
Mining Itemset-Based Distinguishing
Sequential Patterns with Gap Constraint

Hao Yang1, Lei Duan1,2(B), Guozhu Dong3, Jyrki Nummenmaa4,
Changjie Tang1, and Xiaosong Li2

1 School of Computer Science, Sichuan University, Chengdu, China
hyang.cn@outlook.com, {leiduan,cjtang}@scu.edu.cn

2 West China School of Public Health, Sichuan University, Chengdu, China
lixiaosong1101@126.com

3 Department of Computer Science and Engineering, Wright State University,
Dayton, USA

guozhu.dong@wright.edu
4 School of Information Sciences, University of Tampere, Tampere, Finland

jyrki.nummenmaa@uta.fi

Abstract. Mining contrast sequential patterns, which are sequential
patterns that characterize a given sequence class and distinguish that
class from another given sequence class, has a wide range of applica-
tions including medical informatics, computational finance and consumer
behavior analysis. In previous studies on contrast sequential pattern min-
ing, each element in a sequence is a single item or symbol. This paper
considers a more general case where each element in a sequence is a set of
items. The associated contrast sequential patterns will be called itemset-
based distinguishing sequential patterns (itemset-DSP). After discussing
the challenges on mining itemset-DSP, we present iDSP-Miner, a mining
method with various pruning techniques, for mining itemset-DSPs that
satisfy given support and gap constraint. In this study, we also propose
a concise border-like representation (with exclusive bounds) for sets of
similar itemset-DSPs and use that representation to improve efficiency
of our proposed algorithm. Our empirical study using both real data and
synthetic data demonstrates that iDSP-Miner is effective and efficient.

Keywords: Itemset · Sequential pattern · Contrast mining

1 Introduction

Imagine you are a supermarket manager facing a collection of customers’ shop-
ping records, each of which is a sequence of all purchases by a customer over a
fixed time period. (See Table 1 for illustration.) To provide specialized service

This work was supported in part by NSFC 61103042, SKLSE2012-09-32, and China
Postdoctoral Science Foundation 2014M552371. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 39–54, 2015.
DOI: 10.1007/978-3-319-18120-2 3

40 H. Yang et al.

Table 1. A toy dataset of shopping records of married and unmarried customers

ID Shopping records Married

S1 <{bread, milk} {milk, towel} {coffee, beef, cola} {lipstick}>

Yes
S2 <{bread, perfume} {book} {coffee, beef, cola} {lipstick} {milk}>
S3 <{towel, bread, perfume, beef, book} {coffee, beef, cola} {book} {milk}>
S4 <{bread, perfume} {coffee, beef, cola} {lipstick, shaver} {milk}>

S5 <{towel, bread} {bread} {cola, shaver} {coffee, beef, cola} {milk}>

No
S6 <{bread} {book} {milk, shaver} {cola} {towel, book}>
S7 <{milk} {book, bread} {milk, shaver} {coffee, beef, cola}>
S8 <{bread, cola} {coffee} {cola} {lipstick, cola} {milk, cola}>

to married customers, you may want to find and utilize informative differences
between the married and unmarried customers on their shopping preferences.

The above motivation scenario cannot be addressed well using existing sequen-
tial pattern mining [1] or contrast data mining [2] methods, and thus suggests a
novel data mining problem. In a sequential dataset of two classes for this scenario,
each sequence is an ordered list of itemsets; given a target class, we want to find
the sequential patterns that are frequent in the target class but infrequent in the
other class. We call such a pattern an itemset-based distinguishing sequential pat-
tern (itemset-DSP) since each of its elements is an itemset instead of a single item.
Itemset-DSP mining is an interesting problem with many useful applications. As
another example in addition to the shopping application given above, when an
analyst in a pharmaceutical company is investigating the effect of a new drug, she
may record the symptoms of patients once every 12 hours after taking the drug
over one week, then compare the observed data with similarly observed data of
patients not taking the drug.

While there are many existing studies on distinguishing sequential pattern
mining, they focus on distinguishing sequential patterns whose elements are sin-
gle items. The itemset-DSP mining problem addressed here is different. It focuses
on mining patterns from sequences whose elements are itemsets. Moreover, there
is a serious need to represent the patterns concisely, to avoid combinative explo-
sion. Due to these key differences, the potential application and the mining
methods of this mining problem differ significantly from those for the case of
single item based sequences. We will review the related work and explain the
differences systematically in Section 3.

To tackle the problem of mining itemset-DSPs, we need to address several
technical challenges. First, a brute-force method, which enumerates every non-
empty itemset to generate candidate elements for sequence patterns is very costly
on sequence sets with a large number of distinct items and a large maximum
number of items in an element. We need an efficient method to avoid generating
useless candidates.

Second, we need to have a concise yet complete way to represent sequential
patterns satisfying the support thresholds, so that the number of discovered
patterns can be reduced, the mining results are more comprehensible, and the
algorithm can be efficient.

Mining Itemset-Based DSP with Gap Constraint 41

Third, we also need to find effective techniques to efficiently discover the
itemset-DSPs with concise representations. This issue is also complicated because
we also consider gap constraint in the discovery of itemset-DSPs.

