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Abstract. A great deal of research has been dedicated to discover over-
lapping communities, as in most real life networks such as social net-
works and biology networks, a node often involves in multiple overlapping
communities. However, most work has focused on community detection,
which takes the whole graph as input and derives all communities at one
time. Community detection can only be used in offline analysis of net-
works and it is quite costly, not flexible and can not support dynamically
evolving networks. Online community search which only finds overlap-
ping communities containing given nodes is a flexible and light-weight
solution, and also supports dynamic graphs very well. Thus, in this paper,
we study an efficient solution for overlapping community search problem.
We propose an exact algorithm whose performance is highly improved
by considering boundary node limitation and avoiding duplicate compu-
tations of multiple input nodes, and we also propose three approximate
strategies which trade off the efficiency and quality, and can be adopted
in different requirements. Comprehensive experiments are conducted and
demonstrate the efficiency and quality of the proposed algorithms.

1 Introduction

Community structure [9] is observed commonly existing in networks such as
social media and biology. Nodes in one community are more highly connected
with each other than with the rest of the network. Thus, community struc-
ture can provide rich information of the network. For example, community
in social media reflects a group of people who interact with each other more
frequently, so they may have common interest or background; community in
protein-association network reflects a group of proteins perform one common
cellular task. Therefore, finding communities is crucial for understanding the
structural and functional properties of networks.

However, communities are often not separated in most real networks, they
are often overlapped. In other words, one node often belongs to multiple commu-
nities. This phenomenon could be easily explained in social media: individuals
could belong to numerous communities related to their social activities, hobbies,
friends and so on. Thus, overlapping community detection (OCD) [13,10,8,11]
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has drawn a lot of attention in recent years. OCD dedicates to find all over-
lapping communities of the entire network, which has some shortcomings in
some applications: First, it is time consuming when a network is quite large.
Second, OCD uses a global criterion to find communities for all nodes in a net-
work, which is unappropriate when the density of the network distributes quite
unevenly. Third, OCD can not support dynamically evolving graphs, which is
a typical characteristic for most real networks especially social network. Due to
these reasons, overlapping community search (OCS) problem was proposed by
Cui et al. [7].

OCS finds overlapping communities that a specific node belongs to. Thus,
to support online query, OCS only needs to specify the query node and dis-
cover communities locally. Hence, OCS is light-weight, flexible, and can sup-
port dynamically evolving networks. In [7], an algorithm of finding overlapping
communities of one query node was proposed, but it still has a large room for
performance improvement. Besides, in some scenarios, the OCS query includes
a set of nodes. For example, suppose a piece of news published on social net-
work was read by a group of people, the service provider wants push the news
to user communities in which people will be also interested in this news; or a
product has been bought by a group of customers, and the producer wants to
investigate the consumer groups in which people will also buy the product. In
these scenarios, simply iterating the OCS algorithm for each query node could
waste many computations and affect the efficiency. To this end, in this paper we
propose an efficient approach for overlapping community search which not only
highly improves the performance of single-node overlapping community search,
but also includes an efficient framework for multiple-node query. In summary,
we make the following contributions:

– We introduce the definition of boundary node, and use boundary node lim-
itation to highly improve the performance of single-node overlapping com-
munity search algorithm.

– We propose a framework for multiple-node overlapping community search
and try our best to avoid waste computations by strongly theoretical sup-
ports.

– We also propose a series of approximate strategies which trade off the effi-
ciency and quality to suit different requirements.

– We conduct comprehensive experiments on real networks to demonstrate the
efficiency and effectiveness of our algorithms and theories.

