
Matthias Renz
Cyrus Shahabi
Xiaofang Zhou
Muhammad Aamir Cheema (Eds.)

 123

LN
CS

 9
04

9

20th International Conference, DASFAA 2015
Hanoi, Vietnam, April 20–23, 2015
Proceedings, Part I

Database Systems
for Advanced Applications

Lecture Notes in Computer Science 9049
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Matthias Renz · Cyrus Shahabi
Xiaofang Zhou · Muhammad Aamir Cheema (Eds.)

Database Systems
for Advanced Applications
20th International Conference, DASFAA 2015
Hanoi, Vietnam, April 20–23, 2015
Proceedings, Part I

ABC

Editors
Matthias Renz
Universität München
München
Germany

Cyrus Shahabi
University of Southern California
Los Angeles
USA

Xiaofang Zhou
University of Queensland
Brisbane
Australia

Muhammad Aamir Cheema
Monash University
Clayton
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-18119-6 ISBN 978-3-319-18120-2 (eBook)
DOI 10.1007/978-3-319-18120-2

Library of Congress Control Number: 2015936691

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

It is our great pleasure to welcome you to DASFAA 2015, the 20th edition of the Inter-
national Conference on Database Systems for Advanced Applications (DASFAA 2015),
which was held in Hanoi, Vietnam during April 20–23, 2015. Hanoi (Vietnamese:
Hà Nô. i), the capital of Vietnam, is the second largest city in Vietnam and has col-
lected all the essence, unique features, and diversification of Vietnamese culture. The
city is preserving more than 4000 historical and cultural relics, architecture and beauty
spots, in which nearly 900 relics have been nationally ranked with hundreds of pagodas,
temples, architectural works, and sceneries. Handcraft streets and traditional handcraft
villages remain prominent and attractive to tourists when visiting Hanoi, many of which
centered around the Hoan Kiem Lake in the Old Quarter, close to the conference venue.
Hanoi has recently been included on TripAdvisor’s list of best destinations in the world,
ranked 8th among the world’s top 25 destinations.

We are delighted to offer an exciting technical program, including two keynote talks
by Amr El Abbadi (University of California, Santa Barbara) and Luc Vincent (Google
Inc.); one 10-year best paper award presentation; a panel session on “Big Data Search
and Analysis;” a poster session with 18 papers; a demo session with 6 demonstra-
tions; an industry session with 3 full paper presentations; 3 tutorial sessions; and of
course a superb set of research papers. This year, we received 287 submissions, each
of which went through a rigorous review process. That is, each paper was reviewed by
at least three Program Committee members, followed by a discussion led by the meta-
reviewers, and a final meta-review prepared for each paper. At the end, DASFA 2015
accepted 63 full papers (the acceptance ratio is 22%).

Two workshops were selected by the Workshop Co-chairs to be held in conjunc-
tion with DASFAA 2015. They are the Second International Workshop on Big Data
Management and Service (BDMS 2015), and the Second International Workshop on
Semantic Computing and Personalization (SeCoP 2015). The workshop papers are in-
cluded in a separate volume of proceedings also published by Springer in its Lecture
Notes in Computer Science series.

The conference received generous financial support from the Hanoi University of
Science and Technology (HUST). We, the conference organizers, also received exten-
sive help and logistic support from the DASFAA Steering Committee and the Confer-
ence Management Toolkit Support Team at Microsoft.

We are grateful to all conference organizers, Han Su (University of Queensland) and
many other people, for their great effort in supporting conference organization. Special
thanks also go to the DASFAA 2015 Local Organizing Committee: Tuyet-Trinh Vu,
Hong-Phuong Nguyen, and Van Thu Truong, all from the Hanoi University of Science

VI Preface

and Technology, Vietnam. Finally, we would like to take this opportunity to thank all
the meta-reviewers, Program Committee members, and external reviewers for their ex-
pertise and help in evaluating papers, and all the authors who submitted their papers to
this conference.

February 2015 Quyet-Thang Huynh
Qing Li

Matthias Renz
Cyrus Shahabi
Xiaofang Zhou

Organization

General Co-chairs

Qing Li City University of Hong Kong, HKSAR,
Hong Kong

Quyet-Thang Huynh Hanoi University of Science and Technology,
Vietnam

Program Committee Co-chairs

Cyrus Shahabi University of Southern California, USA
Matthias Renz Ludwig-Maximilians-Universität München,

Germany
Xiaofang Zhou University of Queensland, Australia

Tutorial Co-chairs

Arbee L.P. Chen NCCU, Taiwan
Pierre Senellart Télécom ParisTech, France

Workshops Co-chairs

An Liu Soochow University, China
Yoshiharu Ishikawa Nagoya University, Japan

Demo Co-chairs

Haiwei Pan Harbin Engineering University, China
Binh Minh Nguyen Hanoi University of Science and Technology,

Vietnam

Panel Co-chairs

Bin Cui Peking University, China
Katsumi Tanaka Kyoto University, Japan

Poster Co-chairs

Sarana Nutanong City University of Hong Kong, China
Tieyun Qian Wuhan University, China

VIII Organization

Industrial/Practitioners Track Co-chairs

Mukesh Mohania IBM, India
Khai Tran Oracle, USA

PhD Colloquium

Khoat Than Hanoi University of Science and Technology,
Vietnam

Ge Yu Northeastern University, China
Tok Wang Ling National University of Singapore, Singapore
Duong Nguyen Vu John Von Neumann Institute - VNU-HCMUS,

Vietnam

Publication Chair

Muhammad Aamir Cheema Monash University, Australia

Publicity Co-chairs

Yunjun Gao Zhejiang University, China
Bao-Quoc Ho VNU-HCMUS, Vietnam
Jianfeng Si Institute for Infocomm Research, Singapore
Wen-Chih Peng National Chiao Tung University, Taiwan

Local Organizing Committee

Tuyet-Trinh Vu Hanoi University of Science and Technology,
Vietnam

Hong-Phuong Nguyen Hanoi University of Science and Technology,
Vietnam

Van Thu Truong Hanoi University of Science and Technology,
Vietnam

Steering Committee Liaison

Stephane Bressan National University of Singapore, Singapore

Webmaster

Viet-Trung Tran Hanoi University of Science and Technology,
Vietnam

Organization IX

Program Committees

Senior PC members

Ira Assent Aarhus University, Denmark
Lei Chen Hong Kong University of Science and Technology

(HKUST), China
Reynold Cheng University of Hong Kong, China
Gabriel Ghinita University of Massachusetts Boston, USA
Panos Kalnis King Abdullah University of Science and

Technology, Saudi Arabia
Nikos Mamoulis University of Hong Kong, China
Kyriakos Mouratidis Singapore Management University, Singapore
Mario Nascimento University of Alberta, Canada
Dimitris Papadias Hong Kong University of Science and Technology

(HKUST), China
Stavros Papadoupoulos MIT, USA
Torben Bach Pedersen Aalborg University, Denmark
Jian Pei Simon Fraser University, Canada
Thomas Seidl RWTH Aachen University, Germany
Timos Sellis RMIT University, Australia
Raymond Wong Hong Kong University of Science and Technology

(HKUST), China

PC Members
Nikolaus Augsten University of Salzburg, Austria
Spiridon Bakiras City University of New York, USA
Zhifeng Bao University of Tasmania, Australia
Srikanta Bedathur IBM Research, Delhi, India
Ladjel Bellatreche University of Poitiers, France
Boualem Benatallah University of New South Wales, Australia
Bin Cui Peking University, China
Athman Bouguettaya Commonwealth Scientific and Industrial Research

Organisation (CSIRO), Australia
Panagiotis Bouros Humboldt-Universität zu Berlin, Germany
Selcuk Candan Arizona State University, USA
Jianneng Cao A*STAR, Singapore
Marco Casanova Pontifical Catholic University of Rio de Janeiro,

Brazil
Sharma Chakravarthy University of Texas at Arlington, USA
Jae Chang Chonbuk National University, Korea
Rui Chen Hong Kong Baptist University, China
Yi Chen New Jersey Institute of Technology, USA
James Cheng The Chinese University of Hong Kong (CUHK),

China
Gao Cong Nanyang Technological University (NTU),

Singapore

X Organization

Ugur Demiryurek University of Southern California (USC), USA
Prasad Deshpande IBM Research, India
Gill Dobbie University of Auckland, New Zealand
Eduard Dragut Temple University, USA
Cristina Dutra de Aguiar Ciferri Universidade de São Paulo, Brazil
Sameh Elnikety Microsoft Research Redmond, USA
Tobias Emrich Ludwig-Maximilians-Universität München,

Germany
Johann Gamper Free University of Bozen-Bolzano, Italy
Xin Gao King Abdullah University of Science and

Technology (KAUST), Saudi Arabia
Chenjuan Guo Aarhus University, Denmark
Ralf Hartmut Güting University of Hagen, Germany
Takahiro Hara Osaka University, Japan
Haibo Hu Hong Kong Baptist University, China
Yoshiharu Ishikawa Nagoya University, Japan
Mizuho Iwaihara Waseda University, Japan
Adam Jatowt Kyoto University, Japan
Vana Kalogeraki Athens University of Economy and Business,

Greece
Panos Karras Skoltech, Russia
Norio Katayama National Institute of Informatics, Japan
Sang-Wook Kim Hanyang University, Korea
Seon Ho Kim University of Southern California (USC), USA
Hiroyuki Kitagawa University of Tsukuba, Japan
Peer Kröger Ludwig-Maximilians-Universität München,

Germany
Jae-Gil Lee Korea Advanced Institute of Science and

Technology (KAIST), Korea
Wang-Chien Lee Portland State University (PSU), USA
Sang-Goo Lee Seoul National University, Korea
Hou Leong University of Macau, China
Guoliang Li Tsinghua University, China
Hui Li Xidian University, China
Xiang Lian University of Texas–Pan American (UTPA), USA
Lipyeow Lim University of Hawaii, USA
Sebastian Link University of Auckland, New Zealand
Bin Liu NEC Laboratories, USA
Changbin Liu AT & T, USA
Eric Lo Hong Kong Polytechnic University, China
Jiaheng Lu Renmin University of China, China
Qiong Luo Hong Kong University of Science and Technology

(HKUST), China
Matteo Magnani Uppsala University, Sweden
Silviu Maniu University of Hong Kong (HKU), China
Essam Mansour Qatar Computing Research Institute, Qatar

Organization XI

Marco Mesiti University of Milan, Italy
Yasuhiko Morimoto Hiroshima University, Japan
Wilfred Ng Hong Kong University of Science and Technology

(HKUST), China
Makoto Onizuka Osaka University, Japan
Balaji Palanisamy University of Pittsburgh, USA
Stefano Paraboschi Università degli Studi di Bergamo, Italy
Sanghyun Park Yonsei University, Korea
Dhaval Patel IIT Roorkee, India
Evaggelia Pitoura University of Ioannina, Greece
Pascal Poncelet Université Montpellier 2, France
Maya Ramanath Indian Institute of Technology, New Delhi, India
Shazia Sadiq University of Queensland, Australia
Sherif Sakr University of New South Wales, Australia
Kai-Uwe Sattler Ilmenau University of Technology, Germany
Peter Scheuermann Northwestern University, USA
Markus Schneider University of Florida, USA
Matthias Schubert Ludwig-Maximilians-Universität München,

Germany
Shuo Shang China University of Petroleum, Beijing, China
Kyuseok Shim Seoul National University, Korea
Junho Shim Sookmyung Women’s University, Korea
Shaoxu Song Tsinghua University, China
Atsuhiro Takasu National Institute of Informatics, Japan
Kian-Lee Tan National University of Singapore (NUS), Singapore
Nan Tang Qatar Computing Research Institute, Qatar
Martin Theobald University of Antwerp, Belgium
Dimitri Theodoratos New Jersey Institute of Technology, USA
James Thom RMIT University, Australia
Wolf Tilo-Balke University of Hannover, Germany
Hanghang Tong City University of New York (CUNY), USA
Yongxin Tong Hong Kong University of Science and Technology

(HKUST), China
Kristian Torp Aalborg University, Denmark
Goce Trajcevski Northwestern University, USA
Vincent S. Tseng National Cheng Kung University, Taiwan
Stratis Viglas University of Edinburgh, UK
Wei Wang University of New South Wales, Australia
Huayu Wu Institute for Infocomm Research (I2R), Singapore
Yinghui Wu University of California, Santa Barbara (UCSB),

USA
Xiaokui Xiao Nanyang Technological University (NTU),

Singapore
Xike Xie Aalborg University, Denmark
Jianliang Xu Hong Kong Baptist University, China
Bin Yang Aalborg University, Denmark

XII Organization

Yin Yang Advanced Digital Sciences Center, Singapore
Man-Lung Yiu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Jeffrey Yu The Chinese University of Hong Kong (CUHK),

China
Zhenjie Zhang Advanced Digital Sciences Center (ADSC),

Singapore
Xiuzhen Zhang RMIT University, Australia
Kevin Zheng University of Queensland, Australia
Wenchao Zhou Georgetown University, USA
Bin Zhou University of Maryland, Baltimore County, USA
Roger Zimmermann National University of Singapore (NUS), Singapore
Lei Zou Beijing University, China
Andreas Züfle Ludwig-Maximilians-Universität München,

Germany

External Reviewers

Yeonchan Ahn Seoul National University, Korea
Cem Aksoy New Jersey Institute of Technology, USA
Ibrahim Alabdulmohsin King Abdullah University of Science and

Technology, Saudi Arabia
Yoshitaka Arahori Tokyo Institute of Technology, Japan
Zhuowei Bao Facebook, USA
Thomas Behr University of Hagen, Germany
Jianneng Cao A*STAR, Singapore
Brice Chardin LIAS/ISAE-ENSMA, France
Lei Chen Hong Kong Baptist University, China
Jian Dai The Chinese Academy of Sciences, China
Ananya Dass New Jersey Institute of Technology, USA
Aggeliki Dimitriou National Technical University of Athens, Greece
Zhaoan Dong Renmin University of China, China
Hai Dong RMIT University, Australia
Zoé Faget LIAS/ISAE-ENSMA, France
Qiong Fang Hong Kong University of Science and Technology

(HKUST), China
ZiQiang Feng Hong Kong Polytechnic University, China
Ming Gao East China Normal University, China
Azadeh Ghari-Neiat RMIT University, Australia
Zhian He Hong Kong Polytechnic University, China
Yuzhen Huang The Chinese University of Hong Kong, China
Stéphane Jean LIAS/ISAE-ENSMA, France
Selma Khouri LIAS/ISAE-ENSMA, France
Hanbit Lee Seoul National University, Korea
Sang-Chul Lee Carnegie Mellon University, USA

Organization XIII

Feng Li Microsoft Research, Redmond, USA
Yafei Li Hong Kong Baptist University, China
Jinfeng Li The Chinese University of Hong Kong, China
Xin Lin East China Normal University, China
Yu Liu Renmin University of China, China
Yi Lu The Chinese University of Hong Kong, China
Nguyen Minh Luan A*STAR, Singapore
Gerasimos Marketos University of Piraeus, Greece
Jun Miyazaki Tokyo Institute of Technology, Japan
Bin Mu City University of New York, USA
Johannes Niedermayer Ludwig-Maximilians-Universität München,

Germany
Konstantinos Nikolopoulos City University of New York, USA
Sungchan Park Seoul National University, Korea
Youngki Park Samsung Advanced Institute of Technology, Korea
Jianbin Qin University of New South Wales, Australia
Kai Qin RMIT University, Australia
Youhyun Shin Seoul National University, Korea
Hiroaki Shiokawa NTT Software Innovation Center, Japan
Masumi Shirakawa Osaka University, Japan
Md. Anisuzzaman Siddique Hiroshima University, Japan
Reza Soltanpoor RMIT University, Australia
Yifang Sun University of New South Wales, Australia
Erald Troja City University of New York, USA
Fabio Valdés University of Hagen, Germany
Jan Vosecky Hong Kong University of Science and Technology

(HKUST), China
Jim Jing-Yan Wang King Abdullah University of Science and

Technology, Saudi Arabia
Huanhuan Wu The Chinese University of Hong Kong, China
Xiaoying Wu Wuhan University, China
Chen Xu Technische Universität Berlin, Germany
Jianqiu Xu Nanjing University of Aeronautics and

Astronautics, China
Takeshi Yamamuro NTT Software Innovation Center, Japan
Da Yan The Chinese University of Hong Kong, China
Fan Yang The Chinese University of Hong Kong, China
Jongheum Yeon Seoul National University, Korea
Seongwook Youn University of Southern California, USA
Zhou Zhao Hong Kong University of Science and Technology

(HKUST), China
Xiaoling Zhou University of New South Wales, Australia

Contents – Part I

Data Mining I

Leveraging Homomorphisms and Bitmaps to Enable the Mining
of Embedded Patterns from Large Data Trees . 3

Xiaoying Wu and Dimitri Theodoratos

Cold-Start Expert Finding in Community Question Answering
via Graph Regularization . 21

Zhou Zhao, Furu Wei, Ming Zhou, and Wilfred Ng

Mining Itemset-based Distinguishing Sequential Patterns with Gap
Constraint . 39

Hao Yang, Lei Duan, Guozhu Dong, Jyrki Nummenmaa,
Changjie Tang, and Xiaosong Li

Mining Correlations on Massive Bursty Time Series Collections 55
Tomasz Kusmierczyk and Kjetil Nørvåg

Data Streams and Time Series

Adaptive Grid-Based k-median Clustering of Streaming Data
with Accuracy Guarantee. 75

Jianneng Cao, Yongluan Zhou, and Min Wu

Grouping Methods for Pattern Matching in Probabilistic Data Streams 92
Kento Sugiura, Yoshiharu Ishikawa, and Yuya Sasaki

Fast Similarity Search of Multi-Dimensional Time Series via Segment
Rotation. 108

Xudong Gong, Yan Xiong, Wenchao Huang, Lei Chen, Qiwei Lu,
and Yiqing Hu

Measuring the Influence from User-Generated Content to News
via Cross-dependence Topic Modeling . 125

Lei Hou, Juanzi Li, Xiao-Li Li, and Yu Su

Database Storage and Index I

SASS: A High-Performance Key-Value Store Design
for Massive Hybrid Storage . 145

Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng

An Efficient Design and Implementation of Multi-Level Cache
for Database Systems . 160

Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng

A Cost-aware Buffer Management Policy for Flash-based Storage
Devices . 175

Zhiwen Jiang, Yong Zhang, Jin Wang, and Chunxiao Xing

The Gaussian Bloom Filter . 191
Martin Werner and Mirco Schönfeld

Spatio-Temporal Data I

Detecting Hotspots from Trajectory Data in Indoor Spaces 209
Peiquan Jin, Jiang Du, Chuanglin Huang, Shouhong Wan, and Lihua Yue

On Efficient Passenger Assignment for Group Transportation 226
Jiajie Xu, Guanfeng Liu, Kai Zheng, Chengfei Liu, Haoming Guo,
and Zhiming Ding

Effective and Efficient Predictive Density Queries for Indoor
Moving Objects . 244

Miao Li, Yu Gu, and Ge Yu

Efficient Trip Planning for Maximizing User Satisfaction 260
Chenghao Zhu, Jiajie Xu, Chengfei Liu, Pengpeng Zhao,
An Liu, and Lei Zhao

Modern Computing Platform

Accelerating Search of Protein Sequence Databases
using CUDA-Enabled GPU . 279

Lin Cheng and Greg Butler

Fast Subgraph Matching on Large Graphs using Graphics Processors 299
Ha-Nguyen Tran, Jung-jae Kim, and Bingsheng He

On Longest Repeat Queries Using GPU . 316
Yun Tian and Bojian Xu

Process-driven Configuration of Federated Cloud Resources 334
Denis Weerasiri, Boualem Benatallah, and Moshe Chai Barukh

XVI Contents – Part I

Social Networks I

An Integrated Tag Recommendation Algorithm Towards Weibo
User Profiling. 353

Deqing Yang, Yanghua Xiao, Hanghang Tong, Junjun Zhang,
and Wei Wang

An Efficient Approach of Overlapping Communities Search 374
Jing Shan, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu

A Comparative Study of Team Formation in Social Networks 389
Xinyu Wang, Zhou Zhao, and Wilfred Ng

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer . . . 405
Senzhang Wang, Honghui Zhang, Jiawei Zhang, Xiaoming Zhang,
Philip S. Yu, and Zhoujun Li

Information Integration and Data Quality

Scalable Inclusion Dependency Discovery . 425
Nuhad Shaabani and Christoph Meinel

Repairing Functional Dependency Violations in Distributed Data 441
Qing Chen, Zijing Tan, Chu He, Chaofeng Sha, and Wei Wang

GB-JER: A Graph-Based Model for Joint Entity Resolution 458
Chenchen Sun, Derong Shen, Yue Kou, Tiezheng Nie, and Ge Yu

Provenance-Aware Entity Resolution: Leveraging Provenance
to Improve Quality . 474

Qing Wang, Klaus-Dieter Schewe, and Woods Wang

Information Retrieval and Summarization

A Chip off the Old Block – Extracting Typical Attributes for Entities
Based on Family Resemblance . 493

Silviu Homoceanu and Wolf-Tilo Balke

Tag-based Paper Retrieval: Minimizing User Effort with Diversity
Awareness . 510

Quoc Viet Hung Nguyen, Son Thanh Do, Thanh Tam Nguyen,
and Karl Aberer

Feedback Model for Microblog Retrieval. 529
Ziqi Wang and Ming Zhang

Contents – Part I XVII

Efficient String Similarity Search: A Cross Pivotal Based Approach. 545
Fei Bi, Lijun Chang, Wenjie Zhang, and Xuemin Lin

Security and Privacy

Authentication of Top-k Spatial Keyword Queries in Outsourced
Databases. 567

Sen Su, Han Yan, Xiang Cheng, Peng Tang, Peng Xu, and Jianliang Xu

Privacy-Preserving Top-k Spatial Keyword Queries over Outsourced
Database . 589

Sen Su, Yiping Teng, Xiang Cheng, Yulong Wang, and Guoliang Li

Bichromatic Reverse Nearest Neighbor Query without Information
Leakage. 609

Lu Wang, Xiaofeng Meng, Haibo Hu, and Jianliang Xu

Authentication of Reverse k Nearest Neighbor Query 625
Guohui Li, Changyin Luo, and Jianjun Li

Author Index . 641

XVIII Contents – Part I

Contents – Part II

Outlier and Imbalanced Data Analysis

A Synthetic Minority Oversampling Method Based on Local
Densities in Low-Dimensional Space for Imbalanced Learning 3

Zhipeng Xie, Liyang Jiang, Tengju Ye, and Xiao-Li Li

Fast and Scalable Outlier Detection with Approximate Nearest
Neighbor Ensembles . 19

Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel

Rare Category Exploration on Linear Time Complexity 37
Zhenguang Liu, Hao Huang, Qinming He, Kevin Chiew,
and Yunjun Gao

Probabilisstic and Uncertain Data

FP-CPNNQ: A Filter-Based Protocol for Continuous Probabilistic
Nearest Neighbor Query . 57

Yinuo Zhang, Anand Panangadan, and Viktor K. Prasanna

Efficient Queries Evaluation on Block Independent Disjoint
Probabilistic Databases . 74

Biao Qin

Parallel Top-k Query Processing on Uncertain Strings Using
MapReduce . 89

Hui Xu, Xiaofeng Ding, Hai Jin, and Wenbin Jiang

Tracing Errors in Probabilistic Databases Based on the Bayesian
Network . 104

Liang Duan, Kun Yue, Cheqing Jin, Wenlin Xu, and Weiyi Liu

Data Mining II

Mining Frequent Spatial-Textual Sequence Patterns 123
Krishan K. Arya, Vikram Goyal, Shamkant B. Navathe,
and Sushil Prasad

Effective and Interpretable Document Classification Using Distinctly
Labeled Dirichlet Process Mixture Models of von Mises-Fisher
Distributions. 139

Ngo Van Linh, Nguyen Kim Anh, Khoat Than, and Nguyen Nguyen Tat

MPTM: A Topic Model for Multi-Part Documents 154
Zhipeng Xie, Liyang Jiang, Tengju Ye, and Zhenying He

Retaining Rough Diamonds: Towards a Fairer Elimination
of Low-Skilled Workers . 169

Kinda El Maarry and Wolf-Tilo Balke

Spatio-temporal Data II

Skyline Trips of Multiple POIs Categories. 189
Saad Aljubayrin, Zhen He, and Rui Zhang

Keyword-Aware Dominant Route Search for Various User Preferences. 207
Yujiao Li, Weidong Yang, Wu Dan, and Zhipeng Xie

Spatial Keyword Range Search on Trajectories . 223
Yuxing Han, Liping Wang, Ying Zhang, Wenjie Zhang,
and Xuemin Lin

TOF: A Throughput Oriented Framework for Spatial Queries Processing
in Multi-core Environment . 241

Zhong-Bin Xue, Xuan Zhou, and Shan Wang

Query Processing

Identifying and Caching Hot Triples for Efficient RDF Query
Processing . 259

Wei Emma Zhang, Quan Z. Sheng, Kerry Taylor, and Yongrui Qin

History-Pattern Implementation for Large-Scale Dynamic
Multidimensional Datasets and Its Evaluations . 275

Masafumi Makino, Tatsuo Tsuji, and Ken Higuchi

Scalagon: An Efficient Skyline Algorithm for All Seasons 292
Markus Endres, Patrick Roocks, and Werner Kießling

Towards Order-Preserving SubMatrix Search and Indexing 309
Tao Jiang, Zhanhuai Li, Qun Chen, Kaiwen Li, Zhong Wang,
and Wei Pan

Database Storage and Index II

Large-Scale Multi-party Counting Set Intersection Using a Space
Efficient Global Synopsis . 329

Dimitrios Karapiperis, Dinusha Vatsalan, Vassilios S. Verykios,
and Peter Christen

XX Contents – Part II

Improved Weighted Bloom Filter and Space Lower Bound Analysis
of Algorithms for Approximated Membership Querying 346

Xiujun Wang, Yusheng Ji, Zhe Dang, Xiao Zheng, and Baohua Zhao

Tree Contraction for Compressed Suffix Arrays on Modern Processors 363
Takeshi Yamamuro, Makoto Onizuka, and Toshimori Honjo

Scalable Top-k Spatial Image Search on Road Networks 379
Pengpeng Zhao, Xiaopeng Kuang, Victor S. Sheng, Jiajie Xu,
Jian Wu, and Zhiming Cui

Social Networks II

An Efficient Method to Find the Optimal Social Trust Path
in Contextual Social Graphs. 399

Guanfeng Liu, Lei Zhao, Kai Zheng, An Liu, Jiajie Xu, Zhixu Li,
and Athman Bouguettaya

Pricing Strategies for Maximizing Viral Advertising in Social Networks 418
Bolei Zhang, Zhuzhong Qian, Wenzhong Li, and Sanglu Lu

Boosting Financial Trend Prediction with Twitter Mood Based
on Selective Hidden Markov Models. 435

Yifu Huang, Shuigeng Zhou, Kai Huang, and Jihong Guan

k-Consistent Influencers in Network Data . 452
Enliang Xu, Wynne Hsu, Mong Li Lee, and Dhaval Patel

Industrial Papers

Analyzing Electric Vehicle Energy Consumption Using Very Large
Data Sets . 471

Benjamin Krogh, Ove Andersen, and Kristian Torp

Interactive, Flexible, and Generic What-If Analyses Using In-Memory
Column Stores . 488

Stefan Klauck, Lars Butzmann, Stephan Müller, Martin Faust,
David Schwalb, Matthias Uflacker, Werner Sinzig, and Hasso Plattner

Energy Efficient Scheduling of Fine-Granularity Tasks in a Sensor
Cloud . 498

Rashmi Dalvi and Sanjay Kumar Madria

Demo

Invariant Event Tracking on Social Networks . 517
Sayan Unankard, Xue Li, and Guodong Long

Contents – Part II XXI

EmoTrend: Emotion Trends for Events . 522
Yi-Shin Chen, Carlos Argueta, and Chun-Hao Chang

A Restaurant Recommendation System by Analyzing Ratings
and Aspects in Reviews. 526

Yifan Gao, Wenzhe Yu, Pingfu Chao, Rong Zhang, Aoying Zhou,
and Xiaoyan Yang

ENRS: An Effective Recommender System Using Bayesian Model 531
Yingyuan Xiao, Pengqiang Ai, Hongya Wang, Ching-Hsien Hsu,
and Yukun Li

EPSCS: Simulating and Measuring Energy Proportionality
of Server Clusters . 536

Jiazhuang Xie, Peiquan Jin, Shouhong Wan, and Lihua Yue

MAVis: A Multiple Microblogs Analysis and Visualization Tool 541
Changping Wang, Chaokun Wang, Jingchao Hao, Hao Wang,
and Xiaojun Ye

Author Index . 547

XXII Contents – Part II

Data Mining I

Leveraging Homomorphisms and Bitmaps
to Enable the Mining of Embedded Patterns

from Large Data Trees

Xiaoying Wu1(B) and Dimitri Theodoratos2

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China
xiaoying.wu@whu.edu.cn

2 New Jersey Institute of Technology, New York, USA
dth@njit.edu

Abstract. Finding interesting tree patterns hidden in large datasets is
an important research area that has many practical applications. Along
the years, research has evolved from mining induced patterns to min-
ing embedded patterns. Embedded patterns allow for discovering useful
relationships which cannot be captured by induced patterns. Unfortu-
nately, previous contributions have focused almost exclusively on mining
patterns from a set of small trees. The problem of mining embedded pat-
terns from large data trees has been neglected. This is mainly due to the
complexity of this task related to the problem of unordered tree embed-
ding test being NP-Complete. However, mining embedded patterns from
large trees is important for many modern applications that arise natu-
rally and in particular with the explosion of big data.

In this paper, we address the problem of mining unordered frequent
embedded tree patterns from large trees. We propose a novel approach
that exploits efficient homomorphic pattern matching algorithms to com-
pute pattern support incrementally and avoids the costly enumeration of
all pattern matchings required by previous approaches. A further origi-
nality of our approach is that matching information of already computed
patterns is materialized as bitmaps. This technique not only minimizes
the memory consumption but also reduces CPU costs by translating pat-
tern evaluation to bitwise operations. An extensive experimental evalu-
ation shows that our approach not only mines embedded patterns from
real datasets up to several orders of magnitude faster than state-of-the-
art tree mining algorithms applied to large data trees but also scales
well empowering the extraction of patterns from large datasets where
previous approaches fail.

Keywords: Tree pattern mining · Bitmap view · Holistic twig-join
algorithm

The research of this author was supported by the National Natural Science Founda-
tion of China under Grant No. 61202035 and 61272110.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 3–20, 2015.
DOI: 10.1007/978-3-319-18120-2 1

4 X. Wu and D. Theodoratos

1 Introduction

Nowadays, huge amounts of data are represented, exported and exchangedbetween
and within organizations in tree-structure form, e.g., XML and JSON files, RNA
sequences, and software traces [14,17]. Finding interesting tree patterns that are
hidden in tree datasets has many practical applications. The goal is to capture the
complex relations that exist among the data entries. Because of its importance,
tree mining has been the subject of extensive research [1,2,5,7,9,11,15,16,18–22,
28,29,31]. In this context, mining a large data tree, as opposed to mining multiple
small trees, allows the discovery of large patterns. Large patterns are a natural
result of big data and are more informative than smaller patterns [32].

Tree pattern mining has evolved from mining induced patterns to mining
embedded patterns. Embedded patterns generalize induced patterns: while
induced patterns involve parent-child edges, embedded patterns involve ancestor-
descendant edges. As such, embedded patterns are able to extract relation-
ships hidden (or embedded) deeply within large trees which might be missed
by induced patterns [29,31].

The Problem. Unfortunately, previous contributions have focused almost exclu-
sively on mining patterns from a set of small trees. The problem of mining embed-
ded patterns from large data trees has been neglected. This can be explained by
the increased complexity of this task due mainly to three reasons: (a) embed-
dings generate a larger set of candidate patterns and this substantially increases
their computation time; (b) the problem of finding an unordered embedding of
a tree pattern to a data tree is NP-Complete [12]. This renders the computation
of the frequency of a candidate embedded pattern difficult; and (c) mining a
large data tree is more complex than mining a set of small data trees. Indeed,
the single large tree setting is more general than the set of small trees, since the
latter can be modelled as a single large tree rooted at a virtual unlabeled node,
whereas it is not feasible to split a single large tree into small subtrees and mine
the subtrees to extract large frequent patterns.

As our experiments showed, a state-of-the-art method for mining frequent
embedded tree patterns at a low frequency threshold crashes after 36 hours
consuming 4GB of memory for a data tree of only 10K nodes.

Contribution. In this paper, we address the problem of mining embedded
unordered frequent tree patterns from a single large tree. We provide a novel
approach which leverages homomorphic matches of the tree patterns to the data
tree and encodes the occurrences of previously generated frequent patterns as
bitmaps to efficiently compute incrementally the frequency of the generated pat-
terns. Our main contributions are as follows:
• Checking the existence of an embedding of a pattern to a data tree is NP-

complete [12], but this test can be done in polynomial time for a homomor-
phism [13]. Homomorphisms comprise embeddings. Therefore, we design a new
pattern frequency computation approach which exploits a holistic twig-join
algorithm [3] to compute the homomorphisms of a pattern to the data tree
in linear time on the input and output, and then filters out homomorphisms

Leveraging Homomorphisms and Bitmaps to Enable the Mining 5

which are not embeddings with a polynomial procedure. Our approach turns
out to be much more efficient than computing the embeddings directly as pre-
vious approaches do (Section 3).

• Our approach involves an incremental method that computes the embeddings
of a new candidate pattern based on the embeddings of already computed fre-
quent patterns. We encode the embeddings of previously computed frequent
patterns in inverted lists, a technique which records in polynomial space a
potentially exponential number of embeddings (Section 3.2).

• A further originality of our method is that the inverted sublists are materi-
alized as bitmaps. Exploiting bitmaps not only minimizes the memory con-
sumption but also reduces CPU costs by translating pattern frequency com-
putation to bitwise operations (Section 3.2).

• We extend our incremental embedding computation method with a technique
which produces the encoding (inverted lists) of the embeddings of a new
candidate pattern without first producing the embeddings of this pattern.
This technique further reduces, by a large margin, the CPU cost and memory
consumption (Section 3.4).

• We run extensive experiments to evaluate the performance and scalability
of our approach on real and synthetic datasets. The experimental results
show that our approach mines embedded patterns up to several orders of
magnitude faster than a state-of-the-art algorithm mining embedded tree
patterns when applied to a large data tree. Further, our algorithm scales
smoothly in terms of execution time and space consumption empowering the
extraction of patterns from large datasets where previous approaches crash
(Section 4).

2 Preliminaries

Trees. A rooted labeled tree, T = (V,E), is a directed acyclic connected graph
consisting of a set of nodes V , and a set of edges E ⊆ V × V , satisfying the
following properties: (1) there is a distinguished node called the root that has
no incoming edges; (2) there is a unique path from the root to any other node;
and (3) there is a labeling function lb mapping nodes to labels. A tree is called
ordered if it has a predefined left-to-right ordering among the children of each
node. Otherwise, it is unordered. The size of a tree is defined as the number of
its nodes. In this paper, unless otherwise specified, a tree is a rooted, labeled,
unordered tree.

Tree Encoding Scheme. We assume that the input data tree T is preprocessed
and the position of every node is encoded following the regional encoding scheme
[3]. According to this scheme, every node in T is associated with its positional
representation which is a (begin, end, level) triple. For every label a in T , an
inverted list La of the positional representations of the nodes with label a is
produced, ordered by their begin field. Fig. 1(a) shows a data tree and the
positional representation of its nodes. Fig. 1(b) shows the inverted lists of its

6 X. Wu and D. Theodoratos

Fig. 1. A tree and its inverted lists

Table 1. Occurrence information for a pattern on the tree T1 of Fig. 1

labels. In the following and depending on the context we use the same symbol
T to refer interchangeably to the tree T and its set of inverted lists.

Tree Morphisms. There are two types of tree patterns: patterns whose edges
represent child relationships (child edges) and patterns whose edges represent
descendant relationships (descendant edges). In the literature of tree pattern
mining, different types of morphisms are employed to determine if a tree pattern
is included in a tree.

Given a pattern P and a tree T , a homomorphism from P to T is a function
m mapping nodes of P to nodes of T , such that: (1) for any node x ∈ P , lb(x) =
lb(m(x)); and (2) for any edge (x, y) ∈ P , if (x, y) is a child edge, (m(x),m(y))
is an edge of T , while if (x, y) is a descendant edge, m(x) is an ancestor of m(y)
in T .

Previous contributions have constrained the homomorphisms considered for
tree mining in different ways. An isomorphism from a pattern P with child
edges to T is an injective function m mapping nodes of P to nodes of T , such
that: (1) for any node x in P , lb(x) = lb(m(x)); and (2) (x, y) is an edge of P iff
(m(x),m(y)) is an edge of T . If isomorphisms are considered, the mined patterns
are qualified as induced. An embedding from a pattern P with descendant edges
to T is an injective function m mapping nodes of P to nodes of T , such that:
(1) for any node x ∈ P , lb(x) = lb(m(x)); and (2) (x, y) is an edge in P iff
m(x) is an ancestor of m(y) in T . Patterns mined using embeddings are called
embedded patterns. Induced patterns are a subset of embedded patterns. In this
paper, we consider mining embedded patterns.

Support. We identify an occurrence of P on T by a tuple indexed by the nodes
of P whose values are the images of the corresponding nodes in P under a
homomorphism of P to T . The values in a tuple are the positional representations
of nodes in T . An embedded occurrence of P on T is an occurrence defined by
an embedding from P to T .

Leveraging Homomorphisms and Bitmaps to Enable the Mining 7

The set of occurrences of P under all possible homomorphisms of P to T is
a relation OC whose schema is the set of nodes of P . If X is a node in P labeled
by label a, the occurrence list of X on T is a sublist LX of La containing only
those nodes that occur in the column for X in OC. Let OCe be the subset of OC
containing all the embedded occurrences from P to T . The embedded occurrence
list of X on T , denoted Le

X , is defined similarly to LX over OCe instead of OC.
Clearly, Le

X is a sublist of LX .
We define the occurrence list set of P on T as the set OL of the occurrence

lists of the nodes of P on T ; that is, OL = {LX | X ∈ nodes(P)}. Similarly,
we define the embedded occurrence list set of P on T , OLe, as the set of the
embedded occurrence lists of the nodes of P on T .

As an example, Table 1 shows the occurrence relations and lists as well as
their embedded versions for a pattern on the tree T1 of Fig. 1(a).

The support of pattern P on T is defined as the size of the embedded occur-
rence list of the root R of P on T , Le

R. A pattern is frequent if its support is
no less than a user defined threshold minsup. We denote by Fk the set of all
frequent patterns of size k, also known as k-patterns.

Canonical Form. A unordered pattern may have multiple alternative isomor-
phic representations. In order to design efficient mining algorithms, a process is
needed for minimizing the redundant generation of the isomorphic representa-
tions of the same pattern, and for efficiently checking whether two representa-
tions are isomorphic. To this end, the concept of canonical form of a tree is used
by pattern mining algorithms as a representative of the corresponding pattern.
A detailed study of various canonical representations of trees can be found in
[6]. Our approach also employs a canonical form for tree patterns.

Problem Statement. Given a large tree T and a minimum support threshold
minsup, our goal is to mine all frequent unordered embedded patterns.

3 Proposed Approach

As existing pattern mining approaches, our approach for mining embedded tree
patterns from a large tree iterates between the candidate generation phase and
the support counting phase. In the first phase, we use a systematic way to
generate candidate patterns that are potentially frequent. In the second phase,
we develop an efficient method to compute the support of candidate patterns.

3.1 Candidate Generation

In order to systematically generate candidate patterns, we adopt the equivalence
class-based pattern generation method introduced in [29,30] outlined next.

Equivalence Class-Based Pattern Generation. Let P be a pattern of size
k-1. Each node of P is identified by its depth-first position in the tree, determined
through a depth-first traversal of P , by sequentially assigning numbers to the

8 X. Wu and D. Theodoratos

Fig. 2. An example of equivalence class expansion. The black nodes of each pattern
represent the immediate prefix to all patterns in the equivalence class.

first visit of the node. The rightmost leaf of P , denoted rml, is the node with
the highest depth-first position. The immediate prefix of P is the sub-pattern of
P obtained by deleting the rml from P . The equivalence class of P is the set of
all the patterns of size k that have P as the immediate prefix. We denote the
equivalence class of P as [P].

Each element of [P] can be represented by a pair (x, i), where x is the label
of the rml of the k-pattern and i specifies the depth-first position of the parent
of the rml in P . Any two members of [P] differ only in their rmls. We use the
notation P i

x to denote the k-pattern formed by adding a child node labeled by
x to the node with position i in P as the rightmost leaf node. We may use P i

x

and (x, i) interchangeably in the following paragraphs.
Given an equivalence class [P], the equivalence class expansion is used to

obtain equivalence classes containing the successors of the patterns in [P]. The
main idea of this expansion is to join each pattern P i

x ∈ [P] with any other
pattern in [P] including itself (self expansion) to produce the patterns of the
equivalence class [P i

x]. There can be up to two outcomes for each pair of patterns
to be joined. Formally, let P i

x and P j
y denote any two elements in [P]. The join

operation P i
x ⊗ P j

y is defined as follows:
• if j ≤ i, return the pattern Qj

y where Q = P i
x.

• if j = i, return the pattern Qk−1
y where Q = P i

x.
By joining P i

x with all elements P j
y of [P], we generate all possible k-patterns in

[P i
x]. We call patterns P i

x and P j
y the left-parent and right-parent of a join outcome,

respectively. An equivalence class expansion example is given in Fig. 2.

3.2 Support Computation

Recall that the support of a pattern P in the input data tree T is defined as the
size of the embedded occurrence list Le

R of the root R of P on T (Section 2).
A straightforward method for computing Le

X consists of first computing OCe

(the relation which stores the embedded occurrences of P under all possible

Leveraging Homomorphisms and Bitmaps to Enable the Mining 9

embeddings of P to T), and then projecting OCe on column R to get Le
R.

Unfortunately, the problem of finding an unordered embedding of P to T is
NP-Complete [12]. On the other hand, it has been shown that finding all the
homomorphic matches of P on T can be done in linear time in the sum of sizes of
the input T and the output (set of matches) [3]. Inspired by this observation, we
develop a funtion called IsFrequent, which first computes the relation OC of the
occurrences of P under all possible homomorphisms of P to T , and then filters
out non-embedded occurrences from OC to get OCe. The outline of function
IsFrequent is shown in Fig. 3. We discuss below this function in more detail.

A Holistic Twig-Join Approach for Computing Relation OC. In order
to compute OC, we use a holistic twig-join algorithm (e.g., TwigStack [3]),
the state of the art algorithm for computing all the occurrences of tree-pattern
queries on tree data. Algorithm TwigStack joins multiple inverted lists at a time
to avoid generating intermediate join results. It uses a stack for every tree pattern
node, and works in two phases. In the first phase, it computes occurrences of the
individual root-to-leaf paths of the pattern. In the second phase, it merge-joins
the path occurrences to compute the results for the pattern (Function Merge-
AllPathOccurrences in Fig. 3).

An important property of TwigStack is that whenever a data node x is
pushed into the stack of a pattern node X having child nodes Y1, . . . , Yn, the
algorithm ensures that: (a) x has a descendant node on each of the inverted lists
corresponding to the labels of nodes Y1, . . . , Yn, and (b) each of these descen-
dant nodes recursively satisfies this property. Thus, the algorithm can guarantee
worst-case performance linear to the size of the data tree inverted lists (the
input) and the size of relation OC (the output), i.e., it is optimal.

Nevertheless, the TwigStack-based method can still be expensive for com-
puting a large number of candidates, since it needs to scan fully the inverted lists
corresponding to every candidate pattern. We elaborate below on an incremental
method, which computes relation OC of a pattern by leveraging the computation
done at its parent patterns in the search space.

Computing Relation OC Incrementally. Let P be a pattern and X be a
node in P labeled by a. Using TwigStack, P is computed by iterating over the
inverted lists corresponding to every pattern node. If there is a sublist, say LX ,
of La such that P can be computed on T using LX instead of La, we say that
node X can be computed using LX on T . Since LX is non-strictly smaller than
La, the computation cost can be reduced. Based on this idea, we propose an
incremental method that uses the occurrence lists of the two parent patterns of
a given pattern to compute that pattern.

Let P be a pattern of size k−1, where k > 1, and P i
x and P j

y be two k-patterns
in the class [P]. Recall that the equivalence class expansion operation P i

x ⊗ P j
y

can have at most two outcomes. Let pattern Q denote an outcome of P i
x ⊗ P j

y .
Observing that: (i) the two parents (P i

x and P j
y) of Q share the same immediate

prefix pattern P , (ii) the immediate prefix pattern of Q is its left-parent P i
x, and

(iii) the rightmost node of Q (i.e., the node labelled by y) is the rightmost node

10 X. Wu and D. Theodoratos

Input: Pattern Q, Q’s parents P1 and P2, OLs of P1 and P2, and support threshold
minsup
Output: true if Q is a frequent pattern, false otherwise

1. Xi := the node of Pi corresponding to node X in Q, i = 1, 2;
2. if (|LR1 ∩ LR2 | < minsup) then
3. return false;
4. OL′ := {LX1 ∩ LX2 | X ∈ Q} ∪ {Lrml1} ∪ {Lrml2};
5. Compute path occurrences of Q using TwigStack on OL′;
6. OC := MergeAllPathOccurrences();
7. OCe := {occ ∈ OC | IsEmbOcc(occ) is true};
8. Compute OLe using OCe, and discard OCe afterwards;
9. if (|Le

r| < minsup) then
10. return false;
11. return true;

Function MergeAllPathOccurrences()

1. for (each branching node X of Q in postorder) do
2. Let Y1, . . . , Ym denote the list of children of node X in Q; Let P (X) denote the

subtree of P composed of the path from the root to X and the complete subtree
rooted at X.

3. Merge join occurrences of P (Yi) to produce occurrences for P (X), i = 1, . . . ,m;
4. return the set of occurrences of Q;

Fig. 3. Function IsFrequent

of its right-parent P j
y , we can easily identify a homomorphism from each parent

of Q to Q. The following proposition can be shown.

Proposition 1. Let X ′ be a node in a parent Q′ of Q and X be the image of
X ′ under a homomorphism from Q′ to Q. The occurrence list LX of X on T , is
a sublist of the occurrence list LX′ of X ′ on T .

Recall that LX is the inverted list of data tree nodes that participate in the
occurrences of Q′ to T . By Proposition 1, X can be computed using LX instead
of using the corresponding label inverted list. Further, if X is the image of nodes
X1 and X2 defined by the homomorphisms from the left and right parent of Q,
respectively, we can compute X using the intersection, LX1 ∩ LX2 , of LX1 and
LX2 which is the sublist of LX1 and LX2 comprising the nodes that appear in
both LX1 and LX2 (line 4 in Algorithm IsFrequent of Fig. 3).

Using Proposition 1, we can compute Q using only the occurrence list sets of
its parents. Thus, we only need to store with each frequent pattern its occurrence
list set. Our method is space efficient since the occurrence lists can encode in
linear space an exponential number of occurrences for the pattern [3]. In contrast,
the state-of-the-art methods for mining embedded patterns [29,31] have to store
information about all the occurrences of each given pattern in T .

Another advantage offered by the incremental method is that it allows a quick
identification of some non-frequent candidates before their occurrence relations

Leveraging Homomorphisms and Bitmaps to Enable the Mining 11

are computed: let LR1 and LR2 denote the root occurrence lists of the left and
right parents of a candidate Q, respectively. If |LR1 ∩ LR2 | is less than minsup,
then Q is infrequent and should be excluded from further processing (lines 2-3
in Algorithm IsFrequent of Fig. 3). As verified by our experimental results, sub-
stantial CPU cost can be saved using this early-detection of infrequent candidate
patterns.

Representing Occurrence Lists as Bitmaps. The occurrence list LX of a
pattern node X labeled by a on T can be represented by a bitmap on La that
has a ‘1’ bit at position i iff LX comprises the tree node at position i of La.
Then, the occurrence list set of a pattern is the set of bitmaps of the occurrence
lists of its nodes. The last column of Table 1 shows an example of bitmaps for
pattern occurrence lists. Clearly, storing the occurrence lists of multiple patterns
as bitmaps results in important space savings. Moreover, as we explain below,
the use of bitmaps also offers CPU and I/O cost savings.

The intersection of the occurrence lists of pattern nodes can be implemented
by a bitwise operation on the corresponding bitmaps: first, the bitmaps of the
operand pattern nodes are bitwise AND-ed. Then, the target occurrence list
is constructed by fetching into memory the inverted list nodes indicated by
the resulting bitmap. Exploiting bitmaps and bitwise operations results in time
saving for two reasons. First, bitwise AND-ing bitmaps incurs less CPU cost than
intersecting the corresponding occurrence lists. Second, fetching into memory the
target occurrence list nodes indicated by the resulting bitmap incurs less I/O cost
than fetching the entirety of the occurrence lists of the operand pattern nodes as
this is required for the direct application of the intersection operation. Storing
inverted lists as bitmaps is a technique initially introduced and exploited in
[25–27] for materializing tree-pattern views and for efficiently answering queries
using materialized views.

Identifying Embedded Occurrences. Let occ be an occurrence of P on T in
OC, and X be a node in P . Let also occ.X denote the value (which is a node in T)
associated with X in occ. Occurrence occ is an embedded occurrence iff for any
pair of sibling nodes X and Y of P , occ.X and occ.Y are not on the same path
in T . Recall that every node in T is associated with its positional representation
which is a (begin, end, level) triple. The regional encoding allows for efficiently
checking ancestor-descendant relationships between two nodes: node n1 is an
ancestor of node n2 iff n1.begin < n2.begin, and n2.end < n1.end.

The checking procedure IsEmbOcc for a given occurrence occ, called in line 7
of Algorithm IsFrequent, works as follows: traverse the nodes of P in postorder;
for each node X under consideration having children Y1, . . . , Ym, check if no two
occ.Yis are on the same path. If the condition is violated for some node X, we
can conclude that occ is not an embedded occurrence.

The time complexity of procedure IsEmbOcc is O(|P |×Pf), where Pf denotes
the maximum fan-out of the nodes of P . Thus, the time complexity of function
IsFrequent is O(|P | × Pf × |OC|), where |OC| is O(|T ||P |).

12 X. Wu and D. Theodoratos

Input: inverted lists L of tree T and minsup.
Output: all the frequent embedded tree patterns in T .

1. F1 := {frequent 1-patterns};
2. F2 := {classes [P]1 of frequent 2-patterns};
3. for (every [P] ∈ F2) do
4. MineEmbPatterns([P]);

Procedure MineEmbPatterns(Equivalence class [P])

1. for (each (x, i) ∈ [P]) do
2. if (P i

x is in canonical form) then
3. [P i

x] := ∅;
4. for (each (y, j) ∈ [P]) do
5. for (each expansion outcome Q of P i

x ⊗ P j
y) do

6. if (IsFrequent(Q, P i
x, P j

x , OL(P i
x), OL(P j

y))) then
7. add (y,j) to [P i

x];
8. MineEmbPatterns([P i

x])

Fig. 4. Algorithm EmbTPMBit for Mining Embedded Tree Patterns

3.3 The Tree Pattern Mining Algorithm EmbTPMBit

We present now our embedded tree pattern mining algorithm called
EmbTPMBit (Fig. 4). The first part of the algorithm computes the sets con-
taining all frequent 1-patterns F1 (i.e., nodes) and 2-patterns F2 (lines 1-2). F1

can be easily obtained by finding inverted lists of T whose size (in terms of num-
ber of nodes) is no less than minsup. The total time for this step is O(|T |). F2

is computed by the following procedure: let X//Y denote a 2-pattern formed
by two elements X and Y of F1. The support of X//Y is computed via algo-
rithm TwigStack on the inverted lists Llb(X) and Llb(Y) that are associated with
labels lb(X) and lb(Y), respectively. Notice that, since we do not need to check
whether the occurrences of a 2-pattern are embedded (they all are), TwigStack
can generate OL without explicitly generating OC for 2-patterns. The total time
for each 2-pattern candidate is O(|T |).

Then, the main loop starts by calling the procedure MineEmbPatterns for
every frequent 2-pattern (lines 3-4). MineEmbPatterns is a recursive procedure
that performs the equivalence class expansion to each element (x, i) ∈ [P]. It
attempts to expand P i

x with every element (y, j) ∈ [P] and computes the support
of each possible expansion outcome using Algorithm IsFrequent(lines 4-6). Any
new pattern that turns out to be frequent is added to the new class [P i

x] (line
7). The frequent patterns at the current level form the elements of classes for
the next level. The recursive process is repeated until no more frequent patterns
can be generated.

Before expanding a class [P], we make sure that P is in canonical form
(line 2 in MineEmbPatterns). Our approach is independent of any particular
canonical form; it can work with any systematic way of choosing a representative
from isomorphic representations of the given pattern, such as those presented

Leveraging Homomorphisms and Bitmaps to Enable the Mining 13

Input: Pattern Q, Q’s parents P1 and P2, OLs of P1 and P2, and support threshold
minsup
Output: true if Q is a frequent pattern, false otherwise

1. Same as lines 1-5 of Function IsFrequent of Fig. 3;
2. OLe := ComputeEmbOL();
3. if (|Le

r| < minsup) then
4. return false;
5. return true;

Function ComputeEmbOL()

1. for (each branching node X of Q in postorder) do
2. Let Y1, . . . , Ym denote the list of children of node X in Q;
3. for (each x ∈ LX in its preorder appearance in T) do
4. LYi|x := {y | y ∈ LYi , and x is the parent of y in T}, i = 1, . . . ,m;
5. if (¬∃(y1, . . . , ym) ∈ LY1|x × . . .×LYm|x, s.t. any two yis are not on the same

path in T) then
6. remove x from LX ;
7. return {LX | X ∈ Q};

Fig. 5. Function IsFrequent2

in [2,6,15,29]. Efficient methods for checking canonicity can also be drawn from
[2,6,15,29].

3.4 An Improvement of EmbTPMBit: Algorithm EmbTPMBit+

Recall that in order to compute pattern support, Algorithm EmbTPMBit invokes
Procedure IsFrequent, which first generates the occurrence relation OC. How-
ever, generating OC can incur high memory footprint when its size is large. Next,
we introduce an improvement to Algorithm EmbTPMBit, called EmbTPMBit+.
Algorithm EmbTPMBit+ uses Procedure IsFrequent2 shown in Fig. 5 to com-
pute pattern support without explicitly generating relation OC.

In Procedure IsFrequent2, Function MergeAllPathOccurrences used in IsFre-
quent is replaced by Function ComputeEmbOL. At each branching node X of
pattern P in postorder, ComputeEmbOL scans LX and filters out nodes that
do not participate in any embedded occurrences of a subpattern P (X) of P ,
which is composed of the path from the root to X and the complete subtree
rooted at X (Lines 3-6). In other words, any node x in LX that participates in
an embedded occurrence to P (X) is retained.

Complexity. To compute the support for pattern P on T , EmbTPMBit+ takes
time O(|P | × Pf × lPf), where l is the maximum size of the inverted lists of T ,
and Pf is the maximum fan-out of the nodes of P . Also, since EmbTPMBit+
avoids storing pattern occurrences in memory as intermediate results, it greatly
improves over EmbTPMBit both in time and memory footprint.

14 X. Wu and D. Theodoratos

In comparison, the-state-of-art embedded pattern mining algorithm sleuth
needs O(|P | × |T |2|P |) to compute the support for pattern P on T [29].

4 Experimental Evaluation

We implemented our algorithms EmbTPMBit and EmbTPMBit+ and we com-
pare them with a state-of-the-art unordered embedded tree mining algorithm
sleuth [29]. sleuth was designed to mine embedded patterns from a set of small
trees. In order to allow the comparison, we adapted sleuth to a large single
tree setting by making it to return as support of a pattern the number of root
occurrences of this pattern in the data tree.

Our implementation was coded in Java. All the experiments reported here
were performed on a workstation having an Intel Xeon CPU 3565 @3.20 GHz
processor with 8GB memory running JVM 1.7.0 in Windows 7 Professional. The
Java virtual machine memory size was set to 4GB.

Table 2. Dataset statistics

Dataset Tot. #nodes #labels Max/Avg depth #paths

Treebank 906337 191 36/8.4 521052

T10k 10000 10 21/20.7 8431

CSlogs 772188 13355 86/4.4 59691 (#trees)

Datasets. We ran experiments on three datasets with different structural prop-
erties1. Their main characteristics are summarized in Table 2.

Treebank2 is a real XML dataset derived from computation linguistics. The
dataset is deep and comprises highly recursive and irregular structures. The
original XML tree has 2.4M nodes. To allow sleuth mine some patterns within
a reasonable amount of time, we used a subtree which has 35% of the nodes of
the original tree.

T10K3 is a synthetic dataset generated by the tree generation program pro-
vided by Zaki [30]. The tree generation process by the program is based on
different parameters.

CSlogs3 is a real dataset provided by Zaki [30] and is composed of users access
trees to the CS department website at RPI. The dataset contains 59,691 trees that
cover a total of 13,355 unique web pages. The average size of each tree is 12.94.

4.1 Time Performance

Figures 6(a), 7(a), and 8(a) show the time spent by sleuth, EmbTPMBit, and
EmbTPMBit+, respectively, under different support thresholds on the Treebank,
1 We also ran experiments on another two datasets, the results of which are similar

and are omitted in the interest of space.
2 http://www.cis.upenn.edu/∼treebank
3 http://www.cs.rpi.edu/∼zaki/software/

http://www.cis.upenn.edu/~treebank
http://www.cs.rpi.edu/~zaki/software/

Leveraging Homomorphisms and Bitmaps to Enable the Mining 15

Fig. 6. Performance comparison on Treebank

CSlogs and T10K datasets. We observe that on all three datasets, EmbTPMBit+
runs orders of magnitude faster than sleuth especially for low support levels. The
rate of increase of the running time for EmbTPMBit+ is slower than that for sleuth
as the support level decreases. The reasons for the large performance gap are dif-
ferent for each dataset as we discuss below, but their common denominator is the
efficiency by which our algorithms compute the support of the generated patterns.

On the Treebank dataset, the average number of pattern occurrences is very
large. For instance, the number reaches more than 62k at support threshold 56.5k
(see Fig. 6(c)). sleuth has to keep track of all possible occurrences of a candidate
to a data tree, and to perform expensive join operations over these occurrences.
On the other hand, EmbTPMBit+ incrementally computes candidate pattern
occurrence lists using an efficient stack-based algorithm. As shown in Fig. 6(a),
it is not possible for sleuth to find all frequent patterns at support threshold 56.5k
or lower within a reasonable amount of time, whereas EmbTPMBit+ spends only
68 seconds at support threshold 35k.

On the real dataset CSlogs, the number of candidates that can be enumer-
ated is substantially larger than the Treebank and T10K datasets. For example,
the number of enumerated candidates is more than 16k at support threshold 0.13
percent on CSlogs (see Fig. 7(c)). This is because CSlogs contains a large number
of distinct node labels (there are 13355 labels for 772188 nodes) allowing a very
large number of candidate patterns to be constructed. As the number of candi-
dates increases, sleuth suffers and has to compute a large number of occurrences.

For T10K, there is a large difference in the number of candidates evaluated
by sleuth and EmbTPMBit+ (see Fig. 8(c)). This is because, using bitmaps of
already computed patterns, EmbTPMBit+ is able to detect many infrequent

16 X. Wu and D. Theodoratos

Fig. 7. Performance comparison on CSlogs

candidates before evaluating them on the data. This way, substantial CPU cost
can be saved. In contrast, sleuth has to evaluate each candidate on the data.

Finally, we find that EmbTPMBit+ and EmbTPMBit have similar time per-
formance on CSlogs and T10K, while on Treebank, EmbTPMBit+ outperforms
EmbTPMBit by a factor of up to 8. The reason is that, as aforementioned, the
average number of pattern occurrences on Treebank is very large (this number on
the other two datasets is relatively small). Unlike EmbTPMBit+, EmbTPMBit
has to explicitly generate all these occurrences to compute the pattern support.

4.2 Memory Usage

Figures 6(b), 7(b), and 8(b) show the memory consumption of sleuth, Emb-
TPMBit, and EmbTPMBit+, respectively, under different support thresholds
for the Treebank, CSlogs and T10K datasets. Overall, EmbTPMBit+ has the
best memory performance, consuming substantially less memory than sleuth in
almost all the test cases. This is mainly because sleuth needs to store in memory
all the pattern occurrences for candidates under consideration, whereas both
EmbTPMBit, and EmbTPMBit+ avoid storing pattern occurrences and store
only bitmaps of occurrence lists which are usually of insignificant size. EmbTPM-
Bit+ improves over EmbTPMBit by avoiding explicitly generating and storing
occurrences of candidates as intermediate results (which are discarded anyway
once bitmaps of occurrence lists are obtained).

Leveraging Homomorphisms and Bitmaps to Enable the Mining 17

Fig. 8. Performance comparison on T10k

Fig. 9. Scalability comparison on Treebank with increasing size (minsup = 5.5%)

4.3 Scalability Comparison on Treebank

In order to run scalability experiments, we created six fragments of our Treebank
dataset of increasing size.

Fig. 9 shows how the three algorithms scale when the number of nodes
increases from 140K to 906K, at support threshold 5.5%.

The results show that EmbTPMBit+ always has the best time performance.
As the input data size increases, we find a linear increase in the running time
of EmbTPMBit+. The running time of sleuth grows much more sharply. Emb-
TPMBit+ is up to 6 times faster than EmbTPMBit, which in turn outperforms
sleuth by at least three orders of magnitude.

Not surprisingly, the memory consumption of all the three algorithms increases
on trees with increasing number of nodes. EmbTPMBit+ always has the smallest

18 X. Wu and D. Theodoratos

memory footprint. The growth of its memory consumption is slower than that of
EmbTPMBit and sleuth. EmbTPMBit consumes more memory than sleuth. This
is because on Treebank, the former needs to store temporarily a large set of occur-
rences for each candidate, whose size is a bit larger than the corresponding embed-
ded occurrences stored by sleuth.

5 Related Work

The problem of mining tree patterns has been studied extensively in the past
decade. Many frequent tree pattern mining algorithms [1,2,5,7,9,11,15,16,18–
23,28,29,31,33] have been proposed in the literature. A majority of these works
have focused almost exclusively on mining frequent isomorphic patterns from a
set of small trees. We give a brief overview to algorithms that mine unordered
embedded patterns [8,20,29].

TreeF inder [20] is the first algorithm for mining unordered embedded pat-
terns. It uses Inductive Logic Programming and represents the trees using a
relational encoding which captures all ancestor-descendant relationships. From
these relational encodings, maximal frequent itemsets are computed. The fre-
quent itemsets are used to cluster the input trees. Nevertheless, TreeF inder
tends to miss many frequent patterns and is computationally expensive. Like
TreeF inder, WTIMiner [8] transfers the frequent tree pattern mining to item-
set mining. It first uses FP -growth [10] to find all the frequent itemsets, and
then for each itemset found, it scans the database to count all the correspond-
ing tree patterns. Although WTIMiner is complete, it is inefficient since the
structural information is lost while mining for frequent itemsets. Further, the
overhead for processing false positives may potentially reduce the performance.

sleuth [29] is developed on top of TreeMiner [31]. It associates with every
pattern a scope-list to store the list of all its occurrences. These scope-lists are
maintained to avoid repeated invocation of tree inclusion checking. The equiv-
alence class pattern expansion method is used for generating candidates. To
compute the support of a candidate a quadratic join operation is defined over
the scope-lists of its two parent patterns. As illustrated in [4], the size of a pat-
tern scope-list may be much larger than the size of a data tree. The redundant
information stored in scope-lists greatly increases the memory usage of sleuth,
especially when the pattern has a large number of occurrences. Further, the
expensive join operation over large scope-lists significantly affects the runtime
performance of sleuth. Our approach relies on an incremental stack-based app-
roach that exploits bitmaps to efficiently compute the support.

6 Conclusion

In this paper, we have studied the important problem of discovering all embed-
ded unordered frequent tree patterns from a single large tree. To address this
pattern mining problem, we have designed a novel approach for efficiently com-
puting the support of a candidate pattern which combines different techniques

Leveraging Homomorphisms and Bitmaps to Enable the Mining 19

from tree databases: (a) answering and optimizing tree-pattern queries using
materialized views, (b) materializing tree-pattern queries as bitmaps of inverted
lists, and (c) employing holistic twig-join algorithms for efficiently finding all
the homomorphisms of a tree pattern to a data tree. Our extensive experimental
results show that compared to a state-of-the-art tree mining algorithm, our algo-
rithms perform better by a wide margin in terms of time, space and scalability
and indeed empower the mining of embedded tree patterns from large data trees.

We are currently working on extending our techniques in order to mine gen-
eralized graph patterns [24] though unconstrained homomorphisms from a large
data tree.

References

1. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: SDM (2002)

2. Asai, T., Arimura, H., Uno, T., Nakano, S.: Discovering frequent substructures in
large unordered trees. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003.
LNCS (LNAI), vol. 2843, pp. 47–61. Springer, Heidelberg (2003)

3. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: SIGMOD (2002)

4. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview.
Fundam. Inform. 66(1–2) (2005)

5. Chi, Y., Xia, Y., Yang, Y., Muntz, R.R.: Mining closed and maximal frequent
subtrees from databases of labeled rooted trees. IEEE Trans. Knowl. Data Eng.
17(2) (2005)

6. Chi, Y., Yang, Y., Muntz, R.R.: Canonical forms for labelled trees and their appli-
cations in frequent subtree mining. Knowl. Inf. Syst. 8(2) (2005)

7. Dries, A., Nijssen, S.: Mining patterns in networks using homomorphism. In: SDM
(2012)

8. Feng, Z., Hsu, W., Lee, M.-L.: Efficient pattern discovery for semistructured data.
In: ICTAI (2005)

9. Goethals, B., Hoekx, E., den Bussche, J.V.: Mining tree queries in a graph. In:
KDD (2005)

10. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: SIGMOD Conference (2000)

11. Hido, S., Kawano, H.: Amiot: Induced ordered tree mining in tree-structured
databases. In: ICDM (2005)

12. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J. Com-
put. 24(2), 340–356 (1995)

13. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of xpath. J.
ACM 51(1), 2–45 (2004)

14. Mozafari, B., Zeng, K., D’Antoni, L., Zaniolo, C.: High-performance complex event
processing over hierarchical data. ACM Trans. Database Syst. 38(4), 21 (2013)

15. Nijssen, S., Kok, J.N.: Efficient discovery of frequent unordered trees (2003)
16. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a dif-

ference. In: KDD (2004)
17. Ogden, P., Thomas, D.B., Pietzuch, P.: Scalable XML query processing using par-

allel pushdown transducers. PVLDB 6(14), 1738–1749 (2013)

20 X. Wu and D. Theodoratos

18. Tan, H., Hadzic, F., Dillon, T.S., Chang, E., Feng, L.: Tree model guided candidate
generation for mining frequent subtrees from xml documents. TKDD 2(2) (2008)

19. Tatikonda, S., Parthasarathy, S., Kurç, T.M.: Trips and tides: new algorithms for
tree mining. In: CIKM (2006)

20. Termier, A., Rousset, M.-C., Sebag, M.: Treefinder: a first step towards xml data
mining. In ICDM (2002)

21. Termier, A., Rousset, M.-C., Sebag, M., Ohara, K., Washio, T., Motoda, H.:
Dryadeparent, an efficient and robust closed attribute tree mining algorithm. IEEE
Trans. Knowl. Data Eng. 20(3) (2008)

22. Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., Shi, B.-L.: Efficient pattern-
growth methods for frequent tree pattern mining. In: Dai, H., Srikant, R., Zhang, C.
(eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 441–451. Springer, Heidelberg
(2004)

23. Wang, K., Liu, H.: Discovering structural association of semistructured data. IEEE
Trans. Knowl. Data Eng. 12(3) (2000)

24. Wu, X., Souldatos, S., Theodoratos, D., Dalamagas, T., Vassiliou, Y., Sellis, T.K.:
Processing and evaluating partial tree pattern queries on xml data. IEEE Trans.
Knowl. Data Eng. 24(12), 2244–2259 (2012)

25. Wu, X., Theodoratos, D., Kementsietsidis, A.: Configuring bitmap materialized
views for optimizing xml queries. World Wide Web, pp. 1–26 (2014)

26. Wu, X., Theodoratos, D., Wang, W.H.: Answering XML queries using materialized
views revisited. In: CIKM (2009)

27. Wu, X., Theodoratos, D., Wang, W.H., Sellis, T.: Optimizing XML queries:
Bitmapped materialized views vs. indexes. Inf. Syst. 38(6), 863–884 (2013)

28. Xiao, Y., Yao, J.-F., Li, Z., Dunham, M.H.: Efficient data mining for maximal
frequent subtrees. In: ICDM (2003)

29. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundam. Inform.
66(1–2) (2005)

30. Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applica-
tions. IEEE Trans. Knowl. Data Eng. 17(8) (2005)

31. Zaki, M.J., Hsiao. C.-J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Trans. Knowl. Data Eng. 17(4) (2005)

32. Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.S.: Mining top-k large structural
patterns in a massive network. PVLDB 4(11) (2011)

33. Zou, L., Lu, Y.S., Zhang, H., Hu, R.: PrefixTreeESpan: a pattern growth algorithm
for mining embedded subtrees. In: WISE (2006)

Cold-Start Expert Finding in Community
Question Answering via Graph Regularization

Zhou Zhao1(B), Furu Wei2, Ming Zhou2, and Wilfred Ng1

1 The Hong Kong University of Science and Technology, Hong Kong, China
{zhaozhou,wilfred}@cse.ust.hk

2 Microsoft Research, Beijing, China
{fuwei,mingzhou}@microsoft.com

Abstract. Expert finding for question answering is a challenging prob-
lem in Community-based Question Answering (CQA) systems such as
Quora. The success of expert finding is important to many real applica-
tions such as question routing and identification of best answers. Cur-
rently, many approaches of expert findings rely heavily on the past
question-answering activities of the users in order to build user mod-
els. However, the past question-answering activities of most users in
real CQA systems are rather limited. We call the users who have only
answered a small number of questions the cold-start users. Using the
existing approaches, we find that it is difficult to address the cold-start
issue in finding the experts.

In this paper, we formulate a new problem of cold-start expert finding
in CQA systems. We first utilize the “following relations” between the
users and topical interests to build the user-to-user graph in CQA sys-
tems. Next, we propose the Graph Regularized Latent Model (GRLM)
to infer the expertise of users based on both past question-answering
activities and an inferred user-to-user graph. We then devise an itera-
tive variational method for inferring the GRLM model. We evaluate our
method on a well-known question-answering system called Quora. Our
empirical study shows encouraging results of the proposed algorithm in
comparison to the state-of-the-art expert finding algorithms.

1 Introduction

Expert finding is an essential problem in CQA systems [4,25], which arises
in many applications such as question routing [28] and identification of best
answers [2]. The existing approaches [2,27,28,34,39] build a user model from
their past question-answering activities, and then use the model to find the
right experts for answering the questions. However, the past question-answering
activities of most users in real CQA systems are rather limited. We call the
users who have only answered a small number of questions the cold-start users.
The existing approaches work well if the users have sufficient question-answering
activities, while they may not provide satisfactory results for the cold-start users.

Z. Zhao—The work was done when the first author was visiting Microsoft Research,
Beijing, China.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 21–38, 2015.
DOI: 10.1007/978-3-319-18120-2 2

22 Z. Zhao et al.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of Answered Questions

N
um

be
r

of
 U

se
rs

(a) Cold-Start Property (b) Performance

Fig. 1. Cold-Start Users in Quora

In fact, a vast majority of existing users in real CQA systems, including
many that have joined the system for a relatively long period of time, do not
have sufficient activities. To illustrate this fact, we summarize the question-
answering activities of the users in Quora in Figure 1(a). From the figure, we
can see that the participation of most users in question-answering activities falls
into the long tail part of the power-law curve. This indicates that the majority
of the users only answered very few questions. Thus, it is difficult to build an
effective user model for cold-start users by using existing methods. Let us call
the problem of expert finding with the presence of many cold-start users in a
CQA system the cold-start expert finding problem. Interestingly, we observe that
CQA systems enjoy great benefits contributed by the cold-start users. To show
this point, we summarize the performance of the users in Quora in Figure 1(b).
Consider the thumbs-up/downs voted by the community as quality score for
users on answering questions [28]. We can see that a significant number of cold-
start users obtain high quality scores.

To address the cold-start expert finding problem, we incorporate the user-
to-user graph in CQA systems to build a regularized user model. Currently,
CQA systems such as Quora define thousands of topical interests, which are
represented by keywords such as “startups” and “computer programming”. The
users may follow these keywords when they have the topical interests. If two users
follow some common topical interests, we consider that there is a user-to-user
relation (i.e. an edge) between them. The works [13,17] show that a user-to-user
relation between two users provides a strong evidence for them to have common
interests or preferences. Thus, we attempt to integrate both user-to-user graph
and question-answering activities into a seamless framework that tackles the
cold-start expert finding problem.

The main contributions of our work are summarized as follows:

– We illustrate that the question-answering activities of most users in real
CQA systems are rather few and formally propose a new problem of cold-
start expert finding in CQA systems.

– We explore the “following relations” between users and topical interests to
build the user-to-user graph. We then propose the graph regularized latent

Cold-Start Expert Finding in CQA via Graph Regularization 23

Fig. 2. An Illustration of User’s Topical Interests

model by incorporating with the user-to-user graph and devise a variational
method for inferring the model.

– We conduct extensive experiments on our proposed method. We demonstrate
that, by incorporating with user-to-user graph, our method significantly out-
performs other state-of-the-art expert finding techniques.

There exists some work addressing the cold-start problem in user-item recom-
mendation systems [13,14,20,21,29,36]. However, most of them are not applica-
ble in addressing the problem of cold-start expert finding in CQA systems. Even
though finding an expert for a question seems to be analogous to recommend-
ing an item to a user, there are some subtle differences between them. First, the
existing work incorporates with the social relations of users to improve the perfor-
mance of recommending an item to a user. In the context of our work, there is no
relation between the questions and thus the existing cold-start recommendation
techniques cannot be applied to our problem. Second, the goal of expert finding is
fundamental different from that of recommendation. The existing recommenda-
tion techniques focus on recommending existing items to the users while expert
finding aims to select the right users to answer some new questions.

The rest of the paper is organized as follows. Section 2 introduces some nota-
tions and formulates the problem. We then propose a graph regularized latent
model for cold-start expert finding in Section 3. We report the experimental
results in Section 4. Section 5 surveys the related work. We conclude the paper
in Section 6.

2 Background

In this section, we first introduce some notation of community-based question
answering used in our subsequent discussion. The notation includes a data matrix
of questions Q, a data matrix of users U, a question-answering activity set Ω
and an observed quality score matrix S. Then, we formulate the problem of
cold-start expert finding. The summary of the notation is given in Table 1.

We represent the feature of questions by bag of words, which has been shown
to be successful in many question answering applications [5,35,37]. Therefore,
the feature of each question qi is denoted by d-dimensional word vector.

24 Z. Zhao et al.

Table 1. Summary of Notation

Group Notation Notation Description

Data

Q data matrix of questions
U a data matrix of users
S an observed quality score matrix
F a set of topical interests
W a similarity matrix of users
Ω a set of existing question-answering activities
IΩ an indicator matrix for existing activities
Θ a topic matrix of questions
Z a topic assignment matrix of words

Model

Mult(·) a multinomial distribution
Dir(·) a dirichlet distribution

Normδ(·) a normal distribution with standard deviation δ
λ a graph regularization term
K a dimension of latent space

We then denote the collection of questions by Q = [q1, . . . ,qm] ∈ Rd×m where
m is the total number of the questions.

We denote by U = [u1, . . . ,un] ∈ Rd×n the collection of users in CQA
systems, where n is the total number of the users. The parameter uj represents
a d-dimensional vector for modeling the j-th user. The terms in uj indicate the
strengths and weakness of the j-th user on the latent space of the questions.

We denote by score matrix S ∈ Rm×n the quality of all users on answering
the questions. The thumb-ups/downs value in S is voted by the users in a CQA
community. The voting result indicates the community’s long term view for the
quality of users on answering the questions. Let Ω be the set of existing question-
answering activities of users. The quality score Sij exists in matrix S if activity
(i, j) ∈ Ω.

We observe that many users in CQA systems follow some topical interests.
Figure 2 shows the set of topical interests followed by a Quora user. In this exam-
ple, the user Adam (one of Quora co-founders) follows four topical interests, which
are “startups”, “google”, “computer programming” and “major Internet compa-
nies”. Let Fi be the set of topical interests followed by the i-th user. Consider the
topical interests of the i-th user and the j-th user, Fi and Fj . We use the Jac-
card Distance to model the similarity between them, which is denoted by Wij =
|Fi

⋂
Fj |

|Fi

⋃
Fj | . The Fi

⋂
Fj is the set of two users’ common following topical interests

and Fi

⋃
Fj is the set of two users’ total following topical interests. We note that

the similarity value in matrix W is within the range [0, 1]. We therefore model the
user-to-user graph based on the similarity between users by W ∈ Rn×n.

Using the notation given in Table 1, we now define the problem of cold-start
expert finding with respect to a CQA system as follows.

Consider a data matrix of questions Q, a quality score matrix S and a sim-
ilarity matrix of users W. Given a new question q, we aim to choose the users
with high predicted quality score for answering the question.

Cold-Start Expert Finding in CQA via Graph Regularization 25

3 Cold-Start Expert Finding Algorithm

In this section, we present our algorithm for tackling the problem of cold-start
expert finding in CQA systems. We first introduce the basic latent model, which
has been widely used for addressing the problem of expert finding in [27,28,34,
39]. Next, we propose our graph regularized latent model (GRLM). The graphical
representation of GRLM is illustrated in Figure 3. We then devise a variational
method for solving the optimization problem in GRLM. Finally, we present the
expert finding algorithm based on GRLM.

3.1 Basic Latent Model

The basic latent model tackles the problem of expert finding based on the past
question-answering activities and quality score matrix. The latent topic model
is first utilized to extract the feature of the questions. Then the user model is
inferred from question features and a quality score matrix. The main procedure
of basic latent model can be summarized as follows:

Question Feature Extraction. The topic modelling technique [23] has been
widely used for question feature extraction in many recent work concerning the
problem of expert finding [27,28,34,39]. Topic models provide an interpretable
low-dimensional representation of the questions. In this work, we employ the
famous latent dirichlet allocation model (LDA) [1] to extract the feature of the
questions, which has been shown to be successful in [28,34,39]. The graphical
representation of the LDA model is illustrated in the left box in Figure 3. Given
K topics, the generative process of LDA is given as follows:

For each question qi:

– Draw topic proportions θi ∼ Dir(α)
• For the j-th word in qi

∗ Draw a topic assignment of j-th word zij ∼ Mult(θi)
∗ Draw a word qij ∼ Mult(βzij

)

Therefore, the latent topic proportion θi is inferred for the feature of the i-th
question. We denote the feature of the existing questions in CQA systems by Θ.

User Model Inference. Given latent feature of questions Θ and quality score
matrix S, we infer the latent feature of users U. We assume that the quality
score matrix S is generated by

S ∼ Normλ−1
S

(ΘT U) (1)

where Norm(·) is a normal distribution with mean ΘT U and standard devia-
tion λ−1

S . The graphical representation of this quality score generative model is
illustrated in the upper box in Figure 3. For each question-answering activity
(i, j), its quality score is generated by

Sij ∼ Normλ−1
S

(qT
i uj) = Normλ−1

S
(

K∑

k=1

qikujk). (2)

26 Z. Zhao et al.

U

W

S

Z Q

W

Normal

Dirichlet

Multinomial

Score Model

User Model

Question
Model

M

N

M*N

Fig. 3. Graphical Representation of the GRLM Model

The underlying idea of the quality score generative model is as follows. The
quality score value is proportional to the dot-product of the question feature
and user feature. We consider that the feature U represents the strongness and
weakness of users on a specified topic.

Assume that the standard variance λ−1
S is independent on and identical for

different question-answering activities, we the problem of maximum likelihood
inference for user feature U can be given by

maxU −||IΩ ⊗ (S − ΘT U)||2F (3)

where || · ||2F denotes the Frobenius norm, and ⊗ represents the Hadamard
element-wise product. IΩ is an indicator matrix with ones for the existing question-
answering activities, and zeros for the missing ones.

Therefore, the user feature U can be inferred by solving the expression in
Formula 3. Then, we can predict the quality score for new questions by Equa-
tion 1, and then choose those users who have high predicted scores for answering
the questions.

Although a latent model is feasible for tackling the problem of expert finding,
it may not be able to solve the cold-start problem well. In cold-start expert
finding, there may be a number of users having only few question-answering
activities. Under the framework of latent model, the inference for user feature
may not be accurate, since there are many missing values in matrix S. Thus, we
propose to make use of a user-to-user graph to tackle the cold-start problem.

3.2 Graph Regularized Latent Model

In this section, we present our Graph Regularized Latent Model (referred to as
GRLM) to tackle the problem of cold-start expert finding. First, we introduce
the general idea of our model. Then, we present the detail of the generative
process.

Cold-Start Expert Finding in CQA via Graph Regularization 27

Algorithm 1. Generate Observed Question-Answering Activities
Input: a set of users, indicator matrix for existing activities IΩ

Output: a data matrix of questions Q, a quality score matrix S

1: for each question qi ∈ Q do
2: Draw topic proportions θi ∼ Dir(α).
3: for each word qij do
4: (a) Draw a topic assignment zij ∼ Mult(θi)
5: (b) Draw a word qij ∼ Mult(βzij).
6: end for
7: end for
8: Draw a data matrix of users U by Equation 4.
9: Draw a quality score matrix S by Equation 1.

Consider the similarity matrix of users W which is inferred from the following
relation between users and topical interests. Based on the property of the user-
to-user relation, it is natural to require the similar users in matrix W have
similarity user feature, that is, Wij(ui − uj)2. Thus, the generation process for
data matrix of users U with graph regularization can be achieved by

p(U) = −
∑

i

uT
i ui − λW

∑

i,j

Wij(ui − uj)2 (4)

We denote by λU the collection of standard deviations for generating the data
matrix of users U. Thus, the prior distribution of the data matrix of users U is
given by a product of normal distributions. Note that we set the standard devi-
ation inversely proportional to the similarity of users with constant parameter
λW . We illustrate the impact of parameter λW in the experimental study.

We denote a set of parameters α, β and λW as hyper parameters of our
model. Referring to Figure 3, the whole generative procedure of our model is
outlined in Algorithm 1. We then present the objective function for our graph
regularized latent model below:

We observe that the joint distribution for generating quality score matrix S,
latent topics of the questions Θ, a data matrix of questions Q and a data matrix
of users U can be factorized. Thus, we give the posterior distribution based on
hyper parameters by

p(S,Θ,Q,U,Z,Q|λ−1
S , λ−1

Q , λ−1
U , α, β,Ω)

= p(Θ|α)p(Z|Θ)p(Q|Z, β)
× p(U|λ−1

U)p(S|QT U, Ω) (5)

where the generation for a data matrix of question is

28 Z. Zhao et al.

p(Θ|α) =
∏

θi∈Θ

Dir(α)

p(Z|Θ) =
∏

zi,j∈Z

Mult(θi)

p(Q|Z, β) =
∏

qi∈Q

βzi,qi

and the generation for a data matrix of users and a quality score are

p(U|λU) = Norm1(ui)
∏

i,j

Normδij (ui − uj)

p(S|Q,U, Ω) =
∏

(i,j)∈Ω

Normλ−1
S

(Si,j |qT
i uj).

We solve the probabilistic inference problem for GRLM by finding a max-
imum a posterior (MAP) configuration of the data matrix of questions Q and
data matrix of users U. The MAP is an objective function conditioning on the
quality score matrix S and data matrix of questions Q. That is, we aim to find

(Q∗,U∗) = arg max
Q,U

p(Q,U|S,Q, λW , α, β,Ω).

We observe that maximization a posterior configuration is equivalent to maximiz-
ing the complete log likelihood of matrix Q and U. Thus, we give the complete
log likelihood by

L = −λU

2

∑

ui∈U

ui
T ui − λQ

2

∑

qj∈Q

(qj − θj)T (qj − θj)

+
∑

qi∈Q

∑

qij∈qi

log(
K∑

k=1

θi,kβzi,j=k,qi,j)

− λW

2

∑

ui,uj∈U

δij(ui − uj)T (ui − uj)

− λS

2

∑

(i,j)∈Ω

(Si,j − qT
i uj) (6)

where λW ≥ 0 and λS ≥ 0 are trade-off parameters. We assume that the prior
latent topic distribution for questions α is a uniform distribution. We adopt this
assumption from the topic-model based performance prediction work [24,26].

3.3 The Optimization Method

In this section, we propose an optimization method for solving Problem (6). We
take the partial derivative for parameters Q, U, Θ and β in the complete log
likelihood L in Problem (6) and set them to zero.

Cold-Start Expert Finding in CQA via Graph Regularization 29

We first report the optimization result for data matrix of questions Q and
data matrix of users U by

qi ← (λSUT U + λQIK)−1(λSUSq
i + λQθqi

) (7)

uj ← (λSQT Q + λW

∑

uk∈U

δjk + λUIK)−1

× (λSQSu
i + λW

∑

uk∈U

δjkuk) (8)

where Sq
j and Su

i are the diagonal quality score matrices for j-th question and
i-th uesr, respectively.

We then present the optimization result for the latent topic of questions Θ
and β, respectively. We first find that it is difficult to directly take the derivative
for the complete log likelihood problem with respect to parameter Θ. This is
due to the decoupling between β and topic assignment matrix of words Z [1].
Thus, we introduce a new variational parameter Φ for topic assignment matrix
of words Z to derive a lower bound for the complete log likelihood, denoted by
L′. Consider the term

∑
qij∈qi

log(
∑K

k=1 θi,kβzij ,qij) in L. We derive its lower
bound such that the lower bound of L can also be obtained. The derivation is
based on Jensen’s Inequality.

By introducing the new variational parameter Φ, the lower bound of
∑

qij∈qi

log(
∑K

k=1 θi,kβzij ,qij) in L is given by

∑

qij∈qi

log(
K∑

k=1

θi,kβzij ,qij)

=
∑

qij∈qi

log(
K∑

k=1

θi,kβzij ,qijφ(qi,j),k

φ(qi,j),k
)

≥ −
∑

qij∈qi

K∑

k=1

φqij ,k log φqij ,k

+
∑

qij∈qi

K∑

k=1

φqij ,k log(θi,k)βzij=k,qij .

Thus, we can iteratively estimate the latent topic of questions Θ and β on
L′.

We then estimate the parameters Θ, Φ and β iteratively on L′. We first report
the optimization results for parameters Φ and β by

φqij ,k ∝ θi,kβk,qij (9)

βk,qij ∝
∑

qi∈Q

∑

qij∈qi

φqij ,k. (10)

We then estimate the latent topic of the questions Θ by using the root fining
algorithm in numerical optimization tool in [7].

30 Z. Zhao et al.

Algorithm 2. The Expert Finding Algorithm
Input: An i-th new question q, data matrix of users U and β
Output: A ranked list of users R(U)

1: Set latent topic θi ∝ Uniform distribution
2: for t : 1 → τmax do
3: for each word qij ∈ qi do
4: for k : 1 → K do
5: Compute variational parameter φqij ,k ∝ θiβk,qij

6: end for
7: end for
8: Sample θi ∝∏I

j=1

∑K
k=1 θi,kφqij ,k

9: end for
10: Rank users by Equation 1
11: return A ranked list of users R(U)

3.4 The Expert Finding Algorithm

We now present a cold-start expert finding algorithm based on our proposed
model GRLM in Algorithm 2.

Given an i-th new question qi, Algorithm 2 aims to choose the users with
highly predicted score for answering this question. The main process of our
algorithm can be divided into two parts. First, the algorithm estimates the data
vector of the i-th question, denoted by qi. Second, the algorithm ranks the users
for answering the i-th question based on both data matrix of users U and data
matrix of questions qi by Equation 1.

We now give the details of our expert finding algorithm as follows. First,
Algorithm 2 iteratively estimates the latent topic of the i-th new question θi

and variational parameter φi from Lines 1 to 9. Then, the algorithm ranks the
users for question qi in Line 11 and returns a ranked list.

4 Experimental Study

In this section, we conduct several experiments on the question-answering plat-
form, Quora, and the social network, Twitter. The experiments are conducted by
using Java, tested on machines with Linux OS Intel(R) Core(TM2) Quad CPU
2.66Hz, and 32GB RAM. The objectives of the study is to show the effectiveness
of our proposed model GRLM for the problem of expert finding in CQA.

4.1 Datasets

We collect the data from Quora. Quora is a popular question-and-answer website,
in which questions are posted and then answered by the community of its users.
Quora was launched to the public in June, 2010 and it becomes very successful
in terms of the number of users since then. We first crawl the questions posted

Cold-Start Expert Finding in CQA via Graph Regularization 31

between September 2012 and August 2013 and then crawl all the users who
answered these questions. In total, we collect 444,138 questions, 95,915 users,
887,771 answers and 32,231 topical interests. In the following experiments, we
evaluate our model GRLM on Quora instead of Yahoo Answer, since Quora
provides the user specified topical interests.

We first sort the resolved questions by their posted timestamp and then split
the resolved questions in Quora into the training dataset (i.e. first half of the
questions) and the testing dataset (i.e. second half of the questions). Based on
the number of the collected answers running from 1 to 6, we split the resolved
questions into six groups denoted by Q1, Q2, . . ., Q6. For example, group Q1

contains the questions with at least one answer. For each group Qi, we randomly
sample 100 questions as the testing dataset, denoted by Q′

i. In total, we have 600
testing questions. We then keep other questions in groups Q1, Q2, . . ., Q6 as the
training dataset. Therefore, we generate a pair of training and testing datasets. In
this study, we generate ten pairs of training and testing datasets to evaluate the
performance of the algorithms. We take the average of the experimental results
of these algorithms on ten pairs of datasets. The summary of the datasets is
given in Table 2. The dataset will be provided later.

Table 2. Summary of Datasets

Dataset #Questions Average #Answers

Q1 444k 2

Q2 178k 3.5

Q3 86k 5.0

Q4 48k 6.7

Q5 30k 8.3

Q6 20k 10.0

4.2 Evaluation Criteria

We now discuss how to evaluate our algorithm. The performance of the expert
finding algorithm can be gauged by the following three metrics: Precision,
Recall and Cold-Start Rate.

Precision. We evaluate the ranking quality of different algorithms for the users
who answered the questions by the two measurements of Accu and Precision@1.
Given a question, we consider the user whose answer receives the highest number of
thumb-ups as the best answerer. Both Accu and Precision@1 evaluate the ranking
of the best answerer by different algorithms (i.e. whether the best answerer can be
ranked on top). These measurements are widely used in existing work [27,34] to
evaluate the performance of the expert finding algorithms in CQA systems.

Given a question qi, we denote by R(U)i the ranking of the users who
answered this question. We denote by |R(U)i| the number of the users in the
ranking R(U)i. We denote by Ri

best the rank of the best answerer for question
qi by different algorithms. The formula of Accu is given by

32 Z. Zhao et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q4 Q5 Q6

A
cc

u

Testing Questions

VSM
AuthorityRank

DRM
TSPM
GRLM

(a) Accu

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q4 Q5 Q6

P
re

ci
si

on
@

1

Testing Questions

VSM
AuthorityRank

DRM
TSPM
GRLM

(b) Precision@1

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400 500

R
ec

al
l@

 K

K

VSM
AuthorityRank

DRM
TSPM
GRLM

(c) Recall@K

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q4 Q5 Q6

C
ol

d-
S

ta
rt

 R
at

e

Testing Questions

VSM
AuthorityRank

DRM
TSPM
GRLM

(d) Cold-StartRate

Fig. 4. Performance Comparison of the Algorithms

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

10 20 30 40 50

A
cc

u

Κ

Q1
Q2
Q3
Q4
Q5
Q6

(a) Accu

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

P
re

ci
si

on
@

1

Κ

Q1
Q2
Q3
Q4
Q5
Q6

(b) Precision@1

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50
R

ec
al

l@
10

0
Κ

Q1
Q2
Q3
Q4
Q5
Q6

(c) Recall@K

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

C
ol

d-
S

ta
rt

 R
at

e

Κ

Q1
Q2
Q3
Q4
Q5
Q6

(d) Cold-StartRate

Fig. 5. Effect on Dimension of Latent Space K

Accu =
∑

qi∈Q′

|R(U)i| − Ri
best

|R(U)i||Q′| ,

where Q′ is the set of the testing questions. The Accu illustrates the ranking
percentage of the best answerer by different algorithms.

We now evaluate the precision of the experts ranked on top by different algo-
rithms. We use Precision@1 to validate whether the expert ranked on top is the
best answerer by different algorithms. The formula of Precision@1 is given by

Precision@1 =
|{qi ∈ Q′|Ri

best ≤ 1}|
|Q′| .

Recall. We employ the measurement Recall@K to evaluate the ranking quality
for all users in CQA systems by different algorithms. Given the i-th new question
qi, we denote by Ri

TopK the set of users ranked on TopK by the algorithms. The
formula of Recall@K is given by

Recall@K =
|{qi ∈ Q′|j ∈ Ri

TopK and (i, j) ∈ Ω}|
|Q′| .

The Recall@K aims to choose the right experts from all the users in CQA
systems.

Cold-Start Rate. We also investigate the types of the experts found by different
algorithms (i.e. cold-start users or warm-start users). In this experimental study,
we consider the users who answered less than τ questions as cold-start users,
where τ is the threshold for cold-start users. We propose the measurement Cold-
Start Rate to illustrate the type of the experts ranked on top (i.e. Top1), which
is given by

Cold-Start Expert Finding in CQA via Graph Regularization 33

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

0.01 0.1 1 10 100 1000

A
cc

u

λW

Q1
Q2
Q3
Q4
Q5
Q6

(a) Accu

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.1 1 10 100 1000

P
re

ci
si

on
@

1

λW

Q1
Q2
Q3
Q4
Q5
Q6

(b) Precision@1

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.1 1 10 100 1000

R
ec

al
l@

 K

λW

Q1
Q2
Q3
Q4
Q5
Q6

(c) Recall@K

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.1 1 10 100 1000

C
ol

d-
S

ta
rt

 R
at

e

λW

Q1
Q2
Q3
Q4
Q5
Q6

(d) Cold-StartRate

Fig. 6. Effect on Regularization Term λW

Cold-Start Rate =
|{qi ∈ Q′|j ∈ Ri

Top1 and 1(i,j) ≤ τ}|
|Q′| ,

where Ri
Top1 is the set containing the found expert ranked the top.

We compute the Precision, Recall and Cold-Start Rate of all the algorithms
on Q′

1, Q′
2, . . ., Q′

6.

4.3 Performance Evaluation

We compare our model GRLM with the following state-of-the-art expert find-
ing algorithms: Vector Space Model (VSM) [27], AuthorityRank [2], Dual Role
Model (DRM) [27] and Topic Sensitive Probabilistic Model (TSPM) [34]. The
underlying idea of using these algorithms for expert finding in CQA systems are
highlighted below:

– VSM. The VSM constructs the feature of the users based on the past
question-answering activities in a word level. Consider the word vector of
the i-th question as qi. The word vector of the j-th user is constructed from
the word vector of the answered questions, denoted by uj . Given a new ques-
tion q, VSM ranks the relevance of the users based on the dot product of
the word vectors of the i-th question and the j-th user u by Ŝij = qT

i uj .
– AuthorityRank. The AuthorityRank computes the expertise authority of

the users based on the number of provided best answerers, which is an in-
degree method. Given a new question, AuthorityRank ranks the users based
on their expertise authority.

– DRM. The DRM discovers the latent expertise of the users from their past
question-answering activities, which is based on the famous topic modeling
technique called probabilistic latent semantic analysis (PLSA) [10]. Given a
new question, DRM ranks the users based on their latent expertise.

– TSPM. The TSPM discovers the latent expertise of the users based on
another famous topic modeling technique called latent Dirichlet allocation
(LDA) [1] and ranks the users based on their latent expertise.

Figures 4(a) to 4(d) show the evaluation results based on Accu, Precison@1,
Recall@K and Cold-Start Rate, respectively. The evaluation were conducted
with different types of the questions. For each dataset, we report the performance
of all methods.

34 Z. Zhao et al.

The AuthorityRank method is based on the link analysis of the question-
answering activities of users while DRM and TPSM models are based on topic-
oriented probabilistic model. These experiments reveal a number of interesting
points as follows:

– The topic-oriented probabilistic models DRM and TPSM outperform the
authority-based model. This findings suggests that using the latent user
model for tackling the problem of expert finding in CQA systems is effective.

– Our GRLM model achieves the best performance, which indicates that lever-
aging the user-to-user graph can further improve the performance of expert
finding in CQA systems.

– The experimental study on Recall@K indicates that our method can find the
right experts where the candidate experts are all the users in CQA systems.
We notice that our model GRLM is able to find the best answerer in the top
100 ranked users with the probability of 0.37 as shown in Figure 4(c).

There are two essential parameters in our model, which are the dimension of
latent space K, and the graph regularization parameter λW . The parameter K
represents the latent feature size of latent user model and latent topic space of
questions. The parameter λW shows the obtained benefits of our method from
the inferred user-to-user graph.

We first study the impact of parameter K by varying its value from 10 to 50,
and present the experimental results in Figures 5(a) to 5(d). Figure 5(a) shows
that the Cold-Start Rate of the experts found by GRLM increases and then
becomes convergent with respect to the dimension of latent space. Figure 5(d)
shows that the recall of the expert finding has 10% improvement by varying the
parameter K. By transferring the knowledge to the cold-start users, both cold-
start users and warm-start users can be selected such that the recall is improved.
Figures 5(b) and 5(c) illustrate that the accuracy doesn’t vary for the parameter
K. From these results, we conclude that the setting K = 10 is good enough to
represent the latent features of both users and questions in CQA systems.

We then study the impact of the regularization term λW on the performance
of GRLM, which is illustrated in Figures 6(a) to 6(d). We vary the value of
the regularization term λW from 0.01 to 1000. The success of graph regularized
latent model for expert finding relies on the assumption that two neighboring
users share the similar user model. When the value of λW becomes small, our
model can be considered as the previous topic-oriented expert finding meth-
ods, which are only based on the past question-answering activities. We vary
parameter λW to investigate the benefits of our methods from the idea of graph
regularized latent model for the problem of expert finding. We notice that our
method consistently performs on most of the varied values of parameter λW . To
balance the inference of latent user model from both past question-answering
activities and user-to-user graph, we set the value of parameter λW as a new
regularization term. We report that the overall performance of GRLM with the
new regularization term can also be improved by 3%, 3% and 10% on Accu,
Precision@1 and Recall@100, respectively.

Cold-Start Expert Finding in CQA via Graph Regularization 35

5 Related Work

In this section, we briefly review some related work on the problem of expert
finding, cold-start recommendation in the literature.

Expert Finding. The problem of expert finding in CQA systems has attracted
a lot of attention recently. Roughly speaking, the main approaches for expert
finding can be categorized into two groups: the authority-oriented approach
[2,11,15,30,39] and the topic-oriented approach [9,16,18,19,22,27,28,31–34].

The authority-oriented expert finding methods are based on link analysis of
the past question-answering activities of the users in CQA systems. Bouguessa
et al. [2] discover the experts based on the number of best answers provided by
users, which is an in-degree-based method. Zhu et al. [38,39] select experts based
on the authority of the users on the relevant categories of the questions. Jurczyk
et al. [11] propose a HITS [12] based method to estimate the ranking score of
the users based on question-answering activity graphs. Zhang et al. [30] propose
an expertise ranking method and evaluated link algorithms for specific domains.
Jing et al. [15] propose a competition model to estimate the user expertise score
based on question-answering activity graphs.

The topic-oriented expert finding methods are based on latent topic modeling
techniques. Deng et al. [3] and Hashemi et al. [9] tackle the problem of expert
finding in bibliographic networks. Using the generative topic model, Xu et al. [27]
propose a dual role model that jointly represents the roles of answerers and askers.
Liu et al. [16] propose a language model to predict the best answerer. Guo et al. [8]
and Zhou et al. [34] devise the topic sensitive model to build the latent user model
for expert finding. Liu et al. [28] model both topics and expertise of the users in
CQA for expert finding. Saptarshi et al. [6] utilize the crowdsourcing techniques
to find the topic experts in microblogs. Fatemeh et al. [22] incorporate the topic
modeling techniques to estimate the expertise of the users.

In contrast to the above-mentioned work, our emphasis is on cold-start expert
finding in CQA systems. We suggests exploiting the “following relation” between
users and topical interests to resolve the problem. The existing work mainly focus
on the problem of expert finding based on the past question-answering activities
of users.

Cold-Start Recommendation. Recently, the cold-start problem in user-item
recommendation has attracted a lot of attention and several approaches [14,20,
21,29,36] are proposed to solve this problem. Park et al. [20] propose a latent
regression model that leverages the available attributes of items and users to
enrich the information. Zhou et al. [36] devise an interview process that iter-
atively enriches the profile of the new users. Yin et al. [29] propose a random
walk based method to choose the right cold-start items for users. Purushotham
et al. [21] utilize both the text information of items and social relations of users
to user-item recommendation. Zhu et al. [14] extract the information of items
from Twitter to overcome the difficulty of cold-start recommendation. However,
the cold-start recommendation techniques cannot be applied to the context of
this work.

36 Z. Zhao et al.

6 Conclusion

We formulate the problem of cold-start expert finding and explore the user-
to-user graph in CQA systems. We propose a novel method called graph reg-
ularized latent model. We consider the latent user model based on the topic
of the questions which can be inferred from question feature and the quality
score matrix. Our approach integrates the inferred user-to-user graph and past
question-answering activities seamlessly into a common framework for tackling
the problem of cold-start expert finding in CQA systems. In this way, our app-
roach improves the performance of expert finding in the cold-start environment.
We devise a simple but efficient variational method to solve the optimization
problem for our model. We conduct several experiments on the data collected
from the famous question-answering system, Quora. The experimental results
demonstrate the advantage of our GRLM model over the state-of-the-art expert
finding methods.

Acknowledgments. This work is partially supported by GRF under grant number
HKUST FSGRF13EG22 and HKUST FSGRF14EG31.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of
machine Learning research 3, 993–1022 (2003)

2. Bouguessa, M., Dumoulin, B., Wang, S.: Identifying authoritative actors in
question-answering forums: the case of yahoo! answers. In: SIGKDD, pp. 866–874.
ACM (2008)

3. Deng, H., King, I., Lyu, M.R.: Formal models for expert finding on dblp bibliog-
raphy data. In: ICDM, pp. 163–172. IEEE (2008)

4. Dror, G., Koren, Y., Maarek, Y., Szpektor, I.: I want to answer; who has a question?
yahoo! answers recommender system. In: Proceedings of SIGKDD, pp. 1109–1117.
ACM (2011)

5. Figueroa, A., Neumann, G.: Learning to rank effective paraphrases from query
logs for community question answering. In: Twenty-Seventh AAAI Conference on
Artificial Intelligence (2013)

6. Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: crowd-
sourcing search for topic experts in microblogs. In: Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 575–590. ACM (2012)

7. GSL. https://www.gnu.org/software/gsl/
8. Guo, J., Xu, S., Bao, S., Yu, Y.: Tapping on the potential of q&a community by

recommending answer providers. In: CIKM, pp. 921–930. ACM (2008)
9. Hashemi, S.H., Neshati, M., Beigy, H.: Expertise retrieval in bibliographic network:

a topic dominance learning approach. In: CIKM, pp. 1117–1126. ACM (2013)
10. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57. ACM

(1999)
11. Jurczyk, P., Agichtein, E.: Discovering authorities in question answer communities

by using link analysis. In: CIKM, pp. 919–922. ACM (2007)

https://www.gnu.org/software/gsl/

Cold-Start Expert Finding in CQA via Graph Regularization 37

12. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM (JACM) 46(5), 604–632 (1999)

13. Li, W.-J., Yeung, D.-Y.: Relation regularized matrix factorization. In: IJCAI, pp.
1126–1131 (2009)

14. Lin, J., Sugiyama, K., Kan, M.-Y., Chua, T.-S.: Addressing cold-start in app rec-
ommendation: Latent user models constructed from twitter followers (2013)

15. Liu, J., Song, Y.-I., Lin, C.-Y.: Competition-based user expertise score estimation.
In: SIGIR, pp. 425–434. ACM (2011)

16. Liu, X., Croft, W.B., Koll, M.: Finding experts in community-based question-
answering services. In: CIKM, pp. 315–316. ACM (2005)

17. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social
regularization. In: WSDM, pp. 287–296. ACM (2011)

18. Miao, G., Moser, L.E., Yan, X., Tao, S., Chen, Y., Anerousis, N.: Generative models
for ticket resolution in expert networks. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 733–742.
ACM (2010)

19. Mimno, D., McCallum, A.: Expertise modeling for matching papers with reviewers.
In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 500–509. ACM (2007)

20. Park, S.-T., Chu, W.: Pairwise preference regression for cold-start recommenda-
tion. In: RecSys, pp. 21–28. ACM (2009)

21. Purushotham, S., Liu, Y., Kuo, C.-C.J.: Collaborative topic regression with
social matrix factorization for recommendation systems (2012). arXiv preprint
arXiv:1206.4684

22. Riahi, F., Zolaktaf, Z., Shafiei, M., Milios, E.: Finding expert users in community
question answering. In: Proceedings of the 21st International Conference Compan-
ion on World Wide Web, pp. 791–798. ACM (2012)

23. Srivastava, A.N., Sahami, M.: Text mining: Classification, clustering, and applica-
tions. CRC Press (2009)

24. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific
articles. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 448–456. ACM (2011)

25. Wang, G., Gill, K., Mohanlal, M., Zheng, H., Zhao, B.Y.: Wisdom in the social
crowd: an analysis of quora. In: Proceedings of WWW, pp. 1341–1352. Interna-
tional World Wide Web Conferences Steering Committee (2013)

26. Wang, H., Chen, B., Li, W.-J.: Collaborative topic regression with social regular-
ization for tag recommendation. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 2719–2725. AAAI Press (2013)

27. Xu, F., Ji, Z., Wang, B.: Dual role model for question recommendation in commu-
nity question answering. In: Proceedings of SIGIR, pp. 771–780. ACM (2012)

28. Yang, L., Qiu, M., Gottipati, S., Zhu, F., Jiang, J., Sun, H., Chen, Z.: Cqarank:
jointly model topics and expertise in community question answering. In: CIKM,
pp. 99–108. ACM (2013)

29. Yin, H., Cui, B., Li, J., Yao, J., Chen, C.: Challenging the long tail recommenda-
tion. VLDB 5(9), 896–907 (2012)

30. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
structure and algorithms. In: WWW, pp. 221–230. ACM (2007)

31. Zhao, Z., Cheng, J., Wei, F., Zhou, M., Ng, W., Wu, Y.: Socialtransfer: transfer-
ring social knowledge for cold-start cowdsourcing. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Manage-
ment, pp. 779–788. ACM (2014)

http://arxiv.org/abs/1206.4684

38 Z. Zhao et al.

32. Zhao, Z., Ng, W., Zhang, Z.: Crowdseed: query processing on microblogs. In: Pro-
ceedings of the 16th International Conference on Extending Database Technology,
pp. 729–732. ACM (2013)

33. Zhao, Z., Yan, D., Ng, W., Gao, S.: A transfer learning based framework of crowd-
selection on twitter. In: Proceedings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1514–1517. ACM (2013)

34. Zhou, G., Lai, S., Liu, K., Zhao, J.: Topic-sensitive probabilistic model for expert
finding in question answer communities. In: Proceedings of CIKM, pp. 1662–1666.
ACM (2012)

35. Zhou, G., Liu, Y., Liu, F., Zeng, D., and J. Zhao. Improving question retrieval
in community question answering using world knowledge. In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2239–
2245. AAAI Press (2013)

36. Zhou, K., Yang, S.-H., Zha, H.: Functional matrix factorizations for cold-start
recommendation. In: SIGIR, pp. 315–324. ACM (2011)

37. Zhou, T.C., Si, X., Chang, E.Y., King, I., Lyu, M.R.: A data-driven approach to
question subjectivity identification in community question answering. In: AAAI
(2012)

38. Zhu, H., Cao, H., Xiong, H., Chen, E., Tian, J.: Towards expert finding by lever-
aging relevant categories in authority ranking. In: CIKM, pp. 2221–2224. ACM
(2011)

39. Zhu, H., Chen, E., Xiong, H., Cao, H., Tian, J.: Ranking user authority with
relevant knowledge categories for expert finding. World Wide Web, pp. 1–27 (2013)

Mining Itemset-Based Distinguishing
Sequential Patterns with Gap Constraint

Hao Yang1, Lei Duan1,2(B), Guozhu Dong3, Jyrki Nummenmaa4,
Changjie Tang1, and Xiaosong Li2

1 School of Computer Science, Sichuan University, Chengdu, China
hyang.cn@outlook.com, {leiduan,cjtang}@scu.edu.cn

2 West China School of Public Health, Sichuan University, Chengdu, China
lixiaosong1101@126.com

3 Department of Computer Science and Engineering, Wright State University,
Dayton, USA

guozhu.dong@wright.edu
4 School of Information Sciences, University of Tampere, Tampere, Finland

jyrki.nummenmaa@uta.fi

Abstract. Mining contrast sequential patterns, which are sequential
patterns that characterize a given sequence class and distinguish that
class from another given sequence class, has a wide range of applica-
tions including medical informatics, computational finance and consumer
behavior analysis. In previous studies on contrast sequential pattern min-
ing, each element in a sequence is a single item or symbol. This paper
considers a more general case where each element in a sequence is a set of
items. The associated contrast sequential patterns will be called itemset-
based distinguishing sequential patterns (itemset-DSP). After discussing
the challenges on mining itemset-DSP, we present iDSP-Miner, a mining
method with various pruning techniques, for mining itemset-DSPs that
satisfy given support and gap constraint. In this study, we also propose
a concise border-like representation (with exclusive bounds) for sets of
similar itemset-DSPs and use that representation to improve efficiency
of our proposed algorithm. Our empirical study using both real data and
synthetic data demonstrates that iDSP-Miner is effective and efficient.

Keywords: Itemset · Sequential pattern · Contrast mining

1 Introduction

Imagine you are a supermarket manager facing a collection of customers’ shop-
ping records, each of which is a sequence of all purchases by a customer over a
fixed time period. (See Table 1 for illustration.) To provide specialized service

This work was supported in part by NSFC 61103042, SKLSE2012-09-32, and China
Postdoctoral Science Foundation 2014M552371. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 39–54, 2015.
DOI: 10.1007/978-3-319-18120-2 3

40 H. Yang et al.

Table 1. A toy dataset of shopping records of married and unmarried customers

ID Shopping records Married

S1 <{bread, milk} {milk, towel} {coffee, beef, cola} {lipstick}>

Yes
S2 <{bread, perfume} {book} {coffee, beef, cola} {lipstick} {milk}>
S3 <{towel, bread, perfume, beef, book} {coffee, beef, cola} {book} {milk}>
S4 <{bread, perfume} {coffee, beef, cola} {lipstick, shaver} {milk}>

S5 <{towel, bread} {bread} {cola, shaver} {coffee, beef, cola} {milk}>

No
S6 <{bread} {book} {milk, shaver} {cola} {towel, book}>
S7 <{milk} {book, bread} {milk, shaver} {coffee, beef, cola}>
S8 <{bread, cola} {coffee} {cola} {lipstick, cola} {milk, cola}>

to married customers, you may want to find and utilize informative differences
between the married and unmarried customers on their shopping preferences.

The above motivation scenario cannot be addressed well using existing sequen-
tial pattern mining [1] or contrast data mining [2] methods, and thus suggests a
novel data mining problem. In a sequential dataset of two classes for this scenario,
each sequence is an ordered list of itemsets; given a target class, we want to find
the sequential patterns that are frequent in the target class but infrequent in the
other class. We call such a pattern an itemset-based distinguishing sequential pat-
tern (itemset-DSP) since each of its elements is an itemset instead of a single item.
Itemset-DSP mining is an interesting problem with many useful applications. As
another example in addition to the shopping application given above, when an
analyst in a pharmaceutical company is investigating the effect of a new drug, she
may record the symptoms of patients once every 12 hours after taking the drug
over one week, then compare the observed data with similarly observed data of
patients not taking the drug.

While there are many existing studies on distinguishing sequential pattern
mining, they focus on distinguishing sequential patterns whose elements are sin-
gle items. The itemset-DSP mining problem addressed here is different. It focuses
on mining patterns from sequences whose elements are itemsets. Moreover, there
is a serious need to represent the patterns concisely, to avoid combinative explo-
sion. Due to these key differences, the potential application and the mining
methods of this mining problem differ significantly from those for the case of
single item based sequences. We will review the related work and explain the
differences systematically in Section 3.

To tackle the problem of mining itemset-DSPs, we need to address several
technical challenges. First, a brute-force method, which enumerates every non-
empty itemset to generate candidate elements for sequence patterns is very costly
on sequence sets with a large number of distinct items and a large maximum
number of items in an element. We need an efficient method to avoid generating
useless candidates.

Second, we need to have a concise yet complete way to represent sequential
patterns satisfying the support thresholds, so that the number of discovered
patterns can be reduced, the mining results are more comprehensible, and the
algorithm can be efficient.

Mining Itemset-Based DSP with Gap Constraint 41

Third, we also need to find effective techniques to efficiently discover the
itemset-DSPs with concise representations. This issue is also complicated because
we also consider gap constraint in the discovery of itemset-DSPs.

This paper makes the following main contributions on mining minimal itemset-
DSPs with gap constraint: (1) introducing a novel data mining problem of itemset-
DSPmining; (2) presenting an efficient algorithm for discovering itemset-DSPsand
presenting a concise representation for the mining results; (3) conducting extensive
experiments on both real data and synthetic data, to evaluate our itemset-DSP
mining algorithm, and to demonstrate that the proposed algorithm can find inter-
esting patterns, and it is effective and efficient.

The rest of the paper is organized as follows. We formulate the problem
of itemset-DSP mining in Section 2, and review related work in Section 3. In
Section 4, we discuss the critical techniques of our method (called iDSP-Miner).
We report a systematic empirical study in Section 5, and conclude the paper in
Section 6.

2 Problem Formulation

We start with some preliminaries. Let Σ be the alphabet, which is a finite set of
distinct items. An element (of sequences, defined below) is a subset e of Σ. The
size of e is the number of items in e, denoted by |e|. Given two elements e and
e′ such that e′ is not empty, if e′ ⊆ e, then we say e′ is a sub-element of e.

An itemset-based sequence S over Σ is an ordered list of elements with the
form S = < e1e2...en >, where ei (1 ≤ i ≤ n) is an element. The length of S is
the number of elements in S, denoted by ||S||. For brevity, below we will often
call itemset-based sequences as sequences when it is clear what is meant.

We use S[i] to denote the i-th element in S (1 ≤ i ≤ ||S||). For two elements
S[i] and S[j] in S, satisfying 1 ≤ i < j ≤ ||S||, the gap between S[i] and S[j],
denoted by Gap(S, i, j), is the number of elements between S[i] and S[j] in S.
Thus, Gap(S, i, j) = j − i − 1.

Example 1. For S =<{bread, milk} {milk, towel} {coffee, beef, cola} {lipstick}>,
we have ||S|| = 4, S[1] = {bread, milk}, and |S[1]| = 2. The sub-elements of S[1]

include {bread}, {milk} and {bread, milk}. The gap between S[1] and S[4], i.e.
Gap(S, 1, 4), is 2.

For two sequences S and S′ satisfying ||S|| ≥ ||S′||, if there exist integers
1 ≤ k1 < k2 < ... < k||S′|| ≤ ||S||, such that S′

[i] ⊆ S[ki] for all 1 ≤ i ≤ ||S′||,
then we say < k1, k2, ..., k||S′|| > is an occurrence of S′ in S (and we also say S
contains S′). Observe that S′ may have more than one occurrences in S.

The gap constraint γ is defined as an interval which consists of two nonnegative
integers [γ.min, γ.max]. Given two sequences S and S′, let < k1, k2, ..., k||S′|| > be
an occurrence of S′ in S. We say S′ is a subsequence of S (and S is a super-sequence
of S′). Furthermore, if for all 1 ≤ i < ||S′||, γ.min ≤ Gap(S, ki, ki+1) ≤ γ.max,
we say that S′ is a subsequence of S with gap constraint γ, denoted by S′ �γ S.

42 H. Yang et al.

Example 2. Let S =<{book, milk} {bread} {book, milk, coffee} {coffee}> and
S′ =<{book, milk} {coffee}>. Since S′

[1] ={book, milk} ⊆ S[1] = {book, milk}
and S′

[2] = {coffee} ⊆ S[3] = {book, milk, coffee}, < 1, 3 > is an occurrence of S′

in S. Similarly, S′
[1] ⊆ S[1], S′

[2] ⊆ S[4], so < 1, 4 > is also an occurrence of S′ in
S. Let gap constraint γ = [2, 3]. Because 2 ≤ Gap(S, 1, 4) = 2 ≤ 3, S′ �[2,3] S.

The support of a sequence P with gap constraint γ in sequence set D, denoted
by Sup(D,P, γ), is defined by Equation 1.

Sup(D,P, γ) =
|{S ∈ D | P �γ S}|

|D| (1)

Please note that given an element e (i.e. a length-1 sequence), the support of e,
which is the ratio of the number of sequences containing e to |D|, is independent
of γ. Thus, we denote Sup(D, e) the support of e in D for brevity.

Definition 1 (Minimal Itemset-Based Distinguishing Sequential Pat-
terns with Gap Constraint). Given two sets of itemset-based sequences,
D+ and D−, two thresholds, α and β, and gap constraint γ, a sequence P =
< e1e2...e||P || > is a Minimal Itemset-based Distinguishing Sequential Pattern
with Gap Constraint (itemset-DSP), if the following conditions are true:

1. (support contrast) Sup(D+, P, γ) ≥ α and Sup(D−, P, γ) ≤ β;
2. (minimality) There does not exist a sequence P ′ =< ekek+1...ek+m > satis-

fying Condition 1 such that k ≥ 1 and k + m ≤ ||P ||.
Given α, β, and γ, the minimal itemset-based distinguishing sequential pat-

tern mining problem is to find all the itemset-DSPs from D+ and D−.

Table 2. List of itemset-DSPs discovered in Table 1 (α = 0.6, β = 0.3, γ = [0, 2])

ID itemset-DSP P Sup(D+, P, γ) Sup(D−, P, γ)

P1 <{coffee, beef, cola} {milk}> 0.75 0.25

P2 <{coffee, beef} {milk}> 0.75 0.25

P3 <{coffee, cola} {milk}> 0.75 0.25

P4 <{beef, cola} {milk}> 0.75 0.25

P5 <{beef} {milk}> 0.75 0.25

P6 <{lipstick}> 0.75 0.25

P7 <{beef, perfume}> 0.75 0.0

P8 <{perfume}> 0.75 0.0

Example 3. Consider the sequences in Table 1. Let support thresholds α = 0.6
and β = 0.3, and gap constraint γ = [0, 2]. There are 8 itemset-DSPs (Table 2)
discovered from the married customers (D+) and the unmarried customers (D−).
Taking <{beef, cola} {milk}> for instance, we can see that 75% married cus-
tomers (compared against 25% unmarried customers) buy beef and cola together,
and will buy milk within the next three shopping purchases.

Mining Itemset-Based DSP with Gap Constraint 43

Table 3 lists the frequently used notations of this paper.

Table 3. Summary of notations

Notation Description

Σ alphabet (the set of items)
|e| the size of e (the number of items in e)

e′ ⊆ e e′ is a sub-element of e
||S|| length of S (the number of elements in S)
S[i] the i-th element in S (1 ≤ i ≤ ||S||)
γ gap constraint

S′ �γ S S′ is a subsequence of S with gap constraint γ
Sup(D, P, γ) support of sequence P with gap constraint γ in sequence set D

D+, D− the positive, negative sequence sets resp.
α, β the positive, negative support thresholds resp.

3 Related Work

Sequential pattern mining [3] is a significant task in data mining and has attracted
extensive attention from both research and industry. Several types of sequential
patterns, such as frequent sequential pattern [4], distinguishing sequential pat-
tern [5], closed sequential pattern [6], (partial) periodic sequential pattern [7,8]
and partial order pattern [9], have been proposed. There are quite a few successful
applications of sequential pattern mining, such as protein and nucleotide sequence
analysis [10,11], software bug feature discovery [12] and musical data analysis [13].

There are several studies on mining sequential patterns from sequences in
which each element is an itemset. For example, Rabatel et al. [14] considered
mining sequences with contextual information. Han et al. [7] considered mining
sequences where each position contains an itemset. Feng et al. [15] proposed a
language-independent keyword extraction algorithm based on mining sequential
patterns without semantic dictionary. Chang et al. [16] used the length of time
interval to measure the importance of patterns, and presented a framework to
mine time-interval weighted sequential patterns. Recently, Low-Kam et al. [17]
proposed a method to mine statistically significant, unexpected patterns, so that
the number of discovered patterns is reduced. However, these studies are signif-
icantly different from our study, since we consider the support contrast measure
instead of just the support measure.

There are several studies considering gap constraint in sequential pattern min-
ing. For example, Antunes et al. [18] proposed an algorithm to handle the sequence
patternmining problemwith gap constraint based onPrefixSpan [19]. Xie et al. [20]
studied the discovery of frequent patterns satisfying one-off condition and gap con-
straint from a single sequence. Zhang et al. [21] solved the problem of mining fre-
quent periodic patterns with gap constraint from a single sequence.

Distinguishing sequential patterns has many interesting applications, as it can
describe contrast information between different classes of sequences. Ji et al. [5]
proposed ConsGapMiner for mining minimal distinguishing subsequence patterns

44 H. Yang et al.

with gap constraints. Shah et al. [22] mined contrast patterns with gap constraint
from peptide datasets, and applied patterns to build a supervised classifier for fold-
ing prediction. Deng et al. [23] built a classifier for sequence data based on contrast
sequences. Wang et al. [24] introduced the concept of density into distinguishing
sequential pattern mining problem, and designed a method to mine this kind of
contrast patterns.

To the best our knowledge, there are no previous existing methods tackling
exactly the same problem as itemset-DSP mining. The most related previous
work is that of Ji et al. [5], which finds the minimal distinguishing subsequences.
However, it is considerably different from our work since they focused on the
sequences in which each element is a single item rather than an itemset. More-
over, Ji et al. [5] didn’t consider the concise representation of patterns.

4 Design of iDSP-Miner

In this section, we present our method, iDSP-Miner, for mining itemset-DSPs
from D+ and D−. In general, the framework of iDSP-Miner includes: candidate
element generation, candidate pattern enumeration, support contrast checking
and minimality test. Technically, the key issues of iDSP-Miner are the generation
and effective representation of candidate elements.

4.1 Candidate Element Generation and Representation

Recall that an itemset-DSP is an ordered list of elements. For candidate itemset-
DSP generation, the first step is enumerating the elements that can be used to
compose a candidate itemset-DSP.

Naturally, we want to know “how to represent patterns in a concise way and
how to generate candidate elements efficiently?” To answer this question, we
first make some observations and then introduce some necessary definitions.

Observation 1. Every element of an itemset-DSP must be a subset of a sequence
element in the dataset.

By Observation 1, a brute-force way is enumerating the subsets of all sequence
elements that occur in the given data as candidate elements. Clearly this method
is time-consuming, and the number of candidate elements can be massive.

Observation 2. Some itemset-DSP may be a subsequence of some other itemset-
DSP. For example, in Table 2, P2, P3, P4 and P5 are subsequences of P1.

Definition 2 (Element Instance). Given a set of sequences D, if there are
sequences S, S′ ∈ D and integers i and j such that 1 ≤ i ≤ ||S|| and 1 ≤ j ≤
||S′||, and e = S[i] ∩ S′

[j] is non-empty, we call e an element instance in D.

Example 4. Let S =<{bread, milk} {milk, towel}> and S′ =<{coffee, cola}
{bread, coffee, book}>. Then, there are 7 element instances: {bread, milk} (S[1] ∩
S[1]), {milk, towel} (S[2] ∩ S[2]), {coffee, cola} (S′

[1] ∩ S′
[1]), {bread, coffee, book}

(S′
[2] ∩ S′

[2]), {milk} (S[1] ∩ S[2]), {bread} (S[1] ∩ S′
[2]), and {coffee} (S′

[1] ∩ S′
[2]).

Mining Itemset-Based DSP with Gap Constraint 45

Given an element instance e, the position of e in sequence S, denoted by
pos(e, S), is {i | e ⊆ S[i]}. For a sequence set D, the position list of e, denoted
by posList(e,D), is the set of positions of e associated with all sequences of D.
That is, posList(e,D) = {< S.id, pos(e, S) >| S ∈ D}, where S.id is the index
of S in D. We will ignore pos(e, S) in posList(e,D) if pos(e, S) = ∅.

Example 5. Consider Table 1 and element {book}. Then, posList({book},D+) =
{< S2, {2} >,< S3, {1, 3} >}.

iDSP-Miner starts with computing all element instances in D+ (denoted by
E+) and all element instances in D− (denoted by E−), respectively.

Theorem 1. Given sequence set D, sequence P and gap constraint γ, we have
Sup(D,P ′, γ) ≥ Sup(D,P, γ) for all P ′ =< P[k]P[k+1]...P[k+m] > such that
k ≥ 1 and k + m ≤ ||P ||.
Proof (Outline). For all S ∈ D, if P �γ S, then we have P ′ �γ S. �

Corollary 1. Let P be an itemset-DSP satisfying conditions in Definition 1.
For each element e of P , we have Sup(D+, e) ≥ α.

Proof (Outline). By Theorem 1, we have Sup(D+, e) ≥ Sup(D+, P, γ) ≥ α. �

It follows that every element of an itemset-DSP must be a subset of an
element instance in E+. Moreover, we have following pruning rule for E+:

Pruning Rule 1. Element instances e ∈ E+ satisfying Sup(D+, e) < α can be
pruned from E+.

A practical observation is that otherwise similar sequences have sets and
some of their subsets in equal positions in the result set. Thus, we need an
efficient method to represent the set-subset structures and an efficient way to
maintain those structures in our mining algorithm, at the same time avoiding
repeated computations on the sequence elements. We will introduce the concept
of equivalence element for the representation of the set-subset structures, and a
split operation to maintain these structures in our algorithm.

Definition 3 (Element Closure). Given an element e, the closure of e,
denoted by C(e), is the set of all non-empty sub-elements of e.

To concisely represent iDSPs and also to make iDSP-Miner efficient, we intro-
duce a concept that is somehow similar to “borders” [25] and “equivalence class”
[26] (which were used previously in data mining). Traditionally, both “border”
and equivalence class were used to represent collections of itemsets that share
some properties such as “always occur together in sequences of D”. We are inter-
ested in a particular kind of borders each containing one longest itemset (similar
to closed pattern) and several shorter itemsets; traditionally, such a border rep-
resents all itemsets that are subsets of the longest pattern and are supersets of
some of the shorter patterns. In this paper, we use such borders in a new and
different way, by having the shorter itemsets as excluders.

46 H. Yang et al.

{coffee, beef, cola}

{coffee, beef} {beef, cola} {coffee, cola}

{beef} {coffee} {cola}

Fig. 1. Illustration of [{{coffee}, {cola}}, {coffee, beef, cola}] (within the red dash line)

We define equivalence element to uniquely and concisely represent a set of
elements, using (1) an element c (which we will call a closed element) and (2)
a set X of elements (which we will call excluders), in the form of [X , c]; here,
[X , c] represents {e | e ⊆ c ∧ e
⊆ x for every x ∈ X}.

Observe that we have the following relationships between the closure and the
equivalence element: C(c) = [∅, c] and [X , c] = C(c) \ ⋃

x∈X
C(x).

For example, as shown in Figure 1, [{{coffee}, {cola}}, {coffee, beef, cola}] =
{{coffee, beef, cola}, {coffee, beef}, {coffee, cola}, {beef, cola}, {beef}}.

For element instances in E+, we construct their closures, denoted by ECr
+ =

{[∅, e] | e ∈ E+}. Please note that there may be some redundancy in ECr
+. For

example, [∅, e′] ⊂ [∅, e] if e and e′ are two elements in E+ satisfying e′ ⊂ e.
To handle those subsets with different support, we define the split operation

to divide an equivalence element into two disjoint parts. For equivalence element
ê = [X , e] ∈ ECr

+, if there is an element e′ ∈ E+ such that e′ ∈ ê and e′
= e, we
split ê by e′, denoted by ê|e′, into two disjoint equivalence elements [X∪̃{e′}, e]
and [{x ∈ X | x ⊂ e′}, e′], where X∪̃{e′} denote X ∪ {e′} \ ⋃

x∈X
{x | x ⊂ e′}.

Example 6. Let ê = [{{coffee}, {beef }}, {coffee, beef, cola}], and e′ = {coffee,
cola}. The results of splitting ê by e′ are: [{{coffee, cola}, {beef }}, {coffee, beef,
cola}] and [{{coffee}}, {coffee, cola}].

Obviously, [X , e] = [X∪̃{e′}, e]∪[{x ∈ X | x ⊂ e′}, e′]. We use EC+ to denote
the set of all equivalence elements after removing the redundancy.

Corollary 2. Given sequence set D, gap constraint γ, support threshold β, and
element e in sequence P , if Sup(D, e) ≤ β, then Sup(D,P, γ) ≤ β.

Proof (Outline). By Theorem 1, we have Sup(D,P, γ) ≤ Sup(D, e) ≤ β. �
It follows that an element e that satisfies Sup(D−, e) > β may occur in an

itemset-DSP. Thus, for equivalence element ê = [X , e] ∈ EC+, if there is an
element e′ ∈ E− such that Sup(D−, e′) > β, e′ ∈ ê and e′
= e, we split ê by e′

into two equivalence elements [X∪̃{e′}, e] and [{x ∈ X | x ⊂ e′}, e′]. We denote
EC the set of equivalence elements after this splitting process.

Mining Itemset-Based DSP with Gap Constraint 47

Given equivalence element ê = [X , e] ∈ EC, for any element e′ ∈ ê, we have
posList(e,D+) = posList(e′,D+). iDSP-Miner takes each equivalence element
in EC as a set of candidate elements to generate candidate patterns. This leads
generally to a significant reduction in the number of candidate elements. The
details will be discussed in Section 4.2.

Example 7. Consider Table 1. Given α = 0.6, β = 0.3, γ = [0, 2], we see that
EC = {[∅, {milk}], [∅, {lipstick}], [∅, {beef }], [∅, {cola}], [∅, {bread}], [{{bread}},
{bread, perfume}], [{{cola}, {beef }, {coffee}}, {coffee, beef, cola}], [∅, {coffee}]}.

4.2 Pattern Mining

To ensure the completeness of candidate pattern enumeration, iDSP-Miner tra-
verses the set enumeration tree [27] of equivalence elements in EC in a depth-first
manner.

Given a node N in the set enumeration tree, let P̂ be the list of equivalence
elements that occur on the path from the root node to N. Thus, P̂ is a concise
representation of {P | P[i] ∈ P̂[i] for 1 ≤ i ≤ ||P ||, ||P || = ||P̂ ||}. As the elements
represented by an equivalence element occur together, given sequence set D and
gap constraint γ, for P , P ′ ∈ P̂ (P
= P ′), we have Sup(D,P, γ) = Sup(D,P ′, γ).

We define Sup(D, P̂ , γ) = Sup(D,P, γ), where P ∈ P̂ and P[i] is the closed
element of P̂[i] for 1 ≤ i ≤ ||P ||.

Pruning Rule 2. If Sup(D+, P̂ , γ) ≥ α and Sup(D−, P̂ , γ) ≤ β, according to
the minimality condition in the problem definition (Definition 1), all descendants
of N can be pruned.

Pruning Rule 3. If Sup(D+, P̂ , γ) < α, according to Theorem 1, all descen-
dants of N can be pruned.

If Sup(D+, P̂ , γ) ≥ α and Sup(D−, P̂ , γ) > β, then, to search for super-
patterns with lower support in D−, we extend the set enumeration tree by
appending another equivalence element (from EC) as a child of N, to P̂ to
generate a new candidate.

For any pattern satisfying the support contrast condition, iDSP-Miner per-
forms the minimality test. That is, it compares the pattern with the other dis-
covered patterns to remove the non-minimal ones.

To further remove the redundant representation of itemset-DSPs, for the
patterns satisfying the support contrast and minimality conditions, iDSP-Miner
simplifies the representation of patterns as follows. Given two patterns P̂ and P̂ ′

with the same length, let P̂[k] = [X , e] and P̂ ′
[k] = [X ′, e′] (k ∈ [1, ||P̂ ||]). If e′ ∈ X

and P̂[i] = P̂ ′
[i] for 1 ≤ i ≤ ||P̂ ||, i
= k, then we say P̂ and P̂ ′ are mergeable.

iDSP-Miner merges P̂ with P̂ ′ into a new pattern P̂ ′′, such that P̂ ′′
[i] = P̂[i] and

P̂ ′′
[k] = [X ∪ X ′ \ {e′}, e] (1 ≤ k, i ≤ ||P̂ ||, i
= k).

48 H. Yang et al.

Algorithm 1. iDSP-Miner(D+,D−, α, β, γ)
Input: D+: a class of sequences, D−: another class of sequences, α: minimal support

for D+, β: maximal support for D−, γ: gap constraint
Output: Ans: the set of itemset-DSPs of D+ against D− with concise representation

1: initialize Ans ← ∅;
2: E+ ← element instances in D+; E− ← element instances in D−;
3: EC ← {[∅, e] | e ∈ E+};
4: while ∃ê = [X , e] ∈ EC, e′ ∈ E+ such that e′ ∈ ê and e′ 	= e do
5: EC ← EC \ ê ∪ (ê|e′);
6: end while
7: while ∃ê = [X , e] ∈ EC, e′ ∈ E− satisfying Sup(e′, D−) > β such that e′ ∈ ê and

e′ 	= e do
8: EC ← EC \ ê ∪ (ê|e′);
9: end while

10: for each candidate pattern P̂ searched by traversing the set enumeration tree of
EC in a depth-first manner do

11: if Sup(D+, P̂ , γ) < α then
12: prune all super-sequences of P̂ ;
13: end if
14: if Sup(D−, P̂ , γ) ≤ β then
15: prune all super-sequences of P̂ ;
16: if P̂ is minimal then
17: Ans ← Ans ∪ {P̂};
18: end if ;
19: end if
20: end for
21: for every mergeable pair of P̂ , P̂ ′ ∈ Ans do
22: merge P̂ with P̂ ′;
23: end for
24: return Ans;

Example 8. Let P̂ = <[{{coffee, cola}, {beef }}, {coffee, beef, cola}] [∅, {milk}]>,
P̂ ′ = <[{{cola}}, {coffee, cola}] [∅, {milk}]>. Then, we can get <[{{cola},
{beef }}, {coffee, beef, cola}] [∅, {milk}]> by merging P̂ with P̂ ′.

Algorithm 1 gives the pseudo-code of iDSP-Miner. Again, taking Table 1 as
an example, the results of iDSP-Miner include: <[{{bread}},{bread, perfume}]>,
<[∅,{lipstick}]>, and <[{{cola},{coffee}},{coffee, beef, cola}] [∅,{milk}]>. Com-
pared with patterns listed in Table 2, we can see that our method can represent
patterns more concisely.

5 Empirical Evaluation

In this section, we report a systematic empirical study using both real and
synthetic sequence sets to test the effectiveness and efficiency of iDSP-Miner.
All experiments were conducted on a PC computer with an Intel Core i7-3770

Mining Itemset-Based DSP with Gap Constraint 49

Table 4. Sequence set characteristics

Sequence set DB DM IR

Num. of sequences 100 100 100

Num. of items 1921 1966 1477

Avg. element size 4.30 6.67 4.77

Min. element size 1 1 1

Max. element size 49 60 54

Avg. sequence length 30.54 20.12 20.91

Min. sequence length 5 10 7

Max. sequence length 44 37 37

3.40 GHz CPU, and 8 GB main memory, running Windows 7 operating system.
All algorithms were implemented in Java and compiled using JDK 8.

5.1 Effectiveness

Arnetminer1 groups computer science researchers by different research topics and
computes the H-index score for each researcher. We apply iDSP-Miner to ana-
lyzing the differences of publication preferences among researchers in database
(DB), data mining (DM) and information retrieval (IR). We fetch top 100 schol-
ars in each topic sorted by the H-index score. For each researcher, we construct
a sequence, in which an item is the title of a conference or a journal where the
researcher published a paper, and an element is the set of items that are in the
same year. We collect the publication information of each researcher until 2013
from DBLP2. Table 4 shows the characteristics of the sets of sequences. We use
“D+vsD−” to denote the two sequence sets that we selected to analyze. For
example, “DBvsIR” implies that we find itemset-DSPs from DB against IR.

Table 5 summarizes the characteristics of discovered patterns. We can see
that with the increase of α, the number of itemset-DSPs, the average/maximum
pattern length, and the average/maximum element size are typically decreased.

Table 6 lists the discovered itemset-DSPs with concise representation in
IRvsDB when α (min support for IR) = 0.4, β (max support for DB) = 0.2,
and γ (gap constraint) = [0, 5]. We can observe that, as shown by patterns
<[{{CIKM}}, {SIGIR, CIKM}]> and <[∅, CIKM] [∅, {CIKM}] [∅, {CIKM}]>,
researchers in IR prefer publishing in SIGIR and CIKM conferences.

Figure 2 shows the number of itemset-DSPs and the number of itemset-DSPs
with concise representation. We can see that the number of discovered patterns
is reduced by our equivalence element based representation. Especially, when the
number of itemset-DSPs is large, using a small number of itemset-DSPs where
equivalence items are used, one can represent many more detailed itemset-DSPs
in a highly structured manner. Thus, the results of iDSP-Miner are easier to
manage and easier to digest for user. Notably, if the average element size is close
1 http://arnetminer.org/
2 http://dblp.uni-trier.de/

http://arnetminer.org/
http://dblp.uni-trier.de/

50 H. Yang et al.

Table 5. Characteristics of discovered patterns by iDSP-Miner (β = 0.2, γ = [0, 5])
(# iDSP(CR): the number of itemset-DSPs with concise representation, ||P ||: pattern
length, |e|: element size)

Sequence sets α # iDSP(CR) Avg. ||P || Max. ||P || Avg. |e| Max. |e|

DBvsDM

0.25 208 2.31 5 1.05 3
0.3 153 2.29 5 1.05 2
0.35 109 2.26 5 1.05 2
0.4 82 2.15 4 1.07 2
0.45 52 2.31 4 1.03 2

DBvsIR

0.25 47 1.04 2 1.30 3
0.3 30 1.03 2 1.25 2
0.35 21 1 1 1.26 2
0.4 17 1 1 1.26 2
0.45 12 1 1 1.2 2

DMvsIR

0.25 96 1.16 3 1.40 3
0.3 63 1.16 3 1.38 3
0.35 46 1.20 3 1.33 3
0.4 35 1.27 2 1.24 2
0.45 27 1.28 2 1.17 2

DMvsDB

0.25 85 1.17 4 1.39 3
0.3 54 1.17 4 1.37 3
0.35 34 1.08 3 1.38 3
0.4 25 1.09 3 1.29 2
0.45 18 1.06 2 1.24 2

IRvsDB

0.25 38 1.06 3 1.56 3
0.3 27 1.07 3 1.51 3
0.35 22 1.10 3 1.32 3
0.4 15 1.10 3 1.27 2
0.45 8 1.11 3 1.29 2

IRvsDM

0.25 54 1.42 6 1.37 3
0.3 37 1.41 5 1.35 3
0.35 31 1.57 5 1.18 3
0.4 23 1.66 4 1.13 2
0.45 18 1.86 4 1.09 2

to 1.0, then the difference in the output size between the concise representation
and listing all patterns explicitly is likely to be small, like in Figure 2 (a).

We note that iDSP-Miner is efficient. For example, the average runtime is
2.51 seconds when α = 0.4, β = 0.2 and γ = [0, 5]. We will present more analysis
on the efficiency of iDSP-Miner in the next section.

5.2 Efficiency

To the best of our knowledge, there were no previous methods tackling exactly
the same mining problem as the one studied in this paper. Therefore, we evaluate
the efficiency of only iDSP-Miner and the baseline method, which takes each
subset of an element instance as a candidate element. Please note that the mining

Mining Itemset-Based DSP with Gap Constraint 51

Table 6. item-DSPs with concise representation for IRvsDB (α = 0.4, β = 0.2, γ =
[0, 5])

<[∅, {TREC, SIGIR}]> <[{{CIKM}}, {SIGIR, CIKM}]>
<[∅, {JASIST}]> <[∅, {SIGIR, SIGIR Forum}]>

<[∅, {SIGIR, Inf. Retr.}]> <[∅, {SIGIR, Inf. Process. Manage.}]>
<[∅, WWW]]> <[∅, {ACM Trans. Inf. Syst.}] [∅, {CIKM}]>

<[{{CIKM}}, {TREC, CIKM}]> <[∅, {TREC, Inf. Process. Manage.}]>
<[∅, {RIAO}]> <[{{CIKM}}, {CIKM, SIGIR Forum}]>
<[∅, {JASIS}]> <[∅, CIKM] [∅, {CIKM}] [∅, {CIKM}]>

<[∅, {SIGIR, ECIR}]>

(a) DB vs DM (b) DB vs IR (c) DM vs IR

(d) DM vs DB (e) IR vs DB (f) IR vs DM

Fig. 2. Comparison of the number of itemset-DSPs and the number of itemset-DSPs
with concise representation

result of iDSP-Miner is the set of itemset-DSPs with concise representation, while
the mining result of the baseline method is the set of itemset-DSPs.

We generate synthetic sequence sets for efficiency test. There are four param-
eters for synthetic sequence set generation: the number of items (denoted by NI),
the number of sequences (denoted by NS), the average sequence length (denoted
by SL), and the average element size (denoted by ES).

Figure 3 shows the efficiency test of iDSP-Miner with respect to α, β and γ
when NI = 30, NS = 50, SL = 10 and ES = 4. We can see that the runtime of
both iDSP-Miner and the baseline method decrease with the increase of α and
β, while the runtime of both iDSP-Miner and the baseline method increase with
larger gap constraint. iDSP-Miner runs faster than the baseline method, since

52 H. Yang et al.

0.1 0.2 0.3 0.4 0.5

10
0

10
2

α

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(a) β=0.0, γ=[1,3]

0 0.1 0.2 0.3 0.4
0.4

0.6

0.8

1

1.2

1.4

β

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(b) α=0.4, γ=[1,3]

[0,1] [0,2] [0,3] [0,4] [0,5]
0

0.5

1

1.5

2

γ

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(c) α=0.4, β=0.0

Fig. 3. Efficiency evaluation

10 20 30 40 50

10
0

10
2

NI

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(a) NS=50, SL=10, ES=4

30 50 70 90 110
0

5

10

15

20

NS

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(b) NI=30, SL=10, ES=4

10 20 30 40 50
0

100

200

300

SL

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(c) NI=30, NS=50, ES=4

3 4 5 6 7

10
0

10
2

ES

R
un

tim
e

(s
)

Baseline
iDSP−Miner

(d) NI=30, NS=50, SL=10

Fig. 4. Scalability evaluation

iDSP-Miner employs a concise representation for candidate patterns to avoid
repeated computation.

Figure 4 illustrates the scalability of iDSP-Miner with respect to NI, NS,
SL and ES when α = 0.2, β = 0.0 and γ = [1,3]. When NI becomes larger, more
elements can be generated. However, the number of elements/patterns satisfying
the positive support threshold condition decreases. Thus, the runtime is reduced
by Pruning Rules 1 and 3. On the other hand, more candidate patterns will
be generated by increasing NS, SL and ES. Correspondingly, the runtime of
iDSP-Miner will increase. Again, we can see that iDSP-Miner runs faster than
the baseline method for all parameter settings.

Mining Itemset-Based DSP with Gap Constraint 53

Please note that in some cases in Figure 3 and Figure 4, logarithmic scale has
been used for the runtime to better demonstrate the difference in the behavior
between iDSP-Miner and the baseline. This should be clear from the figures.

6 Conclusions

In this paper, we propose and study a new problem of mining itemset-based
distinguishing sequential patterns with a gap constraint. To mine these patterns
and to present the result sets concisely, we propose an algorithm called iDSP-
Miner. Our experiments verify the effectiveness and efficiency of iDSP-Miner.

In our work we apply the straightforward assumption that the user preference
for output is a minimum distinguishing sequential pattern. It is interesting to
explore strategies for incorporating domain constraints into itemset-DSP min-
ing, and design a tuning mechanism for positive and negative support thresholds.
Instead of the traditional gap constraint used in this paper, we are also consid-
ering the use of temporal gap constraints for sequences of timestamped events.

References

1. Dong, G., Pei, J.: Sequence Data Mining. Springer-Verlag, Berlin, Heidelberg
(2007)

2. Dong, G., Bailey, J., eds.: Contrast Data Mining: Concepts, Algorithms, and Appli-
cations. CRC Press (2012)

3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, pp. 3–14. IEEE Computer
Society, Washington, DC (1995)

4. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1–2), 31–60 (2001)

5. Ji, X., Bailey, J., Dong, G.: Mining minimal distinguishing subsequence patterns
with gap constraints. Knowl. Inf. Syst. 11(3), 259–286 (2007)

6. Yan, X., Han, J., Afshar, R.: Clospan: mining closed sequential patterns in large
databases. In: SDM (2003)

7. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proceedings of the 15th International Conference on Data Engi-
neering, pp. 106–115. IEEE Computer Society, Washington, DC (1999)

8. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with gap
requirement from sequences. ACM Trans. Knowl. Discov. Data 1(2), August 2007

9. Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., Yu, P.S.: Discovering frequent
closed partial orders from strings. IEEE Trans. on Knowl. and Data Eng. 18(11),
1467–1481 (2006)

10. Ferreira, P.G., Azevedo, P.J.: Protein sequence pattern mining with constraints.
In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD
2005. LNCS (LNAI), vol. 3721, pp. 96–107. Springer, Heidelberg (2005)

11. She, R., Chen, F., Wang, K., Ester, M., Gardy, J.L., Brinkman, F.S.L.: Frequent-
subsequence-based prediction of outer membrane proteins. In: Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 436–445. ACM, New York, NY (2003)

54 H. Yang et al.

12. Zeng, Q., Chen, Y., Han, G., Ren, J.: Sequential pattern mining with gap con-
straints for discovery of the software bug features. Journal of Computational Infor-
mation Systems 10(2), 673–680 (2014)

13. Conklin, D., Anagnostopoulou, C.: Comparative pattern analysis of cretan folk
songs. Journal of New Music Research 40(2), 119–125 (2011)

14. Rabatel, J., Bringay, S., Poncelet, P.: Contextual sequential pattern mining. In:
Proceedings of the 2010 IEEE International Conference on Data Mining Work-
shops. ICDMW 2010, pp. 981–988. IEEE Computer Society, Washington, DC
(2010)

15. Feng, J., Xie, F., Hu, X., Li, P., Cao, J., Wu, X.: Keyword extraction based on
sequential pattern mining. In: Proceedings of the Third International Conference
on Internet Multimedia Computing and Service. ICIMCS 2011, pp. 34–38. ACM,
New York, NY (2011)

16. Chang, J.H.: Mining weighted sequential patterns in a sequence database with a
time-interval weight. Know.-Based Syst. 24(1), 1–9 (2011)

17. Cécile, L.K., Chedy, R., Mehdi, K., Jian, P.: Mining statistically significant sequen-
tial patterns. In: Proceedings of the 13th IEEE International Conference on Data
Mining (ICDM2013). ICDM2013, pp. 488–497. IEEE Computer Society, Dallas,
TX (2013)

18. Antunes, C., Oliveira, A.L.: Generalization of pattern-growth methods for sequen-
tial pattern mining with gap constraints. In: Perner, P., Rosenfeld, A. (eds.) MLDM
2003. LNAI 2734, vol. 2734, pp. 239–251. Springer, Heidelberg (2003)

19. Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Chun Hsu,
M.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern
growth. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 215–224. IEEE Computer Society, Washington, DC (2001)

20. Xie, F., Wu, X., Hu, X., Gao, J., Guo, D., Fei, Y., Hua, E.: MAIL: mining sequential
patterns with wildcards. Int. J. Data Min. Bioinformatics 8(1), 1–23 (2013)

21. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with
gap requirement from sequences. ACM Transactions on Knowledge Discovery from
Data (TKDD) 1(2), 7 (2007)

22. Shah, C.C., Zhu, X., Khoshgoftaar, T.M., Beyer, J.: Contrast pattern mining with
gap constraints for peptide folding prediction. In: FLAIRS Conference, pp. 95–100
(2008)

23. Deng, K., Zäıane, O.R.: Contrasting sequence groups by emerging sequences. In:
Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808,
pp. 377–384. Springer, Heidelberg (2009)

24. Wang, X., Duan, L., Dong, G., Yu, Z., Tang, C.: Efficient mining of density-aware
distinguishing sequential patterns with gap constraints. In: Bhowmick, S.S., Dyre-
son, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA
2014, Part I. LNCS 8421, vol. 8421, pp. 372–387. Springer, Switzerland (2014)

25. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and
differences. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 43–52 (1999)

26. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and
delta-discriminative emerging patterns. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD 2007,
pp. 430–439 (2007)

27. Rymon, R.: Search through systematic set enumeration. In: Proc. of the 3rd
Int’l Conf. on Principle of Knowledge Representation and Reasoning. KR 1992,
pp. 539–550 (1992)

Mining Correlations on Massive Bursty Time
Series Collections

Tomasz Kusmierczyk(B) and Kjetil Nørv̊ag

Norwegian University of Science and Technology (NTNU), Trondheim, Norway
{tomaszku,noervaag}@idi.ntnu.no

Abstract. Existing methods for finding correlations between bursty
time series are limited to collections consisting of a small number of
time series. In this paper, we present a novel approach for mining cor-
relation in collections consisting of a large number of time series. In our
approach, we use bursts co-occurring in different streams as the measure
of their relatedness. By exploiting the pruning properties of our mea-
sure we develop new indexing structures and algorithms that allow for
efficient mining of related pairs from millions of streams. An experimen-
tal study performed on a large time series collection demonstrates the
efficiency and scalability of the proposed approach.

1 Introduction

Finding correlations between time series has been an important research area
for a long time [10]. Previously, the focus has mostly been on a single or few
time series, however recently many new application areas have emerged where
there is a need for analyzing a large number of long time series. Examples of
domains where there is a need for detecting correlation between time series
include financial data, data from road traffic monitoring sensors, smart grid
(electricity consumption meters), and web page view counts.

Bursts are intervals of unexpectedly high values in time series and high fre-
quencies of events (page views, edits, clicks etc.) in streams [6]. In contrast to the
raw time series, bursts reduce the information to the most interesting by filtering
out the low intensity background so that only information about regions with
the highest values are kept (i.e., what would be the most visible on plots; see
Fig. 1). In this paper, we introduce the problem of identifying streams of bursts
that behave similarly, i.e., are correlated. We propose to use bursts as indicators
of characteristics shared between streams. If there are many correlated bursts
from two streams, it means that these streams are probably correlated too, i.e.,
respond to the same underlying events. However, different streams may vary in
sensitivity, may be delayed or there might be problems in the bursts extraction
process. As an example, consider Fig. 1 that shows two streams representing
page views of two related Wikipedia articles; the first representing the TV show
The Big Bang Theory, the second one represents one of the main characters from
the show. Although the plots differ in intensity and bursts vary in heights, bursts

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 55–71, 2015.
DOI: 10.1007/978-3-319-18120-2 4

56 T. Kusmierczyk and K. Nørv̊ag

locations match. Consequently, a standard way of correlating bursts is overlap
relation, overlap operator or overlap measure [11,12]. In that sense, bursts are
assumed to be related if they overlap and the measure of stream similarity pro-
posed in this paper is based on this relation.

Fig. 1. Comparison of page views of two related Wikipedia articles

The main challenge of correlation analysis of many streams is the computa-
tional complexity of all-pairs comparison. Approaches proposed for general time
series are not appropriate for streams of bursts, since binary intervals have dif-
ferent nature than real-value, continuous signals. Therefore, we propose novel
indexing structures and algorithms devoted particularly to efficient mining of
correlated bursty streams. The core of the approach is a Jaccard-like measure
based on the overlap relation and using its pruning properties to limit the number
of pairs of streams that must be compared. Additionally, the bursts are indexed
in a hybrid index that provides for efficient matching of streams, further reducing
the computation cost of the correlation analysis.

We provide an extensive evaluation of our approach where we study the effect
of different similarity thresholds and collection sizes. Although our approach is
generic and can be applied in any domain, in this paper we perform the experi-
mental evaluation on burst streams extracted from time series representing the
number of page views per hour for Wikipedia articles. This collection contains a
large number of time series and is freely available, thus facilitating reproducibil-
ity of our experiments.

To summarize, the main contributions of the paper include:
– A measure and framework for correlating streams using bursts.
– Indexes and algorithms for efficient mining of correlated bursty streams.
– An experimental evaluation on a large collection of time series studying the

efficiency and scalability of the approach.
The rest of this paper is organized as follows. Sect. 2 gives an overview of

related work. In Sect. 3 we formulate the main task and introduce needed notions.
In Sect. 4 we discuss issues related to measures of similarity. Sect. 5 describes
the indexes and algorithms used in our approach. Our experimental results are
presented in Sect. 6. Finally, in Sect. 7 we conclude the paper.

Mining Correlations on Massive Bursty Time Series Collections 57

2 Related Work

There is a large amount of related work on time series and correlation. For
example, Gehrke et al. [5] designed a single-pass algorithm that approximately
calculates correlated aggregates of two or more streams over both landmark and
sliding windows. In [4] correlations were used for measuring semantic related-
ness in search engine queries. In [15] it is studied how to select leading series in
context of lagged correlations in sliding windows. However, the main challenge
of correlation analysis is computational complexity of all-pairs comparison. Zhu
and Shasha [17] addressed the problem of monitoring thousands of data streams.
Mueen et al. [9] considered computing correlations between all-pairs over tens
of thousands of time series. In both papers, they used the largest coefficients of
the discrete Fourier transform as the approximate signal representation. In other
works, researchers were mining and correlating large numbers of time series (mil-
lions of streams) using symbolic representation [2,3]. However, binary intervals
(bursts) cannot be effectively compressed (not loosing much information and
without introducing artifacts) and indexed in that way. Similarly, we rejected
wavelets as not matching bursts characteristics and efficient processing require-
ments.

Our task has similarities to clustering (a survey on clustering of related time
series can be found in [8]). Those techniques are either not scalable, require
embedding into Euclidean space, or provide only approximate results. Related
works can be also found in the area of mining correlated sets (e.g. [1]) and also
sequential patterns. However, bursts (with overlap relation) cannot be trans-
lated into set elements or items without additional assumptions or introducing
transformation artifacts.

There are several papers exploiting bursts in a way similar to ours. Vlachos
et al. [12] focused on indexing and matching single bursts. This task is different
from our since bursts are considered independently within streams. Vlachos et
al. adapted containment encoded intervals [16]. Although the proposed index is
efficient in answering queries composed of sets of bursts, is not able to handle
whole streams. An interesting approach to discover correlated bursty patterns
containing bursts from different streams, can be found in [13,14]. The basic
idea is to introduce a latent cause variable that models underlying events. A
similar approach was applied in [7] where they used hidden Markov models with
Poisson emission distributions instead. However, all these approaches are based
on matching probabilistic models and are not scalable, the authors assume not
more than some hundreds of streams.

3 Preliminaries

We assume a set of N raw streams of basic events (or time series). Time intervals
of untypically high frequencies (or values) are called bursty intervals (bursts).

Definition 1. Burst b is time interval [start(b), end(b)] of high frequency of
basic events, where start(b) denotes starting time point of the burst and end(b)
stands for ending time point.

58 T. Kusmierczyk and K. Nørv̊ag

As mentioned above, we do not consider bursts height or width but only the
fact of occurrence. The bursts are extracted from the original streams either
in on-line or offline manner, for example using the algorithm of Kleinberg [6].
Similar to [11,12], for the purpose of measuring similarity we use overlapping
bursts. We define the overlap relation as follows:

Definition 2. Overlap relation between two bursts b and b′: b ◦ b′ ⇐⇒
(start(b) ≤ start(b′) ∧ end(b) ≥ start(b′)) ∨ (start(b′) ≤ start(b) ∧ end(b′) ≥
start(b)). The overlap relation is reflexive and symmetric but not transitive.

The burst extraction process results in a set of bursty streams:
D = {E1, E2, ..., EN} where N = |D|.
Definition 3. Streams of bursty intervals are defined as Ei = (bi1, b

i
2, ...) where

bij ◦ bik ⇐⇒ j = k and start(bij) > start(bik) ⇐⇒ j > k.

We define overlapping between streams as follows:

Definition 4. Set of bursts of Ei overlapping with Ej: Oi
j = {b : b ∈ Ei ∧

∃b′∈Ej b ◦ b′}. Set of non-overlapping bursts of Ei when compared to Ej:
N i

j = Ei \ Oi
j. We denote ei = |Ei|, oij = |Oi

j |, ni
j = |N i

j |.
The main problem we address in this paper is how to efficiently mine inter-

esting pairs of bursty streams.

Definition 5. Interesting correlated streams are defined as pairs of streams,
which for some measure of similarity J have similarity no smaller than a
threshold JT .

Definition 6. We define a set Sn containing all streams with exactly n
bursts: Sn = {Ei : Ei ∈ D ∧ ei = n}.

4 Correlation of Bursty Streams

We aim at mining streams having correlated (overlapping) bursts. Neither set
oriented measures such as the Jaccard index, contingency measures such as the
phi coefficient nor general time series measures such as dynamic time-warping or
longest common subsequence are directly applicable. Because of overlap relation
properties, streams of bursts cannot be mapped to sets. Bursts could be grouped
in equivalence classes according to underlying events, but such mapping is not
available. Also, interpreting intervals (bursts) as continuous, real signals implies
the need of adjustments which at the end introduce undesirable effects. For
example, scaling time to maximize stream matching violates the assumption
about simultaneous occurrence of related bursts. Consequently, we decided to
focus on the overlap relation e.g., our measure should rely on oji ,o

i
j ,n

j
i , and ni

j .
Below, we will discuss possible solution and desired properties.

We are interested in measures that can be efficiently tested against many pairs
of streams. We would like to be able to prune pairs that have similarity below
some threshold in advance. For that purpose, we introduce pruning property.

Mining Correlations on Massive Bursty Time Series Collections 59

Definition 7. Similarity measure s has pruning property if s ≥ sT =⇒
|ei − ej | ≤ f(ei, ej , sT) where sT is some constant value of similarity (threshold)
and f is some function.

For measures having this property, the number of pairs of streams to be
considered can be reduced as only pairs having similar (difference is limited
by f) number of bursts can be scored above the threshold sT . Naturally, we
would like f to be as small as possible. In practice, streams have limited burst
counts. Then, only f obtained values below that limit are interesting and allow
for pruning.

We adapted one of the measures used widely in areas such as information
retrieval and data mining, the Jaccard index. Unfortunately, bursts are are
objects with properties different from set elements. In the general case there
is no simple mapping, so the measure needs to be defined for the new domain as
shown below. If there is a one-to-one assignment between overlapping elements
from both streams, our measure reduces to standard Jaccard index. In that case,
overlapping pairs of bursts from both streams are treated as common elements
of sets. This situation is obviously a special case, in general one interval can
overlap with two or more intervals. Because of that, our measure also does not
preserve triangle inequality.

Definition 8. For the purpose of measuring similarity of bursty streams we
define an adapted Jaccard index as:

J(Ei, Ej) =
min(oji , o

i
j)

ej + ei − min(oji , o
i
j)

∈ [0, 1]

Lemma 1. J has pruning property with f(ei, ej , JT) = max(ei, ej) −
�max(ei, ej) · JT �

The maximum value of J for a pair of two streams Ei, Ej is obtained when
min(oji , o

i
j) = min(ej , ei). Then the measure reduces to: Jmax = min(ej ,ei)

max(ej ,ei) →
J ≤ min(ej ,ei)

max(ej ,ei) . Without loss of generality, we assume that ei ≥ ej . This implies

J ≤ ej

ei and for fixed JT : JT · ei ≤ ej ≤ ei. Consequently, to obtain related pairs,
sets Sn, need to be compared only with streams in Sm where m ∈ [�n · JT �, n].

Definition 9. We define connected counts connected(n) as the set of such
values m for some burst count n that m ∈ [n − f(n,m, sT), n]. We denote n as
the base count.

5 Indexing and Mining

Mining related pairs is a computationally expensive task. The cost of similarity
measure calculation for a single pair Ei, Ej is O(max(ei, ej)). For all pairs, it
sums up to O(|D|2e), where e stands for average number of bursts per stream.

60 T. Kusmierczyk and K. Nørv̊ag

Fig. 2. Overview of data workflow

However, thanks to the pruning property of the measure, we do not need to
consider all pairs: we can prune those differing much in number of bursts. Unfor-
tunately, what is left can be also expensive to compute. Therefore further opti-
mizations are needed.

A high level description of our approach is presented on Fig. 2. The work-
flow can be used to describe both an offline setting where source streams are
stored in some local storage, and an on-line setting where streams of events are
produced in a continuous manner. In the latter case we assume that the burst
detection algorithm is applied immediately, and therefore the amount of data is
significantly reduced. Although initially there can be millions of raw streams, in
real-life contexts we expect no more than some of tens of bursty intervals per
stream. Each interval can be stored using only two numbers (start and end time
point), and then we are able to store in main memory all bursts and all streams
from the interesting period of time.

Bursty streams are indexed in a high level index composed of buckets. Buckets
are responsible for keeping track of subsets of streams (or pairs of streams)
and can contain lower-level indexes. The partitioning into buckets is based on
number of bursts per stream. Mining of correlated pairs is done by comparing
buckets between themselves and/or against stored streams. However, details vary
according to approaches described below.

5.1 Naive Approach

As baseline, which we call Naive, we compare all pairs that are not pruned.
As described above, streams are partitioned to buckets according to number of
bursts. I.e., set Sn is placed in bucket n, and there is no further lower-level
indexes within the buckets. To obtain all related pairs, for each base count n we
simply check all connected counts m and compute the correlation J between all
possible pairs of streams from Sn × Sm (n-th bucket vs. each of m-th buckets).

5.2 Interval Boxes Index

The naive baseline can be improved by speeding up the matching within buckets.
Each bucket n is assigned a lower-level index responsible for keeping track of Sn.
During the mining, the bucket n index is queried with all streams having con-
nected counts m, i.e., queried with streams from

⋃
m∈connected(n) Sm. One app-

roach that could be used is to apply some of the existing indexes designed for

Mining Correlations on Massive Bursty Time Series Collections 61

Fig. 3. Example of IB index: indexed
stream Ei and querying stream
Ej (k = 2)

Fig. 4. Structure of a single LS index

efficient retrieval of (single) overlapping bursts, e.g., containment encoded inter-
vals [16] for selection of candidates. Then candidate streams returned by the
index, already having at least one overlapping burst with the query stream, are
validated using the similarity measure and those under the threshold are rejected.
Unfortunately this does not scale well, because candidate sets increase propor-
tionally to number of streams in data set. In order to overcome this, we propose
to consider k-element, ordered subsets of bursts. Each k-subset is placed in a k-
dimensional space as shown in Fig. 3. The first burst from the subset determines
interval in the first dimension, second burst determines interval in the second
dimension, and so on. A k-element subset determines a k-dimensional box. For
example, in Fig. 3, we have all possible 2-dimensional boxes representing all
possible ordered 2-subsets of streams Ei and Ej .

The idea of the Interval Boxes (IB) index is to have a k-dimensional box
assigned to stream Ei in the index, that will match (overlap) some k-dimensional
box assigned to Ej that the index will be queried with. Assuming that Ej , Ei

have similarity above some similarity threshold JT , there are oji bursts of Ej over-
lapping with oij bursts of Ei. Consequently, there are two boxes: μ-dimensional,
where μ = min(oji , oij), of Ej and μ-dimensional of Ej that overlap. What is
more, all k-dimensional projections of these boxes also overlap. Now instead
of single burst, we are matching k bursts at once. Because we are matching k
bursts at the same time, the probability of spurious candidates (that will be
later rejected as having less than the similarity threshold) is low. The higher k
we choose, the lower that probability and the additional cost of validating.

In practice, boxes can be stored in any spatial index that supports overlap
queries. In our approach R-trees were used. Because bursts are ordered, only the
”top” half of the k-dimensional space is filled. Ordering of bursts is important

62 T. Kusmierczyk and K. Nørv̊ag

Algorithm 1. Generation of k-dimensional boxes
1: function Boxes(E, k, r)
2: C ← Combinations(E, k)
3: C′ ← ∅
4: for all r′ = 1.. min(r, ρ − 1) do
5: k′ ← k − r′

6: for all c′ ∈ Combinations(E, k′) do
7: for all I ∈ CombinationsRep(1..|c′|, r′) do
8: c′ ← c′ with bursts of indices I repeated
9: C′ ← C′ ∪ c′

10: return C ∪ C′

Combinations(S, k) - k-element ordered combinations of S
CombinationsRep(S, k) - combinations with replacement

because of complexity issues. It significantly reduces number of subsets to be
considered and inserted into the index. However, the guarantee that no poten-
tially matching streams will be missed still holds. If some burst b from stream
Ei overlaps with some b′ from stream Ej it means that those later than b cannot
overlap with these being earlier than b′.

One should also notice boxes on the diagonal. Pure subsets (without replace-
ment) do not cover situations where one burst overlaps with many. In such
cases, some burst must be repeated in several consecutive dimensions (bursts
are ordered). For k = 2 each burst can be used once, twice or not used at all in
the box. For k = 3 each burst can be repeated once, twice, three times or not
at all as long as no more than 3 dimensions are used in total. Higher k implies
many more combinations to be considered. This can significantly increase the
number of boxes and decrease the efficiency. On the other hand multiple over-
lapping is not very probable. To prevent inserting and querying indexes with
unnecessarily many boxes, we introduced an additional parameter ρ that limits
how many times, i.e, in how many dimensions, each burst can be repeated. As
a result, some pairs, i.e. relying on multiple overlaps between bursts, may be
missing but the mining speed increases significantly.

Mining correlated pairs of streams is done by querying all the indexes with
streams having connected counts. Index in bucket n, where n is the base count,
is queried with all streams from Sm, for all possible connected counts m. The
index itself is queried with all possible k-dimensional boxes generated from query
stream. For each query box all overlapping boxes from the index are retrieved. For
each of them candidate pair (query stream and matching stream from the index)
is extracted. In the final step, candidate pairs are validated against similarity mea-
sure J and only these having no less than threshold value JT are kept.

Algorithm 1 shows how k-dimensional boxes are generated. It is composed of
two parts. In line 2, boxes without repetitions are generated. In lines, 3-9 boxes
having up to r dimensions (given as the parameter) being repetitions of previous
dimensions are computed (recall that bursts and dimensions are ordered). An
important line is 4, where we additionally limit number of dimensions being

Mining Correlations on Massive Bursty Time Series Collections 63

Algorithm 2. Querying the IBHD index

1: function Query(Ej , JT)
2: n ← Index.baselevel
3: k ← Index.dimensionality
4: m ← |Ej | � We assume �n · J ′

T � ≤ m ≤ n
5: r ← m − �JT · (n + m)/(1 + JT)�
6: CANDIDATES ← ∅
7: for all B ∈ Boxes(Ej , k, r) do
8: MATCHING ← Index.getOverlapping(B)
9: STREAMS ← B′.stream for each B′ ∈ MATCHING

10: CANDIDATES ← CANDIDATES ∪ STREAMS
11: OUTPUT ← ∅ � Subset of interesting pairs with Ej on the first position
12: for all Ei ∈ CANDIDATES do
13: if J(Ej , Ei) ≥ JT then
14: OUTPUT ← OUTPUT ∪ (Ej , Ei) � Output pair found

15: return OUTPUT

repetitions with ρ. For ρ = 1, the set of combinations with repetitions C ′ remains
empty.

The number of k-subsets (and consequently k-boxes) without replacement
(ρ = 1) of some stream Ei is equal to

(
ei

k

)
. For higher values of ρ it is even

more. To keep the number of generated boxes (both in the index and in queries)
relatively small, k should be either very small or close to ei. Consequently, we
introduce two types of indexes: IBLD (low dimensional, for small k-s) and IBHD
(high dimensional, for big k-s) that have very different properties.

IBLD Index. IBLD (low dimensional) indexes are ordinary k-dimensional (e.g.,
k = 2) R-trees. The dimensionality k is constant for indexes in all buckets.
Consequently, insertion, deletion and querying require generation of all possible
k-dimensional boxes.

What is important, IBLD cannot be used for streams having very small
number of bursts (e.g. ∼ k) and for very low values of threshold. The index does
not work when the similarity for output pair (by output pair we mean the pair
that has similarity above the threshold) of streams is obtained for number of
overlapping bursts (measured with oij , oji) lower than k.

IBHD Index. IBHD (high dimensional) indexes require k to be as high as
possible in order to reduce overall size. On the other hand, if k > μ we can
miss matching between some pairs. From that we imply k = μ. Unfortunately,
μ depends on the measure threshold. Consequently, IBHD indexes are built for
some threshold J ′

T and cannot be used for finding pairs of similarity below this
threshold. For index built for J ′

T , only values JT ≥ J ′
T can be used. The border

situation is when all bursts of stream having m′ = �J ′
T ·n� (the lowest number of

bursts that stream must have to be compared to streams having n bursts) overlap

64 T. Kusmierczyk and K. Nørv̊ag

with bursts of stream having n bursts. It means k = �J ′
T · n�. To match streams

having m bursts for m > m′, higher values of k would be better. Unfortunately,
this would introduce additional costs both in computations and space needed.
Therefore, we prefer to have a single index for whole range of connected counts
m ∈ [m′, n] and for each n we choose k = m′. This value is the highest possible,
guaranteeing not missing any pairs (holds when ρ = ∞; for ρ < ∞ some pairs
may be missing but not because of selection of k and due to some boxes being
skipped).

As mentioned earlier, one of the major issues influencing speed is the pos-
sibility of single burst overlapping with many. Fortunately, in IBHD indexes,
only a limited number of dimensions needs to be covered with repeated (copied)
bursts. For example, if n = 10 and JT = 0.7, the lowest m = 7. It means
that min(oji , o

i
j) = 7 and at least 7 out of 10 bursts must be different. Only

3 dimensions can be repeated. In general, for base count n: r = n − �JT · n�.
For connected counts m situation is slightly different (as m ≤ n) and r =
m − �JT (n + m)/(1 + JT)�.

Algorithm 2 shows how above ideas can be implemented in practice. The
index keeps track of streams having n bursts and can handle queries of streams
having m ∈ [m′, n] bursts. For input stream Ej all possible k-dimensional boxes
are generated. Each of these boxes is used to query internal index (e.g., R-Tree).
The internal index returns boxes overlapping with query boxes. For each returned
box relevant stream identifier is extracted. Then, streams are appended to the
candidates set. Finally, all generated candidate streams Ei are compared to Ej

using similarity measure J . If the value is above the threshold JT the pair (Ej ,
Ei) is included in the result set.

5.3 List-Based Index

For the IB approach, in bucket n we store the index responsible for keeping track
of streams from Sn. An alternative is to use buckets indexed with two values:
base count n and some connected count m. Each bucket contains a single List-
based (LS) index covering both Sn and Sm. The number of connected counts to
be considered depends on the predetermined threshold J ′

T . Consequently, such
an architecture is able to support mining for thresholds JT ≥ J ′

T .
The structure of a single LS index is shown in Fig. 4. For LS we use the

notion of discrete time where the timeline is divided with some granularity (e.g.,
hour, day, week; depending on data characteristics) into time windows. In such
a setting bursts must be adjusted to window borders. For each window we store
the information about all bursts overlapping with it. Consequently, the index is
a list of sets of references pointing at bursts where a single set represents single
time window.

For the Naive and IB approaches, mining was done by querying proper
indexes with all of the input streams. Using LS index it is done directly. Algo-
rithm 3 presents how values of oij ,o

j
i are computed. The main loop (lines 5-21)

iterates over all time windows (sets of references) indexed with t. In each step
(for each t), four sets are computed: ACTIVE, NEW, OLD, and END. ACTIVE

Mining Correlations on Massive Bursty Time Series Collections 65

is a set of bursts active in the current time window (taken directly from the
index). NEW is a set of bursts that were not active in the previous (t − 1)-th
time window but are active in the current one, OLD contains those active both
in the current and the previous window and END those active in the previous
but not in the current one. A map (dictionary) OVERLAPS contains sets of
streams overlapping with bursts active in the current time window. Keys are
bursts and values are sets of streams. Maintenance is done in lines 11-12. When
a burst ends, it is removed from the map. Pairs of overlapping bursts that were
not seen previously (in the previous step of the main loop) are those from the
set NEW × NEW ∪ OLD × NEW. For each of these pairs the map OVERLAPS
and the map o are updated in lines 16-21. Using the map o, candidate pairs of
streams can be validated against the threshold JT . The final step of the mining
(lines 22-26) is then validation of all pairs included in the map o. Only pairs
having at least one pair of bursts overlapping are considered (included in the o).

Algorithm 3. Candidates generation and validation in LS index
1: function Query(JT)
2: o ← ∅ � dictionary {(i, j) → current value of oji }
3: PREV ← ∅ � empty set of bursts
4: OVERLAPS ← ∅ � dictionary {burst → set of overlapping streams}
5: for all t = 1...Index.length do � Iterate over consecutive windows
6: ACTIVE ← Index.interval[t] � Bursts in t
7: NEW ← ACTIVE\PREV � New bursts
8: OLD ← ACTIVE\NEW � Old bursts
9: END ← PREV\ACTIVE � Ending bursts

10: PREV ← ACTIVE

11: for all b ∈ END do
12: delete OVERLAPS[b]

13: for all b, b′ ∈ NEW × NEW ∪ OLD × NEW do
14: i ← b.streamindex
15: j ← b′.streamindex
16: if j �∈ OVERLAPS[b] then
17: OVERLAPS[b] ← OVERLAPS[b] ∪ {j}
18: oij = oij + 1 � Increase count

19: if i �∈ OVERLAPS[b′] then
20: OVERLAPS[b′] ← OVERLAPS[b′] ∪ {i}
21: oji = oji + 1 � Increase count

22: OUTPUT ← ∅ � Subset of interesting pairs
23: for all (i, j) ∈ o do

24: if
min(oij ,o

j
i)

ei+ej−min(oij ,o
j
i)

≥ JT then

25: OUTPUT ← OUTPUT ∪ (Ej , Ei) � Output pair found

26: return OUTPUT

66 T. Kusmierczyk and K. Nørv̊ag

What is more, each pair is validated in constant time as oij ,o
j
i (and ei, ej) are

already known.
The biggest disadvantage of the LS index is its memory use if there are

many streams bursty in a particular index time window (bursts from many
streams overlapping at once), i.e., when there are particularly many references
in some list set. A solution to this problem is sharding, i.e., we use several
indexes per each high-level bucket n, m. Each index covers only a subset of
possible pairs of streams. Division of the pairs can be done in any way. Function
Query guarantees that any pair of bursts, and any pair of streams having bursts
overlapping, will be considered. We only need to make sure that all possible pairs
of streams (that are not pruned) are at some point placed together in the same
LS index.

5.4 Hybrid Index

The IB andLS indexes have different properties and are appropriate for data of dif-
ferent characteristics. IB efficiencydependsmostly on thenumber ofk-dimensional
boxes in the index. This increases fast with number of bursts per stream and when
threshold J ′

T is decreasing (this applies only to IBHD). On the other hand, LS effi-
ciency does not depend directly on either number of bursts per stream or J ′

T . This
two factors influence only number of buckets to be considered, but not LS process-
ing time. What affects mostly the efficiency here is the size of sets of references. The
bigger sets are, the more pairs need to be considered at each step.

Consequently, we propose the Hybrid index that exploits good properties
of both approaches. It uses IBHD for low base counts (and proper connected
counts) and LS for high base counts. Switching count value depends mostly on
data characteristics but some observations can be made. Number of boxes gen-
erated for IBHD index for each base count e depends mostly on index dimen-
sionality k. Assuming ρ = 1, the number of boxes generated per stream can
be approximated as ∼ ee−k. This can be seen from the number of distinct
k-element subsets

(
e
k

)
= e!

(e−k)!k! , when k is close to e, then (e − k)! is small
and

(
e
k

) ∼ e · (e − 1) · .. · (k + 1) ∼ ∏
l=1..(e−k) e ∼ ee−k. The exponent e − k

changes stepwise. For example for J ′
T = 0.95 it changes for e = 20, 40, 60, ...,

and in ranges e ∈ (0, 20), [20, 40), [40, 60), ... the efficiency of IBHD is more or
less constant. Consequently, it is enough to check only one switching count per
range, starting from lower values toward higher ones.

5.5 On-Line Maintenance

The described approaches can be used both in the offline and on-line case. For
offline mining, where we have information about number of bursts per stream
available in advance, construction of the indexes is performed by assigning each
stream to the proper bucket (or buckets for LS) and then by inserting it into
the index (or indexes) within that bucket.

In the on-line case, bursts arrive and number of bursts per stream changes
in a continuous way. When a new burst is extracted, the relevant stream is

Mining Correlations on Massive Bursty Time Series Collections 67

moved from the previous bucket (or buckets) to a new one matching the new
number of bursts. In addition, indexes need to be updated accordingly. Although
this introduces additional maintenance cost these operations are distributed over
time. In contrast to offline mining, where the whole dataset must be processed
at once, for the online case the cost is dispersed among burst arrival moments.

For the IB index, deletion and insertion require generation of all k-dimensional
boxes. First, all boxes generated for the old version of the stream (without the new
burst) are deleted from the proper spatial index. Then, all boxes generated for the
stream with the new burst included are inserted into the index responsible for keep-
ing track of streams with higher number of bursts.

For the LS index, insertion and removal are performed by adding and deleting
relevant burst references. This is done over all indexes matching the stream burst
count (recall that each stream can be indexed in several buckets). First, all sets
of references assigned to time windows overlapping with old bursts are updated
by deletion of proper references. Then, references to all bursts including the new
one are inserted to sets into indexes matching the new number of bursts.

6 Experimental Evaluation

In this section, we present the results of the experimental evaluation. All our
experiments were carried out on a machine with two Intel Xeon X5650 2.67GHz
processors and 128GB RAM. However, experiments were limited to using one
thread and 24GB of main memory.

6.1 Experimental Setup

Dataset. For the experimental evaluation we used a dataset based on English
Wikipedia page view statistics1 (∼ 4.5M articles) from the years 2011-2013.
These statistics have a granularity equal to 1 hour, so that the time series
for each page covers 26304 time points. Bursts extraction was performed using
Kleinberg’s off-line algorithm [6]. In post-processing, we reduced the hierarchi-
cal bursts that are produced by the algorithm to a flat list of non-overlapping
bursts, and we also filtered out bursts that had average height (measured in orig-
inal page views) lower than twice the average background level. After applying
this bursts extraction procedure the dataset had ∼ 47M bursts in total.

Key features that influence efficiency of our approach are number of streams,
number of bursts per stream, and length and distribution of bursts. Fig. 5 shows
the distribution of number of bursts per article (stream) in our dataset. One
can see that pages with low number of bursts dominate and that number of
streams decreases fast when number of bursts per stream increases (notice the
use of logarithmic scale). Streams having a low number of bursts have a higher
probability of spurious correlations, therefore we filtered out streams having less
than 5 bursts. After that, we are left with ∼ 2.1M streams, having in total
∼ 43M bursts.
1 https://dumps.wikimedia.org/other/pagecounts-raw/

https://dumps.wikimedia.org/other/pagecounts-raw/

68 T. Kusmierczyk and K. Nørv̊ag

Fig. 6 presents the distribution of length of bursts in the dataset after fil-
tering. In the dataset short bursts dominate. The average length is equal to 28
hours but median is only 10 hours. Nevertheless, one should notice there is non-
negligible number of long bursts (100-1000 hours) that significantly increases the
sizes of candidate sets and computation time for indexes.

0 200 400 600 800 1000
number of bursts

100

101

102

103

104

105

106

107

n
u
m

b
er

 o
f
st

re
am

s
 p

er
 b

in
 (

b
in

=
5
) [streams]

N=4456812

min=0
max=1160
median=4
mean=10.5
std=24.0

Fig. 5. Number of bursts per stream

0 200 400 600 800 1000
burst length [h]

104

105

106

107

108

n
u
m

b
er

 o
f
b
u
rs

ts
 p

er
 b

in
 (

b
in

=
5
) [bursts]

B=42560775

min=1
max=1000
median=10
mean=28.0
std=70.6

Fig. 6. Length of bursts

Algorithms and Measurements. In the experiments, we studied the Naive,
LS, 2-dimensional IBLD (denoted as IBLD2), and Hybrid approaches. For LS
the number of streams in bucket processed at once was limited to 50k, and for
the Hybrid approach IBHD was used for burst count < 40 and LS was used for
burst count ≥ 40). In the experiments we set ρ = 1 and JT = J ′

T . Mining time
is the actual run time for mining, i.e., excluding index building time (which was
measured separately).

6.2 Experimental Results

Fig. 7 presents the time for querying streams for each base count, i.e., for each
stream having a particular base count (and stored in the index), the streams
having related counts (wrt. to the particular base count) are used to query the
stored streams. The efficiency of both the Naive and LS approaches increases
with increasing burst count. This is caused by a decreasing number of streams
having high number of bursts. IBLD2 behaves worse than the Naive and LS
approaches for almost any base count. The reason is that the cost of matching
of all possible 2-dimensional boxes dominates the benefit of reduced number of
pairs to be validated. Notice that the IBHD index approach has a stepped plot.
Whenever the difference between index dimensionality and base count increases,
the computation time also increases (about 10 times). The observations in this
figure also gives a justification for the Hybrid approach, where IBHD is used for
low burst counts and then LS for the higher ones. It also shows the threshold
for switching strategy, i.e., with burst count of 40.

Fig. 8 shows the cost for mining correlations for random subsets of varying
cardinalities (the cost of IBHD is not shown since even for small datasets the
number of boxes per stream can be extremely high). As can be seen, IBLD2 is
not scalable and even behaves worse than Naive in all cases. In contrast, both

Mining Correlations on Massive Bursty Time Series Collections 69

the LS and Hybrid approaches scale well. However, for large volumes Hybrid
outperform all the other approaches, as it combined the benefits of IBHD and
LS. Fig. 9 shows the cost of building the indexes. As can be seen, this cost is
insignificant (less than 10%) compared to the cost of the correlation mining.

Fig. 10 presents the behavior of the Hybrid approach for different thresholds
J ′
T . With higher threshold, the cost of mining reduces. There are two reasons for

that. First, the number of counts connected to each base count is expressed by
this value. Second, the IBHD dimensionality is also related to it. Consequently,
for lower J ′

T more pairs need to be considered and using lower dimension indexes.
As shown above, the Hybrid approach is scalable wrt. computation time.