This paper makes the following main contributions on mining minimal itemset-
DSPs with gap constraint: (1) introducing a novel data mining problem of itemset-
DSPmining; (2) presenting an efficient algorithm for discovering itemset-DSPsand
presenting a concise representation for the mining results; (3) conducting extensive
experiments on both real data and synthetic data, to evaluate our itemset-DSP
mining algorithm, and to demonstrate that the proposed algorithm can find inter-
esting patterns, and it is effective and efficient.

The rest of the paper is organized as follows. We formulate the problem
of itemset-DSP mining in Section 2, and review related work in Section 3. In
Section 4, we discuss the critical techniques of our method (called iDSP-Miner).
We report a systematic empirical study in Section 5, and conclude the paper in
Section 6.

2 Problem Formulation

We start with some preliminaries. Let Σ be the alphabet, which is a finite set of
distinct items. An element (of sequences, defined below) is a subset e of Σ. The
size of e is the number of items in e, denoted by |e|. Given two elements e and
e′ such that e′ is not empty, if e′ ⊆ e, then we say e′ is a sub-element of e.

An itemset-based sequence S over Σ is an ordered list of elements with the
form S = < e1e2...en >, where ei (1 ≤ i ≤ n) is an element. The length of S is
the number of elements in S, denoted by ||S||. For brevity, below we will often
call itemset-based sequences as sequences when it is clear what is meant.

We use S[i] to denote the i-th element in S (1 ≤ i ≤ ||S||). For two elements
S[i] and S[j] in S, satisfying 1 ≤ i < j ≤ ||S||, the gap between S[i] and S[j],
denoted by Gap(S, i, j), is the number of elements between S[i] and S[j] in S.
Thus, Gap(S, i, j) = j − i − 1.

Example 1. For S =<{bread, milk} {milk, towel} {coffee, beef, cola} {lipstick}>,
we have ||S|| = 4, S[1] = {bread, milk}, and |S[1]| = 2. The sub-elements of S[1]

include {bread}, {milk} and {bread, milk}. The gap between S[1] and S[4], i.e.
Gap(S, 1, 4), is 2.

For two sequences S and S′ satisfying ||S|| ≥ ||S′||, if there exist integers
1 ≤ k1 < k2 < ... < k||S′|| ≤ ||S||, such that S′

[i] ⊆ S[ki] for all 1 ≤ i ≤ ||S′||,
then we say < k1, k2, ..., k||S′|| > is an occurrence of S′ in S (and we also say S
contains S′). Observe that S′ may have more than one occurrences in S.

The gap constraint γ is defined as an interval which consists of two nonnegative
integers [γ.min, γ.max]. Given two sequences S and S′, let < k1, k2, ..., k||S′|| > be
an occurrence of S′ in S. We say S′ is a subsequence of S (and S is a super-sequence
of S′). Furthermore, if for all 1 ≤ i < ||S′||, γ.min ≤ Gap(S, ki, ki+1) ≤ γ.max,
we say that S′ is a subsequence of S with gap constraint γ, denoted by S′ �γ S.

42 H. Yang et al.

Example 2. Let S =<{book, milk} {bread} {book, milk, coffee} {coffee}> and
S′ =<{book, milk} {coffee}>. Since S′

[1] ={book, milk} ⊆ S[1] = {book, milk}
and S′

[2] = {coffee} ⊆ S[3] = {book, milk, coffee}, < 1, 3 > is an occurrence of S′

in S. Similarly, S′
[1] ⊆ S[1], S′

[2] ⊆ S[4], so < 1, 4 > is also an occurrence of S′ in
S. Let gap constraint γ = [2, 3]. Because 2 ≤ Gap(S, 1, 4) = 2 ≤ 3, S′ �[2,3] S.

The support of a sequence P with gap constraint γ in sequence set D, denoted
by Sup(D,P, γ), is defined by Equation 1.

Sup(D,P, γ) =
|{S ∈ D | P �γ S}|

|D| (1)

Please note that given an element e (i.e. a length-1 sequence), the support of e,
which is the ratio of the number of sequences containing e to |D|, is independent
of γ. Thus, we denote Sup(D, e) the support of e in D for brevity.

Definition 1 (Minimal Itemset-Based Distinguishing Sequential Pat-
terns with Gap Constraint). Given two sets of itemset-based sequences,
D+ and D−, two thresholds, α and β, and gap constraint γ, a sequence P =
< e1e2...e||P || > is a Minimal Itemset-based Distinguishing Sequential Pattern
with Gap Constraint (itemset-DSP), if the following conditions are true:

1. (support contrast) Sup(D+, P, γ) ≥ α and Sup(D−, P, γ) ≤ β;
2. (minimality) There does not exist a sequence P ′ =< ekek+1...ek+m > satis-

fying Condition 1 such that k ≥ 1 and k + m ≤ ||P ||.
Given α, β, and γ, the minimal itemset-based distinguishing sequential pat-

tern mining problem is to find all the itemset-DSPs from D+ and D−.

Table 2. List of itemset-DSPs discovered in Table 1 (α = 0.6, β = 0.3, γ = [0, 2])

ID itemset-DSP P Sup(D+, P, γ) Sup(D−, P, γ)

P1 <{coffee, beef, cola} {milk}> 0.75 0.25

P2 <{coffee, beef} {milk}> 0.75 0.25

P3 <{coffee, cola} {milk}> 0.75 0.25

P4 <{beef, cola} {milk}> 0.75 0.25

P5 <{beef} {milk}> 0.75 0.25

P6 <{lipstick}> 0.75 0.25

P7 <{beef, perfume}> 0.75 0.0

P8 <{perfume}> 0.75 0.0

Example 3. Consider the sequences in Table 1. Let support thresholds α = 0.6
and β = 0.3, and gap constraint γ = [0, 2]. There are 8 itemset-DSPs (Table 2)
discovered from the married customers (D+) and the unmarried customers (D−).
Taking <{beef, cola} {milk}> for instance, we can see that 75% married cus-
tomers (compared against 25% unmarried customers) buy beef and cola together,
and will buy milk within the next three shopping purchases.

