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Abstract. Bichromatic Reverse Nearest Neighbor (BRNN) Query is an
important query type in location-based services (LBS) and has many real
life applications, such as site selection and resource allocation. However,
such query requires the client to disclose sensitive location information to
the LBS. The only existing method for privacy-preserving BRNN query
adopts the cloaking-region paradigm, which blurs the location into a spa-
tial region. However, the LBS can still deduce some information (albeit
not exact) about the location. In this paper, we aim at strong privacy
wherein the LBS learns nothing about the query location. To this end,
we employ private information retrieval (PIR) technique, which accesses
data pages anonymously from a database. Based on PIR, we propose a
secure query processing framework together with various indexing and
optimization techniques. To the best knowledge, this is the first research
that preserves strong location privacy in BRNN query. Extensive exper-
iments under real world and synthetic datasets demonstrate the practi-
cality of our approach.

Keywords: Privacy preservation · Location privacy · Private informa-
tion retrieval · Bichromatic RNN

1 Introduction

Given two point sets S (the servers) and R (the objects), and a server q ∈ S,
a bichromatic reverse nearest neighbor (BRNN) query finds the set of objects
whose nearest server is q. BRNN has been receiving increasing attention since the
boom of mobile computing and location-based services (LBS). It has numerous
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Fig. 1. Example of BRNN query

applications in map search, resource allocation, emergency service dispatching,
military planning, and mobile reality games [3]. Figure 1 illustrates two sets
of points of interest (POIs) from an online map service, where red circles are
residences Ri and black squares are grocery stores Si. Bob has a few candidate
locations qi (the black star) to open up a new store, so he wants to know which
location can attract the most residences from existing stores based on distance.
By issuing a BRNN query at each candidate location, he is able to tell q1 is
the best location to open a new grocery store, as it leads to the largest BRNN
results — four residences R4, R5, R6 and R7.

However, the query location as well as Bob’s business intention has been dis-
closed to the server during this process. Such privacy disclosure also occurs in
other BRNN application scenarios. For example, in taxi dispatching, a taxi driver
has to report the cab’s current location in order to know the customers to whom
he/she is the nearest to serve. However, such location can reveal sensitive infor-
mation about the passenger, such as his/her medical or financial condition, as
well as political affiliations [2]. Therefore, protecting the query input of a BRNN
query against the LBS is indispensable. In the literature, the only existing app-
roach for privacy-preserving BRNN query adopts the cloaking-region paradigm
[3], which sends to the LBS a spatial region that contains the query point. Based
on this region, the LBS returns a superset of the genuine reverse nearest neigh-
bors, from which the client user will refine the true result. Unfortunately, this
approach still reveals to the LBS substantial information about the location.

To guarantee strong location privacy, a promising cryptography tool is private
information retrieval (PIR) [16]. PIR allows a data item (e.g., a disk page) to
be retrieved from a server without leaving any clue of the item being retrieved.
PIR was considered to be resource-intensive, but thanks to the recent progress in
cryptography, practical software or hardware PIR solutions have been proposed
[4]. Since then it has been successfully applied to database problems, such as
kNN and shortest path search [6] [8].

In this paper, we investigate privacy-preserving BRNN query without the LBS
deducing any information about the query point. To this end, we adopt practical
PIRtechniques that retrieve a singledatapageas thebuildingblock.The challenges
of a PIR-based BRNN solution lies in the following aspects: (1) although PIR guar-
antees secure access of a single page from the server, the variation of the number of
page accesses from different queries may reveal information about the query point,
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and (2) as the database contains voluminous points, directly applying PIR for the
BRNN query is inefficient, thus calling for an integration with spatial index, such
as KD-tree. To address these challenges, we first propose a PIR-based BRNN query
processing framework that guarantees strong privacy. We then apply to this frame-
work two indexing schemes, whose performance varies with the data distribution.
An orthogonal optimization technique is also proposed to further enhance the per-
formance. To summarize, our main contributions are:

(1) To the best knowledge, this is the first work on BRNN query processing
with no information leakage.

