Foursquare1 and
Bikely2. The statistics of both of these datasets have been given in Table 6.1.
Foursquare dataset is prepared by crawling the check-in locations of different
users along with their comments posted for a check-in place. The check-in loca-
tion and words extracted from the comment constitute our location-itemset pair.
Bikely dataset is also prepared by the crawling of the 100000 trajectories formed
of the bicycle routes of the different users. Since the trajectories of bikely data
contains only locations so we merged the comments from crawled foursquare
dataset with these bikely trajectories to generate Spatial-Textual sequences.
Location labels for each location are obtained by using Grid-based approach
and a different grid size is chosen for each experiment. All the experiments are
conducted on a workstation with Intel Duo core 3GHz CPU and 32GB memory.
To generate a dataset of different sizes we sample sequences randomly from the
whole dataset. The different parameters which are used for experimental study
are given in Table 6.2. The min support of 0.18% and 0.0072% are chosen for
Foursquare and Bikely, respectively. We choose these support threshold values
because below these values, the number of frequent patterns for the respective
datasets are too many in number and both the algorithms take a lot of time. We
report execution time by taking the average of the 20 iterations of each result
so that the effect of the other system parameters can be minimized.
1 http://www.foursquare.com
2 http://www.bikely.com

http://www.foursquare.com
http://www.bikely.com

134 K.K. Arya et al.

Table 6.1. Experiment Data Statistics

Foursquare Bikely

Total Number of Sequences 30000 100000

Average Number of Transaction/Sequence 8 20

Average Number of items/Transaction 6 10

Total number of items(events) 50000 50000

Table 6.2. Experiment Parameters

Sr. No Parameter Foursquare-Values Bikely-Values

1. Number of Sequences 5,10,15,20,25,30K 50,75,100K

2. Grid-Cell Size 0.1-1.0 units 0.1-1.0 units

3. Support 0.18% 0.0072%

4. Execution Time milliseconds milliseconds

6.2 Comparison of Hybrid and ST-Mining Algorithms w.r.t. Total
Execution Time

Effect of Dataset Size. Figure 6.1 shows performance of Hybrid and ST-
Mining algorithm for different number of sequences in Foursquare data with
support value of 0.18%. The grid size is 0 in this experiment, which means that
each unique location is given a different location-label.

The graph shows that the ST-Mining algorithm outperforms the H-Mining
algorithm in terms of execution time. The gap in performance between Hybrid
and ST-Mining algorithm increases as the data size increases. Due to lower-
selectivity of location labels ST-mine algorithm has a lot of pruning on the data
to be mined in the second phase. It may be noted that performance of the ST-
Mining algorithm will further improve with the increase in support threshold
value due to better pruning. Similar experiments are performed on Bikely data
with 0 grid size and 0.0072% support value. The results are shown in figure 6.2.

5 10 15 20 25 30
0

2,000

4,000

6,000

Number of Sequences(K)

E
x
ec
u
ti
o
n
T
im

e
in

m
s

For support= 0.18%

Hybrid

Spatial-Textual

E
x
ec
u
ti
o
n
T
im

e
in

m
s

Fig. 6.1. Foursquare

50 75 100
0

1

2

3

·104

Number of Sequences(K)

For support= 0.0072%

Hybrid

Spatial-Textual

Fig. 6.2. Bikely

Mining Frequent Spatial-Textual Sequence Patterns 135

4 · 10−26 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18

2,000

3,000

4,000

5,000

6,000

Support(in percentage)

E
x
ec
u
ti
o
n
T
im

e
in

m
s

For sequence size= 30000

Hybrid

Spatial-Textual

E
x
ec
u
ti
o
n
T
im

e
in

m
s

Fig. 6.3. Foursquare

3 4 5 6 7

·10−3

1

2

3

·104

Support(in percentage)

For sequence size= 100000

Hybrid

Spatial-Textual

Fig. 6.4. Bikely

Effect of Varying Support Threshold Value. Figure 6.3 shows the com-
parison of total execution time taken by Hybrid and ST-Mining algorithms due
to change in support threshold. In this case the number of sequences and loca-
tion granularity are set to constant values as given in table 6.2, i.e. location
granularity as zero and number of sequences as 30000. The graph shows that
the ST-Mining algorithm takes less time as compared to the Hybrid algorithm
for higher support threshold values. For low support threshold ST-Mining per-
formance is poor due to the reason of less pruning.

Figure 6.4 shows similar results for bikely dataset which contains 100000
sequences. This also shows that ST-Mining algorithm outperforms Hybrid algo-
rithm for high support threshold values.

Effect of Varying Location Granularity. Figure 6.5 shows the comparison
of total execution time taken by Hybrid and ST-Mining algorithms vis-a-vis
location selectivity in terms of grid size. The location selectivity of a location
is defined in terms of number of spatial-textual sequences that contain that
location. Higher the number of sequences that contain a location, lower the
selectivity of the location. We use support threshold value as 7.2% and number
of sequences as 30000 for Foursquare. The high min support threshold of 7.2% is
chosen for this experiment to limit the number of frequent patterns. We observe
too many frequent patterns at a lower support threshold value with high location
granularity in our dataset.

The graph shows that ST-mine Algorithm takes less time than Hybrid algo-
rithm in case of high selectivity of location-label. As the grid size starts increas-
ing, the difference between the execution time of Hybrid algorithm and ST-Mining
algorithm starts reducing. The reason behind this is that, because of small grid size
the selectivity of location is high so frequent spatial patterns are generated less in
numbers and more pruning occurs in the second phase. Figure 6.6 shows similar
results for Bikely dataset with 100000 sequences and 1.2% support threshold. The
min support of 1.2% for bikely is chosen for the same reason as has been mentioned
above for Foursquare data, i.e. to limit the number of frequent patterns.

136 K.K. Arya et al.

0 2 4 6 8

0.4

0.6

0.8

1
·104

Grid size (in unit size)

E
xe

cu
ti
on

T
im

e
in

m
s

For support= 7.2%

Hybrid
Spatial-Textual

E
xe

cu
ti
on

T
im

e
in

m
s

Fig. 6.5. Foursquare

0 2 4 6 8

0.5

1

1.5

2

2.5

·105

Grid size (in unit size)

For support= 1.2%

Hybrid

Spatial-Textual

Fig. 6.6. Bikely

6.3 External Memory Algorithm Performance Study

Figure 6.7, 6.8, 6.9 and 6.10 shows the results for comparison of the time
taken by External-Memory algorithms, i.e., Simple Serial (SS) chunk distribu-
tion approach and dissimilar sequences (DS) chunk distribution approach. The
SS approach chooses a set of spatial-textual sequences randomly to form a chunk,
whereas the DS approach uses the spatial-partitioning heuristic for grouping of
spatial dis-similar spatial-textual sequences for forming of a chunk. We study the
performance on foursquare data for different location granularities with number
of sequences as 30000 and support threshold as 7.2% and also for varying support
threshold with number of sequences as 20000. The graphs 6.7, 6.8 show that
DS approach takes less time than SS approach. This is due to generation of less
false positive patterns that need to be verified in case of DS approach. Similar
results are obtained on Bikely data for varying location granularity as shown in
graph 6.9 and for varying support threshold values as shown in figure 6.10.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

·106

Grid size (in unit size)

E
x
ec
u
ti
o
n
T
im

e
in

m
s

Total Execution Time(support= 7.2%)

SS

DS

E
x
ec
u
ti
o
n
T
im

e
in

m
s

Fig. 6.7. Varying Location Gran-
ularity: Foursquare

2 3 4 5 6 7

0

0.5

1

1.5

·105

Support (in percentage)

Total Execution Time(For Sequence Size= 20000)

SS

DS

Fig. 6.8. Varying Support Thresh-
old:Foursquare

Mining Frequent Spatial-Textual Sequence Patterns 137

0.2 0.4 0.6 0.8 1

1

2

3

·106

Grid size (in unit size)

E
x
ec
u
ti
o
n
T
im

e
in

m
s

Total Execution Time(support= 1.8%)

SS

DS

E
x
ec
u
ti
o
n
T
im

e
in

m
s

Fig. 6.9. Varying Location Gran-
ularity: Bikely

1 1.2 1.4 1.6 1.8

0

1

2

3

4
·107

Support (in percentage)

Total Execution Time(For Sequence Size= 100000)

SS

DS

Fig. 6.10. Varying Support
Threshold:Bikely

7 Conclusions and Future Work

A tremendous volumes of spatial-textual data is getting generated due to the pro-
liferation of GPS-enabled devices and Internet access. This data can be mined for
patterns that can be useful for multiple application domains. We have presented
a novel yet a straightforward and simple framework to mine Spatial-Textual
sequence data and have proposed three algorithms in this paper. We have also
presented an external memory algorithm to mine large data that cannot fit in
main memory. The heuristic proposed for external memory algorithm is simple
and effective for partitioning Spatial-Textual sequence data. The experimental
study conducted shows that ST-Mining and external memory algorithms actu-
ally achieve good performance. As a future work we intend to work on forming
rules that would choose the best algorithm based on some properties of spatial-
textual data such as location selectivity, textual terms selectivity and support
threshold.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: IEEE Eleventh Interna-
tional Conference on Data Engineering (ICDE), pp. 3–14 (1995)

2. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 429–435. ACM (2002)

3. Birant, D., Kut, A.: St-dbscan: An algorithm for clustering spatial-temporal data.
Data & Knowledge Engineering 60(1), 208–221 (2007)

4. Cao, H., Mamoulis, N., Cheung, D.W.: Mining frequent spatio-temporal sequen-
tial patterns. In: Fifth IEEE International Conference on Data Mining, pp. 82–89
(2005)

5. Du Chung, J., Paek, O.H., Lee, J.W., Ryu, K.H.: Temporal Pattern Mining of
Moving Objects for Location-Based Service. In: Hameurlain, A., Cicchetti, R.,
Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 331–340. Springer,
Heidelberg (2002)

138 K.K. Arya et al.

6. Fournier-Viger, P., G.A.S.A.L.H.G.T.: SPMF: Open-Source Data Mining Platform.
http://www.philippe-fournier-viger.com/spmf/ (2014)

7. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining sequences with tempo-
ral annotations. In: Proceedings of the 2006 ACM Symposium on Applied Com-
puting, pp. 593–597. ACM (2006)

8. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 330–339. ACM (2007)

9. Goyal, V., Likhyani, A., Bansal, N., Liu, L.: Efficient trajectory cover search for
moving object trajectories. In: Proceedings of the 2013 IEEE Second International
Conference on Mobile Services, pp. 31–38 (2013)

10. Goyal, V., Navathe, S.B.: A ranking measure for top-k moving object trajectories
search. In: Proceedings of the 7th Workshop on Geographic Information Retrieval,
pp. 27–34 (2013)

11. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan:
frequent pattern-projected sequential pattern mining. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 355–359. ACM (2000)

12. Hwang, S.-Y., Liu, Y.-H., Chiu, J.-K., Lim, E.: Mining Mobile Group Patterns:
A Trajectory-Based Approach. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD
2005. LNCS (LNAI), vol. 3518, pp. 713–718. Springer, Heidelberg (2005)

13. Koperski, K., Han, J.: Discovery of spatial association rules in geographic infor-
mation databases. In: Advances in Spatial Databases, pp. 47–66. Springer (1995)

14. Leleu, M., Rigotti, C., Boulicaut, J.F., Euvrard, G.: Go-spade: mining sequential
patterns over datasets with consecutive repetitions. In: Perner, P., Rosenfeld, A.
(eds.) MLDM 2003. LNAI, vol. 2734, pp. 293–306. Springer, Heidelberg 2003

15. Lin, M.Y., Lee, S.Y.: Fast discovery of sequential patterns through memory index-
ing and database partitioning. J. Inf. Sci. Eng. 21(1), 109–128 (2005)

16. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: 29th IEEE International Conference on Data Engineering (ICDE), pp. 215–224.
IEEE Computer Society (2001)

17. Savasere, A., Omiecinski, E.R., Navathe, S.B.: An efficient algorithm for mining
association rules in large databases. In: VLDB, pp. 432–444 (1995)

18. Saxena, A.S., Goyal, V., Bera, D.: Efficient Enforcement of Privacy for Moving
Object Trajectories. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303,
pp. 360–374. Springer, Heidelberg (2013)

19. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and per-
formance improvements. In: Proceedings of the 5th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT 1996,
pp. 3–17 (1996)

20. Tsoukatos, I., Gunopulos, D.: Efficient Mining of Spatiotemporal Patterns. In:
Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, pp. 425–442. Springer, Heidelberg (2001)

21. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1–2), 31–60 (2001)

22. Zheng, K., Shang, S., Yuan, N., Yang, Y.: Towards efficient search for activity
trajectories. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 230–241, April 2013

http://www.philippe-fournier-viger.com/spmf/

Effective and Interpretable Document
Classification Using Distinctly Labeled Dirichlet

Process Mixture Models of von Mises-Fisher
Distributions

Ngo Van Linh(B), Nguyen Kim Anh, Khoat Than, and Nguyen Nguyen Tat

Hanoi University of Science and Technology, 1, Dai Co Viet road, Hanoi, Vietnam
{linhnv,anhnk,khoattq}@soict.hust.edu.vn, tatnguyennguyen@gmail.com

Abstract. Document Classification is essential to information retrieval
and text mining. Accuracy and interpretability are two important aspects
of text classifiers. This paper proposes an interpretable classification
method (DLDPvMFs) by using the Dirichlet process mixture (DPM)
model to discover the hidden topics distinctly within each label for
classification of directional data based on the von Mises-Fisher (vMF)
distribution, which arises naturally for data distributed on the unit
hypersphere. We use a mean-field variational inference algorithm when
developing DLDPvMFs. By using the label information of the training
data explicitly and determining automatically the number of topics for
each label to find the topical space, class topics are coherent, relevant and
discriminative and since they help us interpret class’s label as well as dis-
tinguish classes. Our experimental results showed the advantages of our
approach via significant criteria such as separability, interpretability and
effectiveness in classification task of large datasets with high dimension
and complex distribution. Our obtained results are highly competitive
with state-of-the-art approaches.

Keywords: Variational inference · Bayesian nonparametrics · Classifi-
cation · von Mises-fisher distribution

1 Introduction

Recently, as the number of online documents has been rapidly increasing, auto-
matic text categorization is becoming a more important and fundamental task
in information retrieval and text mining. The major objective of text classifica-
tion system is to organize the available text documents semantically into their
respective categories. This problem has attracted significant attention from lot
of researchers for playing crucial role in many applications such as web page
classification, classification of news articles, information retrieval etc.

Accuracy and interpretability are two important aspects of text classifiers.
While the accuracy of a classifier measures the ability to correctly classify unseen
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 139–153, 2015.
DOI: 10.1007/978-3-319-18123-3 9

140 N. Van Linh et al.

data, interpretability is the ability of the classification to be understood by
humans and supplies reason why each data instance is assigned to label. There-
fore, the classifier should be represented in an intuitive and comprehensible way,
such that the user can draw from this information and make an appropriate
decision. However, many black-box models such as SVM or ensemble classifiers
outperform more comprehensible methods like decision trees in terms of classifi-
cation accuracy. This leads to a trade-off between interpretability and accuracy
[1]. As a result, many researchers are interested in accuracy when the inter-
pretability of classification is often neglected.

To interpret the way a classifier assign a document to a label, this clas-
sifier has to understand the meaning of each of labels as well as document’s
contents and discover words in documents which can be attributed to the doc-
ument’s label. Interpretable text classification in this way requires models can
flexibly account for the textual patterns that underlie the observed labels. Topic
modeling is a potential approach to learning hidden topics from large datasets
with high dimension and complex distribution. In fact, for classification, data
instances in a class usually present some special topics that are different from
other classes. Therefore, to understand the meaning of each label, we can use
a topic model to discover the hidden topics in respect of this label from itself
label’s training data. It means that each labeled document can use only topics
in a special topic set associated with the document’s label. Furthermore, the
discovered topics for each class should be coherent and are relevant enough to
interpret and can differentiate classes. And so, a new challenge in understanding
the meaning of each label is to determine how many topics belong to each label.

Clearly, in some topic models, an improper estimation of the number of topics
might easily mislead the classification process and result in bad classification out-
comes. The Dirichlet process mixture (DPM) model is an infinite mixture model
in which each component corresponds to a different topic. The DPM model can
automatically determine the number of topics [2] that data instances are talking
about. However, the choice of a particular generative model can affect the per-
formance of a classification procedure. Specially, in information retrieval appli-
cations, models that use normalizing the data vectors help to remove the biases
induced by the length of a document and cosine similarity is a more effective
measure of similarity for analysing text documents [2–4]. The von Mises-Fisher
(vMF) distribution is one of the simplest parametric distributions for directional
vector data in R

d. The mixture of vMF distributions gives a parametric model
which exploits cosine similarity measure to be appropriate to high dimensional
data, whereas the mixture of Gaussian distributions is similar to use euclidean
distance which is not suitable to text classification. The generative model based
on the vMF distributions can directly handle high dimensional vectors without
dimensionality reduction, and so, can been applied for classification of texts that
are high-dimensional, sparse and directional vectors [3,5].

This paper proposes an interpretable document classification method using
Distinctly Labeled Dirichlet Process Mixture Models of von Mises-Fisher Distri-
butions (DLDPvMFs) by using the DPM model to discover the hidden topics

Effective and Interpretable Document Classification 141

distinctly within each label. By exploiting DPM to automatically detect the
number of topics within each class, our method separably learns among classes
thanks to which it not only easily understands and interprets the topics of each
label but also detects outliers. Moreover, our method offers the representation
of instances in topical spaces to deal with visualization and dimension reduc-
tion problems. In addition, to cope with high-dimensional and sparse texts, our
model generates data instances by vMF distributions. The experimental results
show that our method is highly competitive with state-of-the-art approaches in
classification.

The rest of the paper is organized as follows. Section 2 introduces related
works. Section 3 describes our proposed approach in detail. Experimental results
are discussed in Section 4 and conclusion is made in Section 5.

2 Related Works

Accuracy and interpretability are two important aspects of text classifiers. How-
ever, there are only a few works to deal with the interpretability of classifica-
tion. Recently, supervised topic model incorporating document class labels such
as Labeled LDA [6] applies a transformation matrix on document class labels
to modify Dirichlet priors of the LDA-like models. However, Labeled LDA (L-
LDA) was designed specifically for multi-label settings. Moreover, in L-LDA,
the training of the LDA model is adapted to account for multi-labeled corpora
by putting ”topics” in 1-1 correspondence with labels and then restricting the
sampling of topics for each document to the set of labels that were assigned to
the document.

While labeled LDA simply defines a one-to-one correspondence between latent
topics and the labels of classes and hence does not find out latent sub-topics within
each class, multi-view topic model(mview-LDA) [7] and partially labeled topic
models [8] discover the hidden topics within each label. Ahmed and Xing proposed
a multi-view topic model for ideological perspective analysis [7]. Each ideology has
a set of ideology-specific topics and an ideology-specific distribution over words.
By using the hidden topics of each class which were find out in training process,
their classification results improved significantly. However, the number of topics
were not interested in their model and it was chosen by experiments. Similarly,
Partially Labeled Dirichlet Allocation (PLDA) [8] uses the un-supervised learn-
ing machinery of topic models to discover the hidden topics within each label and
interpret the hidden meaning of each class. Moreover, Partially Labeled Dirichlet
Process (PLDP) [8] extends PLDA by incorporating a non-parametric Dirichlet
process prior over each class’s topic set, allowing the model to adaptively discover
how many topics belong to each label. However, this paper aims to interpret the
meaning of labels which help to understand and describe concisely the main con-
tent of each document but it does not aim to classify this document. Furthermore,
in their models, they usually use multinomial distribution to generate document
which is not effective to classify [9].

A more recent approach proposed by Zhu, Ahmed and Xing was maximum
entropy discrimination LDA (MedLDA) [10]. They estimate model parameters

142 N. Van Linh et al.

which help to infer latent topical vectors of documents by integrating the max-
margin principle into the process of topic learning with one single objective
function. However, the quality of the topical space learned by MedLDA is heavily
affected by the quality of the classifiers which are learned at each iteration of
MedLDA. Moreover, due to the inappropriate use of kernels, MedLDA is not
good to learn topical space.

Our work differs from [7,8] in two significant aspects. Firstly, we propose a
supervised mixture model to exploit effectively label information of the training
data by using the DPM model that can determine the number of topics auto-
matically to discover the hidden topics distinctly within each label. So, class
topics are coherent, relevant and discriminative and since they help us interpret
class’s label as well as distinguish classes. Secondly, we use generative model
based on the von Mises-Fisher (vMF) distribution that can directly handle high
dimensional vectors without dimensionality reduction.

3 Proposed Method

It is natural to assume that data instances in a class present some special topics
or components that distinguish classes. Finding out them not only improves
classification accuracy but also helps to understand and interpret the meaning
of labels. In order to reinforce the separability of classes, we construct a model
to discover the particular topics of each class by exploiting the data instances of
each class in a separate mixture model of vMF distributions which is a suitable
model for text documents [9]. Nevertheless, determining the number of topics
in each class is non-trivial. Motivated by the advantages of Dirichlet process
mixture model with vMF distributions [2], we propose a new model to find out
automatically the number of topics that are prominent in each class.

3.1 The von Mises-Fisher (vMF) Distribution

In directional statistics, a d-dimensional unit random vector x (i.e., x ∈ R
d

and ‖x‖ = 1, or equivalently x ∈ S
d−1) is said to have d-variate von Mises-

Fisher (vMF) distribution R
d [9] if its probability density function is given by

f(x|μ, κ) = vMF (x|μ, κ) = Cd(κ) exp(κμT x) where ‖μ‖ = 1, κ ≥ 0 and d ≥ 2.
The normalizing constant Cd(κ) is given by:

Cd(κ) =
κ

d
2 −1

(2π)
d
2 I d

2 −1(κ)
(1)

where Ir(·) represents the modified Bessel function of the first kind and order.
The unit vectors drawn according to vMF distribution are concentrated about
μ, mean direction, which is also a unit vector. As κ, the concentration param-
eter, increases the distribution tends to stronger concentration around μ. In
particular when κ = 0, f(x|μ, κ) reduces to uniform density on S

d−1, and as

Effective and Interpretable Document Classification 143

κ → ∞, f(x|μ, κ) tends to a point density. Also, expected value E(x) = ρμ,
where:

ρ = Ad(κ) =

∫ 1

−1
t2eκt(1 − t2)

(d−3)
2 dt

∫ 1

−1
eκt(1 − t2)

(d−3)
2 dt

=
I d

2
(κ)

I d
2 −1(κ)

(2)

3.2 Dirichlet Process Mixture (DPM)

The Dirichlet process, introduced in [11], is a distribution over distributions. It
is parameterized by a base distribution G0 and a positive scaling parameter α.
Suppose a random distribution G is drawn from a Dirichlet process, Dirichlet
process mixture model is written as:

G|{α,G0} ∼ DP (α,G0)

ηn|G ∼ G and Xn|ηn ∼ P (Xn|ηn)

Sethuraman provided a more explicit characterization of the Dirichlet process
in terms of a stick-breaking construction [12]. Consider two infinite collections
of independent random variables, ut ∼ Beta(1, α) and ηt ∼ G0 for t = {1, 2, ...}.
Mixing proportions πt(u) are given by:

πt(u) = ut

t−1∏

j=1

(1 − uj) (3)

By this construction,
∑∞

t=1 πt = 1 and the stick-breaking representation of
Dirichlet Process mixture model is as follows:

G =
∞∑

t=1

πt(u)δηt
(4)

The DPM has a natural interpretation as a flexible mixture model in which the
number of topics is random and grows when new data are observed. Moreover,
this model estimates how many topics are needed to model the observed data.
Thence, it discovers coherent and natural topics in data.

3.3 Distinctly Labeled Dirichlet Process Mixture Models of von
Mises-Fisher Distributions (DLDPvMFs)

In this section, we propose a new supervised mixture model by exploiting the
DPM model that can determine the number of topics automatically to discover
the particular hidden topics distinctly within each label. We assume that dataset
X = {x1, x2, ..., xN} consisting of N d-dimensional vectors, where each vector
represents a data instance. Let V = {v1, v2, ..., vN} be the set of V labels for
which vi is the label of xi. And, label vn of xn is generated by multinomial distri-
bution: vn ∼ Mult(δ) where δ = (δ1, δ2, ..., δV) is a proportion hyperparameter.
Specially, for each class, we use a DPM model of vMF distributions to generate

144 N. Van Linh et al.

instances in this class. By using distinct DPM which finds out the number of
topics for each class, our model will learn the particular topics that help to distin-
guish classes and interpret the meaning of labels. The stick-breaking construction
for the DPM of vMF distributions is depicted as a graphical model in Figure 1.
Let zn be an assignment variable of the mixture topics with which the data xn is
associated. When label vn is known, zn is generated by multinomial distribution:
zn ∼ Mult(π(uvn

)). The conditional distribution of xn given vn, zn, {μ1, μ2, ...}
and hyperparameter κ is P (xn|vn, zn, κ, μ1, μ2, ...) = vMF (xn|μvn,zn

, κvn,zn
).

μv,t, (t = 1, 2, ...,∞) are mean direction vectors that are the particular top-
ics of label v. Mardia and El–Atoum [13] have indentified the vMF distribu-
tion as the conjugate prior for the mean direction. So μv,t is generated by:
μv,t|ζv, ρv ∼ vMF (μv,t|ζv, ρv) where ζv, ρv are hyperparameters of vMF distri-
bution.

Fig. 1. Graphical Model of Distinctly Labeled Dirichlet Process Mixture Models of von
Mises-Fisher Distributions (DLDPvMFs)

The complete generative model is given by:

1. The topics of each class v ∈ {1, 2,, V } are generated as follows:
(a) Draw uv,t ∼ Beta(1, αv), t = {1, 2, ...}
(b) Draw μv,t|ζv, ρv ∼ vMF (μv,t|ζv, ρv)

2. For each data point xn

(a) Draw vn|δ ∼ Multi(δ)
(b) Draw zn|vn, un ∼ Mult(π(uvn

))
(c) Draw

xn|vn, zn, κv, μ ∼ vMF (xn|μvn,zn
, κvn,zn

)

3.4 Variational Inference for DPM of vMFs

Given a training set, we focus on inferring the posterior distribution that there
is no direct way to compute under a DPM prior. Inference algorithms, based on

Effective and Interpretable Document Classification 145

Gibbs sampling [14,15], usually are used for such problem and are guaranteed
to converge to the underlying distributions. However, Gibbs sampling is not effi-
cient enough to scale up to the large scale problems. Furthermore, it is difficult
to know how many iterations are required for convergence of the Markov chain.
Variational inference provides an alternative and is usually much faster Gibbs
sampling. In mean-field variational methods, the true posterior is approximated
by another distribution with a simpler, factored parametric form. An EM pro-
cedure is used to update the parameters of the approximate posterior and the
model hyperparameters so that a lower bound on the log likelihood increases
with each iteration [16].

In training process, each label vn of instance xn is observed. Let Xv and Zv

be instances and their assignment variables in class v. The posterior distribution
is written as:

p(Z,U,µ|X,V, αV, ζV, κV, ρV)

=
V∏

v=1

p(Zv,Uv,µv|Xv, αv, ζv, κv, ρv) (5)

where Uv = {uv,1, uv,2, ..., uv,t, ...}, µv = {μv,1, ..., μv,t, ..} are the hidden vari-
ables which describe particular topics of label v. It means that the each DPM
of each label v are learnt independently from other classes.

We will introduce a mean-field variational method to learn DPM for class v.
We assume that Nv is the number of instances that their label are v. However,
in DPM models, the value of zn is potentially unbounded. Thus the variational
distribution need be truncated. The truncation level T is fixed a value and let
q(uv,T = 1) = 1. It means that the mixture proportions πv,t(u) = 0 for t > T .
The model is a full Dirichlet process and is not truncated. Only the variational
distribution is truncated.

We infer latent variables and estimate hyperparameters by using mean-field
variational inference method to above model. The mean-field method tries to
find a distribution in a simple family that is close to the true posterior. We
approximate the fully factorized family of distributions over the hidden variables:

q(Uv,µv,Zv|γv, μ̃v, κ̃v, φ)

=
T−1∏

t=1

q(uv,t|γv,t)
T∏

t=1

q(μv,t|μ̃v,t, κ̃v,t)
Nv∏

n=1

q(zn|φn) (6)

and assume the factors have the parametric forms: q(uv,t|γv,t) =
Beta(uv,t|γv,t1 , γv,t2), q(μv,t|μ̃v,t, κ̃v,t) = vMF (μv,t|μ̃v,t, κ̃v,t), q(zn|φn) =
Mult(zn|φn) (q(zn = t|φn) = φn,t). Here, γv,t1 , γv,t2 , μ̃v,t, κ̃v,t, φn are the free
variational parameters.

146 N. Van Linh et al.

Using this factorization, a lower bound L(γv, μ̃v, κ̃v, φ) of the log likelihood
is given by:

L(γv, μ̃v, κ̃v, φ)
= Eq[log P (Xv|Zv,Uv,µv))] + Eq[log P (Zv|Uv)]

+ Eq[log P (Uv|αv)] + Eq[log P (µv|ζv, ρv)]
− Eq[log q(Uv|γv)] − Eq[log q(Zv|φ)]
− Eq[log q(µv|μ̃v, κ̃v)] (7)

To optimize the lower bound of the log-likelihood, we use EM scheme to
iteratively learn the model. Specifically, we repeat the following two steps, E-
step and M-step, until convergence. In E-step, the lower bound is optimized with
respect to each of the free parameters γv, μ̃v, κ̃v, φ as:

γv,t1 = 1 +
Nv∑

i=1

φi,t (8)

γv,t2 = αv +
Nv∑

i=1

T∑

j=t+1

φi,j (9)

φn,t ∝ exp(Sn,t) (10)

where

Sn,t = κv,tAd(κ̃v,t)μ̃v,txn + (Ψ(γv,t2) − Ψ(γv,t1 + γv,t2))

+
T−1∑

t=1

(Ψ(γv,t2) − Ψ(γv,t1 + γv,t2)) (11)

μ̃v,t =
∑N

n=1 κv,tφn,txn + ρvζv

‖∑N
n=1 κv,tφn,txn + ρvζv‖

(12)

κ̃v,t =
N∑

n=1

κv,tφn,tμ̃
T
v,txn + ρvμ̃T

v,tζv (13)

Similarly, in the M step, the lower bound is optimized with respect to each
of the hyperparameters ζv, ρv, κv as:

ζv =
∑T

t=1 ρvAd(κ̃v,t)

‖∑T
t=1 ρvAd(κ̃v,t)‖

(14)

r̄0,v =
C

′
d(ρv)

Cd(ρv)
= −

∑T
t=1 Ad(κ̃v,t)μ̃T

v,tζv

T
(15)

r̄v,t =
C

′
d(κv,t)

Cd(κv,t)
= −Ad(κ̃v,t)μ̃T

v,t(
∑Nv

n=1 φn,txn)
∑N

n=1 φn,t

(16)

Effective and Interpretable Document Classification 147

[9] provided approximations for estimating ρv and κv:

ρv ≈ dr̄0,v − (r̄0,v)3

(1 − (r̄0,v)2)
(17)

κv,t ≈ dr̄v,t − (r̄v,t)3

2(1 − (r̄v,t)2)
(18)

The EM procedure consists of alternating E and M steps until some suitable con-
vergence criterion is reached. After training process, in each label v, our model
discovers natural topics which are represented μ̃v,t and κ̃v,t for each topic. More-
over, the concentration parameter κ̃v,t expresses the concentration of instances
around μ̃v,t. Specially, in DPM [2,16], most instances only gather in a small
number of topics. It is easy to realize Tv that is the number of topics for each
label v. Correspondingly, T =

∑V
v=1 Tv topics are identified from training set.

In test process, each unlabeled instance xm is generated from a mixture of T
of vMF distributions which are learnt in training process. According to [9], the
probabilities of xm to topics θm = {θ1, ..., θT} are determined. For classification,
the label of xm is inferred from the sum of probabilities of xm to the topics
of each label. In addition, our method find out the new representation θ of
instances on topical space that is hopeful in applications as: dimension reduction,
visualization data. Specially, each label is represented by the its particular topics
thanks to which the discriminative property in the topical space is prominent in
our method.

Algorithm 1. DLDPvMFs
Input: Set X of train data points on Sd−1 and label set V

Initialize randomly μ0, κ0, γt1 , γt2 , μ̃t, κ̃t, φn(t = 1..T ; n = 1..N)
repeat

{The E step}
for t = 1 to T do

γt1 = 1 +
∑N

i=1 φi,t

γt2 = α +
∑N

i=2

∑T
j=t+1 φi,j

μ̃t =
∑N

n=1 κφn,txn+κ0μ0

‖∑N
n=1 κφn,txn+κ0μ0‖

κ̃t =
∑N

n=1 κφn,tμ̃
T
t xn + κ0μ̃

T
t μ0

for n = 1 to T do
Compute φn,t in (10)

end for
end for
{The M step}
Compute μ0, κ0 in (13),(15)

until Convergence

148 N. Van Linh et al.

4 Experimental Design

In this section, we describe some experiments to evaluate the advantages of our
method in some aspects. We will show some clear evidences about the discrim-
inative property in the topical space and classification effectiveness. Moreover,
our method can detect outliers in learning process. Our method is compared
with some prominent supervised methods.

– mview-LDA [7] exploits topic model to find out the topics of each label
whose ideas is similar with ours. However, the number of topics within label
is fixed and documents are generated by multinomial distributions.

– MedLDA [10] concurrently integrates the max-margin principle and topic
model.

We used four high dimensional text datasets from the UCI repository data. A
summary of all the datasets is shown in table 1. The balance of a dataset is
defined as the ratio of the number of documents in the smallest class to the
number of documents in the largest class. So a value close to (0)1 indicates a
very (un)balanced dataset.

Table 1. Summary of text datasets (for each dataset, nd is the total number of docu-
ments, nw is dimension of dataset and k is the number of classes)

Dataset nd nw k Balance

hitech 2301 10080 6 0.1924

la1 3204 31472 6 0.290

la2 3075 31472 6 0.32670

ohscal 11161 11465 10 0.430

Outlier Detection
In our method, instances are automatically assigned to the topics (components)
which they are almost talking about. A new instance will be considered to either
assign to an old topic which is similar or generate a new topic, thanks to which
our method finds out natural topics and determines the number of topics. An
outlier is an instance that is different from other instances and trends to generate
a new topic. Hence, there are only a few instances assigned to this topic. It is
reason why our method is easy to detect outliers. It is demonstrated by the
number of instances which are allocated to each topic that our method finds out.
In this experiment, we use 80 percent of La2 dataset to train the model and the
truncation level T = 20. To reduce computational complexity of algorithm, we
do not estimate hyperparameters κ and fix κ = 40 in all experiments. In training
process, our model detects the number of topics and the number of instances in
those topics. Observing Table 2, the topics which have a few instances are not

Effective and Interpretable Document Classification 149

Table 2. The number of instances allocated to each topic within each class of La2
dataset. Topicij is the number of instances of topic j in class i

Sum topic11 topic12 topic13 topic14 topic15 topic16

class 1 300 71 49 46 48 80 6

Sum topic21 topic22 topic23 topic24 topic25 topic26

class 2 389 44 97 89 91 52 16

Sum topic31 topic32 topic33 topic34 topic35 topic36

class 3 240 70 56 61 30 19 4

Sum topic41 topic42 topic43 topic44 topic45 topic46 topic47

class 4 724 223 99 131 90 56 106 19

Sum topic51 topic52 topic53 topic54 topic55 topic56

class 5 198 51 45 46 33 21 2

Sum topic61 topic62 topic63 topic64 topic65 topic66 topic67 topic68

class 6 607 226 54 91 75 78 71 8 4

particular for classes due to which they can be considered as outliers. Outlier
detection helps classification result in our algorithm is stable.

Discriminative Property in the Topical Space
The discriminative property in the topical space of a method which helps to
separate classes is interested in our experiments. In order to illustrate class sep-
aration, we will visualize all instances of La2 dataset after projecting to topical
space. In this experiment, the number of topics is set equally 78 in MedLDA
model. In mview-LDA, the number of specific topics within each label and back-
ground topics are set equally 12 and 6. Result is shown in Fig.2. Because of
finding out the specific topics of each label, the projections of DLDPvMFs and
mview-LDA are discriminative than MedLDA in topical space. The projection
of MedLDA confuses the dataset among classes. It is explained that the quality
of the topical space learned by MedLDA is influenced heavily by the quality of
the classifier which is integrated into the topic model. Moreover, due to inap-
propriate use of kernels, MedLDA is not good to learn topical space. Specially,
DLDPvMFs detects outliers and uses vMF distributions which are suitable to
document classification. Therefore, it finds out the better representation than
mview-LDA.

Classification Effectiveness
We use accuracy of classification to quantify the goodness of those supervised
methods. Firstly, we measure the accuracy of those methods when the num-
ber of topics increases. In mview-LDA, the number of background topics is
set equally the number of classes and the number of specific topics increases
to {6, 8, 10, 12} in hitech, la2, k1b datasets and {4, 6, 8, 10} in ohscal dataset.
Accordingly, in MedLDA, the number of topics is set equally {42, 54, 66, 78} in
hitech, la2, k1b datasets and {50, 70, 90, 110} in ohscal dataset. Whereas, by
finding out the number of topics, our method is stable. In this experiment, 80
percents of dataset is used to train those models. Results (Fig.3) are shown that
our method consistently achieved the best performance. In previous discussion,

150 N. Van Linh et al.

Fig. 2. Discrimination of topical space learned by MedLDA, mview-LDA, DLDPvMFs.
La2 was the dataset for visualization. Data points in the same class have the same color.
These embeddings were done with t-SNE [17].

50 60 70
0.6

0.65

0.7

0.75

0.8

The number of topics

ac
cu

ra
cy

hitech

50 60 70
0.6

0.65

0.7

0.75

0.8

0.85

0.9

The number of topics

ac
cu

ra
cy

la2

50 60 70
0.8

0.85

0.9

0.95

1

The number of topics

ac
cu

ra
cy

k1b

DLDPvMFs
mview−LDA
MedLDA

60 80 100
0.6

0.65

0.7

0.75

0.8

The number of topics

ac
cu

ra
cy

ohscal

Fig. 3. Classification quality when the number of topics increases

Effective and Interpretable Document Classification 151

we exposed that DLDPvMFs guarantees class separation and outliers reduc-
tion. In addition, our method exploits vMF distributions which are suitable to
classify document dataset. They are reasons why mview-LDA is not as good as
DLDPvMFs, albeit mview-LDA also has discriminative property among classes
which are based on detecting specific topics within each class. According to above
discuss, due to inappropriate use of kernels, MedLDA is not good to learn topi-
cal space which affects back classifier. Moreover, by encoding local information
in each label, DLDPvMFs and mview-LDA ensure preserving inner-class local
structure to help their model succeed even in cases that data points reside in a
nonlinear manifold [18,19], for which MedLDA might fail. So, DLDPvMFs and
mview-LDA always perform better than MedLDA.

Secondly, we examine influence on the performance of those methods when
training set ratio is changed. Fig.4 is shown that the performance of our method
is better when ratio increases but not many. It means that our methods is stable.

50 60 70 80
0.6

0.65

0.7

0.75

0.8

Training set ratio (%)

ac
cu

ra
cy

hitech

50 60 70 80
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Training set ratio (%)

ac
cu

ra
cy

la2

50 60 70 80
0.8

0.85

0.9

0.95

1

Training set ratio (%)

ac
cu

ra
cy

k1b

DLDPvMFs
mview−LDA
MedLDA

50 60 70 80
0.6

0.65

0.7

0.75

0.8

Training set ratio (%)

ac
cu

ra
cy

ohscal

Fig. 4. Classification quality when training set ratio increases

152 N. Van Linh et al.

Table 3. Meaning of the topical space which was learned by DLDPvMFs from La2.
For each row, the first column shows the class label, the second column shows top
terms that represent some topics in each class.

Class name Representative topic

Entertainment

audienc, film, music, theatre, stage, product, tv, theater, televis, movie
music, band, concert, song, perform, rock, singer, review, musician,jazz
galleri, art, artist, review, paint, museum, viewer, charact, piece, exhibit

...

Finance

earn, million, quarter, corpor, rose, revenu, billion, profit, incom, net
industri, product, economi, compani, econom, research, manufactur, comput, japan, develop
contract, business, industri, develop, product, technology, trade, merchant, equip, million

...

Foreign

soviet, afghanistan, israel, guerrilla, rebel, military, troop, govern, soldier, army
plane, crash, flight, airplane, pilot, bomb, wire, kill, concord, passenger

ozone, flask, depletion, arctic, crop, roman, archaeologist, layer, research, ancient
...

Interpretability in Our Model
Specially, it is worth noting that our model discovers the mean direction μ̄v,t ∈
R

d (a unit vector) of each topic that instances are concentrated about it. Meaning
of the discriminative topical space is demonstrated in Table 3. We rank all words
according to their weight values in μ̄v,t and give top–10 words. Observationally,
the content of each class is reflected well by some particular topics that are
different from other classes. So, our model can understand the meaning of each
of labels as well as document’s contents and discover which words in documents
can be attributed to the document’s label. Moreover, the low-dimensional spaces
learned by our model are meaningful to deal with visualization and dimension
reduction problems.

5 Conclusion

In this paper, we proposes an interpretable document classification method using
Distinctly Labeled Dirichlet Process Mixture Models of von Mises-Fisher Distri-
butions (DLDPvMFs) by using the DPM model to discover the hidden topics
distinctly within each label. By exploiting DPM for each label, our methods not
only learns discriminative topical space but also detects outliers. Moreover, it
can cope with high-dimensional and sparse text. Our obtained results are highly
competitive with state-of-the-art approaches in classification.

Acknowledgments. This work was partially supported by Vietnam’s National
Foundation for Science and Technology Development (NAFOSTED Project No. 102.05-
2014.28), and by Asian Office of Aerospace R&D under agreement number FA2386-15-
1-4011.

Effective and Interpretable Document Classification 153

References

1. Van de Merckt, T., Decaestecker, C.: About breaking the trade off between accu-
racy and comprehensibility in concept learning. In: IJCAI 1995 Workshop on
Machine Learning and Comprehensibility (1995)

2. Anh, N.K., Tam, N.T., Linh, N.V.: Document clustering using dirichlet process
mixture model of von mises-fisher distributions. In: 4th International Symposium
on Information and Communication Technology, SoICT 2013, pp. 131–138 (2013)

3. Anh, N.K., Van Linh, N., Ky, L.H., et al.: Document classification using semi-
supervived mixture model of von mises-fisher distributions on document manifold.
In: Proceedings of the Fourth Symposium on Information and Communication
Technology, pp. 94–100. ACM (2013)

4. Anh, N.K., Linh, N.V., Tam, N.T.: Document clustering using mixture model of
von mises-fisher distributions on document manifold, pp. 146–151 (2013)

5. Gopal, S., Yang, Y.: Von mises-fisher clustering models. In: Proceedings of The
31st International Conference on Machine Learning, pp. 154–162 (2014)

6. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled lda: A supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing, vol. 1,
pp. 248–256. Association for Computational Linguistics (2009)

7. Ahmed, A., Xing, E.P.: Staying informed: supervised and semi-supervised multi-
view topical analysis of ideological perspective. In: Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1140–1150.
Association for Computational Linguistics (2010)

8. Ramage, D., Manning, C.D., Dumais, S.: Partially labeled topic models for inter-
pretable text mining. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 457–465. ACM (2011)

9. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere
using von mises-fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

10. Zhu, J., Ahmed, A., Xing, E.P.: Medlda: maximum margin supervised topic models.
The Journal of Machine Learning Research 13(1), 2237–2278 (2012)

11. Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. The Annals
of Statistics 1(2), 209–230 (1973)

12. Sethuraman, J.: A constructive definition of Dirichlet priors. Statistica Sinica 4,
639–650 (1994)

13. Mardia, K.V., Atoum, E.S.A.M.: Bayesian inference for the von Mises-Fisher dis-
tribution. Biometrika 63, 203–206 (1976)

14. Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. Jour-
nal of the American Statistical Association 96(453), 161–173 (2001)

15. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models.
Journal of Computational and Graphical Statistics 9(2), 249–265 (2000)

16. Blei, D.M., Jordan, M.I.: Variational inference for dirichlet process mixtures.
Bayesian Analysis 1(1), 121–144 (2006)

17. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine
Learning Research 9(11) (2008)

18. Niyogi, P.: Manifold regularization and semi-supervised learning: some theoretical
analyses. Journal of Machine Learning Research 14(1), 1229–1250 (2013)

19. Than, K., Ho, T.B., Nguyen, D.K.: An effective framework for supervised dimen-
sion reduction. Neurocomputing 139, 397–407 (2014)

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 154–168, 2015.
DOI: 10.1007/978-3-319-18123-3_10

MPTM: A Topic Model for Multi-Part Documents

Zhipeng Xie1,2(), Liyang Jiang1,2, Tengju Ye1,2, and Zhenying He1,2

1 School of Computer Science, Fudan University, Shanghai, China
2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
{xiezp,13210240017,13210240039,zhenying}@fudan.edu.cn

Abstract. Topic models have been successfully applied to uncover hidden
probabilistic structures in collections of documents, where documents are
treated as unstructured texts. However, it is not uncommon that some docu-
ments, which we call multi-part documents, are composed of multiple named
parts. To exploit the information buried in the document-part relationships in
the process of topic modeling, this paper adopts two assumptions: the first is
that all parts in a given document should have similar topic distributions, and
the second is that the multiple versions (corresponding to multiple named parts)
of a given topic should have similar word distributions. Based on these two
underlying assumptions, we propose a novel topic model for multi-part docu-
ments, called Multi-Part Topic Model (or MPTM in short), and develop its
construction and inference method with the aid of the techniques of collapsed
Gibbs sampling and maximum likelihood estimation. Experimental results on
real datasets demonstrate that our approach has not only achieved significant
improvement on the qualities of discovered topics, but also boosted the perfor-
mance in information retrieval and document classification.

Keywords: Topic models · Gibbs sampling · Maximum likelihood estimation

1 Introduction

In classic topic models, such as probabilistic latent semantic analysis [8] and latent
Dirichlet allocation [2], each document is represented as a mixture of topics, and each
topic is represented as a probability distribution over words. To generate a document,
we first draw a topic distribution independently from a prior Dirichlet distribution,
and then for each word in that document, draw a topic randomly from the topic distri-
bution and draw a word from that topic. Once the topic distribution is determined for
a document, all the words in it follow the same generative procedure which is not
affected by the location where a word appears in the document. In other words, each
document is modeled as a whole, which is reflected in the fact that all the content of a
document share the same topic distribution.

However, some documents are naturally composed of multiple named-parts, in the
form of subdocuments or sections. Such documents are called multi-part documents
in this paper. A typical example of multi-part documents is academic research papers,
where each document is normally divided into sections such as Abstract, Introduction,

 MPTM: A Topic Model for Multi-Part Documents 155

Method, Experimental Results, and Summary. Logically, each section is self-existent.
It is a relatively complete entity that describes the theme of the document from a spe-
cific aspect. For example, the section of Introduction is normally related to the moti-
vation and related work of the paper, the section of Method describes the technical
details of paper, while the section of Experimental Results may concern the perfor-
mance measurements, the data used, and the comparison conclusion.

Our primary concern in this current study is taking this document-part structural in-
formation into consideration. To do this, we propose a novel topic modeling method
for multi-part documents, called Multi-Part Topic Model (or MPTM in short). The
MPTM model supposes that each topic has multiple versions (called versional topics)
where each version corresponds to a specific named-part, while each part of a docu-
ment is a mixture of the versional topics that corresponds to the part. Two underlying
assumptions are also embodied in the model. The first one assumes that all parts in
the same document have similar topic distributions. To enforce this assumption, we
use one single Dirichlet distribution as the prior for all the parts of a document. Each
document has its own Dirichlet prior. The mean parameters of the Dirichlet priors are
normally different for different documents, but a common concentration parameter
(also called the precision of the Dirichlet) is shared by all the Dirichlet priors, which
controls how concentrated the distributions of multiple parts in the same document is
around its mean. The second assumption is that all versions of a single topic should
have similar word distributions, which is also enforced in a way similar to the first
assumption. All versions of the same topic share a Dirichlet prior distribution, and the
Dirichlet priors for different topics normally have different mean parameters.

By modeling document parts and versional topics separately, the proposed MPTM
model allows us to judge the qualities of words and topics. A word that occurs in the
top-word lists of (almost) all versions of a topic is thought of as a core word. On the
other hand, if a word only appears frequently in one version of a topic, but seldom
appears in other versions, it is then thought of as a word attached only to the particular
version of the topic. Thus, each topic can be represented as a core-attachment structure,
which facilitates the topic visualization. Similarly, a topic is thought of as stable and
consistent, if it exhibits consistent probabilities across the multi-parts of documents; a
topic is unstable or transient if its probabilities across the multi-parts of documents
vary acutely. Accordingly, topic quality can be measured as the mean variance across
the multi-parts averaged over all documents, which may help to prune unnecessary
topics.

Finally, we evaluate MPTM model empirically on two real datasets. It is shown that
the MPTM model not only generates topics of higher coherence than LDA, but also
outperforms LDA in the tasks of information retrieval and document classification.

2 Related Work

A lot of existing work has been devoted to the incorporation of additional information
into classic topic models, which can be broadly classified into three categories.

156 Z. Xie et al.

The first category of work explores the correlation between topics. Classic LDA
model fails to model correlation between topics, because of the (nearly) independence
assumptions implicit in the Dirichlet distribution on the topic proportions. To model
the fact that the presence of one topic is sometimes correlated with the presence of
another, [3] replaces the Dirichlet by the more flexible logistic normal distribution
that incorporates a covariance structure among the components (or topics), [12] intro-
duces the pachinko allocation model (PAM) that uses a DAG structure to represent
and learn arbitrary-arity, nested and possibly sparse topic correlations, and [18] pro-
poses a Latent Dirichlet-Tree Allcoation (LDTA) model that employs a Dirichlet-Tree
prior to replace a single Dirichlet prior in LDA.

The second category pays attention to the relationships among words. The DF-
LDA model [1] can incorporate the knowledge about words in the form of must-links
and cannot-links using a novel Dirichlet Forest prior. Jagarlamudi et al. [9] proposes
the Seeded-LDA model, allowing the user to specify some prior seed words in some
topics. Chen et al. [6] proposes MC-LDA to deal with the knowledge of m-set (a set
of words that should belong to the same topic) and c-set (a set of words that should
not be in the same topic).

The third category focuses on the document level, to incorporate certain additional
information in the topic modeling. Supervised LDA [4], DiscLDA [10], and Labeled
LDA [17] try to predict the label values for input documents, based on labeled docu-
ments. TagLDA [19] extends latent Dirichlet allocation model by using a factored
representation to combine the text information and tag information. Polylingual topic
model [13] deals with polylingual document tuples, where each tuple is a set of
documents loosely equivalent to each other, but written in different languages. It as-
sumes that the documents in a tuple share the same tuple-specific distribution over
topics, and each “topic” consists of a set of discrete word distributions, one for each
language.

Our work falls into the third category, in that it makes an attempt to incorporate the
information of document-part relationships into topic modeling. To the best of our
knowledge, no previous work has attempted to incorporate the document-part struc-
tural information into the topic extraction problem. Our work is thus orthogonal to the
previous work and complements them.

3 Multi-Part Topic Model

3.1 Generative Process

We now introduce the multi-part topic model (MPTM), an extension of latent Dirich-
let allocation (LDA). Assume that there are documents containing T topics ex-
pressed over unique words, where each document contains named-parts. Each
document is represented as a set of P multinomial distributions over topics, where
each part of document corresponds to one multinomial distribution over topics,

 MPTM: A Topic Model for Multi-Part Documents 157

denoted as (| ,). Each topic has multiple versions, and each versional
topic is a multinomial distribution over words. For a given topic , its versional topic
corresponding to named-part is denoted as (| ,).

We first assume that all parts within a document should be similar in their topic
distributions, since they normally concern a common theme, and describe the theme
from different aspects. In MPTM model, we enforce this assumption by requiring that
all parts within a document have their topic distributions drawn from a common
prior Dirichlet distribution. The mean parameter of the Dirichlet distribution is
exactly the mean of the Dirichlet distribution, which is specific to document ; while
the concentration parameter (also call precision parameter) controls how concen-
trated the Dirichlet distribution is around its mean , which is a hyperparameter in
MPTM model.

Furthermore, we also assumed that all versions of a topic should be similar in their
word distributions. It is enforced in MPTM model by requiring that all versions of a
topic have their word distributions drawn from a common prior Dirichlet distribu-
tion. The mean parameter of the common Dirichlet distribution is specific to topic
, while the concentration parameter is also a hyperparameter that controls how

concentrated the Dirichlet distribution is around its mean .

Table 1. Notations used

Notation Meaning
 the number of documents
 the number of topics
 the number of words in the vocabulary

 the number of named-parts
 a document
 a topic
 a word
 a named part

 the topic distribution of the part in document
 the word distribution of the version for topic
 the mean parameter of the prior Dirichlet distribution for the

word distributions of versions of topic
 the mean parameter of the prior Dirichlet distribution for the

topic distributions of all parts in document
 the concentration hyperparameter of the prior Dirichlet distri-

bution for the word distributions of versions of any topic
 the concentration hyperparameter of the prior Dirichlet distri-

bution for the topic distributions of all parts in any document

158 Z. Xie et al.

The values of and play an important role in our model. As we increase the value
of , all parts of a document have increasing concentration, which tends to generate
similar topic distributions for those parts. As we increase the value of , all versions of
a topic have increasing concentration, which tends to get similar word distributions of
those versions. When and go to infinity, the topic distributions of all the parts with-
in a same topic will be constrained to be the same one, and the multi-part topic model-
ing method reduces to the classic topic modeling method applied on the documents. On
the other hand, when and go to zero, there will be no constraints on the topic dis-
tributions, and the multi-part topic modeling method degenerates to the classic topic
modeling methods applied on all the subdocuments where each subdocument is treated
as an independent document.

The notations used in this paper are summarized in Table 1. The generative process
for MPTM is given as follows:

1 For each topic 1, … , :
2 For each part 1, … , :
3 Draw ~ (,)
4 For each document 1, … , :
5 For each part 1, … , :
6 Draw ~Dirichlet(,)
7 For each word , , in part of document
8 Draw , , ~ ()
9 Draw , , ~ (, ,)

In MPTM model, the parameters include the mean vectors (1) and the

mean vectors (1), which we treat for now as fixed quantities and are to
be estimated. When the parameters are fixed, for each versional topic (,) (line 1),
lines 2-3 draw a multinomial distribution over words (a versional topic) for each
named part . For each part in each document (lines 4-5), we first draw its mul-
tinomial distribution over topics (line 6), and then generate all the words in part
of document (lines 7-9) in the following way: for each word, a topic , , is ran-
domly drawn from , and then a word , , is chosen randomly from , , .

The plate notation for MPTM is given in Fig. 1. As we will see in Section 3, this
model is quite powerful in improving the quality of discovered topics and boosting
performance of information retrieval and document classification.

 MPTM: A Topic Model for Multi-Part Documents 159

Fig. 1. Plate notation of MPTM model

3.2 Inference and Parameter Estimation

As we have described the motivation behind MPTM and its generative process, we
now turn our attention to the detailed procedures for inference and parameter estima-
tion under MPTM. In MPTM, the main parameters of interest to be estimated are the
mean vectors (1) and (1) of the Dirichlet distributions.
Other variables of interest include the word distributions of the multiple versions
of a topic , and the topic distribution of the parts of a document . Instead of
directly estimating the variables and , we estimate the posterior distribution
over topics for the given observed words , using Gibbs sampling, and then approx-
imate and using posterior estimates of topics for the observed words. Once

 and are approximated, the parameters and can be estimated with a
maximum likelihood procedure for Dirichlet distributions. The algorithmic skeleton
for the parameter estimation in MPTM is briefly listed in Table 2.

Table 2. The framework of inference and parameter estimation for MPTM model

Step 1. Initialize the parameters and
Step 2. Sampling the hidden variables z with a

collapsed Gibbs sampler
Step 3. Update the parameters
Step 4. Repeat the steps 2 and 3 for a fixed num-

ber of times

,

160 Z. Xie et al.

Next, we examine the details of the framework step by step, as follows.

Step 1. Initialization of parameters and

To initialize the parameters θ and ϕ, we apply standard latent Dirichlet allocation by
using collapsed Gibbs sampling algorithm [7]. We use a single sample taken after 300
iterations of Gibbs sampling to initialize the values of parameters (1 ≤ d ≤ D) and
parameters (1 ≤ t ≤ T), in the MPTM model.

Step 2. Collapsed Gibbs sampler for latent variables z

We represent the collection of documents by a set of word indices , document in-
dices , and part indices , for each word token . The Gibbs sampling procedure
considers each word token in the text collection in turn, and estimates the probability
of assigning the current word token to each topic, conditioned on the topic assign-
ments to all other word tokens. The Gibbs sampler is given by:

 (| , , ,) ,(,)
,(·,) · ,(,)

,·(,)
(1)

where the subscript “– ” means the exclusion of the current assignment of , ,(,)

denotes the number of times that word from part has been assigned to topic , ,(,)
 denotes the number of times that a word from the part of document has

been assigned to topic , ,(·,) ∑ ,(,)
 denotes the number of times that a word

from all the part has been assigned to topic , and ,·(,) ∑ ,(,)
 denotes

the length of the part of the document .
To better understand the factors that affect topic assignments for a particular word,

we can examine the two parts of Equation 1. The left part is the probability of word
 under the part version of topic ; whereas the right part is the probability that

topic has under the current topic distribution for part of document . There-
fore, words are assigned to topics according to how likely the word in the part is for a
topic, as well as how dominant a topic is in a part of a document. Clearly, the infor-
mation of which part a word does occur plays an important role in determining its
topic assignment.

The Gibbs sampling algorithm gives direct estimates of for every word. Based
on these estimates, the word distributions for part version of topic can be
estimated from the count matrices as: (,)(·,) ; (2)

while topic distributions for the part of the document can be estimated as: (,)
·(,) . (3)

 MPTM: A Topic Model for Multi-Part Documents 161

Once the word distributions of all the versions for a topic and the topic distributions
for all parts of a document are calculated in Equations (2) and (3), we can then update
(or re-estimate) the mean parameters of the prior Dirichlet distributions in Step 3.

Step 3. How to re-estimate the parameters θ and ϕ?

Assume that a random vector, (, … ,), whose elements sum to 1, follows
from a Dirichlet distribution with mean vector parameter (, … ,) that
satisfying ∑ 1 and concentration parameter . The probability density at is ()~Dirichlet(,) Γ(∑)∏ Γ() () (4)

where the concentration parameter , also referred to as the precision of the Dirichlet,
controls how concentrated the distribution is around it mean.

In the context of MPTM model, we want to fix the concentration parameter and
only optimize the mean parameter in the maximum-likelihood objective from the
observed random vectors , … , . To perform this problem, we adopt the fixed-
point iteration technique to compute the maximum likelihood solution [15], by iterat-
ing the following two steps until convergence: Ψ() log log Ψ (5)

and ∑ (6)

where log ∑ log , and Ψ() ()
 is known as the digamma function.

The problem of finding maximum likelihood solution for mean parameter of Di-
richlet distribution (with fixed concentration parameter) exists in two places of
MPTM model:

For each part of a document , its topic distribution follows from a prior
Dirichlet distribution with mean parameter and concentration parameter , giv-
en algebraically as: ~Dirichlet(,) Γ(∑)∏ Γ() (7)

For versional topic with respect to part for a topic , its word distribution
follows from a prior Dirichlet distribution with mean parameter and concentra-
tion parameter , given as: ~Dirichlet(,) Γ(∑)∏ Γ() (8)

The above fixed-point iteration technique is used in the MPTM model to estimate (1) and (1), respectively.

162 Z. Xie et al.

Step 4. Repeat the steps 2 and 3 a fixed number of times

The final step is simply to repeat the steps 2 and 3 for a fixed number of times and
output the word distributions of all versional topics and the topic distributions of all
parts of documents.

4 Core Words and Topic Quality

If a word appears in the top-M word lists of (almost) all versions of a topic, it is called
a core word of the topic; otherwise, it is called an attached word. Thus, each version
of a topic can be represented as a core-attachment structure, where the attachment
represents the part-specific words.

The “core words” embodies the meaning of the topic throughout the text, they can
help us understand the name of the topic clearly. While the “part-specific” attached
words complement the details of the topic from different aspects, different parts may
have different emphasis.

Table 3. Two exemplar core-attachment structures

Core
words:

featur word relat label topic translat learn model data method

Abstract semant paper approach propos text perform task improv languag
base extract set

Introduction approach semant task languag text sentenc work extract system
tag document

Method set term sentenc train document context exampl text tag entiti
select

Experiments tabl set train perform system evalu test baselin term select base
Summary work approach improv system perform select achiev propos

better support

Core
words:

network predict social system item rate tag user recommend
model method matrix

Abstract propos effect realworld interest work novel develop review
provid

Introduction product trust work base propos person interest opinion
Method function time set vector denot product number base group algo-

rithm
Experiments set data perform dataset review figur number evalu random

experi paramet
Summary represent work base propos reput trust evalu data

 MPTM: A Topic Model for Multi-Part Documents 163

Let us take the IJCAI corpus as an example, where each topic has 5 versions
(please refer to section 5 for the details of the IJCAI dataset). We set M=20, and
define a word to be a core word for a topic if it occurs in the top-20 word lists of at
least 4 versions of the topic. Table 3 illustrates the core-attachment structures of two
exemplar topics in the MPTM model of IJCAI dataset.

The first example is a topic about “topic model”. The core words include “topic”,
“model”, “word”, “feature”, “label”, etc., which well reflect the common characteris-
tics of the topic. The words “term”, “sentence”, “document” appear as the attached
words to the “Method” part, reflecting the technical details of the topic. The words
“performance”, “evaluation”, “baseline”, “train”, and “set” are listed as the attached
words to “Experiments” part. Similar analysis also applies to the second example,
which is omitted here.

After analyzing the word distributions of versional topics, let us examine the topic
distributions of document parts. A topic is thought of as a stable and consistent topic,
if it exhibits consistent probabilities across the multi-parts of documents; otherwise, it
is unstable or transient. Here, we measure the quality of a topic simply as the mean
variance across the multi-parts averaged over all documents:

() 1 1
 (9)

In the experiment with information retrieval, it will be shown that the pruning of
topics with highest mean variance can further improve the performance of MPTM.

5 Experimental Results

In this section, we evaluate the proposed MPTM model against several baseline mod-
els on two real datasets.

5.1 Data Sets

Two datasets (IJCAI and NIPS) are used in the experiments. The first dataset IJCAI is
constructed by ourselves, using papers from the most recent three Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI) in years 2009, 2011,
and 2013, because the IJCAI conferences in these three years share (almost) the same
track organization, and the information of the assignments of papers to tracks can
serve as external criterion for measuring the performance in information retrieval and
document classification. We extracted 669 papers from 6 common tracks in total, with
detailed information listed in Table 4.

The NIPS corpus contains 1740 papers published in the Proceedings of Neural In-
formation Processing Systems (NIPS) Conferences1 from year 1988 to year 2000.

1 The dataset is available at the NIPS Online Repository. http://nips.djvuzone.

org/txt.html.

164 Z. Xie et al.

Table 4. The IJCAI Corpus

Track Name # papers
Agent-based and Multiagent Systems 165
Constraints, Satisfiability, and Search 107
Knowledge Representation, Reasoning, and Logic 181
Natural-Language Processing 74
Planning and Scheduling 74
Web and Knowledge-based Information Systems 68
Sum 669

The IJCAI and NIPS papers have been preprocessed to remove the “References” part,
to remove stop words, and to do word stemming. Each IJCAI paper is split into parts
of “Abstract”, “Introduction”, “Method”, “Experiments”, and “Summary”; while each
NIPS paper is simply split into 3 parts of equal length, called “Head Part”, “Middle
Part”, and “Tail Part” respectively. After preprocessing, the IJCAI corpus contains
1,437,916 words with vocabulary size as 32,752, and the NIPS corpus contains
2,014,937 words with vocabulary of size 15,965.

Throughout the experiments, the MPTM models were trained using 1500
Gibbs iterations where the parameters get updated for every 300 iterations. That is,
the step 2) in the algorithmic framework executes 300 iterations of collapsed Gibbs
sampling, while the outer loop of steps 2) and 3) is repeated 5 times.

5.2 Topic Coherence

As indicated in [5][16][11], the perplexity measure does not reflect the semantic cohe-
rence of individual topics and can be contrary to human judges. The topic coherence
measure [14] was proposed as a better alternative for assessing topic quality, which
only relies upon word co-occurrence statistics within the documents, and does not
depend on external resources or human labeling. Given a topic , if ()((), … , ()) is its top-M word list, the topic coherence is defined as: ; () log (), () 1()

where () denotes the document frequency of word and (,) denotes the
number of documents containing both words and ′. For a topic in LDA model,
its top-M words are the most probable words in the topic. In our MPTM model,
because each topic has multiple versions, we define its top-M words in an intuitive
manner as follows.

For a given topic , let (,) denote the position or rank of word in the
word distribution of versional topic . We use (,) | : 1, (,) | to denote the number of versions of topic that occurs in its
top words, and use (,) ∑ (,) to denote the sum of the ranks of

 MPTM: A Topic Model for Multi-Part Documents 165

word in all versions of topic . A word is ranked before another word with
respect to a topic t, if it satisfies one of the following two conditions:

 (1) (,) (,)
 (2) (,) (,) and (,) (,).

Accordingly, for each topic, the top-M ranked words can be calculated.

Table 5. Average Topic Coherence scores across different numbers of topics

Data Set # Topics LDA MPTM
Improved
Percentage

IJCAI
20 −140.7 −123.0 12.6%
50 −210.5 −187.3 11.0%

100 −256.6 −225.4 12.2%

NIPS
20 −154.1 −146.4 5.0%
50 −181.6 −167.5 7.8%

100 −210.9 −185.6 12.0%

Table 5 shows the topic coherence averaged over all topics. It can be seen that the

topic coherences of MPTM models are significantly higher than those of LDA mod-
els, indicating higher quality of topics with MPTM. The improvement percentage on
NIPS is less significant than IJCAI, which may be caused by the fact that the docu-
ments in NIPS are split into three parts of equal length, and it does not reflect the
exact document-part relationships.

5.3 Information Retrieval

For information retrieval applications, the task is to retrieve the most relevant docu-
ments to a query document. Here we make use of the cosine similarity to measure the
relevance between two documents. Mean Average Precision (MAP), for its especially
good discrimination and stability, is adopted as the measure of quality to evaluate the
performance of MPTM model in information retrieval.

If the set of relevant documents for a query document is , … , , and

is the set of ranked retrieval results from the top result until you get to document ,
then

MAP(Q) 1| | 1 ()| | .
To check the effects of different configurations of topic number , parameters ,

and parameter , we have tested the MPTM model on a grid of configurations with
K∈{5, 10, 20, 30, 50}, s∈{50, 100, 200, 400}, and c∈{50, 100, 200, 400}. In all the
configurations, our model has consistently outperformed the LDA model. However,
for different values, the configuration at which our model obtained the best per-
formance may vary. Without fine-tuning the parameters, we just report the MAP val-
ues with the configuration of 200 and 100, in Figure 2. Here, five-fold
cross validation is conducted, where for each fold, 80% of the documents are used as
the training data, and the other 20% are held-out as the query data.

166 Z. Xie et al.

Fig. 2. Average MAP scores across different numbers of topics

In Figure 2, TFIDF method is to represent the documents using a vocabulary of
8000 words with the highest TF-IDF values; LDA on Parts method builds a LDA
model by treating each part as an independent document, and then concatenate the
topic distributions of all the parts of a document into a -dimensional representa-
tion of the document; and MPTM-5%Prune has pruned the 5% topics with highest
mean variance for MPTM model.

We can observe that MPTM has achieved higher MAP values than the baseline
models, and MPTM-5%Prune can further boost the performance of MPTM, with the
aid of quality measures of topics.

5.4 Document Classification

The existence of track information associated with each document in the IJCAI cor-
pus has also made it possible to classify a new document into the six tracks. On IJCAI
corpus, five-fold cross validation is conducted as follows. At each fold, 80% of the
documents are used as the training data, and the other 20% are held-out as the test
data. On the training data, we train a MPTM model, with which each training or test
document can be transformed into a vector of length by concatenating all
the : 1 . We then train a support vector machine (SVM) on the ()-
dimensional representations of training documents provided by MPTM, and use it to
classify the test documents. This SVM is compared with an SVM trained on the fea-
tures provided by LDA. Both SVMs are trained with the libSVM software [5] and get
optimized by a grid search with parameter ranges of 10 , 10 . The mean
accuracy averaged over five folds is reported in Figure 3.

5 10 20 30 50
0.45

0.5

0.55

0.6

0.65

Number of Topics

M
ea

n
A

ve
ra

g
e

P
re

ci
si

on

IJCAI

MPTM-5%Prune

MPTM

LDA
LDA on Parts

TFIDF

 MPTM: A Topic Model for Multi-Part Documents 167

Fig. 3. Average accuracies across different numbers of topics

It can be seen from the results that the accuracy is improved in all cases, which
suggests that the features provided by MPTM may be more informative in the task of
document classification.

6 Conclusions

This paper proposed a novel method to exploit the multi-part composition information
of documents for producing better-quality topics. To the best of our knowledge, this
has not been done before. To model the multi-part documents, a novel topic model
called MPTM is proposed by taking two assumptions such that all parts within a doc-
ument should be similar in their topic distributions and all versions of a topic
should be similar in their word distributions. It has been manifested empirically by
two datasets that MPTM has successfully produced topics of high quality, and outper-
formed the baseline methods in information retrieval and document classification
tasks.

Finally, it is possible to remove the existence of multiple versions of topics from
the MPTM model, in order to widen its applicability. For example, for a corpus where
documents are labeled, it is expected to make sense to assume that the topic distribu-
tions of the documents with the same class label be drawn from a common Dirichlet
prior, that is to say, to assume that the documents with same class label have similar
topic distributions. Such a model can make use of the supervised information in topic
modeling and may make contribution in solving the document classification task.

Acknowledgements. This work is supported by National High-tech R&D Program of China
(863 Program) (No. SS2015AA011809), Science and Technology Commission of Shanghai
Municipality (No. 14511106802), and National Natural Science Fundation of China (No.
61170007). We are grateful to the anonymous reviewers for their valuable comments.

5 10 20 30 50

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Number of Topics

A
ve

ra
g

e
A

cc
ur

ac
y

IJCAI

MPTM

LDA
LDA on Parts

168 Z. Xie et al.

References

1. Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic mod-
eling via Dirichlet Forest priors. In: ICML, pp. 25–32 (2009)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learn-
ing Research 3, 993–1022 (2003)

3. Blei, D., Lafferty, J.: Correlated topic models. Advances in neural information processing
systems 18, 147–154 (2006). MIT Press, Cambridge, MA

4. Blei, D., McAuliffe, J.: Supervised topic models. (2010). arXiv preprint arXiv:1003.0783
5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transac-

tions on Intelligent Systems and Technology 2(3), 27 (2011)
6. Chen, Z., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Exploiting domain

knowledge in aspect extraction. In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP 2013) (2013)

7. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. U.S.A.
101(Suppl 1), 5228–5235 (2004)

8. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information re-
trieval, pp. 50–57 (1999)

9. Jagarlamudi, J., Daumé III, H., and Udupa, R.: Incorporating lexical priors into topic mod-
els. In: Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pages 204–213 (2012)

10. Lacoste-Julien, S., Sha, F., and Jordan, M.: DiscLDA: discriminative learning for dimen-
sionality reduction and classification. In: Advances in Neural Information Processing Sys-
tems, pp. 89–904 (2008)

11. Lau, J.H., Baldwin, T., Newman, D.: On collocations and topic models. ACM Transac-
tions on Speech and Language Processing (TSLP) 10(3), 10 (2013)

12. Li, W., McCallum, A.: Pachinko allocation: DAG-structured mixture models of topic cor-
relations. In: Proceedings of the 23rd International Conference on Machine Learning,
pp. 577–584 (2006)

13. Mimno, D., Wallach, H.M., Naradowsky, J., Smith, D.A., McCallum, A.: Polylingual topic
models. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 880–889 (2009)

14. Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic
coherence in topic models. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 262–272 (2011)

15. Minka, T.: Estimating a Dirichlet distribution. Technical Report (2012).
http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

16. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence.
In: Human Language Technologies: Proceedings of the 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pp. 100–108
(2010)

17. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised topic
model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 Confe-
rence on Empirical Methods in Natural Language Processing, vol. 1, pp. 248–256 (2009)

18. Tam, Y.-C., Schultz, T.: Correlated latent semantic model for unsupervised LM adapta-
tion. In: IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 41–44 (2007)

19. Zhu, X., Blei, D., Lafferty, J.: TagLDA: bringing document structure knowledge into topic
models. Technical Report TR-1553, University of Wisconsin (2006)

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 169–185, 2015.
DOI: 10.1007/978-3-319-18123-3_11

Retaining Rough Diamonds: Towards a Fairer
Elimination of Low-Skilled Workers

Kinda El Maarry() and Wolf-Tilo Balke

Institut für Informationssysteme, TU Braunschweig, Braunschweig, Germany
{elmaarry,balke}@ifis.cs.tu-bs.de

Abstract. Living the economic dream of globalization in the form of a location-
and time-independent world-wide employment market, today crowd sourcing
companies offer affordable digital solutions to business problems. At the same
time, highly accessible economic opportunities are offered to workers, who of-
ten live in low or middle income countries. Thus, crowd sourcing can be un-
derstood as a flexible social solution that indiscriminately reaches out to poor,
yet diligent workers: a win-win situation for employers and crowd workers. On
the other hand, its virtual nature opens doors to unethical exploitation by frau-
dulent workers, compromising in turn the overall quality of the gained results
and increasing the costs of continuous result quality assurance, e.g. by gold
questions or majority votes. The central question discussed in this paper is how
to distinguish between basically honest workers, who might just be lacking
educational skills, and plainly unethical workers. We show how current quality
control measures misjudge and subsequently discriminate against honest work-
ers with lower skill levels. In contrast, our techniques use statistical models that
computes the level of a worker’s skill and a task’s difficulty to clearly distin-
guish each worker’s success zone and detect irrational response patterns, which
usually imply fraud. Our evaluation shows that about 50% of misjudged work-
ers can be successfully detected as honest, can be retained, and subsequently
redirected to easier tasks.

Keywords: Crowd sourcing · Impact sourcing · Fraud detection

1 Introduction

“It’s been a dream, me having my own place, paying my own rent, buying my own
food. Being independent,” says Martha, a Samasource Kenyan worker1; one of the
many faces behind the international taskforce ready to work through crowd sourcing
platforms. The social model of Impact Sourcing, first implemented by the social
enterprise Digital Divide Data (DDD)2 back in 2001 has been adopted by many

1 http://www.samasource.org/impact/
2 http://www.digitaldividedata.com/about/

170 K. El Maarry and W.-T. Balke

companies and crowd sourcing platforms like Samasource3, RuralShores4, etc. The
new Impact Sourcing industry aims at hiring people at the bottom of the income py-
ramid to perform small, yet useful cognitive and intelligent tasks via digital interfaces,
which ultimately promises to boost the general economic development [1]. However,
the mostly anonymous, highly distributed and virtual nature of the short-term work
contracts also carry the danger of being exploited by fraudulent workers: By provid-
ing incorrect (usually simply random) answers, they compromise the overall result
quality and thus not only directly hurt the respective task provider, but in the long run
also all honest workers in dire need of employment.

Anecdotic evidence can be drawn from our own research work on crowd sourcing
as reported in [2]: By completely excluding workers from just two offending coun-
tries, where the number of clearly fraudulent workers seemed to be much higher than
average, the overall result correctness in our experiments instantly increased by about
20%. In particular, correctness for a simple genre classification task for movies in-
creased from 59% to 79% using majority vote for quality assurance. Of course, this
crude heuristics was bound to exclude many honest workers too.

Although typical quality control measures for crowd sourcing like gold questions or
majority votes promise to mitigate this problem, they also face serious problems:
firstly, they are only applicable for factual tasks, which hampers creative task design
and thus overall benefit. Secondly, they incur additional costs for the task provider and
thus reduce the readiness to crowd source tasks, and finally (and probably worst for
impact sourcing) they exclude honest and willing workers that may not have been pro-
vided tasks on their individual skill levels. Indeed, the bottom of the income pyramid
encompasses a heterogeneous set of workers, who according to their skill level provide
responses that are: either sufficiently good by non-expert, diligent workers with higher
skill levels, or mixed by honest workers with lower skill levels, as well as by unethical
workers who exploit the system for financial gains. Yet, according to Samasource 92%
of its taskforce are unemployed or underemployed, i.e. for the crowd, every incoming
living wage counts and contributes to a better standard of living.

On the other end of the spectrum, crowd sourcing emerges as an unparalleled solu-
tion [3] to companies with intelligent digital tasks, to name but a few: text translation,
image tagging, text sentiment analysis. Generally speaking, through the collective
intelligence of the diligent workers, high quality responses could be attained. Naively,
such high quality can be assured by manually cutting out the unethical workers through
submitted response checks. However, this instantly invalidates the core gains attained
through crowd sourcing, and becomes both costly and time consuming. Consequently,
unethical workers are further encouraged to submit low quality results, and it becomes
a question of automatically detecting such workers for an improved overall quality [4].

As argued above, some common practices are 1) injecting a set of questions whose
answers are already known, so-called gold questions, within each Human Intelligent
Task (HIT), 2) Employing Majority vote to filter out workers who often fail to agree

3 http://www.samasource.org/
4 http://ruralshores.com/about.html

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 171

with the majority, or 3) adopting a reputation based system, where workers’ history is
recorded, and a reputation score is assigned to each worker by combining e.g., the
requestor’s satisfaction level, the ratio of completed to aborted HITS, etc. Unfortu-
nately, such practices can heavily misjudge honest, yet less skilled workers.

Example 1 (Collecting motion picture ratings):

Given a dataset of movies, the crowd is asked to classify each movie as either PG,
or PG-13. Assume a skewed distribution where 90% of the movies are PG, and only
10% are PG-13. Assume worker A simply tags all movies as PG, ultimately he/she
will only have a 10% error rate. On the other hand, consider worker B who’s actually
checking each movie. Worker B can easily exhibit similar or even higher error rates,
because he/she perceives some movies according to his/her standards as PG-13. Al-
though worker A is obviously a spammer, in a reputation based system he/she would
be given a higher reputation score than worker B, since more gold questions were
answered correctly.

Our results in initial experiments indeed indicate that even with datasets where an-
swer possibilities are evenly distributed, unethical workers can still through random
guessing surpass honest workers with lower skill levels. Based on these insights, in
this paper we design a method that abstracts each worker’s gold questions’ responses
to a skill-graded response vector, and then zooms in on their individual success zone
for quality control. The success zones are individually defined by each worker’s skill
level and bounded by questions’ whose difficulty levels are well within the worker’s
skill level. We can compute both parameters through psychometric item response
theory (IRT) models: in particular, the Rasch model [5]. The underlying assumption is
that honest workers should exhibit a clear tendency to correctly answer tasks within
their difficulty levels. Moreover, failing to answer easy tasks, yet correctly answering
more difficult ones would indicate fraud. We develop three techniques that are de-
signed to detect irrational response patterns in success zones. The contributions of this
paper can be summarized as follows:

 We show how gold questions and reputation-based systems can be bypassed
by unethical workers, using real-world dataset in a laboratory-based study.

 We present a framework for distinguishing between unethical and honest
workers with lower skill levels in a fair, yet reliable manner.

 We extensively test our framework in practical crowd sourcing experiments
and demonstrate how honest workers with lower skills levels can be indeed
detected and redirected to skill-fitted tasks.

The rest of the paper is structured as follows: In section 2, we give an overview of
related work. In section 3, we motivate our problem with a case study, then start de-
scribing our framework in section 4, by presenting the underlying statistical Rasch
model and illustrating how it can be used to identify workers’ success zone. In section
5, we introduce three techniques that aim at recognizing irrational patterns in success
zones. This is backed up by a laboratory-based experiment that offers ground-truth
and a real-world crowd sourcing experiment in the evaluation section. Finally, the last
section gives a summary and an overview of future work.

172 K. El Maarry and W.-T. Balke

2 Related Work

Crowdsourcing provides both a social chance that indiscriminately reaches out to
poor, yet diligent workers, as well as an affordable digital solution for companies with
intelligent digital business problems like e.g., web resource tagging [6], completing
missing data [7], sentiment analysis [8], text translation [9], information extraction
[10], etc. But as with every chance, the challenge of acquiring high quality results,
which is compromised by unethical workers, must be overcome. In this section, we
give an overview of the current crowd sourcing quality control measures, as well as a
brief overview of the Rasch Model and its related work in crowd sourcing.

A rich body of research has examined many different techniques to mitigate the
quality problem in crowdsourcing. Aggregation methods aim at improving the overall
quality through redundancy and repeated labeling. Through assigning several workers
to the same task, an aggregation of their responses help identify the correct response.
Such aggregation methods include: basic Majority decision, which has been shown to
have severe limitations [11]. This was further developed by Dawid and Skene [12] to
take the response’s quality based on the workers into consideration, through applying
an expectation maximization algorithm. Other approaches that considered such error
rates relied on: Bayesian version of the expectation maximization algorithm approach
[13], or a probabilistic approach that takes into account both the worker’s skill and the
difficulty of the task at hand [14]. A further step was taken in [15] with an algorithm
separating the unrecoverable error rates from recoverable bias. Manipulating mone-
tary incentives have also been investigated, yet proves tricky to implement, where low
paid jobs yield sloppy work, and high paid jobs attract unethical workers [16].

Other techniques focus on trying to eliminate unethical workers on longer time
scales like constantly measuring performance with injected gold questions or employ-
ing the workforce via reputation-based systems. Even when the procurement of gold
questions is feasible and not too expensive, the question of how many gold questions
to include immediately materializes [17]. On the other hand reliably computing the
workers’ reputation poses a real challenge, and many reputation approaches have
been investigated whether it’s based on a reputation model [18-19], on feedback and
overall satisfaction [19], or on deterministic approaches [20], etc.

Our work is tightly related to the IRT paradigm [21] in psychometrics, which
enables us to focus on the workers’ capabilities. More specifically, we employ the
Rasch models [5], which computes the expected response correctness probability of a
worker to a given task, the task’s difficulty, and the ability of the worker. This helps
us address a principal concern of Impact sourcing: distinguishing honest workers with
low skill levels from unethical workers. So far, most research have focused on one or
two of those aspects, with the exception to the work of Whitehill in [14], where they
presented GLAD – a generative model of labels, abilities and difficulties. The
presented model is close to our work as it’s also based on IRT. They obtain the
maximum likelihood estimates of these three parameters through utilizing an Expecta-
tion-Maximization approach (EM) in an iterative manner for results aggregation.
GLAD’s robustness wavers when faced with unethical workers, especially when they
constitute more than 30% of the task force [22]. Our perspective is however focused
on detecting irrational response patterns to be able to distinguish diligent workers
with lower skill levels.

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 173

Other works, considered only one aspect, namely the worker’s ability. Dawid and
Skene [12] utilized confusion matrices, which offered an improved form of the redun-
dancy technique. However, as pointed out and addressed by Ipeirotis [23], this unde-
restimates the quality of workers who consistently give incorrect results. In contrast,
in [24], the workers’ ability together with the inference of correct answers are investi-
gated. The downside however, is that it overlooks the varying difficulties of the task
at hand, which should influence the workers’ abilities. In our model, the correctness
probability of a worker for a given task isn’t static, but varies according to the task’s
difficulty and the worker’s ability. Furthermore, it’s measured across the different
tasks’ difficulty level.

3 Motivational Crowd Sourcing Laboratory-Based Study

To acquire a basic ground truth dataset, we conducted a small-scale laboratory-based
experiment, where a total of 18 workers volunteered for the study. Given a set of 20
multiple choice questions, the volunteers were asked to answer the questions twice. In
the first round, they would randomly select answers in any fashion. In the second
round, they were asked to truthfully consider the questions before answering.

In this paper we formulate our HITs over an American standardized test for college
admission with medium difficulty level: the Graduate Record Examination (GRE)
dataset, which was crawled from graduateshotline.com. A GRE test is typically made
up of five sections. We extracted the questions corresponding to the verbal section,
namely the verbal practice questions. The task then is to select the right definition of a
given word. For each question, four definitions are given, and the worker should se-
lect the correct definition corresponding to the word in question.

Fig. 1. Truthful versus Random Responses

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

To
ta

l N
um

be
r

of
 C

or
re

ct
ly

 A
ns

w
er

ed
 Q

ue
st

io
ns

Workers' Answer Sets
3 5Truthful responses Random responses

174 K. El Maarry and W.-T. Balke

Figure 1 sorts all workers’ answer sets according to the respective total number of
correct answers achieved over the 20 questions. Although no worker got all 20 an-
swers right, it comes as no surprise that truthful answers tend to be more correct than
random answers: in the random response round, the workers had on average 40%
correct answers, while in the truthful response round, the workers had on average
58.6% correct answers. Furthermore, one can clearly see that even though the dataset
is in no way biased, random responses at times produced better overall results than
workers who actually tried to truthfully answer the questions.

3.1 Unethical Workers Versus Reputation-Based Systems

Consider the top ten workers getting the most correct answers in Figure 1. In a reputa-
tion based system, the worker at rank 5 (scoring 15 correct answers) would be given a
higher reputation score than workers on ranks 6 to 9, who scored only 14 correct an-
swers. Yet, here three workers at least tried to answer correctly. In biased datasets,
(e.g. the movie dataset from example 1), experienced unethical workers’ could easily
improve their reputation score even more by choosing proper answering schemes.

3.2 Unethical Workers Versus Gold Questions

Upon setting up 40% gold questions (i.e. 8 gold questions out of the 20 questions) and
a 70% accuracy level threshold (i.e. workers scoring less than 70% correct answers in
the gold questions are eliminated), we considered the following three gold question
set scenarios as depicted in Figure 2:

Fig. 2. Number of workers Eliminated given different types of gold questions

1. Easy gold question set: 38.8% honest workers discarded (i.e. 7 workers) and
66.67% unethical workers eliminated (i.e. 12 workers).

0

5

10

15

20

Easy gold questions Balanced gold
questions

Difficult gold
questions

N
um

be
r

of
 W

or
ke

rs
 E

lim
in

at
ed

Honest workers Unethical workers

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 175

2. Balanced gold question set, addressing all difficulty levels: 61% honest workers
discarded (i.e. 11 workers are eliminated) and 88% random workers eliminated
(i.e. 16 workers are eliminated).

3. Difficult gold question set: 55.5% honest workers discarded5 (i.e. 10 workers)
and 88.8% unethical workers eliminated (i.e. 16 workers).

Although gold questions are more biased to penalize unethical workers, still this
bias is relatively low, and a significant number of honest workers are penalized, too.
Moreover, unethical workers can with a higher chance bypass an easy set of gold
questions (33.33% unethical workers kept) than they are to bypass either a balanced
or a difficult set of gold questions (around 12% unethical workers kept).

5Typically, it’s to be expected that the number of honest workers eliminated by the
difficult set of gold questions would be higher than that with the balanced gold, as it
would impose a higher skill threshold on the employed workers. However, due to the
relatively small number of volunteers, the 6% difference which is in fact only 1 work-
er more that was eliminated by the balanced gold question can be misleading and
should be considered as an artifact of the experiment and not generalized. For the rest
of our experiments, we use a balanced set of gold questions.
4 Identifying Success Zone Bounds

In this section we provide a short overview of the underlying statistical Rasch Model
(RM), and illustrate how we employ it to 1) abstract workers’ responses to a skill-
graded vector, and 2) identify each worker’s success zone for quality control.

4.1 The Rasch Model

Crowdsourcing inherently involves many human factors, accordingly our attention is
drawn to the science assessing individual’s capabilities, aptitudes and intelligence,
namely, psychometrics and its IRT classes, in particular the RM. Simply put, the RM
computes the probability that a worker’s response to a given task
is correct as a function of his ability and the difficulty of the task . Assuming a

binary setting, where a worker’s response 0,1 is known (with 0 meaning an
incorrect and 1 a correct response), RM’s dichotomous case can be employed. Basi-
cally, both the RM’s parameters: a worker’s ability and a task’s difficulty are
depicted as latent variables, whose difference yields the correctness probability P.

Definition 1: (Rasch Model for Dichotomous Items) given a set of workers W=
{ , , … , , where | | , and a HIT T= { , , … , , where | | . Assume

 and , then correctness Probability can be given as follows

1 ()1 ()
This can also be reformulated, where the distance between and is given by the logarithm

of the odds ratio, also known as the log odd unit logit.

176 K. El Maarry and W.-T. Balke

1

Such a logit scale enforces a consistent valued unit interval that is meaningful bet-
ween the locations of the workers and the questions when they’re drawn on a map
[25]. So whereas a worker has a 50% chance of answering a question within
his/her exact ability, this success probability increases to 75% for questions that is 1
logit easier and similarly drops to 25% for questions that is 1 logit more difficult. The
difficulty of a question with a logit value of 0 is average. A negative logit value im-
plies an easy and a low and vice versa. Accordingly, the correctness probabili-

ty of a worker’s response will be high when his/her ability exceeds the corresponding
task’s difficulty. We exploit this to detect irrational response patterns in section 5.3.

Objectively Estimating and Parameters.
Naively, can be determined by observing the proportion of incorrect responses,
while could be defined by where a worker stands in the percentile among all
the other workers. In fact, the practice of using the raw score (i.e. total number of
correct responses) to estimate the worker’s ability is quite ubiquitous [25]. However,
this fails to capture the reliability of responses and raises many questions as can be
seen in the following example:

Example 2:
a) Assume that the same HIT is assigned to two different groups of workers. The
majority of the first group’s workers are unethical, while the majority of the second is
honest. A non-objective measure of would label questions assigned to the first
group as difficult, because the majority gave incorrect responses. Simultaneously, the
same questions would have a lower for the second honest group of workers.

b) Assume two HITs with different , where the first has a low difficulty level and the
second has a high difficulty level. An unobjective measure of would equally treat
the workers lying in the same percentile of each HIT, irrespective of the difficulty of
the questions they’re handling.

Accordingly, objectivity is needed. Simply put 1) measurements should be inde-

pendent of T, and 2) measurements should be independent W. In RM, the “objec-
tive” measurement of (,) is emphasized [26].

Numerous ways for estimating the Rasch model’s parameters (,) exist. We em-
ploy the conditional maximum likelihood estimation (CML) for estimating , as it
leads to minimal estimation bias with well-defined standard error. For estimating the , join maximum likelihood estimation (JML) is used, which proved to be robust
against missing data, as well as an efficient estimation method [27].

These parameters can only be estimated on workers’ responses to gold questions,
where all responses can be judged to be correct or not. In the evaluation section, we
illustrate that 40% gold question suffice for the RM to correctly approximate each of
the (,) parameters (i.e. for a HIT of 20 questions, 8 gold questions are needed).

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 177

4.2 Skill-Graded Vectors and Success Zones

In a perfect setting, a worker who’s able to correctly answer questions of a certain
difficulty level, should be able to answer all less difficult questions. Similarly, failing
to submit a correct response to a question of a certain difficulty would imply the
worker’s incompetency in answering more difficult questions. Different workers will
have different skill levels and a fair judgment of a worker should be based on how
well they do on tasks within their skill level. To that end, we reorder each worker’s
gold question response vectors, such that the questions are ordered ascendingly in
terms of their difficulty using the RM’s estimated parameter. At which point, in an
ideal setting, we can observe the following workers’ response vectors as illustrated
in.Table 3 Next, we zoom in on the set of questions within the worker’s ability (i.e.,
success zone). Using the RM’s estimated parameter, we can define the bound of the
success zone.

Table 1. (Ideal) Skill-graded Response Matrix

Definition 2: (Skill-graded Vector - SV) for assigned to a HIT with golden questions T=
{ , , … , , | | , with corresponding = { , , … , }. Worker submits the
following corresponding response vector , , … , .

 = { , , … , | , where | | | |

Definition 3: (Success Zone – SZ) given a Skill-graded Vector , , … , for

worker to a set of gold questions | | .
 = { , , … , |

5 Rational and Irrational Patterns in Success Zones

In reality, the SV matrix shown in Table 1, also known as a perfect Guttmann scale
[28], is more plausible in theory, and is rather the exception than the rule. Observing
the workers in reality, different response patterns can be seen, which are trickier to
understand and handle.Table 2 illustrates a more realistic SV matrix, the shaded cells
represent the success zones of each worker. Workers will sometimes miss out on easy
questions within their ability () e.g. worker A responds incorrectly to task 3.

 Tasks

Workers
1 2 3 4 5 6 7 8 9

A 1 1 1 0 0 0 0 0 0

B 1 1 1 1 1 0 0 0 0

C 1 1 1 1 1 1 1 0 0

178 K. El Maarry and W.-T. Balke

And sometimes they may as well successfully respond to difficult questions beyond
their ability () e.g. worker C answers task 8 correctly. Some of these differ-

ent response patterns can be explained [26] as seen in Table 3.

Table 2. (Realistic) Skill-graded Response Matrix

 Tasks

Workers
1 2 3 4 5 6 7 8 9

A 1 1 0 1 1 1 1 0 0

B 1 1 1 0 1 0 0 1 0

C 1 0 1 1 1 0 0 1 0

Accordingly, there will be unexpected false or correct responses in a worker’s SV.

These discrepancies are however of greater or lesser importance and impact the over-
all rationality of the response pattern depending on the number of their occurrences
and their location in SV. We only focus on discrepancies within success zones, while
SV entries that are outside of the success zone are: 1) incorrect and workers shouldn’t
be penalized for or, 2) correct and will be often attained through guessing.

Next we present three techniques that focus on success zones and aim at recogniz-
ing irrational patterns within these zones: 1) Skill-adapted Gold questions,
2) Entropy-based elimination, and 3) Rasch-based elimination.

Table 3. Observed response patterns

Response Pattern Response Vector

Lucky-guessing
A few unexpected correct responses to difficult
tasks

Carelessness A few unexpected incorrect responses to easy tasks

Rushing
Unexpected error near the end for tasks with diffi-
culty levels within a worker’s abilities

Random guessing
Unexpected correct and incorrect responses irres-
pective of the question’s difficulty

Constant response
set

Same submitted response over and over again

5.1 Skill-Adapted Gold Questions

This technique is similar to using gold questions with a certain accuracy level (i.e.
workers not achieving the required accuracy level are eliminated), except that gold
questions don’t provide a fair basis for judging workers with varying skill levels. The

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 179

new technique also applies the gold question’s accuracy level, but strictly on the suc-
cess zone i.e. it discards all workers failing to achieve the required accuracy level on
tasks within their skill level. Accordingly an irrational pattern in a worker’s success
zone can be defined as follows:

Definition 4: (Skill-adapted gold questions) given a success zone = { , , … , of a

worker and a required accuracy level A, all workers are eliminated for which holds: | |

5.2 Entropy-Based Elimination

We utilize the Shannon Entropy [29] to measure the randomness of responses within
the success zone. Following Shannon’s entropy definition, a response pattern with
high entropy indicates randomness, while rational response pattern will have low
entropy. According to our experimental results on our dataset, entropy values higher
than 0.89 indicated randomness. Accordingly an irrational pattern in a worker’s suc-
cess zone can be defined as follows:

Definition 5: (Entropy-based Elimination) given a success zone = { , , … , of a

worker and an entropy threshold=0.89, all workers are eliminated for which holds: () log () 0.89

5.3 Rasch-Based Elimination

One shortcoming of both the skill-adapted gold questions and the entropy-based eli-
mination technique, is that none of them take into consideration the point at which an
incorrect response is given. For instance, the following two response vectors (101011)
and (111100) get the same entropy of 0.9182. Following RM’s definition of having
higher correctness probability the easier the task is relative to a worker’s skill ability,
then failing on the second task in the first response pattern should be penalized more
than failing on the fifth task in the second response pattern. Using the correctness
probability that is estimated by the Rasch model, we add up the correctness proba-
bilities for task entries that are correctly answered and penalize falsely answered tasks
by subtracting its corresponding correctness probability. We then define an irrational
response pattern as follows:

Definition 6: (Rasch-based Elimination) given a success zone = { , , … , and the

corresponding computed correctness probabilities P = { , , … , } of a worker and a
required accuracy level A, all workers are eliminated for which holds: (2)

180 K. El Maarry and W.-T. Balke

6 Experimental Results

In this section we evaluate the proposed framework and extensively evaluate the effi-
ciency of the three proposed techniques: 1) Skill-adapted Gold Questions, 2) Entropy-
based elimination and 3) Rasch-based elimination.

In section 3, we evaluated the impact of the type of gold questions used (easy, ba-
lanced and difficult). Next, we investigate how many gold questions should be in-
jected, which would allow the rasch model to correctly approximate each worker’s
skill level, and their correctness probability. Similar to the motivational case study in
section 3, we use the verbal section from the GRE dataset to create our HITS for
evaluation purposes.

The open source eRm package for the application of IRT models in R is utilized,
where correct responses are coded as 1 and incorrect ones are coded as 0 in a wor-
ker’s success zone. The eRm package uses conditional maximum likelihood CML
estimation as it maintains the concept of specific objectivity [5], [30].

6.1 Gold Question Set Size

We experiment with different gold question set sizes () and examine how it impacts
the reliability of the RM’s approximated parameters (worker’s skill level and

worker’s correctness probability). This ultimately allows the inference of a heuris-
tic for gold question set size , which would permit a good a reliable approximation
of the parameters that are used in identifying a worker’s success zone. Starting off
with = 20% (i.e. 4 gold questions), we incrementally upsurge the size till 80%. We
designed the different sets to be balanced in terms of questions’ difficulty. Figure 3

Fig. 3. Impact of varying

0

5

10

15

20

20% 30% 40% 50% 60% 70% 80%

N
um

be
r o

f E
lim

in
at

ed
 W

or
ke

rs

Size of Gold Questions Set

Skill-adapted Gold Questions

Unethical Workers Honest Workers

0

5

10

15

20

20% 30% 40% 50% 60% 70% 80%

N
um

be
r o

f E
lim

in
at

ed
 W

or
ke

rs

Size of Gold Questions Set

Entropy-based Elimination

Unethical Workers Honest Workers

0

5

10

15

20

20% 30% 40% 50% 60% 70% 80%

N
um

be
r

of
 E

lim
in

at
ed

 W
or

ke
rs

Size of Gold Questions Set

Rasch-based Elimination

Unethical Workers Honest Workers

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 181

illustrates the impact of the different sizes on the three techniques in terms of: 1)
number of eliminated unethical workers and 2) number of misjudged honest workers.

As increases, the three techniques can more efficiently judge honest workers and
the number of misjudgments decrease. Moreover, for the three techniques the number
of misjudged honest workers curves tend to converge on average when = 40%.

Both the skill-adapted gold questions and the Rasch-based elimination approaches
are optimistic compared to the Entropy-based elimination, which maintains on
average a higher rate of eliminated unethical workers. Interesting to note is that con-
vergence is much smoother and pronounced with the number of misjudged ethical
workers curve than that of the unethical workers. This can be attributed to the implicit
random response nature of the unethical workers i.e. for every set of gold questions
that are of the same size, the unethical workers’ performance would vastly fluctuate.
This is especially prominent with the pessimistic entropy-based elimination approach.

For the rest of our experiments, we design our HITS to constitute 40% gold ques-
tions.

6.2 Ground Truth-Based Evaluation

We use the dataset from the laboratory-based study in section 3, which is made up of
20 questions, 40% out of which are gold questions (i.e. 8 questions). This gives us
ground truth, where responses corresponding to the first random round constitutes
unethical workers, while the second truthful response round constitutes honest work-
ers. Accordingly, we can precisely evaluate how each of the proposed techniques fare
in terms of detecting and distinguishing between irrational and rational response pat-
terns in success zones and accordingly eliminate the workers fairly.

Figure 4 depicts the number of eliminated workers by each of the: a) skill-adapted
gold questions, b)entropy-based elimination, c)Rasch-based elimination techniques,
and compares them to the standard gold questions technique. For the gold question
technique, we use a balanced set (i.e. set of gold questions target all difficulty levels)
with an accuracy level set to 70% (i.e. workers must provide 70% correct answers,
otherwise they’re eliminated).

As can be seen, the three proposed techniques perform significantly better than
solely relying on gold questions. Both the Skill-adapted gold questions and the Rasch-
based elimination retain 50% more of the honest workers. Whereas gold questions
misjudge 61% of the honest workers, both the skill-adapted gold questions and the
Rasch-based elimination misjudge only 22% and 33% honest workers, respectively.
Moreover, in support of our earlier findings, the elimination ratio of unethical to hon-
est workers for the skill-adapted gold questions and the Rasch-based elimination is
around 40%, designating them as more optimistic techniques. On the other hand, the
entropy-based elimination is more rigid and pessimistic with a 52% ratio, yet still
much better than simple gold questions. So while both the Skill-adapted gold ques-
tions and Rasch-based elimination can more efficiently recognize honest workers,
entropy-based elimination tends to more efficiently recognize unethical workers. In
summary, all three techniques exhibit better ratios than gold questions.

182 K. El Maarry and W.-T. Balke

A closer look on the eliminated honest workers by skill-adapted gold questions
techniques ascertains the justification of these elimination, where eliminated workers
either: a) failed in answering all gold questions or b) failed in having a skill level
higher than the easiest question (e.g. worker ability -1.24 and the easiest ques-
tion’s difficulty level = -1.21).

Furthermore, examining the different computed entropies for both honest and un-
ethical workers, we observed that entropies higher than 0.89 indicated randomness in
the responses. Accordingly, by setting the entropy threshold to 0.89, 94% unethical
workers are eliminated, and 50% ethical honest are misjudged.

Fig. 4. Number of Ethical/Unethical Workers Eliminated

6.3 Practical Crowd Sourcing Experiments on Real World Data

In this experiment, we evaluate the efficiency of our techniques in real world crowd
sourcing experiments. We used CrowdFlower as a generic crowd sourcing platform.
Following the results of sections 3 and 6.1, we designed a balanced set of Gold ques-
tions. Each HIT consisted of 28 questions. We overrode the gold question policy of
CrowdFlower, allowing workers to participate in the job, even if they did not meet the
required accuracy level. No restraints were set to geography, and skills were set to
minimum as defined by the platform. We collected 1148 judgments from 41 workers
incurring a total cost of 35$. Table 4 illustrates how many workers were eliminated by
each technique.

The results closely reflect our results on synthetic data. Using the platform’s static
accuracy levels, 32% of the workers would have been eliminated (13 workers). Both
the Skill-adapted gold questions and Rasch-based Elimination tend to retain 50% of
the workers originally eliminated by gold questions. On the other hand, the Entropy-
based elimination retains its pessimism, discarding 26% of the workers.

0

5

10

15

20

 Gold Questions Skill Adapted Gold
Questions

Entropy-based
Elimination

Rasch-based
Elimination

N
um

be
r

of
 w

or
ke

rs
 E

lim
in

at
ed

Honest Workers Unethical Workers

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 183

Table 4. Percentage of Eliminated Workers

 Gold Questions
(70% accuracy level)

Skill-Adapted
Gold Questions

Entropy-based
Elimination

Rasch-based
Elimination

32% (13 workers) 14% (6 workers) 26% (11 workers) 16.6% (7 workers)

Note that unlike the laboratory-based experiment, no ground-truth is available. Ac-
cordingly, to measure the efficiency of the techniques, we evaluate the set of workers
who would have been discarded by static gold questions, yet retained by our tech-
niques, namely: the Skill-Adapted Gold Questions and the Rasch-based Elimination.
We provided each of those workers with HITS of 10 gold questions that corresponded
to their skill level, at which point they provided on average 74% correct answers (i.e.
providing only 2 incorrect answers in a HIT), which even beats the initial accuracy
level threshold set by static gold questions.

7 Summary and Outlook

In this paper, we addressed the central question of a fair choice of workers that con-
cerns impact sourcing: distinguishing between honest workers, who might just be
lacking educational skills, and unethical workers. Indeed, our laboratory study shows
how current quality control measures (namely gold questions and reputation-based
systems) tend to misjudge and exclude honest and willing workers who may just not
have been provided tasks on their individual skill levels. Yet, impact sourcing has to
be fair by providing tasks for honest and willing workers that are well within their
skill level, while avoiding unethical workers to keep up result quality constraints.

Accordingly, we developed a framework to promote fair judgments of workers. At
its heart we deployed the Rasch model, which takes into account both, the level of a
worker’s skill and the task’s difficulty. This aids in distinguishing each worker’s suc-
cess zone. We then presented three advanced, yet practical techniques for detecting
irrational patterns within success zones: 1) Skill-adapted gold questions, 2) Entropy-
based Elimination and 3) Rasch-based Elimination, with the first and third techniques
being optimistic and the second more pessimistic in nature. Both laboratory-based and
real world crowd souring experiments attested to the efficiency of the techniques:
about 50% of misjudged honest workers can be successfully identified, and subse-
quently be redirected to skill-fitted tasks.

So far, the Rasch model can be applied on Gold Questions to compute tasks’ diffi-
culties, in future work we will expand our framework to majority vote scenarios, too.
Due to the redundant nature of majority voting, here interesting financial gains can be
realized. Of course, this also needs the computation of task difficulties of non-gold
questions, which would allow for a dynamic adaptive task allocation fitting the cor-
responding workers’ skills. Thus, skill ontologies and competence profiles are bound
to be of major importance.

184 K. El Maarry and W.-T. Balke

References

1. Gino, F., Staats, B.R.: The microwork solution. Harvard Business Review 90(12) (2012)
2. Selke, J., Lofi, C., Balke, W.-T.: Pushing the boundaries of crowd- enabled databases with

query-driven schema expansion. In: 38th Int. Conf. on Very Large Data Bases (VLDB),
pp. 538–549 (2012)

3. Howe, J.: The Rise of Crowdsourcing. The Journal of North 14(14), 1–5 (2006)
4. Zhu, D., Carterette, B.: An analysis of assessor behavior in crowdsourced preference

judgments. In: SIGIR 2010 Workshop on Crowdsourcing for Search Evaluation, no. Cse,
pp. 17–20 (2010)

5. Rasch, G.: Probabilistic Models for Some Intelligence and Attainment Tests. Nielsen &
Lydiche (1960)

6. Finin, T., Murnane, W., Karandikar, A., Keller, N., Martineau, J., Dredze, M.: Annotating
named entities in twitter data with crowdsourcing. In: CSLDAMT 2010 Proceedings of the
NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s
Mechanical Turk, pp. 80–88 (2010)

7. Lofi, C., El Maarry, K., Balke, W.-T.: Skyline queries in crowd-enabled databases. In:
Proceedings of the 16th International Conference on Extending Database Technology,
EDBT/ICDT Joint Conference (2013)

8. Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and
the OMG! In: International AAAI Conference on Weblogs and Social Media, pp. 538–541
(2011)

9. Callison-Burch, C.: Fast, cheap, and creative: evaluating translation quality using
amazon’s mechanical turk. In: EMNLP 2009: Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, vol. 1(1), pp. 286–295 (2009)

10. Lofi, C., Selke, J., Balke, W.-T.: Information Extraction Meets Crowdsourcing: A Promis-
ing Couple. Proceedings of the VLDB Endowment 5 (6), 538-549 (2012)

11. Kuncheva, L.I., Whitaker, C.J., Shipp, C.A., Duin, R.P.W.: Limits on the majority vote ac-
curacy in classifier fusion. Journal: Pattern Analysis and Applications, PAA 6(1), 22–31
(2003)

12. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using
the EM algorithm. Journal of Applied Statistics, 20–28 (1979)

13. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.: Learning
From Crowds. The Journal of Machine Learning Research 11, 1297–1322 (2010)

14. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose Vote Should Count
More: Optimal Integration of Labels from Labelers of Unknown Expertise. Proceedings of
NIPS 22(1), 1–9 (2009)

15. Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on amazon mechanical turk. In:
Proceedings of the ACM SIGKDD Workshop on Human Computation, p. 3 (2010)

16. Kazai, G.: In Search of Quality in Crowdsourcing for Search Engine Evaluation. In:
Clough, P., Foley, C., Gurrin, C., Jones, G.J., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR
2011. LNCS, vol. 6611, pp. 165–176. Springer, Heidelberg (2011)

17. Qiang Liu, A.I.: Mark steyvers, “scoring workers in crowdsourcing: how many control
questions are enough? In: Proceedings of NIPS (2013)

18. El Maarry, K., Balke, W.-T., Cho, H., Hwang, S., Baba, Y.: Skill ontology-based model
for quality assurance in crowdsourcing. In: UnCrowd 2014: DASFAA Workshop on
Uncertain and Crowdsourced Data, Bali, Indonesia (2014)

 Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers 185

19. Ignjatovic, A., Foo, N., Lee, C.T.L.C.T.: An analytic approach to reputation ranking of
participants in online transactions. In: IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent
Technol., vol. 1 (2008)

20. Noorian, Z., Ulieru, M.: The State of the Art in Trust and Reputation Systems: A Frame-
work for Comparison. Journal of Theoretical and Applied Electronic Commerce Research
5(2) (2010)

21. Traub, R.E.: Applications of item response theory to practical testing problems, vol. 5,
pp. 539–543. Erlbaum Associates (1980)

22. Quoc Viet Hung, N., Tam, N.T., Tran, L.N., Aberer, K.: An Evaluation of Aggregation
Techniques in Crowdsourcing. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G.
(eds.) WISE 2013, Part II. LNCS, vol. 8181, pp. 1–15. Springer, Heidelberg (2013)

23. Wang, J., Ipeirotis, P.G., Provost, F.: Managing crowdsourced workers. In: Winter Confe-
rence on Business Intelligence (2011)

24. Batchelder, W.H., Romney, A.K.: Test theory without an answer key. Journal Psychome-
trika 53(1), 71–92 (1988)

25. Bond, T.G., Fox, C.M.: Applying the Rasch Model: Fundamental Measurement in the
Human Sciences. Journal of Educational Measurement 40(2), 185–187 (2003)

26. Karabatsos, G.: A critique of Rasch residual fit statistics. Journal of Applied Measures.
1(2), 152–176 (2000)

27. Linacre, J.M.: Understanding Rasch measurement: estimation methods for Rasch meas-
ures. Journal of Outcome Measurment 3(4), 382–405 (1999)

28. Guttman, L.: A basis for scaling qualitative data. Journal of American Sociological
Review, 139–150 (1944)

29. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mobile Compu-
ting and Communications Review 5(1) (2001)

30. Rasch, G.: On specific objectivity: An attempt at formalizing the request for generality and
validity of scientific statements. Journal of Danish Yearbook of Philosophy 14 (1977)

Spatio-temporal Data II

Skyline Trips of Multiple POIs Categories

Saad Aljubayrin1(B), Zhen He2, and Rui Zhang1

1 Department of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

aljubayrin@su.edu.sa, rui.zhang@unimelb.edu.au
2 Department of Computer Science and Computer Engineering, Latrobe University,

Melbourne, Australia
z.he@latrobe.edu.au

Abstract. In this paper, we introduce a new interesting path find-
ing problem, which is the Skyline Trips of Multiple POIs Categories
(STMPC) query. In particular, given a road network with a set of Points
of Interest (POIs) from different categories, a list of items the user is plan-
ning to purchase and a pricing function for items at each related POI;
find the skyline trips in term of both trip length and trip aggregated
cost. This query has important applications in everyday life. Specifically,
it assists people to choose the most suitable trips among the skyline trips
based on two dimensions; trip total length and trip aggregated cost. We
prove the problem is NP-hard and we distinguish it from existing related
problems. We also proposed a framework and two effective algorithms to
efficiently solve the STMPC query in real time and produce near optimal
results when tested on real datasets.

Keywords: Path finding · Skyline paths · Skyline trips · Trip planing

1 Introduction

Over the past few decades spatial databases have been studied extensively, result-
ing in significant outcomes in areas such as spatial indexing, path finding and
data modelling [5,8,11,21,26,29]. In this paper we focus on the path finding field
and introduce a new interesting path finding problem, which is the Skyline Trips
of Multiple POIs Categories STMPC query. In particular, given a road network
graph G, source s and destination d, a set of n POIs categories C = {c1, c2, ...cn}
with a set P of POIs in each category ci = {p1, p2, ...pn}, a list O of items the
user is planning to purchase O = {o1, o2, ...on} and a pricing function f(oi) for
items at each related POI pi; find the skyline trips Sky(T) = {t1, t2, ...tn} that
each starts at s, pass through at least one POI pi from each related category
and ends at d, thus ti = {s, p1 ∈ c1, p2 ∈ c2, ...pn ∈ cn, d}. Sky(T) is the set
of trips that are not dominated by any possible other trip in term of both trip
length and trip cost aggregated from POIs creating the trip.