Mining Itemset-Based DSP with Gap Constraint 43

Table 3 lists the frequently used notations of this paper.

Table 3. Summary of notations

Notation Description

Σ alphabet (the set of items)
|e| the size of e (the number of items in e)

e′ ⊆ e e′ is a sub-element of e
||S|| length of S (the number of elements in S)
S[i] the i-th element in S (1 ≤ i ≤ ||S||)
γ gap constraint

S′ �γ S S′ is a subsequence of S with gap constraint γ
Sup(D, P, γ) support of sequence P with gap constraint γ in sequence set D

D+, D− the positive, negative sequence sets resp.
α, β the positive, negative support thresholds resp.

3 Related Work

Sequential pattern mining [3] is a significant task in data mining and has attracted
extensive attention from both research and industry. Several types of sequential
patterns, such as frequent sequential pattern [4], distinguishing sequential pat-
tern [5], closed sequential pattern [6], (partial) periodic sequential pattern [7,8]
and partial order pattern [9], have been proposed. There are quite a few successful
applications of sequential pattern mining, such as protein and nucleotide sequence
analysis [10,11], software bug feature discovery [12] and musical data analysis [13].

There are several studies on mining sequential patterns from sequences in
which each element is an itemset. For example, Rabatel et al. [14] considered
mining sequences with contextual information. Han et al. [7] considered mining
sequences where each position contains an itemset. Feng et al. [15] proposed a
language-independent keyword extraction algorithm based on mining sequential
patterns without semantic dictionary. Chang et al. [16] used the length of time
interval to measure the importance of patterns, and presented a framework to
mine time-interval weighted sequential patterns. Recently, Low-Kam et al. [17]
proposed a method to mine statistically significant, unexpected patterns, so that
the number of discovered patterns is reduced. However, these studies are signif-
icantly different from our study, since we consider the support contrast measure
instead of just the support measure.

There are several studies considering gap constraint in sequential pattern min-
ing. For example, Antunes et al. [18] proposed an algorithm to handle the sequence
patternmining problemwith gap constraint based onPrefixSpan [19]. Xie et al. [20]
studied the discovery of frequent patterns satisfying one-off condition and gap con-
straint from a single sequence. Zhang et al. [21] solved the problem of mining fre-
quent periodic patterns with gap constraint from a single sequence.

Distinguishing sequential patterns has many interesting applications, as it can
describe contrast information between different classes of sequences. Ji et al. [5]
proposed ConsGapMiner for mining minimal distinguishing subsequence patterns

44 H. Yang et al.

with gap constraints. Shah et al. [22] mined contrast patterns with gap constraint
from peptide datasets, and applied patterns to build a supervised classifier for fold-
ing prediction. Deng et al. [23] built a classifier for sequence data based on contrast
sequences. Wang et al. [24] introduced the concept of density into distinguishing
sequential pattern mining problem, and designed a method to mine this kind of
contrast patterns.

To the best our knowledge, there are no previous existing methods tackling
exactly the same problem as itemset-DSP mining. The most related previous
work is that of Ji et al. [5], which finds the minimal distinguishing subsequences.
However, it is considerably different from our work since they focused on the
sequences in which each element is a single item rather than an itemset. More-
over, Ji et al. [5] didn’t consider the concise representation of patterns.

4 Design of iDSP-Miner

In this section, we present our method, iDSP-Miner, for mining itemset-DSPs
from D+ and D−. In general, the framework of iDSP-Miner includes: candidate
element generation, candidate pattern enumeration, support contrast checking
and minimality test. Technically, the key issues of iDSP-Miner are the generation
and effective representation of candidate elements.

4.1 Candidate Element Generation and Representation

Recall that an itemset-DSP is an ordered list of elements. For candidate itemset-
DSP generation, the first step is enumerating the elements that can be used to
compose a candidate itemset-DSP.

Naturally, we want to know “how to represent patterns in a concise way and
how to generate candidate elements efficiently?” To answer this question, we
first make some observations and then introduce some necessary definitions.

Observation 1. Every element of an itemset-DSP must be a subset of a sequence
element in the dataset.

By Observation 1, a brute-force way is enumerating the subsets of all sequence
elements that occur in the given data as candidate elements. Clearly this method
is time-consuming, and the number of candidate elements can be massive.

Observation 2. Some itemset-DSP may be a subsequence of some other itemset-
DSP. For example, in Table 2, P2, P3, P4 and P5 are subsequences of P1.

Definition 2 (Element Instance). Given a set of sequences D, if there are
sequences S, S′ ∈ D and integers i and j such that 1 ≤ i ≤ ||S|| and 1 ≤ j ≤
||S′||, and e = S[i] ∩ S′

[j] is non-empty, we call e an element instance in D.