The rest of this paper is organized as follows. In Section 2 we review the
related work. We formalize our problem in Section 3. In Section 4 we introduce
both exact and approximate algorithms. We present our experimental results in
Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Our work is related to overlapping community detection problem, and local com-
munity detection problem, which can be also called community search problem.
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Palla et al. first addressed overlapping community structure existing in most
real networks [13], they proposed a clique percolation method (CPM), in which a
community was defined as a k-clique component. Based on CPM, they developed
a tool CFinder [1] to detect communities on biology networks. Besides structure
based method like CPM, overlapping community detection could also be modeled
as link-partition problem [8,2,11]. It first converts the original graph G into link
graph L(G), in which each node is a link of L(G), and two nodes are adjacent if
the two links they represent have common node in G. Then link partition of G
can be mapped to node partition of L(G), and by performing random walk [8],
Jaccard-type similarity computation [2], or density-based clustering algorithm
SCAN [11], node clusters of L(G) are derived and then they can be converted
to overlapping node communities of G. Label propagation method has been also
widely used for OCD [10] [16], they propagate all nodes’ labels to their neighbors
for one step to make their community membership reach a consensus. Compared
to OCD, OCS is more light-weight and flexible, it only needs to explore a part
of the graph around query nodes, but not the whole graph, thus it is more
appropriate for online query.

Considering the scalability problem of community detection, local commu-
nity detection problem, also called community search, has also received a lot of
attention [6,12,14,5]. These methods start from a seed node or node set, and then
attach adjacent nodes to community as long as these nodes can increase some
community quality metrics such as local modularity [6], subgraph modularity
[12], or node outwardness [3]. In [15], the community is searched in an opposite
way: they take the entire graph as input and delete one node which violates the
condition such as minimum degree at each step, the procedure iterates until the
query nodes are no longer connected or one of the query nodes has the minimum
value of the condition. Although these community search methods are more flex-
ible than OCD, none of these methods can discover overlapping communities,
they can just find one community.

Our work is inspired by Cui et al [7], they proposed online overlapping com-
munity search problem. They defined a community as a k-clique component, and
an algorithm which finds overlapping communities a given node belongs to was
given. However, the algorithm of OCS still has a large room for performance
improvement, and also, they did not consider the solution of overlapping com-
munity search for multiple nodes. Although simply iterating the algorithm in [7]
could solve the problem, this method could produce a lot of waste computations
and it is not an effective solution. Thus, we propose an efficient approach for
OCS, considering both single query node and multiple query nodes situations.

3 Problem Definition

In this section, we define the problem of overlapping community search more
formally, including OCS for both single query node and multiple query nodes.

Intuitively, a typical member of a community is linked with many but not
necessarily all other nodes in the community, so we use k-clique as building
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Fig. 1. A toy social network graph

blocks of a community to reflect this characteristic, just as Palla et al. [13].
Given a graph, we can derive a k-clique graph in which each node represents
a k-clique, and if two cliques share k − 1 nodes, there exists an edge between
them. A community is defined as a k-clique component, which is a union of all
k-cliques sharing k − 1 nodes.

However, the definition of community above is too strict. Therefore, Cui et al.
[7] proposed a less strict definition: two k-cliques are adjacent if they share at
least α nodes, where α ≤ k − 1; and k-clique can be replaced by γ-quasi-k-clique
[4] in which k nodes have at least �γ k(k−1)

2 � edges. Now, we give the problem
definitions of OCS for single query node and multiple query nodes.

Problem 1 ((α, γ)-OCS). For a graph G, a query node v0 and a positive integer
k, the (α, γ)-OCS problem finds all γ-quasi-k-clique components containing v0
and two γ-quasi-k-clique nodes of one component are adjacent if they share at
least α nodes, where α ≤ k − 1.

Problem 2 ((α, γ)-OCS-M). For a graph G, a set of query nodes Vq and a posi-
tive integer k, the (α, γ)-OCS-M problem finds all γ-quasi-k-clique components
containing at least one node in Vq and and two γ-quasi-k-clique nodes of one
component are adjacent if they share at least α nodes, where α ≤ k − 1.

Example 1 ((α, γ)-OCS-M). For the graph in Fig. 1, given a set of query nodes
Vq = {a,b,c}, let k = 4, consider (3, 1)-OCS-M, we get three communities
{a, d, g, f}, {a, b, c, h, i}, {b, c, j, k, l}.