Regarding memory requirements, the indexes in this approach fit in main

Fig. 7. Querying efficiency for different
base counts (J ′

T = 0.95, N = 100k)
Fig. 8. Index mining time for different
data volumes (J ′

T = 0.95)

Fig. 9. Index building time for differ-
ent data volumes (J ′

T = 0.95)
Fig. 10. Hybrid mining time for differ-
ent thresholds (N ∼ 2.1M)

Fig. 11. Number of generated pairs for
different data volumes (J ′

T = 0.95)
Fig. 12. Number of missing pairs for dif-
ferent thresholds (N=100k, ρ=1, Hybrid)

70 T. Kusmierczyk and K. Nørv̊ag

memory. The reason is that the LS index size can be easily expressed by the
number of pointers plus some additional space for the main list. The number of
pointers is equal to total number of bursts times average burst length. IBHD uses
spatial index and memory usage depends mostly on the size of that index, and
is proportional to number of boxes inserted times insertion cost. For the dataset
used in this evaluation, the size of the indexes is in the order of a few GB.

Fig. 11 illustrates how the number of generated pairs increases with the size of
the dataset. The output size increases quadratically with input size, up to ∼ 82k
for the whole dataset. The Naive and LS approaches guarantee generation of all
pairs above the selected threshold. This does not hold for Hybrid. However, in our
experiments the number of missing output pairs was small e.g., for N = 500k
streams it was always less than 15%. Fig. 12 shows the influence of ρ = 1
on N = 100k streams and for different thresholds. We can observe that even
for low thresholds, e.g., J ′

T = 0.8, the number of missing pairs is smaller than
15%. Furthermore, for higher thresholds the matching streams must have smaller
differences in number of bursts and therefore the influence of ρ decreases.

7 Conclusions

With emerging applications creating very large numbers of streams that needs to
be analyzed, there is a need for scalable techniques for mining correlations. In this
paper, we have presented a novel approach based on using bursts co-occurring
in different streams for the measurement of their relatedness. An important
contribution of our approach is the introduction and study of a new Jaccard-like
measure for correlation between streams of bursts, and exploiting the pruning
properties of this measure for reducing the cost of correlation mining. Combined
with a new hybrid indexing approach, the result is an approach that allows for
efficient mining of related pairs from millions of streams.

In the future we plan to work further on improvements of our algorithms.
One interesting issue is border cases that not necessarily follow the assumptions
of the algorithms, i.e., when there is many streams bursting often and almost
always in overlapping time moments. We also would like to investigate how to
reduce the cost of online index maintenance.

References

1. Alvanaki, F., Michel, S.: Tracking set correlations at large scale. In: Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data (2014)

2. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.J.: iSAX 2.0: indexing and mining
one billion time series. In: Proceedings of the 2010 IEEE International Conference
on Data Mining (2010)

3. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.J.: Beyond
one billion time series: indexing and mining very large time series collections with
iSAX2+. Knowl. Inf. Syst. 39(1), 123–151 (2014)

Mining Correlations on Massive Bursty Time Series Collections 71

4. Chien, S., Immorlica, N.: Semantic similarity between search engine queries using
temporal correlation. In: Proceedings of the 14th International Conference on
World Wide Web (2005)

5. Gehrke, J., Korn, F., Srivastava, D.: On computing correlated aggregates over
continual data streams. SIGMOD Rec. 30(2), 13–24 (2001)

6. Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2002)

7. Kotov, A., Zhai, C., Sproat, R.: Mining named entities with temporally correlated
bursts from multilingual web news streams. In: Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining (2011)

8. Liao, T.W.: Clustering of time series data - a survey. Pattern Recognition 38,
1857–1874 (2005)

9. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for massive time-series
data. In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (2010)

10. Ratanamahatana, C., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das, G.:
Mining time series data. In: Data Mining and Knowledge Discovery Handbook.
CRC Press (2010)

11. Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D.: Identifying similarities, peri-
odicities and bursts for online search queries. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (2004)

12. Vlachos, M., Wu, K.-L., Chen, S.-K., Yu, P.S.: Correlating burst events on stream-
ing stock market data. Data Mining and Knowledge Discovery 16(1), 109–133
(2008)

13. Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated bursty topic patterns
from coordinated text streams. In: Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (2007)

14. Wang, X., Zhang, K., Jin, X., Shen, D.: Mining common topics from multiple asyn-
chronous text streams. In: Proceedings of the Second ACM International Confer-
ence on Web Search and Data Mining (2009)

15. Wu, D., Ke, Y., Yu, J.X., Yu, P.S., Chen, L.: Detecting leaders from correlated time
series. In: Proceedings of the 15th International Conference on Database Systems
for Advanced Applications (2010)

16. Wu, K.-L., Chen, S.-K., Yu, P.S.: Query indexing with containment-encoded inter-
vals for efficient stream processing. Knowl. Inf. Syst. 9(1), 62–90 (2006)

17. Zhu, Y., Shasha, D.: StatStream: statistical monitoring of thousands of data
streams in real time. In: Proceedings of the 28th International Conference on Very
Large Data Bases (2002)

Data Streams and Time Series

Adaptive Grid-Based k-median Clustering
of Streaming Data with Accuracy Guarantee

Jianneng Cao1(B), Yongluan Zhou2, and Min Wu1

1 Institute for Infocomm Research at Singapore, Singapore, Singapore
{caojn,wumin}@i2r.a-star.edu.sg

2 University of Southern Denmark, Odense, Denmark
zhou@imada.sdu.dk

Abstract. Data stream clustering has wide applications, such as online
financial transactions, telephone records, and network monitoring.
Grid-based clustering partitions stream data into cells, derives statistical
information of the cells, and then applies clustering on these much smaller
statistical information without referring to the input data. Therefore,
grid-based clustering is efficient and very suitable for high-throughput
data streams, which are continuous, time-varying, and possibly unpre-
dictable. Various grid-based clustering schemes have been proposed.
However, to the best of our knowledge, none of them provides an accu-
racy guarantee for their clustering output. To fill this gap, in this paper
we study grid-based k-median clustering. We first develop an accuracy
guarantee on the cost difference between grid-based solution and the opti-
mum. Based on the theoretical analysis, we then propose a general and
adaptive solution, which partitions stream data into cells of dynamically
determined granularity and runs k-median clustering on the statistical
information of cells with an accuracy guarantee. An extensive experi-
ment over three real datasets clearly shows that our solution provides
high-quality clustering outputs in an efficient way.

1 Introduction

A data stream is a massive sequence of data objects, where each object can be
described by a d-dimensional attribute vector. Data streams are common in many
applications, which include online financial transactions, telephone records, web
applications, and sensor network. Analyzing data streams brings unique oppor-
tunities to optimize the operation of companies and organizations in a more
responsive fashion. Typically, data streams are continuous, time-varying, unpre-
dictable and possibly with a high throughput. Such unique characteristics have
attracted great attention of the research community, and numerous techniques
have been proposed to process data streams. Examples include query processing
[27], sampling [32], clustering [12,35], and classification [23].

In this work we study continuous k-median clustering on data streams. Infor-
mally, clustering is to divide data into groups, such that objects in a same group
are more similar to each other than those from other groups. k-median clustering
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 75–91, 2015.
DOI: 10.1007/978-3-319-18120-2 5

76 J. Cao et al.

is known to be NP-hard, and it is thus time-consuming to compute, especially
for a large dataset. As such, grid-based clustering [17] was proposed. It partitions
data space into (usually) uniform cells, and computes statistical information for
each cell. Cell size, max/min/mean value, and standard deviation are the typical
statistical information for a cell. Clustering is then run on the statistical infor-
mation without a need to access the raw input data. Since statistical information
is much smaller than the raw input dataset, grid-based clustering is much more
efficient than clustering on the raw input data. In addition, grid-based clustering
processes data streams on the fly. That is, it can process streaming tuples one by
one without a need of considering their dependencies. Thus, it has been regarded
as a good candidate solution for clustering continuous streaming data. Various
grid-based solutions have been proposed thus far [17,21,31]. However, as far as
we know none of them has given an accuracy bound, which clearly specifies the
difference between their clustering output and the optimum.

Coreset-based clustering has also been proposed to continuously cluster data
streams [4,20,24]. Given a clustering algorithm and a dataset, a coreset is a
summary of the dataset, such that the output of the clustering algorithm running
on the coreset can approximate that of the same algorithm running on the whole
dataset. Since coreset is smaller than the input data, clustering algorithms based
on coresets also have high efficiency. However, coresets cannot be computed on
the fly as grid cells. To compute the coreset of a set of tuples, the whole set of
data needs to be available. Batch-based approaches like [5,34] split data streams
into segments. Still, they require that a whole segment of streaming tuples is
available before the coreset corresponding to the segment can be computed.
Therefore, Coreset-based clustering has an output latency and a high storage
consumption, especially when the size and time span of the segment is big.

In this paper, we propose a general and adaptive grid-based k-median cluster-
ing solution with an accuracy guarantee. We adopt the sliding-window model,
where only streaming tuples in a recent window contribute to the clustering
output. Such a model is suitable for many real-world applications that care for
more recent data instead of the whole unbounded data stream. Our solution
leverages approximation algorithms [10,16] to cluster data. An approximation
k-median algorithm achieves a clustering cost at most α times of the optimum,
where α > 1 is a parameter given by the algorithm. Our solution is general, and
can be built on any approximation algorithm. It adaptively partitions tuples
in sliding windows into cells with a dynamically determined granularity, and
applies approximation k-median algorithm on the statistical information of cells
to output clustering results. In summary, the contributions of our work are as
follows.

– We present a theoretical analysis of approximation clustering algorithms
running on statistical information of cells, and provide accuracy guarantee
for their clustering output.

– Based on the theoretical analysis, we provide a general and adaptive solution,
which dynamically determines the granularity of cells, and runs k-median
clustering on the cells with an accuracy guarantee.

Adaptive Grid-Based k-median Clustering 77

– Our extensive experimental results over real datasets show that our solution
has clustering cost close to that of approximation algorithms running on the
raw input data, but is 2 orders of magnitude faster.

We organize the remaining of our work as follows. We present the background
knowledge in the next section and then perform a theoretical study of grid-based
clustering in Section 3, based on which we propose our solution in Section 4.
We carry out experimental evaluation in Section 5 and survey related work in
Section 6. We conclude our work in Section 7.

2 Preliminaries

2.1 Data Stream

We model data stream DS as an infinite append-only array of tuples, and denote
its tuple at timestamp t by DS [t], where t is from 1 to ∞. We assume a data
stream has d dimensions.

DSM1 M2 M3 M4 M5

S1 S2 S3 S4 S5

M6

S6

S

W2(t+ S)
S

W1(t)

S
W3(t+ 2S)

S
W4(t+ 3S)

Fig. 1. An illustration of sliding windows

Latitude

Longitude

0.0

1.0

1.00.0

1
4

Fig. 2. A 4 × 4 uniform grid

Data stream has time-varying data distribution. To capture its evolving char-
acteristics, recent data need to be assigned higher weight than the outdated when
carrying out clustering analysis. In this paper we adopt sliding window model,
which considers only the tuples in a recent window (i.e., from the current times-
tamp up to a certain timestamp of the past). A sliding window is characterized
by two parameters: WS window size and S step size. The window slides forward
at every time interval of S. As the sliding continues, a sequence of windows
is generated. Figure 1 gives an example. The first window W1 at timestamp t
contains tuples in the time span [t − (WS − 1), t]. At the timestamp t + S,
window W1 slides forwards to window W2, which contains tuples in the time
span [(t + S) − (WS − 1), t + S]. At the timestamp t + 2S, window W2 slides
forwards to W3, and so on. For information of other window-based models (e.g.,
damped window and landmark window), please refer to [19].

Sliding window moves forwards every time interval of S. For clear presen-
tation of our solution, we mark the steps. In particular, we partition the data
stream into segments, each having the length of S. Then, we take the first seg-
ment as the first step and label it by S1, the second segment as the second step
and label it by S2, and so on. Figure 1 illustrates this.

78 J. Cao et al.

2.2 k-medians Clustering and Its Approximation

Given a set of tuples X = {x1, x2, . . . , xN} in a d-dimensional space, k-medians
clustering is to find k centers O = {O1, O2, . . . , Ok} in the same data space, such
that the cost (i.e., the average distance between a tuple and its nearest center)

Cost (X, O) =
1
N

N∑

i=1

Dist (xi,NN (xi,O)) (1)

is minimized, where Dist is a distance function defined in a metric space satisfying
triangular inequality, and NN (xi,O) returns tuple xi’s nearest neighbor in O
based on Dist. In this work we consider Euclidean distance.

k-medians clustering is NP-hard. The research community has proposed var-
ious approximation algorithms [10,15,28,29]. An approximation algorithm is
characterized by two parameters α and β, where α > 1 and β ≥ 1. Specifi-
cally, let O◦ be a set of k cluster centers output by an optimal k-median clus-
tering algorithm on dataset X, and O be a set of cluster centers output by an
(α, β)-approximation clustering algorithm running on the same dataset. Then,

Cost (X,O)
Cost (X, O◦)

≤ α (2) and
|O|
k

≤ β (3)

The α value in Equality 2 shows the difference of clustering cost between
the approximation algorithm and the optimal one. The smaller the α value
is, the closer the approximation is to the optimum. The β value in Equality
3 bounds the maximum number of cluster centers needed in the approximation.
Some approximation algorithms [28,29] require β > 1, while others [10,15] set
β = 1. For an (α, β)-approximation algorithm with β = 1, we denote it by
α-approximation.

We will study continuous k-medians clustering on sliding windows to learn the
evolution of clusters under observation. We will dynamically partition streaming
tuples into cells (i.e., d-dimensional rectangles), and run (α, β)-approximation
clustering algorithms on the statistical information of cells. Let O and O◦ be the
sets of cluster centers output by our solution and the optimal one, respectively.
Our theoretical analysis in the next section proves that

Cost
(
X,O) ≤ αCost (X, O◦) + δ. (4)

where δ > 0 is a function, showing the difference between (α, β)-approximation
algorithm running on cells from its running on input data.

3 Theoretical Analysis

This section investigates the accuracy guarantee of (α, β)-approximation clus-
tering algorithms running on statistical information of cells.

Adaptive Grid-Based k-median Clustering 79

3.1 Accuracy Analysis of Grid-Based k-median Clustering

Let X be the input dataset in a d-dimensional data space. We uniformly partition
each dimension into ω segments of equal length. Let X be the resultant cells from
the partitioning. For each cell, we compute a representative, which is flexible –
it can be a tuple in the cell, the cell mean, or a certain function. Given a cell
c, we denote its representative by R (c). All the tuples x ∈ c share the same
representative, so we also use R (x) to denote the representative. For brevity,
when the context is clear, we will also use X to denote the statistical information
of the cells. Let O be a set of cluster centers output by an (α, β)-approximation
clustering algorithm running on X. We define its clustering cost (i.e., the average
distance between cell representatives and their nearest cluster centers in O) as

Cost
(
X, O)

=
1

|X|
∑

c∈X

|c| · Dist (R (c) ,NN
(
R (c) ,O))

, (5)

where function NN
(
R (c) ,O)

returns the nearest neighbor of R (c) in O. The
cost is a weighted average with the cell size as the weight.

Lemma 1. Let X and X be an input dataset and its cells, respectively. Let
x ∈ X be a tuple and r = R (x) be its representative in X. Suppose that O is a
set of cluster centers output by any k-median clustering scheme running on X.
Then, |Dist (r,NN (r,O)) − Dist (x,NN (x,O))| ≤ Dist (r, x).

Proof. Let O′ = NN (r,O) and O = NN (x,O) be the cluster centers in O nearest
to r and x, respectively. Then,

Dist (x,O) ≤ Dist (x,O′) ≤ Dist (x, r) + Dist (r,O′) . (6)

Dist (r,O′) ≤ Dist (r,O) ≤ Dist (r, x) + Dist (x,O) . (7)

Combining the two inequalities, we reach the conclusion of the lemma.

On the basis of Lemma 1, we develop the relationship between optimal clus-
tering cost and that of approximation algorithm running on cells.

Theorem 1. Let X and X be an input dataset and its cells, respectively. Sup-
pose that O is the cluster centers output by an (α, β)-approximation k-median
algorithm on X, and O◦ is the cluster centers output by an optimal solution on
X. Then

Cost
(
X, O) ≤ α ·

(

Cost (X, O◦) +
D

|X|
)

, (8)

where D =
∑

x∈X Dist (x,R (x)).

Proof. Let X={x1, x2, . . . , xN}, and ri=R (xi) be the representative of xi. Let
O◦ be the cluster centers output by an optimal k-median algorithm on X. Then,

Cost
(
X, O◦) ≤ 1

N

N∑

i=1

Dist (ri,NN (ri,O◦)). (9)

80 J. Cao et al.

Since O is the output of an (α, β)-approximation k-medians algorithm on X, it
follows that

Cost
(
X, O◦) ≥ 1

α
· Cost (X, O)

. (10)

Combining Inequalities 9 and 10 gives

Cost (X, O◦) =
1
N

N∑

i=1

Dist (xi,NN (xi,O◦))

≥ 1
N

N∑

i=1

(Dist (ri,NN (ri,O◦)) − Dist (ri, xi))

≥ 1
α

· Cost (X, O) − D

N
,

where the first inequality holds by Lemma 1. This concludes the proof.

In Theorem 1, the clustering cost of approximation algorithm is Cost
(
X, O)

,
which is relative to the cells. The next theorem will investigate the cost relative
to the input dataset.

Theorem 2. Let X and X be an input dataset and its cells, respectively. Sup-
pose that O is the cluster centers output by an (α, β)-approximation k-median
algorithm on X, and O◦ is the cluster centers output by an optimal solution on
X. Then

Cost
(
X, O) ≤ α · Cost (X, O◦) + (1 + α)

D

|X| , (11)

where D =
∑

x∈X Dist (x,R (x)).

Proof. Let X={x1, x2, . . . , xN}, and ri=R (xi) be the representative of xi. Then,

Cost
(
X,O)

=
1
N

N∑

i=1

Dist
(
xi,NN

(
xi,O

))

≤ 1
N

N∑

i=1

Dist
(
xi,NN

(
ri,O

))

≤ 1
N

N∑

i=1

[
Dist (xi, ri) + Dist

(
ri,NN

(
ri,O

))]

=
D

N
+

1
N

N∑

i=1

Dist
(
ri,NN

(
ri,O

))

=
D

N
+ Cost

(
X, O)

. (12)

Plugging Inequality 12 into Inequality 8, we reach Inequality 11.

Theorem 2 thus gives the accuracy guarantee. It has also computed the δ
function in Inequality 4.

δ = (1 + α) · D

|X| . (13)

Adaptive Grid-Based k-median Clustering 81

3.2 Determining Grid Granularity

Our work adopts uniform grid. We normalize each dimension to [0.0, 1.0], so as
to treat each dimension equally for its contribution to the clustering cost. Every
cell in the grid is a d-dimensional rectangle with edge length equal to 1

ω . Thus,

Dist (x,R (x)) ≤
√

d

ω
(14) and

D

|X| ≤
√

d

ω
(15)

Figure 2 illustrates an example, in which Latitude and Longitude are the 2
dimensions, ω = 4, and the distance between a tuple and its representative is at
most

√
2
4 . Plugging Inequality 15 in Inequality 11 gives

Cost
(
X, O) ≤ αCost (X,O◦) + (1 + α) ·

√
d

ω
. (16)

The above Inequality implies a trade off between efficiency and accuracy.
When the cells are of coarse granularity, the number of cells is small. Thus, the
clustering is efficient, but (1+α)·

√
d

ω is big, leading to low clustering accuracy. As
the cell granularity is finer, the number of cells increases. The efficiency decreases,
but the accuracy improves. When each cell has a single tuple, our solution is the
same as (α, β)-approximation algorithm running directly on input dataset.

We now study how to decide the ω value. Both Cost
(
X, O)

and Cost (X, O◦)
are data dependent – their values change with data distribution. We thus also
dynamically compute ω according to data distribution. Our computation starts
from an analysis of relative distance between Cost

(
X, O)

and Cost (X,O◦).

Corollary 1. Let X and X be an input dataset and its cells, respectively. Sup-
pose that O is the cluster centers output by an (α, β)-approximation k-median
algorithm on X, and O◦ is the cluster centers output by an optimal solution on
X. If the following inequality holds

D

|X| ≤ (γ − α)Cost
(
X, O)

α(γ + 1)
, (17)

then Cost
(
X, O) ≤ γCost (X,O◦), where γ > α and D =

∑
x∈X Dist (x,R (x)).

Proof. Combining Inequality 17 with Inequality 8, it follows that

Cost
(
X, O)

Cost (X,O◦)
≤ α(γ + 1)

α + 1
,

which (if combinedwith Inequalities 17 and 11) givesCost
(
X, O) ≤ γCost (X, O◦).

Now consider Inequalities 15 and 17 together. Clearly, Inequality 17 holds, if

ω ≥
√

d

η · Cost (X, O) ,

82 J. Cao et al.

where η = (γ−α)
α(γ+1) . In our experiments, we empirically set η = 0.5, which gives

good results. Our solutions runs k-median clustering on sliding windows con-
tinuously. Let Wi (for i = 1 to ∞) be the sequence of sliding windows, Xi be
the statistical information of cells in sliding window Wi and Oi be the cluster
centers derived from Xi. Then, we set

ωi+1 =

√
d

η · Cost (Xi, Oi

) . (18)

Note that our grid-based clustering solution only has the accuracy guaran-
tee in Inequality 16. It does not guarantee that the relative difference between
Cost

(
X,O)

and Cost (X, O◦) is at most γ, since the required ω value in Corol-
lary 1 might be bigger than the one used to partition the data space. In brief,
Equation 18 is a heuristic, which determines the ω value adaptively based on
data distribution. Furthermore, as the dimensionality of the dataset increases,
the data easily becomes sparse. As the ω value increases, the number of cells
with small number of tuples increases fast. To address this, we set a threshold,
which is the maximum allowed ω value for a data stream.

4 The Adaptive Grid-Based Solution

We now develop our continuous k-median clustering solution for stream data
based on the theoretical analysis in Section 3. For the clarity of presentation, we
first present an algorithm, for which the sliding window size is equal to the step
size (i.e., tumbling window). We will later extend it to the general case, where
neighboring sliding windows may overlap.

Algorithm 1 is the solution for tumbling windows. Lines 1 and 2: an itera-
tive search is applied on historical data to find an initial ω value, such that the
clustering cost of the approximation algorithm running on the cells (of historical
data) determined by the ω value is ‘similar’ to the clustering cost of the same
approximation algorithm running on the input historical data. In the experi-
ments, we use 10% tuples in a dataset as historical data, and the remaining
ones as stream data. The streaming tuples are processed one by one on the fly
(Lines 4 to 21). Given a tuple, the cell containing it is computed (Line 6). If
the cell exists, then simply update the statistical information of the cell (Lines
7 to 8). Otherwise, a new cell is created (Lines 9 to 10). Our cell management
strategy stores only non-empty cells, and thus ensures that the total number of
cells is never larger than the total number of tuples. Once a new sliding window
is generated, approximation algorithm runs on the statistical information of the
cells (Lines 12 to 20), and ω is updated for the next sliding window (Line 19).

In the algorithm we maintain a map M to efficiently locate the cells con-
taining incoming streaming tuples. We use the cell’s boundary as the key of the
map. Each cell has simple statistical information, which is the summation of
tuple values in the cell, the cell size, and the cell mean. We use the mean to
represent the cell. Other statistical information can be easily added if needed,

Adaptive Grid-Based k-median Clustering 83

Algorithm 1. adapGridKM
Input: data stream DS, window size WS, and step size S
Output: the continuous update of βk cluster centers

1: Let HD be a set of history data of DS
2: ω ← findOmega (HD)
3: Initialize an empty map M
4: for i ← 1 to |DS| do
5: Let DS [i] be the i-th tuple in DS � Lines 5-10: Insert a tuple to a cell.
6: c ← Compute(DS[i], ω)
7: if c ∈ M then
8: c.sum = c.sum + DS[i], c.size = c.size + 1
9: else

10: c.sum = DS[i], c.size = 1, Insert c into M
11: end if
12: if (i ≥ WS) ∧ (i mod S == 0) then
13: for each cell c ∈ M do � Lines 13-19: Cell clustering and ω update.
14: c.mean = c.sum

c.size

15: end for
16: Run (α, β)-approximation clustering on the means of the cells
17: Update the cluster centers
18: Let C be the cost of clustering on the cells

19: ω ←
√

d
η·C , Empty M

20: end if
21: end for

and the cell representative can also be changed to cell center or a streaming
tuple in the cell or some function as required.

We now extend Algorithm 1 to the general case, where neighboring sliding
windows may overlap. The extension is simple. In Algorithm 1, each sliding
window has an ω value, and all the tuples in the window are partitioned into
cells only once based on the ω value. In the general case, overlapping windows
share common tuples, which need to be partitioned into cells for multiple times,
each for one sliding window. As such, we maintain an ω value for each step, and
partition all the tuples in a window based on the ω value of the first step in the
window. We use the following example to better illustrate our ideas.

Example 1. In Figure 1, the sliding window is 3 times as big as the step. Sup-
pose that at timestamp t we have the first sliding window W1, which includes
steps S1, S2, and S3. Furthermore, suppose that the ω values of these three
steps are ω1, ω2, and ω3, respectively. Then, the tuples in windows W1, W2,
and W3 are inserted into cells determined by ω1, ω2, and ω3, respectively. We
run clustering on the cells of W1. An ω value is then computed by Equation 18.
Denote the value by ω4, and assign it to step S4. All the tuples in window W4

will then be inserted into cells determined by ω4. At timestamp t+S, window W1

slides forward to window W2. Clustering is run on the cells of W2, and another

84 J. Cao et al.

ω value (denoted by ω5) is computed and assigned to step S5. All the tuples in
window W5 (not shown in Figure 1) will be inserted into cells determined by
ω5. At timestamp t + 2S, window W2 slides forwards to window W3. The tuple
insertion into cells, clustering, and window sliding then continue iteratively like
the above.

Storage Complexity. Consider first a single cell. In the d-dimensional data
space, the storage cost of its boundary is 2d. Its statistical information (i.e.,
summation, size, and mean) is 2d + 1. Thus, the storage cost of a cell is 4d + 1.
The number of active windows we need to maintain is WS/S, where WS and
S are the window size and step size, respectively. Therefore, the storage cost is
Θ(n·d·WS

S), where n is the average number of cells in a window.

Time Complexity. The time cost consists of inserting tuples into cells and
k-median clustering on cells. Given a tuple, locating the cell containing it takes
2d. Updating the cell size and the summation takes d + 1. Therefore, the time
complexity of inserting all the tuples of a sliding window into cells is Θ(WS · d).
The time cost of clustering varies from one approximation algorithm to another.
For the simplicity we consider one of the core operations – computing the clus-
tering cost (i.e., distances between tuples and their nearest centers as defined
in Equation 1). For this operation, the cost of an approximation algorithm on
input data is Θ(WS · k · Cd), where Cd is the cost of computing the distance
between two points in the d-dimensional space, k · Cd is the cost of finding the
nearest center out of the given k centers for a given tuple, and WS is the window
size. For this operation, the cost of the same approximation algorithm running
on the cells is Θ(n · k ·Cd), where n is the number of cells in the sliding window.
Since n ≤ WS, the approximation algorithm running on cells is faster than that
on input data. The experimental results in the next section conform this.

5 Experimental Evaluation

5.1 Experimental Setup

We adopt the (5+ε)-approximation k-median algorithm [10], which is based on
local search. It first randomly selects k cluster centers as the initial solution. It
then iteratively improves the centers, until a better solution with an improvement
factor of at least ε

5k cannot be found. We denote this algorithm applied on
input stream tuples by locSearch. We build our grid-based k-median clustering
algorithm on top of [10] – we use it to cluster cells generated from streaming
tuples. We denote our algorithm by adapGridKM, representing adaptive grid-
based k-median clustering. Furthermore, we include a benchmark fixedGridKM,
whose only difference from adapGridKM is fixing the ω value.

We use three real datasets in the experiments. The first is the 2006 Topologi-
cally Integrated Geographic Encoding and Referencing (TIGER) dataset [1]. We
extract the GPS coordinates of road intersections in the states of Washington
and New Mexico. We randomly sample 1 million tuples, and set k = 2. The sec-
ond is the Gowalla dataset [2], which records the check-in information of users

Adaptive Grid-Based k-median Clustering 85

of a social network. The information includes user ID, check-in time, check-in
location (by latitude and longitude), and location ID. We keep check-in time,
latitude, and longitude, and randomly sample 2 million tuples. For this dataset,
we set k = 5. The last is Power dataset [3], which measures the electric power
consumption in one household with a one-minute sampling rate over a period of
almost 4 years. After removing tuples with missing values, 2,049,280 tuples are
left. We keep all its 9 attributes, and set k = 4.

We treat each dimension equally for its contribution to the clustering cost
(Equation 1) by normalizing its values to [0.0, 1.0]. Our reported experimental
results are window-based. We compute various measures (e.g., clustering cost
and elapsed time) for each sliding window, and report the average for all the
sliding windows. All the experiments were conducted on an Intel dual core i7-
3770 CPU machine with 8G RAM running windows 7.

5.2 Effectiveness and Efficiency

We first investigate the experimental results of the TIGER dataset. In the first
row of Figure 3, we fix the step size to 30,000, and vary the window size from
30,000 to 210,000. Figure 3(a) compares the three approaches with respect to
effectiveness (i.e., clustering cost by Equation 1). The tuning on historical data
suggests ω = 128. We thus set the initial ω value to 128 for adapGridKM, and
fix the ω value of fixedGridKM to 128. Figure 3(a) shows that the two grid-based
approaches, adapGridKM and fixedGridKM, are as effective as locSearch, i.e., their
clustering cost is very close to that of locSearch.

Figure 3(b) compares the approaches in terms of efficiency (i.e., average clus-
tering time for a window). The results show that adapGridKM is consistently
4 orders of magnitude faster than locSearch. The fixedGridKM approach is also
more efficient than locSearch, but less efficient than adapGridKM. A careful study
of the experimental output shows – the ω values computed by adapGridKM are
mostly 32 and 64, and only a few 128. Thus, on average the number of cells in a
sliding window of adapGridKM is smaller than that of fixedGridKM. This explains
why adapGridKM is more efficient. As the window size increases, the number of
tuples (cells) grows. Thus, the time cost for all the approaches grows.

Considering Figures 3(a) and 3(b) together, we can see that the two grid-
based approaches have similar clustering cost with fixedGridKM having slightly
lower cost, but adapGridKM is much faster than fixedGridKM. The reason behind
is that fixedGridKM overestimates the ω value based solely on historical data.
This result highlights the importance of adaptively determining the ω value by
stream data distribution.

Next, for the TIGER dataset, we fix window size to 180,000, and vary the
step size from 10,000 to 180,000 (the second row of Figure 3). Again, in Figure
3(c) the clustering cost of adapGridKM is very close to that of locSearch. For
locSearch, the number of tuples for clustering is equal to the fixed window size.
Hence, as the step size increases, the average time of clustering tuples does not
change obviously. For adapGridKM (fixedGridKM), on average the number of cells

86 J. Cao et al.

generated from each sliding window is almost the same when varying the step
size. Thus, the clustering time does not vary obviously either.

 0.08

 0.09

 0.1

 0.11

 0.12

3 6 9 12 18 21
Window Size (104)

Cost

adapGridKM
locSearch

fixedGridKM

(a)

1
101

103

105

107

3 6 9 12 18 21
Window Size (104)

Time(ms)--log scale

adapGridKM
locSearch

fixedGridKM

(b)

 0.08

 0.09

 0.1

 0.11

 0.12

1 2 3 6 9 18
Step Size (104)

Cost

adapGridKM
locSearch

fixedGridKM

(c)

1
101

103

105

107

1 2 3 6 9 18
Step Size (104)

Time(ms)--log scale

adapGridKM
locSearch

fixedGridKM

(d)

Fig. 3. The evaluation on TIGER dataset

 0.1

 0.12

 0.14

 0.16

3 6 9 12 18 21
Window Size (104)

Cost

adapGridKM
locSearch

fixedGridKM

(a)

1
102
104
106
108

1010

3 6 9 12 18 21
Window Size (104)

Time(ms)--log scale

adapGridKM
locSearch

fixedGridKM

(b)

 0.1

 0.12

 0.14

 0.16

1 2 3 6 9 18
Step Size (104)

Cost

adapGridKM
locSearch

fixedGridKM

(c)

1
102
104
106
108

1010

1 2 3 6 9 18
Step Size (104)

Time(ms)--log scale

adapGridKM
locSearch

fixedGridKM

(d)

Fig. 4. The evaluation on Gowalla dataset

We now study the experimental results on the Gowalla dataset. The tuning on
the historical data suggests ω = 8. We thus set the initial ω value of adapGridKM
to 8, and fix that of fixedGridKM to 8. Figure 4(a) reports the clustering cost.

Adaptive Grid-Based k-median Clustering 87

Clearly, adapGridKM outperforms fixedGridKM. Through a careful study of exper-
imental output, we find that most ω values generated by adapGridKM are 32.
This shows that fixedGridKM underestimates the grid granularity. The experi-
mental results thus once again prove the importance of adaptively adjusting grid
granularity based on stream data distribution. Since fixedGridKM has a coarser
granularity, it is faster than adapGridKM in Figure 4(b).

Figure 5 reports the results on the Power dataset. This dataset has 9 dimen-
sions; its data is much sparser than the other two lower-dimensional datasets.
Thus, an increase of ω may increase the number of non-empty cells dramatically.
To address this issue, we set an upper bound (i.e., 8) for the ω value. Such a
setting converges the two grid-based approaches – they both use ω = 8 to par-
tition data into cells. Again, grid-based approaches are comparable to locSearch
in terms of clustering cost, but are 2 orders of magnitude more efficient.

 0.16

 0.2

 0.24

 0.28

 0.32

3 6 9 12 18 21
Window Size (104)

Cost

adapGridKM
locSearch

fixedGridKM

(a)

1

102

104

106

3 6 9 12 18 21
Window Size (104)

Time(sec)--log scale

adapGridKM
locSearch

fixedGridKM

(b)

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

1 2 3 6 9 18
Step Size (104)

Cost

adapGridKM
locSearch

fixedGridKM

(c)

1

102

104

106

1 2 3 6 9 18
Step Size (104)

Time(sec)--log scale

adapGridKM
locSearch

fixedGridKM

(d)

Fig. 5. The evaluation on Power Consumption dataset

5.3 Storage and Tuple-Processing Cost

We now compare the storage cost. For a d-dimensional tuple, we take its storage
cost as d, i.e., 1 unit for 1 coordinate. The storage cost of a cell as analyzed
in Section 4 is 4d + 1. Figure 6 shows the results as we vary the window size.
Clearly, grid-based approaches need less storage. Take the TIGER dataset as an
example (Figure 6(a)). When step size is 180,000, the storage cost of locSearch
is 360,000, while those of adapGridKM and fixedGridKM are less than 17,000 and
130,000, respectively. The storage cost of grid-based approaches is up to the
number of cells. For the TIGER dataset, the grid granularity of adapGridKM is
coarser than that of fixedGridKM. For the Gowalla dataset, it is the opposite.

88 J. Cao et al.

1
101

103

105

107

3 6 9 12 18 21
Window Size (104)

Storage Cost--log scale

adapGridKM
locSearch

fixedGridKM

(a) TIGER

1
101

103

105

107

3 6 9 12 18 21
Window Size (104)

Storage Cost--log scale

adapGridKM
locSearch

fixedGridKM

(b) Gowalla

1
101

103

105

107

3 6 9 12 18 21
Window Size (104)

Storage Cost--log scale

adapGridKM
locSearch

fixedGridKM

(c) Power

Fig. 6. The storage cost when varying window size

1
101

103

105

107

1 2 3 6 9 18
Step Size (104)

Storage Cost--log scale

adapGridKM
locSearch

fixedGridKM

(a) TIGER

1
101

103

105

107

1 2 3 6 9 18
Step Size (104)

Storage Cost--log scale

adapGridKM
locSearch

fixedGridKM

(b) Gowalla

1
101

103

105

107

1 2 3 6 9 18
Step Size (104)

Storage Cost--log scale

adapGridKM
locSearch

fixedGridKM

(c) Power

Fig. 7. The storage cost when varying step size

Therefore, in Figure 6(a) adapGridKM has lower storage cost, while having higher
cost in Figure 6(b). When window size increases, the number of tuples (and also
the cells generated from them) grows. Therefore, the storage cost of all the
approaches increases. In Figure 7 we fix the window size to 180,000, and vary
the step size. When the step size increases, the number of overlapping windows
we need to maintain is smaller. Therefore, the storage cost of the two grid-based
approaches decreases.

The tuple-processing time of our approach adapGridKM consists of: a) Inser-
tion – the time cost of inserting tuples into cells, and b) Clustering – k-median
clustering on the cells. Figure 8 and Figure 9 report the results, when vary-
ing window size and step size, respectively. In both figures, the elapsed time of
Insertion is much smaller than that of Clustering. For example, in the Gowalla
dataset, when the window size and the step size are 60,000 and 30,000, respec-
tively, the elapsed time for Insertion and Clustering are approximately 26 ms
and 6,400 ms, respectively.

6 Related Work

Grid-based clustering is closely related to our work. It was first proposed for
static dataset. Representative solutions include STING [33] and CLIQUE [7].
Grid-based clustering has also been applied to the context of data stream to effi-
ciently cluster continuous stream data. The proposed solutions include but not
limited to D-Stream [17], cell-tree [30,31], and top-m most frequent cells [21].

Adaptive Grid-Based k-median Clustering 89

100

101

102

103

3 6 9 12 18 21
Window Size (104)

Time(ms)--log scale
Clustering

Insertion

(a) TIGER

100
101
102
103
104
105

3 6 9 12 18 21
Window Size (104)

Time(ms)--log scale

Clustering
Insertion

(b) Gowalla

100
101
102
103
104
105
106

3 6 9 12 18 21
Window Size (104)

Time(ms)--log scale

Clustering
Insertion

(c) Power

Fig. 8. Clustering and tuple-insertion time when varying window size

100

101

102

103

104

1 2 3 6 9 18
Step Size (104)

Time(ms)--log scale
Clustering

Insertion

(a) TIGER

100
101
102
103
104
105
106

1 2 3 6 9 18
Step Size (104)

Time(ms)--log scale

Clustering
Insertion

(b) Gowalla

100
101
102
103
104
105
106

1 2 3 6 9 18
Step Size (104)

Time(ms)--log scale

Clustering
Insertion

(c) Power

Fig. 9. Clustering and tuple-insertion time when varying step size

However, all the above solutions do not give accuracy guarantee of their clus-
tering output. Although our solution is also grid-based, it has clear accuracy
bound, thus distinguishing it from existing ones.

Coreset-based clustering [4,5,20,24,25,34] is also related to our work.
However, as stated in the introduction, such solutions cannot process streaming
tuples on the fly. To compute the coreset of a set of tuples, the whole set needs
to be available. Grid-based clustering solutions [17,31] and ours instead can pro-
cess stream tuples on the fly, i.e., processing tuples independently one by one.
Besides the grid-based and coreset-based approaches, data stream clustering has
also been studied in [6,8,12,18,22,35]. Refer to [19] for more related work.

k-median clustering is NP-hard. Plenty of (α, β)-approximation algorithms
have been proposed [9–11,13–15,26,28,29]; they ensure that the difference
between the output and that of the optimal solution is within a given bound.
Of the algorithms, [11,13,28,29] have approximation factor α, which is depen-
dent on the dataset size and/or the k parameter. Constant-factor approximation
algorithms [10,14,15,26] instead have a constant α. Charikar et al. [15,16] pro-
posed a 6 2

3 -approximation algorithm. Jain and Vazirani [26] applied the primal-
dual schema to k-median problem, and developed a 6-approximation algorithm.
Charikar and Guha [14] refined algorithm [26] and developed a 4-approximation
solution. Arya et al. [10] proposed a (5+ε)-approximation k-median solution
using local search heuristics, where ε is a tunable parameter controlling the

90 J. Cao et al.

convergence rate of the solution. Note that our solution is general. It can lever-
age any constant-factor approximation k-median clustering algorithm discussed
above to build a grid-based clustering solution for data stream.

7 Conclusion

In this paper we have proposed a general and adaptive sliding-window-based
k-median clustering solution. Our solution dynamically determines the granu-
larity of cells, and runs clustering efficiently on the statistical information of
cells. It has a theoretical accuracy bound between its clustering cost and the
optimum. The extensive experimental results show that the proposed solution is
efficient and effective.

Acknowledgments. This work has been partially supported by Energy Market
Authority in Singapore with grant NRF2012EWT-EIRP002-044. We thank Zhenjie
Zhang, Yin Yang, and Hong Cao for their valuable comments.

References

1. https://www.census.gov/geo/maps-data/data/tiger.html
2. https://snap.stanford.edu/data/loc-gowalla.html
3. https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+

consumption
4. Ackermann, M.R., Blömer, J.: Coresets and approximate clustering for bregman

divergences. In: SODA
5. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,

C.: Streamkm++: a clustering algorithm for data streams. ACM Journal of Exper-
imental Algorithmics 17(1) (2012)

6. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: VLDB, pp. 81–92 (2003)

7. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace cluster-
ing of high dimensional data for data mining applications. In: SIGMOD Conference,
pp. 94–105 (1998)

8. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In:
NIPS, pp. 10–18 (2009)

9. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for euclidean k-medians
and related problems. In: STOC, pp. 106–113 (1998)

10. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristic for k-median and facility location problems. In: STOC, pp. 21–29
(2001)

11. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic appli-
cations. In: FOCS, pp. 184–193 (1996)

12. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM, pp. 328–339 (2006)

13. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: determinis-
tic approximation algorithms for group steiner trees and k-median. In: STOC,
pp. 114–123 (1998)

https://www.census.gov/geo/maps-data/data/tiger.html
https://snap.stanford.edu/data/loc-gowalla.html
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

Adaptive Grid-Based k-median Clustering 91

14. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location
and k-median problems. In: FOCS, pp. 378–388 (1999)

15. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approxima-
tion algorithm for the k-median problem (extended abstract). In: STOC, pp. 1–10
(1999)

16. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

17. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: KDD,
pp. 133–142 (2007)

18. Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide: continuous
clustering of distributed data streams. In: ICDE, pp. 1036–1045 (2007)

19. de Andrade Silva, J., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho,
A.C.P.L.F., Gama, J.: Data stream clustering: a survey. ACM Comput. Surv.
46(1), 13 (2013)

20. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: constant-size
coresets for k-means, pca and projective clustering. In: SODA

21. Gama, J., Rodrigues, P.P., Lopes, L.M.B.: Clustering distributed sensor data
streams using local processing and reduced communication. Intell. Data Anal.
15(1), 3–28 (2011)

22. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528
(2003)

23. Guo, T., Zhu, X., Pei, J., Zhang, C.: Snoc: streaming network node classification.
In: ICDM (2014)

24. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering. In:
Proceedings of the Twenty-first Annual Symposium on Computational Geometry

25. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
STOC, pp. 291–300 (2004)

26. Jain, K., Vazirani, V.V.: Primal-dual approximation algorithms for metric facility
location and k-median problems. In: FOCS, pp. 2–13 (1999)

27. Koudas, N., Ooi, B.C., Tan, K.-L., Zhang, R.: Approximate nn queries on streams
with guaranteed error/performance bounds. In: VLDB, pp. 804–815 (2004)

28. Lin, J., Vitter, J.S.: Approximation algorithms for geometric median problems. Inf.
Process. Lett. 44(5), 245–249 (1992)

29. Lin, J., Vitter, J.S.: Epsilon-approximations with minimum packing constraint
violation (extended abstract). In: STOC, pp. 771–782 (1992)

30. Park, N.H., Lee, W.S.: Statistical grid-based clustering over data streams. SIG-
MOD Record 33(1), 32–37 (2004)

31. Park, N.H., Lee, W.S.: Cell trees: an adaptive synopsis structure for clustering
multi-dimensional on-line data streams. Data Knowl. Eng. 63(2), 528–549 (2007)

32. Tao, Y., Lian, X., Papadias, D., Hadjieleftheriou, M.: Random sampling for con-
tinuous streams with arbitrary updates. IEEE Trans. Knowl. Data Eng. 19(1),
96–110 (2007)

33. Wang, W., Yang, J., Muntz, R.R.: Sting: a statistical information grid approach
to spatial data mining. In: VLDB, pp. 186–195 (1997)

34. Zhang, Q., Liu, J., Wang, W.: Approximate clustering on distributed data streams.
In: ICDE, pp. 1131–1139 (2008)

35. Zhang, Z., Shu, H., Chong, Z., Lu, H., Yang, Y.: C-cube: elastic continuous clus-
tering in the cloud. In: ICDE, pp. 577–588 (2013)

Grouping Methods for Pattern Matching
in Probabilistic Data Streams

Kento Sugiura1(B), Yoshiharu Ishikawa1, and Yuya Sasaki2

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
2 Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
{sugiura,yuya}@db.ss.is.nagoya-u.ac.jp, ishikawa@is.nagoya-u.ac.jp

Abstract. In recent years, complex event processing has attracted con-
siderable interest in research and industry.Pattern matching is used to
find complex events in data streams. In probabilistic data streams, how-
ever, the system may find multiple matches in a given time interval. This
may result in inappropriate matches, because multiple matches may cor-
respond to a single event. We therefore propose grouping methods of
matches for probabilistic data streams, and call such merged matches
a group. We describe the definitions and generation methods of groups,
propose an efficient approach for calculating an occurrence probability
of a group, and compare the proposed approach with a näıve one by
experiment. The results demonstrate the properties and effectiveness of
the proposed method.

Keywords: Complex event processing · Pattern matching · Grouping ·
Probabilistic data streams

1 Introduction

In recent years, complex event processing (CEP) has been a topic of great interest
in research and industry. Pattern matching is of particular interest because of
its usefulness [2–4,10–14,16,19]. The majority of the existing research, however,
does not consider data source uncertainty. Data sources such as sensor devices are
uncertain because they may contain measurement error, communication error, or
both. A data stream has a probabilistic nature when the data source is uncertain.
Figure 1 shows an example of a stream that corresponds to an uncertain data
source. We call such a data stream a probabilistic data stream. In our research,
we investigate pattern matching in probabilistic data streams.

However, pattern matching in probabilistic data streams is difficult because
the system may find multiple matches in a given interval. For example, Fig. 2
shows results of pattern matching over the stream in Fig. 1 when the pat-
tern 〈a b+c〉 is given. Methods presented in the existing research remove such
matches with low probability because such matches are not important [9]. Such
an approach, however, may not be appropriate because every match implies
the possibility that the pattern occurred in the interval. We therefore propose
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 92–107, 2015.
DOI: 10.1007/978-3-319-18120-2 6

Grouping Methods for Pattern Matching in Probabilistic Data Streams 93

time 1 2 3 4 5 6

a 1.0 0.3 0.1 0.1 0 0

event b 0 0.7 0.8 0.7 0.9 0

c 0 0 0.1 0.2 0.1 1.0

Fig. 1. A probabilistic data stream

match
time

probability
1 2 3 4 5 6

m1 a b c 0.07

m2 a b b b b c 0.3528

m3 a b b c 0.0168

m4 a b c 0.09

Fig. 2. Pattern matching result for pattern 〈a b+c〉

grouping methods for matches in a given interval. We call such a set of matches a
group. For example, we merge all matches in Fig. 1 into one group and calculate
the probability that the pattern 〈a b+c〉 exists in the time interval [1, 6].

The remainder of the paper is organized as follows. In Sect. 2, we describe
the background of our research. Section 3 describes the definition of a group and
Sect. 4 explains how to generate groups. In Sect. 5, we introduce an effective app-
roach for calculating probabilities of groups. Section 6 describes the settings and
results of experiments. Section 7 introduces related work and Sect. 8 concludes
the paper.

2 Preliminaries

Assumptions. We make two assumptions here:

1. Each event occurs every unit time and arrives in a data stream engine in
order.

2. A probability of an event at time ti is independent of that of an event at
time tj (i �= j).

For example, in the probabilistic data stream in Fig. 1, probability P (a2 ∧b3) =
P (a2) × P (b3) = 0.24 according to the second assumption.

Probability Space. We first define a probabilistic event as an entry of a prob-
abilistic data stream.

Definition 1. A probabilistic event et is an event with its probability. The prob-
ability that the value of et is α is denoted as P (et = α). For a discrete domain
of events V , the properties

∀α ∈ V, 0 ≤ P (et = α) ≤ 1

94 K. Sugiura et al.

and ∑

α∈V

P (et = α) = 1

hold.

For example, in Fig. 1 the occurrence probability of e3 is
∑

α∈{a,b,c} P (e3 = α) =
P (a3) + P (b3) + P (c3) = 1. We may use P (αt) as a shorthand of P (et = α).

Next, we define a probabilistic data stream in our research.

Definition 2. A probabilistic data stream PDS = 〈e1, e2, ..., et, ...〉 is a sequence
of probabilistic events.

For instance, the probabilistic data stream in Fig. 1 is represented by PDS =
〈e1, e2, e3, e4, e5, e6〉.

Then, we define the notion of sequence s[ti,tj].

Definition 3. s[ti,tj] = 〈αti , αti+1, ..., αtj 〉 is a sequence of events from ti to tj.
A probability of s[ti,tj] is defined as the product of the probabilities of the events
in s[ti,tj]: P (s[ti,tj]) =

∏tj
k=ti

P (ek = αk).

For example, one of the sequences in Fig. 1 is s[1,3] = 〈a1, a2, b3〉 and the proba-
bility of s[1,3] is P (s[1,3]) = P (a1) × P (a2) × P (b3) = 0.24.

If a window is specified as w = [ti, tj], we denote s[ti,tj] as sw. In addi-
tion, we represent the universal set of sw as Sw. For instance, Fig. 1 is a
data stream for the window w = [1, 6] and examples of the elements of Sw

are 〈a1, a2, a3, a4, a5, a6〉 and 〈a1, a2, a3, a4, a5, b6〉.
Next, we define a probability space using Sw.

Definition 4. Given a window w, (2Sw , P) is the probability space for a proba-
bilistic data stream, where 2Sw is the power set of Sw. P gives a probability P (x)
to each element x ∈ 2Sw by summing the probabilities of all sequences in x such
as P (x) =

∑
sw∈x P (sw).

Query Pattern. We use a regular expression for representing a query pattern.
For example, we use 〈a b c〉 if we want to find matches that include a, b, and c
with this order: events a, b, and c must be contiguous in the stream. In a query
pattern, we can use the Kleene plus (+) as an option for the regular expression.
For instance, for the pattern 〈a b+c〉, we accept matches such as 〈at bt+1 ct+2〉
and 〈at bt+1 bt+2 ct+3〉.

Matches. A match is an instance of a pattern found in the target probabilistic
stream. For example, in Fig. 1 one of the matches for the pattern 〈a b c〉 is
〈a1 b2 c3〉. We define the notion of a match and its probability in a consistent
manner with the probability space.

Definition 5. A match m is a set of sequences that include the pattern
occurrence as a subsequence. A probability of match m is given as P (m) =∑

sw∈m P (sw).

Grouping Methods for Pattern Matching in Probabilistic Data Streams 95

0 1 2 3

1 2 3

(b) stacks for keeping events(a) NFA for the pattern

Fig. 3. An NFA and stacks for generating matches in the stream in Fig. 1

For instance, we consider the probability of m1 = 〈a1 b2 c3〉 in Fig. 2. Suppose
the window w = [1, 4] is specified for the stream in Fig. 1. In this case, Sw

holds sequences such as 〈a1, a2, a3, a4〉 and 〈a1, a2, a3, b4〉. In Sw, there are three
sequences that include m1:

s1 = 〈a1, b2, c3, a4〉
s2 = 〈a1, b2, c3, b4〉
s3 = 〈a1, b2, c3, c4〉

Thus, the probability of m1 is P (m1) = P (s1) + P (s2) + P (s3) = 0.07.
We follow the NFA-based approach to generate matches [1]. This approach

represents a pattern as a non-deterministic finite automaton (NFA) and manages
events and matches using stacks. For example, Fig. 3 shows an NFA and stacks
for generating matches over the probabilistic data stream in Fig. 1 for the pattern
〈a b+c〉. The stacks correspond to the respective states of the NFA and store
each event that has an occurrence probability. In this example, stack 1 stores
events {a1, a2, a3, a4} and does not contain {a5, a6} because their probabilities
are 0. We connect the events using pointers according to the edges of the NFA.
We can generate matches by tracing the pointers from the events in the stack of
the final state. For example, 〈a1 b2 b3 c4〉 and 〈a2 b3 c4〉 are generated by tracing
the pointers from c4. In the following, we call a candidate of matches under
construction a run.

3 Grouping Policies

In our framework, a group is defined by a grouping policy. In this section, we
introduce two policies. Intuitively, it is natural to merge matches in a given time
interval into a group. Thus, we consider the time intervals of matches to decide
whether to merge them. The time interval of a match is given by its start and
end times. For example, the time interval of m1 in Fig. 2 is [1, 3].

For considering grouping policies, we use the complete link method and
the single link method in hierarchical clustering [6]. The complete link method

96 K. Sugiura et al.

time

Complete overlap

Single overlap

Match

Fig. 4. Group generation based on complete overlap and single overlap

requires that every document is similar to (linked to) all other documents in the
same cluster. In contrast, the single link method requires that every document
is similar to at least one other document in the same cluster. For our context,
we propose complete overlap and single overlap, inspired by the two methods,
and give their definitions below. In the following definition, ts overlap(m,m′) is
a predicate that is true when the time interval of m overlaps with that of m′.

Definition 6. A set of matches M has a property of complete overlap when M
satisfies the following condition:

∀m,m′ ∈ M, ts overlap(m,m′). (1)

Definition 7. A set of matches M has a property of single overlap when M
satisfies the following condition:

∀m ∈ M,∃m′ ∈ M,m �= m′ ∧ ts overlap(m,m′). (2)

Now, we define a group using overlaps:

Definition 8. A group g is a set of matches. g should have a property of com-
plete overlap or single overlap and g should not be a subset of other groups. A
group is represented as a tuple g = (ts, te, p) that contains the starting time, the
end time, and the corresponding probability.

Complete overlap ensures that all matches in a group overlap with each other.
In contrast, single overlap ensures that each match overlaps with at least one
other match in the same group. Figure 4 shows an example of group generation
using complete overlap and single overlap. For the case of complete overlap, three
groups g1 = (t1, t3, p1), g2 = (t2, t4, p2), and g3 = (t3, t5, p3) are generated. In
contrast, one group g4 = (t1, t5, p4) is generated for the case of single overlap.

The above example shows a tendency of group generation based on complete
overlap and single overlap. In this case, complete overlap may generate more use-
ful groups in general, because single overlap excessively merges matches. Suppose
the first and last matches have high occurrence probability in Fig. 4. We should
distinguish among them in such a case, but single overlap merges them into g4.
On the other hand, complete overlap can distinguish among them as g1 and g3.
Single overlap is, however, more useful than complete overlap in some ways. For
example, it may be appropriate to merge all the matches in Fig. 2 but com-
plete overlap cannot merge them. In contrast, single overlap can merge all the

Grouping Methods for Pattern Matching in Probabilistic Data Streams 97

matches into a group. Therefore, we should selectively use complete or single
overlap according to the usage scenario.

Next we define the probability of a group. A group is a set of matches according
to Definition 8. Moreover, a match is a set of sequences according to Definition 5.
A group is therefore also a set of sequences, so we can define the probability of a
group as follows:

Definition 9. A probability of a group g is given as

P (g) = P

(
⋃

mi∈g

mi

)

=
∑

sw∈⋃mi∈g mi

P (sw). (3)

In the following, we use the term group probability for simplicity.

4 Algorithms for Generating Groups

In this section, we explain how to generate groups for each type of overlap.
Moreover, we introduce the use of a probability threshold for efficient group
generation.

4.1 The Case of Complete Overlap

As described in Definition 6, complete overlap requires that all matches overlap
with each other. Thus, small groups such as g1, g2, and g3 in Fig. 4 are generated.
We can identify such groups when a group finds a match for the first time. For
example, we consider the groups g1 = {m1,m2,m3}, and g2 = {m2,m3,m4}
in Fig. 2. g1 does not have m4 because m4 does not overlap with m1. In other
words, all matches in g1 are fixed when we detect m1 at time 3. In more detail,
g1 has 〈a1 b2 c3〉, 〈a1 b2 b3〉, and 〈a2 b3〉 at time 3, and any runs and matches are
not added to g1 after time 3 due to the condition of complete overlap. Thus, we
can distinguish g1 and the other groups such as g2 at time 3.

Figure 5 shows the algorithm for generating groups based on complete over-
lap. Note that we omit explanation of lines 10 and 15 in this section; they are
covered in Sect. 5. Suppose the pattern 〈a b c〉 is given for the stream in Fig. 1.
First, we initialize R and G (lines 2 and 3). R is a temporal set of runs and
G holds the candidates of groups. We process the events in order (line 4) and
add new runs to R to generate candidates. At time 1, a new run r1 = 〈a1〉 is
generated and added to R (line 5). The conditions at lines 6, 11, and 14 are not
satisfied in this iteration. Then R becomes {r1 = 〈a1 b2〉, r2 = 〈a2〉} at time 2
and {m1 = 〈a1 b2 c3〉, r2 = 〈a2 b3〉, r3 = 〈a3〉} at time 3 at line 5. As we find a
match m1, we generate a copy of R as g1 and add g1 to G (line 7). Hereafter,
we update only {r2, r3}, the remaining runs of g1 (line 5). Note that we remove
m1 = 〈a1 b2 c3〉 from R (line 8) because R cannot get a new run like r4 = 〈a4〉
for the condition of complete overlap. We output groups and remove them from
G when they have no runs (lines 16 and 17). In this example, g1 is output at

98 K. Sugiura et al.

1: procedure GenerateGroupsForCompleteOverlap(PDS)
2: R = ∅ // set of runs
3: G = ∅ // candidates of groups
4: for each et ∈ PDS do
5: update runs and generate a new run 〈et〉 then add it to R
6: if R has a match then
7: generate a copy gcopy of R and add gcopy to G
8: remove matches from R
9: end if

10: update the group probability of R using (5)
11: if R has runs that are out of the window next time then
12: remove such runs from R
13: end if
14: for each g ∈ G do
15: update the group probability of g using (5)
16: if g does not have a run then
17: output g and remove it from G
18: else if g has runs or matches that are out of the window next time then
19: output g
20: remove such runs and matches from g
21: end if
22: end for
23: end for
24: end procedure

Fig. 5. Group generation based on complete overlap

time 5 because g1 = {〈a1 b2 c3〉, 〈a2 b3 c4〉, 〈a3 b4 c5〉} does not have a run. This
process continues until the data stream terminates. Note that lines 11 to 13 and
lines 18 to 21 are for window processing. We remove runs and matches that are
out of the window next time (lines 12 and 20). When a group has matches, we
output it (line 19).

4.2 The Case of Single Overlap

In a group based on single overlap, each match should overlap with at least
one of the other matches in the same group. The group formation process is not
simple, as described below. Consider the situation where the match and the runs
in Fig. 6 are generated for the pattern 〈a b+c〉.

In this case, we can formulate the groups g1 = {m1, r1}, g2 = {r2}, and
g3 = {r3}. However, we cannot yet merge g1 and g2 because r2 overlaps with
only r1, and r2 may not overlap with g1 if r1 is rejected in the future. Similarly
we cannot merge g1 and g3, nor g2 and g3, because they overlap with the runs
only. Then, we merge groups into one group when an overlap between them is
confirmed. For example, when r2 becomes m2 = 〈a4 b5 c6〉 at time 6, we can
merge g2 and g3 into g = {m2, r3}. Note that we can merge only the groups
generated after g2 because g2 overlaps with only the run in g1. If r2 becomes
m3 = 〈a1 b2 b3 b4 b5 c6〉 at time 6, we can merge all the groups into one group.

Grouping Methods for Pattern Matching in Probabilistic Data Streams 99

match / run
time

1 2 3 4 5

m1 a b c

r1 a b b b b

r2 a b

r3 a

Fig. 6. A match and runs for the pattern 〈a b+c〉

Figure 7 shows the algorithm for generating groups based on single overlap.
Suppose that the pattern 〈a b c〉 is given for the stream in Fig. 1. A new run r1 =
〈a1〉 is generated at time 1 (line 4). As G is an empty set, we do not execute lines
5 to 19 in this iteration. At line 21, we generate a new group g1 = {r1} and add it
to G because r1 is not added to any group at time 1. At time 2, a new group g2 =
{r2 = 〈a2〉} is generated at line 21 because g1 = {r1 = 〈a1 b2〉} does not have
matches. g2 is merged into g1 at time 3 because g1 gets the match m1 = 〈a1 b2 c3〉
(lines 6 to 11). We can merge g1 and g2 because g1 = {〈a1 b2 c3〉} and g2 =

1: procedure GenerateGroupsForSingleOverlap(PDS)
2: G = ∅ // candidates of groups
3: for each et ∈ PDS do
4: update runs and generate a new run rnew = 〈et〉
5: for each gi ∈ G do // subscript means the generation order
6: if gi found a match this time then
7: for each gj ∈ G (j > i) do
8: gi = gi ∪ gj and remove gj from G
9: end for

10: gi = gi ∪ {rnew}
11: end if
12: update the group probability of gi using (5)
13: if gi does not have a run then
14: output gi and remove it from G
15: else if gi has runs or matches that are out of the window next time then
16: output gi
17: remove such runs and matches from gi
18: end if
19: end for
20: if rnew is not added to any group then
21: generate a new group gnew = {rnew} and add it to G
22: update the group probability of gnew using (5)
23: end if
24: end for
25: end procedure

Fig. 7. Group generation based on single overlap

100 K. Sugiura et al.

{〈a2 b3〉} certainly overlaps. We output groups that have no runs and remove
them (line 14). In this example, g1 = {〈a1 b2 c3〉, 〈a2 b3 c4〉, 〈a3 b4 c5〉 〈a4 b5 c6〉}
is output at time 6. This process continues until the data stream terminates.

4.3 Use of Threshold of Match Probability

We consider the threshold of a match probability to generate groups efficiently.
The runtime of group generation is large when we generate all matches. Thus,
we remove matches whose probabilities are lower than the specified threshold.
We can remove runs and matches at line 5 in Fig. 5 and line 4 in Fig. 7.

For instance, suppose the pattern 〈a b+c〉 is given and the match threshold
is θ = 0.1 for single overlap matching for the stream in Fig. 1. Ten matches are
found from Fig. 1, but matches satisfying θ are 〈a1 b2 b3 c4〉, 〈a1 b2 b3 b4 b5 c6〉,
and 〈a2 b3 b4 b5 c6〉. Therefore, we construct a group from these three matches.

Although we prune matches with low probabilities, we do not ignore those
probabilities. That is, we remove matches such as 〈a1 b2 c3〉 and 〈a1 b2 b3 b4 c5〉
in our example, but we compute the group probability according to (3). We
explain the details in the next section.

5 Efficient Calculation of Group Probability

Using (3), we can calculate a group probability by summing probabilities of all
sequences in the group. However, such an approach is not efficient because the
number of sequences increases with order O(|V |w). Therefore, we propose an
efficient method using a transducer.

A finite state transducer is a finite state automaton which produces output as
well as reading input. Figure 8 shows an example of a transducer for the pattern
〈a b+c〉. This transducer is generated to accept all sequences that contain the
pattern as a subsequence. Thus, a probability of arriving at the final state is
the sum of probabilities of the sequences. That is, the probability of arriving at
the final state becomes the group probability.

We can generate the transducer by adding edges to the NFA in Fig. 3. The
rules for adding edges are as follows:

0 1 2 3

* : Arbitrary input

Fig. 8. Transducer for the pattern 〈a b+c〉

Grouping Methods for Pattern Matching in Probabilistic Data Streams 101

1. We add an edge from the final state to itself with arbitrary inputs.
2. If the state does not have edges with the first event of the pattern, we add

an edge that shifts the state to state 1 with the first event.
3. We add edges that shift each state to the initial state with other inputs.

For example, we add an edge with the label “∗ : P (∗)” to the final state according
to rule 1. This edge enables the transducer to keep accepted sequences in the final
state. As the first event of 〈a b+c〉 is a, we add edges with the label “a : P (a)”
to state 1 and 2 according to rule 2. We add those edges to accept sequences
that contain a part of the pattern such as 〈a1, b2, a3, b4, c5〉. According to rule
3, we add edges with the labels “a : P (a)”, “

(
a|b

)
: P

((
a|b

))
”, and “

(
a|b|c

)
:

P
((

a|b|c
))

.” Those edges enable rejected sequences to start again from the
initial state.

In the following, we explain how to use a transducer for single and complete
overlaps.

5.1 The Case of Single Overlap

A group g = (ts, te, p) based on single overlap has all matches in the interval
[ts, te]. Figure 4 shows an example where g4 consists of all the matches in [t1, t5].
Therefore, in single overlap, a group probability is equal to the sum of the proba-
bilities of all sequences that contain the pattern as a subsequence in the interval
[ts, te]. As described above, such a probability is the probability of arriving at
the final state of the transducer. Thus, we can compute a group probability using
a transducer instead of computing the probabilities of all sequences.

We use a transition matrix of a transducer to calculate the probability of
arriving at the final state. Equation (4) is an example of the transition matrix
of the transducer in Fig. 8:

Tti−1,ti =

⎡

⎢
⎢
⎢
⎢
⎣

P (ati) P (ati) 0 0
P

(
a|bti

)
P (ati) P (bti) 0

P
(
a|b|cti

)
P (ati) P (bti) P (cti)

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

. (4)

Each row corresponds to the previous states and each column corresponds to
the present states. For example, Tti−1,ti(0, 1) = P (ati) means a probability that
shifts state 0 to state 1 is P (ati). Let St be a vector that contains state proba-
bilities. Then we can update the probabilities as follows:

Stti = Stti−1 × Tti−1,ti . (5)

In other words, we can calculate the probability of the final state by updating
the vector at each time. This process corresponds to lines 12 and 22 in Fig. 7.
For example, Fig. 9 shows the change of vector St for computing the group
probability of g = (1, 6, p) in Fig. 1. Note that g is the set of all matches found

102 K. Sugiura et al.

time init 1 2 3 4 5 6

state

St[0] 1.0 0 0 0.03 0.047 0.0563 0.0563

St[1] 0 1.0 0.3 0.10 0.093 0 0

St[2] 0 0 0.7 0.80 0.630 0.6507 0

St[3] 0 0 0 0.07 0.230 0.2930 0.9437

Fig. 9. Updating state vector St

(a) Transducer for a group without matches (b) Transducer for a group with matches

0 1 2 30 1 2 3

Fig. 10. Additional transducers to calculate a group probability in complete overlap

in Fig. 1. When a group is generated, we initialize the vector such that Stinit[0] =
1.0 and the others are 0. We update the vector using (5) at each time until the
group is output. In this case, the group probability is 0.9437 because we output
the group at time 6.

This approach can compute a group probability even if we prune matches
using a match threshold. As we use a transducer and its transition matrix, we can
compute the sum of probabilities of all sequences that contain matches regardless
of whether matches are generated or not. Let us continue the above example with
g = (1, 6, p). Suppose the matches such as m1 in Fig. 2 are pruned by a match
threshold. In such a case, however, we can compute the same transition matrix
at each time using (4). For example, T1,2 does not change regardless of whether
the matches are generated or not. As we use the transition matrix for calculating
the group probability, we can compute the same group probability even if the
matches are pruned.

5.2 The Case of Complete Overlap

We cannot calculate a group probability using the former approach for complete
overlap.Recall Fig. 2,where two groups g1 = {m1,m2,m3} and g2 = {m2,m3,m4}
are generated. If we use the transducer in Fig. 8 to calculate the group probability
of g1, the calculated probability is not correct because it contains the probability
of m4. Similarly, the probability of g2 is also not correct because of m1.

Therefore, we use two additional transducers to solve the problem. Figure 10
shows the transducers for the pattern 〈a b+c〉. The transducer (a) accepts no
matches because it does not have edges that shift states to the final state. On
the other hand, the transducer (b) generates no runs because it does not have
edges that shift states to state 1. We use the transducer (a) while the group does
not have matches (line 10 in Fig. 5). The transducer (b) is used after the group

Grouping Methods for Pattern Matching in Probabilistic Data Streams 103

finds matches (line 15 in Fig. 5). Note that we use the transducer in Fig. 8 only
once, when a group finds matches for the first time (line 15 in Fig. 5).

Let us continue the above example with g1 = {m1,m2,m3} and g2 = {m2,m3,
m4}. Let us denote the transition matrix of the transducer in Fig. 8 as T . Simi-
larly, we represent the transition matrices of transducers (a) and (b) in Fig. 10
as TA and TB, respectively. We consider the case of calculating the probability
of g1. The system uses TA before time 3 and T at time 3. TB is used after time
3 to avoid including the probability of m4. At t = 6, the vector St of g1 is as
follows:

St6 = Stinit × TA
init,1 × TA

1,2 × T2,3 × TB
3,4 × TB

4,5 × TB
5,6.

Similarly, for g2 we use TA before time 5 to avoid including the probability of
m1. Then T is used at time 5 and TB is used after time 5. Thus, St of g2 is as
follows:

St6 = Stinit × TA
init,1 × TA

1,2 × TA
2,3 × TA

3,4 × T4,5 × TB
5,6.

If the system uses a match threshold, our approach can compute group prob-
abilities as well as the case of single overlap. In the case of complete overlap, the
system decides whether to use the transducers according to the time tf that a
group gets matches for the first time. Thus, the system can compute the group
probability of g = (ts, te, p) only if it has a tuple (ts, tf , te). tf is easily deter-
mined in the process of group generation, because the system can recognize it at
line 6 in Fig. 5. Therefore, our approach can calculate correct group probabilities
for complete overlap.

6 Experiments

In this section, we analyze the performance of our approach. We constructed
a system that generates groups and computes group probabilities using the
described approach. The system is an extension of SASE+ [1], a Java-based
system for pattern matching queries in a non-uncertain data stream. We per-
formed all measurements on a computer with an Intel Core i7-2600 3.40 GHz
CPU, 4.0 GB main memory, and the Windows 7 Professional 64-bit operating
system. The system runs under Java Hotspot VM 1.5 with the JVM allocation
pool set to 1.5 GB.

The experiments are performed based on simulations. We generate a synthetic
probabilistic data stream and use it as an input stream. The generation process
is as follows. First, we generate a non-uncertain data stream 〈α1, α2, ..., α10000〉
with 10,000 events. Each event value αt is taken from the domain V = {a, b, c, d}.
The probability distribution for each event is set as follows. Consider the case
of α1 = a1. We randomly choose the occurrence probabilities of b1, c1, and d1
from the range [0, 0.1]. Then the probability of a1 is given as P (a1) = 1 −∑

α1∈{b1,c1,d1} P (α1). For t = 2, 3, ..., we follow the same procedure.
We evaluate the performance of the proposed method using throughput (the

number of events processed per second). In the experiments, we use the pattern
〈a b+c〉 and the parameters in Table 1. In the following, we represent the setting

104 K. Sugiura et al.

Table 1. Parameters in the experiments

Parameters Values

o: overlap type comp: complete overlap

sing: single overlap

θ: threshold of match probabilities {0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1}
w: window size {5, 10, 15, 20, 25, 50}

0

50000

100000

0 10 20 30 40 50

T
h
r
o
u
g
h
p
u
t

[
e
v
e
n
t
s
/
s
e
c
]

Window size (w)

a

b

c

d

(a) Throughputs for different window sizes (b) Throughputs for different thresholds

0

50000

100000

150000

0 0.02 0.04 0.06 0.08 0.1

T
h
r
o
u
g
h
p
u
t

[
e
v
e
n
t
s
/
s
e
c
]

Match probability ()

a

b

Fig. 11. Throughputs for different window sizes and thresholds

of the parameters as a tuple (o, θ, w). For example, (comp, 0.01, 50) means that
the system uses complete overlap, the match threshold is 0.01, and the window
size is 50.

6.1 Effect of Parameters

Figure 11(a) shows the throughputs for different window sizes. We show the
cases of only θ = 0 and 0.01 because the tendencies for larger thresholds are
similar to that of θ = 0.01. We can observe three properties. First, the through-
put decreases rapidly if we do not use a threshold (θ = 0). This is due to the
number of generated matches. When we use the pattern 〈a b+c〉, the number of
matches increases with order O(w2). Second, the throughput is independent of
the window size if we use a threshold, because most matches are pruned early
by the threshold. As described above, the number of matches increases rapidly,
but most matches do not have high probabilities. High throughput is achieved
because many matches are pruned before their generation. Furthermore, the
throughput of single overlap is larger than that of complete overlap due to the
number of generated groups. As shown in Fig. 4, complete overlap generates more
groups than single overlap. Thus, we need more computation time for complete
overlap.

We next study the effect of the threshold setting. Figure 11(b) shows the
throughputs for different thresholds. We show the case of only w = 50 because

Grouping Methods for Pattern Matching in Probabilistic Data Streams 105

Table 2. Throughputs of the transducer-based approach and the naive approach for
different window sizes

w 5 10 15

(comp, 0.01, w)+proposed 79, 581 71, 356 71, 076

(comp, 0.01, w)+näıve 265 14 Out of memory

(sing, 0.01, w)+proposed 102, 389 97, 575 99, 865

(sing, 0.01, w)+näıve 267 14 Out of memory

the tendencies for other window sizes are similar to those of w = 50. The through-
put increases as the threshold becomes higher. This is also due to the number
of generated matches. As described above, the higher the threshold, the more
we can prune matches. Therefore, we can process each event rapidly if we use a
high threshold.

6.2 Effect of Transducer-Based Approach

In this experiment, we study the efficiency of our method with transducers.
We compare the proposed method with a näıve one. In the näıve method, we
generate all sequences in a window and summarize their probabilities according
to (3).

Table 2 shows the throughput measurements for different window sizes, where
“proposed” means that we use the proposed method to compute group proba-
bilities. Similarly, “näıve” means the use of the näıve method. Table 2 shows
that the throughput of the näıve method decreases exponentially. The näıve
method generates all sequences in a window, but their number increases with
order O(|V |w). Therefore, the näıve method cannot compute group probabilities
due to memory shortage for w = 15. On the other hand, the proposed method
can compute group probabilities regardless of the window size. The proposed
method uses (5) to compute group probabilities. The computational complexity
of (5) is O

(|p|2), where |p| is the length of pattern p. Note that the length of a
pattern means the number of events in the pattern (e.g., |〈a b+c〉| = 3). Thus,
the computation time of the proposed method is much smaller than that of the
näıve one.

7 Related Work

In the literature of non-uncertain data streams, many methods for pattern
matching are proposed [1–5,10–14,16–19]. The SASE project [1,5,17–19], pro-
poses an NFA-based approach for finding matches as described in Sect. 2. More-
over, they propose a method to efficiently process the Kleene closure [1,5]. We
have implemented our system by extending their CEP system SASE+ [1] and
their methods. Including the SASE project, however, all the methods do not
consider and process uncertain data streams.

106 K. Sugiura et al.

Some researchers have taken on pattern matching in uncertain data streams
[7–9,15]. The Lahar project [7,8,15] considers correlated probabilistic data
streams. In correlated streams, every event has a conditional probability as an
occurrence probability because an underlying Markov process is assumed. To
compute match probabilities, they use an NFA translated from a query. They
keep probabilities of the states and regard the probability of the final state as
the match probability. Their approach, however, merges only simultaneously
accepted matches. On the other hand, our approach considers a time interval
of matches and merges them according to complete overlap or single overlap.
Therefore, we can group matches more flexibly. We do not consider correlations
between events in this paper, but we will be able to extend our approach to
correlated streams.

[9] proposes a method to find top k matches in probabilistic streams. In [9],
probabilistic streams are generated by their system using an error model that
translates a non-uncertain event to a probabilistic event. Moreover, the system
computes probabilities for the top k matches using the error model, and can
merge them. Their approach, however, merges only matches that are among the
top k simultaneously accepted matches. On the other hand, we can merge all
probabilities in a group using transducers.

8 Conclusion

We proposed a grouping method of matches for probabilistic data streams. We
proposed complete overlap and single overlap and defined a group using them.
Then, we explained the two algorithms for generating groups. To compute a
group probability efficiently, we proposed an approach that uses transducers.
We evaluated the efficiency of our approach in simulation-based experiments.
Future work will include refinement of the grouping policy and method for group
generation, extension to correlated probabilistic data streams, support of other
options for the regular expression such as negation, and re-evaluation of our
approach using real data sets.

Acknowledgments. This research is partially supported by KAKENHI (25280039,
26540043) and the Center of Innovation Program from the Japan Science and Tech-
nology Agency (JST).

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: Proc. ACM SIGMOD, pp. 147–160 (2008)

2. Akdere, M., Çetintemel, U., Tatbul, N.: Plan-based complex event detection across
distributed sources. Proc. VLDB Endow. 1(1), 66–77 (2008)

3. Chandramouli, B., Goldstein, J., Maier, D.: High-performance dynamic pattern
matching over disordered streams. Proc. VLDB Endow. 3(1–2), 220–231 (2010)

4. Demers, A., Gehrke, J., Panda, B.: Cayuga: A general purpose event monitoring
system. In: Proc. CIDR, pp. 412–422 (2007)

Grouping Methods for Pattern Matching in Probabilistic Data Streams 107

5. Gyllstrom, D., Agrawal, J., Diao, Y., Immerman, N.: On supporting Kleene closure
over event streams. In: Proc. ICDE, pp. 1391–1393 (2008)

6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput.
Surv. 31(3), 264–323 (1999)

7. Letchner, J., Ré, C., Balazinska, M., Philipose, M.: Access methods for Markovian
streams. In: Proc. ICDE, pp. 246–257 (2009)

8. Letchner, J., Ré, C., Balazinska, M., Philipose, M.: Approximation trade-offs in
Markovian stream processing: An empirical study. In: Proc. ICDE, pp. 936–939
(2010)

9. Li, Z., Ge, T., Chen, C.X.: ε-matching: Event processing over noisy sequences in
real time. In: Proc. ACM SIGMOD, pp. 601–612 (2013)

10. Liu, M., Golovnya, D., Rundensteiner, E.A., Claypool, K.T.: Sequence pattern
query processing over out-of-order event streams. In: Proc. ICDE, pp. 784–795
(2009)

11. Majumder, A., Rastogi, R., Vanama, S.: Scalable regular expression matching on
data streams. In: Proc. ACM SIGMOD, pp. 161–172 (2008)

12. Mei, Y., Madden, S.: ZStream: A cost-based query processor for adaptively detect-
ing composite events. In: Proc. ACM SIGMOD, pp. 193–206 (2009)

13. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event processing
over XML streams. In: Proc. ACM SIGMOD, pp. 253–264 (2012)

14. Qi, Y., Cao, L., Ray, M., Rundensteiner, E.A.: Complex event analytics: Online
aggregation of stream sequence patterns. In: Proc. ACM SIGMOD, pp. 229–240
(2014)

15. Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated prob-
abilistic streams. In: Proc. ACM SIGMOD, pp. 715–728 (2008)

16. Woods, L., Teubner, J., Alonso, G.: Complex event detection at wire speed with
FPGAs. Proc. VLDB Endow. 3(1–2), 660–669 (2010)

17. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proc. ACM SIGMOD, pp. 407–418 (2006)

18. Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with impre-
cise timestamps. Proc. VLDB Endow. 3(1–2), 244–255 (2010)

19. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive
queries in complex event processing. In: Proc. ACM SIGMOD, pp. 217–228 (2014)

Fast Similarity Search of Multi-dimensional
Time Series via Segment Rotation

Xudong Gong1, Yan Xiong1, Wenchao Huang1(B), Lei Chen2,
Qiwei Lu1, and Yiqing Hu1

1 University of Science and Technology of China, Hefei, China
lzgxd@mail.ustc.edu.cn, {yxiong,huangwc}@ustc.edu.cn

2 Hong Kong University of Science and Technology, Hong Kong, China
leichen@cse.ust.hk

Abstract. Multi-dimensional time series is playing an increasingly
important role in the “big data” era, one noticeable representative being
the pervasive trajectory data.Numerous applications ofmulti-dimensional
time series all require to find similar time series of a given one, and regard-
ing this purpose, Dynamic Time Warping (DTW) is the most widely used
distance measure. Due to the high computation overhead of DTW, many
lower bounding methods have been proposed to speed up similarity search.
However, almost all the existing lower bounds are for general time series,
which means they do not take advantage of the unique characteristics of
higher dimensional time series. In this paper, we introduce a new lower
bound for constrained DTW on multi-dimensional time series to achieve
fast similarity search. The key observation is that when the time series is
multi-dimensional, it can be rotated around the time axis, which helps to
minimize the bounding envelope, thus improve the tightness, and in con-
sequence the pruning power, of the lower bound. The experiment result
on real world datasets demonstrates that our proposed method achieves
faster similarity search than state-of-the-art techniques based on DTW.

1 Introduction

Multi-dimensional time series are playing an increasingly important role in this
“big data” era. For example, with the rapid development of wireless communica-
tion and location positioning technologies, we can easily acquire the location of
a moving object, e.g. a person, a vehicle, or an animal, at different time. Such
movements are generally recorded as a series of triples (x, y, t), where x and y
are coordinates and t is the sample time. When talking about the dimensionality
of time series, the sample time is often omitted, so such trajectory is regarded
as “two dimensional” time series, which is a representative of multi-dimensional
time series. Various time series data has enabled many interesting applications,
such as finding potential friends according to similar trajectories [12], human
activity recognition [20], and climate change prediction [15] etc.

A basic and important operation in various applications of multi-dimensional
time series is to find similar time series of a given one, which is a similarity search
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 108–124, 2015.
DOI: 10.1007/978-3-319-18120-2 7

Fast Similarity Search of Multi-dimensional Time Series 109

problem. The similarity between two time series is often decided by the distance
between them. According to the thorough experiments carried out in [19], among
all the proposed distance measures for time series data, DTW may be potentially
the best one, and it has achieved great success in highly diverse domains, such
as DNA sequence clustering [13], query by humming [26], RFID tag location
[18] etc. The straightforward computation of DTW takes quadratic time, which
renders it unacceptably slow for applications involving large datasets. In the
past years, many techniques have been proposed to prune unqualified candidates
by first computing a lower bound, thus reduce the number of required DTW
computations [9,11,21,26]. To the best of our knowledge, all the proposed lower
bounding techniques are for general time series, which means they don’t care
the dimensionality of the data, although there are efforts to extend some lower
bounding methods to multi-dimensional time series, such as [14,17].

We notice that these general lower bounding techniques can be further
improved if we consider some unique characteristics of time series in higher
dimensional space. For example, when a time series is in two or more dimensional
space, it can be rotated around the time axis without changing its geometrical
property, thus the distance between two time series will not be affected. This
feature of multi-dimensional time series can be utilized to get a tighter lower
bound for candidate pruning.

Inspired by this observation, we introduce a new lower bound called
LB rotation to speed up similarity search process. The basic idea is to, for each
time series, rotate it by an appropriate angle to reduce the volume of its envelope,
because it has been pointed out in [9] that “the envelope is wider when the under-
lying query sequence is changing rapidly, and narrower when the query sequence
plateaus”. In such a way, we can improve the tightness of the lower bound, and
prune more unqualified candidates to reduce the required DTW computations.

In order to get a satisfactory lower bound, we need to solve several problems:

– Directly rotate the whole time series may not be a good idea. As
we will show later, the more straight a time series is, the better improvement
we can get. Thus we first perform segmentation on the target time series to
divide it into several segments as straight as possible, then deal with each
segment respectively.

– Deciding the rotation angle. This is a key factor affecting the effective-
ness of LB rotation. Rather than directly reducing the volume of the enve-
lope, we aim at reducing the volume of its bounding hypercube, since the
envelope is included in the hypercube. For every time series segment, we can
find the direction of its major axis by least square fitting. The rotation angle
is just the included angle between this direction and the x axis.

– Computing the lower bound. After segmentation, the warping range of a
point in the candidate time series may intersect with several segments of the
query time series, thus we have to compute the distance between the point
and its matching point in each segment, and sum up the minimal distance to
get final lower bound. We first construct extended envelope for each segment,
then locate the corresponding matching point for distance computation.

110 X. Gong et al.

To demonstrate the superiority of LB rotation, we compare it with LB Keogh
[9], which is the most widely used lower bound for constrained DTW, and
LB Improved [11], which is recognized as the only lower bound that actually
improves LB Keogh [19], through experiments on real world datasets. The exe-
cutable and datasets we used are freely available at [1]. We will show that increas-
ing warping constraint has smaller impact on the tightness of LB rotation, while
it may hurt the tightness of LB Keogh and LB Improved considerably.

Our major contribution can be summarized as follows:

– We propose a new lower bound LB rotation for constrained DTW based on
time series rotation to achieve fast similarity search on multi-dimensional
time series. It can shrink the envelope of time series, thus improve the tight-
ness of lower bound, which helps to reduce similarity search time.

– We improve the effectiveness of LB rotation by dividing the time series into
several segments and rotating each segment respectively, rather than directly
rotating the whole time series. The experiment result on real world datasets
shows that LB rotation is more effective than existing lower bounds.

The rest of this paper is organized as follows: Section 2 reviews related work,
and introduces some necessary extensions. Then we demonstrate the details of
LB rotation in Section 3. Experiment results and discussions are presented in
Section 4. Section 5 concludes this paper.

2 Preliminaries

2.1 Related Work

Since retrieval of similar time series plays an important role in many appli-
cations, such as time series data mining, a lot of effort has been devoted to
solving this problem, and many distance measures have been proposed, such as
Euclidean Distance [7], Dynamic Time Warping (DTW) [21], Longest Common
Subsequences (LCSS) [5], Edit Distance on Real sequence (EDR) [4], Edit dis-
tance with Real Penalty (ERP) [3], etc. Among them, DTW is the most widely
used distance measure on time series, because of its effectiveness and robustness.

Due to the high computation complexity of DTW, there are many techniques
developed for it to speed up the distance computation. These techniques can be
mainly divided into two categories: a) directly speed up DTW computation; b)
reduce the number of DTW computations via lower bounding. Lower bounding
DTW is a widely used technique, because it can filter a large part of candidate
time series using relatively cheap computation. Generally, for any lower bounding
algorithm, the nearest neighbor searching process is shown in Algorithm 1. It’s
clear that the tighter a lower bound is, the higher its pruning power will be,
since more candidates will be discarded in Algorithm 1.

The early attempts to lower bound DTW are LB Yi[21] and LB Kim[10].
Since they only use the global information of the time series, such as the maximal
and minimal values to compute the lower bound, their results are relatively

Fast Similarity Search of Multi-dimensional Time Series 111

Algorithm 1. Nearest time series search using lower bounding method
Input: Q � query time series
Input: C � database of candidate time series
Output: the index of nearest time series regarding Q
1: function NearestNeighbor(Q,C)
2: distmin = ∞
3: for i ← 1 to |C|
4: lb ← lower bound(Q, Ci)
5: if lb < distmin

6: true dist ← DTW (Q, Ci) � Ci is the ith candidate in the database
7: if true dist < distmin

8: distmin ← true dist
9: index ← i

10: return index

loose. Keogh et al. [9] took advantage of the warping constraint to construct
an envelope for the query time series, and proposed the first non-trivial lower
bound LB Keogh for DTW, which greatly eliminates the number of required
DTW computations.

There are several extensions of LB Keogh, e.g. [11,16,25,26]. Among them,
LB Improved [11] is recognized as the only improvement that has repro-
ducible result to reduce searching time [19], thus we compare LB rotation
with LB Keogh and LB Improved in Section 4. LB Improved is built upon
LB Keogh, which improves the tightness through a second pass. It is computed
as LB Improved(Q,C) = LB Keogh(Q,C) + LB Keogh(Q,H(C,Q)), where
H(C,Q) is the projection of C on Q [11].

Generally for almost all the non-trivial lower bounding techniques, there are
two prerequisites: a) DTW must be compliant to a constraint enforced on the
warping path; b) the trajectories should be of the same length. If not otherwise
stated, we assume these conditions are already met hereafter. For more details
of lower bounding DTW, please refer to [9,11,19].

We note that these lower bounding techniques are all for general time series,
without considering the unique characteristics of high dimensional time series.
Actually, when it comes to time series in two or more dimensional space, we
can rotate the time series to “flatten” them, thus reduce the volume of their
bounding envelopes, which will improve the tightness of the lower bound, as we
will show in the following of this paper.

2.2 Extending LB Keogh and LB Improved to Multi-dimensional
Time Series

Now we introduce the extended lower bounds for multi-dimensional time series,
and use them for experimental comparison in Section 4.

Originally, LB Keogh and LB Improved are proposed to deal with one dimen-
sional (univariate) time series. We start extending them to multi-dimensional
time series by introducing multi-dimensional bounding envelopes.

112 X. Gong et al.

Definition 1. The bounding envelope of a time series Q of length n in l dimen-
sional space, with respect to the global warping constraint c, is defined as

Env(Q) = (U1, U2, . . . , Un, L1, L2, . . . , Ln), (1)

where Ui = (ui,1, ui,2, . . . , ui,l), Li = (li,1, li,2, . . . , li,l), and ui,p = max{qi−c,p :
qi+c,p}, li,p = min{qi−c,p : qi+c,p}, where qi is the ith point in Q.

For LB Keogh, we adopt the extension introduced in [14].

Definition 2. The multi-dimensional extension of LB Keogh is defined as

LB MV (Q,C) =

√
√
√
√
√
√

n∑

i=1

l∑

p=1

⎧
⎪⎨

⎪⎩

(ci,p − ui,p)
2
, if ci,p > ui,p

(ci,p − li,p)
2
, if ci,p < li,p

0, otherwise

(2)

where Q is the query time series, C is the candidate time series, ci is the ith
point in C, up and lp are the maximum and minimum values of dimension p,
with respect to Q. n is the length of the time series, and l is the dimensionality
of each point in the time series.

The proposition below is proved in [14].

Proposition 1. For any two sequences Q and C of the same length n, for any
global constraint on the warping path of the form j − c ≤ i ≤ j + c, the following
inequality holds: LB MV (Q,C) ≤ DTW (Q,C).

Following [14], we extend LB Improved to multi-dimensional time series. We
only need to extend the projection function (equation (1) in [11]) as follows.

Definition 3. The projection of C on Q in multi-dimensional LB Improved is
defined as

H(C,Q)i,p =

⎧
⎪⎨

⎪⎩

ui,p if ci,p ≥ ui,p

li,p if ci,p ≤ li,p

qi,p otherwise
, 1 ≤ p ≤ l (3)

Similarly, we can prove the following proposition.

Proposition 2. For any two sequences Q and C of the same length n, for any
global constraint on the warping path of the form j − c ≤ i ≤ j + c, the following
inequality holds: LB Improved(Q,C) ≤ DTW (Q,C).

The proof of Proposition 2 is a straightforward extension of Proposition 1,
since LB Improved simply uses LB Keogh twice; we omit it for brevity.

For the succinctness of notations, hereafter we use LB Keogh and
LB Improved to refer to the multi-dimensional extension of the original version
respectively. By convention, we also use time series and trajectory interchange-
ably when referring to two or more dimensional time series.

Fast Similarity Search of Multi-dimensional Time Series 113

3 LB rotation

As discussed in Section 1, when it comes to two or more dimensional space, the
query time series can be rotated by a certain angle to minimize the volume of
its envelope, thus improves the tightness of the lower bound. We will present the
details in this section.

3.1 Intuitive Explanation

First we use an example to show the idea. For simplicity, we only plot the
projections of the two time series as well as the envelope of the query time series
(time series T1) in the x− y plane. Note that in Figure 1a the four envelopes are
partly overlapped.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

LB Keogh(T1, T2) = 6.51

trajectory T1

trajectory T2

(a) Original trajectories

0 10 20 30 40 50 60 70 80 90
−6

−4

−2

0

2

4

6

LB rotation(T1, T2) = 25.90

trajectory T1

trajectory T2

(b) Rotated trajectories

Fig. 1. Two sample trajectories of length n = 128, with warping width c = 0.1n. The
true DTW distance DTW (T1, T2) = 36.84.

In Figure 1a are the original trajectories, and in Figure 1b are the rotated
trajectories. The y axis is scaled with respect to the coordinate range. After
rotation, the y axis has a very small span, because those points in time series
T1 almost lie in the same straight line. It’s clear that before rotation, time series
T2 is almost wholly inside the envelope of time series T1, while only a small
part of it is contained in the envelope of time series T1, after rotation. So, if
we rotate the trajectories by an appropriate angle, we can reduce the volume of
their envelopes, thus get a tighter lower bound.

However, we should note that, by rotating the time series, we can only reduce
the area of the envelopes in either the t − y plane or the t − x plane; we cannot
achieve area reduction in both planes. This is because the geometrical shape
of the time series is rotation-invariant. If it becomes flat in one direction after
rotation, it will surely become steep in the perpendicular direction. In the above

114 X. Gong et al.

example, the area of envelope in the t − x plane actually increases, which will
counteract the gain in the t−y plane. Nonetheless, if we can reduce enough area
of the envelopes in one direction, the result is still preferable, as we can see in
the experiment result in Section 4. To achieve this, we need to divide the time
series into several segments that are as straight as possible, because we can see
from the example in Figure 1 that straight time series will greatly reduce the
volume of envelope after rotation. The details will be introduced later.

3.2 Formal Definition of LB rotation

Based on above observation, we propose a new lower bound for the constrained
DTW, which we call LB rotation. To formally define LB rotation, we first define
time series segmentation, and the distance from a point to the envelope of a
segment.

Definition 4. The segmentation of a time series Q is to divide Q into consecu-
tive and non-overlapping segments si = Q[si.start, si.end] where ∪si = Q∧∀i �=
j : si ∩ sj = ∅.
Definition 5. The distance from a point q to the envelope Env(s) of a time
series segment s is defined as

d(q, Env(s)) = d(q, Env(s)i) =
l∑

p=1

⎧
⎪⎨

⎪⎩

(qp − ui,p)2 if qp > ui,p

(qp − li,p)2 if qp < li,p

0 otherwise

(4)

where i is the index of the matching point in s with respect to p.

How to decide this matching point will be deferred to Algorithm 2.

Definition 6. (LB rotation). The lower bound LB rotation of two time series
Q and C of length n is defined as

LB rotation(Q,C) =
n∑

i=1

min
sj∈Si

{d(ci, Env(sj))} (5)

where Env(sj) is the bounding envelope of segment sj, and Si = {sk | sk ∈
Q ∧ [sk.start, sk.end] ∩ [i − c, i + c] �= ∅}, c is the warping constraint.

For each point ci ∈ C, we compute the distance from ci to the segments in Q
that overlaps with Q[i − c, i + c] respectively, and sum up the minimal distance
regarding each point as the final lower bound. This ensures that no matter which
point qi ∈ Q is matched by ci, the contribution of ci to the lower bound will
never exceed d(ci, qi).

We can prove the following proposition.

Proposition 3. For any two sequences Q and C of the same length n, for any
global constraint on the warping path of the form j − c ≤ i ≤ j + c, the following
inequality holds: LB rotation(Q,C) ≤ DTW (Q,C).

Fast Similarity Search of Multi-dimensional Time Series 115

Proof. Sketch: ∀ci ∈ C, 1 ≤ i ≤ n, it may match the points in the range Q[i − c,
i + c], and its contribution to LB rotation is di = minsj∈Si

{d(ci, Env(sj))}. Sup-
pose there are m segments of Q intersecting with this range, and the real matching
point qi belongs to segment sk, then di ≤ d(ci, Env(sk)). Based on Equation (4) we
have d(ci, Env(sk)) ≤ d(ci, pj),∀pj ∈ sk ∧ j ∈ [i − c, i + c]. By transitivity, di ≤
d(ci, qi). Since DTW (Q,C) ≥ ∑n

i=1 d(ci, qi) ≥ ∑n
i=1 minsj∈Si

{d(ci, Env(sj))} =
LB rotation(Q,C), we can conclude that LB rotation lower bounds DTW.

3.3 Detailed Steps of LB rotation

It takes 4 steps to compute LB rotation:

1. Time series segmentation. As noted in Section 3.1, if we want to achieve
satisfactory lower bound via time series rotation, we need to apply segmenta-
tion on the query time series, then deal with each segment respectively. We
want each segment to be as straight as possible, so intuitively we should par-
tition the time series at those “turning points”. The classic Douglas-Peucker
algorithm [6] is used for the segmentation, since each resulted splitting point
is exactly such a turning point.
We demonstrate the result of segmentation in Figure 2a, where a time series
extracted from the Character Trajectories dataset is divided into 8 segments.
We can see that each segment is almost straight, with different length.

2. Segment rotation. After segmentation, we need to find the rotation angle
that best reduces the volume of envelopes. For each segment, we use least
square fitting to compute the direction of the corresponding major axis,
then we rotate each point p ∈ s around the origin by −s.θ to get the rotated
segment s′, where s.θ is the included angle between the major axis and the
x axis. Thus after rotation, the major axis of s′ is aligned with the x axis,
and the points in the time series segment will have a smaller span around
the x axis, which leads to a narrower envelope.

3. Extended envelope computation. The next step is to compute the enve-
lope for each rotated segment of query time series Q, which is almost the
same as the envelope computation of LB Keogh. The only difference is that,
in the original envelope, each point will cover at least c points of the time
series, however, after segmentation, the matching range may only intersect
with the beginning or ending k(1 ≤ k ≤ c) points of a certain segment.
Covering extra points will hurt the tightness of LB rotation.
To solve this problem, we pad c points at the start and end of segment s
respectively. When computing the upper bounding envelope, we fill the first
and last c points of the padded s with a value that is smaller than all the
values in s (e.g. −∞), while fill with a value that is larger than all the values
in s (e.g. +∞) when computing the lower bounding envelope.
We illustrate the extended envelope in Figure 2b. The original envelopes are
between the two dashed vertical lines, while the extended parts lie outside.

4. Lower bound computation. Now we have a series of rotated segments of
the query time series Q, we will describe for a candidate time series C in the
database, how to compute LB rotation(Q,C) using these segments.

116 X. Gong et al.

First, we need to find the corresponding matching point for the points in C,
in order to apply Equation (4). Given a point ci ∈ C, it may match any point
in Q[i − c, i + c] with respect to a warping constraint c. Since Q is divided
into a series of segments, the points in Q[i − c, i + c] may belong to different
segments, thus we should take care of different conditions. Specifically, if a
segment s intersects with Q[i − c, i + c], there are four possible situations.
(a) (s.start ≤ i − c) ∧ (s.end ≥ i + c), i.e. s contains Q[i − c, i + c].
(b) (sj .start ≥ i − c) ∧ (sj .end ≤ i + c), i.e. Q[i − c, i + c] contains s.
(c) (sj .start ≤ i + c) ∧ (sj .end > i + c), i.e. Q[i − c, i + c] contains the head

of s.
(d) (sj .start < i − c) ∧ (sj .end ≥ i − c), i.e. Q[i − c, i + c] contains the tail

of s.
The index of corresponding matching point is computed as in Algorithm 2,
which gives the final procedures of LB rotation.

(a)

0 20 40 60 80 100 120 140
−1.0

−0.5

0.0

0.5

1.0
time series T

extended upper
bounding envelope

extended lower
bounding envelope

(b)

Fig. 2. (a) The segmentation result of a time series from Character Trajectories dataset,
with m = 8. (b) The extended envelope of a time series T with length n = 128, and
warping constraint c = 0.1n.

3.4 Performance Analysis

We briefly analyze the time complexity of each step in Section 3.3.

1. Timeseriessegmentation.Fora timeseries of lengthn, theDouglas-Peucker
algorithm costs on average O(n log n), and O(n2) in the worst case.

2. Segment rotation. For a time series segment of length k, it costs O(k) to com-
pute the inclination angle of its major axis, and O(k) to rotate each point. So it
costs totally

∑m
i=1 O(ki) = O(n) in this step.

Fast Similarity Search of Multi-dimensional Time Series 117

Algorithm 2. Lower bound computation for LB rotation
Input: {Si}: each Si contains rotated segments of the query time series Q that intersect

with Q[i − c, i + c]
Input: C: candidate time series in the database
Output: d: the lower bound distance
1: function LB rotation({Si}, C)
2: d ← 0;
3: for ci ∈ C
4: distmin ← ∞
5: for sj ∈ Si

6: if (sj .start ≤ i − c) ∧ (sj .end ≥ i + c)
7: index ← i + c − sj .start
8: else if (sj .start ≥ i − c) ∧ (sj .end ≤ i + c)
9: index ← c + (sj .end − sj .start)/2

10: else if (sj .start ≤ i + c) ∧ (sj .end > i + c)
11: index ← i + c − sj .start
12: else if (sj .start < i − c) ∧ (sj .end ≥ i − c)
13: index ← sj .end − i

14: c′
i ← ci rotated by − sj .θ � sj .θ is the inclination angle of the major

axis of sj
15: t ← d(c′

i, Env(sj)index) � Equation (4)
16: if distmin > t
17: distmin ← t

18: d ← d + distmin

19: return d

3. Extended envelope computation. For a time series segment of length k,
it costs O(k+2ck/n) to compute the extended envelope using the streaming
algorithm introduced in [11], so in total

∑m
i=1 O(ki + 2cki/n) = O(n + 2c).

4. Lower bound computation. With warping constraint c, and the num-
ber of segment m, on average the matching range of each point will cover
min{m, �2cm/n} segments, thus the time complexity of LB rotation is
asymptotically O(min{m, �2cm/n}n).

The first three steps can be precomputed before entering the for loop in
Algorithm 1 of Algorithm 1, so the cost will be amortized. If there are enough
candidate time series, this amortized overhead is negligible, just as what we
observed in the experiment. While for the last step, as m is generally fixed,
the time complexity increases with c. However, since generally LB rotation will
produce tighter lower bound, it requires fewer expensive DTW computations,
thus the overall time needed to perform nearest neighbor search will be reduced.

Because the actual performance of all the lower bounding techniques is
data-dependent, we only give a rough analysis here, and compare LB Keogh,
LB Lemire and LB rotation through experiments on different datasets.

118 X. Gong et al.

4 Experiment

4.1 Setup and Datasets

We implemented the algorithms in C++, compiled by g++ 4.9.1. The platform
is a ThinkPad X220 running Arch Linux, with 8GB of RAM and a 2.6GHz Intel
Core i7 processor.

We use two real world datasets for experiments.

– The Character Trajectories1 dataset from the UCI Machine Learning Repos-
itory [2], which contains 2858 trajectories of writing 20 different letters with
a single pen-down segment. The length of each trajectory varies between 109
and 205, and we rescaled them to the same length of 128, using Piecewise
Aggregate Approximation [8] (for longer trajectories) or linear interpolation
(for shorter trajectories).

– The GeoLife2 dataset [22–24] from MSRA, which contains 17,621 trajectories
of 182 users in a period of over three years. We extracted those trajectories
containing at least 1000 sample points for experiment, and rescaled them to
length 256.

The time series in both datasets are all z-normalized [13]. We assume the
datasets are already loaded into memory before running following experiments,
and the true DTW distance is computed using the standard O(mn) dynamic
programming algorithm, subjected to the corresponding warping constraint c.

The compiled executable and preprocessed datasets are freely available at
[1], including the python script to compute the accuracy of 1 Nearest Neighbor
classification on Character Trajectories dataset.

4.2 Evaluation Metrics

The effectiveness of a lower bound is usually reflected in the tightness, pruning
power and the overall wall clock time. The first two metrics are independent
of implementation details, while the last one may vary. Nonetheless, the wall
clock time is still an important metric, since although some lower bound may
be tighter than others, it actually will cost much more time to compute, which
largely nullifies its effectiveness [19].

Following [9], we define the tightness of a lower bound as

T =
Lower Bound of DTW Distance

True DTW Distance
(6)

and define pruning ratio as

P =
Number of Omitted Full DTW Computation

Number of Objects
. (7)

Both T and P are in the range [0, 1], and the larger the better.
1 http://archive.ics.uci.edu/ml/datasets/Character+Trajectories
2 http://research.microsoft.com/en-us/projects/geolife/

http://archive.ics.uci.edu/ml/datasets/Character+Trajectories
http://research.microsoft.com/en-us/projects/geolife/

Fast Similarity Search of Multi-dimensional Time Series 119

To evaluate the tightness of each lower bounding method, we randomly sam-
pled 100 time series from the dataset, then computed the three lower bounds as
well as the true DTW distance for each pair of them (in total 9900 pairs), and
recorded the corresponding tightness. The average over 9900 pairs is reported.
Note that we have to compute the lower bound between each pair, since these
lower bounds are not symmetric, i.e. LB(T1, T2) = d �⇔ LB(T2, T1) = d.

To evaluate the pruning power of each lower bounding method, we randomly
sampled 100 time series from the dataset, then for each time series, we per-
formed 1-Nearest Neighbor search on the rest 99 time series, using Algorithm 1,
by plugging in each lower bounding method in Algorithm 1, and recorded the
corresponding pruning ratio. The average over 100 time series is reported.

To evaluate the efficiency of each lower bounding method, for each dataset, we
randomly sampled 1000 time series from it, then performed 1-Nearest Neighbor
(1NN) search for 50 randomly sampled time series from the same dataset, using
Algorithm 1, by plugging in each lower bounding method in Algorithm 1. In order
to rule out the influence of random factors, the 1NN search time for each time
series is reported as the average over 10 runs. We repeated above experiments
with various parameter combinations.

4.3 The Effect of Segment Number m

First, we inspect how the number of segments will affect the tightness and prun-
ing power of LB rotation. Since this parameter is only used in LB rotation, we
do not compare with the other two lower bounding methods.

We randomly sample 1000 trajectories from the GeoLife dataset, then com-
pute pair-wise lower bound using LB rotation as well as the true DTW distance,
and record the corresponding tightness. The pruning ratio and 1NN search time
are gathered through 1NN search for 50 random sampled time series. The aver-
ages are reported in Figure 3. For the Character Trajectories dataset, we observe
similar results, and we only report one of them for brevity.

We can see that the tightness and pruning power increases with m, however,
for larger m the 1NN search time becomes longer, because the saved DTW
computation cannot break even the time needed to compute LB rotation. We
empirically find that m = 8 achieves a good compromise between the pruning
ratio and extra computation overhead. In the following, if not otherwise stated,
we set m = 8 for all the experiments.

4.4 The Effect of Warping Constraint c on Tightness and Pruning
Power

In the following, we present the tightness and pruning power of the three lower
bounding techniques, with respect to varying warping constraint, on different
datasets. The warping constraint c varies from 0 (corresponding to Euclidean
distance) to n (corresponding to unconstrained DTW distance), with step size
0.05n. The results are presented in Figure 4a through Figure 4d.

120 X. Gong et al.

1 2 4 8 16 32 64
number of segments

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tightness

Pruning ratio

1 2 4 8 16 32 64
number of segments

0.014
0.016
0.018
0.020
0.022
0.024
0.026
0.028
0.030
0.032

T
i
m
e

(
s
)

Fig. 3. Tightness, pruning power and 1NN search time vs. number of segments on
GeoLife dataset. Warping constraint c = 0.1n.

First of all, we need to point out that for the Character Trajectories dataset,
under the optimal constraint c = 0.4n, LB rotation is 2× as tight as LB Keogh,
and 1.3× as tight as LB Improved. It prunes 30% and 16% more unqualified
candidates respectively when compared with LB Keogh and LB Improved. This
optimal constraint is obtained by testing different warping constraint on the
Character Trajectories dataset, since the trajectories are labeled, they can be
used to test the classification accuracy. We used 1-Nearest Neighbor classification,
and validated the result by leave-one-out validation. As for the GeoLife dataset,
due to the lack of labels, we cannot decide the optimal warping constraint for
1NN classification, however we noticed there are trajectories that are almost
identical, while largely shifted along the time axis (about half of the trajectory
length), which indicates that large warping constraint should be used to correctly
align these trajectories.

From Figure 4a through Figure 4d we can observe that LB rotation con-
sistently achieves higher tightness and pruning power than LB Keogh, which
demonstrates the effectiveness of time series rotation.

For c ≥ 0.4n, LB rotation outperforms LB Improved in terms of both tight-
ness and pruning ratio. Because as c increases, the volume of the envelope will
also increase, since it will cover more data points, and intuitively, the probability
of including points with large values is proportional to the covering range of the
envelope, thus the envelope will be enlarged. On the other hand, if we rotate
each segment respectively, recall Figure 1, even the covering range increases, the
volume of the envelope won’t increase much. As a result, although larger c will
hurt the tightness and pruning ratio of all the three lower bounds, the influence
on LB rotation is obviously smaller.

When c is relatively small (< 0.4n), LB rotation generally achieves compa-
rable or even higher tightness than LB Improved, although the pruning ratio of
the latter is sometimes better. This is because with small warping constraints,
LB Keogh has considerably good tightness, thus it requires only a few second
pass computations for LB Improved, which will not improve the tightness much.

Fast Similarity Search of Multi-dimensional Time Series 121

0.0 0.2 0.4 0.6 0.8 1.0
Warping constraint

0.0

0.2

0.4

0.6

0.8

1.0
T
i
g
h
t
n
e
s
s

o
f

L
o
w
e
r

B
o
u
n
d

optimal constraint

LB Keogh

LB Improved

LB rotation

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Warping constraint

0.0

0.2

0.4

0.6

0.8

1.0

P
r
u
n
i
n
g

r
a
t
i
o

optimal constraint

LB Keogh

LB Improved

LB rotation

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Warping constraint

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
i
g
h
t
n
e
s
s

o
f

L
o
w
e
r

B
o
u
n
d

LB Keogh

LB Improved

LB rotation

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Warping constraint

0.0

0.2

0.4

0.6

0.8

1.0
P
r
u
n
i
n
g

r
a
t
i
o

LB Keogh

LB Improved

LB rotation

(d)

Fig. 4. Tightness and pruning ratio w.r.t. varying warping constraint c on different
datasets. (a)-(b): Character Trajectories dataset; (c)-(d): GeoLife dataset.

However, these second pass computations do help to prune more candidates, so
the pruning ratio of LB Improved will increase.

We also note that even in the extreme situation where c = n (unconstrained
DTW), LB rotation can still achieve pruning ratio around 40%, while both
LB Keogh and LB Improved have pruning ratio hardly exceeds 20%.

4.5 The Effect of Warping Constraint c on Search Time

In this experiment, we compare the wall clock time for 1NN search on different
datasets, with respect to varying warping constraint from 0 to n, increasing at
step size 0.05n.

From Figure 5a and Figure 5b we find that the 1NN search time agrees
with tightness and pruning ratio we just depicted in Section 4.4 very well. The
result indicates that on all the datasets, LB rotation will achieve the fastest 1NN

122 X. Gong et al.

0.0 0.2 0.4 0.6 0.8 1.0
Warping constraint

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
T
i
m
e

(
s
)

optimal constraint

LB Keogh

LB Improved

LB rotation

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Warping constraint

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
i
m
e

(
s
)

LB Keogh

LB Improved

LB rotation

(b)

Fig. 5. 1NN search time w.r.t. varying warping constraint c on (a) Character Trajec-
tories dataset; (b) GeoLife dataset

search once the warping constraint c exceeds 0.4n. We have shown that warping
constraints this large are realistic for some real world applications. Figure 5a
shows that for the Character Trajectories dataset, under the optimal warping
constraint c = 0.4n, LB rotation costs about half the time of LB Keogh, and
about 60% of LB Improved. Actually this trend starts once c exceeds 0.2n.

5 Conclusion and Future Work

In this paper, we propose a new lower bounding technique LB rotation for con-
strained DTW, which is based on the observation that if the time series is in
multi-dimensional space, it can be rotated around the time axis to reduce the
volume of its bounding envelope, and as a consequence, the tightness and prun-
ing power of the lower bound will increase. Then we notice that if we divide
the time series into several segments as straight as possible, then treat them
separately, the effectiveness can be further improved, so we use a greedy algo-
rithm to achieve this. We carried out experiments on real world datasets, which
demonstrate the superiority of LB rotation over state-of-the-art lower bounding
techniques.

With more and more high dimensional time series being generated nowadays,
it is of significant importance to effectively process them. In the future, we intend
to further investigate how to utilize the characteristics of multi-dimensional time
series to achieve even better result.

Acknowledgments. This work was supported by National Natural Science Foun-
dation of China under Grant No.61202404, No.61170233, No.61232018, No.61272472,
No.61272317 and the Fundamental Research Funds for the Cerntral Universities, No.
WK0110000041.

Fast Similarity Search of Multi-dimensional Time Series 123

References

1. Executable and datasets used in the experiment. https://www.dropbox.com/s/
gkmcy9up73y5vmo/data.tar.gz?dl=0

2. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.
ics.uci.edu/ml

3. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: Proceedings
of the Thirtieth International Conference on Very Large Data Bases - Volume 30,
VLDB 2004, pp. 792–803. VLDB Endowment (2004)

4. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2005, pp. 491–502. ACM, New York (2005)

5. Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Komorowski,
J., Zytkow, J. (eds.) Principles of Data Mining and Knowledge Discovery. LNCS,
vol. 1263, pp. 88–100. Springer, Heidelberg (1997)

6. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisualization 10(2), 112–122
(1973)

7. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. SIGMOD Rec. 23(2), 419–429 (1994)

8. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems 3(3), 263–286 (2001)

9. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowledge and Information Systems 7(3), 358–386 (2005)

10. Kim, S.-W., Park, S., Chu, W.: An index-based approach for similarity search
supporting time warping in large sequence databases. In: Proceedings of the 17th
International Conference on Data Engineering, 2001, pp. 607–614 (2001)

11. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound.
Pattern Recognition 42(9), 2169–2180 (2009)

12. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.-Y.: Mining user similarity
based on location history. In: Proceedings of the 16th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, GIS 2008,
pp. 34:1–34:10. ACM, New York (2008)

13. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu,
Q., Zakaria, J., Keogh, E.: Searching and mining trillions of time series subse-
quences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2012,
pp. 262–270. ACM, New York (2012)

14. Rath, T.M., Manmatha, R.: Lower-bounding of dynamic time warping distances
for multivariate time series. Technical Report MM-40, Center for Intelligent Infor-
mation Retrieval, University of Massachusetts Amherst (2002)

15. Sefidmazgi, M.G., Sayemuzzaman, M., Homaifar, A.: Non-stationary time series
clustering with application to climate systems. In: Jamshidi, M., Kreinovich, V.,
Kacprzyk, J. (eds.) Advance Trends in Soft Computing WCSC 2013. STUDFUZZ,
vol. 312, pp. 55–63. Springer, Heidelberg (2014)

16. Vlachos, M., Gunopulos, D., Das, G.: Rotation invariant distance measures for
trajectories. In: Proceedings of the Tenth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2004, pp. 707–712. ACM,
New York (2004)

https://www.dropbox.com/s/gkmcy9up73y5vmo/data.tar.gz?dl=0
https://www.dropbox.com/s/gkmcy9up73y5vmo/data.tar.gz?dl=0
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

124 X. Gong et al.

17. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-
dimensional time-series with support for multiple distance measures. In: Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2003, pp. 216–225. ACM, New York (2003)

18. Wang, J., Katabi, D.: Dude, where’s my card?: RFID positioning that works with
multipath and non-line of sight. In: Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM 2013, pp. 51–62. ACM, New York (2013)

19. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experi-
mental comparison of representation methods and distance measures for time series
data. Data Mining and Knowledge Discovery 26(2), 275–309 (2013)

20. Yang, A.Y., Jafari, R., Sastry, S.S., Bajcsy, R.: Distributed recognition of human
actions using wearable motion sensor networks. Journal of Ambient Intelligence
and Smart Environments 1(2), 103–115 (2009)

21. Yi, B.-K., Jagadish, H., Faloutsos, C.: Efficient retrieval of similar time sequences
under time warping. In: Proceedings of the 14th International Conference on Data
Engineering, 1998, pp. 201–208 (1998)

22. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based
on GPS data. In: Proceedings of the 10th International Conference on Ubiquitous
Computing, UbiComp 2008, pp. 312–321. ACM, New York (2008)

23. Zheng, Y., Xie, X., Ma, W.-Y.: GeoLife: A collaborative social networking service
among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

24. Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel
sequences from GPS trajectories. In: Proceedings of the 18th International Confer-
ence on World Wide Web, WWW 2009, pp. 791–800. ACM, New York (2009)

25. Zhou, M., Wong, M.-H.: Boundary-based lower-bound functions for dynamic time
warping and their indexing. In: IEEE 23rd International Conference on Data Engi-
neering, ICDE 2007, pp. 1307–1311 (2007)

26. Zhu, Y., Shasha, D.: Warping indexes with envelope transforms for query by hum-
ming. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2003, pp. 181–192. ACM, New York (2003)

Measuring the Influence from User-Generated
Content to News via Cross-Dependence Topic

Modeling

Lei Hou1(B), Juanzi Li1, Xiao-Li Li2, and Yu Su3

1 Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China
houl10@mails.tsinghua.edu.cn, lijuanzi@tsinghua.edu.cn

2 Institute for Infocomm Research, A*STAR, Singapore 138632, Singapore
xlli@i2r.a-star.edu.sg

3 Communication Technology Bureau, Xinhua News Agency, Beijing 100803, China
suyu@xinhua.org

Abstract. Online news has become increasingly prevalent as it helps the
public access timely information conveniently. Meanwhile, the rapid pro-
liferation of Web 2.0 applications has enabled the public to freely express
opinions and comments over news (user-generated content, or UGC for
short), making the current Web a highly interactive platform. Gener-
ally, a particular event often brings forth two correlated streams from
news agencies and the public, and previous work mainly focuses on the
topic evolution in single or multiple streams. Studying the inter-stream
influence poses a new research challenge. In this paper, we study the
mutual influence between news and UGC streams (especially the UGC-
to-news direction) through a novel three-phase framework. In particular,
we first propose a cross-dependence temporal topic model (CDTTM) for
topic extraction, then employ a hybrid method to discover short and long
term influence links across streams, and finally introduce four measures
to quantify how the unique topics from one stream affect or influence
the generation of the other stream (e.g. UGC to news). Extensive exper-
iments are conducted on five actual news datasets from Sina, New York
Times and Twitter, and the results demonstrate the effectiveness of the
proposed methods. Furthermore, we observe that not only news triggers
the generation of UGC, but also UGC conversely drives the news reports.

Keywords: News stream · User-generated content · Cross dependence ·
Influence · Response

1 Introduction

Nowadays, social media are ubiquitous, offering many opportunities for peo-
ple to access and share information, to create and distribute content, and to
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 125–141, 2015.
DOI: 10.1007/978-3-319-18120-2 8

126 L. Hou et al.

interact with more traditional media [13]. According to the report [14] from Pew
Research Center, over half of the social users in U.S. access news online, as well as
actively express their opinions and comments on daily news, either directly from
the online news (comments following the news) or through other services such
as blogging, Twitter, which produces the rich user-generated content (UGC).
Digital storytelling and consistently available live streaming is fuelling the news
with different events from different perspectives [19], indicating the public voice,
e.g. their opinions, concerns, requests, debates, reflections, can spur additional
news coverage in the event. This comes as no surprise as the main function of the
news is to provide updates on the public voice, and the latest measures taken by
the involved organizations. Therefore, investigating and responding the public
voice is of great benefit to valuable news clues acquisition for news agency, crisis
monitoring and management for functional departments.

When a particular event happens, news articles typically form a news stream
that records and traces the event’s beginning, progression, and impact along a
time axis. Meanwhile, the UGC stream is also naturally formed by the public
to reflect their views over news reports. These two different streams are highly
interactive and inter-dependent. On one hand, the news stream has big influence
on the UGC stream as the public posts their comments based on the correspond-
ing news articles and they are typically interested in certain aspects or topics
in the news stream. On the other hand, the UGC stream, containing the pub-
lic opinions, voice and reflection, could potentially influence and even drive the
news reports, which is the focus of this paper.

Example. Fig. 1 presents the news and comment streams about U.S. Federal
Government Shutdown from New York Times (NYT). At the beginning, the
news reported the budget bill proposed by the House of Representatives, leading
to the public debate as well as Cruz ’s speech. Then the public turned their
attention to the following vote raised by the Senate. They also encouraged the
president after the shutdown, which might affect the final decision. Meanwhile,
the news agencies preferred to report what the public cared most (e.g. vote,
insurance). As such, it is interesting to systematically study how the topics from
two correlated streams interact with each other and co-evolve over time.

Recently, many research efforts have been put on topic evolution within news
stream, e.g. [1,12]. Morinaga et al. proposed a framework for tracking topical
dynamics using a finite mixture model [24]. A representative work from Mei et
al. employed adapted PLSA for topic extraction in text streams, KL-divergence
for discovering coherent topics over time, and HMM for analyzing the lifecycle
in [22]. However, they only detect how the topics evolve but we further explore
what factors could drive their evolution. Another line of research focuses on
simultaneously modeling multiple news streams, such as mining common and
private features [15,29], and identifying the characteristics of the social media
and news media via a modified topic model [32]. However, they still did not
investigate if the inter-stream influence could lead to their co-evolution.

Weapparentlyexpect tostudythe interactionsbetweennewsandUGCstreams,
and address the problem of influence quantification. To the best of our knowledge,

Measuring the Influence from User-Generated Content to News 127

Fig. 1. News and UGC Interaction in U.S. Federal Government Shutdown

it is the first research that focuses on investigating the mutual influence between
these two streams. However, the novel task brings new challenges to conventional
mining approaches. Firstly, it proves utilizing both streams can significantly ben-
efit the topic discovery process than each individual stream alone [30] and we are
dealing with two highly interactive streams, which requires us to consider the inter-
stream dependence and temporal dynamics during topic extraction. Secondly, if
there appears a new topic in UGC stream and it is mentioned in the subsequent
news, we assume news is potentially driven by UGC and vice versa. The influence
could be short-term (people talked about Cruz when his speech just ended), long-
term (the discussion about the budget bill lasted throughout the event) or none, and
we need to detect and distinguish different types of influence, as well as quantify the
mutual influence. Thirdly, news is responsible for dealing with the controversial (or
influential) topics inUGC,andweneedtofigureoutwhat isanappropriate response
from the processed events, such as how many topics the news respond to, how fast
the response is and whether the public accept it.

To tackle the issues above, we introduce a three-phase framework: we first
propose a novel cross dependence temporal topic model (CDTTM) to organize
news and UGC into two dependent topic streams. The core idea of CDTTM is
employing the dependent and temporal correlation across streams for building
up two correlated generative processes with mutual reinforcement [16,30]. Then
we develop a hybrid method to build links among the topics across streams based
on KL-divergence and dynamic time wraping, which can effectively distinguish
short or long-term influence. Finally, we systematically propose four statistical
measures to quantify the mutual influence between two streams. Specifically, we
introduce topic progressiveness to determine whether UGC goes ahead of news in
some topics, response rate, response promptness, and response effect to evaluate
how the news responds to UGC. Our main contributions include:

128 L. Hou et al.

– We propose and formalize a novel problem to measure the mutual influence
across two text streams and address it through a three-phase framework.

– We introduce a novel CDTTM model for topic extraction from two correlated
text streams, which utilizes both temporal dynamics and mutual dependence.

– We propose a hybrid topic linking method, which can effectively discover the
short-term and long-term influence links across streams.

– We define four metrics to quantify the influence between news and UGC
streams. Experiments on five real news datasets show that the influence is
bidirectional, namely news can trigger the generation of UGC and vice versa.

The rest of the paper is organized as follows. In Section 2, we formally define
the problem of news and UGC influence analysis, and then demonstrate our
methods. Our experimental results are reported in Section 3. Section 4 reviews
the related literatures, and finally Section 5 concludes this paper with future
research directions.

2 Problem and the Proposed Method

In this section, we formally define the problem of analyzing the influence between
news and UGC streams, and then present our methods on topic extraction, link
discovery and influence quantification.

2.1 Preliminaries and Problem Definition

Whenever an important event happens, it often brings forth two correlated text
streams, namely news from media forms a news stream NS and users’ voice from
different social applications converges into a UGC stream UGCS. Each news di
or user post pi is represented by a content-time pair (wi, ti), where wi denotes
the words from a vocabulary V and ti is the time stamp from a time collection
T . Meanwhile, they both talk about several topics zd or zp, and the topics
themselves keep changing along the timeline.

Definition 1. News and UGC Influence Analysis. Given news stream NS
and UGC stream UGCS, our goal is to extract time-ordered topic sets for both
streams, namely Zn and Zu, discover the influence link collection L = {li =
(zx, zy, ζ)} and characterize the mutual influence as several well-designed mea-
sures over the influence links. Note that zx ∈ Zn and zy ∈ Zu are topics from
different streams NS and UGCS respectively and ζ is a real number stating the
link strength.

Fig. 1 gives the NYT news and comment streams about U.S. Federal Gov-
ernment Shutdown, both talking about common topics like budget bill, vote and
debt ceiling. The influence analysis aims to detect the dynamic topics for each
stream, link the topics across streams, and evaluate how they influence each
other.

Measuring the Influence from User-Generated Content to News 129

According to the definition above, we present the solution in three phases: 1)
topic extraction : identify the topics from two correlated streams. 2) influence
link discovery : it is required to consider the influence types (i.e. short-term
or long-term) when linking the common topics across streams. 3) influence
quantification : measure the intrinsic relations between UGC and news.

2.2 Topic Extraction from Two Text Streams

In this section, we extract the topics Zn and Zu from news and UGC streams.
We observe that topics in these two streams are cross-dependent : comments in
UGCS are typically formed by the public to reflect their opinions on the top-
ics published in news or provide new information about the progress of events,
while the subsequent news reports in NS often provides additional information
or clarifications to respond to the public comments in UGCS. To capture the
temporal and cross-dependent information across streams, we expand the doc-
ument comment topic model in [16] and design the cross-dependence temporal
topic model (CDTTM) in Fig. 2.

We first introduce the notations. θd and θp are topic distributions for news
and UGC and φ denotes the word distribution of each topic; x is a binary
variable indicating whether the generation of the current word is influenced by
the previous news (or UGC) (x = 1) or not (x = 0); α, β are the Dirichlet hyper
parameters; λ is the Bernoulli parameter for sampling x and γd, γp are its hyper
parameters.

Fig. 2. Cross-Dependence Temporal Topic Model

For the generative process, we partition both steams into disjoint substreams
with fixed time intervals, e.g. NS = NS1 ∪ . . . ∪ NSN where NSi is with time

130 L. Hou et al.

[ti, ti+1), and initialize two standard LDA models in the first substreams NS1

and UGCS1. As for the subsequent substreams, if there is a previous substream
in the other stream (e.g. NSi+1 has a previous UGC substream UGCSi), a coin
x is tossed according to p(x|d) ∼ beta(γd, γp) to decide whether wd inherits from
the previous substream, otherwise (namely when there is no previous substream
in the other stream) a standard LDA model is employed for word sampling. For
example, we are currently sampling the word majority in news substream, and
it appears frequently in the topic budget bill in previous UGC substream, which
could serve as prior knowledge, namely, it has a higher probability to be assigned
as topic budget bill in the current news substream as well.

For parameter estimation, we take Gibbs sampling technique for its ease of
implementation. Suppose the previous UGC model is given, we sample the coin
x and topic assignment of word w in the current news substream separately. For
x, we derive the posterior probability:

p(xi = 0|x¬i, z, ·) =
n¬di
dx0

+ γd

n¬di
dx0

+ n¬di
dx1

+ γd + γp
× n¬di

zdi
+ α

∑
z(n¬di

z + α)
(1)

where ndx0 , nzdi are the number of times that coin x = 0 and topic z has been
sampled from d, and ¬ means exclusion. Then the posterior probability of topic
z for word wdi when the coin x = 1 is derived as follows:

p(zwdi
= j|xwdi

= 1, z¬wdi
, ·) =

n¬i
jwdi

+ mjwdi
+ β

∑
w(n¬i

jw + mjw + β)
n¬i
dj + mdj + α

∑
z(n

¬i
dz + mdz + α)

(2)

where mjwdi
denotes the times that word wdi has been generated by topic j

in current news substream and previous UGC substream respectively, n¬di
dj and

mdj are the times that topic j has been sampled independently or influenced by
previous UGC substream.

Readers who are interested in the solution can refer [16,26] for details.
Through topic modeling, we turn news and UGC streams into two correlated
and time-ordered topic streams Zn and Zu, where Zi

n ⊂ Zn is the news topic set
in time interval [ti, ti+1).

2.3 Topic Influence Link Discovery

In this section, we present our method to link topics across streams. Normally,
we are dealing with three types of influence links, short-term, long-term and no
influence.

Link Measurement. To measure if there is influence link between topics across
streams, we calculate their distance using Kullback-Leibler(KL) divergence.
Given two topics z1 and z2 associated with two distributions φ1 and φ2, the
influence distance from z1 to z2 is defined as the additional new information in
z2 compared to z1:

ζz1→z2 = KL(z2||z1) =
V∑

i=1

φ2i × log
φ2i

φ1i
(3)

Measuring the Influence from User-Generated Content to News 131

where a larger ζz1→z2 value indicates a weaker influence from topic z1 to z2.
Note that the KL-divergence is asymmetric, but it makes sense in our scenario
because the influence link strengths between two topics are not equal, i.e. news
topics usually have higher influence to UGC topics than the other way around.

Fig. 3. Local search and global matching methods

Link Discovery. To accurately discover the influence between topics across
streams, we perform both local and global search. Considering the short-term
response between news and UGC, we set a time window [−2,+2] for each topic in
one stream to detect its local influence links, e.g. given a topic z in UGC stream,
we search the topics locally that are most likely to influence z in the current
and its previous two news substreams, and the topic that it may influence in
next two news substreams. The linked topic is denoted as zs representing the
short-term influence. In Fig. 3, we link the topic in UGC stream at time tA to
its nearest point tB in news stream within ±2 time intervals. To find the topic
zl with long-term influence, we first calculate the topic hotness along time for
each topic, then employ dynamic time wraping (DTW) due to its high efficiency
on dealing with time series data [11]. DTW is a class of widely-used dynamic
algorithms which take two time series data as input, stretch or compress them
in order to make one resemble the other as much as possible. As shown in
Fig. 3, although tB is the most appropriate point locally, we still link tA and tC
and store it into zl after making global matching on these two topic series.

Link Filtering. For each topic z at a specified time, zs presents us a microcosmic
view of the influence between topics within a pre-defined time interval while zl
discovers the macroscopic view of the influence. We compare zs and zl, and
take the one with smaller KL-divergence as the final result. Finally, we sort all
the linked pairs by distances and keep pairs whose distances are lower than the
median value to remove those noisy or no influence cases, which constitute the
result influence link collection L.

2.4 Influence Quantification

In this section, we infer the influence between news and UGC streams by defin-
ing four metrics in terms of news communication [21]. On the UGC side, we

132 L. Hou et al.

evaluate whether UGC influences news by introducing a novel concept of topic
progressiveness, while on the news side, we evaluate how news reacts to UGC
topics through adapting three popular measures in public opinion analysis.

Definition 2. Topic Progressiveness tells whether UGC topics could trig-
ger news topics. Inspired by [23], we consider the time difference between topics
across streams. Specifically, for each topic zp in UGC stream with linked top-
ics L(zp) in the news stream, we compute the cross-entropy values to find the
minimum one zmin

d , and then the topic progressiveness is defined as:

Prog(zp) = T (arg min
zd∈L(zp)

H(zp, zd)) − T (zp) (4)

where H(zp, zd) is the cross-entropy of zp with its linked topic zd, and T (.)
returns the time stamp of the input topic.

While it is clear and verified that news guides the generation of UGC [16,
30], the influence from UGC stream to news stream is our focus in this paper.
Under this notation, if UGC topic zp comes before news topic zmin

d , the topic
progressiveness would be positive, meaning that zp gives contribution to the
zd in news stream, and zp is called as progressive topic. On the other hand a
negative value of topic progressiveness indicates that news zmin

d has led to topic
zp in UGC stream.

Oftentimes, there emerges several hot or controversial topics in UGC stream,
which might become public opinion crisis if they are not handled properly. Sev-
eral models of cognitive determinants of social behaviors, e.g. the theory of
planned behavior (TPB) [2,3], prove that intention is the most reliable predictor
of behavior, but there is still a substantial gap between peoples intentions and
their subsequent behavior due to many factors. Besides perceived behavioral con-
trol, the mediators play critical roles in the intention-behavior relation [27,28].
Since news is the most important mediator between the emergent topics and
the public, we want to know whether and how much does news respond to the
public topics, and if the public accept the response. Therefore, we quantify the
following three metrics in public opinion management [9].

For convenience, we first classify the discovered links in previous steps into
two groups. For a UGC topic zp, if its linked news topic zd appears earlier, we
call zd previous linked topic of zp; otherwise it is future linked topic of zp. The
previous/future linked topics of zd are denoted as PL(zp) = {zd|zd ∈ L(zp) and
T (zd) < T (zp)} and FL(zp) = {zd|zd ∈ L(zp) and T (zd) > T (zp)}.

Definition 3. News Response Rate (NRR) defines how many UGC topics
that draw news’ attention. It is obtained through computing the percentage of
topics that appear in UGC before news media:

NRR(NS) =
|{zp|FL(zp) �= ∅&&PL(zp) = ∅}|

|{zp|PL(zp) = ∅}| (5)

Note that we only consider those topics without previous links, namely, they
appear in UGC stream first.

Measuring the Influence from User-Generated Content to News 133

Definition 4. News Response Promptness (NRP), which evaluates how
fast news responds to the UGC topics, is calculated by the average time difference
between the first appearance time in UGC and the response time in news:

NRP (NS) =

∑
zp and zd∈FL(zp)

[T (zd) − T (zp)]
∑

zp
|FL(zp)| (6)

Since zd is future linked topic of zp, T (zd)−T (zp) should be positive consistently.
When a piece of news with topic zp is published at a particular time t, it

could address the voice and concerns in UGC stream via providing additional
relevant information, and subsequently the public might answer whether they
are satisified. In general, users often express their sentiments about certain topic
using opinion words.

Definition 5. News Response Effect is defined by checking if the number of
opinion words has largely been reduced after news response. If so, it means that
news has effectively address the concerns from the users.

NRE(zp, t) =
C(zt−p) − C(zt+p)

C(zp)
(7)

where C(z) = |{w|w ∈ KW (z)∩OP}| with a pre-defined opinion words set OP ,
KW (·) representing the keywords in given topics, and t the time stamp of the
linked news topic.

Remarks. Progressiveness presents a microcosmic view of the influence between
topics across streams, while the other three metrics demonstrate the news response
macroscopically.Particularly, larger rate andsmallerpromptness express thatnews
responds to public topics actively and promptly, and large effect value indicates
effective news response.

3 Experiments

In this section, we evaluate the proposed methods for topic extraction, influence
link discovery and analysis. We first briefly introduce our datasets, and then
present the detailed experimental results.

3.1 Data Preparation

To the best of our knowledge, no public existing benchmark data is available
for analyzing the influence between news and UGC. Therefore, we have pre-
pared five data of different events from influential news portals and social media
platforms (e.g. NYT, Twitter), including the Federal Government Shutdown
(cFGS/eFGS) in two languages, Jang Sung-taek’s (Jang), The Boston Marathon
Booming (Boston) and India Election (India). Particularly, we crawled news and

134 L. Hou et al.

comments about the first three events from specific pages1,2 or through keyword
search3. While for the last event from Twitter, we collected 2,890,801 related
tweets using keyword filtering, then recognized all the tweets accompanied with
URLs (there are 5,949 URLs found in 784,237 tweets), and finally news URLs
whose frequencies are greater than 5 and corresponding tweets were selected.

For each dataset, we kept the continuous news reports and comments (or
tweets), and further sorted them by published time (last update time for com-
ments), and performed some cleaning work, such as removing low-frequency(≤ 3)
words and stop words. The basic statistics after preprocessing are summarized
in Table 1.

Table 1. Datasets: sources of two streams (Twitter news comes from various news
websites, users post the shortened URLs along with their comments in tweets), dura-
tion, numbers of comments and news articles, max and average number of comments
per news

Source Event Days Comments News
Com./News
max avg

Sina-Weibo
cFGS 35 12,995 97 7,818 134
Jang 43 3,291 84 467 39.2

NYT-Comment
eFGS 53 17,295 136 1,112 127
Boston 46 7,521 211 518 29.4

News-Twitter India 66 4,723 88 113 53.7

3.2 Topic Extraction

For the topic extraction process, we first compare the proposed method with
several baseline models in perplexity, and then demonstrate the model result
through a case study.

Perplexity Evaluation. To evaluate the topic model, we split the news and
UGC by date to apply our proposed CDTTM model, and compare the results
with the following methods:

– DTM: dynamic topic model which is proposed in [6]. We use the released
version4 on news and comments separately since it does not consider the
cross dependence between the two streams.

– DCT: document comment topic model [16] which models a single news arti-
cle and associated comments by considering the news-comment dependence.
We implement this model, and adapt it to model multiple documents.

1 http://news.sina.com.cn/zt/
2 http://www.nytimes.com/pages/topics/index.html
3 http://query.nytimes.com/search/sitesearch/
4 https://code.google.com/p/princeton-statistical-learning/

http://news.sina.com.cn/zt/
http://www.nytimes.com/pages/topics/index.html
http://query.nytimes.com/search/sitesearch/
https://code.google.com/p/princeton-statistical-learning/

Measuring the Influence from User-Generated Content to News 135

– TCM: temporal collection model introduced in [15] which models temporal
dynamics through associating the Dirichlet hyper parameter α with a pre-
defined time-dependent function, and we implement the algorithm described
in their paper.

We employ perplexity [7] of the held-out test data as our goodness-of-fit measure.
A model with lower perplexity indicates it has good generalization performance.

As for the parameters, we set the number of topics K = 5, fix the hyper
parameters α = 50/K, β = 0.1, γd = 5, γp = 0.2 for news, and swap the
values of γd and γp for UGC as recommended in [16,26]. Since we are modeling
temporal data, we just perform the experiments by taking the prepositive several
days for training and the rest for testing instead of random separation or cross
validation. The results in Table 2 show that CDTTM performs better than the
three state-of-the-arts. The reason for those with minor higher perplexity is that
the test data is so sparse that CDTTM degenerates into standard LDA.

Table 2. Perplexity of four different topic models: the experiment settings include the
duration, numbers of news articles and comments/tweets for both the Train and Test
data, and the last four columns present the perplexity of different methods

Event
Train Test Perplexity

days docs days docs DTM DCT TCM CDTTM

cFGS 28 74+10,175 7 23+2,820 19,717 19,204 18,071 17,923

Jang 10 71+1,979 33 13+1,312 17,203 16,211 17,146 17,307

eFGS 43 98+11,900 10 38+5,395 28,074 26,557 26,831 25,835

Boston 16 173+6,222 30 38+1,299 17,129 16,317 17,294 16,677

India 42 68+3,246 24 20+1,477 17,444 16,863 17,208 17,153

Case Study. Table 3 shows the results for eFGS. Note we have grouped the
event into 5 stages according to their topic similarities and removed the common
topic words (like obama) across multiple stages. We observe the topic trends
from both streams (in the following description, n and u denote the information
sources, i.e. news and UGC): [n&u]after the discussion (Aug. 29 to Sep. 19)
on the Obamacare, [n]NYT published the news about the Senate and House
of representatives discussing if they should support this program on Sep. 20.
[n]Then Ted Cruz delivered an extremely long speech to argue that Obamacare
was a disaster on Sep. 24. [n&u]They voted, debated and voted again (Sep.
30), [n]but the U.S. government still shut down on Oct. 1. During this period,
interestingly, [u]the UGC from the public played crucial roles, e.g. they wanted
a decision for the budget program (keywords cost, debt), and accelerated the
vote (keyword majority on Sep. 25). [u]Public further appealed the obamacare
should be negotiated and passed before the shutdown, which potentially led to
[n]government re-opening on Oct. 17.

136 L. Hou et al.

Table 3. An example for topic extraction on eFGS dataset: due to the space limitation,
we list the top words with generative probability greater than 0.01 in each stage for
both news and UGC, and those words that might link news and UGC are highlighted
in bold

8.29∼9.19 9.20∼9.25 9.26∼10.2 10.3∼10.17 10.18∼10.21

News

health .021 health .038 health .037 shutdown .021 medicaid .023
debt .019 senate .021 care .022 debt .020 care .019
senate .017 vote .017 insurance .012 health .014 budget .014
deficit .011 congress .012 cruz .011 debate .012 national .013

UGC

care .029 cost .024 gop .026 debt .032 health .025
vote .016 congress .017 obamacare .018 believe .020 care .025
job .015 majority .017 pass .017 right .015 tax .024
debt .014 coverage .012 negotiate .016 vote .013 money .011

3.3 Influence Link Discovery

We evaluate the link discovery from two aspects, namely the number and the
correctness of the discovered links.

Table 4 shows the number of discovered links using different topic models on
the eFGS data, and we can observe that the number of local links is much more
than that of global links for all topic models indicating that most UGC influence
to news is more timely than slowly; the introduction of (mutual) dependence
benefits the link discovery and that’s why other three methods tend to find
more links than DTM.

Table 4. Number of discovered influence links on eFGS data, including the numbers
of local/global links and the average links per day

DTM DCT TCM CDTTM

Local 77 89 94 97

Global 13 13 13 14

Average 1.698 1.925 2.019 2.094

To obtain the ground truth for correctness evaluation, we invite three anno-
tators to build links (Total) between two topics series and we only include those
links that at least two of them agree (Agree) in the following evaluation. We
use Hybrid to denote our proposed method, and compare it with the simplified
version that only uses local search (denoted as Local) as well as random linking
(Random). Table 5 shows the annotated statistics and the comparison results.
We can see that: the annotated agreement ratio is around 50% which indicates
that it is really a tough task; the random linking quality is very poor, while
both local search and hybrid method are 10 times better; the hybrid method
can achieve comparable (even better) results to the human annotation.

Measuring the Influence from User-Generated Content to News 137

Table 5. Link correctness comparison: number of all distinct annotated links (Total),
number of links that at least two annotator agrees (Agree), and the performance of
different strategies

Event
Annotation Comparison in F1
Total Agree Random Local Hybrid

cFGS 177 84 4.27% 43.4% 46.4%

Jang 201 89 4.66% 42.0% 45.5%

eFGS 239 123 3.93% 46.4% 51.3%

Boston 213 117 4.08% 43.3% 45.6%

India 291 124 4.11% 43.6% 44.9%

3.4 Influence Quantification

Fig. 4 shows how the four measures change over time in different events (to
reflect the general trends, we normalize all time spans into [0,1]). For the topic
progressiveness, we can see that: 1) UGC indeed has guidance to the news report
throughout event life cycles, and the influence mainly falls into the beginning
part and decreases along the timeline. 2) The highest values often come from the
key points of events (e.g. the shutdown day in eFGS). The reason why there are
two peaks in Jang is that Kim Jong-un gave a speech on Jan. 1 which captured
many user-concerned topics.

Then we evaluate the news response to the topics in UGC stream, and have
the following observations:

Macroscopically. 1) The response rate increases initially and then decreases
with time whereas the promptness follows an opposite trends. This indicates that
UGC topics attract attention from the news (response rate) and news responds to
them rapidly (response promptness), especially when the events are still hot. 2)
For the response effect, at the beginning, the public increasingly use sentimental
words to express their opinions. When the event reaches around halfway stages,
the sentimental words have largely reduced, indicating that news is effective in
responding to public opinions.

Microscopically. Very interestingly, we also observe that English news can
respond more and faster than Chinese news for the event of Federal Govern-
ment Shutdown, and the corresponding effect is more significant. A possible
explanation is that it’s a U.S. internal event and American people have a better
understanding the gists of the event. This observation also tells us that the met-
rics themselves are correlated with each other, e.g. a larger progressiveness often
leads to higher response rate and lower response promptness, and the consequent
effect are more likely to be significant.

4 Related Work

Our work in this paper is related to several lines of research in text mining and
streaming data process.

138 L. Hou et al.

Fig. 4. Results Analysis for Influence Quantification

4.1 News and UGC Analysis

The rapid development of social media encourages many researchers to study its
relationship between traditional news media. For example, Zhao et al. employed
Twitter-LDA to compare the topic coverage of Twitter and NYT news and
found Twitter actively helped spread news of important world events although
it showed low interests in them [32]. Petrovic et al. examined the relation between
Twitter and Newsfeeds and concluded that neither streams consistently lead the
other to major events [25]. Liu et al. adapted the Granger causality to model
the temporal dependence from large-scale time series data [5,8].

In this paper, we study the interplay of news and UGC in specific events
where there should be more interactions than the general streams in the work
mentioned above.

4.2 Streaming and Temporal Topic Model

For single stream model, Blei et al. proposed dynamic topic model to analyze the
time evolution of topics in large document collections [6]. Wang et al. presented a

Measuring the Influence from User-Generated Content to News 139

non-Markov topic model named d Topic over Time (TOT), which jointly modeled
both word co-occurrences and localization in continuous time [31]. Alsumait et al.
proposed online-LDA to identify emerging topics and their changes over time in
text streams [4]. Recently, Gao et al. derived topics in news stream incrementally
using hierarchical dirichlet process, and then connected them using splitting and
merging patterns [10].

For topic extraction in multiple streams, Wang et al. tried to extract common
topics from multiple asynchronous text streams [29]. Hong et al. focused on ana-
lyzing multiple correlated text streams, allowing them to share common features
and preserve their own private topics. Hou et al. proposed DCT model, which
employed news as kind of prior to guide the generation of users’ comments [16].

Compared with these models, the advantage of our model is that it captures
the temporal dynamics and the mutual dependence between news and UGC
streams.

4.3 Topic Evolution and Lifecycle

Mei et al. discovered evolutionary theme patterns in single text stream [22]. Wang
et al. aimed at finding the burst topics from coordinated text streams based on
their proposed coordinated mixture model [30]. Hu et al. modeled the topic varia-
tions through time and identifies the topic breakpoints [17] in news stream. Lin et
al. formalized the evolution of an arbitrary topic and its latent diffusion paths in
social community as an joint inference problem, and solved it through a mixture
model (for text generation) and a Gaussian Markov Random Field (for user-level
social influence) [20]. Jo et al. further captured the rich topology of topic evolution
and built a global evolution map over the given corpus [18].

In this paper, we pay little attention on topic evolution and lifecycle, but
more on analyzing the influence between two correlated text streams and try to
figure out how news and UGC co-evolve along the time.

5 Conclusion and Future Work

In this paper, we study the mutual influence between news and UGC streams
through a three-phase framework: extract topics from two correlated text
streams, employ a hybrid method to discover short-term and long-term influ-
ence links across streams, introduce four metrics to measure the influence from
UGC to news, as well as investigate how the news responds to the public opin-
ion in UGC stream. Experiments on five news datasets confirm the existence of
mutual influence, and present some interesting patterns.

There are several interesting directions to further extend this work. For exam-
ple, our topic model returns a flat structure of topics and the topic number is
pre-defined; it would be interesting to explore the hierarchical methods and non-
parameter methods [10]. In addition, we only discover the influence links without
distinguishing their different effects (e.g promote or suppress), so we will inves-
tigate the deeper semantics on the influence links which is another challenging
but interesting problem.

140 L. Hou et al.

Acknowledgments. Thank anonymous reviewers for their valuable suggestions that
help us improve the quality of the paper. Thanks Prof. Chua Tat-Seng from National
University of Singapore for discussion. The work is supported by 973 Program (No.
2014CB340504), NSFC-ANR (No. 61261130588), Tsinghua University Initiative Sci-
entific Research Program (No. 20131089256) and THU-NUS NExT Co-Lab.

References

1. Ahmed, A., Xing, E.P.: Timeline: A dynamic hierarchical dirichlet process model
for recovering birth/death and evolution of topics in text stream. In: Proceedings
of the 26th Conference on Uncertainty in Artificial Intelligence. pp. 20–29 (2010)

2. Ajzen, I.: From intentions to actions: a theory of planned behavior. Springer,
Heidelberg (1985)

3. Ajzen, I.: The theory of planned behavior. Organizational behavior and human
decision processes 50(2), 179–211 (1991)

4. AlSumait, L., Barbará, D., Domeniconi, C.: On-line lda: Adaptive topic models for
mining text streams with applications to topic detection and tracking. In: Proceed-
ings of the 8th IEEE International Conference on Data Mining, pp. 3–12 (2008)

5. Arnold, A., Liu, Y., Abe, N.: Temporal causal modeling with graphical granger
methods. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 66–75 (2007)

6. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd Inter-
national Conference on Machine Learning, pp. 113–120 (2006)

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research, 993–1022 (2003)

8. Cheng, D., Bahadori, M.T., Liu, Y.: Fblg: A simple and effective approach for tem-
poral dependence discovery from time series data. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 382–391 (2014)

9. Daily, C.Y.: Chinese monthly public opinion index. Tech. rep, China Youth Daily,
December 2013

10. Gao, Z., Song, Y., Liu, S., Wang, H., Wei, H., Chen, Y., Cui, W.: Tracking and
connecting topics via incremental hierarchical dirichlet processes. In: Proceedings
of the 11th IEEE International Conference on Data Mining, pp. 1056–1061 (2011)

11. Giorgino, T.: Computing and visualizing dynamic time warping alignments in r:
The dtw package. Journal of Statistical Software 31(7), 1–24 (2009)

12. Gohr, A., Hinneburg, A., Schult, R., Spiliopoulou, M.: Topic evolution in a
stream of documents. In: the 9th SIAM International Conference on Data Mining,
pp. 859–872 (2009)

13. Hänska-Ahy, M.: Social media & journalism: reporting the world through user gen-
erated content. Journal of Audience and Reception Studies 10(1), 436–439 (2013)

14. Holcomb, J., Gottfried, J., Mitchell, A.: News use across social media platforms.
Tech. rep., Pew Research Center, November 2013

15. Hong, L., Dom, B., Gurumurthy, S., Tsioutsiouliklis, K.: A time-dependent topic
model for multiple text streams. In: Proceedings of the 17th ACM International
Conference on Knowledge Discovery in Data Mining, pp. 832–840 (2011)

16. Hou, L., Li, J., Li, X., Qu, J., Guo, X., Hui, O., Tang, J.: What users care about: a
framework for social content alignment. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, pp. 1401–1407 (2013)

Measuring the Influence from User-Generated Content to News 141

17. Hu, P., Huang, M., Xu, P., Li, W., Usadi, A.K., Zhu, X.: Generating breakpoint-
based timeline overview for news topic retrospection. In: Proceedings of the 11th
IEEE International Conference on Data Mining, pp. 260–269 (2011)

18. Jo, Y., Hopcroft, J.E., Lagoze, C.: The web of topics: discovering the topology of
topic evolution in a corpus. In: Proceedings of the 20th International World Wide
Web Conference, pp. 257–266 (2011)

19. Jönsson, A.M., Örnebring, H.: User-generated content and the news: Empowerment
of citizens or interactive illusion? Journalism Practice 5(2), 127–144 (2011)

20. Lin, C.X., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic
diffusion and evolution in social communities. In: Proceedings of the 11th IEEE
International Conference on Data Mining, pp. 378–387 (2011)

21. McCombs, M., Holbert, L., Kiousis, S., Wanta, W.: The news and public opinion:
Media effects on civic life. Polity (2011)

22. Mei, Q., Zhai, C.: Discovering evolutionary theme patterns from text: an explo-
ration of temporal text mining. In: Proceedings of the 11th ACM International
Conference on Knowledge Discovery in Data Mining, pp. 198–207 (2005)

23. Mizil, C.D.N., West, R., Jurafsky, D., Leskovec, J., Potts, C.: No country for old
members: user lifecycle and linguistic change in online communities. In: Proceed-
ings of the 22nd International World Wide Web Conference, pp. 307–318 (2013)

24. Morinaga, S., Yamanishi, K.: Tracking dynamics of topic trends using a finite
mixture model. In: Proceedings of the 10th ACM International Conference on
Knowledge Discovery and Data Mining, pp. 811–816 (2004)

25. Petrovic, S., Osborne, M., McCreadie, R., Macdonald, C., Ounis, I., Shrimpton.,
L.: Can twitter replace newswire for breaking news? In: Proceedings of the 7th
international AAAI Conference on Weblogs and Social Media (Poster) (2013)

26. Rosen-Zvi, M., Griffiths, T.L., Steyvers, M., Smyth, P.: The author-topic model
for authors and documents. In: Proceedings of the 20th Conference on Uncertainty
in Artificial Intelligence, pp. 487–494 (2004)

27. Sheeran, P., Abraham, C.: Mediator of moderators: Temporal stability of intention
and the intention-behavior relation. Personality and Social Psychology Bulletin
29(2), 205–215 (2003)

28. Sheeran, P., Orbell, S., Trafimow, D.: Does the temporal stability of behavioral
intentions moderate intention-behavior and past behavior-future behavior rela-
tions? Personality and Social Psychology Bulletin 25(6), 724–734 (1999)

29. Wang, X., Zhang, K., Jin, X., Shen, D.: Mining common topics from multiple asyn-
chronous text streams. In: Proceedings of the 2nd ACM International Conference
on Web Search and Data Mining, pp. 192–201 (2009)

30. Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated bursty topic patterns
from coordinated text streams. In: Proceedings of the 13th ACM International
Conference on Knowledge Discovery in Data Mining, pp. 784–793 (2007)

31. Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model
of topical trends. In: Proceedings of the 12th ACM International Conference on
Knowledge Discovery and Data Mining, pp. 424–433 (2006)

32. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.P., Yan, H., Li, X.: Comparing twit-
ter and traditional media using topic models. In: Proceedings of the 33rd European
Conference on Information Retrieval, pp. 338–349 (2011)

Database Storage and Index I

SASS: A High-Performance Key-Value Store
Design for Massive Hybrid Storage

Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng(B)

School of Information, Renmin University of China, Beijing, China
{jiangtaow,zhiliangguo,xfmen}@ruc.edu.cn

Abstract. Key-value(KV) store is widely used in data-intensive appli-
cations due to its excellent scalability. It supports tremendous working
data set and frequent data modifications. In this paper, we present SSD-
assisted storage system (SASS), a novel high-throughput KV store design
using massive hybrid storage. SASS meets three exclusive requirements of
enterprise-class data management: supporting billions of key-value pairs,
processing thousands of key-value pairs per second, and taking advantage
of the distinct characteristics of flash memory as much as possible. To
make full use of the high IOPS of sequential write on the SSD, all mod-
ification operations are packaged as operation logs and appended into
SSD in the time order. To handle the tremendous number of key-value
pairs on hard disk, a novel sparse index, which can be always kept in the
SSD, is proposed. Moreover, we also propose an in-memory dense index
for the operation logs on SSD. Our evaluation mainly characterizes the
throughput of read and write, namely the ops/sec(get-set operations
per second). Experiments show that our SASS design enjoys up to 96806
write ops/sec and 3072 read ops/sec over 2 billion key-value pairs.

Keywords: Key-value · Solid state disk · Cache · IOPS

1 Introduction

With the rapid development of Internet technologies, many web applications,
such as internet services, microblogging network, and multi-player gaming, need
to consistently meet the service requests of user within fast response time.
The traditional disk-based relational database systems can hardly support the
high-concurrent access gracefully. Recently, a lot of server-side applications have
preferred to use noSQL databases implemented by key-value stores to provide
high-throughput performance. Compared to the traditional relational database,
key-value storage exhibits better scalability, efficiency and availability. Without

This research was partially supported by the grants from the Natural Science Foun-
dation of China (No. 61379050,91224008); the National 863 High-tech Program (No.
2013AA013204); Specialized Research Fund for the Doctoral Program of Higher Edu-
cation(No. 20130004130001), and the Fundamental Research Funds for the Central
Universities, and the Research Funds of Renmin University(No. 11XNL010).

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 145–159, 2015.
DOI: 10.1007/978-3-319-18120-2 9

146 J. Wang et al.

complex command parse or execution plan optimization, key-value storage sys-
tems can enjoy excellent ops/sec performance. Hence, a key-value storage system
is a better choice for the web applications which need to meet the data dura-
bility and high performance requirements. Furthermore, the technology of flash
memory offers an alternative choice for storage system designers.

Over the past decades, flash-based solid state disk(SSD) is making deep
inroads into enterprise applications as its increasing capacity and dropping price.
Many web service providers have used flash memory to improve their system
performance. However, the comparatively small capacity and high price hin-
der flash memory from a full replacement of hard disks. Although SSD RAID
technology[1,2] makes the high-capacity flash memory device possible, the hybrid
storage is still a prevalent mode. A key challenge in the hybrid storage is how to
take full advantage of the flash memory to maximize the system performance.

In this paper, we present the design and evaluation of SSD-assisted storage
system (SASS), a key-value store design supporting massive hybrid storage and
high throughput. SASS has a three-part storage architecture that integrates
main memory, SSD, and hard disk, in which we take flash memory as the write
cache for the hard disk. In the main memory, we allocate a cluster of separate
log buffers. All data modification operations (insert, delete, and update) are not
immediately written back to the hard disk. Instead, they are stored in these log
buffers as operation logs. When these buffers become full, these logs are appended
to the log file on the SSD, and eventually merged with the original data on hard
disk under certain conditions. As a result, we can take advantage of the high
IOPS of sequential write on SSD and maximize the write throughput. In order
to process random get query, we propose a sparse index, a hierarchical bloom
filter residing in the SSD, to manage the tremendous number of key-value pairs
on hard disks. Furthermore, we also design an in-memory index, operation list,
for the operation logs on SSD. In general, a random get query can be answered
by one flash read in the best case and one extra hard disk read in the worst case.
The contributions of this paper are summarized as follows:

1. We present a novel key-value store design, called SSD-assisted storage system
(SASS), which aims to support large scale data-intensive applications. In
SASS, SSD serves as a write cache for the hard disk, and the key-value pairs
are organized into blocks on hard disks, while the recent modifications of
the key-value pairs are buffered in the SSD as operation logs. The query
processing procedure is further accelerated by two novel index mechanisms.

2. We implement an industry-strength SASS system and conduct extensive
experiments on it. The evaluation results demonstrate that SASS enjoys up
to 96806 write IOPS with key-value pairs log buffers, which outperforms
BerkeleyDB to 9.46x. Moreover, as the introduction of SSD and hierarchical
bloom filter index, SASS provides 2.98x speedup over BerkeleyDB when
measuring the IOPS of read operation.

The rest of the paper is organized as follows. In Section 2, we present an overview
of SASS and some critical components of SASS, including data organization,

A High-Performance Key-Value Store Design for Massive Hybrid Storage 147

hierarchical bloom filter and operation list. Some system maintenance operations
and how to achieve concurrency control are explained in Section 3. Section 4 gives
the results of our experiment evaluation and Section 5 surveys the related work.
Finally, Section 6 concludes this paper.

2 SASS Design and Implementation

2.1 Overview of SASS

Fig. 1 gives an overview of SASS, which employs a three-part storage architecture
integrating main memory, SSD, and hard disk. To support massive data volume,
we take hard disk as the main storage medium considering its large data capacity.
SSD is used to the write cache for the hard disk due to its high IOPS performance.
Some recently modified key-value pairs are cached in the SSD, which will be
merged to hard disk eventually. Thus, for a query request, SASS always check
the SSD at first to see if the most fresh key-value pair exists. If it does, SASS
just reads it from SSD. Otherwise, SASS checks the hard disk.

Fig. 1. An overview of SSD-assisted storage system (SASS)

2.2 Block, Page and Record

In SASS, the disk-resident key-value pairs is managed at a block granularity. All
the incoming key-value pairs are distributed into different data blocks by a hash
function. However, the big block size introduces a problem, that is, we have to

148 J. Wang et al.

read a block even if we just want to get a single key-value pair, which is inefficient
and memory-consuming. So, we introduce data page into SASS. A block consists
of multiple data pages, and a block header structure is designed for each block
to summarize the key-value pair distribution in a data block. We can get the
requested key-value pair through checking its block header. The key-value pair
is stored as a variable-length record. Fig. 2(a) gives the layout of a record, which
consists of three fields: Record Size stores the size of the record, Key Size stores
the size of the key, and Data Value stores the key-value pair.

2.3 Operation Log, Operation Log Page

In SASS, all key-value pair modification operations are first stored in the SSD
as operation logs. The operation logs are organized into log pages following the
order of timestamp. As more and more operation logs are flushed to the SSD,
the first few log pages of the list will be merged and moved to the hard disk over
time. By calculating the hash value of a given key, the key-value pairs which
share the same hash value are accumulated to form a data block. All the data
blocks with the same hash value are clustered into a partition. In log page, a
key-value pair is stored as a variable-length record. Fig. 2(b) gives the layout
of an operation log record on SSD, which also consists of three fields: Log Size
stores the size of the log record, Partition ID identifies the target partition and
Record stores the key-value pair. We store the new key-value pairs in the Record
field for insert and update operations and null for delete operation.

2.4 Log Page Buffer Cluster, Read Buffer and Temporary Buffer

In the main memory, there are three types of buffers: log page buffer, read buffer
and temporary buffer. The log page buffer cluster consists of a set of log page
buffers, each log page buffer is a fixed-size data structure that is used to buffer the
dedicated key-value pairs by a hash function. Specifically, when a new key-value
pair is generated, SASS uses a hash function to locate an associated partition,
and assigns a proper log page buffer to hold it. Each log page buffer shares the
same size with a data page, when the log page buffer is full, the accumulated
logs will be appended to the SSD as a log page. Read buffer is also a fixed-size
data structure to cache the recently read data, including data pages, log pages
and block headers. The least recently used (LRU) pages will be evicted when
read buffer runs out of free space. Temporary buffer, as its name suggests, is a
temporary data structure used for the merge operations.

2.5 Operation List

In SASS, we store all the recent updated data on SSD as operation logs, just
depicted in Fig. 2(b). Whenever a query request arrives, SASS firstly checks the
operation logs cached in the SSD. Upon a miss on the SSD, the query continues
to look up the key-value pairs on hard disks. Consequently, an index for the

A High-Performance Key-Value Store Design for Massive Hybrid Storage 149

operation logs on SSD is definitely necessary to accelerate the check. We design
an index for the operation logs on SSD, namely operation list. Fig. 3 shows the
structure of operation list. Operation list is an array of doubly linked lists of
operation elements, which uses a mapping table to maintain all the operation
logs on SSD. In the mapping table, the key is the Partition ID while the mapped
value is OpHeader. As soon as an operation log is flushed to the SSD, a new
operation element pointed to that operation log will be created and linked to
the corresponding doubly linked list. Actually, we just need one doubly linked
list for a partition. However, we make an array of double linked lists for each
partition to avoid a double linked lists with too many elements which can be
a nightmare for query. For each operation element to be linked, we compute a
HashCode using division method with the key at first and then link the element
to the double linked list with the same HashCode. In this way, we can transform
a long list into many short lists and reduce the query cost. Fig. 2(c) describes
the layout of an operation element, which contains five fields: Operation Type
marking the type of the operation, Log Address keeping the exact address of the
operation log record on SSD, PrevOpElement and NextOpElement pointing to
the previous and next OpElements respectively, Key representing the key of the
operated record. In this way, we can arrange the operation log records targeting
on a certain partition to a doubly linked list from the head to the tail in the order
of their arrival time. For a query with specific key, we can find the corresponding
list and traverse the list from tail to head to look up the first operation element
with the same key.

Record Size Key Size Data Value
2 bytes 2 bytes Variable-length filed

Log Size Partition_Id Record
2 bytes 4 bytes Variable-length filed

(a) Layout of the record(key-value pair)

(b) Layout of the operation log

Operation Type Key Log Address
8 bytes

(c) Layout of the Operation Element

PrevOpElement NextOpElement
4 bytes 4 bytes 4 bytes

Fig. 2. Layout of record, operation log and
operation element

Fig. 3. Structure of operation list

2.6 Hierarchical Bloom Filter

Hierarchical bloom filter is a sparse index, it is designed for indexing the key-
value pairs migrated to hard disk. Because the in-memory index needs to take
up a considerable amount of buffer space, so, we use SSD to store the hierar-
chical bloom filter. Bloom filter is a space-efficient probabilistic data structure
which supports set membership queries. One single bloom filter designed for
flash memory may suffer from the drawback that inserting a key almost always
involves a lot of flash page writes, since the k bit positions may fall into different

150 J. Wang et al.

flash pages. Considering the poor random write of flash memory, we design a
hierarchical bloom filter index structure. Fig. 4 shows the hierarchical bloom
filter, which can be taken as a bloom filter tree. On the lowest level of the tree,
namely the leaf level, each leaf node contains an independent bloom filter which
occupies a single flash page. A leaf node summarizes the membership of the keys
which are scattered in multiple disk-resident blocks. That is, each independent
bloom filter is responsible for indexing one or more specific blocks. To insert or
lookup an element, we employ a hash function to locate the sub-bloom filter that
the requested key-value pair may reside in. Then, k bit positions are identified
within the sub-bloom filter for setting or checking the bits. Thus, this design
requires only one flash page read per element lookup. To further to accelerate
the key lookup, we also add a block header list for each independent bloom fil-
ter. When a key is identified to fall into some sub-bloom filter, we can locate
the block which the requested key-value pair resides in by searching the block
header list.

Fig. 4. Structure of hierarchical bloom filter

2.7 Key Set and Get Operations

SASS supports the following basic operations: insert, update, delete, get, as well
as merge. In this section, we will explain how they work in SASS.

1)set: SASS transforms all the insert, update and delete operations into
operation logs and appends them to the SSD. Subsequently, the corresponding
operation elements are created and linked to the tails of the target list. In this
way, SASS transforms the random write into sequential write and maximize
the write throughput. Actually, all these operations will not return until the
operation logs are flushed to SSD for guaranteeing the durability of data.

2) get: A get query uses a key to retrieve a key-value pair. Given the key
in the get query, the id of the partition that contains the key is determined at
first by checking the in-memory hash table. Then, we can get the corresponding
double linked list to the partition id from the operation list. The first element
with the same key can be found by traversing the list of operation elements
from tail to head. Upon a hit on the list, we will check the operation type,

A High-Performance Key-Value Store Design for Massive Hybrid Storage 151

insert or update indicates the record is resident on SSD, and delete indicates the
record had been eliminated recently. Hence, the data address will be returned
for inserting or updating and null for deleting. Otherwise, we will search the
hierarchical bloom filter to locate the page in which the key-value pair resides.

3 Advanced Issues

This section discusses some advanced and important issues for SASS.

Algorithm 1. Evict SSDPage()
Require: The operation list list that triggers the merge operation
Ensure: Merge the operation log with the key-value pair residing hard disk
1: PartitionId=Lookup OP(list);/*locate the partitionID of the given list*/
2: MergeBlock=GetBlock(PartitionId);/*get the block with the PartitionId*/
3: for (ele = list.head;ele! = list.tail;ele = ele − >nextOpElement) do
4: if (ele.type == insert) then
5: data=GetData(ele.dataAddress);
6: if (MergeBlock is full) then
7: allocate a new MergeBlock for the incoming key-pair page;

8: InsertData(MergeBlock,data);

9: if (ele.type == update) then
10: data=GetData(ele.dataAddress);
11: if (MergeBlock is full) then
12: allocate a new MergeBlock for the incoming key-pair page;

13: UpdateData(MergeBlock,data);

14: if (ele.type == delete) then
15: DeleteData(MergeBlock,ele.key);

16: FlushAllBlockData();/*migrate the SSD-resident KV pairs to disk*/;
17: deltaindex=BulidDiskDataIndex();/*build index for the evicted KV pairs*/;
18: update deltaindex to the hierarchical bloom filter;
19: RemoveOplistFromSSDIndex(list);/*remove the list from the operation list*/;
20: return;

3.1 Merge

As the data modifications consume the space of SSD steadily, the operation log
records in the oldest log pages have to be merged with their original data on the
hard disk periodically. This process is managed by a merge operation. In general,
two conditions will trigger a merge operation: the number of operation elements
in an operation list exceeds a threshold and the flash memory usage exceeds a
certain threshold. During the merging process triggered by a large number of
operation elements, the corresponding log pages will be read into the temporary
buffer and the list will be traversed from head to tail to execute the merge

152 J. Wang et al.

operation. During the merging process triggered by the flash usage, the oldest
log blocks are chosen to be recycled. The maximum number of operation elements
in an operation list is very a critical configuration parameter. A relatively small
operation element number setting reduces the traversal time on the list but makes
the merge operation more frequent. A relatively large operation elements number
accelerates the data access but reduces the space that can be used by SSD
itself, which is considered necessary for some internal operations (e.g., garbage
collection). Algorithm 1 gives the detailed description of the merge operation.

3.2 Concurrency Control

To achieve high throughput, SASS must support multi-thread operations, which
require an effective concurrency control mechanism. Temporary buffer is a tem-
porary structure allocated for each thread exclusively, so there is no need to
protect temporary buffer. For other shared data structures, Table 1 lists the
related operations and lock strategies.

Read Buffer : A get query may check the read buffer to see if the target data
pages are already cached. Upon a miss, the least recently used (LRU) pages will
be evicted and then the query thread reads the target pages from SSD or hard
disk. In fact, we do not write the data pages back to hard disk, since they are
never modified. The only thing should be ensured is that the data pages being
accessed by some threads cannot be evicted by other threads. Consequently, each
query thread must hold a read lock on the target pages and cannot evict any
pages until it holds the write locks on them.

KV Pairs Log Buffers: KV pairs log buffers collect the operation log
records created by insert, update and delete operations in the order of their
timestamps. When the operation log records fill up the buffer, all the write
threads will be blocked until all log records in the buffer are flushed to the SSD.
As the write threads and the flush thread have a producer-consumer relationship
on both buffers, we use a producer-consumer lock to protect them.

Operation List : For operation list, get traverses the list to find the target
operation element and all the elements on the list will be checked upon a miss.
Insert, update and delete always add an element to the tail of the target list.
Merge traverses and frees a part of or the entire list. For this situation, we must
prevent these operations from being disturbed by each other. So, we choose to
use the reader-writer lock.

4 Experimental Evaluation

We implement a key-value store with about 20,000 lines of C code and perform
a serial of experiments on this system. As SASS aims to be a high throughput
storage system, our evaluation mainly characterizes the throughput of read and
write, namely the ops/sec. Our experiments run on a server powered by Intel
Xeon CPU E5645 at 2.40GHz with 16GB of DRAM. We use the Seagate hard

A High-Performance Key-Value Store Design for Massive Hybrid Storage 153

Table 1. Lock Strategy Of Shared Data Structure

Share Data Structure Operation Lock Strategy

Read buffer get Reader-Writer
KV pairs log buffer insert, update, delete Producer-Consumer

Operation list get, insert, update, delete,merge Reader-Writer

disk store all the key-value pairs. The storage capacity of hard disk is set to
10TB. A 256G GB Intel SSD serves as the write cache.

We pick two different data sets, i.e., post messages and pictures, as our eval-
uation datasets. The data items in the former dataset are mostly small(100bytes
∼ 1000bytes) while the data items in the latter one are relatively large(10KB ∼
100KB). To make a thorough evaluation of SASS, we chose two extreme data
traces, Random Set and Random Get, to squeeze SASS for its maximum write
and read performance. In addition, we also chose a typical data trace, Canonical,
which is a normalized read-world workload. Table 2 describes the properties of
each test set, in which a suffix L stands for large data (i.e, thumbnail pictures).

Table 2. Experimental Data Trace

Trace Number of Operations get:set:update:delete Value Size(KB)

Random Set 4billions 0:1:0:0 0.1 ∼ 1
Random Set-L 4billions 0:1:0:0 10 ∼ 100
Random Get 4billions 1:0:0:0 0.1 ∼ 1

Random Get-L 4billions 1:0:0:0 10 ∼ 100
Canonical 2.5billions 64:8:4:1 0.1 ∼ 1

Canonical-L 2.5billions 64:8:4:1 10 ∼ 100

4.1 Set and Get Performance

We compare SASS with a popularly used database system, BerkeleyDB or BDB.
BDB is a software library that provides a high-performance embedded database
for key-value data, we select hash table to build the index for BerkeleyDB. To
make a fair performance comparison, we implement the BerkeleyDB with a non-
transactional data store mode, both SASS and BDB run on the same machines
that we described above. We compare the performance of BDB and SASS using
the workloads listed in Table 2.

Fig. 5 and Fig. 6 show the random set ops/sec of BDB, SASS over two
datasets. In both figures, the random set ops/sec of BDB and SASS decrease
when the number of concurrent threads increases. An exception is that the ran-
dom set ops/sec of SASS does not decrease until the number of test threads
exceeds 128. Especially for the microblog messages dataset(shown in Fig. 5),
SASS provides a speedup of 9.5 times relative to BDB when the number of test

154 J. Wang et al.

64 128 256 512 1024
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Number of Concurrent Test Thread

op
s/

se
c

Random Set (BDB)
Random Set (SASS)

Fig. 5. ops/sec over Random Set

64 128 256 512 1024
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of Concurrent Test Thread

op
s/

se
c

Random Set (BDB)
Random Set (SASS)

Fig. 6. ops/sec over Random Set-L

64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

3500

Number of Concurrent Test Thread

op
s/

se
c

Random Get (BDB)
Random Get (SASS)

Fig. 7. ops/sec over Random Get

64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

Number of Concurrent Test Thread

op
s/

se
c

Random Get (BDB)
Random Get (SASS)

Fig. 8. ops/sec over Random Get-L

threads is set to 512. In addition, as SASS transforms all the random set into
sequential write, SASS exhibits a higher ops/sec than that of BDB when dealing
with the relatively large data items (shown in Fig. 6).

Fig. 7 and Fig. 8 show the random get ops/sec of BDB and SASS over two
datasets. From both figures, we can see that both the random get ops/sec of
BDB over microblog messages dataset and thumbnail pictures dataset display
little difference. That is, the random get performance of BDB is non-sensitive
to different datasets. In contrast, SASS shows better random get ops/sec over
microblog messages dataset. Concerning the data items in microblog messages
dataset are short, much more key value pairs can resident on SSD, so the perfor-
mance improvement over microblog messages dataset makes sense. In general, a
random get operation in SASS can be answered by one flash read for the best
case and one extra hard disk read for the worst. However, a random get oper-
ation in BDB requires one hard disk read for the best case. Hence the random
get performance of SASS always outperforms that of BDB.

Both random set and random get are extreme workloads and can hardly
happen in practice, so we choose another typical workload, canonical. Fig. 9 and
Fig. 10 exhibit the canonical ops/sec of BDB, SASS. For the canonical dataset,
SASS gains the maximum of ops/sec when the number of test thread is set to
128, and provides a speedup of 8.49X compared to BDB.

A High-Performance Key-Value Store Design for Massive Hybrid Storage 155

64 128 256 512 1024
0

2000

4000

6000

8000

10000

12000

Number of Concurrent Test Thread

op
s/

se
c

Canonical(BDB)
Canonical(SASS)

Fig. 9. ops/sec over Canonical

64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

3500

Number of Concurrent Test Thread

op
s/

se
c

Canonical(BDB)
Canonical(SASS)

Fig. 10. ops/sec over Canonical-L

4.2 Impact of the Length of Operation List

Merge is the most expensive in all of the operations and it also affects the
execution of other operations. As stated in Section 3, the two conditions trigger
merge operation: the number of elements in an operation list exceeds a threshold
and the amount of log pages usage on SSD as well exceeds another predefined
threshold. Considering the relatively small capacity of SSD, the value of flash
usage threshold is set to 90%. Consequently, we just tune the maximum number
of elements in a OpHeader in the following evaluation.

With different maximum number of elements in a OpHeader, we conduct
canonical workload again over two datasets. Besides, we count the ops/sec of set
operations and get operations in canonical workload respectively, so that we can
figure out how much the merge operations affect set operation and get operation.
We vary the number of element in operation list from 512 to 2048. Fig. 11 and
Fig. 12 display the ops/sec of set operation in canonical workload over two
datasets. From the figures we can determine that the bigger number of elements
the better ops/sec of set operation. Bigger number of elements in a OpHeader
means less merge operations triggered by operation list. Merge operation holds
an exclusive lock to prevent subsequent set operations, hence a bigger number
of elements setting can improve the ops/sec of set operation.

Fig. 13 and Fig. 14 display the ops/sec of get operation in canonical workload
over two datasets. From these figures, we can say that the bigger number of
elements the lower ops/sec of set operation. Although we make an array of
double linked list, the number of elements can be large if we choose a large
number of elements setting. For every get operation, we have to choose a list
from the operation list and traverse it. Accordingly, a bigger number of elements
setting increase the overhead of traverse. Merge operations do not affect the get
operation, because they hold share lock for each other.

4.3 Impact of Merge Operation

As shown above, the number of elements affects the set and get operation in
different ways. We count the number of merge operation triggered as SASS
processes more and more requests in canonical workload. In Fig. 15, we can

156 J. Wang et al.

64 128 256 512 1024
0

2000

4000

6000

8000

10000

12000

14000

Number of Concurrent Test Thread

op
s/

se
c

SASS Canonical Set−512
SASS Canonical Set−1024
SASS Canonical Set−2048

Fig. 11. Set ops/sec over Canonical

64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

3500

Number of Concurrent Test Thread

op
s/

se
c

SASS Canonical Set−512
SASS Canonical Set−1024
SASS Canonical Set−2048

Fig. 12. Set ops/sec over Canonical-L

64 128 256 512 1024
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Concurrent Test Thread

op
s/

se
c

SASS Canonical Get−512
SASS Canonical Get−1024
SASS Canonical Get−2048

Fig. 13. Get ops/sec over Canonical

64 128 256 512 1024
0

200

400

600

800

1000

1200

1400

Number of Concurrent Test Thread

op
s/

se
c

SASS Canonical Get−512
SASS Canonical Get−1024
SASS Canonical Get−2048

Fig. 14. Get ops/sec over Canonical-L

see that as the data size accumulates gradually, SASS with maximum number of
elements setting 512 incurs most merge operations. SASS with maximum number
of elements setting 1024 incurs the least merge operations.

For the best case, SASS with maximum number of elements setting 1024,
we analyze the merge operations and count the number of merge operations
triggered by operation list and the number of merge operations triggered by
SSD respectively. From the Fig. 16, we can see that there is no merge operations
triggered by SSD until the size of test data reaches up to 200GB. The reason
is that the SSD has a 256GB capacity, so it can hold about 200GB operation
logs and trigger few merge operations. However, as the size of test data exceeds
400GB, more and more merge operations are triggered by SSD.

We also vary the size of data block from 2MB to 16MB, and appreciate their
impact on the throughputperformancewhen thenumber of test thread is set to 128.
We find that a block with the size of 8MB provides the maximum of throughput.
We discuss the reason why different block sizes can exhibit different performance
improvements. When we select a small block size, the size of SSD-resident index
grows rapidly, which increases the cost of maintaining the index on SSD. If we use
a larger data block, SFHS can reduce the seek latency of the hard disk, which can
improve the I/O performance significantly. However, for a given key, SFHS has to
spend more system resource to answer the requested key-value pair in a block.

A High-Performance Key-Value Store Design for Massive Hybrid Storage 157

100GB 200GB 400GB 800GB 1600GB
0

1

2

3

4

5

6

7
x 10

5

Size of Test Data

Nu
m

be
r o

f M
er

ge

SASS Canonical Set−512
SASS Canonical Set−1024
SASS Canonical Set−2048

Fig. 15. Number of merges over Canonical

100GB 200GB 400GB 800GB 1600GB
0

0.5

1

1.5

2

2.5
x 10

5

Size of Test Data

Nu
m

be
r o

f M
er

ge

Merge Triggered by Operation List
Merge Triggered by SSD

Fig. 16. Number of merges triggered by
operation list and SSD

5 Related Work

As a novel storage medium that is totally different from magnetic disk, flash
memory is getting more and more attention in recent years. Lots of work emerged
to solve different problems. Some work focus on an intrinsic component of the
flash, namely flash translation layer (FTL), which is an important firmware in
flash-based storage[3,4]. Some work focus on the measurements on flash memory
[5,6], and some other work focus on how to adjust the traditional methods in
DBMS to take full advantage of the unique characteristics of flash memory [7–9].
We can’t cover all those excellent work here, so we just give a brief review for
the work related to key-value storage in this section.

FAWN[10] is a cluster architecture for low-power data intensive computing.
It uses an array of embedded processors together with small amounts of flash
memory to provide efficient power performance. FAWN uses an in-memory hash
table to index key-value pairs on flash while SASS adopts hierarchical bloom
filter for blocks on hard disk and doubly linked list for operation logs on SSD.

FlashStore[11] is a high throughput persistent key-value store that uses flash
memory as a non-volatile cache between RAM and hard disk. It stores the work-
ing set of key-value pairs on flash and indexes the key-value pairs by a hash
table stored in RAM. FlashStore organizes key-value pairs in a log-structure on
flash to obtain faster sequential write performance. So it needs one flash read
per key lookup. The hash table stores compact key signatures instead of full keys
to reduce RAM usage. FlashStore provides high performance for random query.
However, FlashStore employs an in-memory index to record the key-value pair
residing in the hard disk, the memory overhead for implementing the index may
exceed the available memory when handling the billion-scale keys.

ChunckStash[12] is a key-value store designed for speeding up inline storage
deduplication using flash memory. It builds an in-memory hash table to index
data chunks stored on flash. And the hash table can help to identify duplicate
data. ChunkStash organizes the chunk data in a log-structure on flash to exploit
fast sequential writes and needs one flash read per lookup.

SkimpyStash[13] is a RAM space skimpy key-value store on flash-based stor-
age designed for server applications. It uses a hash table directory in RAM to

158 J. Wang et al.

index the key-value pairs stored on flash. To reduce the utility of RAM, SkimpyS-
tash stores most of the pointers that locate each key-value pair on flash. It means
that SkimpyStash uses linear chaining to resolve hash table collisions, and stores
the link list on flash. SkimpyStash may need multiple flash read for one key
lookup. In addition, because the flash memory is more expensive than the hard
disk, the cost of using flash memory to handle the large-scale key-value pairs is
very huge.

From the related work stated above, we can conclude that most existing
key-value store designed for hybrid storage adopt in-memory data structure to
index the key-value pairs. However, with 2 billion or more key-value pairs stored
on each machine, these designs consumes memory excessively. Furthermore, the
design of SASS is based on a slim SSD capacity(256GB) and a chubby hard
disk capacity(10TB) while most other designs are based on a comparative SSD
capacity with hard disk. By placing the hierarchical bloom filter index on SSD,
SASS reduces the memory consumption and answers any query request with one
flash memory read for the best case or an extra hard disk read for the worst case.

6 Conclusion

We propose SASS, a key-value store design supporting massive data set and
high throughput. Experiment results show that SASS takes full advantage of
the flash memory and enjoys excellent read/write throughput. Actually, there
are still some interesting problems to be studied and researched. For example,
what on earth the role that flash memory should play, using for logging or
caching. Furthermore, how to setup a hybrid storage strategy in a distributed
system, hybrid on each node or some are flash nodes(only flash memory adopted
in the machines) and some others are hard disk nodes(only hard disk adopted
in the machines). All these problems are realistic in industry and valuable for
researchers.