Example 4. Let S =<{bread, milk} {milk, towel}> and S′ =<{coffee, cola}
{bread, coffee, book}>. Then, there are 7 element instances: {bread, milk} (S[1] ∩
S[1]), {milk, towel} (S[2] ∩ S[2]), {coffee, cola} (S′

[1] ∩ S′
[1]), {bread, coffee, book}

(S′
[2] ∩ S′

[2]), {milk} (S[1] ∩ S[2]), {bread} (S[1] ∩ S′
[2]), and {coffee} (S′

[1] ∩ S′
[2]).

Mining Itemset-Based DSP with Gap Constraint 45

Given an element instance e, the position of e in sequence S, denoted by
pos(e, S), is {i | e ⊆ S[i]}. For a sequence set D, the position list of e, denoted
by posList(e,D), is the set of positions of e associated with all sequences of D.
That is, posList(e,D) = {< S.id, pos(e, S) >| S ∈ D}, where S.id is the index
of S in D. We will ignore pos(e, S) in posList(e,D) if pos(e, S) = ∅.

Example 5. Consider Table 1 and element {book}. Then, posList({book},D+) =
{< S2, {2} >,< S3, {1, 3} >}.

iDSP-Miner starts with computing all element instances in D+ (denoted by
E+) and all element instances in D− (denoted by E−), respectively.

Theorem 1. Given sequence set D, sequence P and gap constraint γ, we have
Sup(D,P ′, γ) ≥ Sup(D,P, γ) for all P ′ =< P[k]P[k+1]...P[k+m] > such that
k ≥ 1 and k + m ≤ ||P ||.
Proof (Outline). For all S ∈ D, if P �γ S, then we have P ′ �γ S. �

Corollary 1. Let P be an itemset-DSP satisfying conditions in Definition 1.
For each element e of P , we have Sup(D+, e) ≥ α.

Proof (Outline). By Theorem 1, we have Sup(D+, e) ≥ Sup(D+, P, γ) ≥ α. �

It follows that every element of an itemset-DSP must be a subset of an
element instance in E+. Moreover, we have following pruning rule for E+:

Pruning Rule 1. Element instances e ∈ E+ satisfying Sup(D+, e) < α can be
pruned from E+.

A practical observation is that otherwise similar sequences have sets and
some of their subsets in equal positions in the result set. Thus, we need an
efficient method to represent the set-subset structures and an efficient way to
maintain those structures in our mining algorithm, at the same time avoiding
repeated computations on the sequence elements. We will introduce the concept
of equivalence element for the representation of the set-subset structures, and a
split operation to maintain these structures in our algorithm.

Definition 3 (Element Closure). Given an element e, the closure of e,
denoted by C(e), is the set of all non-empty sub-elements of e.

To concisely represent iDSPs and also to make iDSP-Miner efficient, we intro-
duce a concept that is somehow similar to “borders” [25] and “equivalence class”
[26] (which were used previously in data mining). Traditionally, both “border”
and equivalence class were used to represent collections of itemsets that share
some properties such as “always occur together in sequences of D”. We are inter-
ested in a particular kind of borders each containing one longest itemset (similar
to closed pattern) and several shorter itemsets; traditionally, such a border rep-
resents all itemsets that are subsets of the longest pattern and are supersets of
some of the shorter patterns. In this paper, we use such borders in a new and
different way, by having the shorter itemsets as excluders.

46 H. Yang et al.

{coffee, beef, cola}

{coffee, beef} {beef, cola} {coffee, cola}

{beef} {coffee} {cola}

Fig. 1. Illustration of [{{coffee}, {cola}}, {coffee, beef, cola}] (within the red dash line)

We define equivalence element to uniquely and concisely represent a set of
elements, using (1) an element c (which we will call a closed element) and (2)
a set X of elements (which we will call excluders), in the form of [X , c]; here,
[X , c] represents {e | e ⊆ c ∧ e
⊆ x for every x ∈ X}.

Observe that we have the following relationships between the closure and the
equivalence element: C(c) = [∅, c] and [X , c] = C(c) \ ⋃

x∈X
C(x).

For example, as shown in Figure 1, [{{coffee}, {cola}}, {coffee, beef, cola}] =
{{coffee, beef, cola}, {coffee, beef}, {coffee, cola}, {beef, cola}, {beef}}.

For element instances in E+, we construct their closures, denoted by ECr
+ =

{[∅, e] | e ∈ E+}. Please note that there may be some redundancy in ECr
+. For

example, [∅, e′] ⊂ [∅, e] if e and e′ are two elements in E+ satisfying e′ ⊂ e.
To handle those subsets with different support, we define the split operation

to divide an equivalence element into two disjoint parts. For equivalence element
ê = [X , e] ∈ ECr

+, if there is an element e′ ∈ E+ such that e′ ∈ ê and e′
= e, we
split ê by e′, denoted by ê|e′, into two disjoint equivalence elements [X∪̃{e′}, e]
and [{x ∈ X | x ⊂ e′}, e′], where X∪̃{e′} denote X ∪ {e′} \ ⋃

x∈X
{x | x ⊂ e′}.

Example 6. Let ê = [{{coffee}, {beef }}, {coffee, beef, cola}], and e′ = {coffee,
cola}. The results of splitting ê by e′ are: [{{coffee, cola}, {beef }}, {coffee, beef,
cola}] and [{{coffee}}, {coffee, cola}].

Obviously, [X , e] = [X∪̃{e′}, e]∪[{x ∈ X | x ⊂ e′}, e′]. We use EC+ to denote
the set of all equivalence elements after removing the redundancy.