Apparently, both OCS problem and OCS-M problem are NP-hard, because they
can be reduced from k-clique problem.

4 Overlapping Community Search Algorithms

We first propose a naive algorithm derived from OCS to solve OCS-M, then we
propose optimized OCS and OCS-M algorithms based on a series of theorems
with strong proofs. At last, we propose a series of approximate strategies to make
the process more efficient.
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4.1 Naive Algorithm

OCS algorithm searches overlapping communities of one single input node, intu-
itively, when given a set of nodes as input, we could iterate the OCS algorithm
for each node, hence we get the naive algorithm of OCS-M as depicted in Alg. 1.
For each node vi in Vq, we first find a clique containing vi, and then find the
clique component which the clique belongs to. Notice that for a clique component
(i.e. a community), we derived the same component no matter which clique it
starts from. Thus, to avoid redundant enumeration, we only enumerate unvisited
cliques for each round of iteration.

Algorithm 1. Naive OCS-M
Input: G(V, E), Vq, α, γ, k;
Output: The overlapping communities containing ∀vi ∈ Vq

1 R ← ∅;
2 foreach vi ∈ Vq do
3 while C ← next clique(vi), C �= ∅ do
4 C ← expand(C);

// find the clique component C of C
5 R ← R ∪ C;

6 Return R;

We adopt the same depth-first-search strategy for next clique() and expand()
as in [7]. We omit the details and refer readers who are interested to [7]. Con-
sider Example 1, when the input node is a, next clique(a) may first return
Clique adfg, and then expand() on this clique gets Community {a, d, f, g}, the
next call of next clique(a) may return abch, and expand() gets acih, thus we
get Community {a, b, c, i, h}. Further call of next clique(a) will not return any
more cliques because all cliques containing a have been visited. When input
node comes to b, we get bclj, and calling expand() brings us blkj, thus we get
Community {b, c, l, k, j}. Consider input node c, no further result is derived
because all cliques containing c have been visited, and the procedure terminates.

4.2 Optimized OCS Algorithm

Though the DFS procedures of next clique() and expand() are pruned by check-
ing the edge number of subgraph induced by current visiting node set in [7], we
find a way which could further prune nodes to be checked. To optimize OCS
algorithm, we first introduce two definitions, interior node and boundary node.

Definition 1 (Interior Node). In the process of searching community Cm,
given a node i, if i and all its neighbors neighbor(i) both exist in the currently
found result set of Cm, we say i is an interior node.
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Definition 2 (Boundary Node). In the process of searching community Cm,
given a node b, if b exists in the result set of Cm, and one or more neighbors of
b do not exist in the result set, we say b is a boundary node.

Nodes which are not interior nodes or boundary nodes are called exterior nodes.
Considering the three types of node definitions, we propose a theorem which
could be used to optimize the OCS algorithm.

Theorem 1. For OCS algorithm, one community can be derived by only expand-
ing boundary nodes or exterior nodes without losing completeness.

Proof. At the beginning of searching community Cm, every node is exterior
node, thus a clique containing the query node can be found. In the procedure of
expanding the clique, suppose set R is the result set including nodes of Cm that
have already been found, node i is an interior node, if there exists an exterior
node n ∈ Cm − R, and it can be added into R from i, there must exist a clique
Cl including i and n. Because n must be connected to at least one node b in
Cl − n, thus the node b is a boundary node, and n can be added into Cm from
b, therefore the theorem holds. ��

Algorithm 2. optimized next clique(v0)
Input: v0: a query node
Output: C: next γ-quasi-k-clique

1 U ← {v0};
2 DFS (U, v0);
3 Procedure DFS(U, u)
4 if |U | = k then
5 if U is a γ-quasi-k-clique and U is unvisited then
6 return U ;

7 else
8 return;

9 if g(U) < γ k(k−1)
2

then
10 return;