References

1. Jeremic, N., Mühl, G., Busse, A., Richling, J.: The pitfalls of deploying solid-
state drive RAIDs. In: 4th Annual Haifa Experimental Systems Conference,
pp. 14:1–14:13. ACM Press, Haifa (2011)

2. Balakrishnan, M., Kadav, A., Prabhakaran, V., Malkhi, D.: Differential RAID:
Rethinking RAID for SSD reliability. In: 5th European Conference on Computer
Systems, pp. 15–26. ACM Press, Paris (2010)

3. Gupta, A., Kim, Y., Urgaonkar, B.: DFTL: A flash translation layer employing
demand-based selective caching of page-level address mappings. In: 14th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 229–240. ACM Press, Washington (2009)

4. Lee, S., Shin, D., Kim, Y.J., Kim, J.: Last: locality-aware sector translation for nand
flash memory-based storage systems. ACM SIGOPS Operating Systems Review.
42(6), 36–42 (2008)

A High-Performance Key-Value Store Design for Massive Hybrid Storage 159

5. Bouganim, L., Jnsson, B., Bonnet, P.: uFLIP: Understanding flash IO patterns.
In: Online Proceedings of the 4th Biennial Conference on Innovative Data Systems
Research, pp. 1–12, Asilomar (2009)

6. Chen, F., Koufaty, D.A., Zhang, X.D.: Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. In: 11th Interna-
tional Joint Conference on Measurement and Modeling of Computer Systems,
pp. 181–192. ACM Press, Seattle (2009)

7. Chen, S.M.: FlashLogging: exploiting flash devices for synchronous logging per-
formance. In: ACM SIGMOD International Conference on Management of Data,
pp. 73–86. ACM Press, Rhode Island (2009)

8. Nath, S., Kansal, A.: FlashDB: dynamic self-tuning database for NAND flash.
In: 6th International Conference on Information Processing in Sensor Networks,
pp. 410–419. ACM Press, Massachusetts (2007)

9. Trirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
processing techniques for solid state drives. In: ACM SIGMOD International Con-
ference on Management of Data, pp. 59–72. ACM Press, Rhode Island (2009)

10. Andersen, D.G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., Vasudevan,
V.: FAWN: a fast array of wimpy nodes. In: 22nd Symposium on Operating Systems
Principles, pp. 1–14. ACM Press, Montana (2009)

11. Debnath, B., Sengupta, S., Li, J.: FlashStore: high throught persistent key-value
store. Proceedings of the VLDB Endowmen. 3(2), 1414–1425 (2010)

12. Debnath, B., Sengupta, S., Li, J.: ChunkStash: speeding up inline storage dedu-
plication using flash memory. In: 2010 USENIX Conference on USENIX Annual
Technical Conference, pp. 1–12. USENIX Association, Boston (2010)

13. Debnath, B., Sengupta, S., Li, J.: SkimpyStash: RAM space skimpy key-value store
on flash-based storage. In: ACM SIGMOD International Conference on Manage-
ment of Data, pp. 25–36. ACM Press, Athens (2011)

An Efficient Design and Implementation
of Multi-level Cache for Database Systems

Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng(B)

School of Information, Renmin University of China, Beijing, China
{jiangtaow,zhiliangguo,xfmeng}@ruc.edu.cn

Abstract. Flash-based solid state device(SSD) is making deep inroads
into enterprise database applications due to its faster data access. The
capacity and performance characteristics of SSD make it well-suited for
use as a second-level buffer cache. In this paper, we propose a SSD-based
multilevel buffer scheme, called flash-aware second-level cache(FASC),
where SSD serves as an extension of the DRAM buffer. Our goal is to
reduce the number of disk accesses by caching the pages evicted from
DRAM in the SSD, thereby enhancing the performance of database sys-
tems. For this purpose, a cost-aware main memory replacement policy
is proposed, which can efficiently reduce the cost of page evictions. To
take full advantage of the SSD, a block-based data management pol-
icy is designed to save the memory overheads, as well as reducing the
write amplification of flash memory. To identify the hot pages for provid-
ing great performance benefits, a memory-efficient replacement policy is
proposed for the SSD. Moreover, we also present a light-weight recov-
ery policy, which is used to recover the data cached in the SSD in case
of system crash. We implement a prototype based on PostgreSQL and
evaluate the performance of FASC. The experimental results show that
FASC achieves significant performance improvements.

Keywords: Solid state driver · Flash · Cost · Cache

1 Introduction

Large-scale data intensive applications have gained tremendous growth in recent
years. Since these applications always containmassive randomandhigh-concurrent
accesses over large datasets, traditional disk-based database systems(DBMSs) can-
not support the system gracefully. Compared with magnetic hard disks, flash mem-
ory has a myriad of advantages: higher random read performance, lighter weight,
better shock resistance, lower power consumption, etc. Today, flash-based solid

This research was partially supported by the grants from the Natural Science Foun-
dation of China (No. 61379050,91224008); the National 863 High-tech Program (No.
2013AA013204); Specialized Research Fund for the Doctoral Program of Higher Edu-
cation(No. 20130004130001), and the Fundamental Research Funds for the Central
Universities, and the Research Funds of Renmin University(No. 11XNL010).

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 160–174, 2015.
DOI: 10.1007/978-3-319-18120-2 10

An Efficient Design and Implementation 161

state device(SSD) is making deep inroads into enterprise applications with its
increasing capacity and decreasing price. The unique features of flash memory
make it the best storage media for DBMSs. However, the comparatively small
capacity and high price hinder flash memory from full replacement of hard disks.
Flash memory will be used along with hard disks in enterprise-scale data manage-
ment system for a long time[1,2]. Therefore, the hybrid storage may be an econom-
ical way to deal with the rapid data growth.

In this paper, we propose a flash-aware second-level cache scheme(FASC).
The FASC takes flash-based SSD as a non-volatile caching layer for hard disk.
When a pages is evicted from main memory, the FASC adopts a data admission
policy to selectively cache the evicted page in the SSD for subsequent requests.
In this way, the cost of disk access can be reduced due to the faster read/write
performance of flash memory. Unlike the traditional single-level buffer manage-
ment system, the multilevel cache design results in a complicated page flow
across the different storage devices. Meanwhile, flash memory has some inherent
physical characteristics[3,4], such as erase-before-write limitation, poor random
write and limited lifetime. The data scheduling policies designed and optimized
for the single-level buffer cache must be carefully reconsidered when switching to
a SSD-based multilevel buffer cache. Otherwise, the performance improvement
may be suboptimal. How to take full advantages of the flash memory is the key
issue and challenge in the design of SSD-based multilevel buffer system.

The main contributions of the paper are summarized as follows:

1. We present a SSD-based multilevel cache strategy, called FASC, which aims
to improve I/O efficiency of DBMSs by reducing the penalty of disk accesses.
FASC is a hybrid storage system which uses flash-based SSD as an extension
of main memory. To reduce the I/O cost for each page eviction, we discuss
the different states of the memory pages, and propose a cost-aware buffer
replacement policy for the DRAM buffer.

2. We design a memory-efficient data management policy for the SSD. The
data cached in the SSD is organized into blocks. Our block-based policy can
not only reduce the memory overheads for maintaining the metadata, but
also the number of scattered random write operation on flash memory. We
also propose a novel hot page identification method to find the pages that
are accessed more frequently. In addition, we propose a lightweight metadata
recovery scheme to ensure transaction durability.

3. We implement a prototype system based on PostgreSQL, and evaluate its
performance using TPC-C and TPC-H benchmarks. The experimental results
show that FASC not only provides significant performance improvements,
but also outperforms other cache policies presented in recent studies.

The rest of the paper is organized as follows: Section 2 describes the related
works about SSD-based hybrid storage system. We present the system overview
and some critical components related to FASC in Section 3, while Section 4
details our cost-aware memory replacement policy. In Section 5, we elaborate the
data management policy for the SSD buffer. The data recovery scheme designed

162 J. Wang et al.

for FASC is described in Section 6. We give the results of our experiment eval-
uation in Section 7. Finally, Section 8 concludes this paper.

2 Related Work

Flash memory based SSD has drawn more and more attention in recent years.
Many research works have been done to solve different problems. Some works focus
on how to adjust the traditional methods in DBMSs to take full advantage of the
unique characteristics of SSDs[5–7]. Recently, some works have attempted to use
SSD store frequently accessed data to enhance transactional DBMS
performance[8–10]. We cannot cover all the excellent works here, so we just give
a brief review for the works related to FASC in this section.

TAC[8] is a SSD-based bufferpool extension scheme to accelerate reads and
writes from hard disks by caching frequently accessed pages in SSDs. This work
adopts a temperature-based data admission policy to cache the pages evicted
by the bufferpool layer. Whenever a page request arrives, TAC computes the
regional temperatures of the extent(32 contiguous pages) where the requested
page resides. If the extent is identified as a hot region, the page will be written to
both SSD and main memory synchronously. TAC adopts a write-through caching
policy, the dirty page evicted by the DRAM will be directly written to disk.
Therefore, it does not reduce the total number of write operation to the disk.

The benefits of using SSD in an extended cache manner have been discussed
in work[9]. In that work, the authors propose a lazy cleaning(LC) method to
handle the pages evicted by the DRAM buffer. Unlike the TAC, LC adopts a
write-back caching policy to handle the dirty pages evicted from the main mem-
ory. All the dirty pages are only written to the SSD first, and these dirty pages
are not flushed to the hard disk until the SSD is full. The SSD data replacement
policy adopted by the LC is based on LRU-2 algorithm, which triggers many
expensive random writes when replacing a page in SSD. In addition, consider-
ing that each mapping record occupies 88 bytes memory space, LC suffers huge
memory overheads, which may potentially result in a low hit ratio.

Kang et al. [10] propose a flash-based second-level cache policy, called FaCE,
to improve the throughput of DBMS. FaCE adopts a multi-version policy to
manage the pages cached in SSD. Whenever a page is evicted from the DRAM
buffer, it is written to SSD sequentially in an append-only fashion. Stale copies
of the page, if exist, will be invalidated. FaCE manages the SSD buffer in a first-
in-first-out(FIFO) fashion. In this way, the expensive random writes on SSD are
avoided. However, the FIFO policy is hard to capture the pages that contribute
more accesses, which degrades the performance of extended buffer cache system.

Previous works mainly focus on how to flush pages from the DRAM to SSD.
However, for a SSD-based multilevel cache, the asymmetric speed of read/write
operations on SSD is an important factor to speed up I/O access, and we must
reduce the cost of page migration among SSD and DRAM. On the other hand,
considering the large capacity of SSD, it is necessary to use memory-efficient data
structures and algorithms to manage the page cached in the SSD. In this paper,

An Efficient Design and Implementation 163

we analyze the different page states from the data flow perspective, and discuss
the critical issues related to the performance of bufferpool extension system.
Based on our observations, we propose a cost-aware data management policy to
reduce the overhead of I/O accesses. We also design a lightweight data recovery
policy to minimize the negative impact of maintaining the mapping table.

3 System Architecture

The FASC design aims to exploit the high-speed random read of flash memory to
enhance the performance of DBMSs. To support large-scale data processing, we
take hard disk as the main storage medium. Figure 1 gives an overview of FASC,
which employs a three-part storage architecture integrating main memory, SSD,
and hard disk. We take SSD as the extension of DRAM due to its fast access
speed. When the DRAM buffer is full, a page evicted from the DRAM buffer
is admitted to be cached in the SSD buffer only when it is not present in the
SSD. If the evicted page is dirty, the evicted page is cached in the SSD until it is
written back to the disk. The write-back policy can reduce write traffic to disk
if the dirty pages cached the SSD are frequently updated. Upon a buffer fault,
FASC first checks the SSD to see if the requested page exists. If it does, FASC
just reads it from the SSD. Otherwise, the request is forwarded to the disk.

3.1 Architectural Components

The main components of FASC are as the follows:
1)SSD buffer manager: The SSD buffer manager is in charge of data

transfer between the SSD and main memory. Specifically, when the DRAM buffer
receives a page request, if the requested page does not reside in main memory,
FASC will invoke the SSD buffer manager to search the requested page in the
SSD buffer. If the DRAM buffer has no available space, the SSD buffer manager
is invoked to accommodate the victim pages evicted from main memory. With
the increase of incoming evicted pages, the buffer manager needs to reclaim
rarely accessed pages periodically.

2) Victim pages buffer: This is an in-memory data structure. It is respon-
sible for accumulating the pages evicted by the DRAM buffer. If the evicted page
is clean, the page is admitted into the victim pages buffer only when it is not
resident in the SSD. The dirty pages are admitted to the SSD buffer. Note that
if an old version of the evicted dirty page exists in the SSD, the old copy of data
is marked as invalid. The invalid pages will be recycled by the cleaner thread.
When the victim pages buffer is full, FASC flushes the victim pages to the SSD.

3) Temporary buffer: It is a temporary data structure used for migrating
the dirty pages to the hard disk. The temporary buffer is sized to 8 times the
page size. In the actual implementation, we use double buffers. Once one buffer
is full, all the write threads will not be blocked but directed to the second buffer.

164 J. Wang et al.

Fig. 1. FASC System Overview

4 Cost-Aware Buffer Management Policy

Buffer is one of the most fundamental component in modern storage systems.
The goal of existing buffer replacement policies is to save the retrieval of data
from disk by minimizing the buffer miss ratio. Unfortunately, this performance
metric is ineffective on a SSD-based multilevel buffer scheme. This is because
flash memory provides relatively slow performance for write, and the cost of
evicting a dirty page is higher than that of evicting a clean page. This case
indicates that maintaining a high hit ratio does not necessarily bring a higher I/O
performance. We must revisit the replacement policies to make them fit well in
SSD-based multilevel cache system. In fact, the memory pages present different
states due to the complicated page flow, and the cost difference on evicting the
page with various states is significant. Considering the inconsistency between
cache hit ratio and I/O performance, we design a cost-aware replacement policy
which is aware of the read/write characteristics of flash memory. Our cost model
includes two parts: accessing a SSD page and writing a dirty page to the disk.
Except for the latency for reading a page from the SSD, the cost of accessing a
SSD page also includes the latency for writing a page to the SSD(if the page is
not currently cached in the SSD). Considering that some dirty pages need to be
migrated to disk, the latency for data migration is introduced in our cost model.

Based on the analysis of the state of the page, we classifies the memory pages
into two types: SSD-present page and SSD-absent page. Here, a page which has
the same copy in the SSD is called a SSD-present page, while a SSD-absent
page represents the page that is not currently cached in the SSD. Considering
the asymmetric cost of page migration, we further divide the SSD-present pages
into two groups: the Rrc which keeps the clean pages and the Rrd which keeps the
dirty pages. Because the Rrd page needs to be migrated to disk, its replacement
cost is always expensive than that of the Rrc page. We also classify the SSD-
absent pages into two types, say Mmc and Mmd. Mmc keeps the clean pages

An Efficient Design and Implementation 165

while Mmd keeps the dirty pages. Note that evicting a Mmd page which has
an invalid version in the SSD may incur an expensive data transfer overhead,
since it may be updated or dirtied multiple times within the buffering period.
To reduce write traffic to flash memory, it should have the priority to reside in
main memory when executing data eviction. In the following discussion, the cost
of reading a page from the SSD is C r, while the cost of writing a page to the
SSD is Cw. Dw represents the cost of fetching a page from the hard disk.

Qr

Scan depth=l

Qm

MRU LRU

Rrc Rrd ... Rrd Rrc Rrd

Mmc Mmd ... Mmd Mmc Mmd

Scan depth=l

Fig. 2. Cost-based Memory Management

Based on the above analysis, we split the DRAM buffer into two LRU queues:
Qr and Qm. As shown in Figure 2, Qr is responsible to maintain the SSD-present
pages, while Qm is used to manage the SSD-absent pages. The size ratio of the
two queues(i.e.,Qr and Qm) is dynamically adjusted using the Formula 1:

β =
C(Qr) + θ ∗ M(Q)
C(Qm) + θ ∗ M(Q)

=
Cr + θ ∗ (Cr + Dw)

Cr + Cw + θ ∗ (Cr + Dw)
(1)

In Formula 1, the cost of fetching a SSD-present page, denoted by C(Qr), only
needs to spend a SSD read; while for a SSD-absent page, we must write the
page to the SSD first. So, the cost of fetching a SSD-absent page from the SSD
is C r + Cw(denoted by C(Qm)). M(Q) represents the cost of migrating a page
to the hard disk(i.e., C r+Dw). To ensure that the size ratio of the two queues
can dynamically adapt to different workloads, we add a tuning parameter θ in
Formula 1(0< θ < 1). If the workload is update-intensive, there are a lot of dirty
pages in main memory, which need to be merged to the disk. In this case, the
FASC will reduce the value of θ to keep more memory for the Qm list.

When the main memory becomes full, if the size ratio of Qr and Qm is
greater than β, the FASC will select a page from Qr as the victim page. The
cost of searching the victim page in Qr or Qm is bounded by a parameter l called
the scan depth. Specifically, if Qr serves as the victim queue, FASC selects the
Rrc page closest to the end of Qr region as the victim page. If there is no Rrc

page within a scan depth, the Rrd page closest to the end of Qr will serve as
the victim. If the victim queue is Qm, the procedure of replacement is similar
to the generation of victim page in Qr. If we do not find a Mmc page within a
scan depth, the Mmd page residing in the end of list is selected as victim page.

166 J. Wang et al.

5 SSD Data Management

Using flash memory as an extended cache is a cost-effective way to improve the
performance of system. However, flash memory is not perfect due to its inherent
characteristics, such as poor random write. To obtain substantial performance
benefits, we need to carefully design the SSD data management policy to reduce
the small random write traffic to flash memory.

5.1 Block-Based Data Admission Policy

The small random write pattern is not an ideal one for flash memory due to its
erase-before-write limitation. Hence it must be reduced or avoided. The previous
study has shown that flash memory can handle random writes with larger I/O
request more efficiently[4]. So, we select a larger page size for the SSD buffer.
Specifically, when the in-memory victim page buffer is full, all the pages residing
in this buffer are gathered into a large data block and then written to the SSD
buffer. To reduce the overhead of read operation, we provide an asymmetric I/O
pattern. In FASC, each block consists of multiple data pages, and we employ a
block header to summarize the pages distribution in the block. The read unit
size is a data page, and we can get the requested page through checking its
block header. The block-based data admission policy has advantages over a page
level policy. First, the capacity of SSD is always much larger than that of the
DRAM buffer. In order to keep track of the pages cached on SSD, the memory
consumption for the in-memory data structures is very large. Using a large block
size can save a lot of main memory by reducing the size of DRAM directory,
which in turn increases the hit ratio. Second, using a large block can crease
sequentiality in write traffic, which reduces write amplification and improves the
performance of SSDs[11]. Third, our block-based policy can reduce the number
of erase/write cycles on SSD, which indirectly extends the lifetime of the SSD.

5.2 Memory-Efficient Replacement Policy

As the incoming data blocks consume the space of SSD, the cold pages need
to be migrated from the SSD to the disk. In order to find the rarely-accessed
pages, the data replacement policy always has to maintain some in-memory
data structures to record the access information for the SSD pages(e.g., recency
or frequency). Considering the large capacity of SSD, if we directly apply the
existing caching policies to the SSD buffer, the overhead of in-memory index
is expensive. Therefore, we must provide a memory-efficient cache replacement
policy for the SSD buffer.

Hot data identification: The FASC aims to use flash memory as buffer
caches to speed-up I/O accesses. If we can identify frequently accessed pages
and buffer them in the SSD buffer, the number of disk accesses can be greatly
reduced. So, hot data identification plays a crucial role in improving the perfor-
mance of SSD-based multilevel cache system. Most of existing hot data identi-
fication policies typically employ a locality-based algorithm. However, because

An Efficient Design and Implementation 167

all the accesses to the extended buffer are misses from the DRAM buffer, the
second-level caches exhibit poor temporal locality. The previous work has shown
that pages referenced more than twice contribute more accesses for the second-
level buffer cache[12]. Replacement algorithm needs to give higher priorities for
the pages that are accessed more frequently.

According to above analysis, we propose a memory-efficient hot data iden-
tification algorithm for the SSD buffer. Our hot identification method not only
offers a tradeoff between temporal locality and access frequency, but also real-
izes a low memory consumption used for maintaining the access information.
The thorough consideration of our policy makes it suitable for implementing
a large SSD-based extended cache. Our hot page identification policy can be
divided into two phases: victim block identification and hot page filtration.

(a) Finding victim block: In order to identify and retain the hot pages,
the FASC dynamically maintains a hotness-based replacement priority for each
block. When the SSD buffer is low in available space, the block with the lowest
priority is selected as a victim block. For the block b, its replacement weight
replace pri(b) is computed according to Formula 2:

replace pri(b) =
block fre(b) ∗ θ(t)
invalidpage c(b)

∗ dirtypage c(b) (2)

In this formula, the function block fre(b) denotes the access frequency of a block
b. The aging function, denoted by θ(t), is used to decrease the replacement prior-
ity of a block that has not been accessed for a long time. The FASC dynamically
adjusts the value of θ(t) by scanning the access information maintained in two
time windows. We will further elaborate the two time windows in Section(b).
The function invalidpage c(b) represents the number of invalid pages in block b.
If there exists many invalid pages in a block due to frequent updates, the FASC
will assign a low priority for it according to Formula 2. dirtypage c(b) denotes
the number of dirty page in block b. The benefits of keeping dirty page in the
SSD tend to be higher than that of keeping clean page.

(b) Filtering hot page: The disadvantage of block-based replacement pol-
icy is that some recently accessed pages of the victim block may be evicted
from the SSD. We must pick recently accessed pages from the victim block. For
this purpose, we need to keep track of the recency of data. In order to reduce
the overhead of maintaining access information, we propose a window-based hot
page identification policy for the SSD, where a window is defined as a predefined
number of consecutive page requests. In this paper, the size of a time window
is set to 4096. Unlike previous caching strategies, we only maintain the pages
that are accessed within two time windows. For ease of presentation, both time
windows are denoted as Wpre and Wcur, respectively. We maintain two bitmaps
to mark the recency of the accessed pages during the two time windows. Each
bit in this bitmap indicates whether the page has been recently accessed. A
bitmap, called Bcur, is used to mark the recently accessed pages within the
time window Wcur, and all the pages that are accessed during the time window
Wpre are maintained in another bitmap(called Bpre). Periodically, we shift two

168 J. Wang et al.

bitmaps: discard Bpre and replace it with the current bitmap (i.e., Bcur), reset
Bcur to capture the recency within the next window. All the recently accessed
pages within two time windows will be found by scanning the two bitmaps. To
facilitate fast lookups, we also employ a bloom filter to keep track of the blocks
which are accessed within a time window. In this way, the search for a recently
accessed page can be avoided when lookups are done on a non-existing block.

Algorithm 1. Evict SSDPage()
Require: The SSD buffer SSDBuffer
Ensure: Evict some pages from SSDBuffer
1: if the current time window is finished then
2: for each data block B ∈ SSDBuffer do
3: if B is not found in BFcur or BFpre then
4: calculate the value of tuning parameter f ;
5: decay the frequency of B;

6: update the weight heap according to formula 2;
7: find the victim block with the lowest priority victimB;
8: for each page bp ∈ victimB do
9: if bp can be found in two recency bitmaps then

10: write bp to the victim pages buffer ;

11: write the cold dirty pages of victimB back to disk;
12: return;

Replacement Algorithm: We present the details of replacement policy
for the SSD buffer in Algorithm 1. When a read request arrives, if the requested
page hits the SSD buffer. FASC updates the recency of the page. But if the SSD
buffer receives a write request, our replacement policy checks if the available
space on SSD exceeds a predefined threshold. If so, FASC will evict a block
out of the SSD to accommodate the incoming pages. To find a proper victim
block, FASC performs an aging mechanism for the elder data blocks first, and
updates the replacement priority according to Formula 2. The block with the
lowest replacement priority serves as the victim block. Next, the FASC checks
every page in the victim block and picks out recently accessed pages. The hot
pages are retained in the victim page buffer to serve the subsequent requests.

6 Data Recovery for System Failure

In FASC, the dirty pages evicted by the DRAM buffer will be temporarily cached
in the SSD. As a result, data consistency and recovery become a concern. There-
fore, we also introduce a recovery policy that ensures the system can reuse the
pages cached in the SSD during crash recovery. In fact, because the process of
transaction recovery always incurs an intensive random read/write operations,
the crash recovery can operate with a warm cache if the pages cached in the SSD
are recovered. For this purpose, we always need to maintain an accurate SSD

An Efficient Design and Implementation 169

mapping table to keep track of the pages cached in the SSD. Considering the
non-volatility of flash memory, the SSD buffer mapping table can be stored in
the SSD. To guarantee the validity of the SSD mapping table, a simple approach
is to flush, at all times, the updates that belong to the SSD mapping table to
the SSD. Such scheme ensures that the SSD buffer manager can quickly recover
the data cached in the SSD. However, the drawback of this approach is that it
may generate a large amount of additional I/O traffic. In fact, the SSD mapping
table may be updated frequently with the increase of incoming pages, and the
SSD buffer has to spend an effort to flushing these updates. This may hinder
the overall performance of transaction processing.

Based on the above analysis, we must design an efficient method to manage
the SSD mapping table. In FASC, each mapping table entry includes block ID,
validation flag that indicates the page whether is valid or not, dirty flag, fre-
quency information, some pointers such as next block pointer, and etc. The
FASC organizes the mapping table into a series of fixed-size chunks, and each
chunk consists of multiple flash pages. To reduce the overhead of hardening the
mapping table, we assign an exclusive flash page for each chunk as the log page.
Whenever the most recent update to some mapping table chunk is finished,
the SSD buffer manager writes a log record describing the change to the map-
ping table to its log page. When a log page runs out of free storage space, it is
merged with the associated mapping table chunk. Overwriting a mapping table
record will most likely incur a random write. By combining the modifications
of the mapping table chunk into a single batch update, we avoid a number of
small random writes on flash memory, and reduce the negative effect on system
throughput.

7 Performance Evaluation

In this section, we implement the FASC policy in PostgreSQL open source
DBMS, and evaluate its performance using TPC-C and TPC-H benchmarks.
Our experiments are run on a 2.00 GHz Intel Xeon(R) E5-26200 processor with
16GB of DRAM. Operating system (Ubuntu Linux with kernel version 3.2.0) is
installed on a Seagate 15K RPM 146 GB hard disk. We use a 128GB Sumsung
840 Pro Series SSD as the second-level buffer cache.

7.1 Prototype Design and Implementation

We implement a prototype based on PostgreSQL, and perform a serial of exper-
iments. A SSD-buffer-manager is added to the original buffer manager for Post-
greSQL. It is an independent module which provides a rich interface layer to match
the buffer manager. We modify the processing of buffer allocation and page evic-
tion. The functions added to the prototype can ensure that all the evicted pages
are written to SSD instead of hard disk. We also modify the BufferAlloc function,
and add a page flag logic to indicate the state of a page. An Adaptive VictimBuffer
module is introduced in our prototype, which is responsible for searching a victim

170 J. Wang et al.

page inQr orQm.We also introduce a recovery componentwhich ensures the dura-
bility of transactions in case of system crash. When the data cached in SSD exceeds
a certain threshold, a cleaner module is in charge of reclaiming invalid pages. The
block size of our policy is set to 1MB.

7.2 TPC-C Evaluation

In the experiments, we implement a throughput test according to the TPC-C
specifications, and measure the number of new orders that can be fully processed
per minute (tpmC). We run the benchmark with 500 warehouses. The size of
database files is approximately 60GB. To achieve a steady-state throughput,
each design runs for 1 hour. The PostgreSQL buffer pool size, including 512MB
share memory, is set to 1GB. We vary the size of the SSD from 8GB and 16GB.

1) Transaction Throughput: To demonstrate the effectiveness of our cache
policy, we compare FASC with two state-of-the-art SSD caching strategies—
FaCE[10] and lazy cleaning(LC)[9]. In order to compare the performance, our
experiments include the cases where the PostgreSQL is stored on an entire hard
disk (denoted by disk-only) or an entire SSD (denoted by SSD-only). Figure 3
shows the transaction throughput achieved by different buffer extension designs.
As the figure shows, except for the SSD-only case, our method outperforms all
other designs. For example, with a 16GB SSD cache, we observed up to 3.78X
improvement in throughput compared to the noSSD design(i.e.,Disk-only). In the
following, we analyze the behavior of each caching design. The LC method uses
LRU-2 replacement algorithm to manage the SSD pages, and the eviction oper-
ation always incurs many costly random write on flash memory due to overwrit-
ing a page. This results in a degradation in throughput. Under the FaCE design,
although the FIFO-based data management policy ensures that all pages are writ-
ten to SSD sequentially. However, the replacement policy is hard to capture the
frequently accessed pages that contribute more accesses on the SSD. In addition,
the multi-version method adopted by FaCE incurs a lot of invalid pages that are
scattered over the entire SSD buffer. The cleaner module needs to reclaim the
invalid data constantly, which in turn generates a lot of expensive write opera-
tions, and seriously aggravates the performance of SSD-based I/O processing. For
a 16GB SSD buffer cache, the SSD-only case outperforms our caching design, by
roughly 20%, although the database engine is running entirely on the SSD. There-
fore, using SSD as the extended cache is a cost-effective and attractive solution to
improve the performance of transaction throughput.

To gain a thorough comparative analysis of different SSD designs, we describe
the average throughput with a 6 minutes interval, and present the cumulative
distribution in terms of tpmC. As shown in Figure 4, our policy gains its peak
faster than other policies. After 30 minutes, the performance of FASC slightly
decreases, and an explanation for this behavior is that the accumulative pages
evicted from main memory soon use up the available SSD space. Thus, the SSD
has to consume a significant I/O throughput to handle the page eviction. We
can see that the throughput provided by the LC design is very close to that of
the FaCE design in the initial 20 minutes, while the performance gap between

An Efficient Design and Implementation 171

LC and FaCE becomes more obvious after 36 minutes. This is because the LC
design uses a LRU-2 replacement policy manage the pages cached in the SSD.
Hence, evicting a page may incur an expensive random write.

8GB 16GB
0

1000

2000

3000

4000

5000

6000

SSD Cache Size

tp
m

C(
tra

ns
/m

in
)

Disk−only
LC
FaCE
FASC
SSD−only

Fig. 3. Transaction Throughput

0 6 12 18 24 30 36 42 48 54 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time(minute)

tp
m

C(
tra

ns
/m

in
)

LC
FaCE
FASC

Fig. 4. Throughput Curves over Time

Table 1. SSD Write Ratio and Disk Access Reduction.

(Measured in %) FASC FaCE LC

Ratio of SSD Writes 33.63 41.32 38.41

Disk Access Reduction 62.12 51.39 55.47

2) Memory-efficient SSD Data Management: To demonstrate that
our SSD replacement policy is a memory-efficient method, we reduce the size of
main memory assigned for PostgreSQL, and repeat the transaction throughput
experiment using the same TPC-C instance described above. In this evaluation,
512MB of DRAM is dedicated to the DBMS buffer, and the share memory pool
size is limited to 256MB. As we can see from Figure 5, the FASC shows the best
performance with respect to transaction throughput, and a speedup of 3.8X is
achieved in terms of the tpmC figures when the SSD buffer size is set to 16GB.
In contrast, the performance efficiency of the LC design is the worst. We suspect
that the main reason lies in the fact that implementing the LC design consumes
too much memory, which in turn results in a low DRAM hit ratio. From the
results of experimentation, we can see that the metadata overhead is closely
related to the throughput of database. Our replacement policy designed for the
SSD buffer offers an efficient hot pages identification with low memory overhead,
and improves transaction processing performance dramatically.

3)I/O Traffic Reduction: Our cost-aware replacement policy aims to
reduce I/O accesses to and from the hard disk, as well as reducing the write traf-
fic to flash memory. In this section, we compare FASC with existing SSD-based
caching methods with respect to I/O traffic reduction. As shown in Table 1, the
ratio of the SSD write requests to the total SSD I/O requests is lower than those
of other policies. An important reason is that our policy considers the asymmet-
ric read/write cost of flash memory when evicting the victim pages, and tends to

172 J. Wang et al.

8GB 16GB
0

500

1000

1500

2000

2500

3000

3500

4000

SSD Cache Size

tp
m

C(
tra

ns
/m

in
)

Disk−only

FaCE

LC

FASC

Fig. 5. Throughput with 512MB memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Query Name

Q
ue

ry
 T

im
e(

s)

Disk−only
FASC

Fig. 6. Concurrency stream(SF=30)

Table 2. Time Taken to Recovery the System(SSD Cache Size=16GB)

Restart Design recovery time(second) sustained throughput(tpmC)

FASC 189 4409

FASC T 203 4122

FaCE 192 3445

Disk-only 847 1166

minimize the data transmission cost between main memory and SSD. In addi-
tion, our block-based SSD management policy reduces the memory consumption
for maintaining mapping table, which improves the cache hit rate. The low write
traffic to SSD contributes to the performance improvement of the FASC. We can
see that FASC is approximately 6 to 10 percent higher than FaCE and LC in
disk I/O reduction. The LC slightly outperforms the FaCE with respect to I/O
traffic reduction. However, the FaCE achieves a higher transaction throughput
than the LC method. We suspect that an important reason is that the FaCE
adopts an append-only fashion to manage the SSD, which reduces the number of
random writes on SSD. The I/O behavior dominated by random write degrades
the performance of the LC method. These experimental results explain well why
the FASC obtains higher throughput compared to other policies, and the I/O
cost reduction is the major factor for performance improvement.

4) Performance of Data Recovery: To evaluate the recovery perfor-
mance of FASC, we implement FASC with another recovery method(denoted
by FASC T). In FASC T, an accurate SSD mapping table is stored in the SSD
at all times. That is, any update on the mapping table is immediately written
in the SSD. Because the LC design employs an in-memory mapping table, it
cannot provide a warm SSD cache in case of system crash, and we omit the
recovery times evaluation for this design. We compare the three caching designs
concerning time taken to restart from a crash. As shown in Table 2, the FASC
provides 4.5x speedup over Disk-only(the noSSD cache restarting design). This
is because the SSD extension buffer provides a warm cache for DBMS, which
accelerates the process of transaction recovery. The recovery times of FASC is
similar to other SSD caching methods. However, we can see in Table 2 that

An Efficient Design and Implementation 173

the FASC obtains a higher sustained throughput than FASC T. An important
reason for this is that the FASC implements a light-weight method to harden
the mapping table, and our policy reduces the SSD write traffic triggered by
continuous updates for the SSD mapping table.

7.3 TPC-H Evaluation

In this section, we evaluate our SSD caching design by conducting experiments
with TPC-H benchmark. In our evaluation, the scale factor is set to 30, which
occupies a total of 70 GB of disk space. The query stream consists of 22 TPC-H
queries and two update queries. As for the platform, we select 8GB SSD and
1GB main memory. We first run a power test by the TPC-H specifications. Then,
we run a throughput test by running four query streams concurrently.

Table 3. Power and Throughput test

Scale Factor=30 Disk-only FASC FaCE LC SSD-only

Power test 336 442 409 374 589

Throughput test 94 316 232 209 402

QphH@30SF 177 374 308 280 487

1) Query performance evaluation: We run the TPC-H evaluation entirely
on different designs. Table 3 shows the detailed results. In terms of the through-
put test, FASC provides a speedup of 3.36X relative to the Disk-only. The
throughput test always needs to handle multiple concurrent queries simultane-
ously, which creates a lot of random disk accesses. These random disk accesses
degrade the system performance. Under the SSD caching scheme, part of the
page requests that misses in DRAM can be serviced from the SSD, and thus
considerable random disk accesses can be saved. The performance improvement
is similar on three caching designs. This is because TPC-H is a read-intensive
workload, while each design makes the best use of the excellent read performance
of flash memory. The FASC is slightly better than FaCE and LC. An important
reason is that our block level data management policy can effectively reduce the
metadata overhead. In addition, our policy tends to keep the dirty page in the
SSD, which reduces the transmission cost between SSD and disk.

2) Concurrency stream query : In this section, we look into the execution
time of each query during the throughput test. As we can see from Figure 6,
some queries achieve significant performance improvements on query latency. For
example, for Q20 and Q21, the speedup is 8.1 and 4.2 respectively, We analyze
the two queries closely, and find that both queries generate intensive random
data accesses. Using the SSD buffer can significantly amortize the high cost of
disk seeks, and shorten the executing time. It is worth noting that some queries
are better than those of Disk-only(but no clear winner is found). This is because
that the dominant I/O pattern of these queries is sequential read. In this case,
considering the additional transmission costs between SSD and disk, there is no
significant performance gain over the SSD caching scheme.

174 J. Wang et al.

8 Conclusions

In this paper, we propose FASC, a SSD-based multilevel cache scheme, to improve
the performance of DBMSs. Following this design principles, we propose a cost-
aware replacement algorithm for main memory. To reduce the I/O traffic to the
SSD, we implement a block-based data management policy for SSD. We develop
a prototype system based on PostgreSQL. The experiment results show that
FASC enjoys substantial performance improvements.

References

1. Do, J., Zhang, D.H., Patel, J.M., DeWitt, D.J.: Fast peak-to-peak behavior with
SSD buffer pool. In: 30th International Conference on Data Engineering, pp. 1129–
1140. IEEE Press, Brisbane (2013)

2. Koltsidas, I., Viglas, S.D.: Designing a Flash-Aware Two-Level cache. In: Eder,
J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 153–169.
Springer, Heidelberg (2011)

3. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M.S., Panigrahy,
R.: Design tradeoffs for SSD performance. In: 2008 USENIX Annual Technical
Conference, pp. 57–70. USENIX Association, Boston (2008)

4. Bouganim, L., Jnsson, B.T., Bonnet, P.: uFLIP: Understanding flash IO patterns.
In: Online Proceedings of the 4th Biennial Conference on Innovative Data Systems
Research, pp. 1–12, Asilomar (2009)

5. Chen, S.M.: FlashLogging: exploiting flash devices for synchronous logging perfor-
mance. In: ACM SIGMOD International Conference on Management of Data, pp.
73–86. ACM Press, Rhode Island (2009)

6. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
processing techniques for solid state drives. In: ACM SIGMOD International Con-
ference on Management of Data, pp. 59–72. ACM Press, Rhode Island (2009)

7. Lee, S.W., Moon, B., Park, C., Kim, J.M., Kim, S.W.: A case for flash memory ssd
in enterprise database applications. In: ACM SIGMOD International Conference
on Management of Data, pp. 1075–1086. ACM Press, Vancouver (2008)

8. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang, C.A.: SSD Buffer-
pool Extensions for Database Systems. Proceedings of the VLDB Endowment 3(2),
1435–1446 (2010)

9. Do, J., Zhang, D.H., Patel, J.M., DeWitt, D.J., Naughton, J.F., Halverson, A.:
Turbocharging DBMS buffer pool using SSDs. In: ACM SIGMOD International
Conference on Management of Data, pp. 1113–1124. ACM Press, Athens (2011)

10. Kan, W.H., Lee, S.W., Moon, B.: Flash-based Extended Cache for Higher Through-
put and Faster Recovery. Proceedings of the VLDB Endowment 5(1), 1615–1626
(2012)

11. Hu, X.Y., Eleftheriou, E., Haas, R., Iliadis, I., Pletka, R.: Write amplification anal-
ysis in flash-based solid state drives. In: Israeli Experimental Systems Conference
2009, pp. 82–90. ACM Press, Haifa (2009)

12. Zhou, Y.Y., Chen, Z.F., Li, K.: Second-Level Buffer Cache Management. IEEE
Transactions on Parallel and Distributed Systems 15(6), 505–519 (2004)

A Cost-Aware Buffer Management Policy
for Flash-Based Storage Devices

Zhiwen Jiang(B), Yong Zhang, Jin Wang, and Chunxiao Xing

RIIT, TNList, Department of Computer Science and Technology, Tsinghua
University, Beijing, China

{jiangzw14,wangjin12}@mails.tsinghua.edu.cn,
{zhangyong05,xingcx}@tsinghua.edu.cn

Abstract. Flash devices has become an important storage medium in
enterprise hybrid storage systems. Buffer manager is a central component
of database systems. However, traditional disk-oriented buffer replace-
ment strategies are suboptimal on flash memory due to the read-write
asymmetry. In this paper, we propose a cost-aware buffer management
policy CARF for flash memory. We devise a novel cost model with low
computational overhead to make more accurate decisions about page
eviction. Moreover, this cost model can distinguish read and write oper-
ations as well as have better scan resistance. Experiments on synthetic
and benchmark traces show that CARF achieves up to 27.9% improve-
ment than state-of-art flash-aware buffer management strategies.

Keywords: Buffer management · SSD · Cost-aware

1 Introduction

With dropping cost and increasing capacity of flash device, flash-based Solid
State Disks (SSD) have become an important storage medium in enterprise
hybrid storage systems. In the hybrid storage systems, the performance-critical
applications and data can be placed in the SSD to improve the performance.
Compared with hard disk drives, flash memory has two unique characteristics,
read-write asymmetry and erase-before-write mechanism: once a page is writ-
ten, the only way of overwrite it is to erase the entire block where the page
resides. The average cost of erase operation is one to two orders of magnitude
higher than read operation. Besides, flash memory blocks have limited erase
cycles (typically around 1,000,000). To minimize the cost of erase operation, a
software layer called Flash Translation Layer (FTL) is implemented. Its main
purpose is to perform logic block mapping, garbage collection and wear leveling
[6]. The distinguished I/O characteristics of flash memory make it important
to reconsider the design of I/O intensive software, such as DBMS, to achieve
maximized performance.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 175–190, 2015.
DOI: 10.1007/978-3-319-18120-2 11

176 Z. Jiang et al.

Buffer Manager is the central component of database systems as it narrows
down the access gap between main memory and disk. Traditional disk-oriented
buffer replacement strategies utilize the temporal locality of page requests to
reduce the number of disk accesses. So the primary goal of traditional buffer man-
agement policy is to minimize miss rate. However, minimizing miss rate doesn’t
necessarily lead to better I/O performance on flash memory due to its inherent
read-write asymmetry. An early previous work [5] has shown that whether a
page is read only or modified should be taken into consideration when designing
buffer management policy. This principle is more important for flash memory.
Since the cost of write operation is much higher, the cost of evicting a dirty page
is correspondingly more expensive. Thus, we should use total I/O cost rather
than hit rate as the primary criterion to measure the effectiveness of a buffer
management policy on flash-based storage devices.

A number of previous studies have focused on designing buffer management
policy to address the I/O asymmetry on flash devices [16,19–21]. What makes
them flash-aware is that they try to keep dirty pages in the buffer and reduce
the number of expensive write operations. The basic idea of them is to use
page state to determine victim pages for eviction. The state of a page includes
whether a page is modified (clean/dirty) and whether a page is frequently or
recently referenced (hot/cold). Intuitively, the primary goal is to keep hot dirty
page in the buffer and evict cold clean pages as soon as possible. However, all
above policies depend highly on LRU algorithm, which fail to take the frequency
of page access into consideration. When the page access pattern is with weak
locality, these LRU-based algorithms would be suboptimal. Besides, previous
work [5] has shown that LRU algorithm has a problem of weak scan resistance
on disk. This problem will still exist on flash-based storage devices. In addition,
most of the previous flash-aware algorithms propose heuristics-based approaches
to determine the victim page. It is difficult for them to decide the priority of
cold dirty and hot clean pages. Therefore, we use accurate weight instead of page
state to select victim page. To out best knowledge, there is no previous work
using cost-aware replacement policy except FOR [16]. FOR and its approximate
version FOR+ has devoted to provide a page weight metric considering both
page state and future operations to select victim page. But its page weight
metric brings too much computational overhead as is shown in our experiment.

To address these problems, we propose a cost-aware buffer replacement pol-
icy, named Cost-aware Algorithm combining Recency and Frequency (CARF).
CARF uses a novel cost model to select victim page according to the accurate
cost instead of ad hoc way. This cost model is with low computational over-
head so that it is practical to be applied. We implement the light-weight data
structure according to the cost model.

In this paper we present the following contributions:
– We propose a cost-aware buffer management policy CARF for flash memory

that selects victim page for eviction according to accurate page weight.
– We design a novel cost model as the weigh metric for CARF considering

both frequency and recency of previous page access.

A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices 177

– We implement CARF with low computational overhead and good ability of
scan resistance.

We evaluate our design with trace-driven simulation experiments on a flash chip
and a representative SSD. We compare CARF with the traditional disk-oriented
buffer management policies LRU and state-of-the-art flash-based algorithms.
Experimental results show that CARF has much better scan resistance than
LRU-based algorithms. Besides, CARF achieves up to 27.9% improvement of
I/O cost than all the other flash-aware algorithms.

The rest of the paper is organized as follows: Section 2 describes the problem
definition. Section 3 presents the cost model of CARF. Section 4 presents the
implementation of CARF. Section 5 presents the results of evaluation. Related
work is introduced in Section 6. Finally, conclusions are drawn in Section 7.

2 Problem Definition

In this section, we briefly introduce the preliminary about our work and some
problems to be solved. The notations used throughout this paper are stated in
Table 1.

Table 1. Notations used in this paper

Notations Description

Cr/Cw The average cost of one read/write operation

Nr/Nw The total number of read/write operations

R The IO asymmetry factor of flash memory

m The buffer size

N The working set of pages in the DBMS

ti The ith request time of a given page

xi The ith time span of a given page

tc The current global time

2.1 I/O Model for Flash Devices

Since average I/O cost is the weight metric for buffer management policies on
flash memory, we will firstly look at the I/O model for flash memory. The tra-
ditional two-level model in [1] is designed to simulate the data transfer between
main memory and disk. However, due to the characteristics of I/O asymmetry,
the traditional model no longer works on flash memory. Here we modify the
model in [1] and offer an I/O model for flash memory. Suppose in one read oper-
ation, Br continuous blocks transfer from disk to main memory. In one write
operation, Bw continuous blocks transfer from main memory to disk. Since a
write operation costs more time than a read operation, we have Br = R ∗ Bw,
where R is the asymmetry factor. Therefore, we have the following formula to
calculate total I/O cost according to this model:

Costio = Cr ∗ Nr + Cw ∗ Nw = Cr ∗ (Nr + R ∗ Nw) . (1)

178 Z. Jiang et al.

2.2 Combine Frequency and Recency

According to previous studies [5,16], a good buffer management policy should
take both recency and frequency of page access into consideration to take advan-
tage of the spatial and temporal locality. This is more important on flash memory
since the access pattern significantly influences the I/O performance of flash-
based devices [2].

Now the key issue is how to make full use of the known information to
determine the victim page for eviction. To achieve this goal, we build a cost
model to measure the “hotness” of each page in the buffer, and then design a
buffer replacement algorithm combining the flash-aware I/O model and this cost
model to make page replacement decision. Here are the notations to be used in
the following discussion:

– Request Sequence: A sequence of requested pages, denoted as σ = σ(1), σ(2),
· · · , σ(n).

– Global Time: An integer value that shows the number of requested pages
since the system starts.

– Time Set: Suppose there are k requests for page p in the request sequence,
the ith request is at global time tpi . Then we define the time set of page p as
T = {tp1 , t

p
2 , · · · , tpk}. The time set reflects the frequency of request to a page.

– Time Span: Suppose the time set of page p is T = {t1, t2, · · · , tk}. Then the
time span of ti is the length of time interval between the request time ti and
current time, denoted as xi = tc − ti(1 ≤ i ≤ k). The time span reflects the
recency of a page request.

Fig. 1. An example of notations for page weight calculation

A specific example of these notations is shown in Fig. 1. The notation yi
denotes the time interval between ti and ti+1. Using these notations, we define
the concept of page weight as follows to build our cost model:

Definition 1. (Page Weight) Page Weight, denoted as PWt(p), is a value asso-
ciated with each page in the buffer at the current time. It reflects the likelihood
that the given page is requested again in near future.

We use the definition of weight function W(x) to calculates the contri-
bution of the time span x to the page weight at the current time. And then

A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices 179

we can calculate the weight of page p using the information of time set and
time span. To decide the frequency of page access, we should consider each
request in the time set to calculate the weight. Suppose the time set of page p is
T = {t1, t2, · · · , tk}, (t1 < t2 < · · · < tk ≤ tc), its page weight can be calculated
as formula (2).

PWt(p) =
k∑

i=1

W (xi) =
k∑

i=1

W (tc − ti) . (2)

3 Cost Model

In this section, we present a cost model named RF Model to calculate the page
weight. RF Model defines the basic weight metric for CARF. For RF Model, we
don’t take read-write asymmetry into account.

3.1 Requirements for Cost Model

With the definitions in Section 2, we can easily build our cost model. When a
buffer fault occurs at current time tc, we just need to calculate the page weight
for each page in the buffer and evict the one with least weight for replacement.
We need to carefully choose the weight function, as it determines the ratio of
contribution that recency and frequency makes to page weight. A good weight
function should have the following properties:

Firstly, ∀x ∈ N,W (x) > 0. The value of weight function should always be
positive to have practical meanings.

Secondly, ∀x ∈ N,W (x)′ ≤ 0. The weight function should be monotonically
non-increasing since the longer time span of page means that the page is less
likely to be requested.

Finally, W (0) = c, where c is a constant. When time span is 0, the value of
weight should be a constant as a baseline for comparison.

3.2 Page Weight Calculation

The formula (2) seems to perfectly fulfill the task of calculating the page weight.
However, it is unpractical to implement such an algorithm because it brings
too much overhead to maintain the required information. On one hand, for a
given page with a time set of k requests, the space overhead to record all the
requests is O(k). On the other hand, it needs to calculate the weight for each
time span, which incurs O(k) computational overhead. In order to minimize
both space and computational overhead to calculate the page weight, we need
to make more limitation of the weight function W (x). One feasible solution is to
use the idea of recurrence, in which we can calculate the page weight at time ti
using the result at time ti−1. In this way, we can reduce both the computational
and space overhead to O(1) for one calculation. Thus, we define a property of
recurrence of W (x) as is shown in Lemma 1:

180 Z. Jiang et al.

Lemma 1. If the weight function W (x) satisfies the property: ∀x, y ∈ N,W (x+
y) = W (x) ∗ W (y), the weight of page p at the ith time p is requested, denoted
as PWt(p) , can be derived from the weight PWti−1(p) at the (i − 1)th time p is
requested.

From the special case in Lemma 1, we can easily conclude a more general
case:

Lemma 2. We can derive PWti(p) from PWti−1(p) using the following formula
with yi = ti − ti−1:

PWti(p) = W (0) + W (yi) ∗ PWti−1(p)

Combine the requirements and Lemma 1, we can find the following function that
satisfies the requirements:

W (x) = ax, (0 < a ≤ 1) . (3)

Notice that when a = 1, W (x) = 1 for any time span x. In this case, the
recency of page request makes no contribution to weight calculation and RF
Model becomes LFU; when a ∈ (0, 1

2], the weight function W (x) satisfies the
following property: ∀i,W (i) >

∑∞
j=i+1 W (j). In this case, the frequency of page

access makes no contribution to weight calculation and RF Model is equal to
LRU. Thus when a ∈ (12 , 1), RF Model takes both recency and frequency into
consideration to calculate the page weight. Therefore, we can conclude that RF
Model combines recency and frequency, which could make better decision for
CARF on page eviction than other flash-aware algorithms [19–21].

4 Details of Implementation

In this section, we will introduce our buffer management policy, named CARF,
which stands for Cost-aware Algorithm combining Recency and Frequency. We
make CARF flash-aware by combing the RF Model with the I/O model for flash
memory.

4.1 Combing the two models

We have developed two models in above sections: An I/O model for flash mem-
ory to consider the read-write asymmetry and a cost model to estimate the
page weight according to the past request sequence. We implement the buffer
management policy by combining the two models.

To consider the read-write asymmetry of flash memory when calculating
the page weight, we need to take the page state into account, like previous
studies did. If a page is clean at its last request time but at current time it is
modified, it will make greater contribution to the page weight. Therefore, we
need a tag named Lastdirty to keep the page status of the given page at its last

A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices 181

request. Finally, we define a function named asymmetry function to represent
the influence of read-write asymmetry on the page weight calculation. The value
of the asymmetry function at time t for page p is denoted as:

Rtc(p) =
{

R, lastdirty(p) = false∧ modified at tc
1, otherwise

Based on above consideration, we need a histogram to record some necessary
information to help calculate the page weight of a page in O(1) time. The his-
togram of page p is updated when p is requested. Parameters contained in the
histogram are as follows:

– Lasttime(p): the time of last request for page p.
– Lastweight(p): the weight of page p at the last time it is requested.
– Lastdirty(p): whether page p is modified at the last time it is requested.

Therefore, with the consideration of read-write asymmetry the flash-aware
weight of page p in the buffer at current time tc can be calculated as:

FPWtc(p) = Rtc(p) ∗ [W (0) + W (tc − Lasttime(p)) ∗ Lastweight(p)] . (4)

When buffer fault occurs, we just need to select the page with minimum
flash-aware page weight in the buffer for eviction according to formula (4). This
weight metric can also solve the problem of determining the priority of cold
dirty and hot clean pages left by previous studies. The information needed for
calculation only includes the last request instead of all the former requests for
one page, so the space overhead of CARF is O(1) for each page.

However, it is not proper to directly use formula (4) when buffer fault occurs
because the weights of all pages will be updated after each time step. Fortunately,
we have the following lemma due to the property of W (x):

Lemma 3. For page p and q, if FPWtc(p) > FPWtc(q) and neither of p nor q
are requested after tc, then for ∀t > tc, FPWt(p) > FPWt(q) holds.

Since the relative order between pages will not change if neither of them is
requested, we just need to update weight of the page that is requested and select
the page with minimum Lastweight as the victim page.

4.2 Data Structure and Algorithms of CARF

Intuitively, since CARF makes the buffer replacement decision according to the
order of pages by the value their weights, it can be implemented with a priority
queue to maintain the order of pages in the buffer. As CARF selects the page
with minimum weight when a buffer fault occurs, we can just use a min-heap to
implement CARF. Each time when buffer fault occurs, the root page of this heap
is selected as victim and replaced with the new page. Then the heap is adjusted
top-down to maintain the order of Lastweight. Each time when a page in the

182 Z. Jiang et al.

heap is hit, the weight of the hit page is updated and the sub-heap with this
page is adjusted top-down. In this way, it costs O(1) time to select victim page
and O(log m) time to maintain the structure of min-heap. The logarithm time
complexity of CARF is the same as LFU, but is suboptimal than LRU-based
algorithms. Therefore, we need to reduce the time complexity while taking the
page weight into consideration.

Lower Queue

Upper Queue

Fig. 2. Data structure of CARF

We can solve this problem by doing competitive analysis of our RF model,
which is stated in Theorem 1:

Theorem 1. When a = 1, RF Model is not competitive; when a ∈ [12 , 1),RF
Model is m − 1 + � log(1−a)

log a �-competitive.

Details of the proof is omitted here due to space limitation, they are shown in
the full version [8]. Accordingly, we can get Theorem 2.

Theorem 2. Suppose the most recent request for page p is at time t. There
exists a minimum value Tmin = � lg(1−a)

lg a �. Once tc − t > Tmin, PWtc(p) < 1
holds no matter how large the value of PWt(p) is.
Then we can take advantage of Theorem 2 to solve this problem. According to
the definition of page weight, when a page is fetched after buffer fault occurs, its
weight equals to W (0) = 1. So we can conclude from Theorem 2 that if a page has
a weight larger than 1, the most recent request for it must be within Tmin time
units. So we only need to maintain Tmin pages in the priority queue. As is shown
in Fig. 2, we can just divide the buffer into two parts to reduce computational
overhead: the Upper Queue is a min-heap with maximum capacity of Tmin; the

A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices 183

Algorithm 1. Read Buffer

Lower Queue is a list of remaining m−Tmin pages managed in a LRU way. Thus,
when the Upper Queue needs to be adjusted top-down, the time complexity of
maintaining the whole structure will be reduced to O(log Tmin). And the value
of a can be chosen empirically.

However, Theorem 2 no longer holds on flash memory because of the asym-
metry function. According to formula (4), the weight of a dirty page in the
Lower Queue may be larger than 1. For simplicity, we just make an approxi-
mation according to Theorem 2: a pointer is maintained in the Lower Queue
which points to the most recent used dirty page, denoted as pd. This pointer
will be updated each time a page request is served. If there is not dirty page
in the Lower Queue, the pointer will be set as the head of the Lower Queue.
If the weight of pd is larger than one at a buffer fault or larger than the page
being hit in the Lower Queue, the root page of Upper Queue will be replaced by
pd. In this way, although we don’t guarantee all the pages in Lower Queue are
strictly sorted according to their weight, we can move as many pages with larger
weight as possible to the Upper Queue so as to improve the accuracy of our
algorithm.Thus this approximation will not have obvious influence on CARF
algorithm. The time complexity of CARF depends on the value of a, varying
from O(1) to O(log� log(1−a)

log a �), and the value of a can be chosen empirically.
The algorithm to answer a read request is shown in Algorithm 1. Upper

Queue and Lower Queue are denoted as U and L in following algorithms. The
function lookup 1 is used to check the position of a given page in the buffer. If the
page doesn’t exist, it will return INVALID. The process to respond to a write
request is similar to Algorithm 1. The only difference is to mark the written
1 Its time complexity is O(1) using hash table.

184 Z. Jiang et al.

page as dirty and update its Lastdirty information in the histogram. So we omit
it here due to space limitation.

Once a page is hit, the HitTrigger function is needed. At first, the his-
togram of the requested page is updated. We calculate and update the values
of Lastweight(p) and Lasttime(p). Then the data structure of CARF should be
adjusted. If the page is in Upper Queue, it just to adjust the sub-heap rooted
by the page. Otherwise, the page with the largest weight is first selected from
Lower Queue. Then it is compared with the root page of Upper Queue. If the
selected page has larger weight, the root page will be replaced by it and the
whole Upper Queue needs to be adjusted top-down. Otherwise, we just need to
put the selected page at the head of Lower Queue.

Once a buffer fault occurs, the MissTrigger function will be called. Its process
is similar to that of the HitTrigger function. One thing we should notice is that
once a page is evicted from the buffer, its histogram will be deleted. If the same
page is fetched into buffer again, it will have a new histogram. In this way, the
space overhead of histogram can be limited to O(m).The details of MissTrigger
and HitTrigger are shown in the full version [8].

5 Evaluation

In this section, we evaluate CARF with a trace-driven simulation using both
synthetic and benchmark workloads. All the following experiments are set up on
a server machine powered by a 2.40GHz Intel(R) Xeon E5620 CPU with 2 cores
on Windows Server 2008 with 32GB RAM. We use two kinds of flash devices: a
16GB SamSung SD card (DCJH251GE337) and a 240GB SamSung 840 Series
SSD. We tested the latencies of both devices and showed them in Table 2.

Table 2. The average latencies of flash-based devices

Block size: 8KB SSD SD Card

Sequential Read 33µs 202µs

Sequential Write 46µs 284µs

Random Read 265µs 1.5ms

Random Write 90µs 5ms

5.1 Experiment Setup

To evaluate the performance of CARF, we compared it against several state-
of-art buffer management policies (LRU, FOR+ [16] and FD-Buffer [17] under
synthetic workloads and three realistic benchmark workloads: TATP2, TPC-B3,
and TPC-C4. There are also other algorithms like CFLRU [21], CASA [19],and
2 http://tatpbenchmark.sourceforge.net/
3 http://www.tpc.org/tpcb/
4 http://www.tpc.org/tpcc/

http://tatpbenchmark.sourceforge.net/
http://www.tpc.org/tpcb/
http://www.tpc.org/tpcc/

A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices 185

CFDC [20]) But as previous studies [16,17] has shown that FOR+ and FD-Buffer
outperforms them, we don’t compare our policy with them. All the baselines
are well tuned according to the referenced papers. For TPC-C benchmark, the
number of warehouses is set to 20. For TPC-B benchmark, we use 150 branches
for test. And the number of subscribers in TATP is set to 1 million. Details of
workloads are shown in Table 5.1.

Table 3. Details of traces in the experiment

Database size (GB) # of referenced pages (million) Write ratio

TATP 0.4 2.5 4.8%

TPC-B 2.2 12.7 3.6%

TPC-C 2.4 16.8 16.3%

Synthetic 4 22 20%-40%

To get the page access traces for simulation, we ran each benchmark on
PostgreSQL 9.3.1 with default setting (the page size is 8KB). We ran the test
for around 3 hours for each benchmark as previous study did [16]. To make
simulation, we use the collected traces above the postgreSQL buffer pool as
input and record the response time under each buffer management policy. We
implemented all the buffer management policies on top of OS file system. We
disabled the buffer functionality of operating system using Windows API in order
to avoid the disturbance from system buffer. We also made more experiments to
test the impact of parameter a, please see [8] for more details.

5.2 Results on Synthetic Workload

We first show the performance of CARF under two synthetic workloads. To
demonstrate that CARF outperforms LRU-based algorithms under workloads
with weak locality, we tested two synthetic workloads SCAN and Mixed Skew.
We ran the experiments several times and reported the best result. The descrip-
tion of the two workloads is as follows:

– SCAN: We generate a synthetic page access trace conforming to Zipf distri-
bution with the write ratio of 40%. After a particular amount of time, table
scans are periodically injected into the above trace. This workload is used to
test the scan resistance of each policy. Since file scanning is a common opera-
tion in database system, scan resistance is important for buffer management
policy.

– Mixed Skew: The Mixed Skew workload is a sequence of page requests con-
forming to Zipf distribution, which is a common distribution in realistic occa-
sions. The ratio of write operation is set to 20% as previous work did [16].

We only report the results with the buffer size 256 for SCAN workload
because as buffer size becomes larger, the results have the same trend. In case
of smaller buffer size, all six algorithms have similar behavior. The reason is
when buffer size is smaller than Tmin, the size of Lower Queue in CARF is 0;

186 Z. Jiang et al.

Table 4. Results of SCAN workload

CARF LRU FD-Buffer FOR+

Time Cost 2224 2807 3346 2395

Benefit 24% 50.4% 7.7%

and the scan resistance of CARF is the same as LRU. As we can see from Tab.
4, CARF has better scan resistance than other algorithms. It is about 10.5%
to 50.4% better than other competitors under SCAN workload. This is because
other LRU-based algorithms only take recency of page request into account. And
CARF considers frequency of page request at the same time. Besides, the Lower
Queue of CARF can also help filter out pages that are only requested one time.

The result of the skew workload is shown in Fig. 3(a). With the help of its
cost model, CARF is able to utilize “deeper” information in the histogram. Thus,
CARF has a better performance under the skew workload in most cases as well.

5.3 Results on Benchmarking

In this section, we evaluate CARF with its competitors under benchmark work-
loads. The experiments are run on both the SD card and SSD. Because results
of the two experiments have similar trends, we only report the results on the SD
card here due to page limitation.

Figure 3(b) shows the I/O time of different algorithms under TATP workload.
When the buffer size is larger than 64, the performance of CARF is comparable
with and finally outperforms other algorithms. Figure 3(c) shows the I/O time
of each algorithm under the TPC-B workload. The experimental result is similar
with the result under the TATP benchmark.

Figure 3(d) is about the results under TPC-C workloads. From these figures,
we observe that CARF has the best performance. It achieves up to 27.9% gains
over other flash-aware algorithms. In most cases, CARF has on average around
10% better performance than other baselines. Under the TPC-C benchmark,
the performance of flash-aware buffer management policies is much better than
that of TATP and TPC-B benchmark. For all the three workloads, the write
locality is very well. So the write clustering technique in FD-Buffer fails to play
a significant role in improving write performance.

The primary reason for CARF to outperform other flash-aware algorithms is
that CARF can accurately define the priorities of pages in the buffer using its
cost model. Thus, CARF could avoid the problem that cold dirty pages remain
in buffer for a long period time. FOR+ solves this problem by moving some hot
clean pages into its priority region. But dirty pages in its priority regions may
also face similar problems. FD-Buffer divides the buffer pool into two sub-pools
according to page state. Pages in the clean pool will be evicted first. However,
some cold pages in the dirty pool will stay in buffer for a long period of time
and lead to unnecessarily high miss rate. This phenomenon will also influence
the adaptive mechanism for adjusting pool sizes.

A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices 187

1000

1200

1400

1600

1800

2000

0 32 64 128 256 512 1024 2048

Ti
m

e
El

ap
se

/s

Buffer size/pages

Mixed Skew

CARF
LRU

FOR+
FD-Buffer

(a) Mixed Skew

0

1000

1500

2000

2500

3000

3500

4000

0 32 64 128 256 512 1024 2048

Ti
m

e
El

ap
se

/s

Buffer size/pages

TATP Workload

CARF
LRU

FOR+
FD-Buffer

(b) TATP

0

2000

4000

6000

8000

0 32 64 128 256 512 1024 2048

Ti
m

e
El

ap
se

/s

Buffer size/pages

TPC-B Workload

CARF
LRU

FOR+
FD-Buffer

(c) TPC-B

4000

6000

8000

10000

12000

14000

16000

0 32 64 128 256 512 1024 2048

Ti
m

e
El

ap
se

/s

Buffer size/pages

TPC-C Workload

CARF
LRU

FOR+
FD-Buffer

(d) TPC-C

Fig. 3. Experimental result under benchmark workload

5.4 Evaluate CPU Time

In this section, we examine the computational time for each algorithm. The result
of average computational time per operation under three benchmark workloads
is shown in Table 5. We can see that LRU is surely to be with least computational
overhead. Compared with other algorithms, CARF has slightly more computa-
tional overhead. The reason is that CARF needs to adjust its Upper Queue,
which is a procedure with O(log Tmin) time complexity. But this overhead is
negligible compared with the saving in I/O time. So its computational overhead
is acceptable. Moreover, the computational overhead of CARF relies only on the
size of its Upper Queue. FD-Buffer needs to dynamically adjust the sizes of the
two pools, so it also involves heavy computational overhead. Unlike other flash-
aware buffer management policies, it will not increase drastically along with the
buffer size. So the computational time of CARF has good scalability as well.

188 Z. Jiang et al.

Table 5. The average computation time per operation (µs, Buffer size:1024 pages)

LRU FD-Buffer FOR+ CARF

TATP 0.84 2.13 3.66 1.58

TPC-B 0.79 1.35 2.87 1.53

TPC-C 0.90 1.86 3.84 1.42

6 Related Work

Data management over flash memory has attracted much attention in recent
years. A large number of studies have been proposed to deal with the unique
characteristics of flash memory. Lee et al. [12] proposed the In-Page Logging to
optimize write performance. Tsirogiannis et al. [22] make optimization of query
processing in flash-aware DBMS. Li et al. [13] proposed a tree index to address
the read-write symmetry of flash memory. Debnath et al. [3] designed a key-
value store on flash-based storage devices. Li [14] optimized the efficiency of join
processing on flash memory.

Buffer management is also a fruitful research area. Traditional buffer man-
agement policies devote to maximize the hit rate so as to get optimal IO per-
formance. The most widely used policy is LRU, which chooses the least recently
used page for eviction. Some variants of LRU [7,11,18] are proposed to combine
the advantage of frequency and recency. Achieving better scan resistance [9] and
lower computational overhead are also considered in previous studies.

For buffer management policy on flash memory, the primary goal is to address
the read-write asymmetry. They can be divided into three kinds: embedded [10],
buffer extensions [4,15] and page state [16,19–21]. BPLRU [10] is a buffer man-
agement policy for embedded system with limited resources. Policies in [4] and
[15] are designed for hybrid storage systems which use flash memory as exten-
sions of buffer pool, while the storage system uses only flash memory as exter-
nal memory. Page state is crucial for addressing read-write asymmetry. CFLRU
[21],CFDC [20],CASA [19] are heuristic-based methods using page state to select
the victim page on flash memory. FOR [16] is a cost-based buffer replacement
policy. It considers the spatial and temporal locality of read and write opera-
tion and selects victim page based on cost calculation. FD-Buffer [17] is a latest
buffer management policy on flash memory. FD-Buffer separates the buffer into
two pools and use independent management policy for each pool. It has an adap-
tive scheme to adjust the size of the two pools. The management policy of the
two pools is independent from each other.

7 Conclusion

In this paper, we proposed CARF, a cost-aware buffer management policy on
flash-based storage devices. We build a cost model to select victim page on the
basis of page weight calculation. We also make competitive analysis of this cost
model and prove that CARF combines frequency and recency from a theoretical

A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices 189

view. We utilize the conclusion from the above analysis. Experimental study on
both synthetic and benchmark workloads shows that CARF outperforms state-
of-art flash-aware algorithms with 9.8-27.9% improvements.

Acknowledgements. Our work is supported by National Basic Research Program
of China (973 Program) No.2011CB302302, the National High-tech R&D Program
of China under Grant No. SS2015AA020102, Tsinghua University Initiative Scientific
Research Program.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Comm. of ACM 31(9), 1116–1127 (1988)

2. Bouganim, L., Jonsson, B., Bonnet, P.: uflip: Understanding flash io patterns. In:
CIDR (2009)

3. Debnath, B.K., Sengupta, S., Li, J.: Skimpy stash: ram space skimpy key-value
store on flash-based storage. In: SIGMOD, pp. 25–36 (2011)

4. Do, J., Zhang, D., et al. J.M.P.: Turbocharging dbms buffer pool using ssds. In:
SIGMOD, pp. 1113–1124 (2011)

5. Effelsberg, W., Harder, T.: Principles of database buffer management. TODS 9(4),
560–595 (1984)

6. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Com-
puting Survey (2005)

7. Jiang, S., Zhang, X.: Lirs: an efficient low inter-reference recency set replacement
policy to improve buffer cache performance. In: SIGMETRICS, pp. 31–42 (2002)

8. Jiang, Z., Zhang, Y., Wang, J., Xing, C.: A cost-aware buffer management policy
for flash-based storage devices. Technical Report (2015)

9. Johnson, T., Shasha, D.: 2q: A low overhead high performance buffer management
replacement algorithm. In: PVLDB, pp. 439–450 (1994)

10. Kim, H., Ahn, S.: Bplru: A buffer management scheme for improving random writes
in flash storage. In: FAST (2008)

11. Lee, D., Choi, J., Kim, J.H., et al.: Lrfu: A spectrum of policies that subsumes the
least recently used and least frequently used policies. IEEE Trans. on Computers
50(12), 1352–1361 (2001)

12. Lee, S.W., Moon, B.: Design of flash-based dbms: an in-page logging approach. In:
SIGMOD, pp. 55–66 (2007)

13. Li, Y., He, B., Yang, R.J., Luo, Q., Yi, K.: Tree indexing on solid state drives.
PVLDB 3(1), 1195–1206 (2010)

14. Li, Y., On, S.T., Xu, J., Choi, B., Hu, H.: Optimizing non-indexed join processing
in flash storage-based systems. IEEE Trans. on Computers 62(7), 1417–1431 (2012)

15. Liu, X., Salem, K.: Hybrid storage management for database systems. Proceedings
of the VLDB Endowment 6(8), 541–552 (2013)

16. Lv, Y., Cui, B., He, B., Chen, X.: Operation-aware buffer management in flash-
based systems. In: SIGMOD, pp. 13–24 (2011)

17. On, S.T., Gao, S., He, B., Wu, M., Luo, Q., Xu, J.: Fd-buffer: A cost-based adaptive
buffer replacement algorithm for flash memory devices. IEEE Trans. on Computers
(2013)

190 Z. Jiang et al.

18. O’Neil, E.J., O’Neil, P.E., Weikum, G.: The lru-k page replacement algorithm for
database disk buffering. In: SIGMOD, pp. 297–306 (1993)

19. Ou, Y., Harder, T.: Clean first or dirty first? a cost-aware self-adaptive buffer
replacement policy. In: IDEAS (2010)

20. Ou, Y., Harder, T., Jin, P.: Cfdc: A flash-aware replacement policy for database
buffer management. In: DaMoN (2009)

21. Park, S.Y., Jung, D., Kang, J.U., Kim, J.S., Lee, J.: Cflru: a replacement algorithm
for flash memory. In: CASES, pp. 234–241 (2006)

22. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
processing techniques for solid state drives. In: SIGMOD, pp. 59–72 (2009)

The Gaussian Bloom Filter

Martin Werner(B) and Mirco Schönfeld

Ludwig-Maximilians-Universität in Munich, Munich, Germany
{martin.werner,mirco.schoenfeld}@ifi.lmu.de

Abstract. Modern databases tailored to highly distributed, fault tol-
erant management of information for big data applications exploit a
classical data structure for reducing disk and network I/O as well as
for managing data distribution: The Bloom filter. This data structure
allows to encode small sets of elements, typically the keys in a key-value
store, into a small, constant-size data structure. In order to reduce mem-
ory consumption, this data structure suffers from false positives which
lead to additional I/O operations and are therefore only harmful with
respect to performance. With this paper, we propose an extension to the
classical Bloom filter construction which facilitates the use of floating
point coprocessors and GPUs or additional main memory in order to
reduce false positives. The proposed data structure is compatible with
the classical construction in the sense that the classical Bloom filter can
be extracted in time linear to the size of the data structure and that
the Bloom filter is a special case of our construction. We show that the
approach provides a relevant gain with respect to the false positive rate.
Implementations for Apache Cassandra, C++, and NVIDIA CUDA are
given and support the feasibility and results of the approach.

Keywords: Bloom filter · Database design · Data structures

1 Introduction

Nowadays, the Internet has become one of the most important information hubs
of our societies. While in the past, the Internet was used mainly as a source of
information, it is becoming more and more a hub for user-generated and sensor
data. The Internet-of-Things paradigm envisions that more and more devices of
daily life transmit information to the Internet and consume information retrieved
over the Internet for flexible service delivery.

Due to the wide adoption of large-scale cloud computing approaches in data
management and due to the rise of “NoSQL” databases for solving the problems
of management of large collections of data in a distributed way with linear
scaling, a lot of approaches have been discussed in order to index and manage
the high amount of data in a more flexible way. The data flow can be subsumed
as a process and the most important aspects for big data applications stem from
this data flow which can be enumerated as follows:
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 191–206, 2015.
DOI: 10.1007/978-3-319-18120-2 12

192 M. Werner and M. Schönfeld

1. Data Collection: The process of moving the data into a big data infrastruc-
ture.

2. Data Distribution: The process of distributing the data reasonably to several
instances for performance and error-tolerance.

3. Storage and Retrieval: The operations used to store and retrieve data from
persistent storage.

4. Searching and Indexing: The operations making data access flexible and
reasonably fast for applications.

5. Big Data Analytics: The area of analyzing the meaning of large datasets.
6. Visualization: The challenges of making these outcomes visible and under-

standable for humans.

It is estimated that the amount of data on the Internet doubles roughly every
two years and this data is the commodity of information society.

For adressing the first three challenges, a well-known data structure has been
used a lot: The Bloom filter. This data structure is able to model the containment
relation of variable-sized small sets with high accuracy, constant memory, small
computation cost, and some false positives. With respect to big data infrastruc-
tures, it has been widely used in order to be able to skip disk reads or network
transmission and manage access to information in key-value stores. With respect
to data distribution, it can be applied for set reconciliation between two large
datasets [4,5]. With respect to data collection it has been widely applied to
network routing and related problems [8,13].

With this paper, we provide an extension to the classical Bloom filter which
can be used in big data applications. The extension is able to use additional
memory in order to reduce the false-positive rate of a Bloom filter while the
underlying classical Bloom filter can be extracted easily. Additionally, our app-
roach is based on using floating point calculations, which can be shifted to a
graphics card or other co-processor exploiting parallel computation capabilities.

We provide an implementation1 of our approach for the well-known NoSQL
database Apache Cassandra and highlight the performance from two perspec-
tives: A moderate increase in running time for key insertion is traded against a
higher rate of skipping irrelevant data blocks especially for data blocks for which
the number of elements stored is smaller than the expected number of elements.

The remainder of this paper is structured as follows: We first review the
needed background on classical Bloom filters in Section 2. Then, we detail our
extension to this construction, the “Gaussian Bloom Filter” in Section 3. In
Section 4, we evaluate our approach with respect to its false positive rate, the
number of bits used for floating point representation, the performance of our
implementation for the well-established key-value store Apache Cassandra, and
the performance of different variants implemented for the CPU and the GPU in
C++. Section 5 concludes the paper.
1 supplementary material is available at http://trajectorycomputing.com/

gaussian-bloom-filter/

http://trajectorycomputing.com/gaussian-bloom-filter/
http://trajectorycomputing.com/gaussian-bloom-filter/

The Gaussian Bloom Filter 193

2 Bloom Filter

The Bloom filter, introduced by B. H. Bloom in 1970, is a probabilistic data
structure for representing small sets of strings in a space-efficient way [3]. A
Bloom filter can be used to rapidly check if the underlying set contains a certain
element. A Bloom filter’s main asset is the absence of false negative filter results:
A Bloom filter will never claim that an element is not in the filter while it has
been inserted to the filter. But, a Bloom filter does report false positive results
stating that the underlying set contains the inquired element although it has not
been added. The amount of expectable false positive filter responses depend on
the filter’s configuration, mainly.

Bloom filters are a central element of several modern distributed systems
such as Google BigTable [6], Apache Cassandra [1], and even BitCoin [9]. Their
manifold application led to a lot of research investigating the specialization of
the basic variant towards specific application scenarios. Up to now, there are
counting Bloom filters, compressed Bloom filters, time-decaying Bloom filters,
stable Bloom filters, coded Bloom filters and several more [4,10].

The basic filter itself consists of a binary hash field of fixed size supporting
the insertion of and querying for single elements. The following definition gives
the details.

Definition 1 (Bloom Filter). A Bloom filter is given by a binary hash field F
of fixed length m. Fix a set hi of k pairwise independent hash functions mapping
the universe U to the set m = {1, 2, . . . ,m}. In this situation, the following set of
operations defines a data structure describing sets. The empty set is represented
by an all-zero hash field F = 0.

1. Insert(F , e): Set all bits of F to the value 1, which are indexed by the results
of all k hash functions hi applied to the element e.

2. Test(F , e): Return true if and only if all bits in F , which would have been
set by the corresponding Insert operation, equal 1.

From this definition, one can see why a Bloom filter does not allow for false
negative filter responses but may report false positives: the test operation uses
k hash functions to check for the addressed bits being set to 1 – these are the
same k hash values the insert operation would have used to set those bits. So, if
there is only one position of the addressed bits F [x] = 0 the element could not
have been inserted into the filter. On the other hand, all tested bits could have
been set to one by the insertion of various other elements due to hash collisions.
In this case, the test operation would respond falsely positive.

Since false positive responses often lead to costly operations their occurences
should be minimized. But, the probability of false positives can be calculated.
Since all k hash functions are assumed to be pairwise independent, the prob-
ability of a false positive can be expressed as the probability that all k hash
functions hit a one for an inquired element. With some simplifications, this can
be approximated via the fraction of zeros in the filter.

194 M. Werner and M. Schönfeld

The probability for a slot still being unset after evaluating one single hash
function is

1 − 1
m

.

For the insertion of n different elements hashing is performed kn times since
every insertions uses k different hash functions. Therefore, the probability p for
a slot being zero after n insertions can be expressed as

p ≈
(

1 − 1
m

)kn

≈ exp
(

−kn

m

)

.

The probability of a false positive P (fp) can now be given as the complemen-
tary event to p since a false positive occurs if all k hash functions hit a bucket
“not being zero”:

P (fp) ≈ (1 − p)k

To obtain the minimal false positive probability the first derivative of P (fp) with
respect to k is taken and set to zero resulting in an optimal parameter kOpt:

kOpt =
m

n
log 2.

This leads to a fraction of zero of

pOpt =
1
2

and a false-positive probability of

POpt(fp) =
(

1
2

)m
n log 2

≈ 0.6185
m
n .

An optimal Bloom filter configuration leads to roughly half of the bits being
zero and half of the bits will be one. This motivates from an information-theoretic
perspective that it is impossible to spill in more information into the hash-field:
The entropy in this case is maximal. The optimal configuration depends on the
number of elements being inserted, the size of the bit field and the number of
hash functions being used.

When thinking about the Bloom filter, one quickly realizes that only zero-
valued slots contribute information for reducing false-positives: A false-positive
is rejected, if at least one of the addressed cells is zero. From this observation, we
motivate our extension: We want to introduce more information into each “zero-
valued” slot, namely some information about the ordering of hash functions. In
this way, the surrounding fields store some information on which hash function
has actually set the enclosed bit. This helps to further reduce the occurence of
false positives since the test operation is now able to decide if a bit was set by
storing the inquired element or a different one and additionally reject some of
the false-positives in which the ones are addressed from different hash functions.
The following section gives details on this construction.

The Gaussian Bloom Filter 195

3 Gaussian Bloom Filter

For the construction of the Gaussian Bloom filter, we first replace all binary
slots of the hash field F with small floating point numbers. We further extend
the insert and test operation as follows:

Definition 2 (Gaussian Bloom Filter). A Gaussian Bloom filter is given by
a hash field F of fixed length m composed of small cells storing floating point
numbers. Fix a set hi of k pairwise independent hash functions mapping the
universe U to the set m = {1, 2, . . . ,m}. In this situation, the following set of
operations defines a data structure describing sets. The empty set is represented
by an all-zero hash field F = 0.

1. Insert(F , e): For each of the k hash functions hi create a Gaussian proba-
bility density function

Ni = N (hi(e), i)

with mean μ = hi(e) given by the hash function value and standard deviation
σ = i given by the hash function index. With respect to the hash field F , we
set all entries to the maximum of the current value in the slot and the value
in the normalized signature function

Ñi =
Ni

max(Ni)

which attains its maximal value 1 at hi(e) and values between 0 and 1 else-
where:

F [t] := max
(
F [t], Ñ1(t), . . . , Ñk(t)

)

2. Test(F , e): Create the same normalized signature functions Ñi and combine
them into the element signature S by selecting the maximal value for each
slot.

S[t] = max
(
Ñ1(t), . . . , Ñk(t)

)

Return true, if and only if F [i] ≥ S[i] for all i ∈ m.

In this construction, the non-maximal slots contain information about the hash
function index of the one causing the value of the slot to have changed. For filters
with few elements, this can be a lot of information as a lot of non-maximal slots
are available to encode such information. Towards an optimally filled filter, the
number of available slots reduces.

Choosing the Gaussian kernel for this approach has several reasons: First
of all, any bounded function could have been used which can be parametrized
with an additional parameter encoding the index of the hash function. Choosing
a function which has a single maximum at the location indexed by the hash
functions, however, allows for easily extracting the underlying Bloom filter:

196 M. Werner and M. Schönfeld

Definition 3 (Underlying Bloom Filter). Given a Gaussian Bloom filter
FG, the underlying Bloom filter FB can be retrieved by comparing all slots with
the maximal value M of the signature functions:

FB [i] = (FG[i] == M)

This recovers the classical Bloom filter with identical parameters (size, num-
ber of hash functions) which would have been generated by directly using the
classical construction. This creates an important compatibility when it comes to
network applications: We can use the Gaussian Bloom filter without prescrib-
ing its use to other components of a distributed system. Moreover, we can use
the Gaussian Bloom filter only as long as it actually helps and the additional
memory is available.

One subtlety with this definition of the underlying Bloom filter is given by the
fact that the signature functions and the resolution and coding of the floating
point numbers must be chosen in a way such that no non-maximal cells are
rounded to the maximal value. Therefore, we propose to encode the numbers
in the cells of a Gaussian Bloom filter in a special way. However, when using
floating point processing units such as GPUs in order to perform the filtering
operations, keep in mind that rounding can become a problem introducing a
novel type of false-positives for the underlying Bloom filter.

Furthermore, the choice of Gaussian kernels can be motivated as making clear
the extension nature of our approach: In the space of distributions, the family of
Gaussian kernels with smaller and smaller standard deviation converges to the
Dirac distribution which is zero everywhere except at 0.

Finally, there are very good speedups for calculating an approximation to the
Gaussian function and the calculation can be localized in the array by calculating
the function only in a local neighborhood of several multiples of the standard
deviation around the indexed hash cells limiting the number of floating point
operations per hash function activation.

But before we start discussing implementation issues and scalability of the
given approach, we first fix some basic results on the filter, its performance and
its configuration.

3.1 Properties

In order to discuss the properties of the Gaussian Bloom filter, we start with
the following observation that the Gaussian Bloom filter does not allow false
negatives:

Lemma 1. The Gaussian Bloom filter has no false negatives.

Proof. At any point in time the filter structure is larger than the largest element
signature inserted. As the Test operation is based on comparing the signature
using greater than or equal to the filter, the query pattern can not be larger
than the filter in any slot unless the element has not been inserted to the filter.

The Gaussian Bloom Filter 197

Filter
Contents

Bloom Filter
Query Pattern

Gaussian B. F.
Query Pattern

(a) Gaussian Bloom Filter Example

Filter
Contents

Gaussian B. F.
Query Pattern

False positive can be
rejected as the filter is
smaller than element
signature

(b) The Gaussian filter rejects this case

Fig. 1. Gaussian Bloom Filter rejecting a Bloom filter false positive

The Gaussian Bloom filter allows for false positives just as a Bloom filter
does. However, a Gaussian Bloom filter false-positive implies a false positive for
the associated underlying Bloom filter.

Lemma 2. The false positive rate of a Gaussian Bloom filter is smaller than or
equal to the false positive rate of a Bloom filter.

Proof. In the situation of a Gaussian Bloom filter false positive, all slots of the
filter are larger than the element signature pattern. This is especially true for
the slots, where this pattern attains its maximal value one. However, these slots
have been addressed by hash functions of other elements directly.

The following gives a concrete example of a situation in which a Bloom filter
reports a false-positive while the Gaussian Bloom filter is able to reject this case.

Example 1. Consider the following situation: Assume the element e1 with asso-
ciated hash values h1(e1) = 50, h2(e1) = 10, and h3(e1) = 30 has been added
to an empty filter. Assume further that the query element e2 has hash values
h1(e2) = 50, h2(e2) = 30, and h3(e2) = 10

This situation is depicted in Figure 1 on the left: Since all three indexed hash
addresses have been set, a Bloom filter returns true for element e2. A Gaussian
Bloom filter on the other hand returns false for the query element. It is able to
distinguish the hash functions that addressed the underlying filter index. The
right hand side of the figure shows how the query pattern differs from the filter
content. Namely, the encoded Gaussian functions for hash addresses 10 and 30
differ in their standard deviation. Therefore, the relevant bits must have been
set by different hash functions and, consequently, come from different elements.

Finally, we have to discuss how a Gaussian Bloom filter can be configured.
A central element of the analysis of the Bloom filter was the assumption of
independence of each bit of information used from other bits. However, in the
case of a Gaussian Bloom filter this independence does not exist anymore as
different hash values are used when rejecting false positives. Therefore, we are
left with the fact that the Gaussian Bloom filter is not worse than the Bloom
filter and have to use the Bloom filter analysis in order to choose the optimal
configuration in terms of size, number of hash functions, and number of elements.

198 M. Werner and M. Schönfeld

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Performance

Number of Elements

M
ax

. F
P

−R
at

e

Full GBF
8 bit
4 bit

(a) m = 256, n ∈ {1 . . . 100}, k = 6

−3 −2 −1 0 1 2 3

0.
2

0.
4

0.
6

0.
8

1.
0

Parameter Value

V
al

ue
 o

f t
he

 D
is

tri
bu

tio
n

Fast Gaussian
Correct Gaussian

(b) Accuracy of the Fast Gaussian

Fig. 2. False-positive rate for small floating points and the accuracy of the fast Gaussian

3.2 Efficient Representation with Small Counters

Depending on the application domain and the way in which the floating point
calculations are performed in practice, it can become quite questionable, whether
the amount of memory for example by utilizing single or double precision floating
point numbers is reasonable. Furthermore, it is unclear how to prevent rounding
up to the maximal value effectively. However, we provide a bit coding tailored
to the situation in which even small sizes of 4 bit per slot reach a similar false-
positive rate as compared to using an implementation based on an array of
double values.

In order to encode the floating point values efficiently into a small bit field
with t entries, we observe that only values between 0 and 1 need to be modelled.
Furthermore, we observe that the maximal value 1 definitely needs a unique bit
representation. We chose to model this maximal value by an array of t ones. If
the value is not maximal, then we are left with 2t − 1 bit combinations which
we can use. If we multiply the value with the following scaling factor, then usual
rounding will be as expected:

α =
2t − 1

2t

In order to obtain the final bit pattern representing the value, let each bit
model a fraction of two, the first bit models 1

2 , the second bit 1
4 , and so on. When

decoding from this representation, we first check for the distinguished pattern
for the maximal value, decode and rescale with α−1.

In order to evaluate the efficiency of the representation, three different filters
with equal random sets of elements of varying size are created and then queried
with 100 random elements, which have not been inserted into the filters. Figure
2(a) depicts the result of comparing the false-positive rate of a filter based on

The Gaussian Bloom Filter 199

full-sized double values as provided by the CPU compared to four bit and eight
bit representation. You can clearly see that there is only a small quality loss
in comparison between CPU double (bold line) and our binary representations.
This is due to the fact that our binary representation uses the bits more efficiently
by exploiting the domain limitation to modeling only the interval [0, 1]. As to
be expected, increasing the number of bits from 4 to 8 bit makes a difference: in
general, the larger bit slots tend to reject more false positives.

3.3 Efficient and Local Evaluation of Gaussian Function

For inserting an element to the Gaussian Bloom filter, we have defined to use
a Gaussian distribution with two variable parameters. In order to sucessfully
apply this in a big data environment with possibly large Bloom filters, we have to
optimize the situation into two directions: First of all, it is infeasible to evaluate
this function for each cell of the filter and, secondly, it is infeasible to evaluate the
correct formula for the Gaussian function containing the exponential function.

In order to be able to evaluate the Gaussian function for a smaller number
of slots, we observe that the tails of the Gaussian function attain zero after
rounding quickly. We employ the “3σ-rule” which states that evaluating opera-
tions involving the Gaussian functions can be skipped after three sigma due to
neglectible size of the function. Outside the interval [μ−3σ, μ+3σ] the Gaussian
function is smaller than 0.0045, which is small enough to be neglected.

This step, in summary, makes the operations Insert and Test independent
from the filter size. They, then, only depend on the number of hash functions
used: For each hash function, the number of slots is determined by its index as
3σ determines the amount of slots being accessed. Therefore, the overall number
of hash field operations scales with the number of hash functions. Note that even
further reduction is possible at the cost of loosing some additional information by
imposing a maximal allowed standard deviation. This is especially useful when
very high standard deviations dominate too many cells of the filter removing
useful ordering information.

In order to be able to create the Gaussian Bloom filter quickly, we adopt
a well-known approximation to the exponential function consisting of a integer
multiplication, an addition and a binary shift. This method is due to Schrau-
dolph [11]. The speedup of this approximation is astonishing: In our experiments,
this implementation was about 30 times faster than the library routine of Java.
Figure 2(b) depicts the Gaussian function as computed using the library expo-
nential function compared to the Gaussian implemented using the fast exponen-
tial function for the values from the interval [−3σ, 3σ] in which we actually use
the function. Note that outside this interval, the approximation quickly degrades.

4 Evaluation

This section evaluates our new data structure for filtering small sets using an
extension to classical Bloom filters with respect to the false-positive rate and in

200 M. Werner and M. Schönfeld

0 20 40 60 80 100

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Elements

eta
R−

PF

Gaussian Bloom Filter
Bloom Filter

(a) k = 3

0 20 40 60 80 100

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Elements
eta

R−
PF

Gaussian Bloom Filter
Bloom Filter

(b) k = 5

0 20 40 60 80 100

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Elements

eta
R−

PF

Gaussian B.F.
Bloom Filter

(c) k = 10

Fig. 3. Comparison of Bloom Filter and Gaussian Bloom Filter Performance (m = 256,
k ∈ {3, 5, 10} and n ∈ {1, . . . 100})

comparison to the underlying Bloom filter. We performed a lot of experiments
with rather high false-positive rates by using small filters and medium numbers
of hash functions. These situations serve as example for larger filters with much
more elements to insert. In these experiments, a set of random strings has been
generated and either SHA-1 [7] or the Murmur Hash [2] have been used to
generate hash data. The different hash functions were generated using a different
prefix for the hash argument.

Figure 3 compares the Gaussian Bloom filter with an equivalent Bloom fil-
ter. In all these figures, the experiments were performed with random string
sets and varying parameters many times in order to generate the median perfor-
mance as the median of the instances measured false-positive rate. Additionally,
the first and third quartile area is shaded for both cases. In Figure 3 we see
that the Gaussian Bloom filter clearly outperforms the Bloom filter for filters,
which have enough zeroes. In the left figure, 256 slots were used together with
3 hash functions. The two figures to the right consider the same situation with
an increasing number of hash functions (k = 5, k = 10) which leads to more
ones in the filter and thereby less possibility to encode ordering information into
non-maximal slots. This results in the overall increasing false-positive rate for
both filters and the effect that the gain of the Gaussian Bloom filter relative to
the Bloom filter gets smaller.

As the gain for the Gaussian Bloom filter construction is larger for underfull
filter, we evaluate the false positive rate of a filter with respect to the number
of hash functions. Figure 4 depicts the false-positive rate for several situations
with different numbers of hash functions. We clearly see that the false-positive
rate of the Gaussian Bloom filter is smaller for the number of hash functions
and scales similar with the number of hash functions as compared to the Bloom
filter.

In summary, this supports the recommendation of using the standard Bloom
filter configuration for a Gaussian Bloom filter. If needed, one can also use a
slightly smaller number of hash functions for the Gaussian Bloom filter in order
to reduce the amount of consumed hash bits. This is epecially important, if

The Gaussian Bloom Filter 201

3 4 5 6 7 8 9 10

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Hash Functions

eta
R−

PF
Gaussian Bloom Filter
Bloom Filter

(a) n = 30

3 4 5 6 7 8 9 10

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Hash Functions

eta
R−

PF

Gaussian Bloom Filter
Bloom Filter

(b) n = 50

3 4 5 6 7 8 9 10

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Hash Functions

eta
R−

PF

Gaussian Bloom Filter
Bloom Filter

(c) n = 70

Fig. 4. The effect of the number of hash functions (m = 256, n ∈ {30, 50, 70} and
k ∈ {3, . . . 10})

0 20 40 60 80 100

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Elements

eta
R−

PF

Gaussian Bloom Filter (4 bit)
Bloom Filter

(a) k = 3

0 20 40 60 80 100

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Elements

eta
R−

PF

Gaussian Bloom Filter (4 bit)
Bloom Filter

(b) k = 4

0 20 40 60 80 100

0 . 0
1 . 0

2 . 0
3 . 0

4 . 0
5 . 0

Number of Elements

eta
R−

PF

Gaussian B.F. (4 bit)
Bloom Filter

(c) k = 5

Fig. 5. Performance of a 4-bit Gaussian Bloom Filter (m = 256, n ∈ {1 . . . 100} and
k ∈ {3, 4, 5})

hashing of the elements is time consuming, for example in file synchronization
applications.

As a third aspect, we have to discuss the performance of the Bloom filter with
4 bit floating point representations. We have already seen in Figure 2(a) that the
false-positive rate keeps comparable to a double-based filter for a fixed number of
hash functions. Figure 5 depicts the scaling behavior with respect to the number
of hash functions. This figure makes clear that the gain of the construction
is more sensitive to the number of hash functions as compared to the double
approach as the choice of using the hash index as the standard deviation leads
to the inclusion of equal non-maximal values in many non-maximal slots (e.g.,
the largest non-maximal value of the representation) which reduces the overall
discriminative gain of the Gaussian signature function. It can be seen that for k =
3 the positive effect is clearly visible, but it degrades more quickly for increasing
k ∈ {4, 5} as compared to the implementation using double values depicted
in Figure 3. In general, the smaller the number of bits in the floating point
representation, the fewer false positives can be rejected. However, the system is

202 M. Werner and M. Schönfeld

keeping between the bounds given by a binary, classical Bloom filter and a filter
based on an error-free representation.

4.1 Gaussian Bloom Filter in Apache Cassandra

In order to test our approach in a real-world environment, we decided to extend
the open source Apache Cassandra database [1]. Apache Cassandra is based
on the Hadoop distributed file system (HDFS) [12] and has been created at
Facebook in order to tackle the inbox search problem. Up to the middle of 2011,
Facebook was using it for this task. Meanwhile, other large and widely recognized
Internet services started using Cassandra inside their backend systems for several
tasks including Twitter, Digg, Reddit and others.

From a technological perspective, Cassandra starts with the block-based
Hadoop distributed file system and manages a key-value store with which val-
ues can be put into the database and retrieved by giving a key. This data is
then organized into so-called SSTables and Bloom filters are used to keep track,
whether specific keys could be inside specific SSTables in order to reduce I/O.
Therefore, each time a key is inserted into an SSTable, the associated Bloom
filter is updated. We replace the classical Bloom filter of Cassandra with our
modified version and still keep track of the behavior of the original system by
managing a classical filter as an instance variable of our new filter. Therefore,
performance information from the stress test can not be used to compare the
filters, as they contain the overhead of calculating each operation for both fil-
ters. Cassandra uses a sophisticated Bloom filter subsystem in which filters are
dynamically reconfigured to match the amount of information that needs to be
indexed.

We performed experiments on a single-node cluster running our modified
version of Cassandra based on Version 2.0.4. We added a new mixed filter con-
taining the Gaussian Bloom filter as well as a copy of the original Bloom filter
implementation. Furthermore, logging code has been added to track the perfor-
mance of each individual Bloom filter operation. For Cassandra, the Bloom filter
false positive rate can be configured and we set it to 10% for the experiments in
order to have many cases in which both filters will fail in order to reliably count
the number of cases in which the Gaussian filter outperformed the classical filter.
We logged for a complete run of the default Cassandra stress test the number of
situations in which either of both filters was able to reject a false positive with
the expected outcome that the proposed Gaussian Bloom filter have no addi-
tional false positives and rejects several false positives which kept undetected
by the classical Bloom filter. The stress test consists of first writing one million
keys into the database, then recalculating all filters using nodetool scrub and
finally reading one million random keys back from the database.

During this evaluation on a single-node cluster, 23 Bloom filter were gen-
erated out of which nine were used in order to manage the stress data. The
remaining filters were managing organizational key spaces and registered only
few operations. Table 1 collects the number of situations in which both filters

The Gaussian Bloom Filter 203

Table 1. Numbers of SSTable reads for each filter during the stress test

Filter Bloom SSTable Reads Gaussian SSTable Reads Fraction

1 263,937 141,598 0.54
2 625,879 524,120 0.84
3 639,631 539,161 0.84
4 1,230,417 1,163,531 0.94
5 440,584 336,882 0.76
6 271,404 146,835 0.54
7 255,446 138,246 0.54
8 305,535 172,626 0.56
9 260,190 138,611 0.53

Total 4,293,023 3,301,610 0.67

were unable to skip an SSTable read. This includes positives as well as false
positives.

In summary, our novel data structure of a Gaussian Bloom filter was able
to skip 991,413 additional SSTable reads as compared to the equally configured
Bloom filter, an overall gain of 33% on average. Furthermore, one observes that
the reconstruction of Bloom filters in the middle of the experiment before start-
ing reading leads to similar gains of nearly 50%. That is, when the database is
restructured and no new data arrives, our structure – with the default configu-
ration of Cassandra – outperforms the given data structure by rejecting 50% of
the SSTable reads not rejected by the classical Bloom filter.

The Bloom filter operation performance was also monitored by aggregating
the running time of the Insert and Test operation for both, the original Bloom
filter and the modified Gaussian Bloom filter. As is to be expected, the Gaussian
Bloom filter needs more computations, but still moderately. For the stress test,
we observed an increase in running time for the Insert operation by 42%. This
is due to the fact that the classical Bloom filter does only access the indexed
bits while the Gaussian Bloom filter has to access many more slots, especially
when many hash functions are in use such that large standard deviations occur.
For the Test operation, however, the measured overhead was only 8.82%. This
is due to the fact that testing can be stopped as soon as a single contradiction
occurs. This makes our filtering structure more sensible for database applications
in which the read-write ratio tends clearly to more reads than writes.

4.2 Performance of a GPU implementation

In order to further motivate the use of Gaussian Bloom filters, we completed
another implementation of Gaussian Bloom filters in C++, both for the CPU
as well as supported by the GPU via the NVIDIA CUDA programming model.

In this situation, the additional memory of the Gaussian Bloom filter allows
for full parallel access without any synchronization and therefore allows for
boosting the performance of the Gaussian Bloom filter even more. For the GPU
case, we create a thread for each hash function index and calculate the Murmur

204 M. Werner and M. Schönfeld

0 20 40 60 80 100 120

0
50

10
0

15
0

Number of Hash Functions

Ti
m

e
[s

]
CPU
CPU (3 std. dev.)
GPU
Bitset

(a)

0 20 40 60 80 100 120

0
1

2
3

4
5

6

Number of Hash Functions

Ti
m

e
[s

]

CPU (3 std. dev.)
GPU
Bitset

(b)

Fig. 6. Performance of various C++ implementations inserting 1,000 random strings

hash inside the GPU. When this finishes, we create one thread for each slot of
the Bloom filter and fill in the original exponential function signature into each
slot. Note that this opens up the Gaussian Bloom filter construction to non-local
kernels, for which all slots have to be calculated and no optimization comparable
to the three sigma rule is available.

Figure 6 depicts the performance of this approach. It shows the time in
seconds which is used to insert thousand random strings into a filter. The imple-
mentations are pure CPU with and without three sigma rule, the GPU variant,
and a bit-packing filter. Note that all implementations except the CPU version
without three sigma rule are reasonably fast and scale linearly with the amount
of hashing. The small peaks show situations in which the Murmur hash was more
complex based on the data. It is interesting that this peak can be observed in all
implementations while it is much smaller for the GPU. This is due to the fact
the even the calculation of the d hash functions is performed in parallel on the
GPU.

The GPU implementation results in several welcome facts: Firstly, the addi-
tional memory overhead is not taken from system memory, instead, system mem-
ory consumption is reduced as the filter memory is on the GPU. Secondly, the
CPU is free for other operations while the hashing and calculation is deferred to
the GPU and, finally, exploiting the strong parallelism of typical GPUs allows
for calculating kernels globally over the complete hash field and opens up the
construction for more complicated kernels.

In order to show the reduction of CPU demand, we performed an experiment
on a desktop computer (Intel Xeon E5620 @ 2.4 GHz, 2 CPUs, NVIDIA Quadro
4000, 256 CUDA cores, Windows 7) as follows: Eight threads are started per-
forming a typical workload of randomly generating 1012 integer numbers, sorting
them and reversing their order in a best effort manner while another thread is
performing 400 insertions into a Bloom filter per second using 50 hash functions

The Gaussian Bloom Filter 205

and 10,000 slots. This resulted in 1.18 ·1018 integer workloads completed after 10
seconds for the CUDA implementation compared to 1.15 · 1018 for the Gaussian
Bloom filter on the CPU and 1.14 · 1018 operations for the binary Bloom filter.

In summary, this approach allowed to free up CPU performance and system
memory for applications while maintaining Gaussian Bloom filter in the graphics
card.

5 Conclusion

With this paper, we have proposed a novel approach to tuning the classical
Bloom filter construction. While the classical Bloom filter performance is optimal
when configured with the optimal values, a lot of real-world applications either
have to recalculate Bloom filters often or make use of Bloom filters that are
configured for many more elements than they actually contain most of the time.
In this situation, we propose to model additional information into the Bloom
filter data structure into the zero slots. This approach is an extension to the
Bloom filter in the sense that maximal values still recover the Bloom filter of the
same number of slots, the same hash functions and the same elements. However,
we make use of small floating point slots, which can encode from which index
of a hash function their value was most influenced. We show in theory and
practice that this Bloom filter variant can be used sucessfully. Even for the
modern database system Cassandra, which contains sophisticated techniques to
optimally configure Bloom filters during operation, a clear gain was visible.

One drawback of this construction is the additional space used to maintain
the small floating point numbers. Still, this memory can be on a coprocessing unit
such as a GPU freeing up primary memory and CPU capacity for applications.
Still, for storage-only backend systems, the additional CPU time and the amount
of RAM did not negatively impact the performance of the standard Cassandra
stress test of inserting and reading a million keys from a table. We suspect that
in many storage backends based on Apache Cassandra the additional amount of
memory and CPU is well-invested when the number of complete recalculations
of the Bloom filters can be reduced. This is an important direction for future
work which, however, can only be performed sensibly with real workloads for
the cluster and with a distributed cluster deployment.

The most important advantage consists, however, of the fact that unlike other
approaches to provide more efficient filter structures for small sets, our construc-
tion is compatible with the original structure and therefore with communication
protocols as the underlying Bloom filter can be extracted easily.

References

1. The Apache Cassandra database (2014). http://cassandra.apache.org/
2. Appleby, A.: Murmurhash (2009). http://code.google.com/p/smhasher/
3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)

http://cassandra.apache.org/
http://code.google.com/p/smhasher/

206 M. Werner and M. Schönfeld

4. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4), 485–509 (2004)

5. Byers, J., Considine, J., Mitzenmacher, M.: Fast approximate reconciliation of set
differences. Tech. rep., Boston University Computer Science Department (2002)

6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26(2), 4 (2008)

7. Eastlake, D., Jones, P.: US Secure Hash Algorithm 1 (SHA1) (2001)
8. Feng, W.C., Kandlur, D.D., Saha, D., Shin, K.G.: Stochastic fair blue: a queue

management algorithm for enforcing fairness. In: Proceedings of the Twentieth
Annual Joint Conference of the IEEE Computer and Communications Societies,
INFOCOM 2001, vol. 3, pp. 1520–1529. IEEE (2001)

9. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
10. Schönfeld, M., Werner, M.: Node wake-up via ovsf-coded bloom filters in wireless

sensor networks. In: Ad Hoc Networks, pp. 119–134. Springer (2014)
11. Schraudolph, N.N.: A fast, compact approximation of the exponential function.

Neural Computation 11(4), 853–862 (1999)
12. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file

system. In: 26th IEEE Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10 (2010)

13. Whitaker, A., Wetherall, D.: Forwarding without loops in icarus. In: 2002 IEEE
Open Architectures and Network Programming Proceedings, pp. 63–75. IEEE
(2002)

Spatio-Temporal Data I

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 209–225, 2015.
DOI: 10.1007/978-3-319-18120-2_13

Detecting Hotspots From Trajectory
Data in Indoor Spaces

Peiquan Jin1,2(), Jiang Du1, Chuanglin Huang1,
Shouhong Wan1,2, and Lihua Yue1,2

1 School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, China

2 Key Laboratory of Electromagnetic Space Information,
Chinese Academy of Sciences, Hefei 230027, China

jpq@ustc.edu.cn

Abstract. The increasing deployment of indoor positioning technologies like
RFID, Wi-fi, and Bluetooth offers the possibility to obtain users’ trajectories in
indoor spaces. In this paper, based on indoor moving-object trajectories, we aim
to detect hotspots from indoor trajectory data. Such information is helpful for
users to understand the surrounding locations as well as to enable indoor trajec-
tory mining and location recommendation. We first define a new kind of query
called indoor hotspot query. Then, we introduce a pre-processing step to
remove meaningless locations and obtain indoor stay trajectories. Further, we
propose a new approach to answering indoor hotspot queries w.r.t. two factors:
(1) users’ interests in indoor locations, and (2) the mutual reinforcement rela-
tionship between users and indoor locations. Particularly, we construct a user-
location matrix and use an iteration-based technique to compute the hotness of
indoor locations. We evaluate our proposal on 223,564 indoor tracking records
simulating 100 users’ movements over a period of one month in a six-floor
building. The results in terms of MAP, P@n, and nDCG show that our proposal
outperforms baseline methods like rank-by-visit, rank-by-density, and rank-by-
duration.

Keywords: Indoor space · Hotspot · Trajectory

1 Introduction

With the development of indoor positioning technologies and various portable
devices, it becomes necessary to provide location based services in indoor spaces [1,
2]. For example, shopping malls intend to find the hotspots in the buildings and
thereby can adjust the deployment of shops and further provide better services for
customers. Generally, hotspots in indoor spaces can mostly reflect people’s interests
in those locations. Therefore, we can find out the hottest shops in a shopping mall and
even mine the hot routes so as to provide better shopping guide and recommendation
for customers.

210 P. Jin et al.

In this paper, we focus on detecting hotspots from trajectory data in indoor spaces.
We define a new type of query for indoor spaces, which is called indoor hotspot
query, and propose an effective approach. An indoor hotspot query aims to find out
the hottest locations from a set of moving trajectories in indoor spaces. A typical
application is to find the hottest shops and products in shopping malls based on users’
trajectories, which can be further utilized for product recommendation and sales
promotions. Note that the traditional way for this purpose is only based on the
statistics of sales. However, people’s moving trajectories in a shopping mall can also
reflect their buying interests, which can be another aspect that could be more useful
for product recommendation. This is simply because many people will not buy the
same product (e.g., a wedding ring, a watch, etc.) again in a long time after they have
bought it. Thus, it can be helpful to utilize people’s moving trajectories to find the
potential buying interests, because most trajectories can be obtained before actual
buying behaviors. As a result, if we can extract hotspots from people’s indoor
trajectories, we are able to detect the locations (shops in a shopping mall) that most
people are interested in. This can be then used for many other applications, e.g.,
improving the spatial deployment of shops, providing product recommendation in
shopping malls, offering better tour guide in a museum, etc.

Previous studies on hotspots queries mainly focus on outdoor space, such as the
Euclidean space [3, 4] and the road-network space [5-7]. There is also one existing
research towards constrained movements in a conveyor-based constrained space in an
airport [8], but this work cannot be applied to other types of indoor spaces, because
the conveyor-based indoor space only considers conveyors, which is much different
from common indoor environments such as office buildings, museums, metro
stations, etc. Following [8], [20] uses a density-based approach to find hotspots in
semi-constrained indoor space, focusing on employing a density-based index to
improve time performance. However, this paper proposes a new approach differing
from density or visiting-count based ones. Further, our study focuses on general
indoor spaces that are composed of common indoor elements such as rooms, doors,
hallways, stairs, elevators, etc.

The challenges of processing indoor hotspot queries are two-fold. First, indoor
spaces are usually three-dimensional, and different floors and locations have different
possibilities to be visited. For example, in a shopping mall, the first floor usually has
much more visits than other ones, because all people have to visit the first floor when
entering into the shopping mall. Also some special locations such as elevator and stair
rooms are often visited. Therefore, it is not suitable to simply count the visits to each
location to identify hotspots. Second, users’ interests in an indoor location do not
simply rely on the number of users visiting the location, but also depend on users’
stay time in the location as well as users’ activeness and travel experiences in the
related indoor space. In traditional road-network space, we usually use visiting count
or visiting duration to identify hot road segments [9, 10]. However, in indoor spaces
we have to consider more factors. For instance, the stay time of users in each indoor
location should be considered. Besides, active users and inactive ones have different
influences on the hotness of indoor locations. For example, in a shopping mall, active
users are more likely to be potential buyers and therefore we need to consider their

 Detecting Hotspots From Trajectory Data in Indoor Spaces 211

impacts on hotspots more than other users. Therefore, how to model the mutual
reinforcement relationship between users and indoor locations is a critical issue in
indoor hotspot detection.

In this paper, we propose a new approach to indoor hotspot queries and make the
following contributions:

(1) We define a new kind of query on indoor moving objects, which is called
indoor hotspot query.

(2) We propose a new approach to processing indoor hotspot queries. In particular,
we consider two factors to identify indoor hotspots, namely users’ interests in indoor
locations and the mutual reinforcement relationships between users and indoor
locations.

(3) We conduct experiments on a RFID-based indoor trajectory data set consisting
of 223,564 trajectories, and compare our proposal with several baseline methods
including rank-by-visit, rank-by-density, and rank-by-duration. The performance
results w.r.t. MAP, P@n, and nDCG demonstrate the superiority of our proposal.

The rest of the paper is organized as follows. Section 2 defines the problem.
Section 3 explains our proposal of processing indoor hotspot queries. Section 4
presents the experimental results. We discuss the related work in Section 5 and
conclude the paper in Section 6.

2 Problem Statement

2.1 Indoor Space

Modeling indoor spaces has been studied for years. Many models have been
proposed, such as object-feature-based model [11], geometric model [12], and
symbolic model [13-15]. Without the loss of generality, in this paper, we define
indoor spaces as follows.

Definition 1 (Indoor Space). An indoor space is represented as a triple:

IndoorSpace = (Cell, Sensor, Deployment)
Here, Cell is a set of cells in the indoor space. According to previous researches, an

indoor space can be partitioned into cells [13-15]. Sensor is a set of positioning sen-
sors deployed in the indoor space. Typical sensors are RFID readers, Bluetooth detec-
tors, and Wi-Fi signal receivers. Deployment records the placement information of
the sensors in the indoor space

In real applications, rooms can be regarded as cells and sensors are usually used to
identify cells in indoor space, e.g., to identify shops in a shopping mall. Thus, the
Deployment information of sensors can be pre-determined and maintained in a data-
base or a file. For example, in the indoor space shown in Fig. 1, the rooms denoted by
r1 to r7 are regarded as cells. Then, we can use the following mappings to represent
the Deployment information of sensors (s1 − s7):

212 P. Jin et al.

Fig. 1. An example of indoor spaces

Deployment = {< s1, r1>, < s2, r3>, < s3, r5>, < s4, r2>, < s5, r4>, < s6, r6>, < s7, r7>, < s8, r7>}

In order to introduce semantics into the model, we assign a semantic label to each
sensor. As a result, the set Sensor can be represented as follows. | , ,

The of a sensor provides descriptions on thematic attributes of the location
identified by . For instance, we can use labels like “elevator” and “stair” to
indicate the functions of the cell identified by a sensor. We can also use other labels
like “Starbucks” and “Burge King” to annotate semantic features of the cell. The loca-
tion of a sensor is a self-defined three-dimensional coordinate (x, y, z), which reflects
the relative position of the sensor inside the indoor space where the sensor is dep-
loyed. In real applications, indoor maps are usually designed by AutoCAD [21]. Thus,
if we import an indoor map into a database system, we can simply use the coordinates
and floors in the map to represent the locations of sensors.

2.2 Indoor Hotspot Query

In outdoor space, a trajectory is a series of GPS locations, while a trajectory in indoor
spaces is a series of sensor signals. Thus, we first define the indoor location of a
moving object as follows:

Definition 2 (Indoor Location). An indoor location LOC of a moving object mo is
defined as LOCmo: | , , ,

where s refers to a sensor, mo is the identifier of a moving object, te is the instant
that the object enters the sensor’s range, and ts is the instant that the object leaves the
sensor range.

Then, we define the indoor trajectory for a moving object.

 Detecting Hotspots From Trajectory Data in Indoor Spaces 213

Definition 3 (Indoor Trajectory). An indoor trajectory of a moving object
mo is defined as a sequence of indoor locations of mo: , , , … , , | . .

Then, we define indoor trajectory similarity search in Definition 4.

Definition 4 (Indoor Hotspot Query). Given a set of indoor trajectories T and an
integer k, an indoor hotspot query retrieves a list H ⊆ Sensor that consists of the top-k
hottest indoor locations, such that: , , … , |

 , , 1
Here, the function hotness(,) returns the measure on the hotness of the indoor

location according to the indoor trajectory set T.

3 Indoor Hotspot Query Evaluation

In this section, we explain the details of evaluating indoor hotspot queries. We first
present the general idea of the proposed algorithm in Section 3.1. Then, we discuss
the pre-processing of indoor trajectories in Section 3.2. Finally, we give the algorithm
for indoor hotspot query processing in Section 3.3.

3.1 General Idea

Generally, indoor hotspots refer to those locations that users are mostly interested,
e.g., the hottest shops in a shopping mall. Indoor hotspots are very helpful to many
indoor location-based services, such as spatial deployment optimization for indoor
spaces, sales promotion, personalized route recommendation, etc. However, the
problem is how to measure the hotness of indoor locations. It is not effective to
simply count the number of moving objects visiting a location, or to aggregate the
stay time of moving objects in a location. As a consequence, due to the complex
structure of indoor spaces and the mutual reinforcement relationship between moving
objects and indoor locations, we have to devise a new approach to evaluate indoor
hotspot queries.

Our general idea is to consider users’ interests in indoor locations and the mutual
reinforcement relationship between users and indoor locations. First, the activeness of
users is classified. This is simply because active users are more familiar with indoor
locations than others, and thus we should consider more on their votes in indoor
hotspots. This is very similar to the situation in travel recommendation, in which we
always want to know the opinions from those who have many experiences in traveling
to our interested places before. Thus, if more active users are focused on an indoor
location, this location is more likely an indoor hotspot. On the other side, if one user
visits more indoor hotspots, he or she is more active. As a result, there is a mutual
reinforcement relationship between users and indoor locations.

214 P. Jin et al.

Besides, indoor spaces as three-dimensional spaces have some special features.
One feature is that users have to pass by low floors as well as some special locations
(elevator room, stair room, hallway, etc.) in order to reach high floors. Thus, locations
in low floors or common areas will be more frequently visited by users. However, this
is simply because of the special structure of indoor spaces and we cannot regard those
locations as indoor hotspots, even they are frequently visited. Rather, we have to
consider the floor influence and remove meaningless locations in indoor hotspot
detection. In this paper, we propose to use stay time to pre-process indoor trajectory
data to detect indoor stay locations as well as indoor stay trajectories before
identifying indoor hotspots.

In summary, the general idea of our proposal in indoor hotspot query processing
can be summarized as follows:

(1) We consider users’ interests in indoor locations and the mutual reinforcement
relationship between users and indoor locations when identifying indoor hotspots. In
particular, we introduce a user-location matrix to compute users’ interests in indoor
locations and conduct iteration-based computation on the matrix to reflect the mutual
reinforcement relationship between users and indoor locations.

(2) We consider stay time to pre-process original indoor moving trajectories, so
that we can remove meaningless locations when identifying indoor hotspots.

Figure 2 shows the basic procedure to detect indoor hotspots from indoor trajectory
data. First, we conduct a pre-processing step to detect indoor stay locations and
further indoor stay trajectories. Next, we build a user-location matrix to represent
users’ interests in indoor locations. In order to reflect the mutual reinforcement
relationship between users and indoor locations, we iterate the user-location matrix to
aggregate the users’ contributions to the hotness of indoor locations. Finally, we rank
and output top-k indoor locations according to the aggregated hotness.

Fig. 2. The basic procedure to detect indoor hotspots

In the following, we first discuss the pre-processing technique for removing
meaningless locations in Section 3.2, and then present the indoor hotspot query
processing algorithm based on users’ interests in locations and mutual reinforcement
relationship in Section 3.3.

 Detecting Hotspots From Trajectory Data in Indoor Spaces 215

3.2 Pre-processing Trajectories: Detecting Indoor Stay Trajectories

In the pre-processing step, we use stay time to detect indoor stay trajectories of indoor
moving objects. An indoor stay trajectory is a sequence of indoor stay locations with
stay time, which is defined as follows.

Definition 5 (Indoor Stay Location). An indoor stay location of an indoor
moving object mo is defined as SLmo: . | . . ,

where is a pre-defined time threshold.

Definition 6 (Indoor Stay Trajectory). An indoor stay trajectory of an indoor
moving object mo is defined as a trajectory that only travels the indoor stay locations
of mo: , , … , |

Algorithm 1: StayTrajectory

Input: : the original trajectory set; : the set of moving objects; φ.

Output: : the set of stay trajectories, : the set of stay locations.

Preliminary: , , … , , , , … ,

1: , ;
2: for each do

3: for each do

4: if . then

5: , φ ; //save the stay locations in tr as a list

6: ;

//merge the stay locations into the current stay trajectory of the moving object

7: , ;

8: end if

9: end for

10: ;

11: ;

12: end for

13: return , ;

End StayTrajectory

Fig. 3. Pre-processing trajectories into stay trajectories

An indoor stay trajectory of a moving object in indoor spaces remains the indoor
stay locations that the object stays for a given time duration. The purpose of
extracting indoor stay trajectories is to remove the meaningless locations and further

216 P. Jin et al.

improve the performance of indoor hotspot detection. In real scenarios, locations like
gates and stair rooms are not appropriate to be recognized as hotspots even though
they are frequently visited. Hence, we introduce stay time as a basic criteria to filter
those meaningless locations.

Figure 3 shows the detailed procedure of pre-processing trajectories. After the pre-
processing, we get a set of indoor stay trajectories and a set of indoor stay locations.
The latter then become the candidates of indoor hotspots.

The sub-routine , φ in Algorithm 1 returns the locations that the
object stays over the time threshold φ in the trajectory tr, as well as the stay time.
Then, we extract the locations in the list temp as the indoor stay locations for the
object obj (Line 6). The function , is used to merge the indoor stay
locations and stay time in temp with the existing elements in .

3.3 The Algorithm for Indoor Hotspot Query Processing

Based on the indoor stay trajectories of each moving object detected by Algorithm 1,
we are able to present the algorithm for indoor hotspot query processing.

As we discussed in Section 3.1, our algorithm is based on users’ interests and the
mutual reinforcement relationship between users and indoor locations. After the pre-
processing step, we get a set of indoor stay locations. For the purpose of simplicity, in
the following discussions, we only use the term “indoor location” to denote “indoor
stay location”. Also we do not distinguish the term of “user” and “indoor moving
object”. They have the same meaning in the context. Then, we first define the users’
interests in indoor locations as follows.

Definition 7 (Users’ Interests in Indoor Locations). Given a set of users , , … , and a set of indoor locations , , … , , the
interests of in an indoor location are defined as follows: · ∑| | 1 ∑ · ,

where represents the average time duration of an indoor moving object

 staying on the indoor location , ∑| | is the total stay time of
on all the indoor locations that it visits. refers to the floor that is
located, and we suppose that FL is 1 for the first floor, 2 for the second floor, etc. n is
the number of floors, and the count of indoor locations in the floor numbered
is denoted as . is a parameter for balancing the weights of stay time and

floor influence on the computation.
Then, we construct a user-location matrix to maintain users’ interests in indoor

locations, as shown in Fig. 4.
The user-location matrix initially presents each user’s interests in indoor locations.

As we explained in Section 3.1, in this paper we consider the mutual reinforcement
relationship between users and indoor locations. Basically, if a user shows more
interests in more hot locations, the user should be more active. On the other side, if a
location is visited by more active users, it should be hotter than others. According to this
idea, we define the activeness of a user and the hotness of an indoor location as follows.

 Detecting Hotspots From Trajectory Data in Indoor Spaces 217

Fig. 4. The user-location matrix maintaining users’ interests in indoor stay locations

Definition 8 (User Activeness). The activeness of a user in indoor spaces is defined
as the sum of the hotness of all the indoor locations visited by the user.

Definition 9 (Location Hotness). The hotness of an indoor location is defined as the
sum of the activeness of all the users who visited the location.

Figure 5 shows the illustration of the mutual reinforcement relationship between
users and indoor locations.

Users

Indoor
Locations

ID
4
5

Fig. 5. The mutual reinforcement relationship between users and indoor locations

Suppose that we have a set of users , , … , , a set of indoor
locations , , … , , and the user-location matrix M, the activeness of a
user and the hotness of an indoor location according to a given set of indoor stay
trajectories () can be computed by the following equations.

 , ∑ · , (3.1)

 , ∑ · , (3.2)

218 P. Jin et al.

Then, given an initial state of the activeness of each user as well as the hotness of
each indoor location, we can iterately compute the final activeness and hotness. Let H
represents the vector of hotness and A is the vector of activenss, we can transform
Equation 3.1 and 3.2 into the matrix form.

 · (3.3)

 · (3.4)

Algorithm 2: Hotspots

Input: , , , , indoor stay trajectories

Output: , , … , , vector of hotness of all indoor locations. , , … , , vector of activeness of all indoor moving objects.

Preliminary: is the pre-defined weights of stay time in computing users’ interests

in locations. ε is the pre-defined parameter to control the ending of iterations on the

user-location matrix

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

for i = 0 to n do 1/ ; //initializing H

for i = 0 to m do 1/ ; //initializing A , ; //constructing the initial user-location matrix ; // normalizing M into [0,1] 1;
repeat
 1;
 · · ;

 · · ;

 ; // normalizing
 ; // normalizing

until | | or | |

return ,

End Hotspots

Fig. 6. The algorithm of detecting indoor hotspots

Next, we can get the vector of hotness after kth iteration, i.e., Hk, as well as the
vector of activeness by the following equations.

 · · (3.5)

 · · (3.6)

Based on the above explanation, now we can present the final algorithm of
computing indoor hotspots, which is shown in Fig. 6. The algorithm Hotspots returns
a vector recording the hotness of each indoor location, based on which we can answer
indoor hotspot queries defined in Definition 4 in Section 2.2.

 Detecting Hotspots From Trajectory Data in Indoor Spaces 219

4 Performance Evaluation

4.1 Experimental Settings

Data Set. We simulate the building of the department of computer science in our
university, and generate indoor tracking data using an indoor data generator called
IndoorSTG [16]. IndoorSTG can simulate different indoor spaces consisting of various
elements including rooms, doors, corridors, stairs, elevators, and virtual positioning
devices such as RFID or Bluetooth readers. The simulated building has six floors, and
there are totally 94 RFID readers deployed to represent different types of indoor
elements. We simulate 100 moving objects in such an indoor space during a time
period of 30 days, and finally generate 223,564 moving tracking records. These
records are then used as the experimental data. Table 1 shows an example of indoor
moving tracking data generated by IndoorSTG.

Table 1. An example of indoor moving tracking data

Reader_ID Object_ID Enter_Time Leave_Time

1 1 2014-03-06 07:38:00 2014-03-06 07:48:24

5 1 2014-03-06 07:59:24 2014-03-06 08:09:36

12 1 2014-03-06-08:11:32 2014-03-06-08:18:35

Metrics. We mainly focus on the measurement of the effectiveness of indoor
hotspot detection. Note that the time performance is not a crucial metric for indoor
hotspot detection, because indoor hotspot detection is not an online job and can be
executed as a background program in the server storing trajectories. For instance, it is
possible for a shopping mall to run the program every weekend to find the hotspots
during the past week. Therefore, in our experiments we will not present the results on
time performance. In order to measure the effectiveness of indoor hotspot detection,
we first ask 10 students at the department of computer science in our university, who
are very familiar with the building of computer science, to manually annotate the
hotness of each location, using the following scores shown in Table 2. The locations
with an average score over 1.5 are annotated as hot locations.

Table 2. Users’ interests in an indoor location

Ratings Description

2 Very interested

1 Interested

0 Neutral

−1 Uninterested

−2 Unknown

220 P. Jin et al.

Then, we use three different metrics to measure the effectiveness of indoor hotspot
detection, namely MAP (Mean Average Precision), P@n (Precision for the top-n
results), and nDCG (normalized Discounted Cumulative Gain) [17]. MAP stands for
the average precision of each hot location. Suppose that a location with hotness over
1.5 is recognized as a hotspot, and the average hotness of the top-10 locations is <2.0,
0.5, 1.8, 0, 0.8, 1.9, 0.7, 1.2, 0.2, 0.3>, then we can compute MAP as follows: MAP 1 2 3⁄ 3 6⁄3 0.722

nDCG is used to measure the relative-to-ideal performance of information
retrieval. The computation of DCG is defined as follows, where G[i] is the hotness of
the i-th location in the results:

 1 11 3 1 3 (4.1)

For example, given the hotness of the top-10 results <2.0, 0.5, 1.8, 0, 0.8, 1.9, 0.7,
1.2, 0.2, 0.3>, we can first compute the corresponding DCG for the results based on
Equation 4.1. Next, we compute the ideal DCG (IDCG) of the ideal list for the results,
which is <2.0, 1.9, 1.8, 1.2, 0.8, 0.7, 0.5, 0.3, 0.2, 0>. Then, the nDCG score at the i-th
position can be computed as / .
Configuration. All the involved algorithms are implemented in Java on Windows 7,
and run on a PC with an Intel(R) Core(TM) i3-3220 CPU @3.30GHz and 4GB DDR2
memories. The time threshold φ for detecting stay trajectories is set to 10 minutes by
default. The influence of φ on the performance will be measured in the following
experiments.

Baseline Algortihms. We implement three existing algorithms as the baseline
methods, including rank-by-visit, rank-by-density [8], and rank-by-duration [9, 10].
Regarding the rank-by-visit algorithm, the hotness of a location is based on the count
of visits to the location. For the rank-by-density algorithm, the hotness of a location is
based on the count of distinct users visiting the location. The rank-by-duration
method uses the aggregated visiting time duration of a location to rank the hotness of
the location.

4.2 Results

We first measure the impact of the weight-parameter on the performance of our
algorithm. This parameter is used to balance the influence of stay time and floor level
on computing users’ interests on locations. Basically, a larger implies that stay
time is more important in users’ interests on locations. As Fig. 7 shows, when the
value of exceeds 0.7, the performance decreases with the increasing of the
parameter. We can infer from this result that it is helpful to introduce the influence of
floor level into indoor hotspot detection. Especially when 1, our proposal gets

 Detecting Hotspots From Trajectory Data in Indoor Spaces 221

the worst performance. Here, our algorithm actually becomes the rank-by-duration
method that does not consider floor influence. As a result, we find that our algorithm
has the best overall performance at 0.7. Thus, we use this setting in the next
experiment.

Table 3 shows the effectiveness of our method as well as the three baseline
methods, w.r.t. five metrics. We can see that our method outperforms all the baseline
methods. Especially when considering nDCG, our method get pretty good
performance. This is owing to that our method has taken into account the mutual
reinforcement relationship between users and indoor locations. Suppose that three
users have visited one location for 100 times, our method does not simply count the
visits or distinct users (density). In contrast, we consider the activeness of users as
well as their interests in each location. For example, if two of the three users are
active ones, they will contribute more to the hotness of the location, and if all the
three users are inactive users, the hotness of the location will lower than that in the
previous case. Our experimental results demonstrate that it is effective to integrate
users’ activeness, users’ interests in indoor locations, and the mutual reinforcement
relationships between users and indoor locations, into the indoor hotspot query
evaluation.

Fig. 7. Impact of the parameter

Table 3. Effectiveness of all the methods

Method
Metric

rank-by-visit rank-by-density rank-by-duration Our Method

MAP 0.43 0.51 0.57 0.84

P@10 0.35 0.47 0.65 0.85

P@20 0.25 0.44 0.6 0.75

nDCG@10 0.675 0.712 0.773 0.985

nDCG@20 0.681 0.728 0.782 0.973

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Sc
or

e

Paramter

MAP
P@20
P@10

222 P. Jin et al.

Figure 8 shows the influence of the time threshold φ on the performance of our
algorithm. The results indicate that the time threshold is influential to the final
performance. This is mainly due to the feature of indoor moving trajectories. As the
trajectories used in the experiment are generated by IndoorSTG [16], which can
configure the stay time of users in indoor locations during the data generation. In our
experiment, most stay time is configured around 10 minutes, simulating a user’s
typical stay time when visiting an interested location, e.g., a shop inside a shopping
mall. Thus, we can see that when a large time threshold is used in the experiment, i.e.,
a value over 15 minutes, the precision of indoor hotspot detection becomes relatively
low, as many indoor locations are likely to be removed in the pre-processing step.
However, in practical applications, e.g., a location-based service system in a shopping
mall, we can first conduct a survey or historical data analysis to find out the typical
stay time of a user staying in an indoor location, and then use it as the time threshold
in the algorithm. Fig. 8 also shows that the pre-processing step is helpful to improve
the performance of indoor hotspot detection, owing to its eliminating many
frequently-visited but meaningless locations such as gates and stair rooms.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Sc
or

e

φ (minutes)

MAP P@10
P@20 nDCG@10
nDCG@20

Fig. 8. Influence of the time threshold φ in our algorithm

5 Related Work

Hotspots detection has been a research focus in recent years. However, previous
studies mainly focus on outdoor space, e.g., Euclidian space and road-network space.
To the best of our knowledge, there are very few researches towards indoor hotspot
query.

In 2007, Giannotti et al. first introduced the concept of hot regions among moving
trajectories [6]. Alvares et al. proposed the concepts of Stops and Moves, and further
presented a new approach to moving trajectory analysis called SMOT [7]. However,
Stops were restricted to pre-defined locations such as hotels, sightseeing places, and
road connection points, thus other hot regions cannot be found by SMOT. As an

 Detecting Hotspots From Trajectory Data in Indoor Spaces 223

improvement to SMOT, CB-SMOT was proposed which can find hot regions that are
not pre-defined [9].

There were some other works focusing on detecting moving patterns from
trajectories [5, 17, 18]. The main idea of those works was identifying hot regions to
find the similarity among users’ traveling interests, in which the count of visits to
different locations was considered. However, they did not take into account the time
duration of each stop in the trajectories. Zheng et al. considered the correlations
between users and locations and proposed a tree-based hierarchical graph for
modeling locations as well as the computation of location hotness [18]. Further, in
[19], Cao et al. proposed a two-layer graph to compute location hotness, which
considered many aspects of users’ visits, including the count of visits, the distance
between locations, the semantic descriptions of locations, and the stop time of users in
locations. Uddin et al. proposed a density-based approach to detecting hot regions on
moving object trajectories [10]. The density of a location was measured by the
number of distinct objects visiting the location. However, these previous works are all
towards outdoor space. As indoor spaces introduce many special features, e.g., low-
floor locations usually have more visits than high-floor locations, thus we have to
devise new approaches for indoor hotspot detection.

So far, the only work close to indoor hotspot detection is conducted by Ahmed
et al. [8, 20]. This work aims to detect hotspots from the bags’ movement on the
conveyers in an airport. They suggested using a density-based algorithm to detect
hotspots. However, the conveyor-based indoor space only considers conveyors, which
is much different from typical indoor environments such as office buildings, airports,
etc. In addition, the proposed density-based approach in [8, 20] only considered the
number of objects visiting a location, neglecting other special features of indoor
spaces such as location type as well as the relations between users and locations. In
this paper we finally compare our proposal with this work and the results have shown
that our proposal outperforms it w.r.t. various metrics.

6 Conclusions

In this paper, we studied a new kind of query on indoor moving objects trajectories,
which is called indoor hotspot query. We devised a new approach to evaluating such
queries, based on users’ interests in indoor locations and the mutual reinforcement
relationship between users and indoor locations. We also introduced a pre-processing
step to remove those frequently-visited but meaningless locations from the original
trajectories. To the best of our knowledge, this work is the first one aiming at
detecting hotspots in common indoor spaces consisting rooms, doors, hallways. Our
experiments on a data set including 223,564 indoor moving trajectories showed that
our proposal outperformed several baseline algorithms w.r.t. various metrics.

Our future work will be focused on testing our algorithm on real scenarios. We are
currently collaborating with a shopping mall and planning to deploy Wi-fi
infrastructure to collect real data from customers. Another future work is to develop
effective and efficient personalized recommendation solutions for indoor spaces.

224 P. Jin et al.

Acknowledgements. This work is supported by the National Science Foundation of China
(61379037, 61472376, & 61272317) and the OATF project funded by University of Science
and Technology of China.

References

1. Jensen, C.S., Lu, H., Yang, B.: Indoor - A New Data Management Frontier. IEEE Data
Engineering Bulletin 33(2), 12–17 (2010)

2. Li, Q., Jin, P., Zhao, L., Wan, S., Yue, L.: IndoorDB: extending oracle to support indoor
moving objects management. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song,
W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 476–480. Springer, Heidelberg
(2013)

3. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery of dense
areas in spatio-temporal databases. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J.,
Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 306–324. Springer, Heidelberg
(2003)

4. Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density queries on continuously
moving objects. In: Proc. of ICDE, p. 71 (2006)

5. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in
road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS,
vol. 4605, pp. 441–459. Springer, Heidelberg (2007)

6. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proc. of
KDD, pp. 330–339 (2007)

7. Alvares, L.O., Bogorny, V., Kuijpers, B., et al.: A model for enriching trajectories with
semantic geographical information. In: Proc. of GIS, p. 22 (2007)

8. Ahmed, T., Pedersen, T.B., Lu, H.: Capturing hotspots for constrained indoor movement.
In: Proc. of GIS, pp. 462–465 (2013)

9. Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for
discovering interesting places in trajectories. In: Proc. of SAC, pp. 863–868 (2008)

10. Uddin, M.R., Ravishankar, C.V., Tsotras, V.J.: Finding regions of interest from trajectory
data. In: Proc. of MDM, pp. 39–48 (2011)

11. Dudas, P., Ghafourian, M., Karimi, H.: ONALIN: Ontology and algorithm for indoor
routing. In: Proc. of MDM, pp. 720–725 (2009)

12. Kim, J., Kang, H., Lee, T., et al.: Topology of the prism model for 3D indoor spatial ob-
jects. In: Proc. of MDM, pp. 698–703 (2009)

13. Wang, N., Jin, P., Xiong, Y., Yue, L.: A multi-granularity grid-based graph model for in-
door space. International Journal of Multimedia and Ubiquitous Engineering 9(4),
157–170 (2014)

14. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. mobile data manage-
ment. In: Proc. of MDM, pp. 17–24 (2008)

15. Jin, P., Zhang, L., Zhao, J., Zhao, L., Yue, L.: Semantics and modeling of indoor moving
objects. International Journal of Multimedia and Ubiquitous Engineering 7(2), 153–158
(2012)

16. Huang, C., Jin, P., Wang, H., Wang, N., Wan, S., Yue, L.: IndoorSTG: a flexible tool to
generate trajectory data for indoor moving objects. In: Proc. of MDM, pp. 341–343 (2013)

17. Manning, C.D., Raghavanm, P., Schütze, H.: An Introduction to Information Retrieval.
Cambridge University Press (2008)

 Detecting Hotspots From Trajectory Data in Indoor Spaces 225

18. Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel
sequences from GPS trajectories. In: Proc. of WWW, pp. 791–800 (2009)

19. Cao, X., Cong, G., Jensen, C.S.: Mining significant semantic locations from GPS data.
PVLDB 3(1), 1009–1020 (2010)

20. Ahmed, T., Pedersen, T.B., Lu, H.: Finding dense locations in indoor tracking data. In:
Proc. of MDM, pp. 189–194 (2014)

21. Schafer, M., Knapp, C., Chakraborty, S.: Automatic generation of topological indoor maps
for real-time map-based localization and tracking. In: Proc. of IPIN, pp. 1–8. IEEE CS
(2011)

On Efficient Passenger Assignment for Group
Transportation

Jiajie Xu1,5(B), Guanfeng Liu1,5, Kai Zheng2, Chengfei Liu3,
Haoming Guo4, and Zhiming Ding4

1 Department of Computer Science and Technology,
Soochow University, Suzhou, China

{xujj,gfliu}@suda.edu.cn
2 School of Information Technology and Electrical Engineering,

The University of Queensland, Brisbane, Australia
kevinz@itee.uq.edu.au

3 School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, Australia

cliu@swin.edu.au
4 Institute of Software, Chinese Academy of Sciences, Beijing, China

{haoming,zhiming}@iscas.ac.cn
5 Collaborative Innovation Center of Novel Software Technology and

Industrialization, Nanjing, China

Abstract. With the increasing popularity of LBS services, spatial assign-
ment has become an important problem nowadays. Nevertheless most
existing works use Euclidean distance as the measurement of spatial
proximity. In this paper, we investigate a variant of spatial assignment
problem with road networks as the underlying space. Given a set of pas-
sengers and a set of vehicles, where each vehicle waits for the arrival of all
passengers assigned to it, and then carries them to the same destination,
our goal is to find an assignment from passengers to vehicles such that
all passengers can arrive at earliest together. Such a passenger assign-
ment problem has various applications in real life. However, finding the
optimal assignment efficiently is challenging due to high computational
cost in the fastest path search and combinatorial nature of capacity con-
strained assignment. In this paper, we first propose two exact solutions
to find the optimal results, and then an approximate solution to achieve
higher efficiency by trading off a little accuracy. Finally, performances of
all proposed algorithms are evaluated on a real dataset.

1 Introduction

Consider a set of passengers P and a set of vehicles V , all distributed on road
networks. Each vehicle waits for a group of passengers (assigned to it) and car-
ries them to a common destination d. Our objective is to find the passenger
assignment A ⊆ P × V that can enable all passengers as a whole to arrive des-
tination d at the earliest possible time, and vehicles are not allowed to carry
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 226–243, 2015.
DOI: 10.1007/978-3-319-18120-2 14

On Efficient Passenger Assignment for Group Transportation 227

more passengers than their capacity limits. Such a problem is called passenger
assignment for group transportation, which can find various applications in real
life.

An illustrative example is shown in Figure 1 to describe the passenger assign-
ment problem. Assume that a set of passengers (i.e. p1 − p6), a set of vehicles
(i.e. v1, v2) and the final destination d are distributed on road network as Figure
1(a), and each vehicle can carry no more than three people. All passengers are
required to go to d (by taking vehicles) as soon as possible for some purposes. To
save time, it adopts an assemble-based-group-transportation fashion, i.e., pas-
sengers go to assemble on vehicle (by private car or taxi) like Figure 1(b), and
then vehicles carry them to the final destination. The key issue is how to find
the optimal assignment from passengers to vehicles efficiently such as Figure
1(b), such that all passengers can arrive the destination and start the activities
together as early as possible. Likewise, the passenger assignment problem can be
widely used in applications like logistic control, resource supply and other group
transportation recommendation systems, etc.

P1

P2

P3
P4

P5 P6

V1

V2

d
 To

From

V1 V2 d

P1 5 35 -

P2 8 26 -

P3 17 16 -

P4 15 12 -

P5 21 8 -

P6 40 10 -

V1 - - 22

V2 - - 38

Medical Staff Vehicle Destination Travel Cost Matrix (minutes)

V1

V2

P1
P2
P4

P3
P5
P6

a Distribution b Assignment

Fig. 1. An example of passenger assignment

Motivated by the above example, this paper studies the group transportation
oriented passenger assignment problem, which tends to have high computational
overhead for two main reasons: first, the large number of combinations of assign-
ment from P to V makes the search space to be extremely large, particularly
when the size of passenger or vehicle sets goes up; secondly, numerous fastest
path queries (FPQ) need to be processed for deriving the travel cost from pas-
sengers to vehicles (i.e. information in travel cost matrix in Figure 1).

Capacity constrained assignment is a classical research problem that has
been well studied in literature [4–6]. Recently lots of efforts have been made to
address the capacity constrained spatial assignment (CCSA) problems [17,19],
by using Euclidean distance as the measurement of spatial proximity between
two objects. However, existing CCSA solutions cannot be simply applied to our
problem for two reasons: (1) The goal of optimization is different. Most CCSA

228 J. Xu et al.

algorithms are mainly designed to minimize the sum of Euclidean distance of all
assigned object pairs, while the passenger assignment problem seeks to minimize
the travel cost for those most time-consuming passengers, which provides us
opportunities to further speed up the assignment processing; (2) The spatial
proximity measurement is different. The network-based spatial proximity used in
the passenger assignment problem causes a large number of fastest path searches,
which is generally regarded as much more computationally expensive than the
evaluation of Euclidean distance.

In this paper, we present a novel strategy to find the optimal assignment
based on maximum bipartite matching. It utilizes a set of pruning mechanisms
sensitive to the most-time-consuming-passenger, so that the search can be con-
strained in small bipartite sub-graphs and in less number of loops. However,
though the bounds used in the strategy ensure it has a fairly good performance
on assignment step, the overall efficiency is still not satisfactory because of the
vast processing cost of the scalable FPQs. Therefore, an approximate solution
is further proposed to trade off a little accuracy for higher efficiency. The main
contribution of this paper can be summarized as follows:

– We define a problem called passenger assignment for group transporta-
tion, which could potentially benefit many applications such as emergency
response, supply chain management and traffic planning.

– We propose a novel assignment strategy based on maximum bipartite match-
ing, by which the optimal passenger assignment can be efficiently found.

– We propose an approximate FPQ querying based assignment strategy, which
utilizes bounded travel cost computation to reduce search space. It signifi-
cantly improve the efficiency with a little sacrifice on accuracy.

– We implement the proposed algorithms and conduct experiments on real
dataset to evaluate the performances of our proposed solutions.

The rest of the paper is organized as follows. Section 2 presents the related
work and Section 3 formally defines the passenger assignment problem. After-
wards, we introduce two exact passenger assignment algorithms in Section 4,
and an approximate solution called TN-FPS in Section 5. After discussions on
experimental results in Section 6, the paper is concluded in Section 7.

2 Related Works

Assignment is a classical problem that has been studied intensively, with many
classical matching problems of bipartite graph, such as the maximum perfect
matching (MPM) and minimum weight perfect matching (MWPM) problem.
So far, there exist a lot of literatures towards bipartite graph matching in the
operational research area. A well-known solution is the classical Hungarian algo-
rithm and its variations [1,10,13], both having O(mn + n2logn) time complex-
ity. Later, increasing attention are paid to assignment with capacity constraints,
with many algorithms proposed to address the capacity constrained assignment
(CCA) problem, such as successive shortest path algorithm [3][17].

On Efficient Passenger Assignment for Group Transportation 229

More recently, with the fast development of mobile computing, the problem of
assignment and matching on spatial objects becomes popular [14,18,20]. Specifi-
cally, [18,20] studied the spatial matching problem, which is reduced to the stable
marriage problem for spatial objects, and [17,19] studied the CCA problems for
objects in Euclidean space. However many CCA applications are road network
constrained, and they cannot be well supported by [17,19] because of their cri-
terions and Euclidean distance measure adopted, like the passenger assignment
problem of this paper. Therefore, new solutions are needed to support efficient
assignment processing for applications in road networks like resource dispatch,
evacuation in disaster, intelligent services and supply chain management.

In addition, another key technique our passenger assignment problem relies
on is spatial and distance query processing. The basic type of distance query
is the shortest path query (SPQ). Typical solutions for SPQ include Dijkstra
and A* algorithm, which traverses the road network nodes in ascending order of
their distances from the query position, and runs in O(nlogn+m) time by using
Fibonacci heap. [9] discussed SPQ problem on complex terrain space. Recently,
many literatures tried to exploit the hierarchical structure of road map in a
pre-processing step, and then properly use it to accelerate SPQ processing, such
indexes mainly include the highway hierarchies (HH) [15], contraction hierarchies
(CH) [7], and transit-node routing (TNR) [8] algorithms. More recently, the
work [16] proposed to pre-compute certain shortest path distances called path
oracles to answer approximate SPQ in O(log|V |) time and O(|V |

ε2) space with an
error bound of ε.

Passenger Assignment requires scalable FPQ to find the time cost between
objects in P and V . Compared to SPQ, the FPQ is much more challenging
because real-time traffic condition needs to be considered, resulting road network
with dynamic travel cost on the edges. All the above algorithms rely on heavy
pre-processing, and are thus not suitable for dynamic scenarios where the road
network topology or edge weights may change frequently. As a result, we have to
use some approximate FPQ algorithms, so as to improve the efficiency of query
processing. Moreover it is necessary to design robust matching algorithms that
can find good solution based on approximate FPQ results.

3 Problem Definition

3.1 Spatial Networks

A spatial network is modeled by a connected and undirected graph G = (N,E),
where N is a set of vertices and E is a set of edges. A vertex ni ∈ N indicates
a road intersection or an end of a road. An edge e ∈ E is defined as a pair
of vertices and represents a segment connecting the two adjacent vertices. For
example, edge e = {ni, nj} represents a road segment that enables travel between
vertices ni and nj . We use time(e) to denote the time required to pass a road
segment e based on real-time traffic condition. Given two locations a and b in
spatial network, its fastest path FPa,b is a sequence of edges linking a and b with

230 J. Xu et al.

the minimal total travel cost. We use TCa,b =
∑

e∈FPa,b
time(e) to represent the

travel cost between a and b. Note that the travel cost between any two vertexes
may update with the road condition changes.

All passengers in P and vehicles in V are embedded in networks and they
may be located on edges. If the network distances to the two end vertices of an
edge are known, it is straightforward to derive network distance to any point in
this edge. Thus, we assume that all data points are on vertices for simplification
purpose.

3.2 Passenger Assignment for Group Transportation

Let P be a set of passengers and V a set of vehicles, all distributed on a spatial
network G. Each p ∈ P denotes a passenger with his or her geographical location
p.l, and each v ∈ V denotes a vehicle that can carry up to v.c passengers. Each
passenger in P moves to an assigned vehicle in V first. Each vehicle starts when
its passengers arrive and transport them to a common destination d.

For example in disaster management scenario, medical staff members go to a
special vehicle first, and special vehicles then carry them to rescue mission place
(where might be dangerous) after all staff members assigned to this vehicle have
assembled. To plan the routes for all medical staffs, we need to assign them to
special vehicles, and the result is called an assignment. We first define the notion
of a valid assignment to judge if an assignment is a qualified result.

Definition 1. (Valid Assignment) An assignment A ⊆ P × V is said to be a
valid assignment if it satisfies:

(1) capacity constraint, i.e. each vehicle v ∈ V appears at most v.c times in
assignment A due to its capacity constraint;

(2) assignment A must be full to P , i.e. each passenger p ∈ P must appear
and only appear once in A, i.e. |A| = |P |, and p �= p′ for any two pairs (p, v) ∈ A
and (p′, v′) ∈ A.

For each pair (p, v) ∈ A in assignment A, passenger p moves from p.l toward the
location of the assigned vehicle v.l first. Later, each vehicle v carries {p′|(p′, v) ∈
A} to destination d. Obviously, the arrival time of all passengers in P is deter-
mined by the one having maximum total travel cost, so we need to define two
important notions ’pair cost’ and ’critical pair’.

Definition 2. (Pair Cost) For each pair (p, v) where p ∈ P and v ∈ V , the cost
of this pair PCp,v is measured as the total travel cost from p.l to destination d
via v.l on spatial network G such that

PCp,v = TC(p.l, v.l) + TC(v.l, d)

The pair cost of (p2, v1) in Figure 1 is thus computed as PCp2,v1 = 8 +
22 = 30.

Definition 3. (Critical Pair of an Assignment) The critical pair CP (A) of an
assignment A is the pair (p, v) ∈ A that has the maximum pair cost PCp,v, and
we call the passenger p as critical passenger.

On Efficient Passenger Assignment for Group Transportation 231

To ensure that all passengers in P can arrive destination in earliest, e.g. for the
rescue missions or goods supply in emergency management scenarios, we further
define the cost of a valid assignment based on its critical pair. For example in
Figure 1, if assignment is made as Figure 1(b), then the pair (p3, v2) is the
critical pair because of its greatest pair cost PCp3,v2 = 54.

Definition 4. (Cost of an Assignment) The cost ψ(A) = max ({PCp,v | (p, v) ∈
A }) of a valid assignment A is quantified to be the pair cost of its critical pair,
meaning the maximal travel cost of all passengers in P on the spatial network.

Problem Formalization. Given a spatial network G, a passenger set P and a
vehicle set V as input. Among all valid assignments from set P to set V , we aim
to find the one A with the minimal assignment cost ψ(A), which is determined
by the pair cost (i.e. total travel cost) of A’s critical pair based on G.

4 Exact Algorithms

This section presents two exact methods called IPA and MBMA for computing
the optimal passenger assignment.

4.1 Integer Programming Based Assignment (IPA)

Integer programming is known to be a widely used processing model for opti-
mization problems. In this section, we introduce an effective integer programming
based assignment solution.

As passenger assignment here is a road network constrained problem, we
process the FPQs (between passengers/vehicles and vehicles/destination) first to
derive all necessary travel cost information by the Dijkstra algorithm. After that,
we find the valid assignment A with minimum value of ψ(A) in the assignment
step based on the pair cost information derived from the previous step. Valid
assignment means to satisfy the capacity constraint of vehicles, and ensures each
passenger to appear in A once and only once. Based on above constraints and
goals, we notice that the passenger assignment problem can be expressed as the
following integer program, where x = (p, v) represents the 0-1 integer vector of
the assignment between p ∈ P and v ∈ V :

minimize τ(A) = max ({PCp,v × x(p, v) | (p, v) ∈ A })

subject to x(p, v) = 0 or 1 ∀p ∈ P, v ∈ V

∑
p∈P x(p, v) ≤ v.c ∀v ∈ V

∑
v∈V x(p, v) ≤ 1 ∀p ∈ P

In general, the purpose of above 0-1 program is to find the passenger assign-
ment A such that: (1) to maximize value of τ(x) for the returned assignment; (2)

232 J. Xu et al.

all of the subject conditions can be satisfied. Particularly, only part those pairs
(p, v) having that x(p, v) = 1 are included in assignment A, meaning that the
assignment from p to v is made. It is obvious that the final result A derived by
above program is an assignment being valid and optimal. But the IPA algorithm
is inefficient in most cases because of the ’max’ operator used in optimization
goal (i.e. to get the maximum pair cost), which leads to no bound to be eas-
ily found and used to stop the iterations. In contrast, the pruning effect would
be greatly improved for cases that to minimize linear expression or using ’sum’
operator, because an upper bound (i.e. current minimal value) is utilized to help
us break in the middle. Therefore, we further propose another method to find
optimal assignment in a more efficient manner.

4.2 Maximum Bipartite Matching Based Assignment (MBMA)

In this section, we introduce an MBMA strategy that can return optimal results
efficiently. By constructing a bipartite graph BG = (P, V,E), where the weight
of an edge e(p, v) ∈ E in bipartite graph w(e) = PCp,v is the pair cost between
passenger p and vehicle v. We aim to find an valid assignment A ⊆ P × V on
bipartite graph BG with minimum ψ(A). Existing algorithms (e.g. Hungarian
algorithm for maximum matching, and Kuhn-Munkres algorithm for minimum
weight matching) cannot be applied because of the different optimization crite-
rion and capacity constraints we face in our work. In this paper, we design a
bipartite matching based algorithm that is more suitable for passenger assign-
ment. The MBMA algorithm works with the following steps:

Step 1. Assignment Initialization Step. It first initializes a valid assignment
A based on input bipartite graph using a given maximum bipartite matching
strategy tailored for our problem;

Step 2. Assignment Improvement Step. We prune some high weighted bipar-
tite edges, and re-assigns some matches in A for better assignment on a bipartite
sub-graph;

Step 3. Iterative Step. Assignment improvement is processed in loop until
it is not possible to perform the assignment improvement step.

4.2.1 Assignment Initialization
Given an input bipartite graph BG, we conduct the assignment operation to
derive a valid assignment. Among the existing maximum bipartite matching
(MBM) solutions, the Hungarian algorithm is the most famous one, and it finds
the maximum matching by finding an augmenting path from each v ∈ V to V ′

and adding it to the matching if it exists. We know that each augmenting path
can be found in O(|E|+ |V ∪V ′|) time, and we need to find |V ∪V ′| times of the
augmenting path. Therefore, we can find maximum matching on O(mn+n2logn)
time, where m = |E| and n = |V ∪ V ′|. It is a useful technique to our problem
in finding a valid assignment from P to V .

Compared to the classical MBM, the assignment for the passenger assign-
ment in this paper must be capacity aware. As stated in Section 3.4, capacity

On Efficient Passenger Assignment for Group Transportation 233

constraint can be addressed by vehicle-to-capacity-unit transformation, but such
transformation incurs a much greater bipartite edge set, which in turn leads to
more time cost. To handle this problem, we propose an assignment initialization
algorithm tailored for our problem as shown in Algorithm 1.

The basic idea of assignment here is similar to Hungarian algorithm, i.e. to
explore maximum matching on BG by finding augmenting path from each p ∈ P
to V and adding it to the matching if it exists. Specifically, let A be the matching
of BG, a vertex p ∈ P or v ∈ V is matched if it is endpoint of edge in A, and it
is free otherwise. A path is said to be alternating if its edge alternate between
A and E −A. An alternating path is augmenting if both endpoints are free, and
it has one less edge in A than in E − A. The assignment algorithm continuously
replace the edges in augmenting path from A by the ones in E − A to increase
the size of the matching until it cannot be enlarged.

Algorithm 1. Assignment Initialization Algorithm
input : input bipartite graph BG
output: assignment result A

1 A = φ;
2 do
3 p = FIND-AUGMENTING-PATH(BG, A);
4 if p �= NIL then
5 A = A ⊕ p;
6 end

7 while p = NIL;
8 return A;

The function FIND-AUGMENTING-PATH(BG,A) of Algorithm 1 (Line 3)
means to find an augmenting path based on A. This is the key issue of this
algorithm as it determines both accuracy and efficiency: (1) from accuracy per-
spective, it must be capacity aware. Therefore, a counter v.cn is created for each
v ∈ V to record the times it has been assigned to, and augmenting path via
it would be denied if v.cn > v.c; (2) from efficiency perspective, we hope the
selected augmenting path can be covered by a valid assignment (i.e. feasibility),
and also to reduce its assignment cost.

Particularly, we use some heuristics to speed up the assignment processing.
To reduce the cost of assignment, edges with lower weight are encouraged to be
chosen. To ensure the augmenting path to be part of valid assignment cover, we
tend to avoid using v ∈ V with low flexibility value F (v) to reserve it for possible
future use, and its flexibility is defined as:

F (v) =
|v.c − v.cn|

∑
(p,v)∈E−Atemp

PR(p, v)

where Atemp is a temporal assignment result in processing, and PR(p, v) is the
probability of (p, v) ∈ A. In computation, we calculate it as PR(p, v) = 1

degree(p) ,

234 J. Xu et al.

because p has degree(p) candidates for assignment in total. Obviously,∑
(p,v)∈E−Atemp

PR(p, v) is the total possibility of v to be assigned accordingly.
After assignment initialization, a valid assignment can be found if there is any,
but the assignment may not be optimal. Therefore, we further seek to improve
the assignment result in the next section.

4.2.2 Assignment Improvement
The general idea of assignment improvement is to find a better assignment on a
subgraph with edges Esub ⊆ E of bipartite graph BG. The pruning of bipartite
edge is thus vital to determine the accuracy and efficiency. Basically, we hope
to filter out bipartite graph edges to form such a bipartite sub-graph: firstly,
the size of bipartite edge set Esub is supposed to be less for efficient matching
purpose; secondly, all edges (i.e. passenger-vehicle pairs) in optimal assignment
must be preserved in the sub-graph.

To achieve above two goals, we conduct (1) relevance driven edge pruning and
(2) improvement driven edge pruning in sequential order, to filter out hopeless
bipartite edges and edges unlikely to improve assignment result respectively.
Then (3) improved assignment search is made on the sub-graph after pruning.

(1) Relevance Driven Edge Pruning. In relevance driven pruning, we
try to prune out hopeless bipartite edges, e.g. edges with weights greater than
the upper bound of assignment cost, as they are not relevant to query processing
anymore. Let function minW (E) take input as an edge set E of bipartite graph
BG, and return the minimal weight of the edges in E. To facilitate the derivation
of upper bound of assignment cost, we require the edge set Esub of sub-graph to
be weight − bounded as defined below.

Definition 5. (Weight-bounded) An edge set Esub ⊆ E is said to be weight-
bounded if it satisfies:

minW (E − Esub) ≤ w(e) ∀e = (p, v) ∈ Esub

Therefore, a weight-bounded edge set Esub contains those and only those
edges in E that have weight less than or equal to a threshold minW (E − Esub).
Conversely, all remaining edges in E − Esub have weight (i.e. pair cost) greater
or equal to that threshold. Suppose that we are given a weight-bounded edge set
Esub, and a valid assignment can be found based on Esub, the following theorem
determines the upper bound of optimal assignment, and can be used to filter out
non-relevant bipartite edges (to optimal assignment).

Lemma 1. If a valid assignment A′ is found from weight-bounded edge set
Esub ⊆ E, then the upper bound of the cost of optimal assignment A is minW (E−
Esub), and we have A ⊆ E − Esub.

Proof. Consider the edges in Esub. First, their edge weights are less or equal to
minW (E − Esub). Second, for any bipartite edge e = (p, v) ∈ E its edge weight
is defined as the pair cost w(e) = PCp,v. Given A′ ⊆ Esub, and we have ψ(A′) ≤
minW (E−Esub) accordingly. As A is the optimal assignment, i.e. ψ(A) ≤ ψ(A′),

On Efficient Passenger Assignment for Group Transportation 235

it must also hold that ψ(A) ≤ minW (E − Esub). Therefore, optimal assignment
A has an upper bound of assignment cost at minW (E−Esub). For A ⊆ E−Esub,
We can prove it by contradiction, i.e. UB would not be the upper bound if there
exists an edge (p, v) ∈ (E − Esub) ∩ A as we have UB < minW (Esub) ≤ PCp,v

in such case.

Lemma 1 informs us how to conduct bipartite edge pruning based on the
upper bound of cost assignment: assume that we can find a valid assignment A
at cost ψ(A) from edge set Ei at loop i, then the upper bound of assignment cost
becomes UB = ψ(A), and all of the hopeless bipartite edges {e | e ∈ BG.E ∧
w(e) > UB} are pruned from the valid edge set EV (Line 1). Such an upper
bound based pruning is definitely meaningful, but not enough yet, because it is
unlikely to find an assignment much better than A in the next loop that carries
out on EV . In contrast, we do hope the optimal assignment can be detected in
just a few loops for efficiency purpose.

(2) Improvement Driven Edge Pruning. After the relevance driven edge
pruning, additional edges (especially those with higher weight) must be pruned as
well, so that the assignment result can be improved. Based on EV after relevance
pruning, the problems we face are: (1) the priority of edges for pruning; (2) the
ratio of bipartite edges to be preserved. The first problem is relatively easy, as
edges with higher weight (i.e. greater pair cost) tend to be removed. We focus
on discussing the second problem here.

As each of the bipartite edges in EV has the potential to be part of optimal
assignment, in reality, the ratio of filtering is a trade-off between accuracy and
efficiency: the higher the ratio is, the better assignment result we tend to have (as
higher weight edges are pruned), but the less possible to be able to successfully
find one (as the less edge candidates we have); on the other hand, the lower the
ratio is, the more likely to find a valid assignment, even though the improvement
tends to be not significant. How to find a good balance is an important but
challenging problem here.

We notice that the trade-off balance of improvement driven pruning is subject
to the lower bound of assignment cost in reality. The lower bound can be derived
by two lemmas. Let function ξ(p) to denote the minimal pair cost of all possible
pairs {(p, v)|v ∈ V } associated to a passenger p ∈ P , we have the following
lemmas to find a static lower bound of assignment cost.

Lemma 2. Given a bipartite graph BG, min(ξ(p ∈ P)) is a lower bound of
assignment cost.

Proof. From the view of P , each p ∈ P must be assigned. If there is an assignment
A that ψ(A) < min(ξ(p ∈ P)), then the p ∈ P leading to min(ξ(p ∈ P)) is not
assigned as no associated edge can be used. Therefore A must not be a valid
assignment, and we thus have ψ(A) ≥ min(ξ(p ∈ P)).

As we can see, Lemma 2 can give us a static lower bound of assignment cost,
which can be computed based on the input data. Furthermore, Lemma 3 can
help us to update the lower bound along with the assignment processing.

236 J. Xu et al.

Lemma 3. If a valid assignment cannot be found on a weight-bounded edge set
LB = Esub ⊆ E, then minW (E − Esub) is a lower bound of assignment cost.

Proof. For any valid assignment A, we know A � Esub, so there must be an
edge e = (p, v) such that e ∈ E − Esub and e ∈ A. Given that ψ(A) ≥ w(e) ≥
minW (E − Esub), then we know LB = minW (E − Esub) is the lower bound of
assignment cost.

The lower bound of assignment cost is an important parameter, which is
used to divide edges in EV into two sets, i.e. one set EC = {e|e ∈ EV ∧ w(e) ∈
[LB,UB]} and another set EV − EC (weight bounded to EC), towards which
different criterions are used. For EV −EC , we preserve all of them because their
edge weights are even less than LB (definitely not critical pair). In contrast,
edges in EC are potential critical pair, so improvement driven pruning on EC

is necessary. A straightforward pruning approach is the ε (0< ε <1)cut pruning
method (εCP-method), through which we only keep a ratio of ε edges in EC with
minimum edge weights. Though practical, its performance relies on parameter
ε that cannot be set in a rational and automatic way.

To reduce the loops in assignment processing, a more intelligent method is
thus highly sought after to set ε in rational. Basically, the value of ε is subject
to two factors: (1) the abundance of choices, measured as the square of ratio
between the number of requested edges to that of valid edges in EV ; (2) the
ratio of EC in EV , where we tend to be more aggressive (smaller ε) if their ratio
is greater, and to be conservative otherwise (e.g. binary cut ε = 0.5). Putting the

two factors together, we can normalize ε =
√

|P |
|EV | × |EV |−|EC |

2·|EV | , where |EV |−|EC |
2·|EV |

means to be aggressive when majority of valid edges falls in EC , and the value
of ε is in the range of [0, 1].

(3) Improved Assignment Search. Based on the sub-graph BG′ after
pruning, we try to find an improved assignment result by bipartite matching.
But the improvement driven pruning may fail to find a valid assignment. We say
assignment improvement is successful if a valid assignment can be found, and
unsuccessful otherwise. In cases it is unsuccessful, we can have a more precise
lower bound of assignment cost from Lemma 3, to adjust the bipartite sub-
graph to find a valid assignment in the next round. We thus further discuss how
to execute iteratively to find the optimal assignment.

4.2.3 Iterative Processing
In this part, we discuss how to iteratively improve the assignment until an opti-
mal assignment can be derived, particularly about the iterative processing pro-
cedure, the reuse of intermediate results, and stop condition. Algorithm 2 shows
the mechanism of MBMA algorithm that put together assignment initialization
and improvement steps. The processing starts from the assignment initializa-
tion (Line 2), and moves to improvement step if a valid assignment is found. In
improvement step, we use the upper and lower bounds to guide assignment evo-
lution. The upper bound and lower bound are initialized and updated based on
the Lemmas in the previous section. If an improvement is successful, the upper

On Efficient Passenger Assignment for Group Transportation 237

bound is updated (Line 12); Otherwise, we adjust the lower bound such that
it gets increased (Line 16). Improvement is made in loop until the lower bound
equals to the upper bound, indicating the optimal assignment is found.

Algorithm 2. MBMA Algorithm
input : Passenger set P , vehicle set V , and road network G
output: optimal assignment A

1 bipartite graph BG = construct(O, V, G);
2 A = assignment(BG);
3 if A is NIL then
4 return NIL;
5 end
6 else
7 LB = min(ξ(p ∈ P)); UB = ψ(A);
8 Esub = {e | w(e) ≤ UB};
9 do

10 A = assgnImpr(BG, UB, LB);
11 Ebcp ← set of edges pruned by binary cut pruning;
12 if A is not NIL then
13 UB = ψ(A); Esub = {e|w(e) ≤ UB};
14 end
15 else
16 Esub = Esub − Ebcp; LB = minW (BG.E − Esub);
17 end

18 while LB ≥ UB;
19 return A;

20 end

In addition, we further optimize the assignment processing by two points.
In assignment improvement, we only adjust the assignment result in the previ-
ous loop based on the new bipartite sub-graph (after pruning). It is thus not
necessary to do the complete matching on bipartite graph in each loop, as an
improved assignment tends to be found in just a few operations.

Complexity Analysis. The computational overhead of MBMA algorithm
mainly comes from spatial query processing and assignment computation. Iden-
tical to IPA algorithm, we need |P | + |V | times of fastest path search, hence
the time cost of spatial query processing is O((|P | + |V |) × (|G.E| × |G.V | +
|G.V |2log|G.V |)); As for assignment processing, assume m and n are the sizes of
edge and vertex sets of the used bipartite graph or subgraph respectively, we go
through up to O(m) loops for assignment improvement according to Algorithm 4.
In each loop, we find the maximum weight matching, with a time complexity
O(mn + n2log n). The MBMA algorithm thus costs O(m2n + mn2log n) time
in the worst case.

238 J. Xu et al.

5 TN-FPS Based Algorithm

Above solutions tend to be time consuming because of the high cost on scal-
able FPQs processing by A* or Dijkstra, so we further use approximate FPQ
querying techniques to speed up the execution. Motivated by [8], this paper
adopts a Transit Node based Fastest Path Search (TN-FPS) algorithm to find
approximate FPQs results based on the transit nodes (i.e. important traffic inter-
sections) selected by historical trajectory data. Particularly, the approximations
of TN-FPS are only allowed if they have no or few effect on assignment accu-
racy. Though TN-FPS may also affect assignment precision, the effect is usually
trivial because of the observation that passengers tend to be assigned to close
vehicles, rather than those far-away.

Above observation provides us important guidelines for algorithm design: for
close passenger and vehicle pairs, to return their exact fastest path for assignment
precision purpose; for long distance pairs, to derive approximate fastest path for
efficiency purpose. Given two far-away locations a/b (that close to n/n′), the
travel cost can thus be approximated by the following equation:

apprTC(a, b) = TCa,n + TCn,n′ + TCn′,b

apprTC(a, b) is the travel cost if a passenger goes to b from a via n and n′.
Obviously, it is an upper bound of the accurate travel cost, and the assignment
cost is thus not under-estimated when approximation occurs.

The number of transit nodes (tn) is in reality an efficiency and accuracy trade-
off: the more transit nodes are, the better accuracy can be achieved despite of
more computational cost. We set tn = 20 by experience, and users can revise it
for extra precision or efficiency requirements. Two major problems of TN-FPS
are: (1) the selection of transit nodes; (2) how the queries are processed.

(1) Transit nodes selection. In the selection of transit nodes, we apply
the Trajectory Analysis (TA) based method, which seeks to identify important
intersections from trajectory data to ensure that: firstly, the transit nodes are
evenly distributed over the road network; secondly, transit nodes are meaningful
intersections passengers likely to pass. Basically, trajectory data is the motion
history of moving objects, and it is modeled as a sequence of time stamped
geo-locations Tr = (p1, p2, ...pn), and each point pi has its location pi.loc and
pi.time, and it can be aligned to the vertexes on the road network by some map-
matching algorithms [2,11]. That means, each trajectory can be converted to
a network constrained model TrN = (ni, nj , ...nk). Through a large trajectory
dataset D, the importance of each vertex can be seen as the frequency to be
passed in trajectories, e.g. an intersection passed by a large number of moving
objects is always an important junction, and it can be formalized as

Freq(ni) =
∑

Tr∈D NUM(ni, T rN)
∑

Tr∈D |Tr|
Motivated by [12], the network space is partitioned into |tn| of grids in our

approach. For each grid g, we formally measure the weight of each intersec-
tion n inside grid region g as weight(n) = Freq(n)

DEU (n,g.c) , where DEU (n, g.c) is the

On Efficient Passenger Assignment for Group Transportation 239

Euclidean distance between n and g.c (i.e. the center of g). Then we select out
the intersection that has the greatest weight value as a transit node. In this
way, the selected transit nodes are thus rational in both spatial and importance
domains.

(2) Approximate Assignment Processing. The TN-FPS algorithm com-
putes the (possibly approximate) all-pair fastest pathes based on the transit
nodes as input, and finds the assignment result by the MBMA strategy.

For each passenger p, the Dijkstra based traverse on road network is carried
out but only limited to a small spatial space, and its accurate travel cost to
all vehicles and transit nodes that it reaches are recorded in a TC = P × V
matrix. To avoid impact from approximations to accuracy of assignment, the
network traversal terminates if it meets two conditions: (1) the number of reached
vehicles is larger than a threshold λ. As passengers tend to be assigned to a close
vehicle, the accuracy of assignment can be guaranteed if a number of closest
vehicles are found; (2) the traverse must reach no less than two or more transit
node, so that approximate distances to non-reached vehicles can be calculated.
Similarly, the distance cost from vehicles to transit nodes and the destination
are also computed. By integrating all of traversal results, we can derive all the
needed (accurate and approximate) travel cost information, by which a good
assignment can be computed by the MBMA strategy.

6 Experimental Study

In this section, we conduct extensive experiments on a real spatial data set to
demonstrate the performance of the proposed algorithms. The data set used in
our experiments are Beijing Road network, which contains 226, 238 undirected
edges (road segments) and 171,187 vertices (intersections), and Figure 2(a) shows
their distribution on the spatial space. The used trajectory data compose over
300,000 moving objects trajectories in Beijing. All algorithms were implemented
in JAVA and tested on a HP Compaq 8180 Elite (i5 650) computer with 2-core
CPUs at 3.2GHz and 1.12 GHz, 4GB RAM and running Windows XP operating
system.

(a) Road Network

S1 S2 S3 S4
0

5k

10k

15k

20k

25k

30k

Scale

Tim
e (

s)

Dij
A*
TN−FPS

(b) FPQs Runtime

Fig. 2. Road Network, FPQs Runtime

Experiments are based on 100 test cases in four scale settings shown as
Table 1. In each test case, we generate the given number of passengers and

240 J. Xu et al.

vehicles based on random distribution over road network. The efficiency and
accuracy of different FPQs solutions are compared first, then we overlook the
performances of the assignment algorithms, and finally evaluate the final perfor-
mances by integrating them together.

Table 1. Setting of Test Cases

Scale No. of Passengers No. of Vehicles

S1 50 10

S2 100 20

S3 500 100

S4 5000 1000

Performances on processing FPQs. Figure 2(b) shows the performances
of FPQs processing using the A*, Dijkstra and TN-FPS algorithms. In compari-
son, the efficiency of TN-FPS significantly outperforms both of the Dijkstra and
A* based algorithm according to Figure 2(b). In contrast to A* and Dijkstra
algorithms that finds the accurate FPQs results, the result returned by TN-FPS
may not be accurate because of the approximation. We thus further evaluate
TN-FPS under different setting of tn and k.

Figure 3(a) and Figure 3(b) are the efficiency and accuracy comparison in dif-
ferent tn (i.e. number of transit nodes). From Figure 3(a), we can easily observe
that the runtime of FPQs processing is in reverse proportion to the number of
tn, which can be explained by the fact a closer transit node tends to exist, so
the network traversal of FPQ processing can stop early. Also, Figure 3(b) con-
firms the assumption that the greater number of transit nodes tends to improve
accuracy. In terms of accuracy, we measure the error of the computed results as
the ratio such that Error =

∑
p∈P

∑
v∈V apprTCp,v

∑
p∈P

∑
v∈V TCp,v

.
Figure 3(c) and Figure 3(d) show the comparison of algorithm efficiency

and accuracy in different k (i.e. number of reached vehicles in search). The
efficiency varies only for scale settings S1 and S2 because finding k vehicles for
each passenger may traverse a large space of the road network in such cases. In
contrast for S3 and S4, the network traverse space becomes no longer sensitive
to k given lots of vehicles. Figure 3(d) shows larger k tends to improve the
accuracy of FPQs processing because more traverse on road network, but the
improvement is only significant for long distance FPQs.

Performances on Assignment. Based on the FPQs results, we further
evaluate the performances of the proposed assignment algorithms. Figure 4(a)
indicates that the IPA algorithm has poor efficiency and scalability perfor-
mances, so only suitable for cases with small number of passenger and vehi-
cle. This phenomenon is cause by the unsatisfactory pruning effects towards the
cost measure of passenger assignment problem. In contrast, the MBMA based
algorithm is much more efficient, particularly when the scale of passengers and

On Efficient Passenger Assignment for Group Transportation 241

vehicles are large. Figure 4(b) shows that the evolution of the iterative assign-
ment loops based on different settings of ε (in scale S3). Towards MBMA, we
further evaluate its performance in different values of parameter ε.

S1 S2 S3 S4
100

200

300

400

500

600

Scale

T
im

e
(s

)

tn = 10

tn = 20

tn = 30

(a) Efficiency via tn

S1 S2 S3 S4
0

20

40

60

80

100

120

140

Scale

E
rr

or
 (

%
)

tn = 10

tn = 20

tn = 30

(b) Accuracy via tn

S1 S2 S3 S4
0

200

400

600

800

0

200

400

600

Scale

T
im

e
(s

)

k = 5
k = 10
k = 20

(c) Efficiency via k

S1 S2 S3 S4
0

20

40

60

80

100

120

140

Scale

E
rr

or
 (

%
)

k = 5
k = 10
k = 20

(d) Accuracy via k

Fig. 3. FPQs Processing Performances via tn and k

S0 S1 S2 S3 S4
0

5

10

15

20

25

30

35

Scale

T
im

e
(s

)

IPA algorithm
MBMA algorithm

(a) Efficiency via
algorithms

1 5 10 15
10

15

20

25

30

10

15

20

25

Loop

A
ss

ig
nm

en
t R

es
ul

t (
m

in
s)

ε = 0.5
ε = 0.25
ε = 0.75

(b) Results via
Loops

S1 S2 S3 S4
0

1

2

3

4

5

6

Scale

T
im

e
(s

)

ε = 0.5
ε = 0.25
ε = 0.75
ε*

(c) Efficiency via ε

S1 S2 S3 S4
1.5

2

2.5

3

Scale

E
rr

o
r

(%
)

ε = 0.5

ε = 0.25

ε = 0.75

ε*

(d) Accuracy via ε
(based on TN-FPS)

Fig. 4. Assignment Processing Performances via selected algorithms, loops, ε

In the MBMA algorithm, ε is an important parameter to determine how we
filter out bipartite edges for result improvement. Figure 4(c) and (d) show how ε
impacts the efficiency of accuracy, especially when the FPQs results returned by
TN-FPQS are used as the input weights in assignment step. Regarding to the
efficiency comparisons in Figure 4(c), we can easily observe that the different
thresholds tend to have similar efficiency performances, and the adaptive setting
of ε leads to the minimum processing cost. Also, Figure 4(d) shows that passenger
assignment by means of the MBMA algorithm integrating FPQ results from TN-
FPQS can achieve high accuracy result (near optimal with less than 3% average
error rate) in different ε settings.

To sum up, the experimental results implies that the MBMA algorithm can
support us to find the optimal assignment efficiently, but the time cost for com-
puting accurate FPQs is usually much greater when classical algorithms like A*
or Dijkstra are used. If TN-FPS is applied for approximate FPQs processing
instead, the efficiency will be improved greatly and the final passenger assign-
ment result is near-optimal.

7 Conclusion and Future Work

In this paper, we have defined the problem of passenger assignment with road
network as the underlying space, and devised two exact assignment algorithms

242 J. Xu et al.

based on integer programming and maximum bipartite matching techniques
respectively. To reduce the high computational cost for scalable FPQs, an approx-
imate solution has been further introduced to find the near-optimal results in a
much more efficient way. Comprehensive experiments have been carried out to
evaluate the performance of different algorithms.

In the future, we would like to improve the current approach by incorporating
speed patterns, so that pre-computed traffic knowledge and the pattern aware
spatial indexes can be used to further speed up the assignment.

Acknowledgments. This work was partially supported by Chinese NSFC project
under grant numbers 61402312, 91124001, 61303019, 61202064, Australian ARC project
under grant number DP140103499, and Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization.

References

1. Balinski, M.L., Gomory, R.E.: A primal method for the assignment and transporta-
tion problems. Management Sci. 10(3), 578–593 (1964)

2. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proceedings of VLDB, pp. 853–864 (2005)

3. Brunsch, T., Cornelissen, K., Manthey, B., Röglin, H.: Smoothed analysis of the
successive shortest path algorithm. In: Proceedings of SODA, pp. 1180–1189 (2013)

4. Dantzig, G., Ramser, J.: The truck dispatching problem. Management Science 6,
80–91 (1959)

5. Desrochers, M., Jones, C., Lenstra, J.K., Savelsbergh, M., Stougie, L.: Towards
a model and algorithm management system for vehicle routing and scheduling
problems. Decision Support Systems 2(25), 109–133 (1999)

6. Duan, R., Su, H.-H.: A scaling algorithm for maximum weight matching in bipartite
graphs. In: Proceedings of SODA, pp. 1413–1424 (2012)

7. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

8. Matijevic, D., Sanders, P., Bast, H., Funke, S., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: Proceedings of ALENEX (2007)

9. Kaul, M., Wong, R.C.-W., Yang, B., Jensen, C.S.: Finding shortest paths on ter-
rains by killing two birds with one stone. PVLDB 7(1), 73–84 (2013)

10. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

11. Liu, K., Li, Y., He, F., Xu, J., Ding, Z.: Effective map-matching on the most
simplified road network. In: Proceedings of ACM SIGSPATIAL GIS, pp. 609–612
(2012)

12. Ma, S., Zheng, Y., Wolfson, O.: T-share: A large-scale dynamic taxi ridesharing
service. In: Proceedings of ICDE, pp. 410–421 (2013)

13. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Indust. Appl. Math. 5, 32–38 (1957)

14. Pournajaf, L., Xiong, L., Sunderam, V.S., Goryczka, S.: Spatial task assignment for
crowd sensing with cloaked locations. In: Proceedings of MDM, pp. 73–82 (2014)

On Efficient Passenger Assignment for Group Transportation 243

15. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

16. Sankaranarayanan, J., Samet, H.: Query processing using distance oracles for spa-
tial networks. IEEE TKDE 22(8), 1158–1175 (2010)

17. U, L.H., Mouratidis, K., Mamoulis, N.: Continuous spatial assignment of moving
users. VLDBJ 19(2), 141–160 (2010)

18. U, L.H., Yiu, M.L., Mouratidis, K., Mamoulis, N.: Capacity constrained assignment
in spatial databases. In: Proceedings of SIGMOD, pp. 15–28 (2008)

19. U, L.H., Yiu, M.L., Mouratidis, K., Mamoulis, N.: Optimal matching between
spatial datasets under capacity constraints. ACM TODS 35(2), 1–43 (2010)

20. Wong, R.C.-W., Tao, Y., Fu, A.W.-C., Xiao, X.: On efficient spatial matching. In:
Proceedings of VLDB, pp. 579–590 (2007)

Effective and Efficient Predictive Density
Queries for Indoor Moving Objects

Miao Li(B), Yu Gu, and Ge Yu

Institute of Computer Software, Northeastern University, Shenyang 110819, China
limiao@research.neu.edu.cn, {guyu,yuge}@ise.neu.edu.cn

Abstract. Density queries are defined as querying the dense regions
that include more than a certain number of moving objects. Previous
research studies mainly focus on how to answer the snap-shot density
queries over historical trajectories. However, the real applications usually
tend to predict whether a region is a dense region. Especially in indoor
environments, such predictive density queries are valuable for high-level
analysis but face tremendous challenges. In this paper, by leveraging the
Markov correlations, we effectively predict the future locations of mov-
ing objects and conduct the density queries accordingly. In particular, we
present an optimized framework which contains three phases to tackle
this problem. First, we design an index structure based on the transition
matrix to facilitate the search process. Second, we propose the space and
probability pruning techniques to improve the query efficiency signifi-
cantly. Finally, we apply an accurate method and an approximate sam-
pling method to verify whether each unpruned region is a dense region.
Extensive experiments on real datasets demonstrate that the proposed
solutions can outperform the baseline algorithm by up to 2 orders of
magnitudes in running time.

Keywords: Density queries · Markov correlations · Predictive queries ·
Indoor environment

1 Introduction

In recent years, the exploding developments of sensing and communication devices
combined with location-based service techniques have been significantly facilitat-
ing some novel applications. For example, in indoor environments the effective
users’ motion prediction and localization technology play an important role in all
aspects of people’s daily lives, including tourist management, emergency detec-
tion, flow control, etc [6]. Due to the high density of possible locations and short
transition distances between these locations, predictive density queries in indoor
environments face tremendous challenges.

Although a series of efforts have been devoted in literatures [4,5,9] toward
the density query model and optimization problems over historical data, these
proposed methods cannot be adapted to conduct effective and efficient indoor
predictive queries. Given a set of query regions, predictive density queries aim
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 244–259, 2015.
DOI: 10.1007/978-3-319-18120-2 15

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 245

to return those query regions which include more objects than a threshold ρ at
a future time point (or in a future time period). In this paper, we propose new
methods to tackle relative problems of predictive density queries. We use the
following example to illustrate our motivation.

Example: Tourist flow management. In an indoor museum monitoring
scenario, the locations of visitors can be automatically detected, tracked and
analyzed. At the same time, excessive visitors may gather into some popular
exhibition areas leading to overburdened space and intolerable queuing time.
Therefore, if we can predict those dense regions in advance, effective warning
and scheduling measures can be taken.

()a ()b

Hall 1
(0.45)

Hall 2
(0.1)

Hall 3
(0.45)

Hall 1
(0.445)

Hall 2
(0.11)

Hall 3
(0.445)

Hall 1
(0. 5)

Hall 2
(0.0)

Hall 3
(0.5)

11:30 11:40 11:50

0.9

0.1 0.4
0.2

0.1

0.9

0.4

1.0

0.5

0.5

1.0

Fig. 1. (a) A schematic view of a deployment. (b) A Markov correlation representing
a distribution over paths through the environment in (a).

To implement predictive queries, a key issue is to effectively predict the loca-
tions of moving objects. Most early-stage models assume that some deterministic
movement functions can be defined [1,15,16] and thus the locations will be evalu-
ated based on such functions. In fact, real-world moving objects such as visitors
usually display complex and stochastic movement patterns. Specifically, as a
statistical technique to predict the probability of event occurrence, the Markov
model has been proved to be an effective tool to predict the locations of moving
objects in a lot of scenarios [7,11,12] and thus gains more and more adoptions
in the latest solutions. Let us review the example scenario by using Figure 1.
Figure 1(a) shows a small portion of one indoor museum environment. In Figure
1(b), it illustrates that a visitor was in either Hall 1 or Hall 3 with the equal
probability at time 11 : 50. The Markov correlation is shown to be temporally
correlated: the distribution over the visitor’s location at time t + 1 depends on
its uncertain locations at time t. Figure 1(b) shows that, given that a visitor
was in Hall 1 at 11 : 40, he/she stayed in Hall 1 at time 11 : 50 with proba-
bility 1.0. In our motivating scenario, because there exist obvious correlations
between locations at two consecutive time points, a Markov transition matrix
can be learned and leveraged to infer future locations. In this paper, we propose
to build Markov correlations as our prediction model and accordingly design
efficient density query techniques.