Corollary 2. Given sequence set D, gap constraint γ, support threshold β, and
element e in sequence P , if Sup(D, e) ≤ β, then Sup(D,P, γ) ≤ β.

Proof (Outline). By Theorem 1, we have Sup(D,P, γ) ≤ Sup(D, e) ≤ β. �
It follows that an element e that satisfies Sup(D−, e) > β may occur in an

itemset-DSP. Thus, for equivalence element ê = [X , e] ∈ EC+, if there is an
element e′ ∈ E− such that Sup(D−, e′) > β, e′ ∈ ê and e′
= e, we split ê by e′

into two equivalence elements [X∪̃{e′}, e] and [{x ∈ X | x ⊂ e′}, e′]. We denote
EC the set of equivalence elements after this splitting process.

Mining Itemset-Based DSP with Gap Constraint 47

Given equivalence element ê = [X , e] ∈ EC, for any element e′ ∈ ê, we have
posList(e,D+) = posList(e′,D+). iDSP-Miner takes each equivalence element
in EC as a set of candidate elements to generate candidate patterns. This leads
generally to a significant reduction in the number of candidate elements. The
details will be discussed in Section 4.2.

Example 7. Consider Table 1. Given α = 0.6, β = 0.3, γ = [0, 2], we see that
EC = {[∅, {milk}], [∅, {lipstick}], [∅, {beef }], [∅, {cola}], [∅, {bread}], [{{bread}},
{bread, perfume}], [{{cola}, {beef }, {coffee}}, {coffee, beef, cola}], [∅, {coffee}]}.

4.2 Pattern Mining

To ensure the completeness of candidate pattern enumeration, iDSP-Miner tra-
verses the set enumeration tree [27] of equivalence elements in EC in a depth-first
manner.

Given a node N in the set enumeration tree, let P̂ be the list of equivalence
elements that occur on the path from the root node to N. Thus, P̂ is a concise
representation of {P | P[i] ∈ P̂[i] for 1 ≤ i ≤ ||P ||, ||P || = ||P̂ ||}. As the elements
represented by an equivalence element occur together, given sequence set D and
gap constraint γ, for P , P ′ ∈ P̂ (P
= P ′), we have Sup(D,P, γ) = Sup(D,P ′, γ).

We define Sup(D, P̂ , γ) = Sup(D,P, γ), where P ∈ P̂ and P[i] is the closed
element of P̂[i] for 1 ≤ i ≤ ||P ||.

Pruning Rule 2. If Sup(D+, P̂ , γ) ≥ α and Sup(D−, P̂ , γ) ≤ β, according to
the minimality condition in the problem definition (Definition 1), all descendants
of N can be pruned.

Pruning Rule 3. If Sup(D+, P̂ , γ) < α, according to Theorem 1, all descen-
dants of N can be pruned.

If Sup(D+, P̂ , γ) ≥ α and Sup(D−, P̂ , γ) > β, then, to search for super-
patterns with lower support in D−, we extend the set enumeration tree by
appending another equivalence element (from EC) as a child of N, to P̂ to
generate a new candidate.

For any pattern satisfying the support contrast condition, iDSP-Miner per-
forms the minimality test. That is, it compares the pattern with the other dis-
covered patterns to remove the non-minimal ones.

To further remove the redundant representation of itemset-DSPs, for the
patterns satisfying the support contrast and minimality conditions, iDSP-Miner
simplifies the representation of patterns as follows. Given two patterns P̂ and P̂ ′

with the same length, let P̂[k] = [X , e] and P̂ ′
[k] = [X ′, e′] (k ∈ [1, ||P̂ ||]). If e′ ∈ X

and P̂[i] = P̂ ′
[i] for 1 ≤ i ≤ ||P̂ ||, i
= k, then we say P̂ and P̂ ′ are mergeable.

iDSP-Miner merges P̂ with P̂ ′ into a new pattern P̂ ′′, such that P̂ ′′
[i] = P̂[i] and

P̂ ′′
[k] = [X ∪ X ′ \ {e′}, e] (1 ≤ k, i ≤ ||P̂ ||, i
= k).

48 H. Yang et al.

Algorithm 1. iDSP-Miner(D+,D−, α, β, γ)
Input: D+: a class of sequences, D−: another class of sequences, α: minimal support

for D+, β: maximal support for D−, γ: gap constraint
Output: Ans: the set of itemset-DSPs of D+ against D− with concise representation

1: initialize Ans ← ∅;
2: E+ ← element instances in D+; E− ← element instances in D−;
3: EC ← {[∅, e] | e ∈ E+};
4: while ∃ê = [X , e] ∈ EC, e′ ∈ E+ such that e′ ∈ ê and e′ 	= e do
5: EC ← EC \ ê ∪ (ê|e′);
6: end while
7: while ∃ê = [X , e] ∈ EC, e′ ∈ E− satisfying Sup(e′, D−) > β such that e′ ∈ ê and

e′ 	= e do
8: EC ← EC \ ê ∪ (ê|e′);
9: end while

10: for each candidate pattern P̂ searched by traversing the set enumeration tree of
EC in a depth-first manner do

11: if Sup(D+, P̂ , γ) < α then
12: prune all super-sequences of P̂ ;
13: end if
14: if Sup(D−, P̂ , γ) ≤ β then
15: prune all super-sequences of P̂ ;
16: if P̂ is minimal then
17: Ans ← Ans ∪ {P̂};
18: end if ;
19: end if
20: end for
21: for every mergeable pair of P̂ , P̂ ′ ∈ Ans do
22: merge P̂ with P̂ ′;
23: end for
24: return Ans;

Example 8. Let P̂ = <[{{coffee, cola}, {beef }}, {coffee, beef, cola}] [∅, {milk}]>,
P̂ ′ = <[{{cola}}, {coffee, cola}] [∅, {milk}]>. Then, we can get <[{{cola},
{beef }}, {coffee, beef, cola}] [∅, {milk}]> by merging P̂ with P̂ ′.