Since the Trip planing query (TPQ) studied in [19] is a special case of our
problem, we would illustrate it first and distinguish it from the typical shortest
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 189–206, 2015.
DOI: 10.1007/978-3-319-18123-3 12

190 S. Aljubayrin et al.

Fig. 1. Motivating example

path query. TPQ is a generalization of the Traveling Salesman problem (TSP) [9]
and more inclusive than normal shortest path query. Specifically, a TPQ usually
starts from a source point and pass through a number of POIs in particular order
and possibly restricted by some constraint (e.g. time, distance). In contrast, a
typical shortest path query aims at finding the shortest path between source and
destination by finding the smallest aggregated weight of road segments connect-
ing the query points. For example, TPQ can be finding a path from a user’s office
that pass by an ATM, supermarket, restaurant and ending the trip at the user’s
home. While a shortest path query can be finding the path between two targets
(e.g. ATM and supermarket) in a trip. The cost at each POIs is not considered
in the TPQ, thus, there is only one optimal trip, which is the shortest trip that
passes through at least one POI from each category.

The main difference between the TPQ query and the query studied in this
paper is that, the STMPC query involves another optimality dimension, which is
the trip total cost aggregated from POIs creating the trip. Specifically, while the
TPQ query only finds the shortest trip, our query uses the trips length and cost
to find the set of skyline trips. This results in the possibility of having multiple
skyline optimal trips. We illustrate the STMPC query in the following example.

Figure 1 shows an example of a road network with source s and destination
d and a number of POIs from three different categories; gas stations, restaurants
and supermarkets. Based on the prices of items the user is planning to purchase
and their quantity, we define the cost at each POI. When the user at s wants to
visit one POI from each category on her way to d, there can be a large number
of possible trips which all include one POI from each category. For instance,
Trip1 = {s,m1, r1, g1, d} has the shortest distance (15) with expensive cost
(45), while Trip3 = {s, r3,m3, g3, d} has the lowest cost (30) but with quite long
distance (27). In addition, there can be a trip that is both short (17) and has a low
cost (36) i.e. trip2 = {s, g2, r2,m2, d} .Therefore, the user can choose the most
preferable trip amongst the skyline trips, which are based on two dimensions;

Skyline Trips of Multiple POIs Categories 191

trip distance and trip total cost. In this example the trips Trip1, T rip2 and Trip3
are the skyline trips because they are not dominated by any other possible trip.

Motivated by scenarios such as the previous example, we formulated the
STMPC query and proposed two effective algorithms to efficiently answer the
query in real time and produce near optimal results. Our first algorithm is gen-
erally based on defining a new weight for each POI, where this weight is a combi-
nation of both POI cost and POI distance from query points. Next, we perform
a number of iterations, where in each iteration we change the weight of the two
dimensions (cost and distance) in order to get the skyline candidates from each
category. Our second algorithm does not only consider the distance between each
POI and the query end points, it also considers clustered POIs using a suitable
data structure (e.g. Quadtree, Rtree). This results in more accurate skyline trips
especially if some POIs are clustered in geographical spots.

In this paper we also proposed a framework to estimate the network distance
between POIs and query points. This is because using the Euclidean distance
in road network does not usually provide accurate measurement while using the
exact network distance between all POIs and query points would be an expensive
task at the query time. Our framework is based on precomputing the network
distance between POIs and a group of geographical spots in the network and
then using this distance to estimate the actual network distance.

We make the following contributions:

1. We introduce the STMPC query, which is a novel path finding problem and
has important applications in everyday life.

2. We proposed two interesting heuristic algorithms to solve the STMPC query
and produce near optimal results.

3. We proposed an offline framework to estimate the network distance between
POIs and predefined geographical regions, which can contain the query
points. Our framework shows superior results compared to the Euclidean
distance estimation.

4. We perform extensive experiments to evaluate the effectiveness and efficiency
of the proposed algorithms, and the results are summarized as follows:
(a) In term of effectiveness, our algorithms produce up to 0.99 optimal

results based on our optimality indicter. The accuracy of the distance
estimated by our framework is between 0.96 and 0.99 compared to actual
network distance.

(b) In term of efficiency, our algorithms answer STMPC queries in real time
and up to four orders of magnitude faster than the baseline solution.

The reminder of the paper is organized as follows. Related work is discussed in
Section 2. Section 3 presents the preliminaries and problem definition. Sections 4
details the proposed efficient heuristics and the distance estimation framework.
The experimental results are shown in Section 5. Finally we conclude the paper
in Section 6.

192 S. Aljubayrin et al.

2 Related Work

Related work can be categorised into two categories; road network skyline query
related problems and trip planing query related problems. We are unaware of
any attempt to investigate the problem of finding the skyline trips of multiple
POIs categories within either categories.

First, most existing studies on skyline queries (e.g.[3,17,25,27]) have focused
on efficiently finding the skyline points for datasets in the traditional database
systems. Only a few studies considered the skyline concept in spatial database
systems, specifically, in road networks. Deng in [7], proposed to solve the ”Multi-
source Skyline Query”, which aims at finding skyline POIs in road network based
on the attribute of the POI (e.g. price) and the aggregated distance between the
POI and multiple locations. For example, find the skyline hotels that are both
cheap and close to the beach, the university and the botanic garden. The setting
of this problem is different from ours in that it only assumes one POI cate-
gory (e.g. hotels), while we consider multiple POIs categories and also consider
the total trip distance aggregated from travelling between POIs from different
categories. Therefore, the solution of Deng is not applicable to our problem.

Some other studies in road network skyline query [18,20,28] focus on finding
the skyline paths considering multiple path attributes such as distance, driving
time, gas consumption, number of traffic lights, etc. They assume different paths
would have different values at each attribute and thus their goal is to find the
set of skyline paths to allow the user to choose the most preferable path. Again,
this problem is different than ours in that it does not include any POIs nor the
distance between them, hence, their solution is not applicable.

Other road networks skyline studies such as [12–14], consider continuous
skyline queries for POIs in road network. They continuously search for the skyline
POIs for a moving object considering both the attributes of the POIs (e.g. price,
rating) and their distance to the moving object. In these studies, the outcome
is not a complete trip consisting of POIs from multiple categories, instead, it is
a set of skyline POIs from the same category and hence, their solutions are not
applicable to our problem.

Second, most trip planing studies [4,16,19,24] have one optimal trip that
answer their queries, while we consider a set of skyline trips. The TPQ [19]
discussed in the introduction can be considered as a special case of our problem.
This is because TPQ does not consider the cost at POIs while constructing the
trip. Therefore, applying the TPQ solution to our problem would only return
one trip from the skyline trips, which is the one with the lowest distance. The
optimal sequenced rout query studied in [16,24] aims to solve the TPQ with
order constraint, is a special case of the TPQ and thus a special case of our
problem. Finally, the ”The multi-rule partial sequenced route query” studied in
[4] is similar to both the optimal sequenced route query and the TPQ in that,
it may involve some order constraint.

Although some of the above mentioned studies might seem similar to the
STMPC query, their solutions are not applicable. This is because our problem
is mainly inherited from three major queries types, which are multi-dimensional

Skyline Trips of Multiple POIs Categories 193

skyline queries, nearest neighbour queries and shortest path queries. On the
other hand, most of the studies discussed in this section are only inherited from
two queries types.

There are some existing studies on the nearest neighbor or range queries
[1,10,30,31], which retrieve the set of objects with the smallest distance to the
query point. However, the STMPC and TPQ queries uses the aggregated dis-
tance between query points and POIs to find the trip with the lowest total
distance.

3 STMPC Query

We first formalize the STMPC query and present the baseline algorithm, and
then we prove it is NP-hard. Table 1 summarizes our notation.

Table 1. Frequently Used Symbols

Symbol Explanation

s The source of a STMPC query.

d The destination of a STMPC query.

P A set of POIs.

C A set of POIs categories.

O A set of items the user wants to purchase.

t A trip from s to d through one POI from each category.

Dis(pi, pj) The network distance between pi and pj .

pc The cost at a POI p.

pd The aggregated distance from a POI p to both s and d.

tc A trip total cost.

td A trip total distance.

pp The priority value of a POI p.

3.1 Problem Definition

Giving a road network graph G, source s and destination d, a set C of POIs cate-
gories C = {c1, c2, ...cn} with a set P of POIs in each category ci = {p1, p2, ...pn},
a list O of items the user is planning to purchase O = {o1, o2, ...on}. Each item in
the user list oi can be associated with different costs at different related POIs. Let
ti = {s, p1 ∈ c1, p2 ∈ c2, ...pn ∈ cn, d} be a trip that starts from s and passes at
least through one POI from each category and finishes at d. We use ti

d to donate
the total distance of a trip, which is the sum of the network distances between s,
the trip POIs and d in the travelled order; tid = Dis(s, p1) + Dis(p1, p2) + ... +
Dis(pn, d). We use ti

c to donate the total cost of a trip, which is the sum of the
cost at each POI in the trip ti

c = p1
c+p2

c+...+pi
c. For example the trip distance

194 S. Aljubayrin et al.

of trip1 in Figure 1 is t1d = Dis(s,m1)+Dis(m1, r1)+Dis(r1, g1)+Dis(g1, d) =
15, while the cost of the same trip is t1

c = m1
c + r1

c + g1
c = 45.

We can consider any trip ti that starts at s, pass at least through one POI
from each category and ends at d as a valid trip because it answers the user
query. However, different trips have different distance and cost values, hence a
trip with a short distance such as trip1 may have a high cost and vice versa.
Therefore, we leave it up to the user to decide the relative importance of trip
distance travelled and cost by returning the skyline trips. The problem of the
STMPC query is defined as follow:

Definition 1. Skyline Trips of Multiple POIs Categories (STMPC)
Query: given a road network graph G, source s and destination d, a set C of
POIs categories with a set P of POIs in each category, a list O of items the user
is planning to purchase and a pricing function f(oi) for items at each related
POI, the STMPC query finds the skyline trips Sky(T) that each starts at s,
passes through at least one POI from each related category and ends at d such
that any trip t ∈ Sky(T) are not dominated by any other trip t′ in term of both
trip distance td and trip cost tc, i.e., ∀t′, td ≤ t′d ∨ tc ≤ t′c.

Based on the above definition, a straightforward solution is as follow. First,
compute all the possible POI permutations, where only one POI from each cate-
gory is chosen based on the list of items the user wants to purchase. Next, add s
and d to the beginning and end of each found permutation in order to construct
valid trips. Finally, compute cost and network distance for each constructed trip
and perform a skyline query to find the skyline trips. The problem with this
solution is that, it is extremely slow and only applicable for very small dataset
sizes. For example, it takes more than 24 hours to find the skyline trips when
applied only to 40 POIs.

3.2 STMPC NP-Hard

The STMPC query can be considered as a generalization of some known path
finding problems such as TPQ [19] and the travelling salesman problem (TSP)
[9]. We will show in the following theorems that these two problems are special
cases of the STMPC problem.

Theorem 1. The metric travelling salesman problem with defined start and end
points is a special case of the STMPC query.

Proof. According to definition 1, when we simplify the STMPC problem to
assume that, there is only one POI in each category, all trips will have the same
cost (e.g. t1c = t2

c = ... = tn
c) while visiting POIs in different order may results

in trips with different distances (e.g. t1d �= t2
d �= ... �= tn

d), thus, there will only
be one skyline trip, which is the trip with the minimum distance. According to
the TSP definition, this version of the STMPC problem is an instance of the
TSP. Therefore, TSP is a special case of the STMPC problem.

Skyline Trips of Multiple POIs Categories 195

Theorem 2. The trip planning query (TPQ) is a special case of the STMPC
query.

Proof. According to definition 1, when we simplify the STMPC problem to
assume that all POIs from the same category have the same cost (e.g. p1

c ∈
c1 = p2

c ∈ c2 = ... = pn
c ∈ cn), all trips will have the same cost (e.g. t1c =

t2
c = ... = tn

c). While visiting different POIs in different orders may results in
trips with different distances (e.g. t1d �= t2

d �= ... �= tn
d), thus, there will only

be one skyline trip, which is the trip with the minimum distance. According to
the TPQ definition, this version of the STMPC problem is a an instance of the
TPQ. Therefore, TPQ is a special case of the STMPC problem.

Corollary 1. The Skyline Trips of Multiple POI Category query STMPC is
NP-hard.

Proof. According to [9] and [19] the problems TSP and TPQ are proven to be
NP-hard. Therefore, since the problems TSP and TPQ are special cases of the
STMPC problem (theorems 1 and 2), the STMPC query is NP-hard.

The aim of the STMPC query is to find a set of optimal trips, which are the
skyline trips in regard to two quality dimensions; trip cost and distance. Based
on theorem 2, the TPQ is a simpler version of the STMPC query, where only
the shortest optimal trip is queried. This means, finding each skyline trip is at
least as hard as the TPQ.

4 Proposed Heuristics

In this section we present our proposed heuristics algorithms and a network
distance estimation framework. For ease of understanding, we first describe a
simple Euclidean distance based solution, which we call Weighted POIs Algo-
rithm (WPOIs). Next we detail the distance estimation framework, which is
used by both algorithms to estimate the network distance instead of using the
Euclidean distance. Finally, we cover the second algorithm; Clustered Weighted
POIs Algorithm (CWPOIs), which is an improved cluster based version of the
first algorithm.

4.1 Weighted POIs Algorithm (WPOIs)

Here we present an efficient algorithm to find the skyline trips for multiple POIs
categories based on two dimensions (trip cost and trip distance). The WPOIs
algorithm is divided into two stages; POIs nomination stage and trip construc-
tion stage. It works by repeatedly iterating through these two stages, where the
outcome of each iteration is a skyline trip candidate. In the first stage of each
iteration, every POI category nominates one POI as the most superior POI in
the category. In the trip construction stage of each iteration, we use s, d and the
nominated POI from each category to construct a trip using a greedy approach.

196 S. Aljubayrin et al.

POI Nomination Stage: Before we start illustrating the process of this stage,
we need to define new properties for both POIs and iterations. First, for each
POI, we define two properties, which are POI aggregated distance pd and POI
cost pc. As mentioned in Section 3 ,the property pc represents the POI expected
cost based on the items the user wants to purchase, while the property pd rep-
resents the POI aggregated Euclidean distance from both s and d. Second, for
each iteration, we define two dependant weighting values wc and wd, which are
the cost weight and the distance weight, respectively, where always wc +wd = 1.
These two weights represent the importance of cost and distance when nomi-
nating a POI from each category. We also define a third property for each POI,
which is the POI priority value pp. The priority value pp is simply the weighted
sum of the POI cost and distance, thus, pp = wcpc + wdpd. However, before
finding the value of pp, we first need to normalise the POIs cost range to match
their distance range. Data normalisation is discussed in [22]. The value of pp

represents the total weight of a POI in each iteration.

Fig. 2. WPOIs algorithm example

The main idea of this stage is to vary the weights of the cost and distance
(wc, wd) during every iteration in order to nominate the POI with the lowest pp

from each category. For example in Figure 2, when wc = 1, thus wd = 0 (1−wc),
the priority value pp of the three gas stations (g1, g2, g3) are (18 ∗ 0 + 14 ∗ 1 =
14, 14 ∗ 0 + 18 ∗ 1 = 18, 16 ∗ 0 + 15 ∗ 1 = 15) respectively. Therefore, the gas
station category nominates the POI with the lowest pp, which is g1. Similarly
m2 and r2 are nominated. On the other hand when wd = 0.5 and thus wc = 0.5,
the nominated POIs from each category are is g3,m3, r2 and so on. The order
of the POIs is not important at this stage of the algorithm because the trip will
be formed in the trip construction stage.

Based on definition 1, if a trip ta consists of the cheapest POI from each
category (e.g. min(pic)), then, ta is a skyline trip because it is the cheapest. We
could also expect that, if a trip tb consists of POIs with the least aggregated
distance from s and d (e.g. min(pid)), then, tb is a skyline trip because it is the
shortest. In the previous process, when wc = 1, only POIs with the lowest cost

Skyline Trips of Multiple POIs Categories 197

will be nominated resulting in the cheapest trip (skyline). Similarly, when wd = 1
the POIs of the shortest trip (skyline) will be nominated. The two skyline trips
ta and tb are the most extreme skyline points on each dimension, thus, based on
definition 1, if ta �= tb, then, all other skyline points are between ta and tb.

As mentioned at the beginning of this stage, the variables wc and wd are
dependant because wc +wd = 1. Therefore, a possible approach of trying to get
all the skyline trips is to vary the cost weight wc between 1 and 0 for a number
of iterations. In every iteration, we get the best POI from each category, which
together could form a skyline trip. A straightforward technique of achieving this
is to have a fixed number of iterations (e.g. 100) where we gradually change the
cost weight wc between 1 and 0 in every iteration. For example the values of
wc in the 100 iterations are (1, 0.99, 0.98...0) as a results the values of wd are
(0, 0.01, 0.02...1). However, this approach has two main disadvantages. First, it
is possible that a POI category nominates the same POI for different iterations.
For example in Figure 2, the gas station g1 is nominated when the cost weight
is 1 ≥ wc ≥ 7.5. This is because the pp of g1 is the lowest compared to other gas
stations in the specified range. Second, it is also possible to miss some skyline
trips if they exist between two fractions with a small difference between them
(e.g. wc = 0.751 and wc = 0.752). As a result, the straightforward technique is
inefficient. We use an efficient iterating technique that is based on the following
theorem.

Theorem 3. If a > b and p is nominated when wc = a and also nominated
when wc = b, then p is nominated when a ≥ wc ≥ b.

Proof. Since pp = wcpc+(1−wc)pd and p is nominated based on the pp of a and b,
pa

p and pa
p respectively, where pap ≥ pa

p. let wc = x, thus, pxp = xpc+(1−x)pd.
if a ≥ x ≥ b then, pap ≥ px

p ≥ pa
p and hence p is nominated when wc = x.

Based on the above theorem, we do not need to fix the number of iterations
(e.g. 100). Instead, for each POI category, we compare the nominated POI for
the two extreme weight of wc, where wc = 0 and wc = 1. If the same POI is
nominated, we do not need check any other value of wc. Otherwise, we compare
the nominated POI of the middle weight (e.g. wc = 0.5) to both extreme values
and so on. For example in Figure 2, when wc = 1 the Restaurant category
nominates r2 because r2

p < r1
p (13 < 15) and also nominates r2 when wc = 0

because r2
p < r1

p (16 < 17). Therefore, we do not to iterate between 1 and 0 in
order to look for a POI with less pp in the Restaurant category.

Trip Construction Stage: As mentioned at the beginning of this subsection,
the outcome of the POI nomination stage is a set of skyline candidate trips.
Each consists of one nominated POI from each category. In this stage, we focus
on the order of the nominated POI in order to achieve a trip that starts from
s, pass through the nominated POIs and ends at d with the minimum distance.
As explained in Section 3, this stage of the algorithm is NP-hard problem by
itself because it is a special case of the TSP. Therefore, we use the same greedy

198 S. Aljubayrin et al.

technique used to solve the TPQ and TSP problems. It works by visiting the
nearest neighbour of the last POI added to the trip starting from s and ending at
d, where the Euclidean distance is used in the nearest neighbour search. In each
iteration, we use the greedy technique to form the general shape of a candidate
trip (POIs order) regardless of the real network distance between them.

Once all candidate trips are formed, we can use any shortest path algorithm
to create the final trips using the network distance. Next, we perform a skyline
query over the candidate trips using their costs and network distances as the
two dimensions in order to prune any dominated trip. Finally, we get the set of
skyline trips Sky(T).

4.2 Distance Estimation Framework

In the previous illustration of the WPOIs algorithm, we used the Euclidean dis-
tance to estimate the aggregated distance pd from each POI to both s and d. We
also used the Euclidean distance in the greedy solution to find the next nearest
neighbour of POIs forming a trip. The disadvantage of using the Euclidean dis-
tance in road networks is that, it does not reflect the actual network distance
[2,15,23]. In contrast, the exact network distance is computationally expensive
when computed online and hard to store when computed off-line. Therefore,
we propose a network distance estimation framework to be used instead of the
Euclidean distance in the WPOIs and CWPOIs algorithms. The main idea of
this framework is to precompute and store the average network distance between
every POI and specific geographical regions in the road network. It estimates
the network distance between a POI and any network vertex by retrieving the
stored distance between the POI and the region containing the queried vertex.
Dividing the network into multiple geographical regions can be done using any
suitable multi-dimensional space data structure (e.g. Quadtree, Rtree). In the
settings of this study we use Quadtree for its simplicity.

Fig. 3. WPOIs algorithm example

Skyline Trips of Multiple POIs Categories 199

The pre-computation process starts by indexing the network vertices into
the Quadtree with suitable density level at each leave node. Next, for each POI
we perform a single source shortest path search (Dijkstra’s [8]) to find the dis-
tance from that particular POI to all network vertices. Based on these distances,
we measure and store the average distance to each of the geographical regions
(Quadtree leave nodes). For example in Figure 3, the average network distances
between every POI {g1, g2, .., r1, ..m3} and each of the Quadtree leave nodes
{q1, q2,q12} are stored. At the online stage, the distance between a network
vertex and a POI is estimated by retrieving the stored average distance between
the POI and the geographical square containing the vertex. For example in
Figure 3, we can estimate the network distance between g1 and r1 by retrieving
the stored distance between g1 and the Quadtree leave node q8.

The required time to pre-compute the distances and the memory consump-
tion of storing the distances are highly sensitive to the number of POIs and the
number of Quadtree leaf nodes, which is based on the node density. However,
since the framework is computed offline, the time consumption is not critical.
Moreover, the memory consumption can be well managed by using the right den-
sity level in each Quadtree leaf node as will be shown in Section 5. The higher
time and memory cost of pre-computing the distances is well justified by the
more accurate network distance estimations.

The distance estimation framework is more suitable for static road networks.
However, in order to make it applicable on time-dependent road networks [6],
we can use the road network historical data to store different traveling times
between POIs and the geographical regions for different times of the day.

4.3 Clustered Weighted POIs Algorithm (CWPOIs)

The CWPOIs algorithm is an improved version of the first algorithm illustrated
in Section 4.1. The problem with the WPOIs algorithm is that, it only considers
the aggregated distance between a POI and the query points at the nomination
stage, regardless of the distance to POIs from other categories. This could result
in missing some of the skyline trips candidates when their POIs are clustered far
from query points. For example, the WPOIs algorithm may miss a skyline trip
t1 = {gx, rx,mx} (POIs located in the same location e.g. mall) when there is a
another trip t2 = {gy, ry,my} (POIs located in different locations) with the same
cost and worse total distance t2

d > t1
d. This is because the distance pd of each

of the three POIs (gxd, rxd,mx
d) is large when considered individually, thus, the

t1 POIs are dominated by the POIs of t2 (i.e.gxd > gy
d, rx

d > ry
d,mx

d > my
d).

Therefore, in order to overcome this obstacle we propose the CWPOIs algorithm,
which considers both the aggregated distance from query points pd and the
distance between clustered POIs.

Similar to the first algorithm, the CWPOIs algorithm is based on the frame-
work illustrated in Section 4.2 to estimate the network distance. However, it also
uses the framework to cluster POIs in geographical regions (Quadtree nodes).
The main idea of this algorithm is to define two properties for each Quadtree
node, which are the node lowest cost nc and the node average distance nd. This is

200 S. Aljubayrin et al.

only applicable for nodes containing at least one POI from each related category.
The first property nc can be defined by the aggregated cost of the POI with the
lowest cost pc from each category located within the geographical area of a node
n. The second property nd is the aggregated average distance between a node
n and the query points s and d, which is obtained from the pre-computation of
the framework.

The process of the CWPOIS algorithm starts by defining the values for the
nc and nd properties for each applicable Quadtree node, which can be leaf or
non-leaf node. Next, we use these two values to perform a skyline query over
the Quadtree nodes, where the outcome of this step is a set of non-dominated
Quadtree nodes. Then, we apply the first algorithm (WPOIS) at each of the
skyline Quadtree nodes to find the skyline trips candidates in each geographical
region. Finally, we measure the network distance for each of the candidate trips
and perform a skyline query to return the final skyline trips.

Based on the above process, the CWPOIs algorithm finds the skyline geo-
graphical regions and apply WPOIs algorithm to each of them individually.
This results in separating the nomination competition (first stage of WPOIs
algorithm) performed for POIs in a clustered region from other regions, thus,
returning more accurate skyline trips at the final stage.

5 Experimental Study

In this section we evaluate the effectiveness and efficiency of the proposed frame-
work and algorithms. We conducted the experiments on a desktop PC with 8GB
RAM and a 3.4GHz Intel(R) Core(TM) i7 CPU. The disk page size is 4K bytes.
We use the London road network dataset extracted from Open Street Map1,
which contains 515,120 vertices and 838,702 edges. We also extracted the loca-
tions of 11,030 POIs in London classified into 12 different categories.

We vary parameters such as the number of POIs categories, POIs cardinality
within each category, and Quadtree density level to gain insight into the perfor-
mance of the framework and the algorithms in different settings. The detailed
settings are given in the individual experiments.

5.1 Framework Evaluation

As discussed in Section 4.2, the purpose of the framework is to provide a bet-
ter estimation of the network distance than using the Euclidean distance. We
validate the framework in term of both effectiveness and efficiency.

Framework Accuracy: First, we compare the accuracy of the distance esti-
mated by our framework denoted as Frame-Dis, to the Euclidean distance esti-
mation denoted as Eu-Dis. An intuitive way to find the accuracy ratio AR for a
1 http://metro.teczno.com/#london

http://metro.teczno.com/# london

Skyline Trips of Multiple POIs Categories 201

distance estimation method Est-dis, which can be either Frame-Dis or Eu-Dis,
is to compare it to the actual network distance denoted as Act-Dis as follow:

AR =
Act-Dis − (|Act-Dis − Est-Dis|)

Act-Dis

For example, when Act−Dis = 37km and Frame−Dis = 37.5km, the accuracy
indicator AR = 0.98. The accuracy of our framework is highly sensitive to the
density level at each geographical region. The less dense the Quadtree cell, the
more accurate distance estimation. We vary the maximum density level inside
each Quadtree node from 0.01% to 0.001% of the total network vertices. We
compare the average accuracy ratio AR of both Frame-Dis and Eu-Dis when
running 1000 queries from random POIs to random network vertices. It can be
seen from Figure 4a that, the accuracy ratio of Frame-Dis increases up to 0.99
as the density level decreases. This is because the size of geographical regions
decrease and hence, the difference between the average distance from a POI to
a region and the actual distance from the POI to any vertex within that region
decreases. In all density levels, our framework estimates network distance more
accurately than the Euclidean distance.

(a) Distance Accuracy (b) Construction Running Time

(c) Memory Consumption (density level) (d) Memory Consumption (cardinality)

Fig. 4. Framework Evaluation

202 S. Aljubayrin et al.

Framework Efficiency: The framework efficiency is evaluated using two met-
rics; the time taken to construct the framework and its memory consumption.

Framework construction running time: the running time of the framework is
highly effected by the total number of POIs from all categories. This is because
we need to find the distance to all network vertices in order to measure the
average distance from each POI to every geographical region. Figure 4b illus-
trates the increase of framework construction time as the total number of POIs
increases. When all the POIs are used, the framework is precomputed in less
than 10 minutes. The graph construction running time is not affect by Quadtree
density level and thus the number of the geographical locations. This is because
there will be a path finding query for each POI regardless of the number of
Quadtree nodes.

Framework memory consumption: the main purpose of the framework is to
precompute and store the average distance between every pair of a POI and
a geographical region. Therefore, the number of stored distances is nm, where
n is the number of POIs and m is the number of geographical regions. Figure
4c illustrates the memory space needed to store the precomputed distance for
different density levels in each geographical region when all of the 11,030 POIs
are used. When the density level decreases from 0.01% to 0.001%, the number
of geographical regions increase and thus more space is needed to store the dis-
tances. At the 0.001% density, only 100 MB is needed to store the precomputed
distances. Figure 4d shows different memory consumptions for different POIs
cardinality when the density level is fixed to 0.004% in each geographical region.
The memory consumption increases as the number of POIs increases. Based on
Figures 4c and 4d, we can see the density level of the used data structure affects
the memory needed more than the POIs cardinality.

5.2 WPOIs and CWPOIs Effectiveness Evaluation

In this subsection, we validate the effectiveness of our proposed algorithms in
finding skyline trips. However, we need to fist discuss how to measure the opti-
mality of our results. Finally, we measure the effectiveness of our algorithms.

Effectiveness Measurement: As discussed in Section 3, the baseline optimal
solution is extremely slow as it takes more than 24 hours to only process 40 POIs
dataset. There is no straightforward way to measure the optimality of a set of
points compared to the optimal skyline set. Therefore, we propose a formula
to compare the results of our algorithms to the optimal results and provide an
optimality metric Opt, defined as follows:

Opt = 1 −
∑

x∈Sky

=
minDis(x, tp)
minDis(x, dp)

Where, Sky is the set of optimal skyline points, minDis(x, y) is the minimum
graph distance required for a point y to dominate point x, tp is the point with
the minimum minDis from the examined points, and dp is the best case point

Skyline Trips of Multiple POIs Categories 203

(a) Optimality Measurement example (b) Optimality (density level)

(c) Running Time (categories number) (d) Running Time (cardinality)

Fig. 5. Algorithms Evaluation

that is dominated by all optimal skyline points. For example in Figure 5a, when
Sky = {s1, s2, s3} are the optimal skyline points, the best case point should have
the coordinates (10, 11) as shown in the figure to be the best point dominated
by all skyline points. In addition, the minDis(s1, p1) is 0.5 because the point p1
needs to move down on the y axis by 0.5 in order to dominate s1 and so on.

Effectiveness Experiments: We use the optimality metric Opt to evaluate
the performance of our algorithms (WPOIs, CWPOIs) compared to the optimal
results for 20 different queries. We also vary the density level of the framework
to reflect different performance levels. It can be seen from Figure 5b that, the
optimality for both algorithms increase as the density level decreases due to
higher network distance estimation. In addition, although both algorithms have
high optimality metric value(over 0.9), the CWPOIs outperforms the WPOIs for
all density levels. This is because CWPOIs algorithm considers clustered POIs
when finding skyline trips while WPOIs algorithm only considers the distance
between a POI and the query points.

204 S. Aljubayrin et al.

5.3 Efficiency Evaluation

In this subsection we validate the efficiency of both algorithms under different
settings. We measured the query processing time of both WPOIs and CWPOIs
with different number of POIs categories and different cardinalities within each
category.

Effect of the Number of POIs Categories: We vary the number of related
POI categories from 3 to 12 categories, where only 100 POIs from each category
are considered and measure the average running time of 100 random queries.
Figure 5c shows that the running time of both algorithms increases as the num-
ber of categories increases. The CWPOIs algorithm run slower than the WPOIs
algorithm for all different number of categories, which is due to processing clus-
tered POIs.

Effect of POIs Cardinality: We vary the number of POIs between 2k and
11k from all 12 categories and measure the average running time of 100 random
queries. Figure 5d shows that the running time of both algorithms increases as
the POIs cardinality increases. The CWPOIs algorithm can take up to 9 seconds
to answer a query when all POIs from all 12 categories are used. However, in real-
ity it is not common for a user to plan to visit 12 different POI categories in one
trip. In addition, the running time can be tolerated considering the near optimal
results obtained by both algorithms for an NP-hard problem. Both algorithms
are more than four orders of magnitude faster than the baseline solution.

6 Conclusion and Future Work

We proposed a new path finding problem, STMPC, which finds the skyline trips
of multiple POI categories between two points based on cost and distance. We
define the problem in road network settings and proved it to be NP-hard. We
proposed an independent framework to estimate the network distance. This
framework is based on precomputing and storing the distances between POIs
and some geographical regions in the network. We also proposed two interesting
heuristic algorithms, which are WPOIs and CWPOIs algorithms. The CWPOIs
algorithm considers clustered POIs when nominating skyline candidate trips. As
shown in the experiments section, both algorithms return skyline trips that are
close to optimal trips within reasonable running time when processing a large
real dataset. Our algorithms are four orders of magnitude faster than the naive
optimal solution.

For future work we will consider solving the same problem when there are
multiple quality dimensions (e.g. distance, cost, rating, number of stops ... etc).
We might also investigate improving the memory consumption of the proposed
framework by only storing network distance between different geographical
regions.

Skyline Trips of Multiple POIs Categories 205

Acknowledgments. The author Saad Aljubayrin is sponsored by Shaqra Univer-
sity, KSA. This work is supported by Australian Research Council (ARC) Discov-
ery Project DP130104587 and Australian Research Council (ARC) Future Fellowships
Project FT120100832.

References

1. Ali, M.E., Tanin, E., Zhang, R., Kulik, L.: A motion-aware approach for efficient
evaluation of continuous queries on 3d object databases. The VLDB Journal The
International Journal on Very Large Data Bases 19(5), 603–632 (2010)

2. Aljubayrin, S., Qi, J., Jensen, C.S., Zhang, R., He, Z., Wen, Z.: The safest path
via safe zones. In: ICDE (2015)

3. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
the17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)

4. Chen, H., Ku, W.S., Sun, M.T., Zimmermann, R.: The multi-rule partial sequenced
route query. In: Proceedings of the 16th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems. p. 10. ACM (2008)

5. Comer, D.: Ubiquitous b-tree. ACM Computing Surveys (CSUR) 11(2), 121–137
(1979)

6. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Efficient K-Nearest Neighbor
Search in Time-Dependent Spatial Networks. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 432–449. Springer,
Heidelberg (2010)

7. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road
networks. In: IEEE 23rd International Conference on Data Engineering, ICDE
2007, pp. 796–805. IEEE (2007)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

9. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.
BioSystems 43(2), 73–81 (1997)

10. Eunus Ali, M., Zhang, R., Tanin, E., Kulik, L.: A motion-aware approach to con-
tinuous retrieval of 3d objects. In: IEEE 24th International Conference on Data
Engineering, ICDE 2008, pp. 843–852. IEEE (2008)

11. Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14.
ACM (1984)

12. Huang, X., Jensen, C.S.: In-Route Skyline Querying for Location-Based Services.
In: Kwon, Y.-J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428,
pp. 120–135. Springer, Heidelberg (2005)

13. Huang, Y.K., Chang, C.H., Lee, C.: Continuous distance-based skyline queries in
road networks. Information Systems 37(7), 611–633 (2012)

14. Jang, S.M., Yoo, J.S.: Processing continuous skyline queries in road networks. In:
International Symposium on Computer Science and its Applications, CSA 2008,
pp. 353–356. IEEE (2008)

15. Jensen, C.S., Kolářvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in
road networks. In: Proceedings of the 11th ACM International Symposium on
Advances in Geographic Information Systems, pp. 1–8. ACM (2003)

16. Kanza, Y., Levin, R., Safra, E., Sagiv, Y.: Interactive route search in the presence
of order constraints. Proceedings of the VLDB Endowment 3(1–2), 117–128 (2010)

206 S. Aljubayrin et al.

17. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for skyline queries. In: Proceedings of the 28th International Conference on Very
Large Data Bases, pp. 275–286. VLDB Endowment (2002)

18. Kriegel, H.P., Renz, M., Schubert, M.: Route skyline queries: A multi-preference
path planning approach. In: 2010 IEEE 26th International Conference on Data
Engineering (ICDE), pp. 261–272. IEEE (2010)

19. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On Trip Planning
Queries in Spatial Databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

20. Mouratidis, K., Lin, Y., Yiu, M.L.: Preference queries in large multi-cost trans-
portation networks. In: 2010 IEEE 26th International Conference on Data Engi-
neering (ICDE), pp. 533–544. IEEE (2010)

21. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram: a query-dependent
approach to moving knn queries. Proceedings of the VLDB Endowment 1(1),
1095–1106 (2008)

22. Pyle, D.: Data preparation for data mining, vol. 1. Morgan Kaufmann (1999)
23. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding tech-

nique for k-nearest neighbor search in moving object databases. GeoInformatica
7(3), 255–273 (2003)

24. Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route
query. The VLDB Journal 17(4), 765–787 (2008)

25. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: Proceedings of the
32nd International Conference on Very Large Data Bases, pp. 751–762. VLDB
Endowment (2006)

26. Shipman, D.W.: The functional data model and the data languages daplex. ACM
Transactions on Database Systems (TODS) 6(1), 140–173 (1981)

27. Tan, K.L., Eng, P.K., Ooi, B.C., et al.: Efficient progressive skyline computation.
VLDB 1, 301–310 (2001)

28. Tian, Y., Lee, K.C., Lee, W.C.: Finding skyline paths in road networks. In: Pro-
ceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 444–447. ACM (2009)

29. Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M.,
Ulrich, E.L., Markley, J.L., Ionides, J., Laue, E.D.: The ccpn data model for nmr
spectroscopy: development of a software pipeline. Proteins: Structure, Function,
and Bioinformatics 59(4), 687–696 (2005)

30. Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins
over moving objects. In: IEEE 24th International Conference on Data Engineering,
ICDE 2008, pp. 863–872. IEEE (2008)

31. Zhang, R., Qi, J., Lin, D., Wang, W., Wong, R.C.W.: A highly optimized algorithm
for continuous intersection join queries over moving objects. The VLDB Journal
The International Journal on Very Large Data. Bases 21(4), 561–586 (2012)

Keyword-Aware Dominant Route Search
for Various User Preferences

Yujiao Li, Weidong Yang(B), Wu Dan, and Zhipeng Xie

School of Computer Science, Shanghai Key Laboratory of Data Science,
Fudan University, Shanghai, China

liyujiaocs@hotmail.com, {yweidong,wudan0425}@gmail.com,
xiezp@fudan.edu.cn

Abstract. Route search has been studied extensively. However existing
solutions for route search are often insufficient in offering users the flex-
ibility to specify their requirements. Recently, a new kind of keyword-
aware optimal route (KOR) query is proposed for finding an optimal
route such that it covers a set of user-specified keywords, it satisfies
a budget constraint (e.g., time), and the total popularity of the route
is maximized. For example, a user may search for the route passing
through cinema and bookstore within a travel time of 3 hours, which
has the highest total rating score. KOR only returns one result regard-
less of user preferences:however some may care more about bookstore,
while others think cinema more important. Apparently, it is not user-
friendly for users to specify their own preference explicitly. To meet the
various user preferences, this paper presents a new route search query
called Keyword-aware Dominant Routes (KDR) query, which returns all
possible preferable routes, covering a set of keywords under a specified
budget constraint. We devise a novel algorithm DR for efficiently find-
ing the exact result of a KDR query and a heuristic algorithm FDR to
approximately answer a KDR query. Experimental results show that our
algorithms are efficient.

1 Introduction

Route search has been an important problem that has application in online
map services and location based services. Recently, keyword route search has
been studied for route planning [1,2,3], which allows users to specified their
interests for route search. In the Trip Plan Query (TPQ)[1], the user can specify
a set of keyword category, and the TPQ retrieves the shortest route between
the specified source and destination that covers all the keywords. To further
improve the flexibility for users to specify their requirements for route search,
the keyword-aware optimal route (KOR) query is proposed, which aims to find
an optimal route such that it covers a set of user-specified keywords, satisfies a
budget constraint (e.g., time), and the total popularity (or ratings) of the route
is maximized. An example KOR query is to search for the route passing through
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 207–222, 2015.
DOI: 10.1007/978-3-319-18123-3 13

208 Y. Li et al.

cinema and bookstore within a travel time of 3 hours, which has the highest
total rating score. Here we assume that each Point of Interest (PoI) is associated
with a user rating score, which is available in many websites (e.g., TripAdvisor
and FourSquare). The KOR query only returns one optimal result by treating
all the keyword equally. However, a user may have different preferences toward
the query keywords—a user may think cinema more important, and the other
may think bookstore more important for her route search. The KOR query fails
to capture the different user preferences.

2

1
3

2

1

1

2

3

1

2

1

t

S

1
1

3

2

cinema

bookstore

cafeteria

1

Fig. 1. Finding a preferable route from s to t

We further illustrate the problem using an example. Suppose that Lucy wants
to find a route in a city such that “the route starts from her hotel and ends at
the airport in the city, passing by a cinema, a cafeteria and a bookstore, the total
time spending on the road is within 6 hours, and she expects that the locations
covered by the route have the highest rating.”

As shown in Fig. 1, s (her hotel) and t (the airport) are start location and
target location, respectively. The value on each node represents the rating of
the location while the value on each edge represents the time cost of traveling
from one location to another. And the distinct shapes of each node indicate the
different kinds of keywords. From the query by Lucy, we know that the start
location is hotel, target location is airport, and keywords are cinema, cafeteria
and bookstore.

If Lucy cares more about bookstore, Route 2 will be the best choice for her;
If Lucy regards cafeteria more important, Route 3 is preferable. However, the
KOR query only returns Route 2 as the result route that has the maximum value
for the sum of all the ratings of the places covered by the route.

To address the problem of the KOR query, one straightforward solution is
to request users to enter their preferences to each of her query keywords. This,
however, is not user friendly because it puts the burden on the users for specify
their preferences, which may not always be easy.

Keyword-Aware Dominant Route Search for Various User Preferences 209

In contrast, we propose to find both routes for Lucy, namely Route 2 (the
bookstore enjoys larger popularity) and Route 3 (cafeteria is the most impor-
tant). Then Lucy can choose one according her preference. To meet the need,
we propose a new type of query, called keyword-aware dominant route (KDR)
query. The KDR query can be defined in two steps for easy understanding: (1)
We consider the set of feasible routes in which each route covers a set of specified
query keywords, and satisfies a specified budget constraint (e.g., travel time from
the source to target); and (2) KDR returns a subset of dominant routes from
all the feasible routes such that each returned dominant route is not dominated
by any other feasible route in terms of the ratings of places. Intuitively, we can
guarantee that the most preferable route for a user with any preferences on the
ratings of places covering keywords will be in our result set.

Similar to the original KOR query, answering the KDR query is also NP-hard.
In this paper, we propose an exact algorithm called DR, which only considers
the nodes covering the query keywords and skips the irrelevant nodes in the
road network to avoid unnecessary cost of time and space. Based on DR, we
also propose a more efficient heuristic algorithm FDR to answer a KDR query
approximately. FDR assumes that people seldom turn backward during their
journey.

The contributions of our study are as follows:

– We introduce the notion of keyword-aware route dominance and formally
define a new type of route search query, called KDR query.

– We propose an efficient exact algorithm called DR, and a heuristic algorithm
called FDR.

– We conduct experiments to study the efficiency of our approaches.

The rest of the paper is organized as follows. The problem is formally defined
in Section 2. In Section 3 the algorithm DR and the algorithm FDR are pre-
sented. The experimental results are presented in Section 4. Section 5 surveys
the related work. Section 6 concludes this paper.

2 Keyword-Aware Dominant Route (KDR) Query

In this section, we define the proposed keyword-aware dominant route query.
To ease the presentation, we use a directed graph G = (V,E) to represent the

road network [5], where V is the set of vertices (nodes) representing locations and
E is the set of edges (arcs). Our discussion can be easily extended to undirected
graphs. Each edge in E, denoted as (vi, vj), is associated with a cost value
b(vi, vj) which can be travel duration, travel distance or travel cost. Each node
in V is associated with a set of keywords represented by v.ψ, and each node is
also associated with a rating score o(v), which indicates the popularity of the
location.

Route R = (v0, v1, ..., vn) is a path that goes through v0 to vn sequentially,
following the relevant edges in G . The budget score(BS) of a route R is defined

210 Y. Li et al.

as sum of the cost of its edges, i.e.BS(R) =
n∑

i=1

b(vi−1, vi). The keyword set that

route R covers can be denoted by ψ(R) =
⋃

v∈R

v.ψ.

A Keyword-aware Dominant Route (KDR) query is represented as a quadru-
ple Q =< s, t, ψ,Δ >, where s is the source location, t is the target location, ψ
is a set of keywords, and Δ is a budget limit. Before we explain the semantic
meaning of the KDR query, we first introduce the definition of feasible route.

We denote Rs,t as the set of all paths between the start location s and
target location t. A route in Rs,t is called a feasible route if its budget score
is under the specified budget limit Δ and covers all the query keywords in ψ.
The set of all feasible routes are denoted by FRQ. We next explain the notion
of keyword-aware route dominance based on objective vector of each route.

Definition 1. (Objective Vector). Given a route R = (v0, v1, ..., vn) and a key-
word set ψ, the objective vector of R denote the value of route with respect
toψ. Each element in the objective vector of route R is the maximum objec-
tive value (i.e., the rating score) of the nodes covered by each keyword, i.e.,
OV (R) = (o1, o2, ...ok), oi = max {o(v)|v ∈ R, v.ψ = ψ[i]} where k is the size of
the query keyword set ψ, ψ[i] is the i-th keyword of ψ according to alphabetic
order.

t1

t3

t2

t4

t5v8(3)

v0(4)

v4(5)

v3(2)

v2(1)

v1(2)

v6(3)

v7(4)

v5(1)

2

3

1

2

22

1

1

5

42

4

2

3 1

Fig. 2. Example of G

Fig. 2 shows an example of the graph G. We consider five keywords t1, · · · , t5,
each represented by a distinct shape, respectively. For simplicity, each node con-
tains a single keyword with an objective score (rating score) inside a bracket. And
on each edge, there is a number which represents the budget value. For example,
given the route R = (v0, v2, v5, v8) and ψ = {t1, t2}, we have OV (R) = (3, 4)
and BS(R) = 3 + 2 + 4 = 9.

Definition 2. (Dominance Relation between Feasible Routes). Given a KDR
query Q =< s, t, ψ,Δ >, feasible routes Rp and Rq whose objective vectors are
OV (Rp) = (p1, p2, . . . , pk) and OV (Rq) = (q1, q2, · · · , qk) respectively. We say

Keyword-Aware Dominant Route Search for Various User Preferences 211

that Rp is dominated by Rq, denoted by Rp ≺ Rq iff 1) pi ≤ qi holds for all
i = 1, . . . , k, and there exists j ∈ {1, . . . , k} such as pj < qj; or 2) and the nodes
that contribute on objective vector in Rp and Rq are the same, i.e.
Vp = {u|o(u) = max{o(v)|v ∈ Rp, v.ψ = u.ψ}, u ∈ Rp} is the same as
Vq = {u|o(u) = max{o(v)|v ∈ Rq, v.ψ = u.ψ}, u ∈ Rq} and BS(Rp) > BS(Rq).

The KDR query is to find the dominant routes set from feasible routes.

Definition 3. (Keyword-aware Dominant Route). Given a KDR query Q =<
s, t, ψ,Δ >, a dominant route Rp is a feasible route which satisfies there exists
no route Rq ∈ FRQ such as Rp ≺ Rq .We denote by DRQ the set of dominant
routes for query Q. We denote the set of non-dominant paths for Q by DRQ =
FRQ − DRQ.

In the example graph in Fig. 2, given a query Q =< v0, v8, {t3, t4} , 8 >, the
dominant routes are R1 = (v0, v1, v6, v8) and R2 = (v0, v5, v7, v8) with objective
vector OV (R1) = (2, 3) and OV (R2) = (1, 4), and budget score BS(R1) =
9, BS(R2) = 8, respectively.

Lemma 1. The problem of answering the KDR query is NP-hard.

Proof. This problem can be reduced from the generalized traveling salesman prob-
lem, which is NP-hard. The general traveling salesman problem is to find a path
with starting and ending at two specified nodes such that it goes through each
group once in the graph, where nodes are divided into groups. If we set all the
objective score in KDR to the same value, it is equivalent to the generalized
traveling salesman problem.

3 Algorithm

We propose an exact algorithm in Section 3.1 and a heuristic algorithm in
Section 3.2.

3.1 DR Search Algorithm

Traditional solutions to route search problem in road network are usually based
on breadth-first or depth-first traversal on graph. They start search from the
start location and extend to target literally with adjacent nodes. After the traver-
sal, it selects the non-dominated ones of all the feasible routes as the answer to
the query[17,18]. However, this kind of search is computationally prohibitive
since the huge solution space in the spatial graph.

To this end, we propose an efficient route search algorithm, called DR. In DR
algorithm, we add the shortest path from the start to the end as an initial path
and iteratively refine the route by inserting nodes containing uncovered key-
words. Using designed pruning strategies, the algorithm searches all the routes
with different keyword node combination. After all the feasible routes are gen-
erated, we compute the exact path of the remaining feasible routes.

Before introducing the prune strategies, we will give some definitions.

212 Y. Li et al.

Definition 4. (Keyword Node). Given a KDR query Q =< s, t, ψ,Δ >, we use
Kψ to denote the keyword node set of Q, that is,each node in Kψ is called a
keyword node.

Each route R can be divided into segments by keyword node. For example,
R = (s, v1, v2, v3, v4, v5, t) with v3 as a keyword node can be divided into R1 =
(s, v1, v2, v3) and R2 = (v3, v4, v5, t).

Definition 5. (Keyword-node Route). Given a KDR query Q =< s, t, ψ,Δ >,
with keyword node set Kψ, If each of the segments of a route divided by key-
word node is a shortest path from its start to its end, we call the whole route
a keyword-node route. All the keyword-node routes of query Q comprise the
Keyword-node Route set, denoted by KRs,t,ψ.

Clearly, if a route is confirmed to be a dominant route, it must be a keyword-
node route. A Keyword-node Route is fixed once we specify the keyword node
passed by in the route. Thus route R = (s, v1, v2, v3, v4, v5, t) can be denoted by
a Keyword-node Sequence (KN-sequence) such as KS = [s, v3, t].

Definition 6. (Potential Route). Given a KDR query Q =< s, t, ψ,Δ >, A
route is called a potential route if and only if R ∈ KRs,t,ψ, ψ(R) ⊂ ψ, and
BS(R) ≤ Δ.

We use d(vi, vj) to represent the shortest distance between node vi and vj

which is preprocessed before querying [6]. For a keyword-node route R whose
KN-sequence isKS = [s, v1, v2, ...vk, t]. Its budget score is computed by Eq. 1
and its objective vector is computed by Eq. 2.

BS(KS) = BS(R) =
k∑

i=0

d(vi, vi+1) (1)

OV (KS) = (o1, o2, . . . ok), oi = max{o(v)|v ∈ KS, v.ψ = ψ[i]} (2)

The budget score of KN-sequence KS is the sum of the shortest distance
between any two contiguous keyword nodes, which is the same as the budget
score of R. The objective vector of KN-sequence KS is computed similar to
route R, and we select objective score which is the maximum for each keyword
among all the nodes objective score in KS.

For example, given a query Q =< v0, v8, {t3, t4}, 8 > , R is an initial route
whose KN-sequence is [v0, v8]. The route represented by KN-sequence [v0, v1, v8]
is a potential route whose objective vector is (2, 1).

Definition 7. (Route Refinement Operation ⊗). Route refinement R ⊗ v is
to insert a keyword node v to a Keyword-node route R with the least budget
score by adjusting the order of keyword nodes in KN-sequence. For a route
R belongs to KR, whose KN-sequence is KS = [s, v1, v2, ...vk, t] and a key-
word node v, v ∈ K,∀0 ≤ i ≤ k,KS′ = [s, vn1 , vn2 , ...vni

, v, vni+1 ...vnk
, t]and

R ⊗ v = argminR′BS(R′) (i=0 means node s)

Keyword-Aware Dominant Route Search for Various User Preferences 213

After some route refinements, a potential route R may become a feasible route.

Definition 8. (Potential Route Ancestor). For route R and R′ of keyword node
route, we say route R is the parent of R′if R′ = R ⊗ v and we say R is the
ancestor of R′ if R′ can be generated by several route refinements in R,R′ =
R ⊗ v1 ⊗ v2 ⊗ . . . ⊗ vk.

We illustrate the route refinement operation with an example of generating
route R of KN-sequence [v0, v1, v6, v8]. From the KN-sequence [v0, v8], we first
generate [v0, v1, v8] by inserting keyword node v1. Then from [v0, v1, v8], we gen-
erate [v0, v1, v6, v8] by inserting v6. We say that [v0, v8] is the parent of [v0, v1, v8]
and the ancestor of [v0, v1, v6, v8].

Given a KDR query Q, each result route needs to match all the keywords. The
KN-sequence of the initial route consists of start point and end point, and then
we insert the keyword nodes uncovered one by one to refine the route until all
keywords are covered. During the refinement, we omit the intermediate nodes in
the shortest path of any two sequenced nodes. After obtaining the KN-sequence
of dominate routes, we calculate the nodes located between any two keyword
nodes u and v using existing shortest path algorithm.

To reduce the calculation in the procedure of a routes refinement, we must
seek for some reasonable and effective prune strategies.

One hard constraint of our KDR problem is the budget limit—if a route
violates the limit, then it should be deleted and should not be expanded anymore
because any of its descendants will violate the budget limit too. It can be proven
as follows.

Lemma 2. If R′ = R ⊗ v and R′, R ∈ KR, we can get BS (R) ≤ BS (R′).

Proof. Denote the KN-sequence of R and R′ as KS = [s, v1, . . . , vk, t] and
KS′′ = [s, vn1 , . . . vni

, v, vni+1 , . . . , vnk
, t], respectively. Since R is the shortest

route passing by v1, . . . , vk, route R′ with KS′′ = [s, vn1 , . . . vni
, vni+1 , . . . , vnk

, t]

satisfies BS(R′′) = BS(KS′′) =
k∑

i=0

d(vni
, vni+1) ≥ BS(R). The budget score of

R′can be computed as follows

BS(R′) =
k∑

j=0

d(vnj
, vnj+1) − d(vni

, vni+1) + d(vni
, v) + d(v, vni+1) ≥ BS(KS′′)

So, we can get BS(R) ≤ BS(R′)

A potential route will be dominated if its objective vector is dominated by
the objective vector of a feasible route on matched keywords of the potential
route and the objective vector of the feasible route has the maximum scores in
the whole graph on unmatched keywords. We have the following lemma.

Lemma 3. For potential route R, if there exists a feasible route R′ such that R′

dominates R on the set of keywords ψ̇ = ψ(R) and OV (R′) has the maximum
scores in the whole graph on ψ̈ = ψ − ψ̇, then R is dominated by R′.

214 Y. Li et al.

Algorithm 1. DR Algorithm(Q =< s, t, ψ,Δ >,G = (V,E))
1 Initialize a queue Q and a array F for KN-sequence of feasible routes;
2 Q.enqueue(R = [s, t]);
3 while Q is not empty do
4 R ← Q.dequeue;
5 if |R.ψ| < |ψ| then
6 forall the node u which contains uncovered keyword in R do

7 R̂ = R
⊗

u;

8 if BS(R̂) < Δ and FdominatePR(F, R̂) is false then

9 Q.enqueue(R̂);

10 else
11 if FdominateFR(F,R) is false then
12 add R to F;

13 remove from F the routes that are dominated by R

14 compute the exact route of each route in F;

Proof. Obvious from Definition 2.

Based on these lemmas, algorithm DR is described in Algorithm 1. In algo-
rithm DR, we insert the root KN-sequence [s, t] into the queue Q, which organizes
all the KN-sequences of potential routes during search process. While Q is not
empty, we iteratively get a potential route and expand it with an unmatched
keyword node (lines 6–9). If the expanded route satisfies the budget constraint
and is not dominated by a feasible route (FdominatePR(F,R) is false), we insert
the expanded route into Q (lines 8–9). Otherwise, if the route is a feasible route,
we use function FdominatePR(F,R) to check whether route R is dominated by
a route in F . We filter out all the routes in F that are dominated by R (lines
13–14).

After the expansion and refining of routes, we output the final dominant
routes by computing the exact path of each remaining route R in F . The search
process takes O(n2k + nkk!), where n is the maximum number of nodes that a
keyword matches, and k is the number of query keywords, which is usually small.

Theorem 1. The DR algorithm finds the exact answer for any KDR query.

Proof. Since a dominate route must be a keyword-node route, the whole search
space equals to the permutation of keyword nodes without any pruning strategy. In
spite of the pruning strategies we employ (Lemma 2 and Lemma 3), the search
space of DR algorithm is the combination of the keyword nodes such that the
potential routes having the least budget scores among the routes with the same
keyword nodes should be considered. As to Definition 2, the routes whose budget
scores are not the least can be dominated and such routes must be deleted after
their refinement.Hence, we complete the proof.

Keyword-Aware Dominant Route Search for Various User Preferences 215

3.2 FDR Algorithm

Based on the the DR algorithm, we develop the FDR algorithm, which is a
heuristic algorithm.FDR is inspired by the observation that people normally do
not move backward during their journeys.

FDR just expands current routes which match part of query keywords by
following a forward direction toward the target node, i.e., each expanding will
make the last node of the route closer to the destination. Specifically, when we
choose a node containing an unmatched keyword to expand the current route,
the selected node should make the route after expanding becomes closer to the
target node. With the search strategy, FDR would explore few keywords nodes
than does the DR algorithm, but may miss result routes. We call the algorithm
FDR (Forward Expanding DR).

Given a KDR query Q =< s, t, ψ,Δ >, for a keyword-node route R whose
KN-sequence is [s, v1, v2, . . . , vn], we say it is a partial route if vn 	= t . We say
the expansion from vi to vi+1 obeys the forward expansion when d(vi+1, t) −
d(vi, t) ≤ θ, θ ≥ 0. Here θ = 0 defines a strict forward expansion, i.e., after
the expansion, the distance from vi+1 to t must be smaller than or equal to
the distance from vi to t; A positive θ defines a weak forward expansion, which
allows a constrained backward under length limit θ.

L1

L2

t1

t2

t3

t4

t5

c

V
1

c

V1(5)

S

T

V3(4)

V2(2)

V4(3)

V7(4)
V5(4)

V6(2)

V8(3)

Fig. 3. Example of Forward Route Expansion

As shown in Figure 3, given a target node as node t, for a partial route R that
ends at v5, the two parallel lines L1 and L2 seperate the whole graph to three
parts. If θ = 0, nodes in the left of L2 violate the direction v5 → T constraint,
while nodes in the right of L2 are qualified to be expanded. L1 indicates the
situation while θ = 2.

216 Y. Li et al.

For a keyword-node route R whose KN-sequence is [s, v1, v2, . . . , vn] , we use
notation R ⊕ v to represent the forward route expansion and the KN-sequence
of the expanded route is [s, v1, v2, . . . , vn, v].

Based on the forward expansion mechanism, we choose a new unmatched
keyword node and insert it to the end of the current route iteratively until the
route becomes a feasible route. For example, in Figure 3, given KDR Q =<
s, t, {t1, t2, t3}, 15 >, the partial route R with KN-sequence [s, v1, v5] whose last
expanded node is v5. Only v7 can be used to expand R if θ = 0.

Based on the forward expansion mechanism, we have another pruning
strategy:

Lemma 4. (Partial Route Domination). For two partial routes R1 and R2 we
say R1 dominates R2, if the last expanded node of R1 and that of R2 are the
same, R1.ψ = R2.ψ, OV (R2) ≺ OV (R1), and BS(R1) ≤ BS(R2).

For example, consider two partial routes R1 and R2 in Figure 3. Their KN-
sequences are [s, v1, v4, v5] and [s, v1, v2, v5], respectively, and their last expanded
node is V5, and they match the same set of keywords, OV (R2) ≺ OV (R1), and
BS(R1) = 9 is smaller than BS(R2) = 10. Thus, no matter which nodes are
inserted to expand R1 and R2 , the final feasible route of R2 must be dominated
by the final route of R1.

Algorithm 2. FDR Algorithm(Q =< s, t, ψ,Δ >,G = (V,E))
1 Initialize a queue Q,a array F for KN-sequence of feasible routes;
2 Array labels={};
3 Q.enqueue(R = [s]);
4 while Q is not empty do
5 R ← Q.dequeue;
6 if |R.ψ| < |ψ| then
7 v ← lastnode(R);
8 filter(labels(v), R);
9 foreach node u that contains uncovered keyword in R and

isForward(v, u)=true do

10 R̂ = R
⊕

u ;

11 if BS(R̂) < Δ and FdominatePR(F, R̂) is false then

12 Q.enqueue(R̂);

13 else
14 if FdominateFR(F, R) is false then
15 add R to F;

16 remove from F the routes that are dominated by R;

17 compute the exact route of each route in F ;

The pseudo code of FDR is outlined in Algorithm 2 based on the DR frame-
work.

Keyword-Aware Dominant Route Search for Various User Preferences 217

In Algorithm 2, according to the forward expansion mechanism, FDR expands
a potential route by an unmatched keyword node at the end of the current route.
Similar to the DR algorithm, we iteratively get a potential route from Q, and
expand it with a keyword node by following the forward expansion mechanism. If
the expanded route satisfies the budget limit and is not dominated by a feasible
route (FdominatePR(F,R) is false), we add it to Q (line 12). Otherwise, if the
route is a feasible route, we use function FdominateFR(F,R) to check whether
it is dominated by another one; if not, the route is appended to F . In addition,
we check if any route in F can be dominated by the new feasible route R and
remove such routes from F (line 16). The worst time complexity of FDR is the
same as that of DR. But in practice, FDR checks much fewer nodes.

4 Experiment

To evaluate the performance of the proposed algorithms for KDR query, we
use real-world road-network data extracted from the OpenStreetMap1 database.
We focus on the city of Shanghai, and we obtained 6,050 POIs with informa-
tion on their latitudes and longitudes. These POIs are labeled with nine cate-
gories including eating, drink- ing, leisure place, etc. Three datasets (denoted
by Node2000, Node4000, Node6000) are generated from the data of Shanghai,
which contain 2,000 POI nodes, 4,000 POI nodes and 6,000 POI nodes, respec-
tively. The distance serves as the budget score of the edge. To assign rating
values for different POIs, we randomly generate it from a uniform distribution
over {1,2,3,4,5}. Those rating values are used as the objective scores, which will
be maximized in the KDR query.

We study the performance of our algorithms by varying budget limit, the
number of keyword nodes, the number of query keywords, and the size of dataset.
Four query sets are generated by varying budget limit Δ from 10,000 to 50,000,
varying number of keyword nodes |Kψ| from 100 to 500, varying number of key-
words from 2 to 5 and varying dataset. The default values of some parameters are
as follows: Δ = 20,000, |Kψ|=200 and |ψ| =3 .The default dataset is Node4000.
Each set comprises 50 queries. The starting and ending locations are selected
randomly. The query keywords are generated randomly while making sure the
requirement of |Kψ| is satisfied.

All algorithms were implemented in VC++ and run on an Intel(R) Core(TM)
i7-3770 CPU @3.40GHZ.

4.1 Efficiency

This set of experiments is to study the efficiency of the proposed algorithms
with variation of the budget limit, number of keyword nodes, number of query
keywords and the size of dataset.

1 www.openstreetmap.org

www.openstreetmap.org

218 Y. Li et al.

1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

2.5

Budget Limit

R
un

ti
m

e/
s

DR
FDR

Fig. 4. Varying Δ

100 200 300 400 500
0

0.5

1

1.5

2

2.5

Keyword Node Set Size

R
un

ti
m

e/
s

DR
FDR

Fig. 5. Varying |Kψ|

2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

Number of Query Keywords

R
un

ti
m

e/
s

DR
FDR

Fig. 6. Varying |ψ|

2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dataset Size

R
un

ti
m

e/
s

DR
FDR

Fig. 7. Varying dataset

Varying the Budget Limit Δ. Fig. 4 shows the runtime on Node4000 dataset
with the variation ofΔ. At each Δ, the average runtime is reported over 10,000,
20,000, 30,000, 40,000, and 50,000 with a number of keywords being 3.The run-
time of DR and FDR grows when budget limit increases as a larger limit corre-
sponds to more keywords nodes. Compared to DR, the runtime of FDR increases
much more slightly because the pruning strategy in direction reduces the com-
plexity of FDR to be linear to while DR is exponential.

Varying the Size of Keyword Node Set. Fig. 5 shows the runtime of the
queries of different |Kψ|.With the increase of keyword nodes, DR slows down and
FDR runs slightly slower. This is because the complexity of DR is exponential
to the size of cover size of each keyword while FDR prunes more routes.

Varying the Number of Query Keywords. Fig. 6 shows the runtime of
queries with different numbers of keywords ranging from 2 to 5. The runtime of
DR and FDR increases because more permutations are needed when the number
of nodes increases and the keyword covering size remains the same.

Keyword-Aware Dominant Route Search for Various User Preferences 219

Varying the Dataset. Fig. 7 shows the runtime of queries on different datasets,
Node2000, Node4000, Node6000. We do not see a clear tendency of the effect of
the different datasets. A possible reason is that the time is mainly affected by
factors such as query keywords, Δ, start and end points, etc.

Summary. These results show that our exact method DR is efficient when the
number of keywords and the number of keyword nodes are small. But when the
size of keywords or the number of keyword nodes are relatively large, approxi-
mate method FDR should be employed, which can usually find routes for users
to choose. Both algorithms are less affected by dataset size because their com-
putation complexity is irrelevant to size of dataset.

4.2 Number of Returned Routes

We report the number of returned routes of the two algorithms DR and FDR.

Varying the Budget Limit Δ. Figure 8 shows the size of results of the
two algorithms on Node4000 dataset with the variation of Δ. The number of
keywords is set to 3. The size of result route set of DR and FDR grows when Δ
increases, which permits more permutations of keyword nodes.

Varying the Number of Query Keywords. Figure 9 shows the size of
route set of queries with different numbers of keywords ranging from 2 to 5.
The number of returned routes of FDR decreases significantly as the querying
keyword size increases. FDR may fail to return routes when the number of
keywords is large.

1 2 3 4 5

x 10
4

0

10

20

30

40

50

Keyword Node Set Size

N
um

be
r

of
 R

ou
te

s

DR
FDR

Fig. 8. Varying Δ

2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Number of Query Keywords

N
um

be
r

of
 R

ou
te

s

DR
FDR

Fig. 9. Varying |ψ|

220 Y. Li et al.

5 Related Work

Li et al. proposed Trip Plan Query (TPQ) in spatial databases [1]. In a TPQ,
the user specifies a set of categories. The TPQ retrieves the shortest route that
starts at the source point, passes through at least one point from each category,
and ends at the specified destination. It is a NP-hard problem. The optimal
sequenced route (OSR) query studied by Sharifzadeh et al.[2] adds a constraint
on the sequence imposed on the types of passing by locations without specifying
the destination. Several queries based on OSR have been proposed such as multi-
type nearest neighbor (MTNN) query and multi-rule partial sequenced route
(MRPSR) query [7,3]. Considering the difference between keywords on nodes and
query keywords, Yao et al.[15] propose the multi-approximate-keyword routing
(MARK) query.

Cao et al. studied a problem called the keyword-aware optimal route (KOR)
problem and use IR-Tree as index structure [4,8]. KOR is the most similar prob-
lem to KDR. Our KDR query improves upon KOR as we discussed in Introduc-
tion and the algorithms for KOR cannot be used to answer the KDR query.

Skyline queries[12] aim to find skyline objects which are superior to other
object at least in one attributes, i.e., skyline queries tend to find objects which
cannot be dominated by other objects. Various types of spatial queries have been
extensively studied in the database literature. For example, Branch-and-Bound
Skyline algorithm[13] is a progressive optimal algorithm for the general skyline
query. Huang and Jensen[14] study the problem of finding locations of interest
which are not dominated with respect to two attributes: the network distance
to a single query location and the detour distance from the predefined route
through the road network. The authors in [16] proposed two algorithms for the
spatial skyline query, the R-tree-based B2S2 and the Voronoi-based V S2. Multi-
preference path planning [19] computes skylines on routes in a road network
which concentrating on preference like distance, driving time, the number of
traffic lights, etc. Our KDR query is partly inspired by the skyline query, but is
significantly different from the existing skyline queries.

In the multi-objective formulation, several parameters can be associated with
each edge, which allows the possibility of incorporating various criteria, such as
cost, distance, time and reliability[9],etc. Multi-objective shortest path problem
(MSPP) is to search non-dominated paths in the network (also called Pareto
optimal[10] which is not possible to find a better value for one criterion without
letting the other criteria get worse with a specified source location. MSPP is hard
to solve. Hansen [9] prove that there might exist an exponential number of non-
dominated solutions in the worst case. The solution that computes the complete
non-dominated set includes approaches of labelling algorithm [9]. The procedures
are based on ranking paths [10] and Mote’s algorithm [11] The solution of MSPP
cannot solve our problem since it focuses on the sum or min-max function where
our KDR is kind of max-max function. And adding keyword to multi-criteria
path computation is a novel generalization of MSPP with budget constraint.

Keyword-Aware Dominant Route Search for Various User Preferences 221

6 Conclusion

In this paper, we propose the notion of keyword route dominance and define
keyword-aware dominant route (KDR) query which is to find a dominant route
set to meet various user preference. We devise two algorithms, i.e., DR and FDR.
Results of empirical studies show that the two proposed algorithms are capable
of answering KDR queries efficiently, and FDR is a good approximation of DR.

Acknowledgments. This work was partially supported by the Polar Research Pro-
gram of China under Grant CHINARE2014-04-07-06, Public science and technology
research funds projects of ocean under Grant 201405031.

References

1. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On trip planning
queries in spatial databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

2. Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route
query. VLDBJ 17(4), 765–787 (2008)

3. Chen, H., Ku, W.-S., Sun, M.-T., Zimmermann, R.: The multi-rule partial
sequenced route query. In: GIS (2008)

4. Cao, X., Chen, L., Cong, G., Xiao, X.: Keyword-aware optimal route search.
PVLDB 5(11), 1136–1147 (2012)

5. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. The
MIT Press (1997)

6. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345
(1962)

7. Ma, X., Shekhar, S., Xiong, H., Zhang, P.: Exploiting a Page-Level Upper Bound
for Multi-Type Nearest Neighbor Queries. In: Proceedings of the 14th ACM Inter-
national Sym-posium on Geographic Information Systems (ACM-GIS) (2006)

8. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Route skyline queries: A multi-
preference path planning approach. In: SIGMOD (2011)

9. Hansen, P.: Bicriterion path problems, in Multiple Criteria Decision Making Theory
and Application, vol. 177. Springer Verlag, Berlin (1978)

10. Martins, E., Santos, J.: The labeling algorithm for the multiobjective shortest path
problem, Departamento de Matematica, Universidade de Coimbra, Portugal, Tech.
Rep. TR-99/005 (1999)

11. Mote, J., Murthy, I., Olson, D.L.: A parametric approach to solving bicriterion
shortest path problems. Eur. J. Oper. Res. 53 (1991)

12. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp.
421–430 (2001)

13. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

14. Huang, X., Jensen, C.S.: In-route skyline querying for location-based services. In:
Kwon, Y.-J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428, pp.
120–135. Springer, Heidelberg (2005)

15. Yao, B., Tang, M., Li, F.: Multi-approximate-keyword routing in gis data. In: GIS
(2011)

222 Y. Li et al.

16. Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: VLDB (2006)
17. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets

graph theory. In: SODA (2005)
18. Jensen, C.S., Kolrvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road

networks. In: Proceedings of the 11th ACM International Symposium on Advances
in Geographic Information Systems (ACM-GIS), pp. 1–8 (2003)

19. Kriegel, H., Renz, M., Schubert, M.: Route skyline queries: a multi-preference path
planning approach. In: ICDE (2010)

Spatial Keyword Range Search on Trajectories

Yuxing Han1(B), Liping Wang1, Ying Zhang2, Wenjie Zhang3,
and Xuemin Lin1,3

1 Shanghai Key Lab for Trustworthy Computing, East China Normal University,
Shanghai, China

yxhan@student.ecnu.edu.cn, lipingwang@sei.ecnu.edu.cn
2 University of Technology, Sydney, Australia

3 The University of New South Wales, Sydney, Australia
Ying.Zhang@uts.edu.au, {zhangw,lxue}@cse.unsw.edu.au

Abstract. With advances in geo-positioning technologies and ensuing
location based service, there are a rapid growing amount of trajectories
associated with textual information collected in many emerging applica-
tions. For instance, nowadays many people are used to sharing interesting
experience through Foursquare or Twitter along their travel routes. In
this paper, we investigate the problem of spatial keyword range search on
trajectories, which is essential to make sense of large amount of trajectory
data. To the best of our knowledge, this is the first work to systemat-
ically investigate range search over trajectories where three important
aspects, i.e., spatio, temporal and textual, are all taken into considera-
tion. Given a query region, a timespan and a set of keywords, we aim to
retrieve trajectories that go through this region during query timespan,
and contain all the query keywords. To facilitate the range search, a novel
index structure called IOC-Tree is proposed based on the inverted index-
ing and octree techniques to effectively explore the spatio, temporal and
textual pruning techniques. Furthermore, this structure can also support
the query with order-sensitive keywords. Comprehensive experiments on
several real-life datasets are conducted to demonstrate the efficiency.

1 Introduction

The proliferation of GPS-enabled devices such as smartphones and the pros-
perity of location-based service have witnessed an unprecedented collection of
trajectory data. Latest work on spatio-temporal trajectories includes travel time
estimation [21], trajectory compression [18], route recommendation [19], frequent
path finding [12], etc. In addition to spatio-temporal trajectory, semantic tra-
jectories [2] which combine textual information with each spatial location also
attract great research attention in recent years. A large amount of semantic tra-
jectories are generated from location-based social networking services (LBSNs),
such as Foursquare and Twitter. Representative work includes pattern min-
ing [22] and activity trajectories search [23].

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 223–240, 2015.
DOI: 10.1007/978-3-319-18123-3 14

224 Y. Han et al.

Motivation. While significant efforts have been devoted to exploiting trajec-
tory dataset, to the best of our knowledge, none of the existing work considers
three critical aspects (spatio, temporal, textual) of the trajectory data at the
same time during the range search processing. Previous studies either consider
the spatio-temporal properties (e.g., [4,16]), or only explore spatial and textual
aspects (e.g., [6,23]) of the trajectories. However, we stress that, in many real-life
scenarios, three aspects of the trajectories are considered by users at the same
time to retrieve desirable results. In particular, users may only be interested in
the trajectory points (e.g., activities) within a particular region (e.g., a nearby
area or a suburb) during a time period (say, last week or recent 10 days). Mean-
while, as keywords tagged on the trajectory points carry rich information such
as activities involved and users’ personal experiences, it is natural to choose the
trajectories based on query keywords.

Motivated by the above facts, in this paper we study the problem of Spatial
Keyword Range search on Trajectories (SKRT) which retrieves meaningful
trajectories based on the spatio-temporal and keyword constraints. Specifically,
the spatio-temporal constraint is captured by a spatial region and a timespan
while a set of query keywords is used to express user’s interests. A trajectory
will be retrieved if the trajectory points satisfying spatio-temporal constraint
contain all query keywords. Below is a motivating example.

Example 1. A travel recommendation system has collected a number of user
trajectories as shown in Fig 1. Suppose a tourist wants to plan a trip in a
nearby region (dotted circle with Fig 1) to enjoy wonderful local flower and
pizza. Undoubtedly, it is beneficial to the tourist if the system can provide some
relevant trajectory data in the last one month. In the example, trajectory R3 is
not the appropriate candidate since there is no keyword pizza in the query range
although it does contain pizza. Similarly, R4 does not satisfy keyword constraint
because pizza is not covered. Therefore, only R1 and R2 are retrieved for this
tourist.

R2

R3

T

X

Y

R4

R1

{steak}

{mall}

{coffee} {pizza}
{}

{mall, pizza}

{flower}

{flower, streak}

{flower}

{flower, steak}

{mall, pizza}

{steak}

{steak}

{}

{pizza}

{steak}

{flower, coffee}

last month

Fig. 1. Motivation Example

Spatial Keyword Range Search on Trajectories 225

Challenges. In many applications, the number of trajectories might be massive,
calling for efficient indexing techniques to facilitate trajectory range search pro-
posed in this paper. The key challenge is how to effectively combine the spatio,
temporal and keywords features of the objects such that a large number of non-
promising trajectories can be pruned. As observed by Christoforaki et al. [5],
the number of keywords issued from users in real life is generally small, typi-
cally 2-5, and hence higher priority is given to keyword feature. In this paper,
we adopted inverted index technique and hence the query processing follows a
keyword-first-pruning strategy. Only a few relevant trajectories containing query
keywords will be loaded during query processing. Another advantage of inverted
index is that the query with order-sensitive keywords can be naturally supported
by choosing inverted lists in order. Regarding each keyword (i.e., inverted list),
we also need effective spatial-temporal index structure to organize related tra-
jectory points. As we observe that the spatial and temporal distributions of the
real-life trajectories might be highly skewed for each keyword, we use octree [14]
to organized trajectory points in each inverted list. Note that octree is a three-
dimensional analog of quadtree [8], which is self-adaptive to the spatial and
temporal distributions of the trajectory points. As the nodes of octrees can be
encoded based on morton code [15], thus two nodes with higher spatio-temporal
proximity are likely to be assigned to the same page in the secondary storage.
As a result, the number of I/Os during query processing could be reduced due
to principle of locality. Furthermore, to expedite the process of spatio-temporal
search, signature technique is utilized to prune non-promising trajectories with-
out loading trajectory points resident on the disk.

Contribution. Our main contribution can be summarized as follows:

• This is the first work to investigate the problem of spatial keyword range
search where both spatio-temporal and keyword constraints are considered.

• We proposed a novel structure, namely IOC-Tree, to effectively organize
trajectories with keywords.

• We also proposed an efficient algorithm to process spatial keyword range
search on trajectories.

• Comprehensive experiments on real-life datasets demonstrate the efficiency
of our techniques.

Organization. The remainder of the paper is organized as follows: Section 2
gives a formal problem definition and the related work is also reported. Section 3
presents the IOC-Tree structure. Efficient spatial keyword range search algorithm
is proposed in Section 4, followed by experimental evaluation in Section 5. We
conclude the paper in Section 6.

2 Preliminary
In this section, we first provide a formal definition of problem we study in this
paper, then give a brief review of related work. Table 1 summarizes the notations
used throughout the paper.

226 Y. Han et al.

Table 1. List of Notations

Notations Explanation

Tr a trajectory with keywords

SubTr(i, j) a sub-trajectory of Tr

ψ(Q.R) the diameter of query range

V keyword vocabulary

w a keyword in V

h maximal depth of IOC-Tree

ψ split threshold of a node in IOC-Tree

m number of query keywords

2.1 Problem Description

In this paper, a trajectory Tr is represented as a time-ordered sequence of loca-
tion points with keywords: {(t1, p1, φ1), (t2, p2, φ2),...,(tn, pn, φn)}, where ti is
the timestamp, pi is the location comprised of latitude and longitude, φi is the
set of keywords.

Definition 1. A sub-trajectory {(ti, pi, φi), (ti+1, pi+1, φi+1),...,(tj , pj , φj)}
where 1 ≤ i ≤ j ≤ n, is a part of a trajectory. We denote above sub-trajectory
as SubTr(i, j).

A sub-trajectory is a consecutive part of a trajectory and it can have only
one point. The concept of sub-trajectory is given because one trajectory may
enter and leave a particular area multiple times.

Definition 2. Spatial Keyword Range search on Trajectories (SKRT)
Q consists of a spatial region R, a timespan T = [ts, te] and a set Φ of key-
words (= {k1, k2, ..., km}). We call a trajectory Tr satisfies query Q if we could
find sub-trajectories of Tr, SubTr(i1, j1), SubTr(i2, j2), ..., SubTr(it, jt), which
locate within region during query timespan [ts, te], and collectively contain query
keywords, i.e., Φ ⊆ (∪j1

x=i1
φx) ∪ (∪j2

x=i2
φx)... ∪ (∪jt

x=it
φx).

Essentially, SKRT consists of three constraints: spatial constraint R, tempo-
ral constraint T , and keyword constraint Φ. A trajectory will be retrieved if the
trajectory points within the spatio-temporal range (i.e., satisfying both spatial
and temporal constraints) cover all the query keywords. Following is an example
of SKRT based on trajectories in Fig 2.

Example 2. In Fig 2, there are four trajectories R1, R2, R3, R4 with 17 points
where pij represents the point in Ri with its timestamp tj . Notice that in prac-
tical applications, points of trajectories are usually not collected at the same
timestamp. Assume an SKRT Q is given as follows: Q.R is the space within
dotted circle depicted in Fig 2, Q.T is [ts, te] where t1 < ts < t2, t3 < te < t4,
and Q.Φ = {a, c}.

Fig 2 shows that trajectory R1 and R2 are the results returned by SKRT ,
for R3 is eliminated due to spatio-temporal constraint and R4 are eliminated
due to keyword constraint.

Spatial Keyword Range Search on Trajectories 227

Fig. 2. Example of SKRT

Problem Statement. Given a database D of trajectories and an SKRT query
Q, we aim to retrieve all of the trajectories which satisfy the query Q from D.

2.2 Related Work

To the best of our knowledge, there is no existing work studying the problem
of SKRT proposed in this paper. Below, we introduce two categories of closely
related existing work.

Spatial Keyword Search. Due to huge amounts of spatio-textual objects
collected from location-based services, Spatial Keyword (SK) search has been
widely studied. One of the most important queries is the top-k spatial keyword
search, which aims to find k objects which have the most spatial proximity
and contain all the query keywords. Many efficient index structures have been
proposed such as inverted R-tree [24] and IR2-tree [7]. In addition to top-k spatial
keyword search, many interesting query variants are proposed such as direction-
aware spatial keyword search (DESKS) [9] and collective spatial keyword search
(CoSKQ) [11]. Nevertheless, the temporal information is not considered in the
above work. Recently, some recent work on SK search also consider the temporal
constraint. In [13], Magdy et al. proposed a system called Mercury for real-time
support of top-k spatio-temporal queries on microblogs, which allow users to
browse recent microblogs near their locations. In [17], Skovsgaard et al. proposed
an index structure that extends existing techniques for counting frequent items in
summaries and a scalable query processing algorithm to identify top-k terms seen
in the microblog posts in a user-specified spatio-temporal range. However, these
techniques are especially designed for spatio-textual objects which are inherently
different from the trajectory data.

TkSK [6] and ATSQ [23] are the two most relevant work to our problem. The
TkSK proposed by Cong et al. [6] is comprised of a user location and a keyword
set, and returns k trajectories whose text descriptions covering the keyword set
with the shortest match distance. The authors developed a hybrid index called
Bck-tree to deal with text relevance and location proximity between the query

228 Y. Han et al.

and trajectories. The ATSQ studied by Zheng et al. [23] finds k distinct trajecto-
ries have the smallest minimum match distance with respect to query locations
with their query activity. A hybrid grid index calledGAT was proposed to prune
the search space by location proximity and activity containment simultaneously.
As shown in our empirical study, although we can extend the above techniques
to support temporal pruning by further organize the trajectory points with B+
tree according to their timestamps, the performance is not satisfactory.

Historical Spatio-Temporal Trajectory Indexing. There has been consid-
erable related work on storing and querying historical spatio-temporal trajec-
tories. Prior work proposed TB-tree [16] to solve the problem of range query
over spatio-temporal trajectories. The main idea of TB-tree indexing method is
to bundle segments from the same trajectory into leaf nodes of the R-tree. The
MV3R-tree [20] is a hybrid structure that uses a multi-version R-tree (MVR-
tree) for time-stamp queries and a small 3D R-tree for time-interval queries.
This structure has been proved to outperform other historical trajectory index
structures.

SETI [4] is a grid-based index which partitions the spatial space into grids
and then index temporal information within each spatial partition based on R*-
tree. PIST [3] is also grid-based which focuses on indexing trajectory points. It
utilizes a quad-tree like data structure to partition points into a variable-sized
grid according to the density of data. Since in our problems, trajectories have
extra textual data than traditional ones, structures mentioned above can’t be
straightforwardly extended to solve our problem.

3 Inverted Octree

In this section, we introduce a new indexing structure, namely Inverted Octree
(IOC-Tree), to effectively organize the trajectories with textual information.
Section 3.1 provides the overview of our IOC-Tree structure. Section 3.2 intro-
duces the detailed data structure, followed by the index maintenance algorithms
in Section 3.3.

3.1 Overview

As discussed in Section 1, we follow the keyword-first-pruning strategy because
we observe that the query keyword usually has the lowest selectivity (i.e., highest
pruning capability) compared with spatial and temporal factors. Therefore, we
adopted inverted index technique such that only the trajectory points associ-
ated with at least one query keyword will be involved in the range search. For
each keyword in the vocabulary, a corresponding octree is built to organize the
relevant trajectory points. The spatio-temporal space (i.e., 3-dimensional space)
is recursively divided into cells (nodes) in an adaptive way, and trajectory points
are kept on the leaf nodes of the octree. Moreover, we apply the 3D morton code
technique to encode the leaf nodes of the octree, and the non-empty leaf nodes
are organized by an auxiliary disk-based one dimensional structure (e.g., B+
tree) where the morton code is the key of the nodes. In this way, trajectory

Spatial Keyword Range Search on Trajectories 229

points with high spatio-temporal proximity are likely to be resident in the same
page on the disk. We also employ the signature technique to keep trajectory
identification information at high level node so that some non-promising trajec-
tories can be pruned earlier without invoke extra I/O costs. For the purpose of
verification, we also keep the exact trajectory information for each non-empty
leaf node of octrees.

3.2 IOC-Tree Structure

In our IOC-Tree, we have an octree OCw for each keyword w ∈ V
1. In octree,

each non-leaf nodes have eight children, and a simple illustration of octrees is
depicted in Fig 3(a). Construction of an octree starts from treating the whole
spatio-temporal three-dimensional space as a root node, and then recursively
divides space into eight subspaces as children nodes if the node has sufficient
objects, i.e., spatio-temporal points. As shown in Fig 3(a), the space is first
partitioned into 8 nodes, and only one of them is further divided. In this way,
the octree can effectively handle the skewness of the trajectory points.

Next, we will explain how to generate morton code for each leaf node of
octree. In [15], a 3-dimensional space will be recursively divided into 8h−1 cells
where h is the depth of the partition, and the morton code of each cell is assigned
based on its visiting order. Nevertheless, in this paper, the octree is constructed
in an adaptive way and hence the leaf nodes may resident on different levels.
Thus, the morton code of each leaf node is assigned as follows. Let h denote
the maximal height of the octree, we assume the space is evenly partitioned into
8h−1 virtual cells and the morton code of each virtual cell is immediate. Then
the morton code of a leaf node v corresponds to the minimal code of virtual cells
covered by v. Fig 3(b) illustrates an example where the maximal depth of the
octree is 3. Each circle represents a leaf node of the octree built from Fig 3(a)
and each of them is assigned a morton code according to our approach. The
morton code of Node #24 is 24 as it is the smallest codes in the virtual cells it
contains. We remark that we do not need to materialize the virtual cells in our
implementation, the morton code can be assigned based on its split sequence.
Details are omitted due to space limitation.

In order to efficiently prune non-promising nodes when searching octrees, for
each node v, we also maintain a signature to summarize the identifications of a
set of trajectories that go through the corresponding spatio-temporal region of
v. In particular, a signature of a node v is a bit vector, and each trajectory ID
will be mapped onto one bit by a hash function. Then its i-th bit will be set 1 if
there exists a trajectory point within in v (i.e., point satisfying spatio-temporal
constraint regarding v) and its ID is mapped to the i-th position. Otherwise, the
i-th bit is set to 0. As shown in Section 4.1, the non-promising trajectories may
1 Note that as the frequencies of the keywords follow the power-law distribution in real-

life, and there is a large portion of low frequency keywords. In our implementation,
we simply keep trajectory points of low frequency keyword in one disk page, instead
of building the related octree.

230 Y. Han et al.

0

1

2

3

4

5

6

7

(a) Space Partition

24

48

40

32

16

8

64

3

2

7

6

0

1

5

4

(b) 3D Morton Code

8 16 24 32 40 48 64

0 1 2 543 6 7

SIG

SIG SIG SIG SIGSIG

SIG SIG SIG SIG SIG

SIG

(c) IOC-Tree Structure

Fig. 3. A simple example of IOC-Tree

be pruned at high level of octree with the help of node signatures, and hence
significantly reduce the I/O costs. Note that although the number of trajectory
points is very huge, the number of trajectories is usually one or two orders of
magnitude smaller, which makes the storage of signature feasible.

Fig 3(c) demonstrates the structure of an octree built from Fig 3(a), where
nodes that contain trajectory points (i.e., non-empty nodes) is set black and
the rest nodes (empty nodes) are set white. Each leaf node is labeled by its
morton code, and a signature is maintained to summarize the trajectory IDs
within the node. In addition to the octree structure, we also keep the trajec-
tory points in each black leaf node. Each trajectory point is recorded as a tuple
(pID, tID, lat, lng, time), where pID is the point ID, tID is corresponding tra-
jectory ID, and (lat, lng, time) is the spatio-temporal value of this point. The
non-empty leaf nodes from octrees will be kept on the disk by one dimensional
index structure (e.g., B+ tree), which are ordered by their morton codes. How-
ever, signature only keeps a rough description for trajectories and will only be
helpful for the pruning non-promising nodes. Therefore, for each leaf nodes of
octrees, the exact information to explain the trajectories that they contain (i.e.,
trajectory IDs) need to be kept on the disk respectively. These information will
also be organized by a B+ tree with the morton code of the corresponding leaf
node as the key.

Spatial Keyword Range Search on Trajectories 231

3.3 IOC-Tree Maintenance

The insertion of a trajectory includes two steps. Firstly for every point p from
a trajectory Tr, it will be assigned into the corresponding octrees based on the
keywords it contains. A leaf node of the octrees will be split if it contains more
than ψ points and does not reach the maximal depth h. Meanwhile, for every
octree node along the inserting path of p, the bit of its signatures mapped by Tr
will be set to 1. As to deletion of a particular trajectory, we should remove all its
points from their corresponding octrees along with some possible merges of the
nodes. A bit in signature of a node from octrees will be reset correspondingly.
Moreover, for leaf nodes in both cases of insertion and deletion, the related exact
trajectory information on the disk also need to be updated.

Table 2. Distribution of Trajectory Points

Node# 0 1 2 3 4 5 6 7

Points p11 p10 p30 p20 p23 p12 p22 p42

p31 p41 p24 p13 p32 p43

p33 p14 p34

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

111

110 100 010 001

111

010 100011

Fig. 4. IOC-trees’ Construction

Example 3. For the sake of brevity, we build 2-level octrees regarding the case
in Fig 2, where 17 trajectory points are distributed in different subspaces as
shown in Table 2. Assume that each signature has three bits, and trajectory R1

is mapped to the first position, R2 and R3 are mapped to the second position,
R4 is mapped to the third position. Fig 4 demonstrates the inverted octrees OCa

and OCc where a node is set black if it contains points and white otherwise. The
signatures are only kept for black nodes. As a matter of fact, white nodes are
not reserved in our implementation. As an illustration of signature, for node#1
in OCa, its signature is 110 because only trajectories R1 (p10) and R3 (p31) go
through the corresponding region. Notice the exact trajectory information for
each non-empty leaf nodes are stored on the disk and they are not shown in
Fig 4.

232 Y. Han et al.

4 Algorithm for Query Processing

In this section, we present efficient algorithms for processing SKRT and one
of its variant query with the assumption that trajectory data are organized by
IOC-Tree. Section 4.1 will give a specific description of algorithm for SKRT . As
an extension, a variant query of SKRT called SKRTO and its brief processing
algorithm will be introduced in Section 4.2.

4.1 Algorithm for Processing SKRT

In our algorithm, octree nodes are divided into three types with regard to spatio-
temporal query range: one locate outside the range, one locate totally in the
range which are called fully-covered nodes, and the other intersect with range
which are called partially-covered nodes. we employ a set L to keep octree nodes
that are being processed. Moreover, sets of candidate nodes CNf

i and CNp
i are

employed to record fully-covered and partially-covered candidates from related
octree OCi respectively. T R(CN) denotes a set of trajectories that the nodes
in CN contains. Besides, CT f contains candidate trajectories that appear in
the fully-covered nodes for all the query keywords, while CT p contains the rest
candidate trajectories based on sets of candidate nodes.

Algorithm 1. Algorithm Outline For SKRT

Input: Q: an SKRT query with three constraints (Q.R, Q.T , Q.δ), OC:
inverted octree, D: trajectory database

Output: A: set of trajectories from D satisfy Q
1 A ← ∅; L ← ∅; CT f ← ∅; CT p ← ∅;
2 foreach ki ∈ Q.δ do
3 put root(OCi) into L;

4 CNf
i ← ∅; CNp

i ← ∅;

5 Prune(Q, L);

6 CT f ← ∩m
i=1T R(CNf

i); CT p ← ∪m
i=1T R(CNp

i) + ∪m
i=1T R(CNf

i) ;

7 CT p ← CT p − CT f ;
8 Verification(Q, A);
9 return A;

The basic outline of algorithm for processing SKRT is illustrated in
Algorithm 1. The main idea is to prune as many trajectories as possible based
on the spatio, temporal and textual information by using IOC-Tree structure.
In Line 3, the root nodes of related octrees are put into the set L. Sets of differ-
ent types of candidate nodes for each query keywords are initialized in Line 4.
The next step is to explore the nodes in L to prune nodes that does not satisfy
spatio-temporal constraint (Line 5). After that, we determine the different sets
of candidate trajectories based on the exact trajectory information (Line 6-7).
Finally, we validate each candidate trajectory and put right ones into the result
set A (Line 8).

Spatial Keyword Range Search on Trajectories 233

We proceed to give more details of procedures invoked in Algorithm 1.
Procedure Prune prunes non-promising nodes based on the inverted octree

and deals with nodes level by level among the related octrees. In each level, nodes
that don’t satisfy spatio-temporal constraint will be firstly pruned by STRange-
Filter. During the process of STRangeFilter, we only explore black nodes (i.e.,
non-empty nodes) and keep a one-bit flag for each node that satisfy spatio-
temporal constraint to indicate a fully-covered or partially-covered node. Line 3-
7 perform a signature test to prune nodes that definitely share no trajectories
with nodes from other octrees. Among the nodes that survive from the signature
test, leaf nodes will be inserted in the corresponding sets of candidate nodes
(Line 8-13), and the non-white children nodes of non-leaf nodes will be put into
L (Line 14-17). The last step is to retrieve candidate trajectories from the disk
for each query keyword based on different types of candidate nodes (Line 19-20).

Procedure Verification aims at further validating candidate trajectories and
inserting trajectories that pass all the tests into result set A. Firstly, we believe
all the trajectories in CT f are appropriate ones which can be easily proved
(Line 1). For each trajectory Tr in CT p, a set Ω of query keywords that Tr
doesn’t have within fully-covered nodes are identified (Line 2-4). Then according
to each keyword kj in Ω, only if Tr appears in T R(CNp

j) will it be loaded from
the corresponding cell on the disk to verify spatio-temoral constraint (Line 5-7).

Example 4. Consider the SKRT problem given in Fig 2. Since the query key-
word set Q.φ contains two keywords a and c, only OCa and OCc which we
have built in Fig 4 need to be explored. The nodes marked with dotted cir-
cle signify the ones within query spatio-temporal range in both trees. node#7
in OCa is pruned because it does not pass the signature test. According to
containment relationship with query range, after procedure Prune, we have
CNf

a = CNf
c = {node#5}, CNp

a = {node#6} and CNp
c = {node#4}. Table 2

shows that only trajectory R1 goes through node#5, and trajectory R2 and R3

go through node#4 and node#6. Therefore, T R(CNf
a) = T R(CNf

c) = {R1}
and T R(CNp

a) = T R(CNp
c) = {R2, R3}. After intersecting T R(CNf

a) and
T R(CNf

c), we get the first qualified trajectory R1. Nevertheless, the trajec-
tories in CT p = {R2, R3} obtained from T R(CNp

a) and T R(CNp
c) still have

to be verified. To do that, we need to load node#4 and node#6 from the disk,
where we find that R2 has points p22 and p23 that contain a and c in the query
range respectively, while R3 doesn’t. This implies that R2 is another qualified
trajectory while R3 is not. Finally we get the answer set A = {R1, R2}.

4.2 Extension for Query with Order-Sensitive Keywords

As mentioned before, one advantage of inverted octree is that it can also support
the query with order-sensitive keywords (SKRTO). The definition of SKRTO
has similar constraints with SKRT , except that query keywords from Q.Φ should
be satisfied by a trajectory in chronological order.

In the sequel, we denote the earliest timestamp of a node v as v.tstart and the
latest timestamp as v.tend. Due to space limits, we just highlight two important

234 Y. Han et al.

Procedure Prune(Q, L)
1 while L �= ∅ do
2 STRangeFilter(Q.R, Q.T , L);
3 foreach ki ∈ Q.δ do
4 SIGi = bitwise-OR of signatures of nodes v ∈ L from OCi;

5 foreach node v ∈ L from OCi do
6 foreach SIGj where j �= i do
7 SignatureCheck(v, SIGj);

8 foreach node v ∈ L that survive from the signature test do
9 Suppose v comes from OCj ;

10 if v is a fully covered leaf node then

11 add v into CNf
j ;

12 else if v is a partially covered leaf node then
13 add v into CNp

j ;

14 else if v is non-leaf node then
15 foreach child node v′ of v do
16 if v′ is not a white node then
17 put v′ into L;

18 delete v from L;

19 foreach ki ∈ Q.δ do

20 determine T R(CNf
i) and T R(CNp

i);

Procedure Verification(Q, A)

1 A ← CT f ;
2 foreach trajectory Tr ∈ CT p do

3 find out a keyword set Ψ = {ki|Tr ∈ T R(CNf
i)} ;

4 Ω ← Q.Φ − Ψ ;
5 foreach T R(CNp

j) where kj ∈ Ω do

6 if Tr ∈ T R(CN)pj and LoadAndJudge(Tr, T R(CNp
j)) then

7 A ← A ∪ Tr ;

techniques to modify Algorithm 1 to answer SKRTO. One is a pruning technique
during the process of procedure Prune. In each level, we will visit nodes of related
octrees in order of query keywords. If there is a node v from OCi whose latest
timestamp is not larger than all the earliest timestamp of qualified nodes in
OCj (j < i), then this node can be pruned safely. The other aspect is how
to deal with trajectories in CT f in procedure Verification because they may
not satisfy order-sensitive keyword constraint. Instead, we should find a node
sequence v1, v2, ..., vm such that vi ∈ CNf

i (i ← 1 to m) and vj−1.tend ≤ vj .tstart
(j ← 2 to m). After obtaining such a cell sequence, we can guarantee trajectories

Spatial Keyword Range Search on Trajectories 235

Table 3. Dataset Statistics

LA NY TW

#trajectory 31,553 49,022 214,834

#location 215,614 206,416 1,287,315

#tag 3,175,597 3,068,401 28,645,905

#distinct-tag 100,843 89,665 1,852,141

Table 4. Experimental Settings

from intersection of trajectory set contained by vi (i ← 1 to m) satisfy SKRTO
query. In this way, a considerable number of node access can be avoided.

5 Experiments

We conduct comprehensive empirical experiments in this section to evaluate
CPU and I/O performance between our proposed algorithm and two baselines
for both SKRT and SKRTO query.

5.1 Experimental Setup & Datasets

All the algorithms including baselines are implemented in C++ and the experi-
ments are performed on a machine with Intel i5 CPU (3.10GHz) and 8GB main
memory, running Windows 7. The raw datasets are all stored in binary files with
page size 4096 bytes. Notice that the number of I/Os is considered as the number
of accessed pages in different algorithms.

Three real trajectory datasets are used, two of which are from check-in
records of Foursquare within areas of Los Angeles (LA) and New York (NY) [1],
the third one is from geo-tagged tweets (TW) [10] collected from May 2012
to August 2013. For all three datasets, records belonging to the same user are
ordered chronologically to form a trajectory of this user. The frequent and mean-
ingful words are collected from the plain text in each record. Table 3 summaries
important statistics of three datasets.

For different datasets, different set-ups are designed as shown in Table 4.
The default settings of the parameter are underlined. For each experimental set,
we generate 50 queries and report the average running time and accessed pages.
We randomly pick up several trajectories from datasets and generate queries by
selectively choosing keywords and setting reasonable query range and timespan.
For the inverted octree in all the experiments, the maximal depth h is set to 5
and the split threshold ψ is set to 80.

236 Y. Han et al.

5.2 Baselines

Two baselines extended from techniques from [6] and [23] respectively are pro-
posed for comparison and validation of our proposal algorithm. Both baselines
need extra order examination when dealing with SKRTO query.
Bck-tree The original Bck-tree [6] is designed to solve spatial keyword problem
on trajectories. It divides the spatial region into quad cells, and builds a B+
tree based on the cell division. Three elements including wordID, cellID, posting
list, are contained by leaf entries of the B+ tree, among which the first two
are the keys and posting list is a sequence of trajectories that go through cell
cellID and contain word wordID. To incorporate temporal information, some
modification are made on the posting lists, i.e., trajectories are sorted by the
timestamp of its point which locates in the corresponding cell and contains the
corresponding word. In general, Bck-tree firstly prunes trajectories by spatio-
textual constraint, and then by temporal constraint.
GAT The second baseline is a natural extension of Grid Index for Activity
Trajectories (GAT)[23]. We only divide a grid when necessary in a way similar
to how we divide spatio-temporal space. For each grid, we construct a B+ tree
to index trajectory points based on their timestamps and then build an inverted
index of points for every keyword in this grid to record textual information.
Generally, GAT adopts a strategy by pruning trajectory on spatio, temporal
and textual constraint in sequence.

5.3 Performance Evaluation

Varying Number of Query Keywords |Q.φ|. In the first set of experiments,
we vary |Q.φ|, the number of query keywords, to compare CPU and IO cost on
SKRT query among three algorithms. Fig 5 shows that as |Q.φ| gets larger,
the running time of IOC-Tree doesn’t grow as fast as other two baselines on
all three datasets. Especially in the case of dataset TW, IOC-Tree spends much
less time than GAT and Bck-tree when |Q.φ| becomes larger. The reason can
be revealed when we carefully check Fig 6, which shows IO cost result. While
the number of accessed pages by GAT and Bck become larger as |Q.φ| increases,
that of IOC-Tree decreases conversely. In the case of TW, IOC-Tree outperforms
two baselines for nearly one order of magnitude when |Q.φ| is 5. This is due to
that given a fixed spatio-temporal search space, more nodes of the octree can
be pruned when more query keywords are involved during process of octrees’
exploration and signature test. Therefore, the whole running time can be greatly
reduced although more keywords may incur more examination on trajectories.

Varying Query Timespan |Q.T |. Then we proceed to investigate the effect
of |Q.T |, the query timespan, on the performance of algorithms by plotting the
time cost of SKRT and SKRTO on different datasets in Fig 7 and Fig 8. Appar-
ently, longer query timespan means larger spatio-temporal search space, which
results in longer running time. Generally, SKRTO query requires more runtime
cost because of the high computation of verification on order-sensitive keywords.

Spatial Keyword Range Search on Trajectories 237

Fig. 5. Effect of |Q.φ| on Running-Time

Fig. 6. Effect of |Q.φ| on #IO

However, IOC-Tree maintains a relatively slow growth of time cost and outper-
forms two baselines under all cases which is benefited by fast nodes’ pruning
and morton code’s utilization. In the case of dataset TW, the gap between IOC-
Tree and two baselines becomes even larger. The reason is that trajectories of
TW contain more tags averagely, and IOC-Tree adopts a keyword-first-pruning
strategy; as the query timespan gets larger, GAT and Bck-tree have much more
candidates to verify while IOC-Tree has pruned a lot in the first place.

Fig. 7. Effect of |Q.T |

Varying Diameter of Query Range δ(Q.R). Finally we study the effect of
δ(Q.R), the diameter of query spatial range, on the running time of SKRT and
SKRTO among three algorithms. The experimental results are demonstrated in
Fig 9 and Fig 10. Similar to varying |Q.T |, larger diameter of query spatial range
naturally involves larger search space. Therefore, more cells and trajectories
will be identified as candidates. As expected, the performance of all algorithms

238 Y. Han et al.

Fig. 8. Effect of |Q.T |

Fig. 9. Effect of δ(Q.region)

Fig. 10. Effect of δ(Q.region)

degrades regarding the increase of δ(Q.R). Between two baselines, GAT performs
better than Bck-tree since given a fixed spatial space, GAT can quickly locate
the quad cells and explore the corresponding B+ tree. However, IOC-Tree still
has superior performance among all the algorithms. This is mainly because it
takes fully advantage of spatio-temporal proximity and thus a considerable IO
cost can be saved.

6 Conclusion

We study spatial keyword range search on trajectories, which takes spatio, tem-
pral and textual properties of trajectories into consideration. To efficiently solve
spatial keyword range search on trajectories (SKRT) and its variation with
order-sensitive keywords (SKRTO), we design a novel index structure named

Spatial Keyword Range Search on Trajectories 239

IOC-Tree with signature to organize trajectory data and propose an efficient
algorithm for query processing. Extensive experiments on real datasets confirm
the efficiency of our techniques.

Acknowledgments. The work is supported by NSFC61232006, NSFC61321064, ARC
DE140100679, ARC DP130103245, ARC DP150103071 and DP150102728.

References

1. Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recom-
mendation using sparse geo-social networking data. In: Proceedings of the 20th
International Conference on Advances in Geographic Information Systems, pp.
199–208. ACM (2012)

2. BOGORNY, V., ALVARES, L.O., Kuijpers, B., Fernandes de Macedo, J. A., MOE-
LANS, B., and Tietbohl Palma, A.: Towards semantic trajectory knowledge dis-
covery

3. Botea, V., Mallett, D., Nascimento, M.A., Sander, J.: Pist: an efficient and practical
indexing technique for historical spatio-temporal point data. GeoInformatica 12(2),
143–168 (2008)

4. Chakka, V.P., Everspaugh, A.C., Patel, J.M.: Indexing large trajectory data sets
with seti. Ann Arbor 1001, 48109–2122 (2003)

5. Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., Suel, T.: Text vs. space:
efficient geo-search query processing. In: Proceedings of the 20th ACM interna-
tional conference on Information and knowledge Management, pp. 423–432. ACM
(2011)

6. Cong, G., Lu, H., Ooi, B. C., Zhang, D., Zhang, M.: Efficient spatial keyword
search in trajectory databases (2012). arXiv preprint arXiv:1205.2880

7. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
2008 IEEE 24th International Conference on Data Engineering. ICDE 2008, pp.
656–665. IEEE (2008)

8. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite
keys. Acta informatica 4(1), 1–9 (1974)

9. Li, G., Feng, J., and Xu, J. Desks: Direction-aware spatial keyword search. In: 2012
IEEE 28th International Conference on Data Engineering (ICDE), pp. 474–485.
IEEE (2012)

10. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 802–810. ACM (2013)

11. Long, C., Wong, R.C.-W., Wang, K., and Fu, A.W.-C.: Collective spatial keyword
queries: a distance owner-driven approach. In: Proceedings of the 2013 Interna-
tional Conference on Management of Data, pp. 689–700. ACM (2013)

12. Luo, W., Tan, H., Chen, L., and Ni, L. M. Finding time period-based most frequent
path in big trajectory data. In: Proceedings of the 2013 International Conference
on Management of Data, pp. 713–724. ACM (2013)

13. Magdy, A., Mokbel, M. F., Elnikety, S., Nath, S., He, Y.: Mercury: a memory-
constrained spatio-temporal real-time search on microblogs. In: 2014 IEEE 30th
International Conference on Data Engineering (ICDE), pp. 172–183. IEEE (2014)

http://arxiv.org/abs/1205.2880

240 Y. Han et al.

14. Meagher, D.J.: Octree encoding: a new technique for the representation, manip-
ulation and display of arbitrary 3-d objects by computer. Electrical and Systems
Engineering Department Rensseiaer Polytechnic Institute Image Processing Labo-
ratory (1980)

15. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company (1966)

16. Pfoser, D., Jensen, C.S., Theodoridis, Y., et al.: Novel approaches to the indexing of
moving object trajectories. In: Proceedings of VLDB, pp. 395–406. Citeseer (2000)

17. Skovsgaard, A., Sidlauskas, D., Jensen, C.S.: Scalable top-k spatio-temporal term
querying. In: 2014 IEEE 30th International Conference on Data Engineering
(ICDE), pp. 148–159. IEEE (2014)

18. Song, R., Sun, W., Zheng, B., Zheng, Y.: Press: a novel framework of trajectory
compression in road networks (2014). arXiv preprint arXiv:1402.1546

19. Su, H., Zheng, K., Huang, J., Jeung, H., Chen, L., Zhou, X.: Crowdplanner: a
crowd-based route recommendation system. In: 2014 IEEE 30th International Con-
ference on Data Engineering (ICDE), pp. 1144–1155. IEEE (2014)

20. Tao, Y., Papadias, D.: The mv3r-tree: A spatio-temporal access method for times-
tamp and interval queries

21. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse tra-
jectories. In: Proceeding of the 20th SIGKDD Conference on Knowledge Discovery
and Data Mining (2014)

22. Zhang, C., Han, J., Shou, L., Lu, J., La Porta, T.: Splitter: Mining fine-grained
sequential patterns in semantic trajectories. Proceedings of the VLDB Endowment
7, 9 (2014)

23. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity
trajectories. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 230–241. IEEE (2013)

24. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.-Y.: Hybrid index structures for
location-based web search. In: Proceedings of the 14th ACM International Confer-
ence on Information and Knowledge Management, pp. 155–162. ACM (2005)

http://arxiv.org/abs/1402.1546

TOF: A Throughput Oriented Framework
for Spatial Queries Processing in Multi-core

Environment

Zhong-Bin Xue1,2, Xuan Zhou1,2(B), and Shan Wang1,2

1 MOE Key Laboratory of DEKE, Renmin University of China,
Beijing 100872, China

2 School of Information, Renmin University of China, Beijing 100872, China
{zbxue,swang}@ruc.edu.cn, xuan.zhou@outlook.com

Abstract. In this paper, we develop a Throughput Oriented Frame-
work (TOF) for efficient processing of spatiotemporal queries in multi-
core environment. Traditional approaches to spatial query processing
were focused on reduction of query latency. In real world, most LBS
applications emphasize throughput rather than query latency. TOF is
designed to achieve maximum throughput. Instead of resorting to com-
plex indexes, TOF chooses to execute a batch queries at each run, so
it can maximize data locality and parallelism on multi-core platforms.
Using TOF, we designed algorithms for processing range queries and kNN
queries respectively. Experimental study shows that these algorithms
outperform the existing approaches significantly in terms of throughput.

Keywords: Multi-core · Large update rates · Real-time response · High
throughput · Batch query · Spatial-temporal database

1 Introduction

With the advance of mobile devices, communication technologies and GPS sys-
tems, the technology of Location Based Service (LBS) has attracted widespread
attentions. Many Web companies, such as Google, Baidu, Twitter and Face-
book, are nowadays providing location related information service for a growing
number of users online. Location based spatial queries, which allow users to
search nearby Points of Interest (POIs), are one of the core techniques for LBS
applications.

In the past few years a series of algorithms have been proposed to handle
location based spatial queries [1][2][3][10][15][16]. These algorithms are usually
designed to provide fast response time and high update performance. Spatial
indexes, such as B-tree and R-tree, are widely used to achieve the goal. However,
the landscape has changed recently, due to the dramatic growth of users and
available digital contents. As suggested by some recent investigations [4], for
many LBS applications, throughput is more crucial, especially when confronted
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 241–256, 2015.
DOI: 10.1007/978-3-319-18123-3 15

242 Z.-B. Xue et al.

with a large number of Web users, where both queries and data updates arrive
at a high rate.

Fortunately, the development of hardware technologies provide new means to
meet the performance needs of LBS. Nowadays, the capacity of main memory is
up to 6 TB per server [5]. The dramatically increasing of main memory size has
allowed us to store the entire workloads in memory. Meanwhile, the number of
cores in multi- and many-core processors is steadily increasing. With the speed
of in-memory computing, query latency is no longer a major concern for spatial
queries. The increase of cores allows us to concurrently process an increasing
number of queries, which is helpful in achieving high throughput. However, most
existing approaches of spatiotemporal query processing do not utilize the new
features effectively. This urges us to reconsider the framework of spatiotemporal
data processing and create new algorithms that can make the best of modern
architecture to achieve maximum throughput.

In this paper, we present a Throughput Oriented Framework (TOF) for effi-
cient execution of massive concurrent queries over a large quantity of moving
objects. TOF is a snapshot-based framework. In each snapshot, TOF handles
spatial queries and object updates through batch processing, so it avoids main-
taining sophisticate index structures. TOF’s design makes full use of data locality
to improve the cache hit ratio. It also aims to maximize intra and inter parallel
between queries and give full play to multi-cores processors. In this framework,
we designed two algorithms for handling range queries and kNN queries respec-
tively. We conducted a thorough experimental study on real world data sets. The
results show that our algorithms can achieve high throughput with response time
guarantees.