Predictive density queries over Markov correlated objects return the dense
regions which have high probabilities. In terms of efficiency, two-fold challenges

246 M. Li et al.

should be solved. First, the future locations of moving objects have to be inferred
along the Markov chains considering massive possible paths from the current
locations which may potentially render a long response time. Second, at the
query time, all the possible locations of involved objects need be enumerated with
corresponding probabilities evaluated, which may incur huge running costs. To
achieve considerable efficiency enhancement, we present some index and pruning
techniques to reduce the search space. Specifically, our major contributions are
summarized as follows.

– We design a novel index structure and develop an efficient method for retriev-
ing the correlations between two continuous timestamps.

– We propose several pruning techniques based on space and probability prop-
erties which can dramatically reduce the evaluation overhead and facilitate
the search process.

– We further propose several refined approaches to speed up verifying whether
a candidate region is the final result.

The rest of this paper is organized as follows. We first review related works
in Section 2. Section 3 formally defines density queries on Markov correlated
objects, introduces an index structure and develops an efficient method for
retrieving the correlations between two continuous timestamps. In Section 4,
we propose some effective pruning techniques which can reduce the search space
for probability computation. Section 5 explores the refinements step to verify
each region that has not been pruned. We discuss the experiment results in
Section 6 and conclude the paper in Section 7.

2 Related Work

Density Queries. Hadjieleftherious et al. [4] first introduced the problem of
density queries, and presented several techniques to evaluate such queries. Specif-
ically, they proposed a method to partition the data space into disjoint cells, and
the cell regions were returned as the approximate results instead of arbitrary
regions. Further, Jensen et al. [5] presented an exact density query evaluation
method and several pruning techniques based on the temporal histograms of
counters. Ni et al. [9] proposed a new scheme of density queries based on the
concept of pointwise-dense regions(PDRs) to answer density queries consistently
and completely, regardless of the shape and size. However, all these methods for
density queries are based on historical moving objects trajectories with accurate
positions rather than predicted information with probabilistic locations.

Indoor Spatial Queries. In recent years, some typical solutions were pro-
posed to handle indoor spatial queries efficiently. For example, Yang et al. [13]
proposed a complete set of techniques for computing probabilistic threshold kNN
queries in indoor environments. They proposed the minimum indoor walking
distance (MIWD) as the distance metric for indoor spaces and designed a hash-
based indexing scheme for indoor moving objects. Yu et al. [14] introduced the
particle filter-based location inference method for evaluating indoor range and

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 247

kNN queries. Particularly, indoor walking graph model and anchor point index-
ing model were presented to improve effectiveness and efficiency. However, to
the best of our knowledge, none of existing schemes were designed for predictive
indoor density queries.

Query on Correlated Data. Recently, the significant amount of efforts
have been devoted to support various queries over temporally and spatially cor-
related objects. For example, Emrich et al. [3] presented a framework for effi-
ciently modeling and querying probabilistic spatio-temporal data. They built the
Markov model for the spatio-temporal data and integrate pruning approaches
into the Markov chain matrices, which contributes to reducing the search space
and the computational costs during query evaluations. Niedermayer et al. [10]
dealt with historical snapshot and continuous NN queries for objects with uncer-
tain locations and proposed three different semantics of NN queries. They also
addressed probabilistic nearest neighbor queries in databases with uncertain tra-
jectories modeled by the Markov chain model. Emrich et al. [2] addressed the
problem of probabilistic reverse NN queries on uncertain spatio-temporal data
following the possible world’s semantics. Ré et al. [11] proposed a scheme to
support complex event queries on Markov correlated data streams. Accordingly,
optimized algorithms were proposed to enhance the efficiency. Considering spa-
tial correlations, Lian et al. [8] focused on answering queries on locally corre-
lated uncertain data and proposed a cost-model-based offline pre-computation
technique to enable online filtering. However, all these solutions do not con-
sider handling the query processing in the dense regions over Markov correlated
objects.

3 Problem Definition and Index Structure

3.1 Problem Definitions

In this work, we follow the related literature to denote the discrete space and
the future time domain using S and T respectively, where a future time domain
is expressed as T = {0, · · · , n} and a discrete state space of possible locations is
S = {s1, s2, · · · , s|S|}. Let D be a spatio-temporal database containing n moving
objects D = {o1, o2, · · · , on}. Following [2], database D stores triples (oi, t, s),
where oi is a unique object identifier, t ∈ T is a time point (or time slot) and
s ∈ S is a position in space. Semantically, each such triple corresponds to an
observation that object oi has been seen at some location s at some time t. And
each object oi can be described by a function oi(t) : T → S that maps each point
in time to a location in space. We call this function as trajectory. Similarly, given
the predictive density queries, the objects in a query region are associated with
a probabilistic trajectory as well.

Therefore, we employ the first-order Markov chain model as a specific instance
of a stochastic process. The state space of the model is the spatial domain S.
State transitions are defined over the time domain T . In addition, the Markov
chain model is based on the assumption that the position o(t + 1) of an object
o at time t + 1 only depends on the position o(t) of o at time t. Specifically, the

248 M. Li et al.

locations of an object are Markov correlated over adjacent time points, which
are formally defined as follows.

Definition 1 (Markov Correlations). In the database D, an object o is associated
with a probabilistic trajectory in which the locations of this object are Markov
correlated if and only if Pr(o(t + 1) = sj |o(t) = si, o(t − 1) = sk, · · · , o(0) =
sm,) = Pr(o(t + 1) = sj |o(t) = si).

The conditional probability Pr(o(t + 1) = sj |o(t) = si) is the transition
probability of the moving object o from the location si to the location sj at the
time t, which describes the likelihood that an object is located at each possible
location.

In order to obtain the transition probabilities from a location to another.
We compute the transition matrix based on some statistical information of his-
torical training data. By referring to such a transition matrix, we can predict
the possible locations of moving objects with corresponding probabilities and
furthermore conduct density queries.

Definition 2 (Density Queries over Markov Correlated Objects). For a spa-
tial database D of Markov correlated moving objects, assume that we have a
transition matrix M , a future query time t, a density threshold ρ, a probability
threshold α and a query region set A = {A1, A2, · · · An}. If region Aj meets the
following condition, Aj is a dense region.

Pr(
Num(At

j)

Area(Aj)
≥ ρ) ≥ α (1)

where, Num(At
j) denotes the number of objects in a query region Aj at the

query time t and Area(Aj) is the area of query region Aj . Since the density
threshold ρ is given by the user, and Area(Aj) is a constant for a specified

region, Pr(Num(At
j)

Area(Aj)
≥ ρ) can be expressed as Pr(Num(At

j) ≥ �ρ · Area(Aj)�).
Next, we illustrate the problem by an example. Assume there are 5 exhi-

bition halls and 7 visitors. The areas of these exhibition halls are {3, 4, 4, 3, 6}
(m2) and all the visitors are located in the region A1, A5, A2, A4, A5, A1,
A3, respectively at the initial time. The transition matrix M is given as fol-
lows in Figure 2(a). We aim to evaluate the predictive density queries at t = 3
with the thresholds ρ = 1 and α = 0.35. Considering all the exhibition halls,
we could compute the probabilities, Pr(Num(A3

1) � �ρ · Area(A1)�) = 0.0041,
Pr(Num(A3

2) � �ρ · Area(A2)�) = 0.041, Pr(Num(A3
3) � �ρ · Area(A3)�) =

0.0476, and Pr(Num(A3
4) � �ρ · Area(A4)�) = 0.437. According to α, we con-

clude that region A4 is a dense region.
Note that a Markov chain state can be represented by different spatial gran-

ularities and we model an indoor room as a state in this paper. Similarly, the
query regions are also defined as targeted indoor rooms in this paper. Our model
and pruning methods can be extended to handle other types of states and query
regions.

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 249

3.2 Markov Chain Index

Because the number of state transitions in indoor environments is limited in the
two successive timestamps, the transition matrix M is a sparse matrix. To reduce
the query and traverse time accordingly. We propose a Markov chain index that
facilitates retrieving the correlations between two successive timestamps.

The proposed Markov chain index is a loop-structured index that provides
efficient lookup and/or computation of the conditional probability relating any
two Markovian continuous timestamps. The index is organized in the loop struc-
ture shown in Figure 2(b). The lower level of the tree (the timestamps t) is the set
of all the states of Markov chain and each state stores the non-zero conditional
probabilities of M . The upper level only stores all the states of Markov chain at
the timestamps t − 1. And the connecting lines between the lower level and the
upper level denote the state transition between the two Markovian continuous
timestamps.

0.5 0.4 0.1 0 0

0 0.3 0.7 0 0

0.1 0.4 0 0.5 0

0 0 0.2 0.8 0

0 0 0 0.3 0.7
:0.5
:0.4
:0.1

:0.3
:0.7

:0.1
:0.4
:0.5

:0.2
:0.8

:0.3
:0.7

()a ()b

Fig. 2. Transition Matrix and Markov China Index structure

The illustrated index in Figure 2(b) is constructed for the transition matrix
M in Figure 2(a). Taking the state (region) A1 as an example, we know that
the states (regions) A1 and A3 at t − 1 can transit to the state (region) A1 at t.
Similarly the states (regions) A1 , A2 and A3 at t can be transferred from the
state (region) A1 at t − 1.

4 Filtering Step

4.1 Spatial Pruning

First of all, we judge whether a query region is a dense region according to the
density threshold ρ and the area of Aj i.e., Area(Aj). We search M to find those
states A0

m at the initial time which can reach Aj by backtracking and obtain
Num(A0

m). Then, Nmax(At
j) can be inferred as Equations 2.

Nmax(At
j) =

∑

m

Num(A0
m) (2)

When Nmax(At
j) < �ρ · Area(Aj)� at the query time t, we can get Pr(Num(At

j)
� �ρ · Area(Aj)�) = 0 < α. So, region Aj is pruned safely.

250 M. Li et al.

4.2 Efficient Pruning of Probability Bounds

In order to return dense regions, we must finish two high-cost computation pro-
cedures. The first procedure is to calculate the probability from some initial
state (region) A0

m to a query region Aj . In the second procedure, all these
obtained probabilities and corresponding object numbers for all the involved
initial states are considered based on possible world semantics for final results.
In this section, we first analyze the bounds of the first procedure, which are
denoted as Pr⊥(A0

m � Aj) and Pr�(A0
m � Aj) separately, where Pr(A0

m � Aj)
denotes the probability that a moving object in A0

m at the initial time (t = 0)
reaches Aj at the query time t.

For each query region Aj , based on the Markov Chain Index and M , if we
give the query time t, we can infer that n states could reach state Aj at the
initial time. For Aj , we find a preceding state At−1

j′ with a maximal inbound
transition probability to At

j . We can prove an upper bound of Pr(A0
m � Aj) as

follows.
Pr�(A0

m � Aj) = max{Pr(At
j |At−1

j′)}
where Pr(A0

m � Aj) �= 0.
Similarly, the following formula describes the lower bound of Pr(A0

m � Aj).
At the backtracking path, we always choose a preceding state At−1

j′ with a max-
imal inbound transition probability to At

j as the next state to explore. This is a
recursive process. Finally, we acquire a transition path with the maximal prob-
ability. Because only one path is considered, the obtained probability can be
proved to be a lower bound of Pr(A0

m � Aj) as follows. Note that in order to
search more A0

m which can reach Aj , we record all initial inbound states for the
final iteration.

Pr⊥(A0
m � Aj) = max{Pr(At

j |At−1

j
′)}×

max{Pr(At−1

j
′ |At−2

j
′′)} × · · · × Pr(A1

j(t−1)′ |A0
m)

According to Pr�(A0
m � Aj), we can infer Pr�(Num(At

j) � �ρ · Area(Aj)�)
by considering all the involved A0

m. Similarly, we can infer Pr⊥(Num(At
j) �

�ρ · Area(Aj)�) by only considering all At
j and those corresponding A0

m found
by backtracking. But on the grounds that huge costs will be incurred when
evaluating Pr(Num(At

j) � �ρ · Area(Aj)�) directly in the second procedure by
enumerating all the possible world instances, we cannot bear the extra overhead
to use Pr�(A0

m � Aj) and Pr⊥(A0
m � Aj) to estimate the result probability

bounds straightforward. Therefore, we further propose a grouping method for
filtering to simplify the final enumeration process.

Notice that we study the predictive density queries in indoor environments,
so the query time t would not be far from the initial time. We do not need to
concern about the problem of a huge number of possible paths.

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 251

4.3 Probability Pruning by Grouping

At the query time t, we group all the states A0
m that can reach the query region

Aj by the probability Pr(A0
m � Aj). We divide [0, 1] into 1/θ equal intervals,

where θ is the step size and θ ∈ [0, 1]. For each region Aj , Nmax(At
j) is the

maximum number of moving objects which can reach Aj at the query time t.
Besides, we define a variable gk to represent the k-th group with k from 0 to 1/θ−
1. Given ρ and Area(Aj), we aim to estimate Pr(Num(At

j) � �ρ · Area(Aj)�) by
grouping. We define Nmax(gt

k) as the maximum number of moving object which
can reach Aj in gk at the query time t and Num(gt

k) as the number of object

in gk at the query time t. And thus, we have
∑ 1

θ −1

k=0 Nmax(gt
k) = Nmax(At

j), and
∑ 1

θ −1

k=0 Num(gt
k) = Num(At

j)
By separately calculating Nmax(gt

k), we have

Pr(Num(At
j) � �ρ · Area(Aj)�) =

Num(At
j)∑

Num(gt
0)

Num(At
j)−Num(gt

0)∑

Num(gt
1)

· · ·
Num(At

j)−(
∑ 1

θ
−2

k=0 Num(gt
k))∑

Num(gt
1
θ

−1
)

(3)

1
θ −1∏

k=0

Pr(CNum(gt
k)

Nmax(gt
k)

)

where Pr(CNum(gt
k)

Nmax(gt
k)

) is the probability that Num(gt
k) objects are in the gk group

in this region at the query time t.
Since the minimum and maximum probability of Pr(A0

m � Aj) in each group
gk are (k − 1)θ and kθ, respectively. We analyze the bounds of Pr(Num(At

j) �
�ρ · Area(Aj)�) as follows.

Lemma 1. Let Pr(Num(At
j) � �ρ · Area(Aj)�) be the probability of a region

containing the Num(At
j) objects at the query time t. Then, the lower bound of

this probability is

Pr⊥(Num(At
j) � �ρ · Area(Aj)�) =

Num(At
j)∑

Num(gt
0)

Num(At
j)−Num(gt

0)∑

Num(gt
1)

· · ·
Num(At

j)−(
∑ 1

θ
−2

k=0 Num(gt
k))∑

Num(gt
1
θ

−1
)

1
θ −1∏

k=0

C
Num(gt

k)

Nmax(gt
k)

((k − 1)θ)Num(gt
k)(1 − kθ)Nmax(g

t
k)−Num(gt

k)

and the upper bound of this probability is

Pr�(Num(At
j) � �ρ · Area(Aj)�) =

Num(At
j)∑

Num(gt
0)

Num(At
j)−Num(gt

0)∑

Num(gt
1)

· · ·
Num(At

j)−(
∑ 1

θ
−2

k=0 Num(gt
k))∑

Num(gt
1
θ

−1
)

1
θ −1∏

k=0

C
Num(gt

k)

Nmax(gt
k)

(kθ)Num(gt
k)(1 − (k − 1)θ)Nmax(g

t
k)−Num(gt

k)

252 M. Li et al.

Consequently, based on the upper bound and the lower bound given in lemma
1, when Pr�(Num(At

j) � �ρ · Area(Aj)�) < α at time t, region Aj can be
pruned safely. Similarly, when Pr⊥(Num(At

j) � �ρ · Area(Aj)�) > α at time t,
the region Aj is the dense region and thus can be returned in the result set.

However, exactly calculating Pr(o0i � Aj), i.e., Pr(A0
m � Aj), where o0i ∈

A0
m in the first procedure, is also time consuming due to massive paths of Markov

chains involved. And therefore, by dividing Pr⊥(A0
m � Aj) and Pr�(A0

m � Aj)
proposed in subsection 4.2 into different groups and adopting the techniques
used in this subsection, we can get relatively loose bounds for Pr�(Num(At

j) �
�ρ · Area(Aj)�) and Pr⊥(Num(At

j) � �ρ · Area(Aj)�) at a smaller cost, and
employ these bounds to conduct pruning first. For those unpruned regions, the
proposed pruning based on Lemma 1 will be further performed.

5 Refinement Step

In order to verify whether a candidate region is a dense region, we present two
exact methods and an approximate method during the refinement phase.

5.1 Exact Methods

We use the complete binary tree (CBT) to design an algorithm for identify-
ing whether the unpruned regions are dense regions. The algorithm scans all
unpruned regions in the space. There are at most Nmax(At

j) moving objects
in the unpruned region Aj at the query time t. For each moving object oi, its
probability satisfies Pr(ot

i � Aj) > 0. Therefore, we can divide Pr(Num(At
j) �

�ρ · Area(Aj)�) into different parts in equation (4), and process each part with
a branch Bi, where

Pr(Num(At
j) � �ρ · Area(Aj)�) =

Pr(B1) + Pr(B2) + · · · + Pr(Bn) + · · · (4)

where, Pr(B1) = [Pr(ot
i) × · · · × Pr(ot

k)
︸ ︷︷ ︸

�ρ·Area(Aj)�
] · [(1 − Pr(ot

m)) × · · · × (1 − Pr(ot
h)

︸ ︷︷ ︸
≤Nmax(At

j)−�ρ·Area(Aj)�
]

i �= k �= m �= h, i, k,m, h ∈ [0, Nmax(At
j)] and each Pr(ot

i) = Pr(ot
i � Aj)

for simplicity here.
In equation (4), Pr(B1) is the probability of a branch in the binary tree. As an

example in Figure 3(a), we can calculate the probabilities of the moving objects
in region A1 at the query time t. Assuming the parameter �ρ · Area(A1)� = 3
and the Num(At

1) = 4 > 3, we have Pr(Num(At
1) � �ρ · Area(A1)�) = Pr(B1)+

Pr(B2)+ · · · = Pr(ot
1) ·Pr(ot

2) ·Pr(ot
3) ·(1−Pr(ot

4)) = Pr(ot
1) ·Pr(ot

2) ·(1−Pr(ot
3)) ·

Pr(ot
4) = Pr(ot

1)·(1−Pr(ot
2))·Pr(ot

3)·Pr(ot
4) = (1−Pr(ot

1))·Pr(ot
2)·Pr(ot

3)·Pr(ot
4).

At last, we compare Pr(Num(At
1) � �ρ · Area(A1)�) with α. If Pr(Num(At

1) �
�ρ · Area(A1)�) ≥ α, region A1 is a dense region.

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 253

1()p o 1()p o

2()p o

3()p o

4()p o

2()p o

3()p o

4()p o

1()p o

3()p o

2()p o

4()p o

3()p o

1()p o

2()p o

4()p o

()a CBT ()b RCBT

Fig. 3. Example of accurate methods

Furthermore, we propose an improved refinement approach RCBT . In RCBT ,
we rank the probabilities of the moving objects in descending order. In the above
example, we can see o3 is the object with the maximum probability Pr(ot

3), fol-
lowed by objects o1, o2, o4 and o5 as shown in Figure 3 (b). When we calculate
Pr(Num(At

j) �
⌈
ρ · Area(At

j)
⌉
), the efficiency can be further improved.

Note that during the refinement, we adopt an alternative transformed model
for the probability evaluation. We can infer that when �ρ · Area(Aj)� � Nmax(A

t
j)

2 ,
the function Pr(Num(At

j) � �ρ · Area(Aj)�) could be expressed as Pr(Num(At
j)

� �ρ · Area(Aj)�) = 1 − Pr(Num(At
j) < �ρ · Area(Aj)�) = 1 − Pr(Num(At

j) =
1) −Pr(Num(At

j) = 2) − · · · − Pr(Num(At
j) = (�ρ · Area(Aj)�) − 1). In this

case, the computation costs can be reduced compared to straightforward enumer-
ation on possible worlds.

5.2 Approximate Sampling Methods

By trading accuracy with efficiency, we provide an approximate method based
on Chernoff polynomials (CAM). Chernoff polynomials are widely used with a
rich theory. We can leverage Chernoff bound to estimate our problem as follows.

There are Nmax(At
j) moving objects which may reach region Aj at the query

time t. Consider accuracy parameters ε and δ, and a number of sample r. Let
{Ii}, 1 ≤ i ≤ r, be a set of r samples. We will sample the moving objects in

a given region Aj . By selecting r ≥ (Nmax(A
t
j)−1)2

2ε2 ln(2δ) according to Chernoff
Bound, we can prove

Pr(1r
r∑

i=1

Ii − �ρ · Area(Aj)� ≥ ε) ≤ δ , Ii =
{

1 p(oi) > λ
0 otherwise,

where λ is a random number in [0, 1].
The computational cost is then reduced from 2Nmax(A

t
j) to r. It indicates that

the bound provides a good estimate for the expected reliable dense regions.

254 M. Li et al.

5.3 Predictive Density Queries Algorithms

The process of predictive density queries is described in algorithm 1. The steps
2 − 6 demonstrate the spatial pruning method. Then, we process the unpruned
regions by grouping the probabilities of the states (Steps 7 − 8). Next, we use
the upper bound and lower bound of Pr(Num(At

j) � �ρ · Area(Aj)�) to verify
whether the regions are the dense regions (Steps 9 − 13). Finally, we use CBT ,
RCBT or CAM to refine the result set (Steps 14 − 17).

Algorithm 1. Algorithm of Predictive Density Queries
Input : Query Region Set R = {A1, A2, · · · , Aj , · · · };

Query Time t; ρ; α; M ; Area(Aj); θ

Output: Result Set R
′
;

1 R
′
= ∅;

2 for ∀Aj ∈ R do
3 Compute Nmax(At

j) by the formula (2)
4 if Pr(Nmax(At

j) � �ρ · Area(Aj)�) = 0 then
5 Prune Aj ; /* Remove Aj from R */

6 else
7 Compute Pr�(A0

m � Aj) and Pr⊥(A0
m � Aj) by M

8 Group Pr�(A0
m � Aj) and Pr⊥(A0

m � Aj)
9 Compute Pr⊥(Num(At

j) � �ρ · Area(Aj)�) and
Pr�(Num(At

j) � �ρ · Area(Aj)�) by the lemma 1
10 if Pr⊥(Num(At

j) � �ρ · Area(Aj)�) > α then
11 R

′ ← R
′ ∪ Aj

12 if Pr�(Num(At
j) � �ρ · Area(Aj)�) < α then

13 Prune Aj /* Remove Aj from R */

14 for ∀Aj ∈ R do
15 if Pr(Num(At

j) � �ρ · Area(Aj)�) > α then
16 R

′ ← R
′ ∪ Aj

17 Return R
′

6 Experiment

In this section, we conduct a set of experiments to verify the efficiency of our
proposed methods, using a desktop computer with an Intel E5 − 1620 CPU at
3.60 GHz and 8GB of RAM. All algorithms were implemented in C++.

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 255

6.1 Experiment Setting

All experiments are conducted on two sets of Markovian streams inferred from
real-world RFID data1. Two real datasets were collected using building-wide
RFID deployment. The data were collected by volunteers and these volunteers
carried some sensors as they went through one-hour versions of typical daily
routines (working in their offices, having meetings, taking coffee breaks, etc.).
These datasets are given in the form of conditional probability. In particular, we
infer the transition matrix M based on the conditional probabilities. According
to the actual situation, the visitors stay at an exhibition hall for about 10 minutes
and then go to another exhibition hall. So, we generate a transition matrix with
a time interval of 10 minutes between two consecutive ticks. Finally, we obtain
a common transition matrix M by taking the average of these matrices.

In real-world scenarios, we assume the area of each hall is randomly between
50m2 and 500m2. The state space of the two datasets are 160 rooms and 352
rooms respectively. Objects depart from random positions in indoor halls. In
this paper, we predict a hall whether is a dense region after one hour, i.e., the
prediction time is 6 ticks from the initial time.

The default parameter values used in our tests are summarized in Table 1.

Table 1. Parameters and their values

Parameter Setting
Density threshold: ρ 0.1, 0.3, 0.5, 1,
Number of moving objects 500, 1000, 1500, 3000
Probability threshold: α 0.3, 0.4, 0.5, 0.6, 0.7
Step size: θ 0.1, 0.2, 0.33, 0.5

6.2 Experimental Results

At first, we aim to evaluate the effects of our proposed pruning methods over the
above two datasets separately. Particularly, three combinations of pruning meth-
ods, i.e., the spatial pruning method (denoted as S pruning), spatial pruning
followed by the probability pruning only based on the grouping of the bounds of
Pr(A0

m � Aj) proposed in section 4.2 (denoted as SP1-pruning) and the spa-
tial pruning combined with all the proposed methods in section 4.3. (i.e., first
filtering by the grouping of the probability bounds of Pr(A0

m � Aj) and then
the grouping of the exact value of Pr(A0

m � Aj)) (denoted as SP -pruning).
From the results measured by pruning ratio illustrated in Figure 4, we can

observe that the proposed pruning techniques can achieve progressive filtering
powers. Especially for SP which incorporates all the pruning techniques, a prun-
ing ratio beyond 80% is satisfactory. Also, because a larger number of regions
in dataset 2 can lead to more regions pruned, better filtering effectiveness is
obtained accordingly.
1 http://rfid.cs.washington.edu/

http://rfid.cs.washington.edu/

256 M. Li et al.

Fig. 4. Pruning ratios Fig. 5. recall ratio for sampling

Fig. 6. The effect of the object number on the running time

Next we exhibit in Figure 5 the recall ratio for the approximate sampling
method on the above two datasets separately. From the experiment results, we
can see that the proposed approximate sampling method can provide a good
estimate for the expected reliable dense regions.

Furthermore, we investigate the impact of the number of moving objects on the
running time of our algorithms, i.e., CBT algorithm, RCBT algorithm, RCBT −
S pruning algorithm, RCBT −SP pruning algorithm and CAM −SP algorithm.
As shown in Figure 6, the running time of all the methods increases along with the
increasing number of objects because of a higher workload. RCBT can improve
CBT in query time by constructing the optimization method, and RCBT − S
and RCBT − SP substantially outperform CBT and RCBT in efficiency on the
grounds that a large portion of regions have been filtered beforehand. In addition,
CAM − SP can respond in realtime with approximate feedbacks by employing
sampling techniques. Given a fixed sampling rate, more processing time will also
be incurred due to the increase of involved objects.

Moreover, we test the effect of the density threshold ρ on the running time of
these methods on different datasets. The experimental results are illustrated in
Figure 7. We can observe that the running time of the RCBT−SP algorithm also
increases as the density threshold ρ increases. Because Area(Aj) is fixed, when
the density threshold ρ increases, the value of �ρ · Area(Aj)� becomes increas-
ingly larger. Particularly, for CAM − SP , the running time remains steady,
because the same number of objects will be sampled and evaluated regardless of
ρ.

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 257

Fig. 7. The effect of ρ on the running time

Fig. 8. The effect of α on the running time

Further, the effect of α on the running time is illustrated in Figure 8. The
running time increases as the probability threshold α increases. This is because
when we verify whether the regions are dense regions in the refinement phase, the
higher the probability threshold α is, the more branches Pr(Bi) are calculated
in the CBT and RCBT .

Finally, we investigate the effect of the step size θ on the running time and
the result is showed in Figure 9. The running time of all the methods increases
along with the increasing number of grouping. Because more number of grouping
results in better pruning effect.

7 Conclusions

In this paper, we investigate the predictive density queries based on Markov
correlations in indoor environments. Firstly, we presented a novel index struc-
ture, retrieving the correlations between two continuous timestamps, which can
be adopted for efficient computation. Given a set of indoor moving objects that
exhibits Markov correlations, we develop some pruning-refinement methods to
answer predictive density queries on these moving objects. The pruning methods
including one spatial pruning rule and two probability pruning rules are pre-
sented. These pruning methods can reduce the number of candidate regions to
improve the query efficiency. Also, an exact method and an approximate method

258 M. Li et al.

Fig. 9. The effect of θ on the running time

are proposed during the refinement phase. Finally, we identify the efficiency of
the proposed methods through the extensive experiments by comparing these
methods on real datasets.

Acknowledgments. This research is supported by the National Basic Research Pro-
gram of China (973 Program) under Grant No. 2012CB316201, the National Natural
Science Foundation of China (61472071, 61202086) and the Fundamental Research
Funds for the Central Universities(N130404010).

References

1. Aggarwal, C.C., Agrawal, D.: On nearest neighbor indexing of nonlinear trajec-
tories. In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2003, pp. 252–259. ACM,
New York (2003)

2. Emrich, T., Kriegel, H.-P., Mamoulis, N., Niedermayer, J., Renz, M., Züfle,
A.: Reverse-nearest neighbor queries on uncertain moving object trajectories.
In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A.,
Thalheim, B. (eds.) DASFAA 2014, Part II. LNCS, vol. 8422, pp. 92–107. Springer,
Heidelberg (2014)

3. Emrich, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Züfle, A.: Querying uncertain
spatio-temporal data. In: ICDE, pp. 354–365 (2012)

4. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery
of dense areas in spatio-temporal databases. In: Hadzilacos, T., Manolopoulos, Y.,
Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 306–324.
Springer, Heidelberg (2003)

5. Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density queries on continu-
ouslymoving objects. In: ICDE, p. 71 (2006)

6. Kolodziej, J., Khan, S.U., Wang, L., Min-Allah, N., Madani, S.A., Ghani, N., Li, H.:
An application of markov jump process model for activity-based indoor mobility
prediction in wireless networks. In: FIT 2011, pp. 51–56 (2011)

7. Letchner, J., Ré, C., Balazinska, M., Philipose, M.: Access methods for markovian
streams. In: ICDE, pp. 246–257 (2009)

8. Lian, X., Chen, L.: A generic framework for handling uncertain data with local
correlations. PVLDB 4(1), 12–21 (2010)

Effective and Efficient Predictive Density Queries for Indoor Moving Objects 259

9. Ni, J., Ravishankar, C. V.: Pointwise-dense region queries in spatio-temporal
databases. In: ICDE, pp. 1066–1075 (2007)

10. Niedermayer, J., Züfle, A., Emrich, T., Renz, M., Mamoulis, N., Chen, L., Kriegel,
H.-P.: Probabilistic nearest neighbor queries on uncertain moving object trajecto-
ries (2013). arXiv preprint arXiv:1305.3407

11. Ré, C., Letchner, J., Balazinska, M., Suciu, D.: Event queries on correlated prob-
abilistic streams. In: SIGMOD Conference, pp. 715–728 (2008)

12. Soliman, M.A., Ilyas, I.F., Ben-David, S.: Supporting ranking queries on uncertain
and incomplete data. VLDB J. 19(4), 477–501 (2010)

13. Yang, B., Lu, H., Jensen, C.S.: Probabilistic threshold k nearest neighbor queries
over moving objects in symbolic indoor space. In: Proceedings of the 13th Interna-
tional Conference on Extending Database Technology, pp. 335–346. ACM (2010)

14. Yu, J., Ku, W.-S., Sun, M.-T., Lu, H.: An rfid and particle filter-based indoor spa-
tial query evaluation system. In: Proceedings of the 16th International Conference
on Extending Database Technology, pp. 263–274. ACM (2013)

15. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in
spatial databases. In: SSDBM, pp. 297–306 (2004)

16. Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively indexing uncer-
tain moving objects for predictive queries. PVLDB 2(1), 1198–1209 (2009)

http://arxiv.org/abs/1305.3407

Efficient Trip Planning for Maximizing
User Satisfaction

Chenghao Zhu1, Jiajie Xu1,3(B), Chengfei Liu2, Pengpeng Zhao1,3,
An Liu1,3, and Lei Zhao1,3

1 School of Computer Science and Technology, Soochow University, Suzhou, China
{xujj,ppzhao,anliu,zhaol}@suda.edu.cn

2 Faculty of ICT, Swinburne University of Technology, Melbourne, Australia
cliu@swin.edu.au

3 Collaborative Innovation Center of Novel Software Technology
and Industrialization, Nanjing, China

Abstract. Trip planning is a useful technique that can find various
applications in Location-Based Service systems. Though a lot of trip
planning methods have been proposed, few of them have considered the
possible constraints of POI sites in required types to be covered for user
intended activities. In this paper, we study the problem of multiple-
criterion-based trip search on categorical POI sites, to return users the
trip that can maximize user satisfaction score within a given distance
or travel time threshold. To address this problem, we propose a spatial
sketch-based approximate algorithm, which extracts useful global infor-
mation based on spatial clusters to guide effective trip search. The effi-
ciency of query processing can be fully guaranteed because of the superior
pruning effect on larger granularity. Experimental results on real dataset
demonstrate the effectiveness of the proposed methods.

1 Introduction

Location-Based Services (LBS) are one of the most frequently used tools in our
life nowadays, and most of them rely on the trip planning techniques [1–4] to
provide traffic related services. People can easily find the routes they need by
accessing Google Map or Microsoft MapPoint through their personal computers
or smart phones. Some systems are capable of suggesting users the trips that can
cover their intended activities. Obviously, the trip planning algorithms play a key
role to improve the quality and efficiency of our travel, and a lot of work [3,5–11]
has been done to return users the rational trips and routes.

Given that people usually seek to find trips according to their intended activ-
ities, this paper investigates the problem of multiple-criterion-based trip search
on categorical POI sites. Consider the example in Figure 1 where all POI sites
are distributed on a road network, and each of them belongs to a type (e.g.,
a restaurant or a cafe) and has a satisfaction score marked by previous guests.
A tourist issues a query to find a route from location B to location E via a
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 260–276, 2015.
DOI: 10.1007/978-3-319-18120-2 16

Efficient Trip Planning for Maximizing User Satisfaction 261

Fig. 1. Trip Search on Categorical POI Sites

cinema, a shopping mall and a restaurant within a distance threshold. Here,
most of the route search methods [5,6] cannot be applied because they require a
POI site in each type to be selected before the trip search; The categorical trip
search methods proposed in [7,9] are able to return a shortest trip (i.e., Tr1 in
the dashed line), but it only supports single-criterion-based trip search, while in
reality users would prefer to choose such a trip (i.e., Tr2 in the full line) that can
maximize the satisfaction of their intended activities within the given distance
threshold.

Motivated by the above example, this paper studies the problem of multiple-
criterion-based categorical trip search, which has high computational overhead
for two main reasons: firstly, it requires to select some POI sites from database
to meet the activity requirements from users, and the combinations between
categorical POI sites are obviously high; secondly, the trip search requires to
compare the scalable candidate trips that pass all selected POI sites, and the
validation of each candidate trip often relies on a large number of shortest path
queries on road network. As far as we know, no existing work can well address
all above challenges to find the optimal trip in Figure 1 efficiently.

In this paper, we present a spatial sketch-based approximate algorithm to
cope with the challenges mentioned above. It utilizes the spatial clustering to
manage the scalable POI sites in larger granularity, then explores the sketched
information in a global point of view to understand the spatial relations between
clusters, as well as the overall execution plan to avoid unnecessary shortest path
queries based on the cost analysis. Finally the extracted information is used
to guide effective trip search. Based on a set of theoretical bounds and search
space reduction techniques, trip search can be processed efficiently because of
the much superior pruning effects over the required dimensions. In summary, the
main contributions of this paper can be summarized as follows:

262 C. Zhu et al.

– We define a problem called efficient trip planning for maximizing user satis-
faction, which could find applications in various LBS systems.

– We propose the satisfaction-score-first trip planning algorithm as the baseline
algorithm to return the exact result.

– We propose the spatial sketch-based approximate trip planning algorithm to
achieve a high performance with a little loss of accuracy.

– We implement the proposed algorithms and conduct experiments on real
datasets to evaluate the performances of our proposed solutions.

The remainder of this paper is organized as follows: We firstly introduce
the related work in Section 2 and then define the problem in Section 3. After-
wards, an exact solution and an approximate solution are presented in Section 4
and Section 5 respectively. We carry out experimental analysis to evaluate and
compare the proposed methods in Section 6. Finally, we conclude this paper in
Section 7.

2 Related Work

Trip planning is a classical research problem that has been investigated for many
decades, and existing efforts can be generally classified into two main categories:
the point-based trip search and the categorical trip search.

The point-based trip search aims to find a good path that can pass some
user specified locations over the spatial network, and the evaluation of the trips
can be measured by a single factor [5,6] or multiple factors [12,13], e.g., dis-
tance, expense or time. Some indexing structures such as arterial hierarchy [14],
contraction hierarchies [15], path oracle [16], transit-node routing [17], detour
based [18] as well as some trajectory based methods [19] are developed to speed
up the searching process by the shortcuts embedded in the indexing structure.
However users tend to have some intended activities in the trip (e.g., to have
dinner) in some cases, the trip returned by those methods cannot be ensured to
cover the POI sites in required types (e.g., restaurant).

To address the above problem, some effort [3,7–9] has been made in recent
years toward the categorical trip search, i.e., to find the good paths with all
required categorical POI sites to be covered. Specifically, Li et al. proposed a
trip planning query (TPQ) in [3,7] to find the shortest path through at least
one POI site of each required type. Later, Sharifzadeh et al. [9] defined and
solved a variant problem of TPQ that additionally ensures the POI sites appear
in a correct order consistent with user specification. However, those methods
mainly take single criterion into account, while the users tend to have multiple
requirements (e.g., have distance threshold and prefer total satisfaction score to
be high). More recently, some work [20–23] was done to recommend trips to users
under different criteria based on the historical trajectory data. An assumption
was made that there exist one or more trajectories in database that can meet the
requirement of each user query. Unfortunately, this assumption is not realistic in
many cases especially we need to control the size of trajectory data for querying
efficiency concerns.

Efficient Trip Planning for Maximizing User Satisfaction 263

In this paper, we investigate the problem of multiple-criterion-based trip
search over categorical POI sites. Compared to TPQ and its variants, our prob-
lem requires to balance different factors and thus incurs much greater complexity
in query processing. Therefore, our methods need to adopt the spatial clustering
techniques and explore useful knowledge in a global view to prune the search
space in greater granularity.

3 Problem Definition

In this section, we formalize the problem of this paper based on some notions
defined as follows.

Definition 1. (Road Network) A spatial network is modeled as a connected and
undirected graph G = (V , E), where V is a set of vertices and E is a set of
edges. A vertex vi ∈ V indicates a road intersection or an end of a road. An
edge e ∈ E is defined as a pair of vertices and represents a segment connecting
the two constituent vertices.

For example, (vi, vj) represents a road segment that enables travel between
vertices vi and vj . We use |vi, vj | to denote the shortest path between vertices
vi and vj , and their network distance ||vi, vj || is the accumulated length of all
edges on |vi, vj |, i.e., ||vi, vj || = Σek∈|vi,vj | length(ek).

Definition 2. (Site) A site is a POI where users can take some activities, and it
is stored in the form of (loc, sc, type). Given a site s, s.loc denotes the geograph-
ical location of the site; s.sc is the satisfaction score of site s, which is computed
as the average of all scores marked by historical guests, and thus implies the
overall satisfaction level of guest experience; s.type specifies the type of site s,
e.g., ′shopping mall′ and ′restaurant′, based on a pre-defined type vocabulary.

The locationof eachsite canbemappedontoagivenroadnetworkbymap-matching
algorithms. In this paper, we assume all sites have already been assigned to a vertex
ontheroadnetwork(i.e.,s.loc ∈ V) for thesakeofcleardescription.Also,weassume
that each site belongs to only one type.

Obviously, users desire to obtain a trip (ordered) as the result returned by
the system rather than a collection of sites (unordered), so a concept of our trip
is necessary to be defined.

Definition 3. (Trip) We use Tr = {B,S,E} to denote our trip, which is from
beginning point B to ending point E via a sequence of sites S (Duplicate site
type is not allowed in S). Between any two adjacent sites si, sj ∈ S, the trip
always follows the shortest path connecting si and sj. Therefore, the distance of
a trip Tr can be calculated as

||Tr|| = ||B, fs|| +
∑

si,sj∈S

||si, sj || + ||ls, E|| (1)

264 C. Zhu et al.

where fs and ls denote the first and the last sites in sequence S respectively.
Regarding to user experience, we evaluate satisfaction score of a trip Tr as the
sum of satisfaction scores of all sites in its site sequence S such that

score(Tr) =
∑

si∈Tr.S

si.sc. (2)

Definition 4. (Query) Given a spatial network G, a collection of sites and a
type vocabulary, we can define our query as Q = {B,E,Maxd, T}, where B
and E specify the beginning point and the ending point respectively; Maxd is
the threshold of the trip distance; and T is the subset of type vocabulary, which
contains the activity types that the user desires to access.

Definition 5. (Candidate Trip) Given a query Q, a trip Tr is said to be a
candidate trip if it satisfies the following conditions:

(1) It starts at beginning point Q.B and ends up at ending point Q.E;
(2) Every type in Q.T corresponds to only one site in Tr.S, i.e., Q.T =

{si.type|si ∈ Tr.S};
(3) The distance of the trip is within the given distance threshold Q.Maxd,

i.e., ||Tr|| ≤ Q.Maxd.

Problem Definition. Given a query Q, the road network G and a set of sites,
from the set of all candidate trips STr, this paper intends to find and return the
candidate trip Tr ∈ STr that has the maximum value of satisfaction score, such
that ∀Tr′ ∈ STr, score(Tr′) ≤ score(Tr).

4 Satisfaction-Score-First Trip Planning Algorithm

In this section, we propose a baseline algorithm, the satisfaction-score-first trip
planning algorithm (S2F) to process the user query. It adopts the best first
method and returns the exact result. The main idea of S2F is to verify the
candidate sites (covering all required types) by the descending order of total
satisfaction score. For each candidate sites as a group, we compute the candidate
trips that pass all those sites, and a trip is returned if its distance is less than or
equal to the given threshold. For the convenience of description, we define the
notion candidate sites (Cs) first.

Definition 6. (Candidate Sites) Given a query Q, a set of sites Cs is called
candidate sites if they can satisfy the following two conditions: (1) It covers
all the required types in Q.T , i.e., Q.T � {si.type|si ∈ Cs}; (2) If any site is
removed from Cs, the above condition would fail. The satisfaction score of Cs is
measured as the total score of all sites in Cs such that score(Cs) =

∑
si∈Cs

si.sc.

We maintain some necessary data structures to support query processing.
For each type in Q.T (e.g., ′restaurant′), we utilize a list in the form of <
siteId, score > to store all sites in this type, sorted by their value of score. Then
a bi-dimensional list STL is used to cover all types, e.g., STL[i][0] indicates the

Efficient Trip Planning for Maximizing User Satisfaction 265

Algorithm 1. Satisfaction-Score-First Trip Planning Algorithm
Input: a query Q, the inverted list STL
Output: the optimal planned trip Tr
1: Tr ← ∅;
2: PQcs ← {STL[i][0] | ti ∈ Q.T};
3: while true do
4: candidate sites Cs ← PQcs.poll();
5: candidate trips STr ← deriveCandidateTrips(Cs);
6: for each candidate trip Tr′ ∈ STr do
7: if ||Tr′|| ≤ Q.Maxd then
8: Tr ← Tr′;
9: break;

10: else
11: PQcs = UpdatePriorityQueue(PQcs, STL);
12: end if
13: end for
14: end while
15: return Tr;

first record in the list belonged to type ti (i.e., the site that has the highest
satisfaction score among all sites in type ti). Based on STL, a priority queue
PQcs is used in implementation to dynamically maintain a list of Cs for access
in the descending order of their satisfaction scores.

Algorithm 1 shows how the S2F algorithm works. At first, the Cs that has
maximum satisfaction score in each required type is inserted to the priority queue
PQcs (Line 2). Then we keep verifying all the Cs (Lines 3-14): for each round,
we fetch the top record from PQcs to get the candidate sites Cs with highest
satisfaction score (Line 4), and then verify it regarding to the candidate trips
(Lines 5-13). If a valid trip is found, then we simply return this trip to the user
(Lines 7-9); otherwise, we update the priority queue PQcs to guarantee the next
best candidate sites appear in PQcs (Line 11). This procedure repeats until the
optimal result can be found.

Given a candidate sites Cs, it corresponds to a number of |Cs|! candidate trips
(via sites in different sequences), so it may require to verify all of the candidate
trips unless a valid trip can be found. By Q.E is the intermediate destination in
the way back to Q.B, it can be easily reduced to the famous Traveling Salesman
Problem in NP Complete complexity. Fortunately, in the real applications, the
number of required types tends to be relatively small, such that we can normally
process it in an acceptable time. However, for those extreme cases with a large
value of |Cs|, we adopt a greedy method to iteratively choose the closest unvisited
site in Cs to check the promising candidate trips with more priority, so as to
stop early and thus accelerate the query processing.

In overall, the best first methods of the satisfaction-score-first trip planning
algorithm contribute to reach the optimal trip earlier than the search by ran-
dom. But obviously, it is potentially engaged in traversing all candidate trips as

266 C. Zhu et al.

well. In such cases, the tremendous combinations would cause the algorithm to be
extremely slow especially when the number of sites goes up.

5 Spatial Sketch-Based Approximate Trip Planning
Algorithm

In this section, we further introduce a spatial sketch-based approximate trip plan-
ning algorithm (S2A in short) to support efficient trip search. We first overview
the structure of S2A and then describe the work mechanism in detail.

5.1 Overview

In the S2A algorithm, we process the trip search by three main steps as shown in
Figure 2. The first step is the preprocessing step, in which the sites are clustered
to spatial clusters, and the useful inter and intra cluster information are extracted
as well. Figure 2 (a) illustrates the preprocessing step.

Afterwards, the second step is to search on the granularity of clusters, without
touching at the site level. As shown in Figure 2 (b), we first discuss the priority
of the candidate clusters to be checked. Then we consider the issue of sequence
of the candidate clusters to go through (sketched trips in Figure 2 (b)), so that
the hopeless and unpromising ones can be filtered out. Furthermore, we analyze
the contents of the sketched trips to derive the execution plan based on the cost
analysis of the required shortest path search, which contributes to avoid vast
unnecessary computational cost in trip search.

Fig. 2. An example of S2A

At last, the trip search goes to the site level as Figure 2 (c) shows. Given
a candidate clusters, we scan the corresponding candidate sites based on the
execution plan derived from the previous step, and some bounds are used to
guarantee the effectiveness and efficiency of trip search in S2A.

Efficient Trip Planning for Maximizing User Satisfaction 267

5.2 Preprocessing

As the amount of sites is large, it is not realistic to process the trip search on
all sites directly. In the S2A algorithm, we carry out the spatial clustering on
sites first, so that it is possible to maintain a global picture to prune on larger
granularity and to guide smarter trip search.

Towards the spatial clustering, classical algorithms can be generally classi-
fied into two categories, namely density-based method and partitioning-based
method. As illustrated in Figure 3, for algorithms in density-based method like
DBSCAN, they tend to find clusters with high spatial coherence (circles in the
full line), but nevertheless, they do not guarantee all sites to be included into the
clusters because of its density requirements, possibly leading good sites unable
to be represented in clusters. In contrast, the partition-based approaches like
k-means or k-medoids are capable of ensuring every site to appear in a cluster,
while the clusters (circles in the dashed line) tend to be not compact enough.

C1

C3

C2

1

3

222

Density-Based
Cluster

Partitioning
Cluster

Fig. 3. Clustering By Classic Algo-
rithms

C1

C3

C2

11

3

2

Clusters with No
Trimming

Clusters after
Trimming

Fig. 4. Clustering By the PTC

To address above problem, we present the partition-trimming clustering algo-
rithm (PTC) to return the spatially coherent clusters like those in Figure 4.
Specifically, the sites are clustered by the partitioning-based approach first, so
all sites are covered by the clusters (circles in the full line). But the initial clus-
ters are possibly too sparse, so we further trim the clusters in the second step: for
each cluster C, we continuously remove the sites with satisfaction scores lower
than that of an interior site (that has less distance to center of C) in the same
type; other sites (circles in the dashed line) are reserved because they are likely
to appear in the trip required by users. In this way, it achieves a good balance
between the spatial coherence and good site coverage.

Based on the spatial clusters, we extract and store some necessary information
to assist the pruning in trip search. Firstly, we compute and store the spatial rela-
tions of clusters, e.g., the minimum and the maximum possible distances between
any two clusters, and the maximum distance between sites within a cluster, etc.
Two variables Cmini,j and Cmaxi,j are used to represent the minimum and the

268 C. Zhu et al.

maximum distance from cluster Ci to Cj respectively. Secondly, we extract the
categorical information of each cluster, e.g., the types in the cluster, so we can
have an overview of the cluster to help cluster selection.

5.3 Sketched Trip Search on Clusters

Based on the spatial clusters, we analyze the information extracted not only to
prune the search space in a greater granularity, but also to find out guidelines of
how to carry out trip search on scalable sites. Given a query Q, we commence
with the candidate clusters, e.g., in Figure 2 (b) (C1, C2, C3) if the user desires
to get a trip via a restaurant, a cinema and a shopping mall. We formally give
the definition of candidate clusters (Cc) as follows:

Definition 7. (Candidate Clusters) Given a query Q, a collection of clusters
Cc is called candidate clusters if it can satisfy the following two conditions: (1)
Each type in Q.T corresponds to a cluster in Cc, i.e., ∀ti∈Q.T , ∃Cj∈Cc, and
∃sk∈Cj, such that sk.type = ti; (2) It’s a one-to-one correspondence, i.e., each
type in Q.T is only bound with one cluster in Cc. The satisfaction score of Cc is
computed as:

Score(Cc) =
∑

Ci∈Cc

Max(sj .sc|sj ∈ Ci, sj .type = Ci.type); (3)

where Ci.type implies that Ci has to provide a site in Ci.type.
As our goal is to maximize the satisfaction score of the trip, those Cc with

higher satisfaction scores have greater priority because they cover better trip can-
didates. Similar to S2F, we use a priority queue to retrieve Cc in the descending
order of satisfaction scores. For example, in Figure 2 (b), (C1, C2, C3) has the
greatest score value, so we fetch it to verify its feasibility first.

GivenaCc toverify,wedevote to returnagroupof sketched trips frombeginning
point Q.B to ending point Q.E via the clusters in some sequences, e.g., in Figure 2
(b) < B,C1, C2, C3, E >, < B,C1, C3, C2, E > and < B,C2, C1, C3, E >. Defined
as follows, a sketched trip in cluster level corresponds to a number of candidate trips
in site level, through which we can implement the pruning on a larger granularity
perspective and markedly improve the search efficiency.

Definition 8. (Sketched Trip) Asketched tripSTr ismodeledasSTr={B,Sc, E},
where B and E are the beginning point and the ending point respectively; the Sc

denotes a set of clusters with a sequence that appears in the trip (i.e., that has tem-
poral order to visit), for example Sc = < C1, C2, C3 > in Figure 2 (b).

In any two concessive clusters Ci and Cj in a sketched trip STr, the actual
travel distance between the two clusters is in the range [Cmini,j , Cmaxi,j] (can
be derived from the matrix extracted in pre-processing step), and the distance
of a sketched trip STr is thus in the range [STr.L, STr.U] such that

STr.L = CminB,fc
+

∑

Ci,Cj∈Sc

Cmini,j + Cminlc,E (4)

Efficient Trip Planning for Maximizing User Satisfaction 269

STr.U = CmaxB,fc
+

∑

Ci,Cj∈Sc

Cmaxi,j + Cmaxlc,E (5)

where fc and lc denote the first and the last clusters in the cluster sequence Sc

respectively.
As a Cc can generate a large number (|Cc|!) of sketched trips (via clusters in

different sequences), it would be time-consuming if we scan all of them when the
value |Cc| is high. Therefore it is not realistic to consider all sketched trips, and
we seek to select out the top-k ones most likely to fulfill the distance requirement
of the query for consideration. The problem is how to measure the possibility
P (STr) of an arbitrary sketched trip STr for satisfying the distance constraint.
For a given distance threshold Q.Maxd, there are three situations of a sketched
trip STr: for situation 1 where Q.Maxd < STr.L, obviously STr is hopeless to
meet the distance threshold (P (STr) = 0), so it is filtered; while in situation 2
where Q.Maxd ≥ STr.U , it can be guaranteed to satisfy the distance constraint
(P (STr) = 1), and all trips covered by STr are valid trips; for the situation 3
where STr.L ≤ Q.Maxd < STr.U holds, STr is said to be potentially valid, so
we measure the valid possibility to be:

P (STr) =
Q.Maxd − STr.L

STr.U − STr.L
(6)

where STr.U − STr.L confines the range of possible distances of a trip covered
by STr, and among the whole distance range, Q.Maxd − STr.L confines the
part of the range that is valid in terms of the distance constraint of query Q.
Their ratio can thus represent the possibility of a trip (that can be sketched
to STr) to be valid. Therefore given a Cc, we only consider a sketched trip in
situation 2 if it exists, or consider the top-k sketched trips regarding to their
valid possibilities.

Based on the sketched trips to be considered, we further find out effective exe-
cution plan that requires less shortest path querying overhead based on our cost
analysis model. For each sketched trip, we need to use a number of |STr.Sc| +
1 times of shortest path search (to calculate the distance between two sites in
adjacent clusters, including the beginning/ending point), and we need to process
all sketched trips of the candidate clusters in the worst case. Different cluster
pairs should have varying priorities because of the difference of their capability
on pruning for two main factors:

– Frequency. If a cluster pair appears in more sketched trips, e.g., (C1, C3) in
Figure 2 (b), thus a single shortest path search may help us to prune multiple
trips (e.g., on < B,C1, C3, C2, E > and < B,C2, C1, C3, E >);

– Impact. Different cluster pairs have varying impacts on the pruning effect of
each sketched trip it belongs to.

Therefore in this paper, we measure the priority ωi,j of a given cluster pair
< Ci, Cj > as Equation 7:

270 C. Zhu et al.

ωi,j =
∑

STr∈τ

Cmaxi,j − Cmini,j

STr.U − STr.L
(7)

where τ is the set of relevant sketched trips (top-k sketched trips in valid pos-
sibility), and Cmaxi,j−Cmini,j

STr.U−STr.L denotes the pruning effect of the cluster pair on
a sketched trip STr. As a result, ωi,j denotes the total pruning effect on all
sketched trips the cluster pair < Ci, Cj > belongs to. Once we have these com-
puting priorities, we can use them to organize the verification of sketched trips
and to guide the trip search on sites.

The execution plan implements the verification of sketched trips by some
rules. The rules are made by the computing priorities and some global variables
kept to maintain the current minimum distances of sketched trips. For example,
in Figure 2 (b), for STr2 = < B,C1, C3, C2, E >, at the beginning its current
minimum distance is initialized to its minimum distance STr2.L, if the priority
of < C1, C3 > is the highest, we update the current minimum distance by sub-
tracting Cmin1,3 and adding the actual distance between a site in C1 to a site
in C3. If it exceeds the distance threshold Q.Maxd already, we prune it directly.

To sum up, sketched trip search on clusters implements a larger granularity
search and markedly improve the search efficiency. And the execution plan avoids
some unnecessary shortest path queries in trip search on sites.

5.4 Trip Search On Sites

If the sketched trip search on clusters cannot prune all the sketched trips, we
must go further to the trip search on sites. In this subsection, we present the
trip search on sites in detail. Algorithm 2 shows how the trip search is executed.

Given a query Q, we generate a list of Cc based on all requested types in
Q.T first. A priority queue PQcc is used to organize all the Cc in the descending
order of their satisfaction scores (Line 4). Then we scan PQcc, each time we
fetch a Cc to do the sketched trip search on clusters (Lines 9-11). If no valid
sketched trip is found, we go on processing the next Cc. Otherwise, we carry out
the trip search on sites on basis of the sketched trips (Lines 12-24).

Given a group of sketched trips, the first step towards the trip search on sites
is that we generate all the Cs derived from that group of sketched trips. Similar
to before, we also adopt a priority queue PQcs to organize all the Cs obtained
in the descending order by their satisfaction scores (Line 13). For example, In
Figure 2 (c), < s2, s4, s6 > is the champion in satisfaction score.

The advantage that the execution plan brings to this stage is that we can check
multiple trips with a single shortest path query. For example, in Figure 2 (c), we
would launch a shortest path query from s2 to s6 if the priority of < C1, C3 > is the
highest. If the result distance exceeds the threshold that the execution plan gave,
we can prune the two trips (< B, s2, s6, s4, E > and < B, s4, s2, s6, E >) by only
one shortest path query.

Once we find a feasible trip, we cannot directly return it as the result, because
there may exist other solutions from the unprocessed Cc that have higher satisfac-
tion scores. As such, a global bound is defined, SLB , to guarantee the correctness of

Efficient Trip Planning for Maximizing User Satisfaction 271

Algorithm 2. Spatial Sketch-Based Approximate Trip Planning Algorithm
Input: a query Q
Output: a solution trip Tr
1: Tr ← ∅;
2: SLB ← 0;
3: Tr′ ← ∅;
4: PQcc ← generateAllCandidateCluster();
5: while (Cc ← PQcc.poll()) != null do
6: if Score(Cc) ≤ SLB then
7: break;
8: end if
9: STrList ← generateAllSTr(Cc);

10: STrList.reduce();
11: STrList.executionP lan();
12: if STrList.isEmpty() == false then
13: PQcs ← generateAllCandidateSite(STrList);
14: while (Cs ← PQcs.poll()) != null do
15: if Score(Cs) < SLB then
16: break;
17: end if
18: Tr′ ← tripSearch(Cs, STrList);
19: if Tr′ != null then
20: SLB ← Score(Tr′);
21: Tr ← Tr′;
22: break;
23: end if
24: end while
25: end if
26: end while
27: return Tr;

the trip search on sites. SLB is designed to keep track of the best feasible solution’s
satisfaction score, which is computed as

SLB = maxTri∈Ts
{score(Tri)} (8)

where Ts is the set of feasible trips we have found. Obviously, SLB is dynami-
cally updated every time we find a new feasible trip, and it is the threshold in
trip search processing: if the score of a trip falls below SLB already, we need
not continue to search as the remaining trips are hopeless to provide a higher
score than SLB (Lines 15-17). Since all the Cc are ranked in a descending order
according to their satisfaction scores, the entire search can be stopped if a
Cc can be found such that Score(Cc) ≤ SLB (Lines 6-8), because all of the trips
derived from that Cc are hopeless to provide a higher score than SLB .

272 C. Zhu et al.

6 Experimental Evaluation

In this section, extensive experiments are carried out on real spatial datasets to
demonstrate the performance of the proposed algorithms. We use the real road
network of Beijing, which contains 165,991 vertices and 225,999 edges respec-
tively. Also, the POI dataset includes 100,000 Beijing POI sites that are classified
into 11 categories, and each POI site is affiliated with a satisfaction score and
mapped onto the road network. The number of POI sites in a categorical type
varies between 5,835 to 13,639. Both algorithms are implemented in JAVA and
tested on a DELL 7010MT (i5-3740) computer with 4-core CPUs at 3.2GHz and
a 8GB RAM running Windows 7 (64 bits) operating system.

In the evaluations, we generate 100 representative sample queries based on
the parameters shown in Table 1, and all results are derived by the average of the
sample queries. Note that α is the parameter used to vary the distance threshold
in a query, which is α times of the road network distance from beginning point
to ending point via shortest path. We first compare the two proposed algorithms
in the varying size of the POI sites, and then evaluate the effects of the varying
parameters to the performance of the S2A algorithm. Given that the algorithms
are time-consuming for large dataset, we use a parameter ξ to evaluate the
intermediate result at the ξ’s iteration, so as to know the performance in the
early iterations for scenarios requesting immediate response.

Table 1. Default Parameter Values

Parameter Value Description

k 4 Sketched trip reduction factor

t 4 Number of query site types

α 2 Shortest path distance multiplier

ξ unlimited Iteration threshold

Comparison of Proposed Algorithms. Figure 5 (a) and (b) show the effi-
ciency and accuracy of the S2F and S2A algorithms in the varying size of the
POI sites. From Figure 5 (a), it can be easily observed that the efficiency of the
two algorithms are similar when the POI dataset is small. But when the POI
dataset becomes large, the S2A algorithm is much more efficient than S2F, and
this phenomenon can be explained by the much more superior pruning effect of
S2A (in the cluster granularity). In addition, the experimental results in Figure 5
(b) show that S2A has fairly good accuracy, and particularly, the accuracy tends
to increase when the size of POI sites goes up. The accuracy in small dataset
cases is a lot worse than others, and this is is partly because of the top-k trips
tend to be more skewed in the cases running on small POI dataset. Therefore
the S2A is a near optimal algorithm and much more efficient than S2F.

Then we evaluate the impacts from parameters k, t and α to the performance
of the S2A algorithm. In each experiment, we compare the intermediate results
(ξ = 10k, 30k, 50k candidate clusters to be checked) and the final result.

Effect of k. Figure 6 (a) and (b) show the efficiency and accuracy of the S2A
algorithm in the settings of k between 1 and 24 (as the default 4 types has

Efficient Trip Planning for Maximizing User Satisfaction 273

10k 30k 50k 100k
0

1

2

3

4

5

6
x 10

4

|POI|

Tim
e (

ms
)

S2A

S2F

(a)Efficiency

10k 30k 50k 100k
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

|POI|

Ac
cu

ra
cy

S2A

S2F

(b)Accuracy

Fig. 5. Performances of S2F and S2A

24 trip sequences at most). When the value of k is greater than 4, the S2A
algorithm tends to be efficient (also stable) according to Figure 6 (a) and to be
very accurate according to Figure 6 (b). In contrast when the value of k is less
than 4, the accuracy tends to drop and it becomes a little more time-consuming
(Especially, ξ = 30k, 50k). The reason is that, it would be likely to miss the valid
trip if only very few top-k sequences are considered as candidate trip, leading
us to scan much more candidate sites. Therefore we should avoid the value of k
to be very small. The figures also indicate the intermediate result tend to have
acceptable accuracy rate if users request the result in an immediate fashion.

1 2 4 8 16 24
2200

2300

2400

2500

2600

2700

2800

2900

3000

k

Tim
e (

ms
)

S2A, ξ = 10k

S2A, ξ = 30k

S2A, ξ = 50k

(a)Efficiency

1 2 4 8 16 24
0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

k

Ac
cu

ra
cy

S2A, ξ = 10k

S2A, ξ = 30k

S2A, ξ = 50k

(b)Accuracy

Fig. 6. Performances via k

Effect of t. Figure 7 (a) and (b) show the efficiency and accuracy comparisons
in different number of required types in query Q. Given that the time complexity
is in exponential time to t, we limit the size of t to be in a reasonable range of the
applications (otherwise the results cannot be obtained in an acceptable time).
As shown in Figure 7 (a), the efficiency tends to be stable when the number
of t is relatively small, but it climbs up sharply when the number of t becomes
larger because of the huge search space accordingly. Besides, Figure 7 (b) shows
that the accuracy drops dramatically when the number of t increases due to
insufficient iterations.
Effect of α. Figure 8 (a) and (b) show the efficiency and accuracy of the S2A
algorithm in varying distance thresholds based on the parameter α (the distance
threshold is α times of the distance from beginning point to ending point of
the query). We can easily observe from Figure 8 (a) that the efficiency is very
sensitive to α, and the processing time significantly reduces when the distance

274 C. Zhu et al.

2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 10

4

t

Tim
e (

ms
)

S2A, ξ = 10k

S2A, ξ = 30k

S2A, ξ = 50k

(a)Efficiency

2 3 4 5 6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t

Ac
cu

ra
cy

S2A, ξ = 10k

S2A, ξ = 30k

S2A, ξ = 50k

(b)Accuracy

Fig. 7. Performances via t

threshold becomes large. Similarly, the accuracy of the algorithm is also in the
direct proportion to the parameter α according to Figure 8 (b). Above phenom-
ena can be well explained by the fact that it is easier to find a good result if the
distance threshold is relatively loose.

1.5 2 2.5 3 3.5
2000

2200

2400

2600

2800

3000

3200

3400

α

Tim
e (

ms
)

S2A, ξ=10k

S2A, ξ=30k

S2A, ξ=50k

(a)Efficiency

1.5 2 2.5 3 3.5
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

α

Ac
cu

ra
cy

S2A, ξ = 10k

S2A, ξ = 30k

S2A, ξ = 50k

(b)Accuracy

Fig. 8. Performances via α

To sum up, the experimental results imply that the S2A algorithm can sup-
port us to find the trip with high frequency efficiently in different parameter
settings, which are related to the algorithm logic or to query itself.

7 Conclusion

In this paper, we have investigated the problem of trip search on categorical POI
sites, to return users the trip that can maximize user satisfaction score within
a given distance threshold. A spatial clustering-based approximate algorithm
S2A has been proposed to support efficient trip search, in which the sketched
information in a global point of view is extracted to prune the search space in
greater granularity. Extensive experimental results based on real datasets have
demonstrated the effectiveness of the proposed method.

In the future, we would like to improve the algorithm by applying hierarchial
clustering techniques to further improve the accuracy of trip search.

Acknowledgments. This work was partially supported by Chinese NSFC project
under grant numbers 61402312, 61232006, 61303019, 61440053, Australian ARC project
under grant number DP140103499, and Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization.

Efficient Trip Planning for Maximizing User Satisfaction 275

References

1. Roy, S.B., Das, G., Amer-Yahia, S., Yu, C.: Interactive itinerary planning. In:
Proceedings of the 27th International Conference on Data Engineering, ICDE 2011,
Hannover, Germany, 11–16 April, pp. 15–26 (2011)

2. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on A road network
with speed patterns. In: Proceedings of the 22nd International Conference on Data
Engineering, ICDE 2006, Atlanta, GA, USA, 3–8 April, p. 10 (2006)

3. Li, F., Hadjieleftheriou, M., Kollios, G., Cheng, D., Teng, S.: Trip planning queries
in road network databases. In: Encyclopedia of GIS, pp. 1176–1181 (2008)

4. Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route
planning under time-varying uncertainty. In: IEEE 30th International Confer-
ence on Data Engineering, Chicago, ICDE 2014, IL, USA, 31 March–4 April,
pp. 136–147 (2014)

5. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

6. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

7. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On trip planning
queries in spatial databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

8. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented tra-
jectory search for trip recommendation. In: Proceedings of the 15th International
Conference on Extending Database Technology, EDBT 2012, Berlin, Germany,
27–30 March, pp. 156–167 (2012)

9. Sharifzadeh, M., Kolahdouzan, M.R., Shahabi, C.: The optimal sequenced route
query. VLDB J. 17(4), 765–787 (2008)

10. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical
world. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August, pp.
316–324 (2011)

11. Horvitz, E., Krumm, J.: Some help on the way: opportunistic routing under uncer-
tainty. In: The 2012 ACM Conference on Ubiquitous Computing, Ubicomp 2012,
Pittsburgh, PA, USA, 5–8 September, pp. 371–380 (2012)

12. Tian, Y., Lee, K.C.K., Lee, W.: Finding skyline paths in road networks. In: Pro-
ceedings of the 17th ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems, ACM-GIS 2009, Seattle, Washington, USA, 4–6
November, pp. 444–447 (2009)

13. Safar, M., El-Amin, D., Taniar, D.: Optimized skyline queries on road networks
using nearest neighbors. Personal and Ubiquitous Computing 15(8), 845–856
(2011)

14. Zhu, A.D., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Shortest path and distance
queries on road networks: towards bridging theory and practice. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, 22–27 June, pp. 857–868 (2013)

15. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

276 C. Zhu et al.

16. Sankaranarayanan, J., Samet, H., Alborzi, H.: Path oracles for spatial networks.
PVLDB 2(1), 1210–1221 (2009)

17. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: Proceedings of the Nine Work-
shop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans,
Louisiana, USA, 6 January (2007)

18. Shang, S., Deng, K., Xie, K.: Best point detour query in road networks. In: Pro-
ceedings of the 18th ACM SIGSPATIAL International Symposium on Advances
in Geographic Information Systems, ACM-GIS 2010, San Jose, CA, USA, 3–5
November, pp. 71–80 (2010)

19. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized
trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)

20. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity
trajectories. In: 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, 8–12 April, pp. 230–241 (2013)

21. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by
locations: an efficiency study. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA,
6–10 June, pp. 255–266 (2010)

22. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In:
Proceedings of the 27th International Conference on Data Engineering, ICDE 2011,
Hannover, Germany, 11–16 April, pp. 900–911 (2011)

23. Zheng, K., Trajcevski, G., Zhou, X., Scheuermann, P.: Probabilistic range queries
for uncertain trajectories on road networks. In: Proceedings of the EDBT 2011,
14th International Conference on Extending Database Technology, Uppsala,
Sweden, 21–24 March, pp. 283–294 (2011)

Modern Computing Platform

Accelerating Search of Protein Sequence
Databases Using CUDA-Enabled GPU

Lin Cheng and Greg Butler(B)

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

gregb@cs.concordia.ca

Abstract. Searching databases of protein sequences for those proteins
that match patterns represented as profile HMMs is a widely performed
bioinformatics task. The standard tool for the task is HMMER version 3
from Sean Eddy. HMMER3 achieved significant improvements in perfor-
mance over version 2 through the introduction of a heuristic filter called
the Multiple Segment Viterbi algorithm (MSV) and the use of native
SIMD instruction set on modern CPUs. Our objective was to further
improve performance by using a general-purpose graphical processing
unit (GPU) and the CUDA software environment from Nvidia.

An execution profile of HMMER3 identifies the MSV filter as a code
hotspot that consumes over 75% of the total execution time. We applied
a number of well-known optimization strategies for coding GPUs in order
to implement a CUDA version of the MSV filter.

The results show that our implementation achieved 1.8x speedup over
the single-threaded HMMER3 CPU SSE2 implementation on average.
The experiments used a modern Kepler architecture GPU from Nvidia
that has 768 cores running at 811 Mhz and an Intel Core i7-3960X
3.3GHz CPU overclocked at 4.6GHz.

For HMMER2 there was a significant speed-up of an order of magni-
tude obtained by implementations using GPUs. Such gains seem out of
reach for HMMER3.

1 Introduction

A protein can be viewed as a sequence of amino acid residues. In Bioinformatics,
the purpose of protein sequence search against databases is to identify regions of
similarity that may be a consequence of functional, structural, or evolutionary
relationships between the protein sequences. Such a similarity search produces
an alignment of similar substrings of the sequences.

Classical sequence alignment algorithms such as Needleman-Wunsch [1],
Smith-Waterman [2], and the BLAST family of programs [3] have long been
used for searching by performing pairwise alignment of each query against every
sequence in the database, thus identifying those sequences in the database that
are most closely related to various regions of the query.

Besides the abovepairwise comparisonalgorithms, anotherparadigmcompares
a sequence to a probabilistic representation of several proteins of the same family.
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 279–298, 2015.
DOI: 10.1007/978-3-319-18120-2 17

280 L. Cheng and G. Butler

Since all the sequences in a family are mostly similar to each other, it is possible
to construct a common profile representing the consensus sequence, which simply
reflects themost commonly occurring residue at eachposition.One suchprobabilis-
tic representation is called the profile HMM (Hidden Markov Model) introduced
by Anders Krogh and David Haussler [4] to improve the sensitivity of database-
searching.

The profile HMM is a probabilistic finite state machine that assesses the
probability of match, insert and delete at a given position of an alignment.

In this paper we address the application of a CUDA-enabled GPU (graphical
processing unit) to accelerate the search routine in HMMER3, the most widely
used software for profile HMM search of protein databases. Our approach is to
target a performance hotspot in the search and to apply a range of optimiza-
tion techniques. The hotspot is a dynamic programming algorithm, called the
MSV filter, for Multiple (local, ungapped) Segment Viterbi. The optimization
techniques were selected from related work that used a GPU to optimize the
Smith-Waterman algorithm, which is also a variant of dynamic programming.

1.1 A Brief History of the HMMER Software

HMMER [5] is a free and commonly used software package for sequence analysis
based on the profile HMM. HMMER aims to be significantly more accurate
and to detect more remote homologs, compared to BLAST, and other sequence
alignment tools and database search tools [6].

From 1992 to 1998, the HMMER1 series was developed by Sean Eddy.
It includes a feature that is missing in HMMER2 and HMMER3: the hmmt pro-
gram for training HMMs from initially unaligned sequences and hence creating
multiple alignments. The final stable version of HMMER1 was released as 1.8.5 in
2006.

From 1998 to 2003, the HMMER2 series introduced the “Plan 7” profile
HMM architecture (see Figure 1), which is still used in HMMER3, and is the
foundation for Pfam and other protein domain databases. It includes local and
global alignment modes that HMMER3 lacks, because HMMER3 currently
implements only fully local alignment. HMMER2 lacks DNA comparison that
was present in HMMER1. The final stable version of HMMER2 was released as
2.3.2 in 2003.

Fig. 1. Plan 7 Profile HMM Architecture [6]

In HMMER, the application hmmbuild is used to build a profile HMM using
a multiple sequence alignment, or single sequence as input. The application

Search of Protein Sequence Databases Using CUDA-Enabled GPU 281

hmmsearch is used to search a profile HMM against a sequence database, find-
ing whether a sequence is member of the family described by the profile HMM.
The hmmsearch application outputs a ranked list of the sequences with the most
significant matches to the profile. Another similar application in HMMER, hmm-
scan, is the query of a single protein sequence of interest against a database of
profile HMMs.

To compare a profile HMM with a protein sequence, HMMER uses the Viterbi
algorithm, which evaluates the path that has the maximum probability of the
profile HMM generating the sequence. The Viterbi algorithm is a dynamic pro-
gramming algorithm. The fundamental task of the Viterbi algorithm for biological
sequence alignment is to calculate three DP (Dynamic Programming) matrices:
M [] for Match state, I[] for Insert state and D[] for Delete state. Each element
value in the DP matrix is dependent on the value of previous element.

However, the widely used implementation of the Viterbi algorithm in
HMMER2, has been slow and compute-intensive, on the order of more than
100 times slower than BLAST for a comparable search. In an era of enormous
sequence databases, this speed disadvantage outweighs any advantage of the pro-
file HMM method. With the exponential growth of protein databases, there is
an increasing demand for acceleration of such techniques. HMMER has been a
target of many acceleration and optimization efforts.

Specialized hardware architectures have been used to exploit coarse-grained
parallelism in accelerating HMMER2. JackHMMer [7] uses the Intel IXP 2850 net-
work processor. FPGAs (Field-Programmable Gate Arrays) were used by [8–10],
and the Cell Broadband Engine developed by IBM was used by [11].

On traditional CPU architecture, MPI-HMMER [12] is a commonly used
MPI implementation. A single master node is used to assign multiple database
blocks to worker nodes for computing in parallel and is responsible for collecting
the results. Landman et al. exploit MPI and Intel SSE2 intrinsics to accelerate
HMMER2 [13].

ClawHMMer [14] is the first GPU-enabled hmmsearch implementation. Their
implementation is based on the BrookGPU stream programming language, not
the CUDA programming model. Since ClawHMMer, there has been several
researches on accelerating HMMER for CUDA-enabled GPU, parallelizing the
Viterbi algorithm [15–18]. However, these efforts have had limited impact on
accelerating HMMER2 by only an order of magnitude.

In 2010, HMMER3.0 was released. It is the most significant acceleration of
hmmsearch. The most significant difference between HMMER3 and HMMER2
is that HMMER3 uses a heuristic algorithm called the MSV filter, for Multi-
ple (local, ungapped) Segment Viterbi, to accelerate profile HMM searches (see
Figure 2). By using the Intel SSE2 intrinsics to implement programs, HMMER3
is substantially more sensitive, and 100 to 1000 times faster than HMMER2 [6].

HMMER3.1 beta was released in 2013. It has several new features that did
not make them into 3.0, including nhmmer program for DNA homology searches
with profile HMMs, the parallel search daemon hmmpgmd program underlying
HMMER Web Services, and a new HMM file format called 3/f format.

282 L. Cheng and G. Butler

Fig. 2. The CPU serial version of hmmsearch

Although HMMER3 is much faster than HMMER2 and about as fast as
BLAST for protein searches, it is still time-consuming. On an Intel Core i7-
3930K high-power CPU, HMMER3 takes about 5 minutes to search a profile
HMM with length 255 against the NCBI NR database.

Hotspot analysis using Intel VTune Analyzer [19] identified three individ-
ual algorithms: Forward, Backward and Viterbi [20] for which they carried
out CUDA acceleration. According to the implementation of HMMER3 (see
Figure 2), the MSV, Viterbi, Forward and Backward algorithms are implemented
in the so-called “acceleration pipeline” at the core of the HMMER3 software
package [6]. The MSV algorithm is the first filter of the acceleration pipeline
and is the key hotspot of the whole process.

1.2 Organization of the Paper

The paper is organized with Section 2 presenting the Background on CUDA-
enabled GPUs, techniques used for optimization for Smith-Waterman, and for
HMMER. This is followed in Section 3 with a description of HMMER3 and
its optimization for a CUDA-enabled GPU. Section 4 presents the evaluation
benchmark and the results. Section 5 concludes the paper.

2 Background

2.1 CUDA-Enabled GPU

A GPU consists of one or more SMs (Streaming Multiprocessors). The Quadro
K4000 used in our research has 4 SMs. Each SM contains the following
specific features [21]: execution units to perform integer and single- or double-
precision floating-point arithmetic, special function units to compute single-
precision floating-point transcendental functions; thousands of registers to be

Search of Protein Sequence Databases Using CUDA-Enabled GPU 283

partitioned among threads; shared memory for fast data interchange between
threads; several caches, including constant cache, texture cache and L1 cache;
and a warp scheduler to coordinate instruction dispatch to the execution units.

The SM has been evolving rapidly since the introduction of the first CUDA-
enabled GPU device in 2006, with three major Compute Capability 1.x, 2.x,
and 3.x, corresponding to Tesla-class, Fermi-class, and Kepler-class hardware
respectively. Table 1 summarizes the features introduced in each generation of
the SM hardware [21].

Table 1. Features per Compute Capability

Compute
Capability Features introduced

SM 1.x
Global memory atomics; mapped pinned memory; debuggable;

atomic operations on shared memory; Double precision

SM 2.x

64-bit addressing; L1 and L2 cache; concurrent kernel execution;
global atomic add for single-precision floating-point values;

Function calls and indirect calls in kernels

SM 3.x

SIMD Video Instructions; Increase maximum grid size; warp shuffle;

Bindless textures (“texture objects”); read global memory via texture;

faster global atomics; 64-bit atomic min, max, AND, OR, and XOR;
dynamic parallelism

CUDA memory spaces have different characteristics that reflect their distinct
usages in CUDA applications as summarized in Table 2 [22]. The texture, con-
stant and global memory can be allocated by the CPU host. Shared memory
can only be shared and accessed by threads in a block. Registers and local mem-
ory are only available for one thread. Register access is the fastest and global
memory access is the slowest. Since these memories have different features, one
important aspect of CUDA programming is how to combine these memories to
best suit the application.

Table 2. Salient Features of GPU Device Memory

Memory Location Cached Access Scope Speed Lifetime

Register On chip n/a R/W 1 Thread 1 Thread

Local Off chip † R/W 1 Thread ∼ 2 − 16 Thread

Shared On chip n/a R/W
All threads

in block ∼ 2 − 16 Block

Global Off chip † R/W
All threads

+ host 200+ Host allocation

Constant Off chip Yes R
All threads

+ host 2 − 200 Host allocation

Texture Off chip Yes R
All threads

+ host 2 − 200 Host allocation

The Speed column is the relative speed in number of instruc-
tions. † means it is cached only on devices above Compute
Capability 2.x.

284 L. Cheng and G. Butler

2.2 CUDA Accelerated Smith-Waterman

The Smith-Waterman algorithm exploits dynamic programming for sequence
alignment, which is also the characteristic of the HMM-based algorithms. In this
section, we review the techniques used in parallelizing Smith-Waterman on a
CUDA-enabled GPU. The strategies used include

1. task-based parallelism [23–29];
2. data-based parallelism [23,30];
3. use of GPU memory types [23–29]; and
4. use of SIMD vector instructions [24–27,29].

A pre-sorted sequence database is often used [23–27,29].
CUDASW++ in its various versions [23–25] is the most successful Smith-

Waterman implementation for CUDA-enabled GPU. They use task-based paral-
lelism to process each target sequence independently with a single GPU thread.
CUDASW++3 [25] not only distributes tasks to many threads in the GPU ker-
nel, but also balances the workload between the CPU and the GPU using a rate
R of the number of residues assigned to GPUs:

R =
NGfG

NGfG + NCfC/C
(1)

where fC and fG are the core frequencies of the CPU and the GPU respectively,
NC and NG are the number of CPU cores and the number of GPU SMs respec-
tively, and C is a constant derived from empirical evaluations. They find the
sequence length deviation generally causes execution imbalance between threads,
which in return can not fully utilize the GPU compute power. So they design
two CUDA kernels based on two parallelization approaches: static scheduling
and dynamic scheduling. These two kernels are launched based on the sequence
length deviation of the database.

In data-based parallelism, each task is assigned to one or many thread block(s)
and all threads in the thread block(s) cooperate to perform the task in paral-
lel. The main target of [30] is to solve a single but very large Smith-Waterman
problem for sequences with very long lengths. Their calculation works along anti-
diagonals of the alignment matrix so that the calculations can be performed in
parallel one row (or column) of the similarity matrix at a time. Row (or col-
umn) calculations allow the GPU global memory accesses to be consecutive and
therefore high memory throughput is achieved.

CUDASW++ [23] sorts target sequences and arranges them in an array
like a multi-layer bookcase to store into global memory, so that the reading
of the database across multiple threads could be coalesced. They utilize the
texture memory on the sorted array of target sequences in order to achieve
maximum performance on coalesced access patterns. They also exploit constant
memory to store the gap penalties, scoring matrix and the query sequence. CUD-
ASW++2 [24] utilizes texture memory to store query profiles.

Search of Protein Sequence Databases Using CUDA-Enabled GPU 285

2.3 CUDA Accelerated HMMER

In this section, we review the techniques used in parallelizing HMMER on a
CUDA-enabled GPU. The strategies used include

1. task-based parallelism [15,16,18,20];
2. data-based parallelism [16,17,31];
3. use of GPU memory types [15,17,18]; and
4. use of SIMD vector instructions.

HMMER itself includes a MPI (Message Passing Interface) implementation of
the search algorithms, which uses conventional CPU clusters for parallel com-
puting.

GPU-HMM [15] ports the Viterbi function to a CUDA-enabled GPU with
a variety of optimization approaches. Their implementation operates the GPU
kernel on multiple sequences simultaneously, with each thread operating on an
independent sequence. They found the number of threads that can be executed in
parallel will be limited by two factors: one is the GPU memory which limits the
number of sequences that can be stored, and another is the number of registers
used by each thread which limits the number of threads that can execute in
parallel. Registers are the most important resource in their implementation.

They split the inner loop for computing the dynamic programming matrix
into three independent small loops. This approach requires fewer registers, result-
ing in higher GPU utilization. Further, splitting the loop provides an easy mech-
anism to exploit loop unrolling, which is a classic loop optimization strategy
designed to reduce the overhead of inefficient looping. The idea is to replicate
the loops inner contents such that the percentage of useful instructions in each
statement of the loop increases. In their experiment, the performance improve-
ment reaches 80%.

In order to achieve high efficiency for task-based parallelism, the run time of
all threads in a thread block should be roughly identical. Therefore many studies
often sort sequence databases by the length of the sequences.

Data-based parallelism applies the wave-front method [17,31] which com-
putes the cells along the anti-diagonal of the dynamic matrix in parallel, in
order to accelerate the Viterbi algorithm. They apply a streaming method to
process very long sequences.

[16] parallelizes the Viterbi algorithm by combining task-based and data-
based parallelism. In order to accelerate the computation of the dynamic
programming matrix rows, they partition each row into equal sized intervals
of contiguous cells and calculate the dependencies between the partitions iden-
tically and independently in a data parallel setting.

GPU-HMM [15] found the most effective optimization for the Viterbi algo-
rithm is to optimize CUDA memory layout and usage patterns within the imple-
mentation. They note that coalesced access of global memory can significantly
improve hmmsearch speedup by up to 9x. They utilize texture memory to store
the target sequences, and use texture memory and constant memory to store the
query profile HMM depending on its size.

286 L. Cheng and G. Butler

3 HMMER3 and Its Implementation on a CUDA-Enabled
GPU

The CPU serial version of hmmsearch in HMMER3 is shown in Figure 2. The MSV
andViterbi algorithmsare implemented in the so-called accelerationpipeline at the
core of the HMMER3 software package [6]. One call to the acceleration pipeline is
executed for the comparison of each query model and target sequence.

HMMER3 is a nearly total rewrite of the earlier HMMER2 package, with
the aim of improving the speed of profile HMM searches. The main performance
gain is due to a heuristic algorithm called the MSV filter, for Multiple (local,
ungapped) Segment Viterbi. MSV is implemented in SIMD (Single-Instruction
Multiple-Data) vector parallelization instructions and is about 100-fold faster
than HMMER2.

Fig. 3. MSV profile: multiple ungapped local alignment segments [6]

Figure 3 illustrates the MSV profile architecture. Compared with Figure 1,
the MSV corresponds to the virtual removal of the delete and insert states. All
match-match transition probabilities are treated as 1.0. The other parameters
remains unchanged. So this model generates sequences containing one or more
ungapped local alignment segments. The pseudocode of the MSV score algorithm
is simplified and shown in Algorithm 1.

A Single-Instruction Multiple-Data (SIMD) instruction is able to perform
the same operation on multiple pieces of data in parallel. The first widely-
deployed desktop SIMD implementation was with Intel’s MMX extensions to the
x86 architecture in 1996. In 1999, Intel introduced Streaming SIMD Extensions
(SSE) in Pentium III series processors. The modern SIMD vector instruction sets
use 128-bit vector registers to compute up to 16 simultaneous operations. Due
to the huge number of iterations in the Smith-Waterman algorithm calculation,
using SIMD instructions to reduce the number of instructions needed to perform
one cell calculation has a significant impact on the execution time. Several SIMD
vector parallelization methods have been described for accelerating SW dynamic
programming.

In 2000, Rognes and Seeberg presented an implementation of the SW algo-
rithm running on the Intel Pentium processor using the MMX SIMD instruc-
tions [32]. They used a query profile parallel to the query sequence for each
possible residue. A query profile was pre-calculated in a sequential layout just
once before searching the database. A six-fold speedup was reported over an
optimized non-SIMD implementation.

Search of Protein Sequence Databases Using CUDA-Enabled GPU 287

Algorithm 1. Pseudo code of the MSV algorithm
1: procedure MSV()
2: N [0] ← 0; B[0] ← tr(N, B)
3: E[0] ← C[0] ← J [0] ← −∞
4: for i ← 1, Lt do � For every sequence residue i
5: N [i] ← N [i − 1] + tr(N, N)

6: B[i] ← max

{
N [i − 1] + tr(N, B)

J [i − 1] + tr(J, B)

7: M [i, 0] ← −∞
8: for j ← 1, Lq do � For every model position j from 1 to Lq

9: M [0, j] ← −∞
10: M [i, j] ← e(Mj , S[i]) + max

{
M [i − 1, j − 1]

B[i − 1] + tr(B, Mj)

11: end for
12: E[i] ← max{M [i, j] + tr(Mj , E)} (j ← 0, Lq)

13: J [i] ← max

{
J [i − 1] + tr(J, J)

E[i − 1] + tr(E, J)

14: C[i] ← max

{
C[i − 1] + tr(C, C)

E[i − 1] + tr(E, C)

15: end for
16: Score ← C[Lt] + tr(C, T)
17: return Score
18: end procedure

In 2007, Farrar presented an efficient vector-parallel approach called stripped
layout for vectorizing SW algorithm [33]. He designed a stripped query profile
for SIMD vector computation. He used Intel SSE2 to implement his design. A
speedup of 2-8 times was reported over the Rognes and Seeberg SIMD non-
stripped implementations.

Inspired by Farrar, in HMMER3 [6], Sean R. Eddy used a remarkably effi-
cient stripped vector-parallel approach to calculate the MSV alignment scores.
To maximize parallelism, he implemented the MSV algorithm as a 16-fold par-
allel calculation with score values stored as 8-bit byte integers. He used SSE2
instructions on Intel-compatible systems and Altivec/VMX instructions on Pow-
erPC systems. The pseudocode for the implementation is shown in Algorithm 2
Five pseudocode vector instructions for operations on 8-bit integers are used in
the pseudocode. The instructions are vec splat, vec adds, vec rightshift, vec max
and vec hmax. Either scalars x or vectors v containing 16 8-bit integer elements
numbered v[0]...v[15]. Each of these operations are either available or easily con-
structed in Intel SSE2 intrinsics as shown in Table 3.

3.1 GPU Implementation of the MSV Filter

A basic flow of the GPU implementation for the MSV filter is shown in Figure 4.
The code is split up into two parts, with the left host part running on the CPU

288 L. Cheng and G. Butler

Algorithm 2. Pseudo code of the SIMD vectorized MSV algorithm
1: procedure MSV-SIMD()
2: xJ ← 0; dp[q] ← vec splat(0) (q ← 0, LQ − 1)
3: xB ← base + tr(N, B)
4: xBv ← vec adds(xB, tr(B, M))
5: for i ← 1, Lt do � For every sequence residue i
6: xEv ← vec splat(0)
7: mpv ← vec rightshift(dp[LQ − 1])
8: for q ← 0, LQ − 1 do
9: tmpv ← vec max(mpv, xBv) � temporary storage of 1 current row

value
10: tmpv ← vec adds(tmpv, e(Mj , S[i]))
11: xEv ← vec max(xEv, tmpv)
12: mpv ← dp[q]
13: dp[q] ← tmpv
14: end for
15: xE ← vec hmax(xEv)

16: xJ ← max

{
xJ

xE + tr(E, J)

17: xB ← max

{
base

xJ + tr(J, B)

18: end for
19: Score ← xJ + tr(C, T)
20: return Score
21: end procedure

Table 3. SSE2 intrinsics for pseudocode in Algorithm 2

Pseudocode
SSE2 intrinsic in C Operation Definition
v = vec splat(x)

v = mm set1 epi8(x) assignment v[z] = x
v = vec adds(v1, v2)

v = mm adds epu8(v1, v2) saturated addition v[z] = min(28 − 1, v1[z] + v2[z]
v1 = vec rightshift(v2)

v1 = mm slli si128(v2, 1) right shift

v1[z] = v2[z − 1](z = 15...1);

v1[0] = 0;
v = vec max(v1, v2)

v = mm max epu8(v1, v2) max v[z] = max(v1[z], v2[z])
x = vec hmax(v)

- horizontal max x = max(v[z]), z = 0...15

The first column is pseudocode and its corresponding SSE2 intrinsic in C lan-
guage. Because x86 and x86-64 use little endian, vec rightshift() means using
a left bit shift intrinsic mm slli si128() to do right shift. No SSE2 intrin-
sic is corresponding to tbfvec hmax(). Shuffle intrinsic mm shuffle epi32 and
mm max epu8 can be combined to implement vec hmax()

and the right device part running on the GPU. There is some redundancy as data
needed by the GPU will be copied between the memories in the host and the device.

Search of Protein Sequence Databases Using CUDA-Enabled GPU 289

Fig. 4. The GPU porting of MSV filter

The CPU code mainly concerns allocating data structures on the GPU, load-
ing data, copying data to the GPU, launching the GPU kernel and copying back
the results for further steps.

The GPU kernel code corresponds to the MSV filter Algorithm 2. First, the
thread’s current database sequence is set to the thread id. Hence each thread
begins processing a different neighbouring sequence. This thread id is a unique
numeric identifier for each thread and the id numbers of threads in a warp are
consecutive. Next, the location where each thread can store and compute its
dp matrix is determined in the global memory. This is calculated also using
the thread id for each thread. When processing the sequence, successive threads
access the successive addresses in the global memory for the sequence data and
dp matrix, i.e. using a coalesced access pattern. Execution on the GPU kernel
is halted when every thread finishes its sequence.

We adopted a series of optimization techniques that led to a 135 times
speedup over the straightforward GPU implementation of the MSV filter:

1. Using SIMD video instructions of the GPU;
2. Minimizing global memory access;
3. Using asynchronous memory copy and streams;
4. Coalescing global memory accesses;
5. Using texture memory for the matrix of the query profile HMM;
6. Sorting the database by decreasing length of sequence; and
7. Distributing workload between the CPU and the GPU.

290 L. Cheng and G. Butler

GPU SIMD Instructions. CUDA provides scalar SIMD (Single Instruction,
Multiple Data) video instructions. These are available on devices of compute
capability 3.0. The SIMD video instructions enable efficient operations on pairs
of 16-bit values and quads of 8-bit values needed for video processing. The SIMD
video instructions can be included in CUDA programs by way of the assembler,
asm(), statement. The basic syntax of an asm() statement is:

asm(“template-string” : “constraint”(output) : “constraint”(input));

The following three instructions are used in the implementation. Every instruc-
tion operates on quads of 8-bit signed values. The source operands (“op1” and
“op2”) and destination operand (“rv”) are all unsigned 32-bit registers (“u32”),
which is different from 128-bit CPU registers in SSE2. For additions and subtrac-
tions, saturation instructions (“sat”) have been used to clamp the values to their
appropriate unsigned ranges.

/* rv[z] = op1[z] + op2[z] (z = 0,1,2,3) */
asm(“vadd4.u32.u32.u32.sat %0, %1, %2, %3;” : “=r”(rv) : “r”(op1),
“r”(op2), “r”(0));
/* rv = op1 + op2 */
asm(“vsub4.u32.u32.u32.sat %0, %1, %2, %3;” : “=r”(rv) : “r”(op1),
“r”(op2), “r”(0));
/* rv = max(op1,op2) */
asm(“vmax4.u32.u32.u32 %0, %1, %2, %3;” : “=r”(rv) : “r”(op1), “r”(op2),
“r”(0));

Switching to the SIMD video instructions achieved a speedup of nearly 2 times.

Minimizing Global Memory Access. The global memory is used to store
most of data on the GPU. A primary concern in the optimization is to improve
the efficiency of accessing global memory. One way is to reduce the frequency of
access. Another way is coalescing access.

The elements of the dp matrix and the query profile matrix are 8-bit values.
The uint4 and ulong2 (see the code below) are 128-bit CUDA built-in vector
types. So the access frequency would be decreased 16 times by using uint4 or
ulong2 to fetch the 8-bit values residing in global memory, compared with using
8-bit char type.

struct device builtin uint4
{

unsigned int x, y, z, w;
}
struct device builtin ulong2
{

unsigned long int x, y;
};

Search of Protein Sequence Databases Using CUDA-Enabled GPU 291

Using Asynchronous Memory Copy and Streams. By default, any mem-
ory copy involving host memory is synchronous: the function does not return
until after the operation has been completed. This is because the hardware can-
not directly access host memory unless it has been page-locked or pinned and
mapped for the GPU. An asynchronous memory copy for pageable memory could
be implemented by spawning another CPU thread, but so far, CUDA has chosen
to avoid that additional complexity.

Even when operating on pinned memory, such as memory allocated with
cudaMallocHost(), synchronous memory copy must wait until the operation is
finished because the application may rely on that behavior. When pinned mem-
ory is specified to a synchronous memory copy routine, the driver does take
advantage by having the hardware use DMA, which is generally faster [21].

When possible, synchronous memory copy should be avoided for performance
reasons. Keeping all operations asynchronous improves performance by enabling
the CPU and GPU to run concurrently. Asynchronous memory copy functions
have the suffix Async(). For example, the CUDA runtime function for asyn-
chronous host to device memory copy is cudaMemcpyAsync().

Asynchronous memory copy works well only where either the input or output
of the GPU workload is small and the total transfer time is less than the kernel
execution time. By this means we have the opportunity to hide the input transfer
time and only suffer the output transfer time.

A CUDA stream represents a queue of GPU operations that get executed in
a specific order. We can add operations such as kernel launches, memory copies,
and event starts and stops into a stream. The order in which operations are
added to the stream specifies the order in which they will be executed. CUDA
streams enable CPU/GPU and memory copy/kernel processing concurrency. For
GPUs that have one or more copy engines, host to/from device memory copy
can be performed while the SMs are processing kernels. Within a given stream,
operations are performed in sequential order, but operations in different streams
may be performed in parallel [34].

To take advantage of CPU/GPU concurrency, when performing memory
copies as well as kernel launches, asynchronous memory copy must be used.
Mapped pinned memory can be used to overlap PCI Express transfers and ker-
nel processing.

CUDA compute capabilities above 2.0 are capable of concurrently running
multiple kernels, provided they are launched in different streams and have block
sizes that are small enough so a single kernel will not fill the whole GPU. By
using multiple streams, we broke the kernel computation into chunks and overlap
the memory copies with kernel execution.

Coalescing Global Memory Accesses. Coalescing access is the single most
important performance consideration in programming for CUDA-enabled GPU
architectures. Coalescing is a technique applied to combine several small and non-
contiguous access of global memory, into a single large and more efficient con-
tiguous memory access. A prerequisite for coalescing is that the words accessed
by all threads in a warp must lie in the same segment. The memory spaces

292 L. Cheng and G. Butler

referred to by the same variable names (not referring to the same addresses) for
all threads in a warp have to be allocated in the form of an array to keep them
contiguous in address space.

For coalescing access, the target sequences are arranged in a matrix like an
upside-down bookcase, where all residues of a sequence are restricted to be stored
in the same column from top to bottom. When the sequence database is sorted,
and all sequences are arranged in decreasing length order from left to right in
the array, then this strategy is even more beneficial.

An alignment requirement is needed to fully utilize coalescing, which means
any access to data residing in global memory is compiled to a single global
memory instruction. The alignment requirement is automatically fulfilled for
the built-in types like uint4 [35].

The move to vertical alignment of dp matrix resulted in an improvement of
about 44%.

Note. At the beginning, since uint4 is a 16-byte data block, the traditional
C/C++ memory block copy function memcpy() was used to copy data between
global memory and register memory, as shown in the following code. The dp is
the pointer to the address of global memory. The mpv and sv are uint4 data
type residing in register memory.

memcpy(&mpv, dp, sizeof(uint4));
memcpy(dp, &sv, sizeof(uint4));

However, in practice during CUDA kernel execution, the above memcpy involves
16 = sizeof(uint4) reads/writes from/to global memory respectively, not one
read/write. Switching to the following direct assignment instruction will be one
read/write and fully coalesce access to global memory, with 81% improvement
over the above memcpy():

mpv = *(dp);
*(dp) = sv;

Using Texture Memory for the Matrix of the Query Profile HMM. The
read-only texture memory space is a cached window into global memory that
offers much lower latency and does not require coalescing for best performance.
Therefore, a texture fetch costs one device memory read only on a cache miss;
otherwise, it just costs one read from the texture cache. The texture cache is
optimized for 2D spatial locality, so threads of the same warp that read texture
addresses that are close together will achieve best performance [35].

Texture memory is well suited to random access. CUDA has optimized the
operation fetching 4 values (RGB colors and alpha component, a typical graphics
usage) at a time in texture memory. This mechanism is applied to fetch 4 read-
only values from the query profile matrix texOMrbv with the uint4 built-in type.
Since the data of target sequences is read-only, it can also use texture memory
for better performance.

Search of Protein Sequence Databases Using CUDA-Enabled GPU 293

Sorting the Database by Decreasing Length of Sequence. The MSV
filter function is sensitive to the length of a target sequence, which determines
the execution times of the main for loop in Algorithm 2. The target sequence
database could contain many sequences with different lengths. This brings a
problem for parallel processing of threads on the GPU: one thread could be
processing a sequence of several thousands of residues while another might be
working on a sequence of just a few. As a result, the thread that finishes first
might be idle while the long sequence is being handled. Furthermore, unless care
is taken when assigning sequences to threads, this effect might be compounded
by the heavily unbalanced workload among threads.

In order to achieve high efficiency for task-based parallelism, the run time of
all threads in a thread block should be roughly identical. Therefore the database
is converted with sequences being sorted by length. Thus, for two adjacent
threads in a thread warp, the difference value between the lengths of the associ-
ated sequences is minimized, thereby balancing a similar workload over threads
in a warp.

Distributing Workload between the CPU and the GPU. After launching
the GPU kernel, the CPU must wait for the GPU to finish before copying back
the result. This is accomplished by calling cudaStreamSynchronize(stream). We
can get further improvement by distributing some work from the GPU to the
CPU while the CPU is waiting. In a protein database, the sequences with the
longest or the shortest length are very few. According to Swiss-Prot database
statistics [36], the percentage of sequences with length > 2500 is only 0.2%.
Considering the length distribution of database sequences and based on the
descending sorted database, we assigned the first part of data with longer lengths
to the CPU. By this way, we can save both the GPU global memory allocated
for sequences and the overheads of memory transfer.

The compute power of the CPU and the GPU should be taken into consid-
eration in order to balance the workload distribution between them. The distri-
bution policy calculates a ratio R of the number of database sequences assigned
to the CPU, which is calculated as

R =
fC

NGfG + fC

where fG and fC are the core frequencies of the GPU and the CPU respectively,
and NG is the number of GPU multiprocessors.

4 Evaluation

The experiments used a Kepler architecture NVIDIA Quadro K4000 graphics
card with 3 GB global memory, 768 Parallel-Processing Cores, 811 MHz GPU
Clock rate, with CUDA Compute Capability 3.0; and a six-core Intel Core i7-
3960X 3.3GHz CPU overclocked at 4.6GHz with 64GB RAM. The operating
system used was Debian Linux v7.6; the CUDA toolkit used was version 6.0.

294 L. Cheng and G. Butler

The dataset consisted of (1) the Pfam database of protein domains [37] which
contains 14,831 profile HMMs of length from 7 to 2207 for a total of 2,610,332
states; and (2) the Swiss-Prot database of fasta protein sequences [38], which
contains 540,958 sequences of length from 2 to 35,213 amino acids, and com-
prising 192,206,270 amino acids in total; a file more than 258MB in size. The
databases are as of September 2013.

The measurement of performance used was GCUPS (GigaCell Units Per
Second):

GCUPS =
Lq ∗ Lt

T ∗ 1.0e09
(2)

where Lq is the length of query profile HMM, Lt is the total residues of target
sequences in the database, and T is the execution time in seconds. The execution
time of the application was timed using the C clock() instruction. All programs
were compiled using GNU g++ with the -O3 option and executed independently
in a 100% idle system.

Table 4. Speedup of using GPU relative to one CPU core

Benchmark hmmsearch hmmCUDAsearch
profile HMMs Sequences Time(s) GCUPS Time(s) GCUPS Speedup

14831 540958 62332 8.05 35215 14.25 1.77

The table shows the performance of hmmsearch using one
CPU core versus hmmCUDAsearch using one CPU core and
the GPU when run on the benchmark. The columns show
the total time in seconds, the performance in GCUPS, and
speedup of hmmCUDAsearch relative to hmmsearch.

The results are presented in Figure 4 summarizing overall performance, and
as a scatter plot Figure 5 of the length of the profile HMM versus the speedup
of cudaHmmsearch relative to hmmsearch running on one core of the CPU. The
speedup for the GPU over one-core of the CPU ranged from 0.9x to 2.3x, with
an average speedup of 1.8x.

4.1 Impact of Number of Cores

We investigated using one to six of the available cores of the CPU. Table 5 shows
the performance of hmmsearch using either one, three, or six of the six cores of
the CPU. So using multiple CPU cores is more effective than using a GPU with
one CPU core.

4.2 Comparison with HMMER2

HMMER3 achieved significant improvements in performance over HMMER ver-
sion 2 (HMMER2) through the introduction of a heuristic filter called the Mul-
tiple Segment Viterbi algorithm (MSV) and the use of native SIMD instruction
set on modern CPUs.

Search of Protein Sequence Databases Using CUDA-Enabled GPU 295

Fig. 5. Speedup vs Length of the profile HMM

The scatter shows the performance of hmmsearch using one CPU core
versus hmmCUDAsearch using one CPU core and the GPU when run
on the benchmark. The x-axis represents the length of the profile
HMM, and the y-axis represents the speedup of hmmCUDAsearch
relative to hmmsearch. The speedup for the GPU over one-core of the
CPU ranged from 0.9x to 2.3x.

Table 5. Speedup using multiple CPU cores

CPUs Time(s) GCUPS Speedup

1 62332 8.05 1.00

3 26185 19.16 2.38

6 18502 27.12 3.37

The table shows the performance of hmmsearch against the bench-
mark when using one, three, and six of the CPU cores. The columns
show the total time in seconds, the performance in GCUPS, and
speedup relative to the baseline of using one CPU.

In order to see the effect of those changes to HMMER, and the contributions
of a GPU, we ran an experiment that searched the globins4 profile HMM of size
149 used in the HMMER Tutorial against the SwissProt database using four dif-

Table 6. Comparison with HMMER2 implementations

Application

(Device)
HMMER2.3.2

(CPU)
GPU-HMMER2.3.2

(GPU)
HMMER3

(CPU)
cudaHmmsearch

(GPU)

Performance (GCUPS) 0.14 0.95 8.47 17.36

Speedup (times) 1.00 6.79 60.50 124.00

The table shows the result of searching for the globins4 profile HMM against
SwissProt database. The CPU implementations of hmmsearch were executed
on one CPU core. The hmmsearch in GPU-HMMER2.3.2 and cudaHmmsearch
were executed on one GPU using one CPU core. Speedup uses the performance
of HMMER2.3.2 as baseline.

296 L. Cheng and G. Butler

ferent versions of hmmsearch: HMMER 2.3.2, GPU-HMMER 2.3.2, HMMER3,
and cudaHmmsearch. The results are shown in Table 6.

4.3 Contribution of Optimization Steps

We investigated the contribution made by each of the optimization techniques by
again using the globins4 profile HMM of size 149 used in the HMMER Tutorial
against the SwissProt database. The results are shown in Table 7.

Table 7. Performance of optimization approaches

Technique Time (s)
Performance

(GCUPS)

Improvement

(%)

Initial implementation 227.178 0.126 -

SIMD Video Instruction 125.482 0.228 81

Minimizing global memory access 16.449 1.741 664

Async memcpy & Multi streams 9.463 3.026 74

Coalescing global memory 6.565 4.362 44

Texture memory 5.370 5.333 22

Sorting Database 2.346 12.207 129

Distributing workload 1.650 17.357 42

The table shows the result of using cudaHmmsearch to search the
globins4 profile HMM against SwissProt. The fourth column Improve-
ment is measured as a percentage compared with the previous app-
roach. The row “Coalescing of global memory” is benchmarked only
for the dp matrix. The row “Texture memory” is benchmarked only
for the query profile texOMrbv 2D texture.

5 Conclusion

Searching databases of protein sequences for those proteins that match patterns
represented as profile HMMs is a widely performed bioinformatics task. Our
work used a general-purpose graphical processing unit (GPU) and the CUDA
software environment to improve HMMER version 3, which is the standard tool
for the task.

An execution profile of HMMER3 identified the heuristic Multiple Segment
Viterbi algorithm (MSV) filter as a code hotspot that consumes over 75% of the
total execution time. We followed a six-step process for tuning performance with
CUDA programming: 1) assessing the application; 2) profiling the application;
3) optimizing memory usage; 4) optimizing instruction usage; 5) maximizing
parallel execution; and 6) considering the existing libraries, that led us to apply
well-known optimization strategies to implement a CUDA version cudaHmm-
search of hmmsearch by targetting the MSV filter.

Our experimental benchmark searched each Pfam domain against the Swis-
sProt database. The results show that cudaHmmsearch achieved 1.8x speedup
over the single-threaded HMMER3 CPU SSE2 implementation on average.

Acknowledgments. Funding in part provided by NSERC.

Search of Protein Sequence Databases Using CUDA-Enabled GPU 297

References

1. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology 48(3), 443–453 (1970)

2. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local
alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

4. Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden markov
models in computational biology: Applications to protein modeling. Journal of
Molecular Biology 235(5), 1501–1531 (1994)

5. Howard Hughes Medical Institute: HMMER (2014). http://hmmer.janelia.org/
6. Eddy, S.R.: Accelerated profile HMM searches. PLoS Computational Biology

7(10) (2011)
7. Wun, B., Buhler, J., Crowley, P.: Exploiting coarse-grained parallelism to acceler-

ate protein motif finding with a network processor. In: IEEE PACT, pp. 173–184.
IEEE Computer Society (2005)

8. Maddimsetty, R.P.: Acceleration of profile-HMM search for protein sequences in
reconfigurable hardware. Master thesis, Washington University in St. Louis (2006)

9. Derrien, S., Quinton, P.: Parallelizing HMMER for hardware acceleration on
FPGAs. In: ASAP, pp. 10–17 (2007)

10. Oliver, T.F., Yeow, L.Y., Schmidt, B.: High performance database searching with
HMMer on FPGAs. In: IPDPS, pp. 1–7. IEEE (2007)

11. Sachdeva, V., Kistler, M., Speight, E., Tzeng, T.H.K.: Exploring the viability of
the Cell Broadband Engine for bioinformatics applications. Parallel Computing
34(11), 616–626 (2008)

12. Walters, J.P., Qudah, B., Chaudhary, V.: Accelerating the HMMER sequence
analysis suite using conventional processors. In: [39], pp. 289–294

13. Landman, J.I., Ray, J., Walters, J.P.: Accelerating HMMer searches on Opteron
processors with minimally invasive recoding. In: [39], pp. 628–636

14. Horn, D.R., Houston, M., Hanrahan, P.: ClawHMMER: A streaming HMMer-
search implementation. In: SC, p. 11. IEEE Computer Society (2005)

15. Walters, J.P., Balu, V., Kompalli, S., Chaudhary, V.: Evaluating the use of GPUs
in liver image segmentation and HMMER database searches. In: [40], pp. 1–12

16. Ganesan, N., Chamberlain, R.D., Buhler, J., Taufer, M.: Accelerating HMMER
on GPUs by implementing hybrid data and task parallelism. In: Zhang, A.,
Borodovsky, M., Özsoyoglu, G., Mikler, A.R. (eds.) BCB, pp. 418–421. ACM
(2010)

17. Du, Z., Yin, Z., Bader, D.A.: A tile-based parallel viterbi algorithm for biological
sequence alignment on GPU with CUDA. In: 2010 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pp.
1–8. IEEE (2010)

18. Quirem, S., Ahmed, F., Lee, B.K.: CUDA acceleration of P7Viterbi algorithm in
HMMER 3.0. In: Zhong, S., Dou, D., Wang, Y. (eds.) IPCCC, pp. 1–2. IEEE
(2011)

19. Intel: Intel VTune amplifier XE 2013 (2014). https://software.intel.com/en-us/
intel-vtune-amplifier-xe/

20. Ahmed, F., Quirem, S., Min, G., Lee, B.K.: Hotspot analysis based partial CUDA
acceleration of HMMER 3.0 on GPGPUs. International Journal of Soft Comput-
ing and Engineering 2(4), 91–95 (2012)

http://hmmer.janelia.org/
https://software.intel.com/en-us/intel-vtune-amplifier-xe/
https://software.intel.com/en-us/intel-vtune-amplifier-xe/

298 L. Cheng and G. Butler

21. Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming.
Addison-Wesley Professional (2013)

22. NVIDIA: CUDA C best practices guide (2013). http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html

23. Liu, Y., Maskell, D., Schmidt, B.: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
Research Notes 2(1) (2009)

24. Liu, Y., Schmidt, B., Maskell, D.L.: CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized
SIMD abstractions. BMC Research Notes 3(1) (2010)

25. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions.
BMC Bioinformatics 14, 117 (2013)

26. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hard-
ware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics
9(Suppl 2), S10 (2008)

27. Akoglu, A., Striemer, G.M.: Scalable and highly parallel implementation of Smith-
Waterman on graphics processing unit using CUDA. Cluster Computing 12(3),
341–352 (2009)

28. Ligowski, L., Rudnicki, W.R.: An efficient implementation of Smith Waterman
algorithm on GPU using CUDA, for massively parallel scanning of sequence
databases. In: [40], pp. 1–8

29. Kentie, M.: Biological Sequence Alignment Using Graphics Processing Units. Mas-
ter thesis, Delft University of Technology (2010)

30. Saeed, A.K., Poole, S., Perot, J.B.: Acceleration of the Smith-Waterman algorithm
using single and multiple graphics processors. Journal of Computational Physics
229(11), 4247–4258 (2010)

31. Aji, A.M., Feng, W., Blagojevic, F., Nikolopoulos, D.S.: Cell-SWat: modeling and
scheduling wavefront computations on the Cell Broadband Engine. In: Ramı́rez,
A., Bilardi, G., Gschwind, M. (eds.) Conf. Computing Frontiers, pp. 13–22. ACM
(2008)

32. Rognes, T., Seeberg, E.: Six-fold speed-up of Smith-Waterman sequence database
searches using parallel processing on common microprocessors. Bioinformatics
16(8), 699–706 (2000)

33. Farrar, M.: Striped Smith-Waterman speeds database searches six times over
other SIMD implementations. Bioinformatics 23(2), 156–161 (2007)

34. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-
Purpose GPU Programming, 1st edn. Addison-Wesley Professional (2010)

35. NVIDIA: CUDA C programming guide (2013). http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

36. SIB Bioinformatics Resource Portal: UniProtKB/Swiss-Prot protein knowl-
edgebase release 2014–05 statistics (2014). http://web.expasy.org/docs/relnotes/
relstat.html

37. Wellcome Trust Sanger Institute and Howard Hughes Janelia Farm Research
Campus: Pfam database (2013). ftp://ftp.sanger.ac.uk/pub/databases/Pfam/
releases/Pfam27.0/Pfam-A.hmm.gz

38. Universal Protein Resource: UniProt release. Website (2014)
39. 20th International Conference on Advanced Information Networking and Applica-

tions (AINA 2006), Vienna, Austria, 18–20 April. IEEE Computer Society (2006)
40. 23rd IEEE International Symposium on Parallel and Distributed Processing,

IPDPS 2009, Rome, Italy, 23–29 May. IEEE (2009)

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://web.expasy.org/docs/relnotes/relstat.html
http://web.expasy.org/docs/relnotes/relstat.html
ftp://ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam27.0/Pfam-A.hmm.gz
ftp://ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam27.0/Pfam-A.hmm.gz

Fast Subgraph Matching on Large Graphs
using Graphics Processors

Ha-Nguyen Tran(B), Jung-jae Kim, and Bingsheng He

School of Computer Engineering, Nanyang Technological University,
Singapore, Singapore

{s110035,jungjae.kim,bshe}@ntu.edu.sg

Abstract. Subgraph matching is the task of finding all matches of a
query graph in a large data graph, which is known as an NP-complete
problem. Many algorithms are proposed to solve this problem using
CPUs. In recent years, Graphics Processing Units (GPUs) have been
adopted to accelerate fundamental graph operations such as breadth-
first search and shortest path, owing to their parallelism and high data
throughput. The existing subgraph matching algorithms, however, face
challenges in mapping backtracking problems to the GPU architectures.
Moreover, the previous GPU-based graph algorithms are not designed to
handle intermediate and final outputs. In this paper, we present a simple
and GPU-friendly method for subgraph matching, called GpSM, which is
designed for massively parallel architectures. We show that GpSM out-
performs the state-of-the-art algorithms and efficiently answers subgraph
queries on large graphs.

1 Introduction

Big networks from social media, bioinformatics and the World Wide Web can be
essentially represented as graphs. As a consequence, common graph operations
such as breadth-first search and subgraph matching face the challenging issues
of scalability and efficiency, which have attracted increasing attention in recent
years. In this paper, we focus on subgraph matching, the task of finding all
matches or embeddings of a query graph in a large data graph. This problem
has enjoyed widespread popularity in a variety of real-world applications, e.g.,
semantic querying [1,2], program analysis [3], and chemical compound search [4].
In such applications, subgraph matching is usually a bottleneck for the overall
performance because it involves subgraph isomorphism which is known as an
NP-complete problem [5].

Existing algorithms for subgraph matching are generally based on the filtering-
and-verification framework [3,6–12]. First, they filter out all candidate vertices
which cannot contribute to the final solutions. Then the verification phase follows,
in which backtracking-based algorithms are applied to find results in an incremen-
tal fashion. Those algorithms, however, are designed to work only in small-graph
settings. The number of candidates grows significantly high in medium-to-large-
scale graphs, resulting in an exorbitant number of costly verification operations.
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 299–315, 2015.
DOI: 10.1007/978-3-319-18120-2 18

300 H.-N. Tran et al.

Several indexing techniques have also been proposed for faster computation [3,9];
however, the enormous index size makes them impractical for large data graphs
[14]. Distributed computing methods [13,14] have been introduced to deal with
large graphs by utilizing parallelism, yet there remains the open problem of high
communication costs between the participating machines.

Recently, GPUs with massively parallel processing architectures have been
successfully leveraged for fundamental graph operations on large graphs, includ-
ing breadth-first search [15,16], shortest path [15,17] and minimum spanning tree
[18]. Traditional backtracking approaches for subgraph matching, however, can-
not efficiently be adapted to GPUs due to two problems. First, GPU operations are
based on warps (which are groups of threads to be executed in single-instruction-
multiple-data fashion), and different execution paths generated by backtracking
algorithms may cause a so-called warp divergence problem. Second, GPU imple-
mentations for coalesced memory accesses are no longer straightforward due to
irregular access patterns [19].

To address these issues, we propose an efficient and scalable method called
GpSM . GpSM runs on GPUs and takes on edges as the basic unit. Unlike
previous backtracking-based algorithms, GpSM joins candidate edges in parallel
to form partial solutions during the verification phase, and this procedure is
conducted repeatedly until the final solution is obtained. An issue raised by
such parallel algorithms is the considerable amount of intermediate results for
joining operations, while backtracking algorithms only need to store less of such
data during execution. We resolve this issue by adopting the pruning technique
of [20], further enhancing it by ignoring low-connectivity vertices which have
little or no effect of decreasing intermediate results during filtering.

To highlight the efficiency of our solution, we perform an extensive evaluation
of GpSM against state-of-the-art subgraph matching algorithms. Experiment
results on both real and synthetic data show that our solution outperforms the
existing methods on large graphs.

The rest of the paper is structured as follows. Section 2 gives formal def-
initions and related works. In section 3, we introduce the filtering-and-joining
approach to solve the problem. The filtering and joining phases are discussed in
Section 4 and 5. Section 6 extends our method to deal with large graphs. Exper-
iment results are shown in Section 7. Finally, Section 8 concludes our paper.

2 Preliminaries

2.1 Subgraph Matching Problem

We give a formal problem statement using undirected labeled graphs, though our
method can be applied to directed labeled graphs as shown in the Experiment
Results section.

Definition 1. A labeled graph is a 4-tuple G = (V,E,L, l), where V is the
set of vertices, E ⊆ V × V is the set of edges, L is the set of labels and l is a
labeling function that maps each vertex to a label in L.

Fast Subgraph Matching on Large Graphs using Graphics Processors 301

Definition 2. A graph G = (V,E,L, l) is subgraph isomorphic to another
graph G′ = (V ′, E′, L′, l′), denoted as G ⊆ G′, if there is an injective function (or
a match) f : V → V ′, such that ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′, l(u) = l′(f(u)),
and l(v) = l′(f(v)).

(a) Query graph Q (b) Data graph G

Fig. 1. Sample query and data graph

Subgraph Matching Problem is defined as follows: Given a large data graph
G and a query graph Q, we find all matches of Q in G. For example, the subgraph
matching solution of the query graph Q in the data graph G in Figure 1 is
{(u1, v1), (u2, v2), (u3, v3), (u4, v6), (u5, v7), (u6, v8)}.

Definition 3. Given a query graph Q = (V,E,L, l) and a data graph G =
(V ′, E′, L′, l′), a vertex v ∈ V ′ is called a candidate of a vertex u ∈ V if
l(u) = l′(v), degree(u) ≤ degree(v) where degree(u), degree(v) are the number
of vertices connected to edges starting vertex u and v respectively. The set of
candidates of u is called candidate set of u, denoted as C(u).

The query vertex u3 in Figure 1a has a label of B and a degree of 3. For the
data graph vertex v3 in Figure 1b, the label is also B and the degree is 3 which
is equal to the degree of u3. Therefore, v3 is a candidate of u3. The candidate
set of u3 is C(u3) = {v3, v4}.

An adjacency list of a vertex u in a graph G is a set of vertices which are
the destinations of edges starting from u, denoted as adj(u). For example, the
adjacency list of u3 is adj(u3) = {u2, u4, u5}.

2.2 Subgraph Matching Algorithms

Most of state-of-the-art subgraph matching algorithms are based on backtracking
strategies which find matches by either forming partial solutions incrementally
or pruning them if they cannot produce the final results, as discussed in the
works of Ullman [6,10], VF2 [7], QuickSI [8], GADDI [9], GraphQL [1] and
SPath [3]. One of open issues in those methods is the selection of matching order
(or visit order). To address this issue, TurboISO [11] introduces the strategies
of candidate region exploration and combine-and-permute to compute a ‘good’
visit order, which makes the matching process efficient and robust.

To deal with large graphs, Sun et al. [14] introduce a parallel and distributed
algorithm (which we call STW in this paper), in which they decompose the query
graphs into 2-level trees, and apply graph exploration and join strategy to obtain

302 H.-N. Tran et al.

solutions in a parallel manner over a distributed memory cloud. Unlike STW,
our method uses GPUs in order to keep the advantages of parallelism during
computation, while simultaneously avoiding high communication costs between
participating machines.

2.3 General-Purpose Computing on GPUs

GPUs are widely used as commodity components in modern-day machines.
A GPU consists of many individual multiprocessors (or SMs), each of which
executes in parallel with the others. During runtime, threads on each multi-
processor are organized into thread blocks, and each block consists of multiple
32-thread groups, called warps. If threads within a warp are set to execute dif-
ferent instructions, they are called diverged ; computations in diverged threads
are only partially parallel, thus reducing the overall performance significantly.
The GPU includes a large amount of device memory with high bandwidth and
high access latency, called global memory. In addition, there is a small amount of
shared memory on each multiprocessor, which is essentially a low latency, high
bandwidth memory running at register speeds.

Due to such massive amounts of parallelism, GPUs have been adopted to
accelerate data and graph processing [15,16,23,27]. Harish et al. [15] implement
several common graph algorithms on GPUs including BFS, single source short-
est path and all-pair shortest path. Hong et al. [23] enhance BFS by proposing a
virtual warp-centric method to address the irregularity of BFS workload. Merrill
et al. [16] propose a BFS algorithm which is based on fine-grained task man-
agement and built upon an efficient prefix sum; this work has generally been
considered as one of the most complete and advanced works regarding BFS
traversal on GPUs. Finally, Medusa is a general programming framework for
graph processing in GPU settings [25], providing a rich set of APIs based on
which developers can further build their applications.

3 GpSM Overview

We introduce a GPU-based algorithm called GpSM to solve the problem of
subgraph matching. Unlike previous CPU methods with complicated pruning
and processing techniques, our algorithm is simple and designed for massively
parallel architectures.

3.1 Filtering-and-Joining Approach

We find that STW method [14] simultaneously filters out candidate vertices and
matches of basic units (i.e. 2-level trees), and thus generates a large amount
of irrelevant candidate vertices and edges. Our method performs the two tasks
separately in order to reduce intermediate results. The main routine of the GPU-
based algorithm is illustrated in Algorithm 1.

Fast Subgraph Matching on Large Graphs using Graphics Processors 303

The inputs of GpSM are a connected query graph q and a data graph g. The
vertex sets and edge sets of q and g are Vq, Eq and Vg, Eg respectively. The
output is a set of subgraph isomorphisms (or matches) of q in g. In our method,
we present a match as a list of pairs of a query vertex and its mapped data
vertex. Our solution is the collection M of such lists.

Algorithm 1. GpSM(q,g)
Input: query graph q, data graph g
Output: all matches of q in g

1 C := InitializeCandidateVertices(q,g);
2 C := RefineCandidateVertices(q,g,C);
3 E := FindCandidateEdges(q,g,C);
4 M := JoinCandidateEdges(q,g,E);
5 return M

Our method uses a filtering-and-joining strategy. The filtering phase con-
sists of two tasks. The first task filters out candidate vertices which cannot be
matched to query vertices (Line 1). After this task there can still be a large set
of irrelevant candidate vertices which cannot contribute to subgraph matching
solutions. The second task continues pruning this collection by calling a refining
function, RefineCandidateVertices. In the function, candidate sets of query ver-
tices are recursively refined either until no more candidates can be pruned, or
up to a predefined number of times (Line 2). The details of the filtering phase
will be discussed in Section 4. In the joining phase, GpSM collects candidate
edges based on the candidate vertices obtained in the previous phase (Line 3)
and combines them to produce the final subgraph matching solutions (Line 4)
which are finally returned to users. Section 5 gives the detailed implementation
of the joining phase.

3.2 Graph Representation

In order to support graph query answering on GPUs, we use three arrays to
represent a graph G = (V,E): vertices array, edges array, and labels array. The
edges array stores the adjacency lists of all vertices in V , from the first vertex
to the last one. The vertices array stores the start indexes of the adjacency lists,
where the i-th element of the vertices array has the start index of the adjacency
list of the i-th vertex in V . The labels array maintains labels of vertices in order
to support our method on labelled graphs. The first two arrays have been used
in previous GPU-based algorithms [15,16,23]. Figure 2 shows the representation
of the graph illustrated in Figure 1a in the GPU memory.

The advantage of the data structure is that vertices in the adjacency list
of a vertex are stored next to each other in the GPU memory. During GPU
execution, consecutive threads can access consecutive elements in the memory.
Therefore, we can avoid the random access problem and decrease the accessing
time for GPU-based methods consequently.

304 H.-N. Tran et al.

Fig. 2. Graph Representation in GPU Memory

4 Filtering Phase

This section describes the implementation of the filtering phase on GPUs. The
purpose of this phase is to reduce the number of candidate vertices and thus
decrease the amount of candidate edges as well as the running time of the joining
phase. The filtering phase consists of two tasks: initializing candidate vertices
and refining candidate vertices.

4.1 Initializing Candidate Vertices

The first step of the filtering phase is to initialize candidate sets of all query
vertices. In the task, we take a spanning tree generated from the query graph
as the input. This section presents a heuristic approach to selecting a good
spanning tree among many spanning trees of the query graph. The approach is
based on the observation that if the filtering starts from the query vertices with
the smallest number of candidates, its intermediate results can be kept to the
minimum. Since we do not know the number of candidates in the beginning, we
estimate it by using a vertex ranking function f(u) = deg(u)

freq(u.label) [11,14], where
deg(u) is the degree of u and freq(u.label) is the number of data vertices having
the same label as u.

We find a spanning tree T and a visit order O for a query graph as follows:
Initially, we pick a query edge (u, v) such that f(u) ≥ f(v) and f(u) + f(v) is
the maximum among all query edges. We add u to the visit order O, and add
the edges connected to u to the spanning tree T , except those whose endpoints
are already in the vertices set of T , i.e. V (T). The process continues to pick up
another query edge connected to T and add to O and T until no edge remains.
Figure 5a depicts the spanning tree of the Figure 1a graph. Also, the visit order
is u5, u2.

Algorithm 2 outlines the task of finding candidate vertices of each query
vertex from the data graph, following the visit order obtained earlier. For each
query vertex u, GpSM first checks if each of data vertex is a candidate of u
and keeps the candidacy information in the Boolean array c set[u] in parallel
(kernel check1; Line 7) in the case that its candidate set is not initialized (Line
1 Note that all functions whose names start with kernel are device functions that run

on GPUs.

Fast Subgraph Matching on Large Graphs using Graphics Processors 305

6). It then creates an integer array (c array) that collects the indexes of can-
didates of u from c set[u] (kernel collect; Line 9). GpSM calls another device
function (kernel explore; Line 10) that prunes out all candidate vertices u′ of u
such that there is a vertex v ∈ adj(u) which has no candidate vertex in adj(u′)
(Lines 16-18), and explores the adjacency list of u in the spanning tree in order
to filter the candidates of the vertices in adj(u) (Lines 19-22). Thus, the final
outputs are Boolean arrays c set, which represent the filtered candidate sets of
query vertices.

Algorithm 2. Initializing candidate vertices
Input: spanning tree T , data graph g
Output: candidate sets of vertices c set

1 Algorithm InitializeCandidateVertices(T, g)
2 foreach vertex u ∈ T do
3 c set[u][v] := false; ∀v ∈ Vg

4 initialized[u] := false;

5 foreach u ∈ T in the visit order do
6 if initialized[u] = false then
7 kernel check(c set[u], g);
8 initialized[u] := true;

9 c array := kernel collect(u, c set[u]);
10 kernel explore(u, c array, c set, T, g);
11 foreach v ∈ adj(u) do
12 initialized[v] := true;

13 return c set ;

14 Procedure kernel explore(u, c array, c set, T, g)
15 u′ := GetCandidate(c array, warp id);
16 if exist v ∈ adj(u) such that no v′ ∈ adj(u′) is a candidate of v then
17 c set[u][u′] := false;
18 return;

19 foreach v ∈ adj(u) do
20 v′ := GetAdjacentVertex (u′, thread id);
21 if v′ is a candidate of v then
22 c set[v][v′] := true;

GPU Implementation: We implement the two GPU device functions ker-
nel collect and kernel explore in the first step of the filtering phase, based on
two optimization techniques: occupancy maximization to hide memory access
latency and warp-based execution to take advantage of the coalesced access and
to deal with workload imbalance between threads within a warp. We skip details
of the device function kernel check since its implementation is straightforward.

1) kernel collect. This function is to maximize the occupancy of the ker-
nel explore execution. At runtime, warps currently running in an SM are called

306 H.-N. Tran et al.

active warps. Due to the resource constraints, each SM allows a maximum num-
ber of active warps running concurrently at a time. Occupancy is the number of
concurrently running warps divided by the maximum number of active warps.
At runtime, when a warp stalls on a memory access operation, the SM switches
to another active warp for arithmetic operations. Therefore, high-occupancy SM
is able to adequately hide access latency.

Fig. 3. Collect candidate vertices of u1

A naive approach to executing kernel explore is that only the warps cor-
responding to the true elements of c set[u] continue filtering vertices in adj(u).
However, the approach suffers from the low-occupancy problem since warps with
the false elements are idle. For example, we assume that the maximum num-
ber of active warps on the multiprocessor is 3. In the first 3 active warps, the
occupancy is 66.66% because only the warps corresponding to v1 and v3 execute
kernel explore while the warp with v2 is idle. For the next 3 concurrently run-
ning warps, the occupancy is only 33.33%. GpSM resolves the issue by adopting
a stream compaction algorithm [26] to gather candidate vertices into an array
c array for those c set[u] with true values. The algorithm employs prefix scan
to calculate the output addresses and to support writing the results in parallel.
The example of collecting candidate vertices of u1 is depicted in Figure 3. By
taking advantage of c array, all 3 active warps are used to explore the adjacency
lists of v1, v3 and v4. As a result, our method achieves a high occupancy.

2) kernel explore. Inspired by the warp-based methods used in BFS algo-
rithms for GPUs [16,23], we assign to each warp a candidate vertex u′ ∈ C(u)
(or c array from kernel collect). Within the warp, consecutive threads find the
candidates of v ∈ adj(u) in adj(u′). This method takes advantage of coalesced
access since the vertices of adj(u′) are stored next to each other in memory. It also
addresses the warp divergence problem since threads within the warp execute
similar operations. Thus, our method efficiently deals with the workload imbal-
ance problem between threads in a warp. Figure 4 shows an example of filtering
candidate vertices of u2 based on the candidate set of u1, C(u1) = {v1, v3, v4}.

If a data vertex has an exceptionally large degree compared to the others,
GpSM deals with it by using an entire block instead of a warp. This solution
reduces the workload imbalance between warps within the block.

Fast Subgraph Matching on Large Graphs using Graphics Processors 307

Fig. 4. Filter candidate vertices of u2 based on adjacency lists of C(u1) = {v1, v3, v4}

4.2 Refining Candidate Vertices

After filtering out candidate vertices for the first time, there can be still a large
number of candidate vertices which cannot be parts of final solutions. To address
this issue, we propose a recursive filtering strategy to further prune irrelevant
candidate vertices. The size of candidate edges and intermediate results are then
reduced consequently.

We observe the followings: 1) Exploring non-tree edges (i.e. those that form
cycles) can reduce the number of irrelevant candidates significantly; and 2) the
more edges a vertex has, the more irrelevant candidates of the vertex the filtering
techniques aforementioned can filter out. Based on the first observation, from
the second round of the filtering process, our method uses the original query
graph for exploration rather than a spanning tree of the query graph. Based on
the second observation, our method ignores query vertices connected to small
number of edges, called low connectivity vertices. For small-size query graphs,
a low connectivity vertex has the degree of 1. As for big query graphs, we can
increase the value of degree threshold to ignore more low connectivity vertices.
The query graph obtained after removing low connectivity vertices from Q is
shown in Figure 5b.

(a) Spanning tree (b) Simplified graph

Fig. 5. Spanning tree and simplified graph of Q

GPU implementation: The main routine of the refining task is similar to the
filtering in the previous section. The differences are as follows: 1) kernel check is
not necessary for the refining process and 2) we only use the pruning task (Lines
16-18) in the kernel explore function. By taking advantage of the c set array

308 H.-N. Tran et al.

generated in the initialization step, the refinement can verify the candidate con-
ditions easily and reduce the random accesses during the candidate verification.

Ideally, the optimal candidate sets of query vertices are obtained when the
refinement is recursively invoked until no candidate is removed from the candi-
date sets. However, our experiments show that most of irrelevant candidates are
pruned in the first few rounds. The later rounds do not prune out many can-
didates, but lead to inefficiency and reduce the overall performance. Therefore,
the refining task terminates after a limited number of rounds.

In the tasks of initializing and refining candidate sets of query vertices, GpSM
requires O(|Vq|×|Vg|) space to maintain Boolean arrays which are used to collect
candidate vertices and O(|Vg|) space to keep the collected set. Let S be the
number of SMs. Each SM has P active threads. For each visited vertex, the
prefix scan in kernel collect executes in O(|Vg| × log(|Vg|)/(S × P)) time while
kernel explore runs in O(|Vg| × |dg|/(S × P)), where dg is the average degree
of the data graph. Assume that the candidate refinement stops after k rounds,
the total time complexity of the filtering phase is O(|Vq|×k× (|Vg|× log(|Vg|)+
|Vg| × |dg|)/(S × P)).

5 Joining Phase

In the joining phrase, GpSM first gathers candidate edges in the data graph and
then combines them into subgraph matching solutions.

The output of each query edge (u, v) in the task of gathering candidate edges
is represented as a hash table, as depicted in Figure 6. The keys of this table are
candidate vertices u′ of u, and the value of a key u′ is the address of the first
element of the collection of candidate vertices v′ of v such that (u′, v′) ∈ Eg.
An issue of the step is that the number of the candidate edges is unknown, and
thus that we cannot directly generate such a hash table. To address this issue,
we employ the two-step output scheme [22] as follows: 1) Given a query edge
(u, v), each warp is assigned to process a candidate vertex u′ of u and counts the
number of candidate edges starting with u′ (designated as (u′, v′)). The system
then computes the address of the first v′ for u′ in the hash table of (u, v). 2)
It then re-examines the candidate edges and writes them to the corresponding
addresses of the hash table.

Fig. 6. Candidate edges of (u1, u2)

After finding the candidate edges, GpSM combines them to produce subgraph
matching solutions as follows: Initially, we pick a query edge (u, v) with the

Fast Subgraph Matching on Large Graphs using Graphics Processors 309

smallest number of candidate edges, and mark as visited the vertices u, v and the
edge (u, v). Here the candidates of (u, v) are partial subgraph matching solutions.
We select the next edge among the unvisited edges of the query graph, denoted
by (u′, v′), such that 1) both u′ and v′ are visited vertices, or 2) if there is no
such edge, either u′ or v′ is a visited vertex. If there are multiple such edges,
we select the one with the smallest number of candidates. Candidate edges of
(u′, v′) are then combined with the partial solutions. The procedure is conducted
repeatedly until all query edges are visited.

GPU Implementation: The GPU implementation for the task of gathering
candidate edges is similar to that of the filtering phase, except introducing the
two-step output scheme. For the task of combining partial subgraph matching
solutions, we apply the warp-based approach as follows: Each warp i is responsi-
ble for combining a partial solution Mi(q) with candidate edges of (u, v), where u
is already visited. First, the warp retrieves the candidate vertex of u from Mi(q)
(e.g., u′). It looks up the hash table storing candidate edges of (u, v) to find the
key u′ and retrieve the candidate vertices v′ of v from the hash table. By using
our data structure of candidate edges, this task can be done in logarithmic time.
Threads within the warp then verify whether (u′, v′) can be merged to Mi(q),
in which GpSM again follows the two-step output scheme to write the merged
results.

Shared Memory Utilization. The threads within the warp i should share the
partial solution Mi(q) and access them frequently. We thus store and maintain
Mi(q) in the shared memory instead of the device memory, which efficiently
hides the memory stalls.

Let C(ei) be the candidate edges of the edge ei. The joining phase is done
in O(

∏|Eq|
i=1 |C(ei)| × log(|Vg|)/(S × P) time. Note that the running time of the

joining phase highly depends on the number of candidates of query edges. There-
fore, reducing the number of candidate vertices in the filtering phase plays an
important role in decreasing both the running time and the memory used to
maintain partial solutions.

6 Extended GpSM for Very Large Graphs

In real-world applications, the sizes of data graphsmight be too large to be stored in
the memory of a single GPU device. In general, such large graphs have many labels,
and thus the vertices corresponding to the labels of a given query graph, together
with their adjacency lists, are relatively small. Based on the observation, we make
an assumption that the relevant data of query graph labels are small enough to
fit into the GPU memory. Therefore, we can make GpSM work efficiently on large
graphs by storing them with the inverted-vertex-label index data structure in CPU
memory or hard disk and, given a query graph, by retrieving only relevant vertices
and their adjacency lists to the GPU memory.

For each label l in the data graph G, we use three array structures. The first
array contains all vertices that have the label of l (designated as Vl.) The other

310 H.-N. Tran et al.

(a) Index of label B (b) System overview

Fig. 7. GpSM Solution on large graphs

two arrays are the vertices and edges arrays corresponding to Vl, as defined in
Section 3.2. An entry of the inverted-vertex-label index for label B of the data
graph in Figure 1b is depicted in Figure 7a.

Figure 7b provides a system overview of our solution for large-graph subgraph
matching using both GPUs and CPUs. Here rectangles indicate tasks while the
others represent data structures used in our solution. The first task is to create
an inverted-vertex-label index which is then stored in the hard disk. In order to
decrease the time to transfer data from the hard disk, we keep the most frequent
vertex labels in the main memory. Given a query graph, our solution retrieves
all the data associated with the query labels from the main memory or hard disk
and transfers them to the GPU memory to further search for subgraph matching
solutions, which are finally returned to the main memory.

7 Experiment Results

We evaluate the performance of GpSM in comparison with state-of-the-art sub-
graph matching algorithms, including VF2 [7], QuickSI (in short, QSI) [8],
GraphQL (in short, GQL) [1] and TuroboISO [11]. The implementations of VF2,
QuickSI and GraphQL used in our experiments are published by Lee and col-
leages [21]. As for TurboISO, we use an executable version provided by the
authors.

Datasets.The experiments are conducted on both real and synthetic datasets. The
real-world data include the Enron email communication network and the Gowalla
location-based social network2. On the other hand, the synthetic datasets are gen-
erated by RMAT generator [24], and vertices are labeled randomly. As for query
graphs, given the number of verticesN and the average number of edges per vertex
D (called degree), we generate connected labeled query graphs of sizeN , randomly
connecting the vertices and making their average degreeD. Except for experiments
with varying degrees, the query graphs always have the degree of 2.

Environment. The runtime of the CPU-based algorithms is measured using
an Intel Core i7-870 2.93 GHz CPU with 8GB of memory. Our GPU algorithms
2 These datasets can be downloaded from Stanford Dataset Collection website. See

https://snap.stanford.edu/data for more details.

Fast Subgraph Matching on Large Graphs using Graphics Processors 311

are tested using CUDA Toolkit 6.0 running on the NVIDIA Tesla C2050 GPU
with 3 GB global memory and 48 KB shared memory per Stream Multiprocessor.
For each of those tests, we execute 100 different queries and record the average
elapsed time. In all experiments, algorithms terminate only when all subgraph
matching solutions are found.

7.1 Comparison with State-of-the-art CPU Algorithms

The first set of experiments is to evaluate the performance of GpSM compared
to the state-of-that-art algorithms. These comparisons are performed on both
synthetic and real datasets. The input graphs are undirected graphs because the
released version of TurboISO only works with undirected graphs.

Synthetic Datasets. The size of the synthetic data graphs of the first experi-
ment set varies from 10,000 vertices to 100,000 vertices. All the data graphs have
10 distinct labels and the average degree of 16, and can fit into GPU memory.
The query graphs contain 6 vertices and 12 edges. Figure 8 shows that GpSM
clearly outperforms VF2, QuickSI and GraphQL. Compared to TurboISO, our
GPU-based algorithm runs slightly slower when the size of the data graphs is
relatively small (i.e. 10,000 vertices). However, when the size of data graphs
increases, GpSM is more efficient than TurboISO. We thus make further com-
parisons with TurboISO in more experiment settings.

Fig. 8. Varying data sizes

Real Datasets. As for real-world datasets, Gowalla network consists of 196,591
vertices and 950,327 edges while Enron network has 36,692 vertices and 183,831
edges. In these experiments, we use 20 labels for Gowalla nerwork and 10 labels
for Enron network. The number of query vertices varies from 6 to 13.

Figure 9a shows that TurboISO anwsers the subgraph matching queries
against the Gowalla network efficiently when the size of query graphs is small.
As the number of vertices increases, however, the processing time of TurboISO

312 H.-N. Tran et al.

(a) Gowalla network (b) Enron network

Fig. 9. Experiment on real datasets

grows exponentially. In contrast, GpSM shows almost linear growth. The two
methods show similar performance difference when evaluated against the Enron
network, as plotted in Figure 9b.

(a) Varying query sizes (b) Varying vertex degrees

Fig. 10. Comparison with TurboISO

Comparison with TurboISO. We also compare the performance of GpSM
with TurboISO, varying the size of query graphs and the degree of the data
graphs, as shown in Figure 10. The data graphs are synthetic undirected graphs
with 100,000 vertices and 10 labels.

Figure 10a shows the performance results of GpSM and TurboISO on the
query graphs whose numbers of vertices vary from 6 to 14. In the experiment,
the degree of the data graph is 16. Figure 10b shows their performance results
when the vertex degree increases from 8 to 24, where the query graph size is
fixed to 10. As shown in the two figures, the performance of TurboISO drops
significantly while that of GpSM does not. This may be due to the fact that the
number of recursive calls of TurboISO grows exponentially with respect to the
size of query graphs and the degree of the data graph. In contrast, GpSM takes
advantage of the large number of threads in GPUs to handle candidate edges in
parallel and thus keep the processing time rising slowly.

Fast Subgraph Matching on Large Graphs using Graphics Processors 313

7.2 Scalability Tests

We test the extended GpSM against very large graphs. The data graphs are
directed graphs which are generated using the RMAT generator. The number of
data vertices varies from 1 million to 2 billion vertices while the number of labels
varies from 100 to 2000 according to the vertex number. The average degree of
the data vertices is 8. The data graph is stored as follows: When the data graph
is small, i.e from 1 million to 25 million vertices, we store it in the GPU global
memory. If the vertex number of the data graph is between 25 million and 100
million, CPU memory is used to maintain the data graph. For data graphs with
200 million vertices and above, we store them in both CPU memory and hard
disk. The largest number of vertices per label of the 25-million-vertex graph is
around 350,000 while that of the 2-billion-vertex graph is nearly 1,400,000. The
query graphs used in the experiments consist of 10 vertices and 20 edges.

When the data graph size is 25 million vertices, we perform two experiments.
The first one maintains the whole data graph in GPU memory and the second
uses CPU memory. As shown in Figure 11a, the second experiment answers
subgraph matching queries slower than the first one, due to the time for data
transfer from CPU memory to GPU memory.

(a) Total running time (b) Detailed running time

Fig. 11. Scalability Tests

The details of the running time are shown in Figure 11b, from which we
observe the followings: 1) The time taken for GPU execution (i.e. subgraph
matching) grows linearly as the data graph size increases, as expected from
our time complexity analysis in Sections 4 and 5. 2) The GPU execution time
takes around 11∼20% of the total running time, while the rest is taken by data
transfers between GPU and CPU or hard disk. 3) The data transfer time also
grows almost linearly as the data graph size increases, though the transfer from
hard disk adds additional running time.

8 Conclusions

In this paper, we introduce an efficient method which takes advantage of GPU
parallelism to deal with large-scale subgraph matching problem. Our method

314 H.-N. Tran et al.

called GpSM is simple and designed for massively parallel processing. GpSM is
based on filtering-and-joining approaches, efficient GPU techniques of coales-
cence, warp-based and shared memory utilization, and a recursive refinement
function for pruning irrelevant candidate vertices. Experiment results show that
our method outperforms previous backtracking-based algorithms on CPUs and
can efficiently answer subgraph matching queries on large graphs. In future, we
will further improve the efficiency of GpSM for large graphs, for example, by
dealing with large amount of intermediate results that do not fit into the GPU
memory and also by adopting buffering techniques.

Acknowledgments. We thank to Prof. Wook-Shin Han and Dr. Jeong-Hoon Lee for
sharing iGraph source code and executable files of TurboISO algorithm and providing
clear explanations about TurboISO. Bingsheng He is partly supported by a MoE. AcRF
Tier 2 grant (MOE2012-T2-2-067) in Singapore.

References

1. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: SIGMOD, pp. 405–418 (2008)

2. Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: Naga:
Searching and ranking knowledge. In: ICDE, pp. 953–962 (2008)

3. Zhao, P., Han, J.: On graph query optimization in large networks. PVLDB 3(1–2),
340–351 (2010)

4. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach.
In: SIGMOD, pp. 335–346 (2004)

5. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–
158 (1971)

6. Ullmann, J.R.: An algorithm for subgraph isomorphism. JACM 23(1), 31–42
(1976)

7. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. PAMI 26(10), 1367–1372 (2004)

8. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. PVLDB 1(1), 364–375 (2008)

9. Zhang, S., Li, S., Yang, J.: GADDI: distance index based subgraph matching in
biological networks. In: EDBT, pp. 192–203 (2009)

10. Ullmann, J.R.: Bit-vector algorithms for binary constraint satisfaction and sub-
graph isomorphism. JEA 15, 1–6 (2010)

11. Han, W.S., Lee, J., Lee, J.H.: Turbo iso: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In: SIGMOD, pp. 337–348 (2013)

12. Kim, S., Song, I., Lee, Y.J.: An edge-based framework for fast subgraph matching
in a large graph. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I.
LNCS, vol. 6587, pp. 404–417. Springer, Heidelberg (2011)

13. Brocheler, M., Pugliese, A., Subrahmanian, V.S.: COSI: Cloud oriented subgraph
identification in massive social networks. In: ASONAM, pp. 248–255 (2010)

14. Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on
billion node graphs. PVLDB 5(9), 788–799 (2012)

15. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU
using CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.)
HiPC 2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007)

Fast Subgraph Matching on Large Graphs using Graphics Processors 315

16. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In:
PPoPP, pp. 117–128 (2012)

17. Katz, G.J., Kider Jr., J.T.: All-pairs shortest-paths for large graphs on the GPU.
In: GH, pp. 47–55 (2008)

18. Vineet, V., Harish, P., Patidar, S., Narayanan, P.J.: Fast minimum spanning tree
for large graphs on the gpu. In: HPG, pp. 167–171 (2009)

19. Jenkins, J., Arkatkar, I., Owens, J.D., Choudhary, A., Samatova, N.F.: Lessons
learned from exploring the backtracking paradigm on the GPU. In: Jeannot, E.,
Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 425–
437. Springer, Heidelberg (2011)

20. McGregor, J.J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Information Sciences 19(3), 229–250 (1979)

21. Lee, J., Han, W.S., Kasperovics, R., Lee, J.H.: An in-depth comparison of sub-
graph isomorphism algorithms in graph databases. PVLDB 6(2), 133–144 (2012)

22. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a MapReduce
framework on graphics processors. In: PACT, pp. 260–269 (2008)

23. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph
algorithms at maximum warp. In: PPoPP, pp. 267–276 (2011)

24. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A Recursive Model for Graph
Mining. In: SDM, pp. 442–446 (2004)

25. Zhong, J., He, B.: Medusa: Simplified graph processing on GPUs. TPDS 25(6),
1543–1552 (2013)

26. Harris, M., Sengupta, S., Owens, J.D.: Gpu gems 3. Parallel Prefix Sum (Scan)
with CUDA, pp. 851–876 (2007)

27. Lu, M., He, B., Luo, Q.: Supporting extended precision on graphics processors.
In: DaMoN, pp. 19–26 (2010)

On Longest Repeat Queries Using GPU

Yun Tian and Bojian Xu(B)

Department of Computer Science, Eastern Washington University,
Cheney, WA 99004, USA

{ytian,bojianxu}@ewu.edu

Abstract. Repeat finding in strings has important applications in sub-
fields such as computational biology. The challenge of finding the longest
repeats covering particular string positions was recently proposed and
solved by İleri et al., using a total of the optimal O(n) time and space,
where n is the string size. However, their solution can only find the left-
most longest repeat for each of the n string position. It is also not known
how to parallelize their solution. In this paper, we propose a new solution
for longest repeat finding, which although is theoretically suboptimal in
time but is conceptually simpler and works faster and uses less memory
space in practice than the optimal solution. Further, our solution can
find all longest repeats of every string position, while still maintaining a
faster processing speed and less memory space usage. Moreover, our solu-
tion is parallelizable in the shared memory architecture (SMA), enabling
it to take advantage of the modern multi-processor computing platforms
such as the general-purpose graphics processing units (GPU). We have
implemented both the sequential and parallel versions of our solution.
Experiments with both biological and non-biological data show that our
sequential and parallel solutions are faster than the optimal solution by
a factor of 2–3.5 and 6–14, respectively, and use less memory space.

Keywords: String · Repeats · Longest repeats · Parallel computing ·
Stream compaction · GPU · CUDA

1 Introduction

Repetitive structures and regularities finding in genomes and proteins is impor-
tant as these structures play important roles in the biological functions of genomes
and proteins [1,4,8,13,14,20–22]. It is well known that overall about one-third of
the whole human genome consists of repeated subsequences [17]; about 10–25%
of all known proteins have some form of repetitive structures [14]. In addition,
a number of significant problems in molecular sequence analysis can be reduced
to repeat finding [16]. Another motivation for finding repeats is to compress the
DNA sequences, which is known as one of the most challenging tasks in the data

Authors names are in alphabetical order.
B. Xu–Supported in part by EWU Faculty Grants for Research and Creative Works.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 316–333, 2015.
DOI: 10.1007/978-3-319-18120-2 19

On Longest Repeat Queries Using GPU 317

compression field. DNA sequences consist only of symbols from {ACGT} and there-
fore can be represented by two bits per character. Standard compressors such as
gzip and bzip usually use more than two bits per character and therefore can-
not achieve good compression. Many modern genomic sequence data compression
techniques highly rely on the repeat finding in sequences [2,15].

The notion of maximal repeat and super maximal repeat [1,3,8,12] captures
all the repeats of the whole string in a space-efficient manner, but it does not
track the locality of each repeat and thus can not support the finding of repeats
that cover a particular string position. For this reason, İleri et al. [9] proposed
the challenge of longest repeat query, which is to find the longest repetitive
substring(s) that covers a particular string position. Because any substring of
a repetitive substring is also repetitive, the solution to longest repeat query
effectively provides an effective “stabbing” tool for finding the majority of the
repeats covering a string position. İleri et al. proposed an O(n) time and space
algorithm that can find the leftmost longest repeat of every string position. Since
one has to spend Ω(n) time and space to read and store the input string, the
solution of İleri et al. is optimal.

Our contribution. In this paper, we propose a new solution for longest repeat
query. Although our solution is theoretically suboptimal in the time cost, it
is conceptually simpler and runs faster and uses less memory space than the
optimal solution in practice. Our solution can also find all longest repeats for
every string position while still maintaining a faster processing speed and less
space usage, whereas the optimal solution can only find the leftmost candi-
date. Further, our solution can be parallelized in the shared-memory architec-
ture, enabling it to take advantage of the modern multi-processor computing
platforms such as the general-purpose graphics processing units (GPU) [6,18].
We have implemented both the sequential and parallel versions of our solution.
Experiments with both biological and non-biological data show that our solution
run faster than the O(n) optimal solution by a factor of 2–3.5 using CPU and
6–14 using GPU, and use less space in both settings.

Road map. After formulating the problem of longest repeat query in Section 2,
we prepare some technical background and observations in Section 3 for our
solutions. Section 4 presents the sequential version of our solutions. Following
the interpretation in Section 4, it is natural and easy to get the parallel version of
our solution, which is presented in Section 5. Section 6 shows the experimental
results on the comparison between our solutions and the O(n) solution using
real-world data.

2 Problem Formulation

We consider a string S[1 . . . n], where each character S[i] is drawn from an
alphabet Σ = {1, 2, . . . , σ}. A substring S[i . . . j] of S represents S[i]S[i +
1] . . . S[j] if 1 ≤ i ≤ j ≤ n, and is an empty string if i > j. String S[i′ . . . j′] is a

318 Y. Tian and B. Xu

proper substring of another string S[i . . . j] if i ≤ i′ ≤ j′ ≤ j and j′−i′ < j−i.
The length of a non-empty substring S[i . . . j], denoted as |S[i . . . j]|, is j − i+1.
We define the length of an empty string as zero. A prefix of S is a substring
S[1 . . . i] for some i, 1 ≤ i ≤ n. A proper prefix S[1 . . . i] is a prefix of S
where i < n. A suffix of S is a substring S[i . . . n] for some i, 1 ≤ i ≤ n. A
proper suffix S[i . . . n] is a suffix of S where i > 1. We say the character S[i]
occupies the string position i. We say the substring S[i . . . j] covers the kth
position of S, if i ≤ k ≤ j. For two strings A and B, we write A = B (and
say A is equal to B), if |A| = |B| and A[i] = B[i] for i = 1, 2, . . . , |A|. We say
A is lexicographically smaller than B, denoted as A < B, if (1) A is a proper
prefix of B, or (2) A[1] < B[1], or (3) there exists an integer k > 1 such that
A[i] = B[i] for all 1 ≤ i ≤ k − 1 but A[k] < B[k]. A substring S[i . . . j] of S
is unique, if there does not exist another substring S[i′ . . . j′] of S, such that
S[i . . . j] = S[i′ . . . j′] but i �= i′. A substring is a repeat if it is not unique. A
character S[i] is a singleton, if it appears only once in S.

Definition 1. For a particular string position k ∈ {1, 2, . . . , n}, the
longest repeat (LR) covering position k, denoted as LRk, is a repeat sub-
string S[i . . . j], such that: (1) i ≤ k ≤ j, and (2) there does not exist another
repeat substring S[i′ . . . j′], such that i′ ≤ k ≤ j′ and j′ − i′ > j − i.

Obviously, for any string position k, if S[k] is not a singleton, LRk must exist,
because at least S[k] itself is a repeat. Further, there might be multiple choices for
LRk. For example, if S = abcabcddbca, then LR2 can be either S[1 . . . 3] = abc
or S[2 . . . 4] = bca. In this paper, we study the problem of finding the longest
repeats of every string position of S.

Problem (longest repeat query): For every string position k ∈ {1, 2, . . . , n}, we
want to find LRk or the fact that it does not exist. If multiple choices for LRk

exist, we want to find all of them.

3 Preliminary

The suffix array SA[1 . . . n] of the string S is a permutation of {1, 2, . . . , n},
such that for any i and j, 1 ≤ i < j ≤ n, we have S[SA[i] . . . n] < S[SA[j] . . . n].
That is, SA[i] is the starting position of the ith suffix in the sorted order of all
the suffixes of S. The rank array Rank [1 . . . n] is the inverse of the suffix array.
That is, Rank [i] = j iff SA[j] = i. The longest common prefix (lcp) array
LCP [1 . . . n+1] is an array of n+1 integers, such that for i = 2, 3, . . . , n, LCP [i]
is the length of the lcp of the two suffixes S[SA[i − 1] . . . n] and S[SA[i] . . . n].
We set LCP [1] = LCP [n + 1] = 0.1 Table 1 shows the suffix array and the lcp
array of the example string mississippi.
1 In the literature, the lcp array is often defined as an array of n integers. We include

an extra zero at LCP [n + 1] as a sentinel in order to simplify the description of our
upcoming algorithms.

On Longest Repeat Queries Using GPU 319

Table 1. The suffix array and
the lcp array of an example
string S = mississippi

i LCP [i] SA[i] suffixes

1 0 11 i

2 1 8 ippi

3 1 5 issippi

4 4 2 ississippi

5 0 1 mississippi

6 0 10 pi

7 1 9 ppi

8 0 7 sippi

9 2 4 sissippi

10 1 6 ssippi

11 3 3 ssissippi

12 0 – –

Table 2. The number of walk steps in the LR’s
calculation using our solutions for several 50MB files
from Pizza & Chili 2

LLR
array type #walk steps DNA English Protein

Minimum 1 1 1
raw Maximum 14,836 109,394 25,822

Average (α) 48 4,429 215

Minimum 1 1 1
compact Maximum 14 10 35

Average (β) 6 2 3

Definition 2. For a particular string position k ∈ {1, 2, . . . , n}, the left-
bounded longest repeat (LLR) starting at position k, denoted as LLRk,
is a repeat S[k . . . j], such that either j = n or S[k . . . j + 1] is unique.

Clearly, for any string position k, if S[k] is not a singleton, LLRk must exist,
because at least S[k] itself is a repeat. Further, if LLRk does exist, there must be
only one choice, because k is a fixed string position and the length of LLRk must
be as long as possible. Lemma 1 shows that, given the rank and lcp arrays of the
string S, we can directly calculate any LLRk or find the fact of its nonexistence.

Lemma 1 ([9]). For i = 1, 2, . . . , n:

LLRi =
{

S[i . . . i + Li − 1] , if Li > 0
does not exist , if Li = 0

where Li = max{LCP [Rank [i]],LCP [Rank [i] + 1]}.
Clearly, the left-ends of LLR1,LLR2, . . . ,LLRn strictly increase as 1, 2, . . . , n.

The next lemma shows the right-ends of LLR’s also monotonically increase.

Lemma 2. |LLRi | ≤ |LLRi+1 | + 1, for every i = 1, 2, . . . , n − 1.

Proof. The claim is obviously correct for the cases when LLRi does not exist
(|LLRi | = 0) or |LLRi | = 1, so we only consider the case when |LLRi | ≥ 2.
Suppose LLRi = S[i . . . j], i < j. It follows that i + 1 ≤ j. Since S[i . . . j] is a
repeat, its substring S[i+1 . . . j] is also a repeat. Note that LLRi+1 is the longest
repeat substring starting from position i + 1, so |LLRi+1 | ≥ |S[i + 1 . . . j]| =
|LLRi | − 1. ��
Lemma 3 ([9]). Every LR is an LLR.
2 http://pizzachili.dcc.uchile.cl/texts.html

http://pizzachili.dcc.uchile.cl/texts.html

320 Y. Tian and B. Xu

4 Two Simple and Parallelizable Sequential Algorithms

We know every LR is an LLR (Lemma 3), so the calculation of a particular LRk

is actually a search for the longest one among all LLR’s that cover position k.
Our discussion starts with the finding of the leftmost LR for every position.
In the end, an trivial extension will be made to find all LR’s for every string
position.

Algorithm 1. Sequential finding of every leftmost LRk, using the raw LLR
array.

Input: The rank array and the lcp array of the string S

/* Calculate LLR1,LLR2, . . . ,LLRn. */
1 for i = 1, 2, . . . , n do
2 LLRr [i] ← max{LCP [Rank [i]],LCP [Rank [i] + 1]}; // |LLRi |

/* Calculate LR1,LR2, . . . ,LRn. */
3 for k = 1, 2, . . . , n do
4 LR ← 〈−1, 0〉 ; // 〈start, end〉: start and ending position of LRk.
5 for i = k down to 1 do
6 if i + LLRr [i] − 1 < k then // LLRi does not exist or does not cover k.
7 break; // Early stop

8 else if LLRr [i] ≥ LR .length then LR ← 〈i,LLRr [i]〉;
9 print LR;

4.1 Use the Raw LLR Array

We first calculate LLRi, for i = 1, 2, . . . , n, using Lemma 1, and save the result
in an array LLRr [1 . . . n], where each LLRr [i] = |LLRi |. We call LLRr [1 . . . n]
the raw LLR array. Because the rightmost LLR that covers position k is LLRk

and the right boundaries of all LLR’s monotonically increase (Lemma 2), the
search for LRk becomes simply a walk from LLRk toward the left. The walk will
stop when it sees an LLR that does not cover position k or it has reached the
left end of the LLRr array. During this walk, we will record the longest LLR
that covers position k. Ties can be broken by storing the leftmost such LLR.
This yields the simple Algorithm 1, which outputs every LR as a 〈start, length〉
tuple, representing the starting position and the length of the LR.

Lemma 4. Given the rank and lcp arrays, Algorithm 1 can find the leftmost
LRk for every k = 1, 2, . . . , n, using a total of O(n) space and O(αn) time,
where α is the average number of LLR’s that cover a string position.

Proof. (1) The time cost for the LLRr array calculation is obviously O(n). The
algorithm finds the LR of each of the n string positions. The average time cost
for each LR calculation is bounded by the average number of walk steps, which
is equal to the average number of LLR’s that cover a string position. Altogether,
the time cost is O(αn). (2) The main memory space is used by the rank, lcp,
and LLRr arrays, each of which has n integers. So altogether the space cost is
O(n) words. ��

On Longest Repeat Queries Using GPU 321

Theorem 1. We can find the leftmost LRk for every k = 1, 2, . . . , n, using a
total of O(n) space and O(αn) time, where α is the average number of LLR’s
that cover a string position.

Proof. The suffix array of S can be constructed using existing O(n)-time and
space algorithms (For example, [11]). After the suffix array is constructed, the
rank array can be trivially created using another O(n) time and space. We can
then use the suffix array and the rank array to construct the lcp array using
another O(n) time and space [10]. Combining with Lemma 4, the claim in the
theorem is proved. ��

Extension: find all LR’s for every string position. As we have demonstrated
in the example after Definition 1, a particular string position may be covered
by multiple LR’s, but Algorithm 1 can only find the leftmost one. However,
extending it to find all LR’s for every string position is trivial: During each
walk, we simply report all the longest LLR’s that cover the string position, of
which we are computing the LR. In order to do so, we will need to do the same
walk twice. The first walk is to find the length of the LR and the second walk
will actually report all the LR’s. The pseudocode of this procedure can be found
in the appendix of [23].

This algorithm certainly has another extra O(α) time cost on average for
each string position’s LR calculation due to the extra walk, but it still gives a
total of O(αn) time cost and O(n) space cost.

Corollary 1. We can find all LR’s covering every position k = 1, 2 . . . , n, using
a total of O(n) space and O(αn) time, where α is the average number of LLR’s
that cover a position.

Comment: (1) Algorithm 1 and its extension are cache friendly. Observe that
the finding of every LR essentially is a linear walk over a continuous chunk of
the LLRr array. For real-world data, the number of steps in every such walk is
quite limited, as shown in the upper rows of Table 2. Note that the English
dataset gives a much higher average number of walk steps, because the data
was synthesized by appending several real-world English texts together, making
many paragraphs appear several times. Because of the few walk steps needed
for real-world data, the walking procedure can thus be well cached in the L2
cache, whose size is around several MBs in most nowadays desktops’ CPU archi-
tecture, making our algorithm much faster in practice. Note that the optimal
O(n) algorithm [9] uses a 2-table system to achieve its optimality, which however
has quite a pattern of random accessing the different array locations during its
run and thus is not cache friendly. We will demonstrate the comparison with
more details in Section 6. (2) Algorithm 1 and its extension are parallelizable in
shared-memory architecture. First, each LLR can be calculated independently
by a separate thread. After all LLR’s are calculated, each LR can also be cal-
culated independently by a separate thread going through an independent walk.
This enables us to implement this algorithm on GPU, which supports massively
parallel threads using data parallelism.

322 Y. Tian and B. Xu

4.2 Use the Compact LLR Array

Observe that an LLR can be a substring (suffix, more precisely) of another LLR.
For example, suppose S = ababab, then LLR4 = S[4 . . . 6] = bab, which is a
substring of LLR3 = S[3 . . . 6] = abab. We know every LR must be an LLR
(Lemma 3). So, if an LLRi is a substring of another LLRj , LLRi can never be
the LR of any string position, because every position covered by LLRi is also
covered by at least another longer LLR, LLRj .

Definition 3. We say an LLR is useless if it is a substring of another LLR;
otherwise, it is useful.

Recall that in Algorithm 1 and its extension, the calculation of a particular
LRi is a search for the longest one among all LLR’s that cover position i. This
search procedure is simply a walk from LLRi toward the left until it sees an LLR
that does not cover position i or reaches the left end of the LLRr array. This
search can be potentially sped up, if we have had all useless LLR’s eliminated
before any search is performed. We will use a new array LLRc, called the compact
LLR array, to store all the useful LLR’s in the ascending order of their left ends
(as well as of their right ends, automatically).

By Lemma 2, we know if LLRi−1 is not empty, the right boundary of LLRi

is on or after the right boundary of LLRi−1. So, we can construct the LLRc
array in one pass as follows. We will calculate every LLRi using Lemma 1,
for i = 1, 2, . . . , n, and will eliminate every LLRi if |LLRi | = 0 or |LLRi | =
|LLRi−1 | − 1. Because of the elimination of the useless LLR’s, we will have to
save each LLR as a 〈start, length〉 tuple, representing the starting position
and the length of the LLR, in the LLRc array. Figure 1 shows the geometric
perspective of the elements in an example LLRr array and its corresponding
LLRc array, where every LLR is represented by a line segment whose start and
ending position represent the start and ending position of the LLR.

Note that, in the LLRc array, any two LLR’s share neither the same left-
end point (obviously) nor the same right-end point. In other words, the left-end
points of all useful LLR’s strictly increase, and so do their right-end points,
i.e., all the elements in the LLRc array have been sorted in the strict increasing
order of their left-end (as well as right-end) points. See Figure 1b for an example.

(a) The raw LLR array (b) The compact LLR array

Fig. 1. The visualization of an example raw LLR array and its compact LLR array

On Longest Repeat Queries Using GPU 323

Therefore, given a string position, we can find the leftmost useful LLR that covers
that position using a binary search over the LLRc array and the time cost for
such a binary search is bounded by O(log n). After that, we will simply walk
along the LLRc array, starting from the LLR returned by the binary search and
toward the right. The walk will stop when it sees an LLR that does not cover
the string position or it has reached the right end of the LLRc array. During the
walk, we will just report the longest LLR that covers the given string position.
Ties are broken by picking the leftmost such longest LLR. This leads to the
Algorithm 2.

Lemma 5. Given the rank and lcp arrays, Algorithm 2 can find the leftmost
LRk for every k = 1, 2, . . . , n, using a total of O(n) space and O(n(log n + β))
time, where β is the average number of useful LLR’s that cover a string position.

Proof. (1) The time cost for the LLRc array calculation is obviously O(n) time.
The algorithm finds the LR of each of the n string positions. The average time
cost for the calculation of the LR of one position includes the O(log n) time for
the binary search and the time cost for the subsequent walk, which is bounded
by the average number of useful LLR’s that cover a string position. Altogether,
the time cost is O(n(log n + β)). (2) The main memory space is used by the
rank, lcp, and LLRc arrays. Each of the rank and lcp arrays has n integers. The
LLRc array has no more than n pairs of integers. Altogether, the space cost
O(n) words. ��
Theorem 2. We can find the leftmost LRk for every k = 1, 2, . . . , n, using a
total of O(n) space and O(n(log n + β)) time, where β is the average number of
useful LLR’s that cover a string position.

Proof. The suffix array of S can be constructed by existing algorithms using
O(n) time and space (For example, [11]). After the suffix array is constructed,
the rank array can be trivially created using another O(n) time and space. We
can then use the suffix array and the rank array to construct the lcp array
using another O(n) time and space [10]. Combining the results in Lemma 5, the
theorem is proved. ��

Extension: find all LR’s for every string position. Algorithm 2 can also be triv-
ially extended to find all LR’s for every string position by simply reporting all
the longest LLR that covers the position during every walk. In order to do so, we
will need to walk twice for each string position. The first walk is to get the length
of the LR and the second walk will report all the actual LR’s. The pseudocode
of this procedure can be found in the appendix of [23]. This algorithm certainly
has another extra O(β) time cost on average for each LR’s calculation due to the
extra walk, but still gives a total of O(n(log n + β)) time cost and O(n) space
cost.

Corollary 2. We can find all LR’s of every position k = 1, 2, . . . , n, using a
total of O(n) space and O(n(log n + β)) time, where β is the average number of
useful LLR’s that cover a position.

324 Y. Tian and B. Xu

Algorithm 2. Sequential finding of every leftmost LRk, using the LLRc
array.

Input: The rank array and the lcp array of the string S

/* Calculate the compact LLR array. */
1 j ← 1; prev ← 0;
2 for i = 1, 2, . . . , n do
3 L ← max{LCP [Rank [i]],LCP [Rank [i] + 1]}; // |LLRi |
4 if L > 0 and L ≥ prev then LLRc[j] ← 〈i, L〉; j ← j + 1 ;
5 prev ← L;

6 size ← j − 1 ; // Size of the LLRc array.

/* Calculate LR1,LR2, . . . ,LRn. */
7 for k = 1, 2, . . . , n do
8 LR ← 〈−1, 0〉 ; // 〈start, end〉: start and ending position of LRk.
9 start ← BinarySearch(LLRc, k)/* The index of the leftmost LLRc array element

covering position k, if such element exists; otherwise, −1. */
10 if start �= −1 then
11 for i = start . . . size do
12 if LLRc[i].start+ LLRc[i].length − 1 < k then // LLRc[i] does not cover k.
13 break; // Early stop

14 else if LLRc[i].length > LR .length then LR ← LLRc[i];

15 print LR;

Comment: (1) The binary searches that are involved in Algorithms 2 and its
extension are not cache friendly. However, compared with Algorithms 1 and its
extension, Algorithms 2 and its extension on average have much fewer steps (the
β value) in each walk due to the elimination of the useless LLR’s (see the bottom
rows of Table 2). This makes Algorithms 2 and its extension much better choices
rather than Algorithms 1 and its extension for run environments that have small
cache size. Such run environments include the GPU architecture, where the cache
size for each thread block is only several KBs. We will demonstrate this claim
with more details in Section 6. (2) With more care in the design, Algorithms 2
and its extension are also parallelizable in shared-memory architecture (SMA),
which is described in the next Section.

5 Parallel Implementation on GPU

In this section, we describe the GPU version of Algorithms 1 and 2 and their
extensions. After we construct the SA, Rank, and LCP arrays on the host CPU 3,
we transfer the Rank array and the LCP array to the GPU device memory. We
start with the calculation of the raw LLR array in parallel.

Compute the Raw LLR Array. After the LCP and Rank arrays are loaded into
GPU memory, we launch a CUDA kernel to compute the raw LLR array on GPU
3 The SA, Rank, and LCP arrays can also be constructed in parallel on GPU [7,19],

but due to the unavailability of the source code or executables from the authors
of [7,19], we choose to construct these arrays on the host CPU, without affecting
the demonstration of the performance gains by our algorithms.

On Longest Repeat Queries Using GPU 325

device using massively parallel threads (Figure 2). Each thread ti on the device
computes a separate element LLRr [i] = |LLRi | using the following equation
from Lemma 1.

LLR[i] = max{LCP [Rank [i],LCP [Rank [i] + 1]}

Since each LLRi must start on position i, we only need to save the length of
each LLRi in LLRr [i]. After creating the raw LLR array, we have two options,
which in turn lead to two different parallel solutions: using the raw LLR array
or the compact LLR array.

5.1 Compute LR’s Using the Raw LLR Array

The parallel implementation of Algorithm 1 using the raw LLR array is straight-
forward, as presented by the left branch of Figure 2. With the raw LLR array
returned from the previous kernel launch on the GPU device, we launch a second
kernel for LR calculation. Each CUDA thread ti on the device is to find LRi

by performing a linear walk in the LLRr array, starting at LLRr [i] toward the
left. The walk continues until it finds an LLRr array element that does not cover
position i or has reached the left end of the LLRr array. The leftmost or all LRi

can be reported during the walk, as discussed in Algorithm 1. Note that in this
search, each CUDA thread checks a chunk of contiguous elements in the LLRr
array and this can be cache-efficient.

Taking the calculation of LR10 using the raw LLR array shown in Figure 1a
as an example. The corresponding CUDA thread t10 searches a contiguous chunk
of the LLRr array starting from index 10 down to left in the LLRr array. We do
not search the LLRr elements that are to the right of index 10, because these
elements definitely do not cover position 10 according to the definition of LLR. In
particularly, thread t10 goes through LLRr [10], LLRr [9], LLRr [8] and LLRr [7]
to find the longest one among the four of them as LR10. Thread t10 stops the
search at LLRr position 6, because LLRr [6] and all LLR’s to its left do not cover
position 10 (Lemma 2).

5.2 Compute LR’s Using the Compact LLR Array

LLR Compaction. The right branch of Figure 2 shows the second option in
computing LR’s on GPU. That is to use the compact LLR array. We first create
the compact LLR array, named as LLRc, from the raw LLR array, which has
been created and preserved on the device memory. To avoid the expensive data
transfer between the host and the device and to achieve more parallelism, we
perform the LLR array compaction on the GPU device in parallel. We launch
three CUDA kernels to perform the compaction, denoted as K1, K2, and K3. As
shown in Figure 3, after the LLRr array is constructed on the device, we first
launch kernel K1 to compute a flag array Flag[1 . . . n] in parallel, where the value
of each Flag[i] is assigned by a separate thread ti as follows: (1) Flag[1] = 1 iff

326 Y. Tian and B. Xu

SA, Rank, LCP array construction on CPU

Compute: LLRr [i] = max{LCP [Rank [i]],LCP [Rank [i] + 1]}, for i = 1, 2, . . . , n

Use the raw LLR array Compact the raw LLR array into
LLRc array of <start,length> tuples

Compute every LR[k] by

linearly scanning LLRr[i...k],

Compute LR[k], using binary search to find

i = min{t|LLRc[t].start + LLRc[t].length − 1 ≥ k},

then a linear walk through LLRc[i...j],i = min{j|j + LLR[j] ≥ k}
j = max{t|LLRc[t].start + LLRc[t].length − 1 ≥ k}

option 1 option 2

Parallelized on GPU

Fig. 2. Overview of the GPU Implementation

<1,3> <4,1> <5,3> <8,1>

1 1 1 2 3 3 3 4

1 0 0 1 1 0 0 1

3 2 1 1 3 2 1 1

Flag array

raw LLR array

compact LLR array

Prefix_Sum array

t1 t2 t3 t4 t5 t6 t7 t8 GPU threads

Fig. 3. LLR compaction on GPU

LLRr [1] > 0. (2) Flag[i] = 1, iff LLRr [i] > 0 and LLRr [i] ≥ LLRr [i − 1], for
i ≥ 2. Flag[i] = 0 means LLRi is useless and thus can be eliminated.

After the Flag array is constructed from kernel K1, we launch kernel K2

to calculate the prefix sum of the Flag array on the device: Prefix Sum[i] =
∑i

j=1 Flag[j]. We modify and use the parallel prefix sum function provided by
the CUDA toolkit, which is based on the parallel algorithm described in [5].

With the prefix sum array and the Flag array, we launch kernel K3 to copy
the useful LLRr array elements into the LLRc array, as illustrated in Figure 3.
Each thread ti on the device moves in parallel the LLRi to an unique destination
LLRc[Prefix Sum[i]], if Flag[i] = 1. That is, LLRc[Prefix Sum[i]] = 〈i,LLRr [i]〉,
if Flag[i] = 1. Each element in the LLRc array is a useful LLR and is represented
by a tuple of 〈start, length〉, the start and ending position of the LLR.

Compute LR’s. After the LLRc array is prepared, we calculate the LR for
every string position in parallel. Recall that the calculation of each LRk, for each
k = 1, 2, . . . , n, is a search for the longest useful LLR that covers position k. We

On Longest Repeat Queries Using GPU 327

also know all these relevant LLR’s that we need to search comprise a continuous
chunk of the LLRc array. The start position of the chunk can be found using a
binary search as we have explained in the discussion of Algorithm 2. After that,
a simple linear walk toward the right is performed. The walk continues until it
finds an LLRc array element that does not cover position k or has reached the
right end of the LLRc array.

To compute the LR’s using the LLRc array, we launch another CUDA ker-
nel, in which each CUDA thread tk first performs a binary search to find the
start position of the linear walk and then walk through the relevant LLRc array
elements to find either all LR’s or a single LR covering position k.

Referring to Figure 1b, we take the LR calculation covering the string position
9 as an example. Recall that we have discarded all useless LLR’s in the LLRc
array, so the LLRc array element at index 9 is not necessarily the rightmost LLR
that cover string position 9. Therefore, we have to perform a binary search to
locate that leftmost LLRc array element by taking advantage of the nice property
of the LLRc array that both the start and ending positions of all LLR’s in it
are strictly increasing. After thread t9 locates the LLRc element LLRc[4], the
leftmost useful LLR that covers the string position 9, it performs a linear walk
toward the right. The walk will continue until it meets LLRc[6], which does not
cover position 9. Thread t9 will return the longest ones among LLRc[4 . . . 6] as
LR9.

5.3 Advantages and Disadvantages: LLRr vs. LLRc

When the raw LLR array is used, the algorithm is straightforward and easy to
implement, because there is no needs to perform the LLR compaction on the
device. However, with a raw LLR array, we could have a large number of useless
LLR’s in the raw LLR array, especially when the average length of the longest
repeats is quite large. For that reason, the subsequent linear walk for each CUDA
thread can take many steps, making the overall search performance worse.

In contrast, under a compact LLR array, we have to perform the LLR com-
paction, which involves data coping and requires extra memory usage for the
Flag and the prefix sum array on the device. In addition, a binary search, which
is not present with a raw LLR array, is required to locate the first LLR for the
linear walk. The advantage of a compact LLR array is that we remove the use-
less LLR’s and dramatically shorten the linear walk distance.We provide more
analysis and comparison between these two solutions in the experiment section.

6 Experimental Study

Experiment Environment Setup. We conducted our experiments on a computer
running GNU/Linux with a kernel version 3.2.51-1. The computer is equipped
with an Intel Xeon 2.40GHz E5-2609 CPU with 10MB Smart Cache and has
16GB RAM. We used a GeForce GTX 660 Ti GPU for our parallel tests. The
GPU consists of 1344 CUDA cores and 2GB of RAM memory. The GPU is

328 Y. Tian and B. Xu

connected with the host computer with a PCI Express 3.0 interface. We install
CUDA toolkit 5.5 on the host computer. We use C to implement our sequential
algorithms and use CUDA C to implement our parallel solutions on the GPU,
using gcc 4.7.2 with -O3 option and nvcc V5.5.0 as the compilers. We test
our algorithms on real-world datasets including biological and non-biological
data downloaded from the Pizza&Chili Corpus. The datasets we used are the
three 50MB DNA, English, and Protein pure ASCII text files, each of which
thus represents a string of 50 × 1024 × 1024 characters.

Measurements. We measured the average time cost of three runs of our program.
In order to better highlight the comparison of the algorithmics between the old
and our new solutions, we did not include the time cost for the I/O operations
that save the results. For the same purpose, we also did not include the time cost
for the SA, Rank, and LCP array constructions, because in both the old and
our new solutions, these auxiliary data structures are constructed based on the
same best suffix array construction code available on the Internet4. Our source
code for this work is also available on website.5

6.1 Time

In the left three charts of Figure 4, using three datasets, we compare different
algorithms that return only the leftmost LR for every string position of the input
data. In the right three charts, we present the performance of our algorithms
that are able to find all LR’s for every string position. We compare our new
algorithms with the existing optimal sequential algorithm [9], which can only
find the leftmost LR for every string position. Table 3 summarizes the speedup
of our algorithms against the old optimal algorithm. From experiments, we are
able to make the following observations.

Sequential algorithms on CPU. Our new sequential algorithm using the raw
LLR is consistently faster than the old optimal algorithm by a factor of 1.97–
3.44, while our new sequential algorithm that uses the compact LLR array is
consistently slower. This observation is true in both finding the leftmost LR and
all LR’s. (Please note that the old optimal algorithm always finds the leftmost
LR only.)

On the host CPU, three dominating factors contribute to the better perfor-
mance of algorithms using a raw LLR array rather than using a compact LLR
array. First, although the compact LLR array can still be constructed in one
pass, but the construction involves a lot more computational steps than those
needed in the construction of the raw LLR array. Second, sequential algorithms
that use a compact LLR array require a binary search in order to locate the
starting position of the subsequent linear walk in the calculation of every LR.
However, binary searches are not required if we work with a raw LLR array. As
4 http://code.google.com/p/libdivsufsort/
5 http://penguin.ewu.edu/∼bojianxu/publications

http://code.google.com/p/libdivsufsort/
http://penguin.ewu.edu/~bojianxu/publications

On Longest Repeat Queries Using GPU 329

it is known, binary search over a large array is not cache friendly. Through pro-
filing, we observe that the binary search operations consume from 63% to 73% of
the total execution time. Third, even though for some datasets the search range
size (or the number of walk steps) with a raw LLR array could be 10, 000 times
larger than that using a compact LLR array, as shown in table 2, the L2 cache
(10MB) of the host CPU is large enough to cache the range of contiguous LLR’s
that each linear walk needs to go through. Such efficient data caching helps all
walks take less than a total of 100 milliseconds on the host CPU, accounting
for less than 5% of the total execution time, even with the raw LLR array. In
other words, given a large cache memory, the number of walk steps is no longer
a dominating factor in the overall performance.

Parallel algorithms on GPU. Our new parallel algorithm on GPU using the
compact LLR array is consistently faster than its counterpart that uses the raw
LLR array, which is consistently faster than the old optimal algorithm by a factor
of 8.32–14.62 in finding the leftmost LR and 6.36–10.35 in finding all LR’s.

Unlike the sequential algorithm on the host CPU, the performance of the
parallel algorithm on the GPU device is dominated by the number of LLR’s
(the number of walk steps) that each walk will go through. As we profile our
GPU implementation, we observe that with the raw LLR array, all linear walks
on the GPU take roughly a total of eight seconds for the English dataset.
But, the walks take roughly 70 milliseconds only if using a compact LLR array
on the GPU. This is because: (1) the small GPU L2 cache (384KB shared by
all streaming multiprocessors) cannot host as many LLR’s as what the CPU L2
cache (10MB) can host, resulting in more cache-read misses and more expensive
global memory accesses. (2) The number of walk steps with a compact LLR
array is less than that with a raw LLR array by a factor of up to four orders of
magnitude (see Table 2). (3) The extra time cost for the LLR compaction that is
needed when using the compact LLR array become much less significant in the
total execution time on GPU. On the host CPU, our sequential solution takes
roughly 1.3 seconds to perform the LLR compaction for datasets of 50MB and
accounts for 20% of the total time cost on average. However, it takes less than 30
milliseconds on the GPU, accounting for only 9.5% of the entire time cost. We
achieve more than 40 times speedup in the LLR compaction by utilizing GPU
device.

The first two reasons above are reassured by the experimental results regard-
ing the English dataset, which we purposely chose to use. The English file
is synthesized by simply concatenating several English texts, and thus the text
has many repeated paragraphs, which in turn creates many useless LLR’s in the
data. In this case, with the raw LLR array, each walk will have a large number of
steps due to such useless LLR’s. However, after we compact the raw LLR array,
the number of walk steps can be significantly reduced (Table 2) and consequently
the GPU code’s performance is significantly improved (Figure 4).