Algorithm 1 gives the pseudo-code of iDSP-Miner. Again, taking Table 1 as
an example, the results of iDSP-Miner include: <[{{bread}},{bread, perfume}]>,
<[∅,{lipstick}]>, and <[{{cola},{coffee}},{coffee, beef, cola}] [∅,{milk}]>. Com-
pared with patterns listed in Table 2, we can see that our method can represent
patterns more concisely.

5 Empirical Evaluation

In this section, we report a systematic empirical study using both real and
synthetic sequence sets to test the effectiveness and efficiency of iDSP-Miner.
All experiments were conducted on a PC computer with an Intel Core i7-3770

Mining Itemset-Based DSP with Gap Constraint 49

Table 4. Sequence set characteristics

Sequence set DB DM IR

Num. of sequences 100 100 100

Num. of items 1921 1966 1477

Avg. element size 4.30 6.67 4.77

Min. element size 1 1 1

Max. element size 49 60 54

Avg. sequence length 30.54 20.12 20.91

Min. sequence length 5 10 7

Max. sequence length 44 37 37

3.40 GHz CPU, and 8 GB main memory, running Windows 7 operating system.
All algorithms were implemented in Java and compiled using JDK 8.

5.1 Effectiveness

Arnetminer1 groups computer science researchers by different research topics and
computes the H-index score for each researcher. We apply iDSP-Miner to ana-
lyzing the differences of publication preferences among researchers in database
(DB), data mining (DM) and information retrieval (IR). We fetch top 100 schol-
ars in each topic sorted by the H-index score. For each researcher, we construct
a sequence, in which an item is the title of a conference or a journal where the
researcher published a paper, and an element is the set of items that are in the
same year. We collect the publication information of each researcher until 2013
from DBLP2. Table 4 shows the characteristics of the sets of sequences. We use
“D+vsD−” to denote the two sequence sets that we selected to analyze. For
example, “DBvsIR” implies that we find itemset-DSPs from DB against IR.

Table 5 summarizes the characteristics of discovered patterns. We can see
that with the increase of α, the number of itemset-DSPs, the average/maximum
pattern length, and the average/maximum element size are typically decreased.

Table 6 lists the discovered itemset-DSPs with concise representation in
IRvsDB when α (min support for IR) = 0.4, β (max support for DB) = 0.2,
and γ (gap constraint) = [0, 5]. We can observe that, as shown by patterns
<[{{CIKM}}, {SIGIR, CIKM}]> and <[∅, CIKM] [∅, {CIKM}] [∅, {CIKM}]>,
researchers in IR prefer publishing in SIGIR and CIKM conferences.

Figure 2 shows the number of itemset-DSPs and the number of itemset-DSPs
with concise representation. We can see that the number of discovered patterns
is reduced by our equivalence element based representation. Especially, when the
number of itemset-DSPs is large, using a small number of itemset-DSPs where
equivalence items are used, one can represent many more detailed itemset-DSPs
in a highly structured manner. Thus, the results of iDSP-Miner are easier to
manage and easier to digest for user. Notably, if the average element size is close
1 http://arnetminer.org/
2 http://dblp.uni-trier.de/

http://arnetminer.org/
http://dblp.uni-trier.de/

50 H. Yang et al.

Table 5. Characteristics of discovered patterns by iDSP-Miner (β = 0.2, γ = [0, 5])
(# iDSP(CR): the number of itemset-DSPs with concise representation, ||P ||: pattern
length, |e|: element size)

Sequence sets α # iDSP(CR) Avg. ||P || Max. ||P || Avg. |e| Max. |e|

DBvsDM

0.25 208 2.31 5 1.05 3
0.3 153 2.29 5 1.05 2
0.35 109 2.26 5 1.05 2
0.4 82 2.15 4 1.07 2
0.45 52 2.31 4 1.03 2

DBvsIR

0.25 47 1.04 2 1.30 3
0.3 30 1.03 2 1.25 2
0.35 21 1 1 1.26 2
0.4 17 1 1 1.26 2
0.45 12 1 1 1.2 2

DMvsIR

0.25 96 1.16 3 1.40 3
0.3 63 1.16 3 1.38 3
0.35 46 1.20 3 1.33 3
0.4 35 1.27 2 1.24 2
0.45 27 1.28 2 1.17 2

DMvsDB

0.25 85 1.17 4 1.39 3
0.3 54 1.17 4 1.37 3
0.35 34 1.08 3 1.38 3
0.4 25 1.09 3 1.29 2
0.45 18 1.06 2 1.24 2

IRvsDB

0.25 38 1.06 3 1.56 3
0.3 27 1.07 3 1.51 3
0.35 22 1.10 3 1.32 3
0.4 15 1.10 3 1.27 2
0.45 8 1.11 3 1.29 2

IRvsDM

0.25 54 1.42 6 1.37 3
0.3 37 1.41 5 1.35 3
0.35 31 1.57 5 1.18 3
0.4 23 1.66 4 1.13 2
0.45 18 1.86 4 1.09 2

to 1.0, then the difference in the output size between the concise representation
and listing all patterns explicitly is likely to be small, like in Figure 2 (a).