The remainder of the paper is organized as follows. Section 2 describes the
related work about main-memory based spatiotemporal indexes; Section 3 shows
the problem formulation, our proposed throughput oriented framework, grid
index method, and two main-memory algorithms to handle moving object range
queries and kNN queries respectively; Section 4 reports our experimental evalu-
ation that compare our approach against existing ones, utilizing spatial indexes;
Finally, we conclude the paper in last section.

2 Related Work

There has been a significant body of work for dealing with spatiotemporal
queries. In this section, We present the related work which employs memory-
resident indexes.

Range Query. Range query which computes the objects that lie within a
given spatial range. It is one of the fundamental problems in the field of moving
object management. A serious of main-memory indexes and algorithms have
been proposed to deal with it, such as MOVIE, TwinGrid, and PGrid, etc.

MOVIE [8][10] is a snapshot-based algorithm, which uses frequently building
short-lived throwaway indexes. In MOVIE, during the ith snapshot, termed as

A Throughput Oriented Framework for Spatial Queries Processing 243

time frame Ti, an index Ii is created. Ii is a read-only index, which is used
to answer the queries in Ti. The incoming updates are collected in a dedicated
update buffer, Bi. When a new time frame Ti+1 starts, a new index Ii+1 is
created based on Bi and Ii. After Ii+1 being built, the buffer Bi and index Ii
are destroyed. In MOVIE, a linearized kd-trie [11] is used for indexing. In order
to simulate a pointer-based index structure, each node of the kd-trie is assigned
by a unique identifier, which is based on a space-filling curve, such as Hilbert
curve [10] or z-curve [12][13][14]. Similar to TOF, MOVIE adopts batch updates.
However, its query processing scheme is not tailored to modern hardware, such
that no tactic is applied to improve cache efficiency or multi-core parallelism. Its
index creation is also a costly operation.

TwinGrid [15] is another index structure that based on data snapshot and
used for querying moving objects. TwinGrid applies a grid based index, in which
two grid structures are maintained. One grid structure is called read-store, which
is used for answering incoming query. The other one is write-store, which is used
to deal with incoming update. Unlike MOVIE, TwinGrid uses a copy-on-write
mechanism to periodically merge the write-store and the read-store to keep the
read-store fresh. Some evaluation [15] indicates that TwinGrid runs faster than
MOVIE. Based on TwinGrid, PGrid [16] is proposed. PGrid is an improved
version of TwinGrid, which contains only one grid structure. Parallel queries and
updates operate on the same grid structure. PGrid uses a variant lock protocol
to resolve the read and write contention on the grid structure. For both query
and update, PGrid can respond quickly.

The above main-memory approaches put a lot of weights on query latency.
Throughput is their secondary concern. In contrast, TOF regards query latency
less important, as most real-world applications are satisfied with sub-second
response time, which is relatively easy to achieve through modern hardware.
Throughput appears a more crucial issue, as LBS needs to deal with a large num-
ber of queries simultaneously. If a higher latency can be tolerated, the throughput
of the existing approaches can be improved significantly.

kNN Query. Main-memory kNN query processing has been mainly investigated
in the field of continuous queries. A lot of work leverage main-memory grid
indexes. Examples include YPK-CNN, SEA-CNN, and CPM, etc.

YPK-CNN[9] and CPM [18] apply a query-and-refinement approach to han-
dle kNN queries. Firstly, they use range query to identify k objects as a candidate
result set. Then in the refinement phase, the algorithms use the farthest distance
between the query and the objects in the candidate set as the radius, and eval-
uate all the objects within this radius to obtain the final results. The region
within this radius is normally called refinement region. To keep the results
up-to-date, YPK-CNN defines a new refinement region based on the maximum
distance between the query point and the current locations of previous kNN
objects. If moving objects that move out of the refinement region are more than
those that move into the region, then the query has to be recomputed from
scratch. Otherwise, the k objects in the search region that lie closest to q form

244 Z.-B. Xue et al.

the new result. SEA-CNN [17] introduced an idea of shared execution of multiple
kNN queries over moving POIs.

Similar to the existing work on range queries, most algorithms used for kNN
queries also aim to minimize response time rather than throughput. Our pro-
posed TOF aims to achieve improvement on throughput. Nevertheless, it guar-
antees to meet the general requirement on response time.

3 Throughput Oriented Framework (TOF)

This section presents TOF, a throughput oriented framework for handling spa-
tiotemporal queries on modern hardware. We first outline the problem formula-
tion. Then we present the framework. After that, we introduce two main memory
based algorithms for handling range queries and kNN queries respectively, which
exploit the multi-core architecture to maximize the throughput.

3.1 Problem Formulation

Consider a setting in which a data set of N moving objects, be it mobile phone
users or vehicles, in two-dimensional space within the domain |X| ∗ |Y |, where
|X|(resp. |Y |) represents the number of different positions in the horizontal (resp.
vertical) dimension. A grid structure is used to index the two-dimensional space.
Each rectangle in grid is called a cell. We formally define the moving objects and
queries as follows:

Definition 1. A moving object is modeled as a point and defined as oi = {OID,
〈x, y〉 }, where OID is a unique key that identifies the moving object, and x and
y are the coordinates.

We assume all the relevant information about the moving objects is main-
tained at a central server. Whenever an object moves to a new location, an
update message is sent to the central server.

Definition 2. A range query is modeled as a rectangle and defined as qr =
{QID, [xlow; ylow] ∗ [xhigh; yhigh]}, where QID is a unique key that identifies the
query, and [xlow; ylow](resp.[xhigh; yhigh]) represents the lower-left (resp. upper-
right) corner of the rectangle.

Obviously, the results of the query are supposed to contain the complete set
of OIDs, whose objects fall in this rectangle. One or more grid cells could be
fully or partially covered by a query. Objects in the partially covered cells should
be checked to determine if they are within the query range, whereas objects in
the fully covered cells are the results and do not need to be checked.

Definition 3. A kNN query is defined as qknn = {QID, 〈x, y〉, k }, where QID
is a unique key that identifies the query, x and y are the coordinates of the query,
and k is the required number of the nearest neighbors.

A Throughput Oriented Framework for Spatial Queries Processing 245

Given a kNN query q on a set of moving objects O, the task is to ensure that
the query’s result set Qr, which is a subset of O, always satisfies the following
conditions: | Qr | = k and for ∀oi ⊆ Qr,∀oj ⊆ O − Qr, dE(q, oi) ≤ dE(q, oj),
where dE(q, oi) is the Euclidean distance between the query q and the object oi.

TOF uses a snapshot based approach. The position of a moving object oi at
snapshot t is defined as loct(oi) = (xt, yt), where xt and yt are the coordinates of
oi at snapshot t. In each snapshot, all the moving objects, such as taxis, which are
equipped with GPS, send their locations to the central server. After accumulating
all the updates, at the end of a snapshot, TOF performs the updates altogether.
In each snapshot, all queries submitted to the central server are also cached in
the memory. In the following snapshot, all the queries are executed in a batch on
the updated locations. Specifically, a range query submitted by a user at time ti
is computed based on the locations of moving objects at ti. But the results are
returned only at time ti+1. We have ti+1 − ti < �t, where �t is a predefined
time interval, which determines the response time of the system.

Based on the foregoing, we focus on maximizing the throughput of processing
the range and kNN queries (i.e. processing as many queries as possible within a
fixed time interval) using the modern main-memory and multi-core platforms.

3.2 The Framework

As shown in Figure 1, the processing model of TOF is divided into three stages:
preprocessing stage, executing stage and dispatching stage. The stages work as a
pipeline approach and use a queue buffer to communicate with each other. The
outputs of former stage become the inputs of latter stage.

Preprocessing Stage. The task of the first stage is to handle the incom-
ing queries and moving object updates. As we mentioned earlier, TOF is a
snapshot-based framework. At Snapshot i, TOF caches the incoming updates
and queries into the object buffer OBi and query buffer QBi. At the end of the
time interval, TOF applies all the updates on the data in parallel, and forwards
the updated data and queries to the executing stage. Meanwhile, it starts to
prepare snapshot i+1, and collects OBi+1 and the query buffer QBi+1. In order
to achieve a proper trade-off between response time and throughput, TOF uses a
variable query window mechanism. TOF decides the query window size, the time

Fig. 1. Processing model of TOF

246 Z.-B. Xue et al.

interval of a snapshot, according to the QoS. As the query response time meets
the requirements in the Service-Level Agreement (SLA), TOF would maximize
the number of queries to be handled in each time interval.

Executing Stage. In this stage, TOF first creates grid indexes on the object
buffer and the query buffer coming from the pre-processing stages. The grid
indexes are created based on the spatial coordinates of the objects and the
queries. Multi-core parallelization is performed to maximize the throughput.
Based on the index, TOF performs query processing. Queries and objects that
fall into the same cell of the grid are always processed together. This helps TOF
achieve high data locality and thus cache efficiency. Queries close to one another
are likely to share computation, such that performance can be further improved.
Moreover, queries and objects in different cells can be processed in parallel, which
gives full play to multi-core processors.

Dispatching Stage. In this stage, TOF dispatches the query results to the
clients and all intermediate data are deleted, including the grid structures.

To summarize, TOF attempts to make the best of new hardware and enable
thousand fold parallelism in query processing.

3.3 Grid Indexing

In this part, we show how TOF maps moving objects to a grid index.

Fig. 2. Grid index of moving object

TOF uses a conventional encoding method, which orders the cells from bot-
tom left to top right, as shown in Fig. 2. To map a moving object to its cell, we
apply the function

cell = x/L + y/L ∗ N,

where L is the cell length and N is the number of cells in x-ray. Our grid index
uses an array to store the cells. For instance, in Fig. 2, the two moving objects,
O1 (1, 31, 11) and O2 (2, 13, 22) are mapped to Cell 7 and Cell 9 respectively.

During indexing, multiple threads can be used to assign data to cells simulta-
neously. However, this would introduce contention, which would severely impair

A Throughput Oriented Framework for Spatial Queries Processing 247

the performance. TOF adopts a lock free mechanism, in which the data is
scanned twice. In the first round, the data is divided into M parts and scanned
by M threads in parallel. The first scan generates a histogram for each cell and
obtains the number of moving object in each cell. Then, a contiguous mem-
ory space is allocated to store the objects. As the number of moving object in
each cell is already known, we can pre-compute the exclusive location where each
thread writes its output. During the second scan, all threads read and write their
own data independently. Contention is completely avoided. The same approach
has been applied in [6].

When constructing the gird index, TOF uses an array to store the data in
each cell. The pointer structure is avoided to optimize the performance. When
the number of cells is large, writing into the arrays concurrently can cause cache
thrash. In this case, TOF applies the strategy of Radix Clustering [7] to improve
cache efficiency. Basically, the grid index can be constructed in two steps. First,
a coarse grid with much fewer cells is first created. Then, each cell in the coarse
grid is further divided into more cells to form the required grid index.

3.4 Algorithms for Handling Range Queries and kNN Queries

In this part, we describe the algorithms for handling range queries and kNN
queries in TOF. Our algorithms are performed in the execution stage of TOF.
Both algorithms work in two phases: grid index building phase and processing
phase. During the first phase, they build grid structures to index the moving
objects and queries according to their coordinates. In the processing phase, they
perform the query according to the grid index.

Range Query. For range query, in the grid index building phase, a range query,
which is a rectangle as mentioned in Section 3.1, could cross multiple cells in a
grid index. As shown in Fig. 3, TOF replicates each range query and assigns a
replica to each cell overlapping with the query. Accordingly, the moving objects
are assigned to the grid index too. The index building procedure follows which
is introduced in Section 3.3. After the indexing, the objects only need to be
compared against the queries in the same cell to generate the complete results.

In the processing phase, the queries and objects in the same cells are com-
pared against each other to decide if an object falls in each query range. This
can be regarded as a join operation. To conduct the join, we can choose bucket-
chaining-join or nested-loop-join. Bucket-chaining-join was first proposed in [20].
Compared to nested-loop-join, its main advantage is to reduce the comparison
cost. Our experiments show that the comparison between an object and a query
is the most computation intensive task in the join operation. Given a moving
object oi(OID, (x, y)) and a range query qj (QID, ((xmin, ymin), (xmax, ymax))),
the follow expression is used to perform the comparison :

if((x >= xmin)&&(x <= xmax)&&(y >= ymin)&&(y <= ymax))(1)

248 Z.-B. Xue et al.

Fig. 3. Partitioning (left) and assignment (right) for query

Depending on the results of the expression, the program decides whether to add
the object to the result set of the query. This will lead to a branch prediction
failure. For main memory programs, branch prediction failure could result in
significant performance decline.

To achieve improved performance, TOF tries to utilize the SIMD feature
and the prefetching mechanism of modern CPUs. Figure 4 illustrates the SIMD

Fig. 4. SIMD mechanism for moving objects range query

mechanism for range query processing. TOF computes four queries and one
object each time. As shown in Fig. 4, each time TOF compares between the x
from one moving object and the xmin from four queries through a single SIMD
execution. After all the dimensions are computed, the algorithm integrates the
outcome into final results. To facilitate this mechanism, column-store is used to
store the data and the queries, such that each dimension is stored in a single
array.

As data comparison in bucket-chaining-join is not contiguous, SIMD and the
pre-fetching mechanism cannot be used efficiently. The nested-loops-join can
benefit from the SIMD more significantly. Therefore, in this paper, we propose
to use the SIMD based nested-loops-join.

kNN Query. In kNN query processing, each query is a point instead of a
range, as mentioned in Section 3.1. In the index building phase, both queries and
objects are mapped to a grid index. The procedure follows which is introducted
in Section 3.3. After the indexing, for the queries in each cell, we compute their
common refinement region, which determines the scope of the objects the queries
need to compare with.

A Throughput Oriented Framework for Spatial Queries Processing 249

Fig. 5. Expansion method for kNN query

In the processing phase, we use the cell as the basic processing unit. Given a
cell ci, we call the cells surrounding ci the 1st adjacent circle of ci. For example,
in Fig. 5 the cells that are connected by a dotted line belong to first adjacent
circle of the cell that q located. The cells surrounding the lth adjacent circle form
the (l + 1)th adjacent circle. TOF uses a refinement-and-searching approach to
perform kNN search, similar to that used by YPK-CNN. Firstly, we use the
histogram of the object cells built in the grid index building phase to calculate
the refinement region for corresponding query cell. Given a query cell, suppose
its Mth adjacent circle contains at least k moving objects. Then, it can be proven
that the kNN objects must be within the M + 	(√2 − 1) ∗ M +

√
2�th adjacent

circle of the query cell. Thus, this circle defines the refinement region of the
query cell. In the searching phase, TOF only needs to compare the queries in
the cell against the objects in its refinement region to obtain the final results.
To further speedup the process, we apply a pruning strategy, that is, if the
farthest distance between the query and the k objects is less than the distance
between the query and a cell, we can skip the cell. This refinement-and-searching
approach minimizes the comparison conducted in kNN query processing.

Fig. 6. Data locality of kNN query on multi-core processing

To parallelize the processing phase on multi-cores, TOF assigns different
query cells to different threads. This is illustrated in Figure 6. We assume that
for each query cell we should expand one level to find the final results. Each
thread processes a query cell. As shown in Fig. 6, thread 0 is responsible for

250 Z.-B. Xue et al.

the query cell 0. It needs to access query cell 0 and the object cells 0,1,3,4
accordingly. Thread 1 is responsible for query cell 1, so it needs to access the
object cells 0,1,2,3,4,5, and so on. TOF tries to assign adjacent query cells to the
threads, so that data locality can be maximized and cache miss can be reduced.

4 Performance Study

We conducted several sets of experiments to study the properties of the proposed
algorithms for range query and kNN query processing over spatiotemporal data.
Before reporting the findings, we describe the experimental setting first.

4.1 Experimental Setup

We used the real Germany road network to generate the data sets. The Germany
road network contains 380 million vertices and 400 million road segments. The
data sets are produced using MOTO [8], which is an open-source moving object
trace generator and based on Brinkhoff′s moving-object generator [19]. MOTO
follows a network-based object placement approach, where objects are placed
and navigated (to a random destination) in a given road network.

To obtain realistic skew and to stress test the indexing techniques, the genera-
tor was slightly modified, so that half of the objects are placed in five major Ger-
man cities according to the number of inhabitants in those cities. The queries are
also distributed in those cities accordingly. This ensures that the most update-
intensive regions are also the most queried ones.

Table 1. Workload configuration

Parameter Values
objects, ∗106 5, 10, 20, 40
queries, ∗103 5, 50, 500, 5000
monitored region, km2 Germany, 641 * 864
range query size, km2 0.25, 0.5, 1, 2, 4, 8
k 2, 4, 8, 16, 32, 64

We implemented our algorithms in C/C++ and compiled with g++ under the
maximum optimization level. All experiments ran on a 32-core hyper-threaded
machine (4 Intel E5-2670 @2.6GHz) with 256GB RAM running SUSE 11 (64-
bit). Caches are shared by all threads in an entire chip. In the following part, all
the experiments were conducted on 5 million objects.

A Throughput Oriented Framework for Spatial Queries Processing 251

0

100

200

300

400

500

600

700

800

900

1000

20 30 40 50 60

Re
sp

on
se

 T
im

e(
M

ill
ise

co
nd

s)

cell length (m)

Fig. 7. Optimal grid cell size

1

10

100

1000

5 50 500 5000

Re
sp

on
se

tim
e(

M
ill

ise
co

nd
s)

Number of queries per batch,*10^3

Fig. 8. Response time vs Increasing num-
ber of queries

4.2 Range Query Performance

In this part, we show the performance of our range query processor and compare
it against PGrid[16]. To the best of our knowledge, PGird is the fastest among
all the existing in-memory approaches to process moving object range queries.
We mainly focus on the throughput.

Grid cell size is an important parameter that affects the performance of the
algorithm. To obtain the optimal value, we tested 5 million objects and 5 million
queries with different cell sizes. We varied the grid cell size from 20 to 60 meters.
When the cell length is longer, there will be more objects in each cell. When
the cell length is shorter, for range queries, there will be more query duplicates.
Both could increase the comparison cost. The results are shown in Figure 7.
We can see that 40m seems to be the optimal cell size. Thus, in the following
experiments, we choose 40m as the cell size.

TOF needs to guarantee that its response time meets the requirements of
applications. The way to tune response time is to change the window size –
the number of queries processed in each time interval. Figure 8 shows how the
response time varies with the window size. As we can see, if the number of
queries processed in each round is controlled within a certain range, TOF is
able to achieve sub-second response time easily, which satisfies most real-world
applications.

Figure 9 shows the throughput comparison between TOF and PGrid when
changing the query window size. With the increase of query numbers, the through-
put increase dramatically for TOF. TOF uses a batch processing to maximize the
throughput. So in a certain degree, the more queries, the more throughput for
TOF. Whereas, PGrid uses one-by-one query processing mechanism. When the
queries coming too fast, PGrid cannot process the incoming queries on time. Users
have to queue up for the response.

Figure 10 shows the throughput comparison between TOF and PGrid when
changing the number of objects. When the number of moving objects increase,
there will be more objects in each cell, which increases the comparison cost.
For TOF, due to the SIMD mechanism used in join processing, it performance is
steady with the increasing of moving objects. For PGrid, it used a grid index, for

252 Z.-B. Xue et al.

1

10

100

1000

10000

100000

1000000

10000000

5 50 500 5000

Th
ro

ug
hp

ut
(lo

g)

Number of queries per batch,*10^3

Our algorithm

PGrid

Fig. 9. Throughput vs Increasing num-
ber of queries

1

10

100

1000

10000

100000

1000000

10000000

100000000

5 10 20 40

Th
ro

ug
hp

ut
(lo

g)

Number of Objects, *10^6

Our algorithm

PGrid

Fig. 10. Throughput vs Increasing num-
ber of objects

each query it only need to scan the data in corresponding cell, so its throughput
is steady too.

Figure 11 compares the throughput of our algorithm against that of PGrid
by varying the query range size. When the query range size increases, more cells
will be processed for each query. Therefore, the throughput decreases gradually
with the increasing query range size for both TOF and PGrid. Clearly, TOF
outperforms PGrid by almost two orders of magnitude. This is attributed to
the throughput oriented design of TOF, which apply batch processing to maxi-
mize the computation sharing among queries and uses the grid index to achieve
high data locality. To prevent contention between threads, PGrid uses a lock
mechanism, which is costly and prevents it from scaling well on multi-cores.

1

10

100

1000

10000

100000

1000000

10000000

100000000

250 500 1000 2000 4000 8000

Th
ro

ug
hp

ut
 (l

og
)

Query range(m)

Our algorithm

PGrid

Fig. 11. Throughput vs Increasing query
range size

1

10

100

1000

10000

100000

1000000

10000000

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(lo

g)

 threads

Fig. 12. Throughput vs Increasing num-
ber of threads

Figure 12 shows how TOF scale with increasing number of hardware threads
in a multi-core environment. In the TOF framework, a lock free mechanism is
used to index the moving objects, making query processing scalable. As we can
see, more threads are used, a higher throughput can be achieved by the system.
The throughput reaches its maximum of 10M/s, when the number of threads is
32, which is exactly the number of hardware threads of the platform.

A Throughput Oriented Framework for Spatial Queries Processing 253

4.3 kNN Query Performance

In this part, we show the performance of kNN query processing of TOF and
compare it against a kd-tree based main-memory algorithm, named RKNN [21].

0

500

1000

1500

2000

2500

3000

3500

4000

20 30 40 50 60 70 80

Re
sp

on
se

 T
im

e(
M

ill
ise

co
nd

s)

cell length (m)

Fig. 13. Optimal grid cell size

1

10

100

1000

10000

5 50 500 5000

Re
sp

on
se

Ti
m

e(
M

ill
ise

co
nd

s)

Number of queries per batch, *10^3

Fig. 14. Response time vs Increasing num-
ber of queries

Similar to range query processing, grid cell size is an important parameter for
kNN query processing. Our first set of experiments aimed to study how the grid
cell size affects the performance. The experiments were conducted on 5 million
objects and 5 million queries. We varied the grid cell size from 20 to 80 meters.
From figure 13, we can see that when the cell length is too short, such as 20
meters, the response time is quite high. This is because most of the time was
used to calculate the M level regions for each query cell. On the contrary, when
the cell length is too long, there will be too many objects in each cell, which
would increase the comparison cost. Figure 13 shows that 60m is the optimal
cell length. In the following experiments, we used 60m as the cell length.

We also conducted experiments to see how the response time varies with the
window size in kNN processing. Figure 14 shows the results. As we can see, TOF
is able to achieve reasonable response time on kNN, as long as the window size
is configured appropriately.

Figure 15 shows the throughput comparison between the two algorithms
when varying the query window size. The RKNN algorithm builds a kd-tree
index over objects, then using the index to search for the results. In query
processing, RKNN executes one query at a time. TOF uses grid to index the
moving objects and uses a batch query mode to get the results. TOF enables
computation sharing among queries. Its design enables better data locality and
scalability. Thus, it is able to achieve much better throughput than RKNN (an
order of magnitude better).

Figure 16 shows the throughput comparison between the two algorithms
when increasing the number of objects. TOF uses a batch query mode, which
makes full use of data locality to enhance the throughput. With the increase of
moving objects quantity, the throughput decreases in both algorithms. But our
algorithm’s performance is an order of magnitude better than RKNN.

254 Z.-B. Xue et al.

1

10

100

1000

10000

100000

1000000

10000000

5 50 500 5000

Th
ro

ug
hp

ut
(lo

g)

Number of queries per batch, *10^3

Our algorithm
RKNN

Fig. 15. Throughput vs Increasing num-
ber of queries

1

10

100

1000

10000

100000

1000000

10000000

5 10 20 40

Th
ro

ug
hp

ut
(lo

g)

Number of objects,*10^6

Our algorithm

RKNN

Fig. 16. Throughput vs Increasing num-
ber of objects

1

10

100

1000

10000

100000

1000000

10000000

2 4 8 16 32 64

Th
ro

ug
hp

ut
 (l

og
)

K

Our algorithm
RKNN

Fig. 17. Throughput vs Varying
query region

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(lo

g)

threads

Fig. 18. Throughput vs Increasing number
of threads

Figure 17 plots the performance of both algorithms when k changes. With
the increase of k, the throughput decreases for both algorithms. This is because
increasing k would increase the region to search for top k objects. Neverthe-
less, TOF achieves a much higher throughput performance than the RKNN
algorithm.

Figure 18 shows how TOF scales in a multi-core environment when perform-
ing kNN query processing. Similar to the results on range queries, TOF scales
almost linearly with the number of hardware threads, owing to it throughput
oriented design.

5 Conclusions

In this paper, we present a throughput oriented framework (TOF) that uti-
lizes various feature of new hardware for efficient processing location-dependent
spatial queries. We found that it is necessary to reconsider the design of tradi-
tional spatiotemporal query engines when throughput instead of query latency
becomes the primary requirement. This was proven by our experimental evalu-
ation, as TOF can achieve an order of magnitude of performance improvement
over existing approaches.

A Throughput Oriented Framework for Spatial Queries Processing 255

References

1. Biveinis, L., Saltenis, S., Jensen, C.S.: Main-memory operation buffering for effi-
cient R-tree update. In: 33rd International Conference on Very Large Data Bases,
pp. 591–602. Vienna, Austria (2007)

2. Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-Tree: indexing moving objects by
space filling curves in the dual space. In: 34rd International Conference on Very
Large Data Bases, pp. 379–400. New Zealand (2008)

3. Zhang, J., Zhu, M., Papadias, D.: Location-based spatial queries. In:
2003 ACM SIGMOD International Conference on Management of Data,
pp. 443–454. California (2003)

4. Chen, Y.J., Chuang, K.T., Chen, M.S.: Spatial-temporal query homogeneity for
KNN object search on road networks. In: 22nd ACM International Conference on
Information Knowledge Management, pp. 1019–1028. ACM (2013)

5. http://ark.intel.com/zh-cn/products/75258/Intel-Xeon-Processor-E7-8890-v2-37
5M-Cache-2 80-GHz

6. Cagri, B., Gustavo, A., Jens, T., Özsu, M.T.: Main-Memory Hash Joins on Modern
Processor Architectures. In: IEEE Transactions on Knowledge and Data Engineer-
ing, IEEE Press (2014)

7. Manegold, S., Boncz, P., Kersten, M.: Optimizing main-memory join on mod-
ern hardware. In: IEEE Transactions on Knowledge and Data Engineering,
pp. 709–730. IEEE Press (2002)

8. Dittrich, J., Blunschi, L., Vaz Salles, M.A.: Indexing Moving Objects Using Short-
Lived Throwaway Indexes. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K.,
Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 189–207. Springer, Heidelberg
(2009)

9. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving
objects. In: 21st International Conference on Data Engineering, pp. 631–642. IEEE
Press, Tokyo (2005)

10. Dittrich, J., Blunschi, L., Salles, M.A.V.: MOVIES: indexing moving objects by
shooting index images. Geoinformatica 15(4), 727–767 (2011)

11. Harizopoulos, S., Liang, V., Abadi, D.J., Madden, S.: Performance tradeoffs
in read-optimized databases. In: 32nd International Conference on Very Large
Databases, pp. 487–498. VLDB Endowment, Seoul (2006)

12. Hilbert, D.: Ueber die stetige Abbildung einer Line auf ein Flichenstck. Mathema-
tische Annalen 38. 3, pp. 459–460. IEEE (1891)

13. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching.
In: 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
pp. 181–190. ACM (1984)

14. Tropf, H., Herzog, H.: Multidimensional Range Search in Dynamically Balanced
Trees. ANGEWANDTE INFO (2), pp. 71–77. IEEE (1981)

15. Šidlauskas, D., Ross, K.A., Jensen, C.S., Šaltenis, S.: Thread-level parallel indexing
of update intensive moving-object workloads. In: Pfoser, D., Tao, Y., Mouratidis,
K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011.
LNCS, vol. 6849, pp. 186–204. Springer, Heidelberg (2011)

16. idlauskas, D., altenis, S., Jensen, C.S.: Parallel main-memory indexing for moving-
object query and update workloads. In: 2012 ACM SIGMOD International Con-
ference on Management of Data, pp. 37–48. ACM, Scottsdale (2012)

17. Xiong, X., Mokbel, M.F., Aref, W.G.: SEA-CNN: scalable processing of continu-
ous k-nearest neighbor queries in spatio-temporal databases. In: 21st International
Conference on Data Engineering, pp. 675–686. IEEE Press, Tokyo (2005)

http://ark.intel.com/zh-cn/products/75258/Intel-Xeon-Processor-E7-8890-v2-37_5M-Cache-2_80-GHz
http://ark.intel.com/zh-cn/products/75258/Intel-Xeon-Processor-E7-8890-v2-37_5M-Cache-2_80-GHz

256 Z.-B. Xue et al.

18. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: an effi-
cient method for continuous nearest neighbor monitoring. In: 2005 ACM SIGMOD
International Conference on Management of Data, pp. 634–645. ACM, Baltimore
(2005)

19. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2), 153–180 (2002)

20. Manegold, S., Boncz, P., Kersten, M.: Optimizing main-memory join on mod-
ern hardware. IEEE Transactions on Knowledge and Data Engineering, 709–730.
Springer (2002)

21. http://www.cs.umd.edu/mount/ANN/

http://www.cs.umd.edu/ mount/ANN/

Query Processing

Identifying and Caching Hot Triples
for Efficient RDF Query Processing

Wei Emma Zhang1(B), Quan Z. Sheng1, Kerry Taylor2, and Yongrui Qin1

1 School of Computer Science, The University of Adelaide,
Adelaide, SA 5005, Australia

{wei.zhang01,michael.sheng,yongrui.qin}@adelaide.edu.au
2 CSIRO, Canberra, ACT 2601, Australia

kerry.taylor@csiro.au

Abstract. Resource Description Framework (RDF) has been used as
a general model for conceptual description and information modelling.
As the growing number and volume of RDF datasets emerged recently,
many techniques have been developed for accelerating the query answer-
ing process on triple stores, which handle large-scale RDF data. Caching
is one of the popular solutions. Non-RDBMS based triple stores, which
leverage the intrinsic nature of RDF graphs, are emerging and attract-
ing more research attention in recent years. However, as their funda-
mental structure is different from RDBMS triple stores, they can not
leverage the RDBMS caching mechanism. In this paper, we develop a
time-aware frequency based caching algorithm to address this issue. Our
approach retrieves the accessed triples by analyzing and expanding pre-
vious queries and collects most frequently accessed triples by evaluat-
ing their access frequencies using Exponential Smoothing, a forecasting
method. We evaluate our approach using real world queries from a pub-
licly available SPARQL endpoint. Our theoretical analysis and empirical
results show that the proposed approach outperforms the state-of-the-art
approaches with higher hit rates.

Keywords: Caching · Query expansion · Exponential smoothing · RDF

1 Introduction

The Resource Description Framework (RDF), originally proposed for the Seman-
tic Web to represent machine understandable data, has been increasingly used as
a general model for conceptual description and information modeling. For exam-
ple, knowledge management applications such as DBpedia1 and Freebase2 offer
large collections of facts about entities and their relations with RDF-based rep-
resentations. The RDF model is more expressive than the relational data model,
yet increases the complexity of data querying and processing. The SPARQL Pro-
tocol and RDF Query Language (SPARQL) is the W3C standard query language
1 http://dbpedia.org/
2 https://www.freebase.com/

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 259–274, 2015.
DOI: 10.1007/978-3-319-18123-3 16

http://dbpedia.org/
https://www.freebase.com/

260 W.E. Zhang et al.

to retrieve information modelled in RDF from either local or publicly accessible
triple stores. It is an SQL-like deductive query language that provides a graph
pattern based query syntax. Since the number of publicly available RDF datasets
grows rapidly and the volume of the data is increasing, it becomes essential for
efficient querying and processing of large scale RDF datasets. In recent years,
many techniques have been designed for this purpose including index building
[12,16], query optimization [3,11,15], and caching [7,8,17]. Among these, caching
focuses on speeding up queries based on the principle that frequently used data
is kept in memory (i.e., cached), while subsequent queries first access the data in
memory and then if needed, access the data stored in slower and cheaper hard-
ware components (e.g., disks). If the requested data is cached (also called cache
hit), the result will be returned immediately without accessing slower hardware.
This can accelerate the process of querying. Caching techniques for relational
databases have been developed for over 40 years and many algorithms have
been proposed, e.g., LRU [2], LRU-k [13] and ARC [9]. Triple stores often adopt
relational databases as their underlying management systems and utilize the
caching mechanism provided by these database systems.

Meanwhile, in recent years, non-relational based triple stores are emerging
[18,19] and attracting research interest. However, the caching algorithms designed
for relational databases are not directly applicable to these non-relational based
triple stores. A number of research efforts have been devoted to addressing this
issue, such as caching query results [8] or caching the result of subgraphs of a query
pattern graph [17]. However, the solution in [8] relys on the assumption that sub-
sequent queries are exactly the same to the previous cached ones, and work in [7]
assumes that subsequent queries are very similar. Work in [17] ignores the order of
joins over the subgraphs. Thus if subsequent queries that contain the same sub-
graphs is decomposed in different orders, limited contribution of cached results
will be given.

In this paper, we concentrate on solving the above issues by developing a
time-aware frequency based caching algorithm which leverages the idea of a novel
approach recently proposed for main memory databases in Online Transaction
Processing (OLTP) systems [6]. More specifically, we cache the complete triples
that have been frequently accessed by previous queries. We draw on the notion
of query expansion in getting access logs used in this algorithm. We first extract
the accessed triples by rewriting the original queries according to query pattern
analysis and executing the rewritten queries. Then we use a smoothing method
to estimate the access frequencies of the accessed triples. The triples with the
highest estimated access frequencies are considered “hot” and will be cached.
Other triples are considered “cold”. When a new query arrives, it will be per-
formed on the union of triples both in cache and on disk. As the access cost to
cold triples is much higher than the access cost on hot triples, the overall query-
ing speed depends on how much proportion of the frequently accessed triples are
in cache, i.e., the hit rate achieved by the cache. It should be noted that filtering
cold data to reduce the querying time is not the focus of this paper. We will
concentrate on solving the very first key issues in this research area, i.e., how

Identifying and Caching Hot Triples for Efficient RDF Query Processing 261

to identify and cache hot RDF data. Our caching approach can be applied in
a number of application scenarios. For example, it can be adopted as a server-
side caching approach for a publicly accessible endpoint or as a component of
local non-RDBMS based triple stores. To the best of our knowledge, this is the
first work that takes advantage of frequency-based caching algorithms in a non-
RDBMS based triple store. In a nutshell, the main contributions of this work
are summarized as follows:

– We develop a time-aware frequency based caching algorithm for non-RDBMS
based triple stores. Our approach adopts a smoothing method, which is
widely used for economic forecasting and recently introduced into main mem-
ory databases, to evaluate frequently accessed triples.

– We utilize the techniques in the fields of query analysis and query expansion
to retrieve triples accessed by previously performed queries. When analyzing
and expanding queries, we consider not only conjunctive relationships among
triple patterns, but also patterns such as UNION and OPTIONAL.

– We perform our experiments on a widely accessed SPARQL endpoint. Both
theoretical analysis and empirical results show that our approach outper-
forms state-of-the-art approaches with higher hit rates.

The remainder of this paper is structured as follows. We introduce some
background to this paper and briefly discuss the main tasks for hot data man-
agement in Section 2. In Section 3, we describe the details of our methodology.
Experiments are presented in Section 4. Section 5 overviews the related work.
Finally, we conclude this paper in Section 6 and discuss some future research
directions.

2 Preliminaries

In this section, we will discuss the background context for this work. We will
then introduce the main tasks for hot RDF data management.

2.1 RDF and SPARQL Queries

The Resource Description Framework (RDF) presents a statement as a triple
in the form of (subject, predicate, object) ∈ UB × U × UBL where U , B, and
L denote the sets of URIs, Blank nodes and Literals, respectively. Each triple
represents a relationship between two resources and can be considered as an edge
(predicate) connecting two vertices (subject and object). All the interconnected
triples in an RDF dataset form a directed graph.

The SPARQL Protocol and RDF Query Language (SPARQL) is a pattern
matching-based RDF query language which contains a number of graph patterns.
A SPARQL graph pattern expression is defined recursively as follows [8,14]:

(i) A valid triple pattern T is a graph pattern,
(ii) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 UNION

P2) and (P1 OPTIONAL P2) are graph patterns,

262 W.E. Zhang et al.

(iii) If P is a graph pattern and R is a SPARQL condition, then the expression
(P FILTER R) is a graph pattern.

A Basic Graph Pattern (BGP) is a graph pattern when it is represented by the
conjunction of multiple triple patterns.

2.2 Exponential Smoothing

The Exponential Smoothing (ES) is a technique to produce a smoothed data
presentation, or to make forecasts for time series data, i.e., a sequence of obser-
vations [5]. It can be applied to any discrete set of repeated measurement and is
currently widely used in smoothing or forecasting economic data in the financial
markets. Equation 1 shows the simplest form of exponential smoothing. This
equation is also regarded as Simple Exponential Smoothing (SES).

Et = α ∗ xt + (1 − α) ∗ Et−1 (1)

where Et stands for smoothed observation of time t, xt stands for the actual
observation value at time t, and α is a smoothing constant with α ∈ (0, 1). From
this equation, it is easy to observe that SES assigns exponentially decreasing
weights as the observation becomes older. In our work, we will adapt this equa-
tion to estimate record access frequencies (details in Section 3.3). The reason
behind our choice of SES is its simplicity and effectiveness [6].

2.3 Main Tasks for Hot RDF Data Management

Hot RDF data management generally involves two main tasks:

– Identifying hot data: This task focuses on efficiently identifying hot and cold
data in RDF datasets, and updating the cache. Identifying hot data essen-
tially requires pre-computation of previously accessed data, which can be
done off-line. During the querying time, subsequently accessed records will
be added and processed. They will also contribute to further estimation of
the hot data. Due to the limitation of the cache size, old cached triples
might need to be replaced by newly accessed triples. In this paper, we focus
on proposing techniques to identify hot data and the cache replacement.

– Filtering cold data: This task aims at exploiting accurate filters to reduce
unnecessary accesses to the cold data. As the query result is the union of
results from the hot data (in cache) and the cold data (stored on disk), it
is necessary to filter the redundant cold data when performing queries. As
mentioned before, we will not focus our discussions on this task in the paper,
which will be part of our future work.

3 The Methodology

Figure 1 illustrates our approach, which consists of three major steps, namely
data acquisition and pre-processing, access log extraction, and caching. Section

Identifying and Caching Hot Triples for Efficient RDF Query Processing 263

3.1 discusses our experience in pre-processing a set of real-world query logs to
extract SPARQL queries. Section 3.2 focuses on generating the access log, which
is formed by triples that are accessed during query processing. Section 3.3 intro-
duces our techniques in caching hot data based on the accessed triples.

������ ��	
�

	��	��

• �	���	
• ��
�� ����
�����
• �	���	 ������� ��	
�	�

��������	
�
�
��

�������������
�

�����������

�������
�
�����
�

��	�� ��	
�	� ���	�� ���

• ��
�	
• ��	
� �	��
	 ��������
• ������ ��	
�	�
• ��	��	 �	� ��	
�	�
• �	��
�
	���� �� ���	�� ���

• �������	 �
	��	���	�
• �������
• 	 ��!" #�
���	�

#�
���	�
�����

Fig. 1. Steps for Identifying and Caching Hot Triples

3.1 Data Acquisition and Pre-processing

In this paper, we use a real world dataset to showcase the RDF data acquisition
and pre-processing. Specifically, we analyze parts of the DBpedia 3.9 query logs
provided by USEWOD 2014 data challenge3. These logs are formatted in Apache
Common Log Format. The log files were collected from late 2013 to early 2014
and each log contains requests received by DBPedia’s SPARQL endpoint for one
day. Each request contains requesters’ anonymized IP address and a timestamp
in addition to the actual query. The annoymized IP is encoded to an ID which
represents a unique query requester from a same IP address. Request date is the
time that the query is performed and the timestamps are in an hourly resolution.
The query content is encoded with HTML URL encoding.

Table 1. Query Form Distribution of DBpedia Queries

Query Forms SELECT ASK DESCRIBE CONSTRUCT

Percentage in Total Queries(%) 98.07 1.51 0.29 0.13

In order to extract queries, we process the original query by decoding, extract-
ing interesting values (IP, date, query string), identifying SPARQL queries from
query strings and removing duplicated and invalid queries. Here, invalid queries
include all incomplete queries, queries in languages rather than English, queries
with syntax errors according to SPARQL1.1 specification and queries generate
no result. Our work only focuses on SELECT, as shown from our own analysis
of the USEWOD data set (see Table 1) more than 98% of queries are SELECT
queries.
3 http://usewod.org/

http://usewod.org/

264 W.E. Zhang et al.

3.2 Access Log Extraction

After obtaining the valid queries, we expand them to extract the access log.
There are three main steps. We first decompose a query into patterns and record
patterns’ information in a pattern table containing the pattern feature (UNION,
GROUP, OPTIONAL, FILTER, BIND, VALUES, MINUS etc.), the pattern
content, the level (hierarchy level in the query), ID (a unique identifier in the
table) and the parentID (ID of its parent pattern). We use Apache Jena TDB4

to extract all the patterns of a query. Then we generate new queries according
to the pattern information recorded in this table. The goal of generating new
queries is to obtain triples that a query accesses. In other words, the results
of new queries will contribute to getting final results of the original query. We
focus on discussing this step in the rest of this section. After the new queries
are generated, we execute them on the SPARQL endpoint and get all accessed
triples that are related to the final returned results and record them in the access
log. This step is straightforward so we will not discuss in details.

Let Qs = (S, P) be the original query where S is the SELECT expression and
P = P1⊕ ...⊕Pn is the query pattern where ⊕ ∈ {UNION, GROUP, OPTIONAL,
FILTER, BIND, VALUES, MINUS}. Pi can be finally decomposed to triple pat-
ternswithmodifier andconstraint expressions:Pi = {T1, T2, ..., Tk, E1, E2, ..., En}.

Let Qe be the expanded query and

Qe =
{

(Si, P), if Ti is not from UNION pattern
(Si, Pe), if Ti is from UNION pattern Pj

where Si is modified from Ti by building Ti as a selection expression, Pe is
obtained by replacing Pj with Pj

′ in P , where Pj
′ is obtained by removing Ti

from Pj . To build Si, we choose the triple patterns in the pattern table one by
one. It simply adds “SELECT” before the triple pattern Ti and add “as ?s”, “as
?p” and “as ?o” after each component of Ti. Thus the results are in a uniform
style and easily merged together. For the pattern of new queries, we analyze
the type of triple pattern Ti’s parent, the graph pattern Pj and its position
and relation with other patterns. Then we can decide whether it is the same
as the query pattern in the original query (P , if Pj is not UNION), or needs
to be modified by removing the triple pattern Ti (Pe, if Pj is UNION). More
specifically, we develop four solutions for generating new queries according to
the characteristics of different query patterns.

– UNION. As each part of UNION contributes to the result separately, each
graph pattern in it will generate a new query, whose query pattern is built
by removing this graph pattern from the pattern of the original query.

– GROUP, OPTIONAL. Each triple pattern in GROUP and OPTIONAL
produces a new query. As GROUP and OPTIONAL contribute to the final
query result by working with other patterns, the pattern of the new queries
are the same as the pattern of the original query.

4 http://jena.apache.org/index.html

http://jena.apache.org/index.html

Identifying and Caching Hot Triples for Efficient RDF Query Processing 265

Query 1:

SELECT * WHERE {

{?city rdfs:label ‘Evry’@en.}

UNION

{?alias dbpedia2:redirect ?city; rdfs:label ’Evry’@en.}

OPTIONAL {?city dbp:abstract ?abstract}

FILTER (langMatches(lang(?abstract),’en’))

}

LIMIT 10

Fig. 2. Example Query

– FILTER, BIND, VALUES, MINUS. FILTER is an additional constraint and
usually cannot be further decomposed into BGPs or triple patterns. Thus we
keep it unmodified in the new queries. BIND and VALUES are assignments
that cannot be decomposed into BGPs or triple patterns either, we also keep
them unmodified in the new queries. Hence, FILTER, BIND and VALUES
will not generate new queries. MINUS can be decomposed into BGPs or
triple patterns, but as we only consider the triples related to the final result,
we ignore the processing of triple patterns in MINUS.

– LIMIT, OFFSET. Regarding to modifiers, we only take LIMIT and OFF-
SET into consideration by simply appending them to the new queries.

We illustrate our approach with Query 1 in Figure 2, which retrieves certain
information in English about city “Evry”. The graph patterns for Query 1 are:

PGROUP1 := {? c i t y r d f s : l a b e l ‘ Evry ’ @en .}
PGROUP2 := {? a l i a s dbpedia2 : r e d i r e c t ? c i t y .

? a l i a s r d f s : l a b e l ‘ Evry ’ @en .}
PUNION := PGROUP1 UNION PGROUP2

POPTIONAL := {? c i t y dbp : ab s t r a c t ? ab s t r a c t }
PFILTER := FILTER langMatches (lang (? ab s t r a c t) , ‘ en ’)

Curly braces delimit a graph pattern that can be further decomposed into triple
patterns. According to our four solutions discussed above, the triple patterns
that can generate new queries are:

T1 := ? c i t y r d f s : l a b e l ‘ Evry ’ @en
T2 := ? a l i a s dbpedia2 : r e d i r e c t ? c i t y
T3 := ? a l i a s r d f s : l a b e l ‘ Evry ’ @en
T4 := ? c i t y dbp : ab s t r a c t ? ab s t r a c t

T1 and T2.T3 (. represents AND) are two parts of UNION, thus they can
produce one new query with pattern removing T1 from the original query and
other two new queries with pattern removing T2.T3. For the latter case, since T2

and T3 belong to a GROUP, they can generate two new queries respectively that
only differ with the SELECT expression. T4 is OPTIONAL, and it can build a
new query just by using itself in a SELECT expression and other part is the same
as the original query. For the modifier LIMIT, we simply append it at the end of

266 W.E. Zhang et al.

the new queries. Thus four new queries will be generated. Figure 3 gives the new
query generated from T1. To avoid naming conflict in the SELECT expression
in the new queries, we rename all the variables by labeling them with sequential
integers (i.e. ?var1, ?var2). In Figure 3, the variables in the new query follow
this renaming rule. Other new queries as well as the pattern table of Query 1
can be found in our website5.

SELECT DISTINCT (?var0 AS ?s) (rdfs:label AS ?p) ("Evry"@en AS ?o)

WHERE {

{ ?var0 rdfs:label "Evry"@en }

OPTIONAL { ?var0 dbp:abstract ?var2 }

FILTER langMatches(lang(?var2), "en")

}

LIMIT 10

Fig. 3. New Query for T1

3.3 Caching

In this section, we discuss how we use the access log to realize caching as well as
cache replacement. We modify the SES equation according to our requirement
and process the access log in a forward way to compute access frequencies for each
record in the log (Section 3.3.1). According to the estimation, we rank the fre-
quencies and consider those with the highest values as hot, which will be cached.
During the query processing, a new estimation will be made both for triples that
are in the estimation record and for new triples (Section 3.3.2). To update the
cache, we implement two cache replacement approaches (Section 3.3.3).

3.3.1 Modified Simple Exponential Smoothing (MSES)
As introduced in Section 2.2, Exponential Smoothing (ES) is a smoothing method
that considers the estimation according to time, which meets the requirement
of caching the most frequently and recently used triples. In our approach, we
exploit Simple Exponential Smoothing (SES) to estimate access frequencies of
triples. Here xt represents whether the triple is observed at time t, thus it is
either 1 if an access for a triple is observed; or 0 otherwise. Therefore we can
modify the Equation 1 as:

Et = α + Etprev ∗ (1 − α)tprev−t (2)

where tprev represents the time when the triple is last observed and Etprev denotes
the previous frequency estimation for the triple at tprev. α is a smoothing con-
stant with value between 0 and 1. The accuracy of ES can be measured by its
5 http://cs.adelaide.edu.au/∼wei/sublinks/projects/SemanticCaching/

PatternsTableAndNewQueries.pdf

http://cs.adelaide.edu.au/~wei/sublinks/projects/SemanticCaching/PatternsTableAndNewQueries.pdf
http://cs.adelaide.edu.au/~wei/sublinks/projects/SemanticCaching/PatternsTableAndNewQueries.pdf

Identifying and Caching Hot Triples for Efficient RDF Query Processing 267

standard error. For a record with true access frequency p, it can be shown that
the standard error for SES is

√
αp(1 − p)/(2 − α) as indicated in a recent study

[6]. The authors of [6] do not give the derivation of this standard error. In this
paper, we give our derivation according to Equation 2 and provide a theoretical
proof that SES achieves better hit rates than the most used caching algorithm
LRU-2. The variance of the estimation Et is [10]:

V ar(Et) = σ2α2(
t−1∑

i=0

(1 − 2α)2i) (3)

As
t−1∑

i=0

(1 − 2α)2i =
1 − (1 − α)2t

1 − (1 − α)2
(4)

we can get
V ar(Et) = σ2 α

2 − α
[1 − (1 − α)2t] (5)

When t → ∞, we get
V ar(Et) = σ2 α

2 − α
(6)

Because the observation value can only be 0 or 1, it follows a Bernoulli
Distribution (or Two-point Distribution), and the frequency p is actually the
possibility of the observation being 1. So, the standard error for this Bernoulli
distribution is: σ =

√
p(1 − p) [4]. Thus we can get the standard error of the

estimation SE as:

SE(Et) =
√

V ar(Et) =
√

p(1 − p)
√

α

2 − α
=

√
αp(1 − p)
(2 − α)

(7)

We also give the measurement of standard error for the most commonly
used caching algorithm LRU-2 here as we compare our approach with LRU-2
in Section 4. In a recent work in [6], the authors present a probability model
for evaluating the distribution of LRU-2 estimation and find that it follows a
geometric distribution. Thus its standard error is:

SE(LRU − 2) =
√

1 − p

p2
(8)

By comparing Equation 7 and 8, it is easy to observe that SE(LRU − 2) is
always bigger than SE(Et). Our evaluation in Section 4 also empirically proves
this theoretical derivation.

3.3.2 Identify and Cache Hot Triples
We use a forward algorithm to identify hot triples. This algorithm works as
follows. It scans the access log from a beginning time to an ending time. A
parameter H represents the number of records to be classified as “hot”.

268 W.E. Zhang et al.

The output is the H hot triples that will be cached. When encountering an
access to a triple at time t, the algorithm updates this triple’s estimation using
Equation 2. When the scan is completed, the algorithm ranks each triple by its
estimated frequency and returns the H triples with the highest estimates as the
hot set.

The forward algorithm has three main advantages. Firstly, it is simple as we
only need to choose a starting time and then calculate the new estimation using
Equation 2 when a triple is observed in the log again. Secondly, the algorithm
enables us to update the estimation and the cache immediately after a new query
is executed based on the previously recorded estimation. Thirdly, this algorithm
implements an incremental approach that helps identify the warm-up stage and
the warmed stage of the cache.

However, this algorithm also has several drawbacks. Specifically, it requires
storing the whole estimation record which is a large overhead. Furthermore, the
algorithm also consumes a significant amount of time when calculating and com-
paring the estimation values. To solve these issues, we consider improving the algo-
rithm in two ways. One possible solution is that we do not keep the whole records.
Instead we just keep a record after skipping certain ones. This is a naive sampling
approach. We vary the sampling rate but it turns out that the performance of this
sampling approach is not desirable (see Section 4). The other possible approach
is that we maintain partial records by only keeping those within a specified range
of time. Assume last access time is the time a record is last observed. We find the
earliest last access time: tearliest in the hot triples and only keep the estimation
records whose last access time is later than tearliest. Thus we only keep estimation
records from tearliest to the access time of currently processed triple. The update
of tearliest will be discussed in next section.

3.3.3 Cache Replacement
We provide two ways for cache replacement based on the two possible improved
forward algorithms discussed in Section 3.3.2, namely the full-records based
replacement and the improved replacement.

In the full-records based replacement, each time when a new query is exe-
cuted, we examine the accessed triples using MSES. If they are in the cache,
we update the estimation for each triple. Otherwise, we record the new estima-
tions. We keep the estimation records for all accessed triples. When the top H
estimations are changed, the cache will be updated to the new top H hot triples.

In the improved replacement, we only keep estimation records from tearliest
to the access time of the current processing triple. Algorithm 1 describes the
details on updating the cache by using part of the estimation records. The input
of the algorithm is the whole estimation records, triples in cache and a new
estimated triple. Line 1-4 initialize variables that represent the latest access time,
the earliest access time, the minimal estimation and the maximum estimation in
cached triples (i.e., the hot triples). Then the algorithm gets partial estimation
records that are within the time range between tearliest and the access time of
the last processed triple in the log (Line 5). If the new estimated triple is in

Identifying and Caching Hot Triples for Efficient RDF Query Processing 269

Algorithm 1. Algorithm for Improved Caching Replacement
Data: Records, cachedTriples, newAccTriple
Result: Updated cachedTriples
begin

1 tlatest ←− max(last acc time, cachedTripples)
2 tearliest ←− min(last acc time, cachedTripples)
3 estmax ←− max(est, cachedTripples)
4 estmin ←− min(est, cachedTripples)
5 Records ←− getPartialRecords(tlatest, tearliest)
6 if newAccTriple in cachedTriples then
7 calculateNewEstimation()
8 Update est, last acc time in Records
9 tlatest ←− newAccTriple.last acc time

10 tearliest ←− getEarliest(cachedTriples)
11 remove from Records the records with last acc time less than tearliest

else
12 if newAccTriple in Records then
13 calculateNewEstimation()
14 Update est, last acc time in Records
15 if est between estmin and estmax then
16 remove from cachedTriples the records with estmin with minimum

last acc time
17 addToCached(newAccTriple)
18 tlatest ←− newAccTriple.last acc time
19 tearliest ←− getEarliest(cachedTriples)
20 remove from Records the records with last acc time less than tearliest

else
21 addToRecords(newAccTriple)

the cache, it shows a cache hit, and the algorithm updates the new estimation
calculated by Equation 2 and the last access time of this triple in estimation
records. It calculates the new tearliest and tlatest if the new estimated triple
holds the previous tearliest and tlatest. If tearliest is changed, estimation records
with last access time earlier than tearliest will be removed (Line 6-11). If the new
estimated triple is not in the cache, which is a cache miss, the algorithm checks
whether the new estimated triple is in the estimation records. If so, it updates
its estimation and last access time in records. In addition, the cache needs to be
updated if the estimation of the new estimated triple is in the range of (estmin,
estmax). This means it becomes a new hot triple that should be placed into the
cache. When the cache is updated, new tearliest and tlatest will be calculated,
and the estimation records outside the time range will be removed (Line 15-20).
If the new estimated triple is not in the estimation records, it needs to be added
to the records (Line 21).

4 Experiments

We designed three experiments to verify the effectiveness of our approach: i)
comparison of the hit rates between our proposed approach and the state-of-
the-art algorithms; ii) space overhead comparison between the full record based
forward MSES and the improved forward MSES; and iii) time overhead com-
parison between the full record based forward MSES and the improved forward

270 W.E. Zhang et al.

0 0.5 1 1.5 2 2.5 3

x 10
6

0

10

20

30

40

50

60

70

Triples processed

H
it

R
at

e
(%

)

MSES
Sampling MSES
Improved MSES
LRU−2

(a) Different Algorithms

0 1 2 3 4 5 6

x 10
6

0

10

20

30

40

50

60

70

Triples processed

H
it

R
at

e
(%

)

0.05
0.7
0.03
0.01

(b) Different Alpha

Fig. 4. Hit Rate Comparisons

MSES. We conducted the three experiments on a PC with 64-bit Windows 7
Operation System, 8GB RAM and 2.40GHZ intel -i7-3630QM CPU using Java
SE7 and Apache Jena-2.11.2.

Hit Rate Comparison. To evaluate the performance of our approach, we imple-
mented various algorithms including the forward MSES, an Improved MSES,
the Sampling MSES, and LRU-2. LRU-2 is a commonly used page replacement
algorithm which we implemented based on record rather than page. Figure 4(a)
shows the hit rates achieved by these algorithms. It should be noted that in the
experiment, the caching size was set to 20% of the total access log and α was set
to 0.05 for MSES and its variants. As the Exponential Smoothing has only one
parameter α, the choice for α would affect the hit rate performance. However,
as per our experiments on different values for α, the hit rates differ only slightly
and a value of 0.05 shows better performance (see Figure 4(b)). We chose 20%
as the caching size because it is neither too large (e.g., > 50%) to narrow the
performance differences among algorithms, nor too small (e.g., < 10%) leading
to inaccurate performance evaluation due to insufficient processed data. From
the figure, we can see that the MSES and Improved MSES have the same hit
rate until they have processed about 1.8 million RDF triples, after which MSES
has a higher hit rate than Improved MSES. This is because MSES maintains the
estimations for all processed records while the Improved MSES only keeps part
of the estimations. The changing point denotes that from which, the Improved
MSES maintains partial volume of estimation records. From the figure, we can
also see that the Sampling MSES does not perform well. This figure only shows
the hit rate of sampling MSES with the sampling rate of 50%, which is expected
to have a high hit rate. The LRU-2 algorithm has the lowest hit rate of all the
algorithms. The hit rates of all algorithms start from 0 and reach their first peak
at certain points, and then go down and up. The direction to the first peak
shows the warm-up stage and the rest of the lines are the warmed stage. This
illustrates that we exploit an incremental approach, which includes a warm-up
stage to calculate the hit rate.

Identifying and Caching Hot Triples for Efficient RDF Query Processing 271

Storage Overhead. This experiment compares the two implementations of our
cache replacement algorithms. As discussed before, MSES performs better than
the Improved MSES. However, it consumes more storage space to maintain the
estimation records for all processed triples. It also takes a longer time to check
the cache. Figure 5 shows the performance comparison between MSES and the
Improved MSES. Figure 5(a) shows the maximum space consumption for each
algorithm. The columns are classified into 4 groups which represent the percent-
age of hot triples to all accessed triples. In each group, the left column represents
the maximum space used by MSES, including the hot triples and the estimation
records (we have processed 5,095,807 triples in this experiment). The middle
column represents the space usage of the Improved MSES that also includes the
hot triples and the estimation records. The right column represents the size of
the hot triples. From this figure, we can see that the Improved MSES consumes
less space.

10 20 40 50
0

100

200

300

400

500

600

700

800

900

Percentage of Hot Data (%)

M
ax

im
um

 R
ec

or
ds

 S
iz

e
(M

B
)

MSES
Improved MSES
Hot Size

(a) Space

10 20 40 50
0

2

4

6

8

10

12

14

16

18

20

Percentage of Hot Data (%)

R
el

at
iv

e
T

im
e

us
ag

e
S

E
S

 C
om

pa
re

d
to

 Im
pr

ov
ed

 S
E

S
 (

T
im

es
)

(b) Time

Fig. 5. Performance Comparisons Between MSES and Improved MSES

Time Overhead. Figure 5(b) shows the relative average hit checking time MSES
uses compared to Improved MSES. We also used 10%, 20%, 40%, 50% as our
testing hot data ratios. MSES takes much longer time than MSES does to check
if there is a cache hit. Specifically, when the hot triple ratio is 10%, MSES takes
almost 20 times longer than the Improved MSES. Even when the hot triple ratio
grows to 50%, the gap is still close to 10 times. The more percentage of the
data is cached, the narrower the gap will be. This is because the number of
estimations checked will be closer for the two algorithms when the percentage
of data cached grows high.

5 Related Work

In this section, we review existing efforts in semantic caching and query expan-
sion that are related to our research in this paper.

272 W.E. Zhang et al.

Semantic Caching. Semantic caching involves techniques that keep previously
fetched data from past queries. In this way, if subsequent queries use the same
data, results can be returned immediately. The recent approaches include caching
complete query results [8] and caching the result of subgraphs of a query pat-
tern graph [17]. The work in [8] is the first step towards semantic caching, in
which both the triple query result caching and the application object caching
are implemented. It essentially builds a proxy layer between an application and
a SPARQL endpoint. The proxy layer caches the query-result pairs. When a new
query arrives, this approach first checks if the query is already in the cache. If
so, it will answer the query using the cached result without accessing the triple
store. In this approach, only subsequent queries that are the same as cached
ones can result in a cache hit. However, real world queries vary and even if they
access the same triples, they might not return the same results, e.g., different
queries may be interested in different parts of a triple. [17] provides an approach
that caches intermediate result of basic graph patterns in SPARQL queries. For
a new query, it first decomposes the query into BGPs and checks if the result
of any BGP or join of BGP is cached. If so, it returns the result and joins the
other parts of the query to form the final query result. However, the work ignores
the fact that different join orders would result in different intermediate results.
Moreover, it only considers join (i.e., AND) query form.

Query Expansion. Query expansion (also called query relaxation) aims at dis-
covering related information based on a user query and increasing recall when
executing the query. It is a research topic in the field of information retrieval [1]
and is recently used by many research works on SPARQL queries, e.g., caching,
suggestion, and optimization. Lorey and Naumann [7] propose a template-based
method to expand a query and the work is aimed at pre-fetching data related
to future queries. By modifying the query, related information will be perfected
and cached for the subsequent queries. Thus, these subsequent queries will be
answered without accessing the triple store. It is based on the assumption that
subsequent queries will access relevant resources to the cached query results.
However, this assumption is based on the application scenario, that only consid-
ers queries requested by the same agent. Note that the highest cache hit rate of
their approach is 39%, which is much lower than the hit rate of our approach
(64%, see Figure 4(a)).

In a very recent work by Levandoski et al. [6], the authors present an app-
roach for identifying hot and cold data in main memory of OLTP systems. They
introduce a forecasting method that is commonly used in the finance field: Simple
Exponential Smoothing (SES). It is shown that the approach achieves a higher
hit rate than the best existing caching techniques. Our work is inspired by this
work and we leverage the idea of using SES as the caching algorithm because
our research problem shares similar requirements with their work in two aspects.
Firstly, our caching is record based, rather than traditional page-based caching
algorithms. Thus the classical algorithms are not applicable. Secondly, the poten-
tial applications of our approach are in non-RDBMS based triple stores, which

Identifying and Caching Hot Triples for Efficient RDF Query Processing 273

require relatively less computing and analyzing ability but efficient query answer-
ing, and this is similar to OLTP systems.

6 Conclusion and Future Work

In this paper, we analyze the caching problem for non-RDBMS based RDF
triple stores and develop a caching method that is based on the estimation of
triples’ access frequencies. We extract real world queries from publicly accessi-
ble SPARQL endpoints and expand these queries according to an analysis of
query patterns. We exploit expanded queries to obtain accessed triples, which
are recorded as the access log in our caching process. Then we extend a smooth-
ing method, Simple Exponential Smoothing, to estimate the access frequencies
of the accessed triples. The triples with the highest estimation are cached. We
also develop several cache replacement algorithms to update the cache so that
only triples with the highest estimates are kept in the cache. Our experimental
studies with a real-world dataset reveal that the sampling does not work well
as expected and our proposed Improved MSES achieves a higher hit rates than
LRU-2, the most commonly used caching algorithm in relational databases. This
shows that our time-aware frequency based caching approach performs well and
has great potential to improve the query processing performance in non-RDBMS
triple stores.

There are several directions for the future work. In this paper, we only con-
sider results-related triples as accessed triples. Although our approach is able to
return results (in case of cache hit) immediately, the querying process is yet final-
ized because many other triples (i.e., cold triples that are related to the query)
are also accessed without contributing to the final result. In order to improve
the performance of the whole query answering process, we will work on how to
filter these related cold triples. Moreover, the forward algorithm for processing
the access log is comparatively slower than the backward algorithm proposed in
a recent work in [6]. We will investigate the possibility of designing a backward
algorithm for our scenario. Finally, we plan to integrate the pattern caching into
our approach to further enhance the hit rate performance.

References

1. Carpineto, C., Romano, G.: A Survey of Automatic Query Expansion in Informa-
tion Retrieval. ACM Computing Survey 44(1), 1 (2012)

2. Denning, P.J.: The Working Set Model for Program Behaviour. Communications
of the ACM 11(5), 323–333 (1968)

3. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF
Graphs. The VLDB Endowment (PVLDB) 4(11), 1123–1134 (2011)

4. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions (2nd Edi-
tion). Wiley (1993)

5. Jr., E.S.G.: Exponential Smoothing: The State of The Art-Part II. International
Journal of Forecasting 22(4), 637–666 (2006)

274 W.E. Zhang et al.

6. Levandoski, J.J., Larson, P., Stoica, R.: Identifying hot and cold data in main-
memory databases. In: Proc. of 29th International Conference on Data Engineering
(ICDE 2013), pp. 26–37. Brisbane, Australia, April 2013

7. Lorey, J., Naumann, F.: Detecting SPARQL query templates for data prefetching.
In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC
2013. LNCS, vol. 7882, pp. 124–139. Springer, Heidelberg (2013)

8. Martin, M., Unbehauen, J., Auer, S.: Improving the Performance of Semantic Web
Applications with SPARQL Query Caching. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010,
Part II. LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010)

9. Megiddo, N., Modha, D.S.: ARC: a self-tuning, low overhead replacement cache.
In: Proc. of the Conference on File and Storage Technologies (FAST 2003). San
Francisco, California, USA, March 2003

10. Movellan, J.R.: A Quickie on Exponential Smoothing. http://mplab.ucsd.edu/
tutorials/ExpSmoothing.pdfa/

11. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In:
Proc. of the International Conference on Management of Data (SIGMOD 2009)

12. Neumann, T., Weikum, G.: The RDF-3X Engine for Scalable Management of RDF
Data. The VLDB Journal 19(1), 91–113 (2010)

13. O’Neil, E.J., O’Neil, P.E., Weikum, G.: The LRU-K page replacement algorithm for
database disk buffering. In: Proc. of the International Conference on Management
of Data (SIGMOD 1993), pp. 297–306. Washington, D.C., USA, May 1993

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Transactions on Database Systems 34(3) (2009)

15. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: Proc. of the 17th Inter-
national World Wide Web Conference (WWW 2008), pp. 595–604. Beijing, China,
April 2008

16. Yan, Y., Wang, C., Zhou, A., Qian, W., Ma, L., Pan, Y.: Efficiently querying
RDF data in triple stores. In: Proc. of the 17th International World Wide Web
Conference (WWW 2008), pp. 1053–1054. Beijing, China, April 2008

17. Yang, M., Wu, G.: Caching intermediate result of SPARQL queries. In: Proc. of
the 20th International World Wide Web Conference (WWW 2011), pp. 159–160.
Hyderabad, India, March 2011

18. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A Distributed Graph Engine for
Web Scale RDF Data. The VLDB Endowment (PVLDB) 6(4), 265–276 (2013)

19. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: Answering SPARQL
Queries via Subgraph Matching. The VLDB Endowment (PVLDB) 4(8), 482–493
(2011)

http://mplab.ucsd.edu/tutorials/ExpSmoothing.pdfa/
http://mplab.ucsd.edu/tutorials/ExpSmoothing.pdfa/

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 275–291, 2015.
DOI: 10.1007/978-3-319-18123-3_17

History-Pattern Implementation for Large-Scale
Dynamic Multidimensional Datasets and Its Evaluations

Masafumi Makino, Tatsuo Tsuji(), and Ken Higuchi

Information Science Depatment, Faculty of Engineering,
University of Fukui, Bunkyo 3-9-1, Fukui City 910-8507, Japan

{makino,tsuji,higuchi}@pear.fuis.u-fukui.ac.jp

Abstract. In this paper, we present a novel encoding/decoding method for
dynamic multidimensional datasets and its implementation scheme. Our method
encodes an n-dimensional tuple into a pair of scalar values even if n is suffi-
ciently large. The method also encodes and decodes tuples using only shift and
and/or register instructions. One of the most serious problems in multidimen-
sional array based tuple encoding is that the size of an encoded result may often
exceed the machine word size for large-scale tuple sets. This problem is effi-
ciently resolved in our scheme. We confirmed the advantages of our scheme by
analytical and experimental evaluations. The experimental evaluations were
conducted to compare our constructed prototype system with other systems; (1)
a system based on a similar encoding scheme called history-offset encoding,
and (2) PostgreSQL RDBMS. In most cases, both the storage and retrieval costs
of our system significantly outperformed those of the other systems.

1 Introduction

In general, an n-dimensional data tuple can be mapped to the n-dimensional coordi-
nate of a multidimensional array element. The coordinate can be further uniquely
mapped to its position in the array by calculating the addressing function of the array.
However, in a dynamic situation where new attribute values can emerge, a larger
array is necessary to cover the new values, and the positions of the existing array
elements must be recalculated according to the new addressing function.

An extendible array (e.g., [11]) can extend its size along any dimension without re-
locating any existing array elements. History-offset encoding [14] is a scheme for
encoding multidimensional datasets based on extendible arrays. If a new attribute
value emerges in an inserted tuple, a subarray to hold the tuple is newly allocated and
attached to the extended dimension. A tuple can be handled with only two scalar val-
ues, history value of the attached subarray and position of the element in the subarray
regardless of the dimension n. Dynamic tuple insertions/deletions can be performed
without relocating existing encoded tuples.

Many of the tuple encoding schemes, including history-offset encoding, use the
addressing function of a multidimensional array to compute the position. However,
there are two problems inherent in such encodings. First, the size of an encoded
result may exceed the machine word size (typically 64 bits) for large-scale datasets.

276 M. Makino et al.

Second, the time cost of encoding/decoding in tuple retrieval may be high; more spe-
cifically, such operations require multiplication and division to compute the address-
ing function, and these arithmetic operations are expensive. To resolve these two
problems without performance degradation, we present a history-pattern encoding
scheme for dynamic multidimensional datasets and its implementation scheme called
History-Pattern implementation for Multidimensional Datasets (HPMD). Our encod-
ing scheme ensures significantly smaller storage and retrieval costs.

Our scheme encodes a tuple into a pair of scalar values <history value, pattern>.
The core data structures for tuple encoding/decoding are considerably small. An en-
coded tuple can be a variable length record; the history value represents the extended
subarray in which the tuple is included and also represents the bit size of the pattern.
This approach enables an output file of the encoded results to conform to a sufficient-
ly small sequential file organization. Additionally, our scheme does not employ the
addressing function, hence avoiding multiply and divide instructions. Instead, it en-
codes and decodes tuples using only shift and and/or register instructions. This makes
tuple retrieval significantly fast and further provides an efficient scheme for handling
large-scale tuples whose encoded sizes exceed machine word size.

In this paper, after history-offset encoding is outlined, our history-pattern encod-
ing. is presented. Next HPMD and an implementation scheme for large-scale tuple
sets is described. Then the retrieval strategy using HPMD is explained. Lastly the
implemented HPMD is evaluated and compared with other systems.

2 History-Pattern Encoding

2.1 Preliminary (Extendible Array and History-Offset Encoding)

As preliminary, we first introduce an extendible array model employed in history-
offset encoding[14]. Fig. 1 is an example of a two-dimensional extendible array.

An n-dimensional extendible array A has a history counter h, history table Hi, and a
coefficient table Ci for each extendible dimension i (i = 1,…, n). Hi memorize the
extension history of A. If the current size of A is [s1, s2,…, sn], for an extension that
extends along dimension i, an (n−1)-dimensional subarray S of size [s1, s2,…, si−1,
si+1,…, sn−1, sn] is attached to dimension i. Then, h is incremented by one and memo-
rized on Hi. In Fig. 1, the array size is [3, 3] when h is 4. If the array is extended along
dimension 1, a one-dimensional subarray of size 3 is attached to dimension 1, and h is
incremented to 5 (and is held in H1 [3]). Each history value can uniquely identify the
corresponding extended subarray.

As is well known, element (i1, i2,…, in−1) in an (n−1)-dimensional fixed-size array
of size [s1, s2, …, sn−1] is allocated on memory using an addressing function such as :

 f(i1, …, in−1) = s2s3 …sn−1i1 + s3s4 …sn−1i2 + …+ sn−1in−2 + in−1 (i)

We call <s2s3…sn−1, s3s4…sn−1, …, sn−1> a coefficient vector. The vector is computed
at array extension and is held in coefficient table Ci of the corresponding dimension.
Specifically, if n = 2, the subarrays are one-dimensional and f(i1) = i1. Therefore, the
coefficient tables can be void if n is less than 3 as in Fig. 1

History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets 277

Using the above three types of auxiliary tables, history-offset encoding (denoted as
ho-encoding in the following) of array element e(i1, i2, …, in) can be computed as <h,
offset>, where h is the history value of the subarray in which e is included and offset is
the offset of e in the subarray computed by (i); e.g., element (3,2) is encoded to <5,2>.

Fig. 1. Two-dimensional extendible array

2.2 History-Pattern Encoding

Fig. 2 illustrates the required data structures for the history-pattern encoding (abbre-
viated as hp-encoding in the following). scheme. Unlike ho-encoding, when logical
extendible array A in the hp-encoding extends its size, a fixed-size subarray equal to
the size of the current A in every dimension is attached to the extended dimension.
The data structures for A consist of the following two types of tables preserving ex-
tension information.

(History table) For each dimension i (i=1,…,n), history table Hi is maintained. Each
history value h in Hi represents the extension order of A along the i-th dimension. Hi is
a one-dimensional array, and each subscript k (k > 0) of Hi corresponds to the sub-
script range from 2k − 1 to 2k − 1 of the i-th dimension. This range is covered by the
subarray along the i-th dimension attached to A at the extension when the history
counter value is h. For example, as shown in Fig. 2, since H1[3] is 5, the subscript 3 of
H1 corresponds to the subscript range from 4 to 7 of the first dimension of A.

(Boundary vector table) The boundary vector table B is a single one-dimensional
array whose subscript is a history value h. It plays an important role for hp-encoding.
Each element of B maintains the extended dimension and the boundary vector of the
subarray when the history counter value is h. More specifically, the boundary vector
represents the past size of A in each dimension when the history counter value is h.
For example, the boundary vector in B[3] is <2, 1>; therefore, the size of A at a histo-
ry counter value of 3 is [22, 21] = [4, 2]. Together with the boundary vectors, B also
maintains the dimension of A extended at the given history counter value. A includes
only the element (0, 0, …, 0) at its initialization, and the history counter is initialized to
0. B[0] includes 0 as its extended dimension and <0, 0, …, 0> as its boundary vector

Let h be the current history counter value, and B[h] includes <b1, b2, …, bi, …, bn>
as its boundary vector. When A extends along the i-th dimension, B[h + 1] includes i
as its extended dimension and <b1, b2, …, bi + 1, …, bn> as its boundary vector.

history counter h

4

5

278 M. Makino et al.

(Logical size and real size) In hp-encoding, A has two size types, i.e., real and logi-
cal. Assume that the tuples in n-dimensional dataset M are converted into the set of
coordinates. Let s be the largest subscript of dimension k and b(s) be the bit size of s.
Then, the real size of dimension k is s +1, and the logical size is 2b(s). The real size is
the cardinality of the k-th attribute; for example, in Fig. 2, the real size is [5, 4], whe-
reas the logical size is [8, 4]. In Fig. 3 below, the real size is [6, 6], and the logical size
is [8, 8]. Note that in ho-encoding logical and real size are the same.

(Array extension) Suppose that a tuple whose k-th attribute value emerged for the
first time is inserted. This insertion increases the real size of A in dimension k by one.
If the increased real size exceeds the current logical size 2b(s), A is logically extended
along dimension k. That is, current history counter value h is incremented by one, and
this value is set to Hk[b(s+1)]. Moreover, the boundary vector in B[h] is copied to
B[h+1] and dimension k of the boundary vector is incremented by one; k is set to the
extended dimension slot in B[h+1], as illustrated in Fig. 2.

Note that h is one-to-one correspondent with its boundary vector in B[h]; this uni-
quely identifies the past (logical) shape of A when the history counter value is h. To
be more precise, for history value h > 0, if the boundary vector in B[h] is <b1, b2, …,
bn>, the shape of A at h is [2b1, 2b2, …, 2bn]. For example, in Fig. 2, because the boun-
dary vector for the history value 3 is <2, 1>, the shape of A when the history counter
value was 3 is [22, 21]=[4, 2]. Note that h also uniquely identifies the subarray at-
tached to A at extension when the history counter value was h−1. This subarray will
be called the principal subarray on dimension k at h. For example, in Fig. 2, the
principal subarray on dimension 2 at h=4 is the subarray specified by [0..3, 2..3].

Fig. 2. Data structures for hp-encoding

2.3 Encoding/Decoding

Using the data structures described in Section 2.2, an n-dimensional coordinate I = (i1,
i2, ……, in) can be encoded to the pair <h, p> of history value h and bit pattern p of
the coordinate. The history tables Hi (i =1,…, n) and the boundary vector table B are
used for the encoding. The history value h for I is determined as max {Hk[b(ik)] | k
=1,…, n }, where b(ik) is the bit size of the subscript ik in I. For each history value h,
the boundary vector B[h] gives the bit pattern size of each subscript in I. According to
this boundary vector, the coordinate bit pattern p can be obtained by concatenating the
subscript bit pattern of each dimension by placing in descending order of dimensions
on the storage for p from the lower to the higher bits of p. The storage for p can be
one machine word length; typically, 64 bits.

 3

1 2 3
0

1

2

0
0 1 3

0

2

4

dim. 1

history
value

4, 3

H1

H2

di
m

. 2

history counter

55
5 6 74

0 1 2 3

2

1

0

y
history value

boundary vector

0 1 2 3 4

<2, 2><2, 1><1, 1><1, 0><0, 0>
extended dim. 1 210 2

<3, 2>

5
1

boundary vector table B

History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets 279

For example, consider the array element (4, 3) in Fig.2. According to the above en-
coding procedure, H1[b(4)] > H2[b(3)] because H1[b(4)] = H1[b(100(2))] = H1[3] = 5
and H2[b(3)] = H2[b(11(2))] = H2[2] = 4. So h is proved to be H1[3] = 5, and element
(4, 3) is known to be included in the principal subarray (Section 2.2) on dimension 1
at history value 5. Therefore, the boundary vector to be used is <3, 2> in B[5]. So the
subscript 4 of the element (4, 3) forms the upper 3 bits of p as 100(2) and the subscript
3 of the element forms the lower 2 bits of p as 11(2). Therefore, p becomes 10011(2) =
19. Eventually, the element (4, 3) is encoded to <5, 19>. Generally, the bit size of the
history value h is much smaller than that of pattern p.

Conversely, to decode the encoded pair <h, p> to the original n-dimensional coor-
dinate I = (i1, i2, ……, in), first the boundary vector in B[h] is known. Then the sub-
script value of each dimension is sliced out from p according to the boundary vector.
For example, consider the encoded pair <h, p>=<5, 19>. The boundary vector in
B[h] is <3, 2>, so p = 10011(2) can be divided into 100(2) and 11(2). Therefore <5, 19>
can be decoded to the coordinate (4, 3).

2.4 Hp-Property

From the construction procedure of the boundary vector table B in Section 2.2, the
following simple, but important property for our hp-encoding can be known. This
property will be called hp-property in the following.

[Property 1 (hp-property)] Let <h, p> be an encoded history-pattern of a tuple. h is
the total sum of the element values of the boundary vector in B[h] and represents the
bit size of the coordinate pattern p for an arbitrary element in the subarray at h.

In our hp-encoding, the favorable property of an extendible array is reflected in the
hp-property above. Namely, for the tuples inserted in the subarrays created at the
early stage of array extension occupy smaller storage. Consequently, the size of p can
be much smaller than in the usual case where each subscript value occupies fixed size
storage. It should be noted that the boundaries among the subscript bit patterns in p
can be flexibly set to minimize the size of p.

Moreover, the hp-property states that h represents the bit pattern size of p. This
simple property together with shift and and/or register instructions for encod-
ing/decoding makes our encoding scheme to be applied for implementation of large
scale multidimensional datasets efficiently with no significant overhead. From this
property even if the bit size of p is doubled, h increases only by 1. For example, if the
p's current bit size is 255 bits, h is only 1 byte. Therefore our hp-encoding scheme can
provide unlimited (logical) history-pattern space size for large and high dimensional
dataset with a very small additional storage cost for keeping h.

2.5 Comparison of The Two Encoding Schemes

In this section, we compare hp-encoding with ho-encoding. Let the real size of the
extendible array be [s1, s2, …, sn] for both encodings.

280 M. Makino et al.

(1) Storage Costs for Core Data Structures
For ho-encoding, the core data structures are the history tables and the coefficient
tables presented in Section 2.1; for hp-encoding, they are the history tables and the
boundary vector table presented in Section 2.2. These data structures guarantee the
extensibility of an extendible array.

Here the size of a history table slot is typically assumed to be 2 bytes for ho-
encoding and 1 byte for hp-encoding. In ho-encoding, let c be the fixed size in bytes
of the coefficients in the coefficient tables. We estimate the storage cost of core data
structures for ho-encoding as follows:

(a) History tables: 4∗(s1 + s2+…..+ sn)
(b) Coefficient tables: c∗(n-2) (s1 + s2+…..+ sn) (n > 2)

For hp-encoding, the storage cost is as follows:

 (c) History tables:
(d) Boundary vector table:

For example, if n is 5 and si = 512 (i=1,...,5), c is computed as 4 bytes, and we have:
for ho-encoding (a) is 5120 bytes, (b) is 30720 bytes, and for hp-encoding (c) is 45
bytes, (d) is 225 bytes. The total size of the core data structures for hp-encoding is
0.75% of that for ho-encoding.
(2) Encoding and Decoding Performance
In hp-encoding, encoding/decoding are performed using only shift and and/or register
instructions. Because these instructions do not refer to memory addresses, encod-
ing/decoding can be executed quickly as compared with ho-encoding in which multipli-
cation and division operations are required. In Section 7.3, this will be experimentally
confirmed in tuple access and retrieval times.

3 Implementation of History-Pattern Encoding

3.1 Implementation of Core Data Structures

HPMD is an implementation scheme based on the hp-encoding for n-dimensional
dataset M. In addition to the core data structures presented in Section 2.2, HPMD
includes the following additional data structures:

(1) CVTi () is implemented as a B+ tree. The key value is an attribute value
of dimension i; the data value is the corresponding subscript of the extendible ar-
ray.

(2) Ci () is a one-dimensional array serving as the attribute value table. If
attribute value v is mapped by CVTi to subscript k, the k-th element of Ci keeps v.
The element further includes the number of tuples in M, whose attribute value of
dimension i is v. This number is used to detect the retrieval completion, which
will be described in Section 5.2.

Note that M can be also implemented based on ho-encoding using (1) and (2) above.
We call this implementation scheme as HOMD.

ni ≤≤1

ni ≤≤1

 1log......1log1log 22212 ++++++ nsss

)1log......loglog(* 22212 ++++ nsssn

History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets 281

Table 1 illustrates an example in which two-dimensional tuples are successively
inserted. Fig. 3 shows the constructed HPMD using the inserted tuples from Table 1.
By carefully inspecting the given table and Fig. 3, we can trace the change in the
related data structures and the produced encoded results generated by each insertion.

3.2 Output File Organization of Encoded Results

In ho-encoding, as discussed in Section 2.1, both the history value and offset of an
encoded tuple occupies fixed-size storage, which degrades storage performance. In
contrast, in our hp-encoding scheme, we adopt variable length storage according to
the pattern size of the encoded results based on the hp-property given in Section 2.4.

We can ensure the hp-property by observing h and p in Table 1 and boundary vec-
tor table B in Fig. 3. By this property, the history value h can be used as a header of
coordinate bit pattern p. It represents p’s bit size. Therefore, <h, p> can be treated as a
variable length record with size known by h. The hp-property makes it possible to
store encoded results in a sequential output file called the Encoded Tuple File (ETF),
as illustrated in Fig. 4. The encoded results are stored sequentially in the insertion
order of the corresponding tuples, similar to a conventional RDBMS. Compared with
the size of p, the size of h is sufficiently small, and its size should be fixed. Typically,
the size of h is 1 byte and can specify p up to 255 bits.

Table 1. Insertion of the two-dimensional tuples

 inserted tuples coordinate history value h coordinate pattern p boundary vector

1 <d, p> (0,0) 0 . <0,0>
2 <b, p> (1,0) 1 1. (1) <1,0>○
3 <b, q> (1,1) 2 1.1 (3) <1,1>○
4 <c, q> (2,1) 3 10.1 (5) <2,1>○
5 <f, q> (3,1) 3 11.1 (7) <2,1>
6 <e, q> (4,1) 4 100.1 (9) <3,1>○
7 <f, t> (3,2) 5 011.10 (12) <3,2>○
8 <a, r> (5,3) 5 101.11 (23) <3,2>
9 <a, p> (5,0) 4 101.0 (10) <3,1>

10 <a, u> (5,4) 6 101.100 (44) <3,3>○
11 <b, r> (1,3) 5 001.11 (7) <3,2>
12 <e, s> (4,5) 6 100.101 (37) <3,3>
13 <d, r> (0,3) 5 000.11 (3) <3,2>

Remark 1: the leftmost number represent the insertion orders of the tuples
Remark 2: "." in coordinate bit pattern is a separator between subscripts line feed
Remark 3: ○ denotes that the insertion of the tuple causes the extension of the logical
size of the extendible array

282 M. Makino et al.

Fig. 3. HPMD data structure

Fig. 4. Storing variable length encoded tuples sequentially in ETF

4 Implementation for Large Scale Datasets

Unfortunately, in hp-encoding, the history-pattern space often exceeds machine word
length for high-dimensional and/or large volume datasets. In this section, we provide
a scheme to handle such a large history-pattern space with minimal degradation in
encoding/decoding speed.

4.1 Extending History-Pattern Space

To handle large-scale tuple datasets using the hp-encoding, the coordinate bit patterns
can range over multiple machine words to eliminate the pattern size limitation. For
example, Fig. 5 shows the layout for a 162-bit coordinate pattern according to boun-
dary vector <25, 16, 13, 23, 15, 8, 6, 10, 7, 20, 15, 4> of 12 dimensions; this requires
three 64-bit words. Compared with a bit pattern within a single word, no storage cost
overhead arises with this multiword bit pattern. Furthermore, encoding to and decod-
ing from this multiword bit pattern do not cause significant overhead, since they can
be performed by using only shift, mask, or register instructions as in a single bit pat-
tern with a little cut and paste cost. We omit the details. In contrast, overhead caused
by using a multi-precision library in ho-encoding would significantly degrade retriev-
al performance. Note that the hp-property introduced in Section 2.4 is also guaranteed
for multiword bit patterns.

Fig. 5. Layout for 162-bit coordinate pattern

dim. 7–12 patterns
(62 bits)

dim. 6 pattern
(6+2 bits)

 dim. 1–5 patterns
(92 bits)

word 2word 1 word 3

History-Pattern Implementat

4.2 Further Storage Op

Here, we present two optim
(1) Sharing history value
Due to the hp-property, the
subsets depending on h. Th
so h can be shared among
Thus the p’s of the same h
is one-to-one corresponden
the elements in the subarray
is m, a total of m−1 bytes ca
(2) Multi-boundary vect
For the multiword bit patter
terns in a node block are co

In (a), storage cost can b
tion is just converse in (b)
overhead inherent in (a) but

Assume that the machine
a single coordinate bit patte
bv be the boundary vector f
Multi-boundary vector mbv
tained by recalculating and
description of its details. N
vector. Using mbv, l/p sing
node block in ETF by byte

A storage scheme based
the boundary vector table;
size. Consequently, this mu
compactly without degrada
the multiword bit pattern s
based on the multi-boundar

 Fig. 6. Node block lists

5 Tuple Retrieval

5.1 History Value Depe

We can notice the following

header

tion for Large-Scale Dynamic Multidimensional Datasets

ptimizations

mization strategies for storing encoded results in ETF.
e
e set of the encoded <h, p> pairs can be partitioned into
he pairs in the same subset have the same history value
these pairs and the bit size of their pattern p equals to
are stored in the same node block list as in Fig. 6. Sinc
t with its subarray, the node block list keeps all pattern
y. If the size of h is one byte, and the total number of tup
an be saved by this optimization.
tor
rns in Section 4.1, two types of arrangement of the bit p

onsidered; (a) by byte-alignment, (b) by word-alignment
be saved, but retrieval cost would increase. But, the sit
). We present the following method to avoid the retrie
t take advantage of its storage cost savings.
e word occupies w bytes, and p bytes are necessary to st
ern. Let l be the least common multiple of w and p, and
for a single coordinate bit pattern described in Section 4
v is a set of single boundary vectors bvs and can be
d arranging bv sequentially l/p times. Here we omit

Note that mbv can be used as if it were a single bound
gle coordinate bit patterns can be stored consecutively i
alignment, while they can be retrieved by word alignme

d on the above multi-boundary vector increases the size
however, the size is negligibly small compared with E
ulti-boundary vector further contributes to generate ET

ation of retrieval performance. we refer to HPMD based
scheme in Section 4.1 simply as HPMD, and the HPM
ry vector using node block lists as M-HPMD.

in an ETF Fig. 7. Tuple retrieval in HPMD

endency

g important property in both HPMD and M-HPMD.

283

 the
e h,
o h.
ce h
s of
ples

pat-
.
tua-
eval

tore
d let
4.1.
ob-
the

dary
in a
ent.
e of
ETF
TFs
d on
MD

284 M. Makino et al.

[Property 2] Let h be the history value of the principal subarray PS (see Section 2.2)
of the subscript k on dimension i. The array elements with subscript k on dimension i
are included only in PS or the subarrays with history values greater than h and ex-
tended along the dimension other than dimension i.

This property is shown in Fig. 7 above. The dotted line represents the real size of
the extendible array, and the grey colored parts are the candidates of retrieval. We can
see that it is not necessary to decode all the elements in ETF, but only the grey co-
lored parts due to the above property. An element in the non-grey subarrays can be
checked by its history value, and can be skipped without decoding the pattern part.
The total size of the grey parts depends on the history value of the principal subarray
of the subscript to be retrieved. This leads to the following property.

[Property 3 (history value dependency)] The subarrays to be decoded for the re-
trieval of an attribute value v depends on the history value corresponding to v.

5.2 Tuple Retrieval

In HPMD, like in a conventional RDBMS all tuples in ETF should be searched se-
quentially. Nevertheless, according to Property 2, non-candidate tuples can be skipped
without inspecting bit pattern part p by only examining the history value part. In
M-HPMD, each tuple is classified in terms of its history value and is stored in the
corresponding node block list. Therefore, even history value checking can be avoided
in the candidate node block lists.

Let age be an integer attribute. For a single value retrieval, such as age=20, first
the specified attribute value is searched in CVTage to obtain its subscript value i. Both
in HPMD and M-HPMD, the history values for candidates of retrieval are determined
according to Property 2. If a candidate <h, p> is encountered, p is decoded to get the
subscript of dimension age. If it is i, <h, p> is included in the retrieval results.

For a range value retrieval, such as 10 age < 20, the set of subscripts covered by
the range is obtained by searching the sequence set of CVTage. Based on the obtained
subscript set S, the set of the history values for candidates of retrieval are determined
according to Property 2. In HPMD, if a candidate <h, p> is encountered, p is decoded
to get the subscript i of dimension age. For the attribute value table (see Section
3.1(2)) Cage, if 10 Cage[i] < 20, <h, p> is included in the retrieval results. Note that
while single value retrieval requires only subscript matching, range value retrieval
requires references to the attribute value table.

Note also that in both HPMD and M-HPMD, before checking all candidate tuples,
when the number of matched tuples reaches the “number of tuples” kept in the related
attribute value table described in Section 3.1, the retrieval can be terminated.

6 Related Work

Substantial research has been conducted on multidimensional indexing schemes based
on the mapping strategy in which a multidimensional data point is transformed to a
single scalar value. Such mapping strategies include a space-filling curve, such as the

≤

≤

History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets 285

Z-curve [3] or the Hilbert curve [4], which enumerates every point in a multidimen-
sional space. They preserve proximity, which suggests that points near one another in
the multidimensional space tend to be near one another in the mapped one-
dimensional space. This property of preserving proximity ensures better performance
for range key queries against a dynamic multidimensional dataset; however, an im-
portant problem with these space-filling curves is that retrieval performance degrades
abruptly in high-dimensional data spaces because of the required recursive handling.
The UB-tree [2][5][6] maps a spatial multidimensional data point to a single value
using a Z-curve; however, a UB-tree has the critical problem that its parameters (e.g.,
the range of attribute values) need to be properly tuned for effective address mapping
[6]. This requirement restricts the usability and performance of the UB-tree.

In contrast to these approaches, in our encoding scheme for an n dimensional tuple,
encoding and decoding costs are both O(n), even if n is very large, because these op-
erations are performed using only shift and and/or machine instructions. Furthermore,
the problem of the UB-tree approach is not present in our encoding scheme because
of an unlimited extensibility of an extendible array.

The most common scheme for mapping multidimensional data points to scalar val-
ues[1] is to use a fixed-size multidimensional array. Much research, such as
[7][8][9][10], has been performed using this scheme for the paging environment of
secondary storage. The chunk offset scheme [10] is a well-known scheme in which
multidimensional space is divided into a set of chunks; however, it is not extendible,
and a new attribute value cannot be dynamically inserted.

Extendible arrays [11]~[14] provide an efficient solution to this non-extendible
problem. In [11], Otoo and Rotem described a method for reducing the size of the
auxiliary tables for addressing array elements. [14] proposes the history-offset encod-
ing , by which wider application areas such as in [17] can be developed.

One of the drawbacks inherent in the existing research that uses the addressing
function of a multidimensional array is the time cost of decoding for tuple retrieval.
The approaches presented in existing research require division operations using the
coefficient vector, which are very expensive. Such a drawback is not present with our
encoding scheme, and the costs are significantly small. [15] presented the basic idea
of the history-pattern encoding.

Another drawback of existing research is that the address computed by the address-
ing function may exceed machine word length. Some application areas for the
ho-encoding scheme are present in the research. [17] provides a labeling scheme of
dynamic XML trees. In these applications, however, this address space saturation
problem makes it difficult to handle large-scale datasets. Chunking array elements is a
means to expanding the address space [10][16], but it only delays saturation of the
space. For this problem, in [16], Tsuchida et al. vertically partitioned the tuple set to
reduce dimensionality; however, overhead emerges that increased storage costs.

This paper presents an implementation scheme of hp-encoding in order to resolve
or alleviate these two drawbacks and provides an efficient implementation for large-
scale multidimensional datasets as was confirmed by the analytical and experimental
evaluations. As far as we know, there is no research similar to ours.

286 M. Makino et al.

7 Evaluation Experiments

In this section, performance evaluations are shown for HPMD and M-HPMD in Sec-
tion 4.2 on the implemented prototype system. These are compared with HOMD and
PostgreSQL, which is one of the conventional RDBMS. They all output the tuples
sequentially to the output file, and the tuple retrieval is also sequentially performed.

7.1 Evaluation Environment

Construction times, storage sizes, and retrieval times are measured under the follow-
ing 64 bits computing environment.

CPU: Intel Core i7 (2.67GHz), Main Memory: 12GB, OS: CentOS5.6 (LINUX),
PostgreSQL: Version 8.4.4 (64-bit version)

In the measurement of the retrieval times for PostgreSQL, the ¥timing command was
used. The command invokes the LINUX system call gettimeofday() and we also used
this system call for HOMD, HPMD and M-HPMD. The retrieval time in these im-
plementations includes the time to get the decoded tuples that satisfies the query con-
dition. To suppress the performance deterioration caused by transaction processing in
PosgreSQL, the transaction isolation level is set to the lowest level.

7.2 Evaluation Using Large Scale Dataset

The LINEITEM table (Table 2) in TPC-H benchmark data[19] is employed. The size
of the input tuple file (csv formatted file) generated by TPC-H is about 2.43 GB. The
number of tuples is 23,996,604. L_COMMENT column is dropped out. Note that
HOMD cannot implement such large table due to the history-offset space overflow.

Table 2. LINEITEM Table

(1) Storage Cost
The total required storage to store a multidimensional dataset includes data structures
for encoding/decoding shown in Fig. 3 and ETF to store the encoded tuples. In
HPMD, ETF is a sequential file and in M-HPMD, it is a file of node block lists. Fig.
8 shows the total required storage sizes for HPMD, M-HPMD, PostgreSQL (denoded

dim. attribute name type cardinality dim. attribute name type cardinality

1 L_ORDERKEY int 6000000 9 L_RETURNFLAG char[1] 3

2 L_PARTKEY int 800000 10 L_LINESTATUS char[1] 2

3 L_SUPPKEY int 40000 11 L_SHIPDATE char[10] 2526

4 L_LINENUMBER int 7 12 L_COMMITDATE char[10] 2466
5 l_QUANTITY double 50 13 L_RECEIPTDATE char[10] 2555
6 L_EXTENDEDPRICE double 1079204 14 L_SHIPINSTRUCT char[25] 4
7 L_DISCOUNT double 11 15 L_SHIPMODE char[10] 7
8 L_TAX double 9 L_COMMENT char[44] 15813794

History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets 287

by PSQL in the following). In HPMD and M-HPMD the breakdown of the total size
is shown. “aux_tables“ are the history tables, boundary vector table and attribute val-
ue tables in Fig. 3. The maximum history value in the constructed HPMD or M-
HPMD was 141 (3 machine words).

As can be seen in Fig. 8, the total sizes for HPMD and M-HPMD are about one-
sixth of the size for the PSQL. This indicates that our hp-encoding scheme realizes
significant reduction of the storage cost. In M-HPMD the size of ETF is 5% smaller
than that in HPMD due to the sharing history value in M-HPMD stated in Section 4.2.
It can be noted that while the size for PSQL is about 1.6 times larger than that for the
csv formatted file, the size for HPMD or M-HPMD is about 30% of the csv file size.

Fig. 8. Storage cost

Table 3. Construction cost (sec)

HPMD M-HPMD PSQL

159.95 180.15 224

(2) Construction Time
Table 3 shows the times spent for constructing databases from the csv source file.
The spent times for HPMD and M-HPMD are about 71% and 80% of that for PSQL.
The difference owes to the reduction of output I/O cost; output ETF file size of
HPMD and M-HPMD is far less than the output file size of PSQL. It can be observed
that the time spent for M-HPMD is 13% larger than that for HPMD. This owes to the
time of M-HPMD spent for construction of node block lists.

(3) Retrieval Time

(3-1) Retrieval for single value queries
Fig. 9 shows the retrieval times of single value queries for LINEITEM table. The
left side scale is for HPMD and M-HPMD and the right one is for PSQL. Each history
value on the horizontal axis represents the leftmost subscript of the principal subarray
(see Section 2.2) on the dimension 1 and 6. The retrieval time for the attribute value
corresponding to the subscript was measured. We adopt the dimensions since the
larger cardinality can better exhibit the properties of our schemes. As was mentioned
in Section 5.2, both in HPMD and M-HPMD the retrieval can be terminated without
checking all the candidate tuples in ETF by using “num. of tuples” in the attribute
value table (See Fig. 3). The measurement was also done in the case all the candidate
tuples are checked without using “num. of tuples”. We will denote this case as
HPMDa and M-HPMDa, and the case using “num. of tuples” as HPMDb and M-
HPMDb. The denotations HPMD and M-HPMD will be used for both cases.

In PSQL and HPMDa, the retrieval times are nearly constant irrespective of the
queried attribute values, since all the tuples are scanned through. The average times

288 M. Makino et al.

of HPMDa in dim. 1 and dim. 6 are 8.33 and 10.73 times faster than that of PSQL
respectively. In contrast, in M-HPMD only the candidate tuples are scanned and de-
coded. Therefore the history value dependency described in Section 5.1 can be better
observed in M-HPMD than in HPMD as in Fig. 9(b). In M-HPMD the time decreases
at the maximum history value in both dimension 1 (141) and dimension 6(139). The
principal subarrrays corresponding to these history values are located at the end of the
logical extendible array. So, the reason of the decrease is that the real size of the logi-
cal extendible array in these dimensions is less than that of the logical size, so the
tuples in these subarrays do not fill out its logical space.

It can be observed that using “num. of tuples” in the attribute value table of dim. 1
is effective. Since the cardinality of dim. 1 is very large and its attribute values are
uniformly distributed, the number of tuples of each attribute value is very small; i.e.,
less than 10. In HPMD, the attribute values of the same dimension are converted to
the dimension subscripts in the ascending order, namely the earlier an attribute value
appears, the smaller subscript is assigned to the attribute value. Since the encoded
results are stored sequentially in the ETF file, the attribute values covered by the
smaller history values are stored earlier in the ETF file, so the number of the tuples
satisfying the query quickly attains to “num. of tuples”. In M-HPMD, the tuples of the
same history value can be directly accessible and in dim. 1 they can be confined in a
single node block, so the retrieval times are almost 0. For dim. 6, the cardinality is
smaller than that of dim.1, and the attribute values are not so uniformly distributed as
those of dim.1, the above advantages for dim. 1 is decreased in both HPMDb and M-
HPMDb as can be observed in Fig. 9(b).

For HPMDb and M-HPMb the maximum and minimum ratios of the retrieval
times to those of PSQL are shown in Table 4. It can be seen that the ratios are under
11%, and that the maximum retrieval times of M-HPMD are about a half of that of
HPMD. This proves the benefit of M-HPMD described in Section 4.2

 (a) dim. 1 (L_ORDERKEY) (b) dim. 6 (L_EXTENDEDPRICE)

Fig. 9. Retrieval times of single value

Table 4. Max. and min. ratios of retrieval times

 */PSQL
HPMDb
 (dim. 1)

M-HPMDb
 (dim. 1)

HPMDb
(dim. 2)

M-HPMDb
(dim.2)

HPMDb
(dim. 6)

M-HPMDb
 (dim. 6)

HPMDb
 (dim. 13)

M-HPMDb
(dim. 13)

 max 8.24% 0.00% 10.90% 4.97% 9.45% 4.15% 6.68% 3.30%

 min 0.00% 0.00% 9.30% 4.30% 4.82% 0.79% 6.60% 3.17%

History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets 289

(3-2) Retrieval for Range Queries
Table 5 shows the ranges of the attribute values for the range queries, on which the
retrieval times were measured. The selectivities of the ranges R1, R2 and R3 on each
dimension are about 3%, 10%, 20% respectively. Fig. 10 shows the retrieval times for
the range queries on dimension 1 and 6. It can be known from Fig.10(a) that the re-
trieval times for HPMDa is much larger than those of HPMDb. This also dues to the
the reason described in (3-1). For HPMDb and M-HPMDb, Table 6 shows the ratios
of the retrieval times to those of PostgreSQL on the range queries in Table 5. It
should be noted that in both HPMDb and M-HPMDb, dimension subscripts are as-
signed in ascending order. So, the subscript range corresponding to its attribute value
range may often spread over wider than the attribute value range. This might alle-
viate the benefits of our HPMD and M-HPMD in some degree; as can be observed in
Table 6, the performance on dim. 2 are degraded.

Table 5. Attribute value ranges used in the experiment

 (a) dim. 1 (L_ORDERKEY) (b) dim. 6 (L_EXTENDEDPRICE

Fig. 10. Retrieval times of range queries

Table 6. Ratios of retrieval times for range queries

*/PSQL

HPMDb
(dim. 1)

M-HPMDb
(dim. 1)

HPMDb
(dim. 2)

M-HPMDb
(dim.2)

HPMDb
(dim. 3)

M-HPMDb
(dim. 3)

HPMDb
 (dim. 5)

M-HPMDb
(dim. 5)

range R1 1.40% 1.75% 20.64% 11.81% 11.06% 6.98% 5.86% 4.14%
range R2 2.28% 2.82% 12.16% 8.10% 7.29% 5.71% 4.27% 4.03%
range R3 2.76% 3.45% 8.47% 6.42% 4.99% 4.50% 3.87% 4.02%

7.3 Comparison of HOMD and HPMD

ho-encoding is a competitor of our hp-encoding. Its HOMD implementation
cannot deal with large scale datasets without considerable degradation of retrieval
performance. In this section, by using a moderate-scale dataset whose history-offset
space is within the machine word size, we briefly compare the performance among
HOMD, HPMD and PSQL. The dataset is artificially created as in Table 7.

Tuples in the dataset is uniformly distributed in the history-offset or history-pattern
space to evaluate the basic performance of each scheme. In HOMD, the size of histo-
ry value and offset value are fixed in 2 and 8 bytes respectively, and in HPMD, the

dim. 1 dim. 2 dim. 3 dim. 5

 range R1 100,000 ~ 820,000 100,000 ~ 124,000 10,000 ~ 11,200 2~3

 range R2 1,000,000 ~ 3400,000 200,000 ~ 280,000 20,000 ~ 24,000 3~9

 range R3 4,000,000 ~ 8,800,000 500,000 ~ 660,000 30,000 ~ 38,000 10~19

290 M. Makino et al.

history value size is fixed in 1 byte and that of coordinate pattern is variable according
to the history value. Both in HOMD and HPMD, the encoded results are output se-
quentially in the ETF files. Table 8 shows the storage costs for ETF and database
construction time. We can observe that the ETF size in HOMD is much larger than
that of HPMD. This owes to the advantage of the HPMD implementation, in which
the encoded tuples in ETF is variable length records arranged in byte alignment. The
construction time in HOMD is about 2.5 times larger than that of HPMD. This owes
to the larger time required in encoding tuples.

Fig. 11 shows the retrieval times for single value queries on the 5th dimension.
We can see that the retrieval times in HPMDb and M-HPMDb are almost constant
irrespective of queried attribute values like in PSQL. This is because that the tuples
are uniformly distributed over the attribute domain. On the other hand, the retrieval
times for HOMDb are depending on the queried attributes in spite of the uniform
tuple distribution due to the attribute value sensibility of HOMD.

Table 7. Used dataset

of dims # of tuples attribute type cardinality

5 5,000,000 all integer all 512

Fig. 11. Retrieval times for single value
queries on the 5th dim

Table 8. Storage cost and construction time

 HOMD HPMD M-HPMD

ETF (kbytes) 50,000 34,843 30,669

const.time (sec) 20.65 7.04 12.45

8 Conclusion

We have presented a novel encoding/decoding scheme for dynamic multidimensional
datasets. The advantage of the scheme lies in the following two points. One is that the
scheme provides the minimal encoding/decoding costs avoiding multiplications and
divisions inherent in the existing schemes based on multidimensional arrays. The
other is that the scheme provides an efficient method to handle a large-scale dataset
by alleviating the problem of the address space limitation. These advantages have
been confirmed by the experiments.

The implementation scheme presented in this paper does not consider the perfor-
mance improvement for range queries. Important future work includes the design of
the effective strategy for range queries in our framework.

History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets 291

References

1. Zhang, R., Kalnis, P., Ooi, B.C., Tan, K.L.: Generalized multidimensional data mapping
and query processing. ACM Transactions on Database Systems, pp. 661–697 (2005)

2. Fenk, R., Markl, R., Bayer, R.: Interval processing with the UB-tree. In: Proc. of IDEAS,
pp. 12–22 (2002)

3. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In: Proc.
of PODS, pp. 181–190 (1984)

4. Faloustsos, C., Roseman, S.: Fractals for secondary key retrieval. In: Proc. of PODS,
pp. 247–252 (1989)

5. Bayer, R.: The universal B-tree for multidimensional indexing: General concepts. In: Proc.
of Worldwide Computing and Its Applications, pp. 198–209 (1997)

6. Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K., Bayer, R.: Integrating the UB-tree
into a database system kernel. In: Proc. of VLDB, pp. 263–272 (2000)

7. Sarawagi, S., Stonebraker, M.: Efficient organization of large multidimensional array. In:
Proc. of ICDE, pp. 328–336 (1994)

8. Seamons, K.E., Winslett, M.: Physical schemas for large multidimensional arrays in scien-
tific computing applications. In: Proc. of SSDBM, pp. 218–227 (1994)

9. Sarawagi, S., Stonebraker, M.: Efficient organization of large multidimensional arrays. In:
Proc. of ICDE, pp. 328–336 (1994)

10. Zhao, Y., Deshpande, P.M., Naughton, J.F.: An array based algorithm for simultaneous
multidimensional aggregates. In: Proc. of SIGMOD, pp. 159–170 (1997)

11. Otoo, E.J., Rotem, D.: A storage scheme for multi-dimensional databases using extendible
array files. In: Proc. of STDBM, pp. 67–76 (2006)

12. Otoo, E.J., Rotem, D.: Efficient storage allocation of large-scale extendible multi-
dimensional scientific datasets. In: Proc. of SSDBM, pp. 179–183 (2006)

13. Otoo, et. al.: Optimal chunking of large multidimensional arrays for data warehousing. In:
Proc. of DOLAP, pp. 25–32 (2007)

14. Hasan, K., Tsuji, T., Higuchi, K.: An Efficient Implementation for MOLAP Basic Data Struc-
ture and Its Evaluation. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E.
(eds.) DASFAA 2007. LNCS, vol. 4443, pp. 288–299. Springer, Heidelberg (2007)

15. Tsuji, T., Mizuno, H., Matsumoto, M., Higuchi, K.: A Proposal of a Compact Realization
Scheme for Dynamic Multidimensional Datasets. DBSJ Journal 9(3), 1–6 (2009). (In Japanese)

16. Tsuchida, T., Tsuji, T., Higuchi, K.: Implementing Vertical Splitting for Large Scale Mul-
tidimensional Datasets and Its Evaluations. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK
2011. LNCS, vol. 6862, pp. 208–223. Springer, Heidelberg (2011)

17. Tsuji, T., Amaki, K., Nishino, H., Higuchi, K.: History-Offset Implementation Scheme of
XML Documents and Its Evaluations. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W.,
Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 315–330. Springer, Heidelberg
(2013)

18. Free Software Foundation, GMP: The GNU Multiple Precision Arithmetic Library (2013).
http://gmplib.org

19. Transaction Processing Performance Council: TPC-H (2014). http://www.tpc.org/tpch

Scalagon: An Efficient Skyline
Algorithm for All Seasons

Markus Endres(B), Patrick Roocks, and Werner Kießling

University of Augsburg, Universitätsstr. 6a, 86159 Augsburg, Germany
{endres,roocks,kiessling}@informatik.uni-augsburg.de
http://www.informatik.uni-augsburg.de/en/chairs/dbis/

Abstract. Skyline queries are well-known in the database community
and there are many algorithms for the computation of the Pareto frontier.
The most prominent algorithms are based on a block-nested-loop style
tuple-to-tuple comparison (BNL). Another approach exploits the lattice
structure induced by a Skyline query over low-cardinality domains. In
this paper, we present Scalagon, an algorithm which combines the ideas
of the lattice approach and a BNL-style algorithm to evaluate Skylines
on arbitrary domains. Since multicore processors are going mainstream,
we also present a parallel version of Scalagon. We demonstrate through
extensive experimentation on synthetic and real datasets that our algo-
rithm can result in a significant performance advantage over existing
techniques.

Keywords: Skyline · High-cardinality · Pre-filter · Optimization

1 Introduction

The Skyline operator [1] has emerged as an important and popular technique for
searching the best objects in multi-dimensional datasets. A Skyline query selects
those objects from a dataset D that are not dominated by any others. An object
p having d attributes (dimensions) dominates an object q, if p is strictly better
than q in at least one dimension and not worse than q in all other dimensions, for
a defined comparison function. Without loss of generality, we consider subsets of
R

d in which we search for Skylines w.r.t. the natural order ≤ in each dimension.
The most cited example on Skyline queries is the search for a hotel that is

cheap and close to the beach. Unfortunately, these two goals are complementary
as the hotels near the beach tend to be more expensive. In Figure 1 each hotel
is represented as a point in the two-dimensional space of price and distance to
the beach. The Skyline consists of all hotels that are not worse than any other
hotel in both dimensions. From the Skyline one can now make the final decision,
thereby weighing the personal preferences for price and distance.

Since the introduction of the Skyline operator plenty of generic algorithms
for Skyline computation have been suggested [2]. Several comparison-based algo-
rithms have been published in the last decade, e.g., the nearest neighbor algo-
rithm [3], SFS (Sort-Filter Skyline) [4], or LESS (Linear Elimination-Sort for
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 292–308, 2015.
DOI: 10.1007/978-3-319-18123-3 18

Scalagon: An Efficient Skyline Algorithm for All Seasons 293

D
is
ta
n
ce

to
th
e
b
ea
ch

[k
m
]

Price [Euro]

50 100 150 200
0.0

0.5

1.0

1.5

2.0

p5

p4

p3

p2

p1

p6

p7

p8

p9

Fig. 1. Skyline example. Select cheap hotels near to the beach.

Skyline) [5], just to name a few. Many of these algorithms have been adapted
for parallel Skyline computation, in shared-nothing [6–9], and shared-anything
architectures [10–15]. There are also algorithms utilizing an index structure to
compute the Skyline, e.g., [16–18].

