
6
Simulation Optimization

This chapter is organized as follows. Section 6.1 introduces the optimization
of real systems that are modeled through either deterministic or random
simulation; this optimization we call simulation optimization or briefly op-
timization. There are many methods for this optimization, but we focus on
methods that use specific metamodels of the underlying simulation models;
these metamodels were detailed in the preceding chapters, and use either
linear regression or Kriging. Section 6.2 discusses the use of linear regres-
sion metamodels for optimization. Section 6.2.1 summarizes basic response
surface methodology (RSM), which uses linear regression; RSM was devel-
oped for experiments with real systems. Section 6.2.2 adapts this RSM to
the needs of random simulation. Section 6.2.3 presents the adapted steepest
descent (ASD) search direction. Section 6.2.4 summarizes generalized RSM
(GRSM) for simulation with multiple responses. Section 6.2.5 summarizes
a procedure for testing whether an estimated optimum is truly optimal—
using the Karush-Kuhn-Tucker (KKT) conditions. Section 6.3 discusses
the use of Kriging metamodels for optimization. Section 6.3.1 presents effi-
cient global optimization (EGO), which uses Kriging. Section 6.3.2 presents
Kriging and integer mathematical programming (KrIMP) for the solution
of problems with constrained outputs. Section 6.4 discusses robust op-
timization (RO), which accounts for uncertainties in some inputs. Sec-
tion 6.4.1 discusses RO using RSM, Sect. 6.4.2 discusses RO using Kriging,
and Sect. 6.4.3 summarizes the Ben-Tal et al. approach to RO. Section 6.5

© Springer International Publishing Switzerland 2015
J.P.C. Kleijnen, Design and Analysis of Simulation Experiments,
International Series in Operations Research & Management
Science 230, DOI 10.1007/978-3-319-18087-8 6

241

242 6. Simulation Optimization

summarizes the major conclusions of this chapter, and suggests topics for
future research. The chapter ends with Solutions of exercises, and a long
list of references.

6.1 Introduction

In practice, the optimization of engineered systems (man-made artifacts)
is important, as is emphasized by Oden (2006)’s “National Science Foun-
dation (NSF) Blue Ribbon Panel” report on simulation-based engineering.
That report also emphasizes the crucial role of uncertainty in the input data
for simulation models; we find that this uncertainty implies that robust
optimization is important.
In academic research, the importance of optimization is demonstrated by

the many sessions on this topic at the yearly Winter Simulation Conferences
on discrete-event simulation; see
http://www.wintersim.org/.
The simplest type of optimization problems has no constraints for the

input or the output, has no uncertain inputs, and concerns the expected
value of a single (univariate) output; see the many test functions in Regis
(2014). Obviously, in deterministic simulation the expected value is iden-
tical to the observed output of the simulation model for a given input
combination. In random simulation, the expected value may also represent
the probability of a binary variable having the value one, so P (w = 1) = p
and P (w = 0) = 1 − p so E(w) = p. The expected value, however, ex-
cludes quantiles (e.g., the median and the 95% quantile or percentile) and
the mode of the output distribution. Furthermore, the simplest type of op-
timization assumes that the inputs are continuous (not discrete or nominal;
see the various scales discussed in Sect. 1.3). The assumption of continuous
inputs implies that there is an infinite number of systems, so we cannot
apply so-called ranking and selection (R&S) and multiple comparison pro-
cedures (there are many publications on these procedures; see the next
paragraph). We also refer to
http://simopt.org/index.php,

which is a testbed of optimization problems in discrete-event simulation.
There are so many optimization methods that we do not try to summa-
rize these methods. Neither do we refer to references that do summarize
these methods—except for some very recent comprehensive references on
simulation optimization that we list in the following note.
Note: Ajdari and Mahlooji (2014), Alrabghi and Tiwari (2015),

Chau et al. (2014), Dellino and Meloni (2015), Figueira and
Almada-Lobo (2014), Fu et al. (2014), Gosavi (2015), Homem-de-Mello
and Bayraksan (2014), Hong et al. (2015), Jalali and Van Nieuwenhuyse
(2015), Lee et al. (2013), Lee and Nelson (2014), Qu et al. (2015), Pasupa-
thy and Ghosh (2014), Tenne and Goh (2010), Van der Herten et al. (2015)
with its 800 pages, Xu et al. (2015) and Zhou et al. (2014).

http://www.wintersim.org/
http://simopt.org/index.php

6.1 Introduction 243

In this chapter we focus on optimization that uses metamodels (approx-
imations, emulators, surrogates); metamodels were introduced in Sect. 1.2.
Moreover, we focus on metamodels that use either linear regression or Krig-
ing; these two types of metamodels are detailed in the preceding four chap-
ters. Jalali and Van Nieuwenhuyse (2015) claims that metamodel-based
optimization is “relatively common” and that RSM is the most popular
metamodel-based method, while Kriging is popular in theoretical publica-
tions. Like we did in the preceding chapters, we consider both deterministic
and random simulation models in the present chapter. We define random
simulation (including discrete event simulation) as simulation that uses
pseudorandom numbers (PRN).
Note: Outside the discrete-event simulation area, some authors speak of

RSM but they mean what we call the what-if regression-metamodeling ap-
proach, not the sequential (iterative) optimization approach. Other authors
speak of RSM, but use global Kriging instead of local low-order polynomi-
als. Many authors use the term “response surface” instead of “metamodel”;
an example is Rikards and Auzins (2002).
Like in the preceding chapters, we focus on expensive simulation, in which

it takes relatively much computer time for a single simulation run (such a
run is a single realization of the time path of the simulated system). For ex-
ample, 36 to 160 h of computer time were needed to simulate a crash model
at Ford Motor Company; see the panel discussion reported in Simpson
et al. (2004). This panel also reports the example of a (so-called “cooling”)
problem with 12 inputs, 10 constraints, and 1 objective function. For such
expensive simulations, many simulation optimization methods are unprac-
tical. An example is the popular software called OptQuest (which combines
so-called tabu search, neural networks, and scatter search; it is an add-on to
discrete-event simulation software such as Arena, CrystallBall, MicroSaint,
ProModel, and Simul8); see
http://www.opttek.com/OptQuest.