(2) We propose a framework for PIR-based BRNN query and prove its security.
(3) We design two indexing schemes for different data distributions, and pro-

pose an optimization to further bring down the transformation cost.
(4) We conduct extensive experiments under real-world and synthetic datasets,

which shows our proposed approach is practical.
The rest of the paper is organized as follows. Section 2 reviews the related

work. In Section 3, we formalize the system model and problem definition. In
Section 4, we present the framework for the PIR-based BRNN query processing,
followed by two indexing schemes based basic methods, namely KD-tree based
method and Adaptive grid based method in Section 5. We then propose an opti-
mization in Section 6. The solutions are evaluated by experiments in Section 7.

2 Related Work

In this section, we review existing literature on bichromatic reverse nearest neigh-
bor query and private information retrieval.

2.1 Bichromatic Reverse Nearest Neighbor

In light of its critical applications ranging from social life domain such as loca-
tion selection to military activities such as the placement of food [9], bichromatic
reverse nearest neighbor query (BRNN query) attracts considerable attention
since its first seminal work [12]. To efficiently find the BRNNs for a query point,
Voronoi polygon is widely used under various circumstances such as static or con-
tinuous query processing [14] [13]. In these works, the Voronoi polygon deter-
mines candidate or accurate region for the query point, within which object
points are the query point’s BRNN result. However, all these queries have not
considered the privacy issue of disclosing the plaintext query location to the
LBS. There is only one recent work addressing this issue [3]. In this work, the
client issues a query region instead of a point to the server, and the server
returns object points that are BRNNs to every point in the region. The client
then refines the actual BRNNs based on his/her actual location point. While
this solution still exposes a query region, our work supersedes it by revealing no
location information of the query point.
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2.2 Private Information Retrieval

Prior to PIR-based methods, data transformation based methods are considered
to provide strong location privacy. [11] presents a model that adopts Hilbert
mapping to transform the location data. Such transformation encrypts coor-
dinates in a way that preserves distance proximity and thus can be applied for
approximate nearest neighbor query or range query. [10] proposes a secure trans-
formation to guarantee the approximate distances of POIs to the query point
and answers kNN query. However, these methods are vulnerable to exposing
relative distance [1] or access pattern attack[8].

Thanks to the advances of modern hardware and distributed/cloud comput-
ing, PIR has become a viable solution to oblivious data page access in malicious
server [5]. However, it is not trivial to apply it to privacy-preserving location
queries, because the processing for different queries incurs different numbers of
PIR access, which may be exploited by adversaries to induce the query loca-
tion [7]. Existing PIR-based methods includes PIR-based NN query[7], kNN
query[6] and shortest path computation[8]. To guarantee equal number of PIR
access for any query point, all these methods imposes the maximum number of
PIR access on the dataset. Their main objective, therefore, is to design elaborate
data structures (e.g., grid file or KD-tree) that decompose the space to reduce
this number. Nonetheless, no existing work has been on applying PIR-based
method to BRNN query.

3 Problem Definition

In this section we present the system model and formally define the problem as
well as the security model.

3.1 System Model

Figure 2 illustrates the system model in this paper. The server (LBS) owns two
POI datasets, namely, the server points S and object points R. The client issues
a bichromatic reverse nearest neighbor (BRNN) query q ∈ S, for which the server
returns the set of objects whose nearest server is q. Formally, BRNN(q) = {r ∈
R|∀s ∈ S : dist(r, q) ≤ dist(r, s)}. As for the privacy requirement, the server
should not learn any information about q.

To enable privacy protection, a naive solution is to ship both S and R datasets
to the client for processing. However, due to their large volume and dynamic
nature, this solution cannot scale well. Thanks to the recent advances in pri-
vate information retrieval (PIR), we adopt the state-of-the-art hardware-based
PIR as follows. The server installs a secure co-processor (SCOP ), which offers
unobservable and unmolested computation inside an untrusted hosting device.
The SCOP performs a hardware-based PIR protocol with the client, and offers
the latter oblivious access of a data page [4]. With the SCOP , we propose a
general secure processing framework for spatial queries, which is composed of
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Retrieve blocks from server by SCOP in multi-rounds 

Fig. 2. System architecture

multi-round PIR access to a database MonoDB. It is a monolithic database
that integrates both the datasets and indexes. In each round, the client retrieves
a specific page of MonoDB through SCOP . The fetched data helps the client
determine the next page to retrieve, and the procedure repeats until the BRNN
query is answered. Therefore, the secure query processing problem is reduced to
the efficient design of the MonoDB and the associated retrieval plan.