Another concept are lattice-based algorithms. Instead of direct comparisons
of tuples, a lattice structure having the size of the domain is created representing
the better-than relationships. Examples for such algorithms are Lattice Skyline
[19] and Hexagon [20]. Principally, such algorithms are limited to discrete low-
cardinality domains. In [21] this knowledge is used to develop a cost model to
guide a balanced pivot point selection in the algorithm BSkyTree. However, often
there are continuous high-cardinality domains involved in a Skyline query, e.g.,
price information.In these cases Skyline computation using the lattice fails.

Our idea is to combine the advantages of lattice based algorithms and tuple
comparison. At first we scale the continuous high-cardinality domain down to
a small domain, and thus a lattice-based algorithm can be efficiently applied.
Depending on the granularity of the scaling, many tuples will be put into the
same lattice node. This implies that the lattice algorithm on the small domain
is just a pre-filtering of the tuples and a comparison-based algorithm is needed
afterwards. This idea is realized in the generic Scalagon algorithm (The name is
composed from the terms scale, as the domain is scaled down, and Hexagon, the
lattice-based algorithm from [20]). We show that this two-staged procedure is
less expensive than conventional Skyline methods, and that our multi-threaded
implementation is a strong competitor to well-known parallel Skyline algorithms.

We restrict our attention to weakly anti-correlated data sets as sketched in
Figure 1, having a relatively small Skyline size (less than 1% of the tuples). In
such settings BNL-style algorithms show a linear behavior and are our strongest
competitors, but we will show that Scalagon is superior.

The remainder of this paper is organized as follows: Section 2 contains the
formal background used in this paper and recapitulates BNL-style and lattice
based algorithms. Based on this background we will present the Scalagon algo-
rithm in Section 3. We conduct an extensive performance evaluation on synthetic
and real datasets in Section 4. Section 5 contains our concluding remarks.

294 M. Endres et al.

2 Skyline Background

2.1 Problem Definition

Assume a set of vectors D ⊆ R
d. We define the so called Pareto ordering for all

x = (x1, ..., xd), y = (y1, ..., yd) ∈ D:

x <⊗ y ⇐⇒ ∀j ∈ {1, ..., d} : xj ≤ yj ∧ ∃i ∈ {1, ..., d} : xi < yi (1)

The Skyline of D is defined by the maxima in D according to the ordering <⊗,
or explicitly by the set

S(D) = {t ∈ D | �u ∈ D : u <⊗ t} .

In this sense we prefer the minimal values in each domain. Note that Skylines are
not restricted to numerical domains. For any universe Ω and orderings <i ∈ (Ω×
Ω) (i ∈ {1, ..., d}) the Skyline w.r.t. <i can be computed, if there exist scoring
functions gi : Ω → R for all i ∈ {1, ..., d} such that x <i y ⇔ gi(x) < gi(y).
Then the Skyline of a set M ⊆ Ω w.r.t. (<i)i=1,...,d is equivalent to the Skyline
of {(g(x1), ..., g(xd)) | x ∈ M}.

2.2 Block Nested Loop Revisited

In general, algorithms of the block-nested-loop class (BNL) [1] linearly scan over
the input dataset D. The idea of BNL is to continuously maintain a window (or
block) of tuples in main memory containing the maximal elements with respect
to the data read so far. When a tuple p ∈ D is read from the input, p is compared
to all tuples of the window and, based on this comparison, p is either eliminated,
or placed into the window. Three cases can occur: First, p is dominated by a
tuple within the window. In this case, p is eliminated and will not be considered
in future iterations. Second, p dominates one or more tuples in the window. In
this case, these tuples are eliminated; that is, these tuples are removed from the
window and will not be considered in future iterations while p is inserted into the
window. And third, p is incomparable with all tuples in the window. In this case
p is inserted into the window. At the end of the algorithm the window contains
the maximal elements, i.e., the Skyline. BNL algorithms work particularly well if
the Skyline is small [1]. The average case complexity is of the order O(n), where
n counts the number of input tuples. In the worst case, where at least c ·n tuples
are incomparable for a fixed c, the complexity is O(n2) [5].

The major advantage of a BNL-style algorithm is its simplicity and suitability
for computing the maxima of arbitrary partial orders. Furthermore, a multitude
of optimization techniques have been developed in the last decade. For exam-
ple, SFS (Sort-Filter Skyline) [4] topologically sorts the dataset, whereas LESS
(Linear Elimination-Sort for Skyline) [5] uses dynamic sorting and elimination
of tuples from the window. The algorithm sSkyline [11] uses a merge method to
compute the Skyline, and BSkyTree is based on a balanced pivot point selection.
There are other approaches like divide-and-conquer [1], or parallel variants of
the algorithms above, e.g., LazyList BNL [12], pSkyline [11], or APSkyline [14].

Scalagon: An Efficient Skyline Algorithm for All Seasons 295

2.3 Lattices for Skylines Revisited

The algorithms Hexagon [20] and Lattice Skyline [19] exploit the lattice induced
by a Skyline query over discrete low-cardinality domains to compute the best
objects. Visualization of such lattices is often done using Better-Than-Graphs
(BTG) (Hasse diagrams), graphs in which edges state dominance [22]. The nodes
in the BTG represent equivalence classes. Each equivalence class contains objects
which are mapped to the same feature vector by the scoring function f . All values
in the same equivalence class are considered substitutable, hence are indifferent.
The elements of the dataset D that compose the Skyline set is build up by those
nodes in the BTG that have no path leading to them from another non-empty
node. All other nodes have direct or transitive edges from the Skyline nodes, and
therefore are dominated. The worst case complexity of such lattice algorithms is
linear w.r.t. the number of input tuples and the size of the BTG [19].

For the implementation of such algorithms the lattice is usually represented
by an array, where each position stands for one node in the lattice [19]. The
array stores the empty, non-empty, and dominated state of a node. For each
element t ∈ D the algorithms compute the unique position in the array and
mark this position as non-empty. Next, the nodes are visited in a breadth-first
order (BFT). Non-empty nodes cause a depth-first traversal (DFT) where the
dominance flags are set. Finally those nodes represent the Skyline which are
both non-empty and non-dominated.

3 The Scalagon Algorithm

3.1 The Idea

The main disadvantage of current lattice based Skyline algorithms (Section 2.3)
is their restricted application to discrete low-cardinality domains. First, the BTG
must fit into main memory and second the complexity analysis shows that a
BTG significantly larger than the number of tuples is slower than BNL-style
algorithms [19]. Therefore, the general idea of Scalagon is to scale the original
high-cardinality domain of the input data down to a smaller domain and apply
a lattice algorithm as pre-filter. Using a lattice Skyline method at first step, we
have the advantage of a linear runtime complexity and that the lattice based
approach is independent from the data distribution, i.e., whether the data is
anti-correlated, correlated, or independent distributed [19,20].

Figure 2 shows the entire filtering process on a weakly anti-correlated dataset,
where the size of the scaled domain is {1, ..., 8}2. At first, using a lattice based
approach called Hexagon product order (HPO) (based on the Hexagon algo-
rithm in [20]) the maxima on the scaled domain are determined (dark gray tiles)
according to the product order dominance criteria (a tile is dominated by another
tile if it is worse in all components). All objects in the dominated nodes (light
gray tiles) are save to be filtered out. The tuples in the dark gray area form a
pre-filtered set. On this set a BNL-style algorithm is applied afterwards to finally
determine the Skyline w.r.t. the Pareto order.

296 M. Endres et al.

Fig. 2. Filtering of Scalagon and Pareto frontier. The light gray squares are dominated
during the HPO phase. The dark gray squares contain the pre-filtered set.

Note that such a method may be prone to outliers: Adding a single tuple
like (10, 10) to a scenario as depicted in Figure 2 would introduce a plenty of
empty tiles and hence result in a very low number of filtered out tuples (in this
case only (10, 10) would be filtered out). We will face this problem in Section 3.4
by excluding the outliers from the scaling and pre-filtering process and adding
them directly to the BNL phase.

3.2 Formal Basics

Let D ⊆ R
d be a d-dimensional dataset and n = |D| the quantity of the input.

We use Di to denote the projection to the i-th component of D, formally

Di := {xi | (x1, ..., xd) ∈ D} .

For the scaling of the input we assume scale coefficients s1, ..., sd ∈ N forming
the scale vector s = (s1, ..., sd). The si correspond to the cardinality of the scaled
domain in the i-th dimension, i.e., the scaled domain is

S(s) = [1..s1] × · · · × [1..sd]

where [1..N] := {1, 2, ..., N} for N ∈ N . The vectors bmin and bmax form a
bounding box of all tuples which shall be scaled. In the simplest case we have
bmin = (min(D1), ...,min(Dd)) and bmax = (max(D1), ...,max(Dd)). In Section
3.4 we discuss tighter limits for the outlier detection.

For the following we define the operators {≤, <} on vectors in the usual way,
i.e., (x1, ..., xd) ≤ (y1, ..., yd) ⇔ ∀i : xi ≤ yi. Formally we realize the scaling of a
tuple x = (x1, ..., xd) by the mapping

fs,bmin,bmax : R
d → N

d ∪ {out}
x →

{
(f1(x1), ..., fd(xd)) if bmin ≤ x ≤ bmax

out otherwise
(2)

Scalagon: An Efficient Skyline Algorithm for All Seasons 297

where

fi(xi) :=
⌊

si · xi − bmin,i

(bmax,i − bmin,i) · (1 + ε)

⌋

+ 1 .

Therein ε > 0 is some very small constant, ensuring that the result of the
division is strictly smaller than 1. It follows that 1 ≤ fi(xi) ≤ si for all x and
thus from the definition of f we get that f(D) ⊆ S(s) ∪ {out} for any scale
vector s.

3.3 The Algorithm

The Scalagon algorithm can be subdivided in four phases: 1) The Scaling is
applied and outliers are isolated. 2) Hexagon Product Order is executed on the
scaled dataset which results in a set of non-dominated tiles. 3) All the original
tuples which correspond to non-dominated tiles in the scaled dataset are picked
out. 4) BNL is applied to the union of these picked tuples and the outliers. In
Algorithm 1 we show the pseudo code of the algorithm.

1. After having determined s, bmin, bmax (see Section 3.4 and 3.5), we define

S := fs,bmin,bmax(D)\{out}, F0 := {x ∈ D | fs,bmin,bmax(x) = out} .

2. Hexagon Product Order is applied to determine the set

Smin := {t ∈ S | �u ∈ S : u < t} .

This set is calculated with the HPO algorithm, which works exactly as the
standard Hexagon, but the better-than-relation is the product order instead
of the Pareto order. Note that < on vectors corresponds to the product order,
i.e. x < y ⇐⇒ ∀i ∈ [1..d] : xi < yi.

3. The set of filtered tuples is calculated, containing all tuples from non-domi-
nated tiles (Smin) together with the outliers

F := {x ∈ D | fs,bmin,bmax(x) ∈ Smin} ∪ F0 .

4. Finally, a BNL-style algorithm is applied to find the Pareto optima (Skyline)
within F

S(F) := {t ∈ F | �u ∈ F : u <⊗ t} ,

where <⊗ is the Pareto order from (1). S(F) is the output of Scalagon.

To show the correctness of Scalagon, we assume the correctness of Hexagon
and BNL.

Lemma 1. The Skyline of the filtered tuples F is equivalent to the Skyline of
D, i.e., S(D) = S(F).

298 M. Endres et al.

Algorithm 1. Scalagon, where
f is from Eq. (2)
Input: Skyline order <⊗, Dataset D,
scale vector s, bounds bmin, bmax
Output: Skyline of D

1: function scalagon(<⊗,D)
2: � Scaling
3: S ← fs,bmin,bmax (D)\{out}
4: F0 ← {x ∈ D | f...(x) = out}
5:
6: � Hexagon product order
7: Smin ← HPO(<, S)
8:
9: � Filter tuples
10: F ← {x ∈ D | f...(x) ∈ Smin}
11:
12: � BNL
13: return Bnl(<⊗, F ∪ F0)
14: end function

Algorithm 2. Scalagon scaling calculation
Input: D, domain size (Ni)i=1,...,d, scale factor α
Output: Scale vector s = (s1, ..., sd)

1: function scaling(D, (Ni)i=1,...,d, α)
2: for all i ∈ [1..d] do � Initialization

3: si ← �(|D|/α)1/d�
4: end for
5: I ← ∅
6: � Iterative calculation of the si

7: while ∃i ∈ ([1..d]\I) : Ni < si do
8: I ← {i ∈ [1..d] | Ni ≤ si}
9: for all i ∈ I do
10: si ← Ni

11: end for
12: for all i ∈ ([1..d]\I) do

13: si ← �(|D|/(α ·∏j∈I Nj))
1/(d−|I|)�

14: end for
15: end while
16: return (s1, ..., sd)
17: end function

Proof. At first we will show S(D) ⊆ F . For sake of readability we omit the
scaling parameters, i.e., f is short for fs,bmin,bmax .

x ∈ S(D) ⇐⇒ �u ∈ D : (u ≤ x ∧ ∃i ∈ {1, ..., d} : ui < xi)
⇒ �u ∈ D : u < x

{f(u) < f(x) implies u < x by isotony of f}
⇒ �t ∈ f(D) : t < f(x) ⇒ x ∈ F

Now we have S(D) = {x ∈ D | �u ∈ D : u <⊗ x} = {x ∈ F | �u ∈ D : u <⊗ x}
where the second equal sign follows from S(D) ⊆ F (as above). By definition
we have F ⊆ D which implies D = (D\F) ·∪F . Using this fact we argue for the
set condition (�u ∈ D : u <⊗ x) as follows: For every candidate u ∈ D\F there
exists an element u′ <⊗ u with u′ ∈ S(D) ⊆ F for which u <⊗ x ⇒ u′ <⊗ x
holds because of the transitivity of <⊗. Hence we can replace u ∈ D by u′ ∈ F
and thus we finally get S(D) = {x ∈ F | �u′ ∈ F : u′ <⊗ x} = S(F) which
shows the claim. ��

3.4 Outlier Detection

The filtering process by tiling and dominating the tiles as illustrated in Figure 2
is only efficient if a large amount of tuples is concentrated in some area. If we
do the tiling over the entire domain, Scalagon would be prone to outliers.

Hence we suggest a simple method to detect outliers and set a bounding
box where we expect the most tuples. Note that more sophisticated methods for
outlier detection or cluster detection are in general too costly for our approach,
cf. [23,24]. As standard BNL has linear complexity in realistic cases [5] the
determination of the bounding box and the scale vectors must not cost much.

Figure 3 illustrates our heuristic to detect outliers and how to get the bound-
ing box, which we will describe subsequently in detail:

Scalagon: An Efficient Skyline Algorithm for All Seasons 299

1. A sample T = {t(1), ..., t(N)} ⊂ D of N � |D| tuples is randomly taken from
the input dataset D ⊂ R

d.
2. For each dimension k ∈ [1..d] we do:

(a) A low quantile q(l) and a high quantile q(h) (with 0 < l < h < 1) of the
k-th component of the tuples in T are calculated.
Assuming that all values in T are distinct we have for z ∈ [0, 1]:

|{(t1, ..., td) ∈ T | tk ≤ q(z)}| = z · N

|{(t1, ..., td) ∈ T | tk > q(z)}| = (1 − z) · N

(b) We add some summand δ and finally calculate the k-th component of
the bounding box with some 0 < β < 1:

δ := (q(h) − q(l)) · β

bmin,k := q(l) − δ

bmax,k := q(h) + δ

Fig. 3. Outlier detection: The Scalagon filtering is restricted to a bounding box. For
example we used l = 0.02, h = 0.98 and β = 0.2.

3.5 Scaling

Subsequently we want to determine an optimal scaling factor. For the entire
runtime of the Scalagon algorithm we have two different cost producers. 1) The
operations on the tiles from Hexagon Product Order, cf. Section 2.3. 2) The com-
parisons caused by a BNL-style algorithm. For anticorrelated realistic datasets
we have k · |D| comparisons, where k � |D| as long as |S(D)| � |D|.

With a fine-grained scaling the filtering efficiency raises, i.e., the number of
comparisons in the final BNL phase decreases. At the same time the HPO phase
calculating the non-dominated tiles becomes more costly. Hence the decisive
criterion is the choice of the scaling coefficients si compared to the dataset size
|D|. Therefore we introduce the scale factor α, defined by the ratio of the dataset
size |D| and the size of the scaled domain:

300 M. Endres et al.

α =
|D|

|S(s)|
For the first, this factor α is assumed to be known. We dedicate Section 4.2 to
the determination of an optimal α. This factor allows to continuously change
between a BNL-style and a lattice based algorithm. For α → 0 we are dealing
with a lattice based algorithm where f(x) is unique for every tuple x ∈ D. For
α → ∞ we retrieve |S(s)| = 1 meaning that there is just one equivalence class.
Hence there is no filtering and Scalagon acts like a BNL-style algorithm.

Let us now assume that the domain size (N1, ..., Nd) is given. Typically Ni is
either small (low-cardinality values like gender, nation, ...) or Ni = ∞ (domains
like salary, price, ...), meaning that we are faced with a continuous domain.

Obviously it does not make sense to choose a scale vector with si > Ni.
This would introduce just empty tiles in the lattice structure of the HPO-phase.
Hence the problem of determining the scaling coefficients for a given α reads as
follows:

α ≈ |D|
∏d

i=1 si

(S1)

si ≤ Ni for all i ∈ [1..d] (S2)

To solve this problem algorithmically we distinguish the following cases:

1. If the size of the domain
∏d

i=1 Ni is smaller than |D|/α it does not make any
sense to apply Scalagon. In this case, Scalagon behaves as a purely lattice
based algorithm with some computational overhead. Hence the usual lattice
based algorithms should be applied.

2. Otherwise the si have to be calculated explicitly to fulfill (S2). To this end we
describe the algorithm Scaling (Algorithm 2) to determine the si accord-
ingly.

The idea to iteratively determine the si is as follows: First we initialize si by

s1 := ... := sd :=

⌊(|D|
α

)1/d
⌋

.

This fulfills (S1). If the domain size (N1, ..., Nd) is sufficiently large (or con-
tinuous), (S2) is also fulfilled and we are done.

Otherwise for those i where si > Ni we take the original cardinality si := Ni.
Afterwards the other si are recalculated such that (S1) is fulfilled. This step is
iterated until a solution for (S1) and (S2) is found.

In the pseudo code of the algorithm (cp. Algorithm 2) we use I ⊆ [1..d] as an
index set to mark those si which are already set to Ni. We define the complement
I := [1..d]\I. To determine the si in the iteration step we calculate

α =
|D|

|S(s)| =
|D|

∏d
i=1 si

=
|D|

∏
i∈I Ni · ∏

i∈I si
.

Scalagon: An Efficient Skyline Algorithm for All Seasons 301

Requiring identical si values for i ∈ I leads us to

si =

⌊(|D|
α · ∏

i∈I Ni)

)1/|I|⌋

for all i ∈ I .

This corresponds to line 13 in Algorithm 2.
Note that the while-condition (line 7) together with the assignment to I

(line 8) ensures that the set I is strictly growing w.r.t. the inclusion order � in
every iteration step. As soon as I = [1..d] is reached we have I = ∅. Thus the
while-condition is trivially false and the algorithm terminates.

In the continuous case we have a (hyper-)quadratic scaling s1 = ... = sd.
One may criticize this as simplistic, and this is only reasonable if the input data
is distributed more or less uniformly over the bounding box from the outlier
detection step. But to the best of our knowledge all more sophisticated solutions
(like constructing an equi-depth histogram for each dimension and then place
the values in the corresponding bucket) would introduce too much costs. An
expensive pre-filtering easily leads to methods which cannot compete to the
simple BNL approach.

Subsequently we will present a concrete numerical example on the iterative
scaling procedure.

Example 1. Assume a scaling factor α = 50, |D| = 106, and domain cardinalities
N1 = 2, N2 = 50, N3 = 105, i.e., D ⊆ [1..2] × [1..50] × [1..105]. Applying the
Scaling algorithm leads to values depicted in Table 1. After the second iteration
the algorithm terminates with s1 = 2, s2 = 50, s3 = 200.

Table 1. A run of the Scalagon scaling calculation

Iteration I s1 s2 s3

0 ∅ 27 27 27
1 {1} 2 100 100
2 {1,2} 2 50 200

3.6 Complexity Analysis

Concerning the complexity of Scalagon, the first phase is the Hexagon product
order (HPO) algorithm. This causes linear costs w.r.t. the input size n = |D|
and the size of the lattice, which is proportional to the size of the scaled domain
S(s), i.e., |S(s)| = s1 · ... · sd, cf. [19]. Hence we have for the HPO phase the
complexity Ct,HPO(n, s) = Θ(n + s1 · ... · sd) .

For the filtering phase we can assume that it takes constant time to check
f(t) ∈ Smin, hence this does not add additional complexity.

Finally we consider the BNL phase. In the worst case the BNL-style algorithm
takes Θ(n2) time, which can be realized for a set of incomparable objects, e.g.,

302 M. Endres et al.

a correlation of c = −1. This means that the complexity in phase 4 of Scalagon
is bounded by Ct,BNL(n) = O(n2) and the overall theoretical time complexity is

Ct(n, s) = O(n2 + s1 · ... · sn) .

The space complexity of the HPO algorithm corresponds to the size of lattice,
Cs,HPO(s) = Θ(s1 · ... · sd). Regarding the filtering phase and the BNL phase the
space complexity is bounded by O(|F |), even if all the filtered tuples are put
into main memory. In the worst case no tuples are filtered, and we have a space
complexity of O(n). In summary we are dealing with a space complexity of

Cs(n, s) = O(s1 · ... · sd + n) .

Note that in average and realistic cases we have linear costs in the BNL phase
[5] and the actual performance mainly depends on choosing α.

More sophisticated analysis of the complexity would necessitate some assump-
tions about the dataset and the distribution. Scalagon is an “all seasons algo-
rithm” which has the only assumption that most of data (without the outliers)
is concentrated in some area. This occurs in most realistic datasets and is a quite
“weak” assumption.

3.7 Memory Requirements and α

One disadvantage of Hexagon [20] and Lattice Skyline [19] is that the lattice
must fit into main memory. With our Scalagon approach we can scale down the
original domain such that the scaled lattice fits into memory, independent from
the available memory size.

In contrast to the usual lattice Skyline algorithms described in Section 2.3,
we only need the dominance state of every tile and not the empty/non-empty
states in the HPO phase. This means that the required main memory capacity
of HPO corresponds to a bit array in the same size as the scaled domain, i.e.,∏d

i=1 si. This array stores if the area is dominated (light gray tiles in Figure 2)
or is relevant for the BNL phase (white and dark grey tiles).

Assume the memory is restricted to M bytes. Then we have to insure that
the scaled domain S(s) = [1..s1] × . . . × [1..sd] fulfills mem BTG(s1, .., sd) ≤ M :

1
8

d∏

i=1

si ≤ M .

Since α = |D|/∏d
i=1 si we have α ≥ |D|/(8 · M).

Note that an externalization of our algorithm is straight forward: determine
the right value for α such that the BTG fits into the available main memory M
and apply an external BNL-style algorithm in phase 4, cp. Section 3.3. Therefore,
Scalagon is not restricted to main memory.

Scalagon: An Efficient Skyline Algorithm for All Seasons 303

4 Experiments

4.1 Framework

The algorithms used in our benchmarks have been implemented in Java 7.0 using
only built-in techniques for locking, compare-and-swap operations, and thread
management for the parallel algorithms. The experiments were performed on a
single node running Debian Linux 7.1 equipped with two Intel Xeon 2.53 GHz
quad-core processors using hyper-threading, that means a total of 16 cores.

For our synthetic datasets we used the data generator commonly used in
Skyline research [1]. We focused on weakly anti-correlated data distributions,
because this is the most challenging task for Skyline computation. For the experi-
ments on real-world data we used the well-known NBA and Household datasets1.
The NBA dataset is a small 5-dimensional dataset containing 17264 tuples, where
each entry records performance statistics for a NBA player [25]. Household is a
larger 6-dimensional dataset having 127931 points and a domain of [1..104]6.

4.2 Scalagon and the α Factor

A scale-factor α → 0 implies a similar algorithm like Hexagon, as every tuple
has its own tile in the scaled setting. Analogously α → ∞ leads to one tile for
all tuples and results in a BNL-style algorithm with some useless computational
overhead. That means, choosing the scaling factor α is a crucial point in the
Scalagon algorithm. We experimentally search for an α value to achieve max-
imum performance. A similar idea was already used in the implementation of
Quicksort by [26]. Thereby a CutOff -parameter is introduced which combines
Quicksort and insertion sort (the latter is more efficient for small arrays). Its
value is determined experimentally and reduces the runtime significantly.

Test Setting 1. In Figure 4 we show the run time of Scalagon w.r.t. different
values for α. For every sample we did five runs, each sample contains n = 107

tuples in the domain [0, 1]2 with a correlation value of −0.7, i.e. a typical weak
anti-correlation. We tested the values α ∈ {10−2, 10−1, ..., 106}. We did this
experiment in the statistical computing software R, where the package rPref
offers the BNL and Scalagon algorithm. The script is available at the web [27].

The experiment shows that α ∈ [1, 1000] is approximately optimal and within
this interval the run time is nearly identical. Outside this interval the run time
increases and for α < 0.1 and α > 105 the performance of Scalagon tends to be
worse than BNL. Therefore, choosing α seems to be easy. In all test settings we
could find a clear performance maximum plateau within the interval [1, 1000].

1 These datasets were crawled from www.nba.com and www.ipums.org.

304 M. Endres et al.

BNL runtimeBNL runtimeBNL runtimeBNL runtimeBNL runtimeBNL runtimeBNL runtimeBNL runtimeBNL runtime

0.0

0.5

1.0

1.5

2.0

0.01 1 100 10000 1e+06
α

R
un

tim
e

[s
]

Fig. 4. Test setting 1. Runtime
w.r.t. α compared with BNL.

Algorithm α |F | C Thpo TsSky Tall

Std-BNL 21053410 12.26
LESS 20106892 11.16
sSkyline 11554728 8.95
BSkyTree 7564 7.92
Hexagon – 104.95
Scalagon 10 223390 6106593 0.93 4.39 5.32

20 277089 6378523 0.40 4.75 5.15

50 332737 7518080 0.30 5.51 5.81
100 387930 7963012 0.27 6.20 6.47
200 425117 8245772 0.25 5.73 5.98

Fig. 5. Test setting 2. Filtering of Scalagon
(|F |) and number of comparisons (C). All
times (T(...)) in seconds.

Test Setting 2. In Figure 5 we substantiate the results of Test Setting 1 using
the domain [1..100]2 × [1..104] and varying α to measure the influence of the
scaling factor to the performance. We used |D| = 106 anti-correlated input
objects. We compared Scalagon to standard Std-BNL [1], LESS [5], sSky-
line[11], BSkyTree [21], and Hexagon [20]. In Scalagon we used sSkyline for
phase 4, because it is a simple Skyline algorithm without any pre-computation.
The Skyline set has a size of 476 objects. The overall runtime Tall (in seconds)
of BSkyTree performs better than Hexagon, although Hexagon has a linear run-
time complexity. This is due to the fact that the depth-first dominance test
in the large BTG takes a lot of time. The HPO phase of Scalagon eliminates
about two third of the input objects (|F| is the number of tuples after the HPO
pre-filter process). Therefore the number of tuple comparisons C in phase 4 is
much less then in the other algorithms. Note that in the BSkyTree algorithm the
computation of the pivot element is the most time consuming part, but implies
only 7564 tuple comparisons. Scalagon with α = 20 clearly outperforms all other
algorithms. Thereby, Thpo is the runtime of HPO (phases 1–3) and TsSky is the
runtime of sSkyline (phase 4). The scaled domain for α = 20 is S = [1..36]3

which leads to a BTG size of 46656 nodes for the HPO stage.

4.3 Parallel Scalagon

In this section we provide performance benchmarks for our parallel implementa-
tion of Scalagon. Thereby we used the setting described in Section 4.1. We have
implemented a parallel Hexagon product order algorithm, which is a modifica-
tion of the algorithm ARL-S described in [15]. Combining the parallel Hexagon
product order method with a parallel BNL-style Skyline algorithm for the second
phase leads to the parallel Scalagon algorithm pScalagon.

As competitors we considered parallel BNL (pBNL) using a Lazy List [12],
pSkyline [11], and APSkyline using the equi-volume angle-based partitioning
strategy [14]. We skipped the algorithm D&C [12] and HPL-S and ARL-S from
[15], because they are outperformed by another algorithm or cannot be applied

Scalagon: An Efficient Skyline Algorithm for All Seasons 305

 0

 1

 2

 3

 4

 5

 6

 7

 8

 = 10
 = 10

 = 10
 = 50

 = 50
 = 50

 = 100

 = 100

 = 100

R
un

tim
e

(s
ec

)

Phase 1+2+3 (HPO)
Phase 4 (BNL-style algorithm)

pB
N

L

pS
kyline

A
P

S
kyline

pB
N

L

pS
kyline

A
P

S
kyline

pB
N

L

pS
kyline

A
P

S
kyline

(a) Segmented runtime.
|D| = 106, d = 5.

 0

 50

 100

 150

 200

 250

pBNL
pSkyline

APSkyline

pScalagon

pScalagon

pScalagon

R
un

tim
e

(s
ec

)

d=3
d=5
d=7

=
10

=
50

=
100

(b) Dimensions. n = 106

(anti-corr), c = 16.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

pBNL
pSkyline

APSkyline

pScalagon

pScalagon

pScalagon

R
un

tim
e

(s
ec

)

NBA
Household

=
10

=
50

=
100

(c) Real world data. NBA,
Household.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 5 10

R
un

tim
e

(s
ec

)

Input size x 10^6

pBNL
pSkyline

APSkyline
pScalagon

(d) Runtime, algorithms.
c = 16, α = 50.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

S
pe

ed
-u

p

Thread count

pBNL
pSkyline

APSkyline
pScalagon

(e) Speed-up. n = 106

(anti-corr), d = 5.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 32 64 128 256 512
R

un
tim

e
(s

ec
)

Thread count

pBNL
pSkyline

APSkyline
pScalagon (APSkyline)

(f) Thread count, runtime.

Fig. 6. Parallel Skyline algorithms

due to high-cardinality domains. Note that all our results are in line with the
results presented in [12] and [14].

Test Setting 3 – Segmented Runtime. In Figure 6(a) we show the seg-
mented runtime for pScalagon using different parallel BNL-style algorithms for
phase 4. Using α = 10, the HPO is a little bit slower than for α = 100 because of
a larger BTG and a more expensive DFT. For larger α the BNL-style algorithms
have to do more work.

Test Setting 4 – Dimensions. In Figure 6(b) we used different domains
[1..1000]d, with d ∈ {3, 5, 7} dimensions, which is a realistic case in Skyline
queries. For d = 3 all runtimes are quite similar, whereas for higher dimensions
pScalagon (with APSkyline) outperforms its competitors. Note that the size of
the Skyline set normally increases with the dimensionality of the dataset on
anti-correlated data [28], making Skyline processing for algorithms relying on
tuple comparison more demanding. This experiment verifies the advantage of
our hybrid algorithm using a data independent lattice approach as pre-filter.

Test Setting 5 – Real-World Data. In Figure 6(c) we report the compar-
ison results for real world data. We expected that pScalagon is worse than its
competitors considering the NBA dataset, because of the hybrid approach which

306 M. Endres et al.

produces some overhead on small datasets. However, for the Household dataset
pScalagon outperforms all other algorithms.

Test Setting 6 – Runtime. In this test we compared pScalagon (with APSky-
line) to the state-of-the-art parallel Skyline algorithms, cp. Figure 6(d). The
domain is [1..5]× [1..103]× [1..105]. For the given α = 50 this leads to the scaled
domain S = [1..5] × [1..63] × [1..63] in the case of n = 106. pScalagon clearly
outperforms its competitors, in particular for large datasets.

Test Setting 7 – Thread Count. In Figure 6(e) we measured the speed-up
on 5 dimensions: [1..2]2 × [1..5] × [1..104]2. We observed that APSkyline and
pScalagon have a good speed-up up to 8 threads. From the ninth thread on,
the performance only marginally increases and beyond 16 threads it gradually
decreases. This can be explained with decreasing cache locality and increas-
ing communication costs as our test system uses two quad-core processors with
Hyper-Threading. Starting with the ninth core, the 2nd processor must con-
stantly communicate with the first. The same effect is mentioned in [12].

For evaluating the runtime performance of the parallel algorithms in absolute
numbers, we also measured the computation time. The results can be found in
Figure 6(f). The bad performance of pScalagon using more than 256 threads can
be explained by a very high locking of the lattice nodes.

5 Conclusion and Outlook

Scalagon can be seen as the smooth integration of the lattice Skyline idea, which
was originally developed for discrete domains, into a general Skyline algorithm
for continuous domains and mixed discrete/continuous domains. Scalagon does
not depend on a plenty of configuration factors or hard to determine pre-sorting
functions like some other algorithms, but can be tuned by the factor α. With
the only assumption that the most of the tuples are more or less uniformly dis-
tributed, Scalagon is well suited for a large variety of input data. Our experiments
showed the superior characteristics and performance of Scalagon in different set-
tings.

For future work we want to use GPUs to optimize the pre-filter phase of
Scalagon. Since there reside many comparable objects inside a node of the lattice,
it would be possible to run a BNL-style algorithm inside a tile to eliminate
dominated objects. But this could only be done using massive parallel hardware
architectures like GPUs.

Acknowledgments. We want to thank Selke et al. [12] for providing us with the
source code of the parallel BNL, sSkyline, pSkyline, and pDC algorithms. The imple-
mentation of APSkyline is based on the source code made available by Liknes et al. [14].
This work has been partially funded by the Bavarian Ministry of Economic Affairs,
Infrastructure, Transport and Technology, grant numbers IUK-1109-0003//IUK398/
002 and IUK-1307-0004//IUK434/003.

Scalagon: An Efficient Skyline Algorithm for All Seasons 307

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE
2001 Proceedings of the 17th International Conference on Data Engineering,
pp. 421–430. IEEE Computer Society, Washington, DC (2001)

2. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline Queries, Front and Back. SIG-
MOD Rec. 42(3), 6–18 (2013)

3. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algo-
rithm for skyline queries. In: VLDB 2002 Proceedings of the 28th International
Conference on Very Large Data Bases, pp. 275–286. VLDB Endowment (2002)

4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE
2003 Proceedings of the 19th International Conference on Data Engineering, pp.
717–816 (2003)

5. Godfrey, P., Shipley, R., Gryz, J.: Algorithms and Analyses for Maximal Vector
Computation. The VLDB Journal 16(1), 5–28 (2007)

6. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for
web information systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 256–273. Springer, Heidelberg (2004)

7. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D.P., El Abbadi, A.: Parallelizing
skyline queries for scalable distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt,
J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C.
(eds.) EDBT 2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006)

8. Cosgaya-Lozano, A., Rau-Chaplin, A., Zeh, N.: Parallel computation of skyline
queries. In: HPCS 2007 Proceedings of the 21st International Symposium on High
Performance Computing Systems and Applications, p. 12. IEEE Computer Society,
Washington, DC (2007)

9. Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: AGiDS: a grid-based
strategy for distributed skyline query processing. In: Hameurlain, A., Tjoa, A.M.
(eds.) Globe 2009. LNCS, vol. 5697, pp. 12–23. Springer, Heidelberg (2009)

10. Gao, Y., Chen, G.-C., Chen, L., Chen, C.: Parallelizing progressive computation
for skyline queries in multi-disk environment. In: Bressan, S., Küng, J., Wagner,
R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 697–706. Springer, Heidelberg (2006)

11. Park, S., Kim, T., Park, J., Kim, J., Im, H.: Parallel Skyline Computation on
Multicore Architectures. In: ICDE 2009 Proceedings of the 2009 IEEE Interna-
tional Conference on Data Engineering, pp. 760–771. IEEE Computer Society,
Washington, DC (2009)

12. Selke, J., Lofi, C., Balke, W.-T.: Highly scalable multiprocessing algorithms
for preference-based database retrieval. In: Kitagawa, H., Ishikawa, Y., Li, Q.,
Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 246–260. Springer,
Heidelberg (2010)

13. Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. In: ICDT
2012 Proceedings of the 15th International Conference on Database Theory, pp.
274–284. ACM, New York (2012)

14. Liknes, S., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: APSkyline: improved sky-
line computation for multicore architectures. In: Bhowmick, S.S., Dyreson, C.E.,
Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part
I. LNCS, vol. 8421, pp. 312–326. Springer, Heidelberg (2014)

15. Endres, M., Kießling, W.: High parallel skyline computation over low-cardinality
domains. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS
2014. LNCS, vol. 8716, pp. 97–111. Springer, Heidelberg (2014)

308 M. Endres et al.

16. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In:
VLDB 2001 Proceedings of the 27th International Conference on Very Large Data
Bases, pp. 301–310. Morgan Kaufmann Publishers Inc, San Francisco (2001)

17. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: SIGMOD 2003 Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 467–478. ACM, New York
(2003)

18. Lee, K., Zheng, B., Li, H., Lee, W.-C.: Approaching the skyline in Z order. In:
VLDB 2007 Proceedings of the 33rd International Conference on Very Large Data
Bases, pp. 279–290. VLDB Endowment (2007)

19. Morse, M., Patel, J.M., Jagadish, H.V.: Efficient skyline computation over low-
cardinality domains. In: VLDB 2007 Proceedings of the 33rd International Con-
ference on Very Large Data Bases, pp. 267–278. VLDB Endowment (2007)

20. Preisinger, T., Kießling, W.: The hexagon algorithm for evaluating pareto prefer-
ence queries. In: MPref 2007 Proceedings of the 3rd Multidisciplinary Workshop
on Advances in Preference Handling (in conjunction with VLDB 2007) (2007)

21. Lee, J., Hwang, S.-W.: BSkyTree: scalable skyline computation using a balanced
pivot selection. In: EDBT 2010 Proceedings of the 13th International Conference
on Extending Database Technology, pp. 195–206. ACM, New York (2010)

22. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn.
Cambridge University Press, Cambridge (2002)

23. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In:
SIGMOD 2001 Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data, vol. 30, pp. 37–46. ACM, New York, May 2001

24. Aggarwal, C.C.: Outlier Analysis. Springer, New York (2013)
25. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high

dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

26. Bentley, J.L.: Programming Pearls. Addison-Wesley (2000)
27. Roocks, P.: R script for α determination (2014). http://www.informatik.

uni-augsburg.de/en/chairs/dbis/db/staff/roocks/publications/rpref alpha.zip
28. Shang, H., Kitsuregawa, M.: Skyline operator on anti-correlated distributions. In:

VLDB 2013 Proceedings of the 39rd International Conference on Very Large Data
Bases, vol. 6, pp. 649–660 (2013)

http://www.informatik.uni-augsburg.de/en/chairs/dbis/db/staff/roocks/publications/rpref_alpha.zip
http://www.informatik.uni-augsburg.de/en/chairs/dbis/db/staff/roocks/publications/rpref_alpha.zip

Towards Order-Preserving
SubMatrix Search and Indexing

Tao Jiang(B), Zhanhuai Li, Qun Chen, Kaiwen Li, Zhong Wang, and Wei Pan

School of Computer Science and Technology,
Northwestern Polytechnical University, 710072 Xi’an, China

{jiangtao,likaiwen,zhongwang}@mail.nwpu.edu.cn,
{lizhh,chenbenben,panwei1002}@nwpu.edu.cn

http://wowbigdata.net.cn/

Abstract. Order-Preserving SubMatrix (OPSM) has been proved to be
important in modelling biologically meaningful subspace cluster, captur-
ing the general tendency of gene expressions across a subset of conditions.
Given an OPSM query based on row or column keywords, it is desirable
to retrieve OPSMs quickly from a large gene expression dataset or OPSM
data via indices. However, the time of OPSM mining from gene expres-
sion dataset is long and the volume of OPSM data is huge. In this paper,
we investigate the issues of indexing two datasets above and first present
a naive solution pfTree by applying prefix-Tree. Due to it is not efficient
to search the tree, we give an optimization indexing method pIndex. Dif-
ferent from pfTree, pIndex employs row and column header tables to
traverse related branches in a bottom-up manner. Further, two pruning
rules based on number and order of keywords are introduced. To reduce
the number of column keyword candidates on fuzzy queries, we intro-
duce a First Item of keywords roTation method FIT, which reduces it
from n! to n. We conduct extensive experiments with real datasets on a
single machine, Hadoop and Hama, and the experimental results show
the efficiency and scalability of the proposed techniques.

Keywords: OPSM · Gene expression data · pIndex · FIT · Queries

1 Introduction

DNA microarray enables simultaneously monitoring of the expression level of
tens of thousands of genes over hundreds of experiments. Gene expression data,
fixed on DNA microarrays, can be viewed as an n × m matrix with n genes
(rows) and m experiments (columns), in which each entry denotes the expression
level of a given gene under a given experiment. Traditional clustering methods

This work was supported in part by National Basic Research Program 973 of
China (No. 2012CB316203), Natural Science Foundation of China (Nos. 61033007,
61272121, 61332006, 61472321), National High Technology Research and Develop-
ment Program 863 of China (No. 2013AA01A215), Graduate Starting Seed Fund of
Northwestern Polytechnical University (No. Z2012128).

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 309–326, 2015.
DOI: 10.1007/978-3-319-18123-3 19

310 T. Jiang et al.

do not work well for gene expression data, due to a fact that most genes are
tightly coexpression only under a subset of experiments, and are not necessarily
expression at the same or similar expression level. Thus, it makes pattern-based
subspace clustering as the popular tool to find meaningful clusters. Recently,
Order-Preserving SubMatrix (OPSM) [2], a special model of pattern-based clus-
tering, has been accepted as a biologically meaningful cluster model. In essence,
an OPSM is a subset of rows and columns in a data matrix where all the rows
induce the same liner ordering of the columns, e.g., rows g3 and g6 have an
increasing expression level on columns 2, 7, 5, and 1. And OPSM cluster model
focuses on the relative order of columns rather than the actual values. As costs
of gene expression analysis continue to decrease, large volume of gene expression
datasets and OPSM mining results are accumulated, but not efficiently used by
biologists, who would like to find supporting rows or columns based on keyword
queries. This problem OPSM query is to retrieve one or some supporting rows
or columns based on column or row keywords from a given data matrix, which
plays an important role in inferring gene coregulated networks.

Most of the previous studies, such as [15,10,6,21,17,8,9], address the problem
of OPSM mining, few work is studied for OPSM query. OPSM problem is first
proposed by Ben-Dor [2]. Then, Liu and Trapp et al. [15,17] try to develop
efficient mining methods. Gao et al. [10] give KiWi framework to find small
twig clusters. Chui [6], Zhang [21], and Fang et al. [7,8,9] present noise-tolerant
models. OPSM mining tools, such as GPX [11] and BicAT [1], have a common
feature that it uses an indirect way to give queried results. And indirect way is not
efficient, thus we want to present a direct-way query tool. The most similar work
with OPSM query is presented in work [11], Jiang et al. [11] give an interactive
method to facilitate OPSM search, which can drill down and roll up.

OPSM query is similar to string matching problem [13,3], the common work
of both problems is to find whether a pattern string is in the given string. Two
famous methods of string matching are KMP [13] and BM [3], which are efficient
for string matching without gaps, but cannot work well for OPSM query which
allows having gaps in the given string. Thus, these methods cannot be directly
used by us. Clearly, it is necessary to build indices in order to help processing
OPSM queries. Prefix tree [14] and suffix tree [19,16,18] are two common models,
due to the former one allows two strings share the common prefix string, which
reduces the spaces, we choose it as the basic model.

Designing a direct-way OPSM query tool is a challenging work due to the
reasons below. First, the numbers and sizes of datasets are huge. As the cost
of gene expression analysis decreases, the numbers and sizes of gene expression
datasets have been growing at an ever-increasing rate. Further, large volume
of OPSM datasets are accumulated. Second, how to devise a common tool for
two different datasets above. As we all know, OPSM mining time from gene
expression data is larger than the search time from OPSM data, but the amount
of OPSM dataset is much larger than that of gene expression data. Last but not
the least, the index size should be small enough to save in memory, index update
should be efficient, and the queries on the index should be fast and scalable.

Towards Order-Preserving SubMatrix Search and Indexing 311

To address the challenges above, we first present a naive solution pfTree by
applying prefix-Tree, which can reduce some duplicate data. Due to it is not
efficient to search the tree, an optimization method pIndex is given. Meanwhile,
two indices can incorporate two kinds of data, i.e., it delays OPSM mining until
query or directly uses mining results. In this way, we take advantage of pros of
two different datasets. Further, pIndex utilizes row and column header tables
for index update and OPSM queries. To improve the performances of queries,
it gives pruning methods to reduce the scans of useless branches. To reduce the
number of column keyword candidates on fuzzy queries, we introduce a First
Item of keywords roTation method FIT, which reduces it from n! to n.

We have applied pfTree and pIndex to gene expression and OPSM datasets.
And we conduct extensive experiments, and experimental results demonstrate
that both indices are compact in size, the proposed techniques are very efficient
for index update and OPSM queries. Further, we implement the methods on
a single machine, Hadoop and our modified Hama platform [12], and it is also
efficient and scalable. The main contributions of this paper are as follows:

• We propose a naive prefix tree based indexing method pfTree and an opti-
mization mechanism pIndex associated with row and column header tables.

• Index update (insert or delete) and query methods are presented. FIT and
some pruning methods improve the query performances.

• We evaluate pfTree and pIndex on a single machine, Hadoop and our mod-
ified Hama platform [12], and the study confirms that pIndex has better
performance in terms of processing cost and scalability.

The rest of paper is organized as follows: Section 2 gives preliminary concepts
and presents the basic framework for Order-Preserving SubMatrix indexing and
search. Section 3 illustrates the index building and updating method and how
to construct header tables. Exact and fuzzy queries using header table based
search paradigm are discussed, FIT strategy and pruning methods are proposed
in Section 4. We report empirical studies, and give related work in Section 5 and
6, respectively. Section 7 concludes this study.

2 Preliminaries

In this section, we introduce preliminary concepts and outline an indexing frame-
work to address Order-Preserving SubMatrix query problem.

In this paper, we use the following notations listed in Table 1.

Table 1. Notations

Notation Description Notation Description
G gene set C condition set
g subset of G c subset of C
gi a gene ci a condition

D(G,C) a matrix eij entry of D
τ c threshold δ g threshold

Table 2. An OPSM Dataset

Row No. Column No.
1,2,5 VI,III,I,VIII,XVI
3,6,9 VI,III,I,II,XIII

7,10,11 VI,II,III
4,8,12 III,II,XVI
4,6 VI,III,I,VIII,XVI

312 T. Jiang et al.

Definition 1. (Order-Preserving SubMatrix (OPSM)). Given a dataset
(n × m matrix) D(G,C), an OPSM is a pair (g, c), where g is a subset of the
n rows and c is a permutation of a subset of the m columns which satisfies
the condition: for each row in g, the data values e are monotonically increasing
or decreasing with respect to the permutation of the indexes of columns, i.e.,
ei1 ≺ ei2 ≺ ... ≺ eij ≺ ... ≺ eik (ei1 � ei2 � ... � eij � ... � eik), where
(i1, ..., ij, ..., ik) is the permutation of the indexes of columns (1, ..., j, ..., k).

Definition 2. (Exact Query on Genes (EQg)). Given an OPSM datasets
and a subset of genes g = (gi, ..., gj , ..., gk), exact query on g returns the subsets of
conditions c = (cx, ..., cy, ..., cz) above length threshold τ in OPMSs that contain
all the items in g.

Definition 3. (Exact Query on Conditions (EQc)). Given an OPSM data-
sets and a subset of conditions c = (cx, ..., cy, ..., cz), exact query on c returns
the subsets of genes g = (gi, ..., gj , ..., gk) above size threshold δ in OPMSs that
contain all the items in c and keep the order of c.

Definition 4. (Fuzzy Query on Genes (FQg)). Given an OPSM datasets
and a subset of genes g = (gi, ..., gj , ..., gk), fuzzy query on g returns the subsets of
conditions c = (cx, ..., cy, ..., cz) above length threshold τ in OPMSs that contain
a subset of the items in g above size threshold δ.

Definition 5. (Fuzzy Query on Conditions (FQc)). Given an OPSM data-
sets and a subset of conditions c = (cx, ..., cy, ..., cz), fuzzy query on c returns
the subsets of genes g = (gi, ..., gj , ..., gk) above size threshold δ in OPSMs that
contain a subset of c above length threshold τ and need not to keep order of c.

The processing of OPSM queries can be divided into three major steps:

• Index construction and update: which is the fundamental part. It uses pre-
fix tree to incorporate the two kinds of datasets. If several OPSMs have a
common prefix, they share the prefix in the tree and each suffix is added
after the prefix. Index update includes index inserting and index deleting.
To make it efficient is the critical task.

• Header table design: which is the assistant data structure. It consists of two
parts: (1) Row header table, which helps pIndex deletion and OPSM queries
on row keywords. (2) Column header table, which aids pIndex deletion and
OPSM queries on column keywords.

• Query processing : which consists of two substeps: (1) Search, which traces the
tree with row or column keywords in the way of bottom-up, and gets column
branches or row sets respectively. (2) Filter, which does the intersection and
checks whether the intermediate results are above the user-defined threshold.

3 pIndex

To design a compact and efficient index for OPSM queries, let’s first examine an
example Example 1. The row No. (gene name) and column No. (experimental
condition) of OPSMs are listed in the first and second columns of Table 2.

Towards Order-Preserving SubMatrix Search and Indexing 313

Fig. 1. pIndex (pfTree, column and row header tables)

In the following, we use OPSM dataset as an example, due to each row in
gene expression data can be seen as an OPSM. A compact index can be designed
based on the observations below:

• There are a number of overlaps in the OPSMs. If each overlap only be stored
one time, it may avoid some unnecessary work, and thus save some spaces.

• If multiple OPSMs share the same order of the same columns, they can be
merged into one with the row No. record merging.

• If two OPSMs share a common prefix, the shared parts can be merged using
one prefix structure and two branches are added after the prefix.

With these observations, we give an example to explain how to construct a
prefix tree of OPSMs, called OPSM-Tree or pfTree, a naive indexing method.

Example 1. Table 2 shows a sample OPSM dataset. This dataset will be used as
our running example. The procedure of pfTree construction is plotted in Fig. 1.

In Example 1, first, one may create the root of a tree, labelled with “null”.
Scan the OPSM dataset, the scan of the first OPSM leads to the construction
of the first branch of the tree: <VI, III, I, VIII, XVI>. Notice that we keep the
item order in an OPSM, since it is the permutation of expression values with
column No. And add a leaf node (1, 2, 5). For the second OPSM, since its item
list <VI, III, I, II, XIII> shares a common prefix <VI, III, I> with the existing
path <VI, III, I, VIII, XVI>. One new node (II) is created and linked as a child
of (I), and another new node (XIII) is created and linked as the child of (II). The
leaf node records row No. <3, 6, 9>. For the third OPSM, since its column No.
list <VI, II, III> shares only the node (VI) with VI-prefix subtree, and a new
node (II) is created and linked as a child of (VI), another node (III) is created
and linked as a child of (II), and the leaf node records row No. <7, 10, 11>. The
scan of the forth OPSM leads to the construction of the second branch of the
tree <III, II, XVI>, and the leaf node records row No. <4, 8, 12>. For the last
OPSM, since its item list <VI, III, I, VIII, XVI> is identical to the first one, it
only adds the row No. <4, 6> in the leaf node (1, 2, 5). pfTree build method is
introduced in lines 6-7 of Algorithm 1.

314 T. Jiang et al.

Through experiments, we know that the deleting and queries based on pfTree
is not efficient, although it is fast to build index and insert index. To advance the
performance, we give an optimization method pIndex, which uses two auxiliary
data structures, column and row header tables, to facilitate tree traversal.

Algorithm 1. (pIndex-Build) pIndex Construction
Input: OPSM or gene expression dataset D
Output: pIndex

1 treeRoot ← null;
2 while ((opsm ← D.nextLine()) �= null) do
3 nameList ← opsm.g; arrayInt ← opsm.c; curNode ← treeRoot;
4 for (it : arrayInt) do
5 linkFlag ← false;
6 if (false = currentNode.hasThisChild(it)) then
7 curNode.addChild(it); linkFlag ← true;

8 curNode ← curNode.getChild(it); curNode.frequencyIncrease(|g|);
9 if (null = columnHeadTable.get(it)) then

10 columnHeadTable.put(it, curNode); curNode.setBkLink(null);

11 else
12 itNode ← columnHeadTable.get(it);
13 while (itNode.getFwdLink() �= null) do
14 itNode ← itNode.getFwdLink();

15 if (linkF lag) then
16 itNode.setFwdLink(curNode); curNode.setBkLink(itNode);

17 curNode.setFinal(true); curNode.setName(nameList);
18 for (name : nameList) do
19 if (null �= rowHeadTable.get(name)) then
20 nodeSet.addAll(rowHeadTable.get(name));

21 nodeSet.add(curNode); rowHeadTable.put(name, nodeSet);

22 return pIndex ;

For pIndex deletion and queries on conditions c, a column header table is
built in which the order is conducted based on the occurrences of items from left
to right and from top to bottom, and each item points to its occurrence in the
tree via a column head of node-link. Nodes with the same column No. are linked
in sequence via such bidirection node-links. After scanning all OPSMs, OPSM-
tree with the column node-links is built, and column header table is shown in
the left side of Fig. 1. The method is illustrated in lines 9-16 of Algorithm 1.

For pIndex deletion and queries on genes g, a row header table is built in
which the order is conducted based on the occurrences of row Nos from left to
right, and the tree nodes which have the same row No. will be saved in one hash
set. For convenience of explanation, nodes with the same row No. are linked in
sequence via a row head of node-link in Fig. 1. After scanning all OPSMs, the

Towards Order-Preserving SubMatrix Search and Indexing 315

tree with the associated row header table is built, and row header table is shown
in the bottom of Fig. 1. The method is plotted in lines 18-21 of Algorithm 1.

Algorithm 2. (pIndex-Del-Row) pIndex Deletion by Rows
Input: gene names g
Output: pIndex

1 for (name : g) do
2 nodeSet ← rowHeadTable.get(name);
3 for (node : nodeSet) do
4 if (1 < |nodeSet|) then rowHeadTable.get(name).remove(node);
5 else if (1 = |nodeSet|) then rowHeadTable.remove(name);
6 else if (0 = |nodeSet|) then break;
7 if (1 < |node.getName()|) then node.deleteName(name);
8 else if (1 = |node.getName()|) then delNodesAndCols(node);

9 return pIndex ;

Algorithm 3. (Del-NodeCol) Delete Nodes And Columns
Input: nodes nodes
Output: pIndex

1 while (treeRoot �= node) do
2 node.frequencyDecrease();
3 node.getParent().getChildren().remove(node.getItem());
4 tmp ← node; node ← node.getParent(); tmp ← setParent(null);
5 if (null �= tmp.getBkLink() & null �= tmp.getFwLink()) then
6 new ← tmp.getFwdLink(); new.setBkLink(tmp.getBkLink());
7 tmp.getBkLink().setFwdLink(new);

8 else if (null �= tmp.getBkLink() & null = tmp.getFwdLink()) then
9 tmp.getBkLink().setFwdLink(null); tmp.setBkLink(null);

10 else if (null = tmp.getBkLink() & null = tmp.getFwdLink()) then
11 columnHeadTable.remove(tmp.getItem());

12 else if (null = tmp.getBkLink() & null �= tmp.getFwdLink()) then
13 columnHeadTable.remove(tmp.getItem());
14 tmp.getFwdLink().setBkLink(null);
15 columnHeadTable.put(tmp.getItem(), tmp.getFwdLink());

16 if (1 < node.getFrequency) then break;

17 return pIndex ;

To facilitate pIndex update, we give pIndex insertion and deletion methods.
Due to pIndex insertion is similar with pIndex construction, we only introduce
pIndex deletion method, which consists of two way, by-row and by-column.

For pIndex deletion by rows, we give the method in Algorithm 2. First, it gets
the keywords of rows (gene names). For each name, it consists of three substeps
operations, i.e., deleting from row header table, deleting tree nodes, and deleting

316 T. Jiang et al.

from column header table. For the first step, it fetches leaf nodes from row header
table (lines 1-2). Then, for the leaf nodes, it first checks the number. If it is 0,
it ends the processing (line 6). If it is 1, it removes the key-value record of the
name (line 5). If it is more than 1, it only removes the value (node) from the
key-value record (line 4). For the other steps, it invokes Algorithm 3.

Algorithm 4. (pIndex-Del-Col) pIndex Deletion by Columns
Input: columns c
Output: pIndex

1 key ← c.get(|c| - 1); keyNode ← columnHeadTable.get(key);
2 while (null �= keyNode) do
3 itNode ← keyNode.getParent(); count ← |c| - 2;
4 while (0 ≤ count) do
5 if (c.get(count) = itNode.getItem()) then count ← count - 1;
6 if (treeRoot = itNode) then break;
7 else itNode ← itNode.getParent();

8 if (0 ≤ count) then keyNodes.clear(); keyNodes.add(keyNode);
9 keyNode ← keyNode.getFwdLink();

10 for (node : keyNodes) do leafNodes ← findLeafNodes(node);
11 for (node : leafNodes) do
12 for (name : node.getName()) do
13 if (null = rowHeadTable.get(name)) then break;
14 else if (1 = |rowHeadTable.get(name)|) then
15 rowHeadTable.remove(name);

16 else if (1 < |rowHeadTable.get(name)|) then
17 rowHeadTable.get(name).remove(node);

18 delNodesAndCols(node); (Algorithm 3)

19 return pIndex ;

Now, we give the detailed information about Algorithm 3. First, it checks
whether the node is the root of the tree. If it is, it ends (line 1). Otherwise, it
reduces the frequency of the node by one (line 2). Due to it is the leaf node, and
shared by only one row, we first delete it from the child set of its parent, then
we set its parent is null (lines 3-4). There are four cases to delete the current
node from column header table. (1) If it links forward and back nodes, we make
the forward node and back node to point each other (lines 5-7). (2) If it only has
back node, we set the forward link of back node and back link of current node be
null (lines 8-9). (3) If it does not have both forward and back nodes, we remove
the key-value of current node from the column header table (lines 10-11). (4)
If it only has the forward node, we set the back node of forward node be null,
and put the forward node into the column header table instead of current node
(lines 12-15). Finally, if the frequency of the parent of current node is more than
1, we end the processing (line 16).

Towards Order-Preserving SubMatrix Search and Indexing 317

To delete pIndex by columns, we introduce Algorithm 4. Due to it uses the
bottom-up way to trace the tree, we first get the last keyword (column No.) and
the head node in the column header table (line 1). Based on the node-links having
the same item (column No.), if the branch contains the reversed keywords, we
fetch the bottom source node in the node-link. If not, it goes to the next node
on the node-link (lines 3-9). After it gets all the bottom source nodes, we get
the leaf nodes of each nodes (line 10). Further, we delete the branches and the
row node-links in the bottom-up way (lines 11-17). And it invokes Algorithm 3
to delete related column node-links (line 18). We use a recursive way to find the
leaf nodes, which is illustrated in Algorithm 5.

Algorithm 5. Find Leaf Nodes
Input: tree node node
Output: leaf nodes leafNodes

1 if (node.isLeaf()) then leafNodes.add(node);
2 if (node.hasChild()) then
3 children ← node.getChildren();
4 while (child : children) do findLeafNodes(child);

5 return leafNodes;

4 OPSM Queries

In the section, we explore OPSM queries on pIndex with two header tables.

Algorithm 6. (EQg) Exact Query on Genes
Input: Gene name keywords g, Length threshold τ
Output: HashMap<g, set of conditions> result

1 for (name : g) do
2 if (null = rowHeadTable.get(name)) then return null ;
3 nodeList ← rowHeadTable.get(name);
4 for (node : nodeList) do
5 colList ← branch of node;
6 if (colList.length ≥ τ) then fstLists.add(colList);

7 hashMap.put(name, fstLists); fstLists.clear();

8 if (1 = |g|) then return hashMap;
9 fstLists ← hashMap.get(g0); flag ← false;

10 for (i ← 1 to |g| − 1) do
11 if (flag) then fstLists ← resLists; resLists.clear();
12 flag ← true; secLists ← hashMap.get(gi);
13 for (out : fstLists, in : secLists) do
14 lcs ← findLongestCommonSubsequence(out, in);
15 if (lcs.length ≥ τ) then out ← lcs; resLists.add(lcs);

16 if (resLists.size() > 0) then result.add(g, resLists);
17 return result ;

318 T. Jiang et al.

For exact queries on genes EQg, we first locate the row numbers, then trace
back the branches of all leaves of row numbers, and further find the longest
common subsequences (LCSs) of all branches, finally output the column numbers
above length threshold τ in LCSs. The details are illustrated in Algorithm 6.

Example 2. (Exact Query on Genes EQg) We use Table 2 and Fig. 1 as example.
Given some gene keywords 2, 3, 9, and length threshold 3, search the subset of
conditions contained by these genes. First, find the heads of node-links of 2, 3, 9
from the row header table, then get the branch <VI,III,I,VIII,XVI> that contain
gene 2 and the branch <VI,III,I,II,VIII> that contain gene 3 and 9, further find
the LCS of the two branches above, and the result is <VI,III,I,VIII> which is
above length threshold 3.

From Example 2, we get the pruning rule of query result, Rule 1.
Rule 1. (Keyword No. based Pruning) For the keywords of column and row in
exact queries, the branches should contain all the elements of c in query based
on conditions, and the leaves should contain all the elements of g in query based
on genes. If not, prune the branch or leaf.

For exact queries on conditions EQc, we first locate column keywords using
column header table, from located node to tree root. If keywords are in the same
branches, we test the orders. If the order is the same as input order, we return
the genes above size threshold δ as the result. Otherwise, we test until there are
no column keywords to locate. The details are illustrated in Algorithm 7.

Algorithm 7. (EQc) Exact Query on Conditions
Input: Condition keywords c, Size threshold δ
Output: HashMap<c, set of genes> result

1 key ← c.get(|c| - 1); keyNode ← columnHeadTable.get(key);
2 if (null = keyNode) then return null ;
3 while (null �= keyNode) do
4 itNode ← keyNode.getParent(); count ← |c| - 2;
5 while (count ≥ 0) do
6 if (c.get(count) = itNode.getItem()) then count ← count - 1;
7 if (itNode = treeRoot) then break;
8 else itNode ← itNode.getParent();

9 if (count < 0) then nodes.add(keyNode);
10 keyNode ← keyNode.getFwdLink();

11 for (inNode : nodes) do nameSet ← getNamesInLeaves(inNode);
12 if (nameSet.size() ≥ δ) then result.put(c, nameSet);
13 return result ;

Example 3. (Exact Query on Conditions EQc) We use Table 2 and Fig. 1 as
example. Given some condition keywords VI, III, I, and size threshold 3, search
the subset of genes contained by these conditions. First, find the heads of node-
links of I, III, VI (reverse order of input keywords) from column header table,
then get the branch <VI,III,I,VIII,XVI> and the branch <VI,III,I,II,VIII> that

Towards Order-Preserving SubMatrix Search and Indexing 319

contain I, then check whether the two branches contain III, VI and keep the
order of I, III, VI, and they meet the conditions above, further, get the gene set
<1,2,4,5,6,3,6,9> which is above size threshold 3.

From Example 3, we get the pruning rule of query result, Rule 2.
Rule 2. (Order based Pruning) For the keywords of column subset c in Exact
Queries, the branches contain all the elements in c should also keep the order of
elements in c. If not, prune the branch.

Algorithm 8. (FQg) Fuzzy Query on Genes
Input: Gene name keywords g, Length threshold τ , Size threshold δ
Output: HashMap<subset of g, set of conditions> result

1 for (i ← δ to |g|) do querySetLists ← combination of i items in g;
2 for (querySet : querySetLists) do result ← EQg(querySet, τ);
3 return result ;

Algorithm 9. (FQc) Fuzzy Query on Conditions
Input: Condition keywords c, Size threshold δ, Length threshold τ
Output: HashMap<subset of c, set of genes> result

1 for (i ← 0 to |c| − 1) do
2 key ← columnHeadTable.get(ci); if (null = key) then return null ;
3 while (null �= key) do
4 list.add(ci); node ← key.getParent(); no ← |c| - 2;
5 while (no ≥ (|c| − τ) do
6 for (it : c) do
7 if (it = node.getItem()) then no- -; list.add(it); break;

8 if (node = treeRoot) then break;
9 else node ← node.getParent();

10 if (no < (|c| − τ)) then
11 while (node �= treeRoot) do
12 for (it : c) do
13 if (it = node.getItem()) then no- -; list.add(it); break;

14 node ← node.getParent();

15 nodes.add(key);

16 key ← key.getFwdLink();
17 for (inNode : nodes) do nameSet ← getNamesInLeaves(inNode);
18 if (result.hasKey(list)) then nameSet.addAll(result.get(list));
19 result.put(list, nameSet); nameSet.clear(); list.clear();

20 for (res : result) do
21 if (|res.value| < δ) then result.remove(res);

22 return result ;

320 T. Jiang et al.

For fuzzy queries on genes FQg, we first compute the combination of row
keywords above size threshold δ, then locate the row numbers in each combina-
tion, further fetch the branches of row numbers and find the longest common
subsequences above length threshold τ as the results, which is the same as exact
queries on genes EQg. The details are illustrated in Algorithm 8.

Example 4. (Fuzzy Query on genes) We use Table 2 and Fig. 1 as example.
Given some gene keywords 2, 3, 9, size threshold 2, and length threshold 3, search
the subset of conditions contained by these genes. First, we compute the combi-
nations of gene keywords above size threshold 2, and get the combination <2,3>,
<2,9>, <3,9> and <2,3,9>. Then, we fetch the branch <VI,III,I,VIII,XVI>
that contain gene 2 and the branch <VI,III,I,II,VIII> that contain gene 3 and
9, further find the longest common subsequences of combinations above, and get
results of <2,3>, <2,9> and <2,3,9> are <VI,III,I,VIII>, and result of <3,9>
is <VI,III,I,II,VIII>. And all the results are above length threshold 3.

For fuzzy queries on conditions FQc, we first rotate the first element of
keywords. Then, locate column keywords with column header table, from located
node to tree root. If the number of keywords in the same branches is above length
threshold τ , we get gene names in the leaves. And we test whether the number
of gene names above size threshold δ, if it is true, add the keyword set as key and
gene name set as value into final results. Otherwise, we test until each keyword
as first element one time (FIT). The details are plotted in Algorithm 9.

Example 5. (Fuzzy Query on Conditions) We use Table 2 and Fig. 1 as example.
Given some condition keywords VI, III, I, length threshold of keywords 2, and size
threshold of results 3, search the subset of genes contained by these conditions.
First, use <I> as the first element, and get branch <VI,III,I> which is above
length threshold 2, then we fetch the gene name set <1,2,5,4,6,3,9> which is
above size threshold 3. Further use <III> as the first element, and get branch
<VI,III> and < VI,II,III> which are above length threshold 2, then we fetch the
gene name set <1,2,5,4,6,3,9,7,10,11>. When using <VI> as the first element,
there are no results. Now, we return keyword sets and gene sets above as results.

5 Experimental Evaluation

In this section, we report our experiments that validate the effectiveness and
efficiency of pIndex. Due to this is the first work of OPSM query, we only compare
pIndex with pfTree, which is a naive approach proposed in Section 3 and does
not use any auxiliary structure. Experiments demonstrate that:

• The index size of both methods, pIndex and pfTree, is the same, and the
compact ratio is close to 0.98 when the number of conditions is smaller.

• On single machine, although pfTree performs well on index build and index
insert, pIndex outperforms pfTree by 1 to 2 orders of magnitude in various
cases on index delete, EQg, EQc, FQg and FQc.

Towards Order-Preserving SubMatrix Search and Indexing 321

• pIndex is also implemented on Hadoop and our modified Hama platform
[12], and it has better scalability.

We use two kinds of datasets in our experiments: real datasets [4] and a
series of synthetic datasets. Most of our experiments have been performed on
the real datasets since it is the source of real demand. All our experiments are
performed on 1.87GHz, 16GB memory, Inspur servers running Ubuntu 12.04.
Both pIndex and pfTree are implemented in Java and complied with Eclipse
4.3. And the versions of Hadoop and Hama are 0.20.2 and 0.4.0, respectively.
Limited by space, we only report the results on real datasets here.

Table 3. Details of the Gene Expression Datasets

Dataset File Name Rows Columns Dataset File Name Rows Columns

D1 adenoma 12488 6 D4 krasla 12422 50

D2 a549 22283 11 D5 bostonlungstatus 12625 94

D3 5q GCT file 22278 24 D6 bostonlungsubclasses 12625 202

5.1 Evaluation on Single Machine

We first test the index size of pfTree and pIndex. As mentioned before, both
pfTree and pIndex use prefix tree to index, although pIndex also utilizes header
tables, it only occupies small memory space. Thus, the index size of both methods
are nearly the same. Fig. 2.(a) depicts the compact ratio of index with number
of rows varied from 1k to 12k on 4 different columns (6, 11, 24 and 50). The
curves clearly show that the smaller columns, the larger compact ratio. They
also illustrate a salient property: the compact ratio is stable with different rows.
When row number of dataset increases, compact ratio does not change much.

Having verified the index size of pfTree and pIndex, we now check their
behaviours. Fig. 2.(b) and (c) presents the index construction time of two methods
on varying rows and columns, respectively. As shown in the figures, pfTree outper-
forms pIndex in every row and column case. The reason is that pIndex spends addi-
tional time on building header tables. Although performance of pIndex on index
build is worse than that of pfTree, pIndex does better on other tests. Similar with
index build, when inserting 10 to 2000 rows and 202 fixed columns (|C|=202), and
inserting 6 to 202 columns and 100 fixed rows, performance of pfTree is also better
than that of pIndex, which is shown in Fig. 2.(d) and (e).

The scalability of performance on index delete is presented in Fig. 2.(f) and
(g). We select 10k rows of D6 as the test dataset. If there are no specific noti-
fications, row and column numbers of dataset to build index are |G|=10k and
|C|=202. First, we test run time of deleting five set genes. As seen from Fig. 2.(f),
the run time of pfTree increases from 754ms to 2449ms, while that of pIndex
increases from 20ms to 256ms. The increasing trend of pIndex is much slower
than that of pfTree. Similarly in Fig. 2.(g), when we delete five set columns,
the run time of pfTree decreases from 1154ms to 1007ms, while that of pIndex
decreases from 535ms to 99ms. And the decreasing trend of pIndex is also faster.

322 T. Jiang et al.

Next, we check the scalability on EQg and FQg. When we vary row keywords
from 2 to 6, on dataset D6, as shown in Fig. 2.(h), run times of both methods are
nearly two horizontal lines, but run time of pfTree is above 30 times larger than
that of pIndex. When we test on six different datasets, as shown in Fig. 2.(i),
run time of pfTree is nearly 35 times larger than that of pIndex. Fig. 2.(j) and
(k) illustrate the performance of FQg on different row keywords and datasets.
The run times of pfTree increases dramatically, while that of pIndex is nearly a
horizontal line. Overall, pIndex outperforms pfTree by 70 to 360 times and by
8 to 130 times in two cases. The tests demonstrate the efficiency of row header
table and the scalability of pIndex on EQg and FQg.

Fig. 2. Performance Evaluation on a Single Machine

Last, we give the tests on EQc and FQc. As shown in Fig. 2.(l), when we vary
column keywords form 2 to 6, on dataset D6, run times of pIndex outperforms
pfTree nearly in every case, except 2 column keywords. The underlying reason
is that pfTree goes through less nodes in the tree when input smaller keywords.
When we test on six different datasets, as shown in Fig. 2.(m), pIndex outper-
forms pfTree by 1 to 9 times. Now, we test the scalability on FQc. When we vary
the column keywords form 2 to 6, on dataset D6, as shown in Fig. 2.(n), run
time of pfTree increases dramatically, while that of pIndex is nearly a horizontal

Towards Order-Preserving SubMatrix Search and Indexing 323

line. When we test on six different datasets, as shown in Fig. 2.(o), the run time
of pfTree increases from 120ms to 33589ms, while that of pIndex increases from
176ms to 3265ms. The increasing trend of pIndex is much slower than that of
pfTree. When we vary the threshold of column keywords, and query 6 column
keywords on dataset D6, as shown in Fig. 2.(p), pIndex outperforms pfTree by
461 to 759 times. The tests demonstrate the efficiency of column header table
and FIT method, and the scalability of pIndex on EQc and FQc.

5.2 Evaluation on Single Machine, Hadoop and Hama

In the following experiments, we use pIndex as example to compare its perfor-
mance on SM, Hadoop and Hama (2 nodes). Since we have had detail tests of
pIndex on SM, we only give its behaviours on index build, EQc and FQc.

Fig. 3. Performance Evaluation on SM, Hadoop and Hama

Fig. 3.(a) and (b) present the index build time of pIndex on varying rows and
columns, respectively. As shown in the figures, Hadoop and Hama outperform
SM by 2 to 6 times in each row and column case, and Hadoop has much better
behaviours than Hama obviously in Fig. 3.(b). The reason is the skew in data
partition on Hama, while Hadoop can use small files to solve the problem.

The EQc performance on different column keywords and datasets is shown
in Fig. 3.(c) and (d). When we vary the column keywords from 2 to 6, on dataset
D6, in Fig. 3.(c), run times on Hadoop and Hama (2 nodes) outperform by more
than 2 times that on SM nearly in each case. When we test on six different
datasets, in Fig. 2.(d), Hadoop and Hama also outperform SM by 2 to 3 times.

The scalability of FQc on three platforms is presented in Fig. 3.(e) and (f).
When we vary the column keywords from 2 to 6, on dataset D6, as shown in
Fig. 2.(e), Hadoop and Hama have nearly the same behaviour, and both platform
show 2 to 3 times better performance than SM. When we vary the threshold of
column keywords, and query 6 column keywords on dataset D6, as shown in Fig.
2.(f), similarly with the former one, Hadoop and Hama have nearly the same
behaviour, and both platform show 2 to 3 times better performance than SM.

324 T. Jiang et al.

Last, we test the scalability of pIndex on different number of nodes. In Fig.
3.(g), when varying node number, index build time on 4(8) nodes improves more
than 4 times on that on 2(4) nodes, and Hadoop and Hama give nearly the same
behaviour. Similarly, in Fig. 3.(h), run time of FQc based on 6 column keywords
on 4(8) nodes improves more than 2 times on that on 2(4) nodes. Through the
experiments, we know pIndex has good scalability. Although pIndex build spends
more time than pfTree, we can use parallel platform to address.

6 Related Work

In this section, we review previous work on OPSM mining, since OPSM queries
are based on OPSM mining. Besides the mining techniques, we also review the
work of OPSM queries, since it is the core work of this paper.

The earliest work on pattern mining [20] is the cluster model, which is the
general case of OPSM, proposed in [5]. The model simultaneously clusters both
genes and conditions, and overcomes some problems of existing cluster meth-
ods. The concept of OPSM is first proposed by Ben-Dor et al. in [2]. Since it is
NP-hard, they propose a probabilistic model to mine an OPSM from a random
matrix, but it cannot Guarantee finding all OPSMs. To address the problem,
Liu et al. [15] introduce a deterministic algorithm. They develop an auxiliary
data structure called OPC-Tree, which can search the full order space and thus
can find all OPSMs. Gao et al. [10] observe biologists are in particular interest
to reveal small groups of genes, thus they propose the KiWi framework which
substantially reduces the search space and problem scale. However due to the
noisy nature of real data, existing methods fail to discover some significant ones,
Zhang et al. [21] present a noise-tolerant model called approximate order pre-
serving cluster (AOPC). Fang et al. [7] propose a relaxed OPSM model called
ROPSM, and employ OPSM-Growth method that includes column-centric and
row-centric strategies to mine ROPSM patterns. Later, they give a new relaxed
OPSM model in [8] by consider the linearity relaxation, which is called Bucket
OPSM (BOPSM) model.

For OPSM query problem, there are few work on this topic. The most similar
works with the topic of OPSM query are presented in these works [15,11], the
exact topic is OPSM mining, but Liu et al. [15] introduce an auxiliary data
structure which makes the volume of OPSMs smaller, and Jiang et al. [11] present
an interactive OPSM mining method, which can drill down and roll up. And it
facilitates the OPSM search from the massive results. To the best our knowledge,
our work is the first one to design one tool of OPSM query for biologists, and
inherits the advantages of the previous work.

7 Conclusions

This paper presents an index associated two header tables, called pIndex, for
Order-Preserving Submatrix query, and pIndex shows good behaviours on exact
search, fuzzy query, and index deletion. Although it does not work so well on

Towards Order-Preserving SubMatrix Search and Indexing 325

index build and insert, experimental results suggest that we can use distributed
parallel platform to address. For the future work, we will explore online sharing
the query results for follow-up OPSM queries, rather than find the query results
on index from scratch each time.

References

1. Barkow, S., Bleuler, S., Prelić, A., Zimmermann, P., Zitzler, E.: Bicat: a biclustering
analysis toolbox. Bioinformatics 22(10), 1282–1283 (2006)

2. Ben-Dor, A., Chor, B., et al.: Discovering local structure in gene expression data:
the order-preserving submatrix problem. In: RECOMB, pp. 49–57 (2002)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20(10), 762–772 (1977)

4. BroadInstitute: Datasets.rar and 5q gct file.gct. http://www.broadinstitute.org/
cgi-bin/cancer/datasets.cgi

5. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Bourne, P.E., Grib-
skov, M., et al. (eds.) ISMB, pp. 93–103. AAAI (2000)

6. Chui, C.K., Kao, B., et al.: Mining order-preserving submatrices from data with
repeated measurements. In: ICDM, pp. 133–142. IEEE Computer Society (2008)

7. Fang, Q., Ng, W., Feng, J.: Discovering significant relaxed order-preserving sub-
matrices. In: KDD, pp. 433–442. ACM (2010)

8. Fang, Q., Ng, W., Feng, J., Li, Y.: Mining bucket order-preserving submatrices in
gene expression data. IEEE Trans. Knowl. Data Eng. 24(12), 2218–2231 (2012)

9. Fang, Q., Ng, W., Feng, J., Li, Y.: Mining order-preserving submatrices from proba-
bilistic matrices. ACM Transactions on Database Systems (TODS) 39(1), 6 (2014)

10. Gao, B.J., Griffith, O.L., Ester, M., Jones, S.J.M.: Discovering significant opsm
subspace clusters in massive gene expression data. In: Eliassi-Rad, T., Ungar, L.H.,
Craven, M., Gunopulos, D. (eds.) KDD, pp. 922–928. ACM (2006)

11. Jiang, D., Pei, J., Zhang, A.: Gpx: interactive mining of gene expression data. In:
Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer,
K.B. (eds.) VLDB, pp. 1249–1252. Morgan Kaufmann (2004)

12. Jiang, T., Li, Z., Chen, Q., Wang, Z., Pan, W., Wang, Z.: Parallel partitioning
and mining gene expression data with butterfly network. In: Decker, H., Lhotská,
L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part I. LNCS, vol. 8055, pp.
129–144. Springer, Heidelberg (2013)

13. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(2), 323–350 (1977)

14. KNUTTn, D.: The art of computer programming, vol 3: Sorting and searching
(1973)

15. Liu, J., Wang, W.: Op-cluster: Clustering by tendency in high dimensional space.
In: ICDM. pp. 187–194. IEEE Computer Society (2003)

16. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of the ACM (JACM) 23(2), 262–272 (1976)

17. Trapp, A.C., Prokopyev, O.A.: Solving the order-preserving submatrix problem via
integer programming. INFORMS Journal on Computing 22(3), 387–400 (2010)

18. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi

326 T. Jiang et al.

19. Weiner, P.: Linear pattern matching algorithms. In: IEEE Conference Record of
14th Annual Symposium on Switching and Automata Theory, 1973. SWAT2008,
pp. 1–11. IEEE (1973)

20. Yang, J., Wang, W., Wang, H., Yu, P.S.: δ-clusters: capturing subspace correlation
in a large data set. In: Agrawal, R., Dittrich, K.R. (eds.) ICDE, pp. 517–528. IEEE
Computer Society (2002)

21. Zhang, M., Wang, W., Liu, J.: Mining approximate order preserving clusters in
the presence of noise. In: Alonso, G., Blakeley, J.A., Chen, A.L.P. (eds.) ICDE, pp.
160–168. IEEE (2008)

Database Storage and Index II

Large-Scale Multi-party Counting
Set Intersection Using a Space

Efficient Global Synopsis

Dimitrios Karapiperis1(B), Dinusha Vatsalan2,
Vassilios S. Verykios1, and Peter Christen2

1 School of Science and Technology, Hellenic Open University, Patras, Greece
{dkarapiperis,verykios}@eap.gr

2 Research School of Computer Science, The Australian National University,
Canberra, ACT 0200, Australia

{dinusha.vatsalan,peter.christen}@anu.edu.au

Abstract. Privacy-preserving set intersection (PPSI) of very large data
sets is increasingly being required in many real application areas including
health-care, national security, and law enforcement. Various techniques
have been developed to address this problem, where the majority of them
rely on computationally expensive cryptographic techniques. Moreover,
conventional data structures cannot be used efficiently for providing count
estimates of the elements of the intersection of very large data sets. We
consider the problem of efficient PPSI by integrating sets from multiple
(three or more) sources in order to create a global synopsis which is the
result of the intersection of efficient data structures, known as Count-Min
sketches. This global synopsis furthermore provides count estimates of
the intersected elements. We propose two protocols for the creation of
this global synopsis which are based on homomorphic computations, a
secure distributed summation scheme, and a symmetric noise addition
technique. Experiments conducted on large synthetic and real data sets
show the efficiency and accuracy of our protocols, while at the same time
privacy under the Honest-but-Curious model is preserved.

1 Introduction

Computing set operations, such as intersection, union, equi-join and disjoint-
ness, efficiently and privately among different parties is an important task in
privacy-preserving data mining [3,9]. In this paper, we study the problem of
privacy-preserving set intersection (PPSI), which is also known as private data
matching [15], of multi-sets of an arbitrary large number of distinct elements
held by three or more parties. Growing privacy concerns and government laws
preclude the exchange of sensitive and private values stored in databases across
different organizations for calculating the intersection of those private values.

This research was partially funded by the Australian Research Council under Dis-
covery Project DP130101801.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 329–345, 2015.
DOI: 10.1007/978-3-319-18123-3 20

330 D. Karapiperis et al.

This has led to an active research area, known as PPSI, in the field of privacy-
preserving data mining [3] and specifically in private data matching [19,35].

PPSI is useful in many real-world applications, ranging from health-care,
crime detection, national security, to finance and business. An example motivat-
ing application would be a health surveillance system, where by monitoring drug
consumption at pharmacies or hospitals located at different places, alerts could
be issued whenever consumption of certain drugs exceeds a threshold at all or
some of these hospitals. A crime detection or national security application could
be the monitoring of the number of times certain on-line services are accessed,
by applying the intersection operation on requests made to these on-line services
from different Internet Service Providers (ISPs). These examples illustrate that
often large sets of sensitive elements held by different parties (or organizations)
need to be intersected so that a set of common elements, accompanied by their
counts of occurrences, can be identified. However, privacy and confidentiality
concerns, as well as other business regulations, commonly prevent the sharing
and exchange of such private values across several parties.

There have been several solutions proposed in the literature addressing the
problem of PPSI. Most of them are either based on Secure Multi-Party compu-
tation (SMC) [27] techniques that are computationally expensive and thus are
not scalable to large sizes of sets and larger number of parties, or they only per-
form intersection of two sets (from two parties). Moreover, in the applications
described above, we are not only interested in learning the set of intersection
of elements but also their number of occurrences. This problem cannot be effi-
ciently solved by conventional data structures, such as hash tables or vectors,
due to the large number of distinct elements that need to be monitored.

In this paper, we propose the creation of a privacy-preserving global synopsis
by integrating data from many sources and attaining the common elements. More
specifically, we tackle the challenge of identifying the counts of these elements
from a potentially very large multi-set as they occur. Each party independently
summarizes its elements in a local synopsis, which is implemented by a Count-
Min sketch [12], and then these local synopses are intersected in order to create
the global synopsis. This global synopsis (a) provides collective count estimates
for the common elements attained and (b) hides the contribution of each party
to these estimates. We propose and evaluate two protocols for the creation of
this global synopsis:

1. the first protocol, which relies on homomorphic operations, exhibits accu-
rate and reliable results but adds high communication cost. The number of
homomorphic operations has a logarithmic relation to the total number of
occurrences of elements in the sets to be intersected.

2. the second protocol relies completely on simple secure computations, exhibit-
ing high performance and simultaneously highly accurate results.

The remainder of this paper is structured as follows. We next review related
work in Section 2. In Section 3, we formulate the problem to be addressed,
and in Section 4 we describe the building blocks used for creating a privacy-
preserving global synopsis. Then, we present our protocols for the creation of the

Large-Scale Multi-party Counting Set Intersection 331

global synopsis in detail in Section 5, while in Section 6 we empirically evaluate
our protocols using both synthetic and real data sets. Finally, in Section 7 we
summarize our work and discuss directions for future work.

2 Related Work

Various techniques have been developed addressing the PPSI problem over the
past decades. Most of the solutions proposed so far rely on general SMC-based
cryptographic techniques. General two-party secure computation was introduced
by Yao [36] and extended to multi-parties by Goldreich et al. [18].

Agrawal et al. [4] developed two-party protocols based on SMC commuta-
tive encryption schemes for three set operations: intersection, intersection size,
and equi-join. The protocols allow for information integration with minimal data
sharing. However, they are expensive in terms of computation and communica-
tion complexity. Freedman et al. [15] proposed two-party PPSI protocols based
on homomorphic encryption and balanced hashing for both the semi-honest and
the malicious adversary models. In their work, the sets are represented as roots
of polynomials. This work was extended by Kissner et al. [24], who utilize the
power of polynomial representation of multi-sets for PPSI.

Hazay and Lindell [20] adopted a pseudo-random-function-based solution
for the two-party PPSI problem, which can be used either for one malicious
and one semi-honest party or for two covert parties [5]. Dachman-Soled et
al. [13] addressed the problem of PPSI for two malicious parties using homo-
morphic encryption and polynomial functions. In addition, several approaches
have been proposed on variants of the PPSI problem, such as privacy-preserving
union [16], privacy-preserving equality test [30], or privacy-preserving disjoint-
ness [23]. These works also employ SMC-based privacy techniques, which makes
the solutions not efficient and scalable to large sets held by multiple parties.

In order to overcome the drawback of high computational overhead with
SMC-based techniques, privacy-preserving set operations, which rely on effi-
cient privacy techniques such as Bloom filter-based encoding, have recently being
investigated in the areas of privacy-preserving record linkage [35] and privacy-
preserving data mining [3]. Lai et al. [32] proposed an efficient PPSI on multiple
sets using Bloom filters. The parties distributively compute a conjuncted Bloom
filter by applying the logical AND operation on their partitions and then each
party checks its elements with this conjuncted Bloom filter in order to determine
if they are in the intersection set. A similar approach using Counting Bloom fil-
ters was proposed by Many et al. [28]. Dong et al. [14] introduced an efficient
PPSI protocol between two sets using Garbled Bloom filters (GBfs) and an obliv-
ious transfer (OT) protocol. First, the participating parties encode their sets as
GBFs and then run the OT protocol in order to obtain the intersection set. A
private equi-join approach on multiple databases was presented by Kantarcioglu
et al. [22], where a secure equi-join is applied on k-anonymized databases.

Roughan and Zhang [33] proposed an efficient private set union solution
by using Count-Min sketches [12] in order to collect Internet-wide statistics.

332 D. Karapiperis et al.

Charikar et al. [8] proposed the Count-Sketch data structure, which was adjusted
for self-join size estimation by Cormode and Garofalakis [11]. However, space
requirements of Count sketches are far higher than those of Count-Min sketches
[12], making them less suitable for large-scale applications.

3 Problem Formulation

Let us suppose a distributed environment, which consists of m parties, each
denoted by pi, where i = 1, . . . , m, and a global authority G, which plays the
role of a central public semi-trusted regulatory agency. Each pi should monitor
the number of occurrences of an element ej (like an IP address, a drug, or
the registration plate of a car), where j = 1, . . . , n, and n is a large number
possible in the tens or even hundreds of millions. By doing so, a local summary
S is built by each pi, which includes the total number of occurrences of each
ej for a certain time period, or for a specified total number of ejs monitored,
denoted by N , where each distinct ej might appear several times. Therefore,
N is equal to

∑n
j=1 V (ej), where V (·) returns the exact number of occurrences

of an ej . An update operation is required when an ej should be monitored by
a pi, which should increase the number of occurrences of this ej in the local
summary. A query operation is also needed, which should return the current
number of occurrences of an ej . Authority G, by exploiting the local summaries,
should answer collective queries regarding the number of occurrences of each
ej above a specified threshold θ, as monitored globally by every pi. In essence,
these ejs constitute the intersection set S, defined formally as S = {ej |ej ∈
p1 ∧ . . . ∧ ej ∈ pm}.

Such a query could be “How many times (> θ) has a certain web site been
accessed by all pis?”. All summaries should be collected by G on a frequent basis,
so that G can produce an almost real-time global summary. Moreover, each pi
should maintain its summary in main memory to allow fast updating, when an
ej is monitored. Therefore, the size of the data structure used to realize each
summary should be as small as possible, although the number of the ejs can be
large. The reluctance of some pis to disseminate their summaries due to privacy
concerns is an additional problem. For instance, a hospital might be a reluctant
pi not willing to share any medical information, such as the drugs consumed
which are the ejs in this case, in order to protect the privacy of its patients.

The solution of building each summary, by utilizing a vector, where each
position represents a distinct element and holds the number of its occurrences,
is prohibitive due to the size of the summary which will grow linearly with the
number of elements represented. Also, by using a vector, the size and the update
time for each element is O(n). By utilizing a hash table, we can achieve O(1)
update time but the size required remains the same as by using a vector. For this
reason, each pi creates a local synopsis, denoted by Si, which is a specialized
sketching data structure [12] that consumes a fixed amount of space in main
memory regardless of the number of ejs represented, at the cost of an allowable
configurable error. After all the Sis are created, a global synopsis, denoted by

Large-Scale Multi-party Counting Set Intersection 333

GS , should be generated by performing the intersection operation among the Sis.
The GS produced should provide collective count estimates for all the elements
of the intersection set S. Privacy of each pi should be protected, so that it is not
possible to infer the contribution of each pi to these collective count estimates.
Formally, given a collective count estimate for an ej (ej ∈ S) one cannot make
any inferences or estimates regarding each Vpi

(ej), where Vpi
(·) denotes the exact

number of occurrences for an ej at a certain party pi.

4 Background

In this section, we give a brief outline of the building blocks utilized in order to
create the privacy-preserving global synopsis.

4.1 Creating a Local Synopsis

An efficient way for creating a local synopsis is by using a Count-Min sketch [12]
(sketch). The main feature of a sketch is that it utilizes space that is sublinear
with the number of ejs represented by it. A sketch is an array that consists of
D rows and W cells in each row, initialized to 0. Both D and W are specified
later. In order to update an ej in a sketch, D hash operations are performed
by randomly chosen, pairwise independent hash functions of the form hd(ej) =
[(adej + bd) mod P] mod W , where d = 1, . . . , D, P is a large prime number
(e.g., 231 −1) greater than n, and each ad, bd are randomly chosen integers from
(0, P). Thus, there are D hash results, each corresponding to a cell in each row,
where its value is incremented by 1, namely S[d][hd(ej)] = S[d][hd(ej)] + 1, for
each of the d ∈ D rows. The query operation query(S, ej) returns the count
estimate of an ej by hashing this ej using the same hash functions as in the
update operation and then picking the minimum hash value.

An interesting property is the linearity of sketches; the sketch produced by
adding cell-wise two sketches (both built by using the same hash functions) is
the union of these two sketches. This property makes sketches particularly useful
because collective count estimates can be provided in distributed environments.
By using sketches, we can detect frequent elements, such as IPs flooding in a
network or drugs consumption above a certain frequency of appearance, denoted
by φ. These frequent elements, the so-called heavy hitters [12], may indicate a
certain anomaly, which may require an immediate course of proactive actions.
For example, over-consumption of certain drugs by all pharmacies state-wide
may highlight an outbreak of an infectious disease. By setting D = �ln(N/δ)�
and W = �1/ε� [12], heavy hitters which exhibit a number of occurrences more
than a specified threshold1 θ, are identified, where θ = �φN� with 0 < φ < 1.
Simultaneously, any ej occurring less than �(φ − ε)N� times, where ε � φ e.g.,
ε = φ/10, is ignored, with confidence 1 − δ.

1 In the literature, the term threshold can also be found as support.

334 D. Karapiperis et al.

Algorithm 1. Secure distributed summation scheme.
Input: x1, . . . , xm, r, F
Output: s � the summation returned
1: q1 ← (x1 + r) mod F � p1 produces q1
2: for (i = 2, . . . , m) do
3: qi ← (qi−1 + xi) mod F � pi produces qi by using qi−1

4: end for
5: s ← (qm − r) mod F � p1 produces s which is the summation

4.2 Homomorphic Computations for Preserving Privacy

A reliable Secure Multi-Party (SMC) technique of performing a joint computa-
tion among several parties is the partially homomorphic Paillier cryptosystem
[31]. A joint computation could be the addition of some values, where these
values should remain secret due to privacy concerns. Successive encryption of
the same value generates different cipher texts with high probability. A trusted
authority is required in order to issue a public/private key pair, needed for the
encryption and decryption operations respectively. Given two values (messages),
x1 and x2, encryption is performed by using the public key and the produced
cipher texts are denoted by x̃1 and x̃2 respectively. Given the cipher texts, we
can perform either homomorphic addition (x̃1 ⊕ x̃2) or multiplication with a
constant c (c � x̃1). The cipher texts can be decrypted by the trusted authority
by using its private key.

4.3 Secure Distributed Summation

A simple summation scheme, as introduced in [9], can be applied by the pis in
order to perform a joint summation. This scheme is much more efficient than the
homomorphic approach described above. By using this scheme, each pi masks the
corresponding values in its Si, such that if pi+1 obtains Si it cannot reproduce
the actual values of Si. We illustrate the scheme by using a simple example. Each
pi has monitored e1 xi times. Then, the pis should sum up jointly each xi such
that none of the xis are disclosed to any pi. First, p1 generates a random number
r, which lies in the interval (0, F), where F is a large integer greater than the
summation calculated. The steps of the scheme are illustrated in Algorithm 1.
The number of parties m must be more than two, because otherwise x2 will be
revealed to p1.

5 Protocols for Creating a Privacy-Preserving
Intersection Global Synopsis

In the simple non privacy-preserving scenario, G performs the intersection oper-
ation, among the Sis, following a naive protocol where each pi submits to G its
corresponding Si and then G merges them. This approach overwhelms G with

Large-Scale Multi-party Counting Set Intersection 335

the Sis, imposing high computational overhead and network traffic. Additionally,
since the hash functions are common for both updating an Si and querying GS ,
G can easily perform an iterative query process to an Si, for each possible ej ,
and consequently find out sensitive information regarding a single pi. In order to
mitigate these concerns, the GS can also be generated by the pis jointly, without
the participation of G, as we will describe later.

The basic idea of the proposed protocols is the secure generation of the global
synopsis GS ′, which holds the common ejs without the count estimates. More
specifically, if a cell in a Si contains a value which is below a specified threshold
θ, then the GS ′ should indicate this and the corresponding cell in the GS should
be set to 0. Thus, if we query GS for an ej which is hashed to a cell of a row in
GS holding 0, this will result in returning 0 as the global estimate. This happens
because during the query operation of the GS , we choose the minimum value
of the D estimates. By doing so, we can use GS ′ to easily exclude those cells in
GS which correspond to elements not included in the intersection set.

The communication complexity of both protocols is linear in the number of
parties, namely O(m). We make the assumption that the participating parties
(pis and G) follow the Honest-but-Curious (HBC) model [19,27], in that they
follow the protocol steps while being curious to learn about other party’s data.
Furthermore, we assume that there is no collusion among them. Our protocols are
secure in that the contribution of each pi to the count estimates is hidden from
both the rest of the pis and from G. We utilize the secure distributed summation
scheme combined with homomorphic operations in order to both deliver accurate
results and to protect the privacy of the pis in an efficient manner.

153
320
031

011

010
100

024
131
220

001

000
010

013

110
121

GS’ produced by G, by decrypting
cell-wise the values of S’3

p1 p2

multiplying homomorphically
S’2 with S’1 producing S’2

S1

S’1

S2

S’2

S’1

p3

p1 encrypts homomorphically
S’1 producing S’1

threshold θ=2, number of parties m=3

S’2

001
000
000

multiplying homomorphically
S’3 with S’2 producing S’3

S3

S’3

S’3

001

000
000Notation * denotes a homomorphically

encrypted value

Fig. 1. Each S̃′
i−1 is multiplied cell-wise by each S′

i. In the end, G decrypts S̃′
m and

attains the common elements (i = 2, . . . , m).

336 D. Karapiperis et al.

Table 1. The steps of the homomorphic protocol for creating a privacy-preserving
intersection global synopsis

step 1 G issues the pair of public/private keys needed for the homomorphic oper-
ations and sends out the public key to each pi.

step 2 Each pi by using its Si, produces S′
i, by replacing the values above θ with

1 and those below θ with 0.

step 3a p1 encrypts homomorphically S′
1, producing S̃′

1, which is submitted to p2.
step 3b p1 produces R (one random value per cell) and then Q1, which are D × W

arrays and correspond to r and q1 respectively depicted in Algorithm 1,
needed for the secure cell-wise summation of each Si. Q1 is submitted to
p2.

step 4a Each pi (i = 2, . . . , m) performs cell-wise homomorphic multiplications

between S̃′
i−1 and S′

i, producing S̃′
i, which is submitted to pi+1.

step 4b Each pi (i = 2, . . . , m), by using Qi−1, produces Qi (Qi[d][w] =
(Qi−1[d][w] + Si[d][w]) mod F), which is submitted to pi+1.

step 5a pm produces S̃′
m and then submits it to G.

step 5b pm produces Qm and then submits it to p1.
step 6 p1 produces GU , by subtracting R from Qm, which is submitted to G.

step 7a G decrypts S̃′
m in order to produce GS ′.

step 7b G multiplies cell-wise GU with GS ′ in order to obtain GS .

5.1 The Homomorphic Protocol

The homomorphic protocol (HP) is two-fold; it identifies the common ejs and
calculates the union of the Sis, by exploiting the linearity of sketches as explained
in Sect. 4.1. Any cells which contain values above θ in all Sis are securely iden-
tified by performing homomorphic operations using encrypted data, as if we are
using the initial plain values. First, each pi produces a new synopsis, denoted
by S′

i, by replacing the cells of the Si which hold values above threshold θ with
1 and below it with 0. Then, p1 encrypts S′

1 homomorphically, producing S̃′
1,

which is submitted to p2. Following the protocol, each pi (i = 2, . . . , m) per-
forms cell-wise homomorphic multiplications between S̃′

i−1 and S′
i, producing

S̃′
i, which is submitted to pi+1, as shown in Fig. 1. This is necessary because

if a cell in any S′
i contains 0, then GS ′ in this cell should contain 0, regardless

whether there are other S′
is that contain 1 in this particular cell. By doing so,

we identify the common ejs, as monitored by every pi in a secure manner since
each pi cannot infer anything by inspecting S̃′

i−1. If instead of multiplying we
added cell-wise S̃′

i−1 to S̃′
i, we would create a GS ′ where each cell would contain

the exact number of parties, which exceed θ. In this case, we can apply the rule
of the minimum number of parties, where an S′

i[d][w] should exceed θ in order to
be included in the GS ′. Synopsis GS ′ though cannot be used to provide count
estimates because the values of its cells are equal to either 1 or 0. For this reason,
we also obtain GU , by using the secure distributed summation scheme, which is
the result of the union operation among the Sis. Finally, by multiplying cell-wise

Large-Scale Multi-party Counting Set Intersection 337

Algorithm 2. Multiplying S̃′
i−1 with S′

i, where i = 2, . . . , m (step 4a of the
HP).

Input: S̃′
i−1, S′

i

Output: S̃′
i

1: for (d = 1, . . . , D) do
2: for (w = 1, . . . , W) do

3: S̃′
i[d][w] ← S̃′

i−1[d][w] � S′
i[d][w]

4: end for
5: end for

Algorithm 3. pi produces Qi by using Qi−1, where i = 2, . . . , m (steps 4b and
2b of the HP and NBP, respectively.)
Input: Si, Qi−1, F
Output: Qi

1: for (d = 1, . . . , D) do
2: for (w = 1, . . . , W) do
3: Qi[d][w] ← (Qi−1[d][w] + Si[d][w]) mod F
4: end for
5: end for

GU with GS ′, we obtain GS , which can be used to provide count estimates of the
common ejs, realizing the result of the intersection operation among the under-
lying Sis. This protocol, as illustrated in Table 1, prevents G, or any pi, from
inferring any information from the intermediate synopses circulated. Algorithm
2 illustrates step 4a of the protocol where each pi, by performing homomorphic
multiplications between S̃′

i−1 and S′
i, produces S̃′

i which is submitted to pi+1.
At each party, the number of homomorphic operations is O(D × W) where D
has a logarithmic dependency on N and W depends on ε regardless of N or n.

In Algorithm 3, it is shown how each pi performs the secure distributed
summation scheme cell-wise, by exploiting the linearity of the Sis (step 4b of the
protocol). The main computational overhead of this protocol is the encryption
of the S1 in step 3a. Also, each S̃′

i adds high communication cost due to its size,
which is proportional to the size of S′

i (or Si), multiplied by a constant factor
(e.g., 2), which depends on the implementation of the Paillier cryptosystem [31].

5.2 The Noise-Based Protocol

In the Noise-Based Protocol (NBP), instead of producing each S̃i in order to
generate the GS ′, we apply cell-wise the secure distributed summation scheme
(see Algorithm 1). As shown in Algorithm 4, if an Si[d][w] contains a value above
θ, then Q′

i[d][w] becomes Q′
i−1[d][w] plus 1. Otherwise, pi assigns to Q′

i[d][w] the
value of Q′

i−1[d][w] plus some symmetric noise (eg., a random value drawn from
a Laplace or a Gaussian distribution, where the location and scale parameters
are set to 0 and 1, respectively).

338 D. Karapiperis et al.

Algorithm 4. pi produces Q′
i by using Q′

i−1, where i = 2, . . . , m (step 2a of the
NBP).

Input: Si, Q′
i−1, F , θ

Output: Q′
i

1: for (d = 1, . . . , D) do
2: for (w = 1, . . . , W) do
3: if Si[d][w] > θ then
4: Q′

i[d][w] ← (Q′
i−1[d][w] + 1) mod F

5: else
6: Q′

i[d][w] ← (Q′
i−1[d][w] + Lap(0, 1)) mod F � adding Laplace noise

7: end if
8: end for
9: end for

We add symmetric noise in order to sanitize Q′
i[d][w] with respect to m. By

doing so, p1 is prevented from making any inferences, such as the exact number
of parties which exceed θ, by inspecting the cells of the Q′

m after subtracting R′.
By revealing the value of m for a cell, which is the case where all parties exceed θ
in that cell, neither p1 nor G learns anything that can breach the privacy of any
party. Fig. 2 illustrates how three parties create the GS ′ by following the steps
of this protocol. Finally, G receives two global synopses, namely GU and GS ′.
Synopsis GU is the result of the union operation among the Sis while GS ′ holds
for each cell either m or a sanitized value, which is the result of the noise applied
in the case where at least one cell in the same coordinates of any Si contains an
unacceptable value (below θ). Authority G, by checking cell-wise GS ′, identifies
accurately which cells should be discarded from GU and sets them to 0. This
protocol is illustrated in Table 2.

6 Evaluation

We evaluate our protocols in terms of the accuracy of the count estimates, the
execution time, the space required, the precision, and the recall of the results,
by using both synthetic and real data sets. For measuring accuracy, we specify
the completeness measure C as:

C = 1 −
∑

∀ej∈S | query(GS , ej) − V (ej) |
∑

∀ej∈S V (ej)
, (1)

where V (·) returns the exact global number of occurrences of an ej . The com-
pleteness measure shows the overall accuracy of the estimates, as compared with
the exact global number of occurrences of the ejs. A value for completeness near
1 denotes high accuracy for the estimates provided by the corresponding GS .
Recall is the number of the correct elements found as a percentage of the number
of the truly correct elements. On the other hand, precision is the number of the
correct elements found as a percentage of the entire output. For our experiments,

Large-Scale Multi-party Counting Set Intersection 339

153
320
031

253

4.543.5
32.51.5

024
131
220

154

634.5
23.52

013

110
121

Q’1 , Q’2 and Q’3 contain symmetric noise
in cells that exhibit values < θ.

We omit the modulus operation with F , by
assuming that F is greater than all

intermediate summations

p1 p2

S1

R’

S2

Q’2

p3

threshold θ=2, number of parties m=3

Q’1

342
21.51
432.5

065

64.53.5
2.543

-323

21.51
0.52.52

Q’3

S3

GS’

only GS’[1][1] = m, therefore this cell is
the only common cell which exhibits

values > θ in all local synopses

Fig. 2. In each cell of each Q′
i, we add either 1 or symmetric noise, depending on the

corresponding value in each Si (i = 2, . . . , m)

we have chosen as the application domain the monitoring and the identification
of common web resources appearing at five local parties. All experiments were
conducted on a Pentium Dual Core at 2GHz with 4GB RAM. The software com-
ponents are developed using the Java programming language version 1.7, and
are available from the authors.

We compare our protocols with the intersection operation included in the
Sepia library presented in [7] and [28], where Counting Bloom filters (CBf s)
are used, as initially introduced in [10]. A CBf is an integer array, where each
ej is hashed K times, by using the HMAC-MD5 hash function [26]. For each
cell that an ej is hashed to, we increment this cell’s value by 1. In order to
derive the count estimate of an ej , we hash it and then take the minimum
of the values retrieved. More specifically, we use the weighted intersection (I-
SEPIA) of the Sepia library, where an ej should be represented by the global
CBf (gCBf) only if it has been monitored by every pi. Each pi submits to G
two CBf s: A flag-based CBf that actually states if an ej has been monitored
by this pi, and another CBf which holds the number of occurrences of each ej .
The flag-based CBf s are cell-wise multiplied producing gCBf1, which includes
the common ejs that should be represented by the gCBf. The CBf s holding
the number of occurrences are cell-wise added producing gCBf2, which holds
the global summations. A straightforward cell-wise multiplication between these
two gCBf s produces the final gCBf. The number of hash functions K and the
size L of each CBf depend on the specified false-positive probability, denoted
by FPR. This rate can be considered as the acceptable error rate, when a CBf
provides a count estimate for an ej which it has never been hashed to it. The
specified error rate is achieved by setting K = ln(2)L/n and L = cn, where c is
a small constant in order to minimize the formula (0.6185)L/n. An analysis of
the derivation of these optimal values is given in [6].

340 D. Karapiperis et al.

Table 2. The steps of the noise-based protocol for creating a privacy-preserving inter-
section global synopsis

step 1a p1 produces R′ and Q′
1, which are D×W arrays and correspond to r and q1

respectively depicted in Algorithm 1, but each cell of Q′
1 instead of holding

the real values of S1 holds 1 if S1[d][w] > θ and some symmetric noise if
not (plus the random values of R′).

step 1b p1 produces R and then Q1, both needed for the secure cell-wise summation
of each Si. Both Q1 and Q′

1 are submitted to p2.
step 2a Each pi (i = 2, . . . , m), by checking cell-wise each Si, adds Q′

i−1[d][w]+1 to
Q′

i[d][w], only if Si[d][w] is above θ. Otherwise, Q′
i[d][w] becomes Q′

i−1[d][w]
plus some symmetric noise.

step 2b Each pi (i = 2, . . . , m), by using Qi−1, produces Qi (Qi[d][w] =
(Qi−1[d][w] + Si[d][w]) mod F). Both Qi and Q′

i are submitted to pi+1.
step 3a pm produces Q′

m.
step 3b pm produces Qm and then submits it to p1 along with Q′

m.
step 4a p1 produces GS ′ by subtracting R′ from Q′

m.
step 4b p1 produces GU , by subtracting R from Qm. Both GU and GS ′ are sub-

mitted to G.
step 5 G checks cell-wise GS ′ and if GS ′[d][w] �= m, then GU [d][w] = 0. Finally,

GS = GU .

6.1 Evaluation Using Synthetic Data Sets

Each party uses a synthetic data set where we generate N = 109 occurrences
from an alphabet of n = 106 distinct elements. The parameters used for building
the synopses are depicted in Table 3.

Table 3. The parameters used for building the synopses

φ ε D W δ

0.1 0.01 26 100 0.01
0.01 0.001 26 1000 0.01

0.001 0.0001 26 10, 000 0.01

Elements generated for each party follow the Zipf distribution, since there
are numerous studies reporting that web resource popularity obeys power-law
long-tailed distributions [2,17,21,25]. We set the skew parameter z to 1 (Fig.
3a) and to 2 (Fig. 3b) for higher skew. As shown in these figures, by setting
z = 2, the differences between the exact values and the corresponding estimates
are almost eliminated, since the accuracy of Count-Min sketches is increased by
using highly skewed data distributions [34].

For I-SEPIA, we set FPR = 0.1, which yields nearly 5 × 106 cells for the
corresponding CBF s and the gCBF. In Fig. 4a, we illustrate the completeness
rates, where our protocols outperform I-SEPIA. By setting higher skew (z = 2),

Large-Scale Multi-party Counting Set Intersection 341

Fig. 3. Absolute estimates and exact values, by generating ejs, following the Zipf
distribution

the completeness rate of our protocols is even higher than the one of I-SEPIA. In
Fig. 4b, we show the completeness rates for both protocols, where we observe that
these rates are constantly above 0.9. Also, by setting skew to 2, the completeness
rates, as expected, exhibit higher rates exceeding 0.95. We also observe that, as
φ is set to lower values, the completeness rates fall, exhibiting the lowest value
by setting φ = 0.001 (θ = 0.001 × 109 = 106 and ε = 0.0001). This happens
because exact counts of the ejs near θ = 106 become more and more uniform
and this uniformity of values, as reported in [34], results in reducing the accuracy
of the Count-Min sketches. Recall rates for both I-SEPIA and our protocols are
constantly at 1.0. In terms of precision rates (Figs. 4c and 4d), our protocols
perform slightly lower than I-SEPIA. Especially, by setting φ = 0.001 with skew
z = 1, precision falls below 0.95, which means that there is an amount of elements
returned where their exact number of occurrences is below θ (false positives).
When we increase skew (z = 2), precision rates increase accordingly reaching
almost 1.0. As expected, the number of occurrences for some false positives
returned by our protocols lie within the interval (�(φ − ε)N�, θ).

The higher precision rates achieved by I-SEPIA are outweighed by the cost
of exceptionally large space required, whereas our protocols utilize orders of
magnitude smaller data structures, as shown in Fig. 4e. The space utilized by
our protocols depends on the specified parameters ε, δ, and on N . By setting
lower values for φ, in cases where we need a lower threshold, we consequently
decrease ε, which eventually results in using more space, as it is clearly shown in
Fig. 4e by setting φ to 0.001. We illustrate the space requirements by assuming
the RAM model [29], where a plain integer is represented by a machine word
while in HP a homomorphically encrypted integer is represented by two machine
words respectively. Obviously, the space utilized affects execution time as well,
since the number of operations required is proportional to the number of cells
of each synopsis (S′

i, S̃i, Qi and Q′
i), which depends on ε and consequently on

φ, as illustrated in Fig. 4f. The extra time required for HP is due to the initial
encryption of the cells of S′

1 in step 3a, while the homomorphic multiplications
in step 4a add negligible overhead.

342 D. Karapiperis et al.

Fig. 4. Comparing to I-SEPIA by using skewed data sets

6.2 Evaluation Using Real Data Sets

We received from OTS SA [1], which is a big Greek IT company, an anonymized
list of the top 1, 000-ranked web sites, as determined by the visits paid by their
employees in January 2014. In Fig. 5a, the distribution of the occurrences of the
ejs, where an ej is a hit to a web site, is illustrated which indicates a stretched-
exponential distribution with the stretching parameter set between 0.8 and 0.9.
The total number of hits N = 108 and the number of distinct ejs n = 103.
We set the frequency φ to 0.1, 0.01 and 0.005. If we set φ to 0.001 the corre-
sponding threshold would be considerably reduced, namely it would be equal
to 105, and the synopses would return too many ejs as heavy hitters. We dis-
tributed randomly the ejs to five parties except for the heavy hitters, for each
value of frequency φ, which appear universally in order to allow for evaluating
the performance of both our protocols and I-SEPIA. In terms of completeness,
our protocols, as expected due to the skewness of the data set, exhibit slightly
better rates, as depicted in Fig. 5b. The recall rates are consistently 1.0 while
the precision rates are almost the same for both our protocols and I-SEPIA, as
shown in Fig. 5c.