11 foreach (u, v) ∈ E, v /∈ U do

12 if neighbor(v) ≥ 	γ(
k
2

) − (
k−1
2

)
 then
13 DFS(U ∪ {v}, v)

According to Thm. 1, when expanding the current clique, if candidate nodes
which are used to replace the current clique nodes are interior nodes, these
nodes can be skipped. Besides, node degree could be taken into consideration
as a pruning condition. For a γ-quasi-k-clique, the minimum degree of a node
should be �γ(

k
2

) − (
k−1
2

)�. Base on the definition of community, if one node has
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less than �γ(
k
2

)− (
k−1
2

)� edges, it is impossible to belong to a community. When
γ = 1, the node should have at least k − 1 edges. Thus, utilizing interior node
and node degree as pruning conditions, we could optimize next clique() and
expand() of OCS as depicted in Alg. 2 and Alg. 3.

As mentioned before, we use DFS strategy to traverse nodes from the query
node. Traversed nodes are iteratively added into set U , and check if a new valid
clique is found (Alg.2 line 4-8), we use node degree condition to prune nodes (line
12), neighbor(v) represents the degree of v. Besides, g(U) is another pruning
condition proposed in the original OCS Algorithm [7] (line 9), it represents the
maximal number of edges that the resulting clique has, and

g(U) = |E(U)| + (k − |U |)|U | +
(k − |U |)(k − |U | − 1)

2
(1)

where |E(U)| is the number of edges in the subgraph induced by U .

Algorithm 3. optimized expand(C)
Input: C: a γ-quasi-k-clique
Output: A: the community of C

1 A ← C;
2 Expand Clique (C);
3 return A;
4 Procedure Expand Clique(C)

5 sort C by dnc(n), n ∈ C;
6 foreach S1 ∈ C and |S1| ≥ α do
7 S2 = C − S1;
8 foreach u ∈ S1 do
9 foreach v ∈ neighbor(u) do

10 if dnc(v) > 0 and neighbor(v) ≥ 	γ(
k
2

) − (
k−1
2

)
 then
11 Cand ← Cand ∪ v;

12 if |Cand| ≤ |S2| or g(S1) < γ k(k−1)
2

then
13 Continue;

14 foreach S′
2 ∈ Cand, |S2| = |S′

2| do
15 C′ ← S1 ∪ S′

2;
16 if C′ is unvisited and C′ is a γ-quasi-k-clique then
17 A ← A ∪ S′

2;
18 Update(A, S′

2);
19 Expand Clique(C′);

After find a clique C, we use expand(C) to get the clique component of
C, which can constitute a community. We adopt a DFS traversal on the clique
graph. The key operation of the expanding procedure is to replace subset S2

of C (|S2| ≤ k − α) with the remaining subset S1’s (|S1| ≥ α) neighbors S′
2
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(line 15), where |S′
2| = |S2|, and these neighbors should satisfy 1) they are not

interior nodes, 2) degree should be not less than the lower bound (line 10). Note
that dnc(v) denotes the number of v’s neighbors which are not in the community,
dnc(v) = 0 means v is an interior node of the current explored community. Notice
that dnc is defined on the nodes which are already in the current community
result set, if node v is not in the result set, its dnc(v) is unknown, and we initialize
the value of dnc(v) with node degree at the beginning. For a new combination
C ′, we check if it is a new valid clique (line 16). If so, S′

2 is added into the result
set A (line 17) and dnc value of nodes in A need to be updated (line 18), then
we expand C ′ (line 19). Note that at the beginning of expand procedure, we
sort nodes of clique C by dnc in ascending order (line 5), then we pick nodes of
C by the order to form S1. By doing this, we could guarantee that nodes with
lower dnc value change into interior nodes earlier, and we could get more interior
nodes as early as possible.

Benefited from interior node and node degree pruning conditions, the enumer-
ations of finding and expanding clique are sharply reduced. Thus the efficiency
of OCS algorithm is highly improved, and this is shown by experiments in Sec. 5.