OptQuest requires relatively many simulation replications and input com-
binations; see the inventory example in Kleijnen and Wan (2007). For-
tunately, the mathematical and statistical computations required by op-
timization based on RSM or Kriging are negligible—compared with the
computer time required by the “expensive” simulation runs.
In many OR applications, a single simulation run is computationally

inexpensive, but there are extremely many input combinations; e.g., an
M/M/1 model may have one input—namely, the traffic rate—that is con-
tinuous, so we can distinguish infinitely many input values but we can
simulate only a fraction of these values in finite time. Actually, most sim-
ulation models have multiple inputs (say) k, so there is the “curse of di-
mensionality”; e.g., if we have k = 7 inputs (also see Miller 1956) and we
experiment with only 10 values per input, then we still have 107 (10 mil-
lion) combinations. Moreover, a single run may be expensive if we wish to
estimate the steady-state performance of a queueing system with a high

http://www.opttek.com/OptQuest

244 6. Simulation Optimization

traffic rate; e.g. we might need to simulate one million customers. Finally,
if we wish to estimate the failure probability of a highly reliable system,
then we need to simulate extremely many customers—unless we apply im-
portance sampling.
Note: This chapter is based on Kleijnen (2014).

6.2 Linear Regression for Optimization

Linear regression models are used in RSM. We shall discuss RSM in several
subsections; namely Sect. 6.2.1 on basic RSM, Sect. 6.2.2 on RSM in ran-
dom simulation, Sect. 6.2.3 on adapted steepest descent (ASD), Sect. 6.2.4
on generalized RSM (GRSM) for multiple responses, and Sect. 6.2.5 on
testing the KKT conditions of an optimum estimated through GRSM. We
shall return to RSM in the section on robust optimization; see especially
Sect. 6.4.1.

6.2.1 Response Surface Methodology (RSM): Basics

Originally, RSM was developed for the optimization of real (physical)
systems.
Note: The classic article is Box and Wilson (1951). The origin of RSM is

nicely discussed in Box (1999), an overview of RSM publications during the
period 1966–1988 is Myers et al. (1989) and a recent overview is Khuri and
Mukhopadhyay (2010), a popular handbook is Myers et al. (2009), and
recent RSM software can be found on the Web; e.g., the Design-Expert
software and Minitab’s “Response Optimizer” are found on
www.statease.com

http://www.minitab.com/.
RSM in simulation was first detailed in the monograph Kleijnen (1975).

Unfortunately, RSM (unlike search heuristics such as OptQuest) has not
yet been implemented as an add-on to commercial off the shelf (COTS)
simulation software.
Note: One of the first case-studies on RSM in random simulation is

Van den Bogaard and Kleijnen (1977), reporting on a computer center
with two servers and three priority classes—with small, medium, and large
jobs—estimating the 90% quantiles of the waiting times per class for dif-
ferent class limits, and applying RSM to find the optimal class limits. RSM
in random simulation is also discussed in Alaeddini et al. (2013), Barton
and Meckesheimer (2006), Huerta and Elizondo (2014), Law (2015), and
Rosen et al. (2008). Google gave more than two million results for the term
“Response Surface Methodology”, on 4 February 2014.
RSM treats the real system or its simulation model—either a determinis-

tic or a random model—as a black box ; i.e., RSM observes the input/output

www.statease.com
http://www.minitab.com/

6.2 Linear Regression for Optimization 245

(I/O) of the simulation model—but not the internal variables and specific
functions implied by the simulation’s computer modules. RSM is a sequen-
tial heuristic; i.e., it uses a sequence of local experiments that is meant
to lead to the optimum input combination. Note that an input combina-
tion is also called a point or a scenario. RSM uses design of experiments
(DOE) and the concomitant linear regression analysis. Though RSM is only
a heuristic, it has gained a good track record, as we shall see in the next
subsections.
Regarding this track record, we add that practitioners may not be in-

terested in convergence proofs, because realistic experiments may be so
expensive that large sample sizes are impossible; e.g., the computer budget
may be so limited that only a small sample is possible (see the literature
on optimal computer budget allocation or OCBA). Practitioners may be
more interested in finding better solutions than the current one. Actually,
we may claim that “the best is the enemy of the better” (this claim is
inspired by Voltaire’s expression “le mieux est l’ennemi du bien” or “per-
fect is the enemy of good”). Herbert Simon (1956) claims that humans
strive for a “satisficing” solution instead of the optimal solution. Samuel-
son (2010) also emphasizes that it may be impractical to search for the
very best. Furthermore, the website
http://simopt.org/index.php

states “We are particularly interested in increasing attention on the fi-
nite time performance of algorithms, rather than the asymptotic results
that one often finds in related literature”. Finally, we quote an anonymous
source: “Unfortunately, these theoretical convergence results mean little in
practice where it is more important to find high quality solutions within a
reasonable length of time than to guarantee convergence to the optimum
in an infinite number of steps.”
We assume that RSM is applied, only after the important inputs and

their experimental area have been identified; i.e., before RSM starts, we
may need to use screening to identify the really important inputs among
the many conceivably important inputs. Case studies illustrating screen-
ing followed by RSM are Morales-Enciso and Branke (2015) and Shi et al.
(2014). In Chap. 4 we detailed various screening methods, focusing on se-
quential bifurcation. Chang et al. (2014) combines RSM with screening in a
single method. We point out that RSM without a preceding screening phase
may imply the simulation of extremely many combinations of simulation
inputs, as we shall see in this section.
RSM starts with a sequence of local metamodels that are first-order poly-

nomials in the inputs. Once the optimum seems close, RSM augments the
latest first-order polynomial to a second-order polynomial. Basic RSM tries
to minimize the expected value of a single output, with continuous inputs
and without any constraints:

min E(w0|z) (6.1)

http://simopt.org/index.php

246 6. Simulation Optimization

where E(w0|z) is the goal or objective output (in Sect. 6.2.4 we shall discuss
multiple outputs wh with h = 0, 1, . . ., r), which is to be minimized through
the choice of the input combinations z = (z1, . . . , zk)

′ where zj (j = 1, . . . k)
denotes the jth “original” input; i.e., the inputs are not standardized such
that they lie between −1 and 1 (sometimes, the inputs are standardized
such they lie between 0 and 1). Obviously, if we wish to maximize (instead
of minimize) the output E(w0), then we simply add a minus sign in front of
the output in Eq. (6.1) before we minimize it. If the output is deterministic,
then E(w0) = w0.

Note: In random simulation, we may write E(w0|z) in Eq. (6.1) as

E(w0|z) =
∫ 1

0
· · · ∫ 1

0
fsim(z, r)dr

where fsim(z, r) denotes the computer simulation program, which is a math-
ematical function that maps the inputs z and the PRN vector r (with ele-
ments r that have a uniform marginal distribution on (0, 1)) to the random
simulation response (output) w0.
RSM has the following characteristics, which we shall detail below.