3.2 Adversary and Security Model

Adversary. The adversary in our problem is the LBS server. As a common
assumption in private information retrieval, the computational power of the
adversary is polynomially bounded.
Security Model. Our objective is to develop practical protocol for process-
ing BRNN query without the LBS deducing any location information about
the queries. Similar to [6], we assert that every BRNN query follows the same
retrieval plan, which is necessary in order to achieve our privacy goal. Specifi-
cally, we ensure that every query (1) executes in the same number of rounds in
the same order and (2) in each round it retrieves the same number of data pages.
The retrieval plan is determined by the processing protocol and is publicly avail-
able. For example, if the protocol states that in the second round, 5 pages are
fetched from the database, then every query must fetch 5 pages from database
in the second round. If a query needs fewer than 5 pages, the protocol pads with
dummy page requests. Since each invocation of PIR is secure, we can naturally
reach the following theorem regarding the security of our proposed framework.

Theorem 1. The BRNN query processing framework leaks no information to
the adversary about query location. Equivalently, from the adversary’s perspec-
tive, every query is indistinguishable from any other.

4 Private BRNN Processing Framework on MonoDB

In this section, we overview private BRNN query processing in the proposed
MonoDB framework. Recall that in this framework, any query processing is equiv-
alent to a multi-round retrieval of data pages of the MonoDB. The MonoDB can
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be logically split into n databasesDB1,DB2, ...,DBn, whereDBi (1 ≤ i ≤ n−1)
are indexes and DBn is the object database R. The retrieval sequence of the query
can also be split accordingly as [c1, c2, ..., cn], where the client fetches a set of pages
ci fromDBi (1 ≤ i ≤ n). In this section, we first present a baseline BRNN process-
ing algorithm, based on a key observation that reduces the number of servers and
objects to retrieve for the query evaluation. Based on this algorithm, we describe
the detailed MonoDB design and retrieval plan.

4.1 Baseline BRNN Processing

There are several existing BRNN query processing methods in the literature. In
the Voronoi Diagram-based method, a Voronoi Diagram is constructed for all
server points and the query point q, and the object points that are in q’s Voronoi
cell are the BRNN results. However, this method cannot be directly applied in
our framework as the query point q is dynamic and cannot be learnt by the LBS.
Nonetheless, we observe that the Voronoi Diagram of the server points gives a
nice bound of the result objects.

Figure 3(a) illustrates the Voronoi Diagram for all server points (they are
called ”seeds” in some literatures). For each seed, any object point in its corre-
sponding Voronoi cell is closer to it than to any other seed. When a query q is
issued, q is added to the set of seeds, and the Voronoi Diagram is updated as in
Figure 3(b). Compared with these two diagrams, we observe that changes only
occur in Voronoi cells v5,v6,v7,v8, and v10, where q is in v7. In other words, the
Voronoi cell for the query point q only depends on the seed v7 and its neigh-
boring seeds in the original Voronoi diagram. As a result, only object points in
these Voronoi cells can reside in the new Voronoi cell of q. Therefore, the BRNN
results can be bounded by those object points in the Voronoi cells that contains
q and its neighboring cells. This observation can be formally stated as below.

Theorem 2. Given query point q and the Voronoi diagram of all server points,
any object point M outside of the Voronoi cell that contains q and its neighboring
cells cannot be q’s BRNN.

S4

(a) Voronoi Diagram by
server points

(b) Voronoi Diagram by
server points plus query
point

(c) Proof for the observa-
tion

Fig. 3. Voronoi Diagram for server points and query point
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Proof. As Figure 3(c) illustrates, the segment between q and M must cross
some Voronoi cell that neighbors with q at point I. Suppose that the seed of
this cell is S. The distance between q and M equals to the segment length
between q and M , which is equal to dist(M, I) + dist(I, q). Since I is S’s
BRNN, it must hold that dist(I, S) < dist(I, q). Further, according to the tri-
angle inequality, dist(M,S) < dist(M, I) + dist(I, S). Therefore, dist(q,M) =
dist(M, I) + dist(I, q) > dist(M, I) + dist(I, S) > dist(M,S). As such, the dis-
tance between q and M is larger than the distance between M and S, which
means M cannot be q’s BRNN.