330 Y. Tian and B. Xu

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 15 20 25 30 35 40 45 50

T
im

e
C

os
t i

n
S

ec
on

ds

File Size in MBs

DNA

Sequential old, leftmost
Sequential new, compact LLR, leftmost

Sequential new, raw LLR,leftmost
Parallel, compact LLR, leftmost

Parallel, raw LLR,leftmost

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30 35 40 45 50

T
im

e
C

os
t i

n
S

ec
on

ds

File Size in MBs

DNA

Sequential old, leftmost
Sequential new, compact LLR, all

Sequential new, raw LLR,all
Parallel, compact LLR, all

Parallel, raw LLR,all

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

T
im

e
C

os
t i

n
S

ec
on

ds

File Size in MBs

English

Sequential old, leftmost
Sequential new, compact LLR, leftmost

Sequential new, raw LLR,leftmost
Parallel, compact LLR, leftmost

Parallel, raw LLR,leftmost

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

T
im

e
C

os
t i

n
S

ec
on

ds

File Size in MBs

English

Sequential old, leftmost
Sequential new, compact LLR, all

Sequential new, raw LLR,all
Parallel, compact LLR, all

Parallel, raw LLR,all

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30 35 40 45 50

T
im

e
C

os
t i

n
S

ec
on

ds

File Size in MBs

Protein

Sequential old, leftmost
Sequential new, compact LLR, leftmost

Sequential new, raw LLR,leftmost
Parallel, compact LLR, leftmost

Parallel, raw LLR,leftmost

 0

 1

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40 45 50

T
im

e
C

os
t i

n
S

ec
on

ds

File Size in MBs

Protein

Sequential old, leftmost
Sequential new, compact LLR, all

Sequential new, raw LLR,all
Parallel, compact LLR, all

Parallel, raw LLR,all

Fig. 4. Time cost vs. dataset size. The left and right charts show the experimental
results on finding the leftmost and all repeats of every string position, respectively.

6.2 Space

Table 4 shows the peak memory usage of both the old and our new algorithms for
datasets of size 50MBs. The memory usage of all of our algorithms is the same.
This is because the space usage by the SA, Rank, and LCP array dominate the
peak memory usage of all of our algorithms. On the other hand, due to its 2-table
system that helps achieve the theoretical O(n) time complexity, the old optimal
algorithm’s space usage is relevant to the dataset type and is higher than ours.

6.3 Scalability

Although our algorithms have a superlinear time complexity in theory, but they
all scale well in practice as shown by Figure 4. As we increase the size of the test

On Longest Repeat Queries Using GPU 331

Table 3. Speedup with 50MB Files

Sequential Sequential Parallel Parallel
No Compact No Compact Compact Compact

Leftmost All Leftmost All

DNA 2.91x 2.91x 13.48x 9.43x

English 1.97x 1.97x 8.32x 6.36x

Protein 3.44x 3.44x 14.62x 10.35x

Table 4. RAM Usage Comparison for 50MB Files

Old (MBs) Ours (MBs) Space Saving

DNA 792.77 650.39 17.96%

English 654.02 650.39 0.56%

Protein 773.53 650.39 15.92%

data, we observe a consistent speedup. In addition, we did conduct experiments
on datasets of 100MB on the GPU device by using a 2D grid of CUDA threads
in order to create more than 100 million threads on the device. When finding the
leftmost LR for each string position, we observed the same speedups as shown
in Figure 4.

On the host CPU, the large cache size dramatically reduces the total number
of memory reads during the linear walk in a raw LLR array and thus enables us
to eliminate the expensive binary search operations by using a raw LLR array.
On the GPU device, although all data is stored in the global memory, a compact
LLR array helps greatly reduce the total number of global memory access; each
thread linearly searches a smaller number of LLR’s. As shown in Table 2, the
average number of walk steps in a compact LLR array is no more than six, which
enables the linear walk to be considered as a constant-time operation.

7 Conclusion and Future Work

We proposed conceptually simple and easy-to-implement solutions for longest
repeat finding over a string. Our algorithm although is not optimal in time
theoretically, but runs faster than the old optimal optimal algorithm and uses
less space. Further, our algorithm can find all longest repeats of every string
position, whereas the old solution can only find the leftmost one. Our algorithm
can be parallelized in shared-memory architecture and has been implemented on
GPU using data parallelism for further speedup.

Our GPU solution is roughly 4.5 times quicker than our best sequential solu-
tion on the CPU, and is up to 14.6 times quicker than the old optimal solution
on the CPU. Also, we improve the LLR compaction performance by a factor of
40 on GPU. The multiprocessors in our current GPU have a built-in L1 and L2
cache, which help coalesce some global memory accesses. In the future, we will
further optimize our parallel solution by utilizing the GPU shared memory or
texture memory to reduce global memory access.

332 Y. Tian and B. Xu

References

1. Becher, V., Deymonnaz, A., Heiber, P.A.: Efficient computation of all perfect
repeats in genomic sequences of up to half a gigabyte, with a case study on the
human genome. Bioinformatics 25(14), 1746–1753 (2009)

2. Behzadi, B., Le Fessant, F.: DNA compression challenge revisited: a dynamic pro-
gramming approach. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM
2005. LNCS, vol. 3537, pp. 190–200. Springer, Heidelberg (2005)

3. Beller, T., Berger, K., Ohlebusch, E.: Space-efficient computation of maximal and
supermaximal repeats in genome sequences. In: Calderón-Benavides, L., González-
Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 99–110.
Springer, Heidelberg (2012)

4. Benson, G.: Tandem repeats finder: a program to analyze dna sequences. Nucleic
Acids Research 27(2), 573–580 (1999)

5. Blelloch, G.E.: Prefix sums and their applications. Technical Report CMU-CS-90-
190, Carnegie Mellon University (1990)

6. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Skadron, K.: A performance
study of general-purpose applications on graphics processors using cuda. Journal
of Parallel and Distributed Computing 68(10), 1370–1380 (2008)

7. Deo, M., Keely, S.: Parallel suffix array and least common prefix for the gpu. In:
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pp. 197–206 (2013)

8. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press (1997)

9. İleri, A.M., Külekci, M.O., Xu, B.: On longest repeat queries. http://arxiv.org/
abs/1501.06259

10. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir,
A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer,
Heidelberg (2001)

11. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms 3(2–4), 143–156 (2005)

12. Kulekci, M.O., Vitter, J.S., Xu, B.: Efficient maximal repeat finding using the
burrows-wheeler transform and wavelet tree. IEEE Transactions on Computational
Biology and Bioinformatics (TCBB) 9(2), 421–429 (2012)

13. Kurtz, S., Schleiermacher, C.: Reputer: fast computation of maximal repeats in
complete genomes. Bioinformatics 15(5), 426–427 (1999)

14. Liu, X., Wang, L.: Finding the region of pseudo-periodic tandem repeats in bio-
logical sequences. Algorithms for Molecular Biology 1(1), 2 (2006)

15. Manzini, G., Rastero, M.: A simple and fast dna compressor. Software-Practice
and Experience 34, 1397–1411 (2004)

16. Martinez, H.M.: An efficient method for finding repeats in molecular sequences.
Nucleic Acids Research 11(13), 4629–4634 (1983)

17. McConkey, E.H.: Human Genetics: The Molecular Revolution. Jones and Bartlett,
Boston (1993)

18. Nickolls, J., Dally, W.J.: The gpu computing era. IEEE Micro 30(2), 56–69 (2010)
19. Osipov, V.: Parallel suffix array construction for shared memory architectures. In:

Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 379–384. Springer, Heidelberg (2012)

http://arxiv.org/abs/1501.06259
http://arxiv.org/abs/1501.06259

On Longest Repeat Queries Using GPU 333

20. Saha, S., Bridges, S., Magbanua, Z.V., Peterson, D.G.: Computational approaches
and tools used in identification of dispersed repetitive dna sequences. Tropical
Plant Biology 1(1), 85–96 (2008)

21. Saha, S., Bridges, S., Magbanua, Z.V., Peterson, D.G.: Empirical comparison of ab
initio repeat finding programs. Nucleic Acids Research 36(7), 2284–2294 (2008)

22. Smyth, W.F.: Computing regularities in strings: A survey. European Journal of
Combinatorics 34(1), 3–14 (2013)

23. Tian, Y., Xu, B.: On longest repeat queries using gpu. http://arxiv.org/abs/1501.
06663

http://arxiv.org/abs/1501.06663
http://arxiv.org/abs/1501.06663

Process-driven Configuration of Federated
Cloud Resources

Denis Weerasiri(B), Boualem Benatallah, and Moshe Chai Barukh

School of Computer Science and Engineering, The University of New South Wales,
Sydney, Australia

{denisw,boualem,mosheb}@cse.unsw.edu.au

Abstract. Existing cloud resource providers offer heterogeneous
resource deployment services to describe and deploy resource configura-
tions. Describing and deploying federated cloud resource configurations
over such deployment services is challenging due to dynamic application
requirements and complexity of cloud environments. While solutions
exist to solve this problem, they offer limited facilities to cater for
resource provisioning over federated cloud services. This paper presents
a novel cloud resource deployment framework that leverages a unified
configuration knowledge-base where process-based notation is used to
describe complex configurations over federated cloud services. Based
on these notations, a deployment engine generates deployment scripts
that can be executed by external cloud resource deployment services
such as Puppet and Chef. The paper describes the concepts, techniques
and current implementation of the proposed system. Experiments on a
real-life federated cloud resource show significant improvements achieved
by our approach compared to traditional techniques.

1 Introduction

Cloud service deployment is evolving in the form of both public (deployed by IT
organizations) andprivate (deployedbehindacompanyfirewall) clouds.Both these
deployment environments provide virtualized and dynamically scalable resources.
Each resource is available as one of three layers of service offerings: Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS). A third deployment form; federated clouds [1–4] are now emerging, where
resources are drawn from a subset of private and public clouds, configured at the
behest of its users. It is imperative that the federation of clouds leads to a unified
model, which represents a single cloud of multiple cloud platforms that can be used
as needed. Thus cloud federation requires the creation of an agile cloud-computing
environment, in which cloud capabilities can be procured, configured, deployed,
and managed on demand by consumers, regardless of whether cloud capabilities
are private or public.

Cloud resource-providers facilitate resource-consumers to describe, deploy and
manage resource configurations that satisfy users’ application and resource
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 334–350, 2015.
DOI: 10.1007/978-3-319-18120-2 20

Process-Driven Configuration of Federated Cloud Resources 335

requirements.Cloud resource providers offer proprietary configuration deployment
languages (Command-Line interface (CLI) based,REST/SOAPbased,ChefCook-
books1, Ubuntu Juju2 etc.,) for users to support configuration and deployment
tasks. Users automate their tasks using these languages, such that the language
runtimes (i.e., cloud resource deployment services) procure, allocate and provision
cloud resource configurations in a provider’s environment based on users’ demand.
However, current configuration deployment solutions have two major limitations,
which are significantly impeding the effective management of federated cloud
resources, as follows.

(1) Heterogeneity of cloud resource deployment services: When a sin-
gle provider cannot satisfy all application and resource requirements (e.g., when
an Apache server, deployed in the private cloud reaches its maximum capacity,
excess load can be outsourced to a replica of the Apache server that is deployed
in a public cloud provider), users are inevitably responsible to describe, deploy
and manage the component resources of a federated resource configuration in a
segregated fashion because users have to deal with multiple configuration man-
agement languages (e.g., Chef cookbook1 and Ubuntu Juju2). These languages
possess different notations (e.g., json, xml, yaml); resource description models
(e.g., Juju charms3, Chef recipes); and capabilities (e.g., deployment, scaling,
migration, monitoring) [5,6]. To describe a federated cloud resource configuration
process, users need to understand the configuration description languages of all
participating cloud resource providers. Furthermore to deploy the described con-
figuration, users should understand configuration deployment service interfaces
of all participating resource providers and implement ad-hoc scripts [7] to coordi-
nate the deployment of component resources. This methodology is not scalable in
dynamic environments where cloud resource providers appear and disappear over
time.

(2) Adaptability to dynamic environments: A key distinguishing feature
of cloud services is the elasticity, i.e., the power to dynamically scale resources up
and down to adapt varying requirements. Elasticity is usually achieved through
invocation of re-configuration tasks (e.g., add storage capacity, restart VM
instances) that run as a result of events (e.g., service usage increases beyond a cer-
tain threshold) allowing the deployment engine to dynamically re-configure cloud
resources. The automated and unified monitoring and control of federated services
is still in the early stages [8].

In this paper we address above limitations by providing high-level abstractions
for federated cloud resource configuration tasks, which replace existing, low-level
and heterogeneous deployment services. The main contributions of this paper are:

(1) Unified representation of cloud resource configurations: We offer a
unified resource configuration language for describe, deploy, reconfigure and unde-
ploy federated cloud resources. Cloud resource providers and devOps compose,
1 community.opscode.com/cookbooks
2 juju.ubuntu.com
3 jujucharms.com/

community.opscode.com/cookbooks
juju.ubuntu.com
jujucharms.com/

336 D. Weerasiri et al.

curate and publish unified resource descriptions in a knowledge-base by specifying
the configuration attributes and available orchestration operations. Users
discover those unified resource descriptions and consume them to satisfy users’
federated resource requirements. Our language runtime handles the heterogene-
ity in resource description models, notations and capabilities of different provider-
specific configuration languages and services. Furthermore, we offer a high-level
policy language for specifying events and associated re-configuration behavior of
cloud resources.

(2) Graphical process modeling notation for resource orchestration
tasks: Deployment and orchestration activities of federated resource configura-
tions can be modeled using a process-based language. But modeling orchestration
processes by directly interacting with heterogeneous deployment services leads
to ad-hoc scripts or manual tasks, which hinder the automation of orchestration
activities in a dynamic cloud environment.

Hence it is desirable to provide productive and user-friendly modeling tech-
niques for users to compose federated resource deployment and orchestration pro-
cesses. We provide two high-level and process-based abstractions that facilitate
users to describe, deploy and specify reconfiguration policies of their federated
cloud resource configurations. Firstly, we propose the concept of Cloud Resource
Deployment Task to simplify cloud resource configuration and foster independence
between applications and cloud services. Secondly,we propose the concept ofCloud
Resource Re-configuration Policies to endow resources with dynamic resource re-
configurations. We implemented these notations by extending BPMN [9], an open
and graphical process modeling standard, which is already adapted by industry
and academia for modeling cloud resource deployment and management tasks [10].
We provide mechanisms that automatically translate high-level deployment tasks
and re-configuration policies into the corresponding BPMN resource configura-
tion models. We decided to extend BPMN rather than use native BPMN to avoid
orchestration tasks getting (1) complex; (2) error-prone; and (3) difficult to verify
and manage later.

(3) A prototype implementation: We implemented CloudBase; a
process-driven federated cloud resource deployment framework that leverages a
unified configuration knowledge-base to model deployment tasks and dynamic
re-configuration policies of federated cloud resources. CloudBase thus replaces
time-consuming, frequently costly, naturally expert driven and manual cloud
resource configuration and deployment tasks with a model-driven and unified
cloud resource orchestration method and techniques. The paper presents an
experiment using a real-life federated cloud resource that demonstrates the
improvements achieved by CloudBase.

Together these contributions enable cloud resource consumers to focus on high-
level application requirements, instead of low-level details related to dealing with
heterogeneous deployment services. The following sections describe each of these
high-level abstractions in more detail.

Process-Driven Configuration of Federated Cloud Resources 337

2 Unified Representation of Cloud Resource
Configurations

Different cloud resource providers offer different and heterogeneous deployment
languages; and services to configure and deploy cloud resources. Heterogeneity of
configuration services can be stemmed from interface level, communication pro-
tocol level, service operation level or input/output message schema level. For an
example, AWS and Rackspace use different formats of access credentials and ser-
vice interfaces to deploy Virtual Machines (VM) (see Table 1).

Table 1. Types of different deployment service interfaces

Provider Type Names of
resources

Types of deployment service interfaces

AWS IaaS/PaaS EC2, S3, RDS CLI, SDKs, Web 2.0, REST and SOAP APIs

Rackspace IaaS/PaaS Server, Database CLI, SDKs, Web 2.0, REST API

Puppet IaaS/PaaS Resource CLI, Web 2.0, REST API

GitHub PaaS Repository Web 2.0, REST API

Heterogeneity of configuration languages can be stemmed due to different nota-
tions (e.g., json, xml, yaml); resource description models (e.g., Juju charms, Chef
recipes); and capabilities (e.g., deployment, scaling, migration, monitoring). Due
to this heterogeneity, current practices of configuring anddeploying federated cloud
resources require ad-hoc integration techniques like low-level procedural scripting
which are not scalable in dynamic environments and not intuitive for consumers
who don’t have configuration management knowledge of multiple providers.

We argue that a federated cloud resource deployment framework should
abstract out interactions with heterogeneous deployment services. We propose
an abstraction, called ”Resource Configuration Service” (RCS), which allows
cloud resource providers to expose their deployment interfaces through a unified
interface. We also propose ”Cloud Resource Configuration Description” (CRCD),
which provides a unified and provider-independent data model for resource
requirement descriptions. Together, these abstractions enable cloud resource con-
sumers to model and execute cloud resource deployment tasks by specifying
application-centric and provider-independent resource requirements.

2.1 Resource Configuration Service (RCS)

To abstract out the heterogeneity of different deployment services from users, we
propose Resource Configuration Services that accept resource configuration
descriptions and deploy concrete resources in a public, private or federated cloud
infrastructure. In other words, RCS s provide a unified layer to represent provider-
specific deployment knowledge over various configuration deployment languages
like Chef Cookbooks1 or low-level techniques like shell scripts. Cloud resource
providers or devOps can implement and deploy RCS s.

338 D. Weerasiri et al.

We designed the RCS interface (see Table 2) by analysing common inter-
face level characteristics of cloud configuration services of AWS, Rackspace, Pup-
pet and GitHub. Every cloud deployment service exposes two basic operations:
”deploy” and ”undeploy” a cloud resource. The ”deploy” operation requires a
resource configuration description as the input. The output of the ”deploy” opera-
tion returns an identification(id) value that uniquely represents the deployed cloud
resource (e.g. ”ImageId” value of an Amazon Machine Image(AMI)4). This id
value is referred in managing and undeploying the particular resource. The ”unde-
ploy” operation takes the id value of an already deployed resource and returns
optional information regarding the success/failure of the operation.

Table 2. Operations of RCS interface

deployResource(resource meta data): When a user requests to deploy a cloud
resource, the runtime of RCS processes the incoming cloud resource description and
selects a particularRCS that can satisfy the incoming resource description. Then the run-
time invokes deployResource operation of the particular RCS along with the incom-
ing resource description as resource meta data. This operation returns an object that
consists of a resource id and an optional resultant message.

undeployResource(resource id):When a user requests to undeploy a deployed cloud
resource, the runtime of RCS extracts the resource id of the deployed cloud resource and
figures out the RCS, which was invoked to deploy this CRCD. Then runtime invokes
undeployResource operation of the particular RCS along with the resource id.

Re-configuration Policy. Cloud resources can be dynamically re-configured
(e.g. restart VM instance) to satisfy varying resource requirements. Similarly, a
subset of component resources of a federated cloud resource can be subjected to
dynamic re-configurations when certain events (e.g. VM instance connection fail-
ure) occur. Cloud resource consumers should be able to specify a set of events and
associated actions (i.e., re-configuration policies) for a cloud resource configuration.

We argue that a cloud resource deployment framework must support
dynamic re-configuration policies that cater for flexible characterization and
planning of varying resource needs overtime. We propose an abstraction, called
Re-configuration Policy to specify how a cloud resource should behave when
certain events occurs. For an example, a ”restart” policy of a virtual machine (VM)
is invoked whenever the deployment runtime detects a connection failure to the
relevant VM. A Re-configuration Policy is attached to a RCS and performs some
provider specific re-configuration operations such as requesting to restart the VM
through the provider’s deployment service interface. RCS s implement relatively
complex, generic and customizable cloud resource configuration mechanisms. Our
initial working assumption is thatRCS s are created, verified, tested, reviewed and
curated by experienced cloud resource configuration programmers or administra-
tors based on available knowledge or experience, andmaybe reused in several cloud
4 docs.aws.amazon.com/cli/latest/reference/ec2/create-image.html

docs.aws.amazon.com/cli/latest/reference/ec2/create-image.html

Process-Driven Configuration of Federated Cloud Resources 339

applications. Cloud resource consumers can annotate the cloud resource descrip-
tion with those events andRe-configuration Policies to model reconfiguration poli-
cies of cloud resources without worrying about low-level scripting mechanisms or
provider specific policy engines. It should be noted that, the issues of event speci-
fication and detection while important, they are complementary to research issues
addressed in our work and outside the scope of this paper. See Table 3 for the inter-
face design of a Re-configuration Policy.

Table 3. Operations of Re-configuration Policy interface

reconfigureResource(event description):This operation accepts the event descrip-
tion that triggered this operation and specifies the re-configuration behavior in any con-
figuration language. This operation returns an object that consists of the resource id and
an optional resultant message.

2.2 Cloud Resource Configuration Description(CRCD) Model

There are several reasons that led various cloud-resource providers expose pro-
prietary configuration description language/data models. These reasons include
lack of mature and open standards; gain of competitive advantage over other cloud
resource providers. Mechanisms for describing a resource are model-driven (e.g.,
Ubuntu Juju Charms3, TOSCA application topology [10]), template based (e.g.,
Chef1 recipes), and hybrid (e.g., AWS OpsWorks 5). Also some languages are only
capable of describing specific types (e.g., VM, source-code) of resources. Hence
it is challenging to come up with a description model that captures different lan-
guage characteristics. In this setting we propose Cloud Resource Configura-
tion Description(CRCD) model that lets users to describe cloud resource
configurations in a unified and provider-independent manner.

The CRCD model follows an entity-relationship model. Each entity represents
the configuration knowledge of a particular cloud resource and a relationship repre-
sents a one-way deployment dependency with another entity (e.g. deployment of a
web application engine is depend upon the deployment of its component resources:
a data storage and a language runtime). There are two types of entities, based on
available relationships with other entities.

(1) Basic CRCD: An entity that represents configuration knowledge of a
cloud resource, which does not rely on any other entity, is called a Basic CRCD.
In other words, a Basic CRCD is an indivisible resource into component resources
from the perspective of CRCD curators (those that primarily add/maintain config-
uration knowledge in CRCDs). For an example, a VM with 4GB RAM and 4GHz
processing power, can be modeled as a Basic CRCD with two attributes to rep-
resent the memory and processing power. Basic CRCDs act as primary building
blocks of Federated CRCDs.

(2) Federated CRCD: A Federated CRCD is an umbrella structure that
brings together Basic and other Federated CRCDs to represent configuration
knowledge of a federated cloud resource.
5 aws.amazon.com/opsworks/

aws.amazon.com/opsworks/

340 D. Weerasiri et al.

Basic and federatedCRCDs are described using a set of ”attributes” (i.e., name-
value pairs) (see Listing 1.1). EveryCRCD must include attributes named ”name”
and ”tags” for indexing and discovery purposes of the configuration knowledge-
base [11]. Other attributes are optional and should essentially represent configu-
ration attributes of the resource. For example, theCRCD (as shown in Listing 1.1)
contains two attributes ”team-count” and ”user-count-per-team” which represent
the anticipated number of teams and users to be handled by the application.

Listing 1.1. Basic CRCD sample

1 {
2 "attributes": {
3 "name": "project -mgt -app",
4 "tags": "SaaS"
5 "team -count": "5",
6 "user -count -per -team": "10"
7 }
8 }

3 Modeling Cloud Resource Configuration Tasks

We introducedRCS andCRCD to abstract out the heterogeneity of cloud resource
deployment services in Section 2. Users can discover those published resource
descriptions (i.e., CRCD) and invoke available operations of associated configura-
tion services (i.e.,RCS) of resource descriptions to deploy, configure and undeploy
a resource instance. To automatically deploy and orchestrate a federated resource
configuration users require modeling an orchestration process that coordinates
the deployment, configuration and undeployment tasks of several resources. We
propose two high-level process based abstractions over RCS and CRCD to model
federated cloud resource configuration tasks: Deployment Tasks and Reconfigu-
ration Policies. In Section 4, we explain how these abstractions are implemented
by extending BPMN.

Motivating Scenario: Consider a scenario, where a web-application developer
needs to deploy a web-application in an Apache-Tomcat4 based application server
cluster. To distribute requests to a set of Tomcat application servers, the resource
infrastructure includes an http load balancer (LB) like nginx6. Theweb application
is deployed in eachTomcat server.When adding a newTomcat server to the cluster,
the web application also should be deployed within the new server. To add the
newly deployed Tomcat server to the cluster, the routing table of the LB should
be updated with details (e.g., IP and port) of the new server. Then more Tomcat
servers can be deployed in the aforementioned manner until the cluster reaches the
expected number of Tomcat servers.

The deployment tasks of the Tomcat cluster are depicted in Fig. 1. We excluded
the deployment tasks of the LB from Fig. 1 for a simplified graphical representa-
tion. Once the Tomcat cluster is deployed, the application developer may release
6 nginx.org/

nginx.org/

Process-Driven Configuration of Federated Cloud Resources 341

new versions of the application. Hence each Tomcat server in the cluster must be
updatedwith the newversion of the application.The orchestration process inFig. 1
should be updated by including additional orchestration tasks for continuously
integrate web application updates. See the updated version in Fig. 2.

The complexity incurred by modeling even a single reconfiguration policy
within the initial orchestration process points out the drawbacks of including
reconfiguration policies as part of the initial orchestration process. Modeling fur-
ther reconfiguration policies (e.g., a web application upgrade is rollbacked if it can-
not happen on every Tomcat server in the cluster) within the initial orchestration
process makes the resultant orchestration process (1) complex; (2) error-prone;
and (3) difficult to verify and manage later. It is advantageous in such situations
to separate the modeling of corresponding reconfiguration policies from the ini-
tial orchestration process and refer the relevant policies within initial tasks as in
Fig. 3. Using our high-level process based abstractions, user is now capable of sim-
ply and clearly define high-level reconfiguration policies that apply to one or more
resources in a federated resource configurations.

Fig. 1. Deployment plan for a web application in an Apache Tomcat cluster

Fig. 2. Modeling application updates within the deployment plan in Fig. 1

Cloud Resource Deployment Tasks: We introduce “Cloud Resource Deploy-
ment Task” (CRD-Task) that allows users to model the deployment of cloud
resources configurations. EveryCRD-Task is associatedwith aCRCD and apoten-
tialRCS that can deploy the associated CRCD (see Fig. 4). We implemented a rec-
ommender service [11] that facilitates users to search for availableCRCDs. During

342 D. Weerasiri et al.

Fig. 3. Modeling application updates in Fig. 2 using CRR-Policy

the execution of this task, the ”deployResource” operation of the associated RCS
is triggered along with the “attributes” component of the associated CRCD as
the input. For an example, the deployment of a HP-Cloud-Compute7 VM is mod-
eled using CRD-Task named “HP-Compute-VM”, which triggers the “deployRe-
source” operation of the RCS named “HP-Deployer” with the CRCD named
“desc1”.

Cloud Resource Re-configuration Policies: “Cloud Resource Re-config-
uration Policy” (CRR-Policy) allows users to specify a high-level and dynamic
re-configuration policy for a cloud resource. A CRR-Policy is a pair of an event
description and aRe-configurationPolicy that was introduced in Section 2.1. Users
can add any number of CRR-Policies to a CRD-Task, given that events and Re-
configuration Policies are registered in the associated RCS of the CRD-Task. A
CRR-Policy is triggered whenever its associated event occurs. TheRCS is respon-
sible to propagate the event to the runtime of the CRR-Policy. For an exam-
ple, theCRD-Task, named “HP-Compute-VM” contains twoCRR-Policies, called
“CRR1” and “CRR2” (see Fig. 5). BPMN runtime triggers “CRR1” (i.e., IF

{incoming Message==“restart-desc1”} THEN RUN {“restart-policy”}) whenever a user sends
a request to restart the cloud resource. “CRR2” (i.e., IF {getDay()==“sunday”} THEN

RUN {“backup-policy”}) is triggered weekly to backup the cloud resource.

4 Translating Cloud Resource Configuration Tasks into
BPMN

The choice of BPMN, as the language for capturing configuration and deploy-
ment knowledge of federated cloud resources is motivated by several reasons. First,
BPMN is an open, standardized and task-based service composition language that
is heavily used in application layer. Next, BPMN is suitable to express execu-
tional dependencies among different deployment tasks. Furthermore, BPMN sup-
ports extension points which are crucial to model deployment workflows as BPMN
doesn’t support modeling deployment tasks out of the box.

Translating CRD-Tasks: Fig. 4 depicts a federated cloud resource deployment
workflow. The ”HP-Compute-VM” is a CRD-Task, which is annotated with a
7 www.hpcloud.com/products-services/compute

www.hpcloud.com/products-services/compute

Process-Driven Configuration of Federated Cloud Resources 343

Fig. 4. A CRD-Task and its BPMN generation (within the dotted rectangle)

CRCD and RCS. During the runtime of the workflow, the CRD-Task is trans-
formed into a BPMN sequence flow that includes a Service Task [9] that triggers
the ”deployResource” of RCS along with the CRCD as the input parameter.

Fig. 5.A CRD-Task with two CRR-Policies and its BPMN generation (within the dotted
rectangle)

TranslatingCRR-Policies: BPMN allows to model events and associated tasks
as the business logic. We decided not to reuse the native BPMN events to imple-
ment CRR-Policies, because modeling several events and associated tasks within
the deployment workflow makes the resultant deployment workflow complex. Also
it enforces the workflow designer to know exactly where to inject those events
and associated tasks within the workflow. Hence it is advantageous to provide a
high-level abstraction to implement re-configuration policies in BPMN. We imple-
mented CRR-Policy as an extension to BPMN to define re-configuration policies,
which are linked with the CRD-Tasks while separating the original deployment
workflow from re-configuration policies.

344 D. Weerasiri et al.

Fig. 5 depicts a federated cloud resource deployment workflow. The ”HP-
Compute-VM” is a CRD-Task, which is annotated with two CRR-Policies (i.e.,
event-policy pairs) that define re-configuration policies of the cloud resource con-
figuration. During the runtime of the workflow, each CRR-Policy is transformed
into a BPMN sequence flow that includes an Event and a Service Task that triggers
the Re-configuration Policy. All the sequence flows are initiated from an Event-
based Gateway within a Loop Task.

Our approach supports the automated generation of BPMN processes that
deploy and re-configure the appropriate SaaS, PaaS or IaaS resources with respect
to the introduced modeling abstractions, namely CRD-Tasks and CRR-Policies.
A detailed description of generation techniques is outside of this paper.

5 Implementation and Evaluation

Webuilt a proof-of-concept (POC)prototype ofCloudBase8.We also implemented
several POCprototypes ofRCS s, which act as extension points ofCloudBase archi-
tecture (see Fig. 6) that leverages heterogeneous deployment services (e.g., AWS,
Rackspace and GitHub) to deploy federated cloud resources in a unified manner.
In the current implementation, cloud resource providers or devOps implement and
register RCS s as RESTful services in CloudBase via ServiceBus API [12].

We implemented a deployment workflow editor and engine by extending Activ-
iti9, a graphical BPMN editor and engine. Our workflow editor was extended to
model deployment workflows with tasks named CRD-Task and CRR-Policy (see
Section 3 and 3). Our deployment engine was extended to parse and generate code
for CRD-Tasks and CRR-Policies; and execute them.

Evaluation: To evaluate our approach, we measured the overall productivity
gained by three professional software engineers from business process and appli-
cation development backgrounds. For the experiment we provided each testee a
deployment specification and asked them to model an arbitrary deployment work-
flow to deploy a software development and distribution platform. This platform
was intended for software engineers who want to manage the entire lifecycle of a
project. Multiple projects can leverage this platform by just cloning the deploy-
ment multiple times. We enforced testees to limit their resource selection choices
to a fixed set of cloud resources, which were currently supported by CloudBase10.
We expect to increase selection choices as the design of CloudBase inherently sup-
ports to incrementally collaborate resource configuration knowledge in terms of
RCS andCRCD. In the deployment specification, testees were instructed to deploy
an AWS EC2 VM where Redmine [13], a project management service and a Git
client [14] is installed. Testees were advised to deploy a new source code repository
in GitHub and integrate it with the Redmine service such that the Redmine service
8 github.com/ddweerasiri/Federated-Cloud-Resources-Deployment-Engine
9 activiti.org/

10 github.com/ddweerasiri/Federated-Cloud-Resources-Deployment-Engine

github.com/ddweerasiri/Federated-Cloud-Resources-Deployment-Engine
activiti.org/
github.com/ddweerasiri/Federated-Cloud-Resources-Deployment-Engine

Process-Driven Configuration of Federated Cloud Resources 345

automatically extracts the latest commits from the repository via the Git client.
Additionally testees were instructed to deploy an AWS S3 bucket which act as a
software distribution repository.

For the evaluation purposes we implemented the same deployment specifica-
tion in three languages; (i) Shell scripts, (ii) Docker and (iii) Juju. The main reason
to choose Shell scripts was to estimate an upper bound of the result set. Docker
and Juju were selected as their popularity among devOps and they are specifi-
cally designed for cloud resource configuration and deployment. We measured (i)
the total number of lines-of-code (”actual” lines of code written and how many
generated by CloudBase), excluding white spaces and comments; (ii) number of
external dependencies/libraries required to describe and deploy each federated
cloud resource; and (iii) time taken to complete the modeling task. We measured
the correctness of the modeling tasks by executing each deployment workflow and
checking whether the resultant deployment complied with the initial deployment
specification. The benefits of CloudBase is further demonstrated in embracing the
knowledge-sharing paradigm (inspired from industry3): Given that users in this
scenario would not require the efforts of development, registration and mainte-
nance of the RCS - since this could be pre-done once and re-used multiple times
for the benefit of many.

Analysis and Discussion: Results of the experiment (see Table 4) show that
lines-of-code;numberof externaldependencies; and time-to-modelingare improved

Fig. 6. System Overview

346 D. Weerasiri et al.

Table 4. Results of the experiment

Parameters Shell Scripts Docker Juju CloudBase

average time-to-modeling (min) 103 95 72 61

#lines-of-code 107 116 127 (generated) 541 (generated)

#dependencies 3 1 1 1

knowledge shareable without
changing deployment workflows

no yes yes yes

whenusingCloudBase overprevalent resourcedeployment techniques.More specif-
ically, the time-to-modeling is reduced by 15.2% assuming the required RCS s for
all component resources are registered in CloudBase. We argue that unified and
provider-independent CRCD model; and tool-support like graphical deployment
workflow editors improve the time-to-modeling. Comparing with proprietary lan-
guages like Juju, we argue that extending standards-based workflow languages like
BPMN further improves the time-to-modeling for users like business process and
application developers. Shell scripts, Docker and Juju required 116 lines-of-code
on average to model the deployment plan. CloudBase generated 541 lines-of-code
because RCS s were implemented using Java and BPMN based resource deploy-
ment tasks generated XML and JSON files which are more verbose compared to
shell scripting based approaches like Docker and Juju. Therefore we determine the
improved productivity of the process-driven federated resource deployment over a
unified configuration knowledge rich layer.

6 RelatedWork

In this section, we briefly describe three areas of related works: (1) federated cloud
resource configuration and orchestration frameworks; (2) unified representation
and invocation of heterogeneous cloud resource configuration services; and (3)
modeling dynamic orchestration of federated cloud resources. We compare and
contrast our proposed approach with these related works.

Federated Cloud Resource Configuration and Orchestration Frame-
works: Various cloud resource description and orchestration frameworks are
proposed in industry and research. Market-leading cloud resource providers like
AWS OpsWorks6 and CA AppLogic11 allow describing and deploying complete
application stacks. These providers offer provider-specific resource representa-
tions while our approach allows multiple providers to describe and publish uni-
fied resource representations. These unified resource representations allow users
to compose federated resource configurations provider-independently. In research,
Konstantinous et al. [15] presents a cloud resource description and deployment
model that first models a resource as a provider-independent resource configura-
tion, called ”Virtual Solution Model”, and then another party can transform the
11 www.ca.com/au/cloud-platform.aspx

www.ca.com/au/cloud-platform.aspx

Process-Driven Configuration of Federated Cloud Resources 347

provider-independent model to a provider-specific model called, ”Virtual Deploy-
ment Model”. This approach only allows users to compose federated resource
configurations from a single provider for a single deployment, in contrast to our
approach, which considers the resource federation from multiple providers as a first
class citizen.

Configuration management tools, resource orchestration tools and virtualized
container engines like (Puppet, Chef, Juju, Docker, Smartfrog etc.,) and other
research initiatives provide different domain specific languages and tools to rep-
resent and manage resource configurations in a cloud environment [15–19]. These
languages provide heterogeneous resource representation models, management
operations and event descriptions. Hence deployment and orchestration of
resources described using different languages can be only achieved as ad-hoc
scripts or manual tasks. Our unified resource representation model allows resource
providers and devOps to implement RCSs that encapsulate heterogeneity among
different languages. Users then automate the deployment, orchestration and
attach dynamic reconfiguration policies using our graphical modeling language
without directly interacting with heterogeneous configuration services.

Unified Representation and Invocation of Heterogeneous Cloud
ResourceConfiguration Services: In the domain of multi-cloud development,
wrapping heterogeneous cloud resources has been researched [20] and implemented
as language libraries (e.g., Apache jclouds12). However, the fact that providers fur-
nish different offerings and change them frequently often complicates these
approaches.

TOSCA [10] is an open standard for representation and orchestration of cloud
resources. TOSCA facilitates to describe a federated cloud resource configuration
using a ”Service Template” that captures (1) topology of component resources;
and (2) plans that orchestrate component resources. But TOSCA does not define
(1) the implementation language of orchestration plans; and (2) how to specify
dynamic reconfiguration policies. When developing TOSCA orchestration plans
for multi-cloud environments, developers often need to deal with different invo-
cation mechanisms (e.g., SOAP, REST and SSH) even though the resource rep-
resentation is standardized. Hence our graphical process modeling language and
Resource Configuration Service (RCS) can be leveraged for implementing high-
level orchestration plans of a TOSCA ”Service Template”.

Different cloud resource providers offer resource configuration services with
different interfaces (e.g., CLI, SDKs, REST/SOAP based and Scripts) for users
who have different levels of comfort and experience with those interfaces. Method-
ologies for unified representation and invocation of heterogeneous web services
are proposed in several research [12,21,22]. Those approaches only focus on
application-level services instead of arbitrary services like CLI, SDKs and scripts.
In the domain of cloud resource management [23] proposes a unified cloud resource
deployment API using Web Service standards (e.g., WSDL and WS-BPEL [24]).
However the authors leverage native WS-BPEL to describe federated resource
12 jclouds.apache.org

jclouds.apache.org

348 D. Weerasiri et al.

deployment processes. Comparatively, we propose an extended BPMN based lan-
guage rather than using native BPMN to avoid orchestration processes getting
(1) complex; (2) error-prone; and (3) difficult to verify and manage later. Wet-
tinger et al. [6] proposes a REST-based unified invocation API that abstracts out
different invocation mechanisms, interfaces and tools available for cloud resource
configuration and orchestration. However the authors have not focused on mod-
eling orchestration processes and reconfiguration policies on top of that unified
invocation API. Whereas our research focuses on (1) unified representation and
invocation; and (2) modeling high-level orchestration processes and reconfigura-
tion policies.

Modeling Dynamic Orchestration of Federated CloudResources: Cloud
resource orchestration processes are composed of deployment and reconfiguration
tasks, which require advanced abstractions over general business process modeling
languages like BPMN and BPEL. BPMN and BPEL focus primarily on the appli-
cation layer [9,25]. However, orchestrating cloud resources requires rich abstrac-
tions to reason about application resource requirements and constraints, support
exception handling, flexible and efficient scheduling of resources. Nonetheless a
user can leverage native BPMN or BPEL to model deployment processes [23] with
reduced design flexibility, increased modeling size and complexity. Furthermore,
modeling dynamic reconfiguration policies (e.g., backup the MySQL database on
every Sunday) within the same deployment process makes it difficult to verify and
manage the workflow later. We propose two BPMN extensions to model deploy-
ment tasks and high-level reconfiguration policies while keeping the deployment
workflow simple and modular.

Extending modeling languages to facilitate domain specific needs is a common
practice. For an example, Sungur et al. [26] propose BPMN extensions to pro-
gram wireless sensor networks. BPMN4TOSCA [27] extends BPMN to implement
orchestration plans of resource representations described as TOSCA ”Topology
Templates” [10]. BPMN4TOSCA includes 4 BPMN extensions, which facilitate to
model configuration and orchestration tasks associated with a Topology Template.
Comparing to our graphical modeling language, BPMN4TOSCA does not model
dynamic reconfiguration policies that are essential to model the elasticity of cloud
resources. We propose a high-level process based notation to model dynamic recon-
figuration policies, which trigger orchestration tasks when specific events happen,
without complicating the initial deployment process model.

7 Conclusions and FutureWork

In this paper, we have presented a federated cloud resource configuration
orchestration framework, which leverages unified, customizable and reusable con-
figuration knowledge representations. The framework consists of (1) a unified con-
figuration knowledge representation model for federated cloud resources; and (2)
a graphical and process-based notation to describe and automate the deployment

Process-Driven Configuration of Federated Cloud Resources 349

tasks of complex configurations over federated clouds. To evaluate the feasibil-
ity and productivity of the proposed framework, we implemented our system as
a proof-of-concept prototype. As future works, we plan to (1) extend the orches-
tration framework to feature as a cloud resource management framework; and (2)
enable the orchestration framework to select the potential RCS s on arrival of
deployment requests based on a user defined QoS (e.g., availability >95%) based
policy.

References

1. Veeravalli, B., Parashar, M.: Guest editors’ introduction: Special issue on cloud of
clouds. IEEE Transactions on Computers 63(1), 1–2 (2014)

2. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp.
13–31. Springer, Heidelberg (2010)

3. Elmroth, E., Larsson, L.: Interfaces for placement, migration, and monitoring of vir-
tual machines in federated clouds. In: GCC 2009, pp. 253–260. IEEE (2009)

4. Villegas, D., et al.: Cloud federation in a layered service model. J. Comput. Syst.
Sci. 78(5), 1330–1344 (2012)

5. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the cloud. IEEE Internet
Computing 15(6), 74–79 (2011)

6. Wettinger, J., et al.: Unified invocation of scripts and services for provisioning,
deployment, and management of cloud applications based on TOSCA. In: CLOSER
2014, April 3–5, 2014, pp. 559–568. SciTePress, April 2014

7. Liu, C., Loo, B.T., Mao, Y.: Declarative automated cloud resource orchestration. In:
Proceedings of the SOCC 2011, pp. 1–8. ACM (2011)

8. Ranjan, R., Benatallah, B.: Programming cloud resource orchestration framework:
Operations and research challenges. CoRR abs/1204.2204 (2012)

9. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)
10. OASIS: Topology and Orchestration Specifation for Cloud Applications (TOSCA),

Version 1.0 (2013)
11. Weerasiri, D., Benatallah, B., Yang, J.: Unified representation and reuse of feder-

ated cloud resources configuration knowledge. Technical Report UNSW-CSE-TR-
201411, Department of CSE, University of New South Wales (2014)

12. Barukh, M.C., Benatallah, B.: ServiceBase: a programming knowledge-base for ser-
vice oriented development. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W.,
Song, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 123–138. Springer,
Heidelberg (2013)

13. Redmine. http://www.redmine.org/ accessed: October 28, 2014
14. Git -distributed-is-the-new-centralized. http://git-scm.com/ accessed: October 28,

2014
15. Konstantinou, A.V., et al.: An architecture for virtual solution composition and

deployment in infrastructure clouds. In: Proceedings of the 3rd International Work-
shop on VTDC, pp. 9–18. ACM (2009)

16. Chieu, T.C., et al.: Solution-based deployment of complex application services on a
cloud. In: 2010 IEEE International Conference on SOLI, pp. 282–287. IEEE (2010)

17. Goldsack, P., et al.: The smartfrog configuration management framework. ACM
SIGOPS Operating Systems Review 43(1), 16–25 (2009)

http://www.redmine.org/
http://git-scm.com/

350 D. Weerasiri et al.

18. Delaet, T., Joosen, W., Vanbrabant, B.: A survey of system configuration tools. In:
Proceedings of the 24th International Conference on LISA, pp. 1–8. USENIX Asso-
ciation (2010)

19. Wilson, M.S.: Constructing and managing appliances for cloud deployments from
repositories of reusable components. In: Proceedings of the 2009 Conference on Hot-
Cloud 2009. USENIX Association (2009)

20. Moscato, F., et al.: An analysis of mosaic ontology for cloud resources annotation.
In: FedCSIS 2011, pp. 973–980. IEEE (2011)

21. Barukh, M.C., Benatallah, B.: A toolkit for simplified web-services programming.
In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part II.
LNCS, vol. 8181, pp. 515–518. Springer, Heidelberg (2013)

22. Barukh, M.C., Benatallah, B.: ProcessBase: a hybrid process management platform.
In: Bhiri, S., Franch, X., Ghose, A.K., Lewis, G.A. (eds.) ICSOC 2014. LNCS, vol.
8831, pp. 16–31. Springer, Heidelberg (2014)

23. Mietzner, R., Leymann, F.: Towards provisioning the cloud: on the usage of multi-
granularity flows and services to realize a unified provisioning infrastructure for saas
applications. In: IEEE Congress on Services - Part I, pp. 3–10 (2008)

24. Juric, M.B., Weerasiri, D.: WS-BPEL 2.0 beginner’s guide. Packt Publishing Ltd
(2014)

25. De Alwis, B., Malinga, S., Pradeeban, K., Weerasiri, D., Perera, S., Nanayakkara, V.:
Mooshabaya: mashup generator for xbaya. In: Proceedings of the 8th International
Workshop on Middleware for Grids, Clouds and e-Science, p. 8. ACM (2010)

26. Sungur, C., et al.: Extending bpmn for wireless sensor networks. In: 2013 IEEE 15th
Conference on Business Informatics (CBI), pp. 109–116, July 2013

27. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: a domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52. Springer,
Heidelberg (2012)

Social Networks I

An Integrated Tag Recommendation Algorithm
Towards Weibo User Profiling

Deqing Yang1, Yanghua Xiao1(B), Hanghang Tong2,
Junjun Zhang1, and Wei Wang1

1 School of Computer Science, Shanghai Key Laboratory of Data Science Fudan
University, Shanghai, China

{yangdeqing,shawyh,zhangjunjun,weiwang1}@fudan.edu.cn
2 Arizona State University, Tempe, AZ, USA

hanghang.tong@gmail.com

Abstract. In this paper, we propose a tag recommendation algorithm
for profiling the users in Sina Weibo. Sina Weibo has become the largest
and most popular Chinese microblogging system upon which many real
applications are deployed such as personalized recommendation, precise
marketing, customer relationship management and etc. Although closely
related, tagging users bears subtle difference from traditional tagging
Web objects due to the complexity and diversity of human character-
istics. To this end, we design an integrated recommendation algorithm
whose unique feature lies in its comprehensiveness by collectively explor-
ing the social relationships among users, the co-occurrence relationships
and semantic relationships between tags. Thanks to deep comprehen-
siveness, our algorithm works particularly well against the two chal-
lenging problems of traditional recommender systems, i.e., data sparsity
and semantic redundancy. The extensive evaluation experiments validate
our algorithm’s superiority over the state-of-the-art methods in terms of
matching performance of the recommended tags. Moreover, our algo-
rithm brings a broader perspective for accurately inferring missing char-
acteristics of user profiles in social networks.

Keywords: Tag recommendation · User profiling · Tag propagation ·
Chinese knowledge graph

This paper was partially supported by the National NSFC(No.61472085,
61171132, 61033010), by National Key Basic Research Program of China under
No.2015CB358800, by Shanghai STCF under No.13511505302, by NSF of Jiangsu
Prov. under No. BK2010280, by the National Science Foundation under Grant No.
IIS1017415, by the Army Research Laboratory under Cooperative Agreement Num-
ber W911NF-09-2-0053, by National Institutes of Health under the grant number
R01LM011986, Region II University Transportation Center under the project num-
ber 49997-33 25. Correspondence author: Yanghua Xiao.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 353–373, 2015.
DOI: 10.1007/978-3-319-18120-2 21

354 D. Yang et al.

1 Introduction

Sina Weibo1 (Weibo in short), the largest counterpart of Twitter in China, is
experiencing fast growth and becoming a world-widely used microblogging sys-
tem. So far, Weibo has attracted more than 0.6 billion users in total and 5 million
active users per day. The applications or services related to Weibo are creating a
plenty of business opportunities since Weibo is attracting more and more users.

One of the most important services provided by Weibo is user tagging which
allows a user to publish several tags to label themselves. These tags usually
describe user profiles including hobby, career, education, religion and etc. Hence,
Weibo tags are important for user understanding which is critical for many real
industry applications, e.g., personalized recommendation, precise marketing and
customer relationship management.

An effective tag recommendation algorithm is critical for Weibo. Weibo users
can be divided into two groups: the groups are willing/or not to label themselves.
For the group willing to, an effective tag recommendation mechanism can make
it easy for them to ‘label’ themselves. The other group is not willing to label
themselves with informative tags mostly out of the privacy concerns. An effective
recommendation algorithm thus is critical for the accurate characterization of
these users. Despite of its importance, current tagging service only attracts 55%
of Weibo users to tag themselves. The remaining users do not label themselves
with any tags either due to privacy concern or inconvenient tagging service.

In general, tag recommendation for Weibo user has been rarely studied.
Although many tag-based recommender systems have been proposed, they gen-
erally can not be used for tagging Weibo users due to the following reasons.

– First, the object to be tagged is different. In this paper, we focus on tag-
ging Weibo users, whereas most existing tag-based recommendation sys-
tems focused on tagging Web objects, such as photos in Flickr [25] or URLs
[30,11]. In general, these systems make successful recommendations by uti-
lizing abundant tagging activities on objects and users. However, much of
these information in general is absent in Weibo setting (known as data spar-
sity problem), which poses a great challenge to accurately tag a Weibo user.
Worse comes to worse, many users do not have any tag at all.

– Second, the objective of tag recommendation is different. Our recommenda-
tion aims to characterizing a user’s individual preference of tags while many
social tagging mechanisms were designed for collective preference of tags
on the targeted object. Clearly, mining individual preference is different to
mining collective preference since each user has his/er own unique taste. We
should recommend not only diverse tags for a user but also satisfy a user’s
unique taste.

In this paper, we develop an effective and efficient algorithm to recommend
tags for Weibo users. Although our algorithm is proposed for Weibo setting,
the proposed recommendation schemes can also be imported into other social
network platforms, such as Twitter and Facebook.
1 http://weibo.com

http://weibo.com

An Integrated Tag Recommendation Algorithm 355

user tags

Step 3:
Removing
Semantic
Redundancy

candidate
tags

output
final tags

input
parameters Step 2:

Expansion by
Co-occurrence

candidate
tags

Chinese knowledge
graph data

Step 1:
Recommendation
by Homophily

Fig. 1. Framework of tag recommendation algo-
rithm

tag 1

tag 2

tag 3

tag 4

user A

user B

user C

use tag
Weibo
following link

reference link
in CKG

 concept x

 concept y

Fig. 2. The meta-graph in our rec-
ommendation framework

1.1 Requirements

First, the recommendation should effectively handle data sparsity. In our scenario,
nearly 45% of Weibo users have no tag. This will disable many collaborative
filtering (CF in short) based recommender systems [24,12] and co-occurrence
based recommendations [25].

Second, the recommended tags should be diversified enough to capture the
multi-facet characteristics of a real person. A user may publish several tags to
characterize all of these aspects, e.g., education, career, hobbies, favorite idols
and etc. How to recommend a set of diversified tags to a user is challenging.

Third, the recommendation should be aware of the semantic redundancy in
the recommended tags. It is not suitable for real applications if too many tags are
recommended. E.g., a Weibo user is restricted to use 10 tags at most. Hence a
user generally expects that the recommended tags are expressive and contain no
(near-)synonyms. In contrast, it is acceptable that different users use (near-)
synonyms to tag the same object [8]. Thus, in those recommender systems
towards tagging objects, semantic redundancy is not an issue.

To satisfy the above requirements, in this paper we first conduct empirical
studies to understand the tagging behaviors of Weibo users. Our findings reveal
two effective tag recommendation mechanisms:

1. Homophily based recommendation. Homophily is the tendency that birds
with a feather flock together [19]. It also holds on Weibo. A Weibo user
tends to use the same or similar tags as his/er friends, especially when the
friend is simultaneously one of his followees and followers, i.e., mutual fan.

2. Co-occurrence based recommendation. If a tag is deserved to be recom-
mended, the other tags that co-occurs with it are also deserved to be recom-
mended.

Armed with these findings, we propose a tag recommendation algorithm to gen-
erate informative and personalized tags for profiling Weibo users. Our algorithm
is an integrated algorithm consisting of three major steps. Each step aims to
address one of the above requirements. Fig. 1 illustrates our algorithm’s frame-
work.

356 D. Yang et al.

1. Step 1: Recommendation by Homophily. We recommend to a user with the
most frequent and informative tags from the tags used by his/er friends. We
import TF-IDF scheme to remove those frequent but less informative tags.
We use this step to solve the data sparsity problem.

2. Step 2: Expansion by Co-occurrence. We use co-occurrence based scheme to
enrich the recommended tag list so that the final tag list is diverse enough.

3. Step 3: Removing Semantic Redundancy. We construct a Chinese knowledge
graph (CKG in short) from online Chinese encyclopedias. Then, we map
Weibo user tags into CKG entities so that we can measure the semantic
similarity of tags. Next, we use an ESA-based (explicit semantic analysis) [7]
metric to remove the synonyms or near-synonyms from the recommended tag
list. This step satisfies the third requirement.

Fig. 2 shows the entities and their relationships in our tag recommendation
algorithm. We use this figure to illustrate our recommendation mechanism. In
Step 1, we recommend to user A with tag 2 and tag 3 that are mostly used by user
B and C because A follows B and C (which suggests that they have similar tag
preferences). In Step 2, tag 1 and tag 4 are also recommended because they are
co-used with tag 2 and tag 3. In Step 3, we remove either tag 1 or tag 2 because
both concept x and y in CKG refer to them implying their redundant semantics.
The detailed mechanisms will be introduced in the subsequent sections.

1.2 Contributions and Organization

In summary, the main contributions of this paper include:

1. Empirical Findings. We conducted extensive empirical studies to show sta-
tistical user tagging behaviors and unveil effective recommendation schemes
for tagging Weibo users.

2. Effective Algorithm. We proposed an integrated algorithm to recommend
a set of tags to Weibo users towards personalized and informative user
profiling.

3. Evaluations. We conducted extensive evaluations to justify the effectiveness
of our recommendation algorithm. The results show that our algorithm is
useful in enriching user profiles as well as inferring the missing characteristics
of Weibo users.

The rest of this paper is organized as follows. We first display our empirical
results in Section 2 which are the basis of our recommendation algorithm. In
Section 3, we elaborate the detailed procedure of tag recommendation algorithm.
In Section 4, we present our experiments for evaluating algorithm performance.
We survey the related works in Section 5 and conclude our paper in Section 6.

2 Empirical Study

In this section, we conduct empirical studies on the collective tagging behaviors
of Weibo users. The empirical findings construct the basis of our tag recommen-
dation algorithm. We first introduce our dataset.

An Integrated Tag Recommendation Algorithm 357

Dataset: We first randomly selected 3,000 Weibo users as seeds, then crawled
their followers and followees. Thus there are more than 2.1 million users and
875,186 unique user tags in total. Besides tags, the following relationships
between the users were fetched. All data were crawled before Oct. 2013. The
statistics show that only 55.01% of these users, i.e., about 1.15 million users
have at least one tag.

2.1 Homophily in Tagging Behavior

Homophily is a tendency that an interaction between similar people occurs with
a higher probability than among dissimilar people [19]. Homoplily was shown to
be a universal phenomenon across a variety of social media platforms such as
Twitter [28]. More specifically, the Twitter users following reciprocally (mutual
fans) tend to share topical interests, have similar geographic and popularity [15].
Thus, an interesting question arises: do close social relationships in Weibo also
imply similar profiles or tags? To answer this question, we first distinguish three
important types of social relationships among Weibo users: following (follower),
followed (followee) and following reciprocally (mutual fan)2. Next, we will empir-
ically study the effects of these three relationships on tag similarity. At first, we
define two types of tags for a Weibo user u.

Definition 1 (Real Tags). If u originally labels him/erself with some tags,
these tags are referred to as u’s real tags and denoted by RTu.

Definition 2 (Collective Tags). The tags that are most frequently used by
u’s friends are referred to as u’s collective tags and denoted by CTu.

To find the tags in CTu, we define a score function tf(t) to quantify the likelihood
that tag t belongs to CTu. The tf(t) function is defined as

tf(t) =
r(t)
∑

t′∈T (Neg(u))

r(t′)
(1)

where Neg(u) is u’s friend group and r(t) is the number of users in Neg(u) who
have used tag t. T (Neg(u)) represents the tag set used by the users in Neg(u).
We denote the score function as tf because it is equivalent to the term frequency
in document retrieval. The larger the tf(t) is, the more likely the tag t belongs to
CTu. If |CTu| is limited to k, we select the top-k tags from T (Neg(u)) according
to tf(t) value. In the following text, we refer to tf(t) as the frequency based tag
ranking score.

Metrics of Evaluation: To justify the homophily in Weibo Tagging behavior,
we compare CTu with RTu for those users having real tags. If the matching of
CTu and RTu is more evident than the matching of RTu and a random tag set,
the homophily in tagging behavior is evident. In this paper, we use the following
2 In this paper, we often refer to these three social relationships in Weibo as friend.

358 D. Yang et al.

three metrics to evaluate matching performance of generated/recommended tags
to a user’s real tags (ground truth).

Precision (P@k): It is defined as the proportion of top-k recommended tags
that are matched to the ground truth (i.e., they are in real tag set), averaged
over all samples.

Mean Average Precision (MAP@k): It is the mean of the average precision
score (AP) of top-k recommended tags for all samples. AP is defined as

AP@k =

∑k
i=1(P (i) × rel(i))

H
(2)

where rel(i) is an indicator function equaling 1 if the i-th tag is matched, 0
otherwise. P (i) is the matched proportion of top-i tags and H is total number
of matched tags in all top-k tags.

Normailzed Discounted Cumulative Gain (nDCG@k): It is a famous
metric to measure relevance level of search results to the query in IR systems [14].
For top-k recommended tags, the nDCG score can be calculated as

nDCG =
1

Z

k∑

i=1

2rel(i) − 1

log2(i + 1)
(3)

where rel(i) is the same as Eq. 2 and Z is the normalized factor. Compared
with MAP, nDCG is more sensitive to rank position of recommended tags. In
general, a user pays less attention to the tags listed behind, hence nDCG is
better to evaluate recommendation performance.

Fig. 3. Matching performance of CTu to
RTu show that tag similarity is more evi-
dent for social friends than general users

Fig. 4. The proportion of (near-) syn-
onyms in top-k expanded list. Some
expanded tags are (near-) synonyms of
the parent tags, but most of them are
complementary in semantic.

Results: Next, we show our empirical results which in general justify that the
users in Weibo who have close social relationships with each other tend to share
similar tags. Since the mean tag number of a Weibo user is 5.69 by our statistics,
we only list the results of |CTu|=6 (k=6) in Fig. 3 due to space limitation.

An Integrated Tag Recommendation Algorithm 359

We got consistent results under other sizes of CTu. For comparison, we also
compare RTu with a random tag set. We randomly selected some users from the
universal user set and used the most frequent tags of these users as the random
tag set. The figure displays that under all metrics, random tag set have the
worst matching performance and the collective tags from followees have the best
performance. These results imply that homophily is effective in tagging behaviors
of Weibo users. That is, Weibo friends tend to share similar tags. These results
also justify the rationality of homophily-based tag recommendation, which is
used as the basic scheme in our tag recommendation algorithm.

2.2 Co-Occurrence in Tagging Behavior

From our dataset, we found that many Weibo users have more than one real tag.
It inspires us to use tag cooccurrence for tag recommendation. That means, if
two tags t1 and t2 co-occur with each other in many persons’ real tag lists and
t1 has been recommended to a user, then t2 also deserves to be recommended
to this user. Tag co-occurrence was shown to be an effective mechanism for
tag recommendation for photos in Flickr [25]. Next, we first give the ranking
scheme of tag t′ that co-occurs with t, then we justify the co-occurrence based
tag recommendation for Weibo users by empirical studies.

Ranking: For a tag t recommended to a user, we first need to measure the
extent to which we recommend another tag t′ that co-occurs with t to the user. We
may directly measure it by t′’s co-occurrence frequency with t, denoted as tft(t′).
Thus, the direct implementation of co-occurrence based tag recommendation is
recommending tag t′ with largest tft(t′) if t is recommended. The direct solution
clearly favors those general tags with high occurrence frequency, such as ‘music’
and ‘movie’. We need to suppress them to select informative tags. We import an
idf factor to reflect this requirement. As in [10,27], idf factor generally is defined
as

idf(t′) = log
M − n(t′) + 0.5

n(t′) + 0.5
(4)

Table 1. Co-occurrence tags ranked by tf-idf score

machine learning tour advertisement

data mining food media
NLP movie marketing
recommender sys. fashion communication
information retrieval music design
computer vision listen to music photography
pattern recognition 80s Internet
A.I. freedom innovation
big data travel movie
search engine photography art
Internet indoorsy fashion

360 D. Yang et al.

where n(t′) is the frequency of tag t′’s co-occurrence with t. M is the user number
of universal user set. Then, similar to TF-IDF in IR systems, we define a tf-idf
score to measure the extent to which tag t′ co-occurs with t as

st(t′) = tft(t′) × idf(t′) (5)

Given this score function, we can enrich a tag list by homophily based recom-
mendation.

Results: Next, we justify the co-occurrence expansion by case studies on three
typical tags ‘machine learning’, ‘tour’ and ‘advertisement’, which are called as
parent tags of their co-occurring tags. In Table 1, we list the top-10 tags ranked
by st(t′) that co-occurs with the three parent tags. These tags are the candi-
dates to enrich a recommended tag list and called as expanded tags. From the
table, we can see that most expanded tags are semantically related but different
from their parent tags. All these related tags often tend to be co-used by users,
e.g., ‘machine learning’ is very related to ‘data mining’ and ‘A.I.’, ‘design’ing an
‘advertisement’ needs ‘innovation’. It is desirable to recommend these semanti-
cally different but related co-occurring tags so that the recommended tags are
fully informative and expressive to characterize a user.

Moreover, we can also find some synonyms or near-synonym from the
expanded tags. For example, in Table 1, ‘travel’ is very semantically close to
‘tour’, so does ‘media’ to ‘communication’. We next quantify the extent to
which synonyms occur in the expanded list. To do this, we first selected 1000
most frequently used tags as the parent tags. For each of them, we summarized
the proportion of the (near-)synonym tags that occur in its expanded tag list.
We will introduce our approach to distinguish (near-)synonym tags in Sec. 3.3.
We reported the average proportions over all parent tags under different top-
k expanded tags. The results are shown in Fig. 4 where (near-)synonym tags
account for 15%∼20% in the expanded list. It shows that most of expanded
tags are meaningful. On the other hand, it also implies that we still need to
remove the semantic redundancy caused by the (near-)synonyms. This problem
can be solved by our CKG (Chinese knowledge graph) based approach that will
be discussed in the next section.

3 Tag Recommendation Algorithm

In this section, we elaborate our tag recommendation algorithm which contains
three major steps, as shown in Alg. 1. For a user u, our algorithm generates k rec-
ommended tags ordered by a ranking score. In the first step (line 2), we generate
candidate tags by homophily based recommendation scheme. In the second step
(line 5 to 9), we expand the tag list by the co-occurrence based recommendation
scheme. In the third step (line 11 to 18), we remove all semantically redundant
tags by a CKG based method.

An Integrated Tag Recommendation Algorithm 361

3.1 Step 1: Recommendation by Homophily

According to the empirical results of Sec. 2.1, i.e., close social relationships imply
similar tags, we can profile a Weibo user by his/er collective tags. This strategy
can solve the data sparsity problem of Weibo tags. Recall Eq. 1, we directly col-
lect the tags from u’s friends, i.e., the direct neighbors of u, to constitute CTu.
This naive approach has two weaknesses. First, it will fail if no direct neighbors
have real tags. Second, it does not take into account the intimacy between two
friends. Next, we will improve it by taking into account indirect neighbors’ infor-
mation and user intimacies. We use tag propagation to materialize the effects
of these factors. To better explain our algorithm, we first give some preliminary
definitions.

Definition 3 (Weibo Influence Graph). The Weibo influence graph
G(V,E,w) is an edge-weighted directed graph, where V is user set and E is
influence edge set. Each directed edge eu→v indicates the social influence from
user u to user v. Furthermore, we assign a weight wuv to this edge to quantifies
the extent to which u can influence v through it. In general, a followee has much
more influence on his/er follower than the vice versa that is indicated by Fig. 3.
Hence, for a better interpretation of our algorithm, we assume that only followee
can influence his/er followers resulting in tag propagation from followees to fol-
lowers only. Specifically, if and only if user v follows u, there is an edge eu→v in
the influence graph. We further set wuv as the frequency that v retweets u in a
given period3.

Based on the Weibo influence graph, we further define social influence which
characterizes the intimacy between two Weibo users. It is similar to the influence
proposed by Mashiach et al. for optimizing PageRank algorithm [2].

Definition 4 (Social Influence). For a directed path p = (u0, u1, ..., ur) in
G, the social influence along p from u0 to ur equals to

si(p) =
r−1∏

i=0

wuiui+1∑

u:u→ui+1

wuui+1

(6)

where u is ui+1’s in-neighbor in G. Let Pr(v, u) be the set of all paths of length
r from v to u, thus the social influence of v on u at radius r is

sir(v, u) =
∑

p∈Pr(v,u)

si(p). (7)

Furthermore, we define si0(u, u) = 1 and si0(v, u) = 0 for all v �= u. Then, the

total social influence of v on u is si(v, u) =
∞∑

r=0
sir(v, u).

3 The frequency of mention (@username) and comment can also be used to quantify
the influence weight between Weibo users. Our experimental results show that the
selection of weighting scheme does not affect the performance of our algorithm.

362 D. Yang et al.

Algorithm 1. Tag recommendation algorithm with three steps
Input: a Weibo user u; parameter k, q, λ, α;
Output: recommended tag list;
1: C ← φ;
2: compute Su; //Step1: recommendation by homophily.
3: i ← 1;
4: while |C| < k do
5: k′ ← k × i; // begin Step 2: expansion by co-occurrence.
6: C ← C

⋃{top-k′ tags ranked by s(t)};
7: for each tag t in C in the descending order of s(t) do
8: C ← C

⋃ {top-q tags ranked by st(ti)};
9: end for

10: set all newly added tags’ parents;
11: Rank tags in C by ŝ(t) defined in Eq. 10; //begin Step 3.
12: for each tag t in C in the descending order of ŝ(t) do
13: for each tag t′ ordered after t do
14: if sim(t, t′) ≥ α then
15: remove t′ from C;
16: end if
17: end for
18: end for
19: i ← i + 1;
20: end while
21: return the top-k tags in C;

Computation: Suppose there are overall N tags in G, the first step of our
algorithm aims to calculate a tag score vector Su = [s(1), ..., s(N)] ∈ R

N for a
user u, in which s(j) (1 ≤ j ≤ N) quantifies the extent to which tag j can profile
u, i.e., the ranking score of candidate tag j. To consider the influence of indirect
neighbors, we let the tags of indirect neighbors propagate along the path in the
influence graph. Intuitively, if a user v has a more significant influence on u
(i.e., larger si(v, u)), u will be more tending to use v’s tags to profile him/erself.
To reflect these facts, we define:

Su =
∑

v∈V

si(v, u)T v =
∑

v∈V

r∑

j=0

sij(v, u)T v (8)

where T v ∈ R
N is v’s real tag distribution vector and its entry tj = 1/n(1 ≤

j ≤ N) if user v originally uses tag j, otherwise tj = 0. n is the number of user
v’s real tags and

∑
tj = 1. Refer to Eq. 6 and Eq. 7, we can recursively compute

the social influence of user v on user u at radius r as

sir(v, u) =
∑

x:v→x

wvx∑

v′:v′→x

wv′x
sir−1(x, u) (9)

where x is v’s out-neighbor who has a path of r−1 length to u at least, and v′ is
x’s in-neighbor. That is, the social influence of v on u at radius r equals to the
weighted average influence of v’s out-neighbors on u at radius r−1. This implies

An Integrated Tag Recommendation Algorithm 363

Algorithm 2. Step1: Computing u’s tag score vector Su.
Input: u, r;
Output: Su;
1: Su ← φ;
2: layer0 ← u;
3: si0(u, u) ← 1;
4: if u has origin tags then
5: Su ← T u;
6: end if
7: for i=1 to r do
8: layeri ←{all in-neighbors of the nodes in layeri−1};
9: for ∀v ∈ layeri do

10: if v has real tags then
11: for each v’s out-neighbor x do
12: sii(v, u) ← ∑

x:v→x

wvx∑

v′:v′→x

wv′x
sii−1(x, u);

13: end for
14: Su ← Su + sii(v, u) × T v;
15: end if
16: end for
17: end for
18: return Su;

that we can compute Su iteratively as shown in Alg. 2. The computation starts
from u. In the i-th iteration (line 7 to 17), for each user v that is i steps away
from u and have real tags, we calculates its social influence on u by summing up
the weighted social influences on u of each v’s out-neighbor x at radius i − 1.

Optimization: Next, we optimize above computation from two aspects.
1. Setting A Shorter r. Obviously, the computation cost of Eq. 8 is unbearable if
r is big. Refer to the observations on Twitter that more than 95% of information
diffusion is less than the scope of 2 hops from the origin [15], we can set r ≤ 2
in the real applications. We will present how to learn this upper bound of r in
the experiment section.
2. Suppressing General Tags. Similar to co-occurrence tag expansion, we should
suppress the tags that are too generally used by all users in order to find the
specific and informative tags. Therefore, we also import an idf factor matrix D
into Eq. 8. That is replacing T v with T vD, where D = diag[d1, ..., dN] is an
N × N diagonal matrix and each non-zero entry dj(1 ≤ j ≤ N) is defined as
Eq. 4. After Su is computed, we rank all tags according to s(j) and then select
the top-k tags as the candidate set, namely C, that will be fed as the input of
Step 2. k is the number of tags to profile a user.

3.2 Step 2: Expansion by Co-Occurrence

We have shown in Sec. 2.2 that co-occurrence is also an important tag recommen-
dation mechanism. Therefore, we use this mechanism to enrich the recommended

364 D. Yang et al.

tags. The input of this step is the ranked tag list C generated in Step 1. The
output is a new ranked list consisting of C and other expanded tags.

In Step 2, for each tag t ∈ C, in order to generate its expansion list, we select
the top-q co-occurring tags, namely ti, according to st(ti) value (refer to Eq. 5).
If a co-occurring tag ti can be found in more than one expansion list, ti will only
join the expansion list of the tag t having the maximal s(t). We refer to such t
as ti’s parent tag, namely p(ti). Thus, for each ti, p(ti) is unique. If an expanded
tag has existed in C, we just ignore it. As a result, at most k×q new tags can be
discovered. Let C ′ be the new candidate tag list after expansion. Thus, C ′ − C
contains all newly expanded tags.
Re-ranking: After we generated the new recommendation tag set C ′, we need to
re-rank each member of C ′. The key of the new ranking is to ensure that the tags
in C ′ − C can fairly compete with those tags in C. To meet this requirement,
we define a new ranking score ŝ(ti) for each tag ti ∈ C ′:

ŝ(ti) =

{
s(ti) ti ∈ C;

λ × s(p(ti)) × sp(ti)(ti)

Z otherwise
(10)

where λ ∈ (0, 1) is a damping parameter, Z is used for normalization and set
as the maximal st(ti) of all tis that co-occur with t. If ti is one of the original
tag found in Step 1 (i.e., ti ∈ C), we directly use the s(ti) as its new score.
Otherwise, we inherit the score from p(ti)’s ranking score s(p(ti)) generated in
Step 1 and use λ and sp(ti)(ti)

Z as two multiplicators to suppress it (sp(ti)(ti) is
also defined according to Eq. 5). Since p(ti) is unique, ŝ(ti) is well defined.

The rationality of the new score is two-fold:
1. ŝ(ti) should be smaller than s(p(ti)). The definition can ensure this because
λ ∈ (0, 1) and sp(ti)(ti)

Z ∈ (0, 1]. On the other hand, to ensure ti is competitive
enough, we usually set λ ≥ 0.5.
2. For any two tags ti, tj in one tag t’s expansion list, ŝ(ti) < ŝ(tj) should hold
if st(ti) < st(tj). It is not difficult to prove that ŝ(ti) satisfies the requirement.

3.3 Step 3: Removing Semantic Redundancy

As pointed out in [8], users often tag the same resource with different terms
for their various habits or recognition. Similarly, Weibo users may use different
terms to express the same or close semantics. As a result, many synonyms or
near-synonyms tend to exist in Weibo tags. For example, tag ‘tour’ and ‘travel’
are both widely used in Weibo. Thus, the candidate tag set may have some
tags of the same or similar semantics. These tags are redundant and should be
avoided due to space limitation of a Weibo user’s tags. For this purpose, we first
construct a Chinese Knowledge Graph (CKG in short) and then use an Explicit
Semantic Analysis (ESA in short) [7] based model to represent a tag’s semantics
through the concepts in CKG.

The CKG is a big graph constituted by millions of concepts and entities
extracted from online encyclopedias such as Baike4. Each concept can be
4 http://baike.baidu.com

http://baike.baidu.com

An Integrated Tag Recommendation Algorithm 365

classified into one or more categories and there exists a unique Web article to
explain it. In each Web article, there are many hyperlinks referring to other con-
cepts, namely reference concept. These hyperlinks constitute the edges of CKG
(refer to Fig. 2). A concept can be referred to by more than one article. As well,
a concept can also be referred to more than once in an article. Thus, for a ref-
erence concept, we can use the concepts whose articles refer to it, to represent
its semantics. The number of referring also allows us to calculate a tf-idf score
to select expressive concepts.

Based on above idea, we can quantify the semantics of a Weibo tag by first
mapping it into Baike concepts, i.e., the concepts in CKG. Specifically, given a
tag a and a Baike concept b, we map a to b if sa = sb or sb is the maximal
substring of sa, where sa and sb are the name strings of a and b, respectively.
Under this mapping scheme, we can find an appropriate Baike concept for 88.7%
of Weibo tags.

According to ESA, two tags are considered semantically related if their
mapped concepts are co-referred to in the same article pages of CKG. The
more such articles can be found, the more semantically related the two tags
are. Based on it, we first formalize a tag’s semantic representation as follows.
Suppose CKG has L concepts in total, the semantic interpretation of a tag i can
then be represented by a concept vector defined as C ∈ R

L of which each entry,
namely cj , represents the semantic relatedness of concept j to tag i. cj can be
calculated as the tf-idf score of tag i in concept j’s article. We notice that many
concepts in CKG are quite general and cover a wide range of topics. These con-
cepts in general have less semantic descriptiveness on a tag than those specific
concepts. Hence we need to suppress these general tags. Intuitively, the concepts
belonging to more categories are more general than the concepts belonging to
less categories. Consequently, we further define

cj =
tsj(i)

|cat(j)| (11)

to punish general tags, where tsj(i) is the tf-idf score and cat(j) is concept j’s
category set.

Then, given two tags i and j, we can measure their semantic similarity by
computing the cosine similarity of Ci and Cj , i.e., sim(i, j) = cosine(Ci,Cj).
According to the definition of concept vector, the larger the sim(i, j) is, the more
possible that i and j are (near-)synonyms. The detailed procedure of removing
semantically redundant tags is shown in Alg. 1. We first sort the tags in C by
the descending order of ŝ(t) value. For each tag t in the ordered list, we start
an inner loop to scan each tag t′ ordered after t. If sim(t, t′) is larger than a
threshold α, we remove t′ from C. Finally, if C contains more than k tags, we
just return the top-k tags ranked by ŝ(·) function (refer to Eq. 10).

366 D. Yang et al.

3.4 Parameter Learning

There are several parameters in our tag recommendation algorithm, i.e., r in
Step 1, q and λ in Step 2 and α in Step 3. In this subsection, we introduce how
to set the best parameter values.

To find the best α, we used the synsets in Cilin5 (a popular Chinese synonym
database) as positive samples and manually labeled non-synonym paris as the
negative sample. We use these samples as the training dataset to train a binary
classification model. Then we found that α=0.007 is the most effective threshold
for distinguishing (near-)synonyms.

Next, we introduce how to learn the best value for q, r and λ. We first intro-
duce how to evaluate the goodness of a recommended tag set. For a user with
real tags, we can take his/er real tags as the ground truth. We can compare
the recommended tags to the ground truth for the evaluation. In Sec. 2.1, we
use the results of exact match for the comparison. But it is too strict for tag
recommendation. For example, it is reasonable to recommend ‘tour’ to a user
with a tag of ‘travel’ although the two tags are lexically different. To relax the
match, we use the aforementioned cosine similarity between concept vectors to
measure the match between two tag sets.

More formally, suppose our algorithm of the parameter setting θ recommends
u with a tag set, namely T (u, θ). Let Cu(θ) be the concept vector of T (u, θ)’s.
According to Eq. 11, each entry of Cu(θ), namely cj , can be defined as

cj =
∑

t∈T (u,θ)

tsj(t)
|cat(j)| × ŝ(t, θ) (12)

where t is a tag in T (u, θ) and ŝ(t, θ) is t’s score derived by our algorithm under
the setting θ. For computing u’s real tag set RTu’s concept vector, namely C̄u, we
set ŝ(t) = 1/|RTu| because we can not acquire u’s extent to which s/he prefers
to a real tag. Then, we propose an objective function F to measure the semantic
similarity between T (u, θ) and RTu as

F(u, θ) = sim(T (u, θ), RTu) = cosine(Cu(θ), C̄u).

Thus, the best parameter setting (including q, r and λ) should be

arg max
θ∈Θ

E(F(u, θ)) = arg max
θ∈Θ

∑
u∈U F(u, θ)

|U | . (13)

U is the training user set consisting of the seed users having real tags in our
Weibo dataset. Finally, we found that q = 1, r = 2, λ = 0.5 are the best θ in our
tag recommendation algorithm.

4 Evaluation

In this section, we evaluate the performance of our tag recommendation algo-
rithm through the comparisons with some state-of-the-art methods. We not only
present the match performance of our recommendation algorithm, but also dis-
play the effectiveness of the recommended tags on inferring user profiles.
5 http://www.datatang.com/data/42306/

http://www.datatang.com/data/42306/

An Integrated Tag Recommendation Algorithm 367

4.1 Experimental Settings

We first introduce the evaluation method and the competitors of our algorithm.
Human Assessments: One direct way to assess the recommended tags is com-
paring them with the real tags since the real tags are each Weibo user’s pref-
erences. However, nearly half of Weibo users have no real tags. So we have to
resort to human assessments for evaluating the recommended tags. Specifically,
we inquired each test Weibo users whether s/he will accept the recommended
tags. Each user can select an option of yes, no and unknown for a tag. We only
take the tag of yes as matched tag.
Baselines:
1. FREQ.: The first baseline is a naive method because it selects the recom-
mended tags merely by ranking the frequency of candidate tags used by a user’s
followees, i.e., collective tags.
2. TF-IDF: This baseline recommends the tags according to the TF-IDF scheme.
3. CF: The CF approach has been proposed in [25] to recommend tags for a
Flickr image based on tag co-occurrence mining. That is, for a user with real
tags, we recommend to him/her with some tags that are co-used with his/er
own tags by many other users. In fact, this method can be viewed as an item-
based collaborative filtering approach when we regard a tag as an item and the
tags co-used by a user as similar or related items. Clearly, this recommendation
method can not be applied for the users without real tags.
4. TWEET: This approach is a content-based recommendation scheme which
has been widely used in previous recommender systems [6,9]. This approach
extracts some keywords from a user’s tweets as the recommended tags since a
user’s tweets are direct indicators of users interests or preferences.

In our algorithm, the tags are generated from local neighbors within radius
2 (r=2). Hence, we name our algorithm as Local Tag Propagation Algorithm
(LTPA in short). Besides r, the parameters q and λ of our algorithm were also
set as the best values tuned by corresponding learning models (see Sec. 3.4) in
the experiments.

4.2 Effectiveness

We justify our algorithm’s effectiveness from two aspects. We first present the
global match performance of our tag recommendation algorithm by comparing
to the baselines. Then we justify the effectiveness of each step of our algorithm.

Global Performance: From the 3000 seed users in our dataset, we randomly
selected 500 users as the test users in our experiments in which the spam
users were excluded. Then, we designed two groups of experiments to recom-
mend tags to these test users. In the first group, we compared all recommen-
dation algorithms on the 268 test users having real tags since CF can only
work on the users with tags. In the second group, we compared all competitors
except for CF on all 500 test users. The human assessment results are shown in

368 D. Yang et al.

Fig. 5 and Fig. 6, respectively. The results show that all algorithms perform the
best when recommending top-5 tags. It proves that the algorithms can rank
the best tags to a top position. The results also reveal that LTPA performs the
best in all cases. The superiority of LTPA and TF-IDF over FREQ. justifies
that the effectiveness of idf factor to discover informative and personalized tags
for profiling a user. We will illustrate it by case studies in the next subsection.
TWEET almost performs the worst in all cases, implying that the keywords
directly extracted from tweets are generally not appropriate for user profiling.
Further investigation on the tweet content reveals that, most tweet keywords are
colloquialisms or person name of friends and newsmakers. For example, ‘Diaos’
is a new Internet vocabulary and is widely used by Chinese youngsters. These
words produced due to the oral and informal language style in short tweets (less
than 140 characters) can not accurately and completely characterize a user.

Effectiveness of Each Step: In Sec. 2.1, we have justified the rationality of
homophily based recommendation. Next, we present the recommendation results
after we add Step 2 and Step 3 incrementally into our algorithm to justify the
co-occurrence based expansion and removing semantic redundancy. Since our
algorithm has the best performance when k=5, we only evaluated our algorithm
by recommending top-5 tags to the test users.

Step 2: To justify Step 2, we investigated the expanded tags generated by our
algorithm consisting of Step1 and Step 2. We found that 75.11% of the expanded

(a) P@k (b) MAP@k (c) nDCG

Fig. 5. Human assessment results of the recommended tags to the test users having
real tags

(a) P@k (b) MAP@k (c) nDCG

Fig. 6. Human assessment results of the recommended tags to all the test users

An Integrated Tag Recommendation Algorithm 369

tags are newly discovered tags. In average, about 35.37% of these newly expanded
tags were labeled as matched by the volunteers. These results imply that co-
occurrence based expansion is necessary and effective in enriching the recom-
mended tag list.

Step 3: Then, we ran the whole algorithm consisting of the three steps. We
found that 14.55% of the tags after Step 2 were identified as (near-)synonyms of
the previous tags. By surveying the volunteers’ acceptance about the removed
tags, we found that 74.7% of these (near-)synonyms identified by Step 3 are
really redundant. These results justify the effectiveness of removing semantic
redundancy.

Table 2. Inference
accuracy in four pro-
file categories

category accuracy

location 94.64%

occupation76.47%

education 95.24%

religion 99.21%

Table 3. Case studies to justify inference performance of the
recommended tags

user algorithm tag list

userA

real tags music, fashion
CF movie, food, listen to music, tour, 80s

TWEET
Jehovah, Miss HongKong, beauty, child, good
man

FREQ. Christian, food, movie, 80s, tour

TF-IDF
Christian, Bible, Emmanuel, micro fashion,
tide

LTPA
Christian, Bible, faith, God’s baby girl, God’s
child

userB

TWEET
Shantou (a Chinese city), WeChat, Internet,
Shantou people, girl

FREQ. tour, food, movie, Internet, music

TF-IDF
machine learning, Internet,
data mining, Fudan University, technology

LTPA
machine learning, IT, Internet,
Fudan University, data mining

4.3 Inference of User Profiles

Many users are reluctant to publish their profiles, i.e., location, professions and
religion, possibly due to the privacy concern. Hence, accurately inferring user
profiles is very important for better understanding the users who have no tags
or no informative tags. For the users who do not introduce themselves completely,
the recommended tags can be used to infer the absent user characteristics. Iden-
tifying user profile characteristics can contribute to many real applications such
as maintaining social cliques, search for target user and etc. To test the per-
formance of inferring user profiles, we ran our algorithm on the test users to
recommend top-5 tags. Then, we filtered out the test users whose recommended
tags contain profile information and evaluated inference accuracy by inquiring
the users. Table 2 lists the inference accuracy of tags generated by our algorithm

370 D. Yang et al.

w.r.t. four basic profile information: location, profession, education and religion.
The results verify that our algorithm is effective on inferring user profiles.

Case Studies: Finally, we give two case studies to highlight our algorithm’s
effectiveness on recommending personalized and informative tags to enrich a
user’s profile.

Case 1: User A in Table 3 is a test user who has real tags. We can see that user
A’s real tags uncover nothing about her religion. CF can not recommend any tags
indicating her religion either. In TWEET and FREQ., there is only one word, i.e.,
‘Jehovah’ and ‘Christian’, implying user A’s religion (Christianism). In contrast,
TF-IDF and LTPA can recommend more than one tag that apparently reveal
user A’s religion. It is because these two algorithms can find more personalized
and informative tags through idf factor. By investigating user A’s tweets, we
confirmed that she is really a Christian.

Case 2: Another test user B has no real tags. As a result, CF can not be
applied on this user. From Table 3, we find that FREQ. only reveals general
interests of youngsters. TWEET can only find keywords about his hometown
(‘Shantou’). In contrast, TF-IDF and LTPA can recommend more personalized
and informative tags. From these tags we can confidently infer that user B is
a university student (the university name is anonymous for blind review) who
is interested in machine learning and data mining. In fact, user B is a student
volunteer in the data mining laboratory of Fudan University.

5 Related Work

Tag Recommendation and Social Recommender: Most previous works
of tag recommendation were employed on a triplet basis, i.e., user, tag and
resource [11,29,18,13], instead of tagging a user. Xu et al. [29] proposed a set
of criteria for a high quality tag. Based on these criteria, they further pro-
posed a collaborative tag suggestion algorithm to discover the high-quality tags.
Song et al. [26] recommended tags for a document according to the mutual
information between words, documents and tags. In addition, Sigurbjornsson
et al. [25] presented some recommendation strategies based on tag co-occurrence.
Liu et al. [17] introduced a tag ranking scheme to automatically rank the tags
associated with a given image according to tag relevance to the image content.
All these methods were designed on the premise that each tagged object already
has tags resulting in vulnerability to data sparsity towards tagging Weibo users.
Similar to Step 1 in our algorithm, many scholars tried to improve recommen-
dation performance by exploiting social context. These systems are generally
called social recommender [3]. Ma et al. [18] used social relationships to solve
the cold start problem of CF, but they mainly focused on rating objects instead of
persons. Ben-Shimon et al. [4] explicitly quantified user similarity by computing

An Integrated Tag Recommendation Algorithm 371

their distances in the social graph without considering personality. Quijano-
Sanchez et al. [22] resorted to a TKI survey upon users to acquire personality
values which is not feasible to real on-line applications. Hotho et al. [13] also used
a PageRank-based model to rank tags but they did not consider the semantic
redundancy of tags.

Tag Semantics: One of the prerequisites to study the user tagging behavior is
understanding the semantic of tags [1]. In general, to understand tag semantics,
tags should be mapped into a thesauri or a knowledge base. E.g., mapping Flickr
tags [25] and Del.icio.us tags [5] into WordNet, or mapping tags into Wikipedia
categories by the content of tag-associated objects [21]. Moreover, some meta
graphs are also constructed for understanding tags, such as a tag graph encoding
co-occurrence relationships among tags [30,17]. Given that the low tag coverage
of WordNet, we resort to Wikipedia-like encyclopedia, i.e., CKG in this paper.
Furthermore, we improve ESA [7] by taking into account the categories of CKG
concepts to improve the precision of a tag’s semantic interpretation.

User Profile Inference: Sadilek et al. [23] presented a system to infer user
locations and social ties between users. Mislove et al. [20] tried to infer user pro-
file based on the open characteristics of a fraction of users. These mechanisms
are not as flexible as our approach because they only work under the assumption
that characteristics of some users have been uncovered in advance. The authors
in [16] proposed an influence based model to infer home locations of Twitter
users. Although their work also resorted to social relationships for an accurate
inference, their model can only be used to infer location and needs expensive
analysis of tremendous tweets. In contrast, our solution mainly depends on crawl-
ing and analyzing tags that are less costly than processing on tweets.

6 Conclusion

Motivated by many real applications built upon user profiles, we dedicate our
efforts in this paper to tag recommendation for Weibo users. We conducted
extensive empirical studies to unveil effective tag recommendation scheme based
on which we proposed an integrated tag recommendation algorithm consisting
of three steps, i.e., tag recommendation based on local tag propagation, tag
expansion by co-occurrence and CKG-based elimination of semantically redun-
dant tags. Extensive experiments validate that our algorithm can recommend
more personalized and informative tags for profiling Weibo users than the state-
of-the-art baselines.

References

1. Ames, M., Naaman, M.: Why we tag, motivations for annotation in mobile and
online media. In: Proc. of CHI (2007)

2. Bar-Yossef, Z., Mashiach, L.T.: Local approximation of pagerank and reverse pager-
ank. In: Proc. of CIKM (2008)

372 D. Yang et al.

3. Bellogin, A., Cantador, I., Diez, F., Castells, P., Chavarriaga, E.: An empirical com-
parison of social, collaborative filtering, and hybrid recommenders. ACM Transac-
tions on Intelligent Systems and Technology 4 (2013)

4. Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisles, A., Shani, G., Naamani, L.:
Recommender system from personal social networks. In: Proc. of AWIC (2007)

5. Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag related-
ness in social bookmarking systems (2008)

6. Chen, J., Geyer, W., Dugan, C., Muller, M., Guy, I.: Make new friends but keep
the old, recommending people on social networking sites. In: Proc. of CHI (2009)

7. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In: Proc. of IJCAI (2007)

8. Gupta, M., Li, R., Yin, Z., Han, J.: Survey on social tagging techniques. In: Proc.
of SIGKDD (2010)

9. Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using
content and collaborative filtering approaches. In: Proc. of RecSys (2010)

10. Hassanzadeh, O., Consens, M.: Linked movie data base. In: Proc. of LDOW (2009)
11. Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: Proc. of

SIGIR (2008)
12. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Transactions

on Information Systems 2, 89–115 (2004)
13. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folk-

sonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

14. Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems 20, 422–446 (2002)

15. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: Proc. of WWW (2010)

16. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.C.: Towards social user profiling:
unified and discriminative influence model for inferring home locations. In: Proc.
of SIGKDD (2012)

17. Liu, D., Hua, X.S., Yang, L., Wang, M., Zhang, H.J.: Tag ranking. In: Proc. of
WWW (2009)

18. Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using proba-
bilistic matrix factorization. In: Proc. of CIKM (2008)

19. McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: Homophily in social
networks. Annual Review of Sociology 27, 415–445 (2001)

20. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proc. of WSDM (2010)

21. Overell, S., Sigurbjornsson, B., van Zwol, R.: Classifying tags using open content
resources. In: Proc. of WSDM (2009)

22. Quijano-Sanchez, L., Recio-Garcia, J.A., Diaz-Agudo, B., Jimenez-Diaz, G.: Social
factors in group recommender systems. ACM Trans. on Intelligent Systems and
Technology 4 (2013)

23. Sadilek, A., Kautz, H., Bigham, J.P.: Finding your friends and following them to
where you are. In: Proc. of WSDM (2012)

24. Schafer, J., Konstan, J., Riedi, J.: Recommender systems in e-commerce. In: Proc.
of EC (1999)

25. Sigurbjornsson, B., van Zwol, R.: Flickr tag recommendation based on collective
knowledge. In: Proc. of WWW (2008)

26. Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.C., Giles, C.L.: Real-time
automatic tag recommendation. In: Proc. of SIGIR (2008)

An Integrated Tag Recommendation Algorithm 373

27. Wang, J., Hong, L., Davison, B.D.: Tag recommendation using keywords and asso-
ciation rules. In: Proc. of RSDC (2009)

28. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influen-
tial twitterers. In: Proc. of WSDM (2010)

29. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: collaborative tag sug-
gestions. In: Proc. of Collaborative Web Tagging Workshop in WWW (2006)

30. Zhou, T.C., Ma, H., Lyu, M.R., King, I.: Userrec: a user recommendation frame-
work in social tagging systems. In: Proc. of AAAI (2010)

An Efficient Approach of Overlapping
Communities Search

Jing Shan(B), Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu

College of Information Science and Engineering, Northeastern University,
Liaoning 110004, China

mavisshan0129@gmail.com,

{shenderong,nietiezheng,kouyue,yuge}@ise.neu.edu.cn

Abstract. A great deal of research has been dedicated to discover over-
lapping communities, as in most real life networks such as social net-
works and biology networks, a node often involves in multiple overlapping
communities. However, most work has focused on community detection,
which takes the whole graph as input and derives all communities at one
time. Community detection can only be used in offline analysis of net-
works and it is quite costly, not flexible and can not support dynamically
evolving networks. Online community search which only finds overlap-
ping communities containing given nodes is a flexible and light-weight
solution, and also supports dynamic graphs very well. Thus, in this paper,
we study an efficient solution for overlapping community search problem.
We propose an exact algorithm whose performance is highly improved
by considering boundary node limitation and avoiding duplicate compu-
tations of multiple input nodes, and we also propose three approximate
strategies which trade off the efficiency and quality, and can be adopted
in different requirements. Comprehensive experiments are conducted and
demonstrate the efficiency and quality of the proposed algorithms.

1 Introduction

Community structure [9] is observed commonly existing in networks such as
social media and biology. Nodes in one community are more highly connected
with each other than with the rest of the network. Thus, community struc-
ture can provide rich information of the network. For example, community
in social media reflects a group of people who interact with each other more
frequently, so they may have common interest or background; community in
protein-association network reflects a group of proteins perform one common
cellular task. Therefore, finding communities is crucial for understanding the
structural and functional properties of networks.

However, communities are often not separated in most real networks, they
are often overlapped. In other words, one node often belongs to multiple commu-
nities. This phenomenon could be easily explained in social media: individuals
could belong to numerous communities related to their social activities, hobbies,
friends and so on. Thus, overlapping community detection (OCD) [13,10,8,11]
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 374–388, 2015.
DOI: 10.1007/978-3-319-18120-2 22

An Efficient Approach of Overlapping Communities Search 375

has drawn a lot of attention in recent years. OCD dedicates to find all over-
lapping communities of the entire network, which has some shortcomings in
some applications: First, it is time consuming when a network is quite large.
Second, OCD uses a global criterion to find communities for all nodes in a net-
work, which is unappropriate when the density of the network distributes quite
unevenly. Third, OCD can not support dynamically evolving graphs, which is
a typical characteristic for most real networks especially social network. Due to
these reasons, overlapping community search (OCS) problem was proposed by
Cui et al. [7].

OCS finds overlapping communities that a specific node belongs to. Thus,
to support online query, OCS only needs to specify the query node and dis-
cover communities locally. Hence, OCS is light-weight, flexible, and can sup-
port dynamically evolving networks. In [7], an algorithm of finding overlapping
communities of one query node was proposed, but it still has a large room for
performance improvement. Besides, in some scenarios, the OCS query includes
a set of nodes. For example, suppose a piece of news published on social net-
work was read by a group of people, the service provider wants push the news
to user communities in which people will be also interested in this news; or a
product has been bought by a group of customers, and the producer wants to
investigate the consumer groups in which people will also buy the product. In
these scenarios, simply iterating the OCS algorithm for each query node could
waste many computations and affect the efficiency. To this end, in this paper we
propose an efficient approach for overlapping community search which not only
highly improves the performance of single-node overlapping community search,
but also includes an efficient framework for multiple-node query. In summary,
we make the following contributions:

– We introduce the definition of boundary node, and use boundary node lim-
itation to highly improve the performance of single-node overlapping com-
munity search algorithm.

– We propose a framework for multiple-node overlapping community search
and try our best to avoid waste computations by strongly theoretical sup-
ports.

– We also propose a series of approximate strategies which trade off the effi-
ciency and quality to suit different requirements.

– We conduct comprehensive experiments on real networks to demonstrate the
efficiency and effectiveness of our algorithms and theories.

The rest of this paper is organized as follows. In Section 2 we review the
related work. We formalize our problem in Section 3. In Section 4 we introduce
both exact and approximate algorithms. We present our experimental results in
Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Our work is related to overlapping community detection problem, and local com-
munity detection problem, which can be also called community search problem.

376 J. Shan et al.

Palla et al. first addressed overlapping community structure existing in most
real networks [13], they proposed a clique percolation method (CPM), in which a
community was defined as a k-clique component. Based on CPM, they developed
a tool CFinder [1] to detect communities on biology networks. Besides structure
based method like CPM, overlapping community detection could also be modeled
as link-partition problem [8,2,11]. It first converts the original graph G into link
graph L(G), in which each node is a link of L(G), and two nodes are adjacent if
the two links they represent have common node in G. Then link partition of G
can be mapped to node partition of L(G), and by performing random walk [8],
Jaccard-type similarity computation [2], or density-based clustering algorithm
SCAN [11], node clusters of L(G) are derived and then they can be converted
to overlapping node communities of G. Label propagation method has been also
widely used for OCD [10] [16], they propagate all nodes’ labels to their neighbors
for one step to make their community membership reach a consensus. Compared
to OCD, OCS is more light-weight and flexible, it only needs to explore a part
of the graph around query nodes, but not the whole graph, thus it is more
appropriate for online query.

Considering the scalability problem of community detection, local commu-
nity detection problem, also called community search, has also received a lot of
attention [6,12,14,5]. These methods start from a seed node or node set, and then
attach adjacent nodes to community as long as these nodes can increase some
community quality metrics such as local modularity [6], subgraph modularity
[12], or node outwardness [3]. In [15], the community is searched in an opposite
way: they take the entire graph as input and delete one node which violates the
condition such as minimum degree at each step, the procedure iterates until the
query nodes are no longer connected or one of the query nodes has the minimum
value of the condition. Although these community search methods are more flex-
ible than OCD, none of these methods can discover overlapping communities,
they can just find one community.

Our work is inspired by Cui et al [7], they proposed online overlapping com-
munity search problem. They defined a community as a k-clique component, and
an algorithm which finds overlapping communities a given node belongs to was
given. However, the algorithm of OCS still has a large room for performance
improvement, and also, they did not consider the solution of overlapping com-
munity search for multiple nodes. Although simply iterating the algorithm in [7]
could solve the problem, this method could produce a lot of waste computations
and it is not an effective solution. Thus, we propose an efficient approach for
OCS, considering both single query node and multiple query nodes situations.

3 Problem Definition

In this section, we define the problem of overlapping community search more
formally, including OCS for both single query node and multiple query nodes.

Intuitively, a typical member of a community is linked with many but not
necessarily all other nodes in the community, so we use k-clique as building

An Efficient Approach of Overlapping Communities Search 377

Fig. 1. A toy social network graph

blocks of a community to reflect this characteristic, just as Palla et al. [13].
Given a graph, we can derive a k-clique graph in which each node represents
a k-clique, and if two cliques share k − 1 nodes, there exists an edge between
them. A community is defined as a k-clique component, which is a union of all
k-cliques sharing k − 1 nodes.

However, the definition of community above is too strict. Therefore, Cui et al.
[7] proposed a less strict definition: two k-cliques are adjacent if they share at
least α nodes, where α ≤ k − 1; and k-clique can be replaced by γ-quasi-k-clique
[4] in which k nodes have at least �γ k(k−1)

2 � edges. Now, we give the problem
definitions of OCS for single query node and multiple query nodes.

Problem 1 ((α, γ)-OCS). For a graph G, a query node v0 and a positive integer
k, the (α, γ)-OCS problem finds all γ-quasi-k-clique components containing v0
and two γ-quasi-k-clique nodes of one component are adjacent if they share at
least α nodes, where α ≤ k − 1.

Problem 2 ((α, γ)-OCS-M). For a graph G, a set of query nodes Vq and a posi-
tive integer k, the (α, γ)-OCS-M problem finds all γ-quasi-k-clique components
containing at least one node in Vq and and two γ-quasi-k-clique nodes of one
component are adjacent if they share at least α nodes, where α ≤ k − 1.

Example 1 ((α, γ)-OCS-M). For the graph in Fig. 1, given a set of query nodes
Vq = {a,b,c}, let k = 4, consider (3, 1)-OCS-M, we get three communities
{a, d, g, f}, {a, b, c, h, i}, {b, c, j, k, l}.

Apparently, both OCS problem and OCS-M problem are NP-hard, because they
can be reduced from k-clique problem.

4 Overlapping Community Search Algorithms

We first propose a naive algorithm derived from OCS to solve OCS-M, then we
propose optimized OCS and OCS-M algorithms based on a series of theorems
with strong proofs. At last, we propose a series of approximate strategies to make
the process more efficient.

378 J. Shan et al.

4.1 Naive Algorithm

OCS algorithm searches overlapping communities of one single input node, intu-
itively, when given a set of nodes as input, we could iterate the OCS algorithm
for each node, hence we get the naive algorithm of OCS-M as depicted in Alg. 1.
For each node vi in Vq, we first find a clique containing vi, and then find the
clique component which the clique belongs to. Notice that for a clique component
(i.e. a community), we derived the same component no matter which clique it
starts from. Thus, to avoid redundant enumeration, we only enumerate unvisited
cliques for each round of iteration.

Algorithm 1. Naive OCS-M
Input: G(V, E), Vq, α, γ, k;
Output: The overlapping communities containing ∀vi ∈ Vq

1 R ← ∅;
2 foreach vi ∈ Vq do
3 while C ← next clique(vi), C �= ∅ do
4 C ← expand(C);

// find the clique component C of C
5 R ← R ∪ C;

6 Return R;

We adopt the same depth-first-search strategy for next clique() and expand()
as in [7]. We omit the details and refer readers who are interested to [7]. Con-
sider Example 1, when the input node is a, next clique(a) may first return
Clique adfg, and then expand() on this clique gets Community {a, d, f, g}, the
next call of next clique(a) may return abch, and expand() gets acih, thus we
get Community {a, b, c, i, h}. Further call of next clique(a) will not return any
more cliques because all cliques containing a have been visited. When input
node comes to b, we get bclj, and calling expand() brings us blkj, thus we get
Community {b, c, l, k, j}. Consider input node c, no further result is derived
because all cliques containing c have been visited, and the procedure terminates.

4.2 Optimized OCS Algorithm

Though the DFS procedures of next clique() and expand() are pruned by check-
ing the edge number of subgraph induced by current visiting node set in [7], we
find a way which could further prune nodes to be checked. To optimize OCS
algorithm, we first introduce two definitions, interior node and boundary node.

Definition 1 (Interior Node). In the process of searching community Cm,
given a node i, if i and all its neighbors neighbor(i) both exist in the currently
found result set of Cm, we say i is an interior node.

An Efficient Approach of Overlapping Communities Search 379

Definition 2 (Boundary Node). In the process of searching community Cm,
given a node b, if b exists in the result set of Cm, and one or more neighbors of
b do not exist in the result set, we say b is a boundary node.

Nodes which are not interior nodes or boundary nodes are called exterior nodes.
Considering the three types of node definitions, we propose a theorem which
could be used to optimize the OCS algorithm.

Theorem 1. For OCS algorithm, one community can be derived by only expand-
ing boundary nodes or exterior nodes without losing completeness.

Proof. At the beginning of searching community Cm, every node is exterior
node, thus a clique containing the query node can be found. In the procedure of
expanding the clique, suppose set R is the result set including nodes of Cm that
have already been found, node i is an interior node, if there exists an exterior
node n ∈ Cm − R, and it can be added into R from i, there must exist a clique
Cl including i and n. Because n must be connected to at least one node b in
Cl − n, thus the node b is a boundary node, and n can be added into Cm from
b, therefore the theorem holds. ��

Algorithm 2. optimized next clique(v0)
Input: v0: a query node
Output: C: next γ-quasi-k-clique

1 U ← {v0};
2 DFS (U, v0);
3 Procedure DFS(U, u)
4 if |U | = k then
5 if U is a γ-quasi-k-clique and U is unvisited then
6 return U ;

7 else
8 return;

9 if g(U) < γ k(k−1)
2

then
10 return;

11 foreach (u, v) ∈ E, v /∈ U do

12 if neighbor(v) ≥ 	γ(
k
2

) − (
k−1
2

)
 then
13 DFS(U ∪ {v}, v)

According to Thm. 1, when expanding the current clique, if candidate nodes
which are used to replace the current clique nodes are interior nodes, these
nodes can be skipped. Besides, node degree could be taken into consideration
as a pruning condition. For a γ-quasi-k-clique, the minimum degree of a node
should be �γ(

k
2

) − (
k−1
2

)�. Base on the definition of community, if one node has

380 J. Shan et al.

less than �γ(
k
2

)− (
k−1
2

)� edges, it is impossible to belong to a community. When
γ = 1, the node should have at least k − 1 edges. Thus, utilizing interior node
and node degree as pruning conditions, we could optimize next clique() and
expand() of OCS as depicted in Alg. 2 and Alg. 3.

As mentioned before, we use DFS strategy to traverse nodes from the query
node. Traversed nodes are iteratively added into set U , and check if a new valid
clique is found (Alg.2 line 4-8), we use node degree condition to prune nodes (line
12), neighbor(v) represents the degree of v. Besides, g(U) is another pruning
condition proposed in the original OCS Algorithm [7] (line 9), it represents the
maximal number of edges that the resulting clique has, and

g(U) = |E(U)| + (k − |U |)|U | +
(k − |U |)(k − |U | − 1)

2
(1)

where |E(U)| is the number of edges in the subgraph induced by U .

Algorithm 3. optimized expand(C)
Input: C: a γ-quasi-k-clique
Output: A: the community of C

1 A ← C;
2 Expand Clique (C);
3 return A;
4 Procedure Expand Clique(C)

5 sort C by dnc(n), n ∈ C;
6 foreach S1 ∈ C and |S1| ≥ α do
7 S2 = C − S1;
8 foreach u ∈ S1 do
9 foreach v ∈ neighbor(u) do

10 if dnc(v) > 0 and neighbor(v) ≥ 	γ(
k
2

) − (
k−1
2

)
 then
11 Cand ← Cand ∪ v;

12 if |Cand| ≤ |S2| or g(S1) < γ k(k−1)
2

then
13 Continue;

14 foreach S′
2 ∈ Cand, |S2| = |S′

2| do
15 C′ ← S1 ∪ S′

2;
16 if C′ is unvisited and C′ is a γ-quasi-k-clique then
17 A ← A ∪ S′

2;
18 Update(A, S′

2);
19 Expand Clique(C′);

After find a clique C, we use expand(C) to get the clique component of
C, which can constitute a community. We adopt a DFS traversal on the clique
graph. The key operation of the expanding procedure is to replace subset S2

of C (|S2| ≤ k − α) with the remaining subset S1’s (|S1| ≥ α) neighbors S′
2

An Efficient Approach of Overlapping Communities Search 381

(line 15), where |S′
2| = |S2|, and these neighbors should satisfy 1) they are not

interior nodes, 2) degree should be not less than the lower bound (line 10). Note
that dnc(v) denotes the number of v’s neighbors which are not in the community,
dnc(v) = 0 means v is an interior node of the current explored community. Notice
that dnc is defined on the nodes which are already in the current community
result set, if node v is not in the result set, its dnc(v) is unknown, and we initialize
the value of dnc(v) with node degree at the beginning. For a new combination
C ′, we check if it is a new valid clique (line 16). If so, S′

2 is added into the result
set A (line 17) and dnc value of nodes in A need to be updated (line 18), then
we expand C ′ (line 19). Note that at the beginning of expand procedure, we
sort nodes of clique C by dnc in ascending order (line 5), then we pick nodes of
C by the order to form S1. By doing this, we could guarantee that nodes with
lower dnc value change into interior nodes earlier, and we could get more interior
nodes as early as possible.

Benefited from interior node and node degree pruning conditions, the enumer-
ations of finding and expanding clique are sharply reduced. Thus the efficiency
of OCS algorithm is highly improved, and this is shown by experiments in Sec. 5.

4.3 Optimized OCS-M Algorithm

When it comes to OCS-M problem, there is still room for efficiency improvement.
Instead of simply iterating OCS, we try to avoid repeated computations by
utilizing existing results. Note that there exists a consistency property for OCS
problem:

Property 1 (Consistency). In (α, γ)-OCS, if Cm is a community that contains
query node v0, for any other node v ∈ Cm as query node, Cm is also returned
as its community.

Consider Example 1, suppose we already finished the first round taking a as input
node and got Community {a, d, f, g}, {a, b, c, i, h}, and now consider node b as
input. Intuitively, since we already got {a, b, c, i, h}, according to Property 1,
when we take b as input node, we will still get {a, b, c, i, h}. Thus, we wonder if
we could omit some traversals related to {a, b, c, i, h}. The ideal situation is that
all nodes in {a, b, c, i, h} could be skipped, however, if we do that, we could only
get {b, l, j, k} as the result of the second round, and the exact result should be
{b, c, l, j, k}. Apparently, node c is missing. So we try to find which nodes in the
existing community can be skipped and which can not, and we get Thm. 2.

Theorem 2. For (k−1, 1)-OCS-M, given a node v which is a member of existing
community Cm, and node v’s degree d(v) ≤ k, then v cannot exist in a new
community C′

m.

Proof. Suppose v ∈ C′
m, so there exists a clique C ′

l : vn′
1 . . . n′

k−1 which belongs
to C′

m, and the degree of v in C ′
l is dC′

l
(v) = |n′

1 . . . n′
k−1| = k − 1, and we

know that v ∈ Cm, so there exists a clique Cl: vn1 . . . nk−1 which belongs to
Cm and dCl

(v) = |n1 . . . nk−1| = k − 1. Because Cl and C ′
l are not in the same

382 J. Shan et al.

community, they are not adjacent, and satisfy |Cl ∩ C ′
l | < k − 1, so we have

|(Cl − v) ∩ (C ′
l − v)| < k − 2. We know that dmin(v) = |(Cl − v) ∪ (C ′

l − v)| =
|Cl−v|+|C ′

l −v|−|(Cl−v)∩(C ′
l −v)|, so by computation we can derive d(v) > k,

and this conflicts with the condition d(v) ≤ k. Therefore, the theorem holds. ��
According to Thm. 2, we could easily infer that for (k − 1, 1)-OCS-M, if a node
already exists in a community and its degree is not larger than k, it can be
skipped. Consider the example above, only d(c) is larger than 4, it cannot be
skipped, other nodes a, h, i can be skipped during DFS procedure taking b as
input in the second round.

Now we discuss which nodes can be skipped for (α, γ)-OCS-M. For a γ-quasi-
k-clique, the minimum degree of a node should be dmin(v) = �γ(

k
2

) − (
k−1
2

)�,
and to keep the clique connected, dmin(v) ≥ 1. Also, if two quasi cliques are
not in the same community, they share less than α nodes. Thus, we replace the
conditions in the proof of Thm. 2 and get Thm. 3.

Theorem 3. For (α, γ)-OCS-M, given a node v which is amember of existing com-
munity Cm, and node v’s degree d(v) ≤ max{2�γ(

k
2

) − (
k−1
2

)� − (α − 1), �γ(
k
2

) −
(
k−1
2

)�}, then v cannot exist in a new community C′
m.

Example 2 (Optimized-(α, γ)-OCS-M). For the graph in Fig. 1, suppose input
node set Vq={a,b,c}, let k = 5, consider (3, 0.9)-OCS-M, after the first round of
input node a, we get Community {a, b, c, h, i}, when taking input node b in the
second round, according to Thm. 3, we only need to traverse nodes with d(v) > 4,
thus h and i can be skipped during the DFS procedures of next clique() and
expand().

From Example 2 we can see that utilizing Thm. 3, the performance of OCS-
M Algorithm is remarkably improved. However, taking (k − 1, 1)-OCS-M as
example, the lower bound of community node degree is k, which is not big
enough for efficient pruning. Thus, we further discover other pruning rules. Base
on the definitions of interior and boundary node, we have Thm. 4:

Theorem 4. If one node i is an interior node of existing community Cm, it
cannot exist in a new community C′

m.

Proof. We know that node i exists in community Cm, suppose it still exists in
community C′

m, then there exists a clique C ′
l : in′

1 . . . n′
k−1 which belongs to C′

m,
because community Cm �= C′

m, thus there exists at least one node of n′
1 . . . n′

k−1

which is not in community Cm, this conflicts with that node i is an interior node
of Cm, therefore the theorem holds. ��
According to Thm. 4, after get the first community by expanding a clique, we
could find the next clique of a query node by only traversing boundary nodes
and exterior nodes. Utilizing Thm. 3 and Thm. 4, we could modify Alg. 2 by
replacing line 12-13 with Alg. 4. When traversing to a node v, we first check
if it is not an interior node (line 1), then check if it is already in an existing
community (line 2), R represents the result set of OCS-M, if the node already

An Efficient Approach of Overlapping Communities Search 383

exists in a community, we use the lower bound mentioned in Thm. 3 as pruning
condition (line 3); if it does not exist in a community, we use the lower bound
of node degree mentioned in Alg. 2 (line 6).

Algorithm 4. modify next clique(v0)
1 if dnc(v) > 0 then
2 if v ∈ R then

3 if neighbor(v) > max{2	γ(
k
2

) − (
k−1
2

)
 − (α − 1), 	γ(
k
2

) − (
k−1
2

)
} then
4 DFS(U ∪ v, v)

5 else

6 if neighbor(v) ≥ 	γ(
k
2

) − (
k−1
2

)
 then
7 DFS(U ∪ v, v)

Similarly, Alg. 3 could also be modified, we could replace line 10-11 with
Alg. 4, in which line 4 and line 7 are changed into Cand ← Cand ∪ v.

After modifying Alg. 2 and Alg. 3, we get the optimized algorithm of OCS-M,
the improvement of performance will be shown through experiments in Sec. 5.

4.4 Approximate Strategies

Although the performance of the exact algorithm has been greatly improved, it
is still an NP-hard problem. Thus, we propose a series of approximate strategies
which could trade off the performance and quality of our OCS and OCS-M
algorithms. We use two conditions boundary node and node degree to adjust
the efficiency and quality of the algorithm.

Considering the search process of one community Cm, it starts from a query
node, and adjacent nodes are added into Cm as long as they satisfy that 1) they
belong to a γ-quasi-k clique, 2) the clique they belong to can be reached from
the start clique, 3) they are not in Cm. We see the community as a growing
circle with nodes scatter in it, if we traverse nodes out of the circle, but not
wander in the circle, the entire community can be found more earlier. According
to Thm. 1 and Thm. 4, interior nodes (i.e. nodes in the circle) can be omitted
without losing the completeness, if we traverse the boundary nodes selectively or
only traverse the exterior nodes, the search process could be terminated earlier
with sacrificing result quality.

Besides, we also consider node degree as another traversing condition. Intu-
itively, nodes with higher degree have more possibility to belong to one or more
cliques. Thus, if we want to prune traversed nodes during the process, we could
raise the lower bound of neighbor(v) in both next clique() and expand(), the
higher the lower bound is, the less the traversed nodes are, and the more the
quality loss is.

With boundary node and node degree as traversing conditions, we could form
three approximate strategies:

384 J. Shan et al.

– Strategy 1 : traverse boundary nodes with node degree restriction, and all
exterior nodes. That means we partially traverse boundary nodes, and com-
pletely traverse exterior nodes.

– Strategy 2 : traverse only exterior nodes. That means we skip all boundary
nodes. By doing this, we could guarantee that if one node belongs to the
community, it is only traversed once, no repetitive traversal is made.

– Strategy 3 : traverse only exterior nodes with node degree restriction. That
means we skip all boundary nodes, and partially traverse exterior nodes.

Note that we only apply our approximate strategies on the expand() procedure,
the next clique() procedure is still exact. Because compared to expanding seed
cliques, the computations of finding a new clique as a seed occupy only a small
portion of the whole procedure. But if we lose one seed clique, we may miss a
bunch of cliques which could be reached from the seed clique. Thus, to guarantee
the quality of approximate results, we only apply it on the expand() procedure.

Consider a k-clique communityCm, the exact algorithm will explore O(
(|Cm|

k

)
)

cliques. For Strategy 2, each time when a new node is found, a clique will be vis-
ited. Thus, it will only explore O(|Cm|) cliques. For Strategy 1, suppose the num-
ber of boundary nodes which exceed the lower bound of node degree is n, notice
that n ≤ |Cm|, when the lower bound increases, n will decrease. Thus Strategy 1
will explore O(

(
n
k

)
+ |Cm|) cliques. For Strategy 3, suppose the number of exte-

rior nodes which exceed the lower bound of node degree is n, then it will explore
O(n) cliques. In this way, for Strategy 2 and 3, we reduce the exponential com-
plexity to linear, and the efficiency is highly improved; for Strategy 1, the result
is the most accurate of the three. Theoretically, the relationship of efficiency and
quality of these three strategies is depicted in Lemma 1, we will demonstrate it by
experiments in Sec. 5.

Lemma 1. For the three approximate strategies of OCS and OCS-M, the effi-
ciency of them is Strategy 1 < Strategy 2 < Strategy 3, and the quality of
them is Strategy 1 > Strategry 2 > Strategy 3.

5 Experimental Study

In this section, we present experimental study and demonstrate the efficiency
and quality of our OCS and OCS-M algorithms.

5.1 Experiment Setup

We ran all the experiments on a PC with Intel Core2 at 2.67GHz, 4G memory
running 32-bit Windows 7. All algorithms were implemented in C++. To intu-
itively show the performance of algorithms, we use (k − 1, 1) OCS and OCS-M
models to conduct our experiments.

We use three real-world networks as our experiment datasets, and the statis-
tics are shown in Table 1. Amazon is a product co-purchasing network of Amazon

An Efficient Approach of Overlapping Communities Search 385

Table 1. Real-world Networks for Experiments

Dataset # Nodes # Edges Average Degree

Amazon 334,863 925,872 5.53
DBLP 968,956 4,826,365 9.96

LiveJournal 3,997,962 34,681,189 17.4

website1. Nodes in Amazon represent products and if two products are frequently
co-purchased, there exists an edge between them. DBLP is a scientific coauthor
network extracted from a recent snapshot of the DBLP database2. Nodes in
DBLP graph represent authors, and edges represent collaboration relationship.
LiveJournal provides the LiveJournal friendship social network3, it is a free online
blogging community where users declare friendship.

5.2 Performance

We first compare the performance of exact algorithms of basic OCS, optimized
OCS, and approximate Strategy 2. For each k, we randomly select 100 nodes
(with degree not less than k−1) for queries, and compare the average answering
time. Because exact algorithms have exponential complexity, we terminate them
when the running time exeeds 60s. The results of the three algorithms on the
three networks are shown in Fig. 2. We can see that our optimized OCS performs
better than basic OCS, with about 20 times efficiency improvement, and the
approximate strategy overwhelms the two exact algorithms on performance by
about two or three orders of magnitudes respectively. Actually, the superiority is
more significant than Fig. 2 shows. Because the maximal running time of exact
algorithms is 60s in our setting. Especially for the biggest dataset LiveJournal,
with millions of nodes, tens of millions of edges, and average degree 17.3, the
executing time of approximate strategy is less than 100ms. This indicates that
the approximate strategy can support online search on large real networks.

Then, we compare the performance of exact algorithms of basic OCS-M,
optimized OCS-M, and approximate Strategy 2. We set k = 5 for Amazon,
k = 7 for DBLP, k = 9 for LiveJournal, and change the query node number |N |
of query sets. For each |N |, we test 20 randomly selected query sets, and compare
the average time cost. Also, we terminate the exact algorithms after 600s. The
results are shown in Fig. 3. We can see that optimized OCS-M performs better
than basic OCS-M, and as the query node number increases, the time cost of
optimized OCS-M increases slowly than the basic algorithm. This indicates that
our optimized algorithm avoiding duplicate computations works well on OCS-M
problem. Also, the approximate Strategy 2 won on performance.
1 http://snap.stanford.edu/data/com-Amazon.html
2 http://dblp.uni-trier.de/xml/
3 http://snap.stanford.edu/data/com-LiveJournal.html

http://snap.stanford.edu/data/com-Amazon.html
http://dblp.uni-trier.de/xml/
http://snap.stanford.edu/data/com-LiveJournal.html

386 J. Shan et al.

(a) Amazon (b) DBLP (c) LiveJournal

Fig. 2. Performance of basic OCS, optimized OCS, and approximate Strategy 2

(a) Amazon(k=5) (b) DBLP(k=7) (c) LiveJournal(k=9)

Fig. 3. Performance of basic OCS-M, optimized OCS-M, and approximate Strategy 2

5.3 Quality

We compare the result quality of three approximate strategies of OCS problem,
for OCS-M problem the situation is similar, thus we save the comparison for
space limitation. We set the lower bound of node degree restriction at 2(k − 1)
for Strategy 1 and Strategy 3, and randomly select 100 valid query nodes for
different k. Clearly, each community in the approximate result is smaller than
its corresponding community in the exact result. Let R′={C′

1, . . . ,C′
m} be the

approximate result, and Ci be the exact community containing C′
i, thus the

accuracy of the approximate result R′ is defined as

Accuracy(R′) =
1
m

∑

1≤i≤m

C′
i

Ci
(2)

The average and variance accuracy of the three approximate strategies are shown
in Fig. 4. It is clear that all the three strategies’ accuracy is over 60%, and as
our discussion in Lemma 1, Strategy 1 with more than 80% accuracy performs
best on quality, and Strategy 2 is better than Strategy 3.

5.4 Influence of Node Degree Restriction

Now we investigate the influence of node degree restriction on approximate Strat-
egy 1 and Strategy 3. For space limitation, we conduct experiments of OCS prob-
lem on DBLP dataset. We set k = 7, randomly select 100 valid query nodes for

An Efficient Approach of Overlapping Communities Search 387

(a) Amazon (b) DBLP (c) LiveJournal

Fig. 4. Accuracy of approximate Strategy 1, 2, 3

different lower bounds of node degree , and compare the efficiency and quality
of the algorithms, the results are shown in Table 2. We can see that for both
of the two strategies, as the lower bound increases, the running time decreases
sharply and the accuracy also decreases. However, the accuracy of Strategy 1
stays above 85%, and the accuracy of Strategy 3 stays above 50% with the effi-
ciency improved 6 times. The results indicate that if the quality requirement
is more important than the efficiency requirement, we could select Strategy 1,
for the opposite situation, we could select Strategy 3, whose accuracy is also
acceptable.

Table 2. Performance and Quality of Strategy 1 and Strategy 3

Lower Bound 8 11 14 17

Time(ms) 14.8 10.2 7.5 6.9
Accuracy 0.95 0.92 0.88 0.85

Lower Bound 8 11 14 17

Time(ms) 4.8 3.1 13 0.8
Accuracy 0.80 0.77 0.69 0.58

6 Conclusion

In this paper we studied an efficient solution for overlapping community search
problem. We proposed an exact algorithm whose performance was highly improved
for both single node overlapping community search and multiple nodes overlap-
ping community search with strong theoretical supports. Besides, we proposed
three approximate strategies which could satisfy different efficiency and quality
requirements. Comprehensive experiments were conducted to evaluate the effi-
ciency of the optimized exact algorithms, and the efficiency and quality difference
of the three approximate strategies. Through the experiments we demonstrated
that our solutions were effective and efficient to discover overlapping communities
in real networks, and the approximate strategies are flexible for different require-
ments.

Acknowledgments. This work is supported by the National Basic Research 973 Pro-
gram of China under Grant (2012CB316201) and the National Natural Science Foun-
dation of China under Grant (61472070).

388 J. Shan et al.

References

1. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: Cfinder: locating
cliques and overlapping modules in biological networks. Bioinformatics 22(8),
1021–1023 (2006)

2. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761–764 (2010)

3. Bagrow, J.P.: Evaluating local community methods in networks. Journal of Statis-
tical Mechanics: Theory and Experiment 2008(05), P05001 (2008)

4. Brunato, M., Hoos, H.H., Battiti, R.: On effectively finding maximal quasi-cliques
in graphs. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS,
vol. 5313, pp. 41–55. Springer, Heidelberg (2008)

5. Chen, J., Zäıane, O., Goebel, R.: Local community identification in social networks.
In: International Conference on Advances in Social Network Analysis and Mining,
ASONAM 2009, pp. 237–242. IEEE (2009)

6. Clauset, A.: Finding local community structure in networks. Physical Review E
72(2), 026132 (2005)

7. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping
communities. In: Proceedings of the 2013 International Conference on Management
of Data, pp. 277–288. ACM (2013)

8. Evans, T., Lambiotte, R.: Line graphs, link partitions, and overlapping communi-
ties. Physical Review E 80(1), 016105 (2009)

9. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

10. Gregory, S.: Finding overlapping communities in networks by label propagation.
New Journal of Physics 12(10), 103018 (2010)

11. Lim, S., Ryu, S., Kwon, S., Jung, K., Lee, J.G.: Linkscan*: Overlapping community
detection using the link-space transformation. In: 2014 IEEE 30th International
Conference on Data Engineering (ICDE), pp. 292–303. IEEE (2014)

12. Luo, F., Wang, J.Z., Promislow, E.: Exploring local community structures in large
networks. Web Intelligence and Agent Systems 6(4), 387–400 (2008)

13. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

14. Papadopoulos, S., Skusa, A., Vakali, A., Kompatsiaris, Y., Wagner, N.: Bridge
bounding: A local approach for efficient community discovery in complex networks.
arXiv preprint arXiv:0902.0871 (2009)

15. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 939–948. ACM (2010)

16. Šubelj, L., Bajec, M.: Unfolding communities in large complex networks: Combin-
ing defensive and offensive label propagation for core extraction. Physical Review
E 83(3), 036103 (2011)

http://arxiv.org/abs/0902.0871

A Comparative Study of Team Formation
in Social Networks

Xinyu Wang(B), Zhou Zhao, and Wilfred Ng

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, China
{xwangau,zhaozhou,wilfred}@cse.ust.hk

Abstract. Team formation in social networks is a fundamental problem
in many database or web applications, such as community-based ques-
tion answering and the collaborative development of software. It is also
well-recognized that forming the right team in social networks is non-
trivial. Although many algorithms have been proposed for resolving this
problem, most of them are based on very different criteria, concerns and
performance metrics, and their performance has not been empirically
compared. In this paper, we first compare and contrast all the state-of-
the-art team formation algorithms. Next, we propose a benchmark that
enables fair comparison amongst these algorithms. We then implement
these algorithms using a common platform and evaluate their perfor-
mance using several real datasets. We also present our insights arising
from the results of the comparison and uncover interesting issues for fur-
ther research. Our experiments are repeatable, with the code and all the
datasets publicly accessible in our website at the following url address:
www.cse.ust.hk/∼xwangau/TF.html.

Keywords: Team formation · Social networks · Benchmark · Compar-
ative study

1 Introduction

With massive amount of collaboration experience and information from experts
on the web, we have observed an explosive creation of large groups that communi-
cate through social networks to deal with complex tasks, such as the GNU/Linux
community and the collective efforts in Wikipedia.

How to form the right team of the right experts in a social network to accom-
plish a task at the least cost?

The above question leads to the study of the Team Formation (TF) prob-
lem. The TF problem has been attracting a lot of attention from the database,
data mining and web research communities [1,2,6–11]. The problem is also a
practical one, which is related to many real-life applications such as community-
based question answering and project development in social networks. Examples
of such social networks include LinkedIn1, StackOverflow2 and many others.
1 http://www.linkedin.com
2 http://stackoverflow.com/

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 389–404, 2015.
DOI: 10.1007/978-3-319-18120-2 23

www.cse.ust.hk/~xwangau/TF.html
http://www.linkedin.com
http://stackoverflow.com/

390 X. Wang et al.

Basically, given a social network of experts and a collaborative task that
requires a set of skills, the team formation problem is to find a team of experts
who are able to cover all the required skills and communicate with one another in
an effective manner. It could be that some experts may or may not be available
in different periods of time. The communication costs between experts may also
be very different. This problem was first formulated and proved to be NP-hard
in [9].

In recent years, many team formation algorithms have been independently
proposed, which are based on different communication cost functions such as
steiner distance, radius distance, and so on. However, it is still unclear how
to formulate an effective communication cost function for forming a team. We
hereby give an example to illustrate the TF problem.

Fig. 1. A Social Network of Experts V = {v1, . . . , v6} and Their Communication Costs

Consider a social network of experts V = {v1, . . . , v6} in Figure 1, where
each expert is associated with a specified set of skills. The communication cost
between two adjacent experts vi and vj is represented as the weight of edge
(vi, vj) while the communication cost between two non-adjacent experts is the
shortest path between them. For example, expert v1 is skilled in s2 and the
communication cost between experts v1 and v2 is 0.2.

Given a task T with the required skills {s1, s2, s3, s4, s5}, we aim to find a
team of experts X that collectively cover all the required skills with the least
communication cost. However, team formation algorithms might return multiple
teams with the lowest cost based on different communication cost functions. For
example, both teams X1={v1, v2, v3, v4} and X2 ={v3, v4, v5, v6} cover all the
required skills. The assignment of experts in the team covering the required skills
is illustrated by red lines in Figure 1. We can observe that the communication
cost of team X1 on the radius distance is 0.8 (i.e. 0.2 + 0.6 = 0.8) and their
communication cost on steiner distance is 1.0 (i.e. 0.6 + 0.2 + 0.2 = 1.0). The
communication cost of team X2 on both radius distance and steiner distance is
0.9 (i.e. 0.6 + 0.2 + 0.1 = 0.9). Thus, team X1 has the lower communication cost
according to the steiner distance while team X2 has the lower communication
cost according to the radius distance. The performance of these two teams with
respect to a task based on different cost functions is also difficult to compare. To

A Comparative Study of Team Formation in Social Networks 391

the best of our knowledge, there is no existing work that evaluates the perfor-
mance of the team formation algorithms based on different communication cost
functions. To clarify this performance issue, in this work we have developed a
unifying platform that enables such comparison.

Some of the existing work [2,7,8,10] considers even more cost factors, such as
the workload and personal cost of experts to enrich the TF algorithm. However,
the impact of these additional cost factors on team formation remain unclear.
In this paper, we also study the benefits of these factors.

Another problem of existing team formation algorithms is that they have
actually evaluated using different datasets and programming languages such as
DBLP in [9], IMDB in [6] [7], Bibsonomy in [2] and Github in [10]. Thus, it
makes the analysis of the algorithms’ performance even more difficult. In order
to clarify the performance analysis, we re-implement all popular team formation
algorithms in the same programming language and study them by using the
common basis of four real datasets.

Our contributions of this comparative study are summarized as follows:

– We study the differences between a comprehensive set of team formation
algorithms, including RarestFirst, EnSteiner, MinSD, MinLD, MinDiaSol,
MinAggrSol, MCC, ItRepace, LBRadius and LBSteiner. We categorize these
algorithms into four groups based on their adopted communication cost func-
tions: radius distance, steiner distance, sum of distances, and leader distance.

– We re-implement these team formation algorithms in C++ and develop a
unifying platform on which to study them.

– We empirically compare the algorithms using four datasets DBLP, IMDB,
Bibsonomy and StackOverflow. We conduct extensive experiments to evalu-
ate their performance.

Organizations. The rest of the paper is organized as follows. Section 2 intro-
duces the basic notation and formulates the problem of team formation in social
networks. Section 3 surveys the related work. Section 4 presents details of popu-
lar team formation algorithms while Section 5 reports the experimental results.
We conclude the work in Section 6.

2 Background

2.1 Notion and Notation

We now introduce the notion and notation for the problem of team formation
in social networks. The summary of the notation is given in Table 1.

We assume that there is a collection of N candidate experts, V ={v1,
v2, . . ., vN} and a set of M specified skills S ={s1, s2, . . ., sM}. Each expert vi

is associated with a set of skills s(vi) (i.e. s(vi) ⊆ S). We then denote the set
of experts having skill sk as C(sk) (i.e. C(sk) ⊆ V). A task T is modeled by a
set of required skills (i.e. T = {si, . . . , sj} ⊆ S). A team of experts X is said to

392 X. Wang et al.

Table 1. Summary of Notation

Notation Meaning

V A set of experts

G(V,E) A social network of experts

S A set of specified skills

T A task with required skills

X A team of experts

C(si) A set of experts skilled in si
s(vi) Skill of expert vi
l(vi) Workload of expert vi
c(vi) Packing constraint of expert vi
pc(vi) Personal cost of expert vi
pc(X) Personal cost of a team of experts X

d(vi, vj) Communication cost between experts vi and vj
sp(vi, vj) Shortest path between experts vi and vj
Cc-R(X) Communication cost on radius distance

Cc-Steiner(X) Communication cost on steiner distance

Cc-SD(X) Communication cost on sum of distances

Cc-LD(X) Communication cost on distances to the leader

be feasible for task T , if and only if, the experts in X collectively cover all the
required skills (i.e. T ⊆ ⋃

vi∈X s(vi)).
We consider the workload of an expert vi (i.e. l(vi)) as the number of tasks

for which expert vi is employed (i.e. l(vi) = |{Xj |vi ∈ Xj}|). The packing con-
straint of expert vi (i.e. c(vi)) is the upper limit of the tasks that expert vi can
participate at the same time (i.e. l(vi) ≤ c(vi)). We denote the personal cost of
expert vi as pc(vi). The personal cost of a team X is given by

∑
vi∈X pc(vi).

The communication cost is the closeness of the experts in a social network
G(V,E). The communication cost of two adjacent experts vi and vj is given by
the weight of the edge (vi, vj) while the communication cost of two non-adjacent
experts vi and vj is given by the shortest path between them sp(vi, vj). The four
types of communication cost functions for team formation in social networks are
defined as follows:

– Cc-R(X). The communication cost of the team on radius distance (i.e. Cc-
R(X)) is defined as the longest shortest path between any experts in team
X (i.e. Cc-R(X) = arg maxvi,vj∈X sp(vi, vj)).

– Cc-Steiner(X). The communication cost of team X on steiner distance (i.e.
Cc-Steiner(X)) is defined as the weight cost of the minimum spanning tree
for subgraph G′ ⊆ G formed by team X.

– Cc-SD(X). The communication cost of team X on sum of distances (i.e.
Cc-SD(X)) is defined as the sum of all shortest paths between any two
experts in team X (i.e. Cc-SD(X) =

∑
vi,vj∈X sp(vi, vj)).

– Cc-LD(X). Given a team leader vL, the communication cost of the
team on leader distance (i.e. Cc-LD(X)) is defined as the sum of the

A Comparative Study of Team Formation in Social Networks 393

Table 2. Summary of Team Formation Algorithms

Algorithm
Communication Cost Personal Packing Load

Cc-R Cc-Steiner Cc-SD Cc-LD Cost Constraint Balancing

RarestFirst [9]
√

EnSteiner [9]
√

MinSD [6]
√

MinLD [6]
√

MinDiaSol [10]
√ √

MinAggrSol [10]
√ √

MCC, ItReplace [7]
√ √

LBRadius [2]
√ √

LBSteiner [2]
√ √

shortest paths from all the experts to the team leader (i.e. Cc-LD(X) =∑
vi∈X,vi �=vL

sp(vi, vL)).

2.2 Problem Definition

We now formally define the team formation problem in social networks as follows:

Problem 1. Given a social network of experts G(V,E) where the experts are
associated with specified skills in S, a task T , the problem of team formation is
to find the team of experts X that can collectively cover all the required skills
with the lowest communication cost Cc(X).

We now summarize the popular TF algorithms based on their communica-
tion cost functions and some additional factors in Table 2. Some of the current
works [2,7,10] also consider additional factors such as workload and personal
cost of the experts for the TF problem. However, all of these algorithms are still
based on the four types of communication cost functions listed in Table 2.

3 Related Work

The TF problem was well recognized by the database, data mining and web
research communities in [1,2,6–10]. This problem was first formulated in [9],
where the algorithms based on communication cost functions on steiner and
radius were proposed. Kargar et al. [6] proposed the team formation algorithms
whose communication cost functions are based on the sum of distances and leader
distance. Majumder et al. [10] introduced the packing constraints such that the
workload of the employed experts does not exceed his packing constraint. Kargar
et al. [7,8] devised a bi-objective cost function for team formation that considers
both communication cost function and personal cost of the team. Anagnostopou-
los et al. [1,2] developed the algorithms to find the team of the experts where
the workload is balanced. Avradeep Bhowmik et al. [5] developed the algorithms
using the Submodularity method to find team of experts by relaxing the skill

394 X. Wang et al.

cover requirement, defining some skills are at the “must have” level while others
are at the“should have” level.

However, it is still unclear how to determine which algorithm is the best to
form the team, since the existing algorithms were proposed for different commu-
nication cost functions and many other factors. To the best of our knowledge,
this work is the first approach to develop a common framework to compare the
performance of the representative TF algorithms.

4 Implementation

We now give an overview of ten TF algorithms studied in this work and classify
them into four categories in respective subsections. The full implementation
details of these TF algorithms are given in Appendix [12].

4.1 R-TF Algorithm

The algorithms RarestFirst [9], MinDiaSol [10] and LBRadius [2] have been
proposed for team formation based on Cc-R.

The RarestFirst algorithm is derived from the Multichoice algorithm [3].
For each skill si, the algorithm maintains a set C(si) consisting of the experts
associated with skill si. Given a task T , the algorithm first picks a skill s ∈ T
that has the lowest cardinality of C(s), denoted as srare. Then, the algorithm
enumerates all the experts in C(srare) and picks the one v∗

i that leads a subgraph
with the smallest diameter. For other required skills sk ∈ T , the algorithm
collects an expert vj ∈ C(sk) who has the lowest communication (shortest path)
to v∗

i (i.e. vj = arg minvl
d(v∗

i , vl)
∧

vl ∈ C(sk)) as well as the experts on the
shortest path. The running time of RarestFirst is O(|C(srare)| × N) while the
worst-case can be O(N2).

The MinDiaSol algorithm aims to enroll the experts around the user who
issues the task in social networks to form a team with packing constraints. The
formation of a team is said to be feasible, if and only if, the total assignment
of the skills to the experts does not exceed their packing constraints. Given
a task with some skill requirement, the identification of feasible teams can be
reduced to the problem of maximum flow on a bipartite graph, which can be
computed in polynomial time. The worst case of this algorithm is of complexity
O((|V ||T |(|V | + |T |) log |V ||T | log h).

The LBRadius algorithm aims to find a team of experts such that the
workload of the experts is balanced. The LBRadius algorithm also considers the
distance constraint of the team, which means that the radius of the experts in
the graph is bounded by threshold h. The LBRadius algorithm defines l(vi) the
workload of an expert vi by the number of teams in which the expert participates.
(i.e. l(vi) = |{Tj : vi ∈ Tj}|). The LBRadius algorithm defines the workload cost
of the team as the sum of the workload of each expert, given by

l(X) =
∑

vi∈X

(2N)
l(vi)

Λ ,

A Comparative Study of Team Formation in Social Networks 395

where N is the number of experts in the graph and Λ is an appropriately chosen
value.

4.2 Steiner-TF Algorithm

The algorithms EnSteiner [9], MinAggrSol [10], and LBSteiner [2] are proposed
for team formation based on Cc-Steiner.

The EnSteiner algorithm chooses a set of experts based on Cc-Steiner on
the graph. Given a task T={s1, . . ., sk}, the EnSteiner algorithm aims to find
a team of experts to cover the required skills, where the experts are cohesively
connected in the expert graph. For each required skill si ∈ T , a skill vertex vsi

is
created in the social network graph G(V,E). Then, the EnSteiner algorithm adds
the undirected edges between experts vj ∈ V and the corresponding skill vertex
vsi

, which results in the enhanced graph named H. The communication cost of
the newly added edge (vj , vsi

) is set to the sum of pairwise communication costs
of graph G (i.e. d(vj , vsi

) =
∑

vm,vn∈V d(vm, vn)).
The MinAggrSol algorithm is a user-oriented team formation algorithm

that searches the experts within h hops from the user vu. The expert set V ′ is
created for the candidate experts within h hops from the user vu. The cost of
the experts in the set V ′ is the distance from the user vu, denoted by λ(vi). It
iteratively adds an expert v∗ to the team X greedily until team X is feasible
for the task (i.e. maxflow(X,T) = k). The selection of expert v∗ is based on
the ratio of an improvement on skill coverage to its cost. After searching a set
of experts X covering the required skills in T , MinAggrSol connects experts
X by enrolling additional experts in G (where X ⊆ X ′). Finally, the algorithm
returns X ′ as the team of experts.

The LBSteiner algorithm aims to search for a team in which the overall
workload is fair (i.e. minX l(X) = minX

∑
vi∈X l(vi)) and the communication

cost on Steiner is lower than a given bound B (i.e. Cc-Steiner(X) ≤ B). Gener-
ally, it is difficult to jointly optimize the bi-criteria function. Thus, the parame-
ter λ is employed to reduce the bi-criteria function to a single-criteria function,
given by

f(λ) = λl(X) + Cc-Steinter(X), (1)

where the function f(λ) is non-decreasing on λ. Given a fixed λ, we consider a
team of experts Xλ that optimize Equation 1. We return the corresponding the
team of experts X where the communication cost Cc-Steiner(X) ≤ B and the
workload of the team l(X) is minimized.

4.3 SD-TF Algorithm

The algorithms MinSD [6], MCC [7], MCCRare [7], and ItReplace [7] are pro-
posed for team formation based on Cc-SD.

The MinSD algorithm aims to find a team of experts where the
communication cost on the sum of distances is minimized (minX SD(X) =

396 X. Wang et al.

minX

∑|T |
i=1,vi∈X,j=i+1,vj∈X d(vsi

, vsj
)). The MinSD algorithm aims to enumerate

all possible experts which have the required skills as the seed of the candidate team.
Then it greedily adds the experts having other required skills until the experts in
the team can cover all the required skills.

The MCC algorithm aims to find a team of experts having the lowest com-
bined cost ComCc(X) in Equation 2. The MCC algorithm is derived from the
MinSD algorithm. The cost function λ in the MCC algorithm is replaced by
Equation 2.

ComCc(X) = (1 − λ)pc(X) + λCc(X), (2)

where Cc(X) can be any type of the discussed communication cost functions.
The ItReplace algorithm is derived from the MCC algorithm, which ranks

the experts vj ∈ C(si) by their personal cost pc(vj). Both MCC and ItReplace
algorithms are similar with the MinLD algorithm. The details of the algorithms
are omitted due to the space limitation.

4.4 LD-TF Algorithm

The MinLD [6] algorithm was proposed for team formation based on Cc-LD.
To choose an appropriate leader of the team, the MinLD algorithm enumerates
all possible experts in graph G = (V,E) as the candidate leader expert to form
N teams. Then, the MinLD algorithm returns a team of experts with the lowest
communication cost in Cc-LD.

For each candidate leader expert vi, MinLD finds the experts with the
required skills (i.e. vk ∈ C(sj) and sj ∈ T) that have the lowest cost in Cc-
LD and form the team X ′. Finally, the algorithm returns a team of experts
which incur the lowest cost in Cc-LD among N candidate teams.

5 Experiments

In this section, we evaluate the effectiveness and efficiency of the team formation
algorithms detailed in Section 4. All the algorithms were implemented in C++
and tested on machines with Windows OS, Intel(R) Core(TM2) Quad CPU
3.40GHz, and 16GB of RAM.

Table 3. Summary Statistics of Datasets

Dataset #Expert #Skill #Edge Avg. #Skill per Expert Avg. Distance Avg. Degree #CC |Largest CC|
Bibsonomy 9269 36299 30557 30.862 7.028 6.623 339 8194

DBLP 7159 4355 15110 7.831 6.134 4.221 513 5880

IMDB 1021 27 11224 3.7 4.244 21.986 19 965

StackOverflow 8834 1603 62277 6.249 3.35 14.099 70 8688

A Comparative Study of Team Formation in Social Networks 397

5.1 Datasets

We collect four datasets to evaluate the performance of the team formation
algorithms. Some statistics of the datasets are presented in Table 3.

DBLP. We restrict the DBLP dataset3 to the following four fields of computer
science: Database (DB), Theory (T), Data Mining (DM) and Artificial Intel-
ligence (AI). Conferences that we consider for each field are given as follows.
DB = {SIGMOD, VLDB, ICDE, ICDT, PODS}, T={SODA, FOCS, STOC,
STACS, ICALP, ESA}, DM={WWW, KDD, SDM, PKDD, ICDM, WSDM},
AI = {IJCAI, NIPS, ICML, COLT, UAI, CVPR}. The expert set consists of
authors that have at least three papers in DBLP. The skills of each expert are
the set of keywords which appear in the titles of the authors’ collaborative pub-
lications at least twice. Two experts are connected if they collaborate on at least
two papers. The communication cost of expert vi and vj is estimated in the
following way: Let Pvi

(Pvj
) denote the set of papers published by expert vi

(vj), then their communication cost is estimated by 1 − |Pvi

⋂
Pvj

|
|Pvi

⋃
Pvj

| . This weight
of edges represents pairwise Jaccard distance between all pairs of experts. To
compare the performance of different algorithms under this dataset, we use the
above definitions such as skills of experts, connectivity between authors and
communication cost exactly the same as that of the experimental setting in [9]
for the DBLP dataset. This dataset is also used in [1],[6], [7] and [10] with similar
settings. We extract the keyword from title of by using the tool-kit provide by
NLTK4. First the title is segmented into several meaningful words or phrase with
the tool. Then,it stemmed the words into a consistent form to extract words,
which have different tenses or parts of speech but the same basic meaning. For
example, for the title “Team Formation in Social Networks: An Experimental
Evaluation”, the set of extacted keywords will be {team, formation, Social Net-
works, Experimental, Evaluation}.

IMDB. The IMDB dataset5 contains information about the actors and the set
of movies that the actors have appeared in. The titles of the movies and the
names of the actors are specified in the dataset. We consider the actors who
have appeared in at least eight movies from the Year 2000 to the Year 2002 as
experts. The skills of each expert is the set of terms that appear in the title of
the movies. Two experts are connected if they collborate on at least four movies.
The communication cost of two experts is determined in the same way as in the
DBLP dataset. The IMDB dataset is used in [1], [2] and [6]. We choose the
setting and definitions of the IMDB dataset be the same as DBLP because it
is a more consistent to compare the performance of different algorithms under
different datasets. We choose the same time period and quantitative limitation
as [6]. From the statistics of the dataset it can be seen that the IMDB graph is

3 http://www.informatik.uni-trier.de
4 http://www.nltk.org
5 http://www.imdb.com/interfaces

http://www.informatik.uni-trier.de
http://www.nltk.org
http://www.imdb.com/interfaces

398 X. Wang et al.

much denser and smaller than the others dataset, which can test the scalability
of the algorithms using different datasets.

Bibsonomy. The Bibsonomy dataset [4] contains a large number of computer
science related publications. The bibsonomy website is visited by a large commu-
nity of users who use tags to annotate the publications such as theory, software
and ontology. We consider the authors of these publications as experts. We also
consider the set of tags associated with the papers as the skills. We specify the
skills of the experts from the tags in their publications. The communication cost
of two experts is set similarly as in the DBLP dataset. The Bibsonomy dataset
is used in [1] and [2]. The definitions of skill, expertise, connectivity are same
in this paper and [1],[2], but we have chosen Jaccard distance same as what we
have for other datasets to be consistent.

StackOverflow. The StackOverflow dataset6 contains a large amount of ques-
tion and answer pairs. Each question is tagged by a set of keywords such as
Html, R and Python. We consider the respondents in StackOverflow as the
experts and specify these keywords as the skills of the experts. The StackOver-
flow dataset does not have an explicit notion of social graph, and therefore two
experts are connected if they collaborate in solving at least three common ques-
tions. This collaboration is implied by their behavior of answering same question,
hitting similar interests and expertise. The communication cost of two experts
is determined in the same way as in the DBLP dataset. That is, by the Jaccard
Distance, it show the common interest and expertise areas between two respon-
dents. The more common they are, the easier it is for them to collaborate on
a given task. To the best of our knowledge, the StackOverflow dataset has not
been used in any other work as an experimental dataset. Thus we define the skill
set of an expert as the same way we handle Bibsonomy dataset and others follow
the DBLP dataset setting, which means that our setting is similar to those in
[1], [2] and [6].

5.2 Performance Evaluation

We implemented the following ten team formation algorithms: RarestFirst,
EnSteiner, MinSD, MinLD, MinDiaSol, MinAggrSol, MCC, ItReplace, LBRa-
dius, and LBSteiner in C++. In most existing methods for solving the TF prob-
lem, the number of required skills is chosen as the parameter to compare the
proposed method and baselines. This is because the generated tasks in these
methods include defining the number of required skills and then randomly pick-
ing the corresponding number of skills [1][2][4][6][7][9]. Therefore, we also com-
pare the performance of these algorithms with respect to the required task skills
based on the following five commonly adopted metrics: (1) four types of com-
munication costs of the team, (2) running time of team formation algorithms,
(3) cardinality of the team, (4) workload of the team, and (5) personal cost of

6 http://stackoverflow.com/

http://stackoverflow.com/

A Comparative Study of Team Formation in Social Networks 399

 0

 5

 10

 15

 20

 4 8 12 16 20

C
c-

R

of required skills

RarestFirst
EnSteiner

MinSD
MinLD

MinDiaSol
MinAggrSol

MCC
ItReplace
LBRadius
LBSteiner

(a) Cc-R

 1

 10

 100

 4 8 12 16 20

C
c-

S
te

in
er

of required skills

(b) Cc-Steiner

 1

 10

 100

 1000

 10000

 4 8 12 16 20

C
c-

S
D

of required skills

(c) Cc-SD

 1

 10

 100

 4 8 12 16 20

C
c-

LD

of required skills

(d) Cc-LD

Fig. 2. Effects by Number of Required Skills Based on Different Criteria

the team. We follow the experimental settings in [2],[4],[6],[7] and [9] for defining
these metrics.

We now present the task generation procedure as follows: For each task T ,
we first set the number of required skills k. Similarly to [2],[4],[6],[7] and [9],
we set k ∈ {4, 8, 12, 16, 20} as used in the above work. [8] is similar to [7] work
but returns multiple un-ranked teams. [5] relaxes the skill requirement which is
different from other work settings, which makes them not comparable, so we did
not evaluate the performance of the algorithms in these two. We then continue
to sample a skill s ∈ S and add s to the task T . After each sampling, we remove
the sampled skill s from the skill set S in order to avoid repeated sampling.
For each configuration, we repeat the task generation 100 times and report the
average performance of the team formation algorithms on these 100 generated
tasks.

Communication Cost of the Team Effect on Cc-R. We illustrate the effect
of the number of required skills in the task on Cc-R in Figure 2(a). We investi-
gate the communication cost of the team on radius distance formed by different
TF algorithms on the datasets DBLP, IMDB, Bibsonomy, StackOverflow. We
show the result on datasets DBLP in Figure 2(a) while results of other datasets

400 X. Wang et al.

are detailed in Appendix [12] due to the space limitation. We observe that the
communication cost of all the TF algorithms first increases and then gradually
converges. This is because, during the late stages of the process, some experts in
the team may cover more than one skill, we can add less experts than existing
team to cover remaining skills. Notably, the RarestFirst algorithm has the best
performance of all the tested datasets. The algorithms EnSteiner, MinSD and
MinLD also find the team with slightly larger communication cost on Cc-R. For
other two algorithms based on Cc-R, MinDiaSol and LBRadius, the communi-
cation cost of the team formed by them is larger, since they also consider other
factors, such as packing constraints and load balancing of the experts in the
team. The performance of algorithms MinAggrSol, MCC and ItReplace are not
as good as the previous algorithms, since they focus on more additional factors
in different communication cost functions.

Effect on Cc-Steiner. We demonstrate the effect of the number of required
skills in the task on Cc-Steiner in Figure 2(b). We study the communication
cost of the team on Steiner distance formed by different TF algorithms on the
DBLP datasets in Figure 2(b). The communication cost on Cc-Steiner of all
the TF algorithms also first increases and then gradually converges. However,
we also notice that the convergence of communication cost on Cc-Steiner of
all TF algorithms is slower than the convergence of communication cost of the
algorithms on Cc-R. This is because Cc-Steiner is more sensitive to the number
of experts. Employing one more expert often increases the communication cost
on Cc-Steiner while it might not increase the communication cost on Cc-R.
The MinSD and MinLD algorithms have the best performance of all the tested
datasets. The algorithms RarestFirst, MinAggrsol and MinDiaSol have slightly
larger communication cost in Cc-Steiner.

Effect on Cc-SD. We investigate the effect of the number of required skills
in the task on Cc-SD in Figure 2(c). We illustrate the communication cost of
the team on sum of distances formed by different TF algorithms on the DBLP
datasets in Figure 2(c). The convergence of communication cost of all the algo-
rithms on Cc-SD is faster than the convergence on Cc-Steiner while slower
than the convergence on Cc-R. This is because Cc-SD is not as sensitive as
Cc-Steiner to the number of experts. We notice that the algorithms, MinSD
and MinLD, have the best performance of all the datasets tested. For other
algorithms, the communication cost of the team found by them is larger.

Effect on Cc-LD. We study the effect of the number of required skills in
the task on Cc-LD in Figure 2(d). We demonstrate the communication cost
of the team on leader distance formed by different team formation algorithms
on the DBLP datasets in Figure 2(d), respectively. We treat each candidate as
a possible leader in the task. The convergence of communication cost is similar
to the above analyzes. We find that MinSD and MinLD algorithms perform the
best among all the tested datasets. The communication cost of the team returned
by other algorithms is very large on Cc-LD.

There are some interesting observations for this evaluation. We find that the
team formation algorithms based on Cc-SD usually have good performance on

A Comparative Study of Team Formation in Social Networks 401

 1

 10

 100

 1000

 10000

 100000

 4 8 12 16 20

R
un

ni
ng

 T
im

e(
m

s)

of required skills

(a) Time

 1

 10

 100

 4 8 12 16 20

C
ar

di
na

lit
y

of
 th

e
T

ea
m

of required skills

(b) Cardinality

 0.1

 1

 10

 100

 4 8 12 16 20

P
er

so
na

l C
os

t

of required skills

(c) PersonalCost

 1

 10

 4 8 12 16 20

W
or

kl
oa

d

of required skills

(d) Workload

Fig. 3. Effects by Number of Required Skills on Running Time, Cardinality, Personal
Cost and Workload

different communication cost functions. The results show that the Cc-SD is the
best measurement for the communication cost of experts in the team. For other
three communication cost functions Cc-R, Cc-Steiner and Cc-LD, they do not
include all the communications between the experts. The algorithms based on
Cc-SD is more robust to the change in the social network but Cc-R, Cc-Steiner,
and Cc-LD are very sensitive to adding or removing an expert. Clearly, Cc-R
only measures the communication cost between the two experts that are furthest
away from each other. Adding an expert in the social network may substantially
reduce Cc-R.

We now study the performance of the team formation algorithms on the
following issues.

Running Time of TF Algorithms. We present the running time of all team
formation algorithms on the number of required skills and the task using the
DBLP datasets in Figures 3(a). We observe that the running time of both MinLD
and LBSteiner algorithms are costly and insensitive to the number of required
skills in all the tested datasets. This is because the computational bottleneck of
the MinLD algorithm is to enumerate all possible experts as the leader of the

402 X. Wang et al.

team and generate N candidate teams for all the tasks. For LBSteiner algorithm,
it reduces the problem of balancing workload of team under the constraint of
communication cost to a bi-objective optimization problem with parameter λ.
The major computational cost of the LBSteiner algorithm is to estimate the
proper value λ. The most efficient algorithms are MinDiaSol, RarestFirst and
ItReplace. For other algorithms, the MinAggrSol and MinSD are also efficient
while the EnSteiner algorithm is not scalable.

Cardinality of the Team. We present the cardinality of the team found by all
the team formation algorithms on the number of required skills in the task using
the DBLP datasets in Figure 3(b). We find that the algorithms based Cc-SD
such as the EnSteiner and MinSD algorithms often return the team of small
cardinality for all datasets tested. This is because those algorithms based on Cc-
SD can find a team of experts who are “cohesive” in the social network. For the
algorithms based on other communication cost functions, the cardinality of the
team found by them is usually much larger. This is because the initially found
experts may not communicate with one another. Thus, they have to employ more
people to promote better expert communication, which make the cardinality of
the team larger. Notably, the LBSteiner and LBRadius algorithms report the
teams of small cardinality. This is because both algorithms do not count the
people in the social network who make the communication between experts in
the team.

Personal Cost of the Team. We present the personal cost of the team by all
the team formation algorithms on the DBLP datasets in Figure 3(c). For all the
datasets, we set the personal cost of experts to be proportional to the number
of their skills, which is suggested in [7]. We notice that the MCC and ItReplace
perform the best for all the datasets tested. This is because both algorithms
aim to jointly optimize the bi-objective function of both communication cost
and personal cost. Interestingly, we observe that the algorithms for Cc-SD such
as MinDiaSol and EnSeiner also find the teams with low personal cost. This
is because these algorithms are able to find the teams of experts with small
cardinality such that the personal cost of the team is normally lower. Generally,
the team formation algorithms based on other communication cost functions may
not be suitable for finding the teams with low personal cost, since the cardinality
of the teams returned are usually large.

Workload of the Team. We present the workload of the team on the number of
required skills in the task by all the team formation algorithms on four datasets
in Figure 3(d). In this experiment, we carry out the team formation for 100
sequential given tasks and report the average workload of the teams returned
by all the algorithms. We find that the LBRadius and LBSteiner algorithms
return the teams with the lowest workload. This is because both algorithms
aim to balance the workload of the team in the cost function. Interestingly, we

A Comparative Study of Team Formation in Social Networks 403

notice that the rarest skill driven algorithms such as RarestFirst can also find the
teams of experts where the workload is balanced. This is because the RarestFirst
algorithm can find the team around the experts with rarest required skills. Thus,
the found teams are diversified and the workload of the experts in the team is
lower. However, the algorithms for personal cost such as MCC and ItReplace
perform the worst, since these algorithms always choose the experts with large
skill coverage and lower personal cost first.

6 Conclusion

In this paper, we present a comprehensive study of the team formation algo-
rithms used in social networks. We survey and study a spectrum of algo-
rithms: RarestFirst, EnSteiner, MinSD, MinLD, MinDiaSol, MinAggrSol, MCC,
ItRepace, LBRadius and LBSteiner. We classify the algorithms into four cate-
gories based on their communication cost functions. We find that all the team
formation algorithms are important but in different ways. For the algorithms in
the first category, we can employ them to find a team of well-known experts to
review the paper. For the team of reviewers found by algorithms in the second
category, we are able to get more diversified reviews, since the background of
the reviewers has more variations. The third category of algorithms are able to
find a team of rising experts. The forth category of algorithms better balance
the workload of the experts in the team, which is suitable for processing a large
number of tasks.

We have conducted extensive experiments to evaluate the performance of the
algorithms using four real datasets. Although there is no team formation algo-
rithm that perform the best on all the communication cost functions, we find that
the algorithms based on Cc-SD such as MinSD are able to find the teams with
low cost in other communication cost functions like Cc-R, Cc-Steiner and Cc-
LD. We also show the benefits of additional factors such as packing constraints
and personal cost for team formation. We observe that the team of diversified
experts with the packing constraints can be found, since an expert cannot be
employed for numerous tasks. By taking personal cost into consideration, we are
able to find rising experts to be team members at lower personal cost.

Acknowledgments. We thank the reviewers for giving many constructive comments,
with which we have significantly improve our paper. This research is supported in part
by HKUST Grant No.FSGRF13EG22 and HKUST Grant No.FSGRF14EG31.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power in
unity: forming teams in large-scale community systems. In: CIKM, pp. 599–608.
ACM (2010)

2. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: WWW, pp. 839–848. ACM (2012)

404 X. Wang et al.

3. Arkiny, E.M., Hassinz, R.: Minimum diameter covering problems. Networks 36(3),
147–155 (2000)

4. Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., Stumme,
G.: The social bookmark and publication management system bibsonomy. VLDBJ
19(6), 849–875 (2010)

5. Bhowmik, A., Borkar, V.S., Garg, D., Pallan, M.: Submodularity in team formation
problem. In: Proceedings of the 2014 SIAM International Conference on Data
Mining, Philadelphia, Pennsylvania, USA, April 24–26, 2014, pp. 893–901 (2014)

6. Kargar, M., An, A.: Discovering top-k teams of experts with/without a leader in
social networks. In: CIKM, pp. 985–994. ACM (2011)

7. Kargar, M., An, A., Zihayat, M.: Efficient bi-objective team formation in social
networks. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part II. LNCS, vol. 7524, pp. 483–498. Springer, Heidelberg (2012)

8. Kargar, M., Zihayat, M., An, A.: Finding affordable and collaborative teams from
a network of experts. In: SDM, pp. 587–595. SIAM (2013)

9. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
SIGKDD, pp. 467–476. ACM (2009)

10. Majumder, A., Datta, S., Naidu, K.: Capacitated team formation problem on social
networks. In: SIGKDD, pp. 1005–1013. ACM (2012)

11. Rangapuram, S.S., Bühler, T., Hein, M.: Towards realistic team formation in social
networks based on densest subgraphs. In: WWW, pp. 1077–1088. ACM (2013)

12. Xinyu, W., Zhou, Z., Wilfred, N.: Appendix: Implementation and experiments
details. http://www.cse.ust.hk/∼xwangau/appen.pdf

http://www.cse.ust.hk/~xwangau/appen.pdf

Inferring Diffusion Networks with Sparse
Cascades by Structure Transfer

Senzhang Wang1(B), Honghui Zhang2, Jiawei Zhang3, Xiaoming Zhang1,
Philip S. Yu3,4, and Zhoujun Li1

1 State Key Laboratory of Software Development Environment, Beihang University,
Beijing, China

{szwang,yolixs,zjli}@buaa.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
zhh11@mails.tsinghua.edu.cn

3 Department of Computer Science, University of Illinois at Chicago, Chicago, USA
4 Institute for Data Science, Tsinghua University, Beijing, China

{jzhan9,psyu}@uic.edu

Abstract. Inferring diffusion networks from traces of cascades has been
intensively studied to gain a better understanding of information diffu-
sion. Traditional methods normally formulate a generative model to find
the network that can generate the cascades with the maximum likeli-
hood. The performance of such methods largely depends on sufficient
cascades spreading in the network. In many real-world scenarios, how-
ever, the cascades may be rare. The very sparse data make accurately
inferring the diffusion network extremely challenging. To address this
issue, in this paper we study the problem of transferring structure knowl-
edge from an external diffusion network with sufficient cascade data to
help infer the hidden diffusion network with sparse cascades. To this
end, we first consider the network inference problem from a new angle:
link prediction. This transformation enables us to apply transfer learning
techniques to predict the hidden links with the help of a large volume
of cascades and observed links in the external network. Meanwhile, to
integrate the structure and cascade knowledge of the two networks, we
propose a unified optimization framework TrNetInf. We conduct exten-
sive experiments on two real-world datasets: MemeTracker and Aminer.
The results demonstrate the effectiveness of the proposed TrNetInf in
addressing the network inference problem with insufficient cascades.

Keywords: Information diffusion · Network inference · Transfer
learning

1 Introduction

Utilizing cascades to infer the diffusion network is an important research issue
and has attracted a great deal of research attentions recently [17,20,22,23]. In
many scenarios, we only have the traces of information spreading in a network
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 405–421, 2015.
DOI: 10.1007/978-3-319-18120-2 24

406 S. Wang et al.

without explicitly observing the network structure. For example, in virus propa-
gation we only observe which people get sick at what time, but without knowing
who infected them [18]; in viral marketing, viral marketers can track when cus-
tomers buy products or subscribe to services, but it is hard to exactly know
who influence the customers’ decisions [25]. Inferring the underlying connectiv-
ity of diffusion networks is of outstanding interest in many applications, such as
technological innovations spreading [16], word-of-mouth effect in viral marketing
[26], and personalized recommendation in E-commerce websites [24].

Traditional approaches normally formulate a generative probability model to
find the network which can generate all the cascades with the maximum like-
lihood, such as ConNIe [20], NETINF [23], NETRATE [21], and InfoPath [22].
Although these models can work well on synthetic datasets, their performance
on real-world datasets is usually undesirable [3,21]. This is firstly due to the fact
that information diffusion on real-world networks is too complex for existing
information propagation models to handle. Secondly, the performance of gen-
erative models largely relies on a large volume of cascades, while in real-world
scenarios the cascades may be rare or at least not sufficient [19].

To address above mentioned problems, in this paper we will study how to
borrow the structure knowledge from an external diffusion network whose links
are known to help us infer a diffusion network whose links are hidden by transfer
learning. In many cases, although the cascades in the hidden diffusion network
are sparse, a network related to the hidden diffusion network is known and may
be helpful for our task [6]. For example, we want to infer the network of who
influencing whom to buy some products based on the transaction logs of users’
purchase history, such as iPhone 5S. The result might be quite inaccurate if we
do not have enough such logs. However, if we know their following relationships
and tweets about iPhone 5S in Twitter, the diffusion process of the tweets among
them may potentially help us infer who influenced whom to buy an iPhone 5S.

Transfer learning has achieved significant success in many machine learn-
ing tasks including classification [14,15], regression [13], and clustering [12] to
address the problem of lacking enough training data in the target domain. How-
ever, it is challenging to directly exploit transfer learning to our task. Traditional
generative models formulate this task as an optimization problem, hence it is nat-
urally hard for such models to extract and map feature spaces from one domain
to another for knowledge transfer. Meanwhile, transfer learning normally can
only capture and transfer knowledge from the source domain. In our task, we
need to consider not only the structure knowledge transferred from an external
diffusion network, but also the cascade information in the hidden network. How
to integrate the knowledge from two different networks in a unified scheme to
obtain a better network inference model also makes the problem challenging.

In this paper, we first formulate the network inference problem as a link pre-
diction task by extracting various cascade related features. The advantages of the
formulation are two-fold: 1) it paves the way of applying transfer learning tech-
niques for structure transfer; and, 2) link prediction does not rely much on the
particular information propagation model. As the links of the external diffusion

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 407

network are known, we can use these labeled links to train a prediction model for
predicting the links in the hidden network by transfer learning. To incorporate
the transferred structure knowledge from the external network with the cas-
cades in the hidden network, we next propose a unified optimization framework
TrNetInf. TrNetInf jointly maximizes the likelihood of generating the cascades
in the hidden diffusion network and minimizes the difference between the links
inferred by traditional generative model and those predicted by transfer learning
model simultaneously. We evaluate TrNetInf on two real-world datasets: Meme-
Tracker dataset and AMiner citation network dataset. Experimental results on
both datasets demonstrate the superior performance of TrNetInf, especially when
the cascades are not sufficient. The main contributions of this paper are as fol-
lows:

• For the first time, to the best of knowledge, we study the network inference
problem with the challenge of lacking enough cascade data (Section 2).

• To transfer structure knowledge from one diffusion network to another, we
consider the network inference problem from a new angle: link prediction.
Meanwhile, as the links of the hidden network is unknown and structure
based features are hence not available, we propose to extract a set of cascade
related features for learning (Section 3.2).

• We further propose a unified optimization framework TrNetInf. TrNetInf can
efficiently integrate knowledge from source and target diffusion networks, and
combine the results from the traditional generative model and the proposed
link prediction model (Section 3.3).

• We evaluate the proposed approach on two real-world datasets by comparing
it against various baselines. The results verify its effectiveness in addressing
the network inference problem with very sparse cascades (Section 4).

The remainder of this paper is organized as follows. Section 2 formally defines
the studied problem. Section 3 details the proposed model. Section 4 evaluates
the model with two real-world datasets, followed by related work in Section 5.
Section 6 concludes this research with directions for future work.

2 Problem Statement

In this section, we will give some terminologies to help us state the problem. Then
we will formally define the studied problem. In information diffusion, a diffusion
network is usually referred to a network with a set of information spreading in
it [21]. Based on the diffusion network, we formally define a hidden diffusion
network as follows.

Definition 1 Hidden Diffusion Network GH: We define a diffusion network
GH = (V,EH) as a hidden diffusion network if only its nodes can be observed
but the edges are hidden and need to be inferred. Here V denotes the set of node
and EH denotes the hidden edges.

There are usually many traces of information diffusion on a diffusion network.
The traces are called cascades and can be formally defined as follows.

408 S. Wang et al.

Definition 2 Cascade: A cascade tc associated with information c can be
denoted as a N -dimensional vector tc = (tc1, ..., t

c
N)T , where N is the number of

nodes in the diffusion network. The ith dimension of tc records the time stamp
when information c infects node i, and tci ∈ [0, T c] ∪ {∞}.
The symbol ∞ labels nodes that are not infected during the observation window
[0, T c]. The time stamp is set to 0 at the start of each cascade. A cascade set C

consists of a collection of cascades, i.e. C = {t1, ..., tM}, where M is the number
of cascades.

Based on above defined terminologies, the traditional network inference prob-
lem can be defined as follows [23].

Problem 1. Given a hidden diffusion network GH = (V,EH) and a collection
of cascades C on GH, the network inference problem aims to recover the network
structure of GH, namely infer the hidden edges EH based on the cascades C.

In our case, besides the hidden diffusion network we also have a related exter-
nal diffusion network whose structure is known. Here we consider the hidden
diffusion network as the target domain network and the related network as the
source domain network. In traditional transfer learning setting, a domain D con-
sists of two components: a feature space X and a marginal probability distribu-
tion P (X), where X = {x1, ..., xn} ∈ X represent the features. Here we define a
domain D̂ of information spreading in network G contains a cascade space CG and
also a marginal probability distribution P (CG), where C

G = {cG
1 , ..., cG

n } ∈ CG .
We will introduce how to compute P (CG) later. Based on above definitions and
terminologies, we formally define the studied problem as follows.

Problem 2. Given the source domain diffusion network Gs = (V s, Es) and the
target domain diffusion network Gt

H = (V t, Et
H) with corresponding cascades

C
s ∈ Cs, Ct ∈ Ct, where the edges Es of network Gs is known and the edges Et

H
of network Gt

H is hidden, the problem is how to transfer knowledge from Gs and
Cs and incorporate it with Ct to better infer the edges Et

H of Gt
H.

3 Methodology

In this section, we will first revisit some basic concepts and introduce some stan-
dard notations. Then we will introduce how to transform the network inference
problem to a link prediction task, and how to apply transfer learning techniques
to help predict links in the target diffusion network. Next, we will propose a uni-
fied scheme to incorporate the generative model on the target diffusion network
and the knowledge transferred from the source domain network.

Before introducing the approach, we first give some basic concepts which
are essential to model information diffusion. We define a nonnegative random
variable T to be the time when an event happens, such as useri adopting a

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 409

piece of information. Let f(t) be the probability density function of T , then the
cumulative density function can be denoted as F (t) = P (T ≤ t) =

∫ t

0
f(x)dx.

Survival Function. The survival function S(t) is the probability that a cascade
tc does not infect a node by time t:

S(t) = P (T ≥ t) = 1 − F (t) =
∫ ∞

t

f(x)dx.

Hazard Function. Given functions f(t) and S(t), we can further define the
hazard function H(t), which represents the instantaneous rate that a cascade tc

infects a particular uninfected node within a small interval just after time t.

H(t) = lim
Δt→0

p(t ≤ T ≤ t + Δt|T ≥ t)
Δt

=
f(t)
S(t)

.

3.1 Network Inference Based on Generative Model

We define g(Δc
ij ;αij) as the conditional likelihood of information transmission

between node i and node j, where Δc
ij = tcj − tci is the difference between the

infecting time of the two nodes in cascade c and αij is the transmission rate
from node i to j. Here we assume that within a cascade tc, a node j with a
time stamp tcj can only be infected by the node i with an earlier time stamp, i.e.
tcj < tci . If tcj > tci , we can refer node j as one of node i’s child node and node i
as one of node j’s parent node.

Our goal is to infer the pair-wise transmission rate αij , and we consider that
there exists an edge between two nodes if their transmission rate is larger than
zero. Three models are used in most previous works to model the diffusion like-
lihood function g(Δc

ij ;αij): Exponential model, Power law model, and Rayleigh
model [21]. For brevity, we omit the description of the three models.

Likelihood of Node i Infecting j in Cascade tc. In a cascade, we assume 1)
one node gets infected once the first parent infects it, and 2) all the parents infect
their child nodes independently. Based on the two assumptions, the likelihood
of the parent node i infecting the child node j in cascade tc can be computed by

g(Δtcij ;αij) ×
∏

u�=i,tcu<tcj

S(Δtcuj ;αuj), (1)

where S(Δc
uj ;αuj) is the survival function described before to denote the prob-

ability that node j has not been infected by node u before tcj under pairwise
transmission rate αc

uj between nodes u and j. In the cascade tc, the node j
could be possibly infected by any one of its parent nodes. Hence the likelihood
of j getting infected in the cascade tc can be calculated by summing over the
likelihoods of each potential parent being the first one to infect it:

Γ+
j (tc) =

∑

i:tci<tcj

g(Δtcij ;αij) ×
∏

u�=i,tcu<tci

S(Δtcuj ;αuj). (2)

410 S. Wang et al.

Likelihood of a Node j Survives from the Cascade tc. If node j survives
from all the parents by the end time T c of cascade tc, we say the node survives
from the cascade tc. The likelihood that node j survives from the cascade tc can
be represented by the following product of survival function

Γ−
j (tc) =

∏

tci<T c

S(T c − tci ;αij). (3)

Likelihood of the Cascade tc. Given a cascade tc := (tc1, ..., t
c
N), its likeli-

hood can be computed by multiplying the likelihoods of all the infected and
survived nodes in the cascade. With Eq. (2), Eq. (3), and the hazard function
H(Δtcij ;αij) = g(Δtcij ;αij)

S(Δtcij ;αij)
, the likelihood of cascade tc can be represented as

g(tc;A) =
∏

tcj<T c

Γ+
j (tc) ×

∏

tcj>T c

Γ−
j (tc)

=
∏

tcj<T c

∏

tcm>T c

S(T c − tcj ;αjm)×
∏

u:tcu<tcj

S(Δtcuj ;αuj)
∑

i:tci<tcj

H(Δtcij ;αij), (4)

where A is a N × N matrix with each element Aij = αij denoting the link
strength between node i and j.

Assuming the cascades spread independently in the network, the likelihood
of a set of cascades C = {t1, ..., tM} can be represented as the product of the
likelihoods of all the individual cascades,

∏

tc∈C

g(tc;A). (5)

Network Inference Problem. The goal is to find the matrix A such that
the network G with edge matrix A generates cascades C with the maximum
likelihood. This can be achieved by solving the following optimization problem

minA −
∑

c∈C

logg(tc;A). (6)

s. t. αk
ij ≥ 0; i, j = 1, ..., N, i �= j

3.2 Link Prediction in Diffusion Network with Structure Transfer

Fig.1. illustrates the framework of the proposed structure transfer scheme. The
left part shows the source domain diffusion network with observed network struc-
ture and a large number of cascades. The right part is the target domain diffusion

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 411

Fig. 1. An illustration of the proposed structure transfer scheme

network with sparse cascades and hidden network structure. In the network, ni

denotes node i, and eij denotes the edge between node i and j. In a cascade ti,
we use (nj , tij) to denote node j is infected at time tij . Given the two domain
diffusion networks, our goal is to borrow the structure and cascade information
of the source domain to help infer the network structure in the target domain. To
this aim, we formulate it as a link prediction task. Specifically, we first extract
features {f1, f2..., fn} from the cascades and extract link labels lij ∈ {+1,−1}
in the source domain network. lij = +1 means there exist an edge between node
i and j, and otherwise lij = −1. In such a way we extract training samples from
the source domain. Then we apply transfer learning technique to select training
samples and use them to help predict the link labels in the target domain. Based
on the brief description of the framework, next we will elaborate this scheme.

Traditionally, link prediction can be considered as a supervised classification
task by constructing a set of features, such as neighborhood based features and
path based features [4,10,11]. Motivated by this, we also formulate the network
inference problem as a supervised classification problem since the links in the
source domain network are known. However, the challenge is that the links in
the target domain network are hidden and we cannot construct the features
used in traditional link prediction setting. Alternatively, we can extract features
from cascades. For example, if node i and j have never appeared in a cascade
simultaneously, we can infer that there is probably no link between them; and
if node i is the root node of a cascade with node j as the first child node, we
can infer that there is definitely a link from i to j. In all we extract 16 cascade
related features whose detailed descriptions are given in Table 1.

With the extracted features, we next utilize a popular transfer learning algo-
rithm TrAdaBoost [9] to leverage the links of the source domain network to
help us predict the links in the target domain network. TrAdaBoost is a transfer

412 S. Wang et al.

learning framework extended from AdaBoost. Given the limited number of train-
ing instances Ml

T and some test instances T in the target domain, TrAdaBoost
aims to utilize the large volume of available labeled training instances MS in
the source domain to build a model f : X → Y such that the prediction error on
T is minimized. Formally, let XS be the instances in the source domain network,
XT be the instances in the target domain network, and Y = {−1,+1} be the set
of labels. Given the source domain network GS whose edges are known and the
target domain network GT whose edges are hidden, we first assume that their
label distribution is the same YS = YT , but the feature distribution is differ-
ent PS(y|x) �= PT (y|x). To utilize TrAdaBoost, we further assume that a small
number of labels of the instances X l

T in the target domain network GT is given.
Therefore, the training data set M ⊆ {X × Y } includes two parts: MS , and
Ml

T . MS represents the source domain network data that MS = {(xS
i , yS

i)},
where xS

i ∈ XS(i = 1, ..., n). Ml
T represents a small number of training data

Ml
T = {(xT

j , yT
j)} in the target domain network, where xT

j ∈ XT (j = 1, ...,m).
n and m are the sizes of MS and Ml

T , respectively. By applying TrAdaBoost,
we can finally obtain a label matrix L with lij ∈ {−1,+1} denoting whether
there exists a link from node i to j in the target domain network GT .

Table 1. Cascade related features for structure transfer

feature description

f1
whether node i and j appear in at least one cascade simultaneously,
and ti < tj

f2
whether there exists a cascade with node i as the root node
and node j as its first child node

f3 the relative frequency of node i appearing before node j in all the cascades

f4 the minimum time lag minΔtcij between node i and j in all the cascades

f5 the average time lag aveΔtcij between node i and j in all the cascades

f6−8
the maximum probability maxf(Δc

ij ; 1) of node i infecting node j
in all the cascades with three models

f9−11
the average probability avef(Δc

ij ; 1) of node i infecting node j
in all the cascades with three models

f12
for all the cascades that node i is before j, the minimum number of nodes
minNc

ij between i and j

f13
for all the cascades that node i is before j, the average number of nodes
aveNc

ij between i and j

f14
for all the cascades that node i is before j, the minimum number of nodes
minNc

ri between root node r and i

f15
for all the cascades that node i is before j, the minimum number of nodes
minNc

rj between root node r and j

f16
for all the cascades that node i is before j, the minimum sum of nodes
min(Nc

ri + Nc
rj) between root node r and i, j

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 413

3.3 TrNetInf: Network Inference Incorporating Structure Transfer

By solving the generative model in Eq. (6), we can infer a network matrix A;
while by structure transfer with TrAdaBoost, we can obtain a label matrix L.
In this section, we will describe how to combine the two parts.

Both methods can infer the connectivity of the target network independently,
but the knowledge they used coming from different domains. The generative
model only uses the cascades in the target network, and the link prediction
based approach mainly relies on the structure knowledge transferred from the
source domain network. The results of the two methods may be quite different,
and their overlapping part is more likely to be accurate. Thus besides maximizing
the probability of generating all the cascades in the target domain, we also want
to minimize the difference between the inferred network links by the generative
model and the predicted links by diffusion network transfer. We propose to
achieve the two goals simultaneously by solving such an optimization problem

minA −
∑

c∈C

logg(tc;A) + γ||L − A||2, (7)

s. t. αk
ij ≥ 0; lij = {0, 1}; i, j = 1, ..., N and i �= j

where A = {αij |i, j = 1, ..., N, i �= j} are the variables and L = {lij |i, j =
1, ..., N, i �= j} contains the link labels from structure transfer.

Eq. (7) contains two parts. The first part computes the likelihood of the
inferred network generating all the cascades, and we want it to be as high as
possible. The second part incorporates the structure knowledge transferred from
the source domain network. We expect the difference between the two results as
small as possible by minimizing the L2 norm distance between L and A. γ is
a parameter used to control the importance of knowledge transferred from the
source domain network. Smaller γ implies we trust more on the inferred net-
work by generative model, while larger γ means we rely more on the transferred
structure knowledge when available cascades are insufficient.

In addition, most networks are sparse in a sense that one node usually is
connected to a small number of other nodes [1,20]. In order to encourage a
sparse solution, we add a L2 norm penalty term ||A||2. With the penalty term
to control the sparsity of the network, we finally have such an optimization
problem

minA −
∑

c∈C

logg(tc;A) + γ1||L − A||2 + γ2||A||2 (8)

s. t. αk
ij ≥ 0; lij = {0, 1}; i, j = 1, ..., N and i �= j

We have the following theorem to guarantee that the solution to the opti-
mization problem in Eq. (8) is unique and consistent.

414 S. Wang et al.

Theorem 1. Given the optimization problem in Eq. (8), the following results
hold:

1. Given the log-concave survival functions and concave hazard functions, the
problem defined by Eq. (8) is strictly convex in A [21].

2. The optimization problem defined by Eq. (9) is convex for the proposed
TrNetInf model with exponential, Rayleigh, and power law distributions.

3. The solution to Eq.(8) gives a unique and consistent maximum likelihood
estimator.

Proof Sketch. 1) Manuel et al. have proved that given the log-concave survival
functions and hazard functions in the parameters of the pairwise transmission
likelihoods by the exponential, power-law, and Rayleigh models,

∑
c∈C

logg(tc;A)
is strictly convex in A [21]. 2) Due to the fact that all the norm functions are con-
vex, we can further infer that both ||L−A||2 and ||A||2 are convex. As the convex
function follows from linearity and composition rules, the liner combination of
the three convex functions is also a convex function. 3) For a strictly convex
function, its global minimum is unique. Based on the criteria for consistency
of identification, continuity and compactness defined by Newey and Mcfadden
[27], we can further infer that the solutions to Eq.(8) is consistent. Due to space
reason, we omit the proof here, and one can refer [21] for more details.

Solving TrNetInf. Since we have proved Eq. (8) is convex and the solution is
unique, we can use a regular convex optimization algorithm to solve Eq. (8). Here
we use CVX1, a popular Matlab-based convex optimization package to solve this
problem. We run the algorithm on a Dell PowerEdge T620 server with 32 cores
Intel(R) Xeon(R) CPU E5-2670 2.60 GHz, and 64 GB main memory, running
the Ubuntu 13.04 operating system.

4 Experimental Results

In this section we conduct a systematic empirical study on real datasets to
verify the effectiveness of TrNetInf in inferring diffusion network with sparse
cascades. We first introduce the experiment setup, including the used datasets
and baselines. Next we give the parameter analysis to show how sensitive the
proposed approach is to the parameters γ1 and γ2. Then we report the quantitive
comparison results with baselines including state-of-the-art methods.

4.1 Experiment Setup

We use two real-world datasets to evaluate TrNetInf: MemeTracker dataset2 [7]
and AMiner citation network dataset3 [5,8].