• RSM is an optimization heuristic that tries to estimate the input
combination that minimizes a given goal function; see again Eq. (6.1).
Because RSM is only a heuristic, it does not guarantee success.

• RSM is a stepwise (multi-stage) method; see the steps below.

• In each step, RSM fits a local first-order polynomial regression (meta)
model—except for the last step, in which RSM fits a second-order
polynomial.

• To fit (estimate, calibrate) these first-order polynomials, RSM uses
I/O data obtained through so-called resolution-III (R-III) designs ; for
the second-order polynomial, RSM uses a central composite design
(CCD); we have already detailed these R-III designs and CCDs in
Chap. 2.

• Each step—except the last one—selects the direction for changing the
inputs through the gradient implied by the first-order polynomial
fitted in that step. This gradient is used in the mathematical (not
statistical) technique of steepest descent—or steepest ascent, in case
the output is to be maximized.

• In the final step, RSM takes the derivatives of the locally fitted
second-order polynomial to estimate the optimum input combina-
tion. RSM may also apply the mathematical technique of canonical
analysis to this polynomial, to examine the shape of the optimal sub-
region; i.e., does that region have a unique minimum, a saddle point,
or a ridge with stationary points?

6.2 Linear Regression for Optimization 247

More specifically, the RSM algorithm (for either real or simulated sys-
tems) consists of the following steps (also see Fig. 6.1 in Sect. 6.2.4, which
gives an example with a random goal output w0 and two constrained ran-
dom outputs w1 and w2; these constrained outputs vanish in basic RSM).

Algorithm 6.1

1. Initialize RSM; i.e., select a starting point.
Comment: This starting point may be the input combination that is
currently used in practice if the system already exists; otherwise, we
should use intuition and prior knowledge (as in many other heuristics).

2. In the neighborhood of this starting point, approximate the I/O be-
havior through a local first-order polynomial metamodel augmented
with additive white noise e:

y = β0 +
k∑

j=1

βjzj + e (6.2)

with the regression parameters β = (β0, β1, . . ., βk)
′ where β0 denotes

the intercept and βj denotes the first-order or “main” effect of input
j with j = 1, . . ., k.
Comment: The first-order polynomial approximation may be
explained by Taylor’s series expansion.White noise (see Definition 2.3
in Chap. 2) means that e is normally, independently, and identically
distributed (NIID) with zero mean and a constant variance (say) σ2

in the local experimental area: e ∼ NIID(0, σ2). However, when the
next step moves to a new local area, RSM allows the variance to
change.
Compute the best linear unbiased estimator (BLUE) of β; namely,

the least squares (LS) estimator

β̂ = (Z
′
Z)

−1
Z′w (6.3)

where Z denotes theN×(k+1) matrix determined by the R-III design
and the mi replications of combination i (i = 1, . . ., n) with n ≥ k+1
and w = (w1, . . . wN)′ denotes the vector with the N outputs with
N =

∑n
i=1mi where mi ≥ 1 denotes the number of replications of

combination i.
Comment: Z hasmi identical rows where each row has as first element
the value 1 which corresponds with the intercept β0. Obviously, de-
terministic simulation implies mi = 1 so N = n. Unfortunately, there
are no general guidelines for determining the appropriate size of the
local area in a step of RSM; again, intuition and prior knowledge are
important. However, Chang et al. (2013) decides on the size of the
local area, using a so-called trust region; we shall give some details

248 6. Simulation Optimization

in Sect. 6.2.2. Furthermore, so-called “finite differencing” replaces the
R-III design by a less efficient one-factor-at-a-time design (see again
Sect. 2.3.2) and also faces the problem of selecting an appropriate size
for the local area; the optimal size depends on the unknown variance
and second-order derivatives; see Brekelmans et al. (2005), Safizadeh
(2002), Saltelli et al. (2005), and Zazanis and Suri (1993).

3. Select the next subarea, following the steepest descent direction.
Comment: For example, if the estimated local first-order polynomial
is ŷ = β̂0 + β̂1z1 + β̂2z2, then a corresponding contour line is ŷ = a
where a denotes some constant (if the goal output w0 denotes costs,
then the contour is also called the iso-costs line). The steepest descent
path is perpendicular to the local contour lines. This path implies that
if β̂1 � β̂2, then z1 is decreased much more than z2. Unfortunately,
the steepest-descent method is scale dependent ; i.e., linear transfor-
mations of the inputs affect the search direction; see Myers et al.
(2009, pp. 193–195). We shall present a scale-independent variant in
Sect. 6.2.3, which may interest both practitioners and researchers.

4. Take a step in the direction of steepest descent (estimated in step 3),
experimenting with some intuitively selected values for the step size.
Comment: If the intuitively selected step size yields an output that
is significantly higher instead of lower, then we reduce the step size.
Otherwise, we take one more step in the current steepest descent
direction. A more sophisticated mathematical procedure for selecting
the step size will follow in Sect. 6.2.4.

5. If the observed output w increases, then generate n outputs for a new
local area centered around the best point found so far.
Comment: After a number of steps in the steepest descent direction,
the output will increase instead of decrease because the first-order
polynomial in Eq. (6.2) is only a local approximation of the true I/O
function. When such deterioration occurs, we simulate the n > k
combinations specified by a R-III design centered around the best
point found so far; i.e., we use the same design as in step 2 (see
Table 2.3 for an example), but we translate the standardized inputs
xj into different values for the original inputs zj . One of the corner
points of this R-III design may be the best combination found so far;
see again Fig. 6.1 below.

6. Estimate the first-order effects in the new local polynomial approxi-
mation, using Eq. (6.3).

7. Return to step 3, if the latest locally fitted first-order polynomial is
found to be adequate; else proceed to the next step.
Comment: To test the adequacy of the fitted first-order polynomial,

6.2 Linear Regression for Optimization 249

we may apply one or more methods that we have already discussed for
estimated linear regression metamodels in general; namely, the lack-
of-fit F -statistic for testing whether all estimated first-order effects
and hence the gradient are zero (see Sect. 2.2.2), and the coefficient
of determination R2 and cross-validation (see Sect. 3.6).