We note that iDSP-Miner is efficient. For example, the average runtime is
2.51 seconds when α = 0.4, β = 0.2 and γ = [0, 5]. We will present more analysis
on the efficiency of iDSP-Miner in the next section.

5.2 Efficiency

To the best of our knowledge, there were no previous methods tackling exactly
the same mining problem as the one studied in this paper. Therefore, we evaluate
the efficiency of only iDSP-Miner and the baseline method, which takes each
subset of an element instance as a candidate element. Please note that the mining

Mining Itemset-Based DSP with Gap Constraint 51

Table 6. item-DSPs with concise representation for IRvsDB (α = 0.4, β = 0.2, γ =
[0, 5])

<[∅, {TREC, SIGIR}]> <[{{CIKM}}, {SIGIR, CIKM}]>
<[∅, {JASIST}]> <[∅, {SIGIR, SIGIR Forum}]>

<[∅, {SIGIR, Inf. Retr.}]> <[∅, {SIGIR, Inf. Process. Manage.}]>
<[∅, WWW]]> <[∅, {ACM Trans. Inf. Syst.}] [∅, {CIKM}]>

<[{{CIKM}}, {TREC, CIKM}]> <[∅, {TREC, Inf. Process. Manage.}]>
<[∅, {RIAO}]> <[{{CIKM}}, {CIKM, SIGIR Forum}]>
<[∅, {JASIS}]> <[∅, CIKM] [∅, {CIKM}] [∅, {CIKM}]>

<[∅, {SIGIR, ECIR}]>

(a) DB vs DM (b) DB vs IR (c) DM vs IR

(d) DM vs DB (e) IR vs DB (f) IR vs DM

Fig. 2. Comparison of the number of itemset-DSPs and the number of itemset-DSPs
with concise representation

result of iDSP-Miner is the set of itemset-DSPs with concise representation, while
the mining result of the baseline method is the set of itemset-DSPs.

We generate synthetic sequence sets for efficiency test. There are four param-
eters for synthetic sequence set generation: the number of items (denoted by NI),
the number of sequences (denoted by NS), the average sequence length (denoted
by SL), and the average element size (denoted by ES).

Figure 3 shows the efficiency test of iDSP-Miner with respect to α, β and γ
when NI = 30, NS = 50, SL = 10 and ES = 4. We can see that the runtime of
both iDSP-Miner and the baseline method decrease with the increase of α and
β, while the runtime of both iDSP-Miner and the baseline method increase with
larger gap constraint. iDSP-Miner runs faster than the baseline method, since

52 H. Yang et al.

0.1 0.2 0.3 0.4 0.5

10
0

10
2

α

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(a) β=0.0, γ=[1,3]

0 0.1 0.2 0.3 0.4
0.4

0.6

0.8

1

1.2

1.4

β

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(b) α=0.4, γ=[1,3]

[0,1] [0,2] [0,3] [0,4] [0,5]
0

0.5

1

1.5

2

γ

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(c) α=0.4, β=0.0

Fig. 3. Efficiency evaluation

10 20 30 40 50

10
0

10
2

NI

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(a) NS=50, SL=10, ES=4

30 50 70 90 110
0

5

10

15

20

NS

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(b) NI=30, SL=10, ES=4

10 20 30 40 50
0

100

200

300

SL

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(c) NI=30, NS=50, ES=4

3 4 5 6 7

10
0

10
2

ES

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(d) NI=30, NS=50, SL=10

Fig. 4. Scalability evaluation

iDSP-Miner employs a concise representation for candidate patterns to avoid
repeated computation.

Figure 4 illustrates the scalability of iDSP-Miner with respect to NI, NS,
SL and ES when α = 0.2, β = 0.0 and γ = [1,3]. When NI becomes larger, more
elements can be generated. However, the number of elements/patterns satisfying
the positive support threshold condition decreases. Thus, the runtime is reduced
by Pruning Rules 1 and 3. On the other hand, more candidate patterns will
be generated by increasing NS, SL and ES. Correspondingly, the runtime of
iDSP-Miner will increase. Again, we can see that iDSP-Miner runs faster than
the baseline method for all parameter settings.

Mining Itemset-Based DSP with Gap Constraint 53

Please note that in some cases in Figure 3 and Figure 4, logarithmic scale has
been used for the runtime to better demonstrate the difference in the behavior
between iDSP-Miner and the baseline. This should be clear from the figures.

6 Conclusions

In this paper, we propose and study a new problem of mining itemset-based
distinguishing sequential patterns with a gap constraint. To mine these patterns
and to present the result sets concisely, we propose an algorithm called iDSP-
Miner. Our experiments verify the effectiveness and efficiency of iDSP-Miner.

In our work we apply the straightforward assumption that the user preference
for output is a minimum distinguishing sequential pattern. It is interesting to
explore strategies for incorporating domain constraints into itemset-DSP min-
ing, and design a tuning mechanism for positive and negative support thresholds.
Instead of the traditional gap constraint used in this paper, we are also consid-
ering the use of temporal gap constraints for sequences of timestamped events.