By Theorem 2, the BRNN processing protocol between the client and LBS
is as follows. The LBS first computes the Voronoi Diagram of all server points
offline. When query q arrives, it sends to the client (1) the servers (i.e., seeds)
whose Voronoi cell contains q or is a neighbor of it; and (2) all object points in
the corresponding cells of these seeds. The client then refines the BRNN results
by verifying among these seeds if q is the nearest neighbor to each object point.

4.2 MonoDB Design and Retrieval Plan

Three Databases. Based on the above baseline BRNN query processing algo-
rithm, the MonoDB can be split into three logical databases as illustrated in
Figure 4: DB1 stores all the Voronoi cells, DB2 records the Voronoi neigh-
bors of each cell, and DB3 stores object points of each cell. Note that DB1

implies a space partition, from which only the relevant Voronoi cells need to be
retrieved. The partition is non-overlapping so that only one record in DB1 will
be retrieved for any query q. The detailed partition algorithms are discussed in
the next section.

1

(a) Example for DB1 (b) Example for DB2 (c) Example for DB3

Fig. 4. Examples for the three index structures

Retrieval Plan. Given MonoDB and a BRNN query q, the PIR retrieval plan
is as follows. The client first accesses DB1 for the record of the partition where
q is located. This record stores the coordinates of all seeds in this partition, so
that the client can compute their distances to q and finds the seed i that is the
closest to q. Then the client accesses DB2 for the record of i, which stores i’s
Voronoi neighbors. According to Theorem 2, the Voronoi cell of q can be derived
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from i and its Voronoi neighbors. So the client accesses DB3 for the records of
q and q’s Voronoi neighbors. These records store all object points that are in
these Voronoi cells. A final refinement step is needed to remove from the results
those objects outside of the Voronoi cell of q.

Figure 4 illustrates the MonoDB for the whole space and the server points
of Figure 3(c). If the query q is issued at the star point in Figure 3(c), it will be
located in record A4 in DB1, where we can find v7 is the closest to q. So we obtain
v7’s Voronoi neighbors from record B7 of DB2, i.e., server points v2, v5, v6, v8, v10.
We then access records C2, C5, C6, C7, C8, C10 from DB3. These records give us
the candidate result objects such as R2, R3 that are further refined by the client.

Rationale of Three Databases. Splitting the MonoDB into three logical
databases has a variety of benefits: (1) it decouples the server and object points
so that the update in one dataset will not significantly change the MonoDB;
(2) it removes redundancy information and thus enhances the PIR performance.
For example, if DB1 and DB2 were merged into DB′

1, there would be a lot of
common neighboring seeds in different records of DB′

1.

Overflow and Underflow Handling. Normally a record spans a single page
of a database. If it is not full, it will be padded with dummy data. On the other
hand, if a record overflows in any database DBi, the LBS creates extra pages and
appends them at the end of DBi. These pages are chained up by the overflow
pointer at the end of each page, e.g., B2 with B11 in DB2 and C9 with C11 in
DB3. In what follows, we use cnti to denote the maximum number of pages for
a single record in DBi.

5 Spatial Partition

In our MonoDB framework, while DB2 and DB3 depend only on the two
datasets, DB1 also depends on the space partition scheme. In this section, we
present two space partition algorithms, which leads to two different indexes for
DB1.

5.1 KD-tree Partition

KD-tree is a widely adopted method for space partition due to its at least 50%
space utilization. In what follows, we show how to construct the DB1 based on
a KD-tree.

Figure 5(a) illustrates that a KD-tree partition of the space over server points,
which produces four node: N1, N2, N3 and N4. Each node contains a minimum of
2 and a maximum of 2*2-1=3 seeds. As such, DB1 has four records N1 through
N4, each of which stores the seeds whose Voronoi cell overlaps with this node.
Note that we set each data page can hold 4 seeds, so each record spans two pages
in Figure 5(a).