8. Fit the second-order polynomial

y = β0 +

k∑

j=1

βjzj +

k∑

j=1

k∑

j′≥k

βj;j′zjzj′ + e, (6.4)

where β0 denotes the intercept, βj (j = 1, . . ., k) the first-order effect
of input j, βj;j the purely quadratic effect of input j, and βj;j′

(j < j′) the interaction between inputs j and j′; estimate these
q = 1+2k+k(k−1)/2 effects through a CCD with n ≥ q combinations
Comment: It is intuitively clear that the plane implied by the most re-
cently estimated local first-order polynomial cannot adequately repre-
sent a hill top when searching to maximize the output or—equivalently
—minimize the output as in Eq. (6.1). So in the neighborhood of the
optimum, a first-order polynomial is not adequate. We therefore fit
the second-order polynomial defined in Eq. (6.4); RSM uses a CCD
to generate the I/O data.

9. Use this fitted second-order polynomial, to estimate the optimal values
of the inputs by straightforward differentiation or by more
sophisticated canonical analysis; see Myers et al. (2009, pp. 224–242).

10. If time permits, then try to escape from a possible local minimum
and restart the search; i.e., return to step 1 with a different initial
local area.

Comment: We shall discuss a global search method (namely, efficient
global optimization, EGO) in Sect. 6.3.1.

We recommend not to eliminate inputs that have nonsignificant effects
in a first-order polynomial fitted within the current local experimental area:
these inputs may have significant effects in a next experimental area. The
selection of the number of replications mi is a moot issue in metamodel-
ing, as we have already discussed for experimental designs in case of linear
regression with heterogeneous variances (see Sect. 3.4.5) and for the se-
lection of the number of replications through the sequential probability
ratio test (SPRT) for sequential bifurcation (see Sect. 4.5), and for Kriging
(see Sect. 5.6.2). For the time being, we recommend estimating the true
mean response for a given input combination such that a relative precision
of (say) 10% has a (say) 90% probability, using the method detailed in
Law (2015).

250 6. Simulation Optimization

The Taylor series argument suggests that a higher-order polynomial is
more accurate than a lower-order polynomial. A statistical counterargu-
ment, however, is that overfitting gives less accurate estimators of the poly-
nomial coefficients. Consequently, the higher-order polynomial may give a
predictor ŷ with lower bias but higher variance such that its mean squared
error (MSE) increases. Moreover, a higher-order polynomial requires the
simulation of more input combinations.
In Sect. 3.4 we have already mentioned that a deterministic simulation

model gives a fixed value for a given input combination, so we might assume
white noise for the residuals e of the metamodel and apply basic RSM. In
random simulation, however, we prefer the RSM variant detailed in the
next section.

6.2.2 RSM in Random Simulation

We consider the following two characteristics of random simulation that
violate the assumption of white noise within a given local area:

1. The constant variance assumption does not hold.

2. The independence assumption does not hold if common random num-
bers (CRN) are applied.

Sub 1: Many simulation models represent queueing systems; e.g., supply
chains and telecommunication networks. The simplest queueing model is
the so-called M/M/1 model (see Definition 1.4) for which we know that
as its traffic rate increases, its mean steady-state waiting time increases
and the variance increases even more; consequently, the assumption of a
constant variance does not hold.
Sub 2: CRN are often applied in experiments with random simulation

models, because CRN are the default option in many simulation software
packages (e.g., Arena); moreover, CRN are a simple and intuitive variance
reduction technique that gives more accurate estimators of the first-order or
second-order polynomial metamodel in Eqs. (6.2) and (6.4). Obviously, the
outputs of all input combinations that use CRN are statistically dependent;
actually, we expect these outputs to be positively correlated.
Note: CRN are related to blocking in real-life experiments. In simulation

experiments, we may use blocking when combining CRN and antithetic
random numbers through the so-called Schruben-Margolin strategy; this
strategy is recently discussed in Chih (2013).
Sub 1 and 2: The preceding two characteristics imply that ordinary LS

(OLS) does not give the BLUE. As we have already discussed in Sect. 3.5,
generalized LS (GLS) gives the BLUE, but assumes known response vari-
ances and covariances. We therefore recommend the following simple esti-
mator, which we have already detailed in Sect. 3.5.

6.2 Linear Regression for Optimization 251

We assume a constant number of replications mi = m (i = 1, . . ., n),
which is a realistic assumption if CRN are applied. We then compute the
OLS estimator per replication replacingw in Eq. (6.3) bywr to get the esti-

mator β̂r (r = 1, . . .,m). So, replication r gives an estimator of the steepest
descent direction—if a first-order polynomial is used—or the optimum in-
put combination—if a second-order polynomial is used. Together, the m
replications give an estimator of the accuracy of this estimated direction
or optimum. If we find the estimated accuracy to be too low, then we may
simulate additional replications so m increases. Unfortunately, we have not
yet any experience with this simple sequential approach for selecting the
number of replications.
Actually, if we have mi > 1 (i = 1, . . ., n) replications, then we can fur-

ther explore the statistical properties of the OLS estimator of β through
distribution-free bootstrapping, as we have already discussed in Sect. 3.3.5.

We can also use the bootstrapped estimator β̂
∗
to derive confidence in-

tervals (CIs) for the corresponding estimated steepest ascent direction and
optimum.
Instead of distribution-free bootstrapping we can apply parametric boot-

strapping, which assumes a specific type of distribution; e.g., a Gaussian
distribution (also see the testing of the KKT conditions in Sect. 6.2.5 be-
low). Parametric bootstrapping may be attractive if mi is small and no
CRN are used; e.g., the n expected values E(wi) and n variances σ2

i can be
estimated if the weak condition mi > 1 holds. If CRN are used, then the
n×n covariance matrixΣw = (cov(wi, wi′)) with i, i′ = 1, . . ., n needs to be
estimated; this estimation requires m > n, as proven in Dykstra (1970). So
parametric bootstrapping may require fewer replications, but the assumed
distribution may not hold for the simulated outputs.
Chang et al. (2013) presents the stochastic trust-region response-surface

method (STRONG), which is a completely automated variant of RSM com-
bined with so-called trust regions. STRONG is proven to converge to the
true optimum (but see again our discussion of convergence, in Sect. 6.2.1).
Originally, trust regions were developed in Conn et al. (2000) for determin-
istic nonlinear optimization. By definition, a trust region is a subregion in
which the objective function is approximated such that if an adequate ap-
proximation is found within the trust region, then the region is expanded;
else the region is contracted. STRONG uses these trust regions instead
of the “local” regions of basic RSM, detailed in the preceding section.
STRONG includes statistical tests to decide whether trust regions should
be expanded or shrunken in the various steps, and to decide how much these
areas should change. If necessary, the trust region is small and a second-
order polynomial is used. Next, Chang et al. (2014) combines STRONG
with screening, and calls the resulting procedure STRONG-S where S de-
notes screening. This method is applied to several test functions with mul-
tiple local minima. Contrary to the Taylor-series argument, STRONG may

252 6. Simulation Optimization

have a relatively large trust region that does not require a second-order
polynomial metamodel but only a first-order polynomial metamodel. Chang
and Lin (2015) applies STRONG—including some adaptation—to a renew-
able energy system. RSM in random simulation is also discussed in Law
(2015, pp. 656–679). Ye and You (2015) uses trust regions, not applied to
low-order polynomial metamodels but to deterministic Kriging metamodels
of the underlying random simulation model.
Note: I/O data in RSM may contain outliers, which should be detected;

for this detection, Huang and Hsieh (2014) presents so-called influence
analysis.