MemeTracker Dataset. The MemeTracker dataset contains more than 300
million blog posts and news articles collected from 3.3 million websites. Memes
1 http://cvxr.com/cvx/
2 http://www.memetracker.org/data.html
3 http://arnetminer.org/citation

http://cvxr.com/cvx/
http://www.memetracker.org/data.html
http://arnetminer.org/citation

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 415

Table 2. Dataset statistics

MemeTracker Datasets

phrase cluster # of nodes # of edges # of cascades

“good morning America” (Target) 2,754 4,822 425
“put lipstick on a pig” (Source) 2,845 4,621 336

“I’m a mac I’m a pc” (Target) 1,766 2,303 207
“daily show Jon Stewart” (Source) 1,637 2,255 263

AMiner Citation Network Dataset

research field # of nodes # of edges # of cascades

Computer Theory (Target) 19,073 20,220 832
Graphic (Source) 16,469 21,705 707

are short textual phrases or quotes (like, “good morning America”) that spread
through the web. Each meme m can be considered as a piece of information, and
all the time-stamped webpages which contain meme m forms a diffusion cascade.
Memes related to the same topic are considered to be in a same cluster. With
the aim of structure transfer, we consider memes in the same cluster coming
from the same domain, and memes in different clusters coming from different
domains. Given a meme cluster Cm, we first extracted the cascades collection C,
and all the websites containing one phrase in Cm as the nodes. For some memes
with very long diffusion paths, we split it into several small cascades with length
less than 30. The ground truth of the network is constructed by extracting the
hyperlinks among all the extracted websites. If a site si publishes a phrase and
uses a hyperlink to refer to another site sj that also publishes a similar phrase,
we think there exists a link from sj to si.

AMiner Citation Network Dataset. The AMiner citation network dataset
contains the citation relationships among papers extracted from DBLP, ACM,
and other sources. The citation relationships among papers can be naturally con-
sidered as the ground truth of the diffusion network. Similar to MemeTracker
dataset, we also consider some term pair phrases (like, “deep learning”) extracted
from the paper titles and abstracts as the information, and all the papers con-
taining the same phrase can be considered as a cascade. To enable structure
transfer, we distinguish the diffusion networks of different domains based on the
research fields such as database and computer theory. For example, papers pub-
lished in the field of database can be considered coming from a domain and those
published in computer theory can be consider coming from another domain.

In our experiment, we extract four meme clusters from the MemeTracker
dataset forming two groups of datasets for evaluation. For each group of dataset,
we use one as the source domain data donated by “Source” and the other as
the target domain data denoted by “Target”. Similarly, we select the papers
published in the venues of two research fields: computer theory and graphic
from the AMiner dataset forming another group of dataset. Statistics of the
datasets is given in Table 2. We compare TrNetInf with the following baselines.

416 S. Wang et al.

• NETRATE4 [21]. NETRATE is a representative model to infer both the
connectivity of the network and the transmission rates over each edge. As
the most relevant work to the proposed model, we choose it as a baseline.

• NetInf5 [23]. Another type of network inference model only aims to infer the
network connectivity, such as NetInf. To compare with such kind of methods,
we choose the representative approach NetInf as the second baseline.

• TrNetInf without Sparsity Penalty (TrNetInf-SP). To study whether
and to what extent the sparsity penalty can affect algorithm performance,
we use TrNetInf without sparsity penalty as a baseline. For this baseline, we
simply set the parameter γ2 = 0.

• TrNetInf without Structure Transfer (TrNetInf-ST) Similarity, we
also use the TrNetInf without structure transfer as a baseline to study how
much improvement can be achieved by incorporating structure transfer. In
this case, we set the parameter γ1 = 0.

• Link Prediction with Structure Transfer (LPST). As the proposed
TrNetInf combines the information from link prediction model, we use this
baseline to study how well the pure link prediction model can perform on
the network inference problem and how much achievement can be achieved
by TrNetInf. For the LPST baseline, we use TrAdaBoost as the classifier.

γ
γ

Fig. 2. F1-measure on “good morning America” dataset with various γ1 and γ2

4.2 Parameter Analysis

We first study the effect of parameters γ1 and γ2 on the performance of TrNetInf.
Due to space limitation, we only report the result of the first group of Meme-
Tracker dataset. The results of the other datasets are similar.
4 http://people.tuebingen.mpg.de/manuelgr/netrate/
5 http://snap.stanford.edu/netinf/

http://people.tuebingen.mpg.de/manuelgr/netrate/
http://snap.stanford.edu/netinf/

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 417

Fig. 2. shows the F1-measure of the “good morning America” dataset with
“put lipstick on a pig” as the source domain network over various γ1 and γ2.
One can see that with the increase of γ1, the performance first increases, and
then decreases, and finally becomes stable. It implies that structure transfer
does help our task as the F1-measure are mostly higher than non-transfer with
γ1 = 0. From γ1 = 100 on, the performance tends to be stable, which means
the transferred structure knowledge dominates the final results when γ1 is large.
One can also see the F1-measure further increases if we add the sparsity penalty
weighted by γ2, but too large a γ2 will also hurt the performance. How to choose
a proper γ2 may largely depend on the prior knowledge on the network. A denser
network prefers a smaller γ2, and a larger γ2 means we may want to infer a less
dense network. Fig. 2. suggests that γ1 = 10, γ2 = 10 seem a good choice of the
two parameters for the MemeTracker dataset, and in the following experiments
we choose γ1 = 10, γ2 = 10 as our default parameter settings.

4.3 Quantitive Comparison with Baselines

We quantitively evaluate the performance of TrNetInf via three measures: pre-
cision, recall, and F1-measure. We first study the effectiveness of TrNetInf with
insufficient cascades by comparing with two state-of-the-art network inference
approaches NETRATE and NetInf. To utilize TrAdaBoost for knowledge trans-
fer, some link labels in the target domain network need to be available. In our
experiment, we assume 1% links in the target domain network are given.

Comparison Against Network Inference Models. Fig. 3. shows the
precision-recall curves of three approaches: NETRATE, NetInf, and TrNetInf
over the three datasets. One can see that TrNetInf outperforms NETRATE and
NefInf on the three datasets in terms of precision-recall. It implies that the per-
formance can be improved if the structure knowledge is properly transferred.
The result also shows that the AMiner dataset seems easier to infer than the
two MemeTracker datasets.

Evaluation with Sparse Cascade Data. To study the effectiveness of TrNet-
Inf with insufficient cascades, we compare the F1-measure achieved by TrNetInf
against NETRATE and NetInf by sampling different numbers of cascades in the
target domain network. Fig. 4. shows the F1-measures of the three approaches
over various numbers of cascades. One can observe that TrNetInf achieves sig-
nificantly higher F1-measure than NETRATE and NetInf when the number of
cascades is relatively small. With the increase of the number of cascades, the
performance of the three methods tends to be similar. It implies that structure
transfer is especially helpful when the cascade data are very sparse. The per-
formance of the two baselines becomes closer to TrNetInf when more and more
cascades are available. It implies that the improvement by structure transfer
becomes less significant when a large volume of cascades are available.

Comparison Against Two Variations and Link Prediction Models.
Next, we conduct experiment to study whether transfer learning and sparsity

418 S. Wang et al.

(a) I’m a mac I’m a pc (b) good morning America (c) Computer theory

Fig. 3. The precision-recall curves of the three approaches on three groups of datasets

(a) I’m a mac I’m a pc (b) good morning America (c) Computer theory

Fig. 4. The F1-measure of the three approaches with various numbers of cascades

penalty can both help the network inference task. To this aim, we compare
TrNetInf with two variations: TrNetInf without sparsity penalty (TrNetInf-SP)
and TrNetInf without structure transfer (TrNetInf-ST). We report precision,
recall, and F1-measure for each method on each dataset in Table 3. The figures
in bold show the best results. One can see that TrNetInfer is consistently better
than TrNetInf-SP and TrNetInf-ST. On average, the F1-measure has improved
by about 4% compared with TrNetInf-SP on the three groups of datasets. Com-
pared with TrNetInf-ST, the improvement is more significant, more than 13%.
The result leads us to conclude that 1) sparsity penalty do help the studied
task, and 2) transfer learning can significantly improve the performance. We also
report the performance of link prediction with structure transfer model LPST.
One can see that although slightly worth than TrNetInf-ST, LPST model still

Table 3. Experimental result by comparing TrNetInf against two variations and LPST

Method
“I’m a mac I’m a pc” “good morning America” Computer theory
precision recall F1 precision recall F1 precision recall F1

TrNetInf 0.575 0.611 0.593 0.621 0.635 0.628 0.651 0.700 0.675
TrNetInf-SP 0.557 0.598 0.576 0.601 0.598 0.600 0.622 0.657 0.640
TrNetInf-ST 0.534 0.515 0.524 0.546 0.526 0.536 0.540 0.704 0.611

LPST 0.579 0.379 0.458 0.515 0.534 0.524 0.534 0.598 0.564

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 419

gives rather good prediction results. It means that properly structure transfer
can provide us useful information for better inferring the diffusion network.

5 Related Work

The problem of inferring the diffusion networks and estimating the diffusion
probabilities has been extensively studied in many domains, such as the hyperlink
network of on-line new articles [21–23], the coloration network of scientist [20],
and the following network in social media [2,17,28]. Previous related works on
this topic can be roughly divided into inferring the network structure [23] and
inferring both the network structure and the transmission rates between nodes
[21]. The representative work on inferring the network structure is NetInf [23].
NetInf formulates this problem as a submodular function maximization problem.
NETRATE is a representative approach to infer the diffusion network through
estimating the pairwise transmission rates between two nodes. Based on the
general inference models, some fine-grained models are proposed. [17] and [19]
studied the topic-level diffusion network inference problem.

A related research topic to the network inference problem is link prediction.
Link prediction aims to predict the likelihood of a future association between
nodes, knowing that there is no association between the nodes in the current
state of the graph [4,11]. One of the earliest link prediction models is proposed
by Liben-Nowell and Kleinberg [29]. Their proposed approach typically extracts
the similarity between a pair of vet ices by various graph-based similarity metrics.
Then they use the ranking on the similarity scores to predict the link between two
vertices. Besides similarity ranking based approach, another popular approach
is to model the link prediction problem as a supervised classification problem
[4,10,11]. Such methods normally learn a prediction model by constructing a set
of features, such as neighborhood based features [4] and path based features [10].
The main difference between link prediction and network inference is that link
prediction aims to predict the future potential connections between nodes based
on their current states. In the network inference setting, the network structure
is totally hidden and needs to be inferred from traces of information diffusion.

6 Conclusion

To address the problem that traditional inference models may not be effective
when lacking enough cascade data, in this paper we proposed a structure transfer
scheme to infer the diffusion network with the help of an external diffusion
network. We first formulated the network inference problem as a link prediction
task by extracting cascade related features. This formulation thus enabled us
effectively transfer the cascades and links of the external diffusion network to
help predict the hidden links of the target domain network. We also proposed
a unified optimization framework to integrate the traditional generative model
and the proposed transfer learning model. Evaluations on two real-world datasets
demonstrated the effectiveness of the proposed scheme.

420 S. Wang et al.

In the future, we are particularly interested in further investigating: 1) How to
extend one source domain to many source domains. Currently we only consider
one source domain diffusion network, but multiple source domains may be more
helpful as more information are available [30]. 2) Given multiple source domain
diffusion networks, how to select the source domains that are most relevant to
the target domain. Currently we only use the domain data which are highly
relevant to the target domain. A domain that are irrelevant may also hurt the
performance. Source domain diffusion network selection is an interesting and
challenging research issue we will focus on in the future.

Acknowledgments. This work is supported in part by NSFC (Nos. 61170189,
61370126, 61202239), the Fund of the State Key Laboratory of Software Develop-
ment Environment (No. SKLSDE- 2013ZX-19), the Fundamental Research Funds for
the Central Universities (YWF-14-JSJXY-16), the Innovation Foundation of BUAA for
PhD Graduates (No. YWF-14-YJSY-021), Microsoft Research Asia Fund (No. FY14-
RES-OPP-105), NSF through grants CNS-1115234, and OISE-1129076.

References

1. Gomez-Rodriguez, M., Leskovec, J., Scholkopf, B.: Modeling information propaga-
tion with survival theory. In: ICML (2013)

2. Wang, S.Z., Yan, Z., Hu, X., Yu, P.S., Li, Z.J.: Burst time prediction in cascades.
In: AAAI (2015)

3. Wang, L., Ermon, S., Hopcroft, J.E.: Feature-enhanced probabilistic models for
diffusion network inference. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012, Part II. LNCS, vol. 7524, pp. 499–514. Springer, Heidelberg (2012)

4. Lu, L.Y., Zhou, T.: Link Prediction in Complex Networks: A Survey. Physica A:
Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)

5. Tang, J., Zhang, D., Yao, L.M.: Social network extraction of academic researchers.
In: ICDM (2007)

6. Zhang, J.W., Yu, P.S., Zhou, Z.H.: Meta-path based multi-network collective link
prediction. In: KDD (2014)

7. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: KDD (2009)

8. Tang, J., Zhang, J., Yao, L.M., Li, J.Z., Zhang, L., Su, Z.: Arnetminer: extraction
and mining of academic social networks. In: KDD (2008)

9. Dai, W.Y., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: ICML
(2009)

10. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised
learning. In: SDM (2006)

11. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspective and methods in
link prediction. In: KDD (2010)

12. Jiang, W., Chung, F.: Transfer spectral clustering. In: Flach, P.A., De Bie, T.,
Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 789–803.
Springer, Heidelberg (2012)

13. Pardoe, D., Stone, P.: Boosting for regression transfer. In: ICML (2010)
14. Zhu, Y., Chen, Y.Q., Lu, Z.Q., Pan, S.J., Xue, G.R., Yu, Y., Yang, Q.: Heteroge-

neous transfer learning for image classification. In: AAAI (2011)

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer 421

15. Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Trans. on Knowl. and
Data Eng. 22(10), 1345–1359 (2010)

16. Herlihy, M.: Diffusion in Organizations and Social Movements: From Hybrid Corn
to Poison Pills. Annual Review of Sociology 24, 265–290 (1998)

17. Wang, S.Z., Hu, X., Yu, P.S., Li, Z.J.: MMRate: inferring multi-aspect diffusion
networks with multi-pattern cascades. In: KDD (2014)

18. Erdman, D.D.: Propagation and Identification of Viruses. Topley and Wilson’s
Microblology and Microblal Infections (2010)

19. Du, N., Song L., Woo, H., Zha, H.Y.: Uncover topic-sensitive information diffusion
networks. In: AISTATS (2013)

20. Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. In:
NIPS (2010)

21. Gomez-Rodriguez, M., Balduzzi, D., Scholkopf, B.: Uncovering the temporal
dynamics of diffusion networks. In: ICML (2011)

22. Gomez-Rodriguez, M., Leskovec, J., Scholkopf, B.: Structure and dynamics of infor-
mation pathways in online media. In: WSDM (2013)

23. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. In: KDD (2010)

24. Leskovec, J., Singh, A., Kleinberg, J.M.: Patterns of influence in a recommendation
network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006.
LNCS (LNAI), vol. 3918, pp. 380–389. Springer, Heidelberg (2006)

25. Chen, W., Wang, C., Wang, Y.J.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: KDD (2010)

26. Kempe, D., Kleinberg, J., Tardos, E.:Maximizing the spread of influence through
a social network. In: KDD (2003)

27. Newey, W.K., McFadden, D.: Large sample estimation and hypothesis testing. In:
Handbook of Econometrics, pp. 2111–2245 (1994)

28. Wang, L., Ermon, S., Hopcroft, J.E.: Feature-enhanced probabilistic models for
diffusion network inference. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012, Part II. LNCS, vol. 7524, pp. 499–514. Springer, Heidelberg (2012)

29. Liben-Nowell, D., Kleinberg, J.: The Link Prediction Problem for Social Networks.
Journal of the American Society for Information Science and Technology 58(7),
1019–1031 (2007)

30. Chen, Z.Y., Liu, B.: Topic modeling using topics form many domains, lifelong
learning and big data. In: ICML (2014)

Information Integration
and Data Quality

Scalable Inclusion Dependency Discovery

Nuhad Shaabani(B) and Christoph Meinel

Hasso-Plattner-Institut, University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{nuhad.shaabani,christoph.meinel}@hpi.de
http://www.hpi.de

Abstract. Inclusion dependencies within and across databases are an
important relationship for many applications in anomaly detection,
schema (re-)design, query optimization or data integration. When such
dependencies are not available as explicit metadata, scalable and efficient
algorithms have to discover them from a given data instance.

We introduce a new idea for clustering the attributes of database rela-
tions. Based on this idea we have developed S-indd, an efficient and scal-
able algorithm for discovering all unary inclusion dependencies in large
datasets. S-indd is scalable both in the number of attributes and in the
number of rows. We show that previous approaches reveal themselves
as special cases of S-indd. We exhaustively evaluate S-indd’s scalability
using many datasets with several thousands attributes and rows up to one
million. The experiments show that S-indd is up to 11x faster than previ-
ous approaches.

Keywords: Inclusion dependency · Data integration · Data profiling

1 Introduction

Dependencies are metadata that describe relationships between relational
attributes. Dependencies play very important roles in database design, data qual-
ity management, and knowledge representation. In the case that they are modeled
as part of the application requirements, they are then used in database normaliza-
tion and are implemented in the designed database to ensure data quality. In con-
trast, dependencies in knowledge discovery are extracted from the existing data of
the database. The extraction process is called dependency discovery and aims to
find dependencies satisfied by existing data. A typical type of dependency is inclu-
sion dependencies (INDs), which represent value reference relationships between
two sets of attributes. Together with functional dependencies, they represent an
important part of database semantics.

In the context of data integration, the discovery of inclusion dependencies
can help to solve a very common and difficult problem: discovering foreign key
constraints. There are many reasons for an absence of foreign key constraints in
databases. These include a simple lack of domain knowledge within the devel-
opment team during the design and development time, the worry that checking
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 425–440, 2015.
DOI: 10.1007/978-3-319-18120-2 25

426 N. Shaabani and C. Meinel

such constraints by the hosted system would hamper database performance, or
the lack of support for checking foreign key constraints in the host system.

The manual search for INDs by domain experts is usually not feasible due
to the large number of data sources, a widespread lack of reliable metadata
about legacy databases, and the possibility of a high number of attributes in
real-world relations. Therefore, efficient and scalable algorithms to detect INDs
enable easy integration of new data sources that previously would not have been
used, because their relationships with existing data was not known.

N-ary INDs cover pairs of n attributes, while unary INDs (uINDs) cover only
pairs of single attributes (formal definitions are in Sec. 2). All known algorithms
for detecting high-dimensional INDs require the discovery of all unary inclusion
dependencies (single-column INDs) [10–13]. This is because any valid IND of a
size greater than one implies that all unary INDs derivable from it have to be
valid in the same database. This means that the reliability of the algorithms
for detecting high-dimensional INDs is dependent on a scalable and efficient
discovery of unary INDs.

There are three approaches in related work focused on exhaustive detect-
ing single-column inclusion dependencies: Bell and Brockhausen [3], De Marchi
et al. [11,13], and Bauckmann et al. [1,2] (see Sec. 6).

The algorithm proposed in [11,13] for discovering unary INDs uses an inverted
index associating every value in the database with the set of all attributes hav-
ing this value. Because for every attribute A the intersection of all attribute sets
containing A is the set of all attributes including A, the algorithm runs through
all values in order to compute such an intersection for every attribute. However,
this approach is inefficient because an attribute set in the index can be associated
with many different values. This means, the algorithm executes a lot of redundant
intersection operations. These operations are very costly if the dataset has a large
number of attributes sharing a lot of values.

The first research question addressed in this paper is how we can eliminate
such redundant operations caused by using the inverted index. We tackle this
problem by introducing the concept of attribute clustering (see Sec. 3).

Spider [1,2] is an external algorithm that writes the values of every attribute
to a file after sorting them and removing duplicate values. Then it opens all files
at once and starts comparing the values in parallel and in the same way in which
the merge-sort algorithm does. During this process, Spider applies an efficient
method for discarding unsatisfied unary INDs (see Sec. 6 for more details). Spi-
der outperforms the approach proposed in [11] up to orders of magnitude [1,2].
However, the drawback in Spider’s approach is its dependency on the number
of attributes. This means, that by increasing the number of attributes, Spider’s
scalability decreases: the number of I/O- operations increases because the size
of buffers allocated for the opened files becomes smaller.

The second research challenge addressed in this paper is how we can make
Spider independent from the number of attributes in order to improve its scal-
ability in two dimensions: in the number of attributes and the number of rows.

Scalable Inclusion Dependency Discovery 427

Table 1. Running example

A B C D

1 1 5 1
2 2 5 1
2 3 6 3
4 4 7 3 Fig. 1. Attribute clustering based on

the data of table 1

We tackle this challenge by devising S-indd, a scalable approach for com-
puting the attribute clustering (see Sec. 4).

Every cluster in the attribute clustering is a subset of attributes sharing a
subset of values that can not be shared by the attributes of any different cluster in
the attribute clustering. E.g., {{A,B}, {A,B,D}, {B,D}, {C}} shown in figure
1 is the attribute clustering over the values of table 1. Attributes A and B shape
cluster C1 because both share the values {2, 4} that can not be shared by the
attributes of C2, C3, or C4. Every attribute of the attribute set, denoted by A,
must be contained in at least one cluster.

Clustering the attributes in this way allows us to derive the following infer-
ence rule1: Attribute X is included in attribute Y if and only if every cluster
containing X contains Y . E.g., the set of D’s values in table 1 is included in
the set of B’s values because the clusters C2 and C3 that both contain D also
contain B, but B’s values are not included in D’s values because cluster C1
contains B and does not contain D.

For every attribute A, S-indd stores all elements of the set VA × {{A}} (VA

denotes the value set of A) as a sorted list in an external repository. Then, for
every value v ∈ V (V denotes the whole set of values in the dataset), S-indd
computes incrementally the set of attributes, denoted by Av, whose value sets
contain v. The incremental computing of the sets Av is achieved by executing a
sequence of merging operations. Every merging operation merges simultaneously
k lists from the repository (k > 1 is a given number) and replaces them with
a new list. The new list contains the union of all sets Av contained in the k
lists read previously. In this way the sets Av are incrementally computed. Such
merging continues until the repository contains less than k lists. After finishing
merging, S-indd generates the clusters from the remaining lists by processing
them in parallel. The possibility that S-indd can control the number of lists to
be merged makes its scalability independent from the number of attributes.

To handle a large dataset with a very large number of rows S-indd partitions
the whole dataset and computes the attribute clustering of every partition. The
whole attribute clustering is then the union of all attribute clusterings of all
partitions (see Sec. 4.2). This method makes the S-indd’s scalability independent
from the number of rows.
1 This rule is a generalization of property 1 formulated in [11]

428 N. Shaabani and C. Meinel

Contributions. (1) We introduce the concept of attribute clustering, a new
concept for inferencing all unary inclusion dependencies much more efficiently
than using the inverted index introduced in [11].

(2) We devise S-indd, a scalable algorithm for computing the attribute clus-
tering in large datasets. Its scalability neither dependents on the number of
attributes nor on the number of rows.

(3) We experimentally validate S-indd on real and synthetic datasets and
compare it with Spider [1,2]. The results show that S-indd is up to 11x faster
than Spider. Furthermore, we show that Spider is a special case of S-indd.

2 Preliminaries

Let A be a finite set of attributes. Each attribute A ∈ A has an associated domain
dom(A), which defines the set of all its possible values. For A1, A2, . . . An ∈
A and for a symbol R, R[A1, A2, . . . , An] is called a relational schema over
A1, A2, . . . , An and R is the relation name. A tuple t over R is an element from
dom(A1) × dom(A2) × · · · × dom(An). For a tuple t over R and X ⊆ A, we use
t[X] to denote the projection of t to X. A finite set r of tuples over R is called an
instance of R. For an instance r of R and for a sequence X of attributes in R, the
projection of r onto X, denoted by πX(r), is defined as πX(r) = {t[X] | t ∈ r}.

A set R of relational schemata Ri[Ai,1, . . . , Ai,ni
], where Ai,1, . . . , Ai,ni

∈ A,
1 ≤ ni ≤ |A| and 1 ≤ i ≤ m = |R|, is called a database schema. A relational
database instance D over R is a set of instances ri over each Ri ∈ R.

Definition 1. (Inclusion dependency) Let Ri[Ai,1, . . . , Ai,ni
] and Rj [Aj,1, . . . ,

Aj,nj
] be two relational schemata. Let X be a set of k distinct attributes from

Ri and Y a set of k distinct attributes from Rj, with 1 ≤ k ≤ min(ni, nj). An
inclusion dependency (IND) is an assertion of the form Ri[X] ⊆ Rj [Y] where
k is the size of the IND. For k = 1 the inclusion dependency is called a unary
inclusion dependency (uIND).

Definition 2. (IND satisfaction) Let D be a database over a database schema
R. An inclusion dependency Ri[X] ⊆ Rj [Y] over Ri, Rj ∈ R is satisfied or valid
in D iff ∀u ∈ ri,∃v ∈ rj such that u[X] = v[Y].

Thus, a satisfied IND Ri[X] ⊆ Rj [Y] states that every value combination for
attribute set X in relation Ri is also present as a value combination of attribute
set Y in Rj . INDs are a prerequisite for foreign keys, and their discovery is
particularly helpful to understand how records of two relations might be joined.

To simplify the formulation of the algorithm, we assume without loss of gener-
ality that attribute names are unique across all relations. Under this assumption,
we can denote a unary inclusion dependency Ri[A] ⊆ Rj [B] by A ⊆ B. We also
define the two sets VA and V to ease notation:

VA is the set of A’s values occurring in the corresponding instance of the
relation schema in which A occurs:

VA = {v ∈ dom(A) | ∃R ∈ R : A ∈ R ∧ v ∈ πA(r)}

Scalable Inclusion Dependency Discovery 429

Then V is the set of all values of all attributes occurring in the database
instance.

V = ∪Ri∈R ∪A∈Ri
VA

It is now obvious that a unary inclusion dependency A ⊆ B is valid if and only
if VA ⊆ VB . Accordingly, the discovery of all valid unary inclusion dependencies
in a database over a database schema R is equivalent to the computation of the
following set: I = {A ⊆ B | A,B ∈ A ∧ VA ⊆ VB}

3 Attribute Clustering

We now formally introduce the concept of attribute clustering.

Definition 3. (Attribute Clustering) The set AC ⊆ 2A, where AC 	= ∅ and 2A

is the power set of A, is an attribute clustering over V if there is a surjective
function that maps every value v ∈ V to a C ∈ AC that contains all attributes
A ∈ A with v ∈ VA. In other words, AC is an attribute clustering if there is
f : V → AC satisfying the following condition:

1. (∀C ∈ AC)(∃v ∈ V) : f(v) = C (i.e., f is surjective).
2. (∀v ∈ V)(¬∃A ∈ A) : v ∈ VA ∧ A 	∈ f(v) (i.e., f(v) is the maximal set of

attributes A ∈ A with v ∈ VA).

Each C ∈ AC is called a cluster. Clusters need not be mutually disjoint.

The next lemma shows the relationship between the clusters and the values
of the dataset.

Lemma 1. An attribute clustering AC = {C1, C2, . . . , Cc} divides the set V into
|AC| disjoint partitions P1,P2 . . . ,Pc so that for every cluster Ci ∈ AC there is
a partition Pi with Pi ⊆ ∩A∈Ci

VA.

Proof. According to definition 3, there is a surjective function f : V → AC
where f(v) = C is the set of the all attributes A with v ∈ VA. For each cluster
Ci(1 ≤ i ≤ c), we can define the set

Pi = f−1(Ci) = {v ∈ V | f(v) = Ci} ⊆ ∩A∈Ci
VA (1)

because f is surjective.
Because any v ∈ V can not be mapped to two different clusters, we have

Pi ∩ Pj = ∅ for i 	= j(1 ≤ i, j ≤ c) (2)

Because there is Pi(1,≤ i ≤ c) for any v ∈ V, we have

∪1≤i≤c Pi = V (3)

According to (2) and (3), the sets P1,P2 . . . Pc are disjoint partitions of V. �

430 N. Shaabani and C. Meinel

The next lemma states that for each two different attributes A,B, the set
of A’s values is included in the set of B’s values if and only if the intersection
of all clusters containing A contains B. In other words, we have the following
inference rule: for any attribute A, the set of all attributes including A is the
intersection of all clusters containing A.

Lemma 2. Let AC = {C1, . . . , Cc} be an attribute clustering over V. Then the
following holds:

∀A,B ∈ A : VA ⊆ VB ⇔ B ∈ ∩C∈AC,A∈CC

Proof. 1) “⇒”: We assume B 	∈ ∩A∈CC. This means, there is C with A ∈ C and
B 	∈ C. According to definition 3, there is at least v ∈ V mapped to C with v ∈ VA

and v 	∈ VB because A ∈ C and B 	∈ C. This means, VA 	⊆ VB , contradicting
VA ⊆ VB .

2) “⇐”: We assume VA 	⊆ VB . This means, there is at least v ∈ V with
v ∈ VA and v 	∈ VB . According to definition 3, v can only be mapped to a cluster
C containing all attributes whose value sets contain v. This means, A ∈ C and
B 	∈ C because v ∈ VA and v 	∈ VB . This means, B 	∈ ∩A∈CC, contradicting
B ∈ ∩A∈CC �

We can now formulate the motivation for the introduction of the concept of
attribute clustering as the answer of the following question.

Why is the deriving of all unary INDs from the attribute clustering
much more efficient than deriving them from the inverted index?

Let AC = {C1, . . . , Cc} be an attribute clustering and let P = {P1, . . . ,Pc} be
the partitions defined by its clusters (see lemma 1). The inverted index defined
in [11] can now be formulated as B = ∪1≤i≤c(Pi ×{Ci}). Furthermore, let IA be
the set2 of all attributes including A. IA is initially initialized with A in [11].
For every subset Bi = Pi×{Ci} ⊆ B, the algorithm in [11] must run through |Pi|
iterations in order to compute the set ∩(v,Ci)∈Bi

Ci ∩ IA. However, from all |Pi|
intersections we need only to compute one intersection because the result of the
remaining |Pi| − 1 intersections is known, namely the set Ci itself. This means,
using the clusters allows us to save Σ1≤i≤c|Pi| − |AC| = |V| − |AC| redundant
intersection operations compared to using the inverted index. Such intersection
operations are very costly if we have a large dataset with a large number of
attributes sharing a lot of values.

In fact, the runtime for computing the set I by using the inverted index is
O(|V| × |A|2) while it is O(|AC| × |A|2) by using the attribute clustering (see
line 5 in algorithm 1 in Sec. 4.1).

Furthermore, the way in which the inverted index has to be computed and
presented has a big impact on the efficiency and the scalability of the algorithm
in [11]. However, there is no explicit method suggested in [11] for computing the
inverted index (one can only assume that it is computed in [11] as a kind of
dictionary data structure presented in the main memory).

2 This set is denoted as rhs(A) in [11]

Scalable Inclusion Dependency Discovery 431

The scalable computing of the attribute clustering is the main objective of
S-indd’s development.

The following lemma shows that the attribute clustering exists for every data-
base instance D. Its proof can be considered as the proof of S-indd’s correctness
because S-indd incrementally computes the sets Av (v ∈ V) defined in the proof
and then generates the set AC (see Sec. 4.1).

Lemma 3. For any database instance D over a database schema R, there always
exists an attribute clustering to satisfy Definition 3.

Proof. For every value v ∈ V, let Av be the set of all attributes A whose values
sets contain v. I.e.,

∀A ∈ Av : v ∈ VA and ¬∃A′ ∈ A : v ∈ VA′ ∧ A′ 	∈ Av (4)

For all values vi1 , vi2 , . . . , vij (1 ≤ i, j ≤ |V|) with Avi1 = Avi2 = · · · = Avij , we
replace the sets Avi1 ,Avi2 , . . . ,Avij with a set Ci, i.e. Ci = Avi1 = · · · = Avij .
We show now that the set

AC = {C1, . . . , Cc} = {C | ∃v ∈ V : C = Av}

is an attribute clustering :
Assuming, for a v ∈ V, there are two different sets Ci and Cj with at least a
common attribute A satisfying v ∈ VA. That contradicts (4) and consequently,
the construction of the sets Ci(1 ≤ i ≤ c). This means, our assumption is wrong.
This means, the function

f : V → {C1, . . . , Cc} with f(v) = C where C = Av

satisfies definition 3. �
The next lemma allows us to increase the scalability of S-indd in the case

of having datasets with a large number of rows (see Sec. 4.2).

Lemma 4. Let V1, . . . ,Vn be disjoint partitions of the set V and let AC1, . . . ,ACn

be the corresponding attribute clusterings. Then ∪1≤i≤nACi is an attribute clus-
tering over V.

Proof. For any ACi (1 ≤ i ≤ n) we can define a function fi : Vi → ACi satisfy-
ing definition 3 because ACi is an attribute clustering over Vi. Based on these
functions and on the fact that the sets Vi (1 ≤ i ≤ n) are disjoint partitions of
V, we define the function:

f : V → ∪1≤i≤nACi with ∀v ∈ V : f(v) = fi(v) iff v ∈ Vi

Obviously, f satisfies definition 3. This means, AC = ∪1≤i≤nACi is an
attribute clustering over V. �

432 N. Shaabani and C. Meinel

4 Algorithm

4.1 S-indd

Overall Idea. As an external algorithm (see algorithm 1), S-indd uses a repos-
itory on a hard drive (as an external memory) in order to store temporary
computation results. The input parameter L denotes the name of the repository.
L contains initially the lists L1, L2, . . . , L|A| where every list L ∈ L relates to a
different attribute A ∈ A and its elements are all elements of the set VA ×{{A}}
sorted according to the values in VA. Example 1 illustrates these data structures.

Algorithm 1. S-indd
Algorithm 2. mergeLists

Example 1. Using the data of table 1, repository L will be initialized with the
following four lists:

L1 = [(1, {A}), (2, {A}), (4, {A})], L2 = [(1, {B}), (2, {B}), (3, {B}), (4, {B})]
L3 = [(5, {C}), (6, {C}), (7, {C})], L4 = [(1, {D}), (3, {D})]

The purpose of these data structures is to compute the sets Av (v ∈ V)
incrementally, where Av is the set of all attributes A ∈ A whose values sets
contain v (i.e., v ∈ VA). After computing the sets Av, S-indd generates the set
{C | ∃v ∈ V : C = Av} which is, according to the constructive proof of lemma
3, an attribute clustering. Having the attribute clustering, S-indd computes for
every attribute the intersection of all clusters containing it (line 5). The set I,
the set of all uINDs, is then computed based on lemma 2 (line 7).

The incremental computing of the sets Av is achieved in two stages. The
first stage (line 1) consists of a sequence of merging operations. The second
stage (line 3) implicitly completes the computation of the sets Av and generates
the attribute clustering.

Merging. The merging operation reads k (2 ≤ k ≤ |A|) lists

L1 = [(v11,Av11), . . . , (v1l1 ,Av1l1)], . . . , Lk = [(vk1,Avk1), . . . , (vklk ,Avklk)]

Scalable Inclusion Dependency Discovery 433

from L and then replaces them with the new list

L = [(v1,Av1), (v2,Av2), . . . , (vn,Avn)]

that satisfies the following condition:

v1 = min
1≤i≤k
1≤j≤li

{vilj}, Av1 =
⋃

vilj=v1
1≤i≤k
1≤j≤li

Avilj

...

vs = min
1≤i≤k
1≤j≤li

{vilj} \ {v1, . . . , vs−1}, Avs =
⋃

vilj
=vs

1≤i≤k
1≤j≤li

Avilj

with s = 2, . . . , n

In other words, the new list L is sorted according to the values vs ∈ {vilj | 1 ≤
i ≤ k, 1 ≤ j ≤ li} (1 ≤ s ≤ n) and every set As is the union of all sets Avilj

identified by the value vs in the k lists.
S-indd repeats the merging operation (line 1) until the repository L has less

than k lists where every new list generated by the merging operation has to
be stored as a temporary result in the repository L (line 10 in algorithm 2).
Example 2 illustrates the merging operation.

Example 2. According to example 1 and for k = 3, S-indd has to execute only
one merging operation.
If the first three lists L1, L2, and L3 (see line 1 in algorithm 2) are selected for
merging, the following list

L1,2,3 = [(1, {A,B}), (2, {A,B}), (3, {B}), (4, {A,B}), (5, {C}), (6, {C}), (7, {C})]

will be generated and the repository L will be changed to contain only the lists:
L1,2,3 and L4.

For an efficient implementation of the merging operation and for managing a
simultaneous reading of k lists (files) from the repository L, a priority queue is
used by algorithm 2 (and also by algorithm 3 - see below). The queue manages k
readers (sequential file readers). Every reader is associated with a list and points
to the entry that can currently be read from the list. For every two readers r, r′,
reader r has a higher priority than r′ if and only if the value v in (v,Av) is
smaller than or equal to the value v′ in (v′,Av′

) where (v,Av) is the entry that
r can currently read and (v′,Av′

) is the entry that r′ can currently read.
The purpose of using a priority queue is to enable an efficient collecting of all

sets Av
1, . . . ,Av

lv
(1 ≤ lv ≤ k) by a simultaneous and sequential reading of k lists

where v is the smallest value among all values that have not been read from the
k lists in the queue yet. That is possible in a simultaneous sequential reading
because the lists are sorted according to the values v ∈ V and the priority in

434 N. Shaabani and C. Meinel

Algorithm 3. computeAttClus-
tering

Algorithm 4. readNextAttSets

the queue is defined according to the ascending order of the values. This kind of
applying the priority queue is well-known by external merge-sort algorithms.

Clusters Computing. After finishing the merging, algorithm 3 will generate
the clusters of the attribute clustering AC by processing all remaining k′ (1 ≤
k′ < k) lists simultaneously. For every value v, there are still lv (1 ≤ lv < k′)
lists containing entries of the form (v,Av

i) (1 ≤ i ≤ lv). Algorithm 3 collects all
these entries, computes the set C = ∪1≤i≤lvAv

i , and adds C as a cluster to the
set AC. Example 3 illustrates the computing of the clusters.

Example 3. According to example 2 and for k = 3, L will contain the lists

L1,2,3 = [(1, {A,B}), (2, {A,B}), (3, {B}), (4, {A,B}), (5, {C}), (6, {C}), (7, {C})]
L4 = [(1, {D}), (3, {D})]

after finishing the merging.
For the value v = 1 there are two entries: (1, {A,B}) in L1,2,3 and (1, {D})
in L4. Therefore, algorithm 3 collects the two sets {A,B} and {D} by call-
ing algorithm 4 in the first run of the while-loop which delivers the tuple:
(1, {{A,B}, {D}}). The first cluster is then C1 = {A,B}∪{D} = {A,B,D} and
consequently AC = {{A,B,D}}. After a second run of the while-loop we have
AC = {{A,B,D}, {A,B}}. Calling algorithm 4 in the third run of the while-
loop delivers the tuple: (3, {{B}, {D}}). Consequently, AC will be extended to
AC = {{A,B,D}, {A,B}, {B,D}}. Computing AC will be finished after the sev-
enth run of the while-loop resulting in AC = {{A,B,D}, {A,B}, {B,D}, {C}}.

Repository Size. During the whole process of computing the Attribute Cluster-
ing, the repository size remains almost constant. This is because (i) the selected
k lists in every merging operation will not be needed any more after merging
them, which allows algorithm 2 to remove them from the repository after merg-
ing them (see line 9), and (ii) the size of the new list that results from merging
the selected k lists can not exceed the total size of these k lists.

We can now answer the following question.

Scalable Inclusion Dependency Discovery 435

Why Spider [1] is a special case of S-indd? Spider can only process
the whole set of the attributes at once. That means, Spider is only a form of
algorithm 3. To let S-indd process all attributes at once we need only to put
k = |A| + 1.

Algorithm 5. Extended S-indd
Algorithm 6. Partition

4.2 Extending S-indd

In the case that the dataset is very large and its values are shared among a
lot of attributes, many temporary lists generated by the merging operation in
subsequent iterations will have a relatively large size. Processing such large lists
by algorithm 2 or algorithm 3 may demand more I/O-operations.

To avoid generating large temporary lists in this case, the dataset can be
partitioned into disjoint partitions, and the attribute clustering will then be,
according to lemma 4, the union of all clusters computed for all partitions.

Algorithm 5 is an implementation of this idea and consists of computing
iterations whose number equals the number of the partitions of the dataset.
Every iteration is an instance of S-indd applied for computing the attribute
clustering over a different partition. The attribute clustering over the whole
dataset is computed based on lemma 4 in line 6. The input of algorithm 5 contains
the names of p repositories Li (1 ≤ i ≤ p) where every repository corresponds
to a different partition and contains the initial data structures (lists) generated
from the corresponding partition.

The disjunction of the partitions has an important computational advantage.
It avoids redundant computation of the set Av of any value v ∈ V. However, the
important question arising now is how can we partition a dataset to meet the
requirement of the extended version of S-indd (algorithm 5)? The answer to
this question is given in algorithm 6.

The main idea applied by algorithm 6 to partition the dataset is to choose p
values m1, . . . , mp with m1 < m2 < · · · < mp(to ease notation and formulation,
we put mp = ∞) and then to divide every initial list LA into disjoint sublists

436 N. Shaabani and C. Meinel

Li
A (1 ≤ i ≤ p) where every sublist Li

A has to satisfy the following condition:

max{v | (v, {A}) ∈ Li
A} ≤ mi

In other words, the maximal value in partition i does not exceed the value mi.
The disjunction of the partitions is guaranteed by algorithm 6 because (i)

the lists LA are sorted, (ii) every sublist Li
A is generated from LA by processing

LA from the first element until all elements from it have been obtained that
are less or equal to mi (line 4 in algorithm 6), and (iii) after its generating and
adding to the repository Li, Li

A will be removed from LA. Example 4 illustrates
the extended version of S-indd.

Example 4. Using the lists in example 1 and for m1 = 3, algorithm 6 produces
two partitions. The first partition L1 contains the lists:

L1
A = [(1, {A}), (2, {A})], L1

B = [(1, B), (2, B), (3, B)], L1
D = [(1, {D}), (3, {D})]

The second partition L2 contains the lists:

L2
A = [(4, {A})], L2

B = [(4, B)], L2
C = [(5, {C}), (6, {C}), (7, {C})]

Based on these partitions algorithm 5 will be provided with two repositories L1

and L2. It generates AC1 = {{A,B,D}, {A,B}, {B,D}} from the first reposi-
tory and AC2 = {{A,B}, {C}} from the second repository. The whole attribute
clustering is then AC = AC1 ∪ AC2 = {{A,B}, {A,B,D}, {B,D}, {C}}.

5 Experiments

The main aim of our experiments is to compare the performance of S-indd with
that of Spider. This is our focus because Spider is reported to be the current
leading algorithm for unary INDs discovery [1,2]. Spider already significantly
outperforms other approaches, in particular [3] and [11].

Experimental Conditions. We implemented both algorithms in Java 7 and
performed the experiments on the Windows 7 Enterprise system with an Intel
Core i5-3470 (Quad Core, 3.20 GHz CPU) and 8 GB RAM. We used an external
500 GB hard drive as external memory. We set the minimum Java heap size to
4 GB and the maximum to 6 GB for all our experiments.

Datasets. Two groups of synthetic datasets are generated for conducting two
different groups of experiments. The purpose of the first group is to evaluate and
compare the scalability of both algorithms by varying the number of attributes
and fixing the number of rows, while in the second group of datasets the number
of rows is varied and the number of attributes is fixed.

Experiments with real-word datasets are conducted using datasets from the
life science domain (see below).

Scaling the Number of Attributes. In these experiments, we generate thir-
teen synthetic datasets with the same number of rows, namely 200,000 rows.

Scalable Inclusion Dependency Discovery 437

Fig. 2. Comparing scalability by scal-
ing the number of attributes and fixing
the number of rows to 200,000

Fig. 3. Comparing scalability by scal-
ing the number of rows and fixing the
number of attributes to 2,000

Starting with 1,000 different attributes and ten unary INDs in the first dataset,
the attributes set in the next dataset consists of the attributes set in the previ-
ous dataset plus 500 new different attributes and ten new different INDs so that
the thirteenth dataset has 7,000 different attributes and 130 unary INDs. For all
these datasets , S-innd is configured to merge 200 lists (k = 200) simultaneously.

Figure 2 shows the results of these experiments. (i) For every dataset S-indd
is faster than Spider. For example, for the dataset with 7,000 attributes and
36.2 GB size, S-indd needs one hour and ten minutes while Spider needs twelve
hours and thirty minutes. This means, S-indd is about 11x faster than Spider.
(ii) By increasing the number of attributes, Spider’s runtime grows much faster
than S-indd’s runtime. For example, by increasing the number of attributes
from 6,000 to 7,000, Spider’runtime increases by 38 % while S-indd’runtime
increases by 1 % (for the dataset with 6,000 attributes and 31 GB Spider needs
six hours and 10 minutes while S-indd needs only about one hour).

Scaling the Number of Rows. In these experiments, we generate 5 synthetic
datasets with the same number of attributes, namely 2,000 attributes. Starting
with 200,000 rows in the first dataset, the next dataset contains all rows in the
previous dataset plus 200,000 new different rows so that the fifth dataset has
1,000,000 rows and 48 GB size. Every dataset has the same number of INDs,
namely 15 unary INDs. For all these datasets, we applied the extended version
of S-indd configured to merge 200 lists and to partition the datasets so that
every partition had a maximum of 200,000 rows. For example, the dataset with
1,000,000 rows was divided into 5 disjoint partitions, i.e., algorithm 5 had to
execute the For -loop 5 times (line 2).

Figure 3 shows the results of these experiments. These results also show that
S-indd is faster than Spider for every dataset. For example, for the dataset with
1,000,000 rows, S-indd needs one hour and twenty-minutes while Spider needs

438 N. Shaabani and C. Meinel

about three hours. Furthermore, by increasing the number of rows, Spider’s
runtime grows faster than S-indd’s runtime. For example, by increasing the
number of rows from 200,000 to 1,000,000, Spider’runtime increases by 0.18
per thousand rows while S-indd’runtime increases by 0.08 per thousand rows
(for the dataset with 200,000 rows and 10 GB Spider needs 35 minutes while
S-indd needs only about 14 minutes).

INDs discovery in life science datasets. As real-word datasets we used
SCOP3, BIOSQL4, CATH5, and PDB6 from the life science domain. To discover
dependencies inside every dataset and between the datasets we processed the
four datasets as a whole dataset. Their complete size is about 46 GB. Together
they have total of 1,262 attributes. Life science databases are an example of the
unreliability of the data type of the attributes. This means, we can not apply
restriction on the data type of the attributes but rather, must assume that all
attributes have the same data type (e.g. string). For this test, S-indd needed
about 9 minutes while Spider needed about 17 minutes.

6 Related Work

Bell and Brockhausen [3] generate all unary IND candidates from previously
collected statistics, such as min-max values and data types. Then they validate
them using SQL join-statements. The transitivity of INDs is exploited to reduce
the number of untested candidates. However, SQL-based validation is very costly
because it is accesses the database for every candidate.

De Marchi et al. [11,13] propose an algorithm for unary INDs discovery that
generates an inverted index associating every value to the attributes having the
value. Because for every attribute A the intersection of all attribute sets con-
taining A is the set of all attributes including A, the algorithm runs through
all values in order to compute such an intersection for every attribute. However,
this approach is inefficient because an attribute set in the index can be associ-
ated with many values. This means, the algorithm executes a lot of redundant
intersection operations. The concept of attribute clustering we introduced in this
paper solves this problem.

Bauckmann et al. propose Spider [1,2]. Spider is an external algorithm
that writes the sorted values of every attribute to a file. Then it opens all files at
once and starts comparing the values in parallel and in the same way in which
the merge-sort algorithm does. Spider prunes IND candidates as follows: for
each two attributes A and B, A is not included in B (i) if there is an iteration
i in which the current A’s value is greater than the current B’s value and in
the subsequent iteration i + 1, B does not have value equal to the A’s value in
iteration i, or (ii) if there is an iteration in which the current A’s value is less

3 http://scop.mrc-lmb.cam.ac.uk/scop
4 http://obda.open-bio.org
5 http://www.biochem.ucl.ac.uk/bsm/cath new
6 http://www.rcsb.org/pdb

http://scop.mrc-lmb.cam.ac.uk/scop
http://obda.open-bio.org
http://www.biochem.ucl.ac.uk/bsm/cath_new
http://www.rcsb.org/pdb

Scalable Inclusion Dependency Discovery 439

than the current B’s value and in the subsequent iteration i + 1, A does not
have value equal to the B’s value in iteration i. This technique makes Spider
the most efficient algorithm for unary IND detection in related work. However,
Spider’s scalability decreases by increasing the number of attributes. To solve
this problem we developed S-indd in this paper.

Dasu et al. [5] compute a summary of data from which they calculate a “rate
of similitude” between attributes. Based on this “rate of similitude” unary INDs
can be found approximately. This means, some discovered unary INDs aren’t
satisfied, but also satisfied unary INDs can be missed.

Mannila and Toivonen [9] suggest the first known approach for an exhaustive
search of N-ary INDs. They point out that this problem can fit in the framework
of level-wise algorithms and is representable as sets; algorithms and implemen-
tations are proposed in [7,10–13]

Rostin et al. [14] propose rule-based discovery technique based on machine
learning to derive foreign keys from INDs.

Zhang et al. [15] propose an approximate techniques to discover foreign keys.
They assume that the value sets of foreign keys and the value sets of corre-
sponding primary keys obey the same probability distribution. They premise
availability of primary keys. Furthermore, Their approach may produce unsatis-
fied references and may miss satisfied references. For this reason, they focus on
precision and recall rather than on runtime. The specialization on foreign key
discovery also makes their approach inapplicable to other IND use cases, such
as schema matching [8], query optimization [6], or integrity checking [4].

7 Conclusion

We introduced a new idea for clustering the attributes of database relations. We
showed that the inferencing of all unary inclusion dependencies from the attribute
clustering is much more efficient than inferencing them from the inverted index
introduced in [11,13]. We then devised S-indd for computing the attribute clus-
tering in large datasets. S-indd computes such clusters incrementally by extend-
ing the idea of sort-merge-join approach. S-indd is a composite of configurable
computing iterations. In each iteration, it can control the number of rows and
the number of attributes having to be processed. This flexibility makes each iter-
ation efficiently executable. We showed how to parametrize S-indd to present
Spider [1,2] as a special case of this algorithm. Therefore, S-indd is much more
faster and scalable than Spider.

Acknowledgments. Discussions and collaboration with Felix Naumann and Thorsten
Papenbrock supported this paper.

References

1. Bauckmann, J.: Dependency Discovery for Data Integration. Ph.D. thesis, Hasso
Plattner Institute at the University of Potsdam (2013). http://opus.kobv.de/ubp/
volltexte/2013/6664/

http://opus.kobv.de/ubp/volltexte/2013/6664/
http://opus.kobv.de/ubp/volltexte/2013/6664/

440 N. Shaabani and C. Meinel

2. Bauckmann, J., Leser, U., Naumann, F.: Efficiently computing inclusion depen-
dencies for schema discovery. In: Proceedings of the International Workshop on
Database Interoperability (InterDB) (2006)

3. Bell, S., Brockhausen, P.: Discovery of Data Dependencies in Relational
Databases. Tech. rep., Universitat Dortmund (1995)

4. Casanova, M.A., Tucherman, L., Furtado, A.L.: Enforcing inclusion dependencies
and referencial integrity. In: Proceedings of the 14th International Conference on
Very Large Data Bases, VLDB 1988, pp. 38–49. Morgan Kaufmann Publishers
Inc., San Francisco (1988). http://dl.acm.org/citation.cfm?id=645915.671795

5. Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V.: Mining database
structure; or, how to build a data quality browser. In: Proceedings of the Inter-
national Conference on Management of Data (SIGMOD), pp. 240–251 (2002).
http://doi.acm.org/10.1145/564691.564719

6. Gryz, J.: Query folding with inclusion dependencies. In: In Proc. of the 14th IEEE
Int. Conf. on Data Engineering (ICDE 1998), pp. 126–133 (1998)

7. Koeller, A., Rundensteiner, E.: Discovery of high-dimensional inclusion depen-
dencies. In: Proceedings of the International Conference on Data Engineering
(ICDE), pp. 683–685 (2003)

8. Levene, M., Vincent, M.W.: Justification for inclusion dependency normal form.
IEEE Transactions on Knowledge and Data Engineering 12 (2000)

9. Mannila, H., Toivonen, H.: Levelwise search and borders of theories
in knowledgediscovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997).
http://dx.doi.org/10.1023/A:1009796218281

10. De Marchi, F., Flouvat, F., Petit, J.-M.: Adaptive strategies for mining the
positive border of interesting patterns: application to inclusion dependencies in
databases. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based
Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 81–101. Springer,
Heidelberg (2006). http://www.dx.doi.org/10.1007/11615576 5

11. De Marchi, F., Lopes, S., Petit, J.-M.: Efficient algorithms for mining inclusion
dependencies. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E.,
Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 464–476. Springer,
Heidelberg (2002). http://www.dl.acm.org/citation.cfm?id=645340.650245

12. Marchi, F.D., Petit, J.M.: Zigzag: a new algorithm for mining large inclusion
dependencies in databases. In: Proceedings of the Third IEEE International Con-
ference on Data Mining, ICDM, pp. 27–34 (2003). http://dl.acm.org/citation.
cfm?id=951949.952179

13. Marchi, F., Lopes, S., Petit, J.M.: Unary and n-ary inclusion dependency dis-
covery in relational databases. Journal of Intelligent Information Systems 32(1),
53–73 (2009). http://dx.doi.org/10.1007/s10844-007-0048-x

14. Rostin, A., Albrecht, O., Bauckmann, J., Naumann, F., Leser, U.: A machine
learning approach to foreign key discovery. In: Proceedings of the ACM SIGMOD
Workshop on the Web and Databases (WebDB), Providence, RI (2009)

15. Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Srivastava, D.: On
multi-column foreign key discovery. Proc. VLDB Endow. 3(1–2), 805–814 (2010).
http://dx.doi.org/10.14778/1920841.1920944

http://dl.acm.org/citation.cfm?id=645915.671795
http://doi.acm.org/10.1145/564691.564719
http://dx.doi.org/10.1023/A:1009796218281
http://dx.doi.org/10.1007/11615576_5
http://dl.acm.org/citation.cfm?id=645340.650245
http://dl.acm.org/citation.cfm?id=951949.952179
http://dl.acm.org/citation.cfm?id=951949.952179
http://dx.doi.org/10.1007/s10844-007-0048-x
http://dx.doi.org/10.14778/1920841.1920944

Repairing Functional Dependency Violations
in Distributed Data

Qing Chen, Zijing Tan(B), Chu He, Chaofeng Sha, and Wei Wang

School of Computer Science, Shanghai Key Laboratory of Data Science,
Fudan University, Shanghai, China

{13210240082,zjtan,12210240018,cfsha,weiwang1}@fudan.edu.cn

Abstract. One of the problems central to data consistency is data
repairing. Given a database D violating a set Σ of data dependencies
as data quality rules, it aims to modify D for a new relation D′ sat-
isfying Σ. When D is a centralized database, a host of methods have
been provided to address this problem. In practice, a database may be
fragmented and distributed to multiple sites, which is advocated by dis-
tributed systems for better scalability and is readily supported by com-
mercial systems. This paper makes a first effort to develop techniques for
repairing functional dependency violations in a horizontally partitioned
database. (1) Based on a message-passing distributed computing model
and two complexity measures (parallel time and data shipment) for dis-
tributed algorithms, we study data repairing with equivalence classes in
the distributed setting. We show that it is NP-complete to build equiv-
alence classes when the data is horizontally partitioned, and when we
aim to minimize either data shipment or parallel computation time. (2)
Despite the intractability, we propose efficient distributed algorithms and
optimization techniques for data repairing based on equivalence classes.
(3) We experimentally verify the effectiveness and efficiency of our algo-
rithms, using both real-life and synthetic data.

1 Introduction

Functional dependencies (FDs) are constraints that data values in a relation
are required to satisfy. In practice, however, we often encounter relations that
violate a predefined set of FDs and hence are inconsistent. Among techniques
for resolving FD violations, optimal repair computation is well studied. It aims
to repair an inconsistent relation by minimally modifying it w.r.t. some cost
measure, so as to get a new relation satisfying constraints (a.k.a. a repair of the
inconsistent relation). Despite the intractability of optimal repair computation
for FD violations, several heuristic or approximation algorithms [2–5,15] are
presented to repair a centralized database.

In this paper, we contend that it is necessary to develop algorithms for repair-
ing distributed data. (1) In practice, a relation is often fragmented and distributed
across different machines, e.g., horizontal or vertical partition supported by com-
mercial systems. With this comes the need for repairing distributed data. (2)
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 441–457, 2015.
DOI: 10.1007/978-3-319-18120-2 26

442 Q. Chen et al.

Existing algorithms for optimal repair computation are typically quadratic, or
even cubic in the data size, and are hence too costly on real-life large data set.
Several optimizations are then provided to improve the scalability, while these
techniques necessarily have a negative impact on the repair quality. To overcome
the limitation of scalability, another way is to partition and distribute the large
data to multiple machines, so as to leverage more resources, as advocated by
distributed systems. Distributed repairing problem necessarily introduces new
challenges that we do not encounter in the centralized setting, and makes our
lives much harder. To our best knowledge, no such algorithms are in place yet.

Example 1. Fig. 1 gives an EMP relation D (Fig. 1(a)); each tuple specifies an
employee’s name, job (title, level, salary) and contact info (phn, street, city, zip).
The following functional dependencies (FDs) are defined on this relation:

ϕ1 : title, level → salary
ϕ2 : phn → street, zip
ϕ3 : zip → city
It is easy to see that D is inconsistent, since it violates given FDs. When D is

a centralized relation, we can employ existing repairing techniques to repair D.
We give one possible repair D′ (Fig. 1(b)), by modifying some attribute values.

Now suppose D is horizontally fragmented into three fragments (Fig. 1(c)),
and each fragment Di resides at site Si. Then to repair FD violations, data
shipments between different sites are generally required. We present some ship-
ping schedules for illustration. (1) The baseline approach is to collect all tuples
at a single site and employ a centralized data repairing algorithm. Even this
simple idea has some variants. For example, Collecting all tuples at site S1 is
better than collecting all tuples at S2, in terms of communication cost. (2) By
analyzing the FD set, we see that data modifications on an employee’s job are
independent of those on his contact info. In light of this, we can ship employ-
ees’ title, level and salary attributes to one site and ship phn, street, city and zip
attributes to another site. Then, computations at these two sites can be done
simultaneously, and hence enjoy parallelism for better parallel computation time.
(3) If we decide not to ship data from/to site S3, we may introduce distinct new
values to attribute level, phn and zip of tuple t4 and t5. As will be seen in Sec. 3,
this guarantees no FD violation. This approach favors communication cost and
parallel computation time, however, possibly at the cost of poor repair quality.

Putting these together, we know that strategies of data shipment have a
great impact on the communication cost, effectiveness of parallel computation,
and even the repair quality as well. �
Contributions. We make a first effort to investigate the problem of repairing
functional dependency violations in horizontally partitioned data.
(1) Based on a message-passing distributed computing model and two complex-
ity measures: parallel time and data shipment, for the analyses of distributed
algorithms (Section 3), we study the distributed version of equivalence class
technique, to develop distributed repairing algorithms with good repair quality
(Section 4). We show that it is NP-complete to build equivalence classes when

Repairing Functional Dependency Violations in Distributed Data 443

Fig. 1. A relation D, one possible repair D′ and D’s horizontal partitions

the data is horizontally partitioned, and when the complexity is measured by
either data shipment or parallel computation time.
(2) Despite the intractability, we present efficient distributed algorithms and opti-
mization techniques for data repairing based on equivalence classes (Section 5).
Our work is built upon an implementation of equivalence classes that are dis-
tributed to multiple sites.
(3) Using both real-life and synthetic data, we conduct an extensive experimental
study to verify the effectiveness and efficiency of our algorithms (Section 6).

Related Work. In the field of data consistency management, repair computa-
tion [2–6,8,9,13,15,18–20] is the most well studied. There are different versions
of this problem, by considering various settings of constraint, repair primitive
and cost model, among other things. To our best knowledge, former works deal
with a centralized data set. This paper presents distributed algorithms for repair-
ing FD violations in distributed data. It is easy to see that the centralized setting
is a special case of the distributed one when only one site is available. In addition,
different complexity measures, e.g., data shipment or parallel time, are employed

444 Q. Chen et al.

to evaluate the performance of distributed algorithms and guide the design of
such algorithms. In light of this, the framework and techniques for distributed
repair computation are necessarily much more intricate.

[12] studies the problem of conditional FD violation detection in fragmented
and distributed relations, and [14] further provides algorithms for incrementally
detecting violations of conditional FDs in fragmented data. Note that violation
detection is to identify tuples violating FDs, while repairing aims at resolving
violations to obtain a consistent data set, and is hence more complicated. Indeed,
repairing one FD can break another, and simple heuristics could even fail to ter-
minate in the presence of interrelated FDs. In contrast, violation detection can
deal with FDs one by one and in any order. When it comes to distributed com-
putation, data repairing requires to balance the repair quality and the efficiency
of parallel computation, since there are possibly exponential number of repairs.
In contrast, FD validation has a deterministic result.

One solution for our problem is to employ existing frameworks, e.g., MapRe-
duce [10], and delegate most work to the system. However, a good solution for
distributed data repairing must exploit the nature of data repairing itself; exist-
ing systems fall short of these abilities. For example, recursive computation is
typically required in data repairing due to complicate interactions between FDs,
while MapReduce is generally not fit for this setting, which needs a series of
chained MapReduce invocations.

2 Preliminaries

In this section, we review some basic notations.

Data Repair for a Relation. We consider an instance D of relation schema
R(A1, . . . , Am). t[A] denotes the projection of tuple t onto attribute A, referred
to as a cell. We assume each tuple t is associated with a distinct identifier (id)
t.id, which is not subject to updates.

We consider functional dependency (FD) of the form X → A, where X ⊆
A1, . . . , Am. Any FD can be converted to this form by splitting right hand side
(RHS) attributes. For a given FD ϕ = X → A and an instance D, D satisfies
ϕ, denoted D |= ϕ, when there does not exist two tuples t1, t2 in D such that
t1[B] = t2[B] for all B ∈ X and t1[A] �= t2[A]. D satisfies a set Σ of FDs, denoted
D |= Σ, when D |= ϕ for ∀ϕ ∈ Σ.

When there exist FD violations in D w.r.t. Σ, we say D′ is a repair of D,
if (1) D′ is an instance of R, having the same tuple ids as D; and (2) D′ |= Σ.
Note that in this definition of repair, cell modification is used as the only repair
operation, similar to [3,5,15]. There are generally a large or even infinite number
of repairs. To this end, optimal repair computation aims to find one single repair
that minimizes some cost measure among all repairs. Recall that optimal repair
computation with cell modifications is proved to be NP-complete, even when the
cost of a repair is computed as the number of modified cells [15].
Example 2. Recall repair D′ presented in Fig. 1. When the number of modified
cells is taken as the repair cost, D′ has a cost of 2. �

Repairing Functional Dependency Violations in Distributed Data 445

For space limitation, in this paper we consider relation D that is horizontally
partitioned (fragmented) and distributed to multiple sites.

Horizontal Partition [1,17]. Relation D may be partitioned into a disjoint
set of fragments D1, . . . , Dn that share the same schema R as D. Specifically,
Di = σFi

(D), D =
⋃

i∈[1,n] Di: (1) Fi is a predicate such that the selection
σFi

(D) identifies fragment Di; and (2) D can be reconstructed by the union of
these fragments. W. l. o. g., we assume fragment Di is placed at site Si, i.e.,
one fragment at each site. We also extend tuple ids by adding site number as a
prefix; therefore, the site at which a tuple resides can be identified by its id.

Repairing FD Violations in a Horizontally Fragmented Relation. Given
a horizontally fragmented relation D =

⋃
i∈[1,n] Di of schema R and an FD set

Σ, the problem of repairing D w.r.t. Σ is to find another fragmented relation
D′ =

⋃
i∈[1,n] D

′
i of R, such that (1) D′

i has the same tuple ids as Di, possibly
with modified cell values; and (2) D′ |= Σ.

3 Analyses of Distributed Data Repairing

In this section, we first present a message-passing computational model and
two complexity measures for distributed algorithms, and then investigate the
complexities of distributed data repairing based on the given model.

Model of Distributed Computation. We consider a pure message passing
model, which is flexible enough to express a large class of distributed algo-
rithms [16], and is fit for the problem of distributed data repairing. There are
several identical sites that can directly send arbitrary number of messages to
each other, and those sites work together by message-passing and local compu-
tations. Specifically, messages sent from a site Si to another site Sj only consist
of the local data available at Si. Local computations executed on Si utilize only
data at Si, i.e., local data and messages received at Si.

Complexity Measures for Distributed Algorithms. We use two measures
to evaluate distributed algorithms: (a) parallel computation time, the time mea-
suring the completion time at different sites in parallel, and (b) total data ship-
ment, the size of total messages among sites during the computation.

It is worth mentioning that repair quality is not considered in the com-
plexity measures for distributed algorithms, while any meaningful distributed
repairing algorithms should produce a repair with good quality. Indeed, if only
the efficiency of distributed computation is concerned, we next present a simple
distributed repairing algorithm, referred to as NaiveLocal. NaiveLocal is optimal
in data shipment and when the relation is evenly fragmented and distributed to
all sites, it is also optimal in parallel computation time. NaiveLocal resolves all
FD violations locally, based on an adaption of the notion of core implicant [15].
Specifically, in parallel at site Si, NaiveLocal first computes a set Z of attributes
that intersects with at least one left hand side (LHS) attribute of each FD ϕ ∈ Σ,

446 Q. Chen et al.

Fig. 2. Example equivalence class

and then introduces a distinct new value to each attribute in Z for each tuple
t in Di . Here “distinct new value” implies a value not used in that attribute
in D.
Example 3. {level, phn, zip } is a set of attributes that intersects with at least
one left hand side attribute of each FD given in Example 1. Then, a repair is
obtained by introducing new values to these attributes of all tuples. �

To avoid values used in other fragments, we generally have to introduce mean-
ingless values in NaiveLocal, just as placeholders. Therefore, the repair produced
by NaiveLocal is of low quality and is not acceptable in practice. We stress that
an effective distributed repairing algorithm should be developed based on some
repairing technique with good repair quality. As will be seen shortly, this makes
the optimization of distributed algorithms much harder.

4 Distributed Equivalence Classes

Since it is beyond reach to find the optimal repair, there is no available “best”
repairing technique that we can follow in the distributed setting. In this section,
we first review the notion of equivalence class, which is an effective heuristic
repairing technique, and then discuss the complexities of its distributed version.

Equivalence class. Equivalence class (EC) is a technique used in data repair-
ing [2,3,5,9,14], for keeping track of cells having a same value in the generated
repair. We use the following notations: (1) an EC eA on attribute A is a set of
cells of the form ti[A]; (2) any cell c belongs to exactly one EC at any time,
denoted by ec(c); and (3) ξ denotes the set of all equivalence classes (ECs).

Given a relation D and a set Σ of FDs as input, ECs are built as follows.
(1) Initialization. Each cell c is in EC {c}, i.e., a singleton set containing itself.
(2) Merge equivalence classes: merging two ECs in ξ means replacing them by a
new EC that is equal to their union. Two distinct ECs eC , e′C are merged when
(i) there exist ti[C] ∈ eC , tj [C] ∈ e′C , such that ti[C] = tj [C], or (ii) there exists
X → C ∈ Σ, ti[C] ∈ eC , tj [C] ∈ e′C such that ∀D ∈ X, ec(ti[D]) = ec(tj [D]).
Note that merging ECs needs recursive computations and terminates when no
change to ξ is possible. Also note that building ECs reaches a deterministic result,
i.e., a unique fixpoint, in finite steps.
(3) Assign a target value to each EC. We get a repair of D by providing all cells
in EC eA with a same value, referred to as the target value of eA. This value is

Repairing Functional Dependency Violations in Distributed Data 447

typically set to minimize the total cost of value modifications from cell values in
eA to the target value.
Example 4. In Fig. 2(a), we show in dashed boxes ECs of D that have multiple
cells. We get a repair by ensuring all cells in the same EC have a same value.
Consider the EC that t1[city], t2[city], t3[city] belongs to; choosing “SH” as the
target value of this EC incurs one cell modification. �

Remark. As stated in former works, EC technique delays the choice of target
value as late as possible, to avoid poor local decisions. Also, EC avoids introduc-
ing values that are not meaningful, in contrast to NaiveLocal.

Equivalence Classes on a Fragmented Relation. This paper considers a
relation that is fragmented and distributed to multiple sites. Then to repair FD

violations using EC, we need to develop distributed algorithms that can build
ECs upon a fragmented relation. We find the improvement in repair quality
introduced by EC comes at a cost: it is intractable to build ECs on horizontally
partitioned data, for the optimization of distributed algorithms.
Theorem 1. On a horizontally partitioned relation, it is NP-complete to build
ECs with either minimum data shipment or minimum parallel time. �

One may want to minimize data shipment and parallel computation time
at the same time. However, these two measures may be controversial with each
other, even in FD violation detection [12]. Since parallel time is typically the
dominating factor of algorithm design, in the rest of paper, we present algorithms
to optimize parallel time. Note that data shipment time is part of the parallel
time, and hence is considered in our algorithms as well.

5 Distributed Data Repairing Based on Equivalence
Class

We present algorithms for repairing FD violations in horizontally partitioned
data, based on equivalence class (EC). In light of the intractability, our algo-
rithms are heuristic. We first provide an efficient implementation of EC to facili-
tate the design of distributed algorithms, and then give repairing algorithms and
optimization techniques that distribute ECs to multiple sites for parallelism.

5.1 Implementation of Equivalence Class

We aim to give an implementation of EC that can effectively support basic
operations on EC, and that can be extended to handle ECs distributed to multiple
sites. To this end, we implement EC in Algorithm 1 by combining the disjoint-set
forest data structure [7] with the linked list technique. Each EC is denoted by a
tree, whose nodes are cells in this EC. Since an EC is associated with a specific
attribute, each cell c is denoted by the tuple id of c in the tree. Slightly abusing
notation, we use c.id to denote the related tuple id of c.
(1) Initialization (Procedure Init). For each cell c, we build as its initial EC a

448 Q. Chen et al.

Algorithm 1. BuildEC

Procedure Init /* initialize EC for each cell c */
1 foreach cell c do
2 T [c].parent:= c.id; T [c].rank:= 0; T [c].next:= NULL; T [c].tail:= c.id;
3 insert (c,1) into T [c].HTab;

Procedure Merge(c1, c2) /* merge two trees rooted at c1, c2 */
1 if T [c1].rank < T [c2].rank then T [c1].parent := c2.id ;
2 else if T [c1].rank > T [c2].rank then T [c2].parent := c1.id;
3 else T [c1].parent := c2.id; T [c2].rank := T [c2].rank + 1;

/* W. l. o. g., below we assume the tree rooted at c1 is attached to c2. */
4 foreach (v,cnt1) in T [c1].HTab do
5 if T [c2].HTab has an entry (v,cnt2) then update it as (v,cnt2 + cnt1); ;
6 else insert (v,cnt1) into T [c2].HTab;;

7 T [T [c2].tail].next:= c1.id; T [c2].tail:= T [c1].tail;

Procedure Chase(T , T ′)/* When two ECs T , T ′ on D are merged, deal with
the possible mergence of ECs on C, via X → C (D∈X). */

1 initialize set l (resp. l′) ← all cells (tuple ids) in T (resp. T ′); L := {(l, l′)} ;
2 foreach B ∈ X\D do
3 List := L; L := ∅ ;
4 foreach (l, l′) ∈ List do /* join tuples from l, l′ on their ECs of B */
5 split it into set M :={(l1, l

′
1),(l2, l

′
2),. . . } such that l1, l2,. . . (resp. l′1,

l′2, . . .) are non-emtpy disjoint subsets of l (resp. l′), and ∀t ∈ li,
∀t′ ∈ l′i, Find(t[B]) = Find(t′[B]) ;

6 L := L ∪ M ;

7 foreach (l, l′) ∈ L do
8 foreach t ∈ l, t′ ∈ l′ do /* t, t′ agree on all ECs of X*/
9 if Find(t[C]) �= Find(t′[C]) then Merge(Find(t[C]), F ind(t′[C])) ;

Function Find(c)/* find the root of the tree that T [c] belongs to */
1 if T [c].parent �= c.id then T [c].parent := Find(T [c].parent);
2 return T [c].parent;

single-node tree T [c] with five fields: parent, rank, HTab, next and tail. parent and
rank are initialized to be c.id and 0 respectively, to be used by the union-by-rank
heuristics [7]. HTab is a Hash table, keeping distinct values and their related
counts, i.e., the number of cells having that value in this EC. Initially, we insert
an entry (c, 1) into HTab, with c as the key field of the hash table; here c denotes
the value of cell c. next and tail are initialized to be NULL and c.id, respectively;
they link to the next cell following c and the last cell in the linked list.
Complexity. It takes O(|D| × m) time for the initialization phase, where |D| is
the number of tuples, and m is the number of attributes involved in FDs.
(2) Merge equivalence classes (Procedure Merge). (i) Following [7], the union-
by-rank heuristics is applied to union two trees rooted at c1 and c2 (lines 1-3).
Intuitively, it aims to always attach the tree with a smaller rank to the root
of the tree with a larger rank. When two trees have equal rank, we arbitrarily
choose one of them as the parent and increase its rank by 1. (ii) We maintain
HTab tables when merging two ECs (lines 4-6). (iii) Finally, we maintain the

Repairing Functional Dependency Violations in Distributed Data 449

linked list by attaching the list starting from c1 to the end of the list starting
from c2 (assuming the tree rooted at c1 is attached to c2). Note that we maintain
fields parent and next for all cells, but maintain other fields only for the root cell.
Complexity. It takes O(1) for (i) and (iii), and at most O(max(i, j)) for (ii),
where i, j is the number of entries in T [c1].HTab and T [c2].HTab respectively.
(3) When to merge ECs? As stated in Section 4, there are two cases: (i) two ECs

are merged when having same values in their HTab; or (ii) the mergence of ECs

on attribute D may lead to mergence of ECs on attribute C, when there exists
an FD X → C and D ∈ X. Case (i) requires similar operations on HTab as
(2)(ii). Case (ii) is much more subtle, since it involves FD reasonings. Procedure
Chase is provided for this case. Chase first enumerates all cells (ids) in given ECs

(line 1); this can be efficiently done by following the next field from the root
cell. Chase then joins tuples (ids) from two ECs based on their ECs on attribute
B ∈ X\D one by one (lines 2-6). This requires to find the EC that a given tuple
belongs to (Procedure Find). Here, Find uses the path compression heuristics [7]
to shorten path to the root. Finally, Merge is called for each pair of t, t′ that
agrees on all ECs of X, and that does not agree on ECs of C (lines 7-9).
Complexity. We study the complexity of Chase. (a) It takes linear time in the
number of cells for line 1. (b) Hash join of set l with i tuples and set l′ with j
tuples on |X|-1 attributes takes at most (|X|−1)(i+j) Find operations. Note that
k find operations on a tree of N nodes, can be performed on a disjoint-set forest
with “union by rank” and “path compression” heuristics in its worst-case time
O(kα(N)) [7]. Here α(N) is the inverse Ackermann function, which is incredibly
slowly growing and is less than 5 for all remotely practical values of N . Hence,
α(N) can be regarded as a constant. (c) It requires in its worst case i + j Find
and i × j Merge for lines 7-9, but quite rare in practice.
Example 5. Consider the EC on attribute city that t1[city], t2[city], t3[city]
belongs to. The data structure of this EC is shown in Fig. 2(b), with valid fields,
i.e., parent, next for all cells, and rank, tail, HTab for the root cell. �

5.2 Distributed Equivalence Class for Data Repairing

We come to the distributed setting and start with the baseline algorithm, referred
to as DisBuild. In DisBuild, at each site partial ECs are built on the fragmented
relation, upon which global ECs are then built at some coordinator sites.

DisBuild follows the distributed computation model stated in Section 3. To
simplify presentation, we use remote function as a wrapper of some message
passings. At site Si, algorithm may call a remote function of the form Sj :
f(p1, . . . , pn), to be executed at another site Sj . Technically, to do so, algorithm
needs to send messages to site Sj by encoding f(p1, . . . , pn), and receives answers
via messages from Sj . There are two basic remote functions supported by all
sites. (1) r list(root) is to list all cells in the tree (EC) rooted at root; and (2)
r find(cell) is to find the EC that cell belongs to. Since root, cell are tuple ids,
the site at which remote function is to be conducted, can be readily identified.

450 Q. Chen et al.

Algorithm. Algorithm DisBuild takes as input a set Σ of FDs and partial rela-
tion Di = σFi

(D) at site Si. It finds a repair of D using ECs in four stages.
Without loss of generality, we suppose data are evenly distributed to all sites.
Stage 1: ECs are built on Di at site Si in parallel, by following Algorithm 1.
Stage 2: DisBuild merges ECs on the same attribute at different sites when
they have same values in their HTab tables. To do so, (1) DisBuild heuristically
picks a coordinator site for each attribute A involved in Σ, denoted by SA. If
possible (the number of sites is larger than the number of attributes), DisBuild
assigns a coordinator to each attribute. Otherwise, DisBuild prefers to assign a
coordinator to each of LHS attributes of FDs, and shares coordinators among
attributes when necessary. (2) Site Si identifies ECs at Si on attribute A. For
each such EC tree T rooted at cell c, Si sends (c.id, T [c].HTab) to SA. (3) For
each received (id, table) at SA, DisBuild builds as an EC a single-node tree T [c],
with (id, 0, table, NULL, id) as values for fields (parent, rank, HTab, next, tail),
respectively. We refer to ECs built in Stage 2 at SA as global ECs, while refer
to ECs built in Stage 1 as local ECs. Intuitively, DisBuild builds global ECs upon
roots of local ECs. (4) DisBuild identifies global ECs with same values in HTab at
SA, and merges them following Merge in Algorithm 1.
Data shipment. For each EC, only its root cell (id) is shipped. The number of
entries of all HTab tables shipped from site Si to coordinator SA equals the
number of distinct t[A] values in fragment Di.
Stage 3: Triggered by mergence of global ECs at SA in Stage 2 and iteratively
in Stage 3, DisBuild conducts EC computations for all FDs of the form X→C
(A∈X) at SA, and informs coordinator SC (by message passing) to merge its
global ECs on C when required. This repeats until no change happens at any
site. To do so, DisBuild extends Chase in Algorithm 1, by obtaining data via
message passings (including remote functions). Specifically, (1) To fetch all cells
in a global EC rooted at r, DisBuild first at the corresponding coordinator lists
all cells in this global EC, and then for each listed cell c, calls remote function
r list(c) to list all cells in the local EC rooted at c. (2) To find the EC that cell
c belongs to, DisBuild first calls remote function r find(c) to fetch the root r of
the local EC containing c, and then at the coordinator identifies the root of the
global EC containing r. (3) Note that all cells in a local EC are at the same site,
so are related tuples. Therefore, DisBuild introduces a single message protocol to
fetch ECs that ti[B] belongs to, for all tuples ti containing cells in a local EC on
A and for all attributes B∈{C}∪X\A, when handling X→C (A∈X). Although
this may incur more data shipment compared to the approach that fetches data
when necessary, this avoids the overhead of multiple rounds of communication
and can be partly done in parallel with Chase.
Data shipment. All messages consist of only tuple ids. For a local EC with k cells
and an FD X → C, it requires to fetch at most k × |X| ids, with a single round
of communication. Note that for an FD A → C, i.e., FD with only one LHS
attribute, all tuples in the same local EC on A must be in the same local EC on
C; in this case, only one id is required to be obtained for C.
Stage 4: For each global EC, DisBuild identifies its target value based on HTab

Repairing Functional Dependency Violations in Distributed Data 451

Fig. 3. Example of DisBuild

of the root cell, and in this global EC, identifies local ECs with value(s) other
than the target value by their HTab collected in Stage 2. DisBuild informs sites
containing those ECs to modify cell values accordingly, to produce a repair of D.
Data Shipment. We need to ship one value for each local EC with value(s) dif-
ferent from the target value.
Example 6. (1) In Fig. 3(a), we show local ECs at site S1, S3 and global ECs on
level after Stage 2. (2) For EC computation via FD title, level → salary in Stage
3, DisBuild lists all cells in the global EC, and identifies ECs that ti[B] belongs
to, for i∈[1, 2, 4, 5] and B ∈ {title, salary}, by local computations and message
passings. This causes mergence of global ECs at the coordinator site for salary,
shown in Fig. 3(b). Here we suppose t4 is the root of the local EC containing
t4, t5 at site S3. (3) Finally, a target value is selected for this EC in Stage 4.
Suppose 80K is the target value, site S3 is required to be informed of this. �

Remark. (1) DisBuild distributes to multiple sites computations for (a) different
fragments in Stage 1, (b) different attributes in Stage 2 and 4, and (c) FDs with
different LHS attributes in Stage 3. (2) DisBuild is a distributed implementa-
tion of data repairing technique with EC. Therefore, DisBuild is guaranteed to
terminate in finite steps and correctly find a repair.

5.3 Optimization Strategies

We next introduce two optimization strategies.

Fully Distributed Mode. A limitation of DisBuild is that it requires to visit
coordinators for most operations. Alternatively, we present another approach
that fully distributes computations to all sites, denoted as FullDis. FullDis is
based on fully distributed ECs: upon mergence of ECs, related fields of ECs

are modified (excluding HTab) following Merge of Algorithm 1, with trivial data
shipment. After that, some cell may have cell at other site as its parent (similarly
for tail and next); this enables FullDis to tune basic operations. Specifically, by
following parent, when r find(c) executed at site Si reaches a cell c′ at other site,
say Sj , FullDis in turn calls r find(c′) at Sj ; this continues until reaching the
site containing the root of EC that c belongs to. In this way, FullDis distributes
computations to more sites other than coordinators. Better, the path compres-
sion heuristics in Find helps reduce the number of sites to be visited. Similarly,
r list(r) is conducted by following next, possibly through multiple sites.

452 Q. Chen et al.

Fig. 4. Example of optimizations

Example 7. As shown in Fig. 4(a), ECs on level at site S1, S3 are merged to
form a distributed EC rooted at t1. One can find the root of this EC and list cells
in this EC by following fields parent, next, respectively. �

More specifically, FullDis is also conducted in four stages, but differs from
DisBuild in Stages 2-4, as follows.

Stage 2: When there are abundant sites, FullDis may employ multiple coordi-
nators for attribute A, whose values are from an ordered domain. Given k as the
number of coordinators for A, FullDis works as follows. (1) As a preprocessing
step, FullDis mines some Di for values v1 < v2 < · · · < vk−1 as boundary values
to partition the domain of A. It then identifies k coordinators SA(i)(i ∈ [1, k]),
and informs all sites of boundary values and coordinators. (2) At site Sj in par-
allel, for each EC on A rooted at cell r, FullDis ships r.id and σG(i)(T [r].HTab)
to SA(i) when σG(i)(T [r].HTab) is not empty. Here σG(i)(T [r].HTab) is a hori-
zontally partitioned fragment of T [r].HTab: (v,cnt)∈ σG(i)(T [r].HTab) if (i) i=1
and v < v1, or (ii) i = k and v ≥ vk−1, or (iii) i ∈ [2, k − 1], and vi−1 ≤ v < vi.
Note that roots of some ECs may be shipped to multiple coordinators, but each
with disjoint partial HTab tables. (3) Coordinators in parallel, merge collected
ECs based on HTab values, using the aforementioned distributed ECs.

Stage 3: FullDis employs sites other than coordinators, for EC computations via
FD. FullDis can delegate such tasks to any idle site, by sending it a message with
root ids of ECs that are merged. This site then identifies involved FDs based on
LHS attributes, and fetches required data by visiting the distributed ECs.

Stage 4: FullDis employs more sites to determine target values for ECs. (1) Each
site Si in parallel identifies ECs at Si whose root cell r is at other site, and ships
HTab table to the site at which r resides (HTab tables of ECs with the same
root are firstly merged locally). Recall that FullDis does not modify HTab when
merging ECs in Stage 2 and 3. (2) For ECs rooted at Si, Si determines target
values for them by considering local HTab and HTab received from other sites.

Remark. As verified by our experiments (Section 6), FullDis allows a higher
degree of parallelism than DisBuild in Stages 2-4. Indeed, even when we can-
not afford multiple coordinators for one attribute in Stage 2, distributing EC

computations to more sites in Stage 3 is proved to be very effective by itself.

Build EC Following Dependency Graph. Former approaches are eager in
that they perform mergence of ECs via FD as early as possible. This maximizes

Repairing Functional Dependency Violations in Distributed Data 453

parallelism but may incur unnecessary computation in certain cases. Consider
Example 1. t2 from site S1 and t4, t5 from site S3 will be put into the same EC

on salary via FD title, level → salary. However, this is doable only when t2, t4, t5
are already in the same EC on title (level); the aforementioned EC computation
via FD may fail if it is conducted before ECs on title or level are merged. This
false negative is possible because DisBuild deals with ECs on title and level at
different sites in parallel. Although DisBuild will successfully conduct mergence
of ECs eventually, we see it may incur unnecessary computations in the process.

We present an approach that may avoid some unnecessary computations,
denoted as SerBuild. SerBuild serializes some EC computations via FD, by follow-
ing the dependency graph. As a preprocessing step, SerBuild builds dependency
graph at a selected master site Sm. In the graph, (a) each attribute or (b) each
set of attributes that are LHS attributes of a same FD, is treated as a (composite)
vertex, and there is an edge from LHS attribute(s) to RHS attribute for each
FD, and an edge from attribute A to each composite vertex containing A. As an
example, we show the dependency graph for Example 1 in Fig. 4(b).

At master site Sm, SerBuild identifies edges (FDs) that start from composite
vertex, and that are not part of strongly connected components in linear time [7].
SerBuild differs from DisBuild in Stage 3 when handling these FDs. Specifically,
for each of these FDs in the form of X → A, SerBuild performs mergence of ECs

on A via this FD only after mergence of all attributes B ∈ X. To do so, master
site Sm communicates with coordinators sites, to monitor the progress of EC

computation at those sites, and to guide some sites for the next step.

Remark. Through experiments (Section 6), we find SerBuild avoids some unnec-
essary computations, without affecting parallelism.

6 Experimental Study

Experimental Setting. We use 8 machines (sites), each with 2.53GHz Intel
Xeon X3440 CPU, 4GB memory and Windows 7, connected by a local area
network. Each experiment was run 5 times and the average is reported here.

As noted earlier, our algorithms provide a distributed implementation of EC

technique and produce the same repair as the centralized approach. Since the
effectiveness of EC in terms of repair quality is well demonstrated by former
works, we omit the results concerning repair quality, e.g., precision, here.
Data. (1) Real-life HOSP data is taken from US Department of Health & Human
Services. We obtain a relation having more than 200K tuples with 16 attributes
(https:// data.medicare.gov/data/hospital-compare) and design 8 FDs for it.
(2) Synthetic Person data combines the schema of Fig. 1 with that of the UIS
Database generator [3,21]. We create a relation with 10 attributes, and populate
it using a modified version of the UIS Database generator.
Algorithms. We implement the following algorithms in Java: distributed repair-
ing algorithm DisBuild, and optimizations FullDis and SerBuild. For comparison,
we also implement a naive approach Naive, which collects all tuples at a single
coordinator site, and then repairs data using centralized equivalence class.

454 Q. Chen et al.

 0
 5

 10
 15
 20
 25
 30

2 4 6 8

D
at

a
S

hi
pm

en
t(

M
B

.)

Number of Sites

Naive
DisBuild

(a) shipment vs |S|

 0
 10
 20
 30
 40
 50
 60
 70

2 4 6 8

T
im

e(
se

c.
)

Number of Sites

Naive
DisBuild

(b) time vs |S|

 0
 5

 10
 15
 20
 25
 30
 35
 40

2 4 6 8

T
im

e(
S

ec
.)

Number of Sites

Total Time
Stage 1

Other

(c) time analysis

 0
 5

 10
 15
 20
 25
 30

 12 14 16 18 20

D
at

a
S

hi
pm

en
t(

M
B

.)

Number of Tuples(10K)

Naive
DisBuild

(d) shipment vs |D|

 0
 10
 20
 30
 40
 50
 60
 70

 12 14 16 18 20

T
im

e(
se

c.
)

Number of Tuples (10K)

Naive
DisBuild

(e) time vs |D|

 0
 100
 200
 300
 400
 500
 600

2 4 6 8

T
im

e(
se

c.
)

Number of Sites

Naive
DisBuild

(f) time vs |S|

 0

 200

 400

 600

 800

 1000

 8 12 16 20 24

T
im

e(
se

c.
)

Number of Tuples (100K)

Naive
DisBuild

(g) time vs |D|

 0
 100
 200
 300
 400
 500
 600
 700

5 7 9 11

T
im

e(
se

c.
)

Number of FDs

Naive
DisBuild

(h) time vs |Σ|

 0

 5

 10

 15

 20

5 6 7 8

T
im

e(
se

c.
)

Number of FDs

DisBuild
FullDis

(i) time vs |Σ|

 0
 5

 10
 15
 20
 25
 30

 8 12 16 20 24

T
im

e(
se

c.
)

Number of Tuples (100K)

DisBuild
FullDis

(j) time vs |D|

 0

 20

 40

 60

 80

 100

8 12 16 20 24D
at

a
S

hi
pm

en
t(

10
K

B
.)

Number of Tuples(100K)

DisBuild
SerBuild

(k) shipment vs |D|

 0

 50

 100

 150

 200

8 12 16 20 24

T
im

e(
S

ec
.)

Number of Tuples(100K)

TT of DisBuild
TT of SerBuild
PT of DisBuild
PT of SerBuild

(l) time vs |D|
Fig. 5. Experimental Results

All experiments are controlled by two parameters: (a) |D|: the number of
tuples; and (b) |S|: the number of (fragments) sites. We uniformly distribute |D|
tuples to |S| sites in all experiments.

Exp-1. Using HOSP data, we compare the performance of DisBuild against Naive.
Varying |S|. By fixing |D| = 200K, varying |S| from 2 to 8, Fig. 5(a) shows
results of total data shipment. This comparison favors Naive, since shipments in
DisBuild are distributed among sites. We see the following. (1) Data shipments
of all algorithms increase with larger |S|, as expected. (2) DisBuild consistently
outperforms Naive. As stated earlier, most shipments in DisBuild consist of only
tuple ids, and for the most expensive part of shipment conducted in Stage 2,
DisBuild ships only distinct values in each fragment.

Fig. 5(b) shows the parallel time of all algorithms. DisBuild consistently out-
performs Naive, and the gap increases as |S| increases; it takes less time for
DisBuild but more time for Naive with larger |S|. Note that Naive always takes
the same time for EC computation at its coordinator, while more time for data
shipment with the increase of |S|. To further analyze the results of DisBuild, in
Fig. 5(c), we decompose its time into two parts: time for Stage 1, and time for
other stages. We see that the former time decreases while the latter one increases
as |S| increases, as expected. Specifically, DisBuild leverages more sites to signif-
icantly reduce the time for Stage 1 from 32 Sec. to 6 Sec., and the time for other
stages slightly increases from 4 Seconds to 6 Seconds.

Repairing Functional Dependency Violations in Distributed Data 455

Varying |D|. We then evaluate the scalability of algorithms with |D|. By fixing
|S| = 8, varying |D| from 120K to 200K in 20k increment, Fig. 5(d), 5(e) show
the total data shipment and parallel time. As expected, the required shipments
and times of all algorithms increase as the data size increases. Compared to
Naive, DisBuild scales better with |D|, especially in the parallel time.

Exp-2. Using Person data, we compare DisBuild against Naive on large data sets,
in terms of parallel time. We use one more parameter |Σ| to vary the number
of FDs ∈ Σ. We set |S| = 8, |D| = 1,600K, |Σ| = 7 by default, and vary one
parameter in each of Fig. 5(f), 5(g) and 5(h), respectively.

Varying |S|. By varying |S| from 2 to 8, Fig. 5(f) confirms our observations on
HOSP data. DisBuild outperforms Naive in reducing parallel time by 48% to 85%,
as |S| increases. We find in DisBuild, the time for Stage 1 decreases from 301
Sec. to 68 Sec., and the time for other stages slightly increases from 8 Sec. to 14
Sec. (not shown in figures). The time for Stage 1 remains the dominant factor,
and can be effectively optimized with the increase of |S|.
Varying |D|. Fig. 5(g) shows experimental results when |D| increases from 800k
to 2,400k, in 400k increment. We see that DisBuild scales well with |D|: its parallel
time increases from 38 Sec. to 135 Sec., as |D| triples.

Varying |Σ|. We increase |Σ| from 5 to 11, and report results in Fig. 5(h).
As expected, the increase of |Σ| has a negative impact on the running time.
Compared to Naive, DisBuild scales better. This is because DisBuild distributes
computations concerning Σ to multiple sites, both in Stage 1 and in Stage 3.

Exp-3. We compare FullDis against DisBuild. We use 8 machines and get a
vertically fragmented Person data with 7 attributes. We assign a coordinator to
each attribute, and use one additional machine as a worker site, to be used by
FullDis in Stage 3 for EC computation via FD. In this experiment, we report
parallel time of Stages 2-4; FullDis differs from DisBuild in these states.

Varying |Σ|. We fix |D| = 1,600K, increase |Σ| from 5 to 8, and report results
in Fig. 5(i). We see that FullDis outperforms DisBuild, and the gap widens when
|Σ| increases. Indeed, the time of FullDis is about [73%, 90%] of the time taken
by DisBuild. With the increase of |Σ|, we find several sites become bottlenecks in
DisBuild: each of these sites is used as the coordinator for an attribute that is LHS
attribute of multiple FDs. These sites are required to conduct EC computations
for all related FDs in DisBuild, and hence take longer time than other sites.
FullDis avoids this by distributing such computations to other idle sites, e.g., the
worker site, or sites as coordinators only for RHS attributes of FDs. Combining
these with the fully distributed ECs, FullDis further improves parallelism.

Varying |D|. Fig. 5(j) shows experimental results when |D| increases from 800k
to 2,400k and |Σ| = 8. FullDis is faster than DisBuild and scales well with |D|.
Exp-4. We compare SerBuild against DisBuild using Person, by fixing |S| = 8,
|Σ| = 7 and varying |D| from 800k to 2,400k. Among the 7 FDs, two of them
have multiple LHS attributes. We report results of Stage 3, since SerBuild differs

456 Q. Chen et al.

from DisBuild in this stage. Fig. 5(k) shows that SerBuild requires less shipment
compared to DisBuild. All shipments in Stage 3 are conducted to fetch data for EC

computation via FD; this implies that SerBuild avoids some of the unnecessary
computations. Also note that there are small data shipments in Stage 3, since
only tuple ids are shipped. Fig. 5(l) shows parallel time (PT), and in addition,
shows total computation time (TT), which is the sum of computation times at all
sites. We find SerBuild has similar PT as DisBuild, and more evidently, improves
TT by 5% to 8%. SerBuild avoids unnecessary computations at some sites, and
those sites proceed to other computations, without affecting parallelism.

7 Conclusions

We have studied the complexity of distributed data repairing (with equiva-
lence class), presented algorithms and optimizations for distributed repairing
based on EC, and experimentally verified our approach. We are currently exper-
imenting with more real-life datasets, extending algorithms to support vertically
partitioned relations, developing distributed repairing techniques for more con-
straints, e.g., conditional functional dependencies [11].

Acknowledgments. This paper is supported by Shanghai technology innovation
project 14511107403.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD (2005)

3. Beskales, G., Ilyas, I., Golab, L., Galiullin, A.: Sampling from repairs of conditional
functional dependency violations. VLDB Journal 23(1), 103–128 (2014)

4. Beskales, G., Ilyas, I., Golab, L., Galiullin, A.: On the relative trust between incon-
sistent data and inaccurate constraints. In: ICDE (2013)

5. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency
and accuracy. In: VLDB (2007)

6. Chu, X., Ilyas, I., Papotti, P.: Holistic data cleaning: Putting violations into con-
text. In: ICDE (2013)

7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT
Press (2009)

8. Chiang, F., Miller, R.: A unified model for data and constraint repair. In: ICDE
(2011)

9. Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A., Ilyas, I., Ouzzani, M.,
Tang, N.: NADEEF: a commodity data cleaning system. In: SIGMOD (2013)

10. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI (2004)

11. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-
dencies for capturing data inconsistencies. In: TODS 33(2) (2008)

Repairing Functional Dependency Violations in Distributed Data 457

12. Fan, W., Geerts, F., Ma, S., Muller, H.: Detecting inconsistencies in distributed
data. In: ICDE (2010)

13. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Towards certain fixes with editing rules
and master data. VLDB Journal 21(2), 213–238 (2012)

14. Fan, W., Li, J., Tang, N., Yu, W.: Incremental detection of inconsistencies in
distributed data. TKDE 26(6), 1367–1383 (2014)

15. Kolahi, S., Lakshmanan, L.: On approximating optimum repairs for functional
dependency violations. In: ICDT (2009)

16. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1996)
17. Ozsu, M., Valduriez, P.: Principles of Distributed Database Systems (2nd edition).

Prentice-Hall (1999)
18. Song, S., Cheng, H., Yu, J., Chen, L.: Repairing vertex labels under neighborhood

constraints. In: VLDB (2014)
19. Wang, J., Tang, N.: Towards dependable data repairing with fixing rules. In: SIG-

MOD (2014)
20. Yakout, M., Elmagarmid, A., Neville, J., Ouzzani, M., Ilyas, I.: Guided data repair.

In: VLDB (2011)
21. UIS data generator. http://www.cs.utexas.edu/users/ml/riddle/data.html

http://www.cs.utexas.edu/users/ml/riddle/data.html

GB-JER: A Graph-Based Model
for Joint Entity Resolution

Chenchen Sun(B), Derong Shen, Yue Kou, Tiezheng Nie, and Ge Yu

College of Information Science and Engineering,
Northeastern University, Shenyang, China

dustinchenchen sun@163.com,

{shenderong,kouyue,nietiezheng,yuge}@ise.neu.edu.cn

Abstract. To resolve multiple classes of related entity representations
jointly promotes accuracy of entity resolution. We propose a graph-based
joint entity resolution model: GB-JER, who exploits a dynamic entity
representation relationship graph. It contracts the neighborhood of the
matched pair, where enrichment of semantics provides new evidences for
subsequent entity resolution iteratively. Also GB-JER is an incremental
approach. The experimental evaluation shows that GB-JER outperforms
existing the state-of-the-art joint entity resolution approach in accuracy.

Keywords: Joint entity resolution · Similarity propagation · Structure-
based similarity · Entity representation relationship graph

1 Introduction

Entity resolution (ER) is a key aspect of data quality and is very important to
data integration and data mining [1,6,17]. ER identifies which entity represen-
tations correspond to the same real-world entity in databases. Traditional ER
approaches rely on attribute-based similarity (ABS), focusing on a single class of
representations [1,6]. In the big data era, data are related mostly, such as cita-
tion data including papers, authors & venues and movie data including movies,
actors & directors.

Example 1. In the toy database of Fig. 1., (a) shows the schema correspond-
ing to a set of representations in (b). The schema includes three classes: paper,
author and venue, each with a set of attributes. The paper class includes a simple
attribute “name” and two reference attributes “writtenBy” and “publishedIn”,
linking to author and venue respectively. In Fig. 1. (b), the representation set
contains 6 paper representations, 13 author representations and 6 venue repre-
sentations. For example, c1 has a title “Incremental entity resolution”, which is
written by a1 & a2 and is published in v1. Fig. 1. (c) shows the ground truth
of ER result of the set in (b). Given (a) and (b), how to get (c) is a joint ER
problem.
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 458–473, 2015.
DOI: 10.1007/978-3-319-18120-2 27

GB-JER: A Graph-Based Model for Joint Entity Resolution 459

The accuracy of result over related data by traditional ER approaches is
limited for such approaches don’t exploit relationships among different repre-
sentations. In Fig. 1., traditional ER approaches resolve papers, authors and
venues separately, but can’t utilize relationships to promote accuracy. They (1)
can’t resolve a1 & a3 because a3 is an incomplete representation and (2) can’t
decide whether a5 match a1 or a12 because a5 is an ambiguous representation
for a1 & a12. There exist a few ER approaches utilizing relationships, some of
which resolve multiple classes of representations jointly. However, existing joint
ER approaches can’t handle the two problems above at the same time. Getoor
et al. [2] utilize co-occurrences of authors in citation dataset to resolve authors,
which handles problems like (1) but not (2). Dong et al. [5] build a dependent
graph with candidate representation pairs to do joint ER, which handles prob-
lems like (1) but not (2). These two approaches utilize direct relations between
representations. Kalashnikov et al. [10,14] exploits entity relationship graph to
resolve a single class of representations, which handles problems like (2) but not
(1). Besides, nowadays data updates faster than past so that incremental ER
approaches are necessary.

paper {title, writtenBy, publishedIn}; author {name}; venue {name}.
(a) Schema

Paper:
p1 {"Incremental entity resolution", {a1, a2}, v1 }; p2 { "Incremental ER", {a3, a4}, v2 };
p3 { "Graph partition", {a5, a6 }, v3 }; p4 {"Big graph partition", {a7, a8 }, v4 };
p5 {"Graph data management", {a9, a10 }, v5 }; p6 {"Cliques in graph", { a11, a12, a13}, v6}.
Author:
a1 {"Josh Doe"}; a2 {"Steven Pelley"}; a3 {"J. "}; a4 {"S. Pelley"}; a5 {"J. Doe"};
a6 {"A. Widom"}; a7 {"Alex Widom"}; a8 {"Jenny Brown"}; a9 {"Jen. Brown"};
a10 {"M. Jacob"}; a11 {"Jennifer Brown"}; a12 {"Jonathan Doe"}; a13 {"Marie Jacob "}.
Venue:
v1 {"ICDE"}; v2 {"International cof on data engineering"}; v3 {"CIKM"};
v4 {"EDBT"}; v5 {"dasfaa"}; v6 {"kdd"}.

(b) Representation set
{<p1, p2>, <p3>, <p4>, <p5>, <p6>, <a1, a3>, <a2, a4>, <a5, a12>, <a6, a7>,
<a8, a9,a11>, <a10,a13>, <v1, v2>, <v3>, <v4>, <v5>, <v6>}

(c) Ground truth

Fig. 1. Motivational example

A relational dataset consisted of multiple classes of related representations
can be mapped to an entity representation relationship graph (ERRG), which
retains corresponding relational schema and holds topology. With an ERRG,
it’s convenient to fully exploit semantic relationships among representations. The
similarity between two representations can be measured via structure in addition
to attributes that it helps solve problems like (1) and (2). The structure similarity
can be measured by combining the paths between representations and schemata
of links on paths. When two representations match, they are merged and the
neighborhood is contracted, which enriches semantics. In Fig. 1. after p1 and p2
are resolved, the two pairs a1 & a3 and a2 & a4 are more likely to match. This
is called similarity propagation, which helps solve problems like (1). With joint

460 C. Sun et al.

ER going on, the ERRG evolves and semantics of it become richer and richer
that promotes subsequent ER. However, such an iterative process results in a
higher complexity. A pair of representations may be compared a few times until
they match or neighborhood around them no longer changes. To save cost, the
resolution order should be optimized so that the most probably duplicate pairs
should be resolved preferentially. Getoor’s and Dong’s approaches are also faced
with high complexities but they don’t handle it well. Besides, when increment
comes, the existing ERRG can be utilized to do incremental ER with less time
cost but no accuracy loss. This paper makes contributions as following:

– We propose a graph-based, iterative joint entity resolution model: GB-JER.
It fully exploits a gradually converged ERRG and iteratively utilizes dynamic
relationships among representations to jointly resolve multiple classes of rep-
resentations con-currently.

– Experimental evaluation demonstrates that GR-JER can improve accuracy
of joint ER.

In section 2, we present the problem formalization and entity representa-
tion relationship graph; as the core, section 3 specifies GB-JER model including
joint match, joint merge & similarity propagation and also we discuss two extra
aspects of GB-JER; section 4 evaluates the proposed model; section 5 introduces
related work; section 6 concludes.

2 Preliminaries

2.1 Problem Formalization

In our model, a schema contains a set of classes, each of which includes a set of
attributes. Each instance of a class is an entity representation. The attributes
are categorized as: simple attributes, whose values are simple types like string
and integer; and reference attributes, whose values are references to other repre-
sentations. Like example 1, given a set of multiple classes of representations and
its corresponding schema , how to work out the ER result is a joint ER problem.
Specifically, we try to solve three types of problems categorized as following:

– type 1, incomplete representations such as problem (1) in example 1;
– type 2, ambiguous representations such as problem (2) in example 1;
– type 3, resolution order optimization that the most probable duplicate pairs

should be resolved preferentially and results in lower cost.

Unlike traditional ER, joint ER takes relationships into consideration. Joint
ER can be solved by a pair of joint match operation and joint merge operation. A
joint match operation dependently decides whether two representations match.
The match of two representations is affected both by attribute-based similarities
and the ER results of representations related to them. A joint merge operation
merges two matched representations into a complex representation (denoted as
〈∗, ∗〉) and let the new representation inherit two original ones’ relationships. A
pair of joint match and joint merge operations iteratively work until the joint
ER is done.

GB-JER: A Graph-Based Model for Joint Entity Resolution 461

2.2 Entity Representation Relationship Graph

Definition 1 (Entity Representation Relationship Graph (ERRG)).
Given a schema S = (N,Γ), where N is a set of classes and Γ is a set of rela-
tions, an entity representation relationship graph is a directed graph G = (R,L),
with a representation class mapping function ϕ : R → N and a link type map-
ping function ψ : L → Γ . For each representation r ∈ R, ϕ(r) ∈ N ; for each
link denoted as l = l(ri, rj) and l ∈ L, ψ(l) ∈ Γ .

As a template for an ERRG [17,18], the schema graph depicts the classes and
relations among classes. For a relation γ from class μ1 to class μ2, denoted as
μ1

γ−→μ2, μ1 are source class and μ2 are target class, denoted as γ.S and γ.T . γ can
be also denoted as μ1 → μ2 or γ(μ1, μ2) or (μ1, μ2). The inverse relation naturally
exists as μ1

γ−1

−−→μ2. Most of times, γ and γ−1 are not equal unless μ1 and μ2 are
the same class and γ is symmetric. Citation network is an ERRG and its schema
graph exists. In Fig. 1. (a), there are paper (P), author (A) and venue (V); rela-
tions are “write” & “writtenBy” between author and paper, and “publishedIn”
& “publish” between paper and venue. Its corresponding schema graph is showed
in In Fig. 2. Since usually γ and γ−1 are not equal, different weights should be
given to them when measuring representations’ similarity. For example, in aver-
age a venue corresponds to 56.8 papers and a paper corresponds to one venue in
a database. If we know two papers’ venues are the same, the probability of they
matching is denoted prob(papers|venues); the opposite situation is denoted as
prob(venues|papers). Intuitively, prob(papers|venues) ≤ prob(venues|papers).
We propose unidirectional related weight to reflect such differences, denoted
as urw(γ), implying γ’s importance to similarity computation. The unidirec-
tional related weight can be set by domain experts or by experiments. In Fig. 2.,
urw(venue → paper) = 1/56.8 and urw(paper → venue) = 1/1.

Fig. 2. Examplary citation schema graph

Definition 2 (Schema Path). Given a schema S = (N,Γ), a schema path ρ is
denoted as ρ(μ0, μk) = μ0

γ0−→μ1
γ1−→μ2 · · · μk−1

γk−1−−−→μk, which defines a composite
relation γ = γ0 ◦γ1 · · ·◦γk−1 between μ0 and μk where ◦ denotes the composition
operator on relations. The length of ρ is number of relations: k.

A schema path can be denoted with classes if there is no multiple relations
between two classes, such as ρ = (μ0μ1 · · · μk). In Fig. 2., schema path from
author to venue with length two is A

write−−−→ P
publishedIn−−−−−−−−→ V or APV . The

reverse path of ρ is denoted as ρ−1, which defines a reverse relation of γ. A
representation path p = (r0r1 · · · rk) is a path instance of ρ, where ϕ(ri) = μi

and ψ(li(ri, ri+1)) = γi. It’s denoted as ρ(p) = (ϕ(r0), ϕ(r1), · · · , ϕ(rk)) and
p ∈ ρ.

462 C. Sun et al.

Definition 3 (Relatedness of a schema path). Given a schema path ρ =
(μ0μ1 · · · μk), its relatedness is,

rel(ρ) =
k−1∏

i=0

urw(μi, μi+1) (1)

3 The Graph-Based Joint Entity Resolution Model

3.1 Overview

The graph-based joint entity resolution model (GB-JER) iteratively exploits a
gradually converged ERRG, fully utilizing both direct and indirect relationships
among representations, to jointly resolve multiple classes of related representa-
tions. It consists of three core modules (joint match, joint merge and similarity
propagation) and an initialization module; it includes an ERRG and a candidate
queue Q. It takes a dirty related dataset as input and outputs a clean one.

The initialization includes ERRG initialization and candidate queue initial-
ization. A dirty ERRG is built from the input dataset and consists of multiple
separate sub-ERRGs. The Canopy blocking technology [12] is used to produce
blocks, each of which contains similar representations from a single class. In each
block initial candidate representation pairs are worked out by Cartesian product,
called type I candidate pairs. A candidate pair is denoted as (∗, ∗). A candidate
queue Q is used to keep the order of candidate pairs. Q is a priority queue, in
which each node contains a candidate pair and a priority. The initial candidate
pairs are inserted into Q with the same but low priories in a partially random
order, where candidate pairs from related representations are put closely so that
GB-JER resolves related representations together as soon as possible. During
the joint ER procedure, priorities of candidate pairs may be switched because
of similarity propagation, which is an optimization of resolution order.

GB-JER
Joint Match Joint Merge Similarity Propagation

Promote ERRG’s convergence
& Enrich semantics

Promote subsequent
joint ER ERRG

Fig. 3. Iterative process of GB-JER

GB-JER includes three iterative steps: (a) The first pair from Q is sent to the
joint match. If the pair matches, go to next step; otherwise, repeat the same pro-
cedure. The joint match hires a hybrid similarity, combining an attribute-based
similarity (ABS) and a structure-based similarity (SBS), to measure the pair’s
similarity. We propose a schema path based similarity computation algorithm

GB-JER: A Graph-Based Model for Joint Entity Resolution 463

to compute SBS. (b) The joint merge merges the matched pair and contracts
the neighborhood. (c) The contraction change the neighborhood’s topology and
increases SBSes of some pairs, triggering re-computation. As shown in Fig. 3.,
the above three steps form an iterative procedure. With the procedure going
on, the separate sub-ERRGs are merged together gradually. Finally, the Q is
empty and the ERRG is stable and clean. GB-JER output the clean ERRG as
the result of joint ER.

3.2 Joint Match

Joint Match Operator. Given a dirty ERRG G(R,L), where R = {Rt}T
t=1 is

a representation set including multiple classes of related representations, Rt is
t-th subset of a single class and L ⊆ R ∗ R is the link set of R, ri, rj ∈ R, the
hybrid similarity between them is,

simhyb(ri, rj) = (1 − δ) ∗ simabs(ri, rj) + δ ∗ simsbs(ri, rj) (2)

simabs is the attribute-based similarity; simsbs is the strucutre-based similarity;
δ is the balance weight, which is set by users upon the importance of each simi-
larity. simabs is chosen from existing ABS algorithms [3]; we propose a schema
path based similarity computation algorithm to compute simsbs.

The joint match operator computes simhyb(ri, rj) and compares it with a
given match threshold θm, where if simhyb(ri, rj) ≥ θm, they match; otherwise,
they fail to match. The match threshold θm is set by domain experts or by
experiments.

A Schema Path Based Similarity Computation Algorithm. There are
two types of algorithms to compute similarity of two nodes via structure on a
graph: common neighbors based algorithms and paths based algorithms [11]. The
proposed schema path based similarity computation algorithm belongs to the
second type that takes both direct and indirect relationships into consideration.
Since a schema path is unidirectional, we use a variant of random walk [13] that
walks along the schema path and its reverse path to get a symmetric relatedness
of two nodes.

Definition 4 (Relatedness of two representations along a representa-
tion path). Given ri, rj ∈ R, i < j and a representation path p = (riri+1 · · · rj),
then the relatedness of ri, rj along p is,

rel(ri, rj)p = rel(ri, rj)p−1 = 0.5 ∗ (rel(p) + rel(p−1)) (3)

rel(p) = probrw(p) ∗ rel(ρ(p)) (4)

Equation 3 shows that the relatedness of ri, rj along p or p−1 is symmetric. In
equation 4, rel(p) is the relatedness of the representation path p, which combines
the random walk probability along p on G, probrw(p) and relatedness of its
schema path ρ(p), rel(ρ(p)).

464 C. Sun et al.

In order to compute the SBS of two representations in an ERRG, we sum up
relatedness along all paths between them. Notice that too long paths contribute
little to the SBS but cost much. To balance between cost and preciseness, we
limit lengths of paths in consideration. The path set Plen(ri, rj) includes all
paths between ri and rj whose length is no longer than len. In this paper,
len = 8.

Definition 5 (Schema path based similarity). Given ri, rj ∈ R, i < j, then
the schema path based similarity between them is,

simpath(ri, rj) =
∑

p∈Plen(ri,rj)

rel(ri, rj)p (5)

Problem (2) in section 1 is whether a5{“J. Doe”} matches a1{“Josh Doe”}
or a12{“Jonathan Doe”}. ABS ER approaches and Dong’s approach can’t solve
it. We show how to solve problem (2) with schema path based similarity, which
demonstrate its usefulness in solving type 2 problems. At start time, since ABSes
of (a5, a1) and (a5, a12) are almost the same and the three representations are in
three separate sub-ERRGs so their SBSes both are 0, it’s impossible to decide
which pair matches. However, when the joint ER procedure runs into a cer-
tain phase that the neighbors around the three representations are resolved
and the neighborhoods become denser, it’s highly possible to solve the prob-
lem via schema path based similarity. As Fig. 4. shows, two paths between
a5 and a12 exist: (a5, c3, 〈a6, a7〉, c4, 〈a8, a9, a11〉, c6, a12) and (a5, c3, 〈a6, a7〉, c4,
〈a8, a9, a11〉, c5, 〈a10, a13〉, c6, a12); a1 and a3 are merged into a complex repre-
sentation 〈a1, a3〉 and no path exists between a5 and 〈a1, a3〉. Now GB-JER
combines both ABS and schema path based similarity to decide that a5 and a12

match but a5 and 〈a1, a3〉 do not.

c5 v5

a5

c3v3

c1,c2

a1,a3

v1,v2

a2,a4
c6

a6,a7 a12a8,a9,a11 a10,a13

v6

c4 v4

Fig. 4. A Joint ER example with schema path based similarity

3.3 Joint Merge

After a pair of representations match, the joint merge operator merges them as
a complex representation and contracts the neighborhood around them, which
makes it denser and enriches semantics. Re-computations then are triggered
around the neighborhood, called similarity propagation. Joint merge and sim-
ilarity propagation are closely related that they together make the ERRG a
dynamic one.

GB-JER: A Graph-Based Model for Joint Entity Resolution 465

Principle of representation merge: information amount should never change
during representation merge. We propose a representative attribute value based
merge method that it chooses the most representative value among multiple
values from different original representations per attribute. This method saves
both time cost and storage cost compared to the common method that keep all
values per attribute [1].

In addition to representation merge, the neighborhood around the merged
pair is contacted.

Definition 6 (Neighborhood contraction). Given ri, rj ∈ R, they match
and are merged as 〈ri, rj〉, then connect all links from ri and rj to 〈ri, rj〉 and
remove duplicate links.

As shown in Fig. 5., when c1 and c2 are merged as 〈c1, c2〉, who inherits all
links (l1, l2, l3, l4, l5, l6) connected to c1 and c2, there exists two duplicate links
l5 and l6 between 〈c1, c2〉 and 〈v1, v2〉. When duplicate links exist, randomly
remove the redundant ones but keep one. In Fig. 5., l5 is kept.

(a) (b) (c)

a1

a2

c1

l1
l2 a3

a4

c2

l3
l4

v1,v2l5 l6
a1

a3

l1
l3 a2

a4

l2
l4

v1,v2

l5
c1,c2

a1,a3 l1 a2

a4

l2
l4

v1,v2

l5
c1,c2

Fig. 5. An example of joint merge & similarity propagation

3.4 Similarity Propagation

When the joint merge of a matched pair is done, semantics enrichment provides
positive evidences for ER in the neighborhood. As shown in Fig. 5., after joint
merge of the pair (c1, c2), SBSes of the pairs (a1, a3) and (a2, a4) increase so that
they should be resolved preferentially later. Besides links, paths also propagate
similarity, such that co-author APA is a strong relation.

Definition 7 (Similarity propagation). Given that ri, rj ∈ Rx, rg, rh ∈ Ry,
1 ≤ x, y ≤ T , ri and rj match and are merged as 〈ri, rj〉, if ρ(p(ri, rg)) =
ρ(p(rj , rh)), rel(ρ(p(ri, rg))) = rel(ρ(p(rj , rh))) ≥ θsp and rg, rh satisfy the
Canopy block requirement, then (rg, rh) is a type II candidate pair; specially,
if (rg, rh) fail to satisfy the Canopy blocking requirement because of attribute
values incompletion, also set them as a type II candidate pair.

In this paper, the upper bound of the length of schema path in definition 7 is
set to 2. θsp is the similarity propagation threshold. The special setting in def-
inition 7 ensures that duplicate representations can match via structure even
if their attribute values are incomplete, which solves type 1 problems in sub-
section 2.1. Although in problem (1) of section 1 a1 and a3 are not a type I

466 C. Sun et al.

candidate pair because of incomplete name values, a1 and a3 are generated as a
type II candidate pair and match via SBS, as shown in Fig. 5. (b),(c).

It’s easy to find out that the type I candidate pair set and the type II can-
didate pair set overlap but it’s not a meaningless repetition. When type II can-
didate pairs are generated, they are inserted into proper positions if they don’t
exist in Q; otherwise their positions may be switched. GB-JER expect to first
resolve candidate pairs that match with high probabilities, which are estimated
by a weighted combination of the pairs’ approximate ABS and relatedness of the
schema path in the similarity propagation. Here the approximate ABS (denoted
as simaprox−abs) is computed by the same low-cost approximate similarity meth-
ods used in Canopy blocking. GB-JER decides the order of candidate pairs in Q
according to scores generated by the priority score function below.

Definition 8 (Priority score function). Given that ri, rj ∈ Rx, rg, rh ∈ Ry,
1 ≤ x, y ≤ T , the type II candidate pair (rg, rh) are generated by 〈ri, rj〉 and
ρ(p(ri, rg)) = ρ(p(rj , rh)), then the priority of (rg, rh) in Q is,

score(rg, rh) = (1 − η) ∗ simaprox−abs(rg, rh) + η ∗ rel(ρ(p(ri, rg))) (6)

η is the balance weight, which is set by users upon the importance of each factor.
When a new type II candidate pair already exists in Q, switch it to a new

position if its new priority is higher than the old one; otherwise, skip. There
are other options. Head insertion inserts the pair into the head of Q if it’s not
in the head; otherwise, skip. Tail insertion inserts the pair into the tail of Q if
it’s not in Q; otherwise, skip. Random insertion inserts the pair into a random
position of Q if it’s not in Q; otherwise, it insert the pair into a random position
between its current position and the head. The evaluation shows that priority
based insertion method performs best.

Similarity propagation does not only improve the accuracy of joint ER but
also optimizes the resolution order, which solves type 3 problems in subsec-
tion 2.1. For example in Fig. 5., similarity propagation generates two type II can-
didate pairs (a1, a3) and (a2, a4), whose probabilities of matching just increase
because (c1, c2) are merged. In such way, the two candidate pairs will be resolved
soon. This is important to pay-as-you-go ER applications [19], who desire most
of ER results as soon as possible.

3.5 Discussion

In this subsection we briefly discuss two useful aspects of GB-JER without steady
theoretic evidences: the knowledge graph output by the model and the incremen-
tal property.

Knowledge Graph. The output of GB-JER is a clean ERRG that naturally
is a knowledge graph. Such a knowledge graph is the input of link mining
and heterogeneous information network mining [7,17]. Mining studies assume
that a knowledge graph of high quality exists without unambiguous nodes and

GB-JER: A Graph-Based Model for Joint Entity Resolution 467

links. Unfortunately, the real world graph data are dirty. Our work fills the gap
between dirty graph data and knowledge graphs of high quality. Here “high
quality” means clean and with complete semantic relationships. As presented
before, duplicate nodes are merged and their neighborhoods are contracted, dur-
ing which all semantic relationships are discovered and set up.

ER with knowledge base. On the other hand, since the produced knowledge
graph is clean, it’s trustworthy and is a knowledge base for new data. The knowl-
edge base can be utilized when new dirty data of the same domain come, which
promotes new joint ER tasks. Here new dirty data do not have to be from the
same source. For instance, a clean ERRG of dblp may be helpful to resolution
of data from citeseer if they refer to similar groups of related entities in the real
world.

Incremental Property. In the big data era, the volume of data is large and
data updates faster than past, which call for incremental ER approaches. Gru-
enheid et al. [8] propose an incremental ER approach for single classes of entities
with clustering algorithms. However, the approach does not suit joint ER. Data
increment include addition, delete and modification. In this paper, we consider
increment as data addition but leave delete and modification as future work.

Definition 9 (Incremental Joint ER). Gvien R is a set of multiple classes
of representations, ΔR is an increment to R, and jer(R) is the output of joint
ER on R, incremental joint ER resolves representations from (R + ΔR) with
jer(R), denoted as incjer(R,ΔR, jer(R)).

Generally, ΔR is much smaller than R so it costs much if (R + ΔR) are re-
computed from scratch. GB-JER iteratively evolves an ERRG that the more
relationships the easier to resolve data. Semantics in the ERRG provide positive
evidence for joint ER. This characteristic makes the model good at incremental
joint ER. GB-JER does not requires a cold start when increment comes. The old
ERRG produced previously can be directly re-used when incremental joint ER.
The old ERRG with rich semantics is exploited to compute SBS and propagate
similarity for the new data who will be gradually integrated into the ERRG.
Finally, the old ERRG evolves into a new and clean one. Appraentlly, for GB-
JER, incremental joint ER is a special case of ER with knowledge base. The
evaluation testifies our model’s incremental property.

4 Experimental Evaluation

4.1 Experiment Preliminaries

Experiment Setting. CPU: Intel(R) Core(TM) i7-2600, 3.4GHz, 8 cores; Main
memory: 8 G; OS: Ms Windows 7 Ultimate 64 bits.

Dataset. We extract 100, 000 citation items from Citeseer1, whose schema is
{title, authors, address, venue, date}. The schema is partitioned into paper =
1 http://citeseerx.ist.psu.edu/

http://citeseerx.ist.psu.edu/

468 C. Sun et al.

{title, writtenBy, publishedIn, date}, author = {name, address} and venue =
{name, date}. All representations of paper, author and venue are manually
labeled, which is ground truth for ER evaluation. A sub-set Citeseer-1 containing
50, 000 citation items are randomly generated, which is used later by default if
no specially setting.

Measure. We use F index to evaluate GB-JER. F index is the harmonic mean
of precision and recall,

F = 2 ∗ prec ∗ recall/(prec + recall) (7)

Parameters. We manually set the same parameters for three types of repre-
sentations. The balance weight of hybrid similarity δ = 0.45, the match thresh-
old θm = 0.85, the similarity propagation threshold θsp = 1/50 and the balance
weight in priority score function η = 0.6. These settings don’t have to be opti-
mized but experiment results in such settings verify advantages of GB-JER.

Unidirectional related weights setting. 10, 000 items are sampled from
Citeseer-1 in this way: randomly select an item at first and then select all
other items that contain similar paper title, author names or venue name
in the item; repeat the process until the size of items reach 10, 000. This
training dataset is called Citerseer-train, whose ER result is known. Build a
clean ERRG (denoted as ERRG-train)according to the ER result of Citerseer-
train. In equation 8, the numerator is size of representations belonging to the
relation’s source class and the denominator is size of representations belong-
ing to the relation’s target class. According to equation 8 and ERRG-train,
urw(venue, paper) = 1/56.8, urw(paper, venue) = 1/1, urw(author, paper) =
1/5.1 and urw(paper, author) = 1/3.4.

urw(μi, μj) =
∑

ϕ(rk)=μi

|rk|
/

∑

ϕ(rk)=μi

∑

ϕ(rm)=μj ,rk→rm

|rm| (8)

4.2 General Test

Comparisons with Existing Approaches. Traditional ER approaches only
consider ABS, denoted as ABS ER. Dong’s joint ER approach builds a dependent
graph of candidate pairs and considers direct neighbors when computing SBS,
denoted as DepGraph. Kalashnikov proposed a single class ER approach based
on connections between representations on a graph, denoted as RelDC. As shown
in Fig. 6., accuracies of GB-JER is higher than other three approaches because
it fully exploits semantic relationships in a dynamic ERRG, where SBS is more
precise leading to higher precision and similarity propagation contributes to
higher recall. DepGraph perform better than RelDC. Both DepGraph and RelDC
perform better than ABS ER.

Scalability. In order to test scalability of GB-JER, we increase data size by
10, 000 each time, starting from 10, 000. As shown in Fig. 7., time cost increases
almost linearly with data size.

GB-JER: A Graph-Based Model for Joint Entity Resolution 469

0.8

0.85

0.9

0.95

1

ABS ER RelDC DepGraph GB JER

F

ER Approache

F A F P F V

0
10
20
30
40
50
60
70

Ti
m

e
(s

)

Data size (10,000)

time cost

0.8

0.85

0.9

0.95

1

ABS ER GJ 1 GJ 2 GJ 3 GB JER

F

ER Approach

F A F P F V

Fig. 6. Accuracy com-
parisons with existing
approaches

Fig. 7. Scalability Fig. 8. Component contri-
bution

4.3 Components Test

This sub-section tests contribution of each key component. Table 1. clearly shows
all components of different ER approaches in the sub-section. ‘+’ means that this
component exists; ‘−’ means that this component doesn’t exist; an abbreviation
stands for a specific component, which is specified below.

SPBS: schema path based similarity; RWBS: random walk based similarity;
SRWBS: symmetric random walk based similarity; C-mg: common representa-
tion merge method; RAB-mg: representative attribute value based representa-
tion merge method; PB-in: priority based insertion; H-in: head insertion; R-in:
random insertion; T-in: tail insertion.

Table 1. Different ER approaches with components

ER Approaches ABS SBS Merge Neighborhood
contraction

similarity
propagation

Insertion

ABS ER + − S-mg − − −
GJ-1 + SPBS S-mg − − −
GJ-2 + SPBS RAB-mg − − −
GJ-3 + SPBS RAB-mg + − −

GB-JER + SPBS RAB-mg + + PB-in
GJ-RW + RWBS RAB-mg + + PB-in
GJ-SRW + SRWBS RAB-mg + + PB-in

GJ-Cmerge + SPBS C-mg + + PB-in
GJ-InQH + SPBS RAB-mg + + H-in
GJ-InR + SPBS RAB-mg + + R-in

GJ-InQT + SPBS RAB-mg + + T-in

Component Contribution. We compare ABS ER, GJ-1, GJ-2, GJ-3 and GB-
JER, whose details are in Table 1. As shown in Fig. 8., GJ-1 performs bet-
ter than ABS ER, because schema path based similarity help representations
match, solving type 2 problems in subsection 2.1. GJ-1 and GJ-2 perform almost
the same, which testifies that the simple merge method and the representative
attribute value base merge method affect the ER results almost the same. GJ-3
performs much better than GJ-2, which shows that neighborhood contraction is

470 C. Sun et al.

very important to joint ER. When the neighborhood is contracted after repre-
sentations match, schema path based similarities among representations in the
neighborhood increase, which promote subsequent joint ER. GB-JER performs
better than GJ-3, showing that similarity propagation increases the precision of
joint ER. Similarity propagation helps solve type 1 problems in subsection 2.1.

0.88

0.9

0.92

0.94

0.96

0.98

1

GJ RW GJ SRW GB JER

F

ER Approach

F A F P F V

0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

GJ Cmerge GB JER

F

ER Approach

F A F P F V

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 32.6 35 40 60 80 100 120

F
av

er
ag

e

Time (s)

GJ 3 GB JER

Fig. 9. Structure based
similarities

Fig. 10. Representation
merge methods’ compar-
isons

Fig. 11. Similarity propa-
gation’s influence on effi-
ciency

Schema Path Based Similarity. We switch the SBS component as Table 1.,
GJ-RW is with random walk based similarity and GJ-SRW is with symmetric
random walk based similarity. In Fig. 9., GB-JER performs better than both
GJ-RW and GJ-SRW, because schema path based similarity combines schema
and topology to measure SBS, which is more precise than random walk and
symmetric random walk.

Representative Attribute Value based Representation Merge
Method. As Table 1., GJ-Cmerge is with common representation merge method.
In Fig. 10., GJ-Cmerge and GB-JER perform almost the same. GB-JER gets
a little higher accuracy in authors’ resolution. Authors’ names have many vari-
ants or may be incomplete but the representative value based merge method
selects most representative value each time so it performs a little better. On the
other hand, GJ-Cmerge costs 39.4s but GB-JER costs 32.6s that GJ-Cmerge
cost 21.5% more time than GB-JER. Considering both accuracy and time cost,
the proposed representative attribute value based merge method is better.

Similarity Propagation’s Influence on Efficiency. We compare average F
indexes (denoted as F -average) of GJ-3 and GB-JER with time increment. As
shown in Fig. 11., in range [0, 32.6s], F -average of GB-JER is bigger than that
of GJ-3 and increases faster, which is easy to be known by slopes of two curves.
F -average of GB-JER reaches the peak (0.97) at 32.6s but F -average of GJ-3
is only about 0.41, far from its own peak. At the largest value of time axis,
F -average of GJ-3 is about 0.82, still far from its own peak. GJ-3 need much
more time to reach its own peak of F -average. Above all, similarity propagation
helps resolve duplicate representations faster.

Type II Candidate Pair Insertion. How to insert type II candidate pairs
doesn’t influence accuracy of joint ER, but it influences time cost. We com-
pare time costs of GJ-InQH, GJ-InR, GJ-InQT and GB-JER, whose details are

GB-JER: A Graph-Based Model for Joint Entity Resolution 471

described in Table 1. As shown in Fig. 12., GB-JER cost least time because
the priority based insertion method optimizes the resolution order by estimat-
ing probabilities of candidate pairs matching. Head insertion method inserts all
type II candidate pairs into the head of Q, which helps resolve some duplicate
representations fast. Some pairs’ neighborhood is not dense and its semantics is
not rich enough that they can’t be resolved as duplicates but they are repeatedly
inserted into head of Q by similarity propagation. These pairs experience evolv-
ing of their neighborhoods and finally are resolved as duplicates or not dupli-
cates. Such repetitions cause much time costs. Random insertion cost longer
time than head insertion because it does not give type II candidate pairs any
higher priority. Tail insertion costs longest time because it always put new type
II candidate pairs into tail of Q, which blocks resolution of pairs with higher
duplicate probabilities.

0 20 40 60 80 100

GB JER

GJ InQH

GJ InQT

GJ InR

Time(s)

ER
Ap

pr
oa

ch

total time

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5 3

tim
e

(s
)

R (10,000)

baseline incjer

0.965

0.966

0.967

0.968

0.969

0.97

0.971

0.5 1 1.5 2 2.5 3

F
(

R
+R

)

R (10,000)

baseline incjer

Fig. 12. Insertion methods
comparison

Fig. 13. Incremental joint
ER time test

Fig. 14. Incremental joint
ER accuracy test

4.4 Incremental Joint ER Test

We run GB-JER over Citeseer-1 first and then add 5000 to it as increment each
time. The baseline approach re-compute (R+ΔR) from scratch when increments
come. The incjer approach do it incrementally: re-compute ΔR with R and the
old ERRG. Fig. 13 shows time costs of two approaches with ΔR. The baseline’s
incremental time cost increases apparently. The incjer’s incremental time cost
increases little. The gap between the two time costs is very large at beginning
and is enlarged with increments. At beginning the baseline costs 5 times longer
than the incjer and finally the former costs 9 times longer than the incjer. Fig. 14
shows that accuracies of two approaches with increments are close. Although the
incjer costs much less time than the baseline, its accuracy is almost the same as
the baseline.

5 Related Work

ER has a long history, attracting researchers from research fields like database,
data mining and AI. It’s also called entity match, record linkage, de-duplicate,
merge & purge [1,4,6,16]. Traditional ER approaches rely on ABS, focusing
on single classes of representations. However, most data are related in the real
world, such as citation data and movie data. In order to resolve representa-
tions in related dataset quickly and precisely, relationships among representa-
tions should be utilized and multiple classes of representations should be resolved
concurrently.

472 C. Sun et al.

There are some ER approaches based on relationships in literature. Dong
et al. [5] analysis relationships among representations such as authors, papers,
email et al. and build a dependent graph of candidate pairs, where each pair
is a node. This approach considers common neighbors to compute SBS. When
two representations are resolved as duplicate, the result is propagated to their
direct neighbors via dependent links, which increases SBS. Such an iterative
process is formed. This approach focuses on personal data management. Getoor
et al. [2] utilize co-occurrences to do ER via relational clustering. Their approach
focuses on authors’ resolution in citation data. The above two approaches utilize
direct relationships, called context ER approaches. Kalashnikov et al. [10,14]
build a relationship graph assuming only one class of representations are not
resolved, such as authors in citation data. Their approach computes connections
among representations without schema to do ER, which helps resolve different
entities with the same names. In AI, there are a few ER approaches based on
relationships [4,16], who learn a global detailed probabilistic model from training
data that it guides ER process. Such approaches are suitable for data with few
relations and little heterogeneity. For complex data from multiple classes, they
don’t guarantee accuracy and efficiency. A few researches focus on scalability of
joint ER [9,15]. Nowadays new data are updated more frequently that efficient
incremental approach is needed. Existing incremental approaches [8] focus on
single classes.

The proposed GB-JER model fully exploits a dynamic ERRG, where it com-
bines schema and topology to compute SBS and propagates similarities among
representations. It guarantees precision and efficiency for joint ER. Dong’s,
Getoor’s and Kalashnikov’s approaches are subsets of GB-JER. It efficiently
processes increments without loss of accuracy.

6 Conclusion

ER is an key aspect of data quality. Nowadays most data are related that it’s
an important problem to resolve multiple classes of representations jointly with
high precision and efficiency. We propose a graph based joint ER model who
iteratively exploits a dynamic ERRG; on the other hand, the ERRG gradually
converges to be a clean one. The evaluation verifies its advantages. This model
can process data addition efficiently. In the future, we will focus on other incre-
ments such as deletion and modification.

Acknowledgments. This work is supported by the National Basic Research 973 Pro-
gram of China under Grant (2012CB316201) and the National Natural Science Foun-
dation of China under Grant (61472070).

References

1. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom,
J.: Swoosh: a generic approach to entity resolution. VLDB J. 18(1), 255–276 (2009).
http://www.dx.doi.org/10.1007/s00778-008-0098-x

http://www.dx.doi.org/10.1007/s00778-008-0098-x

GB-JER: A Graph-Based Model for Joint Entity Resolution 473

2. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data 1(1), 1–36 (2007)

3. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for match-
ing names and records. In: KDD Workshop on Data Cleaning and Object Consol-
idation, vol. 3, pp. 73–78 (2003)

4. Culotta, A., McCallum, A.: Joint deduplication of multiple record types in rela-
tional data. In: Proceedings of the 14th ACM International Conference on Infor-
mation and Knowledge Management, pp. 257–258. ACM (2005)

5. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-
tion spaces. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 85–96. ACM (2005)

6. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

7. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. Newsl. 7(2), 3–12
(2005). http://www.doi.acm.org/10.1145/1117454.1117456

8. Gruenheid, A., Dong, X.L., Srivastava, D.: Incremental record linkage. Proceedings
of the VLDB Endowment 7(9) (2014)

9. Herschel, M., Naumann, F., Szott, S., Taubert, M.: Scalable iterative graph dupli-
cate detection. IEEE Transactions on Knowledge and Data Engineering 24(11),
2094–2108 (2012)

10. Kalashnikov, D.V., Mehrotra, S., Chen, Z.: Exploiting relationships for domain-
independent data cleaning. In: SDM, pp. 262–273. SIAM (2005)

11. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
Journal of the American Society for Information Science and Technology 58(7),
1019–1031 (2007)

12. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional
data sets with application to reference matching. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2000, pp. 169–178. ACM (2000)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

14. Nuray-Turan, R., Kalashnikov, D.V., Mehrotra, S.: Adaptive connection strength
models for relationship-based entity resolution. Journal of Data and Information
Quality (JDIQ) 4(2), 8 (2013). http://www.doi.acm.org/10.1145/2435221.2435224

15. Rastogi, V., Dalvi, N., Garofalakis, M.: Large-scale collective entity matching.
Proceedings of the VLDB Endowment 4(4), 208–218 (2011)

16. Singla, P., Domingos, P.: Entity resolution with markov logic. In: Sixth Interna-
tional Conference on Data Mining, ICDM 2006, pp. 572–582. IEEE (2006)

17. Sun, Y., Han, J.: Mining heterogeneous information networks: a struc-
tural analysis approach. SIGKDD Explorations 14(2), 20–28 (2012).
http://www.doi.acm.org/10.1145/2481244.2481248

18. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-
based top-K similarity search in heterogeneous information net-
works. Proceedings of the VLDB Endowment 4(11), 992–1003 (2011).
http://www.vldb.org/pvldb/vol4/p992-sun.pdf

19. Whang, S.E., Marmaros, D., Garcia-Molina, H.: Pay-as-you-go entity resolution.
IEEE Transactions on Knowledge and Data Engineering 25(5), 1111–1124 (2013)

http://www.doi.acm.org/10.1145/1117454.1117456
http://www.doi.acm.org/10.1145/2435221.2435224
http://www.doi.acm.org/10.1145/2481244.2481248
http://www.vldb.org/pvldb/vol4/p992-sun.pdf

Provenance-Aware Entity Resolution:
Leveraging Provenance to Improve Quality

Qing Wang1(B), Klaus-Dieter Schewe2, and Woods Wang3

1 Research School of Computer Science,
Australian National University, Canberra, Australia

qing.wang@anu.edu.au
2 Software Competence Center Hagenberg

and Johannes-Kepler-University Linz, Linz, Austria
kd.schewe@scch.at

3 Alcatel-Lucent Beijing, Beijing, China
woods.wang@alcatel-lucent.com

Abstract. Entity resolution (ER) - the process of identifying records
that refer to the same real-world entity - pervasively exists in many appli-
cation areas. Nevertheless, resolving entities is hardly ever completely
accurate. In this paper, we investigate a provenance-aware framework
for ER. We first propose an indexing structure that can be efficiently
built for provenance storage in support of an ER process. Then a generic
repairing strategy, called coordinate-split-merge (CSM), is developed to
control the interaction between repairs driven by must-link and cannot-
link constraints. Our experimental results show that the proposed index-
ing structure is efficient for capturing the provenance of ER both in time
and space, which is also linearly scalable over the number of matches. Our
repairing algorithms can significantly reduce human efforts in leveraging
the provenance of ER for identifying erroneous matches.

Keywords: Entity resolution · Data matching · Record linkage · Dedu-
plication · Data provenance · Repair · Indexing structure

1 Introduction

Studies on entity resolution (ER) have been carried out over the last 50 years
[11,15]. Numerous ER techniques have been proposed under a variety of perspec-
tives such as probabilistic [15,18], cost-based [22], ruled-based [13], supervised
[16], active learning [4,19], and collective approaches [7]. Nevertheless, ER results
in real-world applications are still largely imprecise. Take Scopus for example,
searching authors named “Qing Wang” or “Q. Wang” yields over 69,000 publica-
tion records, in which the publications of “Qing Wang” authoring this paper are
mixed with publications of other people who have similar names over different
author entities in Scopus. There are various reasons for having such imprecise
ER results, e.g., dirty data, limitations of ER techniques, or the dynamic nature

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 474–490, 2015.
DOI: 10.1007/978-3-319-18120-2 28

Provenance-Aware ER: Leveraging Provenance to Improve Quality 475

of an ER process. These factors together make it particularly challenging to
identify, understand, and repair errors in imprecise ER results.

In this paper we aim to develop provenance-aware ER for improving the
quality of ER results. The following example illustrates why the provenance of
ER is needed. For simplicity, we use 〈a1, . . . , an〉 to denote the set {a1, . . . , an}
of records that are resolved to the same entity.

Example 1. Fig. 1.(a)-(b) contain several sample records of Author and Pub-
lication. The records 1, 3, 5, 7 and 8 in Author are resolved to represent the
same entity e1, as shown in Fig. 1.(c). Suppose that e1 is inconsistent because 1
and 7 in Author indeed refer to two different persons. Then there are many pos-
sible ways of splitting 1 and 7, such as {〈7〉, 〈1, 3, 5, 8〉} or {〈1〉, 〈3〉, 〈5〉, 〈7〉, 〈8〉},
but it is not known a priori which way can repair such an inconsistency. Nat-
urally, we would ask: (a) why does an inconsistency happen? (b) what is the
implication of an inconsistency for entities in the ER result?

aid name affiliation email
1 Qing Wang qw@gmail.com
2 Mike Lee Curtin University
3 Qinqin Wang Curtin University
4 Jan Smith jan@gmail.com
5 Q. Wang University of Otago qw@gmail.com
6 Jan V. Smith RMIT jan@gmail.com
7 Q. Q. Wang
8 Wang, Qing University of Otago

(a) Author

pid title authors year
p1 Knowledge-Aware Services 1, 2 2012
p2 Schema Evolution 3, 4 2009
p3 Data Migration 5 2010
p4 XML Data Exchange 6, 7 2010
p5 Cloud Computing 8 2011

(b) Publication

eid aids
e1 〈1, 3, 5, 7, 8〉
e2 〈2〉
e3 〈4, 6〉

(c) An ER result

Fig. 1. Sample records

Assume that we have the provenance information about e1 as follows: (1) 1
and 3 were resolved, resulting in 〈1, 3〉; (2) 5 and 1 were resolved, resulting in
〈1, 3, 5〉; (3) 3 and 7 were resolved, resulting in 〈1, 3, 5, 7〉 and (4) 5 and 8 were
resolved, resulting in 〈1, 3, 5, 7, 8〉. Based on these, we can identify two matches
– 3 and 7, and 1 and 3 – which are relevant to the inconsistency of e1. If the
match between 1 and 3 is erroneous, the correct repair in this case would be
{〈1, 5, 8〉, 〈3, 7〉}. Other options would generate new inconsistencies, e.g., 3 and
7 in {〈7〉, 〈1, 3, 5, 8〉} may indeed refer to the same entity. Therefore, to find

476 Q. Wang et al.

accurate repairs for an inconsistent ER result, we need to store the provenance
information about the ER process, which allows us to analyze the interaction
among ER decisions (i.e., matches or non-matches) that have occurred in the
ER process. Although a domain expert may be able to repair such inconsistencies
manually, the level of human efforts has been proven to be very expensive in
many real-life applications [11]. Ideally, whenever an inconsistency is detected
in an ER result, we want to minimize human efforts in repairing the errors that
cause the inconsistencies.

Contributions. We first develop an ER indexing method, called ERI, for stor-
ing the provenance information of ER. An ERI index maps each entity in an ER
result to an ER tree in which each node represents a match. This point of view
on the ER process, together with several nice properties of the proposed index-
ing structure, empowers us to analyze inconsistent ER results. Whenever an
inconsistency is found, relevant matches can be pinpointed, providing a unified
view to understand such an inconsistency. In doing so, the provenance informa-
tion serves as a ground on which inconsistent ER results can be repaired in a
meaningful and efficient way. Our ER indexing method can thus make an ER
system provenance-aware through capturing matches, which is independent of
the chosen ER techniques.

We study algorithms that construct ERI indexing to capture the provenance
information. We show that there is an efficient linear-time algorithm to con-
struct such ERI indices. We also develop algorithms for two important oper-
ations – merge and split – which can eliminate inconsistent entities violating
must-link and cannot-link constraints, respectively. Our algorithm for the split
operation traverses an ER tree to identify and remove erroneous matches in
order to eliminate inconsistencies. Such traversals downward and upward an ER
tree are both efficient (see Theorems 2 and 3). We further propose a generic
strategy, called CSM, to improve the effectiveness of ER repairs by taking into
account how must-link and cannot-link constraints interact, in connection with
the provenance information represented by ERI indices.

To evaluate the efficiency and effectiveness of our proposed method, we have
conducted three sets of experiments over two real-world data sets. The exper-
imental results show that: (1) The ERI construction method for capturing the
provenance is efficient in time and space, and has a linear scalability over the
number of matches; (2) The algorithms for repairing ER results using the prove-
nance information stored in ERI indices can consistently improve precision with
significantly reduced human efforts; (3) Under the CSM strategy, the algorithms
can achieve both high precision and high recall after certain number of cannot-
link constraints are identified over time.

Outline. The remainder of the paper is structured as follows. We introduce the
related work in Section 2 and basic definitions in Section 3. Then we present the
ERI indexing method in Section 4. Section 5 is devoted to discuss the algorithms
and strategies that leverage the provenance information for solving inconsistent
ER results. Our experimental results are presented in Section 6. The paper is
concluded in Section 7.

Provenance-Aware ER: Leveraging Provenance to Improve Quality 477

2 Related Work

Up till now, research efforts have been focused on the areas of entity resolution
[12] and data provenance [21] separately, although both areas are related to the
quality of data. In the following, we present the works related to these two areas.

Studies on ER have been heavily carried out over the last 50 years [11,15].
Traditional ER techniques analyse attributes between records by using various
similarity measures [12]. Recently, a number of works have incorporated con-
straints into such similarity-based ER techniques to improve the quality of ER
[5,10,20,24]. These works mostly focused on preventing an ER result from violat-
ing certain types of constraints, rather than repairing an ER result that violates
constraints. For instance, the authors of [24] developed strategies for resolving
inconsistent before an ER result is produced, and did not consider backtracking
for splitting records of inconsistent entities. In contrast, our ER repairing method
provides backtracking search for analyzing why errors occur in the ER process
as well as for identifying all propagated errors, based on leveraging the prove-
nance information. Both early approach and late approach (i.e., inconsistencies
are resolved before and after an ER result is produced) can be well supported
in our framework.

ER indexing is an important technique used for improving computational
performance and scalability of the ER process (i.e., also called ER blocking)
[12]. It groups records into a set of possibly overlapping but small blocks, and
only records that potentially represent the same entity are placed into the same
block. To our best knowledge, no studies of using indexing techniques to represent
the provenance information of ER have been previously reported. This paper
shows, for the first time, how to use an indexing structure to efficiently store
ER decisions in a simple tree structure, and how to exploit ER decisions to
accurately repair inconsistent entities in an ER result.

Data provenance [6,8,9,17,21] provides a detailed view on the derivation of
single pieces of data. Our work relates to data provenance in the sense that
we use an indexing structure to capture the provenance information of ER,
such as: which matches were generated by a match rule, when matches were
generated and how matches were involved in resolving entities. Such provenance
information provides a rich source for analyzing and improving the quality of
ER, but not much attention has been paid so far in this respect. Previously,
a research prototype DBMS, called Trio, has been developed at the Stanford
InfoLab [3], which can track lineage information of a merged result for entity
resolution. Nevertheless, we are not aware of any existing studies that integrate
provenance-based resolution into the ER process for improving the quality.

Database repair has been previously investigated in many works [2,14,25].
Database repair only deals with data errors existing in a database, while ER
repair focuses on handling errors that are caused by the problematic ER process.
Nonetheless, although database repair and ER repair are studied under different
purposes, their techniques can interact with and complement each other. It is
desirable to establish a mechanism that combines database and ER repair tools
for repairing errors collectively, i.e., different types of errors are repaired jointly
rather than independently.

478 Q. Wang et al.

3 Preliminaries

A (database) instance is a finite, non-empty set of relations, each having a
finite set of records. Each record is uniquely identifiable by a (record) key in
the instance. We use key(I) to denote the set of all record keys in an instance
I. A (record) cluster c is a set of records in the form of 〈k1, . . . , kn〉. We use
|c| to refer to the size of a cluster c. A match is a pair (k1, k2) of records that
represent the same entity. A (match) rule r is a function that, given an instance
I as the input, generates a set r(I) of matches. Every ER algorithm that gen-
erates a set of matches can be viewed as a match rule in our work, including
machine-learning algorithms. We assume that matches are symmetric in r(I),
e.g., if (k1, k2) ∈ r(I), then (k2, k1) ∈ r(I), and use r(k1, k2) to denote that
(k1, k2) is generated by r. An ER model M is constituted by a (finite) num-
ber of match rules. The ER result of applying M over I is a set E∗ of clusters
determined by E =

⋃

r∈M

r(I) such that: (1) E∗ is a partition of key(I); (2) If

(k1, k2) ∈ E, then ∃c ∈ E∗.{k1, k2} ⊆ c; (3) If ∃c ∈ E∗.{k0, kn} ⊆ c, then
∃k1, . . . , kn−1.(k0, k1), (k1, k2) . . . , (kn−1, kn) ∈ E. Conceptually, each cluster in
an ER result represents an entity. We use rec(e) to denote the set of record keys
in the cluster that represents an entity e.

In this paper, we focus on two kinds of ER constraints, so-called must-link
and cannot-link constraints [23]. Let k1 and k2 be two record keys. Then a
must-link constraint k1 � k2 means that k1 and k2 must be matched to the
same entity, and a cannot-link constraint k1 �� k2 means that k1 and k2 cannot
be matched to the same entity. Both must-link and cannot-link constraints are
instance-level constraints [23], and symmetric in the sense that if k1 � k2 (resp.
k1 �� k2) is satisfied, then k2 � k1 (resp. k2 �� k1) is also satisfied. Although must-
link and cannot-link constraints look simple, they serve as the building blocks of
expressing the integrity of an ER result. In real-life applications, such constraints
can be gathered from either user feedback provided by the user, or integrity
constraints [5,20] specified by the domain expert. Consider a constraint ϕ over
author in Example 1, which states that two author records refer to the same
person if they have the same email address, i.e., x � x′ ⇐ author(x, y, z, w) ∧
author(x′, y′, z′, w). Then, we would obtain a set of must-link constraints w.r.t.
a database instance by evaluating ϕ.

Let Σ be a set of constraints. An entity is consistent w.r.t. Σ if it does
not violate any constraint in Σ. More precisely, an entity e violates k1 � k2 if
k1 ∈ rec(e) but k2 /∈ rec(e), and e violates k1 �� k2 if k1 ∈ rec(e) and k2 ∈ rec(e).
It is possible that an entity violates must-link and cannot-link constraints at the
same time. An ER result E∗ is consistent w.r.t. Σ if every entity represented in
E∗ is consistent w.r.t. Σ.

4 ER Indexing

An entity resolution index (ERI) is a data structure that maps each entity to
an ER tree made of record keys. An index entry in ERI has the form:

Provenance-Aware ER: Leveraging Provenance to Improve Quality 479

(entity e, ER tree te),

where te keeps track of the matches that are relevant to the entity e. Given an
ER tree t, we use V (t) to denote the set of nodes in t, and V (t, k) to denote the
set of nodes in t with k child nodes. A subtree of t at a node v is also an ER
tree that consists of v and all of its descendants in t under the preservation of
the labels on nodes and edges. We use leaf(t) to refer to the set of labels on the
leaves of t, parent(v) to the parent node of a node v, and ledge(v) and redge(v)
to the labels of the edges to the left and right child nodes of v, respectively.
Formally, an ER tree of e is a binary tree t together with a labelling function θ
such that:

– θ assigns to each leaf v of t a label � ∈ rec(e), and θ(v1) �= θ(v2) for any
different leaves v1 and v2;

– θ assigns to each edge (v, parent(v)) of t a label � ∈ rec(e), and � ∈ leaf(t′)
for the subtree t′ of t at v.

Each leaf labelled by � in an ER tree represents a record whose key is �. For clarity
we use v(k1,k2) to indicate an internal node, representing a match between two
records with keys k1 and k2. The height of t is the number of edges in the longest
path to a leaf from the root.

Example 2. Fig. 2 depicts two possible ER trees te1 and t′e1
for the entity e1

in Example 1, in which each contains four matches (1, 3), (5, 1), (3, 7) and (5, 8)
corresponding to the internal nodes v(1,3), v(5,1), v(3,7) and v(5,8), respectively.
The cluster that associates with te1 and t′e1

is 〈1, 3, 5, 7, 8〉.

1
v(1,3))v(1,3)

5

3

1

3

8

7

5

1 3

5

7

8

v(5,1))v(5,1)

v(3,7))v(3,7)

v(5,8))v(5,8)

1
v(1,3))v(1,3)

5

3

1

3

8

7

5

8 3

7

1

v(5,1))v(5,1)

v(3,7))v(3,7)

v(5,8))v(5,8)

5
(a) (b)

Fig. 2. (a) an ER tree te1 ; (b) an ER tree t′e1

Given an ER model M , an ERI index can be initially constructed when
applying M over an instance I, and then be dynamically maintained. In the
following we elaborate the key steps involved in constructing such an ERI index.
Let E be the set of matches generated by applying M over I. We use T to
represent the set of ER trees constructed during the computation, and K to
represent the set of record keys that have been processed.

1. Firstly, initialize T and K to be ∅, and then build a family T of ER trees
gradually by doing the following until there is no more change on T .

480 Q. Wang et al.

1.1. If r(k1, k2) ∈ E, then Ktmp := K ∩ {k1, k2}.

(a) If Ktmp = ∅, then construct a new ER tree t with one internal node v,
and label the edges to two child nodes of v with k1 and k2, respectively.
We have T := T ∪ {t}.

(b) If Ktmp = {k1} (resp. Ktmp = {k2}), then extend the ER tree t that
satisfies k1 ∈ leaf(t) (resp. k2 ∈ leaf(t)) to another ER tree t′ by adding
a new node v such that t is the subtree rooted at one child node v1 of v
and the other child node of v is a leaf v2 labelled by k2 (resp. k1). The
edges from v to v1 and v2 are labelled as k1 and k2 as appropriate. We
then have T := T ∪ {t′} − {t}.

(c) If Ktmp = {k1, k2}, then check if ∃t1, t2 ∈ T.t1 �= t2, k1 ∈ leaf(t1) and
k2 ∈ leaf(t2) hold. If yes, then construct a new ER tree t′ rooted at a
node that has t1 and t2 as the subtrees at its child nodes, and the edges
to its child nodes are labelled as k1 and k2, respectively. We then have
T := T ∪ {t′} − {t1, t2}.

1.2. K := K ∪ {k1, k2} and E := E − {r(k1, k2)}.
2. For each k ∈ key(I) but k �∈ K, create a singleton tree with one leaf labelled

by k, and add it into T .

Example 3. Consider the ER-trees in Fig. 2. For te1 , it starts with one node
v(1,3) (by Step 1.1.a), then is extended to have the nodes v(5,1), v(3,7) and v(5,8)

one by one (all by Step 1.1.b). For t′e1
, it starts with two ER trees that have only

one node v(1,3) and v(5,8) (by Step 1.1.a), respectively. Then they are merged
into one ER tree with the root node v(5,1) (by Step 1.1.c). The resulting ER tree
is finally extended to t′e1

by adding the node v(3,7) as the root (by Step 1.1.b).

Theorem 1. Given a finite set E of matches, the construction of an ERI index
over E is in linear time O(n), where n = |E|.

5 ER Result Repairs

We now discuss how an ERI index can support repairs of inconsistent ER results.

5.1 Must-link: Merging

Suppose that two entities e1 and e2 violate a must-link constraint σ = k1 � k2.
Let t1 and t2 be the ER trees of e1 and e2, respectively, k1 ∈ leaf(t1) and k2 ∈
leaf(t2). Then merging t1 and t2 w.r.t. σ is an operation that yields an ER tree
t satisfying σ, i.e., {k1, k2} ⊆ leaf(t), written as merge(t1, t2, σ) = t. A well-
defined merge operation merge(t1, t2, σ) should satisfy the following conditions:
(1) leaf(t1)∪ leaf(t2) = leaf(t), (2) there is an injective mapping fm : V (t1, 2)∪
V (t2, 2) → V (t, 2) that preserves nodes and their edge labels, and (3) there is a
node v ∈ V (t, 2) with redge(v) ∪ ledge(v) = {k1, k2}. A merge operation can be
implemented in different ways as long as it is well-defined. Algorithm 1 describes
a simple implementation of a well-defined merge operation.

Provenance-Aware ER: Leveraging Provenance to Improve Quality 481

Input: two ER trees t1 and t2, and a constraint σ = k1 � k2
Output: an ER tree t

1. Create a new ER tree t with the root node v
2. Extend t by adding t1 and t2 as the subtrees at the child nodes vl and vr of v, respectively
3. Label the edges (v, vl) with k1 and (v, vr) with k2
4. Return t

Algorithm 1. mergeTrees

5.2 Cannot-link: Splitting

Given an entity e that violates a cannot-link constraint σ = k1 �� k2, splitting
the ER tree t of e w.r.t. σ is an operation that yields a set of ER trees, written as
splitTrees(t, σ) = T , where T = {t1, . . . , tn}. A split operation is well-defined
if it satisfies three conditions: (1) {k1, k2} ⊆ leaf(t) but

∧

ti∈T

{k1, k2} �⊆ leaf(ti),

(2) {leaf(t1), . . . , leaf(tn)} is a partition of leaf(t), and (3) there is an injective
mapping f :

⋃

ti∈T

V (ti, 2) → V (t, 2) that preserves nodes and their edge labels. In

the following we propose an efficient algorithm for a well-defined split operation.

Traversing Downward. Let t be an ER tree and σ = k1 �� k2. A node v
in t is called a guard-node of σ if {k1, k2} ⊆ leaf(t1) for the subtree t1 at v,
but {k1, k2} �⊆ leaf(t2) for every smaller subtree t2 of t1. A node v in t is
critical w.r.t. σ if removing the match represented by v from the set of matches
represented by t would lead to a set T of ER trees satisfying σ, i.e., ∀t′ ∈ T.k1 /∈
V (t′, 0) ∨ k2 /∈ V (t′, 0).

Example 4. Consider the ER tree te1 in Fig. 2. The guard-node of 1 �� 7 in
te1 is v(3,7), which is also a critical node w.r.t. 1 �� 7, i.e., removing the match
represented by v(3,7) would lead to two ER trees t1 and t2 with V (t1, 0) =
{1, 3, 5, 8} and V (t2, 0) = {7} which both satisfy 1 �� 7.

By the definition of an ER tree, we have the following proposition.

Proposition 1. Let t be an ER tree with {k1, k2} ⊆ leaf(t) and σ = k1 �� k2.
Then there exists exactly one guard-node of σ in t.

Since removing the guard-node of σ in t can always yield two ER trees each
having either k1 or k2, satisfying σ, we also have the following proposition.

Proposition 2. If v is the guard-node of σ in an ER tree t, then v is also a
critical node in t w.r.t. σ.

We further observe that all critical nodes of t w.r.t. σ must occur in the
subtree rooted at the guard-node v of σ, i.e., in the subtree “guarded” by v.
Based on this, we develop Algorithm 2 to identify critical nodes by first finding
the guard-node of σ and then traversing downward the ER tree. Each node in
the ER tree only needs to be navigated at most once.

482 Q. Wang et al.

Input: an ER tree t, and a constraint σ = k1 �� k2
Output: a set V of critical nodes

1. V := ∅ and P := {(k1, k2)}
2. Do the following iteratively if there is (k′

1, k′
2) ∈ P with k′

1 �= k′
2:

(a) Find the guard-node v of k′
1 �� k′

2 in t
(b) V := V ∪ {v}
(c) If k′

1 ∈ leaf(tl) and k′
2 ∈ leaf(tr) for tl and tr at the child nodes of v, then P ′ :=

{(k′
1, ledge(v)), (k′

2, redge(v))}; otherwise P ′ := {(k′
1, redge(v)), (k′

2, ledge(v))}
(d) P := P − {(k′

1, k′
2)} ∪ P ′

3. Return V

Algorithm 2. findCiticalNodes

Example 5. Consider the ER tree te1 in Fig. 2 and 1 �� 7 again. We show how
to find all critical nodes using Algorithm 2. First, Step 1 starts with V = ∅ and
P = {(1, 7)}. Then, by Steps 2(a)-(b), we have V = {v(3,7)} where v(3,7) is the
guard-node of 1 �� 7. By Step 2(c), we have P ′ = {(1, 3), (7, 7)}. By Step 2(d),
P = {(1, 3), (7, 7)}. Since 1 �= 3, we repeat Steps 2(a)-(d) to find the guard-
node v(1,3) of 1 �� 3. Consequently, V = {v(3,7), v(1,3)}, P ′ = {(1, 1), (3, 3)} and
P = {(1, 1), (3, 3), (7, 7)}, and the computation terminates because all matches
in P are trivial. Hence, all critical nodes in te1 w.r.t. 1 �� 7 is v(3,7) and v(1,3).

Once critical nodes have been identified in an ER tree, we can obtain all
records occurring in the edge labels from a critical node to its child nodes. Such
records are critical because matches represented by critical nodes are generated
based on these records. Following Algorithm 2, we have the following theorem.

Theorem 2. Finding all critical nodes of an ER tree t w.r.t. σ is in logarithmic
time O(logn) where n = |leaf(t)|.

Human Decision. Given an ER tree t that violates a cannot-link constraint
σ, every critical node identified is relevant to the violation of σ, but does not
necessarily represent an erroneous match. To decide whether or not a critical
node represents an erroneous match, human guidance is required. For this, we
consider that human decisions are made to classify critical records into disjoint
groups - each group contains the records referring to the same entity, and records
in different groups refer to different entities. Then human decisions are sent to
a cut-solver that can automatically identify all erroneous matches. The nodes
that correspond to erroneous matches in an ER tree are called cut nodes. Each
cut node must be a critical node, but not vice versa. Algorithm 3 describes the
process of finding cut nodes in an ER Tree.

Input: a set V of critical nodes
Output: a set Vcut of cut nodes

1. Vcut := ∅
2. K :=

⋃

v∈V

{ledge(v), redge(v)}
3. Given a human decision {K1, . . . , Kn} of K, check every v ∈ V :

(a) Kv := {ledge(v), redge(v)}
(b) If Kv ∩ Ki �= ∅ and Kv ∩ Kj �= ∅ for 1 ≤ i �= j ≤ n, then Vcut := Vcut ∪ {v}

4. Return Vcut

Algorithm 3. findCutNodes

Provenance-Aware ER: Leveraging Provenance to Improve Quality 483

Example 6. Recall that the ER tree te1 has two critical nodes v(3,7) and v(1,3)

w.r.t. 1 �� 7. Thus, the critical records are {1, 3, 7}. Suppose that the human
decision on classifying {1, 3, 7} is {{1}, {7, 3}}, then by Algorithm 3, the cut-
solver would identify v(1,3) as a cut node.

In the case of not using an ERI index, all records in leaf(t) must be manually
reviewed, which is generally much larger than the number of critical records, e.g.,
for an ER tree with 200 - 300 leaves in the Cora data set, the percentage of critical
records is 5%-7% (see Section 6 for more details). In such cases, identifying
critical records helps improve the efficiency of identifying erroneous matches
dramatically. By narrowing down manually reviewed records to be only critical
records, we say that the level of human efforts is minimized.

Input: an ER tree t and a set Vcut of cut nodes
Output: a set T of ER trees

1. Choose v ∈ Vcut where the subtree at v does not contain other cut nodes
2. T := {tl, tr} where tl and tr are the subtrees at the child nodes of v
3. Do the following until v is the root node of t:

(a) Find parent(v) and the subtree t3 at the other child node of parent(v). If t3 contains
V ′ ⊆ Vcut, then T ′ := removeCutNodes(t3, V ′) and T := T ∪ T ′; otherwise, T :=
T ∪ {t3}.

(b) If parent(v) �∈ Vcut, then check the edge label � from parent(v) to each of its child
nodes. If ∃t′ ∈ T.� ∈ leaf(t′), then replace the subtree at the child node by t′ and
label the edge from parent(v) to root(t′) as �.

(c) T := (T ∪ {t′}) − {t′
l, t′

r} where t′
l and t′

r are at the child nodes of parent(v)
(d) v := parent(v)

4. Return T

Algorithm 4. removeCutNodes

Traversing Upward. Given a set of cut nodes, the question left is how we
should remove these cut nodes and restructure the ER tree? This needs to be
considered in terms of the conditions stipulated on a well-defined split operation.
To satisfy Condition (1), the subtrees at the child nodes of each cut node must
be split into different ER trees; otherwise, the errors caused by cut nodes cannot
be eliminated. To satisfy Condition (3), we are only allowed to remove (not add)
nodes from the original ER tree t. Together with Condition (2), this leads to
decomposing t into a number of smaller trees. However, there are two additional
things to note. First, in order to avoid false negatives caused by over-splitting,
removing cut nodes from an ER tree should yield a minimal number of smaller
ER trees that satisfy Conditions (1)-(3). Moreover, since edge labels between
each node v and its two child nodes indicate records relevant to the match
represented by v, removing a cut node should also remove nodes that have records
from both subtrees rooted at the child nodes of the cut node. In doing so, we
can also repair erroneous matches that are hidden. Algorithm 4 describes the
process of removing cut nodes from an ER tree.

Theorem 3. Let Vcut be a set of cut nodes in an ER tree t. Then splitting t by
removing the nodes in Vcut is in time O(nlog n) where n is the height of t.

484 Q. Wang et al.

Example 7. Using Algorithm 4 to cut v(1,3) from the ER tree in Fig. 3.(a) would
result in two smaller ER trees in Fig. 3.(b). Step 3 is executed iteratively by
traversing upward the path from v(1,3) to v(5,8).

3

8

7

5

7

8

v(3,7)

v(5,8))v(5,8)

3

(a) (b)

1
v(1,3)

5

3

1

3

8

7

5

1 3

5

7

8

v(5,1))v(5,1)

v(3,7)

v(5,8))v(5,8)

5 1

15

v(5,1))v(5,1)

Fig. 3. ER trees after removing v(1,3)

5.3 Repair Strategies

A naive strategy of repairing ER results is to apply a merge operation when-
ever a must-link constraint is violated, and apply a split operation whenever a
cannot-link constraint is violated. However, this naive strategy does not work
well when must-link and cannot-link constraints coexist and interweave. Merg-
ing ER trees to solve inconsistencies w.r.t. must-link constraints may yield an
ER result violating cannot-link constraints, and vice versa. Hence, we propose
a strategy, called coordinate-split-merge (CSM), to repair ER results by taking
into account the interaction between must-link and cannot-link constraints.

Let Σ = Σ�∪Σ�� be a set of constraints where Σ� and Σ�� refer to the must-
link and cannot-link constraints in Σ, respectively, and E∗ be an inconsistent
ER result w.r.t. Σ. In practice, we can build a knowledge base for Σ to store all
must-link and cannot-link constraints, and incrementally update it whenever new
constraints are identified. We assume that Σ are consistent (i.e., the consistency
checking can be handled using existing techniques [1]), and use T (E) to refer to
the set of ER trees constructed from the set E of matches that determine E∗.
Then we repair E∗ using the CSM strategy:

– Start with T ′ := T (E)
– Check each σ ∈ Σ: if σ ∈ Σ�� and t violates σ, then T := splitTrees(t, σ),

and T ′ := T ′ ∪ T − {t}; if σ ∈ Σ�, then do the following:
(1). Coordinating : Check T ′ w.r.t. Σ to identify conflicts among constraints
that involve σ (will be defined soon), then expand Σ to Σ := Σ ∪ Δ where
Δ is a set of constraints newly discovered from solving such conflicts (will
be discussed).
(2). Splitting : Split the ER trees in T ′ w.r.t. each σ′ ∈ Δ��, where Δ��
denotes the subset of all cannot-link constraints in Δ. For each split T :=
splitTrees(t′, σ′), set T ′ := T ′ ∪ T − {t′}.
(3). Merging : Merge the ER trees in T ′ w.r.t. σ, i.e., t := mergeTrees(t1, t2, σ)
where t1 and t2 each contain a distinct key in σ , and T ′ := T ′∪{t}−{t1, t2}.

Provenance-Aware ER: Leveraging Provenance to Improve Quality 485

– Return T ′, i.e., ER trees being repaired from T (E).

The key idea is to govern merge operations using cannot-link constraints such
that each merge operation is performed in a way that does not violate any
cannot-link constraints. The coordinating stage is to determine whether there
is a conflict among constraints in Σ�� ∪ {σ} w.r.t. a set E of matches. A set
of constraints contains a conflict in E if there does not exist a partition of ER
trees in T (E) such that all constraints can be satisfied. In Fig. 4.(a), the ER
trees t1 and t2 satisfy k1 �� k2 but violate k′

1 � k′
2. Merging t1 and t2 would

yield an ER tree satisfying k′
1 � k′

2 but violating k1 �� k2. Such conflicts can
be systematically discovered by representing the set T (E) of ER trees and their
constraints Σ as a graph G(E,Σ) - each ER tree t ∈ T (E) is a vertex, and each
constraint k1 � k2 ∈ Σ (resp. k1 �� k2 ∈ Σ) is an edge between the vertices t1
and t2 if k1 ∈ leaf(t1) and k2 ∈ leaf(t2), labelled as + (resp. −).

Proposition 3. A set Σ of constraints contains a conflict among E if the graph
G(E,Σ) contains at least one cycle that has exactly one edge labelled as −.

+

k2 k’2

k1
k’1

t’1

t’2

-
k’2

k1
t’1

t’2

-

k2 k’1
t’3

-

-

(b) (c)

t’’1

t’’2

+

(a)

k'2 k2

k1
k’1

t1

t2

-

Fig. 4. ER trees with conflicts

In Fig. 4.(a), the conflict indicates that k1 �� k′
1 or k2 �� k′

2 may possibly
happen. If both k1 �� k′

1 and k2 �� k′
2 are identified as being true, then Δ =

{k1 �� k′
1, k2 �� k′

2}. Fig. 4.(b) shows that the ER trees t1 and t2 thus need to be
split w.r.t. k1 �� k′

1 and k2 �� k′
2, respectively. This yields four ER trees t′1, t

′′
1 , t′2

and t
′′
2 , and by σ = k′

1 � k2, a merge operation is applied to merge t
′′
1 and t

′′
2

into the ER tree t′3, as illustrated in Fig. 4.(c).

5.4 Bootstrapping

In the CSM strategy, each merge operation is governed by a set of cannot-link
constraints that is iteratively expanded during the ER repair process. This is
because the split operation can accurately remove erroneous matches, whereas
the merge operation behaves unpredictably, i.e., by merging two ER trees, both
false positives and true positives may increase, which could yield an unexpected
result. Therefore, the CSM strategy utilizes cannot-link constraints to control
the behaviors of each merge operation. If merging two ER trees would violate a
cannot-link constraint, then it can only be conducted on the subtrees of these
two ER trees after splitting them properly. Hence, to improve the efficiency, we
can bootstrap the ER repair process using the existing cannot-link constraints.

486 Q. Wang et al.

6 Experiments

We have evaluated our provenance-aware ER method from three aspects: (1)
Resource requirements for building and maintaining an ERI index (i.e., time
and space); (2) Efficiency of repairing ER results (i.e., reduced human efforts);
(3) Effectiveness of repairing ER results (i.e., improved ER quality).

6.1 Experimental Setup

Our experimentswere performed on aWindows 7machinewith Intel(R)Core(TM)
i3-2330M 2.20 GHz CPU, 8GB main memory and 64 bit operating system.

We used two data sets1 in our experiments: one is from Scopus and the other
is Cora. The Cora data set contains 1879 publications, and its “gold standard”
is available for the public. Scopus is a bibliographic database containing mil-
lions of records for publications, authors and affiliations. We downloaded 10784
publication records from the querying API provided by Scopus. A “gold stan-
dard” for 4865 publication and 19527 author records in this Scopus data set was
established by domain experts through manually checking.

We implemented the ER models: one for each data set, in Java with JDBC
access to a PostgeSQL database. For the Cora data set, two publications are
matched if: (1) their titles are similar, (2) they were published in the same year,
and their pages and booktitles are similar, (3) their authors and pages are similar,
or (4) their authors and book titles are similar. In these rules, the similarity of
attributes was compared by using q-gram Jaccard similarity and the thresholds
were set to 0.85. The ER result of applying this ER model is determined by
the matches in the union of the sets of matches generated by these rules. For
the Scopus data set we only used one rule – two author records are matched if
their names are similar, e.g., “Baker M.” and “Baker M.G.”. Note that we can
certainly use more sophisticated ER algorithms to obtain an initial ER result
with better quality. Nevertheless, an initial ER result only serves as a baseline
for illustrating ER repair techniques. The better quality an initial ER result has,
the less repairs we would need for achieving a high-quality ER result. For this
reason, these simple ER models were used in our experiments. We implemented
ERI indices in a PostgeSQL database, as part of metadata managed by the
database system.

6.2 Time and Space Requirements

To test the time efficiency, we implemented our ERI construction algorithm. The
ER model over the Cora data set generates 61453 matches, while the ER model
over the Scopus data set generates 75447 matches. For each data set, we ran the
ERI construction algorithm on these matches to build an ERI index 5 times. In
Fig. 5, (a) and (c) illustrate that the scalability of our ER index construction

1 http://www.scopus.com/home.url;http://www.cs.umass.edu/∼mccallum/

http://www.scopus.com/home.url; http://www.cs.umass.edu/~mccallum/

Provenance-Aware ER: Leveraging Provenance to Improve Quality 487

method is in linear time w.r.t. the number of matches, which empirically veri-
fied Theorem 1. Although the numbers of matches in two data sets are similar,
the time of building an ERI index in Scopus was doubled than in Cora. This is
because they have different data characteristics. The ERI index for Scopus con-
tains 2969 non-singleton ER trees that contain at least one match, and 36003
singleton ER trees containing only one leaf (i.e., no match with other records).
The percentage of author records contained in non-singleton ER trees in terms
of all author records in Scopus is 24%. In contrast, the ERI index for Cora
has 117 non-singleton ER trees which contain 1674 publication records in total.
Thus, the percentage of publication records contained in non-singleton ER trees
in terms of all publication records in Cora is 89%. These results are presented
in Fig. 6. We also tested the space efficiency of our ERI construction method.
For this we computed the space rates of ER trees in ERI, i.e., for an ER tree te
of an entity e,

space rate= the number of internal nodes in te
the number of matches for e

.

In Fig. 5, (b) and (d) show that the space rates drop dramatically when the
total number of matches associated with an entity increases, i.e., nearly %40 for
entities with about 10 matches, %20 for entities with about 50 matches, %10 for
entities with about 200 matches, and %4 for entities with about 1000 matches.
The results on the Cora and Scopus data sets are highly consistent.

0
50

100
150
200
250
300
350
400
450
500

0 20000 40000 60000

Ru
nt

im
e

(s
ec

on
ds

)

Number of matches
(a)

run 1
run 2
run 3
run 4
run 5

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Sp
ac

e
ra

te

Number of matches for an entity
(b)

0
100
200
300
400
500
600
700
800
900

1000

0 20000 40000 60000 80000

Ru
nt

im
e

(s
ec

on
ds

)

Number of Matches
(c)

run 1
run 2
run 3
run 4
run 5

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

Sp
ac

e
ra

te

Number of matches for an entity
(d)

Fig. 5. (a)-(b) Time and space requirements (Cora); (c)-(d)
Time and space requirements (Scopus)

Results Cora Scopus

matches 61453 75447

non-singleton
117 2969

ER trees
singleton

1674 36003
ER trees

Fig. 6. ERI results

6.3 Human Effort

In our experiments we measured the level of human efforts reduced by using
ERI for repairing inconsistent ER results. In the case that no ERI index is avail-
able, all the records in the cluster of an inconsistent entity have to be manually
checked. However, by using an ERI index, we only need to check critical records.

488 Q. Wang et al.

Therefore, for each inconsistent entity, we first compare the total number of
records in its cluster (i.e., the size of cluster) with the number of critical records
identified for repairing the inconsistency in this cluster. Fig. 7 shows that about
30% - 50% records are critical when the size of a cluster is small (i.e., less than
10), whereas only 5% - 9% records are critical when the size of a cluster is over
100. As indicated by the power trendline for critical records in Fig. 7, human
efforts are significantly reduced when the size of cluster increases. We also com-
pared the total number of records in the cluster of an inconsistent entity with the
number of cut nodes required for repairing the inconsistency. Each cut node rep-
resents an erroneous match involved in producing the inconsistency. Fig. 7 shows
that the percentage of the number of cut nodes in terms of the size of cluster
remains quite stable (between 1% - 2%) when the size of cluster is greater than
50. In addition to this, the number of cut nodes is much smaller than the number
of critical records in our experiments. This difference indicates the quality of the
ER result generated by the chosen ER model.

0%

10%

20%

30%

40%

50%

0 50 100 150 200 250

Pe
rc

en
ta

ge
 (%

)

Size of cluster

Critical records
Cut nodes
Power (Critical records)
Power (Cut nodes)

Fig. 7. Human effort: critical and cut nodes for different sizes of clusters in Cora

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141
(a)

precison
recall

0.7

0.8

0.9

1

1 31 61 91 121 151 181
(b)

precison
recall

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141
(c)

precison

recall

Fig. 8. Repair Ecora using: (a) only cannot-link constraints; (b) the naive strategy;
(c) the CSM strategy, where the x-axis plots the number of constraints, and the y-axis
plots precision and recall of the repaired results

6.4 ER Quality

We evaluated how effectively the proposed ERI can improve the quality of an
ER result. Our experiments all start with the same initial ER result Ecora, which
was generated by applying the ER model of the Cora data set. Ecora has the
precision 76.35% and the recall 96.80%. We thus use Ecora as a base line to com-
pare the changes of precision and recall in the three settings as described in Fig.
8. Fig. 8.(a) shows that the precision can be consistently improved if applying

Provenance-Aware ER: Leveraging Provenance to Improve Quality 489

the splitting operation to repair Ecora in terms of cannot-link constraints. How-
ever, the recall decreases correspondingly. Fig. 8.(b) shows that there is no clear
evidence on the improvement of ER quality when using the native strategy to
repair Ecora. However, there is an inverse correlation between the precision and
recall. Applying the splitting operation to repair Ecora sometimes gives a sharp
jump in increasing precision but decreasing recall. But over time, precision and
recall converge to certain range, reaching some fix-points. Fig. 8.(c) shows that
the CSM strategy can control the negative effects of merging operations on preci-
sion so that the precision can be consistency improved over time. After reaching
certain point, both precision and recall increase towards achieving high-quality
ER results. To simulate constraints that should be identified by humans, we
developed a human decision simulator that can randomly generate cannot-link
and must-link constraints based on ground truth. A constraint that is violated in
an ER result may not necessarily be violated after repairing the ER result with
other constraints. For this reason, constraints used in our experiments need to be
dynamically identified according to an up-to-date ER result. These experiments
illustrate that the user can interactively provide feedback to an ERI index and
ask for repairing an ER result in real time.

7 Conclusions

We studied entity resolution in terms of provenance, which is largely unexplored
in the literature. An indexing method was proposed, which can efficiently man-
age the provenance information of the ER process. Together with a knowledge
base capturing must-link and cannot-link constraints, the ERI indexing structure
enables us to repair inconsistent ER results. Our experimental results confirmed
that the ERI indexing method not only exhibits good scalability properties for
building a provenance structure, but also supports efficient algorithms to repair
erroneous ER matches with reduced human efforts.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms
and complexity. In: ICDT, pp. 31–41 (2009)

3. Agrawal, P., Ikeda, R., Park, H., Widom, J.: Trio-ER: The Trio system as a work-
bench for entity-resolution. Technical report, Stanford InfoLab (2009)

4. Arasu, A., Götz, M., Kaushik, R.: On active learning of record matching packages.
In: SIGMOD, pp. 783–794 (2010)

5. Arasu, A., Ré, C., Suciu, D.: Large-scale deduplication with constraints using dedu-
palog. In: ICDE, pp. 952–963 (2009)

6. Benjelloun, O., Sarma, A.D., Halevy, A., Theobald, M., Widom, J.: Databases with
uncertainty and lineage. The VLDB Journal 17(2), 243–264 (2008)

7. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. TKDD
1(1), 5 (2007)

490 Q. Wang et al.

8. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: a characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2000)

9. Buneman, P., Tan, W.-C.: Provenance in databases. In: SIGMOD, pp. 1171–1173
(2007)

10. Chaudhuri, S., Das Sarma, A., Ganti, V., Kaushik, R.: Leveraging aggregate con-
straints for deduplication. In: SIGMOD, pp. 437–448 (2007)

11. Christen, P.: Data Matching. Springer (2012)
12. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-

plication. IEEE TKDE 24(9), 1537–1555 (2012)
13. Cohen, W.: Data integration using similarity joins and a word-based information

representation language. TOIS 18(3), 288–321 (2000)
14. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: consistency

and accuracy. In: PVLDB, pp. 315–326 (2007)
15. Fellegi, I., Sunter, A.: A theory for record linkage. J. Amer. Statistical Assoc.

64(328), 1183–1210 (1969)
16. Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann

(2006)
17. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: SIG-

MOD, pp. 951–962 (2010)
18. Newcombe, H., Kennedy, J.: Record linkage: making maximum use of the discrim-

inating power of identifying information. Comm. of the ACM 5(11)
19. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:

KDD (2002)
20. Shen, W., Li, X., Doan, A.: Constraint-based entity matching. In: AAAI,

pp. 862–867 (2005)
21. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.

ACM SIGMOD Record 34(3), 31–36 (2005)
22. Verykios, V., Moustakides, G., Elfeky, M.: A Bayesian decision model for cost

optimal record matching. The VLDB Journal 12(1), 28–40 (2003)
23. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: AAAI, pp.

1097 (2000)
24. Whang, S.E., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with

negative rules. The VLDB Journal 18(6), 1261–1277 (2009)
25. Wijsen, J.: Database repairing using updates. TODS 30(3), 722–768 (2005)

Information Retrieval
and Summarization

© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 493–509, 2015.
DOI: 10.1007/978-3-319-18120-2_29

A Chip Off the Old Block – Extracting Typical
Attributes for Entities Based on Family Resemblance

Silviu Homoceanu() and Wolf-Tilo Balke

IFIS TU Braunschweig, Mühlenpfordstraße 23, 38106 Braunschweig, Germany
{silviu,balke}@ifis.cs.tu-bs.de

Abstract. Google’s Knowledge Graph offers structured summaries for entity
searches. This provides a better user experience by focusing on the main aspects
of the query entity only. But to do this Google relies on curated knowledge bases.
In consequence, only entities included in such knowledge bases can benefit from
such a feature. In this paper, we propose ARES, a system that automatically dis-
covers a manageable number of attributes well-suited for high precision entity
summarization. With any entity-centric query and exploiting diverse facts from
Web documents, ARES derives a common structure (or schema) comprising
attributes typical for entities of the same or similar entity type. To do this, we ex-
tend the concept of typicality from cognitive psychology and define a practical
measure for attribute typicality. We evaluate the quality of derived structures for
various entities and entity types in terms of precision and recall. ARES achieves
results superior to Google’s Knowledge Graph or to frequency-based statistical
approaches for structure extraction.