4.3 Optimized OCS-M Algorithm

When it comes to OCS-M problem, there is still room for efficiency improvement.
Instead of simply iterating OCS, we try to avoid repeated computations by
utilizing existing results. Note that there exists a consistency property for OCS
problem:

Property 1 (Consistency). In (α, γ)-OCS, if Cm is a community that contains
query node v0, for any other node v ∈ Cm as query node, Cm is also returned
as its community.

Consider Example 1, suppose we already finished the first round taking a as input
node and got Community {a, d, f, g}, {a, b, c, i, h}, and now consider node b as
input. Intuitively, since we already got {a, b, c, i, h}, according to Property 1,
when we take b as input node, we will still get {a, b, c, i, h}. Thus, we wonder if
we could omit some traversals related to {a, b, c, i, h}. The ideal situation is that
all nodes in {a, b, c, i, h} could be skipped, however, if we do that, we could only
get {b, l, j, k} as the result of the second round, and the exact result should be
{b, c, l, j, k}. Apparently, node c is missing. So we try to find which nodes in the
existing community can be skipped and which can not, and we get Thm. 2.

Theorem 2. For (k−1, 1)-OCS-M, given a node v which is a member of existing
community Cm, and node v’s degree d(v) ≤ k, then v cannot exist in a new
community C′

m.

Proof. Suppose v ∈ C′
m, so there exists a clique C ′

l : vn′
1 . . . n′

k−1 which belongs
to C′

m, and the degree of v in C ′
l is dC′

l
(v) = |n′

1 . . . n′
k−1| = k − 1, and we

know that v ∈ Cm, so there exists a clique Cl: vn1 . . . nk−1 which belongs to
Cm and dCl

(v) = |n1 . . . nk−1| = k − 1. Because Cl and C ′
l are not in the same
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community, they are not adjacent, and satisfy |Cl ∩ C ′
l | < k − 1, so we have

|(Cl − v) ∩ (C ′
l − v)| < k − 2. We know that dmin(v) = |(Cl − v) ∪ (C ′

l − v)| =
|Cl−v|+|C ′

l −v|−|(Cl−v)∩(C ′
l −v)|, so by computation we can derive d(v) > k,

and this conflicts with the condition d(v) ≤ k. Therefore, the theorem holds. ��
According to Thm. 2, we could easily infer that for (k − 1, 1)-OCS-M, if a node
already exists in a community and its degree is not larger than k, it can be
skipped. Consider the example above, only d(c) is larger than 4, it cannot be
skipped, other nodes a, h, i can be skipped during DFS procedure taking b as
input in the second round.

Now we discuss which nodes can be skipped for (α, γ)-OCS-M. For a γ-quasi-
k-clique, the minimum degree of a node should be dmin(v) = �γ(

k
2

) − (
k−1
2

)�,
and to keep the clique connected, dmin(v) ≥ 1. Also, if two quasi cliques are
not in the same community, they share less than α nodes. Thus, we replace the
conditions in the proof of Thm. 2 and get Thm. 3.

Theorem 3. For (α, γ)-OCS-M, given a node v which is amember of existing com-
munity Cm, and node v’s degree d(v) ≤ max{2�γ(

k
2

) − (
k−1
2

)� − (α − 1), �γ(
k
2

) −(
k−1
2

)�}, then v cannot exist in a new community C′
m.

Example 2 (Optimized-(α, γ)-OCS-M). For the graph in Fig. 1, suppose input
node set Vq={a,b,c}, let k = 5, consider (3, 0.9)-OCS-M, after the first round of
input node a, we get Community {a, b, c, h, i}, when taking input node b in the
second round, according to Thm. 3, we only need to traverse nodes with d(v) > 4,
thus h and i can be skipped during the DFS procedures of next clique() and
expand().