Exercise 6.1 Apply RSM to the following problem that is a simple Monte
Carlo model of a random simulation:

min E[5(z1 − 1)2 + (z2 − 5)2 + 4z1z2 + e]

where z = (z1, z2)
′ and e ∼ NIID(0, 1). RSM treats this example as a black

box; i.e., you select the input combination z, sample e from NIID(0, 1), and
use these input data to compute the output (say) w. You (not RSM) may
use the explicit function to derive the true optimum solution, zo.

6.2.3 Adapted Steepest Descent (ASD) for RSM

Kleijnen et al. (2004) derives the so-called adapted steepest descent (ASD)
direction that accounts for the covariances between the k components of
the estimated gradient β̂−0 = (β̂1, . . . , β̂k)

′ where the subscript −0 means

that the intercept β̂0 of the estimated first-order polynomial vanishes in
the estimated gradient; i.e., β̂ = (β̂0, β̂−0)

′ with β̂ defined in Eq. (6.3).
Obviously, white noise implies

Σ
̂β = σ2

w(Z
′Z)−1 = σ2

w

(
a b′

b C

)

(6.5)

where σ2
w denotes the variance of the output w; Z is the N × (1 + k)

matrix of explanatory regression variables including the column with N
one’s; N =

∑n
i=1mi where n is the number of different observed input

combinations; mi is the number of IID replications for combination i; a is
a scalar; b is a k-dimensional vector; and C is a k × k matrix such that
Σ

̂β−0
= σ2

wC.

We notice that Z’s first column corresponds with the intercept β0. Fur-
thermore, Z is determined by the R-III design, transformed into the original
values of the inputs in the local area. To save computer time, we may repli-
cate only the center of the local area; this center is not part of the R-III
design.

6.2 Linear Regression for Optimization 253

The variance σ2
w in Eq. (6.5) is estimated through themean squared resid-

uals (MSR):

σ̂2
w =

∑n
i=1

∑mi

r=1(wi;r − ŷi)
2

N − (k + 1)
(6.6)

where ŷi = z′iβ̂; also see Eq. (2.26).
It can be proven that the predictor variance Var(ŷ|z) increases as z—the

point to be predicted—moves away from the local area where the gradient
is estimated. The point with the minimum predictor variance is −C−1b,
where C and b were defined below Eq. (6.5). ASD means that the new
point to be simulated is

d = −C−1b− λC−1β̂−0 (6.7)

where −C−1b is the point where the local search starts (namely, the point

with the minimum local variance), λ is the step size, β̂−0 is the steepest

descent direction, and C−1β̂−0 is the steepest descent direction adapted
for Σ

̂β−0
. It is easy to see that if C is a diagonal matrix, then the higher

the variance of an estimated input effect is, the less the search moves into
the direction of that input.

Exercise 6.2 Prove that the search direction in Eq. (6.7) does not change
the steepest descent direction if the design matrix is orthogonal (so Z′

Z = NI).

It can be proven that ASD, which accounts for Σ
̂β−0

, gives a scale-

independent search direction. Experimental results are presented in Kleij-
nen et al. (2004, 2006). These results imply that ASD performs “better”
than steepest descent; i.e., the angle between the search direction based on
the true β−0 and the search direction estimated in ASD is smaller. In one
example this angle reduces from 89.87 for steepest descent to 1.83 for ASD.
Note: Fan and Huang (2011) derives another alternative for steepest as-

cent, using conjugate gradients (which were originally developed for uncon-
strained optimization in mathematical programming). Joshi et al. (1998)
derives one more alternative, using gradient deflection methods. Safizadeh
(2002) examines how to balance the variance and the bias via the MSE
of the estimated gradient for different sizes of the local experimental area,
assuming random simulation with CRN.

6.2.4 Multiple Responses: Generalized RSM (GRSM)

In practice, simulation models have multiple responses types (multivariate
output); e.g., a realistic inventory simulation model may estimate (i) the
sum of all inventory costs excluding the (hard-to-quantify) out-of-stock
costs and (ii) the service rate (fill rate), and the goal of this simulation
is to minimize this sum of inventory costs such that the service rate is
not lower than (say) 90%. Simulation software facilitates the collection of
multiple outputs. There are several approaches to solve the resulting issues;

254 6. Simulation Optimization

FIGURE 6.1. GRSM example with two inputs, two contour plots for the
goal output, two constraints for the other outputs, three local areas, three
search directions, and six steps in these directions

see the survey in Rosen et al. (2008). The RSM literature also offers several
approaches for such situations, but we shall focus on GRSM.
Note: For RSM with multiple responses we refer to the surveys in Angün

(2004), Khuri and Mukhopadhyay (2010), and Ng et al. (2007) and the
recent case study in Shi et al. (2014) combining two output types into
a single criterion. We shall discuss Kriging for simulation with multiple
outputs, in Sect. 6.3.
GRSM is explained in Angün et al. (2009). Informally, we may say that

GRSM is RSM for problems with multiple random outputs such that one
goal output is minimized while the other outputs satisfy prespecified con-
straints (so GRSM does not use multi-objective optimization); moreover,
the deterministic input variables may also be subjected to constraints.
GRSM combines RSM and mathematical programming; i.e., GRSM gen-
eralizes the steepest descent direction of RSM through the affine scaling
search direction, borrowing ideas from interior point methods (a variation
on Karmarkar’s algorithm) as explained in Barnes (1986). As Fig. 6.1 illus-
trates, the GRSM search avoids creeping along the boundary of the feasible
area that is determined by the constraints on the random outputs and the
deterministic inputs. So, GRSM moves faster to the optimum than steepest
descent. Moreover, this search tries to stay inside the feasible area, so the
simulation program does not crash. We shall discuss Fig. 6.1 in detail, at
the end of this subsection. We point out that Angün et al. (2009) proves
that the GRSM search direction is scale independent. Though we focus on
random simulations, we might easily adapt GRSM for deterministic simu-
lations and real systems.