Large-Scale Multi-party Counting Set Intersection 343

Fig. 5. Intersecting web logs provided by OTS SA

7 Conclusions

We have proposed two protocols for efficient and privacy-preserving set intersec-
tion (PPSI) by using Count-Min sketches. The aim of these protocols is to allow
an authority to create a global synopsis by performing private intersection of the
sets that are individually summarized as local synopses by three or more parties.
This global synopsis also provides count estimates of the intersected elements.
Our protocols use a combination of privacy techniques, namely homomorphic
computations, a secure distributed summation scheme, and noise addition. An
empirical study conducted on large synthetic and real data sets validates the
efficiency and accuracy of our protocols as compared to an existing PPSI pro-
tocol. In the future, we aim to (a) improve further the accuracy and scalability
of our protocols, (b) apply time widows for monitoring the ejs, and (c) study
other private set operations and techniques using efficient data structures.

References

1. OTS SA (2014). http://www.ots.gr/
2. Adamic, L., Huberman, B.: Zipf’s law and the internet. Glottonmetrics 11, 143–150

(2002)
3. Aggarwal, C., Yu, P.: A general survey of privacy-preserving data mining models

and algorithms. Adv. Datab. Sys. 34, 11–52 (2008)
4. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private

databases. In: SIGMOD, San Diego, California, USA, pp. 86–97 (2003)
5. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols

for realistic adversaries. J. of Cryptol. 23(2), 281–343 (2010)
6. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey.

Internet Math. 1(4), 485–509 (2002)
7. Burkhart, M., Dimitropoulos, X.: Privacy-preserving distributed network trou-

bleshooting - bridging the gap between theory and practice. ACM Trans. Inf. Sys.
Sec. 14(4) (2011)

http://www.ots.gr/

344 D. Karapiperis et al.

8. Charikar, Moses, Chen, Kevin, Farach-Colton, Mart́ın: Finding frequent items in
data streams. In: Widmayer, Peter, Triguero, Francisco, Morales, R., Hennessy,
Matthew, Eidenbenz, Stephan, Conejo, Ricardo (eds.) ICALP 2002. LNCS, vol.
2380, pp. 693–703. Springer, Heidelberg (2002)

9. Clifton, C., Kantarcioglou, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy
preserving distributed data mining. ACM SIGKDD Explor. Newsl. 4(2), 28–34
(2002)

10. Cohen, S., Matias, Y.: Spectral Bloom filters. In: SIGMOD, San Diego, California,
pp. 241–252 (2003)

11. Cormode, G., Garofalakis, M.: Sketching streams through the net distributed
approximate query tracking. In: VLDB, Trondheim, Norway, pp. 13–24 (2005)

12. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the Count-
Min sketch and its applications. J. of Algor. 55(1), 58–75 (2005)

13. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private
set intersection. Appl. Cryptog. 2(4), 289–303 (2012)

14. Dong, C., Chen, L., Wan, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: SIGSAC, Berlin, Germany, pp. 789–800 (2013)

15. Freedman, Michael J., Nissim, Kobbi, Pinkas, Benny: Efficient private matching
and set intersection. In: Cachin, Christian, Camenisch, Jan L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

16. Frikken, K.: Privacy-preserving set union. Appl. Cryptog. Network Sec. 4521,
237–252 (2007)

17. Glassman, S.: A caching relay for the world wide web. Comput. Netw. ISDN Syst.
27(2), 165–173 (1994)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In:
STOC, New York, USA, pp. 218–229 (1987)

19. Hall, Rob, Fienberg, Stephen E.: Privacy-preserving record linkage. In: Domingo-
Ferrer, Josep, Magkos, Emmanouil (eds.) PSD 2010. LNCS, vol. 6344, pp. 269–283.
Springer, Heidelberg (2010)

20. Hazay, Carmit, Lindell, Yehuda: Efficient protocols for set intersection and pattern
matching with security against malicious and covert adversaries. In: Canetti, Ran
(ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

21. Jauhari, M., Saxena, A., Gautam, J.: Zipf’s law and the number of hits on the
world wide web. Annals of Lib. and Inf. Studies 54, 81–84 (2007)

22. Kantarcioglu, Murat, Jiang, Wei, Malin, Bradley: A privacy-preserving framework
for integrating person-specific databases. In: Domingo-Ferrer, Josep, Saygın, Yücel
(eds.) PSD 2008. LNCS, vol. 5262, pp. 298–314. Springer, Heidelberg (2008)

23. Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: Patrick,
Andrew S., Yung, M. (eds.) FC 2005. LNCS 3570, vol. 3570, pp. 109–124. Springer,
Heidelberg (2005)

24. Kissner, Lea, Song, Dawn: Privacy-preserving set operations. In: Shoup, Victor
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

25. Krashakov, S., Teslyuk, A., Shchur, L.: On the universality of rank distributions
of website popularity. Comp. Netw. 50(11), 1769–1780 (2006)

26. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: keyed-hashing for message authen-
tication, Internet RFC 2104 (1997). http://tools.ietf.org/html/rfc2104

27. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. J. Priv. Conf. 1(1) (2009)

28. Many, D., Burkhart, M., Dimitropoulos, X.: Fast private set operations with sepia.
Tech. Rep. no. 345, ETH Zurich (2012)

http://tools.ietf.org/html/rfc2104

Large-Scale Multi-party Counting Set Intersection 345

29. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

30. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC,
Atlanta, Georgia, USA, pp. 245–254 (1999)

31. Paillier, Pascal: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, Jacques (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223.
Springer, Heidelberg (1999)

32. Pierre, K., Lai, S., Yiu, K., Chow, C., Chong, L., Hui, C.: An efficient Bloom filter
based solution for multiparty private matching. In: SAM (2006)

33. Roughan, M., Zhang, Y.: Secure distributed data-mining and its application to
large-scale network measurements. SIGCOMM Comput. Commun. Rev. 36(1),
7–14 (2006)

34. Rusu, F., Dobra, A.: Statistical analysis of sketch estimators. In: SIGMOD, Beijing,
China, pp. 187–198 (2007)

35. Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record
linkage techniques. J. Inf. Sys. 38(6), 946–969 (2013)

36. Yao, A.: How to generate and exchange secrets. In: SFCS, Toronto, Canada,
pp. 162–167 (1986)

Improved Weighted Bloom Filter and Space
Lower Bound Analysis of Algorithms

for Approximated Membership Querying

Xiujun Wang1,4(B), Yusheng Ji2, Zhe Dang3, Xiao Zheng1, and Baohua Zhao4

1 Anhui University of Technology, Ma’anshan, China
wxj@mail.ustc.edu.cn

2 National Institute of Informatics, Tokyo, Japan
kei@nii.ac.jp

3 Washington State University, Pullman, USA
zdang@eecs.wsu.edu

4 University of Science and Technology of China, Hefei, China

Abstract. The elements in a large universe U have different member-
ship likelihoods and query frequencies in many applications. Thus, the
number of hash functions assigned to each element of U in the traditional
Bloom filter can be further optimized to minimize the average false pos-
itive rate. We propose an improved weighted Bloom filter (IWBF) that
assigns an optimal number of hash functions to each element and has a
less average false positive rate compared to the weighted Bloom filter.
We show a tight space lower bound for any approximated membership
querying algorithm that represents a small subset S of U and answers
membership queries with predefined false positive rates, when the query
frequencies and membership likelihoods of the elements in U are known.
We also provide an approximate space lower bound for approximated
membership querying algorithms that have an average false positive rate,
and show that the number of bits used in IWBF is within a factor of 1.44
of the approximate space lower bound.

1 Introduction

The traditional Bloom filter [4] is an elegant memory-efficient randomized data
structure for representing the elements in a small subset S of a large universe
U (S ⊂ U), and its use is in approximated membership queries. The elements
that occur in S are called members. Given a small subset S of a large universe
U (|U | � |S|) and a false positive rate ε, the traditional Bloom filter uses a
memory space of |S| log2(e) log2(1/ε) bits and k = log2(1/ε) bit probes for each
query. It is a well-known technique for approximated membership querying.

Many alternative set representations exist that support membership query
with the false positive ε shown above, e.g., perfect hashing [7], cuckoo hashing
[25], and d-left counting Bloom filter [6]. However, the representations require
complicated rehash mechanisms to resolve hash collisions and, thus, are less
versatile than the traditional Bloom filters. In fact, the Bloom filter continues
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 346–362, 2015.
DOI: 10.1007/978-3-319-18123-3 21

Improved Weighted Bloom Filter and Space Lower Bound Analysis 347

to attract interest because of its space efficiency and ease of implementation.
There has been much research on Bloom filter and its variants for approximately
detecting duplicates [8,15,16,17,18,19,23,24,26].

The traditional Bloom filter makes a hidden assumption that all elements in a
large universe U have equal membership likelihood (the probability that element
e in the universe U occurs in S) and equal query frequency (the probability that
the querying client makes a request about whether e occurs in S or not). However,
it is commonly observed that elements from a large universe U do not necessarily
have the same membership likelihood, i.e., some elements occur more frequently
in S than the others [8]. The elements also don’t necessarily have the same query
frequency. For example, in URL crawling, a search engine periodically crawls the
web to enlarge its web-page databases. For a URL directed to a web page, the
search engine must query its URL database to find out whether the page has
been fetched or not. The URL of a web page at a hot web site has a larger
probability to be queried by a search engine than URLs of other web pages.

This paper follows the definition of the expectation of the false positive prob-
ability in [8] (the expectation of false positive probability, shown in the equation
(4) in [8] , is called the average false positive rate in this paper). Notice that some
other definitions [26] can be treated as a special case as the one in [8]. Ref. [8] uses
random variables to model the information about query frequencies and member-
ship likelihoods of elements in U . Then Ref. [8] defines an average false positive
rate as a mathematical expectation of the false positive probability E[PFP] (see
the equation (4) in [8]), and try to minimize E[PFP] by controlling the number of
hash functions assigned to each element of U . However, the numbers of hash func-
tion so chosen are not optimal, in the following sense: we call the numbers of hash
functions optimal if these numbers produce the global minimal value of the aver-
age false positive rate. In Section 3, we propose IWBF, which assigns an optimal
number of hash functions to each element in U when the query frequencies and
membership likelihoods of the elements in U are known, and identify the reason for
WBF’s failure to obtain the optimal numbers of hash functions.

We have not found in literatures a space lower bound for any approximated
membership querying algorithm that has an average false positive rate θ (the
algorithm represents a subset S and answers membership queries with an average
false positive rate but no false negative errors), when the query frequencies and
the membership likelihoods of elements in U are known.

Our Contributions
(1) We propose an improved weighted Bloom filter (IWBF), which has an opti-
mal number of hash functions assigned to each element e ∈ U . IWBF is proven
to have no false negative errors and a lower average false positive rate than that
of the weighted Bloom filter (WBF) in [8], given the same memory space.
(2) Based on information cost in communication complexity theory [20], we show
a tight space lower bound for any approximated membership querying algorithm
that represents a small subset S of a large universe U in a memory-efficient way
and answers membership queries with predefined false positive rates for the ele-
ments in U .

348 X. Wang et al.

(3) We derive an approximate space lower bound for any approximated mem-
bership querying algorithm that represents a small subset S of U and answers
membership queries with an average false positive rate but no false negative
errors. Then we show that the number of bits used in an IWBF is within a fac-
tor of log2(e) ≈ 1.44 of the approximate space lower bound. We also show that
the lower bound of space |S| log2(1/ε), based on the pigeonhole principle in [7,9],
is a special case of the approximate space lower bound obtained in this paper.

2 Membership Likelihood and Query Frequency
Definition

For ease of illustration, we give each element a number identifier and assume
U = {1, 2, ..., N} (the universe contains N elements). We adopt the same model
as [8] to represent the membership likelihoods and query frequencies as follows.

An indicator random variable Xi is used for each element i ∈ U to represent
whether i occurs in S:

Xi = 1 when i ∈ S; Xi = 0 when i /∈ S. (1)

X1, ..,XN are independent random variables. A random variable Y represents
a query element chosen from U by the querying client in one query request:

Y = i, if i is queried in the request. (2)

An indicator random variable Yi is used for each element i ∈ U : Yi = 1 when
Y = i; Yi = 0 otherwise. The membership likelihood and query frequency of
each element i ∈ U are represented by P (Xi = 1) = xi ∈ (0, 1) and P (Yi = 1) =
yi ∈ (0, 1) respectively. n denote the expected number of elements in S:

n = E[|S|] = E[
∑

i∈U
Xi] =

∑
i∈U

xi. (3)

3 Improved Weighted Bloom Filter

3.1 Weighted Bloom Filter [8]

A weighted Bloom filter (WBF) [8] uses an m-bit array and assigns ki uniformly
random and independent hash functions h1, .., hki

(hj(i) ∈ {1, ..,m}, j = 1, .., ki)
to each i ∈ U . It is used to represent a subset S of n elements (called members)
from a large universe U (S ⊂ U), then answer the membership queries as follows
(the values of ki, i ∈ U in the two steps are shown later):

– firstly, for each element in i ∈ S, the ki bits at positions hj(i), j = 1, .., ki of
the m-bit array are set to ′1′;

– secondly, for each query element q ∈ U , the answer to q ∈ S? is ′yes′ if all
of the bits in positions h1(q), .., hkq

(q) are ′1′, and ′no′ otherwise.

Improved Weighted Bloom Filter and Space Lower Bound Analysis 349

Table 1. Notations

N the number of elements in a large universe U

n the expected number of elements in S (S ⊂ U), n =
∑

i∈U xi

m the number of memory bits used in WBF or IWBF

xi the membership likelihood of the element i ∈ U

ri the normalized query frequency of the element i ∈ U , shown in (5)

R+ = (0,+∞) the set of positive real numbers

k◦ = (k◦
1 , .., k◦

N) numbers of hash functions assigned to elements in U in WBF

k∗ = (k∗
1 , .., k∗

N) the global minimizer of the average false positive rate FP (k) over RN
+

When assigning ki ∈ R+ hash functions for each i ∈ U , obviously, each non-
member element may have a different false positive probability in a WBF. Ref. [8]
defines the average false positive rate denoted by E[PFP] as the expectation of the
weighted sum of these false positive probabilities (see the equation (4) in [8]):

E[PFP] = E[
∑

i∈U
ri(1 − e−∑j∈U Xjkj/m)ki] = T (k), (4)

where ri denote the normalized query frequency of i ∈ U :

ri = (1 − Xi)Yi/(
∑

j∈U
(1 − Xj)Yj). (5)

Clearly E[PFP] is a function of k ∈ RN
+ = (0,+∞)N , denoted by T (k) in (4).

Let K denote the expected number of hash functions used by elements in S:

K = E[
∑

i∈U
Xiki] =

∑
i∈U

xiki. (6)

Considering that the average false positive rate shown in (4) is hard to minimize
directly, Ref. [8] uses the assumption that

∑
i∈U Xiki is sharply concentrated

around its expected value K =
∑

i∈U xiki, then rewrites (4) as follows (shown
in equation (20) in [8]):

E[PFP] ≈
∑

i∈U
E[ri](1 − e−K/m)ki = FP (k). (7)

∑
i∈U E[ri](1 − e−K/m)ki is a function of k ∈ RN

+ , denoted by FP (k) in (7).
By Assuming that ki, i ∈ U can be any real number in R+ and setting

∂FP (k)/∂ki, i ∈ U to 0 in the proof of Theorem 3.1 of [8], Ref. [8] finds that the
minimizer of FP (k) is (see the equation (5) or (47) in [8]):

k◦
i = (m/n) ln 2 + (ln E[ri] −

∑
j∈U

(xj/n) ln E[rj])/ ln 2, i ∈ U. (8)

Actually,WBFassigns k◦
i hash functions for i ∈ U .More specifically, given aWBF

with m-bit array, for each i ∈ S, the k◦
i bits at positions h1(i), h2(i), .., hk◦

i
(i) of

the m-bit array are set to ′1′ when storing a subset S, then for each query element
q ∈ U , the answer to q ∈ S? is ′yes′ if all of the bits in positions h1(q), .., hk◦

q
(q)

are ′1′, and ′no′ otherwise. The average false positive rate of WBF is taken to be
FP (k◦) (k◦ = (k◦

1 , .., k
◦
N), see the equation (7) in [8]).

However, there are two problems in WBF. (1): k◦ is not the global mini-
mizer of FP (k) in RN

+ . Because FP (k) is not a convex function of k in RN
+ ,

350 X. Wang et al.

then k◦, which satisfy ∂FP (k)/∂k◦ = 0 (see equation (23) in [8]), are not nec-
essarily a global minimizer of FP (k). (2): The actual average false positive rate
of a WBF, when assigning k◦

i hash function to i ∈ U , is determined by T (k◦)
(∀k ∈ RN

+ , T (k) is defined in (4)). Ref. [8] doesn’t provide any proof to show the
difference between T (k◦) and FP (k◦) is small that can be ignored.

3.2 Improved Weighted Bloom Filter Design

Let k∗ = (k∗
1 , .., k

∗
N) denote the global minimizer of FP (k) in (7) over the set

RN
+ and let K∗ =

∑
i∈U xik

∗
i denote the optimal value of the expected number

of hash functions. The basic idea of an improved Weighted Bloom filter (IWBF)
is as same as WBF, but IWBF assigns an optimal number of hash functions
k∗

i (shown in (10)) to each element i ∈ U , thus has a much less average false
positive rate as compared with WBF, i.e., FP (k∗) (shown in (11)) is less than
FP (k◦). The idea of finding k∗ is as follows:

– firstly divide the feasible region RN
+ of k into sets AK = {k = (k1, k2, ..., kN)|

k ∈ RN
+ ,

∑
i∈U kixi = K}, where K takes value in R+, and show that ∀K ∈

R+, FP (k) is a convex function in AK ;
– secondly, for a set AK , we find the minimizer f(K)= (f1(K),f2(K), .., fN (K))

that produces the minimal value FP (f(K)) of FP (k) over AK ;
– lastly, we find the global minimizer K∗ of FP (f(K)) for K ∈ R+. Since

FP (f(K)) shown in (22) is a function of K, then clearly k∗ = f(K∗).

Considering that K is fixed for k ∈ AK and AK is a convex set, so each com-
ponent function (1 − e−K/m)ki , i ∈ U is convex in AK , then FP (k) in (7) (the
nonnegative linear combination of these functions) is also convex in AK . But
FP (k) is not convex in RN

+ , and this is the reason why [8] fails to get the global
minimizer of FP (k) in RN

+ .
In the above, we only consider the minimization of FP (k), then get k∗ as

the global minimizer of FP (k). However, the actual false positive rate of IWBF,
when assigning k∗

i hash functions for i ∈ U , is determined by T (k∗). We shall
give a sufficient condition (shown in (12)) to guarantee that difference between
T (k∗) and FP (k∗) is small enough that can be ignored, i.e., FP (k∗) can safely be
taken to be the actual average false positive rate of IWBF, under this condition.
Thus, in Theorem 1, we first show how to find the values of K∗ and k∗, then a
sufficient condition (12) is provided to guarantee that T (k∗) ≈ FP (k∗) .

Lemma 1. Let X1, ..,XN be independent random variables, where Xi is defined
in (1), and P (Xi = 1) = xi, i ∈ U . The expected number of hash functions used
by elements in S is K =

∑
i∈U xiki in (6) with k = (k1, .., kN) ∈ RN

+ , and the
expected number of elements in S is n =

∑
i∈U xi in (3). Furthermore we define

υ =
∑

i∈U xik
2
i and kmax = max{k1, .., kN}. Then we have

P (|
∑

i∈U
Xiki − K| ≥ n−1/3m) ≤ e

−m2

2υn2/3 + e
−m2

2(υn2/3+ 1
3 kmaxmn1/3) . (9)

Improved Weighted Bloom Filter and Space Lower Bound Analysis 351

Proof. Let λ = n−1/3m (λ is shown in the inequalities (3.1) and (3.2) in [11]),
then by Theorem 3.3 in [11] we have the conclusion.

Theorem 1. We are given the expected size n of S in (3), and an m-bit array
in an improved weighted Bloom filter (IWBF). Then K∗ = m ln 2, and

k∗
i = (m/n) ln 2 + log2 E[ri]/xi −

∑
j∈U

(xj/n) log2(E[rj]/xj) (10)

Accordingly,
FP (k∗) = 2−(m/n) ln 2 · n ·

∏
j∈U

(E[rj]/xj)
xj/n. (11)

Moreover, suppose that:

max
i,j∈U

| log2(E[ri]/xi) − log2(E[rj/xj])| < (m/n) ln 2, (12)

Then E[PFP] = T (k∗) the actual false positive rate of IWBF, when assigning
k∗

i hash functions for i ∈ U , satisfies:

T (k∗) − FP (k∗) < 2e− n1/3
3 . (13)

Proof. The main steps for proving (10) and (11) are: at first, we find the minimal
value FP (f(K)) of FP (k) for each set AK ; secondly, we find k∗ by analyzing
the function FP (f(K)) in R+. The main idea for proving (13) is: T (k∗) can be
decomposed into two parts, then we show that the first part is less than 2e−n1/3/3

and the second is approximately equal to FP (k∗), when the sufficient condition
in (12) is true. The detailed proof is given in Appendix.

3.3 False Negative Rate and False Positive Rate Analysis

From Algorithm 1, it is easy to see that the IWBF has no false negative error.
In this section, FP (k◦) and FP (k∗) are called the idealized average false

positive rate of WBF and IWBF respectively. Clearly, since k∗ is the global min-
imizer of FP (k) over the set RN

+ , we have FP (k∗) ≤ FP (k◦). In the following,
at first, we show the numerical values of the ratio between FP (k◦) and FP (k∗)
over Zipf’s Distribution. Secondly, we give an example, which shows that the
actual average false positive rate of IWBF, determined by T (k∗), is less than
FP (k∗) the idealized average false positive rate WBF.
Numerical comparison of the idealized average false positive rates of
the WBF and IWBF over Zipf’s Distribution:
Let U = {1, 2, .., N}. In a Zipf’s distribution with parameter α, for element i, its
membership likelihood is defined as: xi = nc(1/iα), where c is a positive constant
to ensure that:

∑
i∈U xi/n = 1, and α controls the skewness of the distribution.

Given that the expected size of S is n, the size of U is N , and the IWBF and
WBF each have an m-bit array, we define R: the ratio between FP (k∗) of IWBF
and FP (k◦) of WBF. It is easy to see that: R = FP (k∗)

FP (k◦)
= (n/N)

∏
i∈U (xi)

−xi/n

≤ 1 (m is eliminated). Since R is only related to the values of n, N and mem-
bership likelihoods xi, i ∈ U , thus, in the following, we shall show the values of

352 X. Wang et al.

Algorithm 1. An IWBF for approximated membership querying
Input: S,M ,ki(i ∈ U),h1, ..hg,Q
S: a small subset of U , whose elements taken from distributions of Xi, i ∈ U ; M : m-bit
array whose bits are all initialized to ′0′; ki: the number of hash functions assigned
to an element i is set to the nearest positive integer from k∗

i ; h1, .., hg: uniform
and independent hash functions, g = maxi∈U (ki); Q: a sequence of query elements
generated by the distribution of Y , Q = q1, .., qj , .. qj ∈ U ;
Output: a sequence of yes/no answers corresponding to each query element in Q;
Representing part: //*store S into M*//
For each e ∈ S

set the ke bits M [hj(e)], j = 1, .., ke to ′1′;
Querying part:
For each q ∈ Q

probe the kq bits M [hj(q)], j = 1, .., kq in the bit array M ;
If all kq bits M [hj(q)], j = 1, .., kq are ′1′ Then q ∈ S, Output ′yes′ for q;//*q is

assumed to be a member of S*//
Else q /∈ S, Output ′no′ for q; //*q is not a member of S*//

//* The implementation issues of this algorithm are discussed in Section 3.4*//

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

alpha

a/
b

Fig. 1. Ratio of the idealized average false positive rate of IWBF (a) to that of WBF
(b) for Zipf’s Distributions

R by setting n = 102,N = 105, xi = nc(1/iα), i ∈ U and α ∈ (0, 1). Since the
value of R is irrelevant to the value m, the value of m is not set (thus the values
of FP (k∗) and FP (k◦) are not shown in this comparison). Figure 1 depicts the R
values corresponding to different values of α. When α is large, the idealized aver-
age false positive rate of the IWBF becomes much lower than that of the WBF.
For example, when α = 1, R = 0.0289, the idealized average false positive rate of
IWBF is only about 2.89% of that of WBF.
Comparison of the actual average false positive rate of IWBF with
the idealized average false positive rate of the WBF on an example
We give an example to show that the actual false positive rate is less than the
idealized average false positive rate of WBF.

Improved Weighted Bloom Filter and Space Lower Bound Analysis 353

For a universe U of N = 2 × 107 elements, we assign to each element a
number identifier and assume U = {1, 2, .., 2 × 107}, U1 = {1, 2, .., 107}, U2 =
{107 + 1, .., 2 × 107}. For i ∈ U1, let xi = 1.6 × 10−3 and E[ri] = 5 × 10−8; for
i ∈ U2, let xi = 0.4 × 10−3 and E[ri] = 5 × 10−8. The expected size of a subset
S of U is n =

∑
i∈U xi = 1.6 × 104 + 0.4 × 104 = 2 × 104. Suppose that both

IWBF and WBF have an array of m = 4 × 104 bits. m = 4 × 104 is not large,
since it is only two times as large as n = 2× 104 the expected size of a subset S.

Based on Theorem 1, the number of hash functions assigned to i ∈ U in IWBF
is k∗

i = 0.9862, i ∈ U1 and k∗
i = 2.9863, i ∈ U2. Rounding to integers, IWBF shall

use one hash function for i ∈ U1 (k∗
i = 1, i ∈ U1), and three hash functions for i ∈

U2 (k∗
i = 3, i ∈ U2), then K∗ =

∑
i∈U1

1.6 × 10−3 × 1 +
∑

i∈U2
0.4 × 10−3 × 3 =

2.8 × 104. Based on (7), the idealized average false positive rate of IWBF is
FP (k∗) =

∑
i∈U1

5 × 10−8(1 − e−0.7)1 +
∑

i∈U2
5 × 10−8(1 − e−0.7)3 = 0.3155

(since k∗
i is rounded to an integer, we can’t use (11) as the idealized average

false positive rate of IWBF). Clearly, υ =
∑

i∈U xi(k∗
i)2 = 5.2× 104 and kmax =

max{k1, .., kN} = 3, then, by (9) in lemma 1, we can get:

P (|
∑

i∈U
Xik

∗
i −K∗|/m ≥ n−1/3) = P (|

∑
i∈U

Xik
∗
i /m−0.7| ≥ 0.0368) < 2.4×10−9.

The above inequality shows that the random variable
∑

i∈U Xik
∗
i /m is sharply

concentrated around its expected value K∗/m = 0.7. Then we have T (k∗) ≈
FP (k∗) = 0.3155, i.e., FP (k∗) = 0.3155 is a good approximation for the actual
false positive rate of IWBF, determined by T (k∗), in this example.

However, for this example, by Theorem 3.1 in [8], k◦
i = 1.3863, i ∈ U

(assuming k◦
i can be real number) then the idealized average false positive

rate of WBF is FP (k◦) = 0.3825 (by the equation (7) in [8]). Furthermore,
rounding k◦

i = 1.3863 to 1, WBF shall use one hash function for i ∈ U .
Based on (7), the idealized average false positive rate of WBF is FP (k◦) =∑

i∈U1
5 × 10−8(1 − e−0.5)1 +

∑
i∈U2

5 × 10−8(1 − e−0.5)1 = 0.3935. Similarly,
rounding k◦

i = 1.3863 to 2, WBF uses two hash functions for i ∈ U , and the
idealized average false positive rate of WBF is 0.3996. Thus, for this example,
we can see that the actual false positive rate of IWBF is less than the idealized
false positive rate WBF, no matter k◦

i , i ∈ U is a integer or real number in WBF.

3.4 Discussion on the Practical Implementation of IWBF

In Algorithm 1, there are two practical problems when we implement IWBF:
how to estimate the values of membership likelihoods and query frequencies of
elements in U in real systems; how to determine the value of kq for q ∈ U
efficiently during querying. We shall discuss the problems in the following.

The techniques [3,12,13,14,21] used for estimating the values of membership
likelihoods and query frequencies when implementing WBF for real system are
well discussed in [8]. Obviously, these techniques can be applied in IWBF directly.
In some real system, due to the stability of the distribution that generates the
member elements and query elements, our estimates of these values can be more
accurate as more elements are observed.

354 X. Wang et al.

Since we assume the sufficient condition (12) in IWBF, it is easy to see
∀i ∈ U, k∗

i ∈ (0, (2m ln 2)/n), ki = [k∗
i] ∈ {1, 2, .., 	(2m ln 2)/n
} in Algorithm

1. m/n is usually set to be a small constant in practice. Since ∀i ∈ U, ki ∈
{1, .., 	(2m ln 2)/n
}, U can be divided into B = 	(2m ln 2)/n
 categories (B is
a small constant), then we can extract a number of common features form the
elements in one category by some well-known pattern mining algorithms. More
specifically, we can build B buckets, each bucket is associated with a unique inte-
ger in {1, .., B} and some simply checkable features that can determine whether
a element is contained in this bucket or not. For those elements that do not have
any checkable features contained in the B buckets, we may assign them with an
average number [B/2]. The B buckets will provide each element i ∈ U with ki by
checking the attributes of i. Thus we can determine kq for each q ∈ U efficiently
during querying as well as storing S. When the assumption in (12) is not true
in practice, we may simply put the element i that satisfies k∗

i > B to the B-th
category (when k∗

i > B, ki = B).

4 Space Lower Bound Analysis

The road map of the analysis of the space lower bound is:

– we first give background knowledge of information theory and communica-
tion complexity;

– then in the two-party one-way communication model [1,2,20], we shall ana-
lyze the information cost lower bound of the best ε-error protocol for the
membership function in (14), where ε represent the false positive rates;

– finally, based on the information cost lower bound, we prove a tight space
lower bound for any approximated membership querying algorithm that rep-
resents a small subset S of a large universe U and answers membership
queries with predefined false positive rates ε for the elements in U ; we also
show an approximate space lower bound for any approximated membership
querying algorithm that has a given average false positive rate θ.

4.1 Background of Communication Complexity

In the two-party randomized communication complexity model [2,20], two com-
putationally powerful probabilistic players, Alice and Bob, are required to com-
pute a function F : X × Y → Z together, where X and Y are the respective
input sets to Alice and Bob; Z is the output set. They exchange messages
according to a shared protocol Π. Given fixed inputs x ∈ X for Alice and
y ∈ Y for Bob, the random variable Π(x, y) represents the message transcript
obtained when Alice and Bob follow the protocol Π on the input pair x and y (the
randomness is over the coins of Alice and Bob). For the definitions of a δ-error
protocol for a function F and the δ-error randomized communication complexity
of F in the two-party one-way communication model, please see [2,20].

Improved Weighted Bloom Filter and Space Lower Bound Analysis 355

Information cost is the amount of information that the message transcript
Π(X,Y) carries about the inputs of the two parties in a protocol Π. For the def-
inition of the information cost of a protocol Π, please see [2,20]. In the following,
I denotes the mutual information, and H the information entropy.

4.2 Information Cost Analysis for the Membership Function

In the following analysis, we use the two-party one-way communication model
[2,20], which means that Alice sends exactly one message to Bob in the running
of a protocol Π, then Bob computes the function value based on the message
transcript (sent by Alice) and his input. Given that the universe U = {1, .., N},
we assume the random vector X = (X1, ..,XN) is the input to Alice, the ran-
dom variable Y is the input to Bob (Xi, i ∈ U and Y are defined in (1) and (2)
respectively). Then, we use the random variable Π(X) to represent the message
transcript sent to Bob by Alice for a protocol Π in the two-party one-way com-
munication model (Π(X) depends only on the random variable X the input to
Alice).

We now define the membership function f :

f(X,Y) = 1 if XY = 1; f(X,Y) = 0 if XY = 0; (14)

Obviously, f(X,Y = i) = Xi. We generalize the error probability δ in the
definition of a δ-error protocol for a function F in [2,20] to a vector of error
probabilities ε = (ε1, .., εN) and define an ε-error protocol for the membership
function f as follows:

Definition 1. (an ε-error protocol for the membership function f). Let ε =
(ε1, .., εN), εi ∈ [0, 1], i ∈ N = {1, .., N}. In the two-party one-way commu-
nication model, a protocol Π is called an ε-error protocol for the membership
function f (14) if there exists a function G such that for each Y = i ∈ U ,
P (G(Π(X), Y = i) = 1|f(X,Y = i) = 0) ≤ εi.

Similar to the definition of the δ-error randomized communication complexity
of a function F in [2,20], we denote the cost of the best ε-error protocol for f by
Rε(f), and call it the ε-error randomized communication complexity of f .

In the following, we will give a lower bound for Rε(f), by explicitly calculating
the information cost lower bound of the best ε-error protocol for f (X and Y
are the input to Alice and Bob respectively). For ease of illustration, we define
h(ω) = ωlog2(ω−1) + (1 − ω)log2((1 − ω)−1).

Theorem 2. In the two-party one-way communication model, assumes that the
input X and Y of Alice and Bob are independent, and Xi, i ∈ U are also indepen-
dent of other Xj , j �= i. Then, the ε-error randomized communication complexity
Rε(f) for the membership function f in (14) satisfies the following:

Rε(f) ≥
∑

i∈U
{h(xi) − [εi(1 − xi) + xi]h(

εi(1 − xi)

εi(1 − xi) + xi
)} = LowerBound1 (15)

356 X. Wang et al.

Proof. Let Π denote the best ε-error protocol for the membership function in (14)
in the two-party one-way communication model. Let |Π| denote the length of the
longest message transcript produced by the protocol Π over all possible values of
X in {0, 1}N ; then we have Rε(f) = |Π| ≥ H(Π(X)) ≥ I(X,Y ;Π(X)).

It is obvious that the random variable Π(X) only depends on X and Π(X)
is independent of Y in the two-party one-way communication model. We also
note that Xi, i ∈ U are also independent of other Xj , j �= i. Then we get:
I(X,Y ;Π(X)) ≥ ∑

i∈U {h(xi) − H(Xi|Π(X))}.

Table 2. Joint distribution of Xi and Gi

Xi

Gi 0 1 marginal

0 (1 − εi)(1 − xi) εi(1 − xi) 1 − xi

1 0 xi xi

marginal (1 − εi)(1 − xi) εi(1 − xi) + xi

Since Π is an ε-error protocol for f in (14), Definition 1 indicates that there
is a function G satisfies: P (G(Π(X), Y = i) = 1|Xi = 0) ≤ εi. We denote
G(Π(X), Y = i) by Gi for i ∈ U .

Since G is a function, the value of G(Π(X), Y = i) is fixed when the value of
Π(X) is known. Then by the basic properties of entropy, we have H(Xi|Π(X)) =
H(Xi|Π(X), Y = i) = H(Xi|Π(X), Y = i, Gi) ≤ H(Xi|Gi). It’s easy to see that
H(Xi|Gi) in the above formula is maximized, if P (Gi = 1|Xi = 0) = εi. Thus,
we get the joint distribution of Gi and Xi for each i ∈ U in Table 2. On the
basis of this table, we can get H(Xi|Gi) = (εi(1 − xi) + xi)h(εi(1−xi)

εi(1−xi)+xi
). By

summing over all i ∈ U , we get (15).

4.3 Tight Space Lower Bound for Approximated Membership
Querying Algorithms

In this paper, we assume that an approximated membership querying algorithm
is composed of two parts: the representing part, which represents a small sub-
set S of U in a memory-efficient sketch structure; and the querying part, which
answers membership queries with predefined false positive rates. We further-
more assume that the input to the representing part is independent from the
input to the querying part. These assumptions are quite general, and almost all
approximated membership querying algorithm based on memory sketch struc-
ture (cuckoo hashing, Bloom filters and its variant, and others data structures
in [5,6,8,10,15,19,22,23,24,26]) can be decomposed into these two parts.

Thus, if the representing part of an approximated membership querying algo-
rithm Γ plays the role of Alice and the querying part plays the role of Bob, we
can easily transform an approximated membership querying algorithm into an ε-
error protocol Π∗ for membership function f (defined in (14)) in the two-party
one-way communication model. The cost of Π∗ is the number of bits used in
the sketch structure. It follows that we can give the space lower bound for any
approximated membership querying algorithm based on the information cost
lower bounds LowerBound1 in (15).

Improved Weighted Bloom Filter and Space Lower Bound Analysis 357

Let us assume that the inputs of an algorithm Γε are the same as the inputs
to Alice and Bob in an ε-error protocol, which are X = (X1, ..,XN) and Y
(Xi, i ∈ U and Y are defined in (1) and (2)). Let ε = (ε1, .., εN).

Definition 2. (ε-error approximated membership querying algorithm). Given
false positive rate εi for each query element i ∈ U , an ε-error approximatedmember-
ship querying algorithm Γε is an algorithm that represents an input set S ⊂ U into
a memory-efficient structure, and answers membership queries with false positive
rate (or probability) εi for each element i ∈ U . The elements in S, called members,
are generated subject to the membership likelihoods (P (Xi = 1) = xi, see (1)) of
the elements in U .

To be more specific, for a query element i ∈ U , if i /∈ S, the probability that
Γε falsely classifies i as a member of S is εi.

Theorem 3. When the inputs X and Y are independent, and Xi, i ∈ U are
also independent of other Xj , j �= i, then LowerBound1 in (15) is a space lower
bound for any Γε.

Proof. We can easily transform an ε-error approximated membership querying
algorithm Γε into an ε-error protocol Π for the membership function f defined
in (14). Clearly, they solve the same function. This transformation can be done
by changing the memory space used by the ε-error algorithm Γε into the mes-
sage transcript of an ε-error protocol, which is similar to the blackboard model
in Proposition 1 of [20]. The inputs of Alice and Bob in the ε-error protocol
are X and Y respectively. Thus, Rε(f) is a space lower bound of any ε-error
approximated membership querying algorithm Γε.

Then the information cost lower bound LowerBound1 (shown in (15)) of
Rε(f) is also a space lower bound of any ε-error approximated membership query-
ing algorithm Γε. We have the conclusion.

Next, we will prove that LowerBound1 in (15) is a tight space lower bound
for any ε-error algorithm.

Corollary 1. Suppose that inputs X and Y are independent, and Xi, i ∈ U are
also independent of other Xj , j �= i. Then LowerBound1 in (15) is a tight space
lower bound for any ε-error approximated membership querying algorithm Γε.

Proof. If we take εi = 1, then LowerBound1 in (15) is simply equal to 0. We
can design an ε = {1}N -error approximated membership querying algorithm Γ ∗

as follows:
For any input S, Γ ∗ doesn’t use any bits of memory. For each query element
Y = i ∈ U , Γ ∗ always outputs that i is an member of S. Thus, the false positive
rate for i ∈ U is P (Γ ∗ outputs i is an member of S|Xi = 0) = 1, Thus we have
the conclusion.

358 X. Wang et al.

4.4 The Approximate Space Lower Bound for Approximated
Membership Querying Algorithms

Definition 3. (average false positive rate of an ε-error approximated member-
ship querying algorithm Γε). Let ε = (ε1, .., εN). We define a weighted sum∑

i∈U E[riεi] =
∑

i∈U E[ri]εi as the average false positive rate of an ε-error
approximated membership querying algorithm Γε, where ri is defined in (5).

Theorem 4. Let the expected size of S and the size of U be n in (3) and N ,
respectively. Suppose that inputs X and Y are independent, and Xi, i ∈ U are
also independent of other Xj , j �= i. Then any approximated membership query-
ing algorithm that has an average false positive rate θ but no false negative errors
must use a number of bits larger than the following approximately:

∑

i∈U
xilog2((E[ri]n)/(xiθ)) (16)

Proof. We give the intuition of the proof. Since LowerBound1 shown in (15)
gives space lower bound for Γε with various false positive rates ε = (ε1, .., εN) ∈
[0, 1]N , we can find the specific values of εi, i ∈ U that minimize LowerBound1
under the constraint that

∑
i∈U E[ri]εi = θ. This leads to the space lower bound

(16). We outline the main steps in the following.
Firstly, since xi � 1 usually, then LowerBound1 is approximately equal to∑

i∈U xi log2
1
εi

. Then we minimize
∑

i∈U xi log2
1
εi

under the equality constraint
that

∑
i∈U E[ri]εi = θ. We set up a function: L(ε1, .., εN , λ) =

∑
i∈U xi log2

1
εi

+
λ(

∑
i∈U E[ri]εi−θ), where λ is a Lagrange multiplier. Taking the derivative with

respect to εi, i ∈ U of L(ε1, .., εN , λ), and setting it to zero yields:

εi = xi/(λE[ri] ln 2) (17)

Through plugging (17) into the equality constraint
∑

i∈U E[ri]εi = θ and using
that fact that the expected size of S is n (shown in (3)), we have λ = n/(θ ln 2).
Plugging λ = n/(θ ln 2) into (17), we get εi = (θxi)/(nE[ri]).

Considering that
∑

i∈U xi log2
1
εi

is a convex function of εi, i ∈ U , thus
∑

i∈U xi log2
1
εi

is minimized when εi = (θxi)/(nE[ri]), and we get (16).

Following Theorem 1, it is easy to see that the memory space used by an IWBF
is within a factor of log2 e ≈ 1.44 of the space lower bound in (16).

4.5 Generalization of the Space Lower Bound based on Pigeonhole
Principle

We show the space lower bound analysis based on the pigeonhole principle describe
in [7,9] is a special case of the approximate lower bound (16) in Theorem 4.

In the analysis of the lower bound in [7,9], given N is the size of a universe U
and n the size of S, it is assumed that all element i, i ∈ U have equal membership
likelihood and query probability. Thus P (Xi = 1) = xi = n/N , P (Y = i) = yi =
1/N and E[ri] = 1/N . We can plug these into (16), and get n log2(1/θ), which
is the space lower bound proposed in [7].

Improved Weighted Bloom Filter and Space Lower Bound Analysis 359

5 Conclusions

We have proposed an improved weighted Bloom filter (IWBF) and proved it
to have a lower average false positive rate than that of the weighted Bloom
filter given the same memory space. In the two-party one-way communication
model, based on information cost in communication complexity theory, we have
shown a tight space lower bound for any approximated membership querying
algorithm that has predefined false positive rates for elements in a large universe
U , when the query frequencies and membership likelihoods of the elements in
U are known. We also provided an approximate space lower bound for any
approximated membership querying algorithm that has an average false positive
rate. We then showed that the number of bits used in an IWBF is within a factor
of 1.44 of the approximate space lower bound.

Appendix: Proof of Theorem 1

Proof. Given a set AK , we shall find the minimizer f(K) = (f1(K), .., fN (K))
that produces the minimum value FP (f(K)) of FP (k) in AK . Obviously, this
is a minimization problem with the equality constraint

∑
i∈U xiki = K. We set

up a function L(k, λ) = FP (k) + λ(
∑

i∈U xiki − K), where λ is a Lagrange
multiplier, k = (k1, ..kN), and FP (k) is as in (7). Taking the derivative with
respect to ki for L(k, λ) and setting it to zero, ∂L(k, λ)/∂ki = 0, we have:

(1 − e−K/m)ki = (−λxi)/(E[ri] ln(1 − e−K/m)). (18)

Raising both sides by the power xi, we get (1 − e
−K
m)xiki = [−λxi

E[ri] ln(1−e
−K
m)

]xi ,

and thus ∏

j∈U

(1 − e
−K
m)xjkj =

∏

j∈U

[
−λxj

E[rj] ln(1 − e
−K
m)

]xj . (19)

By
∑

j∈U xjkj = K and the
∑

j∈U xj = n, (19) can be reduced to:

λ = −ln(1 − e−K/m)(1 − e−K/m)K/n
∏

j∈U
[E[rj]/xj]

xj/n. (20)

Plugging (20) into (18) and eliminating λ, we can find the minimizer f(K) =
(f1(K), f2(K), .., fN (K)) for FP (k) over set AK as follows: ∀i ∈ U ,

fi(K) = K/n +
∑

j∈U

xj

n ln(1 − e−K/m)
ln

xiE[rj]

xjE[ri]
. (21)

We plug (21) into FP (k) in (7) FP (f(K)) can be written as

FP (f(K)) = ne−(m/n) ln(e−K/m) ln(1−e−K/m)
∏

j∈U
[E[rj]/xj]

xj/n. (22)

Since FP (k) is convex in set AK , it is obvious that ∀k ∈ AK , FP (k) ≥
FP (f(K)). Noting ln(x) ln(1 − x) is maximized when x = 0.5, it is easy to see
that FP (f(K)) in (22) as a function of K has a global minimizer

360 X. Wang et al.

K∗ = m ln 2, thus ∀K ′ ∈ R+, FP (f(K ′)) ≥ FP (f(K∗)). Furthermore, ∀k ∈ RN
+ ,

we have k ∈ AK′ : k must be contained in a set AK′ ,K ′ ∈ R+. Thus we have
FP (k) ≥ FP (f(K ′)) ≥ FP (f(K∗)). Then we know f(K∗) is the global mini-
mizer of FP (k) in RN

+ (k∗
i = fi(K∗), i ∈ U). Plugging K∗ = m ln 2 into (21) and

(22), we obtain (10) and (11).
In the following, we will prove T (k∗) − FP (k∗) < 2e−n1/3/3 based on the

sufficient condition shown in (12).
Let Z =

∑
j∈U Xjk

∗
j , According to (4), we have T (k∗)= E[

∑

i∈U

ri(1 − e
−Z
m)k∗

i],

which can be decomposed as follows:

T (k∗) = E
[∑

i∈U
ri(1 − e

−Z
m)k∗

i

∣∣∣|Z − K∗| ≥ m/n
1
3

]
P
(
|Z − K∗| ≥ m/n

1
3

)

+E
[∑

i∈U
ri(1 − e

−Z
m)k∗

i

∣∣∣|Z − K∗| < m/n
1
3

]
P
(
|Z − K∗| < m/n

1
3

)
. (23)

Noting that the membership likelihoods xi ∈ (0, 1), and
∑

i∈U xi/n = 1 as
shown in (3), then based on the assumption in (12), it is easy to see that k∗

i ∈
(0, 2m

n ln 2),∀i ∈ U . Thus kmax = max{k∗
1 , .., k

∗
N} < (2m/n) ln 2. From K∗ =

m ln 2, it is easy to see υ =
∑

i∈U xi
2k∗

i ≤ kmax

∑
i∈U xik

∗
i < m2/n. By υ <

m2/n and kmax < (2m/n) ln 2, we know m2

2υn2/3 > n1/3

3 and m2

2(υn2/3+ 1
3kmaxmn1/3)

>

n1/3

3 . Then, plugging these two inequalities into (9) of lemma 1, we can get

P (|
∑

i∈U
Xik

∗
i − K∗| ≥ m/n1/3) < 2e− n1/3

3 . (24)

Obviously, ∀i ∈ U , since k∗
i > 0, it is easy to see (1 − e−∑j∈U Xjk∗

j /m)k∗
i < 1,

thus we have the following (ri is defined in (5)):

E
[∑

i∈U
ri(1 − e

−∑j∈U Xjk∗
j

m)k∗
i

∣∣∣|
∑

i∈U
Xik

∗
i − K∗| ≥ m

n
1
3

]
< E[

∑

i∈U

ri] = 1. (25)

Conditioning on |∑i∈U Xik
∗
i − K∗| < m/n1/3 and K∗ = m ln 2, we get

e−K∗/ne−1/n1/3
< e

−∑j∈U Xjk∗
j

m < e−K∗/ne1/n1/3
.

Considering that n (the expected size of a subset S) is usually assumed to be
large in the setting for approximated membership querying, we can get

E
[∑

i∈U
ri(1 − e

−∑j∈U Xjk∗
j

m)k∗
i
∣∣|
∑

i∈U
Xik

∗
i − K∗| < m/n

1
3
] ≈ FP (k∗). (26)

Based on (23), (24), (25) and (26), we can see that T (k∗) < 2e− n1/3
3 + FP (k∗),

which is the inequality shown in (13). Then T (k∗) ≈ FP (k∗).

Acknowledgments. This work is supported by the Natural Science Foundation of
China (No.61402008 and No.61402009), Natural Science Foundation of Anhui Province
(No.1408085QF128), and Major Program of the Natural Science Foundation of the
Anhui Higher Education Institutions of China (No.KJ2014ZD05).

Improved Weighted Bloom Filter and Space Lower Bound Analysis 361

References

1. Ablayev, F.: Lower bounds for one-way probabilistic communication complexity
and their application to space complexity. Theoretical Computer Science 157,
139–159 (1996)

2. Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity, vol. 68, pp. 702–732.
Academic Press Inc. (2004)

3. Berinde, R., Indyk, P., Cormode, G., Strauss, M.J.: Space-optimal heavy hitters
with strong error bounds. ACM Transactions on Database Systems (TODS) 35(4),
26 (2010)

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

5. Bonomi, F., Mitzenmacher, M., Panigrah, R., Singh, S., Varghese, G.: Beyond
bloom filters: from approximate membership checks to approximate state machines.
In: ACM SIGCOMM Computer Communication Review, vol.36, pp. 315–326. ACM
(2006)

6. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An
improved construction for counting bloom filters. In: Azar, Y., Erlebach, T. (eds.)
ESA 2006. LNCS, vol. 4168, pp. 684–695. Springer, Heidelberg (2006)

7. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4), 485–509 (2004)

8. Bruck, J., Gao, J., Jiang, A.: Weighted bloom filter. In: 2006 IEEE International
Symposium on Information Theory, pp. 2304–2308. IEEE (2006). Extented version
in http://www.paradise.caltech.edu/papers/etr072.pdf

9. Carter, L., Floyd, R., Gill, J., Markowsky, G., Wegman, M.: Exact and approximate
membership testers. In: Proceedings of the Tenth Annual ACM Symposium on
Theory of Computing, pp. 59–65. ACM (1978)

10. Chakrabarti, K., Chaudhuri, S., Ganti, V., Xin, D.: An efficient filter for approx-
imate membership checking. In: Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 805–818. ACM (2008)

11. Chung, F., Lu, L.: Concentration inequalities and martingale inequalities: a survey.
Internet Mathematics 3(1), 79–127 (2006)

12. Cormode, G., Hadjieleftheriou, M.: Methods for finding frequent items in data
streams. The VLDB Journal 19(1), 3–20 (2010)

13. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Transactions on Database Systems (TODS) 30(1),
249–278 (2005)

14. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

15. Deng, F., Rafiei, D.: Approximately detecting duplicates for streaming data using
stable bloom filters. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pp. 25–36. ACM (2006)

16. Guo, D., Li, M.: Set reconciliation via counting bloom filters. IEEE Transactions
on Knowledge and Data Engineering 25(10), 2367–2380 (2013)

17. Guo, D., Liu, Y., Li, X., Yang, P.: False negative problem of counting bloom filter.
IEEE Transactions on Knowledge and Data Engineering 22(5), 651–664 (2010)

18. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic bloom filters. IEEE
Transactions on Knowledge and Data Engineering 22(1), 120–133 (2010)

http://www.paradise.caltech.edu/papers/etr072.pdf

362 X. Wang et al.

19. Hua, Y., Xiao, B., Veeravalli, B., Feng, D.: Locality-sensitive bloom filter for
approximate membership query. IEEE Transactions on Computers 61(6), 817–830
(2012)

20. Jayram, T.: Information complexity: a tutorial. In: Proceedings of the Twenty-
Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 159–168. ACM (2010)

21. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Transactions on Database Systems
(TODS) 28(1), 51–55 (2003)

22. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better
bloom filter. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
456–467. Springer, Heidelberg (2006)

23. Liu, Y., Chen, W., Guan, Y.: Near-optimal approximate membership query over
time-decaying windows. In: 2013 Proceedings IEEE, INFOCOM, pp. 1447–1455.
IEEE (2013)

24. Metwally, A., Agrawal, D., El Abbadi, A.: Duplicate detection in click streams. In:
Proceedings of the 14th International Conference on World Wide Web, pp. 12–21.
ACM (2005)

25. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144
(2004)

26. Zhong, M., Lu, P., Shen, K., Seiferas, J.: Optimizing data popularity conscious
bloom filters. In: Proceedings of the Twenty-Seventh ACM Symposium on Princi-
ples of Distributed Computing, pp. 355–364. ACM (2008)

Tree Contraction for Compressed Suffix Arrays
on Modern Processors

Takeshi Yamamuro1(B), Makoto Onizuka2, and Toshimori Honjo1

1 NTT Corp., Tokyo, Japan
{yamamuro.takeshi,honjo.toshimori}@lab.ntt.co.jp

2 Graduate School of Information Science and Technology,
Osaka University, Osaka, Japan
onizuka@ist.osaka-u.ac.jp

Abstract. We propose a novel processor-aware compaction technique
for pattern matching that is widely-used in databases, information
retrieval, and text mining. As the amount of data increases, it is get-
ting important to efficiently store data on memory. A compressed suffix
array (CSA) is a compact data structure for in-memory pattern match-
ing. However, CSA suffers from tremendous processor penalties, such as a
flood of instructions and cache/TLB misses due to the lack of processor-
aware design. To mitigate these penalties, we propose a novel compaction
technique for CSA, called suffix trie contraction (STC). The frequently
accessed suffixes of CSA are transformed to a trie (e.g., a suffix trie),
and then inter-connected nodes in the trie are repeatedly ’contracted’ to
a single node, which enables lightweight sequential scans in a processor-
friendly way. In detail, STC consists of two contraction techniques: fixed-
length path contraction (FPC) and sub-tree contraction (SC). FPC is
applied to the parts with a few branches in the trie, and SC is applied
to the parts with many branches. Our experiment results indicate that
FPC outperforms naive CSA by two orders of magnitude for short pat-
tern queries and by three times for long pattern queries. As the number of
branches inside the trie increases, SC gradually becomes superior to CSA
and FPC for short pattern queries. Finally, the latency and throughput
of STC are 7 times and 72 times better than those of CSA for the TREC
test data set at the expense of additional 7.1 % space overhead.

Keywords: Pattern matching · Tree traversal · SIMD · Compression

1 Introduction

Pattern matching is a well-known and important task in many domains such
as databases, information retrieval, and text mining. As the amount of data
increases, it is getting important to efficiently store data on memory. A com-
pressed suffix array (CSA) is a compact data structure for in-memory pattern
matching and is a compressed form of a suffix array (SA). SA is composed of two
data structures: suffixes S and a suffix array SA. When an input of characters
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 363–378, 2015.
DOI: 10.1007/978-3-319-18123-3 22

364 T. Yamamuro et al.

is T[0...N -1]=t0t1...tN−1, S[i] is defined as T[i...N -1]. Here, T[i] is a symbol of
characters: T[i] ∈ Σ (0 < i < N - 1 and Σ is a set of characters). SA is a sequence
of array indices referring to S and it is alphabetically sorted. SA enables fast pat-
tern matching; given a pattern query P[0...M-1]=p0p1...pM−1 (P[i] ∈ Σ, where
0 < i < M - 1), the search algorithm returns the array indices of the suffixes
whose prefixes are equal to P . Since SA is alphabetically sorted, the algorithm
is executed by using binary searches on SA [5].

CSA exploits succinct data structures in order to compress SA and was
extensively studied in the 2000s [8]. Algorithms for succinct data structures use
rank and select operations [15]; given B[0...N-1]=b0b1...bN−1 and B[i]={bi|bi ∈
{0, 1}}, rank1(B,i) returns the total count of 1s in B[0...i] and select1(B,i) returns
the (i+1)-th position of 1s. Although CSA has an advantage in terms of space
complexity, two major performance issues arise for pattern matching on modern
processors as follows.

– CSA calls rank and select operations a large number of times. These calls
heavily put pressure on modern processors; they cause a flood of instructions
and random access on memory.

– The papers [16][7][2] reported that binary searches are inefficient on modern
processors in terms of cache/TLB1 misses and branch penalties.

To illustrate these inefficiencies of CSA on processors, we made a preliminary
experiment. The relative performance penalties of CSA over SA are shown in
Fig.1: the number of executed instructions, data references, and L1/L2 cache
misses. The setting of this experiment was the same as those of the experiments
described in Section 4. These details are further described in Section 4.1. This
result indicates that CSA is inferior to SA by three orders of magnitude in terms
of the number of instructions and data references. All the penalties gradually
grow as the pattern length increases.

Fig. 1. Relative penalties of CSA compared to those of SA by varying the pattern
length between 4 and 256. A 1GiB portion of gov2 in the TREC Terabyte Track was
used as a test data set.

Our goal is to design a processor-friendly technique for pattern matching to
be more efficient without losing the compression advantage of CSA. We propose
1 Translation Look-aside Buffer, it represents a cache mechanism that holds often-used

translation entries from logical addresses to physical ones in memory.

Tree Contraction for Compressed Suffix Arrays on Modern Processors 365

a novel compaction technique, called suffix trie contraction (STC). Our idea is
that the frequently accessed suffixes of CSA are transformed to a trie (e.g., a
suffix trie), and then inter-connected nodes in the trie are repeatedly ’contracted’
to a single node in physically consecutive memory addresses. This contraction
enables pattern matching to exclude the inefficient rank/select operations and
the binary searches of CSA by using lightweight sequential scans in a processor-
friendly way. This is efficient because frequently accessed suffixes are co-located
on memory and the co-location leads to improving cache efficiency. STC consists
of two contraction techniques depending on the trie structure: fixed-length path
contraction (FPC) and sub-tree contraction (SC). FPC selects a fixed-length
path with a few branches in the trie from the root to a leaf, and then contracts
it to a single node. As for the parts with many branches in the trie, SC contracts
a sub-tree instead of a path. FPC and SC are repeatedly applied to sub-trees,
and then the trie is re-constructed to be efficient on processors. STC switches
FPC and SC optimally depending on the number of branches in the trie.

Our contributions are as follows;

– We propose a novel contraction technique, called STC. The frequently
accessed suffixes of CSA are transformed to a trie, and then STC repeatedly
contracts nodes in the trie, which enables lightweight sequential scans in a
processor-friendly way.

– STC consists of FPC and SC and switches the two contraction strategy
optimally depending on the number of branches in the trie; FPC contracts
a fixed-length path and SC contracts a sub-tree instead of a path.

– We implemented these techniques on our prototype and verified their effec-
tiveness; FPC outperforms naive CSA by two orders of magnitude for short
pattern queries and by three times for long pattern queries. As the num-
ber of branches increases, SC gradually becomes superior to CSA and FPC
for short pattern queries. Finally, the latency and throughput of STC are 7
times faster and 72 times higher than those of CSA for the TREC data set
at the expense of additional 7.1 % space overhead.

This paper is organized as follows; we present the overview of our proposals
and the details in Section 2 and Section 3, respectively. We describe how we
implemented our techniques and verify the effectiveness in Section 4. Finally,
Section 5 discusses related work and Section 6 concludes our findings.

2 Design Overview

A design overview of our proposed technique is shown in Fig.2. The frequently
accessed suffixes of CSA are transformed to a processor-optimized trie, and the
trie is used to search the suffixes that have the same prefixes in common with
given pattern queries. For example, the bold path α1b2α3b3α4 in Fig.2 repre-
sents nodes and edges in the trie, and the leaf refers to the suffixes that have
α1b2α3b3α4 as a prefix in common. That is, the bold path is regarded as short-
cut to the corresponding suffixes of CSA. We assume that an input query is

366 T. Yamamuro et al.

α1b2α3b3α4 x (x is an arbitrary character). The processor-optimized trie is used
to find a set of suffixes that have α1b2α3b3α4, and then α1b2α3b3α4 x is finally
searched from the set in a similar way of CSA.

Fig. 2. Overview of our proposed technique. The frequently accessed suffixes of CSA
are transformed to a processor-optimized trie (the higher layer of nodes and edges in
the figure), and the trie is used to search the suffixes that have the same prefixes in
common with given pattern queries. That is, the trie is regarded as short-cut to the
corresponding suffixes of CSA.

Our proposed suffix tree contraction (STC) builds a processor-optimized trie
as follows; first, S (a string set of suffixes) is build from T in a similar way of the
original SA. The frequently accessed suffixes of SA are transformed to a trie (e.g.,
a suffix trie) where nodes and edges are labeled with symbols. Every single node
can have multiple symbols (possibly empty ∅). Every edge has a single symbol
that is called a ’branching character’. Given a string set S, the longest common
prefix α in S is labeled to the root, and the next divergent symbol represent a
branching character. On the basis of the assumption that one symbol among the
branching symbols is b, Sb is obtained by removing α and b from the prefix of
S: Sb = {β|αbβ ∈ S}. Sb is assigned as the symbol of the node that is connected
to the root by an edge labeled b. STC selects inter-connected nodes in the trie,
and then ’contracts’ them to a single node in physically-consecutive memory
addresses. This contraction is repeatedly processed in the subsequent sub-trees
so that pattern matching can exclude the inefficient rank/select operations and
the binary searches of CSA by using sequential scans in a processor-friendly way.
Finally, a pair of the trie and CSA are used for efficient pattern matching.

STC consists of two contraction techniques: fixed-length path contrac-
tion (FPC) and sub-tree contraction (SC). FPC selects a fixed-length path
(α1b2α3b3α4 in Fig.2) from the root to a leaf, and contracts it to a single node.
Similarly, SC contracts a sub-tree (α1b1α2, α1b2α3b3α4, and α1b2α3b4α5 in Fig.2)
instead of a path. FPC is applied to paths with a few branches in the trie, and
SC is applied to the parts with many branches. The node selection in STC and

Tree Contraction for Compressed Suffix Arrays on Modern Processors 367

SC needs to choose frequently accessed nodes which refer to the most frequently
accessed suffixes because getting these nodes together leads to improving cache
efficiency. Therefore, FPC and SC select nodes depending on the number of sym-
bols under the nodes in the trie (the size of the solid triangles in Fig.2) because
we expect that a path or a sub-tree with more symbols tend to have a higher
probability of reference. The algorithms of the node selection and the traversal
of the optimized trie are further described in following Section 3.1 and 4.1.

3 Tree Contraction

3.1 Fixed-Length Path Contraction

FPC is a simple contraction technique to improve access locality for cache effi-
ciency. We modify a previously proposed technique, named path decomposition
[1]; it selects a single path from the root to one leaf, and then contracts ’all’
nodes on the selected path to a single node. In contrast, our technique contracts
the predefined constant fixed-length path from the root. There are two reasons
for this modification; first, the referential probability of symbols farther away
from the root become lower relatively. Co-locating frequently accessed nodes
with infrequently accessed ones may make performance worsen because of cache
inefficiency. Second, it is difficult for processors to handle variable-length data
as compared to fixed-length data. Recent studies proposed state-of-the-art tech-
niques to process fixed-length data by using SIMD (e.g., Single Instruction, Mul-
tiple Data) instructions for cache efficiency and branch-free structures [16][7][2].
Our technique also uses such instructions in order to boost symbol compar-
isons for pattern matching. This contraction is repeatedly applied to subsequent
sub-trees the specified number of times. As a result, the contracted nodes are
expected to be accessed together because the most of highly-referenced nodes
are located in physically consecutive memory addresses. An overview of FPC
is shown in Fig.3, in which α1b2α3b4α5b5α6 is contracted to β1 in physically
consecutive memory addresses.

Node Selection. Algorithm 1 shows a pseudo code to select Plen-length paths
with the largest weight from input suffixes S. Notice that symbols in Σ strictly
correspond to integers from 1 to |Σ| with the alphabetical orders preserved.
Algorithm 1 selects a path symbol-by-symbol with Plen loops by using a heap
tree (lines 7-21). First, it looks for a path path + s in S by using a backward
search (lines 12-13). The backward search returns the corresponding range of
SA indices referring to the suffixes that have the same prefixes in common with
path + s [9]. If it exists, it calculates weight and pushes s with weight together
to a heap tree that has a node with the maximum weight as the root (lines
14-15). Finally, it picks up a symbol p with the maximum weight from the heap
tree and appends p to the tail of path (lines 18-19). The process is repeated up
to Plen and a Plen-length path is selected. Algorithm 1 is repeatedly executed
Enum times to contract paths with the highest weight.

368 T. Yamamuro et al.

Fig. 3. Overview of the FPC behavior. FPC selects a path from the root towards a leaf
by the predefined constant fixed-length of nodes, and then the path (α1b2α3b4α5b5α8)
is contracted to the single node (β1). This contraction is repeatedly applied to the
subsequent sub-trees depicted by triangles with solid lines.

Algorithm 1 Pseudo code to select a Plen-length path by FPC
1: /* IN: Plen is a predefined constant fixed-length of nodes */
2: /* IN: S is a set of suffixes */
3: /* IN: SA is a suffix array */
4: /* IN: N is the size of SA */
5: /* IN: path is an empty string */
6: /* OUT: A single path selected by FPC */
7: for i ← 1 to Plen do
8: range = (0, N-1);
9: for s ← 1 to |Σ| do
10: /* range is an index range of SA, which has path + s */
11: /* as a common prefix of the suffixes in S */
12: backward search(path, s, range, SA);
13: if path + s exists in S then
14: Calculate weight for path + s;
15: Push s with weight to a heap tree;
16: end if
17: end for
18: Pop s from the root of a heap tree;
19: Append s to the tail of path;
20: Reset the heap tree;
21: end for

Node Traversal. Fig.4 illustrates how paths selected by Algorithm 1 are tra-
versed. We assume that Lpath1 = α1b2α3b4α5b8α8 and Lpath2, which is a con-
tracted node having α4 as the root, are selected by FPC in Fig.3. Two additional
data structures are needed so as to traverse nodes from Lpath1 to Lpath2: Nsmall

and Nlarge. They represent the corresponding pointers of Lpath1 to next sub-
trees (the solid triangles in Fig.3). For example, we assume that an input query
is α1b2α3b3α4 in Fig.4. Symbols in the query are compared with Lpath1; they
match substring α1b2α3 of each other, and then the next corresponding symbols
are different (b3 and b4). b3 is ’smaller’ than b4 and pb3 in Nsmall is selected
as a pointer to Lpath2 below α4. Symbol comparisons in Lpath1 can be executed
with a vectorized SIMD instruction, or pcmpestri of Intel SSE4.2. They have
the ability to compare 16-byte symbols in Lpath1 simultaneously and output
the comparison results as a byte array. This array can be directly mapped to

Tree Contraction for Compressed Suffix Arrays on Modern Processors 369

Fig. 4. Overview of traversal between paths (Lpath1 and Lpath2) contracted from Algo-
rithm 1. An input query is assumed to be α1b2α3b3α4. The method of the traversal
applies a SIMDized sequential scan to Lpath for comparing symbols, checking a corre-
sponding pointer (pb3) in Nsmall, and jumping to Lpath2 below α4.

pointers in Nsmall and Nlarge by using a predefined look-up table. The perfor-
mance results of both scalar and vectorized implementations are compared in
Section 4.

3.2 Sub-tree Contraction

SC is a technique to process paths having many branching symbols in a trie.
It selects not a single path but inter-connected multiple paths (e.g., a sub-tree)
from the root, and then contracts them to a single node. An overview of SC and
three paths (α1 to α4, α1 to α6, and α1 to α7) contracted to a single node γ1 are
shown in Fig.5. The contracted node γ1 dispatches a query for pattern matching
to such descendant edge whose symbol matches to the prefix of the query (e.g.,
bγ11 and bγ12).

Fig. 5. Overview of the SC behavior. SC chooses a sub-tree (α1 to α4, α1 to α6, and
α1 to α7) from the root, and then contracts it to a single node γ1.

The contracted node γ1 is made up of N-byte integers that are generated from
the three selected paths as shown in Fig.6. The order of the three paths needs
to be preserved as integer forms in γ1 for comparing paths correctly. The paths
from α1 to α4, from α1 to α6, and from α1 to α7 lie in an ascending alphabetical

370 T. Yamamuro et al.

order and this order should be preserved in d1 from the first path, d2 from the
second path, and d3 from the last path. N-byte integers are obtained from paths
by packing the symbols in each path to a single integer by bit-shifting; we assume
that paths are expressed as abc and abd. In the ASCII code, abc is 97, 98 ,99,
and abd is 97, 98, 100. abc is replaced by 6,382,179, or (97�16) | (98�8) | 99,
and abd is replaced by 6,382,180, or (97�16) | (98�8) | 100. This transposition
maintains the alphabetical order2. These integers can be sequentially scanned in
a processor-friendly way so as to search next sub-trees.

Fig. 6. The detail of the node γ1 in Fig.5. The multiple paths selected by SC are
transformed to the array of N-byte integers. Notice that the order of these paths needs
to be preserved as integer forms in γ1 for comparing paths correctly.

Node Selection. Algorithm 2 shows a pseudo code to select Pnum paths
depending on the weights. While it is similar to Algorithm 1, the major differ-
ence is that it selects not a single path, but multiple paths (paths). For example,
Fig.5 shows that a sub-tree consists of three paths: the paths from α1 to α4,
from α1 to α6, and from α1 to α7. Algorithm 2 selects Pnum paths that have the
same prefixes in common; first, it checks if path path + s exists in S by using the
backward search (line 13). If it exists, it calculates weight and pushes (path +
s, range) with weight together to a heap tree (lines 15-16). It executes this pro-
cedure to all the symbols (1...|Σ|), and then finds a path that has the maximum
weight (lines 10-23). Finally, if path has Tdepth symbols, the algorithm adds the
path to paths (line 24). The process is repeated up to Pnum and it selects Pnum

paths that form a sub-tree. Algorithm 2 is repeatedly executed Enum times to
contract sub-trees with the highest weight.

Node Traversal. Fig.7 shows how sub-trees selected from Algorithm 2 are
traversed. Two data structures are needed in order to traverse sub-trees: Ltree

and Npos. Ltree has order-preserved N-byte integers and Npos represents the
corresponding pointers of Ltree to next sub-tree. We assume that an input query
is transposed to integer dQ. If dQ follows d2 < dQ < d3, pbγ13 is selected as a
pointer to a next sub-tree.
2 This transposition needs more than 3-byte integers, e.g., int in C. The more symbols

the paths have, the larger bytes of integers it must use at the expense of extra costs.

Tree Contraction for Compressed Suffix Arrays on Modern Processors 371

Algorithm 2 Pseudo code to select a sub-tree by SC
1: /* IN: Pnum is the number of paths that the output sub-tree contains */
2: /* IN: Tdepth is the number of symbols that the sub-tree has */
3: /* IN: S is a set of suffixes */
4: /* IN: SA is a suffix array */
5: /* IN: N is the size of SA */
6: /* IN: path is an empty string */
7: /* IN: paths is an empty set of strings */
8: /* OUT: A sub-tree selected by SC */
9: for i ← 1 to Pnum do
10: loop
11: range = (0, N-1);
12: for s ← 1 to |Σ| do
13: backward search(path, s, range, SA);
14: if path + s exists in S then
15: Calculate weight with path + s;
16: Push (path + s, range) for weight to a heap tree;
17: end if
18: end for
19: Pop (cand, range) from the heap tree;
20: if cand has Tdepth symbols then
21: break;
22: end if
23: end loop
24: paths = paths ∩ cand;
25: Pops (cand, range) from the root of the heap tree;
26: path = cand;
27: end for

3.3 STC: Hybrid Strategy of FPC and SC

FPC and SC have some pros and cons; FPC is advantageous for a few branches
in a trie and SC is robust over many branches. STC switches the contraction
strategy optimally depending on the candidate set of nodes that represents a
path in FPC or a sub-tree in SC. STC determines whether FPC or SC is the
better strategy; it calculates the referential probability of a path and a sub-tree
and compare these probability to determine which is better, FPC or SC. As
described in Section 2, the referential probability is calculated from the number
of symbols under the nodes in the trie because we expect that a path or a sub-tree
with more symbols tend to have a higher probability of reference.

Fig. 7. Overview of traversal between sub-trees selected from Algorithm 2. It applies
SIMDized sequential scans to order-preserved N-byte integers (d1, d2, and d3) in Ltree,
checks a corresponding pointer (pbγ13) in Npos, and jumps to a next sub-tree.

372 T. Yamamuro et al.

4 Evaluation

4.1 Environment Settings

Baseline Performance Values. We used a naive CSA implementation as a
baseline in following experiments. CSA has the many variants of implementations
and we assume the most basic implementation [8]; S and SA are transformed
to ψ and a BWT (Burrows-Wheeler Transform)-applied text T by using context
information. This transformation makes these data easily compressible and they
are compressed by using following compression methods; ψ is split to the chunks
that have integers sorted in an ascending order and each chunk is compressed
with randomly-accessible gamma codes3. BWT-applied T is compressed with
LZEnd [3] which is a variant of the LZ77 algorithms. LZEnd enables random
access to a compressed text directly by using succinct data structures. Notice
that our proposed technique is orthogonal to CSA implementations because the
processor-optimized trie built by STC is an auxiliary structure for CSA and
can be applied for arbitrary CSA implementations. Table 1 lists the baseline
performance values of our CSA implementation as compared to those of a SA
library, or libdivsufsort v2.0.14. A 1GiB portion of gov2 in the TREC Terabyte
Track was used as a test data set. SA defeats CSA by two orders of magnitude
in all the length of queries because CSA has high penalties on processors (Fig.1).
In contrast, CSA is beneficial in terms of space; the index size of SA is 5.0GiB
compared to about 1.3GiB of CSA.

Table 1. Baseline performance values (μs) of our CSA implementation. The perfor-
mance deteriorates in line with pattern length because it has high processor penalties
as shown in Fig.1.

Pattern Length 4 8 16 32

CSA BASELINE 665.41 1092.66 1669.75 2352.73
SA 6.81 6.75 5.98 5.87

Other Settings. We used both synthetic and realistic data sets in our exper-
iments so as to investigate the characteristics of the proposed contraction tech-
niques: FPC, SC, and STC. An exponential distribution was used to generate a
sequence of synthetic test symbols; the equation is -αlog(1-rand()) where rand()
is a function to generate randomized numbers from 0.0 to 1.0. When α is low, the
equation generates low-entropy data corresponding to a trie with fewer branches.
The higher α is, the more branches a trie has. These proposed techniques were
also applied to the realistic data set, or gov2 in the TREC Terabyte Track and
queries in the TREC 2009 Million Query Track. Our performance experiments
3 https://github.com/pfi/dag vector
4 http://code.google.com/p/libdivsufsort

https://github.com/pfi/dag_vector
http://code.google.com/p/libdivsufsort

Tree Contraction for Compressed Suffix Arrays on Modern Processors 373

were executed on a server with a 6-cores Xeon X5670 processor and 16GiB of
memory. Caches incorporated in the processor were 32KiB, 256KiB, and 12MiB
as L1, L2, and LL (Last Level) caches, respectively. The codes were written in
C++ and complied by GNU Compiler Collection v4.7.1 with an option -O2.

4.2 Experimental Results

Fig.8, Fig.9, and Fig.10 plot the overview results of FPC, SC, and CSA. We used
randomly-generated 1GiB test data sets with different α parameters; α was set
to 0.75 in Fig.8, 1.25 in Fig.9, and 2.0 in Fig.10, respectively. FPC used Plen=16
and the scalar implementation as described in Section 3. SC used Pnum=15 and
Tdepth=8. The Enum value of both techniques was set to 10,000. Additional space
from 1% to 6% of the CSA index size is required for the processor-optimized trie
built by FPC and SC. Fig.8 shows that FPC outperforms CSA by two orders of
magnitude for short pattern queries and by three times for long pattern queries,
respectively. Moreover, FPC defeats SC in all the patterns with α=0.75. As α
increases, that is, as the number of branches increases, the performance of FPC
gradually approaches that of CSA in Fig.9 and Fig.10. SC is effective in a trie
with many branches and defeats CSA and FPC for short pattern queries by
four orders of magnitude in Fig.10. Contractly, SC has few advantages over CSA
for long pattern queries. Note that both FPC and SC outperform CSA for short
pattern queries from 4 to 8. This is because the frequently accessed entries of CSA
are located in physically consecutive memory areas, and thus, pattern matching
is mostly executed inside the processor caches. As the pattern length becomes
longer, the matched pattern becomes overflowed and the performance declined as
shown in the figures. The following sections describe parameter-calibrated tests;
first, the relationship between space overhead and performance is investigated
by varying Enum values in FPC and SC. The performance of FPC and SC are
evaluated using the parameters described in Section 3.

FPC Analysis. This section describes our investigation of FPC in the same
condition as indicated in Fig.8. Improvement indicators are plotted in Fig.11 by
varying Enum values from 10,000 to 40,000. The indicator represents a relative
latency value over CSA and is calculated as: CSA Latency

FPC Latency . Fig.11 shows that
the improvement logarithmically increases from 14.3x to 20.7x with the increase
of the Enum value and there is a slight performance gain between 30,000 and
40,000. This experiment indicates that the Enum value has a trade-off in terms
of space and performance gains.

Fig.12 plots the calibrated tests of Plen. The case of Plen=16 is superior to
the other cases. As the pattern length becomes longer, the performance grad-
ually declines. This result follows our expectation as explained in Section 3;
nodes farther away from the root have relatively low referential probability and
the transformation to contract a long path to a single node possibly makes per-
formance values worsen. As a result, contracting a short fixed-length path is
more efficient than the previously proposed path decomposition that contracts
all paths from the root to a leaf.

374 T. Yamamuro et al.

Fig. 8. Latency com-
parisons for CSA, FPC,
and SC with α=0.75
and Enum=10,000. The
additional space of FPC
and SC is 5.5% and 0.78%
of the total index space of
CSA, respectively.

Fig. 9. Latency com-
parisons for CSA, FPC,
and SC with α=1.25
and Enum=10,000. The
additional space of FPC
and SC is 4.4% and 1.3%
of the total index space of
CSA, respectively.

Fig. 10. Latency com-
parisons for CSA, FPC,
and SC with α=2.00
and Enum=10,000. The
additional space of FPC
and SC is 3.7% and 1.7%
of the total index space of
CSA, respectively.

Fig. 11. FPC improvement indicators with Plen=16. Bar charts indicate that they
increase logarithmically with the increase of the Enum value.

Fig.13 plots the throughput performance of the vectorized FPC implementa-
tion with pcmpestri. Note that the vectorization has little effect on latency and
they are slightly better than those of the scalar implementation. In contrast, the
throughput of the vectorized implementation is superior to that of the scalar one.
The performance gaps narrow as the pattern length gets longer and α increases.
Therefore, the vectorization is effective when pattern matching on a trie with
fewer branches is expected to be processed inside processor caches. Plen=16
was used for the vectorized FPC implementations in the following experiments,
unless otherwise stated.

SC Analysis. This section is the same structure as the previous one; first,
it discusses improvement indicators by varying Enum values. Pnum and Tdepth

were calibrated in a following experiment. The improvement indicators of SC are
shown in Fig.14. The results are similar to those of Fig.11; the improvements

Tree Contraction for Compressed Suffix Arrays on Modern Processors 375

Fig. 12. FPC parameter-calibrated tests
for Plen. The case of Plen=16 is the
fastest among the others. As the length
increases, the performance gradually
declines.

Fig. 13. Performance results for the
FPC vectorized implementation with
pcmpestri. The vectorization is found to
have a good effect when patterns are
short and α is small.

logarithmically increase from 2.7x to 3.1x and there are few differences in the
larger Enum values.

Fig.15 plots benchmark results by varying Pnum and Tdepth. The case with
Pnum=15 and Tdepth=12 has the best results among the others. Notice that
the calibration of Pnum leads to the slight differences in the performance and
Pnum=15 is better in terms of space overhead. On the basis of these results,
we used Pnum=15 and Pdepth=12 in the following experiments for the better
trade-off of space costs and performance unless otherwise stated.

Fig. 14. SC improvement indicators
with Pnum=15 and Tdepth=8. The indi-
cators increase logarithmically in line
with Fig.11.

Fig. 15. Benchmark results of SC by
varying Pnum and Tdepth. The results
improve as Tdepth increases, whereas
Pnum has little effect on the perfor-
mance.

STC Analysis. Fig.16, Fig.17, and Fig.18 plot how performance changes by
shifting the contraction strategy of STC from FPC to SC. In Fig.16, the pattern
length was fixed at 4 and α varied from 0.25 to 2. We observe that the strategy
shift correctly occurs except when α is 0.75. When looking at this in detail,
the weight at 0.75 is similar between FPC and SC, and the weight of SC is
slightly higher than that of FPC. This is because we expect that a path with
more symbols has a higher probability of references as described in the design
overview of Section 3. This assumption causes the prediction error, and then the
number of symbols is not the best indicator to represent the weight of STC. The

376 T. Yamamuro et al.

Fig. 16. Strategy shift of
STC with pattern length
of 4

Fig. 17. Strategy shift of
STC with pattern length
of 16

Fig. 18. Strategy shift of
STC with pattern length
of 32

same incorrect behavior occurs in Fig.17 and Fig.18. A following experiment
uses a different indicator for the wight to evaluate this assumption.

Realistic Benchmark. Finally, the benchmark results of the TREC test data
are plotted in Fig.19. The parameters of FPC and SC were based on the obser-
vations made in Sections 4.2.1 and 4.2.2, and the Enum value was set to 10,000
in terms of space overhead and performance gains. The total index size of CSA is
about 1.30GiB and the additional space ratios of FPC, SC, and STC are 5.3%,
5.2%, and 7.1%, respectively. There are two different assumptions underlying
this benchmark; first, FPC and SC select nodes depending on the number of
symbols under the nodes in a trie as described in the design overview of Section
3 (labeled as ’uniform’). Second, we predict the future referential probability of
suffixes by using the queries (labeled as ’biased’). A 20% portion of the queries
was used as a learning set, and the other portion was used as a test set. It is clear
from Fig.19 that the latency and throughput of STC are 7 times and 72 times
better than those of CSA at the expense of additional 7.1 % space overhead. The
performance of biased is slightly better than that of uniform, but the results of
uniform have enough performance values to defeat CSA. Finally, these results
show that all our techniques are superior to CSA and that STC is the fastest
among the others.

5 Related Work

This section describes two related topics: succinct data structures and processor-
optimized techniques. The theory of succinct data structures was mainly stud-
ied in the 1980s. Since practical implementations were proposed in the early
2000s, most of them have been used in pattern matching: compressed suffix
arrays (CSA), backward searches (BS) [9], FM-indexes (FMI) [10], and LZ77
self-indexes (LZ77SI) [4]. BS was proposed to directly use ψ for pattern match-
ing instead of transforming ψ to SA because the transformation causes critical
performance penalties. In contrast, FMI only exploits rank operations for pat-
tern matching by using BWT. LZ77SI is also an efficient technique for pattern
matching based on LZEnd which is a succinct representation of LZ77. The com-
prehensive survey of them can be found in [8]. Our technique is orthogonal to
these structures and easily applied into frequently accessed entries in them.

Tree Contraction for Compressed Suffix Arrays on Modern Processors 377

Fig. 19. Realistic benchmarks of CSA, FPC, SC, and STC

Modern high-end processors are very fast and incorporate many cores and
special instructions, e.g., SIMD ones. However, Intel corp. has reported that
performance gaps between processor-optimized codes and naive ones could be
created by an average of 23x and at most 53x [11]. Actually, many technical
issues need to be concerned to boost implemented program codes: instruction-
level parallelism, cache/TLB miss penalties, conditional penalties, and memory-
bandwidth limits. Research communities proposed many techniques designed to
prevent these anomalies from search algorithms; early techniques [12][13] calcu-
late optimal node size on B+Tree to minimize cache/TLB misses and another
technique uses query buffering so as to save memory bandwidth [14]. Recent
approaches [16][2][7] exploit SIMD instructions to realize branch-free structures
and the vectorized comparisons for tree traversal. As processors evolve, the hard-
ware awareness becomes considerable so as to improve existing algorithms.

6 Conclusions

We presented the novel contraction technique, called STC, to achieve fast pattern
matching for CSA without losing the compression advantage of succinct data
structures. Our experiments show that FPC outperforms naive CSA on a trie
with a few branches. As the number of branches increases, SC becomes superior
to CSA and FPC for short pattern queries. STC is a hybrid technique of FPC
and SC, and exhibits the best performance among the other techniques for the
TREC test data set at the little expense of space overhead. We believe that
the amount of data increases drastically and it is getting necessary to carry out
the efficient in-memory pattern matching in many domains such as databases,
information retrieval, and text mining.

378 T. Yamamuro et al.

References

1. Grossi, R., Ottaviano, G.: Fast compressed tries through path decompositions. In:
Proceedings of ALENEX (2012)

2. Kim, C., et al.: Designing Fast Architecture-sensitive Tree Search on Modern
Multi-core/Many-core Processors. ACM Transaction on Database Systems 36(4),
22:1–22:34 (2011)

3. Kreft, S., Navarro, G.: LZ77-like Compression with fast random access. In:
Proceedings of DCC, pp. 239–248 (2010)

4. Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)

5. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
Proceedings of SODA, pp. 319–327 (1990)

6. Manzini, G.: An Analysis of the Burrows Wheeler Transform. J. ACM 48(3),
407–430 (2001)

7. Yamamuro, T., et al. Vast-tree: a vector-advanced and compressed structure for
massive data tree traversal. In: Proceedings of EDBT, pp. 396–407 (2012)

8. Navarro, G., Mäkinen, V.: Compressed Full-Text Indexes. ACM Computing Sur-
veys (CSUR) 39(1) (2007)

9. Mäkinen, V., Navarro, G., Sadakane, K.: Advantages of backward searching:
efficient secondary memory and distributed implementation of compressed suf-
fix arrays. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341,
pp. 681–692. Springer, Heidelberg (2004)

10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings of FOCS (2000)

11. Kim, C., et al.: Closing the Ninja Performance Gap through Traditional Program-
ming and Compiler Technology. Technical report, Intel Lab. (2012)

12. Hankins, R.A., Patel, J. M.: Effect of node size on the performance of cache-
conscious B+trees. In: Proceedings of SIGMETRICS, pp. 283–294 (2003)

13. Chen, S., Gibbons, P.B., Mowry, T.C.: Improving index performance through
prefetching. In: Proceedings of SIGMOD, pp. 235–246 (2001)

14. Zhou, J., Ross, K.A.: Buffering accesses to memory-resident index structures. In:
Proceedings of VLDB, pp. 405–416 (2003)

15. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proceedings of ALENEX, pp. 60–70 (2006)

16. Schlegel, B., Gemulla, R., Lehner, W.: K-ary search on modern processors. In:
Proceedings of DaMoN, pp. 52–60 (2009)

Scalable Top-k Spatial Image Search
on Road Networks

Pengpeng Zhao1,2(B), Xiaopeng Kuang1,2, Victor S. Sheng3, Jiajie Xu1,2,
Jian Wu1,2, and Zhiming Cui1,2

1 School of Computer Science and Technology, Soochow University, Suzhou, China
ppzhao@suda.edu.cn

2 Collaborative Innovation Center of Novel Software Technology
and Industrialization, Suzhou 215006, People’s Republic of China

3 Computer Science Department, University of Central Arkansas, Conway, USA
ssheng@uca.edu

Abstract. A top-k spatial image search on road networks returns k
images based on both their spatial proximity as well as the relevancy
of image contents. Existing solutions for the top-k text query are not
suitable to this problem since they are not sufficiently scalable to cope
with hundreds of query keywords and cannot support very large road
networks. In this paper, we model the problem as a top-k aggregation
problem. We first propose a new separate index approach that is based
on the visual vocabulary tree image index and the G-tree road network
index and then propose a query processing method called an external
combined algorithm(CA) method. Our experimental results demonstrate
that our approach outperforms the state-of-the-art hybrid method more
than one order of magnitude improvement.

Keywords: Top-k spatial image query · Separate index · Road networks

1 Introduction

A picture paints a thousand words and it is difficult to describe the content of the
query image clearly in just a few words. Traditional text-based image retrieval
techniques that depend on manual annotations cannot meet the increasing needs.
Content-based image search is very useful to user and has a wide range of appli-
cations, which has attracted more and more attention in the computer vision
and multimedia community [5,23,27,33–35].

Modern-era mobile phones and tablets have evolved into powerful image and
video processing devices, equipped with high-resolution cameras, color displays,
and hardware accelerated graphics. They are also equipped with location sensors
(GPS receivers, compasses, and gyroscopes), and connected to broadband wire-
less networks, allowing fast information transmission. All these enable a new class
of applications to use a camera phone to initiate search queries about objects in
visual proximity with a natural human-computer interaction. Such applications

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 379–396, 2015.
DOI: 10.1007/978-3-319-18123-3 23

380 P. Zhao et al.

can be used, e.g., for identifying products, comparison shopping, and finding
information about movies, CDs, real estates, print media or artworks. The first
deployments of such systems include Google Goggles [12], Nokia Point and Find
[22], Kooaba [17], Ricoh iCandy [10,13,15] and Amazon Snaptell [28].

With the prevalence of mobile Internet and GPS-enabled devices, users can
conveniently take a photo, mark its geo-location and annotate it with tags on
Flickr [1] so that the photo is associated with spatial information. Consequently,
massive amount of images that are geo-tagged are being generated at an unprece-
dented scale. A recent study [9] shows that there are over 95 million geotagged
photos on Flickr with a daily growth rate of around 500,000 new geo-tagged pho-
tos. Furthermore, we can generate geo-tags automatically for non-geo-tagged
images according to the associated address text information, which is called
reverse geo-tagging. For example, images in business directories such as Google
Places for Business and Yahoo! Local, as well as rating and review services such
as TripAdvisor and Dianping. These data are featured with both image visual
contents and geo-spatial contents, and we refer to them as geo-image objects.
The fusion of geo-locations and images enables queries that take into account
both spatial proximity and image relevancy. For example, users are usually only
interested in information (such as products, restaurants or scenic spots) related
to certain locations, e.g., ”Where is a similar style of shoes sold nearby”, ”Where
are similar attractions nearby”, and ”Where are similar snacks nearby”. We refer
to these queries, which consist of both images and spatial conditions, as spatial
image queries.

To the best of our knowledge, this paper proposes a new kind of top-k spatial
image queries that takes into account both geographic proximity and image
content relevancy for the image query associated with geo-location. We call this
type of queries a top-k spatial image query. It consists of a spatial component
(the location of the photo taken) and an image component. The answer to such
a top-k image query is a list of k ranked images, according to a ranking function
that combines their distances to the query location and their relevance of their
content descriptions to the query image. we provide two examples of the two
top-k spatial image query examples are as follows:

Example 1: Mobile product search. As shown in Fig.1, a customer finds a
pair of very favourite fancy shoes in a shopping store but without a right size.
She wants to see whether there are some similar styles of shoes in nearby stores.
She submits a top-k spatial image query by taking a photo with a mobile phone
and gets k similar shoes on sale in nearby businesses.

Example 2: Tourist attraction search. As shown in Fig.2, a traveler wants
to take some photos of nearby seaside beach around a tourist attraction. Based
on her location and the scene she wants to capture (seaside and beach), a top-k
spatial image query on the geo-tagged image datasets uploaded by other visitors
can provide some useful suggestions.

In this paper, we focused on top-k spatial image search on road networks
because the people’s trajectories are usually constrained by road networks. The

Scalable Top-k Spatial Image Search on Road Networks 381

Fig. 1. An example of mobile product
search

Fig. 2. An example of tourist attraction
search

scale of these geo-tagged image databases and the demand for real-time response
make it very critical to develop efficient query processing mechanisms. Although
top-k spatial keyword query models, query processing techniques, and indexing
mechanisms have been well studied for years[8,25,29,31,32](surveyed in [4,6]),
which is an important tool in exploring useful information from a spatial textual
database. We cannot use spatial keyword indices directly to solve spatial image
queries efficiently because there are many differences between texts and images.
A query image typically has hundreds of feature points, and could be quantized
into hundreds of visual words. A keyword query generally only has 2-5 keywords
[8,25,32]. Existing solutions are not sufficiently scalable to cope with hundreds
of query keywords. Recently, Zhang et al. proposed a new Rank-aware combined
algorithm (RCA) method [31], which can handle more number of query keywords.
However, RCA focuses on the Euclidean space. It is not suitable to the problem
on the road networks space. Existing solution of spatial keyword search on road
networks [14,18,24,30], using a hybrid index technology, still cannot support very
large road networks (e.g. the entire USA road network). The main limitation is
either high memory consumption or heavy search overhead.

In this paper, we model the problem as a top-k aggregation problem and
propose a new separate index approach that supports both top-k pruning and
efficient merging. We separately use a vocabulary tree based inverted index as
an image index and a G-tree [36] for organizing the spatial information of images
on road networks. A visual vocabulary tree has been widely used for large scale
content-based image retrieval in recent years and performed well empirically in
many image retrieval tasks. G-tree is selected because it is an efficient tree-based
index for k-nearest neighbor (kNN) search on large scale road networks. Based
on the two separate index, we propose a query processing algorithm External
CA, which extends CA algorithm proposed by Fagin et al.[11] with more effective
pruning. In summary, the contributions of this paper are listed as follows.

First, we formulate the top-k spatial image query on road networks problem
and identify its applications.

382 P. Zhao et al.

Second, we use a separate index structure which relies only on the ubiquitous
and well-understood index and propose a new and efficient query approach.

Third, we demonstrate that our approach outperforms the state-of-the-art
spatial keyword query approaches on road networks more than one order of
magnitude improvement on a real-world dataset with one million geo-images.

The rest of this paper is organized as follows. We review related work in
Section 2 and present the top-k spatial image search problem statement in
Section 3. Section 4 presents a separated index structure and its maintenance
algorithms. Section 5 presents our efficient search algorithm based on this sepa-
rated index. Section 6 experimentally compares our approach to other algorithms
with an extensive performance study. Section 7 makes the final conclusion.

2 Related Work

To the best of our knowledge, there is no existing work on the problem of spatial
image search on road networks. Below, we introduce three important categories
of related work.

Content-Based Image Search. In recent years, with the introduction of local
invariant features [3,20], the Bag-of-Words(BoW) model representation [27] has
been significantly scaled up by the use of large hierarchical vocabulary trees
[21]. With vocabulary trees, which typically contain millions of leaf nodes (rep-
resenting visual words), images are represented by a very sparse BoW vectors.
Further, by indexing images with the inverted file structure, the scalability of
image search is achieved.

The high dimensional indexing mechanisms for large scale image search can
mainly be divided into three categories: tree-based index, hashing-based index,
and visual words based inverted index. Locality Sensitive Hashing (LSH) [2] is
known as an effective technique to index dense features, but it is not a good one to
index sparse features. KD-tree [19] can only be applied when the dimensionality
of the feature space is about a dozen. Visual vocabulary tree based inverted
index has been widely used for large scale content-based image retrieval in recent
years[21].

Spatial Keyword Search. Spatial keyword search has been actively studied in
recent years due to its great potential in both industry applications and research
problems (See [4,6] for a comprehensive survey). A type of popular spatial key-
word query is the boolean spatial keyword search which aims to retrieve all
objects whose text descriptions contain a given set of keywords and whose loca-
tions are near to the query location [6,7]. Another type of popular query is
the top-k spatial keyword search which aims to find a set of geo-tagged objects
based on the spatial proximity and the query keywords similarity. Many efficient
indexing techniques have been proposed such as IR[8], S2I[25], I3[32], RCA[31].
Although this is similar to the top-k spatial image query. However, the image of a

Scalable Top-k Spatial Image Search on Road Networks 383

query contains hundreds of query keywords, and existing hybrid index solutions
cannot handle this scale number of keywords.

Spatial Keyword Search on Road Network. Most of the existing spatial
keyword search articles focus on the Euclidian space. Spatial keyword search
on road networks has attracted increasing research efforts in recent years [14,
18,24,30]. Li et al. [18] addressed a range constrained spatial keyword query
on road networks that returns nodes whose textual descriptions are relevant to
the query keywords within a specified area. Zhang et al. [30] studied the prob-
lem of diversified spatial keyword search on road networks which considers both
the relevance and the spatial diversity of the results. Guo et al. [14] investigated
continuous top-k spatial keyword query on road networks and proposed an incre-
mental manner method for moving queries.The top-k spatial-keyword query [24]
was proposed to find the top-k ranked objects, measured as a combination of
their road network distances and the relevances of their text descriptions. It is
similar to our problem. However, its hybrid technology cannot scale to large road
networks.

3 Problem Definition

In this section, we formally define the problem of top k spatial image query on
road networks.

Road Networks. We use a weighted graph to describe a road network, which
is denoted as G = (V,E,W), where V is a set of vertices, the edge set is denoted
as E and W is a set of weights denoting the cost on the corresponding edge,
like travel time or distance. A vertex ν ∈ V indicates that ν is an intersection
or an end point of edge in the graph. (ν, ν′) ∈ E denotes an edge, and wν,ν′ is a
weight of the edge (ν, ν′) represents the length (network distance) |ν, ν′| of the
road segment. For simplicity, we assume undirected graphs. However, directed
graphs is also support by our approach. In this case, (ν, ν′) �= (ν′, ν) and the
distance |ν, ν′| may be different from|ν′, ν|.
Geo-Image. Let D be a spatial image database, which consists of N images.
Each spatial image I in D is associated with a spatial location and defined as a
pair(I.loc,
I.content), where I.loc is a geographical space descriptor composed of latitude
and longitude, and I.content is a image content descriptor. Image I.content
encoded into a bag-of-words (BoW) model [27] with millions of visual words.

Problem Statement. Intuitively, a top-k spatial image query on road networks
retrieves at most k images in database D for a given query Q such that their
locations are near to the location specified in Q on road networks and their
image content descriptions are relevant to the contents in Q.

Formally, given a query Q = (loc, content) where Q.loc is a location descrip-
tor and Q.content is a vector encoded into a bag-of-words (BoW) model, the k

384 P. Zhao et al.

images returned are ranked according to a ranking function F (D(Q.loc, I.loc),
S(Q.content, I.content)), where D(Q.loc, I.loc) is the road network distance
between Q and I and S(Q.content, I.content) is the image similarity of I accord-
ing to the content of the query image. The paper’s proposals are applicable
to a wide range of ranking functions, namely all functions that are mono-
tone with respect to distance proximity D(Q.loc, I.loc) and image relevancy
S(Q.content, I.content)). We follow existing work and use linear interpolation[8].
Specifically, we derive a ranking function as a linear interpolation of normalized
factors for ranking an image I with regard to a query Q.

F (Q, I) = αD(Q.loc, I.loc) + (1 − α)S(Q.content, I.content) (1)

where α ∈ (0, 1) is a parameter used to balance the spatial proximity and the
image relevance, which allows users to set their preferences between the image
relevancy and the location proximity when conducting a query.

Without loss of generality, we assume that both the query location and the
geo-tagged images are at vertices. This assumption can be bypassed finding the
nearest edge and the nearest vertex of a given location.

Road Network proximity give the importance of the location of a spatial image
to the query location. The road network proximity measure can be defined as

D(Q.loc, I.loc) = d(Q.loc, I.loc)/dmax (2)

where d(Q.loc, I.loc) is the shortest path between Q.loc and I.loc and dmax is the
largest network distance between any object and any location in the road net-
work. dmax can be obtained by traversing the network from each object until the
entire network is expanded and keeping the maximum distance. D(Q.loc, I.loc)
is in the range of [0,1].

Image Similarity. Most content-based image search approaches rely on the
popular Bag-of-Visual-Words (BoW) model [27]. Generally, an image is repre-
sented by a set of local features, which are encoded into a bag-of-words vector
with millions of visual words. Those local features are extracted from image key-
points detected with Difference of Gaussian (DoG) [20] detector. Then around
a keypoint, a local patch is described into a local feature, such as SIFT [20]
and SURF [3]. Local features are usually of high dimension. Matching raw local
descriptors is expensive to compute because each image may contains hundreds
of local features. An efficient solution is to achieve a compact representation,
a vocabulary tree is defined and then local features can be quantized to visual
words.

The vocabulary tree can be constructed off-line by unsupervised clustering
algorithm (e.g. hierarchical k-means (HKM) [21]) and typically contains mil-
lions of leaf nodes (representing visual words). An image is then represented as
a bag of visual words, and these are entered into an index for later querying and
retrieval. Nister and Stewenius [21] have demonstrated very inspiring retrieval
performance using a large hierarchical vocabulary tree. The use of a tree struc-
ture dramatically reduces the computation time required to quantize a feature
descriptor into one of millions of words.

Scalable Top-k Spatial Image Search on Road Networks 385

Image represented into BoW model with millions of visual words is a sparse
vector. Therefore, the inverted file structure, which has been successfully applied
in textual information retrieval, is leveraged to index large-scale image database.
We formulate the image retrieval as a voting problem. Each visual word in the
query image votes on its matched images. The query and each image in the corpus
is represented as a sparse vector of term (visual word) occurrences and search
proceeds by calculating the similarity between the query vector and each image
vector, using an L2 distance. We use the well-known TF-IDF [26] weighting
scheme to compute the relevance score.

Specifically, given a query Q and an image I, the ranking function for this
query is to give a relevance score S based on the normalized difference between
the query and database vectors as follows:

S(Q.content, I.content) = ‖ qi

‖q‖ − di

‖d‖‖ (3)

4 The Rank-Aware Separate Index Method

Inspired by work [31], we model the spatial image query problem as a top-k
aggregation problem [11]. By transforming the problem as a top-k aggregation
problem, we can design an efficient index and query solution that relies on sepa-
rated index such as the widely used the visual vocabulary tree image index and
the road network index.

Top-k Aggregate Query. Consider a set of grouping attributes G = g1, ..., gr, and
an aggregate function F that is evaluated on each object. A top-k aggregate
query returns the k objects, based on G, with the highest F values.

Given an image query Q with m vision vocabularies, each geo-image I in a
database D can be modeled as a tuple with m+1 elements, i.e., (ω1, ω2, . . . , ωm,
ωm+1), where ωi(1 ≤ i ≤ m) is the weight of the corresponding visual vocabulary,
and ωm+1 is a road network spatial distance between the database image I and
the query location. By giving the aggregation function, the problem of the top-k
spatial image query on road networks is now transformed as a top-k aggregation
problem.

Example 3. Consider a geo-image database system where several visual features
are extracted from each image. Example features include color histograms, edge
orientation, texture and geo-location, as shown in Fig. 3. Features are stored in
separate relations indexed using high-dimensional indexes that support similarity
queries. Suppose that a user is interested in the top 5 images, which are the most
similar to a given query image based on a set of visual features and the spatial
distance.

4.1 The Concept of Top-k Aggregation Algorithms

In this section, we present an overview of top-k aggregation algorithms. Ilyas
and Beskales [16] provided a comprehensive survey over related algorithms.

386 P. Zhao et al.

Fig. 3. Multi-feature Queries in an Image Database

For convenience, we describe top-k aggregation algorithms in the context
of spatial image search on road networks as follows. Given a query with m
visual vocabularies and a spatial location, we assume that m + 1 sorted lists are
already existing, i.e., L1, L2, . . . , Lm, Lm+1. Each list Li, i ∈ [1,m], is sorted in
a descending order according to the image visual vocabulary relevance TF-IDF
score of the ith query visual vocabulary; and Lm+1 is sorted in a descending
order by the image road networks distance to the query location. Thus, each
sorted list item is a pair of image ID and a score (image content similarity or
road networks distance).

The first top-k aggregate query algorithm TA is proposed by Fagin [11],
which consists of two main steps.

1. Conduct a sorted access in parallel to each of the m + 1 sorted lists Li.
As a new object o is seen under the sorted access in some list, conduct random
access to the other lists Li to find its score in Li. Compute the aggregated score
of the object o using Equation 1. If this score is among the k highest scores seen
so far, then remember object o and its score f(o) (ties are broken arbitrarily, so
that only k objects and their scores are remembered at any time).

2. For each list Li, let bi be the score of the last object seen under the
sorted access. Define the threshold value T to be the aggregated score of bi using
Equation 1. As soon as k objects have been seen with scores equal to or higher
than T , halt.

Although the TA algorithm uses a threshold criterion that is provably opti-
mal on every possible instance of the data, it can potentially incur very high
processing overheads arising from the random accesses for the object attributes.
Subsequently, many variations and extensions of the TA method have been devel-
oped in the last few years [16]. This paper builds based on the particular variant
the Combined Algorithm (CA) [11], which is a combination of NRA(No Random
Access) and TA and takes into account the cost of random access and supports
top-k pruning by using a group of objects as a unit when sorted lists are given.
CA retrieves k objects with the highest combined scores while accessing sorted
lists in parallel until top-k objects whose scores are higher than the threshold

Scalable Top-k Spatial Image Search on Road Networks 387

value are obtained. CA maintains the threshold value by applying the aggregated
score of the last object accessed from each list into the scoring function. If an
object o is accessed from only one list, CA randomly accesses o in the other lists
to obtain the component score.

4.2 Rank-Aware Separate Indexes

Our approach uses separate indexes, which include a road network index for
searching by location and a visual vocabulary tree index for searching by image.

The Road Network Index. G-Tree is an efficient and elegant tree-based index
for kNN search on road networks [36]. We utilize it to efficiently and dynamically
compute the nearest neighbor images on road networks as a sorted spatial list.
G-Tree is constructed by partitioning the road network recursively, until we get
a small enough sub-network for efficient search. Each node of G-tree is a sub-
network and each leaf node of G-Tree is a set of nodes on the road network. A
leaf node is considered on the border of its parent if it has a direct edge to other
outside leaf nodes. The shortest path between two border leaf nodes in each
partition is calculated off-line. For the nodes of G-Tree with the same parent,
the shortest path distance between the border nodes of these G-Tree nodes was
kept. To search a shortest path between two leaf nodes p1,p2 with parent P1 and
P2, it utilizes the off-line calculated shortest paths between the border nodes of
P1 and P2 and the shortest path of p1/p2 to the border of P1/P2. The search
complexity is positively correlated to the height of the G-tree. Because of space
limitation, the details of G-tree search can be found in its original paper [36].

The Image Index. With the introduction of local invariant features [3,20], the
Bag-of-Words(BoW) model representation [27] has been significantly scaled up
by the use of large hierarchical visual vocabulary trees [21]. Given an image, its
local features, such as SIFT [20], are first extracted, and then quantized into the
closest visual words (’codebooks’) using the visual vocabulary tree, which are
pre-learned on a training dataset. Finally, a high-dimensional vector is generated
using the BoW descriptor to represent the image. Therefore, the vector is so
sparse that inverted index files are well suited to implement the indexing and
searching efficiently. The BoW descriptor is indexed by an inverted file which
has an entry for each visual word followed by a list of all the images in which the
visual word occurs. Visual words are weighted by the TF-IDF, where the IDF
reflects their discriminative abilities in database images and the TF indicates
their importance in a query image.

5 A Query Processing Algorithm

The location of a query image is dynamic and the sorted spatial list is query
dependent. A spatial list cannot be pre-computed statically but need to be sorted
at runtime using the query location to compute the road network distance. We
will introduce how to efficiently and dynamically construct the sorted spatial list
in the following.

388 P. Zhao et al.

5.1 Dynamically Constructing Sorted Spatial List

We denote the sorted spatial list for the distance scores on road networks as
Ls. We dynamically construct the sorted spatial list Ls by incrementally access-
ing the tree-based road network index, G-tree, using a best-first kNN search
algorithm [36].

Our top-k aggregation algorithm external CA sequentially accesses the sorted
spatial list Ls by a fixed number of objects at every iteration. So we do not need
to build the whole sorted spatial list at one time. We apply the progressive best-
first kNN search algorithm in the unit of η objects instead of entire objects. For
incremental best-first kNN on G-tree, we maintain a priority queue Q that sorts
the objects and G-tree nodes by their network distance. We obtain the current η
objects Rs from the front queue of Rcandidates (Rcandidates is a global variable)
and maintain the remaining objects in Rcandidates for the next iteration. If the
current size of Rcandidates is less then η, we access the next group of candidates
from the priority queue Q and insert into Rcandidates until the size of Rcandidates

is larger than or equal to η except when the priority queue is empty. The detail
of progressive constructing Ls and retrieving the current η objects algorithm is
shown in Algorithm 1.

5.2 External CA Algorithm

In this section, we discuss our external CA algorithm in details. The CA algo-
rithm uses a parameter η to control the depth of sequential access. In each itera-
tion, η objects in each list are sequentially accessed. η is set to be the ratio of the
cost of a random access to the cost a sequential access. For each accessed image
img, let Bound(img) denote an upper bound of the aggregated score of img. An
image img is defined to be viable if Bound(img) is larger than the kth best score
that has been computed so far. At the end of each iteration, the viable image
with the maximum Bound(img) value is selected for random access to determine
its aggregated score. The algorithm terminates when at least k distinct images
have been seen and there are no viable images. Our approach adopts a different
random access strategy and termination criteria from the the traditional CA
algorithm. The CA algorithm selects the viable image with the maximum upper
bound score for random access and terminates if this upper bound score is no
greater than the score of the kth best image seen so far (denoted as Tk). In
contrast, our external CA algorithm does not maintain Bound(img) to store the
upper bound score for each viable image. Moreover, our random access is applied
to the viable images in the min-heap storing top-k results so that threshold Tk

can be increased as much as possible towards an early termination.
Based on our sequential access approach, we can also compute a tighter upper

bound for an image aggregated score (denoted by Boundk). Specifically, after
the ith iteration, Boundk can be calculated by

Boundk = α · Bounds(i) + (1 − α) · m · Boundt(i) (4)

Scalable Top-k Spatial Image Search on Road Networks 389

Algorithm 1. exploreCurrentSpatialList
1 Input: q.loc
2 Output: the current η objects from Ls

3 Rs:={};
4 while |Rcandidates| < η do
5 e := Q.Dequeue(); //Q is a priority queue
6 if e is an object then
7 insert e into Rcandidates;

8 else
9 if e is a leaf node then

10 if q.loc ∈ e then
11 MINDIST-INSIDE-LEAF(q.loc,e); /*minimum distance between

two nodes in one leaf*/

12 else
13 MINDIST-OUTSIDE-LEAF(q.loc,e); /*minimum distance

between two nodes in two leafs*/

14 for each v ∈ L(e) do
15 /*L(e) is an occurrence list composed of objects IDs appear in

the leaf node*/
16 Q.Enqueue(〈 v,SPDist(q.loc,e) 〉) /*SPDist return minimum

distance between two tree nodes*/

17 else if e is a non-leaf node then
18 for each child node c ∈ L(e) do
19 if q.loc is in c then
20 Q.Enqueue(〈 c,SPDist(q.loc,c)=0 〉); /*q.loc belongs to c so

that the distance |q.loc, c| is 0.*/

21 else
22 MINDIST-OUTSIDE-NONLEAF(q.loc,c);
23 Q.Enqueue(〈 c,SPDist(q.loc,c) 〉);

24 Store η objects of Rcandidiates into Rs;
25 Rcandidates := Rcandidates − Rs;
26 return Rs ;

where Bounds represents the spatial upper bound, Boundt represents the textual
upper bound and m is the number of query words. If Boundk ≤ Tk, we stop the
sequential access on the sorted lists as it is guaranteed that no unseen image
could have an aggregated score higher than Tk. However, the algorithm cannot
be terminated at this point because there could be some viable images not in
the top-k heap but with an upper bound score larger than Tk. For these images,
we need to conduct random access to get their full aggregated score and update
the top-k heap if we find a better result. In this way, we can guarantee that no
correct result is missed.

Our external CA algorithm processing top-k spatial image queries on road
networks is shown in Algorithm 2. The input parameter Lt is the collection of

390 P. Zhao et al.

textual lists sorted by TF-IDF values of visual vocabularies, Gs is the G-tree
road network index, m is the number of query visual words and k means return
k results. A top-k heap is initialized in line 1 and the pointer pt is initialized
for sequential access the textual lists in line 5. In each iteration, we perform
sequential access in the textual lists by calling a function exploreTextList (line
7) and scans in the spatial lists sequentially and progressively by calling the pro-
cedure exploreCurrentSpatialList, i.e., Algorithm 1 (lines 8). After the sequential
access, we perform random access on the viable images in the top-k heap (lines
10-11 in Algorithm 2). Finally, we update Boundk according to Equation 4. If
Boundk ≤ Tk , we stop the sequential access. For each viable image not in top-
k, we perform random access to obtain its complete score and update the top-k
results if it is a better result.