From Example 2 we can see that utilizing Thm. 3, the performance of OCS-
M Algorithm is remarkably improved. However, taking (k − 1, 1)-OCS-M as
example, the lower bound of community node degree is k, which is not big
enough for efficient pruning. Thus, we further discover other pruning rules. Base
on the definitions of interior and boundary node, we have Thm. 4:

Theorem 4. If one node i is an interior node of existing community Cm, it
cannot exist in a new community C′

m.

Proof. We know that node i exists in community Cm, suppose it still exists in
community C′

m, then there exists a clique C ′
l : in′

1 . . . n′
k−1 which belongs to C′

m,
because community Cm �= C′

m, thus there exists at least one node of n′
1 . . . n′

k−1

which is not in community Cm, this conflicts with that node i is an interior node
of Cm, therefore the theorem holds. ��
According to Thm. 4, after get the first community by expanding a clique, we
could find the next clique of a query node by only traversing boundary nodes
and exterior nodes. Utilizing Thm. 3 and Thm. 4, we could modify Alg. 2 by
replacing line 12-13 with Alg. 4. When traversing to a node v, we first check
if it is not an interior node (line 1), then check if it is already in an existing
community (line 2), R represents the result set of OCS-M, if the node already
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exists in a community, we use the lower bound mentioned in Thm. 3 as pruning
condition (line 3); if it does not exist in a community, we use the lower bound
of node degree mentioned in Alg. 2 (line 6).

Algorithm 4. modify next clique(v0)
1 if dnc(v) > 0 then
2 if v ∈ R then

3 if neighbor(v) > max{2	γ(
k
2

) − (
k−1
2

)
 − (α − 1), 	γ(
k
2

) − (
k−1
2

)
} then
4 DFS(U ∪ v, v)

5 else

6 if neighbor(v) ≥ 	γ(
k
2

) − (
k−1
2

)
 then
7 DFS(U ∪ v, v)

Similarly, Alg. 3 could also be modified, we could replace line 10-11 with
Alg. 4, in which line 4 and line 7 are changed into Cand ← Cand ∪ v.

After modifying Alg. 2 and Alg. 3, we get the optimized algorithm of OCS-M,
the improvement of performance will be shown through experiments in Sec. 5.

4.4 Approximate Strategies

Although the performance of the exact algorithm has been greatly improved, it
is still an NP-hard problem. Thus, we propose a series of approximate strategies
which could trade off the performance and quality of our OCS and OCS-M
algorithms. We use two conditions boundary node and node degree to adjust
the efficiency and quality of the algorithm.

Considering the search process of one community Cm, it starts from a query
node, and adjacent nodes are added into Cm as long as they satisfy that 1) they
belong to a γ-quasi-k clique, 2) the clique they belong to can be reached from
the start clique, 3) they are not in Cm. We see the community as a growing
circle with nodes scatter in it, if we traverse nodes out of the circle, but not
wander in the circle, the entire community can be found more earlier. According
to Thm. 1 and Thm. 4, interior nodes (i.e. nodes in the circle) can be omitted
without losing the completeness, if we traverse the boundary nodes selectively or
only traverse the exterior nodes, the search process could be terminated earlier
with sacrificing result quality.

Besides, we also consider node degree as another traversing condition. Intu-
itively, nodes with higher degree have more possibility to belong to one or more
cliques. Thus, if we want to prune traversed nodes during the process, we could
raise the lower bound of neighbor(v) in both next clique() and expand(), the
higher the lower bound is, the less the traversed nodes are, and the more the
quality loss is.

With boundary node and node degree as traversing conditions, we could form
three approximate strategies:
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– Strategy 1 : traverse boundary nodes with node degree restriction, and all
exterior nodes. That means we partially traverse boundary nodes, and com-
pletely traverse exterior nodes.

– Strategy 2 : traverse only exterior nodes. That means we skip all boundary
nodes. By doing this, we could guarantee that if one node belongs to the
community, it is only traversed once, no repetitive traversal is made.

– Strategy 3 : traverse only exterior nodes with node degree restriction. That
means we skip all boundary nodes, and partially traverse exterior nodes.