6.2 Linear Regression for Optimization 255

Because GRSM is rather complicated, readers may wish to skip the rest
of this subsection and also skip the next subsection (Sect. 6.2.5)—on testing
an estimated optimum in GRSM through testing the Karush-Kuhn-Tucker
conditions—without lessening their understanding of the rest of this book.
Formally, GRSM extends the basic RSM problem in Eq. (6.1) to the

following constrained nonlinear random optimization problem:

min E(w0|z) (6.8)

such that the other (r − 1) random outputs satisfy the constraints

E(wh′ |z) ≥ ah′ with h′ = 1, . . . , r − 1, (6.9)

and the k deterministic inputs zj satisfy the box constraints

lj ≤ zj ≤ uj with j = 1, . . . , k. (6.10)

An example is an inventory simulation, in which the sum of the expected
inventory carrying costs and ordering costs should be minimized while the
expected service percentage should be at least 90% so a1 = 0.9 in Eq. (6.9);
both the reorder quantity z1 = Q and the reorder level z2 = s should be
non-negative so z1 ≥ 0 and z2 ≥ 0 in Eq. (6.10). A stricter input constraint
may be that z2 should at least cover the expected demand during the
expected order lead time; obviously, these expectations are known inputs
of the simulation. More complicated input constraints than Eq. (6.10)—
namely, linear budget constraints—feature in a call-center simulation in
Kelton et al. (2007).
Note: Optimization of simulated call-centers—but not using GRSM—is

also studied in Atlason et al. (2008). Aleatory and epistemic uncertainties—
discussed in Sect. 5.9 on risk analysis—in call-center queueing models are
studied in Bassamboo et al. (2010). Geometry constraints are discussed in
Stinstra and Den Hertog (2008). Input constraints resulting from output
constraints are discussed in Ng et al. (2007).

Analogously to RSM’s first steps using Eq. (6.2), GRSM locally approxi-
mates the multivariate I/O function by r univariate first-order polynomials
augmented with white noise:

yh = Zβh+eh with h = 0, . . . r − 1. (6.11)

Analogously to RSM, GRSM assumes that locally the white noise assump-
tion holds for Eq. (6.11), so the BLUEs are the following OLS estimators:

β̂h = (Z′Z)−1
Z′wh with h = 0, . . . r − 1. (6.12)

The vector β̂0 (OLS estimator of first-order polynomial approximation of
goal function) and the goal function in Eq. (6.8) result in

min β̂0;−0z (6.13)

256 6. Simulation Optimization

where β̂0;−0 = (β̂0;1, . . . , β̂0,k)
′ is the OLS estimator of the local gradient of

the goal function. Combining Eq. (6.12) and the original output constraints
in Eq. (6.9) gives

β̂
′
h′;−0z ≥ ch′ with h′ = 1, . . . , r − 1 (6.14)

where β̂h′;−0 = (β̂h′;1, . . . , β̂h′,k)
′ is the estimator of the local gradient of

constraint function h′, and ch′ = ah′ − β̂h′;0 is the modified right-hand
side of this constraint function. The box constraints in Eq. (6.10) remain
unchanged.
Now we collect the k-dimensional vectors β̂h′;−0 (h′ = 1, . . . , r − 1) in

Eq. (6.14) in the (r−1)×k matrix denoted by (say) B. Likewise, we collect
the (r − 1) elements ch′ in the vector c. Furthermore, we define l as the
vector with the k elements lj , and u as the vector with the k elements uj .
Finally, we introduce the k-dimensional vectors with the non-negative slack
variables s, r, and v, to get the following problem formulation that is the
equivalent of the problem formulated in Eq. (6.8) through Eq. (6.10):

minimize β̂
′
0;−0z

subject to Bz− s = c
z+ r = u
z− v = l.

(6.15)

Obviously, the constrained optimization problem in Eq. (6.15) is linear in

the inputs z (the OLS estimates β̂0;−0 and β̂h′;−0 in B use the property
that this problem is also linear in the regression parameters). Angün et al.
(2009) uses this problem formulation to derive the following GRSM search
direction:

d = −(B
′
S−2B+R−2 +V−2)−1β̂0;−0 (6.16)

where S, R, and V are diagonal matrixes with as main-diagonal elements
the current estimated slack vectors s, r, and v in Eq. (6.15). Note that β̂0;−0

in Eq. (6.16) is the estimated steepest ascent direction in basic RSM. As
the value of a slack variable in Eq. (6.16) decreases—so the corresponding
constraint gets tighter—the GRSM search direction deviates more from the
steepest descent direction. Possible singularity of the various matrices in
Eq. (6.16) is discussed in Angün (2004).
Following the GRSM direction defined by Eq. (6.16), we must decide on

the step size (say) λ along this path. Angün et al. (2009) selects

λ = 0.8 min

[
ch′ − β̂

′
h′;−0zc

β̂
′
h′;−0d

]

(6.17)

where the factor 0.8 decreases the probability that the local metamodel in
Eq. (6.14) is misleading when applied globally ; zc denotes the current (see
the subscript c) input combination.

6.2 Linear Regression for Optimization 257

Combining the search direction in Eq. (6.16) and the step size in Eq. (6.17)
gives the new combination zc + λd. The box constraints in Eq. (6.10) for
the deterministic inputs hold globally, so it is easy to check whether this
new combination zc + λd satisfies these constraints.
Analogously to basic RSM, GRSM proceeds stepwise. After each step

along the search path, GRSM tests the following two null-hypotheses H
(1)
0

and H
(2)
0 :

1. Pessimistic null-hypothesis: w0(zc+λd) (output of new combination)
is no improvement over w0(zc) (output of old combination):

H
(1)
0 : E[w0(zc + λd)] ≥ E[w0(zc)]. (6.18)

2. Optimistic null-hypothesis: this step is feasible; i.e., wh′(zc + λd)
satisfies the (r − 1) constraints in Eq. (6.9):

H
(2)
0 : E[wh′(zc + λd)] ≥ ah′ with h′ = 1, . . . , r − 1. (6.19)

To test these two hypotheses, we may apply the following simple sta-
tistical procedures; more complicated parametric bootstrapping is used in
Angün (2004), permitting nonnormality and testing the relative improve-
ment w0(zc + λd)/w0(zc) and slacks sh′(zc + λd)/sh′(zc).