Keywords: Entity summarization · Schema extraction · Knowledge graph

1 Introduction

Entity-centric searches account for more than 50% of the queries on the Web [13, 14].
There are two main types of entity search queries: those focused on finding entities
and those returning properties of given entities. The first type has been extensively
researched: many systems performing query by example for Related Entity Finding
(REF) or for Entity List Completion (ELC) have been published [5, 18]. Also belong-
ing to the first category, searching for entities by means of properties e.g. “President
of USA” known as “Web-based Question Answering”, received significant attention
[8, 17, 27]. Systems like the well-known IBM Watson [23] stand as a proof of their
success. However, most queries are of the second type, popular entities according to
user search behavior (identified in [14]) being celebrities, organizations, or health
concerning issues like medical conditions. Unfortunately not much has been done to
accommodate such queries. The problem of entity-centric search focused on returning
information for given entities is the central topic of this paper.
Google’s Knowledge Graph represents the state of the art for such entity queries. It
summarizes knowledge of common interest using some fixed schema to provide an
overview. After typing some entity name into Google’s search field, an entity

494 S. Homoceanu and W.-T. Balke

Fig. 1. Knowledge Graph - result for “Barack Obama”

summary is provided on the right hand side of the search results, if the Knowledge
Graph contains the entity. A sample entity summary for ‘Barack Obama’ is shown in
Figure 1. According to Google’s official blog (http://www.googleblog.blogspot.de/20
12/05/introducing-knowledge-graph-things-not.html), the Graph mainly relies on
manually curated data sources like Wikipedia Infoboxes, Google’s Freebase, and
schema.org annotations on the Web. But with this, the Knowledge Graph has a major
shortcoming: it only provides information on well-known entities already having a
Wikipedia article, Freebase record or sufficient schema.org annotations. Our exten-
sive evaluation presented in Section 2 shows that this is indeed rather limited.

In this paper we argue that a data-driven approach of building entity summaries di-
rectly from unstructured data on the Web is more suitable for entity-centric search. In-
specting the popular ClueWeb09 (lemurprject.org/clueweb09/) data set consisting of
500 million documents from the Web, we extracted approximately 11,000 statements
regarding Barack Obama. The statements are structured as triples of the form (subject,
predicate, object), with predicates representing attributes and objects represent the cor-
responding values. But the volume of information is huge. With the information needs
of the majority of users in mind, when browsing through the variety of attribute: value
pairs for ‘Barack Obama’, we found that many of them, e.g., visit: Israel, love: Broccoli
or spent_vacation_in: Hawaii, are irrelevant. Can such attributes be recognized as irre-
levant and pruned to obtain a suitable, yet concise structure?

The first idea that comes to mind is a frequency-based solution. Approaches like
the count of witnesses as a measure for the importance of attributes have often proven
efficient [8, 19]. Together with the Knowledge Graph, they will serve as baseline for
evaluating the approach presented in this paper. But browsing through the triples for
Barack Obama, one can observe that some of the information, like the year of elec-
tion, term in office, being member of some party, etc., is common to all American
presidents. Intuitively, a data-driven entity summary for “Barack Obama” as an
“American president” would comprise a few, good descriptive properties selected
from these shared characteristics. Taking a closer look at how the attributes extracted
for Barack Obama are actually shared among the 44 American presidents (see Figure
2) a typical power law distribution can be observed. While the attributes that are
common and important for this small world of presidents fall into the head of the
distribution, the tail mostly comprises trivia about individual presidents. That means,
by simply chopping off the tail, one might already identify common attributes of good

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 495

quality. Is such a distribution valid for all types of entities, i.e. can the lessons learned
from the small and homogeneous set of 44 American presidents be generalized? And,
how can this distribution efficiently be derived and pruned, i.e. can this also be per-
formed for classes with thousands of entities or heterogeneous entity types with only
limited similarity?

Approach and contribution: Motivated by these observations we present ARES
(AttRibute selector for Entity Summaries) a system for extracting data-driven struc-
ture for entity summarization. Starting from a query comprising an entity and the
category of interest (like SCAD [2] we use categories for query disambiguation), e.g.,
“Barack Obama: American President”, ARES delivers highly typical attributes for the
query entity in the context of the provided category. To implement our approach we
extend the concept of typicality from cognitive psychology and define attribute typi-
cality together with a novel and practical rule for actually calculating it. We evaluate
the quality of extracted attributes in terms of precision and recall deploying the basic
structure from matching Wikipedia articles as ground truth together with human
assessment. As a baseline, we employ the well-known ReVerb Open Information
Extraction (OpenIE) system [10] enhanced with frequency-based scoring and state-of-
the-art paraphrase discovery [4] and the Google Knowledge Graph. All measurements
have been performed over sufficiently large real-world datasets namely the freely
accessible part of PubMedCentral (www.ncbi.nlm.nih.gov/pmc) and ClueWeb09.

2 A Brief Glance at Google’s Knowledge Graph

According to Google the Knowledge Graph mainly relies on the Wikipedia Infobox-
es, Freebase and schema.org annotations. Schema.org was launched in early 2011 as
joint initiative of major search engine providers. It provides a unified set of
vocabularies for semantically annotating data published on the Web. But as we have
shown in [12] schema.org did not gain traction. One year after schema.org was intro-
duced, only about 1.56% of the websites comprised annotated data. In consequence

Fig. 2. Distribution of extracted attributes (x-axis) sorted by how many American presidents
(y-axis) share each attribute (with zoom-in on the first 100 attributes).

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

0

5

10

15

20

25

30

35

1
16

9
33

7
50

5
67

3
84

1
10

09
11

77
13

45
15

13
16

81
18

49
20

17
21

85
23

53
25

21
26

89
28

57
30

25
31

93
33

61
35

29
36

97
38

65
40

33
42

01
43

69
45

37
47

05
48

73
50

41
52

09
53

77

496 S. Homoceanu and W.-T. Balke

schema.org can’t significantly contribute to the Knowledge Graph. It seems that the
Knowledge Graph is mostly limited to entities from Wikipedia and Freebase.

Wikipedia and Freebase largely overlap in terms of the entities and entity structure.
Freebase is mainly focused on providing structured information (same as Wikipedia
Infoboxes but more extensive). Wikipedia additionally provides a textual description,
each entity being presented in a comprising article. Infoboxes are fixed-format tables
built on one or more hierarchical Infobox templates. The purpose of Infoboxes is to con-
sistently present a summary of some unifying aspects that articles share. The idea is that
articles of entities of a similar kind share the same Infobox structure. This way, similar
entities share the same structure that should flow into the corresponding Knowledge
Graph summaries. But the Infoboxes can be quite extensive, having much more attributes
than the Knowledge Graph snippet should comprise. Choosing the “right” attributes to
build the entity summary is vital for the whole system. For instance, the snippet for Ba-
rack Obama (Figure 1) comprises 6 attributes taken from the Infobox Person template
(en.wikipedia.org/wiki/Template:Infobox_person). However, nothing really specific
regarding his activity as a president is mentioned, other than the first sentence being co-
pied from the Wikipedia article. The information presented in the Knowledge Graph is
quite general, common to any person be it a politician, writer, actor, etc. In fact, the same
snippet structure is provided also for actor Kevin Bacon. But relevant information like
the year Obama took office or which political party he belongs to, are not being included
here despite being present in the corresponding Infobox. It seems that for this entity, the
Knowledge Graph only presents the first few attributes of the broader Infobox
template the entity is associated with – in this case the Person Infobox. Instead, we be-
lieve that finding a sweet-spot between too broad and too specific information, like
for example a subset of the Office holder template (en.wikipedia.org/wiki/Template:
Infobox_officeholder), is sensible.

But is this only a problem of choosing the right attributes from Infoboxes, i.e. do
Infoboxes include the right attributes for entity summaries? Manually inspecting dif-
ferent entities with same Infobox templates it can be observed that for entities of
common type, the structure of Wikipedia articles is often very similar with nearly
identical first-level headings. Encouraged by this observation we analyzed a larger
number of entities. Starting from the list of 3,000 diseases featuring an article on Wi-
kipedia we extracted the headings of all articles (structural headings of Wikipedia like
“References” and “External Links” were pruned). Indeed, even over large samples of
entities, a common structure can be extracted (see Figure 3). A similar result holds in
the case of American presidents, yet with lower percentages. Both entity types form
homogeneous groups. However, this is not always the case: the same experiment
performed on all companies from the S&P 500 list shows that, with the exception of
only two headings (Products and Acquisitions) there is no common article structure
for this category. Going a step further and inspecting the article headings for compa-
nies from the same business field, the structure becomes more homogeneous. For
instance, articles for automotive companies often cover topics like ‘Alliances’ or
‘Motorsport’, in contrast to articles for pharmaceutical companies, where topics like
‘Clinical Trials’ and ‘Litigation’ are more common. Despite articles for companies
being highly heterogeneous, all their Infoboxes follow the same template (the

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 497

Company Infobox template - en.wikipedia.org/wiki/Template:Infobox_company),
summarizing information with 41 generic attributes. Does this general structure pro-
vide suitable selections of attributes that reflect article differences?

Focusing on the structure provided by the Infoboxes we conducted an experiment
to investigate two aspects: The number of expected attributes (i.e., how many an enti-
ty summary should feature) and the suitability of generic attributes for building
knowledge snippet structures reflecting the heterogeneous Wikipedia articles. We
selected 50 companies, split into 10 groups, each group corresponding to a major
business field (e.g. Automotive, Energy, Financial, IT, Retail, etc.). Each company
and its corresponding attributes and values have then been presented to 25 human
subjects with the task to select those few relevant properties they would like to see in
a short description of the company. The experiment was conducted through a crowd-
sourcing platform (CrowdFlower). In total we collected 1250 judgments. Companies
were presented in random order and attributes were shuffled for each task.

The number of selected attributes over all judgments on all companies ranges from
1 to 18, with a clear focus between 3 and 7, an average of 5.3 and a standard deviation
of 3.12. This behavior is consistent for all companies: averages of the selected number
of attributes per company range between 5.1 and 6.0. Also in terms of attribute relev-
ance there is large consensus: the same few typical attributes are considered relevant
by most subjects for all companies. The histogram presented in Figure 4 shows com-
panies from the financial sector (histograms for all other companies are very similar).
In fact, low standard deviation values for each attribute on all companies, show sub-
jects selected the same attributes over and over, regardless of the company. As a con-
sequence, histogram based similarity metrics like the Minkowski distance measured
pairwise between all companies, can’t really differentiate between various business
sectors or other semantically meaningful criteria.

Fig. 3. Wikipedia Article Structure – % of entities (y-axis) belonging to the same category and
sharing a certain heading (x-axis, values shared by less than 10% omitted)

Of course, since the Infobox structure has to cover all kinds of companies, the re-
spective attributes were general. But the fact that popular attributes selected from this
structure are not correlated to the different topics presented in the articles suggests
more sophisticated measures have to be taken when categories are heterogeneous. Our
experiments show a clear tendency regarding the number of attributes an entity

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Diseases US Presidents Large Companies

498 S. Homoceanu and W.

Fig. 4. The number of subjec
company (z-axis). For compan

summary should feature an
considered important. A go
attributes, and focuses on t
spective articles’ richness,
real world. If the entity is
typical for the entire categ
have to be derived in a dat
geneous semantic subgroup

3 Related Work

Knowledge graphs have be
authors present a greedy al
mation retrieval [1] to extra
The authors argue that a d
aspects of an entity. For in
tion, entity Tom_Cruise is
cate but just once to the li
predicate. In this case, the
to be included in the summ
concept of diversification in
graph built form the triples.
tance” of the attributes of
input. We consider that the
perfect for establishing suc
and values. Each predicate
same chance of making it in
attributes to include in the
controlled by the user throu

-T. Balke

cts (y-axis) that have selected an attribute (x-axis) for a cer
nies from the financial sector only.

nd a surprisingly high consensus about what attributes
ood entity summary structure highlights between 3 an
typical properties of the entity. But overall, seeing the
considering just generic properties may poorly reflect

s part of a homogeneous category, properties are usua
ory. But, if categories are heterogeneous, good structu
ta-driven fashion with properties typical for a more hom
p.

een used in the past for entity summarization. In [22]
lgorithm that adapts the idea of diversification from inf
act entity summaries from subject-predicate-object trip
diversity unaware system is likely to present only cert
nstance in a knowledge base representing movie inform
connected multiple times to movies by the acted_in pre
iteral representing his birthday through the born_on_d
many movies Tom Cruise played in would be more lik

mary. Personal data would be ignored. To incorporate
nto the summarization algorithm they rely on a knowle
. Added to the edges, weights should represent the “imp
the entity. These weights are assumed to be provided

e concept of attribute typicality introduced in this pape
ch weights. Furthermore, we separate between predica
e is considered only once. In consequence, acted_in
nto the summary as born_on_date has. The decision wh
summary is made based on the attribute typicality, va

ugh the entity category.

rtain

are
nd 7
e re-

the
ally
ures
mo-

the
for-

ples.
tain
ma-
edi-
date
kely

the
dge
por-
d as
er is
ates
has

hich
alue

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 499

Related to our work, in [16] the authors propose a probabilistic approach to com-
pute attribute typicality. But there is a fundamental difference: the authors ignore the
difference between entities and sub-concepts representing instances of a concept. This
way for any concept, say company, both IT company and Toyota are instances of
company. This simplifying assumption doesn’t consider data heterogeneity: for con-
cepts comprising heterogeneous entities the extracted attributes only loosely represent
the corresponding entities. In contrast, our approach distinguishes between concepts
and sub-concepts. It follows a data-driven approach with attributes typical for each
sufficiently homogeneous semantic subgroup.

From a broader perspective, our work is related to the field of schema matching
and mapping. Such systems use various matching techniques and data properties to
overcome syntactic, structural or semantic heterogeneity. But most approaches focus
on data from relational databases [20]. Systems like WEBTABLES [7] or OCTOPUS
[6] rely on semi-structured data like html lists and tables on the Web to extract data
structure. In contrast, our system may use all extractions from text without any restric-
tions increasing the number of supported entities.

4 The Concept of Typicality

Leading the quest for defining the psychological concept of typicality [21], Eleanor
Rosch showed that the more similar an item was to all other items in a domain, the
more typical the item was for that domain. Her experiments show that typicality
strongly correlates (Spearman rhos from 0.84 to 0.95 for six domains) with family
resemblance a philosophical idea made popular by Ludwig Wittgenstein in [25].
Wittgenstein postulates that the way in which family members resemble each other is
not defined by a (finite set of) specific property(-ies), but through a variety of proper-
ties that are shared by some, but not necessarily all members of a family. Based on
this insight, Wittgenstein defines a simple family-member similarity measure based
on property sharing:

 , | | (1)

where X1 and X2 are the property sets of two members of the same family. However,
this measure of family resemblance assumes that a larger number of common proper-
ties increase the perceived typicality, while larger numbers of distinct properties do
not decrease it. To overcome this problem, the model proposed by Tversky in [24]
suggests that typicality increases with the number of shared properties, but to some
degree is negatively affected by the distinctive properties:

 , | || | | | | | (2)

where α and β ≥ 0 are parameters regulating the negative influence of distinctive
properties. In particular, when measuring the similarity of a family member X2 to the
family prototype X1, a choice of α ≥ β poses the same or more weight to the proper-
ties of the prototype itself. For α = β = 1 this measure becomes the well-known

500 S. Homoceanu and W.-T. Balke

Jaccard coefficient. For α+β ≤ 1 more weight is given to shared features, while for
α+β > 1 diverse properties are emphasized, which is useful for heterogeneous fami-
lies.

4.1 Attribute Typicality

Applying Tversky’s family resemblance model enables the selection of a most typical
family member or entity. However, our main goal is to find a common structure, i.e. a
most typical set of attributes for some entity and its respective entity type. Hence, we
need to find out which of the attributes occurring in a family actually are typical with
respect to this family. Since the family definition relies on the measure of members’
similarity, we adapt Tversky’s measure as follows: assume we can determine some
family F consisting of n entities , … , and a total of k distinct attributes given by
predicates , … , are observed for family F. Let Xi and Xj represent the respective
attribute sets for two members and , then:

 1 1 1 (3)

where 1 1 ∈0 is a simple indicator function.

Now we can rewrite Tversky’s shared similarity measure to make all attributes ex-
plicit:

 , ∑ 1
 (4)

where the same conditions as above apply to and .

According to Tversky, each attribute shared by Xi and Xj contributes evenly to the
similarity score between Xi and Xj. This allows us to calculate the contribution score
of each attribute to the similarity of each pair of members:

Let p be an attribute of a member from F. The contribution score of p to the simi-
larity of any two attribute sets Xi and Xj, denoted by , , is:

 , 1
 (5)

where = ≥ 0. (Additionally further normalization could be applied to avoid
small values.) The contribution of some attribute towards the similarity of two family
members is this way dependent on the degree of similarity between the two members.
This is a fundamental difference to simply performing property set intersections (like
in Figure 2). In particular, this enables us to cope even with difficult cases where enti-
ty collections are heterogeneous. Building on the contribution score we are now ready
to introduce the notion of attribute typicality.

Definition 1: Attribute Typicality. Let F be a set of n entities , … , of similar
kind represented by their respective attribute sets , … , . Let U be the set of all
distinct attributes of all entities from F. The typicality of an attribute/predicate

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 501

∈ w.r.t. F is the average contribution of p to the pairwise similarity of all entities
in F:

1 , (6)

where , is the contribution score of attribute p regarding the similarity be-

tween (eq. 5) and is the number of all combinations of entities from F.

5 Designing the Retrieval System

Building on state-of-the-art information extraction, our prototype system discovers all
those attributes that are typical for the entity and entity type provided by the user.
Figure 5 shows an overview of the system. In brief, the system works as follows:

5.1 Information Extraction

Documents from the Web, are processed with Open Information Extraction (OpenIE)
methods. This results in a large number of (subject, predicate, object) triples. Since
the same entity can be expressed in multiple forms, an Entity Dictionary listing
unique entities and their possible string representations is kept and updated. Two
problems have to be discussed regarding the entity dictionary: synonymy, i.e. every
entity can have more than just one string representation form, e.g. “Barack Obama”,
“B. H. Obama”, etc. and ambiguity, i.e. every string can refer to different entities e.g.
“Clinton” may refer either to “Bill Clinton” or to “Hillary Clinton”. Since synonymy
is not our main focus, our prototype uses thesauri like WordNet, Mesh and entity
string representations from Wikipedia. The problem of ambiguity is known as Entity
Disambiguation. In order to solve this, the assumption is made that any ambiguous
reference to some entity, say “Clinton”, is preceded in the document by some clear
entity reference like “President Clinton” or “Mrs. Clinton”. If no such reference is
found, we relax our assumption like in presented [19] and assume that each entity
string is uniquely addressing exactly one entity within a document.

Fig. 5. ARES – System Architecture

502 S. Homoceanu and W.-T. Balke

Predicates may also have synonym terms e.g. president_of, won_elections_in,
was_elected_president_of, etc. Also in this case we keep listing unique predicates –
the Paraphrase Dictionary. However, for predicates there are no acceptable thesauri.
The field of paraphrase discovery is concerned with this problem [4]. State-of-the-art
methods rely on a class of metrics called distributional similarity metrics [15]. In the
context of paraphrase discovery, this hypothesis is applied as: two predicates are pa-
raphrases of each other, if they are similarly distributed over a set of pairs of entity-
types. However, in contrast to the entity ambiguity problem, a simplifying assumption
is made: predicates can’t have multiple meanings (single-sense assumption [26]).
Following on these insights and similar to the method presented in [11], we applied
hierarchical clustering to the predicate/entity-type pairs distributions. As a similarity
measure we have used the well-known cosine metric with mean linkage as criteria.
Still, despite experimenting with different similarity thresholds, the success of the
paraphrasing process is rather limited. While on manual inspection the clusters prove
good precision, just about 7% (for 0.9 similarity threshold) actually build clusters.
The rest of the predicates build single node clusters although a substantial number of
cases show obvious paraphrases. This is consistent with results from the literature
[26], where, the recall barely reaches 35%.

All extracted facts are cleaned based on these dictionaries. Then, they are stored in
a knowledge base (we use a Virtuoso RDF database in our prototype).

5.2 Query Engine

The query engine module is responsible for extracting the entity structure for user
queries comprising the entity and corresponding type. The first step in this direction is
to identify all entities that belong to the same category as the query entity. To do this,
a mapping between the entities and the corresponding categories is needed. Such
mappings can be extracted in the preprocessing phase directly from text with lexico-
syntactic patterns, like “…an X such as Y…” or “… all X, including Y…” expressing
“is-a” hierarchies between entity category X and entity Y.

Experiments in section 2 show that categories may comprise heterogeneous enti-
ties. Our approach relies on Tversky’s similarity measure (eq. 2) to find those
k-nearest neighbors to the query entity. These entities not only belong to the same
category as the query entity, but they also share similar structure. We call this special
collection of entities, the family of the query entity.

Definition 2: Family. Let X be the query entity and C be the set of entities of the same
category as the category given by the user to represent X. The family of X w.r.t. cate-
gory C, denoted FX,C, is a subset of entities from C, with:

, | ∈ ⋀ ,

where , represents the similarity between entities X and Y (see eq. 2) and θ is
a family specific threshold.

The value of θ has to be established dynamically, based on the start entity and the
entities falling into the same category. For this purpose, we employ automatic thre-
sholding methods, in particular the ISODATA algorithm. Applied to the entities
falling into the same category as the query, this method identifies the similarity thre-

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 503

shold that splits the entities in two groups: one comprising homogeneous entities with
high similarity to the query entity and one containing all the less similar entities.

With the query rewritten from “entity plus type” to “entity plus family”, we can
now proceed to extract the attributes that are central for the entity types’ structure.
Following the definition of attribute typicality, introduced in section 4.1, for each
attribute, we calculate its contribution to defining the family of the query entity. For
better overview of how the quantification of attribute typicality is performed we
present the pseudo-code of our system’s algorithm in Algorithm 1. Being the online
part of the system, in the following we present an analysis of the systems’ efficiency.

Runtime Analysis: Even for broad categories with thousands of entities our system
requires about 40 seconds per query. For instance, in the case of diseases, 3,513

Algorithm 1: Extraction algorithm for typical attributes.

Input: X - query entity, C - set of entities of same category as X, ϕ - attribute quality threshold, RDF triple collection

Output: T - set of typical attributes
1: F ← FAMILY(X, C)
2: T ← ; U ←
3: foreach X in F do
4: x_attr ← ATTRIBUTES(X, RDF)

 // all attributes from triples where X is the subject or the object
 // stored in memory for heavy reuse (*)

5: U ← U x_attr
6: end for
7: foreach a in U do
8: a_typ ← 0
9: for Xi ∈ F do
10: for Xj ∈ F |1 ⋀ ∈ do
11: xi_ attr ← ATTRIBUTES(Xi, RDF) // (*)
12: xj_ attr ← ATTRIBUTES(Xj, RDF) // (*)
13: contr←0
14: if a ∈ xi_attr ⋀ a ∈ xj_ attr then
15: contr ← _ _ _ _ _ _

 // contribution of p to similarity between Xi and Xj (eq.5)
16: end if
17: a_typ ← a_typ + contr
18: end for
19: end for

20: a_typ ← 2 · _| |· | | // the number of pairwise comparisons (
| |
)

21: if a_typ > ϕ then
22: T ← T a
23: end if
24: end for
25: return T

26: function FAMILY(X, C)
27: F ← ; x_attr ← ATTRIBUTES(X, RDF)
28: foreach Y in C do
29: y_attr ← ATTRIBUTES(Y, RDF)
30: sim←similarity(x_attr, y_attr) // Tversky’s similarity, eq. 2

 // computed only once then stored in memory for later use (**)
31: S←S sim
32: end for
33: θ ← ISODATA(S)
34: foreach Y in C do
35: y_attr ← ATTRIBUTES(Y,RDF)
36: sim←similarity(x_attr, y_attr) // (**)
37: if sim ≥ θ then
38: F ← F Y
39: end if
40: end for
41: return F

504 S. Homoceanu and W.-T. Balke

entities in the disease category have articles on Wikipedia. For entity “hypertension”,
ARES needs 42.977 seconds to extract typical attributes on commodity hardware. The
time required is broken down as follows: computing the family of the query (lines 26
to 41 in Alg. 1) takes 22.472 seconds to complete. This covers the following parts:
extracting all attributes for all entities (13.350 seconds – an average of 3.8 millise-
conds per entity); pairwise comparing the 1,329 diseases that also appear in PubMed-
Central statements (8.917 seconds – an average of 6.7 milliseconds per comparison);
computing the family threshold (21 milliseconds). All other operations (assignments,
logical, arithmetical operators) for the family computation require 184 milliseconds.
The computation of typicality values for all 2,711 attributes (lines 2 to 25 in Alg. 1)
takes 20.505 seconds to compute (about 7.5 milliseconds per attribute).

All tests have been performed single threaded. But since all major operations allow
for parallelization, ARES should run in real-time on a cluster with up to 100 nodes.

6 Qualitative Evaluation

6.1 Experimental Setup

Dataset. For our tests, we used ClueWeb09 a 500 million Web documents corpus and
PubMedCentral comprising about 250,000 biomedicine and life sciences research
papers. All documents are processed offline by our IE module. For ClueWeb09 bil-
lions of noisy triples are extracted. After filtering out triples that are infrequent only
approx. 15 million triples remain. With the same process on the PubMedCentral cor-
pus, we extracted about 23 million triples. The IE module needs about 1 minute to
process 8,000 sentences. On commodity hardware, the process took about 11 days.

Queries. We experiment with persons (in the sense of American presidents), or-
ganizations (in the sense of companies) and medical conditions, three types of entities
identified in [14] as most popular entity-centric queries on the Web.

Measures. Our goal is to extract a high quality structure with limited, yet precise
attributes. Therefore the success of all algorithms is measured in terms of precision
(also in aggregated form as mean average precision MAP). Given the small number of
attributes in an entity summary, recall is less important but still relevant for our task.

The frequency-based baseline algorithm. Drawing on the literature, we assume
that attributes frequently appearing together with either the query entity or with enti-
ties of the same type, build a good structure for the query. Relying on the same infra-
structure as described in Section 5 we thus implemented the frequency-based baseline
approach (in the following called Frequency-based Entity Summarization - short
FES). Another reference system is of course Google Knowledge Graph, the attributes
from the knowledge snippet to be specific.

Establishing Ground Truth. For entity-centric search falling into the categories of
REF or ELC, TREC [3] and INEX [9] provide data samples and gold standards. Unfor-
tunately, no such data is available for problem presented in this paper. We rely on the
basic structure from matching Wikipedia articles as ground truth together with human
assessment. For the evaluation based on human assessment all attributes provided by
ARES, FES and the Knowledge Graph were mixed together and ordered alphabetically
for each query. We presented the resulting lists to subjects and provided the same

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 505

instructions as in Section 2. We selected relevant attributes based on the ‘majority rule’.
All assessments showed substantial agreement [19] showing Fleiss’ Kappa agreement
levels between 0.71 and 0.76.

6.2 Experiments

In the following we present two sets of experiments: one set focused on evaluating
different query forms to proper disambiguate query entities and one for testing our
approach on large categories with either heterogeneous or homogeneous structure.

6.2.1 Disambiguation of Queries
A query consists of two parts: an entity and the corresponding entity category. This is
because a single entity is not enough to capture the user intent. Still, allowing users to
give examples might help disambiguation. For instance, with “Ronald Reagan” as a
query entity and “Clint Eastwood” as additional example, users will be referring to
American actors rather than American presidents. However, they might also have
other categories in mind like Western actors, actors from California, etc. The more
examples, the better the disambiguation, however increasing query complexity. On
the other hand, a user provided category leads to easy and high quality disambigua-
tion [13]. To establish which query form is better, we performed three experiments:

a) Users provide an entity. Since our approach relies on shared attributes, a single
entity cannot be disambiguated. This experiment is however interesting for FES.

b) Users provide five similar entities. The cognitive burden increases heavily
beyond that. FES cumulates the frequency of the attributes over the five entities
and selects the most frequent ones. We modified ARES for this experiment to
use the five entities as a family.

c) Users provide an entity together with the category of interest. The frequency-
based method cumulates the frequency of the attributes for all entities of the cat-
egory and selects the most frequent ones. ARES works as described in Section 5.

In Figure 6 (a, b and c) we present the top 10 attributes for our running example:
American presidents. For just one entity (Fig. 6.a), the precision of FES proves really
poor. No disambiguation can be performed and thus, all kinds of attributes are consi-
dered. Barack Obama has proven to be an unlucky choice for FES: averaging the
precision over multiple American presidents shows better results. In the case of five
examples (Fig. 6.b), both the frequency-based method and the modified attribute-
sharing method achieve average results. Again, the reason is proper disambiguation:
only a small part of the personal aspects are evened out. Finally when the category of
American presidents is also provided (see Fig. 6.c), both methods achieve quite good
precision. Hence we can state that a query consisting of some entity and a respective
type leads to better disambiguation and allows us to extract better structure.

Experiment c) shows the normal functionality of both ARES and FES. The preci-
sion and recall values obtained by the systems are presented in Table 1. For the case
of American presidents, ARES is with a MAP of 0.75 superior to the other systems.
The Knowledge Graph focuses in this case on family and education, elements consi-
dered irrelevant by the assessors. This severely affects its recall.

506 S. Homoceanu and W.-T. Balke

Table 1. Precision & Recall by system and query category

6.2.2 The Structure of Categories
While categories are perfect for disambiguation, some categories may prove hetero-
geneous. Fortunately, our approach features a self-tuning resemblance measure able
to automatically refine categories: all queries are focused on a family of entities with
sufficiently homogeneous structure, while keeping the focus on the query entity. For
instance, out of the S&P 500 list of companies, for queries like “Toyota Motor Corpo-
ration”, “Renault S.A.”, or “Volkswagen A.G.”, our systems builds families with 17
to 24 entities, clearly focusing on car companies (30% - 50% of the selected family
members are car makers). For queries like “Apple Inc”, “Google Inc” or “Microsoft”
the results are similar, with 40% - 60% of IT companies in the selected family.

Indeed the self-tuning works well. In contrast to the results observed for generic
attributes from Wikipedia Infoboxes (Section 2), where Minkowski similarity metrics
(Manhattan distance) showed no difference between companies in different fields, for
the attributes extracted by our system these differences are much more expressive.
The average histogram distance for the attributes from Wikipedia Infoboxes selected
by the crowd for car companies is of 69.8. The same distance for attributes selected
by ARES for car companies is of 6.7. For IT companies the respective average values
are 56.4 for attributes from the Wikipedia Infoboxes vs. 1.4 for the ARES selection.
However, the average distance between different sectors stays large also for ARES:
78.16 vs. 65.3 for the selection from the Wikipedia Infoboxes and ARES respectively,
for car vs. IT companies. This shows that ARES is able to extract attributes particular
to homogeneous entities (small histogram distances for similar companies) while
keeping heterogeneous entities apart. It’s remarkable that, when presented with data-
driven attributes, assessors picked attributes differentiating between business sectors.

In terms of precision, our approach achieves 0.73 MAP for all company queries,
superior to both baselines. We present the results, averaged by sector, in Fig. 6.d and
Fig. 6.e. For car makers, 8 attributes proved relevant according to the majority of
human assessors. There is an important difference regarding the precision achieved by
FES in the two sectors. Deeper inspection showed that there is more information
about IT companies than about car makers in ClueWeb09. In fact most information on
automotive topics actually refers to cars and not to the respective companies. Thus, it
is understandable that a frequency based method shows such poor results.

Motivated by these findings, we repeated the experiments on PubMedCentral with
diseases as query entities. Unlike in the case of companies, here we can’t recognize
any particular (especially taxonomically motivated) patterns regarding the members in
our automatically derived families. Cardiovascular diseases are mixed together with
infectious diseases, skin conditions and forms of cancer. We evaluated the systems
over five well-known medical conditions (“cancer”, “diabetes mellitus”, “hepatitis”,
“hypertension” and “tuberculosis”). Boosted by the high quality information (Fig.
6.f.), our method achieves an impressive MAP of 0.87. The Knowledge Graph returns

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 507

some of the National Library of Medicine headings obtaining fair average precision of
0.52. We would have expected that FES also performs better given the large amount
of relevant information. But it seems that the broad coverage of various subjects leads
to the frequency of attributes being spread rather evenly. Also in terms of recall
ARES is consistently superior, showing its overall practical usefulness.

a) b)

c) d)

e) f)

Fig. 6. Precision@k - for experiments a) and b) and c), for automotive companies (d), IT com-
panies (e) and diseases (f)

7 Conclusions and Future Work

Google’s Knowledge Graph represents the state of the art for entity summarization.
However, our experiments show that even simple, frequency-based approaches
already reach similar or even better quality results. But for good user experience,
especially for heterogeneous collections of entities even more is needed. Therefore,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

1 Entity - FES 1 Entity (Avg. on Multiple Entities) - FES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

5 Seeds - FES 5 Seeds as Family - ARES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ARES FES
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

508 S. Homoceanu and W.-T. Balke

tuning the data-driven schema selection for entities over the vast variety of facts from
the Web is a major contribution of the ARES approach presented in this paper. ARES
relies on the concept of family resemblance introduced by cognitive psychology and
intelligently blends the homogeneity/heterogeneity of entity families with schema
integration techniques in the light of all extracted facts. ARES is self-tuning in the
sense that after family selection, entities within families show high intra-family simi-
larity, while entities from heterogeneous categories show low inter-family similarity.
Given the current advances in OpenIE, that allow to work directly on text, any entity
being described somewhere on the Web, can thus be summarized appropriately. Our
experiments on real-world entity classes representing different degrees of class ho-
mogeneity show that ARES is indeed superior to both, frequency-based statistical
approaches and the Knowledge Graph, in terms of precision and recall. Moreover,
also the run-time performance is already quite practical.

In future work, the improvement of response times by advanced indexing tech-
niques, parallelization, and the exploitation of specialized hardware will be addressed.

References

1. Agrawal, R., et al.: Diversifying search results. In: Proceedings of the Second ACM Inter-
national Conference on Web Search and Data Mining (WSDM), p. 5. ACM Press (2009)

2. Bakalov, A., Fuxman, A.: SCAD: collective discovery of attribute values categories and
subject descriptors. In: Procedings of the 20th International World Wide Web Conference
(WWW), Hyderabad, India, pp. 447–456 (2011)

3. Balog, K., et al.: Overview of the trec 2011 entity track. In: TREC (2011)
4. Barzilay, R., Lee, L.: Learning to paraphrase: an unsupervised approach using multiple-

sequence alignment. In: Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology
(NAACL), Edmonton, Canada, pp. 16–23 (2003)

5. Bron, M., Balog, K., de Rijke, M.: Example based entity search in the web of data. In:
Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Sega-
lovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 392–403. Springer, Heidel-
berg (2013)

6. Cafarella, M.J., et al.: Data integration for the relational web. In: Proceedings of the Very
Large Database Endowment (PVLDB), Lyon, France (2009)

7. Cafarella, M.J., et al.: WebTables: exploring the power of tables on the web. In: Proceed-
ings of the Very Large Database Endowment (PVLDB), Auckland, New Zealand,
pp. 538–549 (2008)

8. Cheng, T., et al.: EntityRank: searching entities directly and holistically. In: Proceedings of
the 33rd International Conference on Very Large Databases. (VLDB), pp. 387–398 (2007)

9. Demartini, G., Iofciu, T., de Vries, A.P.: Overview of the INEX 2009 entity ranking track.
In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 254–264.
Springer, Heidelberg (2010)

10. Fader, A., et al.: Identifying relations for open information extraction. In: Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), Edin-
burgh, Scotland, UK, pp. 1535–1545 (2011)

 A Chip Off the Old Block – Extracting Typical Attributes for Entities 509

11. Hasegawa, T., et al.: Discovering relations among named entities from large corpora. In:
Proceedings of the 42th Annual Meeting of the Association for Computational Linguistics
(ACL), Barcelona, Spain (2004)

12. Homoceanu, S., Geilert, F., Pek, C., Balke, W.-T.: Any suggestions? active schema sup-
port for structuring web information. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S.,
Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part II. LNCS, vol. 8422,
pp. 251–265. Springer, Heidelberg (2014)

13. Homoceanu, S., Balke, W.: What makes a phone a business phone. In: Proceedings of the
International Conference on Web Intelligence (WI), Lyon, France (2011)

14. Kumar, R., Tomkins, A.: A characterization of online search behavior. Proc. IEEE Data
Eng. Bull. 32(2), 1–9 (2009)

15. Lee, L.: Measures of distributional similarity. In: Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 25–32 (1999)

16. Lee, T., et al.: Attribute extraction and scoring: a probabilistic approach. In: Proc. of.
ICDE (2013)

17. Lin, J., Katz, B.: Question answering from the web using knowledge annotation and know-
ledge mining techniques. In: Proceedings of the International Conference on Information
and Knowledge Management (CIKM), p. 116. ACM Press (2003)

18. Metzger, S., et al.: QBEES: query by entity examples. In: Proc. of the 22nd ACM Int.
Conf. on Information and Knowledge Management (CIKM), pp. 1829–1832. ACM,
New York (2013)

19. Metzger, S., Schenkel, R.: S3 K: seeking statement-supporting top-k witnesses. In: Pro-
ceedings of the 20th Conference on Information and Knowledge Management (CIKM),
Glasgow, Scotland, UK, pp. 37–46 (2011)

20. Qian, L., et al.: Sample-driven schema mapping. In: Proceedings of the International
Conference on Management of Data (SIGMOD). ACM Press, Scottsdale (2012)

21. Rosch, E.: Cognitive representations of semantic categories. J. Exp. Psychol. Gen. 104(3),
192–233 (1975)

22. Sydow, M., et al.: DIVERSUM: towards diversified summarisation of entities in know-
ledge graphs. In: Proceedings of the International Conference on Data Engineering Work-
shop (ICDEW), pp. 221–226 (2010)

23. Tesauro, G., et al.: Analysis of Watson’s Strategies for Playing Jeopardy! J. Artif. Intell.
Res. 21, 205–251 (2013)

24. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)
25. Wittgenstein, L.: Philosophical Investigations. The MacMillan Company, New York

(1953)
26. Yates, A., Etzioni, O.: Unsupervised methods for determining object and relation syn-

onyms on the web. J. Artif. Intell. Res. 34, 255–296 (2009)
27. Zhou, M., et al.: Learning to rank from distant supervision: exploiting noisy redundancy

for relational entity search. In: Proceedings of the International Conference on Data Engi-
neering (ICDE) (2013)

Tag-Based Paper Retrieval: Minimizing User
Effort with Diversity Awareness

Quoc Viet Hung Nguyen(B), Son Thanh Do,
Thanh Tam Nguyen, and Karl Aberer

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{quocviethung.nguyen,sonthanh.do,tam.nguyenthanh,karl.aberer}@epfl.ch

Abstract. As the number of scientific papers getting published is likely
to soar, most of modern paper management systems (e.g. ScienceWise,
Mendeley, CiteULike) support tag-based retrieval. In that, each paper is
associated with a set of tags, allowing user to search for relevant papers
by formulating tag-based queries against the system. One of the most
critical issues in tag-based retrieval is that user often has difficulties in
precisely formulating his information need. Addressing this issue, our
paper tackles the problem of automatically suggesting new tags for user
when he formulates a query. The set of tags are selected in such a way that
resolves query ambiguity in two aspects: informativeness and diversity.
While the former reduces user effort in finding the desired papers, the
latter enhances the variety of information shown to user. Through study-
ing theoretical properties of this problem, we propose a heuristic-based
algorithm with several salient performance guarantees. We also demon-
strate the efficiency of our approach through extensive experimentation
using real-world datasets.

1 Introduction

With the rapid advances in science and technology, large collections of papers
have been published every year. To manage such paper collections efficiently,
many tag-based systems such as ScienceWise [1], Mendeley [3], and CiteULike [2]
have been developed and received spectacular attentions. In these systems, each
paper is associated with multiple tags, which often represent the domains it
belongs to, the concepts it is related to, or the terms it contains. All associated
tags in the repository are essential to enable tag-based retrieval that allows users
to represent their search intents by choosing from a suggested list of tags and
returns the relevant papers. For example, a user wants to retrieve the paper that
he read before, but does not remember its name. He only has partial information
about the paper (e.g. its domain and terms). By using the suggested tags, the
user can easily figure out what he is exactly searching. As an another example,
consider a user searching for papers of relevance to the research proposal he is
working on. While the user is eventually interested in one or few papers, at the
beginning he may have a lot of search queries in mind; thus a search with useful
suggestion of tags is necessary to narrow down the choices. Motivated by these
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 510–528, 2015.
DOI: 10.1007/978-3-319-18120-2 30

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 511

examples, we argue that tags can better help users specify their search intents
rather than letting them issue the queries by themselves, especially if they do
not know important keywords in the field.

In this work, we study the problem of minimizing user’s effort in finding his
expected paper(s) through an effective tag suggestion. More precisely, our goal
is to minimize the expected number of tags which user need to put into the
query. To the best of our knowledge, the closest work to ours is the research
on query reformulation. In general, users are often not be able to state their
search intents clearly when formulating a search query. The purpose of query
reformulation is to provide additional information via query terms for users to
reformulate their search intents. The terms are often ranked by different criteria
such as co-occurrence patterns [20], latent topic model [5], and via knowledge
bases [26]. The main difference between our work and the previous ones is that
we rank the tags by their potential information towards reducing user effort.

The problem is challenging for several reasons. First, the dependencies between
tags dynamically change according to the search context (i.e. current user query).
Hence, it is necessary to develop a suggestion model that takes into account both
the currently retrieved papers and the tags which were previously chosen into user
query. Second, since the user’s intent is not known until he is satisfied with the
search, the problem of minimizing user effort cannot be solved in advance. As such,
the suggestion needs to look-ahead possible choices by user when he formulates the
next query, so that the user can reach the desired paper(s) with minimal (expected)
number of querying steps.Third, there is a trade-offbetween information anddiver-
sity of the tags. Although suggesting the tags with high amount of information
might improve the chances of reducing the search results quickly, user is also pre-
vented from having a broad view of different domains on top of the suggestion.

Addressing these challenges via a unified model of tag-based paper retrieval,
this paper makes the following contributions.

– Section 2: We first provide a generic user interaction scheme for tag-based
retrieval. Further, we introduce a formal model of the retrieval process. Then
we motivate the requirements of tag suggestion.

– Section 3: We propose a goodness function that quantifies the quality of a
tag suggestion solution by combining the two dimensions informativeness
and diversity mentioned above. We also show that our function satisfies a
set of useful properties.

– Section 4: We formulate the problem of finding a tag set with maximal good-
ness value. We prove that this problem is NP-hard. And thus, we propose
a greedy algorithm with several salient performance guarantees to approxi-
mate the solution.
The remaining sections are structured as follows. Section 5 presents the exper-

imental evaluations. Section 6 summarizes related work, before Section 7 con-
cludes the paper.

2 Tag-Based Paper Retrieval

User Interaction Scheme. Our tag-based paper retrieval framework imple-
ments a user interaction scheme as illustrated in Figure 1. Given a list of

512 Q.V.H. Nguyen et al.

available tags in (2), a user chooses one of them to put into the query box
(1). For this tag-based query, the system returns results as a set of papers in (3).
Using tags as a query for retrieving papers helps user to narrow down the scope
of research topics and quickly obtain the papers of interest. Moreover, he is also
given an overview of all research topics, without spending any effort to rediscover
these topics by manually reading the papers. In general, the result quality of tag-
based search depends on how well the papers in the repository are annotated by
tags. Our work is based on existing paper repositories, such as ScienceWise [1],
Mendeley [3], and CiteULike [2], in which each paper is well-annotated with
many meaningful tags by the experts in the field.

Fig. 1. Tag-based Exploration User Interface

Tag-Based Retrieval. We denote a repository of papers by D, in which each
paper d ∈ D is annotated by a set of tags Td. We also denote T =

⋃
d∈D Td as the

set of all tags available in the system. Tag-based paper retrieval is the process of
finding a paper (or papers) of interest through dynamically suggesting the tags
of this paper (or these papers) to user. We assume that user does not know in
advance exactly which paper he is looking for and which tags he should choose.
Instead, he explores the repository by sequentially selecting the tags suggested
by the system until he is satisfied with the search result. More precisely, we model
the retrieval process as an interactive process, where in each step three actions
are performed: (I) the system suggests a list of tags to user, (II) user chooses one
of these suggested tags into the query, and (III) the system updates the set of
retrieved papers of relevance to the chosen tags. In general, the retrieval set of
papers is reduced after each step and the process ends once the retrieval goal is
reached (e.g., user is satisfied). The main focus of our work is to suggest a good
set of tags in each step such that the number of retrieved papers is reduced as
fast as possible.

Technically, each user interaction step is characterized by a specific index i.
Then Qi = 〈Q+

i , Q−
i 〉 denotes the tag-based query formulated by users in step

i, where Q+
i contains a set of inclusive tags and Q−

i contains a set of exclusive
tags; i.e. Q+

i ∩ Q−
i = ∅, Q+

i , Q−
i ⊆ T . For convenience, we denote the size of

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 513

user query as |Qi| = |Q+
i | + |Q−

i |. In the beginning, we have Q0 = 〈∅, ∅〉. Based
on the query Qi−1 and the repository P, the system suggests a list of tags
Ti ⊆ T \ (Q+

i−1 ∪ Q−
i−1), |Ti| = k (action I). Among the suggested tags Ti, user

chooses a particular tag t as either inclusion or exclusion into Qi (action II).
That is, Qi = 〈Q+

i−1 ∪ {t}, Q−
i−1〉 or Qi = 〈Q−

i−1, Q
−
i−1 ∪ {t}〉. In action III, the

set of retrieved papers relevant to Qi is denoted as Di. A paper is considered
relevant to a tag-based query if it contains all inclusive tags and does not contain
any exclusive tags; i.e., Di = {d ∈ D | Q+

i ⊆ Td ∧ Q−
i ∩ Td = ∅}. A possible

retrieval goal is that there remains only one paper or a set of papers sharing the
same tags; i.e. |Di| = 1 or ∀d, d′ ∈ Di, Td = T ′

d. Note that for brevity sake, we
overload set notation for the suggestion list of tags Ti (or T), meaning that set
operators applied to the list are evaluated based on the set of list elements.

Minimal User Effort with Diversity Awareness. In this work, we study
the question of how to design a tag suggestion method that minimizes user effort
with diversity awareness. In other words, the tags are ranked for suggestion along
two dimensions:

– Informativeness: The tags are not independent; some tags always appear
together in common papers while some others never go along with each other.
Therefore, each tag has a distinguished amount of potential information.
Suggesting the tags with higher potential information would provide more
chances of minimizing the number of user interaction steps for retrieving the
papers that truly match user intent.

– Diversity : The tags with high potential information might belong to the
same domains, since they often have similar dependencies with the others.
As such, only focusing on the informativeness dimension might prevent user
from having a broad view of different domains. Therefore, there is a need
of diversifying the list of tags suggested to user. In the absence of explicit
knowledge about user intent, increasing the diversity (i.e. the number of
domains) of the suggested tags would increase the probability of retrieving
some papers that truly match the user’s expectation.

To provide a unified quality measurement of tag suggestion, we propose a
single comprehensive goodness function that combines both the informativeness
degree and the diversity of the tags. The details are given in the next section.

3 Tag Suggestion Quality

In this section, we propose a quality measurement for tag suggestion. Given a
user query Qi and the set of retrieved papers Di at step i, the quality of a tag
set Ti is measured by a goodness function g : 2T → R, where 2T denotes the
domain of possible tag sets. For brevity sake, we hereby omit the step index i
of the notations (Qi, Ti, etc.). The goodness value is composed of two notions:
informativeness and diversity penalty. While the former reflects the degree of
saving user effort of a tag when it is chosen by user, the latter addresses the
diversity aspect by penalizing tags that are similar to each other.

514 Q.V.H. Nguyen et al.

3.1 Informativeness

As described above, user expresses his search intent by formulating a query
from available tags. Based on the formulated query, our system retrieves a set
of relevant papers. However, since user cannot often provide a concrete query
that truly describes his search intent, the retrieved papers might not satisfy
user expectation. In other words, there are always some degrees of uncertainty
about matching user search intent with the retrieved papers. At the begin-
ning of the retrieval process, this uncertainty is high since the query only has
few tags and thus the set of retrieved papers is still broadened. During the
course of the process, user incrementally refines his search intent by adding
more tags into the query. When more tags are added, the set of retrieved papers
is narrowed downed. Its uncertainty is continuously reduced until the query is
specific enough to reflect user search intent.

Therefore, to minimize user effort (i.e. the number of tags needed to put into
the query), we have to suggest the tags with the highest uncertainty reduction.
For example, we have two currently retrieved papers p1 and p2, which are asso-
ciated with the tag sets {t1, t2} and {t1, t3} respectively. User has three tags
t1, t2, t3 as options to formulate the next query. Consider two cases:

(i) User chooses t1: the set of retrieved papers does not change since both p1
and p2 contain t1. In other words, the uncertainty of the retrieved papers
does not change. Suggesting t1 has no benefit of reducing the uncertainty.

(ii) User chooses t2 (or t3): the number of retrieved papers reduces to only one
(p1 or p2, for both inclusive and exclusive options). In other words, only
one set of associated tags remains; i.e. the retrieved papers become certain
or there is no uncertainty. Suggesting t2 reduces the uncertainty.

Based on this observation, we introduce the concept of informativeness, which
measures the amount of uncertainty reduction of a tag when it is chosen into
user query (e.g. informativeness of t1 is 0, of t2 is > 0). Suggesting the tags with
low informativeness (low information gain) like t1 requires user to choose many
tags, while suggesting the tags with high informativeness (high information gain)
like t2 or t3 makes the retrieval process faster. Hence, to minimize user effort, we
should suggest the tags with high informativeness. In the following, we propose
a probabilistic formulation to compute the informativeness of a tag.

Probability of a Tag. As mentioned earlier, we denote D as the set of retrieved
papers given a user query Q. The probability that a particular tag t is used in
D then becomes:

pt =
|{d ∈ D|t ∈ Td}|

|D| (1)

Recall that Td is the set of tags annotated with the paper d. The probability
distribution of all tags available in the retrieval is thus denoted as Ω(D) =
{pt|t ∈ T }. Intuitively, tags that appear in all papers have probability of 1;
whereas, tags that do not appear in the same papers with the tags in user query
have probability of 0.

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 515

Uncertainty of Matching User Intent. We compute the uncertainty of
matching user intent of a set of retrieved papers D as the Shannon entropy
over the probability distribution of the tags:

H(D) = −
∑

pt∈Ω(D)

[pt log pt + (1 − pt) log(1 − pt)] (2)

where H(D) ≥ 0. A set of papers in which each paper is annotated with different
sets of tags implies a high uncertainty and vice-versa. The more user effort
(i.e. more tags are added to the query), the lower value of the uncertainty. As
a consequence, the retrieval process ends when the uncertainty reaches zero.
Indeed, H(D) = 0 means that all the associated tags have probability equal to
either 0 or 1. In other words, all the retrieved papers are annotated with an
identical set of tags, which converges to user search intent.

Conditional Uncertainty. We now compute the uncertainty of the retrieved
papers if user chooses a particular tag. Since the choice of regarding t as inclu-
sive tag or exclusive tag in the query is not known before-hand, the conditional
uncertainty should be measured as the expected amount across both cases. For-
mally, we define the conditional uncertainty w.r.t a particular tag as the entropy
conditioned on that tag:

H(D|t) = pt × H(D+t) + (1 − pt) × H(D−t) (3)

where pt ∈ Ω(D) is the probability that t is used in D as aforementioned.
D+t = {d ∈ D|t ∈ Td} and D−t = {d ∈ D|t /∈ Td} are respectively the set of
retrieved papers after the inclusiveness and exclusiveness of t in user query.

Informativeness Computation. We compute the informativeness of a tag t
following a decision theoretic approach, cf. [28]. More precisely, we measure the
amount of uncertainty reduction obtaining by the decision that t is selected;
i.e. this reduction is computed as the difference between the ambiguity of the
retrieved papers before and after user selects t. Formally, we have:

IG(t) = H(D) − H(D|t) (4)

With a normalized form (∈ [0, 1]) as:

h(t) =
IG(t)

maxt′∈TD
IG(t′)

(5)

Any tag with informativeness equal to zero would have no contribution to reduce
the uncertainty. The more informativeness of the tag, the more chances of the
uncertainty being improved. In the sense of user effort, we should suggest the
high informative tags to reduce the number of user interaction steps. Moreover,
it is worth noting that at the beginning of the retrieval process, the query is
empty. In this case, we consider h(t) = 1 for every tag, implying that all of them
are initially considered equal for the suggestion.

516 Q.V.H. Nguyen et al.

3.2 Diversity Penalty

Computing informativeness helps us select more minimum-effort driven tags into
the suggestion list. However, the most informative tags often belong to many
common papers, resulting in a redundant suggestion. To increase the variety
of the suggestion list, we penalize the tags that are similar to each other. The
similarity between two tags reflects the amount of information that is shared
in their common papers. While the computation of tag similarity is given at
the end of this section, we first formulate the notion of diversity penalty. The
idea is that the more similar between the tags, the higher amount of penalty
is applied. Technically, the diversity penalty of a set of suggested tags T is
calculated in terms of the pair-wise similarity between the tags weighted by
their informativeness:

φ(T) =
∑

t,t′∈T

h(t)S(t, t′)h(t′) (6)

where S(t, t′) ∈ [0, 1] is the similarity score between any two tags t and t′ (the
more similar, the higher value). We weight the tag similarity by informativeness
of the tags to penalize similar tags with high informativeness more than those
with low informativeness. This is motivated by the need to allow more chances
of selecting dissimilar tags (despite of lower informativeness) to increase the
diversity of the suggestion.

Similarity Computation. The similarity between tags should depend on user
query and thus be computed dynamically during the paper retrieval process.
For example, we consider two scenarios: (i) user query is “data mining”, (ii) user
query contains “data mining” and “clustering”. In the first scenario, the two tags
“DBSCAN” and “k-means” are similar since they are one of many well-known
techniques in the field of data mining. In the second scenario, since “DBSCAN”
and “k-mean” are the name of two different approaches in the clustering topic,
they are dissimilar. Therefore, we propose a query-based probabilistic measure-
ment for tag similarity (or dissimilarity) as follows.

Given a user query Q, the dissimilarity between two tags t1, t2 can be mea-
sured by the KL divergence [35] of two probability distributions when user
chooses either t1 or t2:

ξ(t1||t2) =
∑

t

p1t log
p1t
p2t

(7)

where p1t ∈ Ω(D1) and p2t ∈ Ω(D2) are the probability of a tag t when either
t1 or t2 is chosen. That is, D1 = {d ∈ D|t1 ∈ Td} and D2 = {d ∈ D|t2 ∈ Td}.
Since there is no meaningful notion of order in similarity, we use a commonly
used symmetric variation:

ξ′(t1, t2) = ξ(t1||t2) + ξ(t2||t1) (8)

However, theKLdivergencestilldoesnottake intoaccounttherelationshipbetween
the two tags and user query Q. For example, for the tag set T = {“data mining”},
we could add t1 = “shared memory” and t2 = “message passing” whose meanings

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 517

are not related to “data mining”. To improve this, we weight the KL divergence by
the conditional probabilities of the two tags and therefore discount additional tags
that have no real relation with the query. As a result, the tag dissimilarity can be
defined as:

ξ′′(t1, t2) = pt1pt2ξ
′(t1, t2) (9)

where pt1 , pt2 ∈ Ω(D). With a further normalization (into [0, 1]) and inversion
of dissimilarity, we have the final form of tag similarity:

S(t1, t2) = 1 − ξ′′(t1, t2)
maxi,j ξ′′(ti, tj)

(10)

In general, the larger similarity between two given tags, the higher penalty they
receive (i.e. the higher chance they are not selected). The aim of diversifying the
tag suggestion becomes the selection of the tags that are sufficiently dissimilar
with each other.

3.3 Put It Altogether

To balance informativeness and diversity in a top-k selection of tags, we design
a quality measure for such a selection. On the one hand, the goodness mea-
sure should incorporate given informative scores of tags in a fine-grained level,
by weighting the importance of tags unequally. The idea behind is that tags
stemming from a large group of similar tags are often associated with popular
papers, which implies a high chance to satisfy user information needs. On the
other hand, the goodness measure should penalize similar tags. This is motivated
by the need to increase diversity in the suggestion.

Our goodness measure for a selection of tags T is based on the overall,
weighted informativeness of a selected tag, which is reduced by the diversity
penalty of the tags that have also been selected. Intuitively, this approach favors
tags from big clusters of similar tags, but penalizes the selection of multiple
informative tags that are very similar to each other. Technically, given TD as
the set of tags associated with the current set of retrieved papers D, we define
q(t) =

∑
t′∈TD

S(t, t′) · h(t′) as the importance of tag t ∈ TD. With w ∈ R
+ as a

positive weight parameter, our goodness measure is defined as follows:

g(T) = w
∑

t∈T

q(t)h(t) − φ(T) (11)

The proposed notion of goodness satisfies the following properties [10], whose
proofs can be found in the appendix. First, our notion of goodness shows mono-
tonicity; i.e., when adding more tags to an existing selection, the goodness of
the overall selection will increase.

Proposition 1 (Monotonicity). Let TD be a set of tags associated with a
particular paper set D. For any w ≥ 2, ∀T1, T2 ⊆ TD, T1 ∩ T2 = ∅, we have
g(T1 ∪ T2) ≥ g(T1).

518 Q.V.H. Nguyen et al.

Second, our goodness measure shows submodularity, which refers to the prop-
erty that marginal gains in goodness start to diminish due to saturation of the
objective. That is, the marginal benefit of adding tags to the selection decreases
w.r.t. the size of the selection.

Proposition 2 (Submodularity). Let TD be a set of tags associated with a
particular paper set D. For any w > 0, ∀T ⊆ TD, t1, t2 ∈ TD \ T , we have
g(T ∪ {t1}) + g(T ∪ {t2}) ≥ g(T ∪ {t1, t2}) + g(T).

4 Efficient Tag Suggestion

In this section, we first formulate our tag suggestion problem. Due to the NP-
hardness of the problem, we then propose a greedy algorithm. After that, we
prove various performance guarantees for the proposed algorithm.

4.1 Problem Definition

Using the notion of goodness, we define tag suggestion as an optimization prob-
lem. That is, we are interested in finding a selection of top-k tags that maximize
the goodness measure:

Problem 1 (Tag Suggestion). Let TD be a set of tags associated with the
retrieved papers and k be a threshold for the number of tags. Then, the tag
suggestion problem is defined to be:

argmax
T⊆TD,|T |=k

g(T) (12)

Here, selection of the top-k tags is of particular practical relevance for infor-
mation retrieval, cf., [23]. An appropriate value for k depends on the user and
the application context. In general, the problem of tag suggestion turns out to
be NP-Complete, whose proof can be found in the appendix.

Theorem 1. The k-tag suggestion problem is NP-Complete.

4.2 Algorithm

Given the complexity of the tag suggestion problem, we now present a heuris-
tic algorithm to approximate its optimal solution [10]. The main idea of our
algorithm is to start from the null set and add one element at a time, taking
at each step the element which increases the goodness of the suggestion list
most. To achieve a provably near-optimal solution, our algorithm exploits the
two aforementioned properties of the goodness function g, i.e., monotonicity ad
submodularity. In essence, the algorithm iteratively expands the selection of tags
by adding the tag that maximizes the goodness value, thus it can be bounded.
Solving the problem requires k iterations.

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 519

Algorithm 1. Heuristic algorithm for tag suggestion.
input : A set of tags TD associated with the retrieved papers,

a weight factor w ≥ 2, and a threshold for the number of tags k.
output: A selection of tags T ∗ = 〈t1, . . . , tk〉, ti ∈ TD, 1 ≤ i ≤ k.

1 T ∗ ← ∅ ;
// Compute ranking score for each tag

2 Let r : TD → R, r(t) → w · h(t) · ∑
t′∈TD

S(t, t′)h(t′);
3 while |T ∗| < k do
4 tm ← argmaxt∈TD,t/∈T∗ r(t) ;

5 T ∗ ← T ∗ ∩ {tm} ;
// Update ranking score for the remaining tags

6 r′ ← r;

7 Let r : TD → R, r(t) → r′(t) − 2 · h(tm) · S(t, tm) · h(t);

8 return T ∗

The details of our heuristic are given in Algorithm 1. It takes a set of tags
TD, a weight factor w, and a threshold for the number of tags k as input and
returns a selection T ∗ of k tags. We begin by computing a ranking score for
each tag t ∈ TD that is based on the weight factor, the tag informativeness,
and the tag importance (line 2). In the actual greedy selection step, we select k
tags. In each iteration, we add the tag with the highest ranking score (lines 4
and 5), before the ranking score is updated for the remaining tags (line 7). The
latter avoids re-computation of the ranking scores from scratch in each iteration.
As mentioned above, we overload set notation for the suggestion list of tags T ∗

for brevity sake. When presented in user interface, the tags are listed top-down
in the decreasing order of ranking score (i.e. from left to right of the sequence
representation).

4.3 Algorithm Analysis

The proposed algorithm shows several desirable properties. First, the approxi-
mation error is bounded.

Guarantee 1 (Near-Optimality). Algorithm 1 is a (1- 1/e)-approximation
for the tag suggestion problem.

Proof. For any monotone, submodular function f with f(∅) = 0, it is known that
an iterative algorithm selecting the element e with maximal value of f(I ∪{e})−
f(I) with I as the set of elements selected so far has a performance guarantee
of (1 − 1/e) ≈ 0.63 [24]. This result is applicable to line 1, since our goodness
function g is monotonic (proposition 1) and submodular (proposition 2), it holds
g(∅) = 0 (eq. (11)), and the ranking score is defined as r(t) = g(T ∗ ∪{t})−g(T ∗)
(lines 2 and 7).

Next, we consider the complexity of our heuristic.

Guarantee 2 (Complexity). The time complexity and the space complexity of
Algorithm 1 are O(|TD|2 + k|TD|) and O(|TD|), respectively.

520 Q.V.H. Nguyen et al.

Proof. Time complexity: The quadratic term |TD|2 stems from the computation
of the ranking score. The linear term k|TD| is explained by k iterations, in each
of which we iterate over all remaining tags, for selection of tmax and for updating
the ranking score. Space complexity: Storing tag similarities requires |TD||TD−1|

2
space since S is symmetric and S(t, t) is fixed.

Further, our algorithm shows stability in the selection, which is important
to support multi-resolution (i.e. in cases user wants to see more tags in the
suggestion list). For example, if a user is first presented with the top-10 tags,
but then extends the suggestion list to the top-20, the expectation is clearly that
the top-10 remain unchanged.

Guarantee 3 (Stability). For T ∗ as returned by line 1, let T ∗
k1

= 〈t1, . . . ,
tk1〉, T ∗

k2
= 〈t′1, . . . , t′k2

〉 be selections with ti ∈ T ∗, 1 ≤ i ≤ k1, t′j ∈ T ∗,
1 ≤ j ≤ k2, and 0 < k1 ≤ k2. Then, it holds that ti = t′i for 1 ≤ i ≤ k1.

Proof. In Algorithm 1, the construction of T ∗ is performed stepwise and elements
are never removed from T ∗. Moreover, the selection is deterministic: we always
add a new tag with the highest ranking score (line 4). Thus, the larger selection
sequence comprises the smaller selection sequence as a prefix.

5 Experiments

This section presents a comprehensive experimental evaluation to verify the effec-
tiveness of our tag-based paper retrieval framework. In particular, we first dis-
cuss the experimental setup including datasets and evaluation measures. Then,
we proceed to report the following experiments: (i) evaluations on informative-
ness, and (ii) evaluations on diversity. The results highlight that the proposed
tag suggestion algorithm performs well in terms of both user effort and diversity
aspect.

5.1 Experimental Settings

Dataset. Our prototype is developed on top of the ScienceWise platform since
it supports API to retrieve data and has a rich tag collection. The ScienceWise’s
data contains 16725 scientific papers and 15083 tags. Each paper has 70 tags
in average. The ScienceWise platform itself has not supported tag suggestion in
the search results yet.

Evaluation Measures. For comparative evaluation, we study the following
measures.

Domain Coverage. This metric measures the diversity of a top-k list of tags in
terms of coverage of domains. It indicates the proportion of possible domains
(which might be of interest to user) the tag list can capture. Formally, we run
k-meloids clustering to divide the set of all available tags TD into k clusters,
based on the tag similarity proposed in Section 3.2. The domain dom(t) of a

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 521

tag t is the cluster it belongs to. The domain coverage (∈ [0, 1]) of top-k tag
suggestion T ∗ is defined as the number of domains of its tags over the total
number of domains:

DC(T ∗) =
|⋃t∈T ∗ dom(t)|

k
(13)

Normalized Informativeness. This metric measures the informativeness of the tag
suggestion list with respect to the top-k tags with highest informativeness; i.e., it
indicates how well the informativeness of the tags is preserved when diversity is
taken into account. Formally, the normalized informativeness (∈ [0, 1]) of top-k
tag suggestion T ∗ from the set of candidate tags TD is defined as the sum of their
informativeness scores over the sum of the k highest informativeness scores:

nH(TD, T ∗) =
∑

t∈T ∗ h(t)
maxT⊆TD,|T |=|T ∗|

∑
t∈T h(t)

(14)

User Effort. To quantify the amount of time user spends to retrieve the desired
papers, we compute the user effort as the number of interaction steps of the
retrieval process described in Section 2. Each interactive step is counted when
user selects a new tag to be added into the query. Formally, we have:

E = |Q+| + |Q−| (15)

5.2 Evaluations on Informativeness

The goal of this evaluation is to verify the soundness of the proposed informa-
tiveness function of a tag. To this end, we will study the informativeness in two
aspects: (i) paper amount reduction – how many retrieved papers are reduced
after user chooses a tag, and (ii) user effort – how many tags user need to choose
in the retrieval.

Informativeness vs. Paper Amount Reduction. In this experiment, we
only consider one user interaction step of the retrieval process. We assume that
user is interested in a particular paper, which is associated with a set of tags.
The user query is simulated by randomly choosing some of these tags. Given a
simulated query, we rank the tags by the decreasing order of informativeness.
For each of the top-10 tags, we put it into the query as inclusive if it is contained
in the tag set and exclusive otherwise. Then we retrieve the papers of the new
query and measure the amount reduction of retrieved papers.

Figure 2 and Figure 3 illustrate the results for different query sizes (size =
0 and size = 10). The report numbers are averaged over 100 different targeted
papers (these papers have more than 15 tags). The X-axis is the rank of tags
in terms of informativeness. The Y-axis is the relative reduction of the amount
of retrieved papers. An interesting finding is that the higher rank of tags, the
more papers are reduced. For example, the tag with highest informativeness
(rank 1) gives about 50% reduction, whereas the tag with lowest informativeness
(rank 10) gives less than 5% reduction. This supports the soundness of our

522 Q.V.H. Nguyen et al.

Fig. 2. Query Size = 0 Fig. 3. Query Size = 10 Fig. 4. Informativeness vs.
User Effort

informativeness function in capturing user effort. Another noticeable observation
is that as more tags are selected into the query, the number reduction of retrieved
papers is smaller. For example, with query size = 0, the reduction of the rank-1
tag is about 50%, while this number is only about 20% with query size = 10.
This is reasonable because after each user interaction step, the set of retrieved
papers and the set of their associated tags are narrowed down. As such, the
percentage of papers sharing the common tags is higher and selecting these tags
would return mostly the same papers.

Informativeness vs. User Effort. In this experiment, we simulate the whole
retrieval process. Like the previous experiment, we assume that user is interested
in a particular paper, which is associated with a set of tags. At the beginning, we
initialize user query by randomly choosing one of these tags. In each interaction
step, user receives a suggested tag and put it into the query (the tag is regarded
as inclusive or exclusive based on the target paper). The process stops when only
one paper remains or all the remaining papers share the same set of tags. Three
tag suggestion strategies are studied: (i) 1st Rank – suggest the tag with highest
informativeness, (ii) 3rd Rank – suggest the tag of rank-3 in the decreasing order
of informativeness, (iii) Random – suggests a random tag to user.

Figure 4 depicts the result, which is averaged over 100 simulations (i.e. 100
different target paper). The X-axis is the tag suggestion strategy. The Y-axis
is the percentage of user effort over the number of tags contained in the tar-
get paper. A key finding is that the Random strategy incurs most user effort
(95.73%). This can be explained by the fact that with Random strategy, user
has to go through many redundant tags, which do not (or rarely) reduce the
number of papers. Another interesting observation is that the more informative-
ness of the tag, the more user effort is reduced. Indeed, the 1st Rank strategy
takes the least user effort (67.38%), whereas the 3rd Rank strategy requires more
user effort (74.94%). This supports that user effort can be reflected through the
informativeness of a tag. Suggesting the tag with the highest informativeness
does indeed reduce user effort the most.

5.3 Evaluations on Diversity

In this experiment, we would like to verify the soundness of the diversity aspect of
tag suggestion. More precisely, we will compare two tag suggestion strategies: (1)
with diversity: the suggestion list of tags is computed by the proposed algorithm,

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 523

(2) without diversity: the suggestion list of tags is computed by returning the
top tags with highest informativeness values. For the strategy 1, we randomly
set the tunning parameter w (trade-off between informativeness and diversity)
according to uniform distributions U (0, 1) and U (1, 2), respectively. The final
numbers are computed as the average over 100 runs. We vary the number of
suggested tags k from 5 to 55, and compare the two strategies according to
different aspects as follows.

Fig. 5. Diversity Fig. 6. Informativeness

Figure 5 illustrates the results on the diversity aspect. A key finding is that
strategy 1 is always better than strategy 2 in terms of domain coverage. For
example, while the domain coverage of strategy 1 is always greater than 0.8,
the domain coverage of strategy 2 is only about 0.2 with k = 5. This supports
the fact that our proposed algorithm performs well in producing a diverse list of
suggested tag. Another noticeable observation is that the difference of domain
coverage between the two strategies is smaller when k increases. For instance,
with k = 60, the domain coverage of strategy 2 is nearly 0.8. This is because
when k is higher, strategy 2 will include more tags with lower informativeness,
up to the point that all tags in the list are dissimilar enough among themselves,
resulting in high domain coverage.

Figure 6 presents the result on the informativeness aspect. By definition, the
normalized informativeness of strategy 2 is always equal to 1. An interesting
finding is that the normalized informativeness of strategy 1 is not much lower
than strategy 2 in comparison with the domain coverage. For example, with
k = 5, the difference of domain coverage is more than 0.6 while the difference of
normalized informativeness is less than 0.25. This implies that in spite of pro-
ducing a diverse list of suggested tags, our proposed algorithm still keeps most
of the informativeness amount of the tags. In other words, the tags with high
informativeness values are preserved, which goes beyond the trade-off between
diversity and informativeness. Another important observation is that the normal-
ized informativeness of strategy 1 increases when the suggestion size is higher.
This is reasonable since the tags that are diverse often have different values of
informativeness. When the number of suggested tags increases, our algorithm
will add both the tags with high informativeness and the tags with low infor-
mativeness, up to the point that the two strategies share most of common tags
with each other.

524 Q.V.H. Nguyen et al.

6 Related Work

Our work aims to reduce user effort for retrieving relevant papers in tag-based
paper management platforms. It is mainly related to tag-based retrieval, query
suggestion, and diversification, which are briefly reviewed as follows.

Tag-based Retrieval. In the last decades, there has been an increasing devel-
opment of tag-based retrieval systems, which allow to add tags (manually or
automatically) to existing resources such as images and videos. The research
efforts in tag-based retrieval can be broadly categorized into three types, namely
annotating, ranking, and presenting. Annotating involves determining the set of
tags best describing a resource [16,34–36,39]. Ranking aims to compute a rel-
evance score between a query and a resource [13,19,22]. Presenting focuses on
improving user satisfaction by effectively presenting the tags or search results to
users [18,33,37].

Tag-based retrieval for scientific papers is a distinguished and recognized
direction. This is because using textual search on research articles has some
limitations, for example, full-text access is not always available [6] and OCR
errors are inherently found [30]. Moreover, different from other resources (web
pages, image, videos), scientific papers are associated with much more tags since
there is a lot of scientific concepts across different domains (e.g. in our dataset,
each paper is associated with 70 tags in average). This distinct characteristic
opens up an opportunity to design more complex mechanisms by exploiting
potential information of the tag collection. A wide range of tag-based paper
retrieval systems have been developed with reliable and high-quality tags such
as ScienceWise [1], Mendeley [3], and CiteULike [2]. Moreover, there is also a
considerable number of research outcomes on this direction, including tag-based
search engine [14], semantic-based framework [27], and collaborative tagging [25].

Query Suggestion. Query suggestion (a.k.a. query reformulation, query expan-
sion, query completion) is a supportive method to improve search productivity.
In general, users are often not be able to state their search intents clearly when
formulating a search query. The purpose of query suggestion is to provide addi-
tional information for users to help them reformulate their queries. In the litera-
ture, query suggestion has been studied in different contexts. In [5], the authors
exploited query log of the search engine to suggest new query terms for the
current user query. Instead of using query log, the authors of [20] made use of
existing keywords provided by social annotation services to generate and rank
the new queries for suggestion. In the same line, the authors of [26] extracted
candidate query terms from existing Wikipedia articles related to user query. In
the context of image search, the work in [37] uses representative images for user
to look ahead the search results of query terms.

Diversification. The diversification problem has been long acknowledged in
information retrieval [9,18]. It aims to improve user satisfaction by providing
a diverse view of information, thereby increasing the probability of returning
some information that truly matches the user’s expectation. Various applica-
tions that have benefited from diversification include sentiment analysis [4], web

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 525

search [12], database search [7], large-scale visualization [31], social network [40]
and recommender systems [11]. In our case, since users cannot often precisely and
exhaustively describe their queries, increasing diversity of tag-query suggestion
will provide users more chances to find the desired papers quickly. We propose
a function-based approach [17] for tag diversification, which is “less heuristic”
than the threshold-based [32] and the graph-based [38] approaches.

To summarize, our work differs from previous research in the following aspects:
(1) we do not aim to provide an “auto-complete” feature like the previous works.
Rather, we study a different aspect of query suggestion with the goal of minimiz-
ing user’s effort in retrieving the information that truly matches his search intent.
(2) we jointly consider user effort minimization and diversification by designing
a comprehensive goodness function, which guides the on-the-fly computation of
suggested tags according to the current user query. Moreover, it is worth noting
that although the proposed algorithm is demonstrated on the context of paper
retrieval, it can be applied for other domains such as document retrieval and
image retrieval. It should be also emphasized that our work is not about tagging
online contents [16] (i.e. Annotating. Instead, we leverage the generated tags
to better support the retrieval of these contents (which cannot be accessed via
textual search).

7 Conclusions and Future Work

This work proposes a novel approach that enables tag-based retrieval in online
archives of scientific papers. To make these archives searchable, each paper is
associated with a set of pre-defined descriptive keywords, so-called tags. We
study the problem of how to efficient suggest new tags for user to formulate his
query intent. The goal is to not only reduce the efforts of user in reaching his
search intent, but also increase the diversity of the suggested tags. In particular,
we define the notion of goodness measure that captures both the informative-
ness and diversity aspects of the tags. Based on this measure, we formulate
the tag suggestion problem as the identification of a set of k tags with maxi-
mal goodness value. Through studying theoretical properties of this problem, we
propose a heuristic-based algorithm with several salient performance guarantees.
Finally, we present a comprehensive experimental evaluation indicating that the
approach allows for effective and efficient retrieval of real-world scientific data.

Our work opens up several future research directions. First, the proposed
quality measurement can be used to evaluate existing query suggestion methods,
especially the user-effort aspect. Second, we can investigate other dimensions to
be considered in the quality measurement. Third, this paper focuses on searching
for scientific papers, yet, our tag-based retrieval framework (in particular the tag
suggestion algorithm) can be applied for a variety of domains, such as business
documents and social medias. Fourth, although the suggested tags are presented
as a list in our context, we can also study other presentation options such as
hierarchical and categorical-like structures. Fifth, our work could be tailored to
take into account the meta-data (e.g. citation [21]), if available, of the scientific
papers to further refine their relevance (not only based on tags). When each

526 Q.V.H. Nguyen et al.

paper has multiple search dimensions, we can develop more sophisticated cost
models [15] as well. Moreover, one can also improve the retrieval performance
by relevance feedback [29], which is out of the scope of this paper.

Acknowledgments. The research has received funding from the EU-FP7 EINS project
(grant number 288021) and the ScienceWise project.

Appendix - Proofs

NP-Complete. We prove Theorem 1 by reduction to the Densest k-Subgraph
problem, which is known to be NP-Complete [8,10]. Let G = (V,E) be an
undirected graph with vertices V and edges E. Let W be the |V | × |V | binary
connectivity matrix (symmetric), i.e., Wi,j = 1 if {i, j} ∈ E, and Wi,j = 0 oth-
erwise. Then, the Densest k-Subgraph problem requires identifying a subgraph
of k vertices with a maximal number of edges:

argmax
V̂ ⊆V,|V̂ |=k

∑

i,j∈V̂

Wi,j

which is equivalent to

argmax
I=(V \V̂),|V̂ |=k

2
∑

i∈V̂ ,j∈I

W
′
i,j +

∑

i,j∈I

W
′
i,j (16)

where W ′
i,j = 1 − Wi,j . Now we will show that eq. (16) can be viewed as an

instance of the optimization problem in eq. (12). To this end, let all informative
scores be one (h(t) = 1 for all t ∈ TD) and choose w = 2. Then, our objective
function g(T) becomes:

g(T) = 2
∑

t∈T

q(t)−
∑

t1,t2∈T

S(t1, t2) = 2
∑

t1∈T

∑

t2∈TD

S(t1, t2)−2
∑

t1,t2∈T

S(t1, t2)+
∑

t1,t2∈T

S(t1, t2)

= 2
∑

t1∈(TD\T)

∑

t2∈T

S(t1, t2) +
∑

t1,t2∈T

S(t1, t2) (17)

The latter is equivalent to the objective function in eq. (16), so that selection of
k tags corresponds to the finding the densest subgraph of (|V | − k) nodes.

Monotonicity. With w ≥ 2, we have:

g(T1 ∪ T2) − g(T1) = w
∑

t∈T2

q(t)h(t) − (
∑

t∈T2,t′∈T1

h(t)S(t, t
′
)h(t

′
) +

∑

t∈T1,t′∈T2

h(t)S(t, t
′
)h(t

′
)

+
∑

t,t′∈T2

h(t)S(t, t
′
)h(t

′
)) = w

∑

t∈T2

h(t)
∑

t′∈TD

S(t, t
′
)h(t

′
) − (2

∑

t∈T1,t′∈T2

h(t)S(t, t
′
)h(t

′
)

+
∑

t,t′∈T2

h(t)S(t, t
′
)h(t

′
)) ≥ 2

∑

t∈T2

h(t)
∑

t′∈TD

S(t, t
′
)h(t

′
) − (2

∑

t∈T1,t′∈T2

h(t)S(t, t
′
)h(t

′
)

+
∑

t,t′∈T2

h(t)S(t, t
′
)h(t

′
)) = 2

∑

t∈T2

(
∑

t′∈TD

S(t, t
′
)h(t

′
) −

∑

t′∈T1∪T2

S(t, t
′
)h(t

′
))

= 2
∑

t∈T2

∑

t′ /∈T1∪T2

S(t, t
′
)h(t

′
) ≥ 0

which completes the proof of monotonicity.

Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness 527

Submodularity. From eq. (11), we have:

g(T ∪ {x}) − g(T) = wq(x)h(x) − 2h(x)
∑

t∈T

S(x, t)h(t) + h
2
(x) (18)

Following eq. (18), we have:

g(T∪{t1})+g(T∪{t2})≥ g(T∪{t1, t2})+g(T) ⇔ g(T∪{t1})−g(T) ≥ g(T∪{t2}∪{t1})−g(T∪{t2})
⇔ wq(t1)h(t1)−2h(t1)

∑

t∈T

h(t)S(t, t1)+h
2
(t1) ≥ wq(t1)h(t1)−2h(t1)

∑

t∈T∪{t2}
h(t)S(t, t1)+h

2
(t1)

⇔ 2h(t1)h(t2)S(t1, t2) ≥ 0

which completes the proof of submodularity.

References

1. http://sciencewise.info
2. http://www.citeulike.org/
3. http://www.mendeley.com/
4. Aktolga, E., Allan, J.: Sentiment diversification with different biases. In: SIGIR,

pp. 593–602 (2013)
5. Bing, L., Lam, W., Wong, T.L.: Using query log and social tagging to refine queries

based on latent topics. In: CIKM, pp. 583–592 (2011)
6. Cohen, A.M., Hersh, W.R.: A survey of current work in biomedical text mining.

Briefings in Bioinformatics, 57–71 (2005)
7. Drosou, M., Pitoura, E.: Disc diversity: result diversification based on dissimilarity

and coverage. In: PVLDB, pp. 13–24 (2012)
8. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica,

410–421 (2001)
9. Goffman, W.: A searching procedure for information retrieval. ISR, 73–78 (1964)

10. He, J., Tong, H., Mei, Q., Szymanski, B.: Gender: a generic diversified ranking
algorithm. In: NIPS, pp. 1142–1150 (2012)

11. Hurley, N., Zhang, M.: Novelty and diversity in top-n recommendation - analysis
and evaluation. TOIT, 1–30 (2011)

12. Iwata, M., Sakai, T., Yamamoto, T., Chen, Y., Liu, Y., Wen, J.R., Nishio, S.:
Aspectiles: tile-based visualization of diversified web search results. In: SIGIR, pp.
85–94 (2012)

13. Jain, V., Varma, M.: Learning to re-rank: query-dependent image re-ranking using
click data. In: WWW, pp. 277–286 (2011)

14. Jomsri, P., Sanguansintukul, S., Choochaiwattana, W.: A comparison of search
engine using “tag title and abstract” with citeulike - an initial evaluation. In:
ICITST, pp. 1–5 (2009)

15. Kashyap, A., Hristidis, V., Petropoulos, M.: Facetor: cost-driven exploration of
faceted query results. In: CIKM, pp. 719–728 (2010)

16. Kim, J.W., Candan, K.S., Tatemura, J.: Organization and tagging of blog and
news entries based on content reuse. J. Sign. Process. Syst., 407–421 (2010)

17. Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, U.V.: Diversified recommendation
on graphs: pitfalls, measures, and algorithms. In: WWW, pp. 715–726 (2013)

18. van Leuken, R.H., Garcia, L., Olivares, X., van Zwol, R.: Visual diversification of
image search results. In: WWW, pp. 341–350 (2009)

http://sciencewise.info
http://www.citeulike.org/
http://www.mendeley.com/

528 Q.V.H. Nguyen et al.

19. Li, X., Snoek, C.G.M., Worring, M.: Learning social tag relevance by neighbor
voting. In: TMM, pp. 1310–1322 (2009)

20. Lin, Y., Lin, H., Jin, S., Ye, Z.: Social annotation in query expansion: a machine
learning approach. In: SIGIR, pp. 405–414 (2011)

21. MacRoberts, M.H., MacRoberts, B.R.: Problems of citation analysis: a critical
review. JASIST, 342–349 (1989)

22. Maniu, S., Cautis, B.: Network-aware search in social tagging applications: instance
optimality versus efficiency. In: CIKM, pp. 939–948 (2013)

23. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
vol. 1. Cambridge University Press (2008)

24. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maxi-
mizing submodular set functions-i. MP, 265–294 (1978)

25. Noël, S., Beale, R.: Sharing vocabularies: tag usage in citeulike. In: BCS-HCI, pp.
71–74 (2008)

26. Oliveira, V., Gomes, G., Belém, F., Brandão, W., Almeida, J., Ziviani, N.,
Gonçalves, M.: Automatic query expansion based on tag recommendation. In:
CIKM, pp. 1985–1989 (2012)

27. Prokofyev, R., Boyarsky, A., Ruchayskiy, O., Aberer, K., Demartini, G., Cudré-
Mauroux, P.: Tag recommendation for large-scale ontology-based information sys-
tems. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,
Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist,
E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 325–336. Springer, Heidelberg
(2012)

28. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intel-
ligence: A Modern Approach, vol. 74. Prentice Hall Englewood Cliffs (1995)

29. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback.
JASIST (1997)

30. Sebastiani, F.: Machine learning in automated text categorization. CSUR, 1–47
(2002)

31. Skoutas, D., Alrifai, M.: Tag clouds revisited. In: CIKM, pp. 221–230 (2011)
32. Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou, M., Srivastava, D.,

Traina, C., Tsotras, V.J.: On query result diversification. In: ICDE, pp. 1163–1174
(2011)

33. Wang, M., Yang, K., Hua, X.S., Zhang, H.J.: Towards a relevant and diverse search
of social images. In: TMM, pp. 829–842 (2010)

34. Wang, Q., Ruan, L., Zhang, Z., Si, L.: Learning compact hashing codes for efficient
tag completion and prediction. In: CIKM, pp. 1789–1794 (2013)

35. Weinberger, K.Q., Slaney, M., Van Zwol, R.: Resolving tag ambiguity. In: MM, pp.
111–120 (2008)

36. Xie, L., He, X.: Picture tags and world knowledge: learning tag relations from
visual semantic sources. In: MM, pp. 967–976 (2013)

37. Zha, Z.J., Yang, L., Mei, T., Wang, M., Wang, Z.: Visual query suggestion. In:
MM, pp. 15–24 (2009)

38. Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W., Chen, Z., Ma, W.Y.: Improving
web search results using affinity graph. In: SIGIR, pp. 504–511 (2005)

39. Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior
and error sparsity. In: MM, pp. 461–470 (2010)

40. Zhu, X., Goldberg, A.B., Van Gael, J., Andrzejewski, D.: Improving diversity in
ranking using absorbing random walks. In: HLT-NAACL, pp. 97–104 (2007)

Feedback Model for Microblog Retrieval

Ziqi Wang and Ming Zhang(B)

School of EECS, Peking University, Beijing 100871, China
wangziqi@pku.edu.cn, mzhang@net.pku.edu.cn

Abstract. Information searching in microblog services has become com-
mon and necessary for social networking. However, microblog retrieval is
particularly challenging compared to web page retrieval because of seri-
ous vocabulary mismatch problem and non-uniform temporal distribu-
tion of relevant documents. In this paper, we propose a feedback model,
which includes a feedback language model and a query expansion model
considering both lexical expansions and temporal expansions. Experi-
ments on TREC data sets have shown that our proposed model improves
search effectiveness over standard baselines, lexical only expansion model
and temporal only retrieval model.

Keywords: Microblog retrieval · Feedback model · Query expansion ·
Pseudo-relevance feedback

1 Introduction

Microblog services, such as Twitter, have become new sources of information. To
get relevant information of trends or breaking news, users submit queries on the
microblog sites instead of web search engines. However, microblog retrieval differs
from general information retrieval (IR) due to the following reasons: (1) Tweets
are short. Vocabulary mismatch problem is extremely significant in microblog
retrieval. (2) Time plays an important role. Temporal distribution of relevance
documents is not uniform. In this paper, we propose a novel feedback model
incorporating a feedback language model and a query expansion model to tackle
these challenges.

Query document vocabulary mismatch happens when user and authors of
documents use different terms to represent the same concept. Vocabulary mis-
match has always been a critical challenge in information retrieval. For web
search, documents are relatively long and authors usually use keywords repeat-
edly to describe the topic. Term frequency is heavily relied on in most of retrieval
models such as query likelihood model. However, in microblog retrieval, tweets
have fewer terms (no more than 140 characters). Most terms, especially key
concepts, only appear once in documents, which makes statistical method less
reliable. Vocabulary mismatch problem becomes worse in microblog retrieval.

Since temporal distribution of relevant documents in microblog retrieval is
not uniform, some work has been focusing on incorporating time information
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 529–544, 2015.
DOI: 10.1007/978-3-319-18120-2 31

530 Z. Wang and M. Zhang

into the retrieval model. Many researchers proposed various methods of using
temporal information to improve term selection in query expansion model [1]
[2] [3]. Temporal evidence has also been explored under the language model
framework to improve document ranking [4] [5]. It is very important to make
use of temporal information.

In this paper, we propose a feedback model for microblog retrieval. Our
model includes a feedback language model and a query expansion model. The
feedback language model is built on the search results from the initial retrieval.
Document relevance scores are adjusted based on the feedback language model.
The query expansion model expands the query by using both lexical expansions
and temporal expansions.

We evaluated the proposed model using the TREC 2011 and 2012 Microblog
data set. The experiment results have shown that our proposed feedback lan-
guage model outperforms the query likelihood baseline and our proposed query
expansion model performs better than the relevance model. Overall, the pro-
posed feedback model improves microblog retrieval effectiveness over previously
proposed baselines.

The rest of the paper is organized as follows. In Section 2, we review related
work including temporal information retrieval, microblog retrieval and pseudo-
relevance feedback. In Section 3, we present motivation of this study. Our pro-
posed feedback language model, query expansion model and feedback model are
presented in Section 4. Experiments and analysis of results are shown in Section
5. Finally, we conclude this paper in Section 6.

2 Related Work

Related work can be found in three areas. The first is temporal information
retrieval. Time plays a very important role in microblog retrieval. The second
is general microblog retrieval. There has been some research focusing on other
aspects besides using temporal information to improve search performance. The
third is pseudo-relevance feedback via query expansion.

2.1 Temporal Information Retrieval

Previous researches incorporate recency into retrieval. Newly published
documents are assumed to have a larger probability to be relevant than older
documents. Li and Croft proposed a time-based language model by adding docu-
ment prior based on recency [4]. Efron and Golovchinsky proposed an extension
by using query-specific information to estimate parameters [1]. Massoudi et al.
expanded queries by using terms in the most recent documents [6].

Instead of focusing on recency queries, some works have been trying to deal
with more general time-sensitive queries. Jones and Diaz proposed a temporal
query model and an approach to distinguish different types of temporal queries
[7]. Dakka et al. proposed a general framework to combine lexical and temporal

Feedback Model for Microblog Retrieval 531

evidence together [5]. Liang et al. detected burst and aggregated ranking results
from different retrieval methods [8].

Pseudo-relevance feedback via query expansion has been widely used in tem-
poral retrieval. Liang et al. proposed a two-stage pseudo-relevance feedback
query expansion method [3]. Whiting et al. proposed a pseudo-relevance feed-
back model using the correlation between temporal profiles of n-grams obtained
from query and feedback documents [9]. Whiting et al. built a graph using tem-
poral and TF evidence and selected n-gram using PageRank [10]. Keikha et al.
proposed a time-based relevance model using temporal distribution of retweets
[2]. Miyanishi extended latent concept expansion model based on the temporal
relevance model for query expansion [11]. Metzler et al. proposed a temporal
query expansion model for event retrieval based on temporal co-occurrence of
terms in a timespan [12].

The major difference between previous work and our work is how we use
temporal information. Most previous work used temporal information to select
lexical expansions. Our proposed model identifies bursts and conducts temporal
expansions for the query. Temporal expansions and lexical expansions are then
combined together in a query expansion model. Besides, our proposed model can
deal with both temporally unambiguous and ambiguous queries while previous
temporal models could only handle temporally unambiguous queries.

2.2 Microblog Retrieval

Query document vocabulary mismatch problem is one of the critical challenges
of information retrieval, especially microblog retrieval due to the short length
of documents. Methods such as query expansion and document expansion have
been studied to address the query document vocabulary mismatch problem.

For query expansion methods, besides using temporal information as we dis-
cussed above, external sources can also be useful. Chen et al. used external
knowledge including Google and Wikipedia to conduct query expansion [13].
Bandyopadhyay et al. proposed a query expansion model using Google API and
BBC site [14].

Efforts have also been made to explore document expansion methods. Efron
et al. proposed an aggressive document expansion based on pseudo-relevance
feedback [15]. Han et al. proposed a document expansion by using nearest neigh-
bors of documents [16].

One of the most important differences between microblog retrieval and web
page retrieval is that many tweets are low-quality and contain a lot of noise. Choi
et al. proposed a quality model to demote uninformative content [17]. Gurini and
Gasparetti proposed an effective real time ranking algorithm using noise features
[18].

2.3 Pseudo-Relevance Feedback via Query Expansion

Pseudo-relevance feedback techniques, represented as the relevance model [19],
have been widely studied in information retrieval. Relevance model has been

532 Z. Wang and M. Zhang

improved by some researchers. Lv and Zhai proposed a model that optimizes
the balance of the query and feedback information, and automatically learns
the parameters of relevance model [20]. Tao and Zhai proposed a probabilistic
mixture model using different parameters to each document and integrating the
original query with feedback documents [21], and then this model was modified
by Dillon and Collins-Thompson [22].

There have been work on term selection and document selection of relevance
model. Cao et al. used SVM to classify good and bad terms [23]. Lv and Zhai
extended relevance model to exploit term positions in the feedback documents
[24]. Raman et al. chose terms that discriminate pseudo-relevant documents
from pseudo-irrelevant documents [25]. Huang et al. proposed an approach to
determine the optimal number of feedback documents with clarity score and
cumulative gain [26]. He and Ounis used classification model to select good
documents [27].

3 Motivation

3.1 Language Model in Microblog Retrieval

A statistical language model assigns a probability to a sequence of words by
means of a probability distribution. In information retrieval, language model is
used in the query likelihood model. Each document in the collection is repre-
sented as a language model. Documents are ranked based on the probability of
query Q = q1, q2, . . . , qn given document’s language model P (Q | MD). Since
authors usually use topic words repeatedly, keywords of document is expected
to have large probabilities in the corresponding language model. The unigram
language model is commonly used to achieve this.

P (Q | MD) =
n∏

i=1

P (qi | MD) (1)

P (qi | MD) =
fqi,D + μ

cqi

|C|
|D| + μ

(2)

When language model is used in microblog retrieval, one of the biggest chal-
lenge we have is that documents are too short. Most of the terms only appear
once in one document. Keywords of document cannot be differentiated from
other words in language model. Table 1 shows an example query from TREC
Microblog Track 2011.

All the listed non-relevant documents and relevant documents contain two
query terms. For example, relevant documents 2, non-relevant documents 1 and
2 all have “British” and “politician”, but topic of non-relevant documents is not
about the query. When we are calculating query likelihood as in Eq. (2), they
all get 1 in fqi,D, and only difference will be at smoothing and document length.
Therefore, language model does not work well in microblog retrieval.

Feedback Model for Microblog Retrieval 533

Table 1. Examples of Retrieval Results

Query MB008: phone hacking British politicians

Non-Relevant Documents:

1. Boris Johnson has to be my favourite British politician of all time. He is an absolute
LEGEND.

2. Politicians may be too nervous to address Britain’s increasing irrelevance on the
world stage, but they must

Relevant Documents:

1. British Tabloid Dismisses Editor Over Hacking Scandal

2. To Spy Politicians, British Aide to Prime Minister Resigns:

3. Ex-PM Brown feared voicemail hacking amid scandal: Former British Prime Min-
ister Gordon Brown wrote to the police last summer to ask ...

Fig. 1. Temporal in microblog retrieval

3.2 Temporal in Microblog Retrieval

Previous studies have shown that temporal distribution of relevant tweets is not
uniform and should be considered in the ranking. Fig. 1 shows a visualization
of four different types of query from TREC Microblog Track 2011. X-axis shows
time prior to the query time, in days.

Query MB014 “release of ‘The Rite’ ” has a single burst, which happens at
the day of movie “The Rite” premiere. Query MB009 “Toyota Recall” has two

534 Z. Wang and M. Zhang

bursts, which are the day that Toyota initiated vehicle recalls and the day gov-
ernment announced the investigation report. Query MB007 “Pakistan diplomat
arrest murder” has more than one burst. Although recency is an important fact,
documents do not always cluster right before the query time.

4 Models

4.1 Feedback Language Model

The reason that language model does not perform well in microblog retrieval is
that documents are short and most of query terms only show once. We need a
better language model to describe topic of query. We adopted the idea of using
document likelihood and relevance model [19]. Relevance model is a language
model that represents the topic covered by relevant documents. Query Q can
be seen as a small sample generated by the relevance model, and relevant doc-
ument can be seen as a big sample generated by the same model. Document
likelihood model use P (D|R) as the probability of document generated by the
given relevance model. In web page retrieval, document likelihood is very difficult
to estimate since the variation of document length can be very large. One doc-
ument may contains 10 terms while other may contains 10,000 terms. However,
in microblog retrieval, we notice that lengths of tweets are not varied largely.

Here we use language model generated by the pseudo-relevance feedback doc-
uments to estimate document likelihood. Pseudo-relevance feedback documents
F = D1,D2, . . . , Dk are the search results that returned from the first retrieval
of the original query. Based on the idea of pseudo-relevance feedback, we assume
that top k ranked documents are relevant. Feedback language model MF is gen-
erated based on all the documents in F . Therefore, we can estimate probability
of document generated by feedback language model.

P (D | MF) =
∏

wi∈D

P (wi | MF) (3)

P (wi | MF) =

∑
Dj∈F fwi,Dj

∑
Dj∈F |Dj | (4)

where fwi,Dj
is the frequency of term wi in document Dj .

Although lengths of tweets are not varied much, we apply normalization to
Eq. (3) so that affects caused by different document length can be reduced [28].

Pnorm(D | MF) = APW d · P (D | MF) (5)

where APW d denotes the penalty factor depending on document length. d equals
to average document length subtracts length of D, and APW is average proba-
bility weight.

APWP (D|MF) =
1

|D|
∑

wi∈D

P (wi | MF) (6)

Feedback Model for Microblog Retrieval 535

As described above, we generate document probability based on feedback lan-
guage model. We now define the new score of document as a linear combination
of scores produced by query likelihood model and feedback language model.

P ′(D | Q) = λP (D | Q) + (1 − λ)P (D | MF) (7)

= λ
P (Q | D)P (D)

P (Q)
+ (1 − λ)P (D | MF)

= cλP (Q | D) + (1 − λ)P (D | MF)

where λ determines the weights of two models which is trained in the experi-
ments, and constant c = P (D)

P (Q) since P (D) is usually assumed to be uniform.

4.2 Query Expansion Model

Query expansion is a well-studied technique to overcome the vocabulary mis-
match problem in information retrieval. Several query expansion techniques have
been developed. Pseudo-relevance feedback technique has been proven useful in
previous work for improving retrieval performance.

Here we proposed a query expansion model that conducts both lexical
expansions and temporal expansions. Our query expansion model is based on
pseudo-relevance feedback technique. The idea of the proposed model is to
expand original query with terms and times based on top-ranked documents
from initial retrieval. For query Q = q1, q2, . . . , qn, we expand Q with:

1) Lexical expansion: expand original query with terms Qlex = w1, w2, . . . , wlex.
2) Temporal expansion: expand original query with times Qtem = t1, t2, . . . , ttem.

Here we have the new query Q′ = {Q,Qlex, Qtem}.
We adopted framework proposed by Dakka et al. [5]. The framework assumed

that document D can be split into a content component cD and a temporal
component tD, and content relevance and temporal relevance are independent.
The ranking function can be written as:

P (D | Q) = P (cD, tD | Q) (8)
= P (cD | Q)P (tD | Q)

cD can been considered as D in language models.

Lexical Expansion. Relevance model generated expansion terms using pseudo-
relevance feedback documents.

P (w | R) ∝
∑

D∈R

P (w | D)P (D)
n∏

i=1

P (qi | D) (9)

536 Z. Wang and M. Zhang

Every terms from feedback documents are extracted and ranked according to
Eq. (9). Top terms are chosen to expand the query. We interpolate the lexical
expansion model with the retrieval model.

P (cD | Q) ∝ α
∑

w∈V

P (w | Q) log P (w | D) (10)

+ (1 − α)
∑

w∈V

P (w | R) log P (w | D)

Temporal Expansion. The idea of picking several times for temporal expan-
sion is to build temporal profile for query and identify bursts in it. We take
following steps to generate temporal expansion.

1. For query Q, get the top ranked documents Ft = D1,D2, . . . , Dt.
2. Each document D has an associated time stamp, and we partition them

into bins. Each bin corresponds to a time, for example days, hours, minutes.
Number of bins depends on the time span of the document Ft.

3. Bins can be scored in two ways. The first way is to count the number of the
documents in the bin. The second one is to add query likelihood scores of
the documents in the bin.

scorecount(bin(t)) = |D ∈ bin(t)| (11)

scoreql(bin(t)) =
∑

D∈bin(t)

PQL(Q | D) (12)

4. Rank bins based on their scores and expand the query using corresponding
times of the top ranked bins.

After temporal expansions of query are generated, we can have temporal
relevance P (td | Q) as follows:

P (tD | Q) = P (tD | Qtem) (13)
= P (tD | t1, t2, . . . , ttem)

Given a serious of times, we use two ways to get the probability. The first one
is to assume that the probability of document depends on the time that has the
biggest impact of the document. The second one is to take the sum of all the
impact of all the times. Thus we have:

Pmax(tD | t1, t2, . . . , ttem) = max
ti∈Qtem

P (tD | ti) (14)

Psum(tD | t1, t2, . . . , ttem) =
∑

ti∈Qtem

P (tD | ti) (15)

To estimate the impact of temporal evidence, we use two ways to get P (tD | ti).

Feedback Model for Microblog Retrieval 537

1. Exponential function

Pexp(tD | ti) = e−β|ti−tD| (16)

2. Gaussian function

Pgauss(tD | ti) = e− |ti−tD|2
2σ2 (17)

4.3 Feedback Model

We proposed our feedback model by combining our proposed feedback docu-
ment model and query expansion model together. More specifically, we take the
following steps:

1. Get initial retrieval results returned by original query.
2. Apply the proposed feedback language model to rerank the initial results.
3. Apply the proposed query expansion model to generate the new query with

lexical expansions and temporal expansions.
4. Get retrieval results returned by the new query.
5. Apply the proposed feedback language model again to rerank the retrieval

results.

5 Experiments

We have experimentally evaluated our model on TREC Microblog data. In
Section 5.1, we first describe our experiment setup. Then we show the evalu-
ation results of our proposed feedback language model in Section 5.2 and query
expansion model in Section 5.3. In Section 5.4, we report the evaluation results
of the feedback model, which is a combination of the feedback language model
and the query expansion model. Finally, we conduct temporal query analysis by
looking into different temporal types of queries in Section 5.5.

5.1 Setup

The experiments are conducted on TREC Microblog Track 2011 and 2012 data
sets. The Track 2011 and 2012 evaluations are based on Track 2011 collection.
The collection consists of an approximately 16 million tweets (1% sample of
tweets from January 23, 2011 to February 7, 2011). There are 49 topics in Track
2011 and 59 topics in Track 2012 (MB050 topic and MB076 are deleted because
of the absence of relevant documents). Each topic consists a query and its corre-
sponding time stamp. Relevance judgements were based on a standard pooling
strategy, and 3-point scale were used (“not relevant”, “relevant”, “highly rel-
evant”). We removed all retweets and non-English tweets since TREC judged
them as non-relevant. We indexed tweets posted before the time stamp associ-
ated with each topic using the Indri search engine1. No more than 1000 results
are retrieved per topic.
1 http://www.lemurproject.org/indri/

http://www.lemurproject.org/indri/

538 Z. Wang and M. Zhang

Table 2. Retrieval performance among non-expansion models

(a) TREC 2011

Methods MAP P@30 NDCG@30

QL 0.3082 0.3483 0.4254

SDM 0.2981 0.3463 0.4169

Recency Prior 0.3112† 0.3483 0.4330

FLM 0.3202†‡ 0.3626†‡ 0.4417†‡

(b) TREC 2012

Methods MAP P@30 NDCG@30

QL 0.1868 0.2955 0.2836

SDM 0.1860 0.2955 0.2903

Recency Prior 0.1870 0.3006 0.2856

FLM 0.1937†‡ 0.3051 0.2919†

Each of our test models requires training data, we employ 2-fold cross-
validation within each test collection. Parameters were trained with respect to
precision at rank 30. We report mean average precision (MAP), precision at
rank 30 (P@30) and NDCG at rank 30 (NDCG@30), which were the primary
metrics used in the TREC Microblog evaluation. Statistical differences in our
experiments are tested using a two-tailed paired t-test with level α = 5%.

5.2 Evaluation of Feedback Language Model

First we discuss the performance of our proposed feedback language model,
referred to as FLM. Since this model doesn’t involve query expansion, we picked
several retrieval baselines without using query expansion techniques.

− QL: Standard query likelihood approach with Dirichlet smoothing (μ =
1500).

− SDM: Sequential dependence model proposed by Metzler and Croft [29].
The model uses the original query words and bigrams extracted from the
original query. We took default parameter settings, which are 0.85 for original
query words, 0.15 for unwindowed bigrams, and 0.1 for windowed bigrams.

− Recency Prior: Recency prior for document is used in query likelihood
model. It is one part of the time-based language model proposed by Li
and Croft [4]. In P (D|Q) ∝ P (Q|D)P (D), P (D) is assigned as a recency
prior instead of being uniform. The recency prior is defined as P (D) =
λe−λ(tc−tD), where tc is the query issued time and tD is the time of the
document.

Experiment results are shown in Table 2. Please note that † means perfor-
mance of the method improves statistical significantly over QL baseline, and ‡

means performance of the method improve statistical significantly over both QL

Feedback Model for Microblog Retrieval 539

Table 3. Retrieval performance on TREC 2011 among different variations of query
expansion models

Methods Description MAP P@30 NDCG@30

QEL only lexical expansions 0.3217 0.3571 0.4431

QELX ECM exp + count + max 0.3396† 0.3823† 0.4643†

QELX ECS exp + count + sum 0.3348 0.3803 0.4595

QELX EQM exp + ql + max 0.3391† 0.3830† 0.4668†

QELX EQS exp + ql + sum 0.3360 0.3810 0.4645

QELX GCM gauss + count + max 0.3376† 0.3789† 0.4649†

QELX GCS gauss + count + sum 0.3367 0.3769 0.4644†

QELX GQM gauss + ql + max 0.3373† 0.3789 0.4646†

QELX GQS gauss + ql + sum 0.3373 0.3776 0.4653†

and Recency Prior baselines. Although SDM model has shown effectiveness in
previous research of information retrieval, it fails in microblog retrieval. As we
discussed above, documents are very short in microblog retrieval so that query
bigrams are not likely to be seen in a certain window size. In TREC 2011, we
can see that Recency Prior method helps the performance, but the improve-
ments are not significant for all the metrics. Our proposed model outperforms
both QL and Recency Prior baselines significantly. However, in TREC 2012,
the performance of initial retrieval is not very effective so that feedback docu-
ments cannot provide much useful information. Although our proposed model
has shown effectiveness on the performance, the improvements are not signifi-
cant for all the metrics. Recency Prior method does not perform very well at
this data because the temporal distribution of the query is not always clustered
before the query time.

5.3 Evaluation of Query Expansion Model

In Section 4.2, we suggest different ways of getting three functions, which are
score(bin(t)), P (tD | t1, t2, . . . , ttem) and P (tD | ti). To explore the effective-
ness of our proposed different functions, we tested all the combinations of the
functions. Experiment results are shown in Table 3. Descriptions of each abbrevi-
ation are also listed in the table. Please note that QEL denotes query expansion
method with only lexical expansions, which is equivalent to the relevance model
[19]. Notation † means performance of the method improves statistical signifi-
cantly over QEL. Due to the limitation of space, we only demonstrate the results
from TREC 2011.

We can see from the results that all eight combinations outperform query
expansion method without temporal expansions. Some of them get significant
improvements, while some of them do not. We think different combinations work-
ing with different types of queries. For example, methods with “sum” compo-
nent work well with temporally unambiguous queries and methods with “max”
component work well with temporally ambiguous queries. “exp” and “gauss”

540 Z. Wang and M. Zhang

Table 4. Retrieval performance among proposed feedback model and baseline models

(a) TREC 2011

Methods MAP P@30 NDCG@30

RM3 0.3261 0.3653 0.4504

Recency 0.3376 0.3769† 0.4632

QELX 0.3391† 0.3830† 0.4668†

MFM 0.3520†† 0.4027†‡ 0.4820†‡

(b) TREC 2012

Methods MAP P@30 NDCG@30

RM3 0.2006 0.3062 0.2902

Recency 0.2042 0.3051 0.2951

QELX 0.2116†‡ 0.3232†‡ 0.3084†‡

MFM 0.2122†‡ 0.3260†‡ 0.3107†‡

functions work similarly. We think more reasonable distance functions can be
explored in the future. In the following experiments, we use QELX as a short
for QELX EQM to represent the query expansion model.

5.4 Evaluation of Feedback Model

We combine our proposed feedback document model and query expansion model
together as the feedback model, referred to as MFM. To conduct the comparison
experiments, we picked two retrieval baselines.

− RM: Relevance model proposed by Lavrenko and Croft [19].
− Recency: Time-based language models proposed by Li and Croft [4]. In

Recency Prior method, recency prior is only used in the query likelihood
model. Here, recency prior for document P (D) is also used in relevance
model P (w | R) ∝ ∑

D∈R P (w | D)P (D)
∏n

i=1 P (qi | D).

We display the performance of the baselines and our proposed models in
Table 4. Please note that † and ‡ mean the performance of the method is statis-
tically significant over RM and Recency respectively. In TREC 2011, both of our
proposed models QELX and MFM significantly outperform RM3 baseline . The
performance of MFM model is also significantly better than Recency baseline.
We observe some improvements of QELX over Recency as well. In TREC 2012,
the results show that our proposed models perform significantly better than both
of the baselines.

5.5 Temporal Query Analysis

To explore how our proposed model performs on different types of temporal
queries, we identify the number of bursts for each query using the relevant judg-
ments. For each document D, we partition them into bins using their associated

Feedback Model for Microblog Retrieval 541

Table 5. Examples of Retrieval Results

Track #Bursts #Topics Topic

TREC 2011 0 1 33

1 37 1-6, 10-18, 21, 22, 24, 27, 28, 30-33, 34-36, 38-45,
47-49

2 9 8, 9, 19, 20, 23, 25, 26, 29, 37
>2 2 7, 46

TREC 2012 1 33 52-54, 56, 57, 60, 62, 63, 65, 66, 68, 70-73, 75, 77,
80-82, 85, 86, 89, 91-94, 96, 99, 100, 104, 106, 108

2 21 51, 58, 59, 61, 64, 67, 69, 74, 79, 83, 87, 88, 90,
95, 98, 101-103, 105, 109, 110

>2 5 55, 78, 84, 97, 107

Fig. 2. Performance of queries with different temporal types with different numbers of
bins

time stamps. Here “day” is used as time span of the bins. We use B = {b} to
represent set of bins. We define score of bins as score(b) = |D ∈ b|. Then we
build the set of bursts U :

U = {u ∈ B|∀b ∈ (B − U), score(u) − score(b) >= σ} (18)

σ represents the standard variation of all the bins’ scores.
Queries from TREC 2011 and 2012 classified by their number of bursts are

listed in Table 5. We consider queries with zero or one burst as temporally unam-
biguous queries and queries with more than one bursts as temporally ambiguous

542 Z. Wang and M. Zhang

queries. For different types of queries, we tested how the performance changes
according to different numbers of the bins. The experiment results are shown in
Fig. 2. In TREC 2011, the performance of both query types get a big improve-
ment by using the first temporal expansion. After that, the performance of tem-
porally unambiguous queries begin to steady and then slightly decline, which is
consistent with the ground truth that these queries only have one burst. For tem-
poral ambiguous queries, the performance keeps growing and stops at the third
expansion and then drops. In TREC 2012, the performance reaches the maximum
value when adding two temporal expansions in both cases, then they slowly go
down. From all the lines, we can see that when the number of temporal expansion
are less than the number of bursts in the ground truth, adding more temporal
expansions improves the performance. When the model using the same number
of temporal expansion as the number of bursts, adding more temporal expan-
sions also helps the performance in same cases. Overall, we can conclude that our
proposed model involving temporal expansion improves the performance of not
only temporally ambiguous queries but also temporally unambiguous queries.

6 Conclusion

In this paper, we proposed a feedback model for microblog retrieval. The feed-
back model includes a feedback language model and a query expansion model
considering both lexical expansions and temporal expansions. Experiment results
on TREC Microblog Track 2011 and 2012 data sets show that our proposed
models improve upon existing baselines. Researchers have been paying growing
attention to temporal evidence in information retrieval area. We think there is a
lot more benefit that we can get from it. As future work, we will investigate more
interesting and effective ways to use temporal information. It is also worth men-
tioning that there are many other directions in microblog retrieval that can be
followed including using URLs information and modeling the noise and quality
of tweets.

Acknowledgments. This paper is partially supported by the National Natural Sci-
ence Foundation of China (NSFC Grant No. 61472006), the Doctoral Program of Higher
Education of China (Grant No. 20130001110032) and the National Basic Research Pro-
gram (973 Program No. 2014CB340405).

References

1. Efron, M., Golovchinsky, G.: Estimation methods for ranking recent information.
In: Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2011, pp. 495–504. ACM, New York
(2011)

2. Keikha, M., Gerani, S., Crestani, F.: Time-based relevance models. In: Proceedings
of the 34th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2011, pp. 1087–1088. ACM, New York (2011)

Feedback Model for Microblog Retrieval 543

3. Liang, F., Qiang, R., Yang, J.: Exploiting real-time information retrieval in the
microblogosphere. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference
on Digital Libraries, JCDL 2012, pp. 267–276. ACM, New York (2012)

4. Li, X., Bruce Croft, W.: Time-based language models. In: Proceedings of the
Twelfth International Conference on Information and Knowledge Management,
CIKM 2003, pp. 469–475. ACM, New York (2003)

5. Dakka, W., Gravano, L., Ipeirotis, P.G.: Answering general time sensitive queries.
IEEE Transactions on Knowledge and Data Engineering 24(2) (2012)

6. Massoudi, K., Tsagkias, M., de Rijke, M., Weerkamp, W.: Incorporating query
expansion and quality indicators in searching microblog posts. In: Clough, P., Foley,
C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011.
LNCS, vol. 6611, pp. 362–367. Springer, Heidelberg (2011)

7. Jones, R., Diaz, F.: Temporal profiles of queries. ACM Trans. Inf. Syst. 25(3),
Article 14 (2007)

8. Liang, S., Ren, Z., Weerkamp, W., Meij, E., de, Rijke, M.: Time-Aware rank aggre-
gation for microblog search. In: Proceedings of the Twelfth International Confer-
ence on Information and Knowledge Management, CIKM 2014. ACM, Shanghai
(2014)

9. Whiting, S., Moshfeghi, Y., Jose, J.M.: Exploring term temporality for pseudo-
relevance feedback. In: Proceedings of the 34th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR 2011,
pp. 1245–1246. ACM, New York (2011)

10. Whiting, S., Klampanos, I.A., Jose, J.M.: Temporal pseudo-relevance feedback in
microblog retrieval. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu,
B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224,
pp. 522–526. Springer, Heidelberg (2012)

11. Miyanishi, T., Seki, K., Uehara, K.: Time-aware latent concept expansion for
microblog search. In: Proceedings of the Eighth International Conference on
Weblogs and Social Media, ICWSM, pp. 1–4. Ann Arbor, Michigan (2014)

12. Metzler, D., Cai, C., Hovy, E.: Structured event retrieval over microblog archives.
In: Proceedings of the 2012 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, NAACL
HLT 2012, pp. 646–655. Association for Computational Linguistics, Stroudsburg
(2012)

13. Chen, L., Chun, L., Ziyu, L., Quan, Z.: Hybrid pseudo-relevance feedback for
microblog retrieval. J. Inf. Sci. 39(6), 773–788 (2013)

14. Bandyopadhyay, A., Ghosh, K., Majumder, P., Mitra, M.: Query expansion for
microblog retrieval. IJWS 1(4), 368–380 (2012)

15. Efron, M., Organisciak, P., Fenlon, K.: Improving retrieval of short texts through
document expansion. In: Proceedings of the 35th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR 2012,
pp. 911–920. ACM, New York (2012)

16. Han, Z., Li, X., Yang, M., Qi, H., Li, S., Zhao, T.: HIT at TREC 2012 microblog
track. In: Proceedings of Text Retrieval Conference (2012)

17. Choi, J., Bruce Croft, W., Kim, J.Y: Quality models for microblog retrieval. In:
Proceedings of the 21st ACM International Conference on Information and Knowl-
edge Management, CIKM 2012, pp. 1834–1838. ACM, New York (2012)

18. Gurini, D.F., Gasparetti, F.: Real-time algorithm for microblog ranking sys-
tems. In: Proceedings of The Twentyfirst Text Retrieval Conference, TREC 2012,
Gaithersburg, pp. 6–9 (November 2012)

544 Z. Wang and M. Zhang

19. Lavrenko, V., Bruce Croft, W.: Relevance based language models. In: Proceed-
ings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2001, pp. 120–127. ACM, New York
(2001)

20. Lv, Y., Zhai, C.X.: Adaptive relevance feedback in information retrieval. In: Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Management,
CIKM 2009, pp. 255–264. ACM, New York (2009)

21. Tao, T., Zhai, C.X.: Regularized estimation of mixture models for robust pseudo-
relevance feedback. In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2006,
pp. 162–169. ACM, New York (2006)

22. Dillon, J.V., Collins-Thompson, K.: A unified optimization framework for robust
pseudo-relevance feedback algorithms. In: Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management, CIKM 2010,
pp. 1069–1078. ACM, New York (2010)

23. Cao, G., Nie, J.-Y. Gao, J., Robertson, S.: Selecting good expansion terms for
pseudo-relevance feedback. In: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2008, pp. 243–250. ACM, New York (2008)

24. Lv, Y., Zhai, C.-X.: Positional relevance model for pseudo-relevance feedback. In:
Proceedings of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2010, pp. 579–586. ACM, New York
(2010)

25. Raman, K., Udupa, R., Bhattacharya, P., Bhole, A.: On improving pseudo-
relevance feedback using pseudo-irrelevant documents. In: Gurrin, C., He, Y.,
Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K.
(eds.) ECIR 2010. LNCS, vol. 5993, pp. 573–576. Springer, Heidelberg (2010)

26. Huang, Q., Song, D., Rüger, S.M.: Robust query-specific pseudo feedback doc-
ument selection for query expansion. In: Macdonald, C., Ounis, I., Plachouras,
V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 547–554.
Springer, Heidelberg (2008)

27. He, B., Ounis, I.: Finding good feedback documents. In: Proceedings of the
18th ACM Conference on Information and Knowledge Management, CIKM 2009,
pp. 2011–2014. ACM, New York (2009)

28. Maier, V.: Facing the problem of combining the language model with the acoustic
model in speech recognition. Master Degree Thesis. University of Sheffield (2003)

29. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In:
Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2005, pp. 472–479. ACM,
New York (2005)

Efficient String Similarity Search:
A Cross Pivotal Based Approach

Fei Bi1(B), Lijun Chang1, Wenjie Zhang1, and Xuemin Lin1,2

1 University of New South Wales, Sydney, Australia
f.bi@student.unsw.edu.au, {ljchang,zhangw,lxue}@cse.unsw.edu.au

2 East China Normal University, Shanghai, China

Abstract. In this paper, we study the problem of string similarity search
with edit distance constraint; it retrieves all strings in a string database
that are similar to a query string. The state-of-the-art approaches employ
the concept of pivotal set, which is a set of non-overlapping signatures,
for indexing and query processing. However, they do not fully exploit
the pruning power potential of the pivotal sets by using only the pivotal
set of the query string or the data strings. To remedy this issue, in this
paper we propose a cross pivotal based approach to fully exploiting the
pruning power of multiple pivotal sets. We prove theoretically that our
cross pivotal filter has stronger pruning power than state-of-the-art fil-
ters. We also propose a more efficient algorithm with better time com-
plexity for pivotal selection. Moreover, we further develop two advanced
filters to prune unpromising single-match candidates which are the set of
candidates introduced by one and only one of the probing signatures. Our
experimental results on real datasets demonstrate that our cross pivotal
based approach significantly outperforms the state-of-the-art approaches.

1 Introduction

The problem of string similarity search that finds similar strings in a string
database to a query string has attracted a great deal of attentions recently.
It is an important operation in data cleaning and data integration, and has
many applications, such as duplicate detecting [1,6], spelling checking [8,21], and
sequence alignment comparison in bioinformatics [9,16]. Edit distance [13] is a
well-known metric to measure the similarity between two strings; two strings are
similar if and only if their edit distance is no larger than a user-given threshold.

The existing studies for string similarity search with edit distance constraint
in [2,4,5,8,11,12,14,15,21] have adopted the signature-based filter-verification
framework. The framework consists of two phases: indexing phase and query pro-
cessing phase. In the indexing phase, a set of signature based inverted indexes are
constructed offline. During the query processing phase, firstly, a set of candidate
strings are obtained by probing the inverted indexes with filtering conditions,
and then each candidate string is verified to compute the similarity to the query
string.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 545–564, 2015.
DOI: 10.1007/978-3-319-18120-2 32

546 F. Bi et al.

In the literature, a variety of signature-based filters, such as the counter filter
[11] and the prefix filter [3], are proposed to extract candidates. The number of
signatures plays an important role on both the pruning power and the filtering
cost of a filter, because it directly links to the number of probings to the inverted
index as well as the number of candidates retrieved. It has been proven in [14]
that the minimum number of signatures is τ + 1, where τ is the user-given
similarity threshold. Based on this result, the concept of pivotal set has been
proposed for indexing, which indexes a set of τ + 1 non-overlapping signatures.
Several pivotal set based techniques [4,14,15] have recently been proposed to
improve the pruning power and reduce the filtering cost and shown to outperform
other existing works. Nevertheless, these techniques only exploit the single-side
pivotal set for query processing; that is, they either use pivotal set of data string
or query string [14,15], or choose dynamically during query processing [4].

In this paper, we propose a cross pivotal set based approach to further exploit
the pruning power of multiple pivotal sets. Thus, we can achieve significantly less
number of candidates than the state-of-the-art approaches; we also prove theo-
retically that the pruning power of the proposed cross pivotal filter is stronger
than the state-of-the-art pivotal based filters. Through our empirical studies,
we observe that a large portion of the candidates obtained by the pivotal based
approaches are introduced by only one probing signature, and they are very
unlikely to be the results; we call these candidates as single-match candidates.
Due to the unique feature of our cross pivotal filter, these single-match candidates
can be identified, and furthermore we propose two advanced filters to reduce the
number of non-results in the set of single-match candidates. Our experimental
results demonstrate that the proposed filters can significantly reduce the number
of candidates with very little extra filtering cost.

Contributions. The contributions of this paper are summarized as follow:

– We propose a novel cross pivotal filter, which achieves much smaller number
of candidates compared to the state-of-the-art approaches. We also prove
the superiority of the proposed filter theoretically.

– We propose an efficient dynamic programming approach for pivotal selection,
which runs in O(qτ2) time in contrast to the O(q2τ3) time of the existing
approach (where q is the length of signatures(q-grams)).

– We develop two advanced filters to further reduce the number of candidates.

We conduct extensive experimental studies and demonstrate that our cross piv-
otal based approach significantly outperforms the state-of-the-art approaches in
terms of both candidate number and query processing time.

Organization. The rest of the paper is organized as follows. A brief overview
of related work is given below. We formally define the problem in Section 2 and
present our cross pivotal filter and the framework in Section 3. The two advanced
filters are developed in Section 4. We show the extension of our approach in
Section 5, and present the experimental results in Section 6. Finally, we conclude
the paper in Section 7.

Efficient String Similarity Search: A Cross Pivotal Based Approach 547

Related Work. The problem of string similarity search with edit distance con-
straint has been extensively studied [2,4,5,8,10–12,14,15,17,20,21], and most
of the existing studies employ the signature-based filter-verification framework.

There are various representations of signatures, among which q-gram [7] is
a very popular and effective one. Based on q-grams, the count filter [11] was
first proposed as an effective method of pruning unpromising candidates, which
requires that two similar strings must share a certain amount of q-grams. By
ordering q-grams of each string according to an universal order, the prefix filter
[3] ensures that two similar strings must share one common q-gram in their
prefixes. Due to the simplicity of prefix filter, several effective methods such
as the position prefix filter [19] and the mismatch filter [18], were designed to
further improve the pruning power of the prefix filter.

Recently, several pivotal based filters [4,14,15] were proposed to reduce the
signature size and gain more pruning power. The Q-Chunk method [14] employs
the fixed-position q-chunks as signatures to perform filtering, and it devises
two filters, IndexGram and IndexChunk, which utilize τ + 1 q-chunks in the
querying phase and in the indexing phase, respectively. IndexGram-Turbo and
IndexChunk-Turbo [15] are designed to optimize Q-Chunk with floating q-chunks
and to reduce filtering cost. Pivotal prefix filter [4] improves the prefix filter by
probing the inverted index with a pivotal set. In this paper, we propose a new fil-
ter named cross pivotal filter which outperforms all the existing signature-based
approaches.

2 Problem Definition

In this paper, we focus on a string database S which consists of a set of strings.
For a string s ∈ S, we let |s| denote the length of s and let s.id denote the unique
identifier of s in S.

Definition 2.1. (Edit Distance) The edit distance between two strings s and
r, is the minimum number of edit operations required to transform one string
to the other, denoted as ed(s, r). There exists three types of edit operations:
insertion, deletion, and substitution. �

Example 2.1. Given two strings s = “datalearningx” and r = “datacleanings”,
the edit distance between s and r is ed(s, r) = 3, since the optimal sequence of
edit operations to transform s to r is: 1) insert ‘c’ before ‘l’; 2) delete ‘r’; 3)
substitute ‘x’ with ‘s’. �

Problem Statement. Given a string database S, a query string r, and a thresh-
old τ , we study the problem of string similarity search; that is, finding all strings
s ∈ S such that ed(s, r) ≤ τ .
Notations. Frequently used notations are summarized in Table 1.

548 F. Bi et al.

Table 1. Notation Table

Notation Description

s / S / r the data string / string database / query string

τ the query threshold

ed(s, r) the edit distance between s and r

q(s) / q(r) the q-gram set of s / r

prex(s) / prex(r) the x-prefix set of s / r

piv(s) / piv(r) the pivotal set of s / r

pivτ+1(s) / pivτ+1(r) the (τ + 1)-th pivotal q-gram in piv(s) / piv(r),
according to the universal order

lps / lpr the position of pivτ+1(s) / pivτ+1(r) in ordered q(s) / q(r)

g / g.pos / g.order a q-gram / its start position / its universal order number

3 A Cross Pivotal Based Approach

In this section, we develop a new filter called cross pivotal filter, based on which
we propose efficient query processing algorithms for string similarity search. In
the following, we first present our cross pivotal filter in Section 3.1, then give
our algorithm in Section 3.2, while an efficient algorithm for pivotal set selection
is presented in Section 3.3.

3.1 Cross Pivotal Filter

Given two strings s and r, let q(s) and q(r) denote the sets of q-grams of s
and r, respectively. We sort all q-grams in q(s) and q(r) by an universal order
(e.g., in q-gram frequency ascending order), and denote the (qτ + 1)-prefix sets
of q(s) and q(r) by preqτ+1(s) and preqτ+1(r), respectively. From q(s) and q(r),
we respectively choose sets of τ + 1 disjoint q-grams as the pivotal sets of s and
r, denoted as piv(s) and piv(r); two q-grams are defined to be disjoint if and only
if they have no overlap (i.e., the difference between their start positions is not
smaller than q). Then, we have the theorem below.

Theorem 3.1. If two strings s and r are similar (i.e., ed(s, r) ≤ τ), then
piv(s) ∩ q(r) �= ∅ and piv(r) ∩ q(s) �= ∅. �

Proof Sketch: We first prove by contradiction that if s and r are similar, then
piv(s) ∩ q(r) �= ∅. Suppose piv(s) ∩ q(r) = ∅, then none of the τ + 1 disjoint
q-grams in piv(s) appears in q(r). Consequently, at least τ + 1 edit operations
are required to transform q(s) into q(r) (i.e., one for each q-gram in piv(s)); thus,
ed(s, r) ≥ τ + 1 which is a contradiction. Therefore, piv(s) ∩ q(r) �= ∅. Similarly,
we can prove that piv(r) ∩ q(s) �= ∅. �

Let pivτ+1(s) denote the (τ +1)-th q-gram in piv(s) according to the universal
order, and lps denote its position in the ordered q(s) (i.e., pivτ+1(s) is the lps-th
q-gram in q(s) according to the universal order); lpr is defined similarly. Then,
we can further reduce q(r) and q(s) in Theorem 3.1 to be their prefix sets, as
shown in the lemma below.

Efficient String Similarity Search: A Cross Pivotal Based Approach 549

Lemma 3.1. If two strings s and r are similar (i.e., ed(s, r) ≤ τ), then we have
piv(s) ∩ prelps+(q−1)τ (r) �= ∅ and piv(r) ∩ prelpr+(q−1)τ (s) �= ∅. �

Proof Sketch: If s is similar to r, then to transform s to r, at least one q-gram
in piv(s) remains unchanged, and τ edit operations will introduce at most qτ
new q-grams. Let g be the q-gram in piv(s) that has the smallest position in the
ordered q(s) among all q-grams that remain unchanged, let x be its position in
the ordered q(s), and let y be the number of q-grams before g in piv(s). Then,
g must be in prex−y+qτ (r), since the τ edit operations will introduce at most qτ
new q-grams and also destroy at least y q-grams. Note that x + (τ − y) ≤ lps,
where (τ − y) is the number of q-grams after g in piv(s). Therefore, piv(s) ∩
prelps+(q−1)τ (r) �= ∅. Similarly, we can prove that piv(r) ∩ prelpr+(q−1)τ (s) �= ∅.

�

If we select the pivotal set piv(s) from preqτ+1(s), then lps ≤ qτ + 1; note
that, the existence of such a selection is proven in [4]. Then, following from
Lemma 3.1, we have the corollary below.

Corollary 3.1. Given any two similar strings s and r, if the pivotal set is
selected from the (qτ + 1)-prefix, then piv(s) ∩ pre(2q−1)τ+1(r) �= ∅ and piv(r) ∩
pre(2q−1)τ+1(s) �= ∅. �

Cross Pivotal Filter. Given any two strings s and r, if piv(s)∩prelps+(q−1)τ (r) =
∅ or piv(r) ∩ prelpr+(q−1)τ (s) = ∅, then s and r cannot be similar.

Lemma 3.1 above proves the correctness of this filter.

Table 2. Dataset S and query string r (q = 2)

id string q-gram set ordered by global order

s1 datamining {〈am, 4〉〈mi, 5〉〈da, 1〉〈ni, 7〉〈ng, 9〉〈ta, 3〉〈at, 2〉〈in, 6〉〈in, 8〉}
s2 datalearning {〈ar, 7〉〈rn, 8〉〈le, 5〉〈al, 4〉〈da, 1〉〈ea, 6〉〈ni, 9〉〈ng, 11〉〈ta, 3〉〈at, 2〉〈in, 10〉}
s3 dutaleatings {〈du, 1〉〈ut, 2〉〈ti, 8〉〈le, 5〉〈gs, 11〉〈al, 4〉〈ea, 6〉〈ng, 10〉〈ta, 3〉〈at, 7〉〈in, 9〉}
s4 datalearnings {〈ar, 7〉〈rn, 8〉〈le, 5〉〈gs, 12〉〈al, 4〉〈da, 1〉〈ea, 6〉〈ni, 9〉〈ng, 11〉〈ta, 3〉〈at, 2〉〈in, 10〉}
s5 datalweatings {〈lw, 5〉〈we, 6〉〈ti, 9〉〈gs, 12〉〈al, 4〉〈da, 1〉〈ea, 7〉〈at, 2〉〈ng, 11〉〈ta, 3〉〈at, 8〉〈in, 10〉}
r datacleaning {〈ac, 4〉〈cl, 5〉〈an, 8〉〈le, 6〉〈da, 1〉〈ea, 7〉〈ni, 9〉〈ng, 11〉〈ta, 3〉〈at, 2〉〈in, 10〉}

Table 3. Universal order of q-grams (increasing frequency order)

Frequency q-grams

1 〈1 : am〉〈2 : an〉〈3 : aw〉〈4 : li〉〈5 : lw〉〈6 : mi〉〈7 : we〉
2 〈8 : ar〉〈9 : du〉〈10 : ut〉〈11 : rn〉〈12 : ti〉
3 〈13 : le〉〈14 : gs〉
4 〈15 : al〉〈16 : da〉〈17 : ea〉〈18 : ni〉
5 〈19 : ng〉〈20 : ta〉
6 〈21 : at〉〈22 : in〉

Example 3.2. Consider string s1 and string r in Table 2. Here, q = 2, τ = 2,
and the universal order of q-grams is shown in Table 3; for example, 〈1 : am〉

550 F. Bi et al.

in Table 3 indicates that am is the first q-gram in the universal order, and
〈am, 4〉 in Table 2 denotes that the start position of am in s1 is 4. Assume
that {am, da, ni} is selected as piv(s1) and {ac, an, le} is selected as piv(r); then
lps = 4, lpr = 4. The prefix lengths are lps + (q − 1)τ = 6, and lpr + (q − 1)τ =
6. Therefore, prelpr+(q−1)τ (s1) = {am,mi, da, ni, ng, ta} and prelps+(q−1)τ (r) =
{ac, cl, an, le, da, ea}. Then, we have piv(s1)∩prelps+(q−1)τ (r) = {da} and piv(r)∩
prelpr+(q−1)τ (s1) = ∅. Thus, s1 and r cannot be similar according to the cross
pivotal filter. �

Compared with Existing Filters. In the literature, there are other filters
studied, such as IndexChunk-Turbo [15], IndexGram-Turbo [15], and pivotal
prefix filter [4]. Given a data string s and a query string r, the pruning con-
dition (i.e., the condition that s and r cannot be similar) for IndexChunk-
Turbo is piv(s) ∩ pre(2q−1)τ+1(r) = ∅, and for IndexGram-Turbo is piv(r) ∩
pre(2q−1)τ+1(s) = ∅; while for pivotal prefix filter it is piv(r)∩preqτ+1(s) = ∅ if
last(preqτ+1(r)) < last(preqτ+1(s)), otherwise it is piv(s)∩preqτ+1(r) = ∅, where
last(preqτ+1(s)) and last(preqτ+1(r)) denote the universal order of the last q-
gram in preqτ+1(s) and in preqτ+1(r), respectively. We summarize the pruning
conditions of these filters in Table 4.

Table 4. Pruning Conditions of Filters

Filter Pruning condition

IndexChunk-Turbo piv(s) ∩ pre(2q−1)τ+1(r) = ∅
IndexGram-Turbo piv(r) ∩ pre(2q−1)τ+1(s) = ∅
Pivotal Prefix filter piv(r) ∩ preqτ+1(s) = ∅, if last(preqτ+1(r)) < last(preqτ+1(s))

piv(s) ∩ preqτ+1(r) = ∅, if last(preqτ+1(r)) ≥ last(preqτ+1(s))

Cross Pivotal filter piv(r) ∩ prelpr+(q−1)τ (s) = ∅ or piv(s) ∩ prelps+(q−1)τ (r) = ∅

We prove that our cross pivotal filter has the best pruning power among all
filters in Table 4 in the theorem below.

Theorem 3.2. Our cross pivotal filter has the best pruning power among all
filters in Table 4. �

Proof Sketch: Firstly, we have lps ≤ qτ +1 and lpr ≤ qτ +1 if the pivotal sets
are selected from the (qτ +1)-prefix sets. Thus, given a query string r, any data
string s that is pruned by IndexChunk-Turbo or pruned by IndexGram-Turbo
must also be pruned by our cross pivotal filter.

Secondly, for pivotal prefix filter, if last(preqτ+1(r)) < last(preqτ+1(s)), then
piv(r) ∩ preqτ+1(s) = ∅ is equivalent to piv(r) ∩ q(s) = ∅, which can be trans-
ferred into piv(r) ∩ prelpr+(q−1)τ (s) = ∅ according to Corollary 3.1. Similarly, if
last(preqτ+1(r)) ≥ last(preqτ+1(s)), then piv(s) ∩ preqτ+1(r) = ∅ is equivalent to
piv(s) ∩ prelps+(q−1)τ (r) = ∅ . Thus, given a query string r, any data string s
that is pruned by pivotal prefix filter must also be pruned by our cross pivotal
filter.

Thus, the theorem holds. �

Efficient String Similarity Search: A Cross Pivotal Based Approach 551

3.2 Cross Pivotal Based Approach

In this subsection, based on the proposed cross pivotal filter, we present our app-
roach for string similarity search, which consists of two phases: Phase-I, indexing
q-grams; and Phase-II, query processing.

Indexing. Given a query string r, every data string s ∈ S that survives the cross
pivotal filter has piv(s) ∩ prelps+(q−1)τ (r) �= ∅ and piv(r) ∩ prelpr+(q−1)τ (s) �= ∅.
Therefore, in order to efficiently retrieve all the candidate strings in S that pass
the cross pivotal filter, we construct inverted index on the pivotal set and the
prefix set for each data string in S. However, the query string r is not given at
the time of indexing, so lpr is unknown; moreover, lps may vary for different
data strings s ∈ S. Therefore, we select piv(s) and piv(r) from preqτ+1(s) and
preqτ+1(r), respectively, and set lps and lpr to be qτ + 1 which is their upper
bound.

We denote the inverted index constructed for the pivotal sets of all data
strings as Ipiv, and denote the inverted index constructed for the ((2q−1)τ +1)-
prefix sets of all data strings as Ipre. In the inverted indexes, for each q-gram g,
we store not only the ids of strings that contain g but also the start positions of
g in the corresponding strings; the start positions are stored to enable position
filtering during query processing.

The pseudocode is shown in Algorithm 1, denoted Indexing. We first gen-
erate all the q-grams Q(s) for each string s ∈ S and count the frequency of
the generated q-grams as well (Line 1). Then, we sort the set of all generated
q-grams for all strings in S in increasing frequency order, which defines the
universal order of q-grams (Line 2). The inverted indexes Ipiv and Ipre are ini-
tialized to be empty (Line 3). Then, we process each string s in S (Lines 4-13).
For string s, we first obtain and store the length |s| of s (Line 5), and then sort
q(s) according to the universal order (Line 6). The ((2q − 1)τ + 1)-prefix of s
is selected and indexed by Ipre (Lines 7-9). The pivotal set piv(s) of s is chosen
from the (qτ +1)-prefix of q(s) by algorithm PivotalSelection which will be
discussed in Section 3.3 (Lines 10-11), and is indexed by Ipiv (Lines 12-13).

Example 3.3. Consider the string database S = {s1, . . . , s5} in Table 2 with
q = 2 and τ = 2; then (2q − 1)τ + 1 = 7. For string s1, pre(2q−1)τ+1(s1) =
{am,mi, da, ni, ng, ta, at} and assume piv(s1) = {am, da, ni}. Then, the 〈id,
start position〉 pairs 〈s1, 4〉, 〈s1, 5〉, 〈s1, 1〉, 〈s1, 7〉, 〈s1, 9〉, 〈s1, 3〉, and 〈s1, 2〉
are put into Ipre[am], Ipre[mi], Ipre[da], Ipre[ni], Ipre[ng], Ipre[ta], and Ipre[at],
respectively. Similarly, for the inverted index of pivotal sets, 〈s1, 4〉, 〈s1, 1〉 and
〈s1, 7〉 are put into Ipiv[am], Ipiv[da] and Ipiv[ni], respectively. The final inverted
index Ipre and Ipiv are shown in Table 5. �

Time Complexity. The time complexity of Algorithm 1 is O(
∑

s∈S |s| log
∑

s∈S

|s|), if we exclude the pivotal selecting time consumed by PivotalSelection.
The reason is that putting a q-gram into Ipre or Ipiv takes constant time, and
Line 2 of Algorithm 1 is the dominating cost.

552 F. Bi et al.

Algorithm 1. Indexing

Table 5. Example of Inverted Index for String Database S

Ipre for dataset S Ipiv for dataset S

am → 〈s1, 4〉; at → 〈s1, 2〉; du → 〈s3, 1〉; lw → 〈s5, 5〉; mi → 〈s1, 5〉; am → 〈s1, 4〉; du → 〈s3, 1〉;
ng → 〈s1, 9〉; ta → 〈s1, 3〉; ut → 〈s3, 2〉; we → 〈s5, 6〉; lw → 〈s5, 5〉; ni → 〈s1, 7〉;
ar → 〈s2, 7〉, 〈s4, 7〉; ni → 〈s1, 7〉, 〈s2, 9〉; rn → 〈s2, 8〉, 〈s4, 8〉; ar → 〈s2, 7〉, 〈s4, 7〉;
ti → 〈s3, 8〉, 〈s5, 9〉; da → 〈s1, 1〉, 〈s2, 1〉;
gs → 〈s3, 11〉, 〈s4, 12〉, 〈s5, 12〉; le → 〈s2, 5〉, 〈s3, 5〉, 〈s4, 5〉; gs → 〈s4, 12〉, 〈s5, 12〉;
al → 〈s2, 4〉, 〈s3, 4〉, 〈s4, 4〉, 〈s5, 4〉; da → 〈s1, 1〉, 〈s2, 1〉, 〈s4, 1〉, 〈s5, 1〉; ti → 〈s3, 8〉, 〈s5, 9〉;
ea → 〈s2, 6〉, 〈s3, 6〉, 〈s4, 6〉, 〈s5, 7〉; le → 〈s2, 5〉, 〈s3, 5〉, 〈s4, 5〉;

Query Processing. Given the inverted indexes Ipiv and Ipre constructed for
a string database S, for any query string r, our query processing algorithm
consists of two stages: stage-I, generating candidate sets, and stage-II, verifying
each string in the candidate set to find the true similar strings. The candidate set
is defined as the set of strings in S that pass the cross pivotal filter as proposed in
Section 3.1; that is, {s ∈ S | piv(s)∩pre(2q−1)τ+1(r) �= ∅, piv(r)∩pre(2q−1)τ+1(s) �=
∅}.

To obtain the candidate set, we first use the q-grams in the prefix of q(r),
pre(2q−1)τ+1(r), to query the inverted index Ipiv to generate an initial set of
candidates. Here, we also apply the length filtering and the position filtering. For
each q-gram g ∈ pre(2q−1)τ+1(r), and each entry in the inverted list of g (i.e.,
〈sid, pos〉 ∈ Ipiv[g]), the length filtering requires that the length of the string
with id sid must be within the range [|r| − τ, |r| + τ], and the position filtering
requires that the position difference must satisfy |g.pos−pos| ≤ τ . Then, we use
the pivotal q-grams in piv(r) to query the inverted index Ipre to further refine
the candidate set using the position filtering again.

Efficient String Similarity Search: A Cross Pivotal Based Approach 553

The pseudocode is shown in Algorithm 2, denoted as Search. Firstly, we
generate the q-gram set q(r) of the query string r, and sort it according to
the universal order (Line 1). Then, through Lines 2-8, we generate the initial
candidate set by using the prefix of q(r), pre(2q−1)τ+1(r), to probe the inverted
index Ipiv. That is, for each q-gram g ∈ pre(2q−1)τ+1(r) (Line 4), and each pair
〈sid, pos〉 ∈ Ipre[g] (Line 5), we add sid to the candidate set if its corresponding
string passes both the length filtering and the position filtering (Lines 7-8). Next,
through Lines 9-15, we refine the candidate set by using the pivotal set piv(r)
to probe the inverted index Ipre. Finally, for each string s in the candidate set,
we verify it by checking whether ed(s, r) is larger than τ or not (Lines 16-20);
note that, here we use the same verification algorithm as that was used in the
existing works [4,15].

Note that, we can also apply the tight cross pivotal filter as presented in
Lemma 3.1 at Lines 7,14, by storing the lps for each sid in Ipiv and the position
of each q-gram g in the prefix of the string with id sid in Ipre. For presentation
briefness, we omit the details.

Example 3.4. Consider the inverted indexes Ipiv and Ipre built in Example 3.3
and the query string r in Table 2. pre(2q−1)τ+1(r) = {〈ac, 4〉, 〈cl, 5〉, 〈an, 8〉, 〈le, 6〉,
〈da, 1〉, 〈ea, 7〉, 〈ni, 9〉} where the numbers indicate the start position of the corre-
sponding q-gram in r, and assume piv(r) is chosen as {〈ac, 4〉, 〈an, 8〉, 〈le, 6〉}. The
algorithm starts by using pre(2q−1)τ+1(r) to probe the inverted index Ipiv with
both the length filtering and the position filtering. Taking 〈da, 1〉 in pre(2q−1)τ+1(r)
as an example, we have Ipiv[da] = {s1, s2} and both of them pass the length filter-
ing and the position filtering, thus, the candidates obtained by querying Ipiv with
〈da, 1〉, denoted as candpiv(da, 1), are {s1, s2}. Similarly, we have candpiv(ac, 4) =
candpiv(cl, 5) = candpiv(an, 8) = candpiv(ea, 7) = ∅, candpiv(le, 6) = {s2, s3, s4}
and candpiv(ni, 9) = {s1}. Merging them altogether, we obtain the candidate set
obtained by querying Ipre, denoted as candpiv, which is {s1, s2, s3, s4}. Then piv(r)
is used to probe Ipre to extract candidates. We denote the candidates obtained by
〈ac, 4〉 as candpre(ac, 4); then, we have candpre(ac, 4) = candpre(an, 8) = ∅ and
candpre(le, 6) = {s2, s3, s4}. Therefore, the candidate set obtained by querying
IPre, denoted as candpre, is {s2, s3, s4}. Finally, we get the candidate set cand =
candpiv ∩ candpre = {s2, s4, s5}, with s1 in candpiv being pruned. �

Time Complexity. Obviously, the two inverted-index probing processes (i.e., Lines
4-8 and Lines 12-15) dominate the time complexity of Algorithm 2. For each q-
gram g in pre(2q−1)τ+1, it needs O(|Ipiv[g]|) time to probe the inverted list. There-
fore the time complexity for the first probing (i.e., Lines 4-8) is O(

∑
g∈pre(2q−1)τ+1(r)

|Ipiv[g]|). Similar, we obtain that the time complexity for the second probing (i.e.,
Lines 12-15) is O(

∑
g∈piv(r) |Ipre[g]|). Consequently, the total time complexity

of Algorithm 2 (excluding the time for verification at Lines 17-19) is O
(
∑

g∈pre(2q−1)τ+1(r)
|Ipiv[g]| +

∑
g∈piv(r) |Ipre[g]|).

554 F. Bi et al.

Algorithm 2. Search

3.3 Pivotal Set Selection

In this section, we propose a new efficient dynamic programming algorithm for
selecting the pivotal set in O(qτ2) time.1

Objective Function. In Table 4, we have shown that the pruning condition of
cross pivotal filter is piv(r)∩prelpr+(q−1)τ (s) = ∅ or piv(s)∩prelps+(q−1)τ (r) = ∅.
Intuitively, the smaller lps and lpr are, the shorter the prefixes of s and r in the
cross pivotal filter, and thus the more powerful the pruning condition. Hence,
we compute the pivotal set with the aim of minimizing lps and lpr, which is
equivalent to minimizing the maximum order of the selected pivotal q-grams.
Note that, each q-gram has an universal order number, denoted g.order, which
is the position of g in the sorted set of all q-grams in the string database (i.e.,
in the universal order).

1 Note that, our method is different from the algorithm in [4] which runs in O(q2τ3)
time.

Efficient String Similarity Search: A Cross Pivotal Based Approach 555

Algorithm. We develop a dynamic programming algorithm to find the pivotal
set (i.e., τ + 1 disjoint q-grams) with the minimum max-order from the q-grams
q of a string. It has been proven in [4] that there always exists a pivotal set in
the (qτ + 1)-prefix of q; thus, it is sufficient for us to take the (qτ + 1)-prefix
preqτ+1 as input. That is, the optimal pivotal set will be in preqτ+1.

We sort q-grams in preqτ+1(r) by their start positions, and let gi denote the
i-th q-gram in this order with 1 ≤ i ≤ qτ + 1. For each q-gram gi in preqτ+1(r),
we let ld(i) denote the last non-overlapping q-gram that appears before gi; that
is, ld(i) = max{1 ≤ j < i | gi.pos − gj .pos ≥ q}. If all q-grams before gi overlap
with gi, then ld(i) is set to 0.

Now, we let mmo(i, j) denote the optimal solution (i.e., with minimum max-
order) of selecting j disjoint q-grams from {g1, . . . , gi}. Then, mmo(i, j) can be
obtained from two cases: 1) including gi, thus the other part of the solution is
mmo(ld(i), j − 1); and 2) not including gi, thus, it is the same as mmo(i − 1, j)
by greedy selection. Therefore, we can compare the two cases, and choose the
one with smaller max-order.

Letmmo(i, j).maxOrder denote themax-order of the q-grams inmmo(i, j), let
orderin denote max{mmo(ld(i), j − 1).maxOrder, gi.order}, and let ordernot in

denote mmo(i − 1, j).maxOrder. Then we can compute mmo(i, j) recursively as
follows,

{
mmo(i, j) ← mmo(i − 1, j), If ordernot in < orderin

mmo(i, j) ← mmo(ld(i), j − 1) ∪ gi, If ordernot in ≥ orderin

(1)

Lemma 3.2. Equation (1) correctly computes mmo(i, j) for all 1 ≤ i ≤ qτ + 1
and 1 ≤ j ≤ τ + 1. �

Proof Sketch: Obviously, the optimal solution mmo(i, j) must be one of the
two cases: 1) including gi; and 2) not including gi. For case 1), since gi is included
in the solution, then the other part of the solution must be mmo(ld(i), j − 1) by
greedy selection due to the fact that mmo(i′, j′) ≥ mmo(i′ + 1, j′) for all i′ and
j′. For case 2), as gi is not selected, the optimal solution must be mmo(i − 1, j)
by greedy selection. Thus, mmo(i, j) is the better one between the above two
cases. Thus, the lemma holds. �

Following from the above, the pseudocode is shown in Algorithm 3, denoted
as PivotalSelection. It starts by sorting the set of q-grams by their start
positions (Line 1). ld(i)s are computed at Lines 3-6, while Lines 7-12 com-
pute mmo(i, j) following Equation (1). Note that, for efficiency concerns, in
Algorithm 3, mmo(i, j) actually stores mmo(i, j).maxOrder; that is, mmo(i, j)
stores the max-order of the set of selected q-grams instead of the actual q-
grams. Finally, we obtain the optimal pivotal set by backtracking on mmo(i, j)
(Lines 13-16); the observation is that, the q-gram at position ri of p is not
selected in the pivotal set if and only if mmo(ri, i) equals mmo(ri − 1, i), and
we start the construction from mmo(qτ + 1, τ).

Time Complexity. The time complexity of Algorithm 3 is O(qτ2). It is easy to
verify that the ld(i)s are constructed in O(qτ) time at Lines 3-6, the mmo(i, j)s

556 F. Bi et al.

Algorithm 3. PivotalSelection

are computed in O(qτ2) at Lines 7-12, and Lines 13-16 build the pivotal set in
O(qτ) time. Note that, a similar but different dynamic programming approach
has been proposed in [4] for selecting weight-based pivotal set in O(q2τ3) time.
Therefore, our pivotal selection algorithm is more efficient.

4 Advanced Filters

As it is time-consuming to verify each candidate by checking whether the edit
distance between the candidate string and the query string is larger than τ ,
in this section we propose two advanced filters to further refine the candidate
set, thus reduce the number of candidates to be verified. Before that, we first
introduce the concept of single-match candidate.

Definition 4.2. (Single-Match Candidates) A candidate string s is called
a single-match candidate if s contains only one q-gram of the pivotal set of the
query string r and moreover, that pivotal q-gram has only one copy in r. �

Through our experiments, we observe that a large portion (i.e., 50% to 95%)
of the candidates are single-match candidates; that is, they are introduced by
only one pivotal q-gram of r. However, many of the single-match candidates are
not included in the final result. For example, in DNA dataset with τ being 10,
out of 1.4 million candidates, there are 1 million single-match candidates, none
of which contributes to the actual result; in Title and URL with τ being 10

Efficient String Similarity Search: A Cross Pivotal Based Approach 557

and 3 respectively, the number of all candidates, single-match candidates, and
actual results that are single-match candidates are 9.5 millions, 8.1 millions, 0
and 18.8 millions, 17.4 millions, 9030 respectively.

Example 4.5. Consider the three candidates s2, s3 and s4 computed by Search
in Example 3.4. Obviously, they are single-match candidates, all of which are
solely introduced by the pivotal q-gram 〈le, 6〉 that has only one matched position
(i.e., start position 5) in each of the three candidate strings. �

Motivated by the above, in the following we propose two advanced filters,
pivotal substitution filter and position match filter, to refine the single-match
candidates.

4.1 Pivotal Substitution Filter

For our cross pivotal filter, a natural extension of Theorem 3.1 is that, let piv(r)
and piv′(r) denote two different pivotal sets computed from q(r), if s and r are
similar, then piv(s) ∩ q(r) �= ∅ and piv(r) ∩ q(s) �= ∅ and piv′(r) ∩ q(s) �= ∅.
Moreover, this can be extended to many more pivotal sets. However, the query
with multiple pivotal sets would involve significant filtering cost, as it increases
the number of strings required to be processed. To address this issue, based
on the above observation of single-match candidates, we propose the pivotal
substitution filter to perform multiple pivotal queries efficiently.

Definition 4.3. (Pivotal Substitution) Given a pivotal set piv(r) and a q-
gram gi ∈ piv(r), a pivotal substitution of gi is a q-gram from q(r) that is disjoint
with the other τ pivotal q-grams of piv(r). �

Pivotal Substitution Filter. For a single-match candidate s introduced by
the i-th pivotal q-gram gi, if there exists such a pivotal substitution of gi in q(r)
that is not in q(s), then s and r cannot be similar.

The intuition of the pivotal substitution filter is as follows. Let g′ be such
a pivotal substitution, and let piv′(r) be the result of substituting gi with g′ in
piv(r). Then, piv′(r) ∩ q(s) = ∅; thus, s and r are not similar.

Example 4.6. Consider, the candidate s3 in Example 4.5. For s3, the matched
pivotal q-gram is 〈le, 6〉. Assume we substitute it with 〈da, 1〉, but 〈da, 1〉 is not
in q(s3); thus, s3 is pruned by the pivotal substitution filter. �

Implementation and Time Complexity. To minimize the filtering cost,
when selecting a pivotal substitution for a pivotal q-gram gi, we select the one
with minimum universal order among all q-grams in q(r) that satisfy the non-
overlapping constraint. Once a pivotal substitution g′ is selected, the candidate
set is refined by conducting an intersection with the inverted list of g′. Note that,
we perform the above pivotal substitution filter for each pivotal in piv(r). Thus,
the time complexity of applying each pivotal substitution filter linear to the size
of the inverted list of the pivotal substitution (i.e., O(|Ipre[g′]|)).

558 F. Bi et al.

r

s

ra rb

sa sb

matched pivotal q-gram

matched q-gram

Fig. 1. A Demonstration of Pivotal Match Filter

4.2 Position Match Filter

In this subsection, we propose the position match filter for single-match candi-
dates based on their matched positions.

Position Match Filter. For a single-match candidate s that is introduced by
the i-th pivotal q-gram gi in piv(r) and has a matched position pos, if |pos −
gi.pos| > i−1 or |(|s|−pos)− (|r|−gi.pos)| > τ +1− i, then s cannot be similar
to the query string r.

We prove the correctness of the position match filter by showing that, assum-
ing s and r are similar, then |pos−gi.pos| ≤ i−1 and |(|s|−pos)−(|r|−gi.pos)| ≤
τ + 1 − i. Since s is a single-match candidate and only matches the pivotal q-
gram gi, then gi must be matched to the q-gram of s with start position pos and
remains unchanged in the optimal sequence of edit operations. As illustrated in
Figure 1, let sa and sb denote the left substring and the right substring in s sep-
arated by the matched q-gram respectively, and ra and rb are defined similarly.
Then, we have ed(s, r) = ed(sa, ra) + ed(sb, rb).

Moreover, we have ed(sa, ra) ≥ i − 1 and ed(sb, rb) ≥ τ + 1 − i, since there
are i − 1 (τ + 1 − i) unmatched pivotal q-grams between sa and ra (sb and
rb), respectively. For s and r being similar, ed(s, r) ≤ τ . Thus, ed(sa, ra) ≤
ed(s, r)−ed(sb, rb) ≤ i−1, and ed(sb, rb) ≤ τ +1−i. Therefore, ed(sa, ra) = i−1
and ed(sb, rb) = τ + 1 − i.

Note that ed(sa, ra) ≥ |pos − gi.pos| and ed(sb, rb) ≥ |(|s| − pos − q + 1) −
(|r| − gi.pos − q + 1)| = |(|s| − pos) − (|r| − gi.pos)|, due to lower bounding by
length difference. Therefore, the position match filter is correct.

Example 4.7. As mentioned in Example 4.5, s4 is a single-match candidate
introduced by 〈le, 6〉 with matched position pos = 5. Now we apply the position
match filter to s4. The length difference of the two substrings on the left is
|pos − gi.pos| = |5 − 6| = 1 and the length difference of the two on the right is
|(|s| − pos) − (|r| − gi.pos)| = |(13 − 5) − (12 − 6)| = 2. Also, we have i = 2.
Therefore, |pos − gi.pos| = 1 = i − 1 and |(|s| − pos) − (|r| − gi.pos − q)| = 2 >
τ + 1 − i = 1. Consequently, s4 is pruned by the position match filter. �

Time Complexity. Obviously, the running time for applying position match filter
on each single-match candidate is constant. Thus, this filter can be applied very
efficiently.

Efficient String Similarity Search: A Cross Pivotal Based Approach 559

5 Extension for Dynamic Thresholds

In this section, we extend our techniques to support dynamic thresholds. Given
a maximum threshold τmax, we compute the pivotal set piv for τmax, and then
for each 1 ≤ τ ≤ τmax, the pivotal set for τ is selected from piv. In the indexing
phase, we construct two sets of inverted indexes Ipre = {I0pre, I

1
pre . . . Iτmax

pre } and
Ipiv = {I0piv, I1piv . . . Iτmax

piv } where Ii
pre and Ii

piv (0 ≤ i ≤ τmax) are subsidiary
indexes. Ii

pre is the inverted index built for the q-grams from the ((2q−1)(i−1)+
1)-th position (excluded) to the ((2q − 1)i + 1)-th position in the prefix of each
string in S, and Ii

piv is the inverted index for the (i+1)-th pivotal q-gram in the
pivotal set for each string in S. In query processing phase, given a query string r
and a threshold τq, the candidate set is computed as (

⋃i=τq

i=0 (pre(2q−1)∗τq+1(r) ∩
Ii
piv)) ∩ (

⋃i=τq

i=0 (piv(r) ∩ Ii
pre)).

6 Experiments

In this section, we evaluate the performance of our proposed approach, CrossPiv-
otalSearch. We compare it with three state-of-the-art approaches, Pivotal-
Prefix [4], IndexGram-Turbo [15], and IndexChunk-Turbo [15], and we
obtained the source code of the three approaches from the authors. All approaches
are implemented in C++ and complied using g++ 4.8.2 with -o3 flag. All exper-
iments are conducted on a machine with an Intel Quad-Core 3.20G CPU and 16
GB memory running 64bit Ubuntu. We use three real datasets in our experiments:
the medical publication title dataset Title, a DNA sequence dataset DNA and a
hyperlink dataset URL. Statistics of the datasets are shown in Table 6. For each
dataset, we generate a set of query strings randomly selected from the dataset.

Table 6. Statistics of Datasets

Dataset # of strings Avg Length Size (MB) Query Size

DNA 2,476,276 108 269 2,305

Title 4,000,000 100.6 402 4,000

URL 1,000,000 28.03 28 1,000

In our approach, CrossPivotalSearch, we first generate candidates by
using the cross pivotal filter, and then apply the position match filter and the
pivotal substitution filter to further refine the candidate set; for verification, we
first use the alignment filter [4] to perform the final pruning for each candidate
string, and then verify the candidates with length-aware verification method [5].
The q-gram lengths are tuned for the best performance and shown as follow: for
DNA dataset, q = 12, 12, 12, 12, 11, 11, 11, 10, 9, 9, 8, 7, 6, 6 for τ varying
from 2 to 15; for Title dataset, q = 8,8,8,8,6,6,6,5,4,4,4,3,3,3 for τ varying from
2 to 15; and for URL, q = 6,3,3,2,2,2,2,2 for τ varying from 1 to 8. Thus, we
have both small τ (i.e., 1 ≤ τ ≤ 10) and large τ (i.e., 10 ≤ τ ≤ 15).

560 F. Bi et al.

6.1 Comparison with State-of-the-art Approaches

In this subsection, we evaluate the approaches by two metrics: candidate number
and query processing time.

CrossPivotalSearch PivotalPrefix IndexGramTurbo IndexChunkTurbo

 3

 4

 5

 6

 7

 8

2 4 6 8 10

of

 c
an

di
da

te
s

(1
0x)

Threshold

(a) DNA - small τ

 3
 4
 5
 6
 7
 8
 9

11 12 13 14 15

of

 c
an

di
da

te
s

(1
0x)

Threshold

(b) DNA - large τ

 3

 4

 5

 6

 7

 8

4 6 8 10 12

of

 c
an

di
da

te
s

(1
0x)

Threshold

(c) Title - small τ

 3
 4
 5
 6
 7
 8
 9

11 12 13 14 15

of

 c
an

di
da

te
s

(1
0x)

Threshold

(d) Title - large τ

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8

of

 c
an

di
da

te
s

(1
0x)

Threshold

(e) URL

Fig. 2. Comparison with state-of-the-art Approaches - Candidate Number

Candidate Number. The results of candidate number are shown in Figure 2.
We can see that CrossPivotalSearch achieves the least candidates among the
four algorithms. For example, consider Figure 2(c) for the Title dataset with τ =
10, CrossPivotalSearch extracts 3.3 million candidates, while the candidate
number for PivotalPrefix, IndexGram-Turbo and IndexChunk-Turbo
are 12 millions, 17 millions and 15 millions respectively. CrossPivotalSearch
has the smallest number of candidates due to the stronger pruning power of
cross pivotal filter and the further pruning power of the two advanced filters.
For the best case scenario, CrossPivotalSearch only extracts 13.4%, 11.9%
and 14.1% of the candidates of PivotalPrefix, IndexGram-Turbo and
IndexChunk-Turbo respectively for the DNA dataset; those numbers for the
Title and URL datasets, are 18.3%, 14.7%, 15.9% and 21.5%, 33.5%, 32.4%.

Processing Time. Figure 3 shows the average query processing time for the
four approaches. CrossPivotalSearch and PivotalPrefix run significantly
faster than IndexGram-Turbo and IndexChunk-Turbo, with CrossPiv-
otalSearch being the best. For instance, in DNA dataset with τ = 13,
CrossPivotalSearch only takes 10.8 milliseconds, while the average process-
ing time for PivotalPrefix, IndexGram-Turbo and IndexChunk-Turbo
are 36.3 milliseconds, 159.9 milliseconds and 135.9 milliseconds, respectively.

Efficient String Similarity Search: A Cross Pivotal Based Approach 561

CrossPivotal PivotalPrefix IndexGramTurbo IndexChunkTurbo

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 6 8 10

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(a) DNA - small τ

 0
 20
 40
 60
 80

 100
 120
 140
 160

10 11 12 13 14 15

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(b) DNA - large τ

 0

 5

 10

 15

 20

 25

4 6 8 10 12

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(c) Title - small τ

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

11 12 13 14 15

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(d) Title - large τ

 0
 100
 200
 300
 400
 500
 600
 700

1 2 3 4 5 6 7 8
Pr

oc
es

sin
g

Ti
m

e(
m

s)

(e) URL

Fig. 3. Comparison with state-of-the-art Approaches- Query Time

Note that, in Figure 3(b) and Figure 3(d), we omit the result for τ = 14 and
τ = 15 for IndexGram-Turbo and IndexChunk-Turbo, due to the exces-
sive processing time compared to that of CrossPivotalSearch and Piv-
otalPrefix. For the best case scenario, CrossPivotalSearch only achieves
31.2%, 5.6% and 5.7% of processing time of PivotalPrefix, IndexGram-
Turbo and IndexChunk-Turbo respectively for the DNA dataset; those
numbers for the Title and URL datasets, are 51.8%, 10.2%, 10.5% and 53.7%,
38.9%, 49.2%.

We also compare the index size of the approaches and conclude that CrossPiv-
otalSearch has the smallest index size. For example, given a small scale medical
title dataset (75.5MB), with τ = 8 and q = 6, the index size of CrossPiv-
otalSearch is 1.4GB, while that of CrossPivotalSearch, IndexGram-
Turbo and IndexChunk-Turbo are 1.9GB, 3.1GB and 2.3GB, respectively.

6.2 Evaluation on Advanced Filters

In this subsection, we evaluate the two advanced filters: position match fil-
ter and pivotal substitution filter. We compare CrossPivotalSearch with
CrossPivotalBasic, which is the same as CrossPivotalSearch except
without the two advanced filters.

Figures 4 and 5 depict the candidate numbers and the average query process-
ing time of the two approaches. We can observe that CrossPivotalSearch
only has 50% to 80% of the candidates of CrossPivotalBasic, and conse-
quently CrossPivotalSearch runs faster than CrossPivotalBasic. This
is due to that single-match candidates account for a large portion of the can-
didates obtained by the cross pivotal filter, while the two advanced filters can
prune out a large amount of single-match candidates.

562 F. Bi et al.

CrossPivotalSearch CrossPivotalBasic

 3

 4

 5

 6

 7

 8

2 4 6 8 10

of

 c
an

di
da

te
s

(1
0x)

Threshold

(a) DNA - small τ

 3
 4
 5
 6
 7
 8
 9

11 12 13 14 15

of

 c
an

di
da

te
s

(1
0x)

Threshold

(b) DNA - large τ

 3

 4

 5

 6

 7

 8

4 6 8 10 12

of

 c
an

di
da

te
s

(1
0x)

Threshold

(c) Title - small τ

 3
 4
 5
 6
 7
 8
 9

11 12 13 14 15

of

 c
an

di
da

te
s

(1
0x)

Threshold

(d) Title - large τ

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8

of

 c
an

di
da

te
s

(1
0x)

Threshold

(e) URL

Fig. 4. Evaluation of Advanced Filters - Candidate

CrossPivotalSearch CrossPivotalBasic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 4 6 8 10

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(a) DNA - small τ

 0
 10
 20
 30
 40
 50
 60
 70

11 12 13 14 15

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(b) DNA - large τ

 0

 1

 2

 3

 4

 5

4 6 8 10 12

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(c) Title - small τ

 0
 5

 10
 15
 20
 25
 30
 35

11 12 13 14 15

P
ro

ce
ss

in
g

Ti
m

e(
m

s)

(d) Title - large τ

 0

 100

 200

 300

 400

1 2 3 4 5 6 7 8

Pr
oc

es
sin

g
Ti

m
e(

m
s)

(e) URL

Fig. 5. Evaluation of Advanced Filters - Query Time

7 Conclusion

In this paper, we studied the problem of string similarity search with edit distance
constraint. We proposed an efficient cross pivotal based approach, and proved its
strongest pruning power compared with the state-of-the-art approaches. We then
devised two advanced filters, position match filter and pivotal substitution filter

Efficient String Similarity Search: A Cross Pivotal Based Approach 563

to further reduce the number of candidates. Finally, we compared our cross piv-
otal based approach with other three state-of-the-art pivotal based approaches by
performing a comprehensive experimental study, and empirical evaluations on real
datasets demonstrate the superiority of our approach in terms of both candidate
number and query processing time.

Acknowledgments. Lijun Chang is supported by ARC DE150100563. Wenjie Zhang is
supported by ARC DE120102144, DP120104168, ARC DP150103071 and DP150102728.
Xuemin Lin is supported by NSFC61232006, ARC DP120104168, ARC DP140103578,
and ARC DP150102728.

References

1. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: VLDB
(2006)

2. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy
match for online data cleaning. In: SIGMOD (2003)

3. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: ICDE (2006)

4. Deng, D., Li, G., Feng, J.: A pivotal prefix based filtering algorithm for string
similarity search. In: SIGMOD (2014)

5. Deng, D., Li, G., Feng, J., Li, W.: Top-k string similarity search with edit-distance
constraints. In: ICDE (2013)

6. Forman, G., Eshghi, K., Chiocchetti, S.: Finding similar files in large document
repositories. In: SIGKDD (2005)

7. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S.,
Srivastava, D.: Approximate string joins in a database (almost) for free. In: VLDB
(2001)

8. Hadjieleftheriou, M., Koudas, N., Srivastava, D.: Incremental maintenance of
length normalized indexes for approximate string matching. In: SIGMOD (2009)

9. Kahveci, T., Singh, A.K.: Efficient index structures for string databases. In: VLDB
(2001)

10. Kim, Y., Shim, K.: Efficient top-k algorithms for approximate substring matching.
In: SIGMOD (2013)

11. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: ICDE (2008)

12. Li, C., Wang, B., Yang, X.: VGRAM: improving performance of approximate
queries on string collections using variable-length grams. In: VLDB (2007)

13. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1) (2001)

14. Qin, J., Wang, W., Lu, Y., Xiao, C., Lin, X.: Efficient exact edit similarity query
processing with the asymmetric signature scheme. In: SIGMOD (2011)

15. Qin, J., Wang, W., Xiao, C., Lu, Y., Lin, X., Wang, H.: Asymmetric signature
schemes for efficient exact edit similarity query processing. ACM Trans. Database
Syst. 38(3) (2013)

16. Sokol, D., Benson, G., Tojeira, J.: Tandem repeats over the edit distance. Bioin-
formatics 23(2) (2007)

17. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering?: an adaptive framework
for similarity join and search. In: SIGMOD (2012)

564 F. Bi et al.

18. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. PVLDB 1(1) (2008)

19. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate
detection. In: WWW (2008)

20. Yang, X., Wang, B., Li, C.: Cost-based variable-length-gram selection for string
collections to support approximate queries efficiently. In: SIGMOD (2008)

21. Zhang, Z., Hadjieleftheriou, M., Ooi, B.C., Srivastava, D.: Bed-tree: an all-purpose
index structure for string similarity search based on edit distance. In: SIGMOD
(2010)

Security and Privacy

Authentication of Top-k Spatial Keyword
Queries in Outsourced Databases

Sen Su1(B), Han Yan1, Xiang Cheng1,
Peng Tang1, Peng Xu1, and Jianliang Xu2

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{susen,yanh,chengxiang,tangpeng,xupeng}@bupt.edu.cn
2 Department of Computer Science, Hong Kong Baptist University,

Kowloon Tong, Hong Kong
xujl@comp.hkbu.edu.hk

Abstract. In this paper, we study the authentication of top-k spatial
keyword queries in outsourced databases. We first present a scheme based
on tree-forest indexes, which consist of an MR-tree (which is the state-
of-the-art authenticated data structure for the authentication of spatial
queries) and a collection of Merkle term trees (MT-trees). The tree-forest
indexes can support efficient top-k spatial keyword query (kSKQ) pro-
cessing and authentication. To derive a small verification object (VO) to
be returned to the user, we put forward an entry pruning based scheme,
where an MT*-tree is presented. The entries in each node of MT*-tree
are ordered and an embedded Merkle hash tree (embedded-MHT) is con-
structed over them. By employing a novel pruning strategy, the redun-
dant entries in each node of MT*-trees can be eliminated from VO. Our
extensive experiments verify the effectiveness, efficiency and scalability
of our proposed schemes on several performance metrics, including the
index construction time, index size, running time, VO size and authen-
tication time.

1 Introduction

Owing to the popularization of the positioning-enabled devices (e.g., smart
phones) and booming of the mobile internet, location-based services (LBSs) have
become a vital part in our daily activities in recent years. Such services pro-
vide users with location-aware query experiences based on their locations. Since
a great many of real-world applications have requirements to support the top-k
spatial keyword query (kSKQ), it has attracted considerable attention from both
academia and industry communities. In a spatial-textual database, each object has
two attributes: one is the location, the other is the textual description (or called
document). Given such a database and a query request with a location, a set of key-
words and a positive integer k, kSKQ finds k objects which are relatively nearer
to the query location and whose documents are comparatively more similar to the

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 567–588, 2015.
DOI: 10.1007/978-3-319-18120-2 33

568 S. Su et al.

keywords in the query. For instance, a user may want to find a “restaurant that
serves good beer and barbecue” and close to the user’s current location.

If the data owner (DO) of a massive spatial-textual database wants to provi-
sion kSKQ services, he/she needs to build up the basic IT infrastructure and hire
specialized personnel. However, as such cost might be unaffordable for small-to-
medium businesses, database outsourcing to a third-party location-based ser-
vices provider (LBSP) has been an appealing option for better making use of
the spatial-textual data. Yet, this outsourcing model brings a great challenge
that the query results returned by the LBSP might be incomplete or incorrect.
There are a variety of reasons for this. Firstly, the LBSP may return tailored
results for profit purposes (e.g., tampering with the ranking of top-k results in
favor of sponsors). Secondly, even if the LBSP is trustworthy, it is still likely
that its server is intruded by attackers. If an attacker takes control of the server,
he/she may forge the results for his/her own interest.

The aforementioned reasons necessitate the development of mechanisms that
will allow users to authenticate the kSKQ results that the LBSP returns. The
users need to verify the soundness and completeness of query results through a
proof, called verification object (VO) returned by the LBSP. In particular, the
soundness means that the original spatial-textual data in the result set is not
tampered with, while the completeness implies that no valid result is missing.

In this paper, to make one step closer towards practical deployment of LBSs
in outsourced databases, we study the authentication of top-k spatial keyword
queries (AkSKQ) problem. Most of the existing work related to this problem
considered either spatial queries [21,22] or textual searchings [14], but not a
combination of them. However, as we described above, each object in the spatial-
textual database has a composite of both spatial and textual attributes and the
definition of the kSKQ involves the computation of both spatial proximity and
textual similarity. Therefore, the authentication techniques proposed in these
previous studies cannot be applied to solve our problem. Most recently, Wu et al.
[18] studied a similar problem which is the authentication of moving top-k spatial
keyword queries, where they used a special ranking function (see Section 2).
In contrast, we focus on the authentication of snapshot top-k spatial keyword
queries with a more widely adopted ranking function [4].

A basic approach for tackling this problem is to simply combine IR-tree
(which is the state-of-the-art index to answer the kSKQ) [4,19] and Merkle hash
tree (MHT) [13] to form an MIR-tree. Based on MIR-tree, a best-first traversal
algorithm can be employed to process the kSKQ. Meanwhile, VO is generated
based on the nodes which have been visited. After receiving query results and
VO, the hash value of the root of MIR-tree is reconstructed by the user in a
bottom-up manner to verify the soundness of query results. As for verifying the
completeness, the user re-computes the ranking score of each returned object.
However, this approach is not very practical as large inverted files (which are
used to index the textual information in MIR-tree) are included in VO. Thus, it
will result in a tremendous communication overhead between the LBSP and the

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 569

user. In addition, it also leads to excessive computation cost at the user-side.
Therefore, the AkSKQ still remains a very challenging problem.

To reduce the VO size and make VO more suitable for the authentication,
we propose a scheme based on tree-forest indexes, where MIR-tree is split into
an MR-tree and a collection of Merkle term trees, denoted by MT-trees (each
term corresponds to an MT-tree). MR-tree is the state-of-the-art authenticated
data structure (ADS) for the authentication of spatial queries [21,22], while the
structure of each MT-tree is similar to that of MR-tree. In MT-trees, only the
textual information of each object is stored. Based on tree-forest indexes, we
introduce an extensional priority queue to assist the query processing. Since the
query processing only involves the access to the MT-trees associated with the
keywords the user inputs, VO does not include inverted files any more. Therefore,
the VO size and authentication time can be sharply reduced. Moreover, to further
optimize VO, we present an entry pruning based scheme, where an MT*-tree is
developed. Specifically, the entries in each node of MT*-tree are ordered and
organized by an embedded Merkle hash tree (embedded-MHT). Based on MT*-
trees, we present a novel pruning strategy to avoid, as much as possible, returning
the entries in each node of MT*-trees which are irrelevant to the authentication
of query results. A thorough experimental study on real datasets is conducted
over a wide range of parameter settings to evaluate the effectiveness, efficiency
and scalability of our proposed authentication schemes on several performance
metrics, including the index construction time, index size, running time, VO size
and authentication time.

The rest of this paper is organized as follows. Section 2 introduces the nec-
essary background and presents the problem formulation. Section 3 presents a
basic approach. A tree-forest indexes based scheme is proposed in Section 4, fol-
lowed by Section 5, where an entry pruning based scheme is put forward. Section
6 presents the experimental evaluation results. Related work in spatial keyword
query processing and query authentication is surveyed in Section 7. In the end,
we conclude the paper in Section 8.

2 Background and Problem Formulation

2.1 Background

Cryptographic Primitives. In this section, we review the cryptographic prim-
itives that underlie our proposed schemes.

One-Way Hash Function. A one-way hash function H(·) maps a message m
with arbitrary length to a fixed-length output H(m). It works in one direction.
It is easy to compute H(m) for a message m. However, it is computationally
infeasible to find a message m that maps to a given H(·).
Cryptographic Signature. A cryptographic signature (or simply signature) is
a mathematical scheme for demonstrating the authenticity of a digital message.
In particular, a signer creates a pair of a private key and a public key. The former
is kept by the signer secretly and the latter is publicly distributed. A digital

570 S. Su et al.

message can be signed by its owner using his/her private key. The authenticity
of the message can be verified by anyone who receives this message using the
owner’s public key. RSA [17] is the most widely used signature algorithm.

Merkle Hash Tree. The Merkle hash tree (MHT) [13] is an authenticated
data structure (ADS) used for collectively authenticating a set of messages. The
Merkle hash tree is a binary tree and built in a bottom-up manner, by first
computing the hash values of the messages in leaf nodes. The hash value of
each internal node is derived from its two child nodes. Finally, the hash value of
the root is signed by the owner of the messages. Moreover, MHT can be used
to authenticate any subset of messages, in conjunction with a proof. The proof
consists of the signed root and sibling nodes (auxiliary hash values) on the path
from the root down to the messages which need to be authenticated. Its idea
can be extended to multi-way trees.

Top-k Spatial Keyword Query. Due to the space limitations, we refer readers
to [4,19] for details of the spatial-textual database, IR-tree and top-k spatial
keyword query. Here we just show some notations used in this paper. 1© O:
an object in the database; 2© R: a minimum bounding rectangle (MBR) of the
objects which are relatively close to each other; 3© O.d: the document of O; 4©
R.d: the pseudo document of R. Besides, a collection of all the distinct terms
constitutes a dictionary and its size is denoted by M . In addition, the ranking
function used to compute the ranking score of an object O with respect to the
query Q is defined as follows (note that the smaller is the ranking score, the
better)

RS(Q,O) = α
D(Q,O)
Dmax

+ (1 − α)(1 − S(Q,O)
Smax

), (1)

where α ∈ [0, 1] is a parameter used to balance the spatial proximity and textual
similarity. The Euclidian distance between the query location and the object O
is computed by the function D(Q,O) (can also be called the distance score).
Besides, the function S(Q,O) is the Okapi formulation [28] which is a textual
similarity function and is effective in practice (can also be called the textual
score), i.e.,

S(Q,O) =
∑

t∈Q

wQ,t · wO,t, (2)

where wQ,t and wO,t are the associated weights of the term t in the query Q and
the document of the object O, respectively. wQ,t · wO,t can be called the term
score of the term t.

Note that our ranking function is widely adopted in existing studies [4].
Although Wu et al. [18] studied a similar problem which is the authentication
of moving top-k spatial keyword queries, they used a special ranking function as
defined below

RS(Q,O) =
D(Q,O)
S(Q,O)

. (3)

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 571

Our proposed schemes are irrelevant to the selection of the ranking func-
tions. Therefore, they can also be extended to support the Eq. (3). We will
experimentally compare with the method proposed in [18] for snapshot queries
in Section 6.

2.2 Problem Formulation

System Model. Our system involves three entities: the data owner (DO), the
location-based services provider (LBSP) and the users.

Before outsourcing a spatial-textual database to the LBSP, the DO builds an
authenticated data structure (ADS) on the database. To support efficient kSKQ
processing at the LBSP-side, the ADS is often a tree-like index structure. To
ensure the integrity of the original spatial-textual database, the DO signs the
root of the ADS using his/her private key. Besides, algorithms for processing the
kSKQ are also designed by the DO. The LBSP provides the storage resources for
the spatial-textual database, ADS, root’s signature of the ADS and algorithms.
After processing a user’s kSKQ using the algorithms designed by the DO, the
LBSP returns query results as well as a verification object (VO) which is gener-
ated based on the ADS. The soundness and completeness of query results can be
verified by users using the returned VO, root’s signature of the ADS and DO’s
public key.

Threat Model. Among three entities in our system model, we consider the DO
is unconditionally trusted but the third-party LBSP is the potential adversary.
The LBSP might be under the control of malicious attackers who might return
incorrect results to users intentionally. It is also possible in the case of out-of-
control of the DO, the LBSP modifies the original spatial-textual database and
its index, executes the query processing algorithm incorrectly or tampers with
query results in favor of sponsors.

Problem Statement. In this paper, we study the Authentication of top-k
Spatial Keyword Queries (AkSKQ) in outsourced databases. That is, given a
top-k spatial keyword query, the LBSP not only needs to efficiently retrieve
a ranking list of k objects according to their ranking scores but also needs to
generate VO for users to verify the soundness and completeness of query results.
VO should be generated as small as possible for minimizing the communication
cost between the LBSP and the user. At the mean time, VO should be suitable
for user’s authentication of query results.

3 A Basic Approach

In this section, we present a basic approach to solve the AkSKQ problem. The
main idea is to integrate Merkle hash tree (MHT) into IR-tree [4,19] to form a
new index: MIR-tree which underlies the kSKQ processing and authentication
of query results.

572 S. Su et al.

3.1 Index Structure

MIR-tree combines the concepts of Merkle hash tree (MHT) and IR-tree. As
Fig. 1 shows, the leaf nodes of MIR-tree are identical to those of IR-tree. Each
entry in the leaf nodes of MIR-tree corresponds to an object, i.e., O, while each
entry in the internal nodes of MIR-tree is represented by a tuple, i.e., (R,H(R)),
where R is an MBR and H(R) is the hash value of R.

The hash value of each entry in the internal nodes of MIR-tree is com-
puted by the binary concatenation of the entries and inverted file included
in its child node. Specifically, if the child of R is a leaf node, H(R) is given
by: H(R) = H(O1|...|Oi|IF), where O1, ..., Oi and IF are the entries and
inverted file included in this leaf node. Otherwise, if the child of R is an inter-
nal node, H(R) is given by: H(R) = H((R1|H(R1))|...|((Ri|H(Ri))|IF ′), where
(R1,H(R1)), ..., (Ri,H(Ri)) and IF ′ are the entries and inverted file included in
this internal node. The hash value of the root of MIR-tree is signed by the DO
using his/her private key and stored with the MIR-tree.

Fig. 1. MIR-tree

3.2 Query Processing

To process the kSKQ over MIR-tree, a best-first traversal algorithm is employed
to retrieve the ranking list of k objects. Meanwhile, VO is generated based on
the entries and inverted files included in the nodes which have been visited. After
the query processing, VO is returned to the user together with the query results.
Algorithm 1 shows the pseudocode of the kSKQ processing and VO generation
over MIR-tree.

As for the kSKQ processing, similar to IR-tree, we start from the root of
MIR-tree (line 1) and traverse the tree in a best-first manner. When deciding
which entry to be visited next, we pick the entry with the smallest ranking score
in a priority queue which includes all the candidate entries that have yet to be
visited (line 3). Recall that the smaller is the ranking score, the better. When
an MBR is picked from the priority queue (line 4), we compute the ranking
score of each entry in its child node and put them into the priority queue again

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 573

Algorithm 1. kSKQ Processing and VO Generation over MIR-tree

(line 5). Otherwise, when an object is picked (lines 7-8), we put it into the
result set (line 9). As for the VO generation, we use a pair of tokens ‘[’ and
‘]’ to indicate the scope of the entries in a node. In the beginning, we initialize
VO with following four parts: 1© ‘[’; 2© each Ri and H(Ri) in the root; 3© the
inverted file associated with the root; 4© ‘]’ (line 1). Once an MBR Ri is picked
from the priority queue (line 4), we adopt a replacement strategy for Ri and
its hash value H(Ri). Specifically, we replace Ri and H(Ri) with 1© ‘[’; 2© each
Rj and H(Rj) (or Oj) in Ri’s child node; 3© the inverted file associated with
Ri’s child node; 4© ‘]’ (line 6). Otherwise, if an object is picked (lines 7-8), it
has been included in VO with certainty since we have adopted the replacement
strategy for its parent MBR before. In this case, VO remains unchanged. The
above procedure is repeated until k objects have been found (line 2).