Note that we only apply our approximate strategies on the expand() procedure,
the next clique() procedure is still exact. Because compared to expanding seed
cliques, the computations of finding a new clique as a seed occupy only a small
portion of the whole procedure. But if we lose one seed clique, we may miss a
bunch of cliques which could be reached from the seed clique. Thus, to guarantee
the quality of approximate results, we only apply it on the expand() procedure.

Consider a k-clique communityCm, the exact algorithm will explore O(
(|Cm|

k

)
)

cliques. For Strategy 2, each time when a new node is found, a clique will be vis-
ited. Thus, it will only explore O(|Cm|) cliques. For Strategy 1, suppose the num-
ber of boundary nodes which exceed the lower bound of node degree is n, notice
that n ≤ |Cm|, when the lower bound increases, n will decrease. Thus Strategy 1
will explore O(

(
n
k

)
+ |Cm|) cliques. For Strategy 3, suppose the number of exte-

rior nodes which exceed the lower bound of node degree is n, then it will explore
O(n) cliques. In this way, for Strategy 2 and 3, we reduce the exponential com-
plexity to linear, and the efficiency is highly improved; for Strategy 1, the result
is the most accurate of the three. Theoretically, the relationship of efficiency and
quality of these three strategies is depicted in Lemma 1, we will demonstrate it by
experiments in Sec. 5.

Lemma 1. For the three approximate strategies of OCS and OCS-M, the effi-
ciency of them is Strategy 1 < Strategy 2 < Strategy 3, and the quality of
them is Strategy 1 > Strategry 2 > Strategy 3.

5 Experimental Study

In this section, we present experimental study and demonstrate the efficiency
and quality of our OCS and OCS-M algorithms.

5.1 Experiment Setup

We ran all the experiments on a PC with Intel Core2 at 2.67GHz, 4G memory
running 32-bit Windows 7. All algorithms were implemented in C++. To intu-
itively show the performance of algorithms, we use (k − 1, 1) OCS and OCS-M
models to conduct our experiments.

We use three real-world networks as our experiment datasets, and the statis-
tics are shown in Table 1. Amazon is a product co-purchasing network of Amazon
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Table 1. Real-world Networks for Experiments

Dataset # Nodes # Edges Average Degree

Amazon 334,863 925,872 5.53
DBLP 968,956 4,826,365 9.96

LiveJournal 3,997,962 34,681,189 17.4

website1. Nodes in Amazon represent products and if two products are frequently
co-purchased, there exists an edge between them. DBLP is a scientific coauthor
network extracted from a recent snapshot of the DBLP database2. Nodes in
DBLP graph represent authors, and edges represent collaboration relationship.
LiveJournal provides the LiveJournal friendship social network3, it is a free online
blogging community where users declare friendship.

5.2 Performance

We first compare the performance of exact algorithms of basic OCS, optimized
OCS, and approximate Strategy 2. For each k, we randomly select 100 nodes
(with degree not less than k−1) for queries, and compare the average answering
time. Because exact algorithms have exponential complexity, we terminate them
when the running time exeeds 60s. The results of the three algorithms on the
three networks are shown in Fig. 2. We can see that our optimized OCS performs
better than basic OCS, with about 20 times efficiency improvement, and the
approximate strategy overwhelms the two exact algorithms on performance by
about two or three orders of magnitudes respectively. Actually, the superiority is
more significant than Fig. 2 shows. Because the maximal running time of exact
algorithms is 60s in our setting. Especially for the biggest dataset LiveJournal,
with millions of nodes, tens of millions of edges, and average degree 17.3, the
executing time of approximate strategy is less than 100ms. This indicates that
the approximate strategy can support online search on large real networks.