Exercise 6.3 Which statistical problem arises when testing the ratio of the
slack at the new solution and the slack at the old solution,
sh′(zc + λd)/sh′(zc)?

To test H
(1)
0 defined in Eq. (6.18), we apply the paired Student statistic

tm−1; we use the “paired” statistic because we assume that CRN are used.
We reject the hypothesis if significant improvement is observed. To test

H
(2)
0 in Eq. (6.19), we again apply a tm−1 -statistic; because we test multiple

hypotheses, we apply Bonferroni’s inequality so we divide the classic α value
by (r − 1) (number of tests).
Actually, a better solution may lie somewhere between zc (old combina-

tion) and zc+λd (new combination). Therefore GRSM uses binary search;
i.e., GRSM simulates a combination that lies halfway between these two
combinations—and is still on the search path. This halving of the step size
may be applied several times; also see Fig. 6.1.

Next, GRSM proceeds analogously to basic RSM; i.e., around the best
combination found so far, GRSM selects a new local area. Again a R-III
design specifies the new simulation input combinations, and r first-order
polynomials are fitted, which gives a new search direction, etc. Note that
we might use the m replications β̂r to estimate the accuracy of the search
direction; to test the accuracy of the estimated optimum, we shall present
a test in the next subsection.

258 6. Simulation Optimization

Now we discuss Fig. 6.1 in more detail. This plot illustrates GRSM for a
problem with simple known test functions (in practice, we use simulation to
estimate the true outputs of the various implicit I/O functions of the sim-
ulation model). This plot shows two inputs, corresponding to the two axes
labeled z1 and z2. Because the goal function is to be minimized, the plot
shows two contour plots or iso-costs functions defined by E(w0) = a0;1 and
E(w0) = a0;2 with a0;2 < a0;1. The plot also shows two constraints; namely,
E(w1) = a1 and E(w2) = a2. The search starts in the lower-right local area
of the plot, using a 22 design; see the four elongated points. Together with
the replications that are not shown, the I/O data give the search direction
that is shown by the arrow leaving from point (0). The maximum step-size
along this path takes the search from point (0) to point (1). The binary
search takes the search back to point (2), and next to point (3). Because
the best point so far turns out to be point (1), the 22 design is again used
to select four points in this new local area; point (1) is selected as one of
these four points. Simulation of the four points of this 22 design gives a
new search direction, which indeed avoids the boundary. The maximum
step-size now takes the search to point (4). The binary search takes the
search back to point (5), and next to point (6). Because the best point so
far turns out to be point (4), the 22 design is simulated in a new local area
with point (4) as one of its points. A new search direction is estimated, etc.
Angün (2004) gives details on two examples, illustrating and evaluat-

ing GRSM. One example is an inventory simulation with a service-level
constraint specified in Bashyam and Fu (1998); no analytical solution is
known. The other example is a test function with a known solution. The
results for these examples are encouraging, as GRSM finds solutions that
are both feasible and give low values for the goal functions. Leijen (2011)
applies GRSM to a bottle-packaging line at Heineken with nine inputs and
one stochastic output constraint besides several deterministic input con-
straints; the analysis of the solutions generated by GRSM indicates that
GRSM can find good estimates of the optimum. Mahdavi et al. (2010) ap-
plies GRSM to a job-shop manufacturing system. We shall briefly return
to GRSM when discussing Eq. (6.35).

Exercise 6.4 Apply GRSM to the following artificial example reproduced
from Angün et al. (2009):

Minimize E[5(z1 − 1)2 + (z2 − 5)2 + 4z1z2 + e0]
subject to E[(z1 − 3)2 + z22 + z1z2 + e1] ≤ 4

E[z21 + 3 (z2 + 1.061)
2
+ e2] ≤ 9

0 ≤ z1 ≤ 3, −2 ≤ z2 ≤ 1

(6.20)

where e0, e1, and e2 are the components of a multivariate normal variate
with mean 0, variances σ0;0 = 1 (so σ0 = 1), σ1;1 = 0.0225 (so σ1 = 0.15),
and σ2;2 = 0.16 (so σ2 = 0.4), and correlations ρ0;1 = 0.6, ρ0;2 = 0.3,
ρ1;2 = −0.1.

6.2 Linear Regression for Optimization 259

6.2.5 Testing a GRSM Optimum: Karush-Kuhn-Tucker
(KKT) conditions

Obviously, it is uncertain whether the optimum estimated by the GRSM
heuristic is close enough to the true optimum. In deterministic nonlinear
mathematical programming, the first-order necessary optimality-conditions
are known as the KKT conditions; see Gill et al. (2000). First we present
the basic idea behind these conditions; next, we explain how to test these
conditions in random simulation.
To explain the basic idea of the KKT conditions, we use Fig. 6.2 that

illustrates the same type of problem as the one in Fig. 6.1. Figure 6.2 shows
a goal function E(w0) with three contour plots that correspond with the
threshold values 66, 76, and 96; also see Eq. (6.8). Furthermore, there are
two constrained simulation outputs; namely, E(w1) ≥ 4 and E(w2) ≥ 9;
also see Eq. (6.9). So, the plot shows the boundaries of the feasible area
that is determined by the equalities E(w1) = 4 and E(w2) = 9. Obviously,
the optimum combination is point A. The two points B and C lie on the
same boundary; namely, the boundary E(w2) = 9. Point D lies on the other
boundary; namely, the boundary E(w1) = 4. Obviously, the optimal point
A and the point D lie far away from each other. The plot also displays the
local gradients at the four points A through D for the goal function and
for the binding constraint, which is the constraint with a zero slack value in
Eq. (6.9). These gradients are perpendicular to the local tangent lines; those
lines are shown only for the binding constraint—not for the goal function.
These tangent lines are first-order polynomials; see Eq. (6.11). (Obviously,
the estimated gradient is biased if second-order effects are important and
yet a first-order polynomial is fitted.)
Note: There is a certain constraint qualification that is relevant when

there are nonlinear constraints in the problem; see Gill et al. (2000, p. 81).
There are several types of constraint qualification, but many are only of
theoretical interest; a practical constraint qualification for nonlinear con-
straints is that the r− 1 constraint gradients at the locally optimal combi-
nation be linearly independent.
Now we present the statistical procedure for testing the KKT conditions

in random simulation that was derived in Bettonvil et al. (2009). Before
we shall discuss the technical details of this procedure, we point out that
the empirical results for this procedure are encouraging; i.e., the classic
t-test for zero slacks performs as expected and the new bootstrap tests give
observed type-I error rates close to the prespecified (nominal) rates, while
the type-II error rate decreases as the tested input combination is farther
away from the true optimum; see the points A through D in Fig. 6.2.