References

1. Dong, G., Pei, J.: Sequence Data Mining. Springer-Verlag, Berlin, Heidelberg
(2007)

2. Dong, G., Bailey, J., eds.: Contrast Data Mining: Concepts, Algorithms, and Appli-
cations. CRC Press (2012)

3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, pp. 3–14. IEEE Computer
Society, Washington, DC (1995)

4. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1–2), 31–60 (2001)

5. Ji, X., Bailey, J., Dong, G.: Mining minimal distinguishing subsequence patterns
with gap constraints. Knowl. Inf. Syst. 11(3), 259–286 (2007)

6. Yan, X., Han, J., Afshar, R.: Clospan: mining closed sequential patterns in large
databases. In: SDM (2003)

7. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proceedings of the 15th International Conference on Data Engi-
neering, pp. 106–115. IEEE Computer Society, Washington, DC (1999)

8. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with gap
requirement from sequences. ACM Trans. Knowl. Discov. Data 1(2), August 2007

9. Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., Yu, P.S.: Discovering frequent
closed partial orders from strings. IEEE Trans. on Knowl. and Data Eng. 18(11),
1467–1481 (2006)

10. Ferreira, P.G., Azevedo, P.J.: Protein sequence pattern mining with constraints.
In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD
2005. LNCS (LNAI), vol. 3721, pp. 96–107. Springer, Heidelberg (2005)

11. She, R., Chen, F., Wang, K., Ester, M., Gardy, J.L., Brinkman, F.S.L.: Frequent-
subsequence-based prediction of outer membrane proteins. In: Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 436–445. ACM, New York, NY (2003)

54 H. Yang et al.

12. Zeng, Q., Chen, Y., Han, G., Ren, J.: Sequential pattern mining with gap con-
straints for discovery of the software bug features. Journal of Computational Infor-
mation Systems 10(2), 673–680 (2014)

13. Conklin, D., Anagnostopoulou, C.: Comparative pattern analysis of cretan folk
songs. Journal of New Music Research 40(2), 119–125 (2011)

14. Rabatel, J., Bringay, S., Poncelet, P.: Contextual sequential pattern mining. In:
Proceedings of the 2010 IEEE International Conference on Data Mining Work-
shops. ICDMW 2010, pp. 981–988. IEEE Computer Society, Washington, DC
(2010)

15. Feng, J., Xie, F., Hu, X., Li, P., Cao, J., Wu, X.: Keyword extraction based on
sequential pattern mining. In: Proceedings of the Third International Conference
on Internet Multimedia Computing and Service. ICIMCS 2011, pp. 34–38. ACM,
New York, NY (2011)

16. Chang, J.H.: Mining weighted sequential patterns in a sequence database with a
time-interval weight. Know.-Based Syst. 24(1), 1–9 (2011)

17. Cécile, L.K., Chedy, R., Mehdi, K., Jian, P.: Mining statistically significant sequen-
tial patterns. In: Proceedings of the 13th IEEE International Conference on Data
Mining (ICDM2013). ICDM2013, pp. 488–497. IEEE Computer Society, Dallas,
TX (2013)

18. Antunes, C., Oliveira, A.L.: Generalization of pattern-growth methods for sequen-
tial pattern mining with gap constraints. In: Perner, P., Rosenfeld, A. (eds.) MLDM
2003. LNAI 2734, vol. 2734, pp. 239–251. Springer, Heidelberg (2003)

19. Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Chun Hsu,
M.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern
growth. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 215–224. IEEE Computer Society, Washington, DC (2001)

20. Xie, F., Wu, X., Hu, X., Gao, J., Guo, D., Fei, Y., Hua, E.: MAIL: mining sequential
patterns with wildcards. Int. J. Data Min. Bioinformatics 8(1), 1–23 (2013)

21. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with
gap requirement from sequences. ACM Transactions on Knowledge Discovery from
Data (TKDD) 1(2), 7 (2007)

22. Shah, C.C., Zhu, X., Khoshgoftaar, T.M., Beyer, J.: Contrast pattern mining with
gap constraints for peptide folding prediction. In: FLAIRS Conference, pp. 95–100
(2008)

23. Deng, K., Zäıane, O.R.: Contrasting sequence groups by emerging sequences. In:
Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808,
pp. 377–384. Springer, Heidelberg (2009)

24. Wang, X., Duan, L., Dong, G., Yu, Z., Tang, C.: Efficient mining of density-aware
distinguishing sequential patterns with gap constraints. In: Bhowmick, S.S., Dyre-
son, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA
2014, Part I. LNCS 8421, vol. 8421, pp. 372–387. Springer, Switzerland (2014)

25. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and
differences. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 43–52 (1999)

26. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and
delta-discriminative emerging patterns. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD 2007,
pp. 430–439 (2007)

27. Rymon, R.: Search through systematic set enumeration. In: Proc. of the 3rd
Int’l Conf. on Principle of Knowledge Representation and Reasoning. KR 1992,
pp. 539–550 (1992)

	Mining Itemset-Based Distinguishing Sequential Patterns with Gap Constraint
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Design of iDSP-Miner
	4.1 Candidate Element Generation and Representation
	4.2 Pattern Mining

	5 Empirical Evaluation
	5.1 Effectiveness
	5.2 Efficiency

	6 Conclusions
	References