Algorithm 1 illustrates the BRNN query evaluation routine. First, the par-
tition that covers the query point is obtained (Line 2) and the corresponding
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(a) KD-tree based partitioning (b) Adaptive grid based partitioning

Fig. 5. The two partition schemes

Algorithm 1 KD-Tree Based Method
Require: Three databases DB1, DB2 and DB3, the index of KD-tree, query point q,

QP
Ensure: Reverse nearest neighboring object points of q
1: result = ∅
2: leafnode = kd.search(q)
3: Fetch the seeds Cs of record leafnode from DB1 by cnt1 PIR accesses
4: c = argmini∈Csdist(i, q)
5: Fetch all neighboring Voronoi cells Nc of record c from DB2 by cnt2 PIR accesses
6: Construct Voronoi Diagram V D according to Nc ∪ q ∪ c
7: region = V D.q
8: for each Voronoi Cell i ∈ V D do
9: Fetch all object points O belonging to the record i from DB3

10: for each object point o ∈ O do
11: if o is contained in region then
12: result = result ∪ o
13: return result

record in DB1 is fetched (Line 3). The client then finds out the server point
c whose Voronoi cell contains the query point (Line 4). Next, we compute the
Voronoi cell of q (Line 5-7). Finally, those candidate object points that fall in
the Voronoi cell of q are the BRNN results (Line 8-13).

5.2 Adaptive Grid Partition

The disadvantage of KD-tree partition for DB1 is the non-uniform distribution
of record size. Although the number of server points in each partition is almost
uniform, the number of points whose Voronoi cells overlap each partition is not.
As such, a record in DB1 may span too many pages and thus degrades the
PIR retrieval performance. In what follows, we present an adaptive-grid based
method that addresses this issue.

The motivation is to have fine-granularity partition over regions with dense
Voronoi cells and coarse-granularity partition over regions with sparse Voronoi
cells. In this way, it can avoid a single record in DB1 that hold too many seeds.
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Specifically, this method partitions the whole space into an n × n grid in an
adaptive manner as follows. It first finds n − 1 vertical lines one by one that
partition the space into n grid cells. Each time, a vertical line is found to minimize
the difference of number of Voronoi cells overlapping with both cells. This is
achieved by using the standard plane sweep algorithm. Then, it similarly finds
n − 1 horizontal lines that further partition each one of the n cells into n sub-
cells. In Figure 5(b), there are only 2×2 grid cells, so only one grid line is needed
for each dimension.

6 Optimization

In this section, we present an orthogonal general optimization to the two basic
indexing methods by packing small records in DB3 into one page. Note that the
default placement for records in DB3 assigns every record a different page, which
suffers from low utilization and leads to inefficient PIR access that only fetches
very few useful data from a page. Therefore, we propose to pack those records of
DB3 if they correspond to the same record in DB2, as these records are always
retrieved altogether. As a result, the PIR access of both DB2 and DB3 will
be more efficient. Figure 6(a) illustrates the default placement that requires 2
PIR accesses to fetch object points for any query, whereas Figures 6(b) and 6(c)
illustrate two example packing results. In Figure 6(b), only 1 PIR access is
needed to fetch object points of DB3 for any query. By contrast, 2 PIR accesses
are still needed for any query if the records are packed as in Figure 6(c).

(a) (b) (c)

Fig. 6. Example for packing records of DB3

Let NDB2 , NDB3 denote the number of records in DB2 and DB3, respec-
tively. Let eDB2

i denote the i-th record in DB2, and {eDB3
1 , eDB3

2 , ..., eDB3
m } the

m records that corresponds to eDB2
i . Further, let Bm denote the size of eDB3

m ;
since it might span multiple pages, and only the last page requires packing, the
actual packing size bm is the fraction part of Bm, i.e., bm = Bm%Page Size.
Then, the problem of record packing can be formalized as follows:

Definition 1. Record Packing Problem. To pack records in DB3 into data
pages, so that maxi

∑m
j=1 Bj for ∀eDB2

i is minimized.
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The following theorem shows that this problem is NP-hard.

Theorem 3. Record packing problem is NP-hard.

Proof. This problem can be reduced from the ”bin packing” problem. The aim
of the latter is to find the fewest number of pages to accommodate a total of m
items, each of which is smaller than a page. We reduce a bin packing problem
to our problem as follows. We create a single record in DB2 which contains all
server points. Then each item in the bin packing problem is mapped to a server
point and the size of the item equals to the number of object points for this
server point. It is obvious that this straightforward mapping is polynomial, thus
completing the proof.

To design an approximation algorithm, in what follows we first present an integer
programming solution to the problem, and then relax it to a linear programming
problem.