Algorithm 2. External CA Algorithm(Lt, Gs,m, k)
1 initialize a min-heap topk with k dummy images with score 0
2 Tk = 0 //Tk is the mininum score in topk
3 Boundk = 1 //Boundk is the upper bound score for all the unseen images
4 for i = 1; i ≤ m; i + + do
5 pt[i] = 0;

6 while Tk < Boundk do
7 exploreCurrentTextList();
8 exploreCurrentSpatialList();
9 for each viable image ImgId in topk do

10 randomAccess(ImgId);
11 update(topk,Tk); /*update Tk*/

12 Boundk = α · Bounds(i) + (1 − α) · m · Boundt(i); /*update Boundk*/

13 for ImgId ∈ W do
14 if ImgId /∈ topk and ImgId is viable then
15 randomAccess(ImgId);
16 update(topk,Tk); /*update Tk*/

17 return topk;

18 exploreCurrentTextList()
19 for i = 1; i ≤ m; i + + do
20 for j = 0; j ≤ η; j + + do
21 doc = Lt[i][pt[i]];
22 seqAccess(ImgId, i, α · ImgId.score);
23 pt[i] = pt[i] + 1;

24 return

6 Performance Evaluation

In this section, we conduct a comprehensive experiments to evaluate the effi-
ciency and scalability of the proposed approach in the paper. We compare our

Scalable Top-k Spatial Image Search on Road Networks 391

external CA approach with the state-of-the-art top-k spatial keyword query
on road networks approach Overlay [24]. Overlay combines the state-of-the-art
approaches for road networks index with the spatio-textual index, and employs
an overlay network on the top of the road network index to prune regions that
cannot contribute with relevant objects improving the query processing per-
formance. All methods are implemented in Java. We conduct the experiments
on a PC with 8G memory and I5-3470CPU@3.20GH, running the Windows 7
Operating System.

6.1 Dataset

We first evaluate the scalability and performance of our system on an image
dataset of over one million images crawled from the photo-sharing site, Flickr
[1], using Oxford landmarks as queries. For the scalability and performance eval-
uation, we randomly sampled five sub datasets whose sizes vary from 200,000 to
1000,000 from the image dataset. We further evaluate the performance of pro-
posed approaches on four different size real road networks datasets, i.e., the road
networks of San Francisco (SF)1, Florida (FLA), central USA (CTR), and USA
(USA)2. We first extracted all the local features of geo-images using SIFT [20],
and then quantized into the visual words with a pre-learned vocabulary tree.
The number of local features of each geo-image is from 1 to 300. The average
number of features is about 110.

The statistics of the geo-image datasets are listed in Table 1. The character-
istics of four road networks datasets are shown in Table 2. And the settings of
the parameters in the experiments are shown in Table 3.

Table 1. Geo-image datasets

Number of Number of Average Number
Datasets Disk Storage sizeImages Distinct Visual Words of Visual Words

200K 200,000 612792 112.4 196M
400K 400,000 614767 112.9 390M
600K 600,000 541571 111.8 580M
800K 800,000 616403 112.1 775M
1M 1,000,000 616785 131.7 971M

Table 2. Characteristics of the road networks datasets

Attributes SF FLA CTR USA

Total size 11MB 111MB 1.45GB 2.53GB
Total number of vertices 174956 1070376 14081815 23947347
Total number of edges 223001 2712797 34292496 58333344

1 http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm
2 http://www.dis.uniroma1.it/challenge9/download.shtml

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.dis.uniroma1.it/challenge9/download.shtml

392 P. Zhao et al.

Table 3. Parameters evaluated in the experiments. The default values are presented
in bold.

Parameter Values

Top-k 10 50 100 150 200
Number of keywords 10 50 100 150 200
α 0.9 0.7 0.5 0.3 0.1
Size of image Datasets 200000 400000 600000 800000 1000000
Road Networks SF FLA CTR USA

6.2 Experimental Results

In this section, we evaluate the query processing performance of our proposed
external CA and the comparison approach Overlay on different size of geo-image
datasets and on different size of road networks.

Varying the Number of Results (k). In this experiment, we increase the
number of results k from 10 to 200. Each query processes on the 200k image
dataset. It contains 100 visual query words, and the spatial ratio α is set to
0.7. The experimental results are shown in Fig.4. From Fig.4, we can see that
our external CA performs much better than Overlay. The response time of our
external CA always keeps at a very low level under the different number of
results k. Furthermore, its response time doesn’t increase with the increment of
the number of results k. The response time of Overlay is much higher. With the
increment of the number of results, its response time increases linearly when k ≤
100. This is because Overlay doesn’t stop finding more candidates by expanding
regions until either the query is terminated prematurely or all the candidates
are accessed. With the increment of the number of results, Overlay should access
more candidates to meet the query requirements. Our external CA just loads the
related inverted text lists according to the visual query words and finds closer
edges or vertices quickly through querying on G-Tree, which just costs a little
I/Os and the memory used is smaller than that used in Overlay as well.

Varying the Number of Query Keywords. To investigate the response
time of our external CA algorithm under queries with different number of visual
words. In this experiment, we increase the number of visual query words from
10 to 200. The experimental results are shown in Fig. 5. From Fig. 5, we can
see that the response time of our external CA algorithm is much lower than
that of Overlay. With the increment of the number of query words, the response
time of both algorithms only has a slight increment. As we know, a geo-image is
considered to be relevant if it contains at least one visual query word. Thus, the
number of candidates grows dramatically as the number of query words increases.
The larger the number of visual words in the query, the larger the number of
objects that may be relevant for the query. However, we don’t see this significant
increment in both algorithms. Overall, our external CA algorithm is around one
order of magnitude better in response time enhanced.

Scalable Top-k Spatial Image Search on Road Networks 393

10 50 100 150 200

1000

2000

3000

4000
5000
6000

8000
10000

The number of returned results (k)

R
e
sp

o
n
se

 T
im

e
(m

s)

OVERLAY
External CA

Fig. 4. Response time under varying
the number of returned results

10 50 100 150 200

1000

4000

6000
8000

10000

The number of query keywords

R
e
sp

o
n
se

 T
im

e
(m

s)

OVERLAY
External CA

Fig. 5. Response time under varying
the number of keywords

0.1 0.3 0.5 0.7
10

2

10
3

10
4

10
5

10
6

 The ratio alpha

R
e

sp
o

n
se

 T
im

e
(m

s)

OVERLAY
External CA

Fig. 6. Response time
under varying the ratio
α between image content
and spatial

200K 400K 600K 800K 1M

2000

4000

6000
8000

10000
12000
16000

The dataset size

R
e

sp
o

n
se

 T
im

e
(m

s)

OVERLAY
External CA

Fig. 7. Response time
under varying the size of
the image datasets.

SF FLA CTR USA

10
3

10
4

Different size of road networks

R
e

sp
o

n
se

 T
im

e
(m

s)

OVERLAY
External CA

Fig. 8. Response time
under varying the size of
road networks.

Varying the Query Preference Ratio α. In this experiment, we evaluate
the impact of the ratio α between image content and spatial. The experimental
results are shown in Fig. 6. A small value of α gives more preference to the textual
description of the objects, while a high value of α gives more preference to the
network proximity. From Fig.6, we can see that the response time of Overlay
increases significantly as α is less than 0.5. However, our external CA algorithm
always has a much lower response delay. This is because Overlay would access
more candidates and terminate the query later. However, our external CA does
not affect by this. It loads the closer objects quickly step by step.

Varying Image Dataset Size. In this experiment, we study the response time
under different sizes of image datasets. The experimental results are shown in
Fig. 7. From Fig. 7, we can see that the response time of Overlay is significantly
higher than our external CA algorithm. Furthermore, the response time of Over-
lay significantly increase with the increment of the sizes of the image datasets.

394 P. Zhao et al.

However, the response time of our external CA algorithm only slightly increases
with the increment of the sizes of the image datasets. This is because Overlay,
given a set of keywords and a query location, starts from the query location to
expand the search regions from the spatial attribute only. Its I/O data access
includes adjacent vertices, edges or regions, which is much lager than our app-
roach. Our approach keeps a inverted list for each visual words and employs the
ability of G-tree to find the near neighbor objects quickly. In addition, the index
of Overlay is disk-based. Therefore, it does not scale well when the geo-image
datasets scale large.

Varying the Size of Road Networks. In this experiment, we study the
response time of Overlay and our external CA algorithm on four different sizes
of road networks, i.e., SF, FLA, CTR and USA. The experimental results are
shown in Fig. 8. According to the road network size (refer to Table 2), we present
the four road networks in the increment order in the horizontal axis of Fig. 8.
From Fig. 8, we can notice that we only have the response time on the SF road
network for Overlay. This is because Overlay does not scale well for large scale
road networks due to its hybrid index structure and the query response time is
over 10 second on FLA road networks. We have the response time on all four road
networks. Fig. 8 shows that our external CA performs not bad even if running
on lager road networks such as CTR and USA. When running on the USA road
network, the response time is still within one second. That is, our external CA
approach can be applied to different scales of road networks.

7 Conclusions

In this paper, we introduced top-k spatial image queries on road networks. Given
a spatial location and a query image, a top-k spatial image query on road net-
works returns the k best images ranked in terms of both content similarity to
the query image and the shortest road network distance to the query location.
We formulated the spatial image query problem as a top-k aggregation query
problem and presented a separate index structure that is based on the visual
vocabulary tree image index and G-tree road networks index. Then, we proposed
an external CA algorithm that works well on inverted lists sorted by visual words
relevance and G-tree road networks index. Finally, we conduct experiments on
the Flickr dataset with up to one million geo-images and on four road networks.
We evaluate the performance of our proposed approach from different aspects.
Our experimental results show that our proposed approach is superior over the
state-of-the-art hybrid solutions.

Acknowledgments. This work was partially supported by Chinese NSFC project
(61003054, 61170020, 61402311, 61440053), the US National Science Foundation (IIS-
1115417), and Collaborative Innovation Center of Novel Software Technology and
Industrialization.

Scalable Top-k Spatial Image Search on Road Networks 395

References

1. Flickr. http://www.flickr.com/
2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2006, pp. 459–468. IEEE (2006)

3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

4. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu,
M.L.: Spatial keyword querying. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012
Main Conference 2012. LNCS, vol. 7532, pp. 16–29. Springer, Heidelberg (2012)

5. Cao, Y., Wang, C., Li, Z., Zhang, L., Zhang, L.: Spatial-bag-of-features. In: 2010
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3352–
3359. IEEE (2010)

6. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing:
an experimental evaluation. Proceedings of the VLDB Endowment 6(3), 217–228
(2013)

7. Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., Suel, T.: Text vs. space:
efficient geo-search query processing. In: Proceedings of the 20th ACM Interna-
tional Conference on Information and Knowledge Management, pp. 423–432. ACM
(2011)

8. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. Proceedings of the VLDB Endowment 2(1), 337–348 (2009)

9. Doherty, A.R., Smeaton, A.F.: Automatically augmenting lifelog events using per-
vasively generated content from millions of people. Sensors 10(3), 1423–1446 (2010)

10. Erol, B., Antúnez, E., Hull, J.J.: Hotpaper: multimedia interaction with paper
using mobile phones. In: Proceedings of the 16th ACM International Conference
on Multimedia, pp. 399–408. ACM (2008)

11. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences 66(4), 614–656 (2003)

12. Google: Goggles. http://www.google.com/mobile/goggles/
13. Graham, J., Hull, J.J.: Icandy: a tangible user interface for itunes. In: CHI 2008

Extended Abstracts on Human Factors in Computing Systems, pp. 2343–2348.
ACM (2008)

14. Guo, L., Shao, J., Aung, H.H., Tan, K.L.: Efficient continuous top-k spatial keyword
queries on road networks. GeoInformatica, 1–32 (2014)

15. Hull, J.J., Erol, B., Graham, J., Ke, Q., Kishi, H., Moraleda, J., Van Olst, D.G.:
Paper-based augmented reality. In: 17th International Conference on Artificial
Reality and Telexistence, pp. 205–209. IEEE (2007)

16. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. ACM Computing Surveys (CSUR) 40(4),
11 (2008)

17. Kooaba: http://www.kooaba.com
18. Li, W., Guan, J., Zhou, S.: Efficiently evaluating range-constrained spatial key-

word query on road networks. In: Han, W.-S., Lee, M.L., Muliantara, A., Sanjaya,
N.A., Thalheim, B., Zhou, S. (eds.) DASFAA 2014. LNCS, vol. 8505, pp. 283–295.
Springer, Heidelberg (2014)

19. Liu, T., Moore, A.W., Yang, K., Gray, A.G.: An investigation of practical approx-
imate nearest neighbor algorithms. In: Advances in Neural Information Processing
Systems, pp. 825–832 (2004)

http://www.flickr.com/
http://www.google.com/mobile/goggles/
http://www.kooaba.com

396 P. Zhao et al.

20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60(2), 91–110 (2004)

21. Nister, D., Stewenius, H.: 2006 IEEE Computer Society Conference on Scalable
recognition with a vocabulary tree. In: Computer Vision and Pattern Recognition,
vol. 2, pp. 2161–2168. IEEE (2006)

22. Nokia: Point and find. http://www.pointandfind.nokia.com
23. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with

large vocabularies and fast spatial matching. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

24. Rocha-Junior, J.B., Nørv̊ag, K.: Top-k spatial keyword queries on road networks.
In: Proceedings of the 15th International Conference on Extending Database Tech-
nology, pp. 168–179. ACM (2012)

25. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørv̊ag, K.: Efficient processing of
top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento,
M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp.
205–222. Springer, Heidelberg (2011)

26. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5), 513–523 (1988)

27. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching
in videos. In: 2003 Proceedings of the Ninth IEEE International Conference on
Computer Vision, pp. 1470–1477. IEEE (2003)

28. SnapTell: http://www.snaptell.com
29. Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top

k spatial keyword search. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pp. 901–912. IEEE (2013)

30. Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified
spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014)

31. Zhang, D., Chan, C.Y., Tan, K.L.: Processing spatial keyword query as a top-k
aggregation query. In: Proceedings of the 37th International ACM SIGIR Con-
ference on Research & Development in Information Retrieval, pp. 355–364. ACM
(2014)

32. Zhang, D., Tan, K.L., Tung, A.K.: Scalable top-k spatial keyword search. In: Pro-
ceedings of the 16th International Conference on Extending Database Technology,
pp. 359–370. ACM

33. Zhang, S., Huang, Q., Hua, G., Jiang, S., Gao, W., Tian, Q.: Building contex-
tual visual vocabulary for large-scale image applications. In: Proceedings of the
International Conference on Multimedia, pp. 501–510. ACM (2010)

34. Zhang, S., Tian, Q., Hua, G., Huang, Q., Gao, W.: Generating descriptive visual
words and visual phrases for large-scale image applications. IEEE Transactions on
Image Processing 20(9), 2664–2677 (2011)

35. Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual
phrases for image applications. In: Proceedings of the 17th ACM International
Conference on Multimedia, pp. 75–84. ACM (2009)

36. Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-tree: an efficient index for knn search
on road networks. In: Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management, pp. 39–48. ACM (2013)

http://www.pointandfind.nokia.com
http://www.snaptell.com

Social Networks II

An Efficient Method to Find the Optimal Social
Trust Path in Contextual Social Graphs

Guanfeng Liu1,2(B), Lei Zhao1,2, Kai Zheng3, An Liu1,2, Jiajie Xu1,2,
Zhixu Li1,2, and Athman Bouguettaya4

1 School of Computer Science, Soochow University, Suzhou 215006, China
{gfliu,zhaol,anliu,jjxu,zxli}@suda.edu.c

2 Collaborative Innovation Center of Novel Software Technology
and Industrialization, Jiangsu, China

3 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane 4072, Australia

kevinz@itee.edu.au
4 School of Computer Science and Information Technology,

RMIT University, Melbourne 3001, Australia
athman.bouguettaya@rmit.edu.au

Abstract. Online Social Networks (OSN) have been used as platforms
for many emerging applications, where trust is a critical factor for partic-
ipants’ decision making. In order to evaluate the trustworthiness between
two unknown participants, we need to perform trust inference along the
social trust paths formed by the interactions among the intermediate
participants. However, there are usually a large number of social trust
paths between two participants. Thus, a challenging problem is how to
effectively and efficiently find the optimal social trust path that can
yield the most trustworthy evaluation result based on the requirements
of participants. In this paper, the core problem of finding the optimal
social trust path with multiple constraints of social contexts is modelled
as the classical NP-Complete Multi-Constrained Optimal Path (MCOP)
selection problem. To make this problem practically solvable, we propose
an efficient and effective approximation algorithm, called T-MONTE-K,
by combining Monte Carlo method and our optimised search strategies.
Lastly we conduct extensive experiments based on a real-world OSN
dataset and the results demonstrate that the proposed T-MONTE-K
algorithm can outperform state-of-the-art MONTE K algorithm signifi-
cantly.

1 Introduction

1.1 Background

In recent years, social networking sites have been used as platforms for a vari-
ety of activities. For example, there is an increasing interest of employers to
use OSNs as part of the recruitment process for academic positions (globala-
cademyjobs.com). In addition, by connecting with OSNs (e.g., Facebook and
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 399–417, 2015.
DOI: 10.1007/978-3-319-18123-3 24

400 G. Liu et al.

A B

D

E targetsource

C

Fig. 1. A social graph

Twitter) at some e-commerce websites like ThisNext (thisnext.com) and eBay
(ebay.com), a buyer can recommend the products available on these e-commerce
websites to his/her friends who are also in the OSNs. In these activities, trust is
one of the most important factors that influence participants’ decision making.
However, most users in OSNs do not have previous direct interactions, which
calls for approaches and mechanisms for evaluating the trustworthiness between
participants who are unknown to each other.

An OSN is usually modelled as a graph, where each vertex represents a par-
ticipant, and each edge corresponds to a real-world or online interaction between
two participants. For instance, an edge may indicate they are colleagues in real-
world, or they have online follower-followee relationship in micro-blogging sites
(e.g., A → B in Fig. 1). Each participant usually has relationship with many oth-
ers. Thus given two non-adjacent vertex, there may be multiple paths from the
source participant (e.g., A) to the target participant (e.g., E) (For example, paths
A → B → C → E and A → B → D → E in Fig. 1). This path linking a source
and a target can be used to evaluate the trustworthiness of the target participant,
which is called a social trust path [1]. In addition to the vertexes and edges, an OSN
contains various contextual information, such as social positions of participants,
social relationships and social trust between participants [2], which also have sig-
nificant influence on trust evaluation [3–6]. The process of the trust evaluation for
the target participants based on the social trust paths and social contexts is called
trust propagation [2,7].

1.2 The Problem and Challenges

In a large social graph, there could be a large number of social trust paths
between a source and the target [8]. Enumerating all the social trust paths and
evaluating their trustworthiness are computationally infeasible [9]. Alternatively,
we can look for an optimal social path yielding the most trustworthy propagation
result from multiple paths by taking the social contexts and the preferences of
a source participant in trust evaluation.

Example 1: In Fig. 1, suppose C has no knowledge of IT, and C does not know E
well personally. C → E is formed as C bought a used car from E. But D is an IT
expert and D is familiar with E as D supervised E in an IT project. When given the
trust query of looking for a programmer by A, based on the trust theory in Social
Psychology [10,11], D’s recommendation of E is more credible than C. So the trust
evaluation result based on the social trust path A → B → D → E is more reliable
than the one based on A → B → C → E.

Find the Optimal Social Trust Path 401

So given a trust query under a certain context, a social trust path has higher
quality if the path contains more important intermediate participants, who have
closer relationships. The problem of optimal social trust path is to find the path
with the best quality and satisfying the preferences of a source participant in
path finding. This problem has proved to be NP-Complete in our prior work [2].

In the literature, Lin et al. [12] proposed an optimal social path finding
method. In their model, the shortest path between the source participant and the
target one is selected as the optimal one. In another work [1], the path with the
maximal propagated trust value is selected as the most trustworthy path. These
methods do not consider the social contextual information, like social position
and social relationship, which has significant influence on trust propagation [3,
13]. Ie trust propagation to illustrate the preference of the source. However,
this has not been considered in previous work. With considering the constraints
of social contexts, the optimal social trust path finding becomes a challenging
NP-Complete problem [2]. In order to solve this challenging problem, we have
proposed several social trust path finding models where the social information,
like social trust, social relationship and social position have been taken into
account [2,14–17]. However, ONS is in a real-time environment [18,19], where
the social interactions between participants and the social information, like social
position, social trust can change in real-time. To deliver a solution, some of the
existing methods need to access all the vertexes and edges. Therefore, when
facing a large social graph, they have low efficiency. Moreover, other methods
are based on the probabilistic methods. Although they can deliver a solution
very fast without accessing all the vertexes and edges of a social graph, they
are suffering low effectiveness due to the disadvantages of the heuristic search
strategies.

1.3 Contribution

This paper builds upon and extends the approach described in [2], where we first
propose a new concept, called Quality of Social Trust Path, which is essential
to illustrate the ability of a social trust path to guarantee a certain trust level
during trust evaluation. We then propose an efficient approximation algorithm,
T-MONTE-K, for the classical Multi-Constrained Optimal Path (MCOP) selec-
tion problem based on Monte Carlo method [20] and new optimization strategies.
Our algorithm achieves the time complexity of O(mu), where m is the number
of simulations, and u is the maximal outdegree of nodes in social networks.
Finally, We conduct experiments on a real-world dataset of OSNs, Epinions
(epinions.com). The experimental results illustrate that T-MONTE-K can find
better social trust path than the existing methods more efficiently.

2 Related Work

In this section, we introduce the existing works about social trust path finding
with and without social contexts.

402 G. Liu et al.

2.1 Social Trust Path Finding without Social Contexts

SmallBlue [12] is an OSN created for IBM staff. In this system, if a source would
like to find a target (e.g., a C++ programmer), it considers up to 16 social paths
between them with the path length of no more than 6 hops, among which, the
shortest one is taken as the optimal path. Hang et al. [1] proposed a social trust
path finding method in online social networks, where trust between participants
is considered in the path selection. In their model, the aggregated belief value
(trust value) of a social trust path is computed by multiplying the trust value
between any two intermediate nodes in the path. Among all the social trust
paths, the one with the highest aggregated belief (i.e., the maximum of aggre-
gated trust value) is selected as the optimal path that yields the most trust-
worthy result of trust propagation between a source participant and the target
participant. Wang et al. [21] proposed a social trust path finding method where
a source participant can specify a threshold. Their method first aggregated trust
values given to each of the recommenders (i.e., the intermediate nodes) in the
network between a source participant and the target participant. If the aggre-
gated trust value of a recommender is greater than the threshold specified by the
source participant, the recommender is kept in the trust network. Otherwise, the
recommender (the node) is deleted from the trust network. After node deletion,
the rest of the social trust paths are kept for trust evaluation.

However, theaboveexistingmethods select theoptimal social trustpath(s) from
a large volume of paths based on different selection criteria, which indeed reduces
the computation complexity of the trust evaluation between two unknown partici-
pants. However, in the above methods, the social information including social rela-
tion and social position of participants are not taken into account in pathfinding. In
addition, a source participant can have different purposes in evaluating the trust-
worthiness of the target participants (e.g., recruitment or buying products). The
different trust evaluation criteria in different applications should be reflected by
specifying certain constraints of the above social information for social trust path
finding. Thus, although trust information is taken into consideration in some of the
existing trust path finding methods, they cannot be expected to find the trustwor-
thy trust paths without considering social information and complex trust criteria
specification.

2.2 Social Trust Path Finding with Social Contexts

To address these issues, we have proposed an optimal trust path finding model
by taking the social contexts and the constraints of these contexts into account
in our priori work [2]. In the work, the social contexts in a social trust path
are aggregated and constrained for the path finding. As the constrained optimal
path finding is an NP-Complete problem [2], we have proposed several heuristic
algorithms [14–16] by adopting the Dijkstra’s algorithm. These algorithms can
guarantee to find a social trust path if there exists a feasible one in a given
social graph. But they do not have satisfactory performance as they need to
access all the vertexes and edges several times. In addition, we have proposed an

Find the Optimal Social Trust Path 403

approximation algorithms [2] based on the Monte Carlo method However, this
algorithm suffers low effectiveness as it greedily looks for the social trust path
with the highest utility.

3 Preliminary

In this section, we first review the contextual social graph, and propose a novel
concept Quality of Social Trust Path (QoSTP). We then present the model of
the optimal social trust path finding with end-to-end QoSTP constraints.

3.1 Contextual Social Graph

Contextual Social Graph (CSG) is a labeled directed graph G = (V,E,LV, LE)
consists of (1) a set nodes V ; (2) a set of edges E ∈ V × V , where (v, w) ∈ E
denotes a directed edge from node v to w; and (3) a function LV defined on V
such that for each node v in V , LV (v) is a label for v. Intuitively, the node labels
may present e.g., social roles. Moreover, LE defined on E such that for each link
v, w in E, LE(v, w) is a label for (v, w), like social relationships and social trust.
The labelled social contexts have significant influence on trust evaluation and
trust path finding. Below we introduce the social impact factors that comes from
the social contexts and affects the social trust path selection.

Social Impact Factors

1. Social Trust: In our model, let TDi

A,B ∈ [0, 1] denote the trust value that A

assigns to B in domain i. If TDi

A,B =0, it indicates that A completely distrusts
B in the domain, while TDi

A,B = 1 indicates that A completely believes B’s
future action can lead to the expected outcome in that domain.

2. Social Intimacy Degree: Let rA,B ∈ [0, 1] denote the Social Intimacy
Degree between A and B in online social networks. rA,B = 0 indicates that
A and B have no intimate social relationship while rA,B =1 indicates they
have the most intimate social relationship.

3. Role Impact Factor: Let ρDi

A ∈ [0, 1] denote the Role Impact Factor of A,
illustrating the impact of participant A in domain i, which is determined
by the expertise of A. ρDi

A =1 indicates that A is a domain expert and has
the greatest impact in the domain while ρDi

A = 0 indicates that A has no
knowledge and has the least impact in that domain.

Although it is difficult to build up comprehensive social intimacy degrees and
role impact factors in all domains, it is feasible to build them up in some specific
social communities by using data mining techniques [22–24], which is out of the
scope of this paper. Fig. 2 depicts a Contextual Social Graph (CSG), where we
can see that each of B, C, D and E is associated with a role impact factor in
domain i, and each edge is associated with the social trust in domain i and social
intimacy degree.

404 G. Liu et al.

A B

D

E targetsource

C

TDi

A,B = 0.8
rB,C = 0.9

TDi

C,E = 0.9

TDi

B,D = 0.6 TDi

D,E = 0.8

TDi

B,C = 0.8

rA,B = 0.9

rC,E = 0.8

rB,D = 0.7 rD,E = 0.5

ρDi

B = 0.7

ρDi

D = 0.3

ρDi

E = 0.7

ρDi

C = 0.9

PGPM

Fig. 2. A contextual social graph

3.2 Optimal Social Trust Path Queries in CSG

Definition 1: Quality of Social Trust Path (QoSTP) is the ability to guaran-
tee a certain level of trustworthiness in trust propagation along a social trust
path, taking trust (T), social intimacy degree (r), and role impact factor (ρ) as
attributes.

In service composition, service consumers can set multiple end-to-end con-
straints for the attributes of QoS (e.g., cost, delay and availability) to satisfy
their requirements of services. Different requirements have different constraints
(e.g., total cost<$20, delay<5s and availability>70%). In our model, a source
participant can set multiple end-to-end constraints for QoSTP attributes (i.e.,
T , r and ρ) as the requirements of trust propagation in social trust paths.
QoCTDi

AM , QoCr
AM and QoCρDi

AM are denoted as the QoSTP constraints of T , r
and ρ in domain i respectively.

Based on the theories in Social Psychology [25], we adopt the multiplication
method to aggregate T and r values of a path, and adopt the average method to
aggregate the ρ values of the vertices in a path. The details of the aggregation
method has been discussed in [2].

Utility Function. In our model, we define a feasible utility (denoted as F) as
the measurement of the trustworthiness of social trust paths, which takes the
QoSPT attributes T , r and ρ as arguments.

Fp(a1,...,an)=ωT ∗ TDi

p(a1,...,an)
+ωr∗rp(a1,...,an)+ωρ ∗ρDi

p(a1,...,an)
(1)

where ωT , ωr and ωρ are the weights of T , r and ρ respectively; 0 < ωT , ωr, ωρ < 1
and ωT + ωr + ωρ = 1.

Asourceparticipantcanspecifydifferentweights fordifferentQoSTPattributes
in path finding. For example, if a source participant believes the social position of
participants is more important in the domain of employment, he/she can specify a
relative high value for ωCIF . In contrast, if he/she regards the social relationship is
more important, he/she can specify a relatively high value for ωr.

Find the Optimal Social Trust Path 405

An Optimal Social Trust Path Finding Query. Given a group of QoSTP
constraints QoCDi

vs,vt
in domain i and a group of weights ωϕ ϕ ∈ {T, r, ρ} the

Multiple QoSTP Constrained Optimal Social Trust Path Finding (MQCOTP)
Problem is to find a path p from a source vs to a target vt such that:

1. TDi
pvs,vt

≥ QoCTDi

vs,vt
, rpvs,vt

≥ QoCr
vs,vt

and ρDi
pvs,vt

≥ QoCρDi

vs,vt

2. Fpvs,vt
is maximised over all feasible trust paths satisfying the above condi-

tion 1.

Then MQCOTP can be modelled as the classical Multi-Constrained Optimal
Path (MCOP) selection problem which is NP-Complete [26].

4 Social Trust Path Finding

In this section, we propose an efficient and effectiveness approximation algo-
rithm, T-MONTE-K, based on the Monte Carlo method [20] and our optimiza-
tion strategies.

4.1 Monte Carlo Method

The Monte Carlo method [20] is one of the techniques for solving NP-complete
problems [20,27]. Generally, the Monte Carlo method consists of four steps: (1)
defining a domain of inputs, (2) generating inputs randomly, (3) performing a
computation on each input, and (4) aggregating the results into the final result.

4.2 T-MONTE-K

In this section, we propose an new efficient and effective approximation algorithm
T-MONTE-K. It adopts Twice the Monte Carlo method to search a network
from vt (the target) to vs (the source), and from vs to vt respectively. During
this process, T-MONTE-K selects up to K candidates at each of the search step.
Next, we will introduce the details of T-MONTE-K.

In social trust path finding, if a path satisfies multiple QoSTP constraints,
it means that each aggregated QoSTP attribute (i.e., T , r or ρ) of that path
should be larger than the corresponding QoSTP constraint. Therefore, we pro-
pose an objective function in Eq. (2) to investigate whether the aggregated
QoSTP attributes of a path can satisfy the QoSTP constraints. From Eq. (2), we
can see that if any aggregated QoSTP attribute of a social trust path does not
satisfy the corresponding QoSTP constraint, then δ(p) > 1. Otherwise δ(p) ≤ 1.

δ(p) � max{(
1 − TDi

p

1 − QoCTDi
p

), (
1 − rp

1 − QoCr
p

), (
1 − ρDi

p

1 − QoCρDi

p

)} (2)

406 G. Liu et al.

Backward Expansion Node (BEN)

Candidates for the next BEN

vt

va

vdvb

vc
Forward Dominating Node (FDN)

(a) BEN and FDN

Forward Expansion Node (FEN)

Candidates for the next FEN

vs vm

vx

vy

vz
Backward Dominating Node (BDN)

(b) FEN and BDN

Fig. 3. BEN and FEN

Backward Search: In theBackward Search procedure fromvt tovs,T-MONTE-
K calculates δ values of the social trust paths from vt to the neighbors of the current
Backward Expansion Node (BEN) (e.g., node vd in Fig. 3(a)). Then based on the
following Strategy 1, T-MONTE-K selects up to K neighbors with the K minimal
δ values as the candidates (e.g., nodes va, vb and vc in Fig. 3(a)). Then one of them
is selected as the next BEN based on Eq. (3) .

In this searching process, if a node vki
is selected as the next BEN, the

aggregated TDi
pvs→vki

rpvs→vki
and ρDi

pvs→vki

are recorded at vki
based on the fol-

lowing optimization Strategy 2. According to the following Theorem 1, the path
identified by Backward Search procedure can investigate whether there exists a
feasible path in the sub-network.

Theorem 1: The path identified by the Backward Search procedure with the
minimal δ converge to a feasible solution if one exists in a sub-network.

Proof: Let ps be a path from vt to vs with the minimal δ at vt delivered by the
Backward Search procedure, and p∗ be a feasible solution. Then, based on the
Strategy 1, δ(ps) ≤ δ(p∗). Assume ps is not a feasible solution, then ∃ϕ ∈ {T, r, ρ}
that ϕps

< Qϕ
vs,vt

. Hence, δ(ps) > 1. Since p∗ is a feasible solution, then δ(p∗) ≤ 1
and δ(ps) > δ(p∗). This contradicts δ(ps) ≤ δ(p∗). Therefore, ps is a feasible
solution. �

With the increase of the Backward Simulation Times (BST), the solution
delivered by the Backward Search procedure can always convergency to the path
with the minimal δ. If δmin > 1, it indicates there is no feasible solution in the
sub-network. If δmin ≤ 1, it indicates there exists at least one feasible solution
and the identified path is a feasible solution.

Strategy 1: K-path with theMinimal δ. According to Eq. (2), the lower the δ
value of a path, the higher the probability for that path to be a feasible solution.
Thus, given a partially identified social trust path from vt to vd (vd �= vs, see Fig.
3(a)), we calculate the δ values of the paths from vt to each neighboring node of vd

and record up to K neighboring nodes (e.g., nodes va, vb and vc in Fig. 3(a)) that
yield up to K minimum δ values as candidates for the next BEN. One of them will
be selected as the next BEN based on the probability computed by Eq. (3).

Find the Optimal Social Trust Path 407

ProB(vki
) =

δ(pB
vki

→vt
)

∑K
i=1 δ(pB

vki
→vt

)
(3)

where ProB(vki
) is the probability of vki

to be selected as the next BEN.
As this strategy selects no more than K neighbors at each step in social trust

path finding, it can reduce the search space and deliver high efficiency.

Strategy 2: Optimization at A Backward Dominating Node (BDN).
During the Backward Search, if the outdegree of a node is greater than one (e.g.,
node vm in Fig. 3(b)) in the social network, then the node, e.g., vm, is regarded
as a Backward Dominating Node (BDN). To obtain a near-optimal solution, T-
MONTE-K performs multiple simulations. In the first simulation, if a social trust
path from vt to vm (denoted as path pB

m1
) is identified, we store the δ(pB

m1
) and

the aggregated value of each QoSTP attribute of pB
m1

at vm. In all subsequent
simulations, if a different social path from vt to vm (denoted as path pB

mi
, where

i > 1) is identified, the optimization is performed in the following situations.

Situation 1: If vm = vs and δ(pB
mi

) > δ(pB
m1

), it indicates pB
mi

is worse than pB
m1

.
Thus we replace the values of pB

mi
(i.e., T , r, ρ, and δ) with the ones stored at vm.

Situation 2: If vm = vs and δ(pB
mi

) < δ(pB
m1

), it indicates pB
mi

is better than
pB

m1
. Thus, we store the aggregated QoSTP attribute values of pB

mi
at vm.

Situation 3: If vm �= vs, δ(pB
mi

) > δ(pB
m1

) and each of the aggregated QoSTP
value of pB

mi
is less than the corresponding value of pB

m1
, it indicates pB

mi
is worse

than pB
m1

. Thus we replace the values of pB
mi

with the ones stored at vm.

Situation 4: If vm �= vs, δ(pB
mi

) < δ(pB
m1

), and each of the aggregated QoSTP
value of pB

mi
is less than the corresponding value of pB

m1
, it indicates pB

mi
is better

than pB
m1

. Thus, we store the aggregated QoSTP attribute values of pB
mi

at vm.
Following Strategy 2, BDN vm records T , r, ρ, F and δ values of the locally

optimal social trust path from vs to vm. The optimization at vm can guarantee
that the delivered solution from vs to vm is locally optimal.

Forward Search: If there exists a feasible solution identified by the Back-
ward Search procedure, a forward search is executed from vs to vt. This process
uses the information provided by the above Backward Search to identify whether
there is another path pt which is better than the above returned best path ps

(i.e., F(pt) > F(ps)). In this procedure, at each of the neighboring nodes of
the the current Forward Expansion Node (FEN), T-MONTE-K calculates the
aggregated QoSTP attribute values of the path from vs to an intermediated
node vm (denoted as path pF

m). Let pB
m denote the path from vm to vt identified

by the Backward Search procedure, then a foreseen path from vs to vt via vm

(denoted as pfm = pF
m + pB

m) can be identified. Let h denote the number of hops
of path pfm. The aggregated QoS attribute values of pfm can be calculated as
TDi

pfm
= TDi

pF
m

∗TDi

pB
m

, rpfm
= rpF

m
∗rpB

m
and ρDi

pfm
= (ρDi

pF
m

+ρDi

pB
m

)/(h−1). Then, based
on the following Strategy 3, T-MONTE-K selects up to K candidates that 1) the
foreseen path from vs to vt each of the K next FENs is feasible, and 2) they

408 G. Liu et al.

have the K maximal F values. Then one of them is selected as the next FEN
based on the probability computed by Eq. 4. Finally, T-MONTE-K calculates F
value of the path from vs to the new selected FEN, and update the aggregated
QoSTP attributes values based on the following Strategy 4.

ProF (vki
) =

δ(pF
vs→vki

)
∑K

i=1 δ(pF
vs→vki

)
(4)

where ProF (vki
) is the probability of vki

to be selected as the next FEN.

Strategy 3: K-path with the Maximal F . As introduced in Section 4.3,
the goal of the optimal social trust path finding is to find the path with the
best utility and meets the QoSTP constraints. Thus, given a partially identified
social trust path from vs to vm (vm �= vt), if pfm is feasible, we calculate the path
utilities of vs to each neighboring node of vm and record up to K neighboring
nodes (e.g., node vx, vy and vz in Fig. 3(a)) that yield up to K maximal path
utilities as candidates for the next FEN selection.

As this strategy selects no more than K neighbors at each step in social trust
path finding, it can reduce the search space and deliver high efficiency.

Strategy 4: Optimization at A Forward Dominating Nodes (FDN). If
the indegree of a node, like vd in Fig. 3(a) (vd �= vs) is greater than one in the
social network, then node vd is regarded as a Forward Dominating Node (FDN).
To obtain a near-optimal solution, T-MONTE-K performs multiple simulations.
In the first simulation, if a social trust path from vs to vd (denoted as path
pF

d1
) is selected, we store the utility F and the aggregated value of each QoSTP

attribute of pF
d1

at vd. In all subsequent simulations, if a different social path
from vs to pF

d1
(denoted as path pF

di
, where i > 1) is selected, the optimization

is performed in the following situations.

Proof: Assume the optimal solution in the sub-network is denoted as po, and the
path identified by the Forward Search procedure is denoted as pt. If F(po) >
F(pt), then ∃vi ∈ po and ∃vj ∈ pt (vi �= vt, vj �= vt), F(pvs→vi

) = 0 and
F(pvs→vj

) = 1. As TDi
pvs→vi

= 0, rpvs→vi
= 0 and ρDi

pvs→vi
= 0. Then TDi

po
= 0 and

rpo
= 0, and thus cannot satisfy the constraints QoCϕ ∈ (0, 1), (ϕ ∈ {T, r, ρ}).

Then po is an infeasible solution, which contradicts po is an optimal solution.
Therefore, F(po) = F(pt). So, Theorem 4 is correct. �

The process of T-MONTE-K is as follows.
Situation 1: If vd = vt and F(pF

di
) < F(pF

d1
), it indicates pF

di
is worse than pF

d1
.

Thus we replace the values of pF
di

(i.e., T , r, ρ, F and δ values) with the ones
stored at vd .
Situation 2: If vd = vt and F(pF

di
) > F(pF

d1
), it indicates pF

di
is better than pF

d1
.

Thus, we store the aggregated QoSTP attributes values of pF
di

at vd.
Situation 3: If vd �= vt, F(pF

di
) < F(pF

d1
) and δ(pB

di
) > δ(pB

d1
), it indicates pF

di
is

worse than pF
d1

. Thus we replace the aggregated QoSTP attributes values of pF
di

with the ones stored at vd .

Find the Optimal Social Trust Path 409

Situation 4: If vd �= vt, F(pF
di

) > F(pF
d1

) and δ(pF
di

) < δ(pF
d1

), it indicates
pF

di
is better than pF

di
. Thus, we store the aggregated QoSTP attributes values

of pF
di

at vd.
Following Strategy 4, the FDN vd records T , r, ρ, F and δ values of the locally

optimal social trust path from vs to vd. The optimization at vd can guarantee
that the delivered solution from vs to vd is locally optimal.

The following Theorem 2 illustrates that the social trust path pt identified
by the Forward Search procedure can not be worse than the feasible social trust
path ps identified by the Backward Search procedure. Namely, F(pt) ≥ F(ps).

Theorem 2: With the social trust path ps identified by the Backward Search
procedure and the social trust path pt identified by the Forward Search pro-
cedure in T-MONTE-K, if ps is a feasible solution, then pt is feasible and
F(pt) ≥ F(ps).

Proof: Assume that path ps consists of n + 2 nodes vs, v1, ..., vn, vt. In the
Forward Search procedure, T-MONTE-K searches the neighboring nodes of vs

and chooses v1 from these nodes when a foreseen path from vs to vt via v1
is feasible and the current path from vs to v1 has the maximal F . This step
is repeated at all the nodes between v1 and vn until a social trust path pt is
identified. If at each search step, only one node (i.e., v1, ..., vn) has a feasible
foreseen path, then pt is the only feasible solution in the sub-network between
vs and vt. According to Theorem 1 and Strategy 4, then pt = ps. Thus, F(pt) =
F(ps). Otherwise, based on Strategy 4, IFF pt and ps do not have any joint
nodes except for vt, F(pt) < F(ps). However, in a sub-network from vs to vt, in
addition to vt, vs is the joint node for both pt and ps. Therefore, F(pt) > F(ps).
So, Theorem 2 is correct. �

Based on Theorem 2, If there is only one feasible solution existing in the trust
network, both Backward Search and Forward Search procedures can mine that
path and the path is the optimal one.

The following Theorem 3 illustrates that the social trust path identified by
the Forward Search procedure converges to the optimal solution.

Theorem 3: If K is not less than the maximal outdegree of a sub-network, the
solution pt identified by the Forward Search procedure converges to the optimal
solution with the increase of the Forward Simulation Times (FST).

Proof: Assume the optimal solution in the sub-network is denoted as po, and the
path identified by the Forward Search procedure is denoted as pt. If F(po) >
F(pt), then ∃vi ∈ po and ∃vj ∈ pt (vi �= vt, vj �= vt), F(pvs→vi

) = 0 and
F(pvs→vj

) = 1. As TDi
pvs→vi

= 0, rpvs→vi
= 0 and ρpvs→vi

= 0. Then TDi
po

= 0 and
rpo

= 0, and thus cannot satisfy the constraints QoCϕ ∈ (0, 1), (ϕ ∈ {T, r, ρ}).
Then po is an infeasible solution, which contradicts po is an optimal solution.
Therefore, F(po) = F(pt). So, Theorem 3 is correct. �

The process of T-MONTE-K is as follows.

Initialization: Mark the status of all nodes in the network as unvisited. Add
vs into set BENset and vt into the FENset that stores the BENs and FENs

410 G. Liu et al.

identified by the Backward Search procedure and the Forward Search procedure
respectively.

Backward Search:
Step 1: Get an unvisited node vt from BENset and mark vt as visited. Select

up to K neighboring nodes vBj of vt based on Strategy 1.
Step 2: For each vBj , calculate the probability of vBj to be selected as the

next BEN based on Eq. (3). Then, select one of them (denoted as vBk, 1 � k � j)
based on {ProB(pvBj

)}.
Step 3: Calculate the aggregated QoSTP values (i.e., T , r and ρ) of pB

vBk→vt
,

and store (or replace) the corresponding aggregated value at vBk based on Strat-
egy 2.

Step 4: If not reach the simulation times, go to Step 1. Otherwise, if vBk = vs

and δ(pB
vBk→vt

) ≤ 1, start Forward Search procedure. Else if vBk = vs and
δ(pB

vBk→vt
) > 1, return infeasible path in the sub-network.

Forward Search:
Step 5: Get an unvisited node vs from FENset and mark vs as visited. Select

up to K neighboring nodes vFj of vs based on Strategy 1.
Step 6: For each vFj , calculate the probability of vFj to be selected as the

next BEN based on Eq. (3). Then, Select one of them (denoted as vFk, 1 � k � j)
based on {ProF (pvFk

)}.
Step 7: Calculate the path utility F(pF

vs→vFk
), and store (or replace) the

path utility at vkj
based on Strategy 2.

Step 8: If not reach the simulation times, go to Step 6. Otherwise, return
the identified optimal social trust path pF

vs→vt
and its utility.

Based on the properties of Monte Carlo method and social networks [2],
the time complexity of T-MONTE-K can reach O(mu) that is the same as
MONTE K [2], where m is the number of simulations; and u is the maximal
outdegree of nodes in social networks. According to the power-law characteristic
[28], only a few nodes have a large outdegree in social networks. For example, in
Enron email corpus, an social network forming by sending and receiving emails,
94.7% nodes have an outdegree less than 15. Moreover, the average outdegree is
3.4 and the maximum is 1567. Therefore, in T-MONTE-K, each node can keep
a small search space without pruning a large number of neighboring nodes (i.e.,
candidates) of a node in K-path selection, which results in high efficiency and a
higher probability of finding the optimal solution. By considering both the path
utility and path feasibility in the algorithm design, T-MONTE-K can deliver
better solutions than our proposed the most promising algorithm, MONTE K
[2] with higher efficiency.

5 Experiments

Currently, there is no complete contextual trust-oriented social network structure
which contains all the social contexts [16], i.e., T , r and ρ. Thus, we cannot
find any existing dataset that completely fits the experiments. On the other

Find the Optimal Social Trust Path 411

hand, since the main purpose of our algorithm is to find the optimal social trust
path in OSNs, in order to study the performance of our proposed algorithm on
path finding, we need a dataset which contains social network structures. Then,
we select a real-world dataset of OSN to conduct experiments. I.E., Epinions
dataset (trustlet.org), where each link is formed by the trust relations specified
by a truster to a trustee. In addition, the Epinions dataset has also been proved
to possess the properties of social networks [29], and has been widely used in the
studies of trust in OSNs [30,31]. Thus, we select the Epinions dataset available
at TrustLet (trustlet.org) with 88,180 nodes (participants) and 71,7667 links for
our experiments.

5.1 Experimental Settings

Below are the settings of our experiments.

1. We firstly extract a large-scale sub-network from each of the datasets by
randomly select a pair of source and target from them respectively. This
sub-network contains 1746 nodes and 12,220 links.

2. As we discussed in Section 3, these social contextual impact factor values
(i.e., T , r and ρ) can be mined from the existing social networks, and some
solutions have already been proposed to obtain accurate social impact factor
values. But mining the social contextual impact factor values is another very
challenging problem, which is out of the scope of our work. Moreover, in
the real cases, the value of these impact factors can vary from low to high
values. So, there are no fixed patterns for the value of social contextual
impact factors. Without loss of generality, we randomly set the values of
these impact factors by using the function rand() in Matlab.

3. Although both of the heuristic algorithms, H OSTP and MFPB-HOSTP are
effective in social trust path finding, they are not suitable for real-time OSN
environments. Moreover, in that real-time environment, MONTE K is so far
the most promising algorithm. Therefore, we compare the performance of
our T-MONTE-K with that of MONTE K in the experiments.

4. Considering the small-world characteristic of OSN, we set the maximal search
hops of all the algorithms to 6. In addition, a set of relative low QoSTP con-
straints (i.e., QoCT = 0.005, QoCr = 0.005, QoCρ = 0.05 to ensure the high
possibility of having one feasible solution in an OSN. Otherwise, no solution
might be delivered by both of the algorithms and thus cannot investigate
the performance of them.

Both T-MONTE-K and MONTE K are implemented using Matlab R2013a
running on an Dual core PC with Intel Xeon E5645 2.40GHz CPU, 3GB RAM,
Windows 7 operating system and MySql 5.6.14 database.

5.2 Experimental Results

The path utility and execution time of T-MONTE-K and MONTE K are aver-
aged based on three independent executions. The results are plotted in Fig. 4 to
Fig. 10.

412 G. Liu et al.

1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Backward simulation times=1000

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Backward simulation times=2000

Forward simulation times
A

ve
ra

ge
 u

til
ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Backward simulation times=3000

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12
Backward simulation times=4000

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12
Backward simulation times=5000

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

Fig. 4. Average path utility of the two algorithms with different BST

500 1000 1500 2000 2500 3000 3500
0.087

0.088

0.089

0.09

0.091

0.092
Backward simulation times=1000

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0872

0.0893

0.0899
0.0903

0.091

T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.094

0.0945

0.095

0.0955

0.096

0.0965

0.097
Backward simulation times=2000

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0941

0.0945
0.0947

0.095

0.0962

T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.0945

0.095

0.0955

0.096

0.0965

0.097
Backward simulation times=3000

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0945 0.0946

0.095

0.0954

0.0963

T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.0986

0.0988

0.099

0.0992

0.0994

0.0996

0.0998

0.1

0.1002
Backward simulation times=4000

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0989
0.099

0.0991

0.0997

0.1001T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.1014

0.1016

0.1018

0.102

0.1022

0.1024

0.1026

0.1028
Backward simulation times=5000

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.1016 0.1016

0.1018

0.1024

0.1026
T−MONTE−K

Fig. 5. Average path utility of T-MONTE-K with different BST

Average Path Utility. In order to investigate the performance of the algo-
rithms in the quality of all the identified social trust paths during experiments,
we first evaluate the average path utilities with different BST (Backward Simu-
lation Times) and K respectively.

Fig. 4 plots the average path utility with BST varying from 1,000 to 5,000.
From the figure, we can see that in all cases, T-MONTE-K can deliver higher
average path utility than MONTE K. This is because that T-MONTE-K consid-
ers the QoSTP constraints in the Backward Search procedure. This increases the
probability of finding a feasible path with high path utility in the Forward Search
procedure. In addition, under a certain BST, the average path utility delivered by
T-MONTE-K increases with the increase of FST (Forward Simulation Times),
but it does not alway increase for MONTE K. This is because that based on
Strategy 4, T-MONTE-K adopts optimizations at FDNs, and thus the more
the FST, the higher the probability to deliver a path with higher utility; but
MONTE K may spend many FST to search those infeasible path as it greedily
searches the path with the maximal path utility. Furthermore, from Fig. 5, we
can also see that under a certain FST, the average path utility delivered by
T-MONTE-K increases with the increase of BST (e.g., the average path utility
is 0.0911 when FST=3500 and BST=1000, and that is 0.0962 when FST=3500
and BST=2000). This is because that based on Strategy 2, T-MONTE-K adopts
optimizations at BDNs, and thus the more the BST, the more the nodes that
are accessed by the Backward Search. This can provide more information for the
Forward Search procedure to find the social paths with higher utilities.

Fig. 6 plots the average path utility delivered by T-MONTE-K and MONTE K
respectivelywithK vary from5 to 25. From the figure,we can see that in all casesT-
MONTE-K can deliver higher average path utility than MONTE K. This property
is similarastheonedepicted inFig.4,whichfurther justifiestheconclusionthatwith

Find the Optimal Social Trust Path 413

1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
The Average utility on K = 5

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12
The Average utility on K = 10

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1
The Average utility on K=15

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
The Average utility on K = 20

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
The Average utility on K = 25

Forward simulation times

A
ve

ra
ge

 u
til

ity

MONTE_K
T−MONTE−K

Fig. 6. Average path utility of the two algorithms with different K

500 1000 1500 2000 2500 3000 3500
0.126

0.1262

0.1264

0.1266

0.1268

0.127

0.1272

0.1274
The Average utility on K = 5

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.126

0.1263

0.1267

0.1269

0.127

T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.0985

0.099

0.0995

0.1

0.1005

0.101

0.1015
The Average utility on K = 10

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0987

0.099

0.0994

0.1001

0.1008

T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.091

0.0915

0.092

0.0925

0.093
The Average utility on K = 15

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0914

0.092

0.0924

0.0926
0.0927

T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.0825

0.083

0.0835

0.084

0.0845

0.085
The Average utility on K = 20

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0825

0.0833
0.0835

0.0842
0.0844

T−MONTE−K

500 1000 1500 2000 2500 3000 3500
0.0775

0.078

0.0785

0.079

0.0795

0.08

0.0805

0.081
The Average utility on K = 25

Forward simulation times

A
ve

ra
ge

 u
til

ity

0.0776

0.0787

0.0792

0.0798

0.0802

T−MONTE−K

Fig. 7. Average path utility of T-MONTE-K with different K

the assistant of the information provided by the Backward Search, T-MONTE-K
can increase the probability of finding a feasible path with high path utility.

In addition, under a certain BST, the average path utility delivered by T-
MONTE-K is increased with the increase of FST, but it does not alway increase
for MONTE K.. This property is similar as the one depicted in Fig. 6, which
further justifies the conclusion that in T-MONTE-K, the more the FST, the
higher the probability to deliver a path with higher utility. Furthermore, from
Fig. 7, we can see that under a certain FST, the average path utility decreases
with the increase of K. This is because that the increase of the search space can-
not ensure all the new included social trust paths are better than the identified
paths based on the existing search space.

Based on the statistics, on average the path utility delivered is 0.0962 by T-
MONTE-K and is 0.0701 by MONET K. T-MONTE-K can deliver 37.2% more
of the average path utility than MONTE K.

The Maximum Path Utility. In order to investigate the performance of the
algorithms in the optimal social path finding, we evaluate the maximal path
utility delivered by T-MONTE-K and MONTE K with different BST and K
respectively.

Fig. 8 plots the maximal path utility with different BST varying from 1,000
to 5,000. From the figure, we can see that (1) with the increase of FST, the
maximal path utility delivered by the both algorithms increase, and (2) in all
the cases, our T-MONTE-K can always deliver better utility than MONTE K.
This is because that (i) based on Strategy 4 and the property of MONTE K, the
more the FST, the higher the probability of delivering a better solution, and (ii)
T-MONTE-K considers both QoSTP constraints and path utility. Thus, it has
higher probability to identify those feasible paths with high utilities. Therefore,
T-MONTE-K can deliver better solutions than MONTE K.

414 G. Liu et al.

500 1000 1500 2000 2500 3000 3500
0.34

0.345

0.35

0.355
Backward simulation times=1000

Forward simulation times

M
ax

 u
til

ity

0.3445

0.34

0.3448

0.3406

0.3498

0.3435

0.3512

0.3435

0.353

0.3473

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.34

0.342

0.344

0.346

0.348

0.35

0.352

0.354
Backward simulation times=2000

Forward simulation times
M

ax
 u

til
ity

0.3495

0.34

0.3497

0.3406

0.3502

0.3435

0.3509

0.3435

0.3511

0.3473

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.34

0.345

0.35

0.355

0.36

0.365
Backward simulation times=3000

Forward simulation times

M
ax

 u
til

ity

0.3507

0.34

0.3513

0.3406

0.3513

0.3435

0.3535

0.3435

0.3594

0.3473

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.34

0.345

0.35

0.355

0.36

0.365

0.37
Backward simulation times=4000

Forward simulation times

M
ax

 u
til

ity

0.3502

0.34

0.3555

0.3406

0.3571

0.3435

0.3582

0.3435

0.3601

0.3473

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.34

0.35

0.36

0.37

0.38

0.39

Backward simulation times=5000

Forward simulation times

M
ax

 u
til

ity

0.3729

0.34

0.3811

0.3406

0.3812

0.3435

0.3823

0.3435

0.3839

0.3473

T−MONTE−K
MONTE_K

Fig. 8. Maximal path utility with different BST

500 1000 1500 2000 2500 3000 3500
0.346

0.348

0.35

0.352

0.354

0.356

0.358

0.36
K=5

Forward simulation times

M
ax

 u
til

ity

0.3512

0.3477

0.3529

0.3495

0.3558
0.3555

0.3561
0.3555

0.3575

0.3555

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375
K=10

Forward simulation times

M
ax

 u
til

ity

0.3598

0.3381

0.361

0.3397

0.3632

0.3401

0.3654

0.3473

0.3661

0.3473

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37
K=15

Forward simulation times

M
ax

 u
til

ity

0.3508

0.3346

0.3554

0.3357

0.3602

0.3401

0.3623

0.3419

0.3657

0.3423

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

K=20

Forward simulation times

M
ax

 u
til

ity

0.3556

0.3346

0.3568

0.3361

0.3584

0.34

0.3621

0.3427

0.3632

0.3436

T−MONTE−K
MONTE_K

500 1000 1500 2000 2500 3000 3500
0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365
K=25

Forward simulation times

M
ax

 u
til

ity

0.3507

0.3323

0.3546

0.3361

0.3559

0.3398

0.3602

0.3421

0.362

0.3491

T−MONTE−K
MONTE_K

Fig. 9. Maximal path utility with different K

Fig. 9 plots the maximal path utility with different K varying from 5 to
25. From the figure, we can see that under a certain K value, the maximal path
utility delivered by both of the algorithms are increased with the increase of FST.
In addition, T-MONTE-K can deliver better solution in all cases, which further
justifies the above conclusion that T-MONTE-K can deliver better solution with
taking both QoSTP constraints and path utility into account. Furthermore, from
the figure, we can see that under a certain FST, there is no fixed relation between
K value and the maximal path utility. Namely, even adopting large K value (e.g.,
the maximal path utility is 0.3615 when K = 20 and FST = 3500), T-MONTE-
K may deliver a worse solution than the one adopting a small K value (e.g., the
maximal path utility is 0.3657 when K = 15 and FST = 3500). This is because
that the K value is corresponding to a local optimal solution, a larger K can
not ensure more better global solutions to be included in the path finding.

Based on the statistics, on average the maximal path utility delivered by
T-MONTE-K is 0.3586 and by MONET K is 0.2747. T-MONTE-K can deliver
30.5% more for the path utility than MONTE K in their identified optimal social
trust paths.

The Execution Time. In order to investigate the efficiency of T-MONTE-K,
we evaluate the average execution time of the two algorithms.

Fig.10 plots the average execution time of T-MONTE-K and MONTE K under
different BST and FST. From the figure we can see that our T-MONTE-K con-
sumes more execution time than MONTE K in all cases because in addition to the
Forward Search from vs to vt, T-MONTE-K needs to perform Backward Search
procedure. Therefore it spends more execution time than MONTE K. In addi-
tion, under the same FST, the execution time of T-MONTE-K is increased with
the increase of BST. This is because that the more the BST, the more the infor-
mation provided by the Backward Search procedure, then the more the execution
time of the Forward Search procedure in social trust path finding by using this
information.

Find the Optimal Social Trust Path 415

1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900
Backward simulation times=1000

Forward simulation times

A
ve

ra
ge

 C
P

U
 ti

m
e

(S
ec

.)

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200
Backward simulation times=2000

Forward simulation times

A
ve

ra
ge

 C
P

U
 ti

m
e

(S
ec

.)

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400
Backward simulation times=3000

Forward simulation times

A
ve

ra
ge

 C
P

U
 ti

m
e

(S
ec

.)

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600
Backward simulation times=4000

Forward simulation times

A
ve

ra
ge

 C
P

U
 ti

m
e

(S
ec

.)

MONTE_K
T−MONTE−K

1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

1800
Backward simulation times=5000

Forward simulation times

A
ve

ra
ge

 C
P

U
 ti

m
e

(S
ec

.)

MONTE_K
T−MONTE−K

Fig. 10. Execution time of T-MONTE-K and MONTE K

Based on the statistics. on average T-MONTE-K consumes 3.4 times of the
execution time of MONTE K while delivering better solutions in sub-networks.
This is much better than our previously proposed heuristic algorithms H-OSTP
[14] (more than 6 times of the execution time of MONTE K) and MFPB-HOSTP
[16] (more than 7.8 times of the execution time of MONTE K). Since T-MONTE-
K has the same polynomial time complexity (i.e, O(mu)) as MONTE K, it has
very good efficiency in social trust path finding.

6 Conclusion

In this paper, we have proposed T-MONTE-K, an effective and efficient approxi-
mation algorithm, which considers both the QoSTP constraints and the path util-
ity, thus avoiding lots of unnecessary probing of infeasible paths. The results of
extensive experiments conducted based on a real-world dataset demonstrate that
T-MONTE-K can outperform the existing state-of-the-art algorithm MONTE K.

In our future work, we will conduct a more exhaustive experiment using a
larger dataset to investigate the scalability of the approach.

Acknowledgments. This work was partially supported by Natural Science Foundation
of China (Grant Nos. 61303019, 61232006, 61402312, 61402313, 61440053, 61003044),
Australian Research Council DP (DP140103171), Doctoral Fund of Ministry of Educa-
tion of China (20133201120012), and Collaborative Innovation Center of Novel Software
Technology and Industrialization, Jiangsu, China.

References

1. Hang, C., Wang, Y., Singh, M.: Operators for propagating trust and their evalua-
tion in social networks. In: AAMAS 2009, pp. 1025–1032 (2009)

2. Liu, G., Wang, Y., Orgun, M.A.: Optimal social trust path selection in complex
social networks. In: AAAI 2010, pp. 1397–1398 (2010)

3. Adler, P.S.: Market, hierarchy, and trust: The knowledge economy and the future
of capitalism. Organization Science 12(12), 215–234 (2001)

4. Ashri, R., Ramchurn, S., Sabater, J., Luck, M., Jennings, N.: Trust evaluation
through relationship analysis. In: AAMAS 2005, pp. 1005–1011

5. Brass, D.J.: A Socal Network Prespective On Industral/organizational psychology.
Industrial/Organizational Handbook (2009)

6. Dalton, M.: Men Who Manage. Wiley, New York (1959)

416 G. Liu et al.

7. Golbeck, J., Hendler, J.: Inferring trust relationships in web-based social networks.
ACM Transactions on Internet Technology 6(4), 497–529 (2006)

8. Kunegis, J., Lommatzsch, A., Bauckhang, C.: The slashdot zoo: Mining a social
network with negative edges. In: WWW 2009, pp. 741–750

9. Baase, S., Gelder, A.: Computer Algorithms Introduction to Design and Analysis.
Addision Wesley

10. Christianson, B., Harbison, W.S.: Why isn’t trust transitivie? In: Lomas,
M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 171–176. Springer,
Heidelberg (1997)

11. Mansell, R., Collins, B.: Trust and Crime in Information Societies. Edward Elgar
Publishing (2005)

12. Lin, C., Cao, N., Liu, S., Papadimitriou, S., Sun, J., Yan, X.: Smallblue: Social
network analysis for expertise search and collective intelligence. In: ICDE 2009,
pp. 1483–1486 (2009)

13. Miller, R., Perlman, D., Brehm, S.: Intimate Relationships, 4th edn. McGraw-Hill
College (2007)

14. Liu, G., Wang, Y., Orgun, M., Lim, E.P.: A heuristic algorithm for trust-oriented
service provider selection in complex social networks. In: SCC, pp. 130–137 (2010)

15. Liu, G., Wang, Y., Orgun, M.A.: Finding k optimal social trust paths for the
selection of trustworthy service providers in complex social networks. In: ICWS
2011, pp. 41–48

16. Liu, G., Wang, Y., Orgun, M.A., Lim, E.P.: Finding the optimal social trust path
for the selection of trustworthy service providers in complex social networks. IEEE
Transactions on Services Computing (TSC) (2011)

17. Liu, G., Wang, Y., Wong, D.: Multiple qot constrained social trust path selection
in complex social networks. In: TrustCom 2012

18. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection
and earthquake reporting system development. IEEE Transactions on Knowledge
and Data Engineering 25(4), 919–931 (2013)

19. Shin, Y., Lim, J., Park, J.: Joint optimization of index freshness and coverage in
real-time search engines. IEEE Transactions on Knowledge and Data Engineering
24(12), 2203–2217 (2012)

20. Gentle, J., Hardle, W., Mori, Y.: Handbook of Computational Statistics. Springer
(2004)

21. Wang, G., Wu, J.: Multi-dimensional evidence-based trust management with multi-
trusted paths. Future Generation Computer Systems 17, 529–538 (2011)

22. Liu, G., Wang, Y., Orgun, M.A.: Trust transitivity in complex social networks. In:
AAAI 2011, pp. 1222–1229

23. Mccallum, A., Wang, X., Corrada-Emmanuel, A.: Topic and role discovery in social
networks with experiments on Enron and academic email. Journal of Artificial
Intelligence Research 30(1), 249–272 (2007)

24. Tang, J., Zhang, J., Yan, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and
mining of academic social networks. In: KDD 2008, pp. 990–998 (2008)

25. Berger, P., Luckmann, T.: The Social Construction of Reality: A Treatise in the
Sociology of Knowledge. Anchor Books (1966)

26. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: INFOCOM
2001, pp. 834–843

27. Morton, D., Popova, E.: Monte-carlo simulation for stochastic optimization. Ency-
clopedia of Optimization, pp. 2337–2345 (2009)

Find the Optimal Social Trust Path 417

28. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measure-
ment and analysis of online social networks. In: ACM IMC 2007, pp. 29–42 (2007)

29. Chia, P., Pitsilis, G.: Exploring the use of explicit trust link for filtering recom-
menders: A study on epinions.com. Journal of Information Processing 19, 332–344
(2011)

30. Chua, F., Lim, E.P.: Trust network inference for online rating data using generative
models. In: KDD 2010, pp. 889–898

31. Lo, D., Surian, D., Zhang, K., Lim, E.P.: Mining direct antagonistic communities
in explicit trust networks. In: CIKM 2011, pp. 1013–1018

Pricing Strategies for Maximizing Viral
Advertising in Social Networks

Bolei Zhang, Zhuzhong Qian(B), Wenzhong Li, and Sanglu Lu

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

zhangbolei@dislab.nju.edu.cn, {qzz,lwz,sanglu}@nju.edu.cn

Abstract. Viral advertising in social networks is playing an important
role for the promotions of new products, ideas and innovations. It usually
starts from a set of initial adopters and spreads via social links to become
viral. Given a limited budget, one central problem in studying viral adver-
tising is influencemaximization, in which one needs to target a set of initial
adopters such that the number of users accepting the advertising after-
wards is maximized. To solve this problem, previous works assume that
each user has a fixed cost and will spread the advertising as long as the
provider offers a benefit that is equal to the cost. However, the assump-
tion is oversimplified and far from real scenarios. In practice, it is crucial
for the provider to understand how to incentivize the initial adopters.

In this paper, we propose the use of concave probability functions to
model the user valuation for sharing the advertising. Under the new pric-
ing model, we show that it is NP-hard to find the optimal pricing strategy.
Due to the hardness, we then propose a discrete greedy pricing strategy
which has a constant approximation performance guarantee. We also dis-
cuss how to discretize the budget to provide a good trade-off between the
performance and the efficiency. Extensive experiments on different data
sets are implemented to validate the effectiveness of our algorithm in
practice.

Keywords: Viral advertising · Influence maximization · Social networks

1 Introduction

The emergence and proliferation of online social networks such as Facebook,
Twitter and Google+ have greatly boosted the spread of information. People
are actively engaged in the social networks and generating contents at an ever-
increasing rate. Viral advertising, which utilizes information diffusion for the
promotions of new products, ideas and innovations, has attracted enormous
attentions from companies and providers. Compared with TVs, newspapers and
radios which broadcast advertising, viral advertising in social networks has the
effect of “word-of-mouth” which is considered to be more trustworthy. More-
over, the information diffusion between users can spread across multiple links
and trigger large cascades of adoption.
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 418–434, 2015.
DOI: 10.1007/978-3-319-18123-3 25

Pricing Strategies for Maximizing Viral Advertising in Social Networks 419

To start a cascade of viral advertising, one would first incentivize a set of
initial adopters and let them spread the advertising further. For example, pop-
ular e-commerce platforms like Amazon, e-Bay and JD1 all encourage people to
share information of the products they buy in their social networks for adver-
tising. In JD, users could get vouchers if they comment and share the products
information. Suppose there is a limited budget, a question arising naturally is:
How should we distribute the budget, so that the spread of viral advertising can
be maximized. The process can be described as a two-step pricing strategy:
we first offer each user a discriminative price as incentive; The users who accept
the incentive should then share the advertising in social networks.

JD’s strategy is to offer each user uniform price, regardless of their valuations
and influence. Alternatively, we may allocate the budget proportionally so that
users with high influence can be allocated high price. In general, to determine
who should be offered price and how much should be offered to each of them,
it is crucial to understand both user valuations for being initial adopters and
the information diffusion process. From the perspective of users, their valuations
for being initial adopters usually depend on the price offered. For the advertis-
ers, they may expect more users with high influence to share and spread the
information.

A similar problem that has been extensively studied is influence maximiza-
tion. The problem aims to select the most influential set of users as initial
adopters to maximize the spread of influence. However, the underlying assump-
tion that each user has an inherent constant value for being initial adopter may
not be reasonable. In practice, users’ decisions are often not deterministic: They
may decline or ignore the offered price, leading to unpredictability of the infor-
mation spread. In comparison, in this work, we address that the user decisions
for being initial adopters are probabilistic rather than constant. Given the prob-
ability distribution, we study optimal pricing strategies to maximize the viral
advertising under some well-studied diffusion models.

1.1 Our Results

The main contributions of this paper are:

– We introduce a concave probabilistic model in which users’ values are dis-
tributed according to some concave functions. The model is practical and
can characterize different users’ preferences for sharing the advertising in
social networks.

– We formalize the optimization problem and show that it can be reduced to
NP-hard quadratic programming problem. Due to the hardness, we propose
an approximate discrete greedy algorithm with near optimal result. We fur-
ther analyze how to discretize the budget to provide a good tradeoff between
the performance and efficiency.

1 JD(http://www.jd.com) is the largest online direct sales company in China.

http://www.jd.com

420 B. Zhang et al.

– Extensive experiments on different data sets are implemented to validate the
effectiveness of our algorithm. Our algorithm significantly outperforms other
algorithms in almost all cases. In addition, we evaluate the discrete greedy
algorithm with respect to different granularity. The results reveal that our
algorithm can converge asymptotically.

1.2 Related Work

Our work has a strong tie with the problem influence maximization, which was
first proposed by Domingos and Richardson [11,19]. Later, Kempe et al. [14] for-
mulated the problem as a discrete optimization problem, and proposed greedy
algorithm with hill-climbing strategies to find the influential nodes. Due to the
monotonicity and submodularity of the information diffusion process, the algo-
rithm can be proved to achieve constant approximation ratio. Following their
work, extensive researches [8–10,15,21] have studied algorithmic improvement
of the spread of influence in social networks. Despite a lot of progress in choosing
which nodes to select, the problem of how to incentivize the initial nodes is often
neglected.

Another thread of our work is inspired by the problem of revenue maximiza-
tion which was first introduced by Hartline et al. [12]. In order to influence many
buyers to buy a product, a seller could first offer some popular buyers discounts.
The problem then studies marketing strategies like how large the discounts be
and in what sequence should the selling happen. Specifically, the work assumed
that the willingness that each user may pay for a product is drawn from some
given probability distributions. A lot of following works have studied revenue
maximization in social networks. Some of them have considered Nash Equilib-
rium between users for purchasing one product. Different pricing strategies were
designed to maximize the revenue, i.e., uniform pricing [5,7], discriminative pric-
ing [3,22], iterative pricing [1] etc.

In a recent work of Singer [21], the author considered auction based influence
maximization in which each user can bid a cost for being an initial adopter. To
make sure that each user declares the true cost, they designed incentive compat-
ible mechanisms. However, the mechanism requires extra step for each user to
bid a cost and may be cumbersome to implement in practice. Comparatively, we
adopt a pricing strategy with a more natural way for incentivizing each user. In
[10], Demaine et al. proposed partial incentives in social networks to influence
people. The pricing and influence models in our paper generalize the models in
[10] and we further analyze the discrete setting of the problem.

2 Preliminaries

We model the social network as a directed (undirected) graph G = (N , E), where
node set N represents users and edge set E ⊆ N × N represents social relation-
ships between them. Given a limited budget B, a pricing strategy is to distribute
the budget among users to maximize the spread of the viral advertising. In this

Pricing Strategies for Maximizing Viral Advertising in Social Networks 421

section, we first introduce the pricing model and information diffusion models
respectively. Then, we will formulate our optimization problem and establish its
hardness.

2.1 Pricing Model

After distributing the budget, we use the pricing model to characterize users’
valuations for being initial adopters, i.e., how much price is it need to incentivize
a user? In influence maximization, users are assumed to have some constant value
for being initial adopters. However in general cases, the users’ decisions are often
not deterministic. In comparison, we address that users have different valuations
and the valuations are dependent on the allocated price.

In this paper, we propose a probabilistic model in which the user values are
drawn from some prior known distributions: F = {Fi|i ∈ N}. Suppose that user
i is offered a price pi as incentive, then Fi(pi) is the probability that i will accept
the price for being an initial adopter. Literatures like [13,17] have observed that
the marginal gain of user satisfaction decreases as the price increases, which
arises naturally in practical situations as diminishing returns. Accordingly, we
also regard the cumulative functions Fi as concave functions, i.e. for any x and y
in the interval and for any t ∈ [0, 1], Fi(tx+(1−t)y) ≥ tFi(x)+(1−t)Fi(y). Fig. 1
presents some examples of the possible distribution functions. In Fig. 1(a), the
user’s value is distributed uniformly in the range of [0, τ], where τ is a constant
threshold. In Fig. 1(b), the valuation is drawn from Fi(pi) =

√
pi

di+1 , where di is
the degree of user i.

Fig. 1. Examples of user valuation distribution function

2.2 Information Diffusion Models

After distributing the budget, a set of initial adopters S will share the advertising
to trigger a cascade. The advertising will spread in the social networks as a piece
of information. In an information cascade, we say that a node is active if it
adopts the information, otherwise it is called inactive. Initially, only the users

422 B. Zhang et al.

in S are active. The information then spreads via social links to influence more
users. The number of active users after the cascade stops is the spread of the viral
advertising, or the influence of S, denoted as σ(S). Modeling the information
diffusion process has been extensively studied [2,4,6,14,16]. We introduce some
of the most widely used models here.

Coverage model. In the Coverage model [21], each user i is associated with the
set of its neighbors N(i), which is also the influence of user i. The information
will not further spread. So the influence of the S will be σ(S) = |⋃i∈S N(i)|.
Independent Cascade model. In IC model [14], the information starts from S as
follows: At step t, the newly activated nodes in St try to activate their neigh-
bors independently. Each active node u succeeds in activating its neighbor v
with probability μ(u,v). The newly activated nodes are added into set St+1. The
process continues until St = ∅.

Linear Threshold model. In LT model [14], for each neighbor w a node v asso-
ciates a weight ωv,w ≥ 0 where

∑
w∈N(v) ωv,w ≤ 1, and chooses some thresh-

old θv ∈ [0, 1] uniformly at random. The node v is activated at time step t if∑
w∈Nt(v)

ωv,w ≥ θv, where Nt(v) denotes the neighbors of v that are active at
time step t.

2.3 Problem and Optimization Objective

Given a budget B, a pricing strategy will identify a price vector p =
(p1, p2, ..., pn), (

∑n
i pi = B), where pi ∈ R≥0 is the price offered to user i. We

use p−i as the price list offered to users except i. There are two ways for a user
i to get active: On one hand, i may accept the offered price pi with probability
Fi(pi); On the other hand, i could be influenced by other users with probabil-
ity q(S, i), where q(S, i) is a reachability function of the probability that the
nodes in S could influence i under some diffusion models. The function can also
be written as q(S(p−i), i), representing the probability that users accepted p−i

could influence i. Thus, the probability wi(p) that i could get active after the
cascade, can be formulated as:

wi(p) = 1 − (1 − Fi(pi)
︸ ︷︷ ︸

i does not take pi

)(1 − q(S(p−i), i)
︸ ︷︷ ︸
i is not influenced

) (1)

Given the probability that each user gets active, the objective can be formulated
as an optimization problem in which the goal is to maximize overall expected
number of active users after the cascade:

max f(p) =
∑

i∈N
wi(p)

s.t. :
∑

i∈N
pi ≤ B

(2)

Pricing Strategies for Maximizing Viral Advertising in Social Networks 423

Hardness. Now we show that the above optimization problem is NP-hard. In
particular, it is NP-hard even if the social network forms a line structure.

Theorem 1. Identifying the optimal pricing strategy is NP-hard even when the
social network forms line structure.

Proof. Consider an instance of the quadratic programming problem:

min g(p) =
1
2
pQpT + cpT

s.t. :
n∑

i=1

pi ≤ B

where Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and c = (−2, −2, ..., −2, −1). Since pQpT = 2
∑n

i=2 pipi−1,

Q is indefinite. According to [20], the quadratic programming function g(p) is
NP-hard. We show that the programming can be viewed as a special case of the
pricing function f(p).

Given the instance of the quadratic programming problem, we define a cor-
responding instance of the pricing function under the Coverage model where the
social network G forms a line structure as presented in Figure 2.

21 3 n…

Fig. 2. Line structure of the social network

In this case, the probability that a user gets active with pricing vector p is

wi(p) =
{

p1 i = 1
1 − (1 − pi)(1 − pi−1) i ≥ 2

In this way, f(p) = 2
∑n

i=1 pi − ∑n
i=2 pipi−1 is the negative of g(p). So maxi-

mizing function f(p) is equivalent to minimizing the function g(p), which is also
NP-hard.

3 A Continuous Greedy Process

Due to the hardness result from Theorem 1, no polynomial algorithm exists
for the optimization problem unless P = NP . To motivate our approximation

424 B. Zhang et al.

algorithm, in this section, we present a continuous greedy process with constant
approximation ratio. Even though the process takes infinite steps for implemen-
tation, it provides analytic picture behind our main algorithm. Intuitively, the
process allocates the budget smoothly to the users with high influence and low
valuation. It can be formally regarded as a particle p(t) starting from p(0) = 0
and following a certain flow over a unit time interval:

dp
dt

= v(p)

where v(p) is defined as

v(p) = arg max
i∈N

(
f(p + pi) − f(p)

pi
) (pi = ε → 0) (3)

until t = 1.
At each interval, we allocate a small unit of budget (ε → 0) to the user with

maximal marginal gain. Since the marginal gain of each user is a function of
the allocated budget, we have to run the process continuously to get the local
optimum. This process provides good approximation :

Lemma 1. Let the optimal value be OPT , the continuous greedy process has
1 − 1/e approximation ratio, i.e., f(p(1)) ≥ (1 − 1/e)OPT .

The proof of Lemma 1 borrows idea from the problem of maximization of smooth
submodular functions. For the completeness of the proof, we first introduce the
concept of smooth submodular function.

Definition 1. A function f : [0, 1]X → R is smooth monotone submodular
if

– f ∈ C2([0, 1]X), i.e., it has second partial derivatives everywhere.
– For each j ∈ X, ∂f

∂yj
≥ 0 everywhere (monotonicity).

– For any i, j ∈ X (possibly equal), ∂f
∂yi∂yj

≤ 0 everywhere (submodularity).

In Definition 1, ∂f
∂yi∂yj

≤ 0 indicates that a function is smooth submodular if it is
concave along any non-negative direction. Examining the objective formulation
2, it can be easily proved that f satisfies the above conditions so is smooth
submodular. Vondrák et al. [23] showed that the continuous greedy process as
presented above can achieve 1 − 1/e approximation ratio to maximize a smooth
submodular function, which concludes Lemma 1.

4 Pricing Strategies for Viral Advertising

Following the idea of the continuous greedy process, in this section, we consider
discretizing the budget so that the process can run in polynomial time. Our
main result is a discrete greedy algorithm with constant approximation ratio. We
further discuss how the discrete granularity affects the result of the algorithm.

Pricing Strategies for Maximizing Viral Advertising in Social Networks 425

4.1 A Discrete Greedy Strategy

In our discrete pricing strategy, we first divide the budget B into m equal pieces,
denoted as B = {b1, b2, ..., bm}, where bj = B/m for all j ∈ {0, 1, 2, ...,m}.
In this setting, the prices offered to each user are disjoint subsets from B,
namely Ai ⊆ B, Ai ∩ Aj = ∅ for all i, j ∈ N . Thus, the pricing strategy
can be regarded as a mapping problem in which m elements of the budget
set are to be allocated to n users. The objective is then a set function where
the input is a subset from the ground set: For the user set N and pricing set
B, define the new ground set as X = N × B. By associating the variable aij

with user-price pairs, i.e., aij means assigning price bj to user i, the ground set
X = {a11, a12, ..., a1m, a21, a22..., a2m, ..., an1, an2, ..., anm} is the set of all price
elements that can be chosen. Note that each piece of price is replicated n times in
the set X, e.g. the price bj is replicated as a1j , a2j , ..., anj , only one of them can
be chosen for the solution. Slightly abusing notations, we use σ(A) : 2X → R+

as the expected number of active users after the cascade by choosing price set
A =

⋃
i∈N Ai, |A| = m. The problem of finding the optimal pricing strategy

in discrete setting can be described as choosing a set A (|A| = m,A ⊆ X)
of m elements from X to maximize the the expected number of active users
σ(A), with the constraint that only one of {a1j , a2j , ..., anj} can be chosen for
all j ∈ {1, 2, ...,m}.

Coverage Model. We begin by maximizing the objective function under Cov-
erage model. There are two reasons we first consider the Coverage model. On one
hand, the diffusion process under the Coverage model can be regarded as infor-
mation exposures to users, i.e, a user is influenced if and only if one of his/her
neighbors is an initial adopter; Moreover, the Coverage model is simplistic and
exhibits similar properties as the IC and LT model.

To optimize the spread of viral advertising, we first prove that the pricing
function σ(·) is monotone and submodular in the discrete setting. A function
σ(·) is submodular if for any element a ∈ X, for all V ⊆ T , there is σ(V ∪{a})−
σ(V) ≥ σ(T ∪ {a}) − σ(T). Submodularity implies that the marginal gain of
choosing an element decreases as the number of chosen elements increases.

Theorem 2. The pricing function σ(·) : 2X → R+ is monotone submodular
under Coverage model if the cumulation distribution functions of user valuation
functions Fi(·) : R+ → [0, 1], i ∈ N are non-decreasing concave functions.

Proof. Monotonicity Obviously, by adding a new pricing element aij to the
outcome set A, namely assigning the jth piece of price to user i, the probability
that user i could get active will not decrease. Accordingly, the probability that
user i influences other users q({i}, ·) will also not decrease, which concludes that
σ(·) is non-decreasing monotone.

Submodularity For submodularity, let δ(aij) denote the marginal gain of
σ(·) by adding the element aij . It can be formulated as the sum of increased
probability from all users:

426 B. Zhang et al.

δ(aij) = σ(Aj ∪ {aij}) − σ(Aj) = δi(aij) +
∑

k∈N\{i}
δk(aij) (4)

where Aj is set of first j − 1 price elements that have been allocated, and δi(aij)
is the marginal gain of user i. As the class of submodular functions is closed
under non-negative linear combinations, we only need to prove that the function
for each user is submodular respectively.

For user i, by adding a price element aij , the increased probability is:

δi(aij) = wi(Aj ∪ {aij}) − wi(Aj)

= (Fi(Aj ∪ {aij}) − Fi(Aj))(1 − q(S(Aj), i))

Since submodularity is the discrete analog of concavity, there is Fi(V ∪ {aij}) −
Fi(V) ≥ Fi(T ∪ {aij}) − Fi(T) if V ⊆ T . Meanwhile, 1 − q(S(Aj), i) does not
change with aij , we can conclude that wi(V ∪ {aij}) − wi(V) ≥ wi(T ∪ {aij}) −
wi(T) if V ⊆ T , which indicates that wi(·) is submodular.

Similarly, for any other user k, the increased probability can be formulated
as:

δk(aij) = (q(S(Aj ∪ {aij}), k) − q(S(Aj), k))(1 − Fk(Aj))

In the Coverage model, q(S, i) = 1 means i is a neighbor of S, and 0 otherwise.
According to the monotonicity of S(·), S(V) ⊆ S(T) if V ⊆ T . So by adding
an element aij , the smaller set S(V ∪ {aij}) − S(V) is more likely to influence
a node k, i.e., q(S(V ∪ {aij}), k) − q(S(V), k) ≥ q(S(T ∪ {aij}), k) − q(S(T), k).
So wk(·) is also submodular.

Summing up the increased probabilities of all users, we have σ(V ∪ {aij}) −
σ(V) ≥ σ(T ∪ {aij}) − σ(T) if V ⊆ T , showing that σ(·) is submodular.
�

According to the work of Nemhauser et al. [18], finding a set A of with uniform
matroid (m) to maximize the monotone submodular function is NP-hard and
a greedy algorithm with hill-climbing strategy approximates the optimal to a
factor of 1 − 1/e. Let the optimal value in the discrete setting be OPTd, we can
conclude our main theorem as:

Theorem 3. A greedy hill-climbing strategy can achieve 1 − 1/e approximation
ratio of the optimal pricing strategy in the discrete setting, i.e., f(A) ≥ (1 −
1/e)OPTd.

Following Theorem 3, we now present our greedy pricing strategy in Algorithm
1. In each step of the algorithm, we greedily choose the user that has the largest
marginal gain by allocating a piece of price.

IC Model and LT Model. As for the IC model and LT model, we show
that the pricing function σ is still monotone and submodular. By adopting a
different diffusion model, we have a different diffusion function q. Recall that

Pricing Strategies for Maximizing Viral Advertising in Social Networks 427

Algorithm 1. DiscreteGreedy(G,B)
A ← ∅;
for j ← 1 to m do

s ← 0, max ← −1;
for i ∈ N do

δ(aij) ← σ(Aj ∪ {aij}) − σ(Aj);
if δ(aij) > max then

s ← i, max ← δ(aij);

A ← A ∪ {asj};

return A

by adding a new pricing element aij , the marginal gain of σ(·) is the sum of
the increased probability from all users. For user i, the function σi(·) is still
submodular since the reachability function remains the same. For any other user
k (k �= i), the marginal gain is δk(aij) = (q(S(Aj ∪ {aij}), k) − q(S(Aj), k))(1 −
Fk(Aj)). Since S(·) is monotone, σ(·) is submodular if and only if the reachability
function q(S, k) is submodular. In [14], Kempe et al. have already showed that
the functions are submodular under the IC and LT model [14]. So the pricing
function σ is also submodular.

Lemma 2. For submodular influence functions like IC and LT model, the pric-
ing function σ is also monotone and submodular, and Algorithm 1 approximates
the optimal to a factor of 1 − 1/e.

4.2 How to Choose m?

Despite the near optimal results from Algorithm 1, for more general situations,
we would like to know how it approximates the optimal value OPT . In this
section, we will discuss how to choose the discrete granularity m to achieve a
good tradeoff between the performance and efficiency.

Apparently, by increasing m to ∞, the discrete greedy algorithm is close
to the continuous greedy process which also takes infinite steps. To the other
extreme, if m decreases to 1, the algorithm is simply choosing one user to allo-
cate. To achieve a good trade-off between the performance and the algorithm effi-
ciency, we focus on deriving the gap between the continuous process f(p(1)) and
the discrete greedy strategy f(A), since the continuous greedy process approxi-
mates well to the optimal value OPT .

Lemma 3. When m ≥ O(n), f(A) ≥ (1−1/e−o(1))OPT with high probability.

Proof. After allocating first j − 1 pieces of the total budget (Aj = j−1
m B), the

continuous process will get a price vector pj and the greedy pricing strategy
will get a set of Aj+1. Observe the marginal gain by increasing price a = B/m.
For the continuous process, the marginal gain is δ(a∗) = f(pj+1)− f(pj), where
a∗ = pj+1 − pj and |a∗| = B/m. For the discrete greedy strategy, we choose

428 B. Zhang et al.

aij at the jth step, where i = arg maxi∈N (f(Aj ∪ {aij}) − f(Aj)). Consider the
marginal gain δ(aij) = f(pj + aij) − f(pj). Taking Taylor series and bounding
the lower items, we have:

δ(a∗) = δ(aij) + R(ξ) (5)

where ξ = (1 − c)a∗ + caij , c ∈ [0, 1]. For R(ξ), there is:

R(ξ) =
∂δ

∂ξ
(a∗ − aij) =

∑

k∈N

∂δ

∂ξk
a∗
k − ∂δ

∂ξi
aij

≤ (
∂f

∂pj
− ∂f

∂pj+1
)a − ∂δ

∂ξi
a = Ca

(6)

where C is a constant. So when a ≤ O(1/n), namely m ≥ n, the error R(ξ)
is within O(1/n), which concludes that δ(a∗) ≈ δ(aij). Accordingly, there is
f(A) ≥ (1 − 1/e − o(1))OPT with high probability.
�

5 Evaluations

In addition to the provable performance guarantee, in this section, we conduct
extensive simulations to evaluate our DiscreteGreedy pricing strategy. We first
compare our proposed algorithm with several intuitive heuristics. Then we will
observe how the discrete granularity of the budget affects the results of the
DiscreteGreedy strategy.

5.1 Experiment Setup

Our experiments are conducted on 3 real social network data sets. The first is
CondMat data set which contains 23, 133 nodes and 93, 497 undirected edges.
The nodes represent authors and an undirected edge (i, j) represents coauthor
relationships between them. The second is Youtube data set which contains
560, 123 nodes and 1, 976, 329 undirected edges. The nodes are users and the
edges indicates friendship relationships between them. The last data set is Weibo
data set which has 877, 391 nodes and 1, 419, 850 directed edges. Weibo is a
Twitter-like mirco blog in China. The directed edge (i, j) means that user i is
following j. All 3 data sets exhibit small world, high clustering complex network
structural features.

Since our algorithm is applicable to any forms of concave functions of user
valuations, we manually set the distributions in the experiments. We first con-
sider a uniform symmetric setting in which Fi(pi) = pi

τ . The user values are
distributed uniformly in the range (0, τ]. The second distribution function we
consider is Fi(pi) =

√
pi

τ . The function also has a threshold τ and the accep-
tance probability is proportional to the square root of the offered price. We also
consider differential valuation functions where the user valuation is a function of
their degree: Fi(pi) = r+di+1

r+pi

pi

di+1 . The parameter r is used to control the shape

Pricing Strategies for Maximizing Viral Advertising in Social Networks 429

of the curve: a larger value of r indicates a steeper curve. The threshold here is
di + 1.

For the information diffusion models, since all of them exhibit monotone sub-
modular properties, we mainly conduct experiments under the Coverage model.
In this model, the influence of user i is the set of users that follows i in Weibo
data set. In CondMat and Youtube data set, it is the set of friends\coauthors
of user i. We also considered the IC and LT model. As the information diffusion
process under these two models are stochastic processes, we need to take Monte
Carlo methods to generate fixed graphs and take the average influence of differ-
ent probability results. In the IC model, without loss of generality, we assume
uniform diffusion probability μ on each edge and assign μ to be 0.01. In the LT
model, the weight of a directed edge (i, j) is 1

dj
, so the sum of the weights will

not exceed 1.

Comparison Methods. In our DiscreteGreedy algorithm, we discretize the
budget into O(n) pieces in our DiscreteGreedy pricing strategy to obtain near
optimal pricing solutions. We compare our greedy algorithm with the following
3 heuristics:

– Uniform: The Uniform pricing strategy adopts a simple idea that all users
get the same price pi = B

n , regardless of users’ influence and valuation.
– Proportional : In the Proportional pricing strategy, the price offered to user

i is proportional to di, i.e., pi = di∑
j∈N dj

B.
– FullGreedy : We use the greedy algorithm in influence maximization to select

the initial adopters and offer each of them the threshold price.

5.2 Results

The Spread of Viral Advertising. In Fig. 3 to 5, we separately present the
results w.r.t different valuation functions under the Coverage model. The x-axis
represents the total budget that is allocated. The y-axis is the active set size of
the users after cascade, or the spread of the viral advertising.

We first evaluate the viral advertising spread when user values are distributed
as Fi(pi) = pi

τ . In this case, since the valuation function grows linearly to the
threshold τ , the marginal gain of a user will remain the same in the range
pi ∈ (0, τ]. Therefore, the FullGreedy algorithm has the same result as the
DiscreteGreedy algorithm, which will not be presented here. Obviously from
Fig. 3(a) to 3(c), our DiscreteGreedy algorithm outperforms other heuristics
significantly. The results of the Proportional strategy grow almost linearly as the
allocated budget increases. There are two reasons for this: First, the probability
for a user to accept the price is linear as F ; Second, there are not much overlap
between the influenced users in this case. There is a large gap between the
DiscreteGreedy and the Proportional strategies, indicating that allocating the
budget more concentratedly may have better result. In the Uniform algorithm,
the price offered to each user is quite low. So few users might accept to be initial
adopters, leading to poor performance of the algorithm in all 3 data sets. This
illustrates that differential pricing strategy is necessary for the viral advertising.

430 B. Zhang et al.

(a) CondMat (b) Youtube (c) Weibo

Fig. 3. The spread of viral advertising with valuation function Fi(pi) = pi
τ

In Fig. 4, we set the pricing function as Fi(pi) =
√

pi

τ . In this case, the
users are more likely to be initial adopters with small amount of price. The user
who has the maximal marginal gain at beginning may not hold as the allocated
budget increases. The FullGreedy allocates each user full prices τ , so it has a
worse result than the DiscreteGreedy strategy. Both the Proportional and the
Uniform algorithm perform better than in Fig. 4, due to the reason that users
with low allocated price also have a higher probability to be active. However,
the performance of the 3 heuristics vary distinctly in different data sets.

(a) CondMat

(b) Youtube (c) Weibo

Fig. 4. The spread of viral advertising with valuation function Fi(pi) =
√

pi
τ

Fig. 3 presents the results with the valuation distribution function as Fi(pi) =
r+di+1

r+pi

pi

di+1 . In this function, users have different valuation distribution functions
which is related with their degree. For a user with degree di, the threshold will
be di + 1. We set r = 10 so the valuation function has a steeper curve than

Pricing Strategies for Maximizing Viral Advertising in Social Networks 431

the above two functions. In this way, the FullGreedy strategy performs even
worse since the marginal gain of each user decreases very quickly when the
allocated price increases. Note that the threshold is actually not necessary in
practice. The FullGreedy strategy is infeasible if users don’t have a threshold.
In the Proportional algorithm, as the price offered increases proportionally with
users’ degree, the probability that different users accept the price are almost the
same. Therefore, it still grows linearly in this case. The Uniform strategy is quite
inefficient in large data sets such as Youtube and Weibo.

(a) CondMat

(b) Youtube (c) Weibo

Fig. 5. The spread of viral advertising with valuation function Fi(pi) = r+di+1
r+pi

pi
di+1

In Figure 6(a) and Figure 6(b), we fix the user valuation function as Fi(pi) =√
pi

τ and conduct the experiments under the IC model and LT model. As the
information diffusion processes are stochastic, we simulate the graph massive
times (1000) and conduct the experiments on a smaller sample of the Weibo
data set. As shown in Fig 6, our DiscreteGreedy strategy still has the best
performance.

The Accuracy. Finally, we run the DiscreteGreedy strategy in CondMat data
set w.r.t different granularity. We discretize the budget into m pieces where
m ranges from 1 to 10n. The results are presented in Table 1. We start from
m = 1 (n/m = 23, 333) and gradually increase m to n (n/m ≈ 1). Apparently,
the active set size converges when m approaches n, i.e. n/m ≈ 1. When user val-
uations are linear functions, i.e., when Fi(pi) = pi

τ , the DiscreteGreedy strategy
is likely to pay the current selected user full price. So the results can converge
when the granularity is the threshold τ . In other cases, though the active set

432 B. Zhang et al.

(a) IC model (b) LT model

Fig. 6. The spread of advertising in the Weibo data set in the IC and LT model

size converges slower, the results can stabilize when m → n. When m > n, the
result is not likely to grow much.

Table 1. Active set size in CondMat data set w.r.t. different granularity

O(n/m)
Fi pi

5

√
pi
τ

r+di+1
r+pi

pi
di+1

23,133 281.00 281.00 277.14

1,000 3309.24 3620.32 1541.26

100 3452.58 5296.93 1605.29

10 3485.00 6939.77 1608.26

1 3485.00 7599.42 1609.14

0.1 3485.00 7600.15 1609.21

6 Conclusion

In this work, we studied optimal pricing strategies in a social network to maxi-
mize viral advertising with budget constraint. We formalized the pricing strategy
as an optimization problem and established its hardness. A novel DiscreteGreedy
algorithm with near optimal results was proposed, and the tradeoff between the
performance and efficiency was discussed. Extensive evaluations showed that our
DiscreteGreedy algorithm outperforms other intuitive heuristics significantly in
almost all cases. Moreover, the DiscreteGreedy algorithm can converge to a hight
accuracy if the budget is discretized properly.

For possible future works, we are interested in the following aspects. First, we
would like to study the user valuation distributions empirically, i.e., how much
price does it need to incentivize a user. Second, we aim to improve the algorithm
efficiency, especially in the IC and LT models. Finally, we may consider other
factors that influence users’ decisions to implement real applications.

Pricing Strategies for Maximizing Viral Advertising in Social Networks 433

Acknowledgments. This work is partially supported by the National Natural Sci-
ence Foundation of China under Grant No. 61202113, 61472181, 61321491, 91218302,
61373128; Jiangsu Key Technique Project (industry) under Grant No. BE2013116; EU
FP7 IRSES MobileCloud Project under Grant No. 612212; the Fundamental Research
Funds for the Central Universities under Grant No. 20620140513; NJU Graduate Inno-
vation Foundation Project (No. 2013CL09). And this work is also partially supported
by Collaborative Innovation Center of Novel Software Technology and Industrializa-
tion.

References

1. Akhlaghpour, H., Ghodsi, M., Haghpanah, N., Mirrokni, V.S., Mahini, H., Nikzad,
A.: Optimal iterative pricing over social networks (extended abstract). In: Saberi,
A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 415–423. Springer, Heidelberg (2010)

2. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social
networks. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 7–15. ACM (2008)

3. Arthur, D., Motwani, R., Sharma, A., Xu, Y.: Pricing strategies for viral mar-
keting on social networks. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929,
pp. 101–112. Springer, Heidelberg (2009)

4. Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-
created content. In: Proceedings of the 10th ACM Conference on Electronic Com-
merce, pp. 325–334. ACM (2009)

5. Candogan, O., Bimpikis, K., Ozdaglar, A.: Optimal pricing in networks with exter-
nalities. Operations Research 60(4), 883–905 (2012)

6. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence
in twitter: The million follower fallacy. In: ICWSM 2010, pp. 10–17 (2010)

7. Chen, W., Lu, P., Sun, X., Tang, B., Wang, Y., Zhu, Z.A.: Optimal pricing in social
networks with incomplete information. In: Chen, N., Elkind, E., Koutsoupias, E.
(eds.) WINE 2011. LNCS, vol. 7090, pp. 49–60. Springer, Heidelberg (2011)

8. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 199–208. ACM (2009)

9. Chierichetti, F., Kleinberg, J., Panconesi, A.: How to schedule a cascade in an arbi-
trary graph. In: Proceedings of the 13th ACM Conference on Electronic Commerce,
pp. 355–368. ACM (2012)

10. Demaine, E.D., Hajiaghayi, M., Mahini, H., Malec, D.L., Raghavan, S., Sawant,
A., Zadimoghadam, M.: How to influence people with partial incentives. In:
Proceedings of the 23rd International Conference on World Wide Web, pp. 937–
948. International World Wide Web Conferences Steering Committee (2014)

11. Domingos, P., Richardson, M.: Mining the network value of customers. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 57–66. ACM (2001)

12. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over
social networks. In: Proceedings of the 17th International Conference on World
Wide Web, pp. 189–198. ACM (2008)

13. Ioannidis, S., Chaintreau, A., Massoulié, L.: Optimal and scalable distribution of
content updates over a mobile social network. In: INFOCOM 2009, pp. 1422–1430.
IEEE (2009)

434 B. Zhang et al.

14. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

15. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429. ACM (2007)

16. Lin, S., Wang, F., Hu, Q., Yu, P.S.: Extracting social events for learning better
information diffusion models. In: Proceedings of the 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 365–373. ACM
(2013)

17. Marshall, A.: Principles of economics. Digireads. com (2004)
18. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for

maximizing submodular set functions. Mathematical Programming 14(1), 265–294
(1978)

19. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral market-
ing. In: Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 61–70. ACM (2002)

20. Sahni, S.: Computationally related problems. SIAM Journal on Computing 3(4),
262–279 (1974)

21. Singer, Y.: How to win friends and influence people, truthfully: influence maxi-
mization mechanisms for social networks. In: Proceedings of the Fifth ACM Inter-
national Conference on Web Search and Data Mining, pp. 733–742. ACM (2012)

22. Singer, Y., Mittal, M.: Pricing mechanisms for crowdsourcing markets. In:
Proceedings of the 22nd International Conference on World Wide Web, pp. 1157–
1166. International World Wide Web Conferences Steering Committee (2013)

23. Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: Proceedings of the 40th Annual ACM Symposium on The-
ory of Computing, pp. 67–74. ACM (2008)

Boosting Financial Trend Prediction
with Twitter Mood

Based on Selective Hidden Markov Models

Yifu Huang1, Shuigeng Zhou1(B), Kai Huang1, and Jihong Guan2

1 Shanghai Key Lab of Intelligent Information Processing,
School of Computer Science, Fudan University, Shanghai 200433, China

{huangyifu,sgzhou,kaihuang14}@fudan.edu.cn
2 Department of Computer Science and Technology,

Tongji University, Shanghai 201804, China
jhguan@tongji.edu.cn

Abstract. Financial trend prediction has been a hot topic in both
academia and industry. This paper proposes to exploit Twitter mood to
boost financial trend prediction based on selective hidden Markov mod-
els (sHMM). First, we expand the profile of mood states (POMS) Bipo-
lar lexicon to extract rich society moods from massive tweets. Then, we
determine which mood has the most predictive power on the financial
index based on Granger causality analysis (GCA). Finally, we extend
sHMM to combine financial index and the selected Twitter mood to pre-
dict next-day trend. Extensive experiments show that our method not
only outperforms the state-of-the-art methods, but also provides control-
lability to financial trend prediction.

1 Introduction

Financial trend prediction has been a hot research and practice topic in both
academia and industry. The purpose of financial trend prediction is to predict the
ups and downs of financial trends by building models based on historical financial
data [11,15,23,36]. Besides historical financial data, more and more additional
indictors such as news reports [14,26], Twitter mood [2,20,27,28] and trading
relationship [30] have been used to improve financial trend prediction.

According to behavior finance [21], society mood is correlated with and even
has predictive power on public financial index. Si et al. [27] modeled society mood
of Twitter to support financial trend prediction. They utilized topic-based model
to extract sentiments from Twitter posts, and then regressed the stock index and
the sentiment series in an autoregressive framework. They achieved improved
prediction performance when taking advantage of Twitter mood. However, in
addition to prediction accuracy, controllability is also an important issue in
financial trend prediction. Some works [4,7] modeled controllability on selective
prediction—a prediction framework that can qualify its own prediction results
and reject the outputs when they are not confident enough. Selective predic-
tion can provide a trade-off between coverage (indicating how many predictions
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 435–451, 2015.
DOI: 10.1007/978-3-319-18123-3 26

436 Y. Huang et al.

Massive Tweets

Mood Extraction via
POMS Bipolar and

WordNet

Twitter Moods

Mood Evaluation via
GCA

Financial
Growth Rates

Train Up

Multi-stream
sHMM

Predict
Financial Trends

Selected
Twitter Moods

Down

Don’t
Know

Fig. 1. The workflow of our approach

are made) and accuracy (indicating how many predictions are correct). This
mechanism allows the users to interfere the prediction process, which is a desir-
able feature from the practice point of view. Three years ago, hidden Markov
model (HMM) was introduced to the selective prediction framework, which leads
to the selective hidden Markov models (sHMM) [23].

In this paper, to further boost financial trend prediction, we propose to com-
bine Twitter mood and sHMM so that we can not only achieve high prediction
performance but also obtain good controllability to financial trend prediction.
To the best of our knowledge, this is the first attempt to exploit Twitter mood to
predict financial trend with controllability. Concretely, we first use the profile of
mood states (POMS) [18] Bipolar lexicon expanded by WordNet [19] to efficiently
extract six-dimensional society moods from massive tweets, including composed-
anxious, agreeable-hostile, elated-depressed, confident-unsure, energetic-tired and
clearheaded-confused. Second, we perform Granger causality analysis (GCA) [9]
between financial index and each Twitter mood to effectively determine which
Twitter mood has the most predictive power on the index.

Then, we extend sHMM to multiple data streams so that historical financial
data and selected Twitter mood can be combined to train the sHMM. Finally,
we identify low-quality states of the trained sHMM according to given coverage
and prevent predictions that are made from the low-quality states. Extensive
experiments over real datasets show that our method not only outperforms the
state-of-the-art methods, but also provides controllability to financial trend pre-
diction. Fig. 1 illustrates the workflow of our approach.

The rest of this paper is organized as follows: Section 2 reviews the related
work and highlights the differences between our work and major existing meth-
ods. Section 3 introduces the details of Twitter mood extraction and evaluation.
Section 4 extends sHMM to combine index data and Twitter mood to pre-
dict financial trend. Section 5 presents performance evaluation and comparison.
Finally, Section 6 concludes the paper.

Boosting Financial Trend Prediction 437

2 Related Work

The purpose of financial trend prediction is to build models based on historical
financial data and then employ the built models to predict the trend of future
financial data. Up to now, various models have been proposed and different
data were exploited. Existing works focus mainly on two aspects: data selection
and model selection. For data selection, Idvall and Jonsson [11], Lin et al. [15],
Pidan and El-Yaniv [23] and Zhang [36] used historical financial data only to
predict financial trend, while Bollen et al. [2], Mittal et al. [20], Si et al. [27]
and Sprenger et al. [28] combined historical financial data with some additional
indicators such as Twitter mood to predict. As for model selection, Bollen et
al. [2] exploited non-linear Self-Organizing Fusion Neural Networks (SOFNN)
model, Si et al. [27] employed linear Vector Autoregression (VAR) model, while
Idvall and Jonsson [11], Pidan and El-Yaniv [23], and Zhang [36] proposed HMM
based methods. Since we do prediction by considering historical financial trends
and Twitter moods together, some works [3,33,34] about how to model multiple
time series that may correlate with each other and how to use multiple time
series together to make prediction, are also highly related. The closest works to
ours are [2], [23] and [27]. In what follows, we give a detailed description of the
three methods and highlight the differences between them and our method.

Bollen et al. [2] investigated whether society moods have predictive on stock
index. The authors extracted society moods from tweets through a lexicon called
Google-POMS. Then, they performed a non-linear model called SOFNN to pre-
dict future trend. Major technical differences between their work and ours are:
They used a lexicon called Google-POMS for Twitter mood extraction, which
is not publicly available. Instead, we build a new lexicon by expanding POMS
Bipolar with WordNet. Considering the importance of controllability, we utilize
the sHMM rather than their SOFNN model to provide controllability to the
prediction process.

Pidan and El-Yaniv [23] introduced the selective prediction framework into
HMM, and addressed the importance of compromising coverage to gain better
accuracy in a controlled manner. This method can identify low-quality HMM
states and prevents predictions at those states. However, the training sequence
of this model is only historical financial data. In this paper, we extend the sHMM
to adopt both historical financial data and Twitter mood as input to boost the
prediction performance.

Si et al. [27] proposed to leverage topic based sentiments from Twitter to
help to predict the stock market. The authors utilized continuous Dirichlet pro-
cess mixture (DPM) model to extract sentiments from Twitter posts, and then
regressed the stock index and the sentiment time series in an autoregressive
framework. They focused mainly on topic based sentiment analysis of tweets
and used a simple prediction model, while we combine lexicon-based Twitter
mood extraction and sHMM — an advanced model with controllability.

438 Y. Huang et al.

3 Mood Extraction and Evaluation

In this section, we extract and evaluate Twitter moods. Our aim is to predict
public financial index, so we focus on analyzing sentiments of global tweets. First,
we build a sentiment lexicon based on POMS Bipolar and WordNet. Then, we
leverage the MapReduce framework to retrieve Twitter moods from massive
tweets. Finally, we evaluate the predictive power of different Twitter moods via
GCA, and determine the most predictive Twitter mood.

3.1 Basics of Sentiment Analysis

Behavior finance [21] shows that society mood has powerful influence on society
decision. Furthermore, society mood is correlated with and even has predic-
tive power on public financial index. To acquire society moods, we can analyze
the sentiments of social media such as tweets that are fresh opinions shared by
citizens. Sentiment analysis, a.k.a. opinion mining [17,22], is an application of
Natural Language Processing (NLP) that aims at extracting subjective informa-
tion such as author attitudes from texts [16,25]. Author attitudes may reflect
the judgements or opinions of the authors, mood states or sentiments that the
authors want to disseminate to the public. A major task of sentiment analysis is
to extract multi-dimensional polarities from texts. Generally, there should be a
pre-defined sentiment lexicon [10,32] for each polarity. A polarity is a time series
obtained by first counting the sentiment word frequencies and then aggregating
the frequencies in terms of a certain time granularity.

3.2 Expanding POMS Bipolar Lexicon by WordNet

According to the research of multi-dimensional sentiment analysis, human mood
is very rich in social media, and a piece of text may contain multiple senti-
ments such as calm and agreement. POMS [18] is a questionnaire designed by
psychologists to assess human mood states, and it already has three versions,
namely, POMS Standard, POMS Brief and POMS Bipolar. POMS Bipolar con-
sists of 6 polarities called composed-anxious (Com.), agreeable-hostile (Agr.),
elated-depressed (Ela.), confident-unsure (Con.), energetic-tired (Ene.) and
clearheaded-confused (Cle.), respectively. Each polarity contains 12 adjectives,
and each of the 12 adjectives can increase either positive or negative polarity.

Due to the small size of the POMS Bipolar lexicon, it cannot capture all
sentiments from texts in practice. So there should be some method to expand
the POMS Bipolar lexicon. This paper employs WordNet synsets to expand
the POMS Bipolr lexicon. WordNet [19] is an English language lexicon that
subsumes English words into groups of synonyms called synsets. By mapping
72 words in the POMS Bipolar lexicon to their WordNet synsets, we get an
expanded lexicon consisting of 638 words.

Boosting Financial Trend Prediction 439

Algorithm 1. Twitter mood extraction

1: def Map(date d, tweet t)
2: v ← Analyze(Stem(Filter(t)))
3: Emit(date d, vector v)
4: end def

1: def Reduce(date d, vectors [v1, v2, . . .])
2: vavg ← Average([v1, v2, . . .])
3: Emit(date d, vector vavg)
4: end def

3.3 Mood Extraction from Massive Tweets

Because of the massive amount of tweets, we leverage the MapReduce [6] frame-
work to efficiently extract Twitter moods. The algorithm is outlined in Algo-
rithm 1.

In the Map stage, the Filter method discards tweets containing spam key-
words such as “http:” and “www.”, and keeps tweets containing subjective
phrases such as “i feel” and “makes me”. The Stem method normalizes terms in
a tweet by eliminating prefixes and suffixes. The Analyze method computes the
six-dimensional sentiment vector of a tweet using the expanded POMS Bipolar
lexicon. In the Reduce stage, we compute the average sentiment vector of each
trading day.

3.4 Mood Evaluation via Granger Causality Analysis

After sentiment analysis of tweets, we get six-dimensional sentiment series. Fol-
lowing that, we need to effectively evaluate them to determine which mood can
help mostly predict market trend. GCA was first proposed by Clive Granger [9],
it is a statistical hypothesis test for determining whether one time series is useful
in forecasting another. Clive Granger argued that causality in economics could
be reflected by measuring the ability of predicting the future values of a time
series using past values of another time series. Formally, a time series X is said
to Granger-cause another time series Y if it can be shown, usually through a
series of t-test and F -test on some lagged values of X and Y , that those X values
have statistically significant influence on the future values of Y . Formally, the
following two equations hold:

Yt = y0 +
lag∑

i=1

yiYt−i + εt, (1)

Yt = y0 +
lag∑

i=1

yiYt−i +
lag∑

i=1

xiXt−i + εt. (2)

Above, t and i are time variables (in days), and lag is the upper bound of lagged
days. We perform GCA in the same way as [8] between the growth rate of finan-
cial index (Y) and each Twitter mood (X). We determine the Twitter mood
that has the most predictive power and its corresponding lagged value accord-
ing to the following two rules: 1) find which pvalue is at statistically significant

440 Y. Huang et al.

level (pvalue ≤ 0.1); 2) find which pvalue decreases significantly comparing to
its precursor (difference <-0.25). The first rule is for selecting the Twitter
mood with the corresponding lagged days that has significant predictive power
to the growth rate of financial index. The second rule is for guaranteeing that
the selected Twitter mood of a certain day can provide significant improvement
on predictive power comparing to that of the preceding day. The parameter
lag of the selected Twitter mood is further used as the encoding length of the
observation in our prediction model.