Then, we compare the performance of exact algorithms of basic OCS-M,
optimized OCS-M, and approximate Strategy 2. We set k = 5 for Amazon,
k = 7 for DBLP, k = 9 for LiveJournal, and change the query node number |N |
of query sets. For each |N |, we test 20 randomly selected query sets, and compare
the average time cost. Also, we terminate the exact algorithms after 600s. The
results are shown in Fig. 3. We can see that optimized OCS-M performs better
than basic OCS-M, and as the query node number increases, the time cost of
optimized OCS-M increases slowly than the basic algorithm. This indicates that
our optimized algorithm avoiding duplicate computations works well on OCS-M
problem. Also, the approximate Strategy 2 won on performance.
1 http://snap.stanford.edu/data/com-Amazon.html
2 http://dblp.uni-trier.de/xml/
3 http://snap.stanford.edu/data/com-LiveJournal.html

http://snap.stanford.edu/data/com-Amazon.html
http://dblp.uni-trier.de/xml/
http://snap.stanford.edu/data/com-LiveJournal.html
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(a) Amazon (b) DBLP (c) LiveJournal

Fig. 2. Performance of basic OCS, optimized OCS, and approximate Strategy 2

(a) Amazon(k=5) (b) DBLP(k=7) (c) LiveJournal(k=9)

Fig. 3. Performance of basic OCS-M, optimized OCS-M, and approximate Strategy 2

5.3 Quality

We compare the result quality of three approximate strategies of OCS problem,
for OCS-M problem the situation is similar, thus we save the comparison for
space limitation. We set the lower bound of node degree restriction at 2(k − 1)
for Strategy 1 and Strategy 3, and randomly select 100 valid query nodes for
different k. Clearly, each community in the approximate result is smaller than
its corresponding community in the exact result. Let R′={C′

1, . . . ,C′
m} be the

approximate result, and Ci be the exact community containing C′
i, thus the

accuracy of the approximate result R′ is defined as

Accuracy(R′) =
1
m

∑

1≤i≤m

C′
i

Ci
(2)

The average and variance accuracy of the three approximate strategies are shown
in Fig. 4. It is clear that all the three strategies’ accuracy is over 60%, and as
our discussion in Lemma 1, Strategy 1 with more than 80% accuracy performs
best on quality, and Strategy 2 is better than Strategy 3.

5.4 Influence of Node Degree Restriction

Now we investigate the influence of node degree restriction on approximate Strat-
egy 1 and Strategy 3. For space limitation, we conduct experiments of OCS prob-
lem on DBLP dataset. We set k = 7, randomly select 100 valid query nodes for
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(a) Amazon (b) DBLP (c) LiveJournal

Fig. 4. Accuracy of approximate Strategy 1, 2, 3

different lower bounds of node degree , and compare the efficiency and quality
of the algorithms, the results are shown in Table 2. We can see that for both
of the two strategies, as the lower bound increases, the running time decreases
sharply and the accuracy also decreases. However, the accuracy of Strategy 1
stays above 85%, and the accuracy of Strategy 3 stays above 50% with the effi-
ciency improved 6 times. The results indicate that if the quality requirement
is more important than the efficiency requirement, we could select Strategy 1,
for the opposite situation, we could select Strategy 3, whose accuracy is also
acceptable.

Table 2. Performance and Quality of Strategy 1 and Strategy 3

Lower Bound 8 11 14 17

Time(ms) 14.8 10.2 7.5 6.9
Accuracy 0.95 0.92 0.88 0.85

Lower Bound 8 11 14 17

Time(ms) 4.8 3.1 13 0.8
Accuracy 0.80 0.77 0.69 0.58

6 Conclusion

In this paper we studied an efficient solution for overlapping community search
problem. We proposed an exact algorithm whose performance was highly improved
for both single node overlapping community search and multiple nodes overlap-
ping community search with strong theoretical supports. Besides, we proposed
three approximate strategies which could satisfy different efficiency and quality
requirements. Comprehensive experiments were conducted to evaluate the effi-
ciency of the optimized exact algorithms, and the efficiency and quality difference
of the three approximate strategies. Through the experiments we demonstrated
that our solutions were effective and efficient to discover overlapping communities
in real networks, and the approximate strategies are flexible for different require-
ments.
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