Let variable ym,j ∈ {0, 1} denote whether record eDB3
m is stored in page j of

DB3, and xi,j ∈ {0, 1} denote whether any record eDB3
m ∈ eDB2

i is stored in page
j. Formally, we have ∀eDB3

m ∈ eDB2
i , xi,j ≥ ym,j . And

∑P
j=1 ym,j = 1, where P

is the number of data pages in the default placement for DB3.
With these variables defined, the number of PIR accesses for object points

for a record in DB2 is the number of full data pages of corresponding object
points in DB3 plus the packed size for this record. That is,

eDB2
i =

∑

e
DB3
m ∈e

DB2
i

�Bm/Page Size� +
P∑

j=1

xi,j

Finally, the total number of object points in a page should not exceed the page
capacity. That is,

∑NDB3
m=1 bmym,j ≤ Page Size. Let K be the maximum number

of PIR accesses for any record in DB2. Therefore, we reach the following integer
programming problem for K as follows:

minimize K

subject to
∑

e
DB3
m ∈e

DB2
i

� Bm

Page Size� +
∑P

j=1 xi,j ≤ K, ∀1 ≤ i ≤ NDB2
∑NDB3

m=1 bmym,j ≤ Page Size, ∀1 ≤ j ≤ P

xi,j ≥ ym,j ,∀1 ≤ i ≤ NDB2 , ∀eDB3
m ∈ eDB2

i∑P
j=1 ym,j = 1, ∀1 ≤ m ≤ NDB3

xi,j , ym,j ∈ {0, 1}
The above integer programming problem can be approximately solved in poly-
nomial time in two steps. First, one can solve a linear relaxation of the problem,
where xi,j and ym,j is a fraction in [0, 1]. In this regard, ym,j serves as the prob-
ability of placing record eDB3

m into data page j, and xi,j serves as the probability
of records corresponding to eDB2

i being placed into data page j. As the second
step, we adopt the randomized rounding strategy to obtain a feasible solution as
follows. We assign object points in the m-th record of DB3 to the j-th page with
probability ym,j . If the page overflows, we will assign new empty pages until all
object points in this record can be accommodated.
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7 Experimental Evaluation

In this section, we conduct experiments under real world and synthetic datasets
to demonstrate the effectiveness of our PIR-based BRNN algorithm. We also
compare the performance with a weaker location privacy preservation approach
— the cloaking-based PARNN method [3] and show our algorithm is of great
practical value. We also carry out experiments to analyze the effect of our opti-
mization approach.

7.1 Experiment Settings

The real world dataset is collected from Open Street Map1, with location data
from Boston and New York, respectively. Both datasets have relatively uniform
distribution, while there are more points in New York than in Boston.

As for the synthetic dataset, we vary the number of server points from 105 to
106, and object points are 10 times those of server points. To emulate a skewed
distribution, these points are generated by a widely adopted benchmark defined
by Chen et al. [15]. In this benchmark, a portion f ∈ (0, 1] of points are generated
in a skewed way to capture object clusters while the rest 1 − f portion of points
are uniformly generated. Specifically, the portion f of the points are controlled
by another skewed parameter s and are generate not far from one of the s
randomly selected server points. Table 1 summarizes the detailed parameters of
the datasets.

The two indexing methods are implemented with the optimization in Section
6 in place. All codes are written in C# and run on a machine with an Intel Core2
Quad CPU 2.53Ghz and 4 GByte of RAM. We also adopt the open source GNU
Linear Programming Kit2 as the solver the record packing problem in Section 6.
As with previous hardware-based PIR methods, we assume the IBM 4764 PCI-X
Cryptographc Coprocessor as the SCOP and strictly simulate its performance.
The client communicates with the LBS using a link with round trip time of
700ms and bandwidth 384 Kbit/s, which emulates a moving client connected
via a 3G network.

Table 1. Summary of Experimental Settings

Dataset The number of server points The number of object points

Boston 8381 146207

New York 126900 1462057

Synthetic 10000-1000000 100000-10000000

1 www.openstreetmap.org
2 https://www.gnu.org/software/glpk/

www.openstreetmap.org
https://www.gnu.org/software/glpk/
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7.2 Performance Comparison

In this section, we compare the performance of our PIR-BRNN method with
the PARNN method under both real world and synthetic datasets. The latter
method fetches all Voronoi cells that overlap with the client-issued cloaking
region, and then returns to the client all object points that are covered by these
cells. Note that the performance of PARNN is plotted only for reference, as it
still discloses a cloaking region to the LBS.