4 The Multi-stream sHMM

Here we extend sHMM to handle multi-streams. We call the extended model
multi-stream sHMM, or msHMM in short. First, we introduce the basic concepts
of HMM. Then, we briefly introduce sHMM. And finally, we present multi-stream
sHMM, including the training and prediction processes as well as model evalua-
tion with a large number of random starts based on the MapReduce framework.

4.1 HMM

HMM is a generative probabilistic model with latent states, where hidden state
transitions and visible observation emissions are assumed to be Markov pro-
cesses. Given an observation sequence O={o1, o2, ..., oT } that is generated by a
HMM λ, we associate O with a latent state sequence S={s1, s2, ..., sT } that most
likely produces O. λ can be formally defined as a quintuple {N,M,π,A,B}.
Here, N is the number of states in the state set Q={q1, q2, ..., qN}; M is the
number of observations in the observation set U={u1, u2, ..., uM}; π is the ini-
tial probability vector of states and πi=P (s1=qi) is the initial probability of state
qi; A is the transition probability matrix of states and aij=P (st+1=qj |st=qi) is
the transition probability from state qi to state qj ; B is the observation emission
probability matrix of states and bij=P (ot=uj |st=qi) is the emission probability
of observation uj at state qi.

4.2 sHMM

Selective prediction [4,7] is a prediction framework that can qualify its own
prediction results and reject outputs if they are not confident enough. Pidan
and El-Yaniv [23] introduced the selective prediction framework [7] to HMM,
and thus developed sHMM. As in [23], we add state label pi, empirical visit rate
vi and empirical state risk ri to each state qi, and add reject subset RS and
heavy state qh to HMM λ. For better understanding sHMM and the following
multi-stream sHMM, we recall the major definitions of sHMM as follows in the
context of financial trend prediction.

Definition 1. Given an observation sequence O={o1, o2, ..., oT } (indicating
historical financial trend), a relative label sequence L={l1, l2, ..., lT } (indicating

Boosting Financial Trend Prediction 441

next-day financial trend) and a HMM λ, the state label pi denotes the most
probable label that state qi should have. Formally,

pi = arg max
l=up,down

T∑

t=1,lt=l

γti. (3)

Above, γti=P (st=qi|O, λ) denotes the probability that the HMM λ stays at state
qi at time t, which can be computed by the forward-backward procedure [24].

Definition 2. Given an observation sequence O={o1, o2, ..., oT } and a HMM
λ, the empirical visit rate vi denotes the fraction of time that the HMM λ spends
at state qi, i.e.,

vi =
1
T

T∑

t=1

γti. (4)

Definition 3. Given an observation sequence O={o1, o2, ..., oT }, a relative
label sequence L={l1, l2, ..., lT } and a HMM λ, the empirical state risk ri denotes
the rate of erroneous visits to state qi. Formally,

ri =
1
T

∑T
t=1,lt �=pi

γti

vi
. (5)

Furthermore, we sort all HMM states by their empirical state risks in descend-
ing order and record them as Qd={qd1 , qd2 , ..., qdN

} (for each j < k, rdj
≥ rdk

).
The low-quality HMM states, also called reject states, constitute the reject subset
RS. Predictions at those states are prevented.

Definition 4. Given a coverage bound CB, we label the reject states sequentially
until their cumulative empirical visit rate

∑K
j=1 vdj

exceeds 1-CB. Formally, the
reject subset RS is defined as

RS = {qd1 , qd2 , ..., qdK
|

K∑

j=1

vdj
≤ 1 − CB ,

K+1∑

j=1

vdj
> 1 − CB}. (6)

Definition 5. Given a visit bound VB, state qdK+1 is identified as a heavy state
qh if its visit rate vdK+1 > VB.

The heavy state qh is the cause of coarseness problem as described in [23],
and it should be recursively refined in the training stage. Another issue should be
taken into consideration in practice is scaling, because floating point underflow
can easily happen in the forward-backward procedure that is the fundamental
of HMM. We handle it with the solution provided by [24].

4.3 Multi-stream sHMM

To combine financial index and Twitter moods to sHMM, we extend sHMM to pro-
cess multiple data streams. We treat historical financial trend and Twitter mood

442 Y. Huang et al.

trends as multiple observation sequences generated by sHMM, and formulate mul-
tiple observation sequences as OK={O(1), O(2), ..., O(K)} where O(k)={o

(k)
1 , o

(k)
2 ,

..., o
(k)
Tk

}. The observation is gained by encoding the trend with lag length, which is
determined in “Mood Evaluation via Granger Causality Analysis” subsection. In
the training stage, likelihood function P (OK |λ) (indicating the probability that
multiple observation sequences are produced by themodel) ismaximized via a vari-
ation of the Baum-Welch algorithm [1]:

P (OK |λ) =
K∏

k=1

P (O(k)|λ) =
K∏

k=1

Pk. (7)

For example, denote 1 as up trend and 0 as down trend. Say we have the financial
trend sequence A={0, 0, 0, 1, 1, 0, 1}, the selected Twitter mood trend sequence
B={1, 0, 1, 0, 1, 0, 1} and the encoding length lag = 3. Based on A, B and lag,
we can get the encoding financial trend sequence Ae={0, 1, 3, 6, 5} and the encod-
ing selected Twitter mood trend sequence Be={5, 2, 5, 2, 5}. Our prediction model
multi-stream sHMM use Ae and Be as training sequences to get model parameters.

Training. Given a coverage bound CB , multiple observation sequences OK and
a label sequence L, we train a multi-stream sHMM and recursively refine the
heavy state qh until there is no heavy state remaining. The training process
consists of the following steps:

1. Initialize the root HMM λ0 with random parameters, and train it with
the set OK of historical financial trend and Twitter mood trends. The
train algorithm is Baum-Welch [1] variation adjusted to multiple observation
sequences.

2. Compute state label pi, empirical visit rate vi and empirical state risk ri for
each state qi in the root HMM λ0. Under the coverage bound CB , compute
the reject subset RS of the root HMM λ0 to identify which state is the heavy
state qh. If there is no heavy state, then the training is done.

3. Initialize a random HMM λrandom to replace the heavy state qh, so a refined
HMM λrefine is obtained. Train the refined HMM λrefine with the previous
set OK of multiple observation sequences until it converges. Details of this
step are described in Algorithm 2.

πj =

∑K
i=1

1
Pi

(γ(i)
1j +

∑Ti−1
t=1

∑N
k=1,k �=h ξ

(i)
t,k,j)

Z
, (8)

ajk =

∑K
i=1

1
Pi

∑Ti−1
t=1 ξ

(i)
t,j,k

∑N+n
l=N+1

∑K
i=1

1
Pi

∑Ti−1
t=1 ξ

(i)
t,j,l

, (9)

bjm =

∑K
i=1

1
Pi

∑Ti

t=1,o
(i)
t =um

γ
(i)
tj

∑K
i=1

1
Pi

∑Ti

t=1 γ
(i)
tj

. (10)

Boosting Financial Trend Prediction 443

Algorithm 2. Training the refined model
Input: HMM λ with N states, heavy state qh, multiple sequences OK={O(1), O(2), ..., O(K)}
1: Initialize a random HMM λrandom with n states
2: For each j=1, 2, ..., N , j �= h, replace transition qjqh to qjqN+1, qjqN+2, ..., qjqN+n and

transition qhqj to qN+1qj , qN+2qj , ..., qN+nqj
3: Record the heavy state qh as a refined state qrefine and remove the observation emission prob-

ability vector from it. For each j=N+1, N+2, ..., N+n, set state label pj=ph

4: while not converged do
5: For each j=1, 2, ..., N , j �= h, k=N+1, N+2, ..., N+n, update ajk=ajhπk, akj=ahj

6: For each j=N+1, N+2, ..., N+n, update πj=πhπj

7: For each j, k=N+1, N+2, ..., N+n, update ajk = ahhajk

8: For each j=N+1, N+2, ..., N+n, re-estimate πj by Eq. (8)
9: For each j, k=N+1, N+2, ..., N+n, re-estimate ajk by Eq. (9)
10: For each j=N+1, N+2, ..., N+n, m=1, 2, ... M , re-estimate bjm by Eq. (10)
11: end while
12: Perform the operations of Lines 5-7 once again
Output: HMM λ with N-1+n states

Above, Z is the normalization factor of πj , and ξt,j,k=P (st=qj , st+1=qk|O,
λ) is the transition probability of HMM λ from state qj to state qk at time t,
which can be efficiently computed by the forward-backward procedure [24].

4. Compute empirical visit rate vi and empirical state risk ri for each state qi

in the refined HMM λrefine. Under the coverage bound CB , compute the
reject subset RS of the refined HMM λrefine to identify which state is the
heavy state qh. If there is a heavy state, go to Step 3.

Prediction. Given a trained multi-stream sHMM and a new observation
sequence O={o1, o2, ..., oT }, we predict the last label lT in the relative label
sequence L according to O through recursively finding the most probable state
qmost. The prediction process consists of the following steps:

1. Find the most probable state qmost at the last time T by computing γTi of
all states in the root HMM λ0.

2. If qmost is a refined state qrefined, reset the most probable state qmost by
computing γTi of new states added to the next level refined HMM λrefine,
and go to Step 2.

3. If qmost is in the reject subset RS, no prediction is made; otherwise, the label
pmost of state qmost is output as the prediction result of the last label lT in
the relative L according to O.

Large-Scale Evaluation. As the parameters of HMM are randomly initialized,
and the train algorithm such as Baum-Welch [1] is sensitive to the initial param-
eters, it may converge to different local maxima for different initializations. So
we may get different predictions with the same training and test sequences. To
reduce the random effect caused by parameter initialization, we run the algo-
rithm a number Nrs of times, and evaluate the averaged empirical error rate
as the performance measure. To make the evaluation efficient, we adopt the
MapReduce [6] framework. The procedure is outlined in Algorithm 3. In the
Map stage, given a coverage bound CB , we train a multi-stream sHMM (by the

444 Y. Huang et al.

Algorithm 3. Large-scale performance evaluation

1: def Map(id i, coverage CB)
2: e ← Predict(Train(CB))
3: Emit(coverage CB , error e)
4: end def

1: def Reduce(coverage CB , errors [e1, e2, . . .])
2: eavg ← Average([e1, e2, . . .])
3: Emit(coverage CB , error eavg)
4: end def

Train method) using different parameter values, then do prediction (by the
Predict method) based on the trained model, and get the error rate for differ-
ent parameter values. In the Reduce stage, we compute the averaged error rate
for the given CB .

5 Experimental Evaluation

In this section, we present experimental evaluation results. First, we introduce
experimental datasets and computing environment. Then, we present and ana-
lyze the results of GCA.

Finally, we compare our method with seven existing approaches to demon-
strate the advantage of our method.

5.1 Experimental Setup

There are two Twitter datasets used in our experiments. The first one is from
[35]. It contains 467 million Twitter posts that were published on Twitter in a
seven-month period from Jun. 2009 to Dec. 2009. We call it Twitter2009. The
second is from [13]. It contains 50 million tweets that cover a 20 month period
from Jan. 2010 to Aug. 2011. We call it Twitter2011.

The financial data used are the S&P500 Index and NYSE Composite
Index from Yahoo! Finance. For Twitter2009 that covers the time period from
06/12/2009 to 12/21/2009, we train the model with data of the first 100
days (before 11/09/2009), and test the model using data of the next 30 days. As
for Twitter2011 that covers the time period from 01/04/2010 to 07/26/2011, we
train the model with data of the first 300 days (before 03/13/2011), and test the
model using data of the next 90 days. Here, we focus on predicting the trend of
daily close price data.

We implemented our method in the MapReduce framework at a Hadoop
platform, which was built on a Hadoop cluster that consists of 1 namen-
ode/jobtracker and 24 datanodes/tasktrackers. Each node is equipped with an
Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz and 4GB RAM.

5.2 Statistics of Extracted Twitter Moods

We utilize Algorithm 1 to extract Twitter moods from massive tweets, and keep
the extracted daily Twitter moods during the period of trading days. For these

Boosting Financial Trend Prediction 445

0

0

0
Z

−
Sc

or
e

0

0

Jun 15 Nov 09 Dec 21

0

Date

composed−anxious

agreeable−hostile

elated−depressed

confident−unsure

energetic−tired

clearheaded−confused

(a) Twitter 2009

0

0

0

Z
−

Sc
or

e

0

0

Jan 05 Mar 18 Jul 26

0

Date

composed−anxious

agreeable−hostile

elated−depressed

confident−unsure

energetic−tired

clearheaded−confused

(b) Twitter 2011

Fig. 2. Extracted Twitter Moods

days that have not enough tweets, we get the Twitter moods by linear inter-
polation. We compute the z-scores of all Twitter moods, including composed-
anxious (Com.), agreeable-hostile (Agr.), elated-depressed (Ela.), confident-
unsure (Con.), energetic-tired (Ene.) and clearheaded-confused (Cle.). The
results of Twitter 2009 and Twitter 2011 are plotted in Fig. 2a and Fig. 2b
respectively. We also discretize Tweet moods in daily trends, which will be fed
to our multi-stream sHMM later.

446 Y. Huang et al.

Jun 15 Nov 09 Dec 21

0

Date

G
ro

w
th

 R
at

e

S&P500
NYSE

(a) Twitter 2009

Jan 05 Mar 18 Jul 26

0

Date

G
ro

w
th

 R
at

e

S&P500
NYSE

(b) Twitter 2011

Fig. 3. S&P500 and NYSE growth rates

5.3 Growth Rates of Financial Indexes

Given the daily close price closet at day t, daily growth rate of day t is evaluated
as follows:

growtht =
closet − closet−1

closet−1
. (11)

The days with positive growth rates are labeled as up trends, while the days with
negative growth rates are labeled as down trends. The computation results of
S&P500 Index and NYSE Composite Index for Twitter 2009 and Twitter 2011
are shown in Fig. 3a and Fig. 3b respectively.

5.4 Results of Granger Causality Analysis

We perform GCA on the extracted Twitter moods via Eq. (1) and Eq. (2). We
treat the S&P500 growth rate and NYSE Composite growth rate as the time
series Y respectively, while taking each Twitter mood as the time series X. The
lag range is set from 1 to 7. We present the pvalue results of S&P500 and NYSE
for twitter2009 in Table 1 and for twitter2011 in Table 2 respectively. By checking
the results in the two tables, we select 3-day (i.e., lag=3) lagged agreeable-
hostile (Agr.) Twitter mood as the predictive indicator of public financial index
due to following two reasons: 1) Most p-values under 3-day lagged Agr. Twitter
mood achieve significant level (≤ 0.1), and their values are 0.159, 0.096, 0.071
and 0.054, respectively. 2) All p-values under 3-day lagged Agr. Twitter mood
decrease significantly (difference <-0.25) comparing to p-values under 2-day
lagged Agr. Twitter mood. The differences are -0.278, -0.276, -0.284 and -0.409,
respectively.

5.5 Prediction Performance Comparison

We compare our method with seven existing methods, in which six methods
exploit Twitter mood. These six methods and our method all incorporate 3-day
lagged Agr. Twitter mood to predict public financial trend. The six methods
are:

Boosting Financial Trend Prediction 447

Table 1. pvalue results of S&P500 and NYSE for Twitter2009 (all pvalue
∗ ≤ 0.1)

Lag
S&P500 NYSE

Com. Agr. Ela. Con. Ene. Cle. Com. Agr. Ela. Con. Ene. Cle.
1 0.704 0.226 0.681 0.696 0.535 0.270 0.739 0.179 0.756 0.625 0.529 0.385
2 0.764 0.437 0.648 0.588 0.722 0.305 0.851 0.372 0.664 0.444 0.746 0.417
3 0.228 0.159 0.856 0.276 0.741 0.338 0.231 0.096∗ 0.876 0.238 0.772 0.489
4 0.234 0.233 0.516 0.386 0.886 0.127 0.214 0.134 0.615 0.349 0.900 0.232
5 0.379 0.389 0.515 0.315 0.966 0.159 0.348 0.258 0.569 0.275 0.974 0.241
6 0.301 0.145 0.186 0.439 0.949 0.180 0.277 0.061∗ 0.228 0.405 0.948 0.277
7 0.428 0.148 0.331 0.262 0.955 0.218 0.364 0.094∗ 0.418 0.231 0.941 0.296

Table 2. pvalue results of S&P500 and NYSE for Twitter2011 (all pvalue
∗ ≤ 0.1)

Lag
S&P500 NYSE

Com. Agr. Ela. Con. Ene. Cle. Com. Agr. Ela. Con. Ene. Cle.
1 0.352 0.153 0.991 0.565 0.223 0.596 0.401 0.209 0.811 0.584 0.137 0.542
2 0.690 0.355 0.924 0.450 0.082∗ 0.747 0.707 0.463 0.885 0.463 0.060∗ 0.772
3 0.876 0.071∗ 0.897 0.415 0.172 0.842 0.855 0.054∗ 0.950 0.409 0.132 0.821
4 0.886 0.131 0.963 0.524 0.241 0.525 0.864 0.099∗ 0.986 0.490 0.216 0.490
5 0.929 0.215 0.981 0.647 0.328 0.498 0.913 0.174 0.993 0.629 0.270 0.475
6 0.872 0.309 0.994 0.705 0.266 0.559 0.837 0.261 0.999 0.646 0.156 0.523
7 0.885 0.476 0.999 0.524 0.109 0.621 0.840 0.413 1.000 0.472 0.071∗ 0.587

1. VAR. The Vector Autoregressive (VAR) framework [29] treats historical
financial data and Twitter moods as an integrated vector to make prediction
based linear regression.

2. HMM. Hidden Markov model (HMM) [24] considers two states of “up”
and “down”, and treats both historical financial data and Twitter moods as
observation sequences to make prediction.

3. CRF. Conditional Random Field (CRF) [12] model also considers “up”
and “down” states, and uses historical financial data and Twitter moods as
observation sequences to make prediction.

4. SVM. Support Vector Machine (SVM) [5] combines both historical finan-
cial data and Twitter moods as a feature vector to make prediction.

5. NN. Neural Network (NN) [31] uses two nodes of “up” and “down” as
output layer, and puts both historical financial data and Twitter moods to
input layer to make prediction.

6. cDPM. It was proposed in [27], which uses a topic-model based approach to
extract Twitter sentiments and then combines historical financial data and
Twitter sentiments into an autoregressive framework.

The only compared method that does not use Twitter mood is sHMM. It was
developed in [23], which uses sHMM for financial trend prediction without using
any social media information. This is the best existing model for financial trend
prediction with controllability. For discrimination, we call our method msHMM
as it uses multiple sequences for training.

Comparison with existing methods using Twitter mood. As msHMM’s per-
formance is adjustable by the coverage bound CB , we set four values between 1.0
and 0.1 for CB to evaluate msHMM. A smaller CB value means that msHMM

448 Y. Huang et al.

Table 3. Comparison with six methods using Twitter mood

Model
Error Rate (%)

Twitter2009 Twitter2011
S&P500 NYSE S&P500 NYSE

VAR 26.667 33.333 46.667 44.444
HMM 36.667 46.667 44.444 54.444
CRF 40.000 40.000 45.556 44.444
SVM 40.000 46.667 50.000 44.444
NN 36.667 46.667 37.778 32.222

cDPM 40.000 43.333 48.889 38.889

msHMM(CB)

39.715(1.0) 45.802(1.0) 45.796(1.0) 45.802(1.0)
30.055(0.5) 35.972(0.5) 42.408(0.5) 35.972(0.5)
22.209(0.3)∗ 33.227(0.3)∗ 36.622(0.2)∗ 31.869(0.1)∗

8.033(0.1) 32.694(0.1) 35.380(0.1) 31.869(0.1)

5

15

25

35

45

0.10.20.30.40.50.60.70.80.91.0

E
rr

o
r

R
at

e
(%

)

Coverage Bound

sHMM
msHMM

(a) S&P500

30

35

40

45

50

0.10.20.30.40.50.60.70.80.91.0

E
rr

o
r

R
at

e
(%

)

Coverage Bound

sHMM
msHMM

(b) NYSE

Fig. 4. Risk Coverage Curves for Twitter2009

puts more restriction on prediction output, which leads to a smaller error rate.
For the six existing methods, we tune their parameters to get the best results.
All experimental results are presented in Table 3. We can see that among the
six existing methods, VAR has the smallest error rates (26.667% for S&P500,
33.333% for NYSE) for Twitter2009 and NN obtains the smallest error rates
(37.778% for S&P500, 32.222% for NYSE) for Twitter2011. For the four cases,
by reducing CB ’s value to 0.3, 0.3, 0.2 and 0.1 respectively, msHMM can get
smaller error rates (22.209%, 33.227%, 36.622% and 31.869% respectively) than
the six existing methods. And with CB=0.1 msHMM achieves the lowest error
rate on all two datasets. More importantly, the error rate of msHMM is con-
trollable, while the six existing methods do not have such a feature.

Comparison with sHMM. For different coverage bound CB values from 1.0
to 0.1, we first run sHMM on the S&P500 and NYSE index data, and then
combine historical financial data and 3-days lagged agreeable-hostile Twitter
mood to run our method msHMM. The results are plotted in Fig. 4 and Fig. 5,
which show the Risk Coverage (RC) curves for both sHMM and msHMM.
When taking a smaller coverage, msHMM rejects to make predictions if not
confident enough, so a smaller error rate is obtained. For example, as shown
in Fig. 4a, when CB=0.1, sHMM gets a 24.67% error rate, while msHMM
achieves a 8.03% error rate. From Fig. 4 and 5, we can see that our method

Boosting Financial Trend Prediction 449

35

40

45

50

0.10.20.30.40.50.60.70.80.91.0

E
rr

o
r

R
at

e
(%

)

Coverage Bound

sHMM
msHMM

(a) S&P500

30

35

40

45

50

0.10.20.30.40.50.60.70.80.91.0

E
rr

o
r

R
at

e
(%

)

Coverage Bound

sHMM
msHMM

(b) NYSE

Fig. 5. Risk Coverage Curves for Twitter2011

msHMM obviously outperforms sHMM. On the one hand, given a certain
error rate, msHMM can achieve a larger coverage than sHMM; On the other
hand, given a certain coverage bound, msHMM can obtain a smaller error rate
than sHMM. Another advantage of msHMM over sHMM is that msHMM
lays down a way to utilize more additional indicators to boost financial trend
prediction performance.

6 Conclusion

We proposed to utilize Twitter moods to boost financial trend prediction based
on sHMM. First, we used the POMS Bipolar lexicon expanded by WordNet to
extract six-dimensional society moods from large scale tweets, then we performed
GCA between financial index and each Twitter mood to determine which Twitter
mood has the most predictive power on financial index. Finally, we extended
sHMM to combine financial index and Twitter moods to predict next-day trend.
Experiments on the S&P500 and NYSE Composite index show that our method
with 3-days lagged agreeable-hostile Twitter mood not only performs better than
the state-of-the-art methods, but also provides a controllability mechanism to
financial trend prediction.

Note that the major contribution of our work is combining financial data and
Twitter moods into sHMM. We treat financial trend and Twitter mood trends as
multiple observation sequences generated by sHMM. In this work, we use bivari-
ate GCA to determine which Twitter mood has the most predictive power. For
future work, we will explore multivariate GCA to select the optimal combination
of multiple Twitter moods to improve prediction performance. Furthermore, we
will investigate more advanced data combination methods for sHMM, and try
other prediction models with controllability.

Acknowledgments. This work was partially supported by the Key Projects of Funda-
mental Research Program of Shanghai Municipal Commission of Science and Technol-
ogy under grant No. 14JC1400300, and the Innovation Research Program of Shanghai

450 Y. Huang et al.

Municipal Education Commission under grant No. 13ZZ003. Jihong Guan was sup-
ported by National Natural Science Foundation of China (NSFC) under grant No.
61373036.

References

1. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains. The annals
of mathematical statistics 41(1), 164–171 (1970)

2. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of
Computational Science 2(1), 1–8 (2011)

3. Brand, M.: Coupled hidden markov models for modeling interacting processes.
Tech. rep., MIT (1997)

4. Chow, C.K.: On optimum recognition error and reject tradeoff. IEEE Transactions
on Information Theory 16(1), 41–46 (1970)

5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995). http://dx.doi.org/10.1007/BF00994018

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

7. El-Yaniv, R., Wiener, Y.: On the foundations of noise-free selective classification.
The Journal of Machine Learning Research 11, 1605–1641 (2010)

8. Gilbert, E., Karahalios, K.: Widespread worry and the stock market. In: Proceed-
ings of the Fourth International Conference on Weblogs and Social Media, pp.
59–65 (2010)

9. Granger, C.W.J.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica: Journal of the Econometric Society 37(3),
424–438 (1969)

10. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 168–177 (2004)

11. Idvall, P., Jonsson, C.: Algorithmic trading: hidden markov models on foreign
exchange data. Master’s thesis, Södertörn University (2008)

12. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of the
Eighteenth International Conference on Machine Learning, pp. 282–289 (2001).
http://dl.acm.org/citation.cfm?id=645530.655813

13. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.C.: Towards social user pro-
filing: unified and discriminative influence model for inferring home locations. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1023–1031 (2012). http://doi.acm.org/10.1145/
2339530.2339692

14. Li, X., Wang, C., Dong, J., Wang, F., Deng, X., Zhu, S.: Improving stock market
prediction by integrating both market news and stock prices. In: Hameurlain, A.,
Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861,
pp. 279–293. Springer, Heidelberg (2011)

15. Lin, Y., Guo, H., Hu, J.: An svm-based approach for stock market trend prediction.
In: The 2013 International Joint Conference on Neural Networks, pp. 1–7 (2013)

16. Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language
Processing, 2nd edn (2010)

http://dx.doi.org/10.1007/BF00994018
http://dl.acm.org/citation.cfm?id=645530.655813
http://doi.acm.org/10.1145/2339530.2339692
http://doi.acm.org/10.1145/2339530.2339692

Boosting Financial Trend Prediction 451

17. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers
(2012)

18. McNair, D.M., Lorr, M., Droppleman, L.F.: Profile of mood states. Educational
and Industrial Testing Service (1971)

19. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

20. Mittal, A., Goel, A.: Stock prediction using twitter sentiment analysis. Tech. rep.,
Stanford University

21. Nofsinger, J.R.: Social mood and financial economics. The Journal of Behavioral
Finance 6(3), 144–160 (2005)

22. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr.
2(1–2), 1–135 (2008). http://dx.doi.org/10.1561/1500000011

23. Pidan, D., El-Yaniv, R.: Selective prediction of financial trends with hidden markov
models. In: Advances in Neural Information Processing Systems, pp. 855–863
(2011)

24. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

25. Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In:
Proceedings of the 2003 Conference on Empirical Methods in Natural Language
Processing, pp. 105–112 (2003)

26. Schumaker, R.P., Chen, H.: A discrete stock price prediction engine based on finan-
cial news. Computer 43(1), 51–56 (2010)

27. Si, J., Mukherjee, A., Liu, B., Li, Q., Li, H., Deng, X.: Exploiting topic based
twitter sentiment for stock prediction. In: Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (vol. 2: Short Papers), pp. 24–29
(2013)

28. Sprenger, T.O., Tumasjan, A., Sandner, P.G., Welpe, I.M.: Tweets and trades: the
information content of stock microblogs. European Financial Management (2013).
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-036X.2013.12007.x/abstract

29. Stock, J.H., Watson, M.W.: Vector autoregressions. The Journal of Economic Per-
spectives 15(4), 101–115 (2001). http://www.jstor.org/stable/2696519

30. Sun, X.Q., Shen, H.W., Cheng, X.Q.: Trading network predicts stock price. Scien-
tific Reports 4(3711), 1–6 (2014)

31. Trippi, R.R., Turban, E.: Neural Networks in Finance and Investing: Using Artifi-
cial Intelligence to Improve Real World Performance. McGraw-Hill, Inc (1992)

32. Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y.,
Cardie, C., Riloff, E., Patwardhan, S.: Opinionfinder: a system for subjectiv-
ity analysis. In: Proceedings of HLT/EMNLP on Interactive Demonstrations,
pp. 34–35 (2005)

33. Wu, D., Ke, Y., Yu, J.X., Yu, P.S., Chen, L.: Detecting leaders from correlated
time series. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA
2010. LNCS, vol. 5981, pp. 352–367. Springer, Heidelberg (2010)

34. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio tem-
porally correlated time series using markov models. Proc. VLDB Endow. 6(9),
769–780 (2013). http://dx.doi.org/10.14778/2536360.2536375

35. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In:
Proceedings of the fourth ACM international conference on Web search and data
mining, pp. 177–186 (2011)

36. Zhang, Y.: Prediction of financial time series with Hidden Markov Models. Master’s
thesis, Simon Fraser University (2004)

http://dx.doi.org/10.1561/1500000011
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-036X.2013.12007.x/abstract
http://www.jstor.org/stable/2696519
http://dx.doi.org/10.14778/2536360.2536375

k-Consistent Influencers in Network Data

Enliang Xu1(B), Wynne Hsu1, Mong Li Lee1, and Dhaval Patel2

1 School of Computing, National University of Singapore, Singapore, Singapore
{xuenliang,whsu,leeml}@comp.nus.edu.sg

2 Department of Electronics and Computer Engineering, IIT Roorkee, Roorkee, India
patelfec@iitr.ernet.in

Abstract. With the prevalence of online social media such as Facebook,
Twitter and YouTube, social influence analysis has attracted consider-
able research interests recently. Existing works on top-k influential nodes
discovery find influential users at single time point only and do not cap-
ture whether the users are consistently influential over a period of time.
Finding top-k consistent influencers has many interesting applications,
such as targeted marketing, recommendation, experts finding, and stock
market. Identifying top-k consistent influencers is a challenging task.
First, we need to dynamically compute the total influence of each user
at each time point from an action log. However, to find the consistent
top-scorers, we need to sort and rank them at each time point. This is
computationally expensive and not scalable. In this paper, we define the
consistency of a node based on its influence and volatility over time. With
the help of grid index, we develop an efficient algorithm called TCI to
obtain the top-k consistent influencers given a time period. We conduct
extensive experiments on three real world datasets to evaluate the pro-
posed methods. We also demonstrate the usefulness of top-k consistent
influencers in identifying information sources and finding experts. The
experimental results demonstrate the efficiency and effectiveness of our
methods.

1 Introduction

Social networking sites such as Facebook, Twitter, Delicious and YouTube have
provided a platform where user can express their ideas and share information.
With the prevalence of these sites, social networks now play a significant role in
the spread of information. Recognizing this, researchers have focused on influence
analysis to discover influential nodes (users, entities) and influence relationships
(who influences whom) among nodes in the network. Existing works on influen-
tial nodes discovery define influential user as one who posts/tweets frequently
and/or with a large number of followers/friends. However, from a psychological
perspective, frequency and popularity are not sufficient to develop influence and
loyalty. Instead, it is consistency that builds trusts and thereby resulting in the
greatest influence.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 452–468, 2015.
DOI: 10.1007/978-3-319-18123-3 27

k-Consistent Influencers in Network Data 453

We observe that consistency comes in two forms. The first form of consistency
is known as personal consistency. This refers to one who is consistent in his
behavior, for example, a user could tweet regularly on the same topic over a
period of time. This user tends to gain greater authority as other users’ trusts
in him grow, and thereby increases his influence.

The second form refers to our preference for consistent behavior. We have a
tendency to remain consistent with our previous actions. In the case of social
networking, if a user u2 has retweeted a post from another user u1, there is a
much higher probability that u2 will retweet other posts from the same user u1.
In other words, the u2 has a strong preference for u1.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18 20

#t
w

ee
ts

time

u1
u2
u3

(a) Personal consistency

 0

 10

 20

 30

 40

 0 2 4 6 8 10 12 14 16 18 20

#r
e-

tw
ee

ts

time

u1
u2
u3

(b) Preference consistency

Fig. 1. Example of two forms of consistency

Figure 1(a) shows an example of 3 users’ tweeting frequency over 20 time
points and the number of followers they have. We observe that both u1 and
u2 have a large number of followers. However, u1’s tweeting frequency appears
random whereas u2 consistently tweets at regular interval. On the other hand,
u3 has a small number of followers but he tweets regularly.

Figure 1(b) shows the number of followers retweeting their tweets over the 20
time points. In the beginning, u1 appears to have the most number of followers
retweeting his tweets. However, over time, the number of followers retweeting
his tweets declines. In contrast, both u2 and u3 maintain the same number of
followers retweeting their tweets. However, since u3’s base of followers is small,
his influence is not as great as u2.

Clearly, an accurate measure of degree of influence must take into account
these two forms of consistency. A user is highly influential if he has high personal
consistency and he has established consistent preferences to his tweets/posts in
a large number of users.

We can depict the 3 users in a 2D personal-preference consistency space over
5 time points as shown in Figure 2. We observe that users near the top right
corner are high in both personal and preference consistency. For example, u1

has the highest personal and preference consistency at t = 2 and t = 8, but its
personal consistency drops at t = 13 and t = 14. On the other hand, u2 has the
second highest personal and preference consistency at t = 2 and t = 8, and leads

454 E. Xu et al.

t = 14 t = 18t = 13

u3

u2

u1

u3u3 u2

u1

u2

u1 u3

u2

u1

u3
u2

u1

t = 8t = 2
Preference

P
er

so
na

l

Preference Preference Preference Preference
P

er
so

na
l

P
er

so
na

l

P
er

so
na

l

P
er

so
na

l

Fig. 2. Personal-preference 2D space

at time points t = 13, t = 14 and t = 18. Clearly, u2 is more consistent and
hence, can exert a greater influence over time compared to u1 who seems to be
more volatile.

In this paper, we define the notion of k-consistent influential users and devise
an efficient algorithm to identify these users. Our algorithm linearizes the 2D
personal-preference consistency space to construct a GridIndex. Based on the
GridIndex, we can quickly obtain the k-consistent influencers for a given time
interval. We conduct extensive experiments on three real world datasets to eval-
uate the efficiency of the proposed approach, as well as the effectiveness of using
k-consistent influencers to identify information sources and experts.

2 Problem Formulation

In this section, we first introduce some terminologies, and then give the formal
problem definition.

Definition 1 (Action Log). An action log is a relation D where a tuple <
t, u, a > ∈ D indicates that node u has performed action a at time t.

Figure 3 shows an action log and the corresponding user relation graph. Note
that the relation graph is given as input. For example, node u1 performs action
a at time point 0 and u4 performs the same action a following u1 at time point 1.

Definition 2 (Degree of Influence). Let G = (V,E) denote a social network
where V and E are the sets of nodes and edges respectively. An edge (u, v) ∈ E
represents a relationship between node u and v. We say a node u influences node
v on action a if we have (u, v) ∈ E, < tu, u, a >, < tv, v, a > ∈ D, and tv − tu
≤ τ , where τ is the time threshold. The degree of influence that node u has on
v for action a, denoted as p(u, v, a), is defined by:

p(u, v, a) =

{
0 if tv − tu > τ

e (tu−tv) otherwise
(1)

This implies that if node u performs an action, and shortly thereafter node
v repeats the same action, then it is highly likely that u has an influence on v.
On the other hand, if v repeats the action only after a long lapse, then we may
conclude that it is an independent action and that u has little influence on v.
Let the time threshold τ = 1. The degree of influence that node u1 has on u4

for action a is p(u1, u4, a) = e(−1) = 0.37.

k-Consistent Influencers in Network Data 455

user actiontime

u1, u2, u3 a0

1

2

3

4

5

a

a

a

a

a

u2, u3, u4, u5

u1, u2, u3, u4, u5

b
0

1

2

3

4

b

b

b

b

u1, u3

5 b

c

1

2

3

4

c

c

c

c

u3

5 c

u1, u3, u4, u5, u7

u1, u2, u4, u7
u1, u2, u7

u1, u2, u4, u7

u2, u3, u4, u5
u1, u2, u5, u7

u2, u6, u7
u1, u2, u5, u7

u1, u2, u6

u2, u3, u4, u5, u7

u2, u3, u4, u6

u2, u3, u4, u6

u2, u3, u4, u5

0

u5

u1 u4

u2 u6

u3 u7

Fig. 3. Action log and user relation graph

Definition 3 (Preference Consistency). Let At denote the set of actions
taken by nodes u and v between the start time ts and a given time point t. The
preference of a node u for the node v is given by:

Preference(u, v, t) =
∑

a∈At

p(u, v, a) (2)

The preference consistency of node u at time point t is defined by:

PrefCon(u, t) =
∑

v∈V

Preference(u, v, t) (3)

In the time interval [3,4], node u5 performs action a and b following u2, and
node u6 performs action c following u2, so the preference of node u2 for u5 at
time point 4 is Preference(u2, u5, 4) = p(u2, u5, a) + p(u2, u5, b) = 0.74, and
the preference of node u2 for u6 is Preference(u2, u6, 4) = p(u2, u6, c) = 0.37.
The preference consistency of node u2 at time point 4 is PrefCon(u2, 4) =
Preference(u2, u5, 4) + Preference(u2, u6, 4) = 1.11. On the other hand, node
u4 performs action b following u1, so the preference consistency of node u1 at
time point 4 is PrefCon(u1, 4) = Preference(u1, u4, 4) = 0.37.

Definition 4 (Personal Consistency). Let M = {mts , · · · ,mt} be the num-
ber of actions taken by user u from the start time ts to time point t. Let μ be
the mean of M . Then the personal consistency of u at time point t is given by:

PersonCon(u, t) =
t − ts + 1

∑
j∈[ts,t](mj − μ)2

(4)

456 E. Xu et al.

This is equivalent to the inverse of the standard deviation of the number of
posts made by u. A higher value in PersonCon(u, t) implies a smaller deviation
in the number of postings over time, implying that user u is more consistent.
For example, the personal consistency of node u1 and u2 at time point 4 is as
follows.
PersonCon(u1, 4) = 5

(2−2)2+(3−2)2+(1−2)2+(1−2)2+(3−2)2 = 1.25.

P ersonCon(u2, 4) = 5
(1−2.4)2+(2−2.4)2+(3−2.4)2+(3−2.4)2+(3−2.4)2 = 1.56.

Definition 5 (Overall Consistency). The consistency of node u at time point
t is defined as:

Consistency(u, t) = Θ(PrefCon(u, t), P ersonCon(u, t)) (5)

where Θ can be any function that maps the pair (PrefCon(u, t),
PersonCon(u, t)) to a real number. In our experiment, we set Θ as the sum
of the two terms.

Given the preference and personal consistency of node u1 at time point
4, the overall consistency of u1 is Consistency(u1, 4) = PrefCon(u1, 4) +
PersonCon(u1, 4) = 0.37 + 1.25 = 1.62.

We rank the users based on their overall consistency values at each time
point.

Definition 6 (Rank). Given a node u at time point t, let S = {v ∈ V |
Consistency(v, t) > Consistency(u, t)}. Then, the rank of u at t is given by:

rank(u, t) = |S|
Similarly, for node u2 and u3 we have: Consistency(u2, 4) = 2.67,

Consistency(u3, 4) = 2.3. So the rank of node u1, u2 and u3 at time point
4 is 3, 1 and 2 respectively.

Definition 7 (Volatility). Let μrank(u) denote the mean rank of u in the query
interval [qs, qe]. The volatility of node u in the interval [qs, qe] is given by:

V olatility(u) =

∑
t∈[qs,qe]

(rank(u, t) − μrank(u))2

qe − qs + 1
(6)

For node u1, we can get its rank at each time point in the
time interval [1,5]. The volatility of u1 is V olatility(u1) =
(1−2)2+(1−2)2+(3−2)2+(3−2)2+(2−2)2

5 = 0.8. Similarly, for node u2 we have

V olatility(u2) = (2−1.4)2+(2−1.4)2+(1−1.4)2+(1−1.4)2+(1−1.4)2

5 = 0.24.

Definition 8 (Score). The score of node u in the query interval [qs, qe] is the
weighted sum of consistency and volatility:

Score(u) = w1 ∗
∑

t∈[qs,qe]

Consistency(u, t) − w2 ∗ V olatility(u), (7)

where w1 + w2 = 1, w1 > 0 and w2 > 0.

k-Consistent Influencers in Network Data 457

Let w1 = w2 = 0.5. The score of node u1 in the time interval [1,5] is Score(u1)
= 0.5 × 12.71 − 0.5 × 0.8 = 5.96. Similarly, Score(u2) = 0.5 × 14.66 − 0.5 ×
0.24 = 7.21. We can see that node u2 is more consistent than u1.

Problem Statement: Given an action log D, a social network graph G, a query
time interval [qs, qe], and time threshold τ , we want to identify a subset of users
U ⊂ V such that |U | = k and ∀u ∈ U , � ∃v ∈ V \U such that Score(v) > Score(u).
We call the users in U the k-consistent influencers in G.

3 Proposed Method

Given an action log and a user relationship graph, we compute the personal and
preference consistency of each user u at time point t. We compute PrefCon(u, t)
by examining all users who have performed the same action following u’s action.
If v has previously followed u and the time lapse between v’s and u’s actions
is smaller than time threshold τ , we conclude that u’s post has influenced v
to some degree and this influence will be included in computing the preference
consistency of node u for v according to Equation 3. Otherwise, the influence of
u’s post on v is said to be negligible and will be ignored.

For PersonCon(u, t), we keep track of the number of posts made by user u
from the start time point ts till current time point t and obtain the variance of
these numbers.

Each pair of (PrefCon(u, t), P ersonCon(u, t)) values is a point in the
personal-preference 2D space. To find users with top-k overall consistency values
Consistency(u, t), the naive way of sorting users by their consistency values is
computationally expensive as there may be millions of users at each time point.
Given that k is typically a small fraction compared to the total number of users,
this is certainly not efficient.

Instead, we partition this 2D space into cells of size δ × δ and assign a user
u to the cell

(⌊
PrefCon(u,t)

δ

⌋
,
⌊

PersonCon(u,t)
δ

⌋)
. We observe that the top-right

grid has the highest overall consistency value. As we slide the black line from this
top-right cell towards the bottom-left cell, the consistency values of the users in
the cells will decrease. In other words, if we wish to find the top-k influencers,
we only need to process the cells in the zig-zag order as shown by the arrows
in Figure 4. In this manner, only the likely candidates for k-consistent users in
the shaded cells are processed, resulting in great savings of computational time.
The zig-zag traversal applies to any scoring function, which is monotone on all
dimensions.

We map the users to the cells in a grid based on their personal and preference
consistency values at time point t. Figure 5 shows the grids at the various time
points.

Next, we design a function Φ to linearize the grids so that the cells can be
processed in the desired zig-zag order as follows:

Φ(i, j) = (N + M) − (i
 + 	j
)

458 E. Xu et al.

u1

u2

u1

Preference + Personal

P
er

so
na

l

Preference

u2

Fig. 4. Illustration of zig-zag traversal

t1
Preference

P
er

so
na

l

t2
Preference

P
er

so
na

l

t3
Preference

P
er

so
na

l

t4
Preference

P
er

so
na

l

t5
Preference

P
er

so
na

l

u2

u1
u1u1u1

u1

u2 u2

u2

u2

u3

u3 u3

u3

u3

u4

u4

u4 u4

u5

u5u5

u5u5 u4

Fig. 5. Grids at different time points

where N is the maximum 	PrefCon(u,t)
δ
 value and M is the maximum

	PersonCon(u,t)
δ
 value.

Note that Φ(N,M) = 0, Φ(N − 1,M) = Φ(N,M − 1) = 1, and
Φ(N − 2,M) = Φ(N − 1,M − 1) = Φ(N,M − 2) = 2, etc. We call this set
of linearized grids the GridIndex. Figure 6 shows the GridIndex obtained from
Figure 5.

Based on the GridIndex, we design an algorithm called TCI to find the top-k
consistent influencers. We obtain the initial lists of the top-k candidate users at
each time point from the set of linearized grids. If a candidate user u does not
appear in the lists for any of the time point, say t, then we traverse the grid
at t till we find u, and compute its score Score(u). To handle big data, we can
deploy our TCI algorithm to the MapReduce framework.

Algorithm 1 shows the details of TCI. The algorithm first scans each action
log Da backwards with a sliding window of size τ (Lines 1-6). For each tuple
< t, u, a > ∈ Da, we increment the number of posts made by user u at time
point t and utilize the user relationship graph G to compute the preference of u
at t.

After scanning all action logs, we compute the preference consistency
PrefCon(u, t) and personal consistency PersonCon(u, t) for each user at each

k-Consistent Influencers in Network Data 459

Algorithm 1. TCI
Require: action log D, graph G, query interval [qs, qe], time threshold τ , and integer k
Ensure: set of k-consistent influencers Result
1: for each Da ⊂ D where Da is a projection of D on action a do
2: initialize numPostu,t to 0 for all u and t
3: for each tuple < t, u, a > ∈ Da do
4: increment numPostu,t

5: V = {v | < t′, v, a >∈ Da, (u, v) ∈ G, t′ ∈ [t + 1, t + τ]}
6: Preference(u, v, t′)+ = p(u, v, a)
7: let Gt be the linearized grid at time t
8: for each user u and time point t do
9: PrefCon(u, t)+ = Preference(u, v, t)

10: compute PersonCon(u, t) from avg(numPostu,t) and sum(numPostu,t) using
Equation 4

11: insert u to Gt[Φ(
⌊

PrefCon(u,t)
δ

⌋
,
⌊

PersonCon(u,t)
δ

⌋
)]

12: Result ← ∅
13: initialize threshold, Scoremin to 0 and position p to 1
14: for t = qs to qe do
15: ptrt ← 0; candSett ← Gt[ptrt]
16: while (|Result| < k or threshold > Scoremin) do
17: for each t ∈ [qs, qe] do
18: while |candSett| < p do
19: increment ptrt; candSett = candSett

⋃
Gt[ptrt]

20: let θt be the consistency value of the user at p in candSett

21: threshold =
∑

t∈[qs,qe]
θt

22: let C =
⋃

candSett −⋂ candSett

23: for each user u ∈ C do
24: let T be the set of time points that u has not appeared
25: for each t ∈ T do
26: while u �∈ candSett do
27: increment ptrt; candSett = candSett

⋃
Gt[ptrt]

28: for each user u ∈ ⋃ candSett do
29: ranku = 0
30: for each t ∈ [qs, qe] do
31: ranku += position of u in candSett

32: ave ranku = ranku
qe−qs+1

33: compute V olatility(u) using Equation 6
34: compute Score(u) using Equation 7
35: increment position p
36: if |Result| < k then
37: Result = Result ∪ {u}
38: else
39: let u′ be the user with lowest score in Result and Scoremin = Score(u′)
40: if Score(u) > Score(u′) then
41: R = R − {u′}; R = R ∪ {u}
42: return Result

460 E. Xu et al.

0 1t1

u1 u2

t2

t3

t4

t5

u3 u4 u5

2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

u1 u3 u4 u2 u5

0 1 2 3 4 5 6 7 8

u1 u2 u3 u4 u5

0 1 2 3 4 5 6 7 8

u2 u4 u5u1 u3

0 1 2 3 4 5 6 7 8

u1 u2 u3 u4 u5

Fig. 6. GridIndex obtained from Figure 5

time point (Lines 7-10). Then we insert the users into the various linearized grids
in the GridIndex (Line 11).

Once we have constructed the GridIndex, the algorithm tries to identify the
set of top-k consistent influencers, Result. For each time point in the given query
interval, we first obtain the initial list of candidate influencers (Lines 17-19). For
early termination, we compute a threshold value by summing the consistency
values of the candidate users at position p in each grid Gt (Lines 20-21).

For each candidate user u who does not appear in all the lists, we expand the
candidate sets corresponding to the time points that u is missing from until u is
included in the candidate set (Lines 22-27). When this is completed, we obtain
the rank of u at all the time points and compute the volatility of u (Lines 28-33).
Finally, we compute the score of u (Line 34).

If the size of the result set is less than k, we add u to R (Lines 36-37).
Otherwise, we check whether the score of u is larger than that of the kth user
in Result. If yes, we replace the kth user with u (Lines 38-41). The algorithm
terminates when the size of Result is k and threshold is smaller than Scoremin.

Let us illustrate how the constructed GridIndex in Figure 6 is used to find
the 2-consistent influencers. The initial lists obtained for the 5 time points are
shown in Figure 7(a). We observe that u2 has not appeared in the time points t2
to t5, so we proceed to traverse the GridIndex at time points t2 to t5 to retrieve
additional users till u2 is found. Similarly, we traverse the GridIndex where u3

has not appeared to retrieve additional users till u3 is found. Figure 7(b) shows
the updated lists.

Initially, the threshold and Scoremin are set to 0. We first compute the score
of u1 and get Score(u1) = 2.25. At this time, threshold is 2.25. We continue
to compute the score of users until the score of the 2nd user is larger than

k-Consistent Influencers in Network Data 461

t1 t2 t3 t4 t5

u1

u2

u1 u1 u1

u3

u1

(a) Initial lists

t1 t2 t3 t4 t5

u1

u2

u1 u1 u1

u3

u1

u3

u3

u4

u2

u2

u3 u2

u2

u3

(b) Updated lists

Fig. 7. Rank lists

the threshold. For u2 and u3, we have Score(u2) = 1.0 and Score(u3) = 1.6.
We update threshold to 1.2. Since the current 2nd user is u3 and Score(u3) >
threshold, we can be sure that the 2-consistent influencers are u1 and u3.

4 Experimental Evaluation

In this section, we present the results of experiments conducted to evaluate the
effectiveness and efficiency of our methods. We implement all the algorithms in
Java. The experiments are performed using an Intel Core 2 Quad CPU 2.83 GHz
system with 3GB of main memory and running Windows XP operating system.

We use the following real world datasets in our experiments:

1. Citation dataset [11,12]. This dataset is part of the DBLP computer science
bibliography. It contains 1,397,240 papers and 3,021,489 citation relation-
ships between these papers. Each paper is associated with attributes such as
abstract, authors, year, venue, and title, etc.

2. Flixster dataset [13]. This is a social network for movies in which users to
share their opinion on movies with friends by rating and reviewing movies.
The Flixster dataset has 1M users, 26.7M friendship relations among users,
and 8.2M ratings that range from half a star (rating 0.5) to five stars (rating
5). On average each user has 27 friends and each user has rated 8.2 movies.

3. Twitter dataset [9,10]. This dataset consists of 476 million tweets published
by 20 million users over a 7 month period from June 1 2009 to December 31
2009. To make our experiments manageable, we use a subset of the Twitter

462 E. Xu et al.

dataset, which consists of 17,214,780 tweets from 1,746,259 users. Each tweet
has the following information: user, time and content.

Table 1 summarizes the characteristics of these datasets. In our experiments,
we set the query interval [qs, qe] to be the whole period of the datasets. The grid
size is set to 10 × 10. We can try different grid sizes and select the one that gives
the best performance. The default value for weight w1 and w2 is 0.5 respectively.

Table 1. Dataset statistics

Datasets # Nodes # Edges Avg Edges Max Edges

Citation 1,397,240 3,021,489 2.16 4,090

Flixster 1M 26.7M 26.70 1,045

Twitter 1,746,259 92,286,461 52.85 241,428

4.1 Efficiency Experiments

We first evaluate the efficiency of TCI. For comparison, we also implement TCI-
NoGrid, a variant of TCI that does not utilize the GridIndex structure. TCI-
NoGrid sorts all users by their consistency values at each time point to obtain
their ranks. Then it retrieves candidate users from the rank lists at each time
point and computes their scores. If a retrieved user u does not appear in the
lists for all time points, TCI-NoGrid will retrieve the rank lists where u does not
appear to find u.

We vary the size of the action logs from 100k to 900k, and set k = 5. For the
Citation dataset, we set τ to 10 years. For the Flixster dataset, τ = 10 days. For
the Twitter dataset, τ is set to 10 hours.

 0

 1000

 2000

 3000

 4000

100k 200k 300k 400k 500k 600k 700k 800k 900k

R
un

ni
ng

 ti
m

e
(s

)

Action log size

TCI-NoGrid
TCI

(a) Citation dataset

 0

 200

 400

 600

 800

100k 200k 300k 400k 500k 600k 700k 800k 900k

R
un

ni
ng

 ti
m

e
(s

)

Action log size

TCI-NoGrid
TCI

(b) Flixster dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

100k 200k 300k 400k 500k 600k 700k 800k 900k

R
un

ni
ng

 ti
m

e
(s

)

Action log size

TCI-NoGrid
TCI

(c) Twitter dataset

Fig. 8. Runtime of TCI for varying action log size

Figure 8 shows the runtime for TCI and TCI-NoGrid for the three datasets.
We observe that TCI outperforms TCI-NoGrid, and the gap widens as the action
log size increases. This demonstrates that the grid index is effective in reducing
the runtime. For the Flixster dataset, the grid index is not very beneficial. This
is because the ranks of users in Flixster dataset vary greatly.

k-Consistent Influencers in Network Data 463

4.2 Sensitivity Experiments

We also examine the effect of the parameters k and τ on the performance of TCI
and TCI-NoGrid. We fix the size of the action log at 100k, and vary k from 5 to
25. Figure 9 shows the runtime for both methods. We observe that the runtime
does not change much as k increases. This is because both algorithms have to
scan the action log, the time of which dominates the total running time.

 50

 100

 150

 200

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of k-consistent influencers (k)

TCI-NoGrid
TCI

(a) Citation dataset

 20

 25

 30

 35

 40

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of k-consistent influencers (k)

TCI-NoGrid
TCI

(b) Flixster dataset

 100

 200

 300

 400

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of k-consistent influencers (k)

TCI-NoGrid
TCI

(c) Twitter dataset

Fig. 9. Effect of varying k

Next, we set the number of consistent influencers k to 5, action log size to
100k and vary the time threshold τ from 10 to 50. Increasing τ is equivalent to
increasing the search space, i.e. the number of potential consistent influencers.
Figure 10(a) shows that the runtime for both algorithms slightly increases as
τ increases on the Citation dataset. Similar trend is observed for the Flixster
dataset (see Figure 10(b)). However, both algorithms are sensitive on the Twitter
dataset, as can be seen in Figure 10(c). This is because the Twitter dataset is
“dense”, which means in a very short time interval hundreds or thousands of
tweets are posted.

 50

 100

 150

 200

 250

 300

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TCI-NoGrid
TCI

(a) Citation dataset

 20

 30

 40

 50

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TCI-NoGrid
TCI

(b) Flixster dataset

 100

 200

 300

 400

 500

 600

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TCI-NoGrid
TCI

(c) Twitter dataset

Fig. 10. Effect of varying τ

4.3 Effectiveness Experiments

In this section, we demonstrate how the proposed k-consistent influencers is
useful for two tasks:

464 E. Xu et al.

1. Identifying information sources [14,15]. Identifying information sources is
useful for user recommendation. A social network user who is interested
in receiving information about a particular topic would subscribe to the
information sources for the same topic in order to receive up-to-date and
relevant information.

2. Finding experts [20,21]. Expert finding aims to find persons who are knowl-
edgeable on a given topic. It has many applications in expertise search, social
networks, recommendation and collaboration.

We use the Twitter dataset for the first task and the Citation dataset for the
second task. We use the public dissemination accounts in Twitter (e.g. @Yahoo)
as the ground truth, provided that these accounts performed actions in the
Twitter dataset. For Citation dataset, we use the ground truth given in [16].

We compare the TCI algorithm with the following methods:

1. TES [19]. TES is designed to answer durable top-k queries. By exploiting
the fact that the changes in the top-k set at adjacent time points are usually
small, TES indexes these changes and incrementally computes the snapshot
top-k sets at each time point of the query window.

2. Greedy [4]. The greedy algorithm finds k influential nodes such that the
expected number of nodes influenced by these k nodes is maximized [2,3,5].
At each iteration, the greedy algorithm selects a node that leads to the
largest increase in the number of nodes influenced. The algorithm stops when
k nodes are selected.

3. Follower-based. Given the following relationships between users, the follower-
based method returns the k users with the largest number of followers.

For each method, we determine the top-k users. We first apply the TCI
algorithm on the action log to obtain the top-k consistent influencers. For the
TES algorithm, we first compute the consistency value of each user at each time
point and construct the rank lists based on their consistency values. Then we run
the TES algorithm to get the top-k users from the rank lists. We run the greedy
algorithm on the given user relation graph to find the k users that maximize the
expected number of users influenced. For the follower-based method, we use the
k users with the largest number of followers.

Let X be the set of ground truth, let Y be the set of users returned by the
various methods, then precision and recall are defined by the following equations:

precision =
|X ∩ Y |

|Y | recall =
|X ∩ Y |

|X| (8)

Figure 11 shows the precision and recall for finding information sources on
Twitter dataset as we vary k from 5 to 25. We observe that the precision of
TCI outperforms that of TES algorithm, the greedy algorithm and the follower-
based method for all values of k. The recall for all four methods increases as k
increases. Further, the gaps in recall widen as k increases. This is because all the
methods will predict more information sources with the increase of k, leading to
better recall.

k-Consistent Influencers in Network Data 465

 0
 0.1

 0.2
 0.3

 0.4
 0.5
 0.6

 0.7
 0.8
 0.9

 1

5 10 15 20 25

P
re

ci
si

on

Top K

Greedy
Follower-based

TCI
TES

(a) Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

5 10 15 20 25

R
ec

al
l

Top K

Greedy
Follower-based

TCI
TES

(b) Recall

Fig. 11. Effectiveness of finding information sources on Twitter dataset

Figure 12 shows the precision and recall of the various methods for finding
data mining experts in the Citation dataset. Again, the precision of TCI algo-
rithm outperforms the other three methods, especially when k is large. The recall
for all four methods increases as k increases, because all the methods will find
more experts with larger k. Further, the gaps in recall widen as k increases. Sim-
ilar results and trends are observed for information retrieval experts as shown
in Figure 13.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25

P
re

ci
si

on

Top K

Greedy
Follower-based

TCI
TES

(a) Precision

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

5 10 15 20 25

R
ec

al
l

Top K

Greedy
Follower-based

TCI
TES

(b) Recall

Fig. 12. Effectiveness of finding data mining experts in Citation dataset

Table 2 shows the top-5 experts on data mining and information retrieval
returned by our TCI method. Among the results, some well-known authors, such
as Jiawei Han and Christos Faloutsos (Data Mining), Bruce Croft and Ricardo
Baeza-Yates (Information Retrieval), are all ranked among the top-5 experts.
This is because these commonly ranked authors are not only highly cited, but
also in the top at each time point. In our setting, high citation counts means
high consistency, and high rank at each time point means little volatility. Hence,
the score values of these authors are likely to be high, making them among the
top-5 results.

466 E. Xu et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25

P
re

ci
si

on

Top K

Greedy
Follower-based

TCI
TES

(a) Precision

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

5 10 15 20 25

R
ec

al
l

Top K

Greedy
Follower-based

TCI
TES

(b) Recall

Fig. 13. Effectiveness of finding information retrieval experts in Citation dataset

Table 2. Top-5 experts on data mining and information retrieval

Data Mining Information Retrieval

consistency + volatility consistency consistency + volatility consistency
Jiawei Han Jiawei Han Bruce Croft Bruce Croft
Christos Faloutsos Philip S. Yu Ricardo Baeza-Yates Gerard Salton
Philip S. Yu Christos Faloutsos Chengxiang Zhai Oded Goldreich
Vipin Kumar Mohammed J. Zaki Anil K. Jain Michael I. Jordan
Mohammed J. Zaki Rakesh Agrawal H. Garcia Christopher D. Manning

5 Related Work

In this section, we review and summarize works that are most relevant to our
research. These include works in social influence analysis and top-k query pro-
cessing.

Social Influence Analysis. Research on influence analysis has focused on val-
idating the existence of influence [1], studying the maximization of influence
spread in the whole network [4], modeling direct influence in homogeneous net-
works [7], mining topic-level influence on heterogeneous networks [6], and con-
formity influence [8].

Tang et al. [7] introduce the problem of topic-based influence analysis and
present a method to quantify the influential strength in social networks. In [6],
Liu et al. introduce a probabilistic model for mining direct and indirect influence
between the nodes of heterogeneous networks. They measure influence based on
the clearly observable “following” behaviors and study how the influence varies
with number of hops in the network. Thus far, the influence analysis is based
on the observed behavior at a given snapshot. Yet, consistent behavior is an
important factor that has not been taken into account by these works.

Top-k Query Processing. Fagin et al. [17] introduce the TA algorithm for
computing the top-k queries over multiple sources, where each source provides
a ranking of a subset of attributes only.

Lee et al. [18] were the first to study consistent top-k query. They construct
a RankList for each time series to store the rank information. During query

k-Consistent Influencers in Network Data 467

processing, they traverse the list of each time series and search for entries with
rank values greater than k. The process terminates whenever an entry in the
list with rank value greater than k is encountered. Wang et al. [19] proposed
an efficient method called TES for durable top-k queries. TES exploits the fact
that the changes in the top-k set at adjacent time stamps are usually small.
TES indexes these changes and incrementally computes the snapshot top-k sets
at each time stamp of the query window.

These works assume the scores are precomputed at each time point and do
not consider the influence between users. However, we need to compute the score
of each user at each time point from an action log. In our setting, the ranked lists
correspond to users who are high in consistency values. Yet, these users may not
have high scores if their rank positions differ vastly at different time points. To
account for this, our proposed algorithm dynamically computes the total score
that combines consistency and volatility, and outputs the k-consistent users.

6 Conclusion

Social influence plays a key role in many social networks, e.g., Facebook, Twitter
and YouTube. In this paper, we introduce the notion of k-consistent influencers,
and propose an efficient approach to identify them in a social network. We define
the consistency of a node based on its influence and volatility over time. With
the help of grid index, we develop an algorithm called TCI to obtain the k-
consistent influencers given a time period. We conduct extensive experiments on
three real world datasets to evaluate the proposed method. We also demonstrate
the applicability of k-consistent influencers in identifying information sources
and finding experts. The experimental results demonstrate the efficiency and
effectiveness of our approach.

References

1. Agarwal, N., Liu, H., Tang, L., Yu, P.S.: Identifying the influential bloggers in a
community. In: WSDM, pp. 207–218 (2008)

2. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: KDD, pp. 1029–1038 (2010)

3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: KDD, pp. 199–208 (2009)

4. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

5. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: KDD, pp. 420–429 (2007)

6. Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining topic-level influence in
heterogeneous networks. In: CIKM, pp. 199–208 (2010)

7. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale
networks. In: KDD, pp. 807–816 (2009)

8. Tang, J., Wu, S., Sun, J.: Confluence: conformity influence in large social networks.
In: KDD, pp. 347–355 (2013)

468 E. Xu et al.

9. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: WSDM,
pp. 177–186 (2011)

10. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media?. In: WWW, pp. 591–600 (2010)

11. Tang, J., Zhang, J., Jin, R., Yang, Z., Cai, K., Zhang, L., Su, Z.: Topic Level
Expertise Search over Heterogeneous Networks. Machine Learning Journal 82(2),
211–237 (2011)

12. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: KDD, pp. 990–998 (2008)

13. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: RecSys, pp. 135–142 (2010)

14. Canini, K.R., Suh, B., Pirolli, P.L.: Finding credible information sources in social
networks based on content and social structure. In: SocialCom, pp. 1–8 (2011)

15. Mahata, D., Agarwal, N.: What does everybody know? identifying event-specific
sources from social media. In: CASoN, pp. 63–68 (2012)

16. Zhang, J., Tang, J., Li, J.: Expert finding in a social network. In: Kotagiri, R.,
Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007.
LNCS, vol. 4443, pp. 1066–1069. Springer, Heidelberg (2007)

17. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS, pp. 102–113 (2001)

18. Lee, M.L., Hsu, W., Li, L., Tok, W.H.: Consistent top-k queries over time. In:
Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463,
pp. 51–65. Springer, Heidelberg (2009)

19. Wang, H., Cai, Y., Yang, Y., Zhang, S., Mamoulis, N.: Durable Queries
over Historical Time Series. IEEE TKDE 26(3), 595–607 (2014)

20. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in
enterprise corpora. In: SIGIR, pp. 43–50 (2006)

21. Zhu, J., Song, D., Rger, S., Huang, X.: Modeling document features for expert
finding. In: CIKM, pp. 1421–1422 (2008)

Industrial Papers

Analyzing Electric Vehicle Energy
Consumption Using Very Large Data Sets

Benjamin Krogh(B), Ove Andersen, and Kristian Torp

Department of Computer Science, Aalborg University,
Selma Lagerlöfs vej 300, Aalborg, Denmark

{bkrogh,xcalibur,torp}@cs.aau.dk

Abstract. An electric vehicle (EV) is an interesting vehicle type because
it has the potential of reducing the dependence on fossil fuels by using
electricity from, e.g., wind turbines. A significant disadvantage of EVs is
a very limited range, typically less than 200 km. This paper compares
EVs to conventional vehicles (CVs) for private transportation using two
very large data sets. The EV data set is collected from 164 vehicles (126
million rows) and the CV data set from 447 vehicles (206 million rows).
Both data sets are collected in Denmark throughout 2012, with a logging
frequency of 1 Hz. GPS data is collected from both vehicle types. In addi-
tion, EVs also log the actual energy consumption every second using the
vehicle’s CAN bus. By comparing the two data sets, we observe that EVs
are significantly slower on motorways, faster in cities, and drive shorter
distances compared to CVs. Further, we study the effects of temperature,
wind direction, wind speed, and road inclination. We conclude that the
energy consumption (and range) of an EV is very sensitive to head wind,
low temperatures, and steep road inclinations.

1 Introduction

The electric vehicle (EV) type is gaining traction as an alternative to the con-
ventional vehicle (CV) with an internal combustion engine. The EV has the
potential of lowering the greenhouse gas emissions and reducing the dependence
on fossil fuels. Furthermore, the EV is an interesting vehicle type because it has
a set of new features, such as energy recuperation, close to ideal speed-torque
profile, and zero tail-pipe emissions [11].

EU has a goal of reducing the CO2 and other greenhouse gas emissions by
80% by 2050, compared to 1990 levels [9]. Because the transportation sector is
responsible for approximately 30% of all CO2 emissions [4], this sector has to
adapt new energy sources. Transportation by EV is seen as one of the technologi-
cal solutions that will help reach this goal. Especially, as more of the electricity is
generated from renewable energy sources such as solar panels and wind turbines.

Although the EV has a number of advantages over the CV, it also has some
significant drawbacks. The major drawback is the limited range of EVs compared
to CVs. A CV usually has a range of 500-600 km [27], but the range of an EV
is usually between 150 and 200 km [7,15,20,23,24]. Furthermore, a CV can be
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 471–487, 2015.
DOI: 10.1007/978-3-319-18123-3 28

472 B. Krogh et al.

refilled with gasoline in a few minutes whereas it may take hours to recharge the
battery in an EV [18]. However, only limited research has compared the usage of
the two vehicle types for private transport, and not using very large data sets.
Such a comparison is required in order to examine how well an EV satisfy the
transportation needs of families and how restrictive the range limitations are.

The main contributions of this paper are a detailed comparison of the driving
patterns for EVs and CVs, and a thorough analysis of the energy consumption
of EV driving patterns. The work is based on two high-resolution GPS data sets
(1 Hz) from a fleet of 164 EVs and a fleet of 447 CVs, recorded throughout 2012.
We study the effects of the limited range of EVs by analyzing and comparing the
average length of trajectories and daily driven distance of both EVs and CVs.

The EVs log the actual energy consumption using the vehicle Controller
Area Network Bus (CAN Bus) [1]. The combination of the GPS and CAN Bus
data is used to analyze the energy consumption of EVs with respect to road
inclination, temperature, wind direction, wind speed, season, and vehicle speed.
These analyses are possible due to state-of-the-art data processing of moving
object data, and sophisticated data integration with fine-grained meteorological
data from weather stations. This paper is an extended version of [13].

The rest of the paper is organized as follows. Sect. 2 describes the two data
sets used, Sect. 3 presents our method for comparing and evaluating the energy
consumption, Sect. 4 presents the results, Sect. 5 reviews the related work, and
Sect. 6 concludes the paper.

2 Data Foundation

The EV data set used is from the project “Test en Elbil” (“Try an Electric
Vehicle”) [8] and collected from January to December 2012. In this project,
families in Denmark could try an EV as the main household vehicle for a period
of three to six months. A fleet of 164 vehicles were used in the project, consisting
of 33 Citroën C-Zero [7], 56 Mitsubishi i-MiEV [15], and 75 Peugeot iOn [23]. The
three vehicle types are produced by the same manufacturer and are practically
identical, i.e., the same body, weight, 16 kWh battery, and 47 kW (63 hp) engine.
The vehicles are therefore treated identically in the following analyses.

126.5 million records in total were collected from the 164 EVs, with a total
driven distance of 1.4 million km, and 159 862 trajectories (or trips). An EV
record consists of GPS information and other data from the EV. The GPS data
include the location, altitude, direction, speed, and time-stamp. The EV data
include State of Charge (SoC), charging status, and odometer speed. The SoC
is collected from the EVs CAN Bus [1]. All EVs log these parameters with a
frequency of 1 Hz.

We compare the EV data set to a large data set from CVs. 205.6 million
records were collected from 447 vehicles, with a total driven distance of 3.4 mil-
lion km, and 187 303 trajectories. This data set is collected in the “ITS Platform”
project [2]. Records are logged with a 1 Hz frequency, during the period Jan-
uary to December in 2012 (only limited data in January and February). The EV

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 473

Table 1. Overall Statistics for Data Sets (left) and Road Network Coverage (right)

EV CV

Vehicles 164 447
GPS records 126.5M 205.6M
Trajectories 159 862 187 303
Total km 1.4M 3.4M

Edges EV Covered (%) CV Covered (%)

Motorway 2226 2111 (95) 2187 (98)
Primary 22 175 14 798 (67) 19 985 (90)
Secondary 53 271 38 274 (72) 39 020 (73)
Residential 568 307 82 799 (15) 59 383 (10)

and CV data sets are thus very similar, with the exception that the CV data
set contains only GPS information and no fuel consumption data. Tab. 1 (left)
summarizes the overall statistics for the EV and CV data sets.

Tab. 1 (right) shows the coverage of the most important road categories.
The Edges column shows the total number of edges in each category as defined
in the road network [3]. The EV Covered and CV Covered columns show the
number of edges that the EV and CV data sets cover, respectively. Tab. 1 shows
that the data sets covers most of the important road-network infrastructure
in Denmark. That is, the EV and CV data sets cover 95% and 98% of the
motorways, respectively, and 67% and 90% of the primary roads, respectively.
Note that, motorway edges are generally 10 times longer than other edges. For
instance, the total length of the motorway network in Denmark is 2428 km,
whereas the total length of the primary network edges is 2841 km.

3 Method

In this section, we describe the notations used, the approach for performing a
comparative analysis of the two data sets, and the processing of the data in order
to conduct our study.

The road network is modeled as a directed graph G = (V,E), where V is a
set of vertices and E is a set of directed edges E ⊆ V × V. The road network is
from the OpenStreetMap project [3], and consists of 1.5 million directed edges.

Before the EV and CV data sets can be compared, it is necessary to map-
match the location updates to the road network, and convert the location updates
into a network-constrained representation. Further, the set of location updates
from each vehicle needs to be divided logically into network constrained trajec-
tories.

A trajectory t is a sequence of network constrained location updates t =
[m1,m2, . . . , mn]. Each mi is a tuple (eid, timeenter, timeleave, SoC), where eid
is the id of the network edge, timeenter and timeleave are the times at which
the moving object entered and left edge eid, respectively. Both timeenter and
timeleave are linearly interpolated between two location updates. timeenter is
linearly interpolated between the location update prior to entering eid and the
first location update on eid. timeleave is interpolated between the last location
update on eid and the immediately following location update. Finally, SoC shows
the current state of charge on the battery in percent. A SoC = 100 indicates
that the battery is fully charged, whereas SoC = 0 indicates that the battery is

474 B. Krogh et al.

Fig. 1. Path-based Measurements of SoC

completely discharged. The SoC value is collected from the EV batteries through
the CAN Bus. A trajectory describes the movement of a vehicle during the course
of one trip, e.g., driving from home to work. A new trajectory is created when
there is a temporal gap of more than three minutes between consecutive location
updates from a vehicle. This gap allows for small outages in the recording of
location updates, e.g., when going through a tunnel.

The algorithm in [19] is used to map-match both data sets. A very high
map-matching accuracy is reported in [19] for moving object data with a log-
ging frequency higher than 0.2 Hz. Since both data sets used in this paper are
recorded with a logging frequency of 1 Hz, this map-matching algorithm is very
well-suited. 91% and 93% of all records are map-matched for EVs and CVs,
respectively. The reason that a lower percentage of records are map-matched for
EVs is that EVs sometimes continue to log when parked, and that these records
are ignored by the algorithm.

To study energy consumption, we convert the change in SoC into the corre-
sponding energy consumption. According to the company CLEVER1 that col-
lected the EV data, a change in SoC of 1 percentage point (the smallest observable
in the EV data set), corresponds to an energy consumption of 154 Wh.

3.1 Path Based Analysis

The change in SoC is a relatively coarse measure of energy consumption. For
this reason, we only use SoC to compute the energy consumption of trajectories
on paths that are 3 km or longer, see the details in Sect. 4.4. In many cases, it is
useful to select a specific path through the road network, and study vehicles on
this path throughout the year. In the rest of the paper, we refer to this approach
as path-based analysis. In a path-based analysis, we select a path through the
road network and retrieve the trajectories that strictly follow this path, i.e.,
have no detours or stops. To find the trajectories that strictly follow a path the
approach described in [14] is used.

The strategy for deriving energy consumption data using path-based analysis
is visualized in Fig. 1. The solid gray lines show a road network, and the thick
1 Private email communications with data provider.

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 475

solid line is the selected path. One trajectory (the dotted line) strictly follows
this selected path, i.e., enters the solid path at its beginning and follows the path
until its end without any detours. If we assume that the SoC of this trajectory
is 77% and 69% when entering and leaving the path, respectively, the energy
consumed is 77% - 69% = 8 percentage points, or 1.2 kWh (8 x 0.154 kWh).
Because the path is 7.2 km long, the vehicle has an average energy consumption
of 166 Wh per km throughout the path.

Note that, on Fig. 1, the trajectories can contain location updates on edges
both before and after the path selected for analysis, i.e., only the sub trajectory
on the path being analyzed is considered. In addition, note that the selected
path may consist of any number of edges, turns and intersections, and that the
trajectory may start and end anywhere in the road network, as long as it at
some point enters the selected path and strictly follows this path to its end.

By applying the strategy shown in Fig. 1 we can study the energy consump-
tion, because we can choose paths long enough to overcome the coarse granularity
of the SoC.

3.2 Weather Measurements

In Sect. 4.4 and Sect. 4.5, the effects of temperature and wind on the energy
consumption of EVs are analyzed. To evaluate these effects, we have integrated
detailed weather data from NOAA [21] and annotated all location updates with
this weather data. 73 official weather stations covered Denmark in 2012 with one
measurement every hour for each station, seven days a week.

Each weather record includes information on temperature, wind direction,
and wind speed. Each location update from the EVs is matched to the near-
est station using the Euclidean distance. If the nearest station does not have
any records within the same hour (weather records are sometimes missing), the
second nearest station is selected, and so on. With this approach, 90% of the
location updates are matched to a station within 26 km, and 99% to a sta-
tion within 36 km. The average distance from a location update to the nearest
weather station with a temporally matching weather record is 13.3 km. Den-
mark is relative flat and weather conditions do therefore not vary significantly
over these short distances. The weather measurements from the nearest weather
station can therefore be used, with reasonable accuracy, to examine the effects
of temperature and wind speed on the energy consumption when driving an EV.

3.3 Wind Speed and Direction Analysis

To examine the effects of the wind direction, we use the angular difference
between the wind direction and the GPS direction of the EV. If the difference is
below a given threshold, β, the location update is classified as either head-wind
or tail-wind. If the angle is larger than β, the location update is classified as
cross-wind. Fig. 2 illustrates this classification. The blue dotted line represents a
trajectory and the blue arrow the direction of a location update being examined.
Using the direction of the location update, we create two fans with the angle

476 B. Krogh et al.

Fig. 2. Head, Tail, or Cross Wind Classification

2β: one backward fan (left) and a forward fan (right). If the angle between the
wind direction and the direction of the location update (the vehicle) is less than
β, the location update is marked as either tail-wind or head-wind, depending on
which direction the wind comes from. As an example, in Fig. 2 we show three
wind directions using dashed arrows. The wind direction represented by the left-
most arrow is classified as tail-wind and the wind direction represented by the
rightmost arrow is classified as head-wind. The wind direction represented by
the middle arrow is classified as cross-wind.

To analyze the effects of wind speed, we further classify location updates
into the classes shown in Tab. 2. A location update is classified as H1, for a
given angle β, if and only if the wind has an angle of attack less than β, a wind
speed between 1 and 5 m/s, and the wind is head-wind. Most location updates
have a wind speed within either H1, H2, H3, T1, T2, or T3. However, 2.3% of
all location updates have a wind speed of 0 m/s, and 0.08% has a wind speed
above 15 m/s. Because the EV data set has only limited data with a wind speed
of zero or above 15 m/s, H0, T0, H4 and T4 are not used in any analysis, but
included for completeness. Classifications for cross-wind are not included in Tab.
2, because we are only interested in studying head-wind and tail-wind.

Table 2. Wind Classifications

0 m/s 1-5 m/s 6-10 m/s 11-15 m/s 16- m/s

Head-wind H0 H1 H2 H3 H4
Tail-wind T0 T1 T2 T3 T4

Recall that the SoC value is a relatively coarse measure that needs to be
observed over longer distances. As such, the classification of individual loca-
tion updates is not immediately useful for studying the energy consumption.
To overcome this challenge, we classify entire trajectories based on the location
updates in the trajectory. If more than a fraction, α, of the location updates of a
trajectory have a specific classification the trajectory adopts this classification.

We can then study how a varying angle β, 0 ≤ β ≤ 90 degrees, affects the
average energy consumption of trajectories, how a larger fraction of location

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 477

updates, α, with head-wind or tail-wind affects the energy consumption, and
how the wind-speed affects the energy consumption, see Sect. 4.5.

4 Results

We first study and compare overall statistics of both EV and CV trajectories.
We then compare the average speed of both EVs and CVs on different types of
road network infrastructure throughout the year. Finally, we analyze the energy
consumption with respect to environmental factors such as season, temperature,
road inclination, wind speed, and wind direction.

4.1 Trajectory Comparisons

A significant challenge for EVs is the limited range compared to CVs. For
instance, the vehicles in the EV data set have a specified maximum range of
160 km [15]. CVs typically have a range of 500-600 km [27]. Additionally, an EV
may require several hours to recharge, whereas CVs can be refueled within a few
minutes. To see whether the lower range of EVs affects the individual trajectory,
we compare the relative frequency of trajectories of a certain length.

Fig. 3a shows the relative frequency of trajectories of a specific extent. From
this figure it can be observed that most trajectories from both the EV and CV
data sets are short. In fact, 99% and 90% of trajectories are shorter than 50
km for EVs and CVs, respectively. CVs have relatively fewer trajectories shorter
than 20 km, and relatively more trajectories longer than 30 km. Overall however,
the two data sets appear to have comparable trajectory lengths, which suggests
that the limited range of these EVs only to a limited extend affects the individual
trajectory.

Fig. 3c shows the specific energy consumption per trajectory for EVs. Note
that the y-axis is logarithmic. Most trajectories (93%) use less than 4 kWh,
which is less than 25% of the battery capacity. Thus, in most cases the battery
has more than enough capacity to complete the individual trajectory.

Although the EV trajectories appear to be only slightly affected by the limited
range, this does not mean that the EVs satisfy the transportation requirements
of users. Indeed, one may argue that an EV does not satisfy the transportation
requirements, if the EV can get you to work but not back again. To analyze this, we
compare the total driven distance per day of both EVs and CVs. Fig. 3b shows the
relative frequency of days with a certain total travelled distance for both EVs and
CVs. From Fig. 3b we observe that EVs drive significantly shorter daily distances
than CVs. More than 99% of all days for EVs have a total travel distance of less
than 160 km (the specified range of the EV). For CVs, only 86% of all days travel
less than 160 km. As such, on 14% of all days the limited range of EVs cannot
satisfy the transportation needs of families without recharging during the day.

Fig. 3d shows the number of days with a specific total energy consumption
per vehicle (y-axis logarithmic). Note that it is possible to exceed the 16 kWh
capacity of the battery by recharging the battery during the day. From Fig. 3d

478 B. Krogh et al.

Fig. 3. Statistics per Trajectory and per Day

we observe that the battery capacity is usually sufficient for the transportation
needs for a single day, without recharging. For 90% of all days, less than 73%
of the battery capacity is used. The usage patterns of these EVs therefore only
rarely require recharging during the day.

4.2 Speed Comparisons

In Fig. 4a and Fig. 4b, we analyze the speed of EVs and CVs throughout the
year on motorways and residential roads, respectively. In both figures, the x-axis
shows the month of the year, and the y-axis shows the average speed. The overall
speed distributions of EVs and CVs on motorways with 130 km/h speed limits
(maximum and default for motorways in Denmark) and on residential roads are
shown on Fig. 4c and Fig. 4d, respectively. To identify the road network edges in
each of these categories, we used the road categories motorway and residential
from OpenStreetMap [3].

To ensure that the results are comparable, we include only location updates
on edges in the road network that are touched by both the EV and CV data
in each month. This is also the reason that only 10 months are shown on both

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 479

Fig. 4. Highway and Residential Road Speeds

figures, since only limited data from CVs is available for the first two months of
2012.

Fig. 4a shows the average speed of EVs and CVs on motorways with 130
km/h speed limits. We observe that the EVs drive significantly slower than CVs
on motorways. On edges with 130 km/h speed limits, EVs are between 7 and
20 km/h slower than EVs. We note that the top speed of the EVs is limited
to 130 km/h [17], thus the EVs should be able to maintain the average speed
of CVs. We assume this difference between EVs and CVs is because EVs lower
their speed to increase range. The EVs continuously report the expected range
to the driver based on the energy consumption of the last 25 km driven [18].
Since a high speed significantly increases the energy consumption, see Fig. 5b,
the vehicles will report a significantly lower expected range when driving with
a high speed. The speed distribution diagram on Fig. 4c confirms this theory.
On motorway edges with a 130 km/h speed limit, the speed distribution of EVs
corresponds to the speed distribution of CVs reduced by 20 km/h.

Fig. 4b shows the speeds of EVs and CVs on residential roads. Surpris-
ingly, the EVs are slightly faster than the CVs. We assume this is because EVs
accelerate more quickly at low speeds than CVs, partly due to differences in
transmission and engine torque. Most CVs in Denmark have a manual transmis-
sion whereas the EVs have a single speed transmission. Further, the speed-torque

480 B. Krogh et al.

Fig. 5. Seasonal Variations in Energy Consumption

profile of electric engines is close to the ideal [11], which results in higher acceler-
ation at low speeds. The overall speed distribution of EVs and CVs on residential
roads is shown in Fig. 4d. Note that the distributions for EVs and CVs are very
similar. However, in contrast to Fig. 4c, the speed of EVs is higher than CVs.

4.3 Seasonal Variations

Denmark has significant seasonal variations in the weather over the four seasons.
In the winter season, it is generally necessary to heat the cabin, whereas in the
summer it is necessary to cool the cabin. The EVs use the battery for both
heating/cooling the cabin and driving [16]. The range of EVs is therefore affected
by the outside temperature. The magnitude of this effect is examined in the
following.

Fig. 5a shows the relation between the energy consumed by a trajectory, and
the length of the trajectory. We divide the set of trajectories into four groups,
one for each season, and compute the average length of trajectories that used a
specific amount of energy. The fluctuations above 8 kWh are due to a limited
number of trajectories that consume more than 8 kWh.

From Fig. 5a we observe that the energy consumption varies significantly
over the seasons. For trajectories that use less than 8 kWh, the driven distance
per kWh is always less in winter than in the summer. The energy consumption
in winter is approximately 20% higher than in the summer. The difference in
energy consumption between summer and spring/fall is between 5% and 10%.

Based on Fig. 5a we compute the average energy consumption per kilometer
and the resulting range of the EVs for each season. Tab. 3 shows the results.

Fig. 5b shows the average energy consumption as a function of the average
speed of trajectories. Four series are shown, one for each season. Each trajectory
included has a minimum length of 5 km.

Fig. 5b shows a significant increase in energy consumption as the average
speed approaches 100 km/h. For instance, there is a 47% increase in energy
consumption per km between having an average speed of 60 km/h and 100 km/h

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 481

Table 3. Energy Consumption/km and Range

Season Consumption (Wh/km) Range (km)

Winter 203 76
Spring 151 102
Summer 130 118
Fall 159 97

in summer. The winter series appears to decrease Wh/km until reaching average
speeds of 50 km/h. We assume that this is because the heating system in the EVs
uses a significant amount of energy (up to 5 kW [16]). The difference in average
energy consumption between a speed of 60 km/h in winter and summer is 3.9
kW, and is reasonably explained by the heating system’s energy consumption.
The difference in average energy consumption between a speed of 60 km/h in
winter and summer is 3.9 kW. This suggests that the least energy consuming
path varies significantly throughout the seasons, i.e., an average speed of 40
km/h is most energy efficient in summer, whereas an average speed of 50 km/h
is energy efficient in winter.

Based on Fig. 5b we compute the energy consumption per km for EVs as a
function of season and speed. Tab. 4 shows the results. All units are in Wh/km.
There are no trajectories with an average speed of 100 km/h in the winter season.
The energy consumption is therefore omitted for this entry.

Table 4. Wh/km Seasons and Speed

20 km/h 40 km/h 60 km/h 80 km/h 100 km/h

Winter 217 201 196 220 -
Spring 141 145 154 190 222
Summer 121 120 131 163 193
Fall 161 154 160 184 207

4.4 Path-Based Energy Comparisons for EVs

We now select two frequently used paths in the road network, and compare the
energy usage for each of these paths for each month. The purpose is to study
the effects of the outside temperature and going uphill/downhill on the energy
consumption. As described in Sect. 3, we only include trajectories that strictly
follow the selected paths, and compute the energy consumption per trajectory
as the difference in SoC between entering and leaving the path, see Fig. 1. The
two paths are the Esbjerg-Varde path (a path between two cities), and the
Universitetsboulevarden (Uni. Blvd) path in Aalborg. Both paths are described
in detail in [5].

The Esbjerg-Varde path is relatively flat with a difference in altitude of 10
meters between start and end. The difference in altitude between the highest and

482 B. Krogh et al.

Fig. 6. Wh/km per Trajectory on Esbjerg-Varde (a), and Uni. Blvd (b)

lowest peak is 26 meters. The road inclination is between -4.7% and 4.9%, with
an average inclination of -0.1% in south direction. The Uni. Blvd path has either
descending (going east) or ascending (going west) altitude, with a difference in
altitude of 42 meters between start and end. The average inclination of Uni.
Blvd is -1.5% in east direction, and at most -5.9%.

Fig. 6a and Fig. 6b show the monthly average energy consumption per tra-
jectory on the Esbjerg-Varde path and the Uni. Blvd path, respectively. On
both figures, a green line shows the average temperature along the path. This
temperature is based on the weather data annotations as described in Sect. 3.
First, the average temperature of each trajectory is found, by computing the
average temperature of the location updates on the selected path for the given
trajectory. Then the average temperature for a month is computed by averaging
the temperatures of all trajectories in the month, on the specific path.

On the Esbjerg-Varde path, Fig. 6a, we observe a clear correlation between
temperature and energy consumption. There is a difference between the coldest
and warmest months of up to 25% in average energy consumption. The two
directions have similar energy consumptions, but the north direction always has
a slightly higher energy consumption than the south direction. We believe this
is due to the 10 m difference in altitude. The weight of an empty vehicle is 1070
kg [17]. Assuming a driver with a weight of 60 kg, a 10 m increase (decrease) in
altitude therefore has a difference in potential energy of 31 Wh (-31 Wh) [25]. The
predicted difference in energy consumption between going uphill and downhill
is therefore 62 Wh. The actual difference in energy consumption between uphill
and downhill in the summer months on this path is 75 Wh. We assume the
remaining differences in energy consumption are due to other factors such as
differences in speed when entering and leaving the path.

On the Uni. Blvd path, Fig. 6b, we observe again that energy consumption
varies significantly with the temperature. Further, we observe that the inclina-
tion of the path has a significant effect on the energy consumption. The difference
between going uphill and downhill on this path is up to a factor of nine in energy

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 483

consumption. The 42 m increase (decrease) in altitude has a difference in poten-
tial energy of 129 Wh (-129 Wh). The predicted difference in energy consumption
on this path is therefore 258 Wh. The actual energy difference between going
uphill and downhill in summer is 266 Wh. These results show that there are huge
variations in energy consumption due to increasing/decreasing altitude and vari-
ations in temperature. As such, the accuracy of a range estimation system can be
improved by incorporating the path to be followed and the temperature forecast.
In [5], we study other paths, with similar results.

4.5 Effects of Wind

We now analyze how the wind direction and wind speed affect the energy con-
sumption. A challenge in this study is that the angle of attack, i.e., the angle
between the wind direction and the vehicle direction, is an inherently local phe-
nomenon, whereas measuring the energy consumption requires a distance of
several kilometers.

We overcome this challenge by first classifying each location update as head-
wind, tail-wind, or cross-wind as described in Sect. 3. Second, if a trajectory
has more than 70% of its location updates in a specific class, e.g., H1 the entire
trajectory is classified as H1. Ideally, all location updates in each trajectory
would be in just one class. This is rarely the case, however, as the path of a
vehicle usually includes turns, hills, changing wind directions and wind speed.
As such, the 70% percentage requirement is a trade-off between isolating the
effects of a specific wind class, and filtering out most trajectories. We study how
varying this percentage affects the results in Fig. 8a and Fig. 8b. To cancel out
effects of temperature and geography, each data-point in the following figures is
an average of at least 100 trajectories.

First, we study the effects of tail-wind with varying angles, i.e., the β parame-
ter in Fig. 2. We include only trajectories with a length of at least 5 km and mea-
sure the energy consumption per trajectory using the difference in SoC between
start and end.

Fig. 7a shows the effect of tail-wind on the energy consumption as the angle
β varies from 30 to 90 degrees. A low angle implies that the wind has a direction
similar to the direction of the vehicle. None of the series has enough data for
β < 30, i.e., there are less than 100 trajectories. For the 11-15 m/s (T3) series
there is not enough data when β < 50.

As can be seen from Fig. 7a, tail-wind with a narrow angle of attack reduces
the energy consumption of vehicles with approximately 5 Wh/km compared to a
wider angle. There is not a significant difference between 1-5 m/s (T1) and 6-10
m/s (T2) trajectories. However, the 11-15 m/s (T3) trajectories use significantly
less energy. Independently of wind speed, the energy consumption increases as
the angle of attack is increased. That is, as more cross-wind is included, the
benefit of tail-wind is reduced.

Fig. 7b shows the corresponding results for head-wind. We observe that for
trajectories with head-wind, the wind speed has a significant effect on the energy
consumption. In fact, 11-15 m/s (T3) trajectories always use more energy than

484 B. Krogh et al.

Fig. 7. Tail-wind (a) and Head-wind (b) Effects on Energy Consumption

Fig. 8. Percentage of Trajectory with Tail-wind (a) and Head-wind (b)

6-10 m/s (T2) trajectories, which always use more than the 1-5 m/s (T1) trajec-
tories. The difference in energy consumption between lowest and highest wind
speed is approximately 10 Wh/km. As the angle of attack is increased, i.e., more
cross-wind is included, less energy is generally consumed. Finally, by comparing
Fig. 7a and Fig. 7b, we note that trajectories with head-wind always consume
more energy than trajectories with tail-wind, independently of the angle and the
wind-speed. The difference between H3 and T3 trajectories is up to 28 Wh/km,
which corresponds to a difference in energy consumption of more than 20%.

We now study the effects of the α parameter, i.e., the percentage of location
updates with tail-wind or head-wind. To do this, we use a fixed angle of attack,
β, of 60 degrees. Fig. 8a shows the average energy consumption as a function
of the percentage of location updates with tail-wind. When a low percentage
of location updates have tail-wind, higher wind speeds result in a higher energy
consumption. When a high percentage of location updates have tail-wind, higher
wind speeds reduce energy consumption. Intuitively, a low percentage of location
updates with tail-wind allows a high percentage of head-wind location updates.

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 485

This explains why the line for 11-15 m/s wind speed starts with the highest
energy consumption and ends with the lowest energy consumption.

Fig. 8b shows the average energy consumption of trajectories as a function of
the percentage of location updates with head-wind. We observe that the wind-
speed classes are clearly separated for head-wind, in contrast to tail-wind. Each
line shows an overall increasing trend with respect to the percentage of location
updates with head-wind. The series, 1-5 m/s, has an outlier point towards the
end, which we assume is due to limited data, i.e., only few trajectories have
more than 90% of all location updates with head-wind. When more than 20%
of the location updates of trajectories are with head-wind, the average energy
consumption is always higher than the corresponding energy consumption for
tail-wind in Fig. 8a.

5 Related Work

In [12], the psychological implications of the limited range of EVs are studied.
40 EVs were used in a 6-month period, after which data were collected using
questionnaires and interviews. The authors then evaluated, among other things,
the fraction of battery capacity most persons are comfortable utilizing. They
conclude that most drivers are comfortable using between 75% and 80% of the
total battery capacity.

In [22], 484 CVs, instrumented with GPS loggers, were monitored for a period
of up to three years. The authors used the collected data to estimate the per-
centage of vehicles that could be substituted with EVs, the required range of
EVs, and how many days the vehicle owner would be required to adapt to the
lower vehicle range. They conclude that limited range EVs can be satisfactory
for a significant fraction of the population, as long as they are willing to adapt,
e.g., by recharging during the day.

Socio-technical barriers to EV adoption are studied in [10]. The data foun-
dation is an online survey, completed by 481 persons. The authors find that the
dominating concern in the sampled population is the limited range and vehicle
cost.

Routing for electric vehicles [6,10,26], has proven to be challenging because
the vehicle consumption model is more advanced than for CVs due to, e.g.,
recuperation. Many EVs generate power when going downhill, which gives some
edges a negative energy consumption. This makes it harder to find the energy
optimal routes, because the algorithm needs to ensure that the predicted battery
charge is always between 0% and 100%. Our results suggests, that this line
of research should account for forecasted environmental parameters, such as
temperature and wind, and the predicted speed profile of the vehicle in order to
return better results.

6 Conclusion

To the best of our knowledge, this paper presents the first large scale study of how
electric vehicles (EVs) are used and which factors affect the energy consumption

486 B. Krogh et al.

of the EVs. We compared the EV data set with a data set from conventional
vehicles (CVs). Both data sets are collected in Denmark in 2012. Further, we
integrated fine-grained weather measurements, which we used to study the effects
of temperature and wind on the energy consumption.

Compared to CVs, we have found that EVs generally drive shorter distances,
both in terms of the individual trajectory and the total travelled distance per
day. We have shown that EVs are significantly slower on motorway, most likely
because the drivers want to preserve energy. Surprisingly, the EVs are slightly
faster than CVs in cities, which we assume is due to a close to ideal speed-torque
profile [11] and single-speed transmission.

We have shown that the average range of the EV is much lower than the
specified range of 160 km. In summer, the average range is 118 km (25% less),
and in winter the average range is 76 km (53% less). The large difference between
winter and summer is most likely due to heating of the cabin (which consumes
up to 5 kW [16]).

Acknowledgments. The authors are financially supported by the Danish Energy
Agency, www.ens.dk and by the EU REDUCTION project, www.reduction-project.
eu. We thank the ITS platform project [2], for providing the CV data set.

References

1. CAN Bus. http://en.wikipedia.org/wiki/CAN bus
2. ITS Platform. http://www.itsplatform.eu
3. OpenStreetMap. www.openstreetmap.org
4. Agency, E.E.: Final energy consumption by sector. http://www.eea.europa.eu/

data-and-maps/indicators/final-energy-consumption-by-sector-5/assessment
5. Andersen, O., Krogh, B., Torp, K.: TR-34: Analyse af elbilers forbrug (in Danish).

Tech. rep., Aalborg University (2014)
6. Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path

problem revisited: optimal routing for electric vehicles. In: Dillmann, R., Beyerer,
J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS, vol. 6359, pp. 309–316.
Springer, Heidelberg (2010)

7. Citroën: Citroën C-Zero. http://info.citroen.co.uk/Assets/pdf/new-cars/c-zero/
brochure.pdf

8. Clever: Projekt Test-en-elbil. testenelbil.dk
9. Commission, E.: Roadmap for moving to a low-carbon economy in 2050.

http://ec.europa.eu/clima/policies/roadmap/index en.html
10. Egbue, O., Long, S.: Barriers to widespread adoption of electric vehicles: An anal-

ysis of consumer attitudes and perceptions. Energy Policy 48, 717–729 (2012)
11. Ehsani, M., Gao, Y., Emadi, A.: Modern electric, hybrid electric, and fuel cell

vehicles: fundamentals, theory, and design. CRC Press (2009)
12. Franke, T., Krems, J.F.: Interacting with limited mobility resources: Psychological

range levels in electric vehicle use. Transportation Research Part A: Policy and
Practice 48, 109–122 (2013)

13. Krogh, B., Andersen, O., Torp, K.: Electric and conventional vehicle driving pat-
terns. In: ACM SIGSPATIAL. ACM (2014)

www.ens.dk
www.reduction-project.eu
www.reduction-project.eu
http://en.wikipedia.org/wiki/CAN_bus
http://www.itsplatform.eu
www.openstreetmap.org
http://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-5/assessment
http://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-5/assessment
http://info.citroen.co.uk/Assets/pdf/new-cars/c-zero/brochure.pdf
http://info.citroen.co.uk/Assets/pdf/new-cars/c-zero/brochure.pdf
http://www.testenelbil.dk
http://ec.europa.eu/clima/policies/roadmap/index_en.html

Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets 487

14. Krogh, B., Pelekis, N., Theodoridis, Y., Torp, K.: Path-based queries on trajectory
data. In: ACM SIGSPATIAL (2014)

15. Mitsubishi Motors: About i MiEV. http://www.mitsubishi-motors.com/special/
ev/whatis/index.html

16. Mitsubishi Motors: Air-conditioning system for electric vehicles (i-miev).
http://www.sae.org/events/aars/presentations/2010/W2.pdf

17. Mitsubishi Motors: Mitsubishi i-MiEV, Full Specifications.
http://www.mitsubishi-cars.co.uk/imiev/specifications.aspx

18. Mitsubishi Motors: Technology, Mitsubishi i-MiEV. http://www.mitsubishi-cars.
co.uk/imiev/technology.aspx

19. Newson, P., Krumm, J.: Hidden markov map matching through noise and sparse-
ness. In: ACM SIGSPATIAL, pp. 336–343. ACM (2009)

20. Nissan USA: Nissan Leaf, Price and Specs. http://www.nissanusa.com/
electric-cars/leaf/versions-specs/version.s.html

21. NOAA: National oceanic and atmospheric administration. http://www.noaa.gov
22. Pearre, N.S., Kempton, W., Guensler, R.L., Elango, V.V.: Electric vehicles: How

much range is required for a days driving? Transportation Research Part C: Emerg-
ing Technologies 19(6), 1171–1184 (2011)

23. Peugeot: Prices, Equipment, and Technical Specifications. http://www.peugeot.co.
uk/media/peugeot-ion-prices-and-specifications-brochure.pdf

24. Renault: Renault Fluence Z.E. http://www.renault.com/en/vehicules/
aujourd-hui/renault-vehicules-electriques/pages/fluence-ze.aspx

25. Serway, R., Vuille, C.: College Physics. Cengage Learning (2011)
26. Storandt, S.: Quick and energy-efficient routes: computing constrained shortest

paths for electric vehicles. In: ACM SIGSPATIAL IWCTS, pp. 20–25. ACM (2012)
27. Today, D.: Hybrid electric vehicles. www.drivingtoday.com/features/archive/

hybrid electrics/index.html

http://www.mitsubishi-motors.com/special/ev/whatis/index.html
http://www.mitsubishi-motors.com/special/ev/whatis/index.html
http://www.sae.org/events/aars/presentations/2010/W2.pdf
http://www.mitsubishi-cars.co.uk/imiev/specifications.aspx
http://www.mitsubishi-cars.co.uk/imiev/technology.aspx
http://www.mitsubishi-cars.co.uk/imiev/technology.aspx
http://www.nissanusa.com/electric-cars/leaf/versions-specs/version.s.html
http://www.nissanusa.com/electric-cars/leaf/versions-specs/version.s.html
http://www.noaa.gov
http://www.peugeot.co.uk/media/peugeot-ion-prices-and-specifications-brochure.pdf
http://www.peugeot.co.uk/media/peugeot-ion-prices-and-specifications-brochure.pdf
http://www.renault.com/en/vehicules/aujourd-hui/renault-vehicules-electriques/pages/fluence-ze.aspx
http://www.renault.com/en/vehicules/aujourd-hui/renault-vehicules-electriques/pages/fluence-ze.aspx
www.drivingtoday.com/features/archive/hybrid_electrics/index.html
www.drivingtoday.com/features/archive/hybrid_electrics/index.html

Interactive, Flexible, and Generic What-If
Analyses Using In-Memory Column Stores

Stefan Klauck1(B), Lars Butzmann1, Stephan Müller1, Martin Faust1,
David Schwalb1, Matthias Uflacker1, Werner Sinzig2, and Hasso Plattner1

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{stefan.klauck,lars.butzmann,stephan.mueller,martin.faust,

david.schwalb,matthias.uflacker,hasso.plattner}@hpi.de
2 SAP SE, Walldorf, Germany

werner.sinzig@sap.com

Abstract. One well established method of measuring the success of
companies are key performance indicators, whose inter-dependencies can
be represented by mathematical models, such as value driver trees. While
such models have commonly agreed semantics, they lack the right tool
support for business simulations, because a flexible implementation that
supports multi-dimensional and hierarchical structures on large data sets
is complex and computationally challenging. However, in-memory col-
umn stores as the backbone of enterprise applications provide incredible
performance that enables to calculate flexible simulation scenarios inter-
actively even on large sets of enterprise data.

In this paper, we present the HPI Business Simulator as a tool to
model and run generic what-if analyses in an interactive mode that allows
the exploration of scenarios backed by the full enterprise database on the
finest level of granularity. The tool comprises a meta-model to describe
the dependencies of key performance indicators as a graph, a method
to define data bindings for nodes, and a framework to specify rules that
describe how to calculate simulation scenarios.

Keywords: Business simulation · Column store · What-If analysis

1 Introduction

Today’s reporting tools offer an unprecedented flexibility. Companies can dive
into their data, i.e filter for arbitrary criteria and drill down into hierarchies to
explore the data at the finest level of granularity. Companies wish to exploit
this flexibility not only for reporting but also for forecasting and simulating.
They want to define potential future scenarios and calculate how these influence
their businesses. With the help of what-if analyses, they can evaluate simulation
scenarios in terms of their goal fulfillment and support decisions in day-to-day
operations.

Mathematical models, hereinafter also called calculation models, are one way
to define the dependencies between measures, i.e. the logic how changes of one
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 488–497, 2015.
DOI: 10.1007/978-3-319-18123-3 29

Interactive, Flexible, and Generic What-If Analyses 489

Operating Profit

Marginal Income SG&A

Net Sales COGS

-

-

Fig. 1. Value driver tree for the operation profit

key performance indicator (KPI) influence other KPIs. Value driver trees, such
as the DuPont model [1], are a well-known method to model KPIs with linear
dependencies among each other [2]. Figure 1 shows a driver tree for the operating
profit, which can be calculated by subtracting selling, general and administrative
expenses (SG&A) from the marginal income. The marginal income depends on
net sales and cost of goods sold (COGS). The values of the nodes base on enter-
prise data, e.g. on G/L account transactions as actuals or a combination of the
actuals and planned sales, production costs, and expenses as forecasted KPIs.
On the basis of enterprise data, companies want to define scenarios, i.e. changes
of the data, which reflect changing KPIs, and calculate the effects on other KPIs.
The challenge to define and run simulation scenarios is not the mathematical
complexity of the calculation, but the combination of a generic calculation model
and the large amount of data the model builds on, which enables the users to
define flexible scenarios and calculate them interactively.

For many years, the biggest obstacle has been the speed to access enterprise
data with all the relevant criteria to allow flexible and interactive simulations.
To run such simulations for net sales requires scanning sales documents with
all their associated line items. The corresponding tables can comprise billions of
records, specifying relevant attributes like sales date, sales volume, price, prod-
uct, and customer, but also hundreds of other attributes. The advent of colum-
nar in-memory databases has increased the performance of queries accessing few
attributes of large data sets, which enables the development of new enterprise
applications on top of it [3,4].

This paper presents the HPI Business Simulator, a tool to create, modify
and run what-if analyses interactively. This comprises two things: First, a way to
define what-if simulations, which consist of a calculation model, the specification
of data bindings between KPIs of the model and data of database tables, and
the support to specify simulation scenarios. Second, the concept of a simulation
tool to define and edit what-if simulations as well as to calculate scenarios.

After this short introduction into the problem domain, Section 2 presents
the theoretical concepts of the HPI Business Simulator. Its implementation is
shown in Section 3. Section 4 presents related work. The paper closes with a
presentation of the conclusions and offering an outlook for future work.

490 S. Klauck et al.

Fig. 2. Calculation model for the operating profit as extension of the value driver tree
in Figure 1

2 Simulation Model

The HPI Business Simulator is a proof of concept for implementing generic what-
if analyses. This section presents its theoretical concepts called simulation model.
The simulation model consists of three parts: the generic calculation model to
describe the drivers and the dependencies between them, the data binding to
connect drivers with data, and a way to specify scenarios and to calculate their
results.

2.1 Calculation Model

Calculation models are hypergraphs and extend value driver trees by supporting
complex operations and the loosening of the tree structure for dependencies.
Each node has a language dependent name, a measure with a unit, and freely
definable dimensions for specifying further criteria of a measure. Nodes can be
connected with other nodes by operations, which are hyperedges. The simulation
model specifies available dimensions including their hierarchy levels. The time,
for example, can be structured hierarchically into years and months. Operations
define the dependencies between nodes, i.e. the way one can calculate the values
for the result node based on the data of input nodes. Operations can be one of the
four elementary operations addition, subtraction, multiplication, and division.
Besides, users can define own, more complex operations, e.g. a product cost
calculation based on raw material prices, the bill of materials, cost center rates,
and the bill of operations. Figure 2 shows a calculation model for the operating
profit.

Data of a node can be seen as a data cube. Combining data cubes with
elementary operations works as for one-dimensional data. However, one has to

Interactive, Flexible, and Generic What-If Analyses 491

define rules for dimension handling. For additions and subtractions, the result
data cube has the intersection of dimensions from all input data cubes. The
records of the input data cubes with the same dimension values are combined to
a single output record. Result data cubes for multiplications receive the union
of dimensions from all input cubes. When combining data cubes with divisions,
the calculation model has to define the dimensions for the result data cube so
that combining these dimensions with the dimensions of the divisor results in
the dimensions of the dividend. Table 1 shows a multiplication and subtraction
of data cubes.

Table 1. Data cube calculations

Product Time Quantity

Product 1 01/15 5
Product 1 02/15 10
Product 2 02/15 5

(a) Sales Volume

Product Price

Product 1 20
Product 2 5

(b) Product Prices

Time Expenses

01/15 50
02/15 100

(c) Expenses

Product Time Sales

Product 1 01/15 100
Product 1 02/15 200
Product 2 02/15 25

(d) Sales (= Sales Volume * Product Prices)

Time Profit

01/15 50
02/15 125

(e) Sales - Expenses

User defined operations work in a similar way as elementary operations with
the distinction that arbitrary algorithms can define the calculation logic for the
result data cube. A simplified version of a product cost calculation with resolving
a hierarchical bill of materials (BOM) is described in the following. We assume
that product costs are only affected by raw material prices and thus ignore
labor, energy, and machine costs, which would occur in a real world scenario. A
calculation of these costs bases on the bill of operations (BOO) and follows the
same calculation logic as the BOM resolution. Figure 3 and Table 2 present an
exemplary BOM and its database representation.

Semi-finished Product

Product 1

Raw Material1 Raw Material 2

2

1 2

3

Fig. 3. BOM as graph

Table 2. BOM as table

Child Material Parent Material Quantity
Raw Material 1 Product 1 2

Semi-finished Product Product 1 3
Raw Material 1 Semi-finished Product 1
Raw Material 2 Semi-finished Product 2

492 S. Klauck et al.

Thereby, the table stores parent-child relationships, i.e. how much of a child
material is needed to produce a parent material. Child materials can be raw
materials and semi-finished products. Parent materials are semi-finished or end
products. The second input of our cost calculation scenario is a table with raw
material prices. To calculate product costs, we have to resolve the BOM so that
products are represented as costs of raw materials, but no semi-finished products.
Therefore, we traverse the BOM graph recursively or iteratively. The following
equations present the resolution for the exemplary BOM.

costsProduct1 = 2 ∗ costsRawMaterial1 + 3 ∗ costsSemi−finishedProduct

= 5 ∗ costsRawMaterial1 + 6 ∗ costsRawMaterial2

(1)

2.2 Data Binding

Nodes of the calculation model can obtain their data cubes in two ways. First,
they can query their data directly from data sources. Second, they can cal-
culate their values by solving the equation defined by the operation between
connected nodes and themselves. For the first case, data bindings are required.
Our work focuses on relational databases as data sources. Data bindings define
the database connection and query to calculate the data cube with all dimension
values. Additionally, data bindings have to specify how to filter the cube and
reduce the level of detail to calculate aggregates for higher levels of hierarchies.
When specifying the data binding, we have to ensure that the values of all nodes
can be calculated unambiguously, meaning that the data has to be sufficient and
consistent.

2.3 Simulation Scenarios

Based on the calculation model and data binding, the data cubes of all nodes
can be calculated. These data cubes are the basis of what-if analyses. In addi-
tion, it is required to specify in which direction changes propagate through the
model. Thereby the direction of propagation is not allowed to contain cycles.
A simulation scenario is a set of changes to the data of nodes. A single change
specifies a node, optionally filter conditions to limit the change to a subset of
records, and how the specified values are changed. The HPI Business Simulator
implements three types of simulation changes: an overwrite for records of the
data cube, an absolute adjustment by a delta value, and a relative adjustment
by a linear factor.

3 HPI Business Simulator

This section describes the HPI Business Simulator, a proof of concept to imple-
ment generic what-if analyses. For the implementation, we have engaged with a
Fortune 500 company in the consumer goods industry and discussed their needs

Interactive, Flexible, and Generic What-If Analyses 493

Fig. 4. Screenshot of the HPI Business Simulator with anonymized data

in the area of what-if analyses. Based on their input and the data set they pro-
vided to us, we implemented the HPI Business Simulator. In this section, we
explain features and implementation details of the HPI Business Simulator, why
in-memory column stores enable flexible and interactive simulations, and the
benefits of the HPI Business Simulator compared to existing tools.

3.1 Features and Implementation

The HPI Business Simulator is a browser-based graphical tool to define sim-
ulation model instances and calculate simulation scenarios using SAP HANA.
Figure 4 shows a screenshot of the business simulator with the calculation model
from Figure 2. The legend in the top left corner shows the visualized metrics
of the calculation model. Each node contains the driver name, a forecast value,
and the delta of the forecast to the budget. Thereby, the forecast is calculated
as a combination of the actuals up to today and the budget until the end of the
planning horizon. After specifying simulation changes, the effects are included
in the forecast and two additional values are displayed: the difference between
the old and new forecast and the change in percentage.

The calculation model can be edited by adding, deleting, and dragging the
graph components, i.e. nodes and edges. To change node properties as the name,
unit of measure, available dimensions, and data binding, one can open a detailed
view on the right side. The information to store simulation model instances
consists of three parts, describing the available dimensions with their hierarchies,
the nodes, and the operations. The top dropdown menu offers a way to drill down
into the data, e.g. by selecting a specific product category. In this case, the HPI
Business Simulator recalculates the drivers with the filter condition and displays
the new values. To define simulation scenarios, the user can select a node and
open the simulation interface in the bottom.

494 S. Klauck et al.

To calculate the operating profit for our use case, we worked with a denor-
malized table, which contained transactional as well as plan data. Following,
important attributes of the table are explained. The first two columns, Docu-
ment ID and is Plan Data, identify single records and declare whether the record
belongs to the actuals or the plan data. G/L Account Description indicates to
which driver the record belongs to. The following attributes, i.e. Product, Brand,
Category, and Time, specify criteria, which are mapped to dimensions of the
simulation model. Finally, Quantity, Quantity Measure, Amount, and Currency
describe the measures for the record. In particular, the values for Quantity and
Amount are aggregated to calculate the displayed value for each node.