3.3 Authenticating Query Results

To authenticate the soundness of query results, the user needs to scan VO to
reconstruct the hash value of the root of MIR-tree and compare it against the
root signature using the DO’s public key. Since VO includes the entries which
have been visited during the query processing, the user can simulate the proce-
dure of MIR-tree traversal and recursively reconstruct each MBR and compute
its hash value in a bottom-up manner. Specifically, each MBR and its hash value
can be computed from the entries and inverted file in its child node which are
indicated by ‘[’ and ‘]’.

To authenticate the completeness of query results, the user first needs to
check each object in the result set is indeed present in VO and the ranking
scores of them are smaller than those of other entries returned in VO.

574 S. Su et al.

3.4 Limitations of the Basic Approach

The basic approach discussed above, however, is not very practical. The major
problem faced by this approach is that the VO size is too large. VO includes the
nodes which have been visited during the query processing and large inverted
files are associated with these nodes. Therefore, it will incur high communication
cost when VO is returned to the user. Moreover, it will also impose excessive
computation cost for the authentication process at the user-side. This is because
when the user verifies the completeness of query results, he/she needs to traverse
the corresponding inverted files to find the weights of the keywords he/she inputs
to re-compute the ranking score of each entry in VO.

4 Tree-Forest Indexes Based Scheme

An optimized scheme, tree-forest indexes based scheme, is designed to overcome
the drawbacks of the basic approach. The motivation of this scheme is based on
the following observation. In the basic approach, when the user re-computes the
ranking score of each entry in VO, he/she needs to retrieve the weights of the
keywords from the corresponding inverted files. However, only the keywords that
he/she inputs are involved in the computation of ranking scores. The number
of these keywords is rather smaller than that of terms in any of those inverted
files. Therefore, we decouple the spatial and textual information in MIR-tree
by splitting MIR-tree into tree-forest indexes which include an MR-tree and
a collection of Merkle term trees (MT-trees). Specifically, we use the state-of-
the-art authenticated data structure (ADS) MR-tree to authenticate the spatial
attribute of each object and compute the spatial proximity between the query
location and that object. In addition, for each term in the dictionary, we build
an MT-tree and use it to authenticate the textual attribute of each object and
compute the textual similarity of the keywords in the query with respect to
the document of that object. Since the query can be processed just based on
MR-tree and a few MT-trees, we can avoid returning VO with large inverted
files. Therefore, the VO size and authentication time can be both dramatically
reduced.

4.1 Index Structure

The structure of tree-forest indexes is shown in Fig. 2. In total, the data owner
(DO) needs to build one MR-tree and M MT-trees. Recall that M is the size of
the dictionary. Each MT-tree is associated with a term in the dictionary.

Structural Inconsistency. When the ranking score of each entry is computed,
the distance score and textual score need to be computed simultaneously from
MR-tree and corresponding MT-trees. Hence, the access to entries in MR-tree
and MT-trees needs to be synchronized. We refer to this kind of access as syn-
chronous access. Thus, to guarantee the synchronization of the access, we let the

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 575

structure of each MT-tree be completely the same as MR-tree. The structural
consistency results in a fact that there is a one-to-one correspondence between
each entry of MR-tree and MT-tree. Therefore, we introduce the notion of the
corresponding entry.

Definition 1. (Corresponding Entry) Given an entry eL (which includes an
object, i.e., O) in a leaf node of MR-tree, its corresponding entry (denoted by
ceL) is the entry with the same position as eL in an MT-tree. In a similar way,
R is an MBR included in an entry eI in an internal node of MR-tree, and its
corresponding entry (denoted by ceI) is the entry with the same position as eI in
an MT-tree.

Lemma 1. In total, each eL (eI) has M corresponding entries.

Lemma 2. Each ceL (ceI) in an MT-tree associated with a term t only stores
the weight of the term t in the document O.d, i.e., O.d.t.w (pseudo document
R.d, i.e., R.d.t.w).

Fig. 2. Tree-Forest Indexes

Note that in the implementation, we use a same ID to indicate eL (eI) and
each of its corresponding entries ceL (ceI). If the document of an object (or
the pseudo document of an MBR) does not include the term t, we can store
a ‘0’ in the entry in the corresponding MT-tree for guaranteeing the structural
consistency between MR-tree and MT-trees. Although the structural consistency
can facilitate the synchronization of the access to MR-tree and MT-trees, this
method will incur excessive extra storage cost because the average number of the
objects whose documents include the term t is far less than that of the objects
in the database. Thus, there will be too many ‘0’s in the MT-tree associated
with the term t and so do other MT-trees. Therefore, to save the storage cost,

576 S. Su et al.

we only store non-zero weights in MT-trees. However, removing the redundant
‘0’s in MT-trees results in the structural inconsistency between MR-tree and
MT-trees which will make the synchronization of the access unavailable and we
will discuss it later in Section 4.2.

Hashing Operations. Hash values stored in internal nodes of MR-tree and
MT-trees are computed in a similar way to those of MIR-tree.

High Level Index. We use an array index to index all the MT-trees. As Fig. 2
shows, each MT-tree corresponds to a position in the array through the term ID
and each position in the array includes a pointer which points to the root of the
corresponding MT-tree. Contrast to MR-tree and all the MT-trees, this array
index can be stored in memory. Therefore, extra I/O operations when processing
the kSKQ over tree-forest indexes can be reduced.

4.2 Query Processing

The procedure of the kSKQ processing over tree-forest indexes is similar to that
of the basic approach. However, there are two main differences between them,
which are detailed below.

1). Multiple Trees are Visited during the Query Processing
When the ranking score of each entry is computed, the Euclidian distance
between the query location and the entry is computed through MR-tree, while
the textual similarity of the keywords in the query with respect to the docu-
ment (or pseudo document) of this entry is computed through corresponding
MT-trees.

As we discussed above, removing the redundant ‘0’s in MT-trees will benefit
saving the storage cost. However, this will result in the inconsistency between
the structure of MR-tree and MT-trees. In particular, the spatial information of
each entry always exists in MR-tree, while each of its corresponding entries is not
necessarily present in the corresponding MT-tree. Therefore, when the ranking
score of an entry is computed, we need to use MR-tree as the benchmark and find
the weights stored in its corresponding entries in MT-trees. This kind of access to
the entries in MR-tree and MT-trees is referred to as asynchronous access. For
having a better adaptation to the asynchronous access, we use an extensional
priority queue, where we assign a vector for each entry in it. Each vector has k+1
elements and each element is a pointer. One points to the entry in MR-tree and
other k pointers point to the entry’s k corresponding entries in MT-trees. Thus,
if an entry is not present in MT-tree, its corresponding pointer in the vector
is null. For instance, if k = 2 and R3 is in the extensional priority queue, we
assign a vector < pR3 , pR3,t1 , null > for R3 in which pR3 points to R3 in MR-tree
and pR3,t1 points to R3’s corresponding entry in the MT-tree associated with the
term t1. We assume R3’s corresponding entry in the MT-tree associated with the
term t2 is not present, thus, pR3,t2 is null. Note that in the basic approach, each
element in the priority queue is only one pointer which points to the entry in
MIR-tree.

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 577

The procedure of the query processing using the extensional priority queue
as assistance is described as follows. If we have picked R3 from the extensional
priority queue, we first need to use its vector’s first element pR3 to access the
entries in its child node (e.g., O1, O2) and assign each of them a vector with k+1
elements. For instance, for O1, the vector is initialized with < pO1 , null, null >
and for O2, the initial vector is < pO2 , null, null >, where pO1 and pO2 point
to O1 and O2 in MR-tree. Then, we use other elements of R3’s vector to access
the entries in their child nodes in MT-trees. For instance, through pR3,t1 , we
can access O1 and O2’s corresponding entries in the MT-tree associated with
the term t1. Then, we fill in O1 and O2’s vectors with the addresses of O1 and
O2’s corresponding entries if they are present. For instance, for O1, the vector
is < pO1 , pO1,t1 , null > and for O2, the vector is < pO2 , null, null >, where we
assume O2’s corresponding entry is not present in the MT-tree associated with
the term t1. Since pR3,t2 is null, we need not access the entries in R3’s child
nodes in the MT-tree associated with the term t2 and the vectors for O1 and
O2 remain the same. After we have found the weights in R3’s child nodes in
MT-trees, we can compute their ranking scores and put their vectors into the
extensional priority queue again.

Based on tree-forest indexes, there is no need for the LBSP to retrieve and
process the entire inverted file associated with the node being visited, which
is necessary when using MIR-tree as the index. Therefore, it also improves the
efficiency of the query processing.

2). Multiple Items are Included in VO
One of items in VO is generated through MR-tree, which is denoted by VO(MR).
Other items in VO are generated through the MT-trees associated with the key-
words the user inputs. Let VO(MT-t) denote each of these items. Since the access
to MR-tree and each MT-tree is asynchronous, VO(MR) contains the spatial
information of entries which have been visited, while their textual information
are not necessarily included in the corresponding VO(MT-t)s. Therefore, the
structure of VO(MR) and each VO(MT-t) are not exactly the same. VO(MR)
and each VO(MT-t) together make up VO.

4.3 Authenticating Query Results

The soundness of query results can be verified by reconstructing the hash values
of roots of MR-tree and each MT-tree through VO(MR) and each VO(MT-t) in
VO, respectively and judging whether they can match the hash values restored
by DO’s signatures or not.

The completeness of query results can be verified by re-computing the ranking
score of each entry returned in VO. The spatial proximity between the query
location and that entry is computed from VO(MR) while the textual similarity
of the keywords in the query with respect to the document (or pseudo document)
of that entry is computed through VO(MT-t)s. However, as we discussed above,
we do not know whether the textual information (i.e., the weight) of each entry
in VO(MR) is included in VO(MT-t)s or not. An intuitive method to solve this

578 S. Su et al.

problem is that when we compute the ranking score of an entry in VO(MR), we
traverse every VO(MT-t) to find its textual information. However, it results
in a high time complexity of O(nk+1), where n is the number of entries in
VO(MR) and k is the number of the keywords the user inputs. To better solve
this problem, we compute the ranking score of each entry returned in VO in
the following manner. Firstly, for VO(MR) and each VO(MT-t) in VO, we set
pointers to indicate the positions of the entries being visited. At the beginning,
the pointers all point to the first entry of each item. Secondly, we use VO(MR) as
the benchmark and scan the item from the front to back. Each time we meet ‘[’,
‘]’ or the hash value, we just skip it. When we meet the first entry in VO(MR), we
begin to scan VO(MT-t)s using the corresponding pointers to find the weights
stored in the corresponding entries of this entry. If the first weight we meet in
VO(MT-t) does not belong to the document (or pseudo document) of this entry,
we stop scanning this item and consider the textual information of this entry is
not included in this VO(MT-t). Otherwise, we fetch the weight from the item.
Finally, until all the scannings are finished, we compute the entry’s ranking score.
This procedure is repeated until all the ranking scores of the entries in VO(MR)
have been computed. Therefore, the number of traversal to each VO(MT-t) is
significantly reduced and the time complexity of this procedure is only O(n(k +
1)).

5 Entry Pruning Based Scheme

Recall that in MT-trees, each node consists of a simple list of entries. During the
query processing, the authentication information (i.e., weights or auxiliary hash
values) of each pruned entry is included in VO. In practice, a node may include
a large number of entries while only a small fraction of them will be relevant
to query results. Consequently, many of them are pruned but their contents are
inserted into VO. Based on this observation, to further reduce the VO size, we
present an entry pruning based scheme. The main idea is to avoid, as much as
possible, returning the redundant entries in each node of MT-trees by employing
a novel pruning strategy. The redundant entries that we want to prune satisfy
two conditions. The first is, obviously, that they are irrelevant to query results.
The second condition is that they must not affect the authentication of query
results.

It has been shown that some terms in the dictionary are included in most
objects’ documents in the database because these terms are always common
terms in people’s daily lives [14]. However, for some uncommon terms, there
are only a few objects’ documents that include them. Therefore, the number of
entries in each MT-tree follows a highly skewed distribution. In particular, most
of terms have only a few entries in their corresponding MT-trees (these MT-
trees are referred to as sparse MT-trees), whereas a small minority of MT-trees
include several orders of magnitude more entries (we refer to these MT-trees as
dense MT-trees). Although the number of dense MT-trees is relatively small,
most queries may still involve a mix of dense MT-trees and sparse MT-trees

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 579

since dense MT-trees correspond to common terms. Therefore, in practice, our
scheme is effective in helping further reducing the VO size although some entries
may not be present in each node of MT-trees.

5.1 Index Structure

To better utilize the entry pruning strategy, some modifications are made to the
structure of each MT-tree. In particular, we sort the entries in each node N of an
MT-tree in descending order by their weights. Moreover, we adopt an embedded-
MHT technique to compute the hash value of each N . Each embedded-MHT is
a binary tree. The hash value of the root of the embedded-MHT summarizes the
authentication information about N and is computed in a bottom-up manner,
where the leaves of the embedded-MHT are the entries included in this node.
We refer to this modified index structure as MT*-tree which is shown in Fig. 3.
Note that each entry in the internal node of MT*-tree includes a weight and
its hash value, thus we first use the concatenation of them to compute the hash
value of this entry, while each entry in the leaf node of MT*-tree only includes
a weight, which can be simply used to compute the entry’s hash value. For
example, h1 = H(H(N5|H(N5))|H(N3|H(N3))), whereas h′

1 = H(w3|w4).

Fig. 3. MT*-tree

5.2 Query Processing

The procedure of the kSKQ processing can be divided into two independent
processes. The first is to answer the kSKQ to retrieve top-k results. Based on
the query results, the second process is to prune the entries in the nodes which
have been visited in MT*-trees and generate VO simultaneously.

In the first process, we no longer generate VO immediately. Instead, we record
the traversal processes of MR-tree and each MT*-tree. These processes will form
several spanning trees. Each of these spanning trees is a subtree either of MR-
tree (denoted by sMR-tree) or of MT*-trees (denoted by sMT*-tree) and it

580 S. Su et al.

only records the nodes which have been visited during the query processing.
Therefore, the entries in the internal nodes of these spanning trees can be divided
into two categories: one is that query results are included in these entries and
the other is that query results are not included in these entries. The former can
be called result entries and the latter can be referred to as non-result entries.
Similarly, the entries in a leaf node can also be divided into result entries and
non-result entries.

In the second process, we first retrieve the collection of entries in the root
of sMR-tree (denoted by ls) and their corresponding entries in each sMT*-tree
(denoted by lt). Using ls and the ranking score of the kth result (denoted by
vmax) which is retrieved from the first process, we can prune the redundant
entries in each lt which will not affect the authentication of completeness of query
results with certainty. Thus, we do not have to include these pruned entries in
VO. Then, this procedure is repeated on the entries in each node of sMR-tree
and their corresponding entries in sMT*-trees. At last, we use all the entries in
each node of sMR-tree, the entries which are not pruned and the auxiliary hash
values of the pruned entries in each node of sMT*-trees to generate VO.

The entry pruning strategy is shown in Algorithm 2. We first compute the
minimum distance (dmin) between the query location and the non-result entries
in ls (line 1). Then, we use dmin and the ranking score of the kth result vmax to
compute a textual threshold t using Eq. (1), which is used to bound the entries
that will not affect the authentication of completeness of query results (line 2).
Next, we compute a dummy textual score s using the largest term score in each
lt (lines 3-7). If s > t, among the term scores involved in computing the dummy
textual score, we find the largest one and denote lt (which it belongs to) by l
(lines 8-13). Then, we mark this entry and at the same time, mark all the entries
in other lts which have the same ID (lines 14-18). Then, we visit the next entry
in l and update the dummy textual score s (lines 19-20). The procedure above
is repeated until s ≤ t. Thus, the un-marked entries that are yet to be visited
are pruned and need not be returned. Then, we mark the boundary in each lt
(which is the last entry that has been visited in each lt). We proceed to use the
marked entries and the auxiliary hash values of the un-marked entries to update
each lt (lines 21-23). Finally, we return all these updated lts (line 24).

5.3 Authenticating Query Results

To authenticate the soundness of query results, the user needs to reconstruct
the hash values of the roots of MR-tree and each MT*-tree. In the tree-forest
indexes based scheme, the hash value of a node in MT-tree is computed by the
concatenation of the entries included in this node. In this entry pruning based
scheme, the hash value of a node in MT*-tree is the hash value of the root of the
embedded-MHT in this node, which can be computed using the entries which
are not pruned and the auxiliary hash values.

To authenticate the completeness of query results, the user first needs to
verify the procedure of the pruning is correct. Therefore, for the entries (ls)
between each pair of ‘[’ and ‘]’ in VO(MR), the user first computes the distance

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 581

(dmin) between the query location and the closest non-result entry. Then, among
the corresponding entries (lt) in each VO(MT-t), the user finds the entry at the
boundary. Then, the entries at the boundaries in all lts are coupled with the
dmin to compute a dummy ranking score v. If v is lager than the ranking score
of the kth object vmax, the user can claim that the procedure of the pruning is
correct. Moreover, the user needs to compute the ranking score of each entry in
VO(MR). If its corresponding entry is not returned in VO(MT-t), it may not exist
or be pruned and this entry will not affect the authentication of completeness of
query results with certainty.

6 Experimental Evaluation

In this section, we proceed to experimentally evaluate the performance of our
authentication schemes.

6.1 Experiment Settings

Datasets. In total, seven datasets are used in our experiments: one for effective-
ness and efficiency and six others for scalability. Firstly, a real spatial dataset
named as LA, which contains a total of 131,461 objects located in Los Angeles
streets, California1 is used. We use a real document dataset of 20 Newsgroups2,
which consists of short user-generated content, to resemble the textual infor-
mation attached to the spatial objects. The document attached to an object is
selected randomly from 20 Newsgroups. Specifically, the average number of terms
in the document attached to each object is 108; the total number of unique terms
in the document dataset is 29476 and the total number of terms in the document
dataset is 145,308. Secondly, to evaluate the scalability of our proposed schemes,
we generate six datasets including 1, 2, 3, 5, 8, 10 million objects, respectively,
where locations are selected randomly from LA and documents selected at ran-
dom from 20 Newsgroups are attached to the locations. Besides, we generate five
query sets, which consist of randomly selected locations from LA and the num-
ber of keywords ranges from 1 to 5. For each query set, 300 queries are included,
and the average cost in each query set is reported.

System Configuration. All the experiments were run on a server with Intel(R)
Pentium(R) CPU G640 @2.4GHz (Dual Processor) and 4 GB RAM. The pro-
grams were implemented in Java and the Java Virtual Machine Heap is set to
3GB.

Performance Metrics. The performance metrics for performance evaluation
include: (i) index construction time, (ii) index size, (iii) running time, (iv) VO
size and (v) authentication time.

1 http://www.rtreeportal.org/
2 http://qwone.com/∼jason/20Newsgroups/

http://www.rtreeportal.org/
http://qwone.com/~jason/20Newsgroups/

582 S. Su et al.

Algorithm 2. Entry Pruning
Input: ls, {lt} and vmax

Output: {updated lt}
1 Compute the minimum distance

(dmin) between the query location
and the non-result entries in ls;

2 t =Threshold(dmin,vmax);
3 s = 0;
4 for each lt do
5 Set a pointer p that points to the

first entry e in lt;
6 lt.s

′ = wQ,t · lt.p.e;
7 s+ = lt.s

′;

8 while s > t do
9 s′

max = −∞;
10 for each lt do
11 if lt.s

′ > s′
max then

12 s′
max=lt.s

′;
13 l=lt;

14 if l.p.e.flag = F then
15 l.p.e.flag = T ;
16 for each lt! = l do
17 if

∃p′.e ∈ lt&&p′.e = l.p.e
then

18 p′.e.flag = T ;

19 l.p++;
20 Update s; // lines 4,6 and 7

21 for each lt do
22 lt.p.e.flag = T ;
23 Use the entries with flag = T

and auxiliary hash values to
update lt;

24 Return each updated lt;

Algorithms. Algorithms to be eval-
uated in our experiments include: 1©
SK (kSKQ over IR-tree which is pro-
posed in [4] without any function-
ality of authentication); 2© BA (the
basic approach); 3© TFI (the tree-
forest indexes based scheme) and 4©
EP (the entry pruning based scheme).
Moreover, we compare our proposed
TFI and EP with the method pro-
posed in [18] for snapshot queries on
the same ranking function (Eq. (3)).
Their method is denoted by AMSK.

6.2 Cost at the DO/LBSP

In this section, we evaluate the per-
formance metrics (i) and (ii), which
mainly burden the DO and LBSP.
Figs. 4(a) and 4(b) plot the index
construction time and index size of
SK, BA, TFI and EP as a function
of the number of objects. We can
see that the index construction time
and index size of SK, BA, TFI and
EP increase linearly with the number
of objects. Regarding the index con-
struction time, EP is more expensive
than the others because it involves not
only the building of the embedded-
MHT over the entries in each node
of MT-trees but also the process of
sorting them in an descending order.
Constructing the index of TFI costs
more time than that of BA because it
needs to compute more hash values.
As for the index size, EP is the same
as TFI because only the leaf nodes
of each embedded-MHT are stored in
each node of MT*-trees. Since the

index of TFI includes more hash values, it is larger than that of BA. Both
the index construction time and index size of SK are the smallest because it
does not involve any computation of hash values. Since the construction of the
index is a one-time cost, it is reasonable for the DO to build the index in an
off-line manner.

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 583

(a) index constr.
time

(b) index size

Fig. 4. Varying the number of objects

6.3 Cost at the LBSP

Next, the performance metric (iii) is evaluated. The running time of SK, TFI
and EP as a function of the number of keywords, k and α is shown in Figs. 5(a),
5(b) and 5(c), respectively. In all cases tested, the running time of EP is slightly
larger than that of TFI mainly because it involves the process of pruning but
the loss is not more than 20ms. The running time of TFI is larger than that of
SK due to the procedure of VO’s generation and the access to multiple trees.
Nevertheless, for EP and TFI, their running time is at most about 100 ms longer
than that of SK. Therefore, our proposed schemes can be considered efficient.

(a) number of key-
words

(b) k (c) α (d) number of objects

Fig. 5. Evaluation of running time

6.4 Cost Between the LBSP and the User

Another important performance metric is (iv), i.e., VO size, which will affect
the communication overhead between the LBSP and user. Figs. 6(a), 6(b) and
6(c) illustrate the VO size of TFI and EP under the experimental settings with
varying the number of keywords, k and α, respectively. From these figures it can
be seen that the VO size of EP is about 30% smaller than that of TFI since
the redundant entries that will not affect the authentication of completeness of
query results are pruned. In all cases tested, the VO size of our proposed schemes
are all less than 100 KB.

584 S. Su et al.

(a) number of key-
words

(b) k (c) α (d) number of objects

Fig. 6. Evaluation of VO size

6.5 Cost at the User

The last performance metric is the authentication time at the user-side. The
cost of the authentication consists of two aspects. One is hashing operations,
and the other is re-computing the ranking scores of returned entries in VO.
From Figs. 7(a), 7(b) and 7(c), we can see that the authentication time of EP
is slightly larger than that of TFI because the hash value of the root of each
embedded-MHT needs to be reconstructed first. The authentication time of both
TFI and EP is always less than 1s under the experimental settings with varying
the number of keywords, k and α, which is believed reasonable as a cost for the
user.

(a) number of key-
words

(b) k (c) α (d) number of objects

Fig. 7. Evaluation of authentication time

6.6 Scalability

To evaluate the scalability of our proposed schemes, we run an experiment on
the six datasets containing 1, 2, 3, 5, 8, 10 million objects, respectively. From
Figs. 5(d), 6(d) and 7(d), we can see that the running time, VO size and authen-
tication time all increase with the increase of the dataset. In terms of all these
three metrics, EP outperforms BA by 2-3 orders of magnitude because the latter
needs to process large inverted files. Our scheme scales well for large datasets.
When the number of objects comes to 10 million, the running time, VO size and
authentication time of our proposed schemes are only about 10 s, 1 MB and 10 s,
respectively.

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 585

6.7 Comparison with AMSK

As AMSK proposed in [18] only supports the special ranking function as dis-
cussed in Section 2, we extend TFI and EP to support the same ranking function
and compare with it. Fig. 8 shows the results by varying k. TFI outperforms
AMSK because the latter needs to traverse the index twice while TFI needs to
traverse the index only once (Fig. 8(a)). Although EP also traverses the index
twice, the VO size of EP is smaller than that of AMSK, which can be seen from
Fig. 8(b). The authentication time of TFI and EP is almost the same as that of
AMSK (Fig. 8(c)).

(a) running time (b) VO size (c) authentication
time

Fig. 8. Varying k

7 Related Work

In this section, we retrospect the related work on spatial keyword query process-
ing and query authentication.

7.1 Spatial Keyword Query

There have been many studies on spatial keyword query due to its importance to
the commercial search engines. Felipe et al. [5] tackled a kNN searching problem
which finds k objects that include the keywords in the query and are near to the
query location. They proposed an IR2-tree by combining an R-tree with super-
imposed text signatures. Cong et al. [4] and Wu et al. [19] presented the IR-tree
which takes advantage of the inverted file for the textual similarity retrieval and
the R-tree for the spatial proximity searching. Zhang et al. [26] studied the col-
lective keyword searching (mCK), which finds the spatially closest objects that
match m user-specified keywords. Different from the mCK, Cao et al. [2] studied
the collective spatial keyword searching, which finds a group of spatial objects
such that the group’s keywords cover the keywords in the query and objects are
nearest to the query location and have the lowest inter-object distances. Huang
et al. [8] proposed a model to represent the safe region and devised searching
algorithms to compute the safe region to support moving top-k spatial keyword
queries. However, these studies do not support the authentication of top-k spatial
keyword queries.

586 S. Su et al.

7.2 Query Authentication

Authenticated query processing has been studied extensively. Most studies on
query authentication are based on an authenticated data structure (ADS) called
Merkle hash tree (MHT) [13] as introduced in Section 2. Following the con-
cept of MHT, the query authentication problem has been studied for relational
databases [9,20], data streams [10,15,16], and textual search engines [14]. Yang
et al. [21,22] first introduced this problem to the domain of spatial databases and
studied the authentication of spatial range queries. They proposed an authenti-
cated index structure called MR-tree, which combines the ideas of MB-tree [9]
and R*-tree [1]. Yiu et al. investigated how to efficiently authenticate moving
kNN [24], range [25] queries and shortest-path queries [23]. Hu et al. [7] proposed
a novel approach that authenticates spatial queries based on neighborhood infor-
mation. More recently, Hu et al. [6] and Chen et al. [3] developed new schemes
for range and top-k query authentication that preserves the location privacy
of queried objects. Besides, Lin et al. [11,12] investigated the authentication of
location-based skyline queries in subspaces. A new authenticated index structure
called MR-Sky-tree was proposed. Zhang et al. [27] studied the authentication of
the location-based top-k queries which ask for the POIs in a certain region and
with the highest k ratings for an interested POI attribute. However, these prob-
lems are different from ours studied in this paper since they considered either
the authentication of spatial queries or the authentication of textual searchings.
Moreover, their methods cannot be applied to our problem.

Wu et al. [18] studied the authentication of moving top-k spatial keyword
queries. However, they only supported a special ranking function (Section 2).
Instead, our problem focuses on the snapshot top-k spatial keyword queries and
we adopt a general ranking function. Moreover, our schemes can also support
other spatial-textual ranking functions. When we use their ranking function,
our schemes also outperform their method for snapshot queries in terms of both
efficiency and communication cost.

8 Conclusion

In this paper, we have studied the AkSKQ problem in outsourced databases.
We propose a tree-forest indexes based scheme, where the indexes include an
MR-tree and a collection of MT-trees. Based on tree-forest indexes, the kSKQ is
processed by employing an extensional priority queue as assistance. Both the VO
size and authentication time of the tree-forest indexes based scheme are much
smaller than those of the basic approach. To further optimize VO, we propose
an entry pruning based scheme, where we present an MT*-tree. The redundant
entries in each node of MT*-trees are pruned and will not be included in VO.
Our experiments show the effectiveness, efficiency and scalability of our proposed
schemes. Moreover, the schemes proposed in this paper can also be applied to
a broader set of query types, such as collective spatial keyword query, etc. This
work may open up many promising directions for future work. Firstly, it is worth
supporting incremental updates on the authenticated data structures proposed

Authentication of Top-k Spatial Keyword Queries in Outsourced Databases 587

in this paper. Secondly, it is worth studying the authentication of top-k spatial
keyword queries without compromising the location and keyword privacy.

Acknowledgments. We would like to thank all reviewers for their valuable com-
ments. This work was supported in part by the following funding agencies of
China: National Natural Science Foundation under grant 61170274, National Key
Basic Research Program (973 Program) under grant 2011CB302506 and Fundamental
Research Funds for the Central Universities under grant 2014RC1103. This work was
also partially supported by HK-RGC Grants HKBU12200114 and HKBU12202414.

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: An efficient
and robust access method for points and rectangles. In: SIGMOD, pp. 322–331
(1990)

2. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying.
In: SIGMOD, pp. 373–384 (2011)

3. Chen, Q., Hu, H., Xu, J.: Authenticating top-k queries in location-based services
with confidentiality. In: VLDB, pP. 49–60 (2013)

4. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. In: VLDB, pp. 337–348 (2009)

5. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
ICDE, pp. 656–665 (2008)

6. Hu, H., Xu, J., Chen, Q., Yang, Z.: Authenticating location-based services without
compromising location privacy. In: SIGMOD, pp. 301–312 (2012)

7. Hu, L., Ku, W.-S., Bakiras, S., Shahabi, C.: Spatial query integrity with voronoi
neighbors. IEEE TKDE 25(4), 863–876 (2013)

8. Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for mov-
ing top-k spatial keyword queries. In: CIKM, pp. 932–941 (2012)

9. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: SIGMOD, pp. 121–132 (2006)

10. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling
authentication of sliding window queries on streams. In: VLDB, pp. 147–158 (2007)

11. Lin, X., Xu, J., Hu, H.: Authentication of location-based skyline queries. In: CIKM,
pp. 1583–1588 (2011)

12. Lin, X., Xu, J., Hu, H., Lee, W.-C.: Authenticating location-based skyline queries
in arbitrary subspaces. IEEE TKDE 26(6), 1479–1493 (2014)

13. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

14. Pang, H., Mouratidis, K.: Authenticating the query results of text search engines.
In: VLDB, pp. 126–137 (2008)

15. Papadopoulos, S., Yang, Y., Papadias, D.: Cads: Continuous authentication on
data streams. In: VLDB, pp. 135–146 (2007)

16. Papadopoulos, S., Yang, Y., Papadias, D.: Continuous authentication on relational
streams. VLDB J. 19(2), 161–180 (2010)

17. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

588 S. Su et al.

18. Wu, D., Choi, B., Xu, J., Jensen, C.S.: Authentication of moving top-k spatial
keyword queries. IEEE TKDE 27(4), 922–935 (2015)

19. Wu, D., Cong, G., Jensen, C.S.: A framework for efficient spatial web object
retrieval. VLDB J. 21(6), 797–822 (2012)

20. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing
in outsourced databases. In: SIGMOD, pp. 5–18 (2009)

21. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Spatial outsourcing for
location-based services. In: ICDE, pp. 1082–1091 (2008)

22. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Authenticated indexing for
outsourced spatial databases. VLDB J. 18(3), 631–648 (2009)

23. Yiu, M.L., Lin, Y., Mouratidis, K.: Efficient verification of shortest path search via
authenticated hints. In: ICDE, pp. 237–248 (2010)

24. Yiu, M.L., Lo, E., Yung, D.: Authentication of moving knn queries. In: ICDE, pp.
565–576 (2011)

25. Yung, D., Lo, E., Yiu, M.L.: Authentication of moving range queries. In: CIKM,
pp. 1372–1381 (2012)

26. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword
search in spatial databases: Towards searching by document. In: ICDE, pp. 688–
699 (2009)

27. Zhang, R., Zhang, Y., Zhang, C.: Secure top-k query processing via untrusted
location-based service providers. In: INFOCOM, pp. 1170–1178 (2012)

28. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv.
38(2) (2006)

Privacy-Preserving Top-k Spatial Keyword
Queries over Outsourced Database

Sen Su1(B), Yiping Teng1, Xiang Cheng1, Yulong Wang1, and Guoliang Li2

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{susen,typ,chengxiang,wyl}@bupt.edu.cn
2 Department of Computer Science and Technology,

Tsinghua University, Beijing, China
liguoliang@tsinghua.edu.cn

Abstract. In this paper, we study the privacy-preserving top-k spatial
keyword query problem in outsourced environments. Existing studies
primarily focus on the design of privacy-preserving schemes for either
spatial or keyword queries, and they cannot be applied to solve the
privacy-preserving spatial keyword query problem. To address this prob-
lem, we present a novel privacy-preserving top-k spatial keyword query
scheme. In particular, we build an encrypted tree index to facilitate
privacy-preserving top-k spatial keyword queries, where spatial and tex-
tual data are encrypted in a unified way. To search with the encrypted
tree index, we propose two effective techniques for the similarity com-
putations between queries and tree nodes under encryption. Thorough
analysis shows the validity and security of our scheme. Extensive exper-
imental results on real datasets demonstrate our scheme achieves high
efficiency and good scalability.

1 Introduction

With the increasing popularity of location-based services in mobile Internet,
spatial keyword queries have drawn growing interest from both the industrial
and academic communities in recent years. Given a set of spatio-textual objects
(e.g., points of interest) and a query with a location and a set of keywords, a top-
k spatial keyword query finds k objects that are most relevant to the query in
terms of both spatial proximity and textual relevancy [5], which has been widely
used in real-life applications such as Google Maps and Foursquare. To realize the
great flexibility and cost savings, more and more data owners are motivated to
outsource their data service (including data, indices, querying algorithms, etc.)
to the cloud.

However, directly outsourcing such service to cloud may arise serious privacy
concerns. On one hand, the spatio-textual database may involve some private
data objects whose locations or textual descriptions cannot be learned by any
third parties including the cloud provider. Moreover, it requires human and
financial resources to collect the spatio-textual objects, which can be regarded
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 589–608, 2015.
DOI: 10.1007/978-3-319-18120-2 34

590 S. Su et al.

as business secrets to competitors, and it prohibits any unauthorized parties to
grab the data. On the other hand, if the locations and the query keywords in
the spatial keyword queries of data users are acquired illegally by the untrusted
third parties, the travel habits or the query manners will be analyzed or even
utilized by some potential attackers [12]. Thus, it is of great significance to study
the privacy-preserving scheme for top-k spatial keyword queries in outsourced
environments.

Existing studies primarily focus on the design of privacy-preserving schemes
for either spatial or keyword queries. They cannot be applied to solve the
privacy-preserving top-k spatial keyword query problem. Even though the spatial
keyword queries are performed by simply combining such separate schemes,
available queries cannot be provided due to the efficiency and validity, since
both text relevancy and spatial proximity are exploited for search space pruning
and results ranking [7,25]. Therefore, it calls for effective methods to efficiently
process privacy-preserving top-k spatial keyword queries.

To this end, we first define the problem of the top-k spatial keyword query
over outsourced spatio-textual databases in cloud. We then present a brand new
scheme for achieving privacy-preserving top-k spatial keyword queries (PkSKQ).
Specifically, in our scheme, a secure index based on existing tree-based index [7] is
built to facilitate PkSKQ. In this index, to achieve a unified encryption, the spa-
tial and textual data (i.e., coordinates and keyword weights) are converted into
vectors and encrypted by an enhanced version of Asymmetric Scalar-product-
Preserving Encryption (ASPE) [24], namely ASPE with Noise (ASPEN). We
prove that ASPEN is resilient to chosen-plaintext attack and known-plaintext
attack.

To search with the secure index, a basic operation is to compute the similarity
between a query point and a tree node in the secure index. However, since the
coordinates and keywords of the query point and the tree node are encrypted,
we cannot directly compute such similarity. To solve this problem, we develop
two techniques, anchor-based position determination and position-distinguished
trapdoor generation. In particular, by adding auxiliary points into the query
point and each tree node, the anchor-based position determination method allows
to determine the positional relation between them under encryption; and for the
position-distinguished trapdoor generation method, to facilitate the similarity
computations between the query point and tree nodes, it generates query vectors
corresponding to all the possible positional relations between the query point
and tree nodes in the trapdoor generation process. In this way, the similarity
computations between the query point and tree nodes can be performed without
privacy breaches.

To summarize, our contributions are as follows:

– To the best of our knowledge, this is the first attempt to define and solve
the privacy-preserving top-k spatial keyword query problem in outsourced
environments.

– We propose a new privacy-preserving scheme for top-k spatial keyword
queries. In particular, we devise a secure index to facilitate the privacy-

Privacy-Preserving Top-k Spatial Keyword Queries 591

preserving top-k query, where spatial and textual data are encrypted in a
unified way.

– To search with the secure index, we propose two techniques, anchor-based
position determination and position-distinguished trapdoor generation, for
the similarity computations between the query point and tree nodes under
encryption.

– Thorough analysis shows the validity and security of our scheme, where
it is proven to be resilient to chosen-plaintext attack and known-plaintext
attack. Extensive experimental results on real datasets further demonstrate
our scheme can achieve high efficiency and good scalability.

The rest of the paper is organized as follows. Section 2 first describes
the privacy-preserving top-k spatial keyword query problem over outsourced
database in cloud, and then introduces our encryption method. Section 3
presents our privacy-preserving top-k spatial keyword query scheme, followed
by Section 4, which analyzes the validity and security of the proposed scheme.
In Section 5, experimental evaluation is presented. Section 6 reviews related
works on spatial keyword queries and privacy-preserving schemes for spatial and
keyword queries. We conclude in Section 7.

2 Problem Formulation

In this section, we first introduce preliminaries on spatial keyword queries, and
then describe the system and threat model of privacy-preserving top-k spatial
keyword queries. At last, the encryption method used in our scheme is presented.

2.1 Top-k Spatial Keyword Query

Let D be a spatio-textual database owned by the data owner. Each object O in
D is defined as a tuple (O.l,O.t), where O.l represents the location descriptor
in multidimensional space and O.t denotes the text that describes the object.
A top-k spatial keyword query Q is also defined as a tuple (Q.l,Q.t), where Q.l
is a location descriptor and Q.t is a set of keywords. To evaluate the relevancy
between object O and query Q, we require to combine their spatial proximity
and textual relevancy [7,25], which is usually defined as below,

DR(Q, O) = α
D(Q.l, O.l)

Dmax

+ (1 − α)(1 − R(Q.t|O.t)

Rmax

)

= α
(xo − xq)

2 + (yo − yq)
2

D2
max

+ (1 − α)(1 −

n∑

i=1
ξiqi

Rmax

),

(1)

where α ∈ [0, 1] is a parameter to balance distance proximity and text relevancy.
D(Q.l,O.l)

Dmax
represents the normalized Euclidian distance between Q and O, where

Dmax can be the maximum distance between objects in D, and it is defined as
(xo−xq)

2+(yo−yq)
2

D2
max

in 2-dimensional space. The textual relevancy score R(Q.t|O.t)
Rmax

592 S. Su et al.

between the querying keywords and the terms of the object is defined as

n∑

i=1
ξiqi

Rmax
,

where Rmax can be the sum of maximum weights of keywords. ξi is the weight
of term wi, qi is a boolean parameter representing whether wi is in the query
and n is the total number of distinct keywords. DR(Q,O) is called spatio-textual
similarity which is computed the lower, the better. The top-k spatial keyword
query is to find the k objects which are with the lowest spatio-textual similarities
in the database.

To efficiently support spatial keyword queries, we should utilize spatio-textual
indices. For simplicity, in this paper we use the IR-tree [7,18] as an example.
IR-tree exploits the Minimum Bounding Rectangle (MBR) and inverted files to
index spatio-textual objects. Using IR-tree, the spatio-textual similarity between
the query point Q and an MBR N is defined as minDR(Q,N),

minDR(Q,N)=α
MinDist(Q.l, N.r)

Dmax

+(1−α)(1− R(Q.t|N.t)

Rmax

)

= α
(xN − xq)

2 + (yN − yq)
2

D2
max

+ (1 − α)(1 −

n∑

i=1
ξiqi

Rmax

),

(2)

where MinDist(Q.l,N.r) is the minimal Euclidean distance from query point
Q.l to region N.r (the MBR N). In two-dimensional space, it is defined as
(xN−xq)

2+(yN−yq)
2

D2
max

, the square of the minimum distance between the query point
and arbitrary points on the rectangle whose coordinate is denoted as (xN , yN).
R(Q.t|N.t)

Rmax
is computed by Equation 1 replacing O.t by N.t (the pseudo text

of N).
To process top-k spatial keyword queries with the IR-tree index, a best-

first traversal algorithm is applied to retrieving the top-k objects. We refer the
readers to [7,25] for details of the spatial keyword query algorithm. We assume
a two-dimensional geographical space composed of latitude and longitude, but
the scheme proposed in this paper can be generalized to other multidimensional
spaces of low dimensionality.

2.2 System and Threat Model

Fig. 1. The system of spatial keyword
query in cloud

The system model consists of three roles:
the data owner, the data user and the
cloud server (see Fig. 1). The data owner
has a spatio-textual database to be out-
sourced to the cloud server. To improve
the efficiency of spatial keyword query,
the data owner builds an index for the
database. For the privacy issue, the data
owner encrypts the database and its index
before outsourcing. Authorized data users can access the query processing ser-
vice from the cloud server. When the data users want to start spatial keyword
queries with their locations and query keywords, each of them first acquires a

Privacy-Preserving Top-k Spatial Keyword Queries 593

corresponding trapdoor from the data owner and submits it to the cloud server
along with the optional number k for requesting top-k best objects. After receiv-
ing the trapdoor, the cloud server then executes the top-k spatial keyword query
and returns the top-k results which are most relevant to the query. At last, the
data user asks for the data decryption permission from the data owner though
access control.

We assume that the cloud server is “honest but curious” in our model as in [2,
17]. It means that the cloud sever will correctly follow the designed protocols, but
acting in a “curious” fashion, it may try to collect and analyze the meaningful
information such as the location or textual information of the database, the
contents of the index and the users’ queries. We consider the proposed scheme
in our system is under chosen-plaintext attack model and known-plaintext attack
model [9]. In chosen-plaintext attack model, assume that the cloud server can
derive ciphertext for plaintext of chosen objects in the database and attempt to
recover the ciphertext for which it does not have the plaintext. In known-plaintext
attack model, assume that the cloud server can obtain plaintext-ciphertext pairs
of objects in the database. Using the information of these pairs, it attempts to
solve the secret key in order to decrypt more ciphertext.

In our model, we assume that the authorization and the access control are
well performed, which are not focused on in this paper, and we also do not
assume that the cloud server will collude with data users. The access pattern,
which is the sequence of results, is not considered to be protected in our scheme.
Although existing techniques such as private information retrieval (PIR) [6] and
Oblivious RAM [13,19] can be utilized to hide the access pattern, they are not
efficient to be applied in our model.

2.3 Asymmetric Scalar-Product-Preserving Encryption with Noise

Asymmetric Scalar-product-Preserving Encryption (ASPE) proposed in [24] is a
secure scheme for kNN queries over encrypted data. In ASPE, Euclidean distance
between a database record p and a query point q is calculated as scalar product of
vectors. The secret key in ASPE consists of two l′×l′ invertible matrix {M1,M2},
one l′-bit string S and l′ − (l + 1) random numbers {wl+2, wl+3,...,wl′}, where l
is the dimension of the data vector p. First, each data vector p and query vector
q are extended to (l + 1)-dimensional vectors by adding −0.5‖p‖2 and 1 as the
(l + 1)-th dimension, respectively. Besides, the query vector q is still scaled by a
positive random number r as r(q, 1). Then, both the data vector and the query
vector, denoted as p̂ and q̂, are extended from l + 1 dimensions to l′ dimensions
with artificial values according to S. Particularly, for i from l+2 to l′, if S[i] = 1,
set p̂[i] to wi; otherwise, set p̂[i] to a random number. Correspondingly, if S[i] = 0,
set q̂[i] to wi; otherwise, set q̂[i] to a random number. For the last dimension
with which S[i] = 0 (resp., S[i] = 1), p̂[i] (resp., q̂[i]) is given a value so that
the scalar product over the artificial dimensions is equal to 0. After extension,
p̂ and q̂ are split into two vectors as {p̂′, p̂′′} and {q̂′, q̂′′} according to each
value of S. In particular, if S[i] = 1, the value of p̂[i] is split into p̂′[i] and p̂′′[i]
(p̂′[i]+ p̂′′[i] = p̂[i]); otherwise, p̂′[i] and p̂′′[i] are both set to p̂[i]. In the contrary,

594 S. Su et al.

the value of q̂[i] is split into q̂′[i] and q̂′′[i] (q̂′[i] + q̂′′[i] = q̂[i]), when S[i] = 0.
And if S[i] = 1, we set both q̂′[i] and q̂′′[i] with the value of q̂[i]. Finally, the
split data vectors {p̂′, p̂′′} are encrypted as {MT

1 p̂′,MT
2 p̂′′}, and the split query

vectors {q̂′, q̂′′} are encrypted as {M−1
1 q̂′,M−1

2 q̂′′}.
In doing so, the scalar products of the encrypted data vectors and query vec-

tors can be preserved as the indicator of Euclidean distance to find k nearest neigh-
bors during query processing. ASPE is proven to be secure against known plaintext
attack so that neither data vector nor query vector can be recovered by analyzing
the plaintext-ciphertext pairs. However, as indicated in [26], existing ASPE can-
not be resilient to the chosen-plaintext attack. To address this problem, we propose
an enhanced version of ASPE, namely ASPE with noise (ASPEN). In particular,
we insert an additional dimension into each data vector and set the noise to it.
The noise is a random number δ, which is drawn from a Laplacian distribution,
δ ∼ Laplace(μ, b). Since the scalar products are disturbed by the added noise, the
query result may not be exactly accurate. The scale parameter b is considered as a
trade-off parameter between query accuracy and security. We will show a detailed
evaluation of how the added noise affects the query accuracy in experiments.

3 Privacy-Preserving Top-K Spatial Keyword Query
Scheme

In this section, we first give an overview of the privacy-preserving top-k spatial
keyword query (PkSKQ) scheme, and then describe this scheme in details.

3.1 Overview

As the system model described in Section 2, the data owner first builds a regular
IR-tree for indexing spatio-textual database. To protect the privacy of the IR-
tree, it is encrypted by a unified encryption method. In particular, for the entries
(i.e., MBRs and objects) in the IR-tree nodes, the coordinates and weights of
keywords are converted into one vector and encrypted using ASPEN, while the
parent-children relationships are preserved. The details of the unified encryption
for the secure index are presented in Section 3.2.

To enable the similarity computations between the query point and MBRs
under encryption, some auxiliary points need to be generated by the data owner
before oursourcing the index. Specifically, to search with the IR-tree, as a basic
operation, the computation of the distance between a query point and an MBR
relies on the positional relation between them, which cannot be directly deter-
mined under encryption. To this end, an anchor-based position determination
method is proposed to help determine the relations, where auxiliary points, called
anchors, are generated for each MBR and outsourced as a part of index by the
data owner. The details of this method is introduced in Section 3.3.

To issue a top-k spatial keyword query, the data user first needs to acquire a
trapdoor from the data owner, which is the encrypted form of the user’s top-k
spatial keyword query. Due to the different positional relations between the query

Privacy-Preserving Top-k Spatial Keyword Queries 595

point and MBRs, different coordinates of the query point are used in the distance
computations, which cannot be chosen in ciphertext. To address this problem, we
present the position-distinguished trapdoor generation method, where the trap-
door is generated with all possible coordinates for different positional relations.
To compute the distance between the query and MBRs, the cloud server can
choose the proper coordinates in trapdoors based on the determined positional
relations using anchors. The detailed method is proposed in Section 3.4.

In the query processing of PkSKQ, based on the techniques above, the cloud
server computes and compares the spatio-textual similarities between queries and
MBRs (objects) to retrieve the top-k objects by the best-first traversal algorithm.

3.2 Unified Encryption for Secure Index Construction

To enable top-k spatial keyword queries over encrypted spatio-textual database in
the cloud, we design a unified encryption over the spatio-textual data to facilitate
the computations of the similarities between query points and entries in the tree
nodes of the secure index. To achieve the unified encryption, for the IR-tree, the
coordinates and the keyword weights of MBRs and objects are transformed into
one vector and encrypted using ASPEN, while the parent-children relationships
are not encrypted. Exploiting the scalar-product preserving property of ASPEN,
the similarities can be computed in the way of the scalar product between vectors.

Particularly, for MBRs and objects, the inverted files are first transformed
and extended into textual vectors of the same length to facilitate the computation
of the textual relevancy. For an MBR or object, the textual vector, E.tv or O.tv,
is denoted by (ξ′

1, ξ
′
2, ..., ξ

′
n), where n is the total number of distinct keywords

in the database; ξi
′ is equal to ξi

Rmax
, if wi is contained in its inverted files;

otherwise, ξ′
i is set to 0.

Then, the coordinates of MBRs or spatial objects are converted and extended
into spatial vectors by adding additional dimensions to enable the computation
of the spatial proximity. For an MBR (x′

min, y′
min, x′

max, y′
max), its spatial vector

is denoted by
E.lv=(x′

min, x′2
min,1|y′

min, y′2
min,1|x′

max, x′2
max,1|y′

max, y′2
max,1),

and for an object (x′, y′), its spatial vector is denoted by
O.lv = (x

′
, x

′2
, 1|y′

, y
′2

, 1|0, 0, 0|0, 0, 0),

where all coordinates mentioned are normalized by Dmax.
Finally, for each MBR or object, the spatial vector and the textual vector

are combined into one data vector and appended with an additional dimension
of 1. Considering the security issue, before encryption with ASPEN, each the
data vector is further padded with an additional random number δ. The final
data vector is denoted as E.v = (E.lv|E.tv|1|δ) (resp. O.v = (O.lv|O.tv|1|δ)).
To achieve the encryption, the specific encryption is that each data vector is
first extended into a d-dimensional vector by adding artificial dimensions and
split into two random vectors. Then, each pair of the split vectors are encrypted
with two invertible d × d matrices M1 and M2. The encrypted data vectors
of the MBR and the object are denoted as E.v = {MT

1 E′.v,MT
2 E′′.v} and

O.v = {MT
1 O′.v,MT

2 O′′.v} respectively. After all the entries in the IR-tree nodes

596 S. Su et al.

Fig. 2. Secure index based on IR-tree Fig. 3. Anchors and region codes for MBR

are encrypted, the encrypted IR-tree is regarded as the secure index I, which is
shown in Fig. 2 as an example.

3.3 Anchor-Based Position Determination

To compute the similarities, a basic operation is to compute the distance between
a query point and an MBR. According to definition of Euclidean distance, the
distance from a point to a rectangle is the shortest distance between the point
and a point on the rectangle. In this case, such distance can be computed with
the vertices or the points on the edges of the rectangle, which relies on the
positional relation of the query point around the rectangle. For example, in
Fig. 3, the distance between Q1 and the MBR is the perpendicular distance
from Q1 to the line b, while that for Q2 is the distance from Q2 to the vertex of
the MBR. As shown in Fig. 3, four edges of an MBR can divide the plane into
nine regions. To determine the positional relation between the query point and
the MBR, we only need to find the region where the query point is located.

Since each region lies on the deterministic sides of the four edges of an MBR,
each region can be coded as 4 binary bits, each of which represents one edge
of the MBR. The coding strategy can be customized. For ease of presentation,
we use the strategy shown in Fig. 3 as an example. In Fig. 3, if the region is
on the right of line a or lies below line b, the corresponding bit is set to 1. If
the region is on the left of line c or lies above line d, the corresponding bit is
also set to 1. Otherwise, it is set to 0.To obtain the region of the query point
is just to determine which sides of the four edges it is on. This determination
can be easily performed with their coordinates in plaintext, but considering the
privacy of the query point and the MBR, it can hardly performed in ciphertext.
Therefore, with ASPEN allowing to find the nearer point in ciphertext, we add
auxiliary points for each MBR, called anchors, to facilitate such determination.

An observation is that if the query point is closer to one of two symmetry
points about a line, the query point is on the same side of the line with the closer
point (an example see Q1, An3 and An1 in Fig. 3). Accordingly, for each edge,
a pair of symmetry anchors is generated randomly, totally at least five anchors
generated for an MBR. The first anchor is picked as a random point in the MBR
and other four are picked in an axial symmetric way with the first one about
each edge of the MBR (see Fig. 3).

Privacy-Preserving Top-k Spatial Keyword Queries 597

Formally, for an anchor (xi, yi), its vector is generated and extended as Ani =
(xi, yi,−0.5(xi + yi)2), and {Ani}, i from 1 to 5, are in the position of inside,
left, upside, right and downside of the MBR respectively. All these vectors of
the anchors are encrypted using ASPEN. They are first extended and split into
two random d′-dimensional vectors An′

i and An′′
i . Then, the split vectors are

encrypted as Ani = {mT
1 An′

i,m
T
2 An′′

i }, where m1 and m2 are invertible d′ × d′

matrices.
Correspondingly, for the query point (xq, yq), an auxiliary query vector is

created as Q.a = (xi, yi, 1). According to Section 2, encrypted using ASPEN,
the vector is first scaled by a positive random number r. Then, Q′.a and Q′′.a,
extended and split from Q.a, are encrypted as Q.a = {m−1

1 Q′.a,m−1
2 Q′′.a}.

To perform the determination of positional relation, given the anchors {Ani}
of the MBR and the auxiliary query vector Q.a, the cloud server computes the
following equation with corresponding vectors in order from An2 to An5,

PD(An1, Ani, Q.a)=(mT
1 An′

1−mT
1 An′

i)·m−1
1 Q′.a + (mT

2 An′′
1 −mT

2 An′′
i)·m−1

2 Q′′.a, (3)

where 2 ≤ i ≤ 5. If PD(An1, Ani, Q.a), where 2 ≤ i ≤ 5, is positive, return
hi = 1. Otherwise, return hi = 0. Thus, a 4-bit binary code H = h2|h3|h4|h5

combined from these four bits indicates the query point is located in the region
of code H.

3.4 Position-Distinguished Trapdoor Generation

As shown in Fig. 3, according to the positional relation between the query point
and the MBR after determination, the distance computation can be classified
into three categories: a) the distance is equal to 0, when the query point is inside
an MBR; b) the distance is calculated with the vertices of an MBR, when the
query point is in the corner regions (Region II, IV, VI and VIII); c) the distance
is calculated with the edges of an MBR, when the query point is in Region I,
III, V and VII. Except Region IX, the distance computation needs to exploit
the different combinations of the coordinates of an MBR. For example, in Fig. 3,
the distance from Q1 to the MBR is calculated only with the coordinate of
line b (i.e., ymax), while the distance from Q2 requires the vertex (xmax, ymax).
However, as the coordinates of the MBR and the query point are encrypted, the
distance between them cannot be calculated either, even if the positional relation
is determined. To this end, we design a method to generate the trapdoor, where
all the possible combinations of the coordinates used in the distance computation
are preprocessed by adding the additional dimensions in query vectors.

Table 1. Binary codes map-
ping to query vectors

Qi.v code Qi.v code Qi.v code

Q1.v 0111 Q4.v 1001 Q7.v 1110

Q2.v 0011 Q5.v 1101 Q8.v 0110

Q3.v 1011 Q6.v 1100 Q9.v 1111

Specifically, a query point Q(xq, yq) with the
querying keywords is transformed into query vec-
tors {Qi.v|1 ≤ i ≤ 9}, each of which is corre-
sponding to region I to IX. The one-to-one map-
ping between the query vectors and the region
codes is shown in Table 1 so that the proper query
vector can be selected by the code. Each query

598 S. Su et al.

vector Qi.v is generated with two parts: the spa-
tial vector and the textual vector.

For the spatial vector Qi.lv, the coordinates (xq, yq) are extended to 12
dimensions by adding their proper forms used in the distance computation,
which are set in corresponding dimensions to e.lv. Other dimensions in the spa-
tial vector of the query vector are set to 0. In summary, Qi.lv (i from 1 to 9) are
denoted as

Q1.lv = (−2x′
q, 1, x′

q
2|0, 0, 0|0, 0, 0|0, 0, 0), Q5.lv = (0, 0, 0|0, 0, 0| − 2x′

q, 1, x′
q
2|0, 0, 0),

Q2.lv = (−2x′
q, 1, x′

q
2|0, 0, 0|0, 0, 0| − 2y′

q, 1, y′
q
2), Q6.lv = (0, 0, 0| − 2x′

q, 1, x′
q
2| − 2y′

q, 1, y′
q
2|0, 0, 0),

Q3.lv = (0, 0, 0|0, 0, 0|0, 0, 0| − 2y′
q, 1, y′

q
2), Q7.lv = (0, 0, 0| − 2y′

q, 1, y′
q
2|0, 0, 0|0, 0, 0),

Q4.lv = (0, 0, 0|0, 0, 0| − 2x′
q, 1, x′

q
2| − 2y′

q, 1, y′
q
2), Q8.lv = (−2x′

q, 1, x′
q
2| − 2y′

q, 1, y′
q
2|0, 0, 0|0, 0, 0),

Q9.lv = (0, 0, 0|0, 0, 0|0, 0, 0|0, 0, 0),

where x′
q and y′

q are normalized by Dmax.
Correspondingly, the textual vector Q.tv is created as Q.tv = {q1, q2, ..., qn},

where qi is set to -1, if the query contains the keyword wi; otherwise, qi is set to
0. To achieve the balance of spatial proximity and textual relevancy, Qi.lv and
Q.tv are multiplied with α and 1 − α respectively, and the query vector Qi.v is
combined and extended as Qi.v = (αQi.lv|(1 − α)Q.tv|(1 − α)|1).

For security, the query vectors are first scaled by a positive random number r
as {rQi.v|1 ≤ i ≤ 9}. Notice that the random number r is different for different
queries. Then, using ASPEN, they are split and encrypted with M−1

1 and M−1
2 ,

denoted as {Qi.v = M−1
1 Q′

i.v,M−1
2 Q′′

i .v|1 ≤ i ≤ 9}.
In query processing, after the position determination of the query point, the

cloud server matches the code H with the codes in Table 1, and choose the
corresponding vectors Qi.v. To queue nodes into priority queue, for an MBR,
the cloud server computes the scalar product of E.v and Qi.v, shown as:

SP (Ej .v, Qi.v) = M
T
1 E

′
.v · M

−1
1 Q

′
i.v + M

T
2 E

′′
.v · M

−1
2 Q

′′
i .v.

When the visiting an object, the cloud server computes the scalar product
of O.v and Q8.v, shown as:

SP (O.v, Q8.v) = M
T
1 O

′
.v · M

−1
1 Q

′
8.v + M

T
2 O

′′
.v · M

−1
2 Q

′′
8 .v.

The results of these scalar products are used as the keys of MBRs and objects
in the priority queue, and the best-first traversal algorithm can be executed. If k
objects have been found, the cloud server terminates the algorithm and returns
them to the data user.

4 Analysis

In this section, we present the analysis of our PkSKQ scheme including the
validity and security, respectively.

4.1 Validity Analysis

In PkSKQ scheme, to retrieve the top-k objects, the cloud server determines
the positional relations for each MBR using anchor-based method, and then
computes the similarities between the query and MBRs (objects). We first ana-
lyze the validity of the anchor-based position determination method. In this
method, given anchors {Ani|1 ≤ i ≤ 5} of the MBR and auxiliary query vector

Privacy-Preserving Top-k Spatial Keyword Queries 599

Q.a, such determination is performed by computing the following equation, for i
from 2 to 5,

PD(An1, Ani, Q.a)

= (m
T
1 An

′
1−m

T
1 An

′
i)·m−1

1 Q
′
.a+(m

T
2 An

′′
1 −m

T
2 An

′′
i)·m−1

2 Q
′′

.a

=(m
T
1 An

′
1−m

T
1 An

′
i)

T
m

−1
1 Q

′
.a+(m

T
2 An

′′
1 −m

T
2 An

′′
i)

T
m

−1
2 Q

′′
.a

= (An
′
1 − An

′
i)

T
Q

′
.a + (An

′′
1 − An

′′
i)

T
Q

′′
.a

= (An1 − Ani)
T

rQ.a

= 0.5r[[(xi−xq)
2
+(yi−yq)

2−δi] −[(x1−xq)
2
+(y1−yq)

2−δ1]]

= 0.5r[d
2
(Ani, Q) − d

2
(An1, Q)].

(4)

Note that in equation 4, r is the positive random number generated for the
query. If the result is positive, it means Q is closer to An1 than Ani, so that
it can be determined the query point lies in which region. Assuming the query
point lies in the region “0011”, according to Table 1, the encrypted query vector
Q2.v should be selected to compute the similarity between Q and the MBR,
which is shown as follows:

SP (E.v, Q2.v)

= M
T
1 E

′
.v · M

−1
1 Q

′
2.v + M

T
2 E

′′
.v · M

−1
2 Q

′′
2 .v

= (M
T
1 E

′
.v)

T
M

−1
1 Q

′
2.v + (M

T
2 E

′′
.v)

T
M

−1
2 Q

′′
2 .v

= E
′
.v

T
Q

′
2.v + E

′′
.v

T
Q

′′
2 .v

= E.v
T

Q2.v

= r[αE.lv
T

Q2.lv + (1 − α)E.tv
T

Q2.tv + δ]

= r[α(x
′
min−x

′
q)

2
+α(y

′
max − y

′
q)

2
+(1−α)(1−

n∑

i=0

ξi
′
qi) + δ]

= r[α
(xmin−xq)

2 + (ymax−yq)
2

D2
max

+(1−α)(1−

n∑

i=1
ξiqi

Rmax

) + δ].

(5)

Similarly, if an object is visited, the similarity between the query Q and the
object O can be computed as SP (O.v,Q8.v). During a given query since the
random number r is particular and positive, the comparison of the similarity
between query and MBRs or objects can be achieved. Therefore, the best-first
traversal algorithm in PkSKQ can be executed correctly by the cloud server in
the “honest but curious” model.

Note that since the added noise δ will lead to the inexactness of the query
results, we give a quantificational evaluation for the query accuracy in Section 5.

4.2 Security Analysis

We analyze our PkSKQ scheme is secure under the attack model mentioned in
Section 2. To achieve the spatial keyword queries in cloud, the proposed scheme
ensures that scalar products between encrypted vectors can be calculated and
compared. To prove the security guarantee of the proposed scheme, without loss
of generality, we assume that the query Q (i.e., Qi.v) and the data object P
(i.e., E.v or O.v) are d-dimensional, and their ciphertexts, Q and P , are (d+1)-
dimensional including the random numbers δ and r.

600 S. Su et al.

Theorem 1. The proposed scheme is resilient to the chosen-plaintext attack, if
the random number r for each query and δ for each object cannot be known by
the adversary.

Proof. To launch the chosen-plaintext attack, assume that the adversary (i.e. the
cloud server) can derive a set of queries and their ciphertexts. For each query,
the adversary would have one encrypted pair Q = {M−1

1 Q′,M−1
2 Q′′} used in the

query processing. In the proposed scheme, the scalar product between encrypted
query Q and any encrypted data P = {MT

1 P ′,MT
2 P ′′} can be calculated based

on ASPEN as follows,

SP (P, Q)

= M
T
1 P

′ · M
−1
1 Q

′
+ M

T
2 P

′′ · M
−1
2 Q

′′

= (M
T
1 P

′
)
T

M
−1
1 Q

′
+ (M

T
2 P

′′
)
T

M
−1
2 Q

′′

= (P
′
)
T

Q
′
+ (P

′′
)
T

Q
′′

= r(P
T

Q + δ).

(6)

As described in [26], since the adversary can derive the plaintext of query Q
and the corresponding scalar product, Equation 6 contains only d + 2 variables
unknown, i.e., the d dimensions of P , the random number r and δ. If the random
number r is the same for each query, the adversary only needs to collect the
plaintext-ciphertext pairs of d + 2 query points and constructs d + 2 equations
like Equation 6 to solve the d + 1 unknowns in P and δ. Thus, the attack in [26]
can work in this case.

However, in the proposed scheme, the random number r are generated differ-
ently for different users. In this case, the equation set is constructed by collecting
plaintext-ciphertext pairs of d query points as follows:

SP (P, Qi) = ri(P
T

Qi + δ), i ∈ [1, d]. (7)

In Equation 7, there are 2d + 1 variables unknown, i.e. d dimensions of P ,
d random numbers {r1, r2, ...rd} and δ. Since there are only d equations, which
are less than the number of unknowns, the adversary does not have sufficient
information to solve P , even if d queries and corresponding scalar products are
known by the adversary.

Similarly, assume that the adversary derives a set of objects in the database
with their ciphertexts. For one certain encrypted query Q, scalar products can
be calculated with {Pj |1 ≤ j ≤ d} as follow,

SP (Pj , Q) = r(P
T
j Q + δj), j ∈ [1, d] (8)

Since the random number δi for each object is not known by the adver-
sary, there are 2d + 1 unknowns, i.e., the d dimensions of Q, the random num-
ber {δ1, δ2, ...δd} and r, in d equations. It is not sufficient for the adversary to
solve the unknowns, because the number of equations is less than that of the
unknowns. Hence, the proposed scheme is resilient against the chosen-plaintext
attack.

Privacy-Preserving Top-k Spatial Keyword Queries 601

In fact, since δ ∼ Laplace(μ, b), to improve security, the parameter b is
expected to be larger so that it has higher probability to produce disturbance. In
our scheme, since such disturbance is introduced to the computations of scalar
products (i.e., the computations of similarities between queries and MBRs or
objects), it only impacts the accuracy of top-k queries. The plaintext of objects
can be still recovered by data users, because the random number δ is set to an
additional dimension of each data vector. Thus, even if the adversary ignores the
disturbance introduced to similarities and constructs d+1 equations to solve the
unknowns in P , he/she will only obtain the disturbed plaintext of objects. It is
meaningless for the adversary to use this disturbed database for providing other
services, as the true values of objects cannot be recovered.

Theorem 2. The proposed scheme is resilient to the known-plaintext attack,
if the bit string used for splitting (i.e. S of the key) cannot be known by the
adversary.

Proof. Assume that the adversary knows the data object P with its correspond-
ing encryption P = {MT

1 P ′,MT
2 P ′′}. Without loss of generality, no artificial

attributes are added. For any data object, if the adversary does not know the bit
string used for splitting, P has to be modeled as two unknown (d+1)-dimensional
vectors. The equations for solving the secret matrices can be constructed with
P and P . Notice that there are 2(d + 1)|P | unknown variables in P ′ and P ′′,
where |P | is the number of data objects in the database. There are also 2(d+1)2

unknowns in the secret matrices, however only 2(d+1)|P | equations constructed.
Similarly, using the queries, there are 2d|Q| equations constructed which contain
2(d+1)|Q|+2(d+1)2+1 unknown variables, where |Q| is the number of obtained
queries. Therefore, the information to solve the unknowns is insufficient for the
adversary, and the scheme is resilient to the known-plaintext attack.

It is noteworthy that in the anchor-based position determination, the coding
strategy of the 4-bit binary code, which is used to label the regions around
an MBR, can be customized by the data owner. This strategy should be kept
confidential against the cloud server. In fact, even through such strategy can be
learned by the cloud server, the locations of objects or users cannot be estimated
precisely, since the spatio-textual database, indices, and spatial keyword queries
are secure based on the analysis above.

As for the attack based on the order statistics in [23], in our scheme, since the
noise disturbs the similarities of queries, the ordering information of encrypted
objects cannot be derived precisely. Thus, even though the adversary can obtain
such ordering information, the exact distribution of the database cannot be
estimated to infer the plaintext.

5 Experimental Evaluation

In this section, we evaluate the performance of our PkSKQ scheme. Our exper-
imental goal is to evaluate the index construction, trapdoor generation, query
processing, query accuracy and scalability of our scheme.

602 S. Su et al.

5.1 Setup

We use a server served as the cloud with Intel(R) Xeon(R) CPU L5638 @2.00GHz
Dual and 40.0GB RAM, and a PC served as the data owner with Intel(R)
Core(TM) i7-3610QM CPU @ 2.30GHz 2.30GHz and 6.0GB RAM for the experi-
ments. Both of them run at 64-bit Windows 7 operating system. All the programs
are implemented in Java and the Java Virtual Machine Heap is set to 3GB.

Table 2. Datasets in Experiments

Name # of objects # of unique keyword total # of keywords Descriptions

WU 10,493 1,000 145,308 Popular places in the west part of US

LA 131,461 10,000 14,760,856 Streets of Los Angeles

In the experiments, we use real spatial datasets whose objects are chosen
from the locations in parts of America 1. A real document dataset of 20 News-
groups2 consists of short user-generated documents which aim to resemble text
attached to spatial objects. We randomly select keywords from documents of 20
Newsgroups attached to an object and limit the total number of the unique key-
words. The detailed settings of datasets are shown in Table 2. For the generation
of spatial keyword queries, the locations and keywords are generated randomly
in the datasets and the number of keywords is selected from 1 to 10. For each
experiment, 200 queries are compromised, and average costs of the queries are
reported. The schemes for comparison with our PkSKQ in the experiments are
shown in Table 3.

Table 3. Compared Schemes in Experiments

Schemes Descriptions

Plaintext The top-k spatial keyword query in [7] performed with the IR-tree index in plaintext.

PkSKQ The privacy-preserving top-k spatial keyword query scheme proposed in this paper.

Baseline The objects in the spatio-textual database and user queries are encrypted using ASPEN.
The top-k spatial keyword query is processed via a linear scan of the encrypted database
without any indices.

5.2 Index Construction

In Fig 4(a), the size of the secure index is shown. The storage cost mainly results
from the encrypted vectors for MBRs and the added anchors which are additional
data to build the secure index. When the number of objects rises, the size of the
secure index will closely increase in a linear fashion. When the fanout is set to
either 100 or 200, the tend of the size is almost the same. With the scale of
objects rising to 100,000, the size of secure index is going up to over 300MB.
In any case, since the storage in cloud is an inexpensive resource, to provide
1 http://www.chorochronos.org/
2 http://qwone.com/∼jason/20Newsgroups/

http://www.chorochronos.org/
http://qwone.com/~jason/20Newsgroups/

Privacy-Preserving Top-k Spatial Keyword Queries 603

PkSKQ in cloud, it deserves to take reasonable space to construct the secure
index.

Fig. 4(b) shows the construction time of the secure index. This part of time
is mainly incurred for two reasons. The one is that to construct a secure index,
a regular IR-tree is needed to be built first, and still needed to add anchors into
each MBR. Another is that all the MBRs together with their anchors should be
encrypted using ASPEN, in which there are multiplications of d×d matrices and
d-dimensional vectors for MBRs and d′ × d′ matrices and d′-dimensional vectors
for anchors. When the number of objects goes up, there are more nodes to be
generated in the secure index. The construction time will almost increase linearly
following the rising number of objects. For different fanouts, there is no obvious
difference in the construction time. When the number of objects contained in
the dataset reaches 100,000, the construction time comes to the minute level.
Since the construction of the secure index is needed only once and can be done
offline, its time is considered reasonable for the data owner.

(a) Size of Index (b)Index Constr. Time (c) Size of Trapdoor (d)Trapdoor Gen. Time

Fig. 4. Evaluation of Secure Index Construction and Trapdoor Generation

5.3 Trapdoor Generation

Fig. 4(c) shows the size of the trapdoor which is evaluated for all candidate
query vectors. Since the encrypted query vectors in the trapdoor have constant
length, the size of trapdoor is always a fixed value for a given dimensionality
following the increasing number of querying keywords. As shown in this figure,
the maximum size of the trapdoor with 10,000 dimensions equals to around
80KB. As the size of the trapdoor is still within kilobytes, it will not cause too
much storage burden and can be considered affordable for the data user.

As shown in Fig. 4(d), given a certain dimensionality, the generation time of
the trapdoor presents as a constant nearly, which is not affected by the number
of querying keywords. If the dimensions are varied from 1,000 to 10,000, the
generation time increases to over 400ms at most. Similarly, the main computation
cost in the trapdoor generation is the encryption of query vectors, which contains
two multiplications of a d × d matrix and a d-dimensional vector for each query
vector. As the trapdoor generation time of trapdoor is still in milliseconds, it
can be considered efficient enough for the data owner.

5.4 Query Processing

In the evaluation of the query response time for the PkSKQ scheme, we per-
form experiments in both memory-resident setting and disk-resident setting

604 S. Su et al.

(a) Mem., Fanout=100 (b) Mem., Fanout=200 (c) Disk, Fanout=100 (d) Disk, Fanout=200

Fig. 5. Query Response Time of PkSKQ in Memory-resident and Disk-resident Setting

respectively. The dataset WU is used in the memory setting, which can be
loaded totally into main memory, and LA is used in the disk setting.
Memory-Resident Setting. Fig. 5(a) and Fig. 5(b) show the query response
time in the memory setting, when the fanout is set to 100 and 200 respectively.
In both these figures, when the number k of the required results goes up to
50, there is an obvious increasing in the query response time compared with
other three bars for each value of α. When varying α, a large α means that the
spatial distance is more important, while a small α means the keywords are more
important. Our secure index performs better for large α, but there is no apparent
change due to the efficiency of processing in main memory. When the fanout is
set to 100 or 200, the query response time is still under 13ms. Such performance
comes from the efficient computations of the similarities between the query point
and MBRs (objects). In these computations, for an MBR, there is one pair of
scalar products of d-dimensional vectors and 4 pairs of scalar products of d′-
dimensional anchors, whose complexity is only O(d) and O(d′) for each scalar
product respectively. For an object, there is only one pair of scalar products of
d-dimensional vectors. From the results, our scheme can be considered efficient
under the memory-resident setting.
Disk-Resident Setting. The query response time in the disk setting is shown
in Fig. 5(c) and Fig. 5(d), when the fanout is set to 100 and 200 respectively. In
this set of experiments, we take the query response time of the plaintext scheme
for comparison. In Fig. 5(c) and 5(d), it can be observed that in either the
PkSKQ scheme or the plaintext scheme, when the parameter k increases, it will
cost more time to perform queries. For any values of α, the query response time
of our PkSKQ scheme is under 400ms. Compared with the plaintext scheme,
the query response time of PkSKQ is longer. This is because the larger I/O
costs and the computations of the scale products of encrypted vectors, whose
dimensionality is over 10,000, cost the majority of the query response time.
Nevertheless, for our PkSKQ scheme, the query response time is still within
milliseconds. Therefore, our scheme can be considered efficient on query response
time under the disk-resident setting.

5.5 Query Accuracy

As analyzed in Section 4, since the added noise (i.e., the random numbers δ) will
introduce disturbance to the similarity between MBRs (objects) and queries,

Privacy-Preserving Top-k Spatial Keyword Queries 605

the query results based on the similarity will be no longer exactly accurate.
In other words, some of real top-k objects are not in the result set returned
to the data user. This is because the similarities may be computed increased
or decreased due to the addition of the noise. To evaluate the accuracy of our
PkSKQ scheme, we define a measure as the accuracy A = k/k, where k is the
number of real top-k objects returned. Recall that the added noise is drawn
from a Laplacian distribution and b is its scale parameter. As shown in Fig 6,
the accuracy A is obviously impacted by b. Considering the availability of our
scheme, the parameter b is expected to be smaller to acquire a high accuracy.
Since the parameter b is a trade-off parameter between query accuracy and
security, it can be provided as a balance factor for the data owner to satisfy
different requirements about the query accuracy and security.

Fig. 6. Query Accuracy Fig. 7. Query Response Time, Scalability

5.6 Scalability

To evaluate the scalability of our scheme, similar with [7], we generate groups
of datasets containing from 100,000 to 1,000,000 data points which are selected
randomly from LA. In these experiments, the parameter k is set to 10, and
fanout is set to 200. We take the plaintext scheme and the baseline scheme
for comparisons. In the baseline scheme, all the encrypted objects are visited
and ranked in a linear scan fashion to retrieve the top-k objects, thus the whole
dataset should be accessed. As shown in Fig. 7, the query response time increases
with the size of the dataset in these three schemes. Compared with the plaintext
scheme, the query response time of our PkSKQ scheme is slightly slower, but is
faster than the baseline scheme by two orders of magnitude.

6 Related Work

Spatial Keyword Query. Spatial keyword queries have been studied for sev-
eral years with the increasing popularity of location-based services. Zhou et al.
[29] use a hybrid index structure that integrates inverted files and R*-trees for
computing both textual and location aware queries. The IR2-tree [11] is another
hybrid index that combines an R-tree with superimposed text signatures for only
Boolean keywords filter. In the IR-tree [7,18,25], each node in the R-tree is aug-
mented with inverted files. It supports the ranking of objects based on a weighted
sum of the spatial distance and text relevancy. Cao et al. [4] study a variant of

606 S. Su et al.

the spatial keyword query that retrieves a group of spatial objects such that the
retrieved objects have the lowest inter-object distances. More introduction and
evaluation of spatial keyword queries can refer to [3,5]. However,when spatial
keyword queries are performed over the outsourced database, none of the above
techniques takes into account the security problem of protecting the privacy.

Secure Spatial Query. The issue of secure spatial query over outsourced data
has been addressed in some recent works. Yiu et al.[27,28] propose a spatial
transformation that re-distributes the locations in space before outsourcing them
and a cryptographic-based transformation. Hore et al. [14] propose a solution
based on bucketization to support multidimensional range queries on encrypted
data, which prevents the server from learning exact values. In [23], Wang et
al. present the R̂-tree that can be securely placed in the cloud and searched
efficiently, which is designed for encrypted halfspace range queries using ASPE.
Yao et al. [26] design a new secure kNN method based on partition-based secure
Voronoi diagram, where the relevant encrypted partitions are retrieved for the
encrypted query so that the partition is guaranteed to contain the k-nearest
neighbors of the query. Hu et al. [15] proposed a method based on Privacy
Homomorphism to address the secure kNN problem on the R-tree index, in
which the encryption function and the decryption function are conducted in
the client and the server respectively. Elmehdwi et al. [10] present a secure kNN
protocol based Paillier cryptosystem that protects the confidentiality of the data,
user’s input query, and data access patterns. These works focus on the security
problem on spatial queries, however, considering the text relevancy leveraged in
spatial keyword queries, none of which can be applied to protect the privacy of
textual information.

Secure Textual Query. Studies on secure textual queries in recent years can
be classified into two types based on the number of keywords in the query: 1)
Secure Single Keyword Search. Curtmola et al. give the formal definition of the
searchable encryption and propose an index scheme based on the inverted list
in [8]. In [21], Wang et al. solve the result ranking problem utilizing the key-
word frequency and order-preserving encryption. Boneh et al. [1] propose the
first searchable encryption scheme using the asymmetric encryption scheme. Li
et al. proposed a wildcard based fuzzy search over encrypted data in [17]. Then
Wang et al. [22] improved the scheme by constructing a trie-based index. In [16],
the LSH functions are used to generate file index. 2) Secure Multiple Keywords
Search. Cao et al. [2] propose a privacy preserving multi-keyword ranked search
scheme using symmetric encryption. Sun et al. [20] propose an efficient pri-
vacy preserving multi-keyword supporting cosine similarity measurement. These
studies can only support part of the secure spatial keyword queries by keyword
filtering. However, when the keywords are attached to the spatial points, none
of them can conduct spatial keyword queries without privacy leakage.

Privacy-Preserving Top-k Spatial Keyword Queries 607

7 Conclusion

In this paper, we have studied the privacy-preserving top-k spatial keyword query
problem in outsourced environments. We proposed a privacy-preserving top-k
spatial keyword query scheme. In this scheme, we built a secure index based on
a state-of-the-art index for spatio-textual database (ie., IR-tree), where the spa-
tial and textual data are encrypted in a unified way. To search with such index,
we developed anchor-based position determination and position-distinguished
trapdoor generation for the similarity computations between query points and
tree nodes under encryption. Thorough security analysis and extensive experi-
mental results illustrate the validity and security of our scheme. This work may
open up many promising directions for future work. First, it is worth supporting
incremental updates on the encrypted IR-tree index. Second, it is worth studying
the case that the cloud cannot be trusted.

Acknowledgments. We thank the reviewers for their valuable comments. The work
was supported in part by the following funding agencies of China: National Natural
Science Foundation under grant 61170274, National Key Basic Research Program (973
Program) under grant 2011CB302506 and Fundamental Research Funds for the Central
Universities under grant 2014RC1103.

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

2. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: INFOCOM, pp. 829–837 (2011)

3. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu,
M.L.: Spatial keyword querying. In: ER, pp. 16–29 (2012)

4. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying.
In: SIGMOD Conference, pp. 373–384 (2011)

5. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: An
experimental evaluation. PVLDB 6(3), 217–228 (2013)

6. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

7. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. PVLDB 2(1), 337–348 (2009)

8. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM Conference
on Computer and Communications Security, pp. 79–88 (2006)

9. Delfs, H., Knebl, H.: Introduction to Cryptography - Principles and Applications.
Information Security and Cryptography, Springer (2007)

10. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: ICDE, pp. 664–675 (2014)

11. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
ICDE, pp. 656–665 (2008)

608 S. Su et al.

12. Ghinita, G.: Privacy for Location-based Services. Synthesis Lectures on Informa-
tion Security, Privacy, and Trust, Morgan & Claypool Publishers (2013)

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

14. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional
range queries over outsourced data. VLDB J. 21(3), 333–358 (2012)

15. Hu, H., Xu, J., Ren, C., Choi, B.: Processing private queries over untrusted data
cloud through privacy homomorphism. In: ICDE, pp. 601–612 (2011)

16. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: ICDE, pp. 1156–1167 (2012)

17. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: INFOCOM, pp. 441–445 (2010)

18. Li, Z., Lee, K.C.K., Zheng, B., Lee, W.C., Lee, D.L., Wang, X.: Ir-tree: An efficient
index for geographic document search. IEEE Trans. Knowl. Data Eng. 23(4), 585–
599 (2011)

19. Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious RAM. In: NDSS, pp.
5–8 (2012)

20. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. In:
ASIACCS, pp. 71–82 (2013)

21. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over-
encrypted cloud data. In: ICDCS, pp. 253–262 (2010)

22. Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured
similarity search over outsourced cloud data. In: INFOCOM, pp. 451–459 (2012)

23. Wang, P., Ravishankar, C.V.: Secure and efficient range queries on outsourced
databases using R̂-trees. In: ICDE, pp. 314–325 (2013)

24. Wong, W.K., Cheung, D.W.L., Kao, B., Mamoulis, N.: Secure knn computation
on encrypted databases. In: SIGMOD Conference, pp. 139–152 (2009)

25. Wu, D., Cong, G., Jensen, C.S.: A framework for efficient spatial web object
retrieval. VLDB J. 21(6), 797–822 (2012)

26. Yao, B., Li, F., Xiao, X.: Secure nearest neighbor revisited. In: ICDE, pp. 733–744
(2013)

27. Yiu, M.L., Ghinita, G., Jensen, C.S., Kalnis, P.: Outsourcing search services on
private spatial data. In: ICDE, pp. 1140–1143 (2009)

28. Yiu, M.L., Ghinita, G., Jensen, C.S., Kalnis, P.: Enabling search services on out-
sourced private spatial data. VLDB J. 19(3), 363–384 (2010)

29. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.Y.: Hybrid index structures for
location-based web search. In: CIKM, pp. 155–162 (2005)

Bichromatic Reverse Nearest Neighbor Query
without Information Leakage

Lu Wang1, Xiaofeng Meng1(B), Haibo Hu2, and Jianliang Xu2

1 School of Information, Renmin University of China, Beijing, China
{luwang,xfmeng}@ruc.edu.cn

2 Department of Computer Science, Hong Kong Baptist University,
Hong Kong, China

{haibo,xujl}@comp.hkbu.edu.hk

Abstract. Bichromatic Reverse Nearest Neighbor (BRNN) Query is an
important query type in location-based services (LBS) and has many real
life applications, such as site selection and resource allocation. However,
such query requires the client to disclose sensitive location information to
the LBS. The only existing method for privacy-preserving BRNN query
adopts the cloaking-region paradigm, which blurs the location into a spa-
tial region. However, the LBS can still deduce some information (albeit
not exact) about the location. In this paper, we aim at strong privacy
wherein the LBS learns nothing about the query location. To this end,
we employ private information retrieval (PIR) technique, which accesses
data pages anonymously from a database. Based on PIR, we propose a
secure query processing framework together with various indexing and
optimization techniques. To the best knowledge, this is the first research
that preserves strong location privacy in BRNN query. Extensive exper-
iments under real world and synthetic datasets demonstrate the practi-
cality of our approach.

Keywords: Privacy preservation · Location privacy · Private informa-
tion retrieval · Bichromatic RNN

1 Introduction

Given two point sets S (the servers) and R (the objects), and a server q ∈ S,
a bichromatic reverse nearest neighbor (BRNN) query finds the set of objects
whose nearest server is q. BRNN has been receiving increasing attention since the
boom of mobile computing and location-based services (LBS). It has numerous

X. Meng – This research was partially supported by the grants from the Natural
Science Foundation of China (No. 61379050, 91224008); the National 863 High-tech
Program (No. 2013AA013204); Specialized Research Fund for the Doctoral Pro-
gram of Higher Education(No. 20130004130001); the Fundamental Research Funds
for the Central Universities, and the Research Funds of Renmin University(No.
11XNL010);HK-RGC GRF grants HKBU12200914 and HKBU 210612;HK-RGC
Grants HKBU211512 and HKBU12200114.

c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 609–624, 2015.
DOI: 10.1007/978-3-319-18120-2 35

610 L. Wang et al.

Fig. 1. Example of BRNN query

applications in map search, resource allocation, emergency service dispatching,
military planning, and mobile reality games [3]. Figure 1 illustrates two sets
of points of interest (POIs) from an online map service, where red circles are
residences Ri and black squares are grocery stores Si. Bob has a few candidate
locations qi (the black star) to open up a new store, so he wants to know which
location can attract the most residences from existing stores based on distance.
By issuing a BRNN query at each candidate location, he is able to tell q1 is
the best location to open a new grocery store, as it leads to the largest BRNN
results — four residences R4, R5, R6 and R7.

However, the query location as well as Bob’s business intention has been dis-
closed to the server during this process. Such privacy disclosure also occurs in
other BRNN application scenarios. For example, in taxi dispatching, a taxi driver
has to report the cab’s current location in order to know the customers to whom
he/she is the nearest to serve. However, such location can reveal sensitive infor-
mation about the passenger, such as his/her medical or financial condition, as
well as political affiliations [2]. Therefore, protecting the query input of a BRNN
query against the LBS is indispensable. In the literature, the only existing app-
roach for privacy-preserving BRNN query adopts the cloaking-region paradigm
[3], which sends to the LBS a spatial region that contains the query point. Based
on this region, the LBS returns a superset of the genuine reverse nearest neigh-
bors, from which the client user will refine the true result. Unfortunately, this
approach still reveals to the LBS substantial information about the location.

To guarantee strong location privacy, a promising cryptography tool is private
information retrieval (PIR) [16]. PIR allows a data item (e.g., a disk page) to
be retrieved from a server without leaving any clue of the item being retrieved.
PIR was considered to be resource-intensive, but thanks to the recent progress in
cryptography, practical software or hardware PIR solutions have been proposed
[4]. Since then it has been successfully applied to database problems, such as
kNN and shortest path search [6] [8].

In this paper, we investigate privacy-preserving BRNN query without the LBS
deducing any information about the query point. To this end, we adopt practical
PIRtechniques that retrieve a singledatapageas thebuildingblock.The challenges
of a PIR-based BRNN solution lies in the following aspects: (1) although PIR guar-
antees secure access of a single page from the server, the variation of the number of
page accesses from different queries may reveal information about the query point,

Bichromatic Reverse Nearest Neighbor Query without Information Leakage 611

and (2) as the database contains voluminous points, directly applying PIR for the
BRNN query is inefficient, thus calling for an integration with spatial index, such
as KD-tree. To address these challenges, we first propose a PIR-based BRNN query
processing framework that guarantees strong privacy. We then apply to this frame-
work two indexing schemes, whose performance varies with the data distribution.
An orthogonal optimization technique is also proposed to further enhance the per-
formance. To summarize, our main contributions are:

(1) To the best knowledge, this is the first work on BRNN query processing
with no information leakage.

(2) We propose a framework for PIR-based BRNN query and prove its security.
(3) We design two indexing schemes for different data distributions, and pro-

pose an optimization to further bring down the transformation cost.
(4) We conduct extensive experiments under real-world and synthetic datasets,

which shows our proposed approach is practical.
The rest of the paper is organized as follows. Section 2 reviews the related

work. In Section 3, we formalize the system model and problem definition. In
Section 4, we present the framework for the PIR-based BRNN query processing,
followed by two indexing schemes based basic methods, namely KD-tree based
method and Adaptive grid based method in Section 5. We then propose an opti-
mization in Section 6. The solutions are evaluated by experiments in Section 7.

2 Related Work

In this section, we review existing literature on bichromatic reverse nearest neigh-
bor query and private information retrieval.

2.1 Bichromatic Reverse Nearest Neighbor

In light of its critical applications ranging from social life domain such as loca-
tion selection to military activities such as the placement of food [9], bichromatic
reverse nearest neighbor query (BRNN query) attracts considerable attention
since its first seminal work [12]. To efficiently find the BRNNs for a query point,
Voronoi polygon is widely used under various circumstances such as static or con-
tinuous query processing [14] [13]. In these works, the Voronoi polygon deter-
mines candidate or accurate region for the query point, within which object
points are the query point’s BRNN result. However, all these queries have not
considered the privacy issue of disclosing the plaintext query location to the
LBS. There is only one recent work addressing this issue [3]. In this work, the
client issues a query region instead of a point to the server, and the server
returns object points that are BRNNs to every point in the region. The client
then refines the actual BRNNs based on his/her actual location point. While
this solution still exposes a query region, our work supersedes it by revealing no
location information of the query point.

612 L. Wang et al.

2.2 Private Information Retrieval

Prior to PIR-based methods, data transformation based methods are considered
to provide strong location privacy. [11] presents a model that adopts Hilbert
mapping to transform the location data. Such transformation encrypts coor-
dinates in a way that preserves distance proximity and thus can be applied for
approximate nearest neighbor query or range query. [10] proposes a secure trans-
formation to guarantee the approximate distances of POIs to the query point
and answers kNN query. However, these methods are vulnerable to exposing
relative distance [1] or access pattern attack[8].

Thanks to the advances of modern hardware and distributed/cloud comput-
ing, PIR has become a viable solution to oblivious data page access in malicious
server [5]. However, it is not trivial to apply it to privacy-preserving location
queries, because the processing for different queries incurs different numbers of
PIR access, which may be exploited by adversaries to induce the query loca-
tion [7]. Existing PIR-based methods includes PIR-based NN query[7], kNN
query[6] and shortest path computation[8]. To guarantee equal number of PIR
access for any query point, all these methods imposes the maximum number of
PIR access on the dataset. Their main objective, therefore, is to design elaborate
data structures (e.g., grid file or KD-tree) that decompose the space to reduce
this number. Nonetheless, no existing work has been on applying PIR-based
method to BRNN query.

3 Problem Definition

In this section we present the system model and formally define the problem as
well as the security model.

3.1 System Model

Figure 2 illustrates the system model in this paper. The server (LBS) owns two
POI datasets, namely, the server points S and object points R. The client issues
a bichromatic reverse nearest neighbor (BRNN) query q ∈ S, for which the server
returns the set of objects whose nearest server is q. Formally, BRNN(q) = {r ∈
R|∀s ∈ S : dist(r, q) ≤ dist(r, s)}. As for the privacy requirement, the server
should not learn any information about q.

To enable privacy protection, a naive solution is to ship both S and R datasets
to the client for processing. However, due to their large volume and dynamic
nature, this solution cannot scale well. Thanks to the recent advances in pri-
vate information retrieval (PIR), we adopt the state-of-the-art hardware-based
PIR as follows. The server installs a secure co-processor (SCOP), which offers
unobservable and unmolested computation inside an untrusted hosting device.
The SCOP performs a hardware-based PIR protocol with the client, and offers
the latter oblivious access of a data page [4]. With the SCOP , we propose a
general secure processing framework for spatial queries, which is composed of

Bichromatic Reverse Nearest Neighbor Query without Information Leakage 613

Retrieve blocks from server by SCOP in multi-rounds

Fig. 2. System architecture

multi-round PIR access to a database MonoDB. It is a monolithic database
that integrates both the datasets and indexes. In each round, the client retrieves
a specific page of MonoDB through SCOP . The fetched data helps the client
determine the next page to retrieve, and the procedure repeats until the BRNN
query is answered. Therefore, the secure query processing problem is reduced to
the efficient design of the MonoDB and the associated retrieval plan.

3.2 Adversary and Security Model

Adversary. The adversary in our problem is the LBS server. As a common
assumption in private information retrieval, the computational power of the
adversary is polynomially bounded.
Security Model. Our objective is to develop practical protocol for process-
ing BRNN query without the LBS deducing any location information about
the queries. Similar to [6], we assert that every BRNN query follows the same
retrieval plan, which is necessary in order to achieve our privacy goal. Specifi-
cally, we ensure that every query (1) executes in the same number of rounds in
the same order and (2) in each round it retrieves the same number of data pages.
The retrieval plan is determined by the processing protocol and is publicly avail-
able. For example, if the protocol states that in the second round, 5 pages are
fetched from the database, then every query must fetch 5 pages from database
in the second round. If a query needs fewer than 5 pages, the protocol pads with
dummy page requests. Since each invocation of PIR is secure, we can naturally
reach the following theorem regarding the security of our proposed framework.

Theorem 1. The BRNN query processing framework leaks no information to
the adversary about query location. Equivalently, from the adversary’s perspec-
tive, every query is indistinguishable from any other.

4 Private BRNN Processing Framework on MonoDB

In this section, we overview private BRNN query processing in the proposed
MonoDB framework. Recall that in this framework, any query processing is equiv-
alent to a multi-round retrieval of data pages of the MonoDB. The MonoDB can

614 L. Wang et al.

be logically split into n databasesDB1,DB2, ...,DBn, whereDBi (1 ≤ i ≤ n−1)
are indexes and DBn is the object database R. The retrieval sequence of the query
can also be split accordingly as [c1, c2, ..., cn], where the client fetches a set of pages
ci fromDBi (1 ≤ i ≤ n). In this section, we first present a baseline BRNN process-
ing algorithm, based on a key observation that reduces the number of servers and
objects to retrieve for the query evaluation. Based on this algorithm, we describe
the detailed MonoDB design and retrieval plan.

4.1 Baseline BRNN Processing

There are several existing BRNN query processing methods in the literature. In
the Voronoi Diagram-based method, a Voronoi Diagram is constructed for all
server points and the query point q, and the object points that are in q’s Voronoi
cell are the BRNN results. However, this method cannot be directly applied in
our framework as the query point q is dynamic and cannot be learnt by the LBS.
Nonetheless, we observe that the Voronoi Diagram of the server points gives a
nice bound of the result objects.

Figure 3(a) illustrates the Voronoi Diagram for all server points (they are
called ”seeds” in some literatures). For each seed, any object point in its corre-
sponding Voronoi cell is closer to it than to any other seed. When a query q is
issued, q is added to the set of seeds, and the Voronoi Diagram is updated as in
Figure 3(b). Compared with these two diagrams, we observe that changes only
occur in Voronoi cells v5,v6,v7,v8, and v10, where q is in v7. In other words, the
Voronoi cell for the query point q only depends on the seed v7 and its neigh-
boring seeds in the original Voronoi diagram. As a result, only object points in
these Voronoi cells can reside in the new Voronoi cell of q. Therefore, the BRNN
results can be bounded by those object points in the Voronoi cells that contains
q and its neighboring cells. This observation can be formally stated as below.

Theorem 2. Given query point q and the Voronoi diagram of all server points,
any object point M outside of the Voronoi cell that contains q and its neighboring
cells cannot be q’s BRNN.

S4

(a) Voronoi Diagram by
server points

(b) Voronoi Diagram by
server points plus query
point

(c) Proof for the observa-
tion

Fig. 3. Voronoi Diagram for server points and query point

Bichromatic Reverse Nearest Neighbor Query without Information Leakage 615

Proof. As Figure 3(c) illustrates, the segment between q and M must cross
some Voronoi cell that neighbors with q at point I. Suppose that the seed of
this cell is S. The distance between q and M equals to the segment length
between q and M , which is equal to dist(M, I) + dist(I, q). Since I is S’s
BRNN, it must hold that dist(I, S) < dist(I, q). Further, according to the tri-
angle inequality, dist(M,S) < dist(M, I) + dist(I, S). Therefore, dist(q,M) =
dist(M, I) + dist(I, q) > dist(M, I) + dist(I, S) > dist(M,S). As such, the dis-
tance between q and M is larger than the distance between M and S, which
means M cannot be q’s BRNN.

By Theorem 2, the BRNN processing protocol between the client and LBS
is as follows. The LBS first computes the Voronoi Diagram of all server points
offline. When query q arrives, it sends to the client (1) the servers (i.e., seeds)
whose Voronoi cell contains q or is a neighbor of it; and (2) all object points in
the corresponding cells of these seeds. The client then refines the BRNN results
by verifying among these seeds if q is the nearest neighbor to each object point.

4.2 MonoDB Design and Retrieval Plan

Three Databases. Based on the above baseline BRNN query processing algo-
rithm, the MonoDB can be split into three logical databases as illustrated in
Figure 4: DB1 stores all the Voronoi cells, DB2 records the Voronoi neigh-
bors of each cell, and DB3 stores object points of each cell. Note that DB1

implies a space partition, from which only the relevant Voronoi cells need to be
retrieved. The partition is non-overlapping so that only one record in DB1 will
be retrieved for any query q. The detailed partition algorithms are discussed in
the next section.

1

(a) Example for DB1 (b) Example for DB2 (c) Example for DB3

Fig. 4. Examples for the three index structures

Retrieval Plan. Given MonoDB and a BRNN query q, the PIR retrieval plan
is as follows. The client first accesses DB1 for the record of the partition where
q is located. This record stores the coordinates of all seeds in this partition, so
that the client can compute their distances to q and finds the seed i that is the
closest to q. Then the client accesses DB2 for the record of i, which stores i’s
Voronoi neighbors. According to Theorem 2, the Voronoi cell of q can be derived

616 L. Wang et al.

from i and its Voronoi neighbors. So the client accesses DB3 for the records of
q and q’s Voronoi neighbors. These records store all object points that are in
these Voronoi cells. A final refinement step is needed to remove from the results
those objects outside of the Voronoi cell of q.

Figure 4 illustrates the MonoDB for the whole space and the server points
of Figure 3(c). If the query q is issued at the star point in Figure 3(c), it will be
located in record A4 in DB1, where we can find v7 is the closest to q. So we obtain
v7’s Voronoi neighbors from record B7 of DB2, i.e., server points v2, v5, v6, v8, v10.
We then access records C2, C5, C6, C7, C8, C10 from DB3. These records give us
the candidate result objects such as R2, R3 that are further refined by the client.

Rationale of Three Databases. Splitting the MonoDB into three logical
databases has a variety of benefits: (1) it decouples the server and object points
so that the update in one dataset will not significantly change the MonoDB;
(2) it removes redundancy information and thus enhances the PIR performance.
For example, if DB1 and DB2 were merged into DB′

1, there would be a lot of
common neighboring seeds in different records of DB′

1.

Overflow and Underflow Handling. Normally a record spans a single page
of a database. If it is not full, it will be padded with dummy data. On the other
hand, if a record overflows in any database DBi, the LBS creates extra pages and
appends them at the end of DBi. These pages are chained up by the overflow
pointer at the end of each page, e.g., B2 with B11 in DB2 and C9 with C11 in
DB3. In what follows, we use cnti to denote the maximum number of pages for
a single record in DBi.

5 Spatial Partition

In our MonoDB framework, while DB2 and DB3 depend only on the two
datasets, DB1 also depends on the space partition scheme. In this section, we
present two space partition algorithms, which leads to two different indexes for
DB1.

5.1 KD-tree Partition

KD-tree is a widely adopted method for space partition due to its at least 50%
space utilization. In what follows, we show how to construct the DB1 based on
a KD-tree.

Figure 5(a) illustrates that a KD-tree partition of the space over server points,
which produces four node: N1, N2, N3 and N4. Each node contains a minimum of
2 and a maximum of 2*2-1=3 seeds. As such, DB1 has four records N1 through
N4, each of which stores the seeds whose Voronoi cell overlaps with this node.
Note that we set each data page can hold 4 seeds, so each record spans two pages
in Figure 5(a).

Algorithm 1 illustrates the BRNN query evaluation routine. First, the par-
tition that covers the query point is obtained (Line 2) and the corresponding

Bichromatic Reverse Nearest Neighbor Query without Information Leakage 617

(a) KD-tree based partitioning (b) Adaptive grid based partitioning

Fig. 5. The two partition schemes

Algorithm 1 KD-Tree Based Method
Require: Three databases DB1, DB2 and DB3, the index of KD-tree, query point q,

QP
Ensure: Reverse nearest neighboring object points of q
1: result = ∅
2: leafnode = kd.search(q)
3: Fetch the seeds Cs of record leafnode from DB1 by cnt1 PIR accesses
4: c = argmini∈Csdist(i, q)
5: Fetch all neighboring Voronoi cells Nc of record c from DB2 by cnt2 PIR accesses
6: Construct Voronoi Diagram V D according to Nc ∪ q ∪ c
7: region = V D.q
8: for each Voronoi Cell i ∈ V D do
9: Fetch all object points O belonging to the record i from DB3

10: for each object point o ∈ O do
11: if o is contained in region then
12: result = result ∪ o
13: return result

record in DB1 is fetched (Line 3). The client then finds out the server point
c whose Voronoi cell contains the query point (Line 4). Next, we compute the
Voronoi cell of q (Line 5-7). Finally, those candidate object points that fall in
the Voronoi cell of q are the BRNN results (Line 8-13).

5.2 Adaptive Grid Partition

The disadvantage of KD-tree partition for DB1 is the non-uniform distribution
of record size. Although the number of server points in each partition is almost
uniform, the number of points whose Voronoi cells overlap each partition is not.
As such, a record in DB1 may span too many pages and thus degrades the
PIR retrieval performance. In what follows, we present an adaptive-grid based
method that addresses this issue.

The motivation is to have fine-granularity partition over regions with dense
Voronoi cells and coarse-granularity partition over regions with sparse Voronoi
cells. In this way, it can avoid a single record in DB1 that hold too many seeds.

618 L. Wang et al.

Specifically, this method partitions the whole space into an n × n grid in an
adaptive manner as follows. It first finds n − 1 vertical lines one by one that
partition the space into n grid cells. Each time, a vertical line is found to minimize
the difference of number of Voronoi cells overlapping with both cells. This is
achieved by using the standard plane sweep algorithm. Then, it similarly finds
n − 1 horizontal lines that further partition each one of the n cells into n sub-
cells. In Figure 5(b), there are only 2×2 grid cells, so only one grid line is needed
for each dimension.

6 Optimization

In this section, we present an orthogonal general optimization to the two basic
indexing methods by packing small records in DB3 into one page. Note that the
default placement for records in DB3 assigns every record a different page, which
suffers from low utilization and leads to inefficient PIR access that only fetches
very few useful data from a page. Therefore, we propose to pack those records of
DB3 if they correspond to the same record in DB2, as these records are always
retrieved altogether. As a result, the PIR access of both DB2 and DB3 will
be more efficient. Figure 6(a) illustrates the default placement that requires 2
PIR accesses to fetch object points for any query, whereas Figures 6(b) and 6(c)
illustrate two example packing results. In Figure 6(b), only 1 PIR access is
needed to fetch object points of DB3 for any query. By contrast, 2 PIR accesses
are still needed for any query if the records are packed as in Figure 6(c).

(a) (b) (c)

Fig. 6. Example for packing records of DB3

Let NDB2 , NDB3 denote the number of records in DB2 and DB3, respec-
tively. Let eDB2

i denote the i-th record in DB2, and {eDB3
1 , eDB3

2 , ..., eDB3
m } the

m records that corresponds to eDB2
i . Further, let Bm denote the size of eDB3

m ;
since it might span multiple pages, and only the last page requires packing, the
actual packing size bm is the fraction part of Bm, i.e., bm = Bm%Page Size.
Then, the problem of record packing can be formalized as follows:

Definition 1. Record Packing Problem. To pack records in DB3 into data
pages, so that maxi

∑m
j=1 Bj for ∀eDB2

i is minimized.

Bichromatic Reverse Nearest Neighbor Query without Information Leakage 619

The following theorem shows that this problem is NP-hard.

Theorem 3. Record packing problem is NP-hard.

Proof. This problem can be reduced from the ”bin packing” problem. The aim
of the latter is to find the fewest number of pages to accommodate a total of m
items, each of which is smaller than a page. We reduce a bin packing problem
to our problem as follows. We create a single record in DB2 which contains all
server points. Then each item in the bin packing problem is mapped to a server
point and the size of the item equals to the number of object points for this
server point. It is obvious that this straightforward mapping is polynomial, thus
completing the proof.

To design an approximation algorithm, in what follows we first present an integer
programming solution to the problem, and then relax it to a linear programming
problem.

Let variable ym,j ∈ {0, 1} denote whether record eDB3
m is stored in page j of

DB3, and xi,j ∈ {0, 1} denote whether any record eDB3
m ∈ eDB2

i is stored in page
j. Formally, we have ∀eDB3

m ∈ eDB2
i , xi,j ≥ ym,j . And

∑P
j=1 ym,j = 1, where P

is the number of data pages in the default placement for DB3.
With these variables defined, the number of PIR accesses for object points

for a record in DB2 is the number of full data pages of corresponding object
points in DB3 plus the packed size for this record. That is,

eDB2
i =

∑

e
DB3
m ∈e

DB2
i

�Bm/Page Size� +
P∑

j=1

xi,j

Finally, the total number of object points in a page should not exceed the page
capacity. That is,

∑NDB3
m=1 bmym,j ≤ Page Size. Let K be the maximum number

of PIR accesses for any record in DB2. Therefore, we reach the following integer
programming problem for K as follows:

minimize K

subject to
∑

e
DB3
m ∈e

DB2
i

� Bm

Page Size� +
∑P

j=1 xi,j ≤ K, ∀1 ≤ i ≤ NDB2
∑NDB3

m=1 bmym,j ≤ Page Size, ∀1 ≤ j ≤ P

xi,j ≥ ym,j ,∀1 ≤ i ≤ NDB2 , ∀eDB3
m ∈ eDB2

i∑P
j=1 ym,j = 1, ∀1 ≤ m ≤ NDB3

xi,j , ym,j ∈ {0, 1}
The above integer programming problem can be approximately solved in poly-
nomial time in two steps. First, one can solve a linear relaxation of the problem,
where xi,j and ym,j is a fraction in [0, 1]. In this regard, ym,j serves as the prob-
ability of placing record eDB3

m into data page j, and xi,j serves as the probability
of records corresponding to eDB2

i being placed into data page j. As the second
step, we adopt the randomized rounding strategy to obtain a feasible solution as
follows. We assign object points in the m-th record of DB3 to the j-th page with
probability ym,j . If the page overflows, we will assign new empty pages until all
object points in this record can be accommodated.

620 L. Wang et al.

7 Experimental Evaluation

In this section, we conduct experiments under real world and synthetic datasets
to demonstrate the effectiveness of our PIR-based BRNN algorithm. We also
compare the performance with a weaker location privacy preservation approach
— the cloaking-based PARNN method [3] and show our algorithm is of great
practical value. We also carry out experiments to analyze the effect of our opti-
mization approach.

7.1 Experiment Settings

The real world dataset is collected from Open Street Map1, with location data
from Boston and New York, respectively. Both datasets have relatively uniform
distribution, while there are more points in New York than in Boston.

As for the synthetic dataset, we vary the number of server points from 105 to
106, and object points are 10 times those of server points. To emulate a skewed
distribution, these points are generated by a widely adopted benchmark defined
by Chen et al. [15]. In this benchmark, a portion f ∈ (0, 1] of points are generated
in a skewed way to capture object clusters while the rest 1 − f portion of points
are uniformly generated. Specifically, the portion f of the points are controlled
by another skewed parameter s and are generate not far from one of the s
randomly selected server points. Table 1 summarizes the detailed parameters of
the datasets.

The two indexing methods are implemented with the optimization in Section
6 in place. All codes are written in C# and run on a machine with an Intel Core2
Quad CPU 2.53Ghz and 4 GByte of RAM. We also adopt the open source GNU
Linear Programming Kit2 as the solver the record packing problem in Section 6.
As with previous hardware-based PIR methods, we assume the IBM 4764 PCI-X
Cryptographc Coprocessor as the SCOP and strictly simulate its performance.
The client communicates with the LBS using a link with round trip time of
700ms and bandwidth 384 Kbit/s, which emulates a moving client connected
via a 3G network.

Table 1. Summary of Experimental Settings

Dataset The number of server points The number of object points

Boston 8381 146207

New York 126900 1462057

Synthetic 10000-1000000 100000-10000000

1 www.openstreetmap.org
2 https://www.gnu.org/software/glpk/

www.openstreetmap.org
https://www.gnu.org/software/glpk/

Bichromatic Reverse Nearest Neighbor Query without Information Leakage 621

7.2 Performance Comparison

In this section, we compare the performance of our PIR-BRNN method with
the PARNN method under both real world and synthetic datasets. The latter
method fetches all Voronoi cells that overlap with the client-issued cloaking
region, and then returns to the client all object points that are covered by these
cells. Note that the performance of PARNN is plotted only for reference, as it
still discloses a cloaking region to the LBS.

Figure 7(a) illustrates that PIR-BRNN method outperforms PARNN method
with different cloaking region size by a factor of 2−4 in terms of execution time.
We can see that when the cloaking region size shrinks from 100 × 100m2 to
10 × 10m2 (in practice, from a plaza to a road crossing), the execution time
for PARNN can improve by about 50%, because fewer server points and object
points will be accessed by PARNN. Nonetheless, it still takes more than 2 times
the execution time than our proposed PIR-BRNN method.

(a) Real World Datesets (b) Ns = 105, s = 10 (c) Ns = 106, s = 10

Fig. 7. Performance Comparison between PIR-BRNN and PARNN

In synthetic datasets, the performance of PIR-BRNN approach deteriorates
as more dummy PIR accesses need to be carried out due to the skewed data
distribution. However, Figures 7(b) and 7(c) illustrate that the performance of
PIR-BRNN approach is still better than PARNN. The experimental results show
that our PIR-BRNN approach is superior to the PARNN method by providing
stronger privacy guarantee as well as faster query result time.

7.3 Effect of Space Partitions

In this experiment, we evaluate the effect of partition scheme without any opti-
mization3. Figure 8(e) illustrates the performance under the real world dataset,
where two methods have similar performance. However, as the point distribu-
tion becomes more and more skewed in Figures 8(a)-(d), the adaptive grid based
method significantly outperforms KD-tree based method. This result coincides
with our analysis in Section 5.2 that while the KD-tree keeps each partition
3 The real SCOP only has 32MB of main memory and can only support up to 2.5GB

addressable space. To enable the experiment in this subsection, however, we simply
assume there are enough memory buffer in the SCOP emulator.

622 L. Wang et al.

(a) Ns = 105, s = 10 (b) Ns = 105, s = 20 (c) Ns = 106, s = 10

(d) Ns = 106, s = 20 (e) Real World Dataset

Fig. 8. Performance under two basic methods

approximately equal number of points, it fails to keep each partition approxi-
mately equal number of overlapped Voronoi cells. Therefore, as the server points
become skew, it suffers from more overflow pages for dense records in DB1, and
thus incurs unnecessary PIR accesses for these extra data pages.

7.4 Effectiveness of Optimizations

In this subsection, we evaluate the effect of the optimization proposed in Section
6. First, we show that the number of PIR accesses in both indexing methods
is reduced significantly by the optimization. Then we show that although the
linear programming (LP) based optimization does not yield the optimal pack-
ing of records, it runs much faster than the integer programming (IP) based
optimization while still leads to reasonable performance.

Figure 9 illustrates that under real world dataset, both IP and LP based
optimization reduce the number of PIR accesses by more than 70% on average.
In particular, the effect of our optimization is most significant for skewed data
distribution. This is because many server points have a lot of corresponding
records in DB3 with only very few object points; as they are packed together,
the maximum number of PIR accesses is greatly reduced.

It is worth noting that although the LP based optimization dose not yield the
optimal packing of records, it achieves comparable performance as the optimal
IP-based optimization. On the other hand, Figure 10 illustrates that the running
time of the former is much faster and is thus more practical than the latter. In
fact, in our experiment we cannot complete the IP based optimization on the
New York dataset or any synthetic dataset with more than 106 server points.

Bichromatic Reverse Nearest Neighbor Query without Information Leakage 623

(a) Boston Dataset (b) New York Dataset (c) Ns = 105, s = 10

(d) Ns = 105, s = 20 (e) Ns = 106, s = 10 (f) Ns = 106, s = 20

Fig. 9. Effect of Optimization on Various Datasets

(a) skew papameter s = 10 (b) skew parameter s = 20

Fig. 10. Performance Comparison between LP and IP Optimization

8 Conclusion

In this paper we introduce the novel problem of BRNN query with strong privacy
guarantee, where an adversary cannot distinguish a query point from any other
point in the space. This is the first work that applies PIR to BRNN query.
Further, we show that it is NP-hard to minimize the number of PIR accesses
given any partition scheme over the whole space, and therefore propose a linear
programming approximation to the optimal packing problem in our proposed
MonoDB. Finally, we evaluate our methods on real world dataset and synthetic
dataset. Extensive experiments demonstrate the practicality of our method.

624 L. Wang et al.

References

1. Tian, F., Gui, X., Yang, P., Zhang, X., Yang, J.: Security analysis for hilbert curve
based spatial data privacy-preserving method. In: 10th IEEE International Con-
ference on High Performance Computing and Communications and 2013 IEEE
International Conference on Embedded and Ubiquitous Computing, pp. 929–934,
Zhangjiajie, China (2013)

2. Wicker, S.B.: The loss of location privacy in the cellular age. Commun. ACM
55(8), 60–68 (2012)

3. Du, Y.: Privacy-aware RNN query processing on location-based services. In: 8th
International Conference on Mobile Data Management, pp. 253–257, Mannheim,
Germany (2007)

4. Williams, P., Sion, R.: Usable PIR. In: NDSS, San Diego, California, USA (2008)
5. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,

computationally-private information retrieval. In: FOCS, pp. 364–373, Florida,
USA (1997)

6. Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong
location privacy. In: VLDB, pp. 619–629 (2010)

7. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private
queries in location based services: anonymizers are not necessary. In: SIGMOD,
pp. 121–132, Vancouver, BC, Canada (2008)

8. Mouratidis, K., Yiu, M.L.: Shortest path computation with no information leak-
age. In: VLDB, pp. 692–703, Istanbul, Turkey (2012)

9. Stanoi, I., Riedewald, M., Agrawal, D. and Abbadi, A.E.: Discovery of influence
sets in frequently updated databases. In: VLDB, pp. 99–108, Roma, Italy (2001)

10. Wong, W.K., Cheung, D.W.L., Kao, B., Mamoulis, N.: Secure kNN computation
on encrypted databases. In: SIGMOD, pp. 139–152, Rhode Island, USA (2009)

11. Khoshgozaran, A., Shahabi, C.: Blind evaluation of nearest neighbor queries using
space transformation to preserve location privacy. In: Papadias, D., Zhang, D.,
Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidelberg
(2007)

12. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: SIGMOD, pp. 201–212, Dallas, Texas, USA (2000)

13. Tran, Q.T., Taniar, D., Safar, M.: Bichromatic Reverse Nearest-Neighbor Search
in Mobile Systems. J. IEEE SYSTEMS 4(2), 230–242 (2010)

14. Kang, J.M., Mokbel, M.F., Shekhar, S., Xia, T. and Zhang, D.: Continuous eval-
uation of monochromatic and bichromatic reverse nearest neighbors. In: ICDE,
pp. 806–815, Istanbul, Turkey (2007)

15. Chen, S., Jensen, C.S., Lin, D.: A benchmark for evaluating moving object
indexes. In: VLDB, pp. 1574–1585, New Zealand (2008)

16. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

Authentication of Reverse k Nearest
Neighbor Query

Guohui Li, Changyin Luo(B), and Jianjun Li

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

{Guohuili,luochangyin,jianjunli}@hust.edu.cn

Abstract. In outsourced spatial databases, the LBS provides query ser-
vices to the clients on behalf of the data owner. However, the LBS
provider is not always trustworthy and it may send incomplete or
incorrect query results to the clients. Therefore, ensuring spatial query
integrity is critical. In this paper, we propose efficient RkNN query
verification techniques which utilize the influence zone to check the
integrity of query results. The methods in this work aim to verify both
monochromatic and bichromatic RkNN queries results. Specifically, our
methods can gain efficient performance on verifying bichromatic RkNN
query results. Extensive experiments on both real and synthetic datasets
demonstrate the efficiency of our proposed authenticating methods.

Keywords: Authentication · RkNN queries · Influence zone

1 Introduction

With the ever-increasing use of mobile handset devices (e.g.,smartphones and
tablet devices) and rapid development of wireless communication technologies,
location-based services (LBSs) have experienced explosive growth over the past
decade. Users carrying location-aware mobile devices are able to query their
interests at any time and anywhere. Among the many types of location-based
queries, one important class is location-based reverse k nearest neighbor (RkNN)
query [1,2,6,11,14], which has various applications in location based services,
marketing and decision support systems. Consider the example of a gas station,
the drivers for which this gas station is one of the k nearest gas stations are its
potential customers. The drivers are the RkNN of the gas station and can be
monitored so that the gas station can provide better services for these drivers.
In this paper, the objects that provide a facility or service (e.g., gas stations)
are called facilities and the objects (e.g., the drivers) that use the facility are
called users. The facility can be considered as a query object (q) when it makes
a RkNN query.

To scale up LBSs along with their ever-growing popularity, there has been a
rising trend of outsourcing of relational databases [10,15–17] to the LBS, which
provides query services to clients on behalf of data owners (DO). While such
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 625–640, 2015.
DOI: 10.1007/978-3-319-18120-2 36

626 G. Li et al.

Fig. 1. Database outsourcing framework

an outscourcing model has its benefits in performance, cost and flexibility in
resource management, it also brings a great challenge to query integrity assur-
ance [7,8,10,15]. As the LBS provider is not the real owner of the data, it
may return incorrect or incomplete query results to clients. Furthermore, query
results might be tampered with by malicious attackers. Therefore, in the data-
outscouring model, the client must be able to verify that 1) all data returned
from the LBS provider originated at the DO and 2) the result set is correct and
complete.

Figure 1 shows a framework of authenticated query processing, which is based
on digital signatures utilizing a public-key cryptosystem (e.g., RSA). Initially,
the DO obtains a private and a public key through a certificate authority. Before
delegating a spatial dataset to the LBS provider, DO builds an authenticated
data structure (ADS) of the dataset. To support efficient query processing, the
ADS is often a tree-like index structure where the root is signed by the DO using
its private key. The LBS provider keeps the spatial dataset, ADS and its root
signature. Upon receiving a query from the client, the LBS provider returns the
root signature and the verification object (VO) that contains the corresponding
authentication information. By using the VO, root signature and public key, the
client can verify the result.

In spatial queries processing, in order to significantly reduces the commu-
nication frequency between the user and LBS provider, the LBS provider often
returns query objects an influence zone [1] in addition to the query results. Con-
sider a set of facilities F = {f1, f2, ..., fn} where fi represents a point in Euclidean
space and denotes the location of the ith facility. Given a query q ∈ F , the influ-
ence zone Zk is the area such that for every point p ∈ Zk, q is one of its k closet
facilities, and for every point p′ /∈ Zk, q is not one of its k closet facilities.

Recently, techniques for authenticating query results have received a lot of
attention. For example, [18,19] study the authentication of moving kNN queries
and rang queries; [3] addresses authenticating top-k queries with confidentiality;
[8] study authenticating location-Based skyline queries in arbitrary subspaces.
Yang et al. [16,17] introduce the MR- and MR*-tree, which are space-efficient
authenticating data structures supporting fast query processing and verifica-
tion. [5] studies the authentication of k nearest neighbor query on road net-
works. Hu et al. [4] address query integrity assurance with voronoi neighbors,
they only focus on monochromatic RkNN authentication. Whereas our work
aims to authenticate both monochromatic and bichromatic RkNN queries, which
are based on the influence zone verification. That is, once the influence zone is
verified, both types of RkNN results can be easily authenticated.

Authentication of Reverse k Nearest Neighbor Query 627

Our contributions can be summarized as follows.

− A compact construction method for the VO is designed, and the query pro-
cessing method at server side is proposed.

− Based on the authentication of influence zone Zk, the verification for the
RkNN query at client is designed.

− A set of experiments on both real data are conducted to study the efficiency
of our proposed methods.

2 Related Work and Background

RkNN query processing was first studied by Korn et al. [6], and then, some
classic literatures [2,11,13,14] have done further research on it. Specifically, Wu
et al. [14] propose a method named FINCH. Instead of using bisectors to prune
the objects, they use a convex polygon that approximates the unpruned area.
Continuous monitoring RkNN is first proposed by Wu et al. [13]. Cheema et al. [2]
also present Lazy Updates algorithm to continuously monitor RkNN queries.
Based on the TPL [11] and FINCH methods, the recent work [1] designs an
innovative Influence Zone that can be used to process snapshot and continuous
RkNN queries.

A lot of researches have been conducted to investigate data integrity verifi-
cation for years in area of database outsourcing [7,10,15]. Most authentication
techniques [8,16–19] are based on Merkle tree [9], which is an authenticated
data structure (ADS). The current state-of-the-art ADS for authenticating spa-
tial queries is the Merkle R-tree(MR-tree) [16] based on Merkle tree [9] and
R-tree. An extension of MR-tree is called MR*-tree [17], which can reduce the
number of entries in the VO but it has higher construction cost. In this paper,
we use the MR-tree because of its popularity and low construction cost.

Yiu et al. [18] and Yung et al. [19] examine how to authenticate the safe region
of moving kNN queries and moving range queries respectively. The safe region
for kNN (e.g., convex polygons) and range queries (e.g., set unions/differences of
circles) are different from influence zone for RkNN queries (e.g., differences area
of k bisectors combination) in our methods. Thus their methods are inapplicable
to the problem in this paper. Wu et al [12] first study the authentication of spatial
keyword queries, Issues related to keyword authentication are beyond the scope
of this paper.

The most relative work [4] proposes an approach named VN-Auth to verify
monochromatic RkNN queries. While VN-Auth cannot be used to verify bichro-
matic RkNN query. However, our approaches can authenticate both monochro-
matic and bichromatic RkNN queries in the same framework.

3 Problem Definition and Preliminaries

RkNN Authentication Problem. Given a RkNN query, the authentication
problem studies how the client can verify the correctness of the query result

628 G. Li et al.

returned by the LBS provider. It involves two correlated issues: i) server query
processing and the VO construction for each RkNN query on the LBS provider;
ii) result verification based on the received VO and signature at the client. In
order to study this problem, we first present some definitions as follows.

Given two facilities a and q in a 2-dimensional data space, a perpendicular
bisector Ba:q between a and q divides the space into two halves as shown in Fig. 2.
The half plane containing a is denoted as Ha:q and the half plane containing q
is denoted as Hq:a. Any point p (depicted by a star in Fig. 2) that lies in Ha:q is
closer to a than q (i.e., dist(p, a) ≤ dist(p, q)) and any point y that lies in Hq:a

is closer to q than a (i.e., dist(y, q) ≤ dist(y, a)). Hence, q cannot be the closet
facility of any point p that lies in Ha:q. The point p can be pruned by bisector
Ba:q if p lies in Ha:q. Alternatively, the point a can prune the point p.

Definition 1. Monochromatic RkNN query: Given a set of data points P
of the same type and a query point q ∈ P , a monochromatic RkNN query returns
every point p ∈ P s.t. dist(p, q) ≤ dist(p, pk) where dist() is a distance function,
and pk is the kth nearest point to p according to the distance function dist().

Definition 2. Bichromatic RkNN query: Given a set of facilities F =
{f1, f2, ..., fn} and a users set U = {u1, u2, ..., un}, a bichromatic RkNN query
for a point q ∈ F is to retrieve every object u ∈ U s.t. dist(u, q) ≤ dist(u, fk)
where fk is the kth nearest point of u in F according to the distance function
dist().

A special circle Cp for a point p is defined as follows.

Definition 3. Given a point p, for a query point q ∈ F , Cp denotes a circle
centered at p with radius equalling to dist(p, q), where dist(p, q) is the distance
between p and q.

Fig. 2 shows a Cp for facility p. |Cp| denotes the number of facilities that lie
within the circle Cp. Both types of RkNN queries can be described as follows:
given a set of users U , a set of facilities F and a query q ∈ F , a bichromatic
RkNN query is to retrieve every user u ∈ U for which |Cu| < k. Analogically, a
monochromatic RkNN for a query q ∈ F is to retrieve every facility f ∈ F for
which |Cf | < k + 1.

We mainly focus on authenticating the bichromatic RkNN queries. The solu-
tion can be adapted for monochromatic RkNN queries verification through subtle
modification. That is, the inequality of |Cf | < k for bichromatic RkNN verifica-
tion should be changed to |Cf | < k + 1. Our verification methods for RkNN are
based on influence zone. Its definition for bichromatic RkNN queries is described
as follows.

Definition 4. Influence zone Zk (Ref. [1]). Given a query q ∈ F , the influ-
ence zone Zk is the area such that for every point p ∈ Zk, |Cp| < k and for every
point p′ /∈ Zk, |Cp′ | ≥ k.

Authentication of Reverse k Nearest Neighbor Query 629

a
c

d

q
b

Ba:q

Bb:q

p

Fig. 2. Unpruned area is not influence

Bc:q

q

Ba:q

Bb:q

A

BC

D

E F G

H

IJ

K

Z

e

Be:q

ac

b

d

Bd:q

Fig. 3. Influence zone Zk (k=2)

Definition 5. Counter. Given a data point v, the counter of v is a number
which counts the number of perpendicular bisectors that prune it in the data
space. Note that, the perpendicular bisectors are constructed between the facilities
and query point q.

In Fig. 3, the counter of intersection point C is 1 because it is only pruned
by Bc:q.

Definition 6. Generator. Given a data space D, a facility p is defined to be
a generator of the influence zone Zk if the perpendicular bisector between p and
query facility q (Bp:q) contributes to Zk. Let G(q,D) be the set of all generators
of Zk.

Suppose k = 2, the influence zone Z2 is the shaded area in Fig. 3, which is
formed by considering the perpendicular bisectors of q with every facility point
in the data space. However, only the perpendicular bisectors of facilities a, b and
c contribute to Z2, while the perpendicular bisectors of other facilities (e.g., d)
do not affect Z2. Therefore, G(q,D) = {a, b, c}.

Based on the definition of influence zone, once the influence zone Zk is com-
puted, the users in it are the RkNN result. Thus, at client side, the authentication
methods designed for RkNN query mainly focus on the verification of influence
zone Zk. However, there are some challenges in verifying the correctness of influ-
ence zone Zk. Let’s take an example to illustrate them in Fig. 3. Suppose that
the LBS provider needs to compute RkNN of q and its influence zone. Based on
Definition 6, the LBS provider can represent influence zone Z2 by query facility
q and its generator set: G(q,D) = {a, b, c}, which can be used to reconstruct Z2

and verify the RkNN query result at a client.
Suppose the LBS provider intentionally reports a bigger influence zone

ABCEGA by adding ΔCDE into real Z2 in Fig. 3, then the facility e is falsely
considered as a generator. In this case, G(q,D) = {a, c, e}. The problem here is
that the client cannot verify the correctness of this fake generator set. Because
all points in G(q,D) originate from the dataset D, they can pass the data cor-
rectness checking by examining the signature of VO. However, the client cannot
determine whether those facilities belong to the real generator set. Similarly, the
LBS provider may intentionally omit ΔBCD and only sends a fake Z2 = AEGA
to the client. In this case, the client will get a smaller influence zone, which faces

630 G. Li et al.

the similar authentication problem. Obviously, only performing signature verifi-
cation is not feasible. In order to authenticate the soundness and completeness
of query results, the client must do geometric verification, which can check cor-
rectness of the results based on the geometric properties of the influence zone.

4 Solution

Section 4.1 describes the query processing mechanism at the LBS provider.
Section 4.2 presents authenticating procedures at a client.

4.1 Query Processing at the LBS Provider Side

The MR-tree is adopted in this paper, which is an index based on the R*-tree
and is capable of authenticating arbitrary spatial queries. The LBS provider is
required to return a verification object VO that contains three types of data [16]:
(i) all objects in each leaf node visited during query processing, (ii) the MBR
(minimum bounding rectangle) for each internal node and hash values of pruned
nodes, and (iii) special tokens that mark the scope of a node. With this infor-
mation, the client can reconstruct the root digest and compare it against the
one that was signed by the owner to make signature verification. However, as
discussed in the literatures [4,5,18,19], the construction of VO in [16] is not com-
pact enough. So we should design algorithm to construct the VO for verifying
the correctness of the influence zone, while minimizing the size of VO.

Algorithm 1 is the pseudo-code of the LBS provider algorithm. Upon receiv-
ing the query facility q and the number k of required RkNN, it computes Zk

from the MR-tree TD (Line 1). Then, it defines a Verification Region (V R) so
as to identify facilities that are useful for authenticating Zk and put them into
the VO. Specifically, the V R is defined as the union of Cvi

for each vertex vi of
Zk (Line 2, 3), i.e., V R = ∪vi∈V Cvi

, where V denotes the set of vertices of Zk.

Algorithm 1. Query processing at the LBS provider
Input: MR-tree TD (on dataset D), Query facility q ∈ F , k
Output: influence zone, VO
1: compute Influence Zone Zk from the MR-tree TD(using the method in [1])
2: V =collect the set of vertex vi of Zk

3: V R = ∪vi∈V Cvi

4: VO=DepthFirstRangeSearch(TD.root, V R)
5: send the VO to the client.

Fig. 4 illustrates the V R for LBS provider algorithm. Zk (i.e., ABCD) is in
gray color, which has four vertices. For each vertex vi, there is corresponding
Cvi

. V R = ∪vi∈V Cvi
, so V R is the region formed by the union of these Cvi

(i.e.,
V R = CA ∪ CB ∪ CC ∪ CD).

Authentication of Reverse k Nearest Neighbor Query 631

A

B
z

q

CA

CB
Cz

Zk

C
D Cc
CD

Fig. 4. Illustration of V R

The facilities in the V R are necessary to construct the influence zone at
the client side, while the facilities outside the V R have no influence on the
construction of influence zone Zk as stated in the following lemma.

Lemma 1. If a facility f lies outside Cp for every facility p in the influence zone
Zk, it cannot prune any facility in Zk and f can be ignored for constructing Zk

Proof. Given facilities p, f, q, if dist(p, f) < dist(p, q) which means f ∈ Cp and
p is pruned by the perpendicular bisector Bf :q. In other words, p can be pruned
by the facility f . Therefore, if f lies outside Cp (i.e., f /∈ Cp), it cannot prune
p. Analogically, if f lies outside Cp for every facility p in the influence zone Zk,
it cannot prune any facility in Zk. The Lemma 1 is proved.

Apparently, the facilities in Zk cannot be ignored. The relationship between
Zk and V R is described in following lemma.

Lemma 2. The influence zone Zk is contained in V R.

The lemma 2 is obvious so we omit its proof. Based on Lemma 1, we know
parts of facilities outside Zk can be omitted when constructing Zk. We focus
on the borders of Zk. If f lies outside Cp for each facility p on the borders, it
cannot prune any point on the borders and can be ignored. In order to check
whether f can be ignored, a baseline method is to check whether f ∈ Cp for
every point p on the borders. Obviously, this can result in high cost. Now, we
describe an important lemma as follows which can guide us to introduce more
efficient methods.

Lemma 3. Given a line segment AB and a point z on AB. The circle Cz is
contained by CA ∪ CB. i.e., every point in the circle Cz is either contained by
CA or by CB (see Fig. 4) (Ref. [1]).

Based on the Lemma 3, we only need to check two endpoints in each edge
of Zk. If for ∀vi ∈ Zk, f /∈ Cvi

, f cannot prune any facilities in Zk and can
be ignored. Otherwise, f can be used to construct influence zone and should be
included in the VO. Hence, the facilities in area ∪vi∈V Cvi

= V R have to be
taken into consideration. In other words, the facilities outside the V R cannot
alter the influence zone. which is stated in the following theorem.

632 G. Li et al.

Theorem 1. The facilities in the V R are necessary to construct the influence
zone Zk. While the facilities outside the V R cannot alter the influence zone Zk.

Proof. Based on the Lemma 1 and 2 and 3, Theorem 1 can be easily proved.

Based on the above theorem, the VO is computed by a depth-first traversal
of the MR-tree (Line 4). When accessing a node ni in the MR-tree, all facilities
in ni intersecting with V R are put into the VO. Note that the VO can include
some objects which lie outside V R and this will not violate the correctness of
query verification at a client side. For a non-leaf entry e which does not intersect
V R, e is added to the VO and its subtree is not visited further.

The VO constructed by algorithm 1 provides all the information that the
client needs to verify the correctness of the influence zone and RkNN results. In
the next section, we describe how to authenticate RkNN results at the client.

4.2 Authentication Processing at the Client

The LBS provider sends the VO to the client. Once Zk is verified based the VO,
it is easy to obtain the correct RkNN. To verify the query results, the client
should take two sequential steps in a authentication process. First, the signature
of VO is examined by the client to ensure that all returned objects originated at
the DO. Concretely, at the beginning of the query, the client downloads the root
signature from the LBS provider and the public key from a certificate author-
ity. Upon receiving the VO, the client first checks the correctness of VO by
constructing the digest of the root of the MR-tree from the VO, and then ver-
ifies it against the root signature using the public key of the DO. If the VO
fails the signature authentication process, the result is considered as corrupted
and the authentication process should terminate. Otherwise, the client should
take the second important step to conduct the geometric verification.

The influence zone verification can be implemented by vertex verification
and edge verification. The following Lemma describes the features of the edges
of influence zone.

Lemma 4. The edges of influence zone Zk originate from perpendicular bisec-
tors drawn between the generators and the query q, or from the boundaries of
the data space D.

Proof. This lemma is obvious so we omit its proof.

For any point p, if we draw Cp, two sets of objects can be obtained: S1(p) =
{oi|oi is on circle of Cp}, and S2(p) = {oj |oj ∈ Cp}. Note that bisector Boi:q

for all objects oi in S1 can intersect at p. If p is a vertex of a real influence
zone and it dose not lie on a boundary of data space, we are sure that p is the
intersection point of two perpendicular bisectors, that is p = Bo1:q ∩ Bo2;q. Now
for a vertex vi in the influence zone sent from the LBS provider, if we can not
get two perpendicular bisectors Bo1:q and Bo2:q where vi = Bo1:q ∩ Bo2;q and
o1 ∈ S1(vi) and o2 ∈ S1(vi), we can infer that vi is a fake vertex. Furthermore,
the bisector Boj :q for all objects oj in S2(p) can prune p, so counter(p) = |S2(p)|.

Authentication of Reverse k Nearest Neighbor Query 633

q

A

B

C

D

a
b

c

Bc:qBb:q

Ba:qm n
i

j
h

EF

G

z

Fig. 5. Verifying the vertex

q

ad

b

Bc:q
Bd:q

Ba:q

Bb:q

c

A

B
C

D

EF

G

H

CC

I

I
J

Fig. 6. Fake influence zone

Based on the definition of Zk, for each edge ei of Zk, suppose its associated
two endpoints are vi and vi+1, if ei originates from a perpendicular bisector, it
meets the condition: ∀p ∈ ei ∧ p 	= vi ∧ p 	= vi+1, counter(p) = k − 1. On the
other hand, if ei lies on a boundary of D, we have ∀p ∈ ei ∧ p 	= vi ∧ p 	= vi+1,
counter(p) ≤ k−1. Below, Lemma 5 depicts how to authenticate a vertex in the
influence zone.

Lemma 5. Given a vertex vi in Zk, there are two edges, ei1 and ei2 , associated
with vi in the influence zone. If these two edges do not lie on the boundaries of
data space D, two points, m and n, which are infinitely close to vi, are taken
from ei1 and ei2 respectively, and an additional point j is also taken which lies
outside Zk and is infinitely close to vi . If counter(m) = counter(n) = k − 1
and counter(j) ≥ k, then vi is a legal vertex in Zk.

Proof. As shown in Fig. 5, the points m and n that are infinitely close to B
are taken from the edge AB and BC respectively. Note that AB is on the Bb:q

while BC lies on the Bc:q. We take the point j that is infinitely close to the
vertex B and lies outside Zk. All the perpendicular bisectors which prune m can
also prune j. Furthermore, j is pruned by an additional perpendicular bisector
Bb:q. So we have counter(j) ≥ counter(m) + 1. It is also the case for the point
n and j, i.e., counter(j) ≥ counter(n) + 1. Now since we have counter(m) =
counter(n) = k − 1 and counter(j) ≥ k, we can infer j /∈ Zk and vertex B is a
legal vertex in Zk.

Note that, if one of the associated edges ei lies on the boundary of data space,
for each point p ∈ ei except the two endpoints of ei, we have counter(p) ≤ k−1,
for example, in Fig. 5, counter(z) ≤ k − 1. The vertices on the boundaries of
data space can be verified in the similar way as described in Lemma 5.

There are two possible fake situations in the influence zone Zout
k accepted

by a mobile client: (i) Zout
k > Zreal

k ; (ii)Zout
k < Zreal

k where Zreal
k is the real

Zk. For instance, in Fig. 6, the shaded area is Zreal
3 . If Zout

3 = ACDEFGHA,
it falsely adds ΔABC into Zreal

3 . If Zout
3 = ABCDEFIJHA, ΔGIJ is falsely

omitted from Zreal
3 . However, these two types fake Zout

3 can be easily detected
by vertex verification. Specifically, suppose it starts to make verification on the
vertex A in Zout

3 = ACDEFGHA, we assume two points p1 and p2 are taken
from the edge HA and AC respectively, it is easy to find counter(p2) = 3,

634 G. Li et al.

(p2 ∈ AC can be pruned by Ba:q, Bb:q, Bc:q), which indicates AC is a fake
edge. So the verification process should terminate. If we make authentication on
Zout
3 = ABCDEFIJHA, suppose it is time to make verification on vertex J (or

I), because the edge IJ does not lie on any perpendicular bisector and boundary
of data space, thus, IJ can be judged as a fake edge based on Lemma 4.

In the above discussion, some kinds of fake Zk can be detected when we verify
the vertices. However, there are other kinds of fake Zk which can not be detected
by vertex verification. For example, in Fig. 6, if Zout

3 = GCDEFG, ΔAHB is
omitted from Zreal

3 in fact. But this error cannot be detected in the procedure
of vertex verification. The reason is that, each edge in Zout

3 originates from the
perpendicular bisectors, or from the boundaries of the data space. Thus, it can
pass examination on the edges based on Lemma 4. Furthermore, each vertex
can also be verified successfully based on Lemma 5. Therefore, only making
verification on the vertices is not enough and it needs to make authentication
on the edges. Below, we describe the feature of the counter values of the points
on a line segment in a perpendicular bisector or a boundary of data space.

Theorem 2. Given a line segment AB in a two dimensional data space D,
which originates from a perpendicular bisector Boi:q or from a boundary Li of
data space, if there is no other bisector Boj :q intersecting with Boi:q (Li) in AB,
the counter values for all points except two endpoints A and B are equal.

Proof. Given a line segment AB in a two dimensional data space D, suppose it
lies on Boi:q, if the other bisector Boj :q has no intersection with Boi:q, we can
infer Boi:q and Boj :q are parallel. Otherwise, these two bisectors must intersect
with each other. There are only two cases that the other bisectors and Boi:q are
parallel, as shown in Fig. 7: (i) Boj :q//Boi:q, (ii) Boz :q//Boi:q. In both cases, for
two arbitrary points oi ∈ AB and oj ∈ AB, we have counter(o1) = counter(o2).

If the other Boj :q intersects with Boi:q, suppose p = Boj :q ∩ Boi:q, and p is
not in AB, or it may be at two endpoints, s.t. p /∈ AB, or p = A or p = B, there
are four intersecting cases, which are depicted in Fig. 8. For case (i), suppose
p = Boh:q ∩ Boi:q, we find p /∈ AB. Because Boh:q cannot prune any point
on AB, for o1 ∈ AB and o2 ∈ AB, we have counter(o1) = counter(o2). For
case (ii), we assume p′ = Boz:q ∩ Boi:q, and find p′ /∈ AB, although Boz :q can

q

A B
o1 o2:io qB

:zo qB

:jo qB

Fig. 7. Parallelism

q

A B
o1 o2

:ho qB
:mo qB

:io qB

:no qB

:zo qB

Fig. 8. Intersecting with AB

Authentication of Reverse k Nearest Neighbor Query 635

prune two arbitrary points o1 and o2 on AB, s.t. counter(o1) = counter(o1) + 1
and counter(o2) = counter(o2) + 1, counter(o1) = counter(o2) is still held.
For case (iii), because of Bom:q ∩ Boi:q = A, Bom:q can prune all the points
except endpoint A so counter(o1) = counter(o2). For case (iv), if Bon:q is
considered, it cannot prune any point on AB, thus, counter(o1) = counter(o2)
is also guaranteed. Note that, if AB lies on a boundary (Li) of data space, the
verification can be discussed in the similar way. Therefore, the theorem is proved.

The following lemma provides hints on how to verify the edge in influence
zone Zk.

Lemma 6. Given an edge AB in the output influence zone with its two end-
points A and B verified to be legal vertices, if there is no intersection point on
AB except two endpoints A and B, AB is a legal edge.

Proof. Note that in order to verify vertex A and B, two points m and n, which
are infinitely close to A and B respectively, are taken from the edge AB. Since
A and B pass the vertex verification, based on Lemma 5, we have counter(m) =
counter(n) = k−1 if AB originates from a perpendicular bisector. Furthermore,
there is no intersection point on AB except two endpoints A and B , which
satisfies the condition required in Theorem 2, therefore, we can infer that ∀oi ∈
AB ∧ oi 	= A ∧ oi 	= B, counter(oi) = k − 1. Note that, if AB originates from a
boundary of data space, ∀oi ∈ AB ∧oi 	= A∧oi 	= B, counter(oi) ≤ k −1. Thus,
AB is a legal edge.

Furthermore, we can check whether AB is legal based on the number of
bisectors intersecting with it, which is described in following lemma.

Lemma 7. Given an edge AB in the output influence zone in a two dimensional
data space, suppose its two endpoints A and B are verified as legal vertices, if
there are an odd number of perpendicular bisectors intersecting with AB, and
each intersection point pi satisfies pi ∈ AB ∧ pi 	= A ∧ pi 	= B, AB is an illegal
edge.

Proof. Given an edge AB of an influence zone, if there is a perpendicular bisector
Bi intersecting with AB, and their intersection point pi satisfies: pi = AB ∩Bi ∧
pi 	= A ∧ pi 	= B, ∀oi ∈ Api and ∀oj ∈ piB , |counter(oi) − counter(oj)| = 1,
which means if Bi prunes points on Api, it does not prune points on piB. In order
to ensure the counter values for points on both sides of pi on AB are equal, there
should be an other bisector Bj passing pi in the opposite pruning direction of Bi.
However, since there are an odd number of perpendicular bisectors intersecting
with AB, wherever they intersect with AB, the counter values of the points
on AB except two endpoints A and B can not be equal, which contradicts the
characteristics of a legal edge. Therefore, the lemma is proved.

Based on above discussion, if there are an even number of perpendicular
bisectors intersecting with ei, it has an opportunity to become a legal edge. So it
needs to do further verification and the detailed steps is described in algorithm 2.

636 G. Li et al.

Algorithm 2. Authenticate Influence Zone (q,VO,k)
Result: Influence Zone, RkNN

1 Zk= VO.Result();
2 check q ∈ Zk;
3 h′

root = reconstruct the root digest from VO;
4 authenticate h′

root against the MR-tree root signature;
5 if h′

root is correct then
6 D′ = the set of data points extracted from VO;
7 R′ = the set of non-leaf entries extracted from VO;
8 if ∀e ∈ R′, e ∩ (∀vi ∈ V,
(vi, |vi, q|)) = φ then /* V is the

vertices of Zk */
9 if each vertex of Zk is verified then /* Lemma 5 */

10 for each edge ei ∈ Zk do
11 if draw Cvi

and Cvi+1 to collect BS then
12 P = {pi|pi = Bi ∩ ei ∧ pi 	= vi ∧ pi 	= vi+1 ∧ Bi ∈ BS} ;
13 if |P | 	= 0 then /* Lemma 6 */
14 IB = {Bi|pi = Bi∩ei∧pi 	= vi∧pi 	= vi+1∧Bi ∈ BS}

if the number of |IB| is even then /* Lemma 7 */
15 P = {pi|pi = Bi ∩ ei ∧ Bi ∈ IB};
16 if ∃pi ∈ P ∧ pi is a legal vertex then
17 return ei error

18 else
19 return ei error

20 else
21 return vertex error

22 return RkNN = {oi|oi ∈ Zk}
23 return authentication failed;

The pseudo-code of the verification method at a client side is shown in Algo-
rithm 2, which avoids computing Zk from scratch. Upon receiving the VO from
the server, the algorithm first retrieves Zk by calling VO.Result(). It then judges
whether q is in Zk. If q is not in Zk, the algorithm reports an error and termi-
nates. Next, it reconstructs the root digest from the VO and verifies it against
the MR-tree root signature signed by the data owner (Lines 4). If this verifica-
tion is successful, the VO is guaranteed to contain only entries from the original
MR-tree. Next, it starts to conduct the geometric verification for Zk. Particu-
larly, it extracts from the VO: (i) a set D′ of data points, and (ii) a set R′ of
non-leaf entries (Lines 6-7). As presented in Section 4.1, every non-leaf entry of
R′ should not intersect
(vi, |vi, q|) where vi is a vertex of Zk (Line 8). If this
geometric condition is satisfied, it begins to verify each vertex and edge one by
one in clockwise direction. We first conduct vertices verification and some kinds

Authentication of Reverse k Nearest Neighbor Query 637

of fake Zk can be detected at this step. And then, we make verification on each
edge (Line 10). In order to verify ei, we draw Cvi

and Cvi+1 at two vertex vi
and vi+1 associated with ei to collect object set OS = {oi|oi ∈ Cvi

∨ oi ∈ Cvi+1}
and compute perpendicular bisector set BS = {Boi:q|oi ∈ OS} (Line 11). The
algorithm should check whether the perpendicular bisector in BS can intersect
with ei, thus, the algorithm needs to compute the intersection set P (Line 12).
If there is no intersection point in ei, i.e., |P | = 0, based on Lemma 6, ei is a
legal edge. Otherwise, we continue to conduct further verification. Particularly,
the number of intersection perpendicular bisector IB is computed (Line 14).
Based on Lemma 7, if the number of IB, |IB|, is odd, it indicates ei is a fake
edge, the algorithm should report an error (Line 19). If |IB| is even, it has to
do further verification on ei. If pi ∈ ei is verified as a legal vertex, ei is an illegal
edge (Lines 14-17). If Zk is authenticated, the RkNN can be readily obtained
(Line 22).

5 Experiments

5.1 Experimental Settings

In this section, we evaluate the performance of our methods experimentally.
We implemented all methods in C++ and used cryptographic functions in the
Crypto++ library1. Experiments are run on a PC with Intel Core2 Duo 3GHz
CPU and 4 GB memory. We employ the SHA-256 as the hash function and 1024-
bit RSA as the signature scheme. We evaluate our methods using two real-world
datasets obtained from the U.S. Census Bureau2: 1) NA which contains 569k
data points from North America, and 2) LA which consists of 1314k data points
from Los Angeles. In order to evaluate bichromatic RkNN queries, we randomly
divide these points into two sets of almost equal sizes. One of the set corresponds
to the set of facilities and the other to the set of users. We vary k from 2 to 128
and the default value is 8. The page size is set to 4096 bytes.

VN-Auth in [4] is designed only for the monochromatic RkNN verification.
It cannot be used to bichromatic RkNN verification directly. Now we describe a
baseline method (BAS). Once the client obtains the VO from the LBS provider,
BAS does the same preliminary process (Lines 1-8) as in Algorithm 2. Then,
based on the data set D′ (Line 6), BAS adopts the method in [1] to compute
Zk. The objects oi ∈ Zk are the RkNN result.

Our approach proposed to verify both types of RkNN queries is based on
Advance Influence Zone Authenticaion. We call the method designed for the
client shown in Algorithm 2 AIZ-Auth . The approach designed for the server
side depicted in Algorithm 1 is called IZ-Veri. Due to space limitation, only
parts of experiment results are listed in following subsection.
1 http://www.cryptopp.com
2 http://www.census.gov/geo/www/tiger/

http://www.cryptopp.com
http://www.census.gov/geo/www/tiger/

638 G. Li et al.

5.2 Various Testing

As shown in Fig. 9a, as the value of k increases, the size of VO in both algorithms
grows larger. The reason is that, the cardinality of the result set for an RkNN
query is not determined by the parameter k. but depends on the actual data
distribution. Furthermore, some auxiliary objects used to verify query results
are also contained in the VO, while the auxiliary objects take a large part of
the VO.

Fig. 9b demonstrates the LBS time as a function of the query parameter k.
In comparison to VN-Auth scheme at the server, our method IZ-Veri gains a
better performance. This is mainly because i) Influence zone is the best known
algorithm for RkNN retrieval, which is experimentally verified in literature [1]
and ii) the computation of VO based on Cvi

of each vertex of influence zone is
a high efficient method.

(a) Size of VO (b) LBS time (c) Client time (d) Page access

Fig. 9. Monochromatic RkNN, Varying k on NA

Fig. 9c depicts the client verification time as a function of the query param-
eter k. As the value of k increases, the number of candidate objects grow expo-
nentially. AIZ-Auth gains better performance than VN-Auth. This is because,
AIZ-Auth verifies each vertex and edge based on the Cvi

, which is more simple
and efficient than six equal partition method adopted by VN-Auth.

Fig. 9d shows I/O cost at server. VN-Auth results in less I/O accesses our
method. However, the efficient I/O cost of VN-Auth is based on expensive data
transformation process at data owner (DO). As studied in literature [4], DO first
has to transforms each object by attaching neighborhood and authentication
information, which can take about more than 50 minutes on NA dataset [4].
However, our method does not need this transformation step.

The results of experiment for monochromatic RkNN on LA dataset are sim-
ilar to that in Fig. 9. Due to space limitation, we do not show them here. In
order to evaluate bichromatic RkNN queries, we randomly divide LA data set
into two sets of almost equal sizes. One of the set corresponds to the set of
facilities and the other to the set of users. Because no literature studied the
bichromatic RkNN queries, we only compare the BAS and AIZ-Auth at client
verification, which are shown in Fig. 10. AIZ-Auth has a better performance
than BAS. Furthermore, although LA dataset is much larger than NA dataset,
comparing with Fig. 9, we find that AIZ-Auth still has a steady performance,
which indicates AIZ-Auth is quite scalable with respect to data size.

Authentication of Reverse k Nearest Neighbor Query 639

(a) size of VO (b) LBS time (c) client time (d) page access

Fig. 10. Bichromatic RkNN, Varying k on LA

6 Conclusion

In this paper, we present a framework for authenticating RkNN queries based on
influence zone. The proposed methods can be used to authenticate both types of
RkNN results. Experimental results show that our verification methods can gain
a good performance. Our future work will study how to verify the continuous
RkNN results.

Acknowledgments. This work is supported by the State Key Program of National
Natural Science of China under Grant No. 61332001, National Natural Science Founda-
tion of China under Grants Nos. 61173049, 61300045,61309002 and China Postdoctoral
Science Foundation under Grant No. 2013M531696.

References

1. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: efficiently pro-
cessing reverse k nearest neighbors queries. In: 2011 IEEE 27th International
Conference on Data Engineering (ICDE), pp. 577–588. IEEE (2011)

2. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An
efficient technique to continuously monitoring reverse knn. Proceedings of the
VLDB Endowment 2(1), 1138–1149 (2009)

3. Chen, Q., Hu, H., Xu, J.: Authenticating top-k queries in location-based services
with confidentiality. Proc. of the VLDB Endowment 7(1), 49–60 (2014)

4. Hu, L., Ku, W.S., Bakiras, S., Shahabi, C.: Spatial query integrity with voronoi
neighbors. IEEE Transactions on Knowledge and Data Engineering 25(4),
863–876 (2013)

5. Jing, Y., Hu, L., Ku, W.S., Shahabi, C.: Authentication of k nearest neighbor
query on road networks. IEEE Transactions on Knowledge and Data Engineering
26(6), 1494–1506 (2014)

6. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: ACM SIGMOD Record, vol. 29, pp. 201–212. ACM (2000)

7. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, pp. 121–132. ACM (2006)

640 G. Li et al.

8. Lin, X., Xu, J., Hu, H., Lee, W.C.: Authenticating location-based skyline queries
in arbitrary subspaces. IEEE Transactions on Knowledge and Data Engineering
26(6), 1479–1493 (2014)

9. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

10. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM Transactions on Storage (TOS) 2(2), 107–138 (2006)

11. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality.
In: Proceedings of the Thirtieth International Conference on Very Large Data
Bases, vol. 30, pp. 744–755. VLDB Endowment (2004)

12. Wu, D., Choi, B., Xu, J., Jensen, C.: Authentication of Moving Top-k Spatial
Keyword Queries (to appear) (2014)

13. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Continuous reverse k-nearest-neighbor
monitoring. In: 9th International Conference on Mobile Data Management, MDM
2008, pp. 132–139. IEEE (2008)

14. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Finch: Evaluating reverse k-nearest-
neighbor queries on location data. Proceedings of the VLDB Endowment 1(1),
1056–1067 (2008)

15. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
pp. 782–793. VLDB Endowment (2007)

16. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Spatial outsourcing for
location-based services. In: IEEE 24th International Conference on Data Engi-
neering, ICDE 2008, pp. 1082–1091. IEEE (2008)

17. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Authenticated indexing
for outsourced spatial databases. The VLDB Journal, The International Journal
on Very Large Data Bases 18(3), 631–648 (2009)

18. Yiu, M.L., Lo, E., Yung, D.: Authentication of moving knn queries. In: 2011 IEEE
27th International Conference on Data Engineering (ICDE), pp. 565–576. IEEE
(2011)

19. Yung, D., Lo, E., Yiu, M.L.: Authentication of moving range queries. In: Proceed-
ings of the 21st ACM International Conference on Information and Knowledge
Management, pp. 1372–1381. ACM (2012)

Author Index

Aberer, Karl I-510
Ai, Pengqiang II-531
Aljubayrin, Saad II-189
Andersen, Ove II-471
Anh, Nguyen Kim II-139
Argueta, Carlos II-522
Arya, Krishan K. II-123

Balke, Wolf-Tilo I-493, II-169
Barukh, Moshe Chai I-334
Benatallah, Boualem I-334
Bi, Fei I-545
Bouguettaya, Athman II-399
Butler, Greg I-279
Butzmann, Lars II-488

Cao, Jianneng I-75
Chang, Chun-Hao II-522
Chang, Lijun I-545
Chao, Pingfu II-526
Chen, Lei I-108
Chen, Qing I-441
Chen, Qun II-309
Chen, Yi-Shin II-522
Cheng, Lin I-279
Cheng, Xiang I-567, I-589
Chiew, Kevin II-37
Christen, Peter II-329
Cui, Zhiming II-379

Dalvi, Rashmi II-498
Dan, Wu II-207
Dang, Zhe II-346
Ding, Xiaofeng II-89
Ding, Zhiming I-226
Dong, Guozhu I-39
Du, Jiang I-209
Duan, Lei I-39
Duan, Liang II-104

El Maarry, Kinda II-169
Endres, Markus II-292

Faust, Martin II-488

Gao, Yifan II-526
Gao, Yunjun II-37
Gong, Xudong I-108
Goyal, Vikram II-123
Gu, Yu I-244
Guan, Jihong II-435
Guo, Haoming I-226
Guo, Zhiliang I-145, I-160

Han, Yuxing II-223
Hao, Jingchao II-541
He, Bingsheng I-299
He, Chu I-441
He, Qinming II-37
He, Zhen II-189
He, Zhenying II-154
Higuchi, Ken II-275
Homoceanu, Silviu I-493
Honjo, Toshimori II-363
Hou, Lei I-125
Hsu, Ching-Hsien II-531
Hsu, Wynne II-452
Hu, Haibo I-609
Hu, Yiqing I-108
Huang, Chuanglin I-209
Huang, Hao II-37
Huang, Kai II-435
Huang, Wenchao I-108
Huang, Yifu II-435
Hung, Nguyen Quoc Viet I-510

Ishikawa, Yoshiharu I-92

Ji, Yusheng II-346
Jiang, Liyang II-3, II-154
Jiang, Tao II-309
Jiang, Wenbin II-89
Jiang, Zhiwen I-175
Jin, Cheqing II-104
Jin, Hai II-89
Jin, Peiquan I-209, II-536

Karapiperis, Dimitrios II-329
Kießling, Werner II-292
Kim, Jung-jae I-299
Klauck, Stefan II-488
Kou, Yue I-374, I-458
Kriegel, Hans-Peter II-19
Krogh, Benjamin II-471
Kuang, Xiaopeng II-379
Kusmierczyk, Tomasz I-55

Lee, Mong Li II-452
Li, Guohui I-625
Li, Guoliang I-589
Li, Jianjun I-625
Li, Juanzi I-125
Li, Kaiwen II-309
Li, Miao I-244
Li, Wenzhong II-418
Li, Xiao-Li I-125, II-3
Li, Xiaosong I-39
Li, Xue II-517
Li, Yujiao II-207
Li, Yukun II-531
Li, Zhanhuai II-309
Li, Zhixu II-399
Li, Zhoujun I-405
Lin, Xuemin I-545, II-223
Liu, An I-260, II-399
Liu, Chengfei I-226, I-260
Liu, Guanfeng I-226, II-399
Liu, Weiyi II-104
Liu, Zhenguang II-37
Long, Guodong II-517
Lu, Qiwei I-108
Lu, Sanglu II-418
Luo, Changyin I-625

Madria, Sanjay Kumar II-498
Makino, Masafumi II-275
Meinel, Christoph I-425
Meng, Xiaofeng I-145, I-160, I-609
Müller, Stephan II-488

Navathe, Shamkant B. II-123
Ng, Wilfred I-21, I-389
Nie, Tiezheng I-374, I-458
Nørvåg, Kjetil I-55
Nummenmaa, Jyrki I-39

Onizuka, Makoto II-363

Pan, Wei II-309
Panangadan, Anand II-57
Patel, Dhaval II-452
Plattner, Hasso II-488
Prasad, Sushil II-123
Prasanna, Viktor K. II-57

Qian, Zhuzhong II-418
Qin, Biao II-74
Qin, Yongrui II-259

Roocks, Patrick II-292

Sasaki, Yuya I-92
Schewe, Klaus-Dieter I-474
Schönfeld, Mirco I-191
Schubert, Erich II-19
Schwalb, David II-488
Sha, Chaofeng I-441
Shaabani, Nuhad I-425
Shan, Jing I-374
Shen, Derong I-374, I-458
Sheng, Quan Z. II-259
Sheng, Victor S. II-379
Sinzig, Werner II-488
Su, Sen I-567, I-589
Su, Yu I-125
Sugiura, Kento I-92
Sun, Chenchen I-458

Tam, Nguyen Thanh I-510
Tan, Zijing I-441
Tang, Changjie I-39
Tang, Peng I-567
Tat, Nguyen Nguyen II-139
Taylor, Kerry II-259
Teng, Yiping I-589
Than, Khoat II-139
Thanh, Do Son I-510
Theodoratos, Dimitri I-3
Tian, Yun I-316
Tong, Hanghang I-353
Torp, Kristian II-471
Tran, Ha-Nguyen I-299
Tsuji, Tatsuo II-275

Uflacker, Matthias II-488
Unankard, Sayan II-517

642 Author Index

Van Linh, Ngo II-139
Vatsalan, Dinusha II-329
Verykios, Vassilios S. II-329

Wan, Shouhong I-209, II-536
Wang, Changping II-541
Wang, Chaokun II-541
Wang, Hao II-541
Wang, Hongya II-531
Wang, Jiangtao I-145, I-160
Wang, Jin I-175
Wang, Liping II-223
Wang, Lu I-609
Wang, Qing I-474
Wang, Senzhang I-405
Wang, Shan II-241
Wang, Wei I-353, I-441
Wang, Woods I-474
Wang, Xinyu I-389
Wang, Xiujun II-346
Wang, Yulong I-589
Wang, Zhong II-309
Wang, Ziqi I-529
Weerasiri, Denis I-334
Wei, Furu I-21
Werner, Martin I-191
Wu, Jian II-379
Wu, Min I-75
Wu, Xiaoying I-3

Xiao, Yanghua I-353
Xiao, Yingyuan II-531
Xie, Jiazhuang II-536
Xie, Zhipeng II-3, II-154, II-207
Xing, Chunxiao I-175
Xiong, Yan I-108
Xu, Bojian I-316
Xu, Enliang II-452
Xu, Hui II-89
Xu, Jiajie I-226, I-260, II-379, II-399
Xu, Jianliang I-567, I-609
Xu, Peng I-567

Xu, Wenlin II-104
Xue, Zhong-Bin II-241

Yamamuro, Takeshi II-363
Yan, Han I-567
Yang, Deqing I-353
Yang, Hao I-39
Yang, Weidong II-207
Yang, Xiaoyan II-526
Ye, Tengju II-3, II-154
Ye, Xiaojun II-541
Yu, Ge I-244, I-374, I-458
Yu, Philip S. I-405
Yu, Wenzhe II-526
Yue, Kun II-104
Yue, Lihua I-209, II-536

Zhang, Bolei II-418
Zhang, Honghui I-405
Zhang, Jiawei I-405
Zhang, Junjun I-353
Zhang, Ming I-529
Zhang, Rong II-526
Zhang, Rui II-189
Zhang, Wei Emma II-259
Zhang, Wenjie I-545, II-223
Zhang, Xiaoming I-405
Zhang, Ying II-223
Zhang, Yinuo II-57
Zhang, Yong I-175
Zhao, Baohua II-346
Zhao, Lei I-260, II-399
Zhao, Pengpeng I-260, II-379
Zhao, Zhou I-21, I-389
Zheng, Kai I-226, II-399
Zheng, Xiao II-346
Zhou, Aoying II-526
Zhou, Ming I-21
Zhou, Shuigeng II-435
Zhou, Xuan II-241
Zhou, Yongluan I-75
Zhu, Chenghao I-260
Zimek, Arthur II-19

Author Index 643

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Data Mining I
	Leveraging Homomorphisms and Bitmaps to Enable the Mining of Embedded Patterns from Large Data Trees
	1 Introduction
	2 Preliminaries
	3 Proposed Approach
	3.1 Candidate Generation
	3.2 Support Computation
	3.3 The Tree Pattern Mining Algorithm EmbTPMBit
	3.4 An Improvement of EmbTPMBit: Algorithm EmbTPMBit+

	4 Experimental Evaluation
	4.1 Time Performance
	4.2 Memory Usage
	4.3 Scalability Comparison on Treebank

	5 Related Work
	6 Conclusion
	References

	Cold-Start Expert Finding in Community Question Answering via Graph Regularization
	1 Introduction
	2 Background
	3 Cold-Start Expert Finding Algorithm
	3.1 Basic Latent Model
	3.2 Graph Regularized Latent Model
	3.3 The Optimization Method
	3.4 The Expert Finding Algorithm

	4 Experimental Study
	4.1 Datasets
	4.2 Evaluation Criteria
	4.3 Performance Evaluation

	5 Related Work
	6 Conclusion
	References

	Mining Itemset-Based Distinguishing Sequential Patterns with Gap Constraint
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Design of iDSP-Miner
	4.1 Candidate Element Generation and Representation
	4.2 Pattern Mining

	5 Empirical Evaluation
	5.1 Effectiveness
	5.2 Efficiency

	6 Conclusions
	References

	Mining Correlations on Massive Bursty Time Series Collections
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Correlation of Bursty Streams
	5 Indexing and Mining
	5.1 Naive Approach
	5.2 Interval Boxes Index
	5.3 List-Based Index
	5.4 Hybrid Index
	5.5 On-Line Maintenance

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions
	References

	Data Streams and Time Series
	Adaptive Grid-Based k-median Clustering of Streaming Data with Accuracy Guarantee
	1 Introduction
	2 Preliminaries
	2.1 Data Stream
	2.2 k-medians Clustering and Its Approximation

	3 Theoretical Analysis
	3.1 Accuracy Analysis of Grid-Based k-median Clustering
	3.2 Determining Grid Granularity

	4 The Adaptive Grid-Based Solution
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness and Efficiency
	5.3 Storage and Tuple-Processing Cost

	6 Related Work
	7 Conclusion
	References

	Grouping Methods for Pattern Matching in Probabilistic Data Streams
	1 Introduction
	2 Preliminaries
	3 Grouping Policies
	4 Algorithms for Generating Groups
	4.1 The Case of Complete Overlap
	4.2 The Case of Single Overlap
	4.3 Use of Threshold of Match Probability

	5 Efficient Calculation of Group Probability
	5.1 The Case of Single Overlap
	5.2 The Case of Complete Overlap

	6 Experiments
	6.1 Effect of Parameters
	6.2 Effect of Transducer-Based Approach

	7 Related Work
	8 Conclusion
	References

	Fast Similarity Search of Multi-dimensional Time Series via Segment Rotation
	1 Introduction
	2 Preliminaries
	2.1 Related Work
	2.2 Extending LB_Keogh and LB_Improved to Multi-dimensional Time Series

	3 LB_rotation
	3.1 Intuitive Explanation
	3.2 Formal Definition of LB_rotation
	3.3 Detailed Steps of LB_rotation
	3.4 Performance Analysis

	4 Experiment
	4.1 Setup and Datasets
	4.2 Evaluation Metrics
	4.3 The Effect of Segment Number m
	4.4 The Effect of Warping Constraint c on Tightness and Pruning Power
	4.5 The Effect of Warping Constraint c on Search Time

	5 Conclusion and Future Work
	References

	Measuring the Influence from User-Generated Content to News via Cross-Dependence Topic Modeling
	1 Introduction
	2 Problem and the Proposed Method
	2.1 Preliminaries and Problem Definition
	2.2 Topic Extraction from Two Text Streams
	2.3 Topic Influence Link Discovery
	2.4 Influence Quantification

	3 Experiments
	3.1 Data Preparation
	3.2 Topic Extraction
	3.3 Influence Link Discovery
	3.4 Influence Quantification

	4 Related Work
	4.1 News and UGC Analysis
	4.2 Streaming and Temporal Topic Model
	4.3 Topic Evolution and Lifecycle

	5 Conclusion and Future Work
	References

	Database Storage and Index I
	SASS: A High-Performance Key-Value Store Design for Massive Hybrid Storage
	1 Introduction
	2 SASS Design and Implementation
	2.1 Overview of SASS
	2.2 Block, Page and Record
	2.3 Operation Log, Operation Log Page
	2.4 Log Page Buffer Cluster, Read Buffer and Temporary Buffer
	2.5 Operation List
	2.6 Hierarchical Bloom Filter
	2.7 Key Set and Get Operations

	3 Advanced Issues
	3.1 Merge
	3.2 Concurrency Control

	4 Experimental Evaluation
	4.1 Set and Get Performance
	4.2 Impact of the Length of Operation List
	4.3 Impact of Merge Operation

	5 Related Work
	6 Conclusion
	References

	An Efficient Design and Implementation of Multi-level Cache for Database Systems
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Architectural Components

	4 Cost-Aware Buffer Management Policy
	5 SSD Data Management
	5.1 Block-Based Data Admission Policy
	5.2 Memory-Efficient Replacement Policy

	6 Data Recovery for System Failure
	7 Performance Evaluation
	7.1 Prototype Design and Implementation
	7.2 TPC-C Evaluation
	7.3 TPC-H Evaluation

	8 Conclusions
	References

	A Cost-Aware Buffer Management Policy for Flash-Based Storage Devices
	1 Introduction
	2 Problem Definition
	2.1 I/O Model for Flash Devices
	2.2 Combine Frequency and Recency

	3 Cost Model
	3.1 Requirements for Cost Model
	3.2 Page Weight Calculation

	4 Details of Implementation
	4.1 Combing the two models
	4.2 Data Structure and Algorithms of CARF

	5 Evaluation
	5.1 Experiment Setup
	5.2 Results on Synthetic Workload
	5.3 Results on Benchmarking
	5.4 Evaluate CPU Time

	6 Related Work
	7 Conclusion
	References

	The Gaussian Bloom Filter
	1 Introduction
	2 Bloom Filter
	3 Gaussian Bloom Filter
	3.1 Properties
	3.2 Efficient Representation with Small Counters
	3.3 Efficient and Local Evaluation of Gaussian Function

	4 Evaluation
	4.1 Gaussian Bloom Filter in Apache Cassandra
	4.2 Performance of a GPU implementation

	5 Conclusion
	References

	Spatio-Temporal Data I
	Detecting Hotspots From Trajectory Data in Indoor Spaces
	1 Introduction
	2 Problem Statement
	2.1 Indoor Space
	2.2 Indoor Hotspot Query

	3 Indoor Hotspot Query Evaluation
	3.1 General Idea
	3.2 Pre-processing Trajectories: Detecting Indoor Stay Trajectories
	3.3 The Algorithm for Indoor Hotspot Query Processing

	4 Performance Evaluation
	4.1 Experimental Settings
	4.2 Results

	5 Related Work
	6 Conclusions
	References

	On Efficient Passenger Assignment for Group Transportation
	1 Introduction
	2 Related Works
	3 Problem Definition
	3.1 Spatial Networks
	3.2 Passenger Assignment for Group Transportation

	4 Exact Algorithms
	4.1 Integer Programming Based Assignment (IPA)
	4.2 Maximum Bipartite Matching Based Assignment (MBMA)
	4.2.1 Assignment Initialization
	4.2.2 Assignment Improvement
	4.2.3 Iterative Processing

	5 TN-FPS Based Algorithm
	6 Experimental Study
	7 Conclusion and Future Work
	References

	Effective and Efficient Predictive Density Queries for Indoor Moving Objects
	1 Introduction
	2 Related Work
	3 Problem Definition and Index Structure
	3.1 Problem Definitions
	3.2 Markov Chain Index

	4 Filtering Step
	4.1 Spatial Pruning
	4.2 Efficient Pruning of Probability Bounds
	4.3 Probability Pruning by Grouping

	5 Refinement Step
	5.1 Exact Methods
	5.2 Approximate Sampling Methods
	5.3 Predictive Density Queries Algorithms

	6 Experiment
	6.1 Experiment Setting
	6.2 Experimental Results

	7 Conclusions
	References

	Efficient Trip Planning for Maximizing User Satisfaction
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Satisfaction-Score-First Trip Planning Algorithm
	5 Spatial Sketch-Based Approximate Trip Planning Algorithm
	5.1 Overview
	5.2 Preprocessing
	5.3 Sketched Trip Search on Clusters
	5.4 Trip Search On Sites

	6 Experimental Evaluation
	7 Conclusion
	References

	Modern Computing Platform
	Accelerating Search of Protein Sequence Databases Using CUDA-Enabled GPU
	1 Introduction
	1.1 A Brief History of the HMMER Software
	1.2 Organization of the Paper

	2 Background
	2.1 CUDA-Enabled GPU
	2.2 CUDA Accelerated Smith-Waterman
	2.3 CUDA Accelerated HMMER

	3 HMMER3 and Its Implementation on a CUDA-Enabled GPU
	3.1 GPU Implementation of the MSV Filter

	4 Evaluation
	4.1 Impact of Number of Cores
	4.2 Comparison with HMMER2
	4.3 Contribution of Optimization Steps

	5 Conclusion
	References

	Fast Subgraph Matching on Large Graphs using Graphics Processors
	1 Introduction
	2 Preliminaries
	2.1 Subgraph Matching Problem
	2.2 Subgraph Matching Algorithms
	2.3 General-Purpose Computing on GPUs

	3 GpSM Overview
	3.1 Filtering-and-Joining Approach
	3.2 Graph Representation

	4 Filtering Phase
	4.1 Initializing Candidate Vertices
	4.2 Refining Candidate Vertices

	5 Joining Phase
	6 Extended GpSM for Very Large Graphs
	7 Experiment Results
	7.1 Comparison with State-of-the-art CPU Algorithms
	Synthetic Datasets.
	Real Datasets.
	Comparison with TurboISO.

	7.2 Scalability Tests

	8 Conclusions
	References

	On Longest Repeat Queries Using GPU
	1 Introduction
	2 Problem Formulation
	3 Preliminary
	4 Two Simple and Parallelizable Sequential Algorithms
	4.1 Use the Raw LLR Array
	4.2 Use the Compact LLR Array

	5 Parallel Implementation on GPU
	5.1 Compute LR's Using the Raw LLR Array
	5.2 Compute LR's Using the Compact LLR Array
	5.3 Advantages and Disadvantages: `3́9`42`"̇613A``45`47`"603ALLRr vs. `3́9`42`"̇613A``45`47`"603ALLRc

	6 Experimental Study
	6.1 Time
	6.2 Space
	6.3 Scalability

	7 Conclusion and Future Work
	References

	Process-driven Configuration of Federated Cloud Resources
	1 Introduction
	2 Unified Representation of Cloud Resource Configurations
	2.1 Resource Configuration Service (RCS)
	Re-configuration Policy.

	2.2 Cloud Resource Configuration Description(CRCD) Model

	3 Modeling Cloud Resource Configuration Tasks
	Motivating Scenario:
	Cloud Resource Deployment Tasks:
	Cloud Resource Re-configuration Policies:

	4 Translating Cloud Resource Configuration Tasks into BPMN
	Translating CRD-Tasks:
	Translating CRR-Policies:

	5 Implementation and Evaluation
	Evaluation:
	Analysis and Discussion:

	6 Related Work
	Federated Cloud Resource Configuration and Orchestration Frameworks:
	Unified Representation and Invocation of Heterogeneous CloudResource Configuration Services:
	Modeling Dynamic Orchestration of Federated Cloud Resources:

	7 Conclusions and Future Work
	References

	Social Networks I
	An Integrated Tag Recommendation Algorithm Towards Weibo User Profiling
	1 Introduction
	1.1 Requirements
	1.2 Contributions and Organization

	2 Empirical Study
	2.1 Homophily in Tagging Behavior
	Metrics of Evaluation:
	Results:

	2.2 Co-Occurrence in Tagging Behavior
	Ranking:
	Results:

	3 Tag Recommendation Algorithm
	3.1 Step 1: Recommendation by Homophily
	3.2 Step 2: Expansion by Co-Occurrence
	3.3 Step 3: Removing Semantic Redundancy
	3.4 Parameter Learning

	4 Evaluation
	4.1 Experimental Settings
	4.2 Effectiveness
	Global Performance:
	Effectiveness of Each Step:

	4.3 Inference of User Profiles
	Case Studies:

	5 Related Work
	6 Conclusion

	An Efficient Approach of Overlapping Communities Search
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Overlapping Community Search Algorithms
	4.1 Naive Algorithm
	4.2 Optimized OCS Algorithm
	4.3 Optimized OCS-M Algorithm
	4.4 Approximate Strategies

	5 Experimental Study
	5.1 Experiment Setup
	5.2 Performance
	5.3 Quality
	5.4 Influence of Node Degree Restriction

	6 Conclusion

	A Comparative Study of Team Formation in Social Networks
	1 Introduction
	2 Background
	2.1 Notion and Notation
	2.2 Problem Definition

	3 Related Work
	4 Implementation
	4.1 R-TF Algorithm
	4.2 Steiner-TF Algorithm
	4.3 SD-TF Algorithm
	4.4 LD-TF Algorithm

	5 Experiments
	5.1 Datasets
	5.2 Performance Evaluation
	Communication Cost of the Team
	Running Time of TF Algorithms.
	Cardinality of the Team.
	Personal Cost of the Team.
	Workload of the Team.

	6 Conclusion
	References

	Inferring Diffusion Networks with Sparse Cascades by Structure Transfer
	1 Introduction
	2 Problem Statement
	3 Methodology
	3.1 Network Inference Based on Generative Model
	3.2 Link Prediction in Diffusion Network with Structure Transfer
	3.3 TrNetInf: Network Inference Incorporating Structure Transfer

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Parameter Analysis
	4.3 Quantitive Comparison with Baselines

	5 Related Work
	6 Conclusion
	References

	Information Integration and Data Quality
	Scalable Inclusion Dependency Discovery
	1 Introduction
	2 Preliminaries
	3 Attribute Clustering
	4 Algorithm
	4.1 S-indd
	4.2 Extending S-indd

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Repairing Functional Dependency Violations in Distributed Data
	1 Introduction
	2 Preliminaries
	3 Analyses of Distributed Data Repairing
	4 Distributed Equivalence Classes
	5 Distributed Data Repairing Based on Equivalence Class
	5.1 Implementation of Equivalence Class
	5.2 Distributed Equivalence Class for Data Repairing
	5.3 Optimization Strategies

	6 Experimental Study
	7 Conclusions
	References

	GB-JER: A Graph-Based Model for Joint Entity Resolution
	1 Introduction
	2 Preliminaries
	2.1 Problem Formalization
	2.2 Entity Representation Relationship Graph

	3 The Graph-Based Joint Entity Resolution Model
	3.1 Overview
	3.2 Joint Match
	3.3 Joint Merge
	3.4 Similarity Propagation
	3.5 Discussion

	4 Experimental Evaluation
	4.1 Experiment Preliminaries
	4.2 General Test
	4.3 Components Test
	4.4 Incremental Joint ER Test

	5 Related Work
	6 Conclusion
	References

	Provenance-Aware Entity Resolution: Leveraging Provenance to Improve Quality
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 ER Indexing
	5 ER Result Repairs
	5.1 Must-link: Merging
	5.2 Cannot-link: Splitting
	5.3 Repair Strategies
	5.4 Bootstrapping

	6 Experiments
	6.1 Experimental Setup
	6.2 Time and Space Requirements
	6.3 Human Effort
	6.4 ER Quality

	7 Conclusions
	References

	Information Retrieval and Summarization
	A Chip Off the Old Block – Extracting Typical Attributes for Entities Based on Family Resemblance
	1 Introduction
	2 A Brief Glance at Google’s Knowledge Graph
	3 Related Work
	4 The Concept of Typicality
	4.1 Attribute Typicality

	5 Designing the Retrieval System
	5.1 Information Extraction
	5.2 Query Engine

	6 Qualitative Evaluation
	6.1 Experimental Setup
	6.2 Experiments

	7 Conclusions and Future Work
	References

	Tag-Based Paper Retrieval: Minimizing User Effort with Diversity Awareness
	1 Introduction
	2 Tag-Based Paper Retrieval
	3 Tag Suggestion Quality
	3.1 Informativeness
	3.2 Diversity Penalty
	3.3 Put It Altogether

	4 Efficient Tag Suggestion
	4.1 Problem Definition
	4.2 Algorithm
	4.3 Algorithm Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Evaluations on Informativeness
	5.3 Evaluations on Diversity

	6 Related Work
	7 Conclusions and Future Work
	References

	Feedback Model for Microblog Retrieval
	1 Introduction
	2 Related Work
	2.1 Temporal Information Retrieval
	2.2 Microblog Retrieval
	2.3 Pseudo-Relevance Feedback via Query Expansion

	3 Motivation
	3.1 Language Model in Microblog Retrieval
	3.2 Temporal in Microblog Retrieval

	4 Models
	4.1 Feedback Language Model
	4.2 Query Expansion Model
	Lexical Expansion.
	Temporal Expansion.

	4.3 Feedback Model

	5 Experiments
	5.1 Setup
	5.2 Evaluation of Feedback Language Model
	5.3 Evaluation of Query Expansion Model
	5.4 Evaluation of Feedback Model
	5.5 Temporal Query Analysis

	6 Conclusion
	References

	Efficient String Similarity Search: A Cross Pivotal Based Approach
	1 Introduction
	2 Problem Definition
	3 A Cross Pivotal Based Approach
	3.1 Cross Pivotal Filter
	3.2 Cross Pivotal Based Approach
	3.3 Pivotal Set Selection

	4 Advanced Filters
	4.1 Pivotal Substitution Filter
	4.2 Position Match Filter

	5 Extension for Dynamic Thresholds
	6 Experiments
	6.1 Comparison with State-of-the-art Approaches
	6.2 Evaluation on Advanced Filters

	7 Conclusion
	References

	Security and Privacy
	Authentication of Top-k Spatial Keyword Queries in Outsourced Databases
	1 Introduction
	2 Background and Problem Formulation
	2.1 Background
	2.2 Problem Formulation

	3 A Basic Approach
	3.1 Index Structure
	3.2 Query Processing
	3.3 Authenticating Query Results
	3.4 Limitations of the Basic Approach

	4 Tree-Forest Indexes Based Scheme
	4.1 Index Structure
	4.2 Query Processing
	4.3 Authenticating Query Results

	5 Entry Pruning Based Scheme
	5.1 Index Structure
	5.2 Query Processing
	5.3 Authenticating Query Results

	6 Experimental Evaluation
	6.1 Experiment Settings
	6.2 Cost at the DO/LBSP
	6.3 Cost at the LBSP
	6.4 Cost Between the LBSP and the User
	6.5 Cost at the User
	6.6 Scalability
	6.7 Comparison with AMSK

	7 Related Work
	7.1 Spatial Keyword Query
	7.2 Query Authentication

	8 Conclusion
	References

	Privacy-Preserving Top-k Spatial Keyword Queries over Outsourced Database
	1 Introduction
	2 Problem Formulation
	2.1 Top-k Spatial Keyword Query
	2.2 System and Threat Model
	2.3 Asymmetric Scalar-Product-Preserving Encryption with Noise

	3 Privacy-Preserving Top-K Spatial Keyword Query Scheme
	3.1 Overview
	3.2 Unified Encryption for Secure Index Construction
	3.3 Anchor-Based Position Determination
	3.4 Position-Distinguished Trapdoor Generation

	4 Analysis
	4.1 Validity Analysis
	4.2 Security Analysis

	5 Experimental Evaluation
	5.1 Setup
	5.2 Index Construction
	5.3 Trapdoor Generation
	5.4 Query Processing
	5.5 Query Accuracy
	5.6 Scalability

	6 Related Work
	7 Conclusion
	References

	Bichromatic Reverse Nearest Neighbor Query without Information Leakage
	1 Introduction
	2 Related Work
	2.1 Bichromatic Reverse Nearest Neighbor
	2.2 Private Information Retrieval

	3 Problem Definition
	3.1 System Model
	3.2 Adversary and Security Model

	4 Private BRNN Processing Framework on MonoDB
	4.1 Baseline BRNN Processing
	4.2 MonoDB Design and Retrieval Plan

	5 Spatial Partition
	5.1 KD-tree Partition
	5.2 Adaptive Grid Partition

	6 Optimization
	7 Experimental Evaluation
	7.1 Experiment Settings
	7.2 Performance Comparison
	7.3 Effect of Space Partitions
	7.4 Effectiveness of Optimizations

	8 Conclusion
	References

	Authentication of Reverse k Nearest Neighbor Query
	1 Introduction
	2 Related Work and Background
	3 Problem Definition and Preliminaries
	4 Solution
	4.1 Query Processing at the LBS Provider Side
	4.2 Authentication Processing at the Client

	5 Experiments
	5.1 Experimental Settings
	5.2 Various Testing

	6 Conclusion
	References

	Author Index