Figure 7(a) illustrates that PIR-BRNN method outperforms PARNN method
with different cloaking region size by a factor of 2−4 in terms of execution time.
We can see that when the cloaking region size shrinks from 100 × 100m2 to
10 × 10m2 (in practice, from a plaza to a road crossing), the execution time
for PARNN can improve by about 50%, because fewer server points and object
points will be accessed by PARNN. Nonetheless, it still takes more than 2 times
the execution time than our proposed PIR-BRNN method.

(a) Real World Datesets (b) Ns = 105, s = 10 (c) Ns = 106, s = 10

Fig. 7. Performance Comparison between PIR-BRNN and PARNN

In synthetic datasets, the performance of PIR-BRNN approach deteriorates
as more dummy PIR accesses need to be carried out due to the skewed data
distribution. However, Figures 7(b) and 7(c) illustrate that the performance of
PIR-BRNN approach is still better than PARNN. The experimental results show
that our PIR-BRNN approach is superior to the PARNN method by providing
stronger privacy guarantee as well as faster query result time.

7.3 Effect of Space Partitions

In this experiment, we evaluate the effect of partition scheme without any opti-
mization3. Figure 8(e) illustrates the performance under the real world dataset,
where two methods have similar performance. However, as the point distribu-
tion becomes more and more skewed in Figures 8(a)-(d), the adaptive grid based
method significantly outperforms KD-tree based method. This result coincides
with our analysis in Section 5.2 that while the KD-tree keeps each partition
3 The real SCOP only has 32MB of main memory and can only support up to 2.5GB

addressable space. To enable the experiment in this subsection, however, we simply
assume there are enough memory buffer in the SCOP emulator.
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(a) Ns = 105, s = 10 (b) Ns = 105, s = 20 (c) Ns = 106, s = 10

(d) Ns = 106, s = 20 (e) Real World Dataset

Fig. 8. Performance under two basic methods

approximately equal number of points, it fails to keep each partition approxi-
mately equal number of overlapped Voronoi cells. Therefore, as the server points
become skew, it suffers from more overflow pages for dense records in DB1, and
thus incurs unnecessary PIR accesses for these extra data pages.

7.4 Effectiveness of Optimizations

In this subsection, we evaluate the effect of the optimization proposed in Section
6. First, we show that the number of PIR accesses in both indexing methods
is reduced significantly by the optimization. Then we show that although the
linear programming (LP) based optimization does not yield the optimal pack-
ing of records, it runs much faster than the integer programming (IP) based
optimization while still leads to reasonable performance.

Figure 9 illustrates that under real world dataset, both IP and LP based
optimization reduce the number of PIR accesses by more than 70% on average.
In particular, the effect of our optimization is most significant for skewed data
distribution. This is because many server points have a lot of corresponding
records in DB3 with only very few object points; as they are packed together,
the maximum number of PIR accesses is greatly reduced.

It is worth noting that although the LP based optimization dose not yield the
optimal packing of records, it achieves comparable performance as the optimal
IP-based optimization. On the other hand, Figure 10 illustrates that the running
time of the former is much faster and is thus more practical than the latter. In
fact, in our experiment we cannot complete the IP based optimization on the
New York dataset or any synthetic dataset with more than 106 server points.
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(a) Boston Dataset (b) New York Dataset (c) Ns = 105, s = 10

(d) Ns = 105, s = 20 (e) Ns = 106, s = 10 (f) Ns = 106, s = 20

Fig. 9. Effect of Optimization on Various Datasets

(a) skew papameter s = 10 (b) skew parameter s = 20

Fig. 10. Performance Comparison between LP and IP Optimization

8 Conclusion

In this paper we introduce the novel problem of BRNN query with strong privacy
guarantee, where an adversary cannot distinguish a query point from any other
point in the space. This is the first work that applies PIR to BRNN query.
Further, we show that it is NP-hard to minimize the number of PIR accesses
given any partition scheme over the whole space, and therefore propose a linear
programming approximation to the optimal packing problem in our proposed
MonoDB. Finally, we evaluate our methods on real world dataset and synthetic
dataset. Extensive experiments demonstrate the practicality of our method.
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