3.2 In-Memory Technology as Enabler for Interactive Simulations

In-memory databases provide high performance and flexibility. This allows to
access the complete business data dynamically even of large companies at the
finest level of granularity, opening completely new opportunities. However, the
new dynamic nature and flexibility require adapting the way data is accessed
and consumed. Recently, self-service tools for business analytics fulfill this need
by providing intuitive interfaces to explore and analyze data. Typically, those
tools are focused on historic data and do not consider dependencies of the under-
lying value drivers and metrics. With the HPI Business Simulator, we want to
extend self-service tools for business analytics and provide an intuitive approach
to model value dependencies in enterprises with an interactive simulation envi-
ronment, leveraging the full computational power of in-memory databases.

In-memory column stores, such as SAP HANA [5], are the key enabler for
interactive simulations on large enterprise data. First of all, analytical queries
are accelerated compared to traditional disk-based systems by keeping all data
in main memory. Analytical queries are the basis to retrieve the data for busi-
ness simulations. Based on the specified parameters, the HPI Business Simulator
calculates aggregates of disjoint data sets: the ones which are affected by simu-
lation parameters and the ones which are not. The values of the nodes can then
be calculated by applying changes and combining theses aggregates. The second
benefit is the columnar data layout. Since the data bindings of the simulation
model describe only columns that are required for a calculation, the amount of
processed data is kept to a minimum. This functionality is especially beneficial
in the context of enterprise systems where data is typically very wide and sparse,
with up to 400 columns per table [6]. A third benefit is an aggregate cache, which
is a transparent caching engine inside the database [7]. Other than classic mate-
rialized views, the aggregate cache does not create a hard copy of the data and
as a result does not return stale data. The aggregate cache leverages the internal
table representation in certain column stores like SAP HANA or Hyrise [8] and
always works on the latest data. During a typical simulation session, different
scenarios are analyzed and compared. The differences between the scenarios can
vary, but are usually small. Consequently, the executed queries are similar and
can therefore benefit from the aggregate cache.

Interactive, Flexible, and Generic What-If Analyses 495

The performance to calculate a simulation scenario depends on many factors
like the number of records stored in the underlying tables, the number of nodes
with a data source, the number of simulation changes, the number of columns
used to specify the filter criteria, the granularity of filter criteria, and the data
distribution. For a preliminary performance test, our HPI Business Simulator
ran on a data set comprising 300 million records of customer data. The initial
on-the-fly calculation of an aggregate on a single enterprise class server with 128
cores and 256GB of RAM running SAP HANA was calculated within a second.
In that way, simulations can be defined and run interactively.

3.3 Benefits Compared to Existing Tools

Generic model. Existing simulation tools are targeted for specific processes and
are difficult to modify or extend to capture new use cases. Users may want to
extend the calculation model for the operating profit (see Figure 2) to distinguish
between advertising channels, which enables to simulate changes for a specific
kind of advertisement. The HPI Business Simulator allows the modification of
existing calculation models and definition of new ones without changing the
source code of the simulation tool or rewriting the application.

Support for complex calculations. Calculation models should not be limited to
tree structures and elementary operations as in the DuPont model. Instead,
graph structures and custom calculations should be supported.

Using in-memory column stores. Exploiting information at the finest level of
granularity requires the capability to operate on terabytes of data. Simulation
tools without an enterprise database as backbone have to load pre-aggregated
measures, which come along with a loss of information. The speed of current
in-memory databases supports aggregating large amounts of data on the fly
within seconds, which enables us to define and calculate flexible what-if scenarios
interactively. In addition, simulations are always calculated on consistent and
up-to-date data.

Collaborations. The HPI Business Simulator supports iterative what-if analy-
ses of users in different roles: The management defines KPIs and adapts the
definitions in case the calculation model does not support a desired simulation
scenario. More technical staff with extensive knowledge about the data schema
is responsible for providing the model with data and the integration of new data
sources. Concrete simulation scenarios are discussed and worked out by poten-
tially multiple controllers, which are responsible for different business areas.

4 Related Work

Golfarelli et al. introduce a methodology and process to design what-if anal-
yses [9]. Compared to our approach, they describe what-if simulations in a
more general way. In particular, they divide the process to design simulations

496 S. Klauck et al.

into seven phases: goal analysis, business modeling, data source analysis, multi-
dimensional modeling, simulation modeling, data design and implementation,
and validation. Our approach uses a multi-dimensional data model, which Gol-
farelli et al. see as most suitable to design what-if analyses. To describe the actual
simulation model, they propose an extension of UML 2 activity diagrams [10]. In
comparison to our work, they do not implement the simulation model instances
as applications, specify data bindings, nor define how to calculate simulation sce-
narios. Furthermore, we see the dependencies described by a calculation model
instance as subject to changes and extensions.

In the field of data cubes, which are the basis to calculate our simulation
scenarios, most research focuses on materialized data cubes [11–15]. Gray et al.
introduce a data cube operator as generalization and unification of following
database concepts: aggregates, group by, histograms roll-ups and drill-downs,
and cross tabs [11]. Further papers cover efficient implementation [12,13] and
maintenance techniques [14,15] for materialized data cubes. In contrast to pre-
vious work, we calculate the required aggregates of the data cubes on the fly.

A further research area in the field of what-if analyses is the combination
of spreadsheets and SQL. Spreadsheets have an easy to understand interface,
but do not build on consolidated enterprise data, which is usually stored in a
RDBMS. On the other side, SQL lacks the support for array-like calculations
as Witkowski et al. claim in [16]. Their idea is to combine both and offer a
spreadsheet-like computation in RDBMS through SQL extensions. In [17], they
continue that research and introduce a way to translate MS Excel computations
in SQL. Using their approaches for what-if analysis comes with two drawbacks.
First, it does not encapsulate the definition of the simulation model so that it
is not tangible, but only expressed by multiple formulas spread over many table
cells. Second, MS Excel is limited to the two-dimensional representation and
cannot visualize graphical dependencies between nodes appropriately.

5 Conclusion

In this paper, we presented our vision of generic, flexible, and interactive busi-
ness simulations, enabled by the performance capabilities of columnar in-memory
databases. In particular, we presented the HPI Business Simulator and its theo-
retical concepts to specify and run enterprise simulations. We proposed a meta-
model to describe what-if analyses comprising a calculation model, the data
binding and simulation parameters. Implementing this meta-model, simulation
model instances can be created and edited, such as one for the operating profit.
Based on a simulation model instance, scenarios are specified and calculated
interactively. With the performance of in-memory column stores, such as SAP
HANA, what-if analyses can include millions of records and work on the finest
level of granularity to enable interactive and fully flexible simulations.

This paper names performance factors that influence the calculation of sim-
ulation scenarios. In this field a deep analysis can be conducted. Furthermore,
future work can investigate how to optimize the calculation of scenarios, for

Interactive, Flexible, and Generic What-If Analyses 497

example by exploiting cases in which nodes query the same table or by optimiz-
ing queried data cubes so that their granularity is sufficient to calculate con-
nected nodes. The visualization of complex calculation models can be another
field for future investigations.

References

1. Chandler, A., Salsbury, S.: Pierre S. Du Pont and the Making of the Modern
Corporation. BeardBooks (2000)

2. Zwicker, E.: Prozeßkostenrechnung und ihr Einsatz im System der integrierten
Zielverpflichtungsplanung. Techn. Univ, Berlin (2003)

3. Plattner, H.: A common database approach for OLTP and OLAP using an in-
memory column database. In: SIGMOD (2009)

4. Plattner, H.: The impact of columnar in-memory databases on enterprise systems.
In: VLDB (2014)

5. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database - data management for modern business applications. In: SIGMOD (2011)

6. Krüger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Dubey, P.,
Plattner, H., Zeier, A.: Fast updates on read-optimized databases using multi-core
CPUs. In: VLDB (2011)

7. Müller, S., Plattner, H.: Aggregates caching in columnar in-memory databases. In:
VLDB (2013)

8. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
HYRISE: a main memory hybrid storage engine. In: VLDB (2010)

9. Golfarelli, M., Rizzi, S., Proli, A.: Designing what-if analysis: towards a method-
ology. In: DOLAP (2006)

10. Golfarelli, M., Rizzi, S.: UML-based modeling for what-if analysis. In: DaWak
(2008)

11. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggre-
gation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Min.
Knowl, Discov (1997)

12. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. In: SIGMOD (1996)

13. Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: shrinking
the petacube. In: SIGMOD (2002)

14. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary
tables in a warehouse. In: SIGMOD (1997)

15. Roussopoulos, N., Kotidis, Y., Roussopoulos, M.: Cubetree: organization of and
bulk incremental updates on the data cube. In: SIGMOD (1997)

16. Witkowski, A., Bellamkonda, S., Bozkaya, T., Dorman, G., Folkert, N., Gupta,
A., Shen, L., Subramanian, S.: Spreadsheets in RDBMS for OLAP. In: SIGMOD
(2003)

17. Witkowski, A., Bellamkonda, S., Bozkaya, T., Naimat, A., Sheng, L., Subramanian,
S., Waingold, A.: Query by Excel. In: VLDB (2005)

Energy Efficient Scheduling
of Fine-Granularity Tasks in a Sensor Cloud

Rashmi Dalvi and Sanjay Kumar Madria(B)

Department of Computer Science,
Misouri University of Science and Technology, Rolla, Missouri65401, USA

{rgd8t6,madrias}@mst.edu

Abstract. Wireless Sensor Networks (WSNs) are frequently used in
number of applications like unattended environmental monitoring. WSNs
have low battery power hence schemes have been proposed to reduce the
energy consumption during sensor task processing. Consider a Sensor
Cloud where owners of heterogeneous WSNs come together to offer sens-
ing as a service to the users of multiple applications. In a Sensor Cloud
environment, it is important to manage different types of tasks requests
from multiple applications efficiently. In our work, we have proposed
a scheduling scheme suitable for the multiple applications in a Sensor
Cloud. The scheduling scheme proposed is based on TDMA which con-
siders the fine granularity of tasks. In our performance evaluation, we
show that the proposed scheme saves energy of sensors and provides bet-
ter throughput and response time in comparison to a most recent work.

1 Introduction

Wireless sensor networks (WSNs) are popular because they can be used in a
wide range of applications, easy to deploy, withstand adverse conditions, work in
unmonitored networks, and provide dynamic data access. Unfortunately, WSNs
have limited battery power and thus, they have shorter lifespan. Therefore, sen-
sor tasks must be efficiently scheduled so that their lifespan increases. We con-
sider a Sensor Cloud of heterogeneous WSNs as described in our work [7]. The
WSN owners within a Sensor Cloud collaborate with one another to provide
sensing as a service at the same time and thereby gain profit from underutilized
WSNs. The users of the sensing as a service can select sensors either from a
single or multiple WSNs within the Sensor Cloud at the same time. Therefore,
we need a sensor task scheduling scheme for WSNs within a Sensor Cloud.

Pantazis et al. [2] proposed a TDMA based scheduling scheme that balances
power saving and end-to-end delay in WSNs. The scheme schedules the wakeup
intervals such that data packets are delayed by only one sleep interval from
sensor to gateway. However, while scheduling the sensors, they did not consider
multi-application environment. In a Sensor Cloud, users of multiple applications
want to consume the data differently which brings forth the need of categorizing
user tasks. The scheme proposed in [2] fails to account for various types of tasks
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 498–513, 2015.
DOI: 10.1007/978-3-319-18123-3 30

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 499

and thus, it cannot achieve the goal of energy conservation for different types
of requests. Similar to push requests [1], a number of users may like to consume
data from WSNs at a specific frequency. Other users prefer to do so once and in
ad-hoc fashion like push requests in [1]. Some users may like to be notified when
a specific event occurs. In all such needs, in-spite of being energy efficient [2], it
does not conserve enough energy because it did not consider fine granularity of
the tasks received from user applications.

Kapoor et al. [4], addressed the issue of allocating and scheduling sensors in a
multi-application environment. This work eventually led to energy conservation
in WSNs. Each sensor in the scheme can be utilized by a single application. A
scheduling algorithm was used to reduce the sensors response time. However,
this [4] proposed approach is not suitable for a Sensor Cloud where many users
of different applications might be interested in obtaining data from the same
geographical region (i.e. from a wireless sensor).

In this paper, we have extended the scheduling scheme proposed in [2] by con-
sidering fine granularity of the tasks. In multi-application environment, tasks are
treated differently depending on their types. This increases the user satisfaction
by reducing the response time of the tasks and improving throughput greatly.
It also provides the optimal energy conservation. Unlike scheduling scheme pro-
posed in [4], our scheme enables multiple application users to retrieve data from
same set of sensors by using TDMA. Also, we compared our experimental results
with the results in [4].

The major contributions of this work include showing experimentally that
our scheduling scheme provides better throughput and response time than Least
Number Distance Product (LNDP) scheduling scheme proposed in [4]. Our
scheme treats each task differently which leads to optimal energy conservation.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 introduces the architecture of Sensor Cloud briefly. Section 4
describes the scheduling scheme in detail. Section 5 contains the implementation
details and experimental results. Finally, Section 6 concludes the paper.

2 Related Work

Andrei et al. [5] proposed the approach of scheduling tasks. They suggested that
the Minimum cut theorem be used to partition a WSN into zones, reducing
the number of transmission and receptions. Thus, each convergent transmission
(from any node to the BS) will have a minimum number of hops. Such a strategy
may, however, lead to communication overhead in the process of partitioning
and gossiping between the sensors in WSNs. Additionally, the minimum cut
algorithm runs only once at the network initialization. Therefore, this scheme is
not suitable for dynamic networks.

Cao et al. [6] proposed scheduling in low duty cycled WSNs. Here, multiple
paths are used to transmit the data from the sensor to the BS when data trans-
mission fails to increase the reliability. Although this scheme provides a greater
fault tolerance, it requires an extensive amount of energy.

500 R. Dalvi and S.K. Madria

Xiong et al. [3] proposed a multi task scheduling technique that uses load bal-
ancing for low-duty-cycled WSNs. They concentrated on load balancing problem
for multiple tasks among sensor nodes in both spatial and temporal dimensions.
Although this scheme is dynamic, did not account for fine granularity of the
tasks. They also failed to address how the scheme would work if the length of
each task was unequal to the next.

3 Sensor Cloud Architecture

A Sensor Clouds architecture [7] is illustrated in Figure 1. This architecture is
broadly divided into three layers: Client centric, Middleware, and Sensor cen-
tric. A Client centric layer connects end users to the Sensor Cloud; it manages
a users membership, session, and GUI. Middleware is the heart of the Sensor
Cloud. It uses virtualization, with help from various components (eg. provision
management, image life-cycle management, and billing management) to connect
all participating WSNs to the end user. Sensor centric layer connects the Mid-
dleware to the physical WSNs. It also registers participating WSNs, maintains
participating WSNs, and collects data.

Fig. 1. Sensor Cloud Architecture

3.1 Challenges in Multi-Application Evironment

A Sensor Cloud is comprised of multiple WSNs. Thus, various types of multiple
application users may want to consume the data from Sensor Cloud at the same
instance of time. Hence, we need a scheduling scheme that schedules WSNs such
that it caters maximum number of applications and their users.

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 501

Conventional schemes that are typically used to schedule WSNs will not work
efficiently in multi-application environment, because those schemes are designed
for single application environment. The scheme proposed here focuses on schedul-
ing sensors in multi-application environment to increase user satisfaction.

Assumptions. In WSNs, tree topology and cluster topology are widely used over
other network topologies. Because of its structure, a tree topology provides a
wider area coverage than a cluster topology. Thus, in this work a tree topology
is assumed for all WSNs that participate in a Sensor Cloud.

We assume that the proposed scheduling scheme will have a sensor allocation
scheme. In a WSN, according to the user’s request, allocation scheme aimed
to select some number of sensors from available sensors. Allocation scheme is
then followed by the scheduling scheme which then serves maximum number of
application users.

4 Scheduling Tasks

The sensing requests were broadly classified into three categories. In multi-
applications environment, applications that consume Sensor Cloud services are
expected to receive requests from one or more of the categories given below.
These requests are also known as Tasks.

4.1 Types of Tasks

The types of tasks are classified as Task T1, Task T2, and Task T3.

Task T1. Task Type 1 (referred to as T1) is a task that is requested by users
when they need sensor data at a specific frequency. These tasks may include a
request for information on a specific topic (eg. weather broadcast). This informa-
tion is sampled periodically and then broadcast back to the user. These requests
have also been referred to as Push requests [1]. When this type of request is made,
the BS sends data to the sensors only once at the beginning of the request. The
sensors sense and then send the data to the BS at a given sampling frequency
and time duration. Task T1 becomes the most expensive of all tasks in a WSN
that is running at a maximum sampling frequency because this task preempts
other tasks for the same WSN. The cost of this task is high at a higher frequency.
It decreases as the sampling frequency decreases.

In a WSN, consider a scenario when n users have requested for n tasks of
type T1. These tasks are requested for same set of sensors and for same sensing
phenomenon, but for different data frequencies (different time intervals between
requests). In this case, the physical data frequency of WSN will be the minimum
data frequency of all n tasks. Remaining n-1 frequencies will be virtual data
frequencies. For n-1 tasks, selection of minimum frequency will lead to some
delay in data received from sensors. However, this approach will conserve the
sensors energy because minimum frequency = min(f1, f2, ... fn). In another

502 R. Dalvi and S.K. Madria

approach, LCM (Least Common Multiple) of all n frequencies can be set as
the minimum frequency. LCM approach will reduce delay in response, but will
significantly increase sensors energy because minimum frequency <= LCM(f1,
f2, ... fn).

We prioritized saving sensors energy over latency in receiving data. Therefore,
the minimum frequency of all requests was used in this study. Users in need
of data (based on type T1) need to send information (e.g., location, sensing
phenomenon, sampling frequency, and sampling duration) to the sensor cloud.

Task T2: Type 2 tasks (referred as T2) are requested by users who need
one time data on the fly. This type of task also known as a Pull Task [1], is
designed to serve ad-hoc requests. BS will send request details (e.g. location,
sensing phenomenon) to the sensors, which will respond with the latest data.

Task T3: Task Type T3 (referred as T3) is used for event-based requests.
During this type of request, the BS sets the event on sensors according to
the requested condition on the sensor data. These applications will need sev-
eral inputs, including location, sensing phenomena, event condition, monitor-
ing frequency, and monitoring duration. Sensors continue sensing the data at
a requested frequency and respond when the event condition occurs. Task T3
is useful for a number of applications, including fire detection, intrusion detec-
tion, and so forth. The algorithm used for T3 is a trade-off between the event
occurrence frequency and the cost of event detection. If the event occurs very
frequently, then a large number of duty cycles must be assigned to T3, increasing
the effective cost.

T3 task can be further classified into ’Notify once’ and ’Notify until the
condition is false’.

The behavior of ’Notify once’ would be similar to Task T2. In case of ’T3
with Notify Once’ sensors send data to the BS only once when event condition
is met. On the contrary, for T2 tasks, on request, sensors respond with data.

Behavior of ’Notify until the condition is false’ would be similar to Task T1.
When event occurs, sensors executing task ’T3 with Notify until condition is
false’ send data to BS until condition turns false. However, for task T1, sensors
send data to the BS at a given frequency. As T3 does not require data to be
always sent from sensors to the BS, cost of T3 is lesser than T1.

4.2 Handling Redundant Requests

The handling of redundant requests benefits application users, WSN owners, and
cloud service providers within a sensor cloud. The BS handles the redundant
requests without affecting the physical frequency. For an instance, assume that
a node ’A’ is already serving request ’R1’ for task T1 at frequency ’f’. The
following redundant requests to node ’A’ can be served by the BS from the data
received for request ’R1’.

1. Other T1 requests for node ’A’, with a frequency in multiples of ’f’, until
the duration of R1 ends

2. T2 requests for node ’A’. The maximum delay is = ’f’

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 503

3. T3 requests for node ’A’. The maximum delay is = ’f’ until the duration of
R1 ends

Similarly, BS will serve requests for other nodes according to requests already
made on the WSN.

4.3 Scheduling Scheme

Our proposed scheme is divided into Sensor Scheduling and Task Scheduling.

Sensor Scheduling. The scheduling scheme proposed in [2] is extended here to
avoid the problem of packet collision during transmission and reception. Both
wake up and sleep modes are used for all types of tasks. For tasks T1 and T2,
the BS determines in what order the sensors must transmit and receive data.
Thus path wakeup is not required for tasks T1 and T2. In task T3, however the
event triggers the transmission of data from node(s) to the BS. The schedule for
T3 is not defined beforehand. On the occurrence of event, data is pushed into
the vacant duty cycle. Hence, T3 needs the path wakeup strategy proposed in
[2] to transmit the data from the node(s) to BS.

Consider the tree topology given in Fig. 2. Messages between sensors are
divided into following categories according to the direction of packet transmis-
sion. They are further classified based on the level of granularity:

Fig. 2. WSN in a tree topology

BS to Node(s) Command messages: This type of message has both wakeup
and command packets [2]. Time is divided (see Fig. 3) to avoid a collision between
packets. Wakeup messages have a short duration; Command messages have a
longer duration. The command packets time period is determined by the com-
mands maximum length of the command. These messages are transmitted from
the BS to the node(s) for every new request. They are not, however, transmitted
for redundant requests.

Node ’A’ sends data to nodes ’B’ and ’C’. Transmitter of ’A’ is turned on for
the first two slots. Receivers of ’B’ and ’C’ are turned on in the first and second
timeslots, respectively. Next, nodes ’B’ and ’C’, in parallel, send data to ’D’ and
’F’, followed by ’E’ and ’G’. This procedure continues until the algorithm reaches
the leaf nodes. This sequential transmission of packets helps in avoiding collision
between packets.

504 R. Dalvi and S.K. Madria

Fig. 3. BS to Node(s) messages

Fig. 4. Node(s) to BS messages

Node(s) to BS Data messages: This type of messages has both wakeup and
data packets [2]. The data packets in task T1 are pushed to the BS at a scheduled
frequency. The data for tasks T2 and T3 is pushed at the next available duty
cycle. Data transmission occurs as shown in Fig. 4. Nodes ’J’, ’K’, ’H’, and ’I’
are leaf level nodes that need to send data to the BS. The ’J’ and ’H’ leaf nodes
send data to the ’E’ and ’D’ leaf nodes, respectively. Later, nodes ’K’, ’I’ send
data to ’E’ and ’D’, in order. Accordingly, the transmitters that are sending data
are turned on, and receivers receiving data are turned on for a specified amount
of time.

Task Scheduling. The scheme for task scheduling is an extension of the sensor
scheduling explained in Section 3.1. Two types of cycles are given in Fig. 5.

Duty Cycle: The duty cycle includes time slots for the transmission of data from
BS to all nodes and from the node to the BS. For a particular WSN, the time
duration of a duty cycle is equal to the time duration of the duty cycle that
contains the longest task. Any task (T1/ T2/T3) can be assigned to a duty
cycle according to whether or not it can serve the task. The duty cycles length is
selected as the length of the largest task in the requests currently served. Each
slot in Fig. 5 separated by a brown color line is a duty cycle. Duty cycle T1
is further divided into two messages: BS to Node(s) and Node(s) to BS. Duty
cycles are used for tasks T2 and T3 as per allocated tasks.

Task Cycle: A task cycle is a combination of multiple consecutive duty cycles
that may contain tasks T1, T2, and T3. The task cycles length changes when
the physical operating frequency of the WSN changes. Essentially, task cycle
depends on the T1 frequency.

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 505

Fig. 5. Duty cycle and Task Cycle

4.4 Duty Cycles in Detail

A duty cycle has a variable length. The minimum length of all requested tasks
is considered to be the length of a duty cycle for a given WSN. When tasks are
short in length, this strategy reduces the delay in response. Correlation between
tasks and messages in duty cycle is explained further.

Duty Cycle for Task T1. Duty cycles for T1 are divided into two types of
messages, BS to Node(s) messages and Node(s) to BS messages.

BS to Node(s) message: The BS to Node(s) message is transmitted on a T1
request to the WSN. For the first T1 duty cycle, time is allocated on BS to
Node(s) message. Transmission will start from BS and propagate to the leaf
level nodes.

Node(s) to BS message: A Node(s) to BS message is transmitted at each occur-
rence of a sampling frequency. Time slots are assigned by beginning at the leaf
level node and moving to the BS. These messages are driven by both, as the BS
and the Node(s) are each aware of the transmission time slots.

Duty Cycle for task T2. Duty cycles for T2 are divided into two types of
messages, BS to Node(s) messages and Node(s) to BS messages.

BS to Node(s) message: Task T2 are designed to serve ad-hoc requests. Thus,
these messages are transmitted when nodes find an empty duty cycle.

Node(s) to BS message: If a request is already received by a node, then the
response is sent in next available duty cycle. Node(s) to BS slot of the duty
cycle is selected to transfer the message. Unlike T1 Node(s) to BS messages,
these messages are driven completely by the BS because the BS tells the node(s)
when to transmit the data.

506 R. Dalvi and S.K. Madria

Duty Cycle for Task T3. Duty cycles for T3 are divided into two types of
messages, BS to Node(s) messages and Node(s) to BS messages.

BS to Node(s) message: These messages can be transmitted in next available
duty cycle. The event is set to the given node(s) once a request is sent to the
node(s) with monitoring frequency and condition.

Nodes(s) to BS message This message transmission uses path wakeups from
node to the BS. Wake up messages are sent at the beginning of this message to
all nodes in the path. Data messages are sent once path to the BS is established.
These messages are completely driven by the monitoring nodes because the BS
is unaware of the data received.

4.5 Pre-emption Condition

The pre-emption of nodes in a WSN depends on two factors: the availability of
duty cycles at the root level node and the frequency of requests in T1 mode.
The minimum frequency of T1 limits a network by restricting other nodes from
transmitting the data.

1
∑exisingT1Freq

p=1 (1/Freqp)
>= D (1)

Equation (1) defines the pre-emption condition by rejecting requests that do
not satisfy the above condition. Here, existingT1Freq is the list of T1 frequencies
operating on a WSN, Freqp is the pth operating frequency (of non-redundant
requests), and D is the length of the duty cycle.

Algorithm 1 ensures that at least one duty cycle is available in the task cycle
for T2 and T3 requests. This algorithm, however accepts T1 and T3 requests only
when the value at L.H.S. in (1) is greater than the value of R.H.S. The algorithm
rejects the request when the condition is not satisfied. Rejected requests inform
users that the WSN does not currently have the capacity to serve.

Algorithm 1 takes request R as an input. It returns true if the request is
served and false if the request is not served. This algorithm evaluates the pre-
emption condition (in Equation (1)) first. If its value is true, the request can
be scheduled else the request will be rejected by returning false. If the value of
preemption condition is true and R.task is either T1 or T3 (e.g. a task with a
frequency), then it evaluates whether or not the desired frequency is in multi-
ples of a duty cycle or vice versa by finding either of mod(R.freq,Task Cycle) and
(mod(TaskCycle,R.freq)=0)) condition is true. If the frequency is in multiples i.e.,
one of these conditions is true, then the algorithm assigns values to minslot and
majslot by using methods GetMinorSlot(R) and GetMajorSlot(R) respectively.
These methods get minslot and majslot by finding the next vacant timeslot that
can be scheduled. Further ScheduleWSN(R, minslot, majslot) method sched-
ules the request on appropriate duty cycle according to the values of minslot,

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 507

majslot and returns true. Returned value true means that the request is sched-
uled for T1 or T3. In other case when preemption condition is met and R.task
is T2, steps same as T1 and T3 will be executed except a difference that,
as task T2 doesnt have any frequency; condition mod(R.freq,Task Cycle) and
(mod(TaskCycle,R.freq)=0)) will not be checked. Rest of the steps for T2 will
be same as T1 and T3.

Algorithm 1. BS Scheduling
Objective: Scheduling the input request
Input: R {task, phenom, sens, fwd, freq, cond}
Output: true if request is scheduled, false otherwise

if

1
∑exisingT1Freq

p=1 (1/Freqp)
<= D

then
if R.task = T1 or R.task = T3 then

if R.freq mod D = 0 or D mod R.freq = 0 then
minslot = GetMinorSlot(R)
majslot = GetMajorSlot(R)
ScheduleWSN(R,minslot,majslot)
Return true

end if
end if
if R.task = T2 then

minslot = GetMinorSlot(R)
majslot = GetMajorSlot(R)
ScheduleWSN(R,minslot,majslot)
Return true

end if
else

Return false
end if

The DutyCycleTimer fires every D seconds. The currentRequests refers to
the collection of all requests running on a given sensor, mincurrentslot is the
minor slot id for the current Duty Cycle, majcurrentslot is the major slot id for
the current Duty Cycle, currentnode.id is the id for the sensor on which code
is executing, and currentnode.parent is the id for parent sensor of the sensor on
which the code is executing. The notified is a flag; its value is true if the child
of the current node has detected an event.

After Algorithm 1 sends requests to sensors, a new request is added into
the currentRequests in Algorithm 2. The DutyCycleTimer is set to fire (Duty-
CycleTimer fired event) on each duty cycle frequency tick. On this event, for
each request R in currentRequests, Algorithm 2 checks whether a mincurrentslot
is equal to R.minslot and majcurrentslot is equal to R.majslot. If both slots
match for any request R, the Algorithm 2 continues else no action is taken.

508 R. Dalvi and S.K. Madria

Further if R.task is T1 or T2, and current sensor is selected for sensing (i.e.
R.sens.contains(currentnode.id)) then, data is sensed for the phenomenon R.phenom
using method SenseData(R.phenom). Sensed data is aggregated with the data
received from immediate children by method AggregateData() and sent to the
parent using SendData(currentnode.parent). If the task is either T1 or T2 and
the current sensor is selected to forward the data (i.e.R.fwd.contains(currentn-
ode.id)), then sensor just forwards the data to its parent using method Send-
Data(currentnode.parent). Now if the request is T1 i.e. R.task is T1, algorithm
completes. In case if R.task is T2, it continues further. The T2 requests are one-
time requests, hence after processing T2 request R.minslot and R.majslot are set
to 0, so that this request will not be served further.

Algorithm 2. Sensor Scheduling
Objective: Serving the scheduled requests

DutyCycleTimer fired Event
for all R in currentRequests do

if R.minslot = mincurrrentslot and R.majslot = majcurrentslot then
if R.task = T1 or R.task = T2 then

if R.sens.contains(currentnode.id) then
SenseData(R.phenom)
AggregateData()
SendData(currentnode.parent)

end if
if R.fwd.contains(currentnode.id) then

SendData(currentnode.parent)
end if
if R.task = T2 then

R.minslot = 0
R.majslot = 0

end if
end if
if R.task = T3 then

if R.sens.contains(currentnode.id) then
if CheckEvent(SenseData(R.phenom), R.cond) = true then

SendNotification(currentnode.parent)
end if

end if
if R.fwd.contains(currentnode.id) and notified = true then

SendNotification(currentnode.parent)
end if

end if
end if

end for

In another case, if the timeslots match, i.e. (mincurrentslot is equal to R.
minslot and majcurrentslot is equal to R.majslot), and R.task is T3, it checks
whether the current sensor is selected to sense the phenomena by using a check,
R.sens.contains (currentnode.id). Then a phenomenon is sensed and condition

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 509

is tested by checking CheckEvent(SenseData(R.phenom), R.cond). If the con-
dition check has met the event criteria, i.e. if this check returns true then the
sensor sends a notification to its parent using method SendNotification (cur-
rentnode.parent). However, if the current sensor is selected as the forwarding
node (i.e. value of R.fwd.contains(currentnode.id) is true), then sensor assesses
whether or not it has received any notifications from its children by checking
whether notified flag is true. If notified flag is true, it notifies its parent using
method SendNotification(currentnode.parent). If it has not received a notifica-
tion (notified flag is false), it remains idle.

5 System Implementation, Experiments and Performance
Evaluation

For scheduling scheme, we have developed the software to run on Telosb motes
using TinyOS 2.0 and java. The Telosb motes were powered by two AA recharge-
able batteries (1.2V - 2600mA). A Sensor Cloud web application programmed
using java communicates with the BSs of different WSNs using RMI and socket
communication. BS developed in java then transfers the messages to the motes
which are programmed using TinyOS.

In order to show the efficiency of our design, we compared scheduling scheme
with the LNDP scheme in [4]. For LNDP scheme, we programmed motes using
TinyOS. It had just one type of task, which can be executed once at a time
because in [4], authors did not consider granularity of the tasks. Also, this task
had a frequency like task T1 in our scheduling scheme. Similarly, we have devel-
oped our TDMA scheduling scheme having tasks T1, T2, and T3, using TinyOS.
For the experiment, we deployed a WSN with 5 nodes for LNDP and for our
scheduling algorithm. The measures we used for performance comparison are,
Response Time, Throughput, Network Lifetime and Power Consumption.

Response Time. To find the Response Time, we considered the tasks of type
T1 in our experiment because they are most expensive tasks. For increasing
number of tasks we found the values of response time for the best case, the
average case and the worst case. Fig. 6 shows the tasks table used in performing
the experiment. Also, Fig. 7 shows the graph of Number of Tasks v/s Response
Time (in sec) for scheduling algorithm. In the best-case scenario, the new request
for the task arrives when all other previous requests are saved and next duty
cycle is vacant to be served. On the other hand we consider a worst case when
a vacant duty cycle was just got over and a new request arrives. When the
number of tasks are more in worst case, we have taken the tasks with a higher
frequency rate which causes the response time to increase rapidly. However, in
average case, the new request arrives between the two vacant duty cycles. The
response time for average case increases linearly with the number of tasks. The
response time for the scheme in [4] is shown in Fig. 8, where the overall response
time is significantly greater than the response time of scheduling algorithm.
The response time of scheduling algorithm is shorter than [4] because in our

510 R. Dalvi and S.K. Madria

scheduling algorithm, we allow tasks to execute in parallel. On the contrary, for
scheme in [4], tasks are executed serially and hence, the response time is longer.

Fig. 6. Tasks for the experiment

Fig. 7. Number of tasks v/s Response time (sec) for scheduling algorithm

Throughput. For the results of throughput, refer to the table in Fig. 6. The
number of tasks completed with elapsed time for scheduling algorithm is shown
in Fig. 9. Throughput of best and worst case increase linearly, however in the
worst case, with increase in time, initially the number of tasks executed go on
increasing, but later they go down. As the elapsed time goes on increasing we
select the higher frequencies which cause WSNs to accommodate less number of
tasks. Hence in worst case throughput reflects downward slope at higher values
of time elapsed. On the other hand, the throughput for the LNDP scheme in [4]
(in Fig. 10) was very low as compared to throughput of scheduling algorithm
because [4] allows serial execution of tasks only.

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 511

Fig. 8. Number of tasks v/s Response time (sec) in LNDP scheduling [4]

Fig. 9. Elapsed time v/s Number of tasks executed for scheduling algorithm

Fig. 10. Elapsed time v/s Number of tasks executed in LNDP scheduling [4]

Fig. 11. Tasks v/s Network Lifetime (hours)

512 R. Dalvi and S.K. Madria

Network Lifetime. In Fig. 11, we have compared the network lifetime of schedul-
ing algorithm with the network lifetime of the LNDP schem in [4]. The length
of the duty cycle was set as 5 sec. When a task with frequency 5 seconds having
least number distance product was executed for infinite duration for the scheme
[4], the batteries were discharged in 67 hours. Similarly with scheduling algo-
rithm, we deployed three WSNs each having duty cycle as 5 seconds and were
assigned task T1, T2 and T3 respectively. The networks for tasks T1, T2 and T3
lasted for 59, 45 and 80 hours respectively. Four tasks of T1 and T3 are set for
WSNs, with frequency of each task as 20 seconds. However, for task T2, we sent
a new request every 5 seconds. It is observed that in a WSN with task T2 has
shortest life because it involves the packets sent from BS to node(s) and node(s)
to BS both. T1 has more lifespan than T2 because it was a push request, which
requires data being pushed from node(s) to BS only. T3 has the highest lifespan
as it mostly involves sensing unless the event condition is not met when node(s)
have to send notification to BS.

Fig. 12. Tasks v/s Power consumption (mW/hour)

Power Consumption. Based on the results of Network lifetime the power con-
sumption was calculated and is shown in Fig. 12. Although the [4] consumes
lesser power than T1 and T2, but consumes more power than T3. Task T2 con-
sumes more energy because it involves the packets sent from BS to node(s) and
node(s) to BS both. T1 consumed lesser energy than T2 because it was a push
request, which requires data being pushed from node(s) to BS only. T3 was the
least expensive task because it mostly involves sensing unless the event condition
is not met when node(s) have to send notification to BS.

6 Conclusions

In this paper, a scheduling scheme for different types of tasks initiated by multi-
ple applications has been proposed and implemented under a Sensor Cloud envi-
ronment. In the implementation, we showed that our scheduling scheme provides
energy efficient operation leading to energy conservation in WSNs. The schedul-
ing scheme improves response time and throughput, and only consuming some

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud 513

additional energy for tasks T1 (when data is requested at specific frequency) and
T2 (when data is requested only one time) but not for tasks T3 (event based
data collection) in comparison to a recent scheme handling multiple applications.

References

1. Xu, Y., Helal, S., Scmalz, M.: Optimizing push/pull envelopes for energy-efficient
cloud-sensor systems. In: Proceedings of the 14th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems., ACM (2011)

2. Pantazis, N.A., Vergados, D.J., Vergados, D.D., Douligeris, C.: Energy efficiency in
wireless sensor networks using sleep mode TDMA scheduling. Ad. Hoc. Networks
7(2), 322–343 (2009)

3. Xiong, S., Li, J., Li, Z., Wang, J., Liu, Y.: Multiple task scheduling for low-duty-
cycled wireless sensor networks. In: 2011 Proceedings IEEE INFOCOM, IEEE
(2011)

4. Kapoor, N.K., Majumdar, S., Nandy, B.: Scheduling on wireless sensor networks
hosting multiple applications. In: 2011 IEEE International Conference on Commu-
nications (ICC), IEEE (2011)

5. Voinescu, A., Tudose, D.S., Tapus, N.: Task scheduling in wireless sensor networks,
2010. In: 2010 Sixth International Conference on Networking and Services (ICNS),
IEEE (2010)

6. Yongle, C., Guo, S., He, T.: Robust multi-pipeline scheduling in low-duty-cycle
wireless sensor networks. In: 2012 Proceedings IEEE INFOCOM, IEEE (2012)

7. Madria, S., Kumar, V., Dalvi, R.: Sensor cloud: a cloud of virtual sensors. IEEE
Software 31(2), 70–77 (2014). IEEE

Demo

Invariant Event Tracking on Social Networks

Sayan Unankard1,2(B), Xue Li2, and Guodong Long3

1 Information Technology Division, Maejo University, Chiang Mai, Thailand
sayan@mju.ac.th

2 School of ITEE, The University of Queensland, Brisbane, Australia
xueli@itee.uq.edu.au

3 Centre for Quantum Computation and Intelligent Systems,
University of Technology Sydney, Sydney, Australia

guodong.long@uts.edu.au

Abstract. When an event is emerging and actively discussed on social
networks, its related issues may change from time to time. People may
focus on different issues of an event at different times. An invariant event
is an event with changing subsequent issues that last for a period of time.
Examples of invariant events include government elections, natural disas-
ters, and breaking news. This paper describes our demonstration system
for tracking invariant events over social networks. Our system is able
to summarize continuous invariant events and track their developments
along a timeline. We propose invariant event detection by utilizing an
approach of Clique Percolation Method (CPM) community mining. We
also present an approach to event tracking based on the relationships
between communities. The Twitter messages related to the 2013 Aus-
tralian Federal Election are used to demonstrate the effectiveness of our
approach. As the first of this kind, our system provides a benchmark for
further development of monitoring tools for social events.

1 Introduction

Micro-blog services like Twitter have become useful sources for watching real-
world events. The monitoring of events over social networks has many appli-
cations such as decision making and situation awareness. As a particular event
develops, people may be interested in seeing an overview of the situation. An
event may have several related topics that develop over time. In this paper, we
introduce a new concept called invariant event tracking. An event is a social
activity or a phenomena that occurs in a certain place during a certain time
period. Event tracking is to monitor streams of topic-discussions in order to
understand the event. A series of changing topics derived from an event over
time is called an invariant event. In general, a topic is associated with a set of
keywords. At any point in time, there are multiple topics discussed on social net-
works. Invariant event tracking is important for analyzing the overall situation
of a particular event on social networks. For example, during a natural disas-
ter, government may need to analyze the development of situations in order to
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 517–521, 2015.
DOI: 10.1007/978-3-319-18123-3 31

518 S. Unankard et al.

Fig. 1. Invariant event tracking conceptual diagram

make the right responses at the right times. For a longer-running event like a
government election, people may wish to track the event with-respect-to multi-
ple issues such as campaign-launch speeches and a number of open TV-debates
under different topics, in order to cast their votes.

However, general micro-blog searches for given keywords return large amounts
of messages that are not grouped or organized in any meaningful way. It is dif-
ficult for people to comprehend a large number of messages in a chronological
order and to monitor an event as it unfolds. Although traditional techniques
such as clustering are able to capture major events in social networks [1,4], it is
difficult to capture the incidental events that may or may not be relevant to the
current focused event. For example, when a natural disaster has just occurred,
people may initially talk about the natural phenomenon that they have just wit-
nessed. Then, damages, casualties, or the consequences of the disaster might be
reported. Topics related to volunteer organizations and rescue activities might
also be discussed later. All these topics are related to the same event, yet a
general clustering approach is not able to correlate them into a single event.

To the best of our knowledge, every event develops in a unique way and is
transitionally coherent to a set of keywords at different stages of its life time.
So the only restriction should be on its time of emerging and time of finishing.
In other words, we should monitor an event not by any pre-specified patterns,
but by the subsequently developed topics related to the event and follow their
changes within the given time frame. In this paper, we propose an approach
of invariant event tracking on social networks. We use our system to track an
event based on micro-blog messages and monitor the topic changes over time
for an event that is rendered to the system as a set of keywords. The research
challenges are: (1) effectively summarizing the given event-search query (termed
as an invariant event), and (2) tracking the evolution of an event within a given
time period.

Invariant Event Tracking on Social Networks 519

2 System Architecture

In order to show a comprehensive understanding of our invariant event tracking
framework, a conceptual diagram is presented in Fig. 1. The architecture of
our system consists of two components, including micro-blog loader and pre-
processing, and invariant event tracking.

2.1 Micro-blog Loader and Pre-processing

A micro-blog loader is developed to collect the Twitter messages from public
users via the Java library API service. The user’s initial query (i.e., a set of
keywords) is used for specifying an event. The pre-processing was designed to
ignore common words that carry less important meaning than keywords and
to remove irrelevant data such as re-tweet keyword and web address. The stop
words are removed and all words are stemmed.

2.2 Invariant Event Tracking

Event detection is to identify hierarchically nested event topics that break down
an event into more refined parts. Then, event tracking will be performed to
discover an invariant event.

Event Detection: we aim to group the co-occurring keywords for topic discov-
ery. Note that the concepts of event and topic are different; an event may have
several topics at different stages in its life cycle. We adopt the idea of community
detection in graphs for locating and analyzing overlapping dense user groups in
social networks [2]. In our approach, a so-called community that represents a
set of users is termed as an episode that includes the topics related to an event
at a certain time frame. Therefore, in our approach, the migration of members
amongst communities is treated as the evolution of the topics amongst differ-
ent episodes in an invariant event. We partition the messages into time frames.
For each time frame, co-occurring keywords that appear together in at least
min occur are extracted. To compute co-occurring words, we exclude re-tweet
messages. Networks of keywords are then constructed as graphs. Finally, the
keywords in an episode are grouped along with the topics of the episode. Each
episode represents one or more event topics in a particular time frame.

Event Tracking: at this stage, we aim to identify an invariant event by tracking
all the event topics detected at each time frame. The event evolution is repre-
sented by a series of episodes from different time frames. In order to capture
the changes of episodes, we consider five types of transitions (i.e., form, dissolve,
survive, split, and merge) [3]. Topic evolution is a sequence of changes succeed-
ing each other in the consecutive time frame. All event topics, which are linked
together over time frames, are represented as an invariant event. For each time
frame, node is the keyword and edge between the nodes is formed when those
keywords co-occur in at least min occur times.

520 S. Unankard et al.

Fig. 2. Dashboard of our system

3 Demonstration Scenario

For demonstration, a collection of messages posted by Australian locals (given
latitude, longitude and radius) via the Twitter Search API service from 4
August 2013 to 8 September 2013 with 808,661 messages with the user’s ini-
tial event-query, is used. We define an event by specifying the keyword query
(i.e., “#ausvotes13”, “#election2013”, “#AusVotes”, “#auspol”, “Kevin Rudd”
and “Tony Abbott”). We decided to choose this period because the election date
was announced on 4 August 2013 and people started discussions on this event.
Also, we chose the keywords related to the two candidates because in Australian
politics the candidates will be from the two major parties.

We designed a dashboard to display an invariant event and topic evolution
over time. Events are presented via Annotated Time Line Chart as shown in Fig.
2 (top-left) for each day (represented by letters A to Z). For a given invariant
event, the size of Timecloud indicates the frequency of words over the selected
time period as shown in Fig. 2 (top-right). A re-tweet network is constructed
and influential users are shown in Fig. 2 (bottom-left). Stream graph, which is a
visualization for displaying multiple time series, is used to show the number of
people using the words over time as shown in Fig. 2 (bottom-right).

4 Conclusions

In this paper, we proposed an approach to tracking invariant events and topic
evolution within a given time period. The main contributions of this paper are
twofold. (1) An effective approach of tracking invariant events is proposed by
incorporating CPM community mining and community evolution discovery tech-
niques. (2) We have implemented an invariant event tracking system which pro-
vides user with an overview of the development of an event. Due to the limited

Invariant Event Tracking on Social Networks 521

space of this paper, we will give the detailed algorithms and the further perfor-
mance evaluation in our future articles.

References

1. Li, C., Sun, A., Datta, A.: Twevent: segment-based event detection from tweets. In:
CIKM, pp. 155–164 (2012)

2. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814–818 (2005)

3. Takaffoli, M., Sangi, F., Fagnan, J., Zaiane, O.R.: Modec - modeling and detecting
evolutions of communities. In: ICWSM, pp. 626–629 (2011)

4. Unankard, S., Li, X., Sharaf, M.A.: Emerging event detection in social networks
with location sensitivity. World Wide Web Journal, 1–25 (2014)

EmoTrend: Emotion Trends for Events

Yi-Shin Chen, Carlos Argueta, and Chun-Hao Chang(B)

Intelligent Data Engineering and Applications Laboratory, Institute of Information
Systems and Applications, National Tsing Hua University , No. 101, Section 2,

Kuang-Fu Road, Hsinchu 30013 , Taiwan, Republic of China
ccha97u@gmail.com

Abstract. In this demo paper we present EmoTrend, a web-based
system that supports event-centric temporal analytics of the global mood,
as expressed in Twitter. Given a time range, and optionally a set of key-
words, the system relies on peak frequencies, and the social graph, to iden-
tify relevant events. Subsequently, by performing sentiment analysis on
related tweets, the global impact and reception of the events are presented
by a visualization of the overall mood trend in the time range.

1 Introduction

The widespread use of connected portable devices has allowed users to spread
news as they happen, making microblog services the most rapid news outlets
in the world. In this demo paper, we present EmoTrend, a system that auto-
matically identifies events from Twitter streams and summarizes the impact
on society in a meaningful way. The system first clusters keywords with fre-
quency peaks as candidate event descriptors. It then uses evolving social graphs
to identify meaningful events. Batches of tweets related to the detected events
are sentiment-analyzed based on emotion-bearing patterns. Finally, the user is
presented with a timeline of events. By selecting an event, the evolution through
time of the global mood towards the event is summarized based on six basic
emotions—anger, fear, hope, joy, sadness, surprise. Such tool can help a user to
better understand how an event has evolved and how it has impacted society.

2 Methodology

The system presented in this demo paper has two major components: the Event
Detection component and the Mood Summarization component.

2.1 Event Detection

Good keywords in tweets must satisfy two special criteria: meaningfulness and
burstiness. To detect meaningful keywords, profanity is first filtered out. Then,
an adaptation of the m-function used by the Porter Stemmer [1] is used to
remove words without meaning. To determine whether or not a keyword is bursty
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 522–525, 2015.
DOI: 10.1007/978-3-319-18123-3 32

EmoTrend: Emotion Trends for Events 523

(i.e. it has been frequently used during a specific period of time), we calculate
its frequency inside a sliding window. Using z-scores, we obtain a probability
statistic determining how likely the word frequency in the past window is less
than or equal to the frequency in the current timeframe. If that value is big
enough, then the word is considered bursty and with high temporal use.

The filtered keywords are then grouped into event candidates. To achieve this,
an event graph is constructed for each time frame. The vertices correspond to
keywords and each edge connects co-occurrent keywords within a same tweet. A
weight for each directed edge is computed based on frequency and co-occurrence
statistics. PageRank [2] is then used to rank the keywords. The top keywords
and their strongest neighbors are grouped as event candidates.

Concept-Based Evolving Graph Sequences (cEGS) [3] is a sequence of directed
graphs representing information propagation within social streams. In this sys-
tem, one such sequence of graphs is built for each event candidate that is moni-
tored. Given a cEGS for a specific event, a directed graph is built for every day,
with its vertices being the users that mention one or more event keywords on that
day, and its edges representing a “following” relationship between two users.

2.2 Mood Summarization

After the events in the time frame have been identified, related tweets are fed, in
order of publication, to the sentiment analyzer. Using emotion-bearing patterns,
the analyzer summarizes the overall mood of the global community towards the
event, and how it evolves in time. The steps performed are described in the
following subsections.

By monitoring word frequencies in tweets, the system separates words into
high-frequency (HW) and low-frequency words. Infrequent words that appear in
a dictionary obtained from LIWC’s [4] [5] psychological categories are deemed as
psychological-words (PW). Subsequences of words pertaining to a combination
of HW (e.g. “this”) and PW (e.g. “hate”, “love”, “beach”), and appearing fre-
quently in tweets, are grouped together based on matching HWs (e.g. “hate this
weather” and “love this beach”). Subsequently, by having their PWs replaced by
a wildcard (e.g. “.+ this .+”), the subsequences form emotion-bearing patterns.
Patterns that fall below a frequency threshold are discarded.

An adaptation of the term frequency-inverse document frequency (tf-idf)
statistic is used. By viewing patterns as terms, and collections of tweets per
emotion as documents (6 documents total), the tf-idf is adapted to include a
third score based on how many PWs in a collection can be captured by a pattern
with its wildcard. The result is one ranking per emotion class, where top patterns
are both more relevant to the class and bear a high level of emotion.

For each tweet fed to the sentiment analyzer, two different classifiers are
used, a bag-of-words style classifier, and a Neural Networks classifier. The top
two emotions obtained from the classifiers are used for each tweet. Finally, the
overall mood state towards an event is computed for every day based on the
individual emotions expressed in tweets related to that event in specific days.

524 Y.-S. Chen et al.

3 Demonstration Overview

Fig. 1. Main page of the system The
Timeline

Fig. 2. Detailed view for event Boston
Marathon Bombing

In this section the functionality of the proposed system is at http://www.
cs.ccu.edu.tw/∼ccha97u/emotrend/. When opening the system’s main page, the
user will be presented with the screen in Figure 1. The screen presents a timeline
showing the different detected events. Scrolling horizontally on the timeline the
user can move forward or backward in time. As the user moves, the timeline
will update to show the corresponding events. Each event is represented by a
circle which extends across the timeline according to its duration. Inside the
circle the user is presented with the most important keywords representing the
event. As can be seen in Figure 1, the event for the Marathon bombing contains
relevant keywords, such as marathon. The size of the font for each keyword is
proportional to the frequency with which it was used in related tweets. Clicking
a circle brings the detailed view for the specific event.

The detailed view for each event has different components. In this demo
scenario let’s assume a user clicks on the circle representing the Boston Marathon
bombing event. The detailed view, presented in Figure 2, shows three main
components. The Emotion Pizza, like a regular pie chart, presents the proportion
of tweets expressing each of the six emotions detected by the emotion detection
algorithm. The Event circle is the same circle representing the event in the
timeline and contains the most important keywords for the event. The Emotion
Trend is an area chart used to represent the emotion trend over time.

The detailed view allows a user to inspect the impact of the event in society
by observing how the global emotion evolves. Considering the Boston bombing
event, from this view it can be seen at a glance that the predominant emotions
are fear and sadness as direct consequences of such a tragedy, but also hope as
expressed in tweets wishing the survivors to recover soon.

Additionally, the interface allows the user to restrict the summary to a spe-
cific emotion or subinterval of time. For instance, by clicking on an emotion
name, or corresponding portion in the Emotion Pizza, the Emotion Trend will
show only the area over time for that specific emotion. The resulting peaks give
the user an idea of when the event caused specific emotional reactions on the
society. Clicking on other emotions disable or enable them, updating the Emo-
tion Trend accordingly. Additionally, if the user clicks and drags the mouse along

http://www.cs.ccu.edu.tw/~ccha97u/emotrend/
http://www.cs.ccu.edu.tw/~ccha97u/emotrend/

EmoTrend: Emotion Trends for Events 525

the Emotion Trend graph, the Emotion Pizza gets updated to show the propor-
tions of tweets with corresponding emotions within the selected time interval
only. This is particularly useful to better understand how the emotions evolved
by observing the predominant reactions from people at specific times.

4 Conclusions

In this paper we presented EmoTrend, a system that provides temporal sum-
marization of the global mood towards interesting events mined from Twitter.
For the regular user, EmoTrend constitutes an interesting tool to understand
how a society is affected, and its mood evolves, during and after events hap-
pen (e.g. natural disasters, royal weddings). For corporations, politicians, and
stars, EmoTrend represents a clear chance to grasp the overall reception of their
events as they happen (product releases, campaign speeches), giving the pos-
sibility of better decision-making in order to improve image and products. We
have demonstrated the ability of our system to extract events, and summarize
their impact in a comprehensive way, an ability that traditional news articles
and encyclopedia entries lack.

References

1. Porter, M.F.: An algorithm for suffix stripping. Program: Electronic Library and
Information Systems 14(3), 130–137 (1980)

2. Page, L., et al.: The PageRank citation ranking: Bringing order to the web (1999)
3. Kwan, E., et al.: Event identification for social streams using keyword-based evolving

graph sequences. In: Proceedings of the 2013 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining. ACM (2013); APA

4. Pennebaker, J.W., et al.: The development and psychometric properties of LIWC
2007, Austin, TX, LIWC. Net (2007)

5. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and
computerized text analysis methods. Journal of Language and Social Psychology
29(1), 24–54 (2010)

A Restaurant Recommendation System
by Analyzing Ratings and Aspects in Reviews

Yifan Gao1, Wenzhe Yu1, Pingfu Chao1, Rong Zhang1(B),
Aoying Zhou1, and Xiaoyan Yang2

1 Shanghai Key Laboratory of Trustworthy Computing, Institute for Data Science
and Engineering, East China Normal University, Shanghai, China

{yfgao,wyu,pfchao}@ecnu.cn, {rzhang,ayzhou}@sei.ecnu.edu.cn
2 Advanced Digital Sciences Center, Illinois at Singapore Pte. Ltd.,

Singapore, Singapore
xiaoyan.yang@adsc.com.sg

Abstract. Recommender systems are widely deployed to predict the
preferences of users to items. They are popular in helping users find
movies, books and products in general. In this work, we design a restau-
rant recommender system based on a novel model that captures cor-
relations between hidden aspects in reviews and numeric ratings. It is
motivated by the observation that a user’s preference against an item
is affected by different aspects discussed in reviews. Our method first
explores topic modeling to discover hidden aspects from review text.
Profiles are then created for users and restaurants separately based on
aspects discovered in their reviews. Finally, we utilize regression models
to detect the user-restaurant relationship. Experiments demonstrate the
advantages.

Keywords: Recommender systems · Review analysis · Hidden aspect ·
Regression model

1 Introduction

Recommendation systems have been widely deployed in Web applications to
predict the preferences of users to items. There are two major approaches to
produce recommendations [3]: content-based filtering (CBF) and collaborative
filtering (CF). CBF explores properties of items to recommend additional items
with similar properties. However, CBF systems tend to make overspecialized
recommendations. CF models users’ past behavior and preferences from similar
users. CF systems concentrate on modeling user-item relationship to make rec-
ommendations [3]. In this demo, we explore the second approach and examine
the relationship between users and restaurants by analyzing ratings and aspects
in reviews to build a restaurant recommendation system.

Customer reviews, which are usually associated with numeric ratings, have
become commonly available on various review websites. Web portals such as
Yelp and Dianping1 accommodate extensive reviews covering large numbers of
1 yelp: http://www.yelp.com; Dianping: http://www.dianping.com

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 526–530, 2015.
DOI: 10.1007/978-3-319-18123-3 33

http://www.yelp.com
http://www.dianping.com

A Restaurant Recommendation System by Analyzing Ratings 527

restaurants from different countries. These reviews contain abundant information
about users’ opinions and preferences, which are valuable to any recommendation
system.

2 System

The flowchart of our restaurant recommender system is presented in Figure 1.
The input to our system is a review corpus and a target user u. The output is
a list of top-k restaurants recommended for u. Our system consists of two main
components: profile generator and rating predictor.

2.1 Profile Generator

We map users and restaurants to a common latent space S discovered from the
review text. The intuition is that reviews, though in the format of unstructured
free text, contain information about user preferences and opinions on different
aspects of items. These aspects ‘hidden’ in the review text may well reflect the
latent factors that affect the user ratings. To find these hidden aspects and con-
struct the latent space, we apply standard Latent Dirichlet Allocation (LDA)[1]
to reviews, which is an effective tool for extracting topics from pure texts.

Fig. 1. System Flowchart

Let dui denote the review of restaurant i by user u and we treat each dui

as one document. We apply LDA on the review corpus {dui} and discover K
topics. Let θui denote the topic distribution of dui generated by LDA. Define Du

as the set of reviews written by user u, and Di as the set of reviews written for
restaurant i. Each user u (or restaurant i) is associated with a profile pu (or qi),
which is a vector from S. In our system, S = [0, 1]K . For a given user u, we define
her profile pu as: p′

uj =
∑

i θuij
|Du| , and puj =

p′
uj

∑
j p′

uj
, j ∈ [1, K] . pu = (pu1, pu2, · · · , puK), puj is

the distribution on the jth topic for user u, and θuij is the distribution on the jth
topic for review dui. Similarly, we define profile qi for restaurant i as:q′

ij =
∑

u θuij
|Di| ,

and qij =
q′
ij

∑
j q′

ij
, j ∈ [1, K]. In summary, profile pu/qi is the normalized average topic

distribution over all reviews of a given user u/restaurant i.

528 Y. Gao et al.

2.2 Rating Predictor

Given a user u, we want to predict the rating r̂ui for restaurant i. Recommenda-
tions are then made based on r̂ui of restaurants that u have not rated/visited.
To predict ratings, we rely on the intuition that hidden topics discovered from
review text define the latent factors that affect the ratings. Our rating predic-
tion model is build on linear/logistic regression to model the relationship between
ratings r̂ui and topic distributions θui of dui.
Linear Regression A rating is predicted by the following function: r̂ui = W T θui+

εui. W = (W1, ..., WK), Wj is the weight of the jth topic, and εui is an error variable.
Logistic Regression Assume ratings rui ∈ {1, 2, ..., N}. We build a multinor-
mal logistic regression model as : Pr(r̂ui = n) = e

βT
n θui

1+
∑N−1

n′=1
e

βT
n′ θui

, and Pr(r̂ui = N) =

1

1+
∑N−1

n′=1
e

βT
n′ θui

. n = 1, 2, ..., N − 1, and βn = (βn1, βn2, ..., βnK) are the weights.

Rating Prediction Given a user u and a restaurant i that u has not rated,
we estimate the topic distribution θ̂ui based on pu and qi as: θ′

uij = pujqij, and
θ̂uij =

θ′
uij

∑
j θ′

uij
, j ∈ [1, K]. θ̂ui is then fed into one of the learned regression model

to predict r̂ui. Restaurants with top-k r̂ui are returned as recommendations to
user u.
Representative Review Selection Our system provides a new browsing tool
that enables efficient access to representative restaurant reviews. A review is
considered to be representative if it is ‘close’ enough to the restaurant profile.
We measure the closeness between a review rui and a restaurant i as follows:
d(rui, i) = ||θui − qi||22. Reviews with smallest d(rui, i) are presented to users as
representatives of restaurant i.

3 Demonstration

(a) User Selection (b) User Profile (c) Recommended
Restaurants

(d) Restaurant Pro-
file

Fig. 2. Interface

For demonstration like Figure 2, we collect review data and restaurant details
from Dianping, the largest restaurant review website in China. To make a rec-
ommendation, we first display several Dianping users randomly to choose from

A Restaurant Recommendation System by Analyzing Ratings 529

in Figure 2a. As a target user u is selected, u’s preference and review history
would be created (Figure 2b). Then in the next interface (Figure 2c), our system
recommends top-k restaurantlist to u. These restaurants are selected from those
that u has not rated/visited, based on their ratings produced by our rating pre-
dictor. To gain further information on recommendations, our system leads to the
restaurant profile interface (Figure 2d) including recommended food according
to its frequency of occurrence in review text and a list of representative reviews
for efficient browsing and access to mainstream viewpoints on the restaurant.

4 Experiments

Let R-Linear and R-Logistic denote our rating predictor using linear and logistic
regression respectively. We test on reviews crawled from Dianping. It consists of
1,168,420 reviews written by 316,702 users for 42,274 restaurants in Shanghai.
Each review contains a user id, a numeric rating, a timestamp and a piece of
review text. The ratings rui take value from {1, 2, ..., 5}. For evaluation purpose,
we split the dataset into two subsets for training and test purpose respectively
with the ratio 9 to 1 according to two different ways: “random” with test data
selected randomly and “by time” with the latest 1/9 data as test data. We use
MSE (mean squared error) and ACC (Accuracy) as the evaluation metrics fol-
lowing [2]. MSE = 1

M

∑
u,i(r̂ui − rui)

2, where M is the total number of predicted
ratings. We define acc = m

M . Let m denote the number of ratings correctly pre-
dicted. For R-Linear (linear regression), the predicted ratings r̂ui is first rounded
to the nearest integer and then compared with rui.
Baseline We compare our rating predictor with HFT [2], the work most related
to ours.
Parameters of LDA We set the total number of topics K = 10 and the hyper-
parameters α = 0.2, β = 0.1. The number of iterations for LDA is set to 100.

Table 1. MSE of Dianping Data

Random by Time

HFT 0.66 1.31

R-Linear 0.69 0.66

R-Logistic 0.79 0.74

Table 2. Accuracy of Rating Prediction
on Dianping Data

Random by Time

HFT 50.0% 36.4%

R-Linear 52.3% 48.7%

R-Logistic 52.0% 50.0%

Results The results are shown in Table 1 and Table 2. In general, our model
performs better than HFT on test data with different partitions on both MSE
and Acc.

Acknowledgments. RongZhang andAoying Zhou are partially supported byNational
863 Program under grant No. 2015AA011508, National Science Foundation of China
under grant No.61232002 and No.61332006, and the Natural Science Foundation of Yun-
nan Province (2014FA023). Xiaoyan Yang is supported by Human-Centered Cyber-
physical Systems (HCCS) programme by A*STAR in Singapore.

530 Y. Gao et al.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of
Machine Learning Research 3, 993–1022 (2003)

2. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rat-
ing dimensions with review text. In: Proceedings of the 7th ACM conference on
Recommender systems, pp. 165–172. ACM (2013)

3. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, Cha. 9. University Press,
Cambridge (2012)

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 531–535, 2015.
DOI: 10.1007/978-3-319-18123-3_34

ENRS: An Effective Recommender
System Using Bayesian Model

Yingyuan Xiao1,2(), Pengqiang Ai1,2, Hongya Wang3,
Ching-Hsien Hsu2, and Yukun Li1

1 Tianjin University of Technology, Tianjin 300384, China
yyxiao@tjut.edu.cn

2 Tianjin Key Lab of Intelligence Computing and Novel Software Technology,
Tianjin 300384, China

3 Donghua University, Shanghai 201620, China

Abstract. Traditional content-based news recommender systems strive to use a
bag of words or a topic distribution to capture readers’ reading preference.
However, they didn’t take advantage of the named entities extracted from news
articles and the relations among different named entities to model readers’ read-
ing preference. Named entities contain much more semantic information and re-
lations than a bag of words or a topic distribution. In this paper, we design and
implement a prototype system named ENRS, which combines the named entity
with the naïve Bayesian algorithm, to recommend readers news articles. The
key technical merit of our work is that we built a probabilistic entity graph to
capture the relations among different named entities, based on which ENRS can
increase the diversity of recommendation significantly. The architecture of
ENRS and the recommendation algorithm are discussed and a demonstration of
ENRS is also presented.

1 Introduction

Recommender system has become one of the most popular and profitable applications
using state-of-art knowledge over the past decades. Recently, recommending news articles
has attracted more research attention. Many companies or websites have developed news
recommender systems, such as Google News and Yahoo! News, provide personalized
news recommendation services for substantial amount of online users [1]. In general, ex-
isting news recommender systems are usually classified into three different categories:
content-based system, collaborative filtering and hybrid recommendation which combine
content-based technology and collaborative filtering.

Currently, content-based news recommender systems are mainly focusing on a bag of
words [2] or a topic distribution [3] extracted from news content. However, few news
recommender systems take advantage of named entities extracted from news articles and
even the relations among the named entities. Typically, in news articles, named entities
can provide readers information that describing what happened, when the event happened,
where it happened, who were involved, and so on. Named entities contain much more
semantic information than a bag of words or a topic distribution.

532 Y. Xiao et al.

ENRS is a novel news recommender system, which takes advantage of the named enti-
ties extracted from news articles and the relations among them. Based on readers’ reading
history, ENRS can model readers’ named entities preference and recommend readers news
articles that they might be interested in. Besides, we build a probabilistic entity graph in
our demo to help readers to explore fresh preference. The probabilistic entity graph in-
creases the diversity of recommendation as well. In this paper, we give an overview of the
architecture of ENRS and its major modules including a briefing on the algorithms in the
Section 2. We then demonstrate a case in Section 3.

2 Overview and Architecture

ENRS is a news recommender system, which takes advantage of named entities extracted
from news articles and the relations among these named entities. In ENRS, all news ar-
ticles are crawled from news websites on the Internet. For each news article, ENRS ex-
tracts three types of named entities – Person, Place, and Organization - from news article.
Based on reader’s reading history, ENRS can model reader’s named entity preference. We
also build a probabilistic entity graph to capture relations among named entities and in-
crease the diversity of recommended news articles.

2.1 Probabilistic Entity Graph

Named entities can provide readers important information, which is important and useful
to capture readers’ preference. However, there are some relations and semantic informa-
tion among different named entities. For example, there are some relations between
Google and Apple. Both of them are technology companies. At the same time, Apple is a
competitor of Google. Therefore, a reader who is interested in news about Google might
also prefer to read news about Apple.

Fig. 1. Part of the Probabilistic Entity Graph

In ENRS, by using the conditional probability, we create a probabilistic entity graph to
capture and represent the relations among different named entities. Figure 1 illustrates part of
our probabilistic entity graph. Based on the probabilistic entity graph, ENRS recommends

ENRS: An Effective Recommender System Using Bayesian Model 533

readers various news articles that he/she may be interested in, which can also help readers to
explore fresh preference according to their existing preference. We build a corpus of tech-
nology news from news websites to capture the relations among different named entities
extracted from news articles.

We assume that, if two different named entities occur in the same news article, the two
named entities have a certain relation. In particular, we define that,

 is a named entity extracted from news articles;
 E | 1,2, , denotes the set of all named entities extracted from

the corpus;
 W , the weight of to , , E represents the set of weight.

Therefore, our probabilistic entity graph is G E, W , where

, P) P(,)P() , , P(|) P(,)P() .
In our demo, , represents the probability that a reader who is interested in may

also has a preference for . Based on the corpus, it is easy to calculate P(), P and P , . Then, , can be calculated. Therefore, our system can rec-
ommend readers news articles about , if , is big enough.

2.2 Reader Profile

In our system, two kinds of data will be recorded into readers’ history data: (1) news ar-
ticles that are clicked and read by readers; (2) news articles that are showed to readers, but
the readers don’t click and read. After named entity detection, each news article can be
represented as a named entity vector that describes what named entities are involved in the
article. In particular, we denote (, , ,) named entities extracted from a
news article. Then, based on reader’ reading history, the reader’s profile can be paramete-
rized with a two-attribute tuple , , where

 represents the named entity distribution of news articles that the reader
clicked and read, in the format of a named entity vector , ,, , , where each entry consists of an named entity and the correspond-
ing weight;

 denotes the named entity distribution of news articles that the reader didn’t
click and read when the news articles were showed to the reader, in the format
of a named entity vector , , , , , where each entry con-
sists of an named entity and the corresponding weight.

2.3 Naïve Bayesian Recommendation

Formally, a news article is represented as a named entity vector (, , ,). Giv-
en a news article (, , ,), P(|) denotes the probability of the reader
read this news article, and P(|) represents the probability of the reader doesn’t
read this news article. We assume that the reader will read a news article if 1, where P(|)P(|) .

534 Y. Xiao et al.

According to the Bayesian' theorem, given a reader’s profile , and a news
article (, , ,), P(|) P(|)·P()P() , P(|) P(|)·P()P() .

According to the naïve Bayesian theorem assume that each named entity is conditional-
ly independent of every other named entity for , given the news article (, , ,). This means that P(|) P(, , , |) P(|) .

However, we found that P(|) sometimes is very small and even is 0. This will make P(|) very small or even equal to 0. Therefore, we define ε P(|)·P()P(|)·P() .

If ε 0, which means that the reader is more likely to read this news article, our sys-
tem will recommend the news article to readers.

Fig. 2. Recommendation interface of ENRS

3 Demonstration

In this section, we demonstrate our ENRS by registering a reader. After registering as a
reader in ENRS, we clicked some news articles about Google and Microsoft. When we log
onto ENRS again, we can find that news articles about Google and Microsoft are recom-
mended to reader, and news articles about Yahoo and Amazon are also recommended.
Figure 2 is the recommendation interface of our system. Therefore, we can conclude that
both probabilistic entity graph and naïve Bayesian recommendation in ENRS are useful
and effective.

Acknowledgment. This work is supported by the NSF of China (No. 61170174, 61370205,
61170027) and Tianjin Training plan of University Innovation Team (No.TD12-5016).

ENRS: An Effective Recommender System Using Bayesian Model 535

References

1. Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click
behavior. In: Proc. of IUI, Hong Kong, China (2010)

2. Capelle, M., Frasincar, F., Moerland, M., Hogenboom, F.: Semantics-based news recom-
mendation. In: Proc. of WIMS, New York, USA (2012)

3. Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: Scene: a scalable two-stage persona-
lized news recommendation system. In: Proc. of SIGIR, New York, USA (2011)

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 536–540, 2015.
DOI: 10.1007/978-3-319-18123-3_35

EPSCS: Simulating and Measuring Energy
Proportionality of Server Clusters

Jiazhuang Xie1, Peiquan Jin1,2(), Shouhong Wan1,2, and Lihua Yue1,2

1 School of Computer Science and Technology, University of Science
and Technology of China, Hefei 230027, China

2 Key Laboratory of Electromagnetic Space Information, Chinese Academy
of Sciences, Hefei 230027, China

jpq@ustc.edu.cn

Abstract. Energy proportionality for a server cluster means energy consump-
tion is proportional to the workloads running on the cluster. One problem is that
it is too costly, time-consuming, and complex to build a real cluster to evaluate
energy-proportional algorithms. Aiming to solve this problem, we propose to
build a prototype system that is able to simulate and test energy proportionality
of a server cluster quickly and easily. Our system, named Energy-Proportional
Server Cluster Simulator (EPSCS), allows users to configure a virtual server
cluster and test energy proportionality on real traces continuously. We imple-
ment three energy-proportional algorithms in EPSCS and visualize the real-time
results to evaluate time performance and energy consumption. New algorithms
can be integrated into EPSCS and be compared with existing ones. We first de-
scribe the architecture and key designs of EPSCS. And finally, a case study of
EPSCS’s demonstration is presented.

Keywords: Energy proportionality · Server cluster · Measurement · Simulation

1 Introduction

Energy consumption has been recognized as a critical problem in both mobile applica-
tions [1] and database systems [2]. Previous studies showed that a Google server clus-
ter only used about 20% of their CPU capabilities [3]. In other words, we need not run
all the servers to provide services in most cases; thus we can adjust the size of a server
cluster with workload changes by dynamically turn on/off some nodes so that we can
realize better energy proportionality.

Energy proportionality means that the energy consumption of a system is propor-
tional to the workloads running on it [3]. Constructing an energy-proportional server
cluster is an effective way to reduce the energy consumption. However, one problem
is that it is difficult to perform studies towards energy proportionality over server
clusters, because it is costly and time-consuming to build a real large-scale server
cluster and integrate energy-proportional algorithms into the cluster. Although there
are some previous works focusing on simulating cloud computing environments [4] or
distributed systems [5], they do not consider the energy consumption of each server
and how to change the power states of servers.

 EPSCS: Simulating and Measuring Energy Proportionality of Server Clusters 537

In this paper, aiming at providing a platform for quickly testing the effectiveness
of energy-proportional algorithms, we present a flexible simulation tool, called Ener-
gy-Proportional Server Cluster Simulator (EPSCS). The unique features of EPSCS are
as follows:

(1) EPSCS allows users to configure different server clusters with different settings
w.r.t. number of nodes, power parameters, and boot/shutdown times and powers. In
addition, it is able to simulate the behaviors of a server cluster, such as job distribu-
tion and execution.

(2) EPSCS can visualize the real-time time performance and energy consumption
of a server cluster continuously. In addition, it can output the results of execution
time, energy consumption and other useful information for further studies.

(3) EPSCS implement several energy-proportional algorithms and provides real
traces, which can be used as baseline algorithms and workloads for future research.
New energy-proportional algorithms can be integrated into EPSCS easily.

2 Overview

2.1 Architecture of EPSCS

Fig. 1. Architecture of the Server Cluster Simulated Fig. 2. Architecture of EPSCS

The architecture of the server cluster simulated is shown in Fig. 1, and Fig. 2 shows
the software architecture of EPSCS, which consists of the following modules.

(1) Cluster Setup. The Cluster Setup module provides an interface for configur-
ing the environment of the server cluster, such as the number of servers as well as the
computing capacity and power metrics of each server.

(2) Job Scheduling. This module reads job information from the trace file and
then distributed jobs among servers. We use a job buffer to maintain jobs. In addition,
this module simulates the executing process of the server cluster by reading the jobs
from the job buffer and modifying the log data in the log buffer shown in Fig. 2.

(3) System Monitoring. This module monitors the execution of the workloads
and records necessary log data about the status of the cluster in a log buffer, which is
then used by the Cluster Reconfiguration module to check whether a reconfiguration
on the cluster is required.

538 J. Xie et al.

(4) Cluster Reconfiguration. This module periodically checks the log-buffer data
and employs a specific energy-proportional algorithm to determine whether the clus-
ter needs to be reconfigured, i.e., some active servers need to be turned off and some
power-off servers should be turned on. We suppose that each server can be in one of
three states: active, idle, standby, where standby refers to power-off and active is
power-on. We have to determine the number of active servers according to workload
changes and determine which servers should be turned on/off. These tasks are per-
formed by the energy-proportional algorithm.

(5) Visualization. This module visualizes the execution process of the trace. It
continuously shows the current figures about time performance and energy consump-
tion.

2.2 Key Designs in EPSCS

2.2.1 Job Quantification and Buffering

Previous studies showed that CPU is the most energy-consuming module in a server
[2]. Thus, we use CPU time-slices to quantify the power metric of a job, and use I/O
bandwidth and memory utilization to measure its time performance. We sum up the
CPU time-slices of all the jobs in the server to indicate the current load on this server
and aggregate the loads of all servers to represent the load of the cluster.

Further, we introduce a Job Buffer in the control node for realizing job scheduling.
The job buffer is used to cache the new incoming jobs when the cluster is overloaded.
We use the FIFO mechanism to maintain the buffered jobs. When a server is ready to
receive new jobs, the control node will move the job in the queue head to the server.

The benefits of Job Buffer are three-fold. First, the control node can cache extra
jobs to avoid the overloading of backend nodes. Second, as we cache extra jobs tem-
porarily, powerful backend nodes will not be idle when the buffer is not empty. Thus,
we can let the powerful nodes in the active state and improve the overall time perfor-
mance of the cluster. Third, by caching new jobs during the wake-up time of standby
nodes, we can avoid the overloading of current backend nodes, because new jobs are
distributed to newly wake-up nodes.

2.2.2 Server Load Estimation

Server load estimation refers to predicting the future load on a server according to
historical load information recorded in the log buffer shown in Fig. 2. We adopt a
slide-window mechanism to figure out this issue. First, we record the load informa-
tion of the cluster in the log buffer during a time window, forming a series of sam-
pling data storing the load information at different time points. Next, when the time
window is ended, we choose a set of critical points from all the sampling time instants
in order to remove the noisy time points in the sample. Then, we use a linear fitting
approach on the time series composed of critical points to estimate the future load of
each server in the next time window.

 EPSCS: Simulating a

2.2.3 Energy-Proportiona

We use an energy-proporti
determine whether a cluste
justing node states. We imp
AlwaysOn. This policy alw
workload change and thus b
gy. (2) Reactive. This polic
the right number of active
policy attempts to predict t
It adjusts the number of act
capacity.

Users can integrate the
tending internal classes and
matically be included in the

3 Demonstration

Fig. 3

EPSCS is implemented in C
simulate different configur
proportional algorithms. Th
first show the configuring
mulation on real traces. W
rithms differ in time perform

and Measuring Energy Proportionality of Server Clusters

al Algorithms for Cluster Reconfiguration

ional algorithm in the Cluster Reconfiguration module
er reconfiguration is necessary as well as the policy of
plement three algorithms in EPSCS as the baseline ones:
ways leaves the backend nodes active regardless of
behaves the best performance but consumes the most en
cy reacts to the current number of jobs, attempting to k
nodes at each time instant. (3) Linear Regression. T

the future workload by using the linear regression meth
tive nodes according to the prediction result and the curr

eir new energy-proportional algorithms into EPSCS by
d functions. While a new algorithm is added, it will au
e list shown at left-bottom in Fig. 3 for testing.

3. User Interface of EPSCS Demonstration

C# under Windows 7. Our demonstration will use EPSCS
rations of server clusters and visualize different ener
he user interface of the EPSCS is shown in Fig. 3. We w
procedure of the cluster, and then show the process of

We will also show how different energy-proportional al
mance and energy savings.

539

e to
ad-
 (1)
the

ner-
keep
This
hod.
rent

ex-
uto-

S to
rgy-
will
f si-
lgo-

540 J. Xie et al.

Acknowledgements. This work is supported by the National Science Foundation of China
(61379037, 61472376, & 61272317) and the OATF project funded by University of Science
and Technology of China.

References

1. Yang, P., Jin, P., Yue, L.: Exploiting the Performance-Energy Tradeoffs for Mobile Data-
base Applications. Journal of Universal Computer Science 20(10), 1488–1498 (2014)

2. Jin, Y., Xing, B., Jin, P.: Towards a Benchmark Platform for Measuring the Energy Con-
sumption of Database Systems. Advanced Science and Technology Letters 29, 385–389
(2013)

3. Barroso, L., et al.: The Case for Energy-Proportional Computing. IEEE Computer 40(12),
33–37 (2007)

4. Calheiros, R.N., Ranjan, R., et al.: CloudSim: A Toolkit for Modeling and Simulation of
Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms.
Software: Practice and Experience 41(1), 23–50 (2011)

5. Buyya, R., Murshed, M.: Gridsim: A Toolkit for the Modeling and Simulation of Distri-
buted Resource Management and Scheduling for Grid Computing. Concurrency and Com-
putation: Practice and Experience 14(13–15), 1175–1220 (2002)

MAVis: A Multiple Microblogs Analysis
and Visualization Tool

Changping Wang, Chaokun Wang(B), Jingchao Hao,
Hao Wang, and Xiaojun Ye

School of Software, Tsinghua University, Beijing 100084, China
wang-cp12@mails.tsinghua.edu.cn, {chaokun,yexj}@tsinghua.edu.cn

Abstract. An increasing number of people obtain and share information
on social networks through short text messages, a.k.a. microblogs. These
microblogs propagate widely online based on the followship between users
as well as the retweeting mechanism. The regular pattern of retweeting
behaviors can be discovered by mining the historical retweet data, and
the key users in the information diffusion process can also be found in
this way. This paper gives the novel definition of information diffusion
network and three categories of nodes in the network. A tool designed
to mine the information diffusion network and visualize the result is
implemented. This paper introduces related definitions, the architecture,
mining algorithms and the visualization interface.

Keywords: Online social network · Information diffusion · Visualiza-
tion

1 Introduction

Recently, online social networks play an important role in information diffu-
sion. A lot of works have been made to study the diffusion process, including
detecting popular topics [1][2] and analyzing the network structure [3]. Several
tools that analyze and visualize information diffusion process have emerged,
such as SONDY [4] which can identify influential spreaders on a user-specified
topic. However, data analysts sometimes hope to analyze the diffusion of multi-
ple microblogs, which belong to different topics, posted by one particular user
to discover diffusion patterns of this user’s microblogs. There exist no tools
that satisfy the above demand exactly, so we design and implement a Multiple
Microblogs Analysis and Visualization Tool (MAVis).

Assuming the diffusion process of multiple microblogs from user u is known,
we define the information diffusion network (IDN) of u as the collection
of users and their corresponding retweeting behaviors to microblogs of u. User
u is represented by the source node. Edges represent retweeting behaviors. To

This work was supported in part by the National Natural Science Foundation of
China (No. 61373023, No. 61170064) and the National High Technology Research
and Development Program of China (No. 2013AA013204)

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part II, LNCS 9050, pp. 541–545, 2015.
DOI: 10.1007/978-3-319-18123-3 36

542 C. Wang et al.

distinguish different patterns of users, nodes in the network are classified into
three categories: nodes that can significantly increase the scope of microblogs are
explosive nodes; nodes on the shortest paths from the source node to explosive
nodes are bridge nodes; the remaining nodes are normal nodes.

MAVis processes the historical retweet data to discover the IDN of spe-
cific users and shows the network. The major contribution of this paper can be
summarized as follows:

1. Key User Discovery: Through analyzing the historical retweet data of a
specific user, MAVis discovers key users who significantly contribute to the
diffusion process.

2. Optimized Visualization: The visualization module uses an optimization
strategy named incremental loading, that a reduced network without normal
nodes is shown at first, to improve the legibility of the visualization result.

3. Extensibility and Portability: The analysis module outputs the result
in XML format and the visualization module processes them independently.
Hence, the tool can be extended easily.

2 Architecture

As shown in Fig. 1, MAVis is composed of three parts: input and preprocessing
module, analysis module and visualization module.

Preprocessing
Module

Visualization
Module

XML

Inforamation
Extractor

RPG
Constructor Image

Exporter Image

Interaction
InterfaceAnalysis

Module
IDN

Constructor

Explosive
Nodes Miner

Bridge
Nodes Miner

Result
Output

MAVis

Historical
Retweet
Data

Fig. 1. The architecture of MAVis

2.1 Preprocessing Module

The preprocessing module extracts information from historical retweet data. It
constructs the retweeting process graph (RPG) for each microblog. Different
from IDN, RPG describes the retweeting behaviors of one single microblog. Each
node represents a user and each edge represents a retweeting behavior in RPG.
Besides the source node indicating the author, other nodes have at least one
parent. RPGs are stored in the form of graph structure.

MAVis: A Multiple Microblogs Analysis and Visualization Tool 543

2.2 Analysis Module

Through mining the RPGs, the analysis module constructs the IDN and discovers
explosive nodes and bridge nodes in the network. The analysis result is stored
in XML files, rather than being showed directly. The independence between the
two modules makes the tool more user-friendly and extendable.

2.3 Visualization Module

The visualization module implemented on Prefuse1 shows the analysis result to
end users via a user-friendly interface. Due to the large volume of the result, it
uses incremental loading strategy to show the results efficiently. It provides rich
user interaction features and is able to export the result as images.

3 Key Techniques

To implement MAVis, some key techniques have been used, such as mining
explosive nodes and incremental loading. For the limitation of space, only the
technique of mining explosive nodes is presented in this section.

In the IDN, a node ue is an explosive node if it satisfies the following condi-
tion:

(
N∑

i=1

|ω(ue,mi)|
|ψ(mi)|)/N > λ

where N is the cardinality of microblog set M(ur) = {m1,m2, ...,mN}, ω(ue,mi)
represents the retweetnumberofmicroblogmi causedbyue’s retweetingbehaviour,
ψ(mi) is the number of users who retweet mi, and λ is an user-specified threshold.

The explosion value θ(ue) which measures the importance of an explosive
node ue is defined as:

θ(ue) =
(N∑

i=1

κG(ur,mi) − ηG(ur, ue)
κG(ur,mi)

∗ ω(ue,mi)
(
∑

uk∈UG
ω(uk,mi))/|UG|

)
/N

where G(m) represents the RPG of microblog m, κG(ur,mi) is the maximum
of the shortest distance from the source node ur to any other node in G(mi),
ηG(ur, ue) is the shortest distance from ur to ue and UG is the node set of G.

4 Demonstration

This section will introduce the usage and features of MAVis, and the demonstra-
tion is based on a real data set of Sina Weibo (Chinese microblogging website).

1 http://www.prefuse.org/

http://www.prefuse.org/

544 C. Wang et al.

(a) The reduced IDN (b) The reduced IDN together with a
detailed local network around a clicked
node

Fig. 2. Screenshots of MAVis

4.1 Preprocessing and Analyzing

First, we load the historical retweet data stored in text form through the pre-
processing module. Then, we construct the IDN and discover the key users after
specifying the value of parameter λ. Finally, the mining result is output in XML
format.

4.2 Visualization

The visualization module can show the mining result which is in XML format.
The source node is shown in blue, while bridge nodes and explosive nodes are
green and red respectively. Besides, the higher explosion value one explosive node
has, the darker red it is. Due to the large size of the IDN, MAVis uses the incre-
mental loading strategy to show the network. The visualization module shows the
reduced network with only explosive nodes and bridge nodes (Fig. 2(a)). When
one node in the reduced network is clicked, a new window will open and show the
detail of a part of the network, in which this node is the source node (Fig. 2(b)).

There exist several parameters to adjust the display effect, one of which is
proportion parameter α. Once α is specified (e.g. 20%), only the explosive nodes
which are ranked top α on explosion value will be shown (Fig. 3).

Fig. 3. Display effects with different values of proportion parameter α (20% and 90%)

MAVis: A Multiple Microblogs Analysis and Visualization Tool 545

References

1. Rong, Q.: Trends analysis of news topics on twitter. International Journal of Machine
Learning and Computing 2(3), 327–332 (2012)

2. Takahashi, T.: Yamanishi, K.: Discovering emerging topics in social streams via link
anomaly detection. In: ICDM 2011, pp. 1230–1235. IEEE (2011)

3. Gomez-Rodriguez, L.: Schölkopf: Structure and dynamics of information pathways
in online media. In: WSDM 2013, pp. 23–32. ACM (2013)

4. Guille, F., Hacid, Z.: Sondy: An open source platform for social dynamics mining
and analysis. In: SIGMOD 2013, pp. 1005–1008. ACM (2013)

Author Index

Aberer, Karl I-510
Ai, Pengqiang II-531
Aljubayrin, Saad II-189
Andersen, Ove II-471
Anh, Nguyen Kim II-139
Argueta, Carlos II-522
Arya, Krishan K. II-123

Balke, Wolf-Tilo I-493, II-169
Barukh, Moshe Chai I-334
Benatallah, Boualem I-334
Bi, Fei I-545
Bouguettaya, Athman II-399
Butler, Greg I-279
Butzmann, Lars II-488

Cao, Jianneng I-75
Chang, Chun-Hao II-522
Chang, Lijun I-545
Chao, Pingfu II-526
Chen, Lei I-108
Chen, Qing I-441
Chen, Qun II-309
Chen, Yi-Shin II-522
Cheng, Lin I-279
Cheng, Xiang I-567, I-589
Chiew, Kevin II-37
Christen, Peter II-329
Cui, Zhiming II-379

Dalvi, Rashmi II-498
Dan, Wu II-207
Dang, Zhe II-346
Ding, Xiaofeng II-89
Ding, Zhiming I-226
Dong, Guozhu I-39
Du, Jiang I-209
Duan, Lei I-39
Duan, Liang II-104

El Maarry, Kinda II-169
Endres, Markus II-292

Faust, Martin II-488

Gao, Yifan II-526
Gao, Yunjun II-37
Gong, Xudong I-108
Goyal, Vikram II-123
Gu, Yu I-244
Guan, Jihong II-435
Guo, Haoming I-226
Guo, Zhiliang I-145, I-160

Han, Yuxing II-223
Hao, Jingchao II-541
He, Bingsheng I-299
He, Chu I-441
He, Qinming II-37
He, Zhen II-189
He, Zhenying II-154
Higuchi, Ken II-275
Homoceanu, Silviu I-493
Honjo, Toshimori II-363
Hou, Lei I-125
Hsu, Ching-Hsien II-531
Hsu, Wynne II-452
Hu, Haibo I-609
Hu, Yiqing I-108
Huang, Chuanglin I-209
Huang, Hao II-37
Huang, Kai II-435
Huang, Wenchao I-108
Huang, Yifu II-435
Hung, Nguyen Quoc Viet I-510

Ishikawa, Yoshiharu I-92

Ji, Yusheng II-346
Jiang, Liyang II-3, II-154
Jiang, Tao II-309
Jiang, Wenbin II-89
Jiang, Zhiwen I-175
Jin, Cheqing II-104
Jin, Hai II-89
Jin, Peiquan I-209, II-536

Karapiperis, Dimitrios II-329
Kießling, Werner II-292
Kim, Jung-jae I-299
Klauck, Stefan II-488
Kou, Yue I-374, I-458
Kriegel, Hans-Peter II-19
Krogh, Benjamin II-471
Kuang, Xiaopeng II-379
Kusmierczyk, Tomasz I-55

Lee, Mong Li II-452
Li, Guohui I-625
Li, Guoliang I-589
Li, Jianjun I-625
Li, Juanzi I-125
Li, Kaiwen II-309
Li, Miao I-244
Li, Wenzhong II-418
Li, Xiao-Li I-125, II-3
Li, Xiaosong I-39
Li, Xue II-517
Li, Yujiao II-207
Li, Yukun II-531
Li, Zhanhuai II-309
Li, Zhixu II-399
Li, Zhoujun I-405
Lin, Xuemin I-545, II-223
Liu, An I-260, II-399
Liu, Chengfei I-226, I-260
Liu, Guanfeng I-226, II-399
Liu, Weiyi II-104
Liu, Zhenguang II-37
Long, Guodong II-517
Lu, Qiwei I-108
Lu, Sanglu II-418
Luo, Changyin I-625

Madria, Sanjay Kumar II-498
Makino, Masafumi II-275
Meinel, Christoph I-425
Meng, Xiaofeng I-145, I-160, I-609
Müller, Stephan II-488

Navathe, Shamkant B. II-123
Ng, Wilfred I-21, I-389
Nie, Tiezheng I-374, I-458
Nørvåg, Kjetil I-55
Nummenmaa, Jyrki I-39

Onizuka, Makoto II-363

Pan, Wei II-309
Panangadan, Anand II-57
Patel, Dhaval II-452
Plattner, Hasso II-488
Prasad, Sushil II-123
Prasanna, Viktor K. II-57

Qian, Zhuzhong II-418
Qin, Biao II-74
Qin, Yongrui II-259

Roocks, Patrick II-292

Sasaki, Yuya I-92
Schewe, Klaus-Dieter I-474
Schönfeld, Mirco I-191
Schubert, Erich II-19
Schwalb, David II-488
Sha, Chaofeng I-441
Shaabani, Nuhad I-425
Shan, Jing I-374
Shen, Derong I-374, I-458
Sheng, Quan Z. II-259
Sheng, Victor S. II-379
Sinzig, Werner II-488
Su, Sen I-567, I-589
Su, Yu I-125
Sugiura, Kento I-92
Sun, Chenchen I-458

Tam, Nguyen Thanh I-510
Tan, Zijing I-441
Tang, Changjie I-39
Tang, Peng I-567
Tat, Nguyen Nguyen II-139
Taylor, Kerry II-259
Teng, Yiping I-589
Than, Khoat II-139
Thanh, Do Son I-510
Theodoratos, Dimitri I-3
Tian, Yun I-316
Tong, Hanghang I-353
Torp, Kristian II-471
Tran, Ha-Nguyen I-299
Tsuji, Tatsuo II-275

Uflacker, Matthias II-488
Unankard, Sayan II-517

548 Author Index

Van Linh, Ngo II-139
Vatsalan, Dinusha II-329
Verykios, Vassilios S. II-329

Wan, Shouhong I-209, II-536
Wang, Changping II-541
Wang, Chaokun II-541
Wang, Hao II-541
Wang, Hongya II-531
Wang, Jiangtao I-145, I-160
Wang, Jin I-175
Wang, Liping II-223
Wang, Lu I-609
Wang, Qing I-474
Wang, Senzhang I-405
Wang, Shan II-241
Wang, Wei I-353, I-441
Wang, Woods I-474
Wang, Xinyu I-389
Wang, Xiujun II-346
Wang, Yulong I-589
Wang, Zhong II-309
Wang, Ziqi I-529
Weerasiri, Denis I-334
Wei, Furu I-21
Werner, Martin I-191
Wu, Jian II-379
Wu, Min I-75
Wu, Xiaoying I-3

Xiao, Yanghua I-353
Xiao, Yingyuan II-531
Xie, Jiazhuang II-536
Xie, Zhipeng II-3, II-154, II-207
Xing, Chunxiao I-175
Xiong, Yan I-108
Xu, Bojian I-316
Xu, Enliang II-452
Xu, Hui II-89
Xu, Jiajie I-226, I-260, II-379, II-399
Xu, Jianliang I-567, I-609
Xu, Peng I-567

Xu, Wenlin II-104
Xue, Zhong-Bin II-241

Yamamuro, Takeshi II-363
Yan, Han I-567
Yang, Deqing I-353
Yang, Hao I-39
Yang, Weidong II-207
Yang, Xiaoyan II-526
Ye, Tengju II-3, II-154
Ye, Xiaojun II-541
Yu, Ge I-244, I-374, I-458
Yu, Philip S. I-405
Yu, Wenzhe II-526
Yue, Kun II-104
Yue, Lihua I-209, II-536

Zhang, Bolei II-418
Zhang, Honghui I-405
Zhang, Jiawei I-405
Zhang, Junjun I-353
Zhang, Ming I-529
Zhang, Rong II-526
Zhang, Rui II-189
Zhang, Wei Emma II-259
Zhang, Wenjie I-545, II-223
Zhang, Xiaoming I-405
Zhang, Ying II-223
Zhang, Yinuo II-57
Zhang, Yong I-175
Zhao, Baohua II-346
Zhao, Lei I-260, II-399
Zhao, Pengpeng I-260, II-379
Zhao, Zhou I-21, I-389
Zheng, Kai I-226, II-399
Zheng, Xiao II-346
Zhou, Aoying II-526
Zhou, Ming I-21
Zhou, Shuigeng II-435
Zhou, Xuan II-241
Zhou, Yongluan I-75
Zhu, Chenghao I-260
Zimek, Arthur II-19

Author Index 549

	Preface
	Organization
	Tutorials
	Scalable Learning Technologiesfor Big Data Mining
	Large Scale Video Management Using SpatialMetadata and Their Applications
	Querying Web Data

	Contents – Part II
	Contents – Part I
	Outlier and Imbalanced Data Analysis
	A Synthetic Minority Oversampling Method Based on Local Densities in Low-Dimensional Space for Imbalanced Learning
	1 Introduction
	2 The Proposed Method
	2.1 Dimensionality Reduction via t-SNE
	2.2 Density Peak Clustering in Low-Dimensional Space
	2.3 Outlier Detection and Noise Filtering
	2.4 Weight Assignment
	2.5 Generation of Synthetic Minority Samples

	3 Experimental Results
	4 Conclusion and Future Work
	References

	Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles
	1 Introduction
	2 Related Work
	2.1 Outlier Detection
	2.2 Approximate Neighborhoods
	2.3 Outlier Detection with Approximate Neighborhoods
	2.4 Summary

	3 Efficient Outlier Detection
	3.1 Approximate Indexing Techniques
	3.2 Space-Filling Curves
	3.3 Fast Approximate kNN Search
	3.4 Favorable Bias of the Approximation
	3.5 Discussion

	4 Experiments
	5 Conclusion
	References

	Rare Category Exploration on Linear Time Complexity
	1 Introduction
	2 Related Work
	3 Problem Statement and Assumptions
	4 FREE Algorithm
	4.1 Phase 1: Data Pre-processing
	4.2 Phase 2: Feature Space Partition
	4.3 Phase 3: Search Space Reducing
	4.4 Phase 4: Refinement
	4.5 Dimension Segmenting and Pruning
	4.6 Time Complexity Analysis

	5 Experimental Evaluation
	6 Conclusion
	References

	Probabilisstic and Uncertain Data
	FP-CPNNQ: A Filter-Based Protocol for Continuous Probabilistic Nearest Neighbor Query
	1 Introduction
	2 Related Work
	2.1 Continuous Query Processing
	2.2 Uncertainty Management in Query Execution

	3 System Architecture
	3.1 System Model
	3.2 Continuous Probabilistic Queries

	4 The Probabilistic Filter Protocol
	4.1 Protocol Design
	4.2 Filter Derivation

	5 Experiments
	5.1 Temperature Data
	5.2 Location Data

	6 Conclusions
	References

	Efficient Queries Evaluation on Block Independent Disjoint Probabilistic Databases
	1 Introduction
	2 Preliminaries
	3 New Probabilistic Table Models and Operation
	4 Safe Plans of Queries on Probabilistic Databases
	4.1 The Preprocessing of the Queries
	4.2 The Algorithm for Generating Safe Plans

	5 Experiments
	6 Related Work
	7 Conclusions and Future Work
	References

	Parallel Top-k Query Processing on Uncertain Strings Using MapReduce
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Definition
	3.1 Preliminaries
	3.2 Problem Definition

	4 A Novel Lower Bound
	4.1 Gram Mapping Distance
	4.2 Lower Bound for EED

	5 Parallel Algorithms Using MapReduce
	5.1 PUSK
	5.2 MUSK

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Speedup
	6.3 Scaleup
	6.4 Comparison with Baseline Method

	7 Conclusion
	References

	Tracing Errors in Probabilistic Databases Based on the Bayesian Network
	1 Introduction
	2 Problem Statement
	3 Constructing Augmented Bayesian Network
	4 Detecting Errors
	5 Experimental Results
	5.1 Experiment Setup
	5.2 Convergence and Efficiency of Situation Computation
	5.3 Effectiveness and Efficiency of Error Detection

	6 Related Work
	7 Conclusions and Future Work
	References

	Data Mining II
	Mining Frequent Spatial-Textual Sequence Patterns
	1 Introduction
	2 Related Work
	3 Problem Overview
	3.1 Problem Definition
	3.2 Framework

	4 Algorithms
	4.1 Location Labeling
	4.2 Algorithms
	4.3 ST-Mining and TS-Mining Algorithms

	5 External Memory Algorithm
	6 Experiment Results
	6.1 Dataset and Data Preprocessing
	6.2 Comparison of Hybrid and ST-Mining Algorithms w.r.t. Total Execution Time
	6.3 External Memory Algorithm Performance Study

	7 Conclusions and Future Work
	References

	Effective and Interpretable Document Classification Using Distinctly Labeled Dirichlet Process Mixture Models of von Mises-Fisher Distributions
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 The von Mises-Fisher (vMF) Distribution
	3.2 Dirichlet Process Mixture (DPM)
	3.3 Distinctly Labeled Dirichlet Process Mixture Models of von Mises-Fisher Distributions (DLDPvMFs)
	3.4 Variational Inference for DPM of vMFs

	4 Experimental Design
	5 Conclusion
	References

	MPTM: A Topic Model for Multi-Part Documents
	1 Introduction
	2 Related Work
	3 Multi-Part Topic Model
	3.1 Generative Process
	3.2 Inference and Parameter Estimation

	4 Core Words and Topic Quality
	5 Experimental Results
	5.1 Data Sets
	5.2 Topic Coherence
	5.3 Information Retrieval
	5.4 Document Classification

	6 Conclusions
	References

	Retaining Rough Diamonds: Towards a Fairer Elimination of Low-Skilled Workers
	1 Introduction
	2 Related Work
	3 Motivational Crowd Sourcing Laboratory-Based Study
	3.1 Unethical Workers Versus Reputation-Based Systems
	3.2 Unethical Workers Versus Gold Questions

	4 Identifying Success Zone Bounds
	4.1 The Rasch Model
	4.2 Skill-Graded Vectors and Success Zones

	5 Rational and Irrational Patterns in Success Zones
	5.1 Skill-Adapted Gold Questions
	5.2 Entropy-Based Elimination
	5.3 Rasch-Based Elimination

	6 Experimental Results
	6.1 Gold Question Set Size
	6.2 Ground Truth-Based Evaluation
	6.3 Practical Crowd Sourcing Experiments on Real World Data

	7 Summary and Outlook
	References

	Spatio-temporal Data II
	Skyline Trips of Multiple POIs Categories
	1 Introduction
	2 Related Work
	3 STMPC Query
	3.1 Problem Definition
	3.2 STMPC NP-Hard

	4 Proposed Heuristics
	4.1 Weighted POIs Algorithm (WPOIs)
	4.2 Distance Estimation Framework
	4.3 Clustered Weighted POIs Algorithm (CWPOIs)

	5 Experimental Study
	5.1 Framework Evaluation
	5.2 WPOIs and CWPOIs Effectiveness Evaluation
	5.3 Efficiency Evaluation

	6 Conclusion and Future Work
	References

	Keyword-Aware Dominant Route Search for Various User Preferences
	1 Introduction
	2 Keyword-Aware Dominant Route (KDR) Query
	3 Algorithm
	3.1 DR Search Algorithm
	3.2 FDR Algorithm

	4 Experiment
	4.1 Efficiency
	4.2 Number of Returned Routes

	5 Related Work
	6 Conclusion

	Spatial Keyword Range Search on Trajectories
	1 Introduction
	2 Preliminary
	2.1 Problem Description
	2.2 Related Work

	3 Inverted Octree
	3.1 Overview
	3.2 IOC-Tree Structure
	3.3 IOC-Tree Maintenance

	4 Algorithm for Query Processing
	4.1 Algorithm for Processing SKRT
	4.2 Extension for Query with Order-Sensitive Keywords

	5 Experiments
	5.1 Experimental Setup & Datasets
	5.2 Baselines
	5.3 Performance Evaluation

	6 Conclusion
	References

	TOF: A Throughput Oriented Framework for Spatial Queries Processing in Multi-core Environment
	1 Introduction
	2 Related Work
	3 Throughput Oriented Framework (TOF)
	3.1 Problem Formulation
	3.2 The Framework
	3.3 Grid Indexing
	3.4 Algorithms for Handling Range Queries and kNN Queries

	4 Performance Study
	4.1 Experimental Setup
	4.2 Range Query Performance
	4.3 kNN Query Performance

	5 Conclusions
	References

	Query Processing
	Identifying and Caching Hot Triples for Efficient RDF Query Processing
	1 Introduction
	2 Preliminaries
	2.1 RDF and SPARQL Queries
	2.2 Exponential Smoothing
	2.3 Main Tasks for Hot RDF Data Management

	3 The Methodology
	3.1 Data Acquisition and Pre-processing
	3.2 Access Log Extraction
	3.3 Caching

	4 Experiments
	5 Related Work
	6 Conclusion and Future Work
	References

	History-Pattern Implementation for Large-Scale Dynamic Multidimensional Datasets and Its Evaluations
	1 Introduction
	2 History-Pattern Encoding
	2.1 Preliminary (Extendible Array and History-Offset Encoding)
	2.2 History-Pattern Encoding
	2.3 Encoding/Decoding
	2.4 Hp-Property

	3 Implementation of History-Pattern Encoding
	3.1 Implementation of Core Data Structures
	3.2 Output File Organization of Encoded Results

	4 Implementation for Large Scale Datasets
	4.1 Extending History-Pattern Space

	5 Tuple Retrieval
	5.1 History Value Depe endency
	5.2 Tuple Retrieval

	6 Related Work
	7 Evaluation Experiments
	7.1 Evaluation Environment
	7.2 Evaluation Using Large Scale Dataset
	7.3 Comparison of HOMD and HPMD

	8 Conclusion
	References

	Scalagon: An Efficient Skyline Algorithm for All Seasons
	1 Introduction
	2 Skyline Background
	2.1 Problem Definition
	2.2 Block Nested Loop Revisited
	2.3 Lattices for Skylines Revisited

	3 The Scalagon Algorithm
	3.1 The Idea
	3.2 Formal Basics
	3.3 The Algorithm
	3.4 Outlier Detection
	3.5 Scaling
	3.6 Complexity Analysis
	3.7 Memory Requirements and

	4 Experiments
	4.1 Framework
	4.2 Scalagon and the Factor
	4.3 Parallel Scalagon

	5 Conclusion and Outlook
	References

	Towards Order-Preserving SubMatrix Search and Indexing
	1 Introduction
	2 Preliminaries
	3 pIndex
	4 OPSM Queries
	5 Experimental Evaluation
	5.1 Evaluation on Single Machine
	5.2 Evaluation on Single Machine, Hadoop and Hama

	6 Related Work
	7 Conclusions

	Database Storage and Index II
	Large-Scale Multi-party Counting Set Intersection Using a Space Efficient Global Synopsis
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Background
	4.1 Creating a Local Synopsis
	4.2 Homomorphic Computations for Preserving Privacy
	4.3 Secure Distributed Summation

	5 Protocols for Creating a Privacy-Preserving Intersection Global Synopsis
	5.1 The Homomorphic Protocol
	5.2 The Noise-Based Protocol

	6 Evaluation
	6.1 Evaluation Using Synthetic Data Sets
	6.2 Evaluation Using Real Data Sets

	7 Conclusions
	References

	Improved Weighted Bloom Filter and Space Lower Bound Analysis of Algorithms for Approximated Membership Querying
	1 Introduction
	2 Membership Likelihood and Query Frequency Definition
	3 Improved Weighted Bloom Filter
	3.1 Weighted Bloom Filter
	3.2 Improved Weighted Bloom Filter Design
	3.3 False Negative Rate and False Positive Rate Analysis
	3.4 Discussion on the Practical Implementation of IWBF

	4 Space Lower Bound Analysis
	4.1 Background of Communication Complexity
	4.2 Information Cost Analysis for the Membership Function
	4.3 Tight Space Lower Bound for Approximated Membership Querying Algorithms
	4.4 The Approximate Space Lower Bound for Approximated Membership Querying Algorithms
	4.5 Generalization of the Space Lower Bound based on Pigeonhole Principle

	5 Conclusions
	Appendix: Proof of Theorem 1
	References

	Tree Contraction for Compressed Suffix Arrays on Modern Processors
	1 Introduction
	2 Design Overview
	3 Tree Contraction
	3.1 Fixed-Length Path Contraction
	3.2 Sub-tree Contraction
	3.3 STC: Hybrid Strategy of FPC and SC

	4 Evaluation
	4.1 Environment Settings
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

	Scalable Top-k Spatial Image Search on Road Networks
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Rank-Aware Separate Index Method
	4.1 The Concept of Top- k Aggregation Algorithms
	4.2 Rank-Aware Separate Indexes

	5 A Query Processing Algorithm
	5.1 Dynamically Constructing Sorted Spatial List
	5.2 External CA Algorithm

	6 Performance Evaluation
	6.1 Dataset
	6.2 Experimental Results

	7 Conclusions
	References

	Social Networks II
	An Efficient Method to Find the Optimal Social Trust Path in Contextual Social Graphs
	1 Introduction
	1.1 Background
	1.2 The Problem and Challenges
	1.3 Contribution

	2 Related Work
	2.1 Social Trust Path Finding without Social Contexts
	2.2 Social Trust Path Finding with Social Contexts

	3 Preliminary
	3.1 Contextual Social Graph
	3.2 Optimal Social Trust Path Queries in CSG

	4 Social Trust Path Finding
	4.1 Monte Carlo Method
	4.2 T-MONTE-K

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	References

	Pricing Strategies for Maximizing Viral Advertising in Social Networks
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Pricing Model
	2.2 Information Diffusion Models
	2.3 Problem and Optimization Objective

	3 A Continuous Greedy Process
	4 Pricing Strategies for Viral Advertising
	4.1 A Discrete Greedy Strategy
	4.2 How to Choose m?

	5 Evaluations
	5.1 Experiment Setup
	5.2 Results

	6 Conclusion
	References

	Boosting Financial Trend Prediction with Twitter Mood Based on Selective Hidden Markov Models
	1 Introduction
	2 Related Work
	3 Mood Extraction and Evaluation
	3.1 Basics of Sentiment Analysis
	3.2 Expanding POMS Bipolar Lexicon by WordNet
	3.3 Mood Extraction from Massive Tweets
	3.4 Mood Evaluation via Granger Causality Analysis

	4 The Multi-stream sHMM
	4.1 HMM
	4.2 sHMM
	4.3 Multi-stream sHMM

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Statistics of Extracted Twitter Moods
	5.3 Growth Rates of Financial Indexes
	5.4 Results of Granger Causality Analysis
	5.5 Prediction Performance Comparison

	6 Conclusion
	References

	k-Consistent Influencers in Network Data
	1 Introduction
	2 Problem Formulation
	3 Proposed Method
	4 Experimental Evaluation
	4.1 Efficiency Experiments
	4.2 Sensitivity Experiments
	4.3 Effectiveness Experiments

	5 Related Work
	6 Conclusion
	References

	Industrial Papers
	Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets
	1 Introduction
	2 Data Foundation
	3 Method
	3.1 Path Based Analysis
	3.2 Weather Measurements
	3.3 Wind Speed and Direction Analysis

	4 Results
	4.1 Trajectory Comparisons
	4.2 Speed Comparisons
	4.3 Seasonal Variations
	4.4 Path-Based Energy Comparisons for EVs
	4.5 Effects of Wind

	5 Related Work
	6 Conclusion
	References

	Interactive, Flexible, and Generic What-If Analyses Using In-Memory Column Stores
	1 Introduction
	2 Simulation Model
	2.1 Calculation Model
	2.2 Data Binding
	2.3 Simulation Scenarios

	3 HPI Business Simulator
	3.1 Features and Implementation
	3.2 In-Memory Technology as Enabler for Interactive Simulations
	3.3 Benefits Compared to Existing Tools

	4 Related Work
	5 Conclusion
	References

	Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor Cloud
	1 Introduction
	2 Related Work
	3 Sensor Cloud Architecture
	3.1 Challenges in Multi-Application Evironment

	4 Scheduling Tasks
	4.1 Types of Tasks
	4.2 Handling Redundant Requests
	4.3 Scheduling Scheme
	4.4 Duty Cycles in Detail
	4.5 Pre-emption Condition

	5 System Implementation, Experiments and Performance Evaluation
	6 Conclusions
	References

	Demo
	Invariant Event Tracking on Social Networks
	1 Introduction
	2 System Architecture
	2.1 Micro-blog Loader and Pre-processing
	2.2 Invariant Event Tracking

	3 Demonstration Scenario
	4 Conclusions
	References

	EmoTrend: Emotion Trends for Events
	1 Introduction
	2 Methodology
	2.1 Event Detection
	2.2 Mood Summarization

	3 Demonstration Overview
	4 Conclusions
	References

	A Restaurant Recommendation System by Analyzing Ratings and Aspects in Reviews
	1 Introduction
	2 System
	2.1 Profile Generator
	2.2 Rating Predictor

	3 Demonstration
	4 Experiments
	References

	ENRS: An Effective Recommender System Using Bayesian Model
	1 Introduction
	2 Overview and Architecture
	2.1 Probabilistic Entity Graph
	2.2 Reader Profile
	2.3 Naïve Bayesian Recommendation

	3 Demonstration
	References

	EPSCS: Simulating and Measuring Energy Proportionality of Server Clusters
	1 Introduction
	2 Overview
	2.1 Architecture of
	2.2 Key Designs in

	3 Demonstration
	References

	MAVis: A Multiple Microblogs Analysis and Visualization Tool
	1 Introduction
	2 Architecture
	2.1 Preprocessing Module
	2.2 Analysis Module
	2.3 Visualization Module

	3 Key Techniques
	4 Demonstration
	4.1 Preprocessing and Analyzing
	4.2 Visualization

	References

	Author Index