Note: We add that Kasaie et al. (2009) also applies this procedure to
an agent-based simulation model of epidemics; this model is also discussed
in Kasaie and Kelton (2013). Furthermore, Wan and Li (2008) applies the
asymptotic variant of this procedure to the (s, S) inventory problem for-
mulated in Bashyam and Fu (1998) with good results.

260 6. Simulation Optimization

FIGURE 6.2. A constrained nonlinear random optimization problem: three
contour plots with goal values 66, 76, and 96; two other outputs with lower
bounds 4 and 9; optimal point A; points B and C on bound 9; point D
on bound 4; local gradients at A through D for goal function and binding
constraint, perpendicular to local tangent lines for binding constraint

Let zo denote the input combination that gives a local minimum
(or optimum; see the subscript o) for the deterministic variant of the prob-
lem defined in Eq. (6.8) through Eq. (6.10). The KKT conditions for zo are
then(besides some regularity conditions)

β0;−0 =
∑

h∈A(zo)

λhβh;−0

λh ≥ 0
h ∈ A(zo)

(6.21)

where β0;−0 denotes the k-dimensional vector with the gradient of the
goal function, as we have already seen in Eq. (6.13); A (zo) is the index
set with the indices of those constraints that are binding at zo; λh is the
Lagrangian multiplier for binding constraint h; βh;−0 is the gradient of the
output in that binding constraint. Now we give two examples illustrating
that Eq. (6.21) implies that the gradient of the objective is a nonnegative
linear combination of the gradients of the binding constraints, at zo.

Example 6.1 Figure 6.2 has only one binding constraint at the point A,
so Eq. (6.21) then stipulates that the goal gradient β0;−0 and the gradient
of the output with a binding constraint (namely, output h = 2) are two

6.2 Linear Regression for Optimization 261

FIGURE 6.3. A LP problem: one contour line with goal value w0 = a0;
two other outputs with upper bounds a1 and a2; optimal point A; local
gradients at A for goal function and two binding constraints

vectors that point in the same direction. Indeed, point B has two gradients
that point in different but similar directions—and so does C—whereas D
has two gradients that point in completely different directions.

Example 6.2 Figure 6.3 is actually a linear programming (LP) problem.
One contour line for the goal output w0 shows the input combination (z1, z2)
that result in w0(z1, z2) = a0; the two other outputs are w1 and w2, which
should satisfy the constraints w1 ≤ a1 and w2 ≤ a2; point A is the optimal
input combination zo; the local gradients at point A are displayed for the
goal function and the two binding constraints. Obviously, the goal gradient
is a linear combination with positive coefficients of the two other gradients.

Note: If the optimum occurs inside the feasible area, then there are no
binding constraints so the KKT conditions reduce to the condition that
the goal gradient be zero. Basic RSM includes tests for a zero gradient
estimated from a second-order polynomial; see again Sect. 6.2.1.

In random simulation we must estimate the gradients; moreover, to check
which constraints are binding, we must estimate the slacks of the con-
straints. This estimation changes the KKT conditions into a problem of
nonlinear statistics. An asymptotic test is presented in Angün (2004), us-
ing the so-called Delta method and a generalized form of the so-called
Wald statistic. A small-sample bootstrap test is presented in Bettonvil

262 6. Simulation Optimization

et al. (2009), which we now present because it is simpler and it suits ex-
pensive simulation. Nevertheless, this bootstrap test is still rather com-
plicated, so readers may skip to the next section (Sect. 6.3, on Kriging
for optimization)—without lessening their understanding of the rest of
this book.
As in basic RSM, we assume locally constant variances and covariances

for each of the r simulation outputs wh (h = 0, 1, . . ., r − 1). OLS per uni-

variate simulation output gives β̂h defined in Eq. (6.12). These estimators
have the following estimated covariance matrix:

Σ̂β̂h,β̂h′ = Σ̂wh,wh′ ⊗ (Z′Z)−1
(h, h′ = 0, . . . , r − 1) (6.22)

where ⊗ denotes the Kronecker product and Σ̂wh,wh′ is the r × r matrix
with the classic estimators of the (co)variances based on the m replications
at the local center so the replication number l runs from 1 through m (we
use the symbol l instead of our usual symbol r, because r now stands for
the number of output types); so Σ̂wh,wh′ is defined by

Σ̂wh,wh′ = (σ̂h;h′) = (

∑m
l=1 wh;l − wh)(wh′;l − wh′)

m− 1
). (6.23)

The Kronecker product implies that Σ̂β̂h,β̂h′ is an rq × rq matrix where

q denotes the number of regression parameters (so q = 1 + k in a first-

order polynomial); this matrix is formed from the r× r matrix Σ̂wh,wh′ by

multiplying each of its elements by the entire q × q matrix (Z′Z)−1
(e.g.,

Z is an N × (1 + k) matrix in Eq. (6.5)). The matrix Σ̂wh,wh′ is singular if
m ≤ r; e.g., the case study in Kleijnen (1993) has r = 2 output types and
k = 14 inputs so m ≥ 3 replications of the center point are required. Of
course, the higher m is, the higher is the power of the tests that use these
replications. Bettonvil et al. (2009) does not consider cases with all n local
points replicated or with CRN; these cases require further research.
Basic RSM (explained in Sect. 6.2.1) assumes that the output is Gaus-

sian, and now in GRSM we assume that the r-variate simulation output is
multivariate Gaussian. We use the center point to test whether a constraint
is binding in the current local area, because this point is more representative
of the local behavior than the extreme points of the R-III design applied in
this area. To save simulation runs, we should start a local experiment at its
center point including replications; if it turns out that either no constraint
is binding or at least one constraint is violated in Eq. (6.24) below, then
we do not need to test the other two hypotheses given in Eq. (6.25) and
Eq. (6.26) and we do not need to simulate the remainder of the local design.
Like we do in basic RSM, we should test the validity of the local meta-

model. GRSM assumes multiple outputs, so we may apply Bonferroni’s
inequality. If we reject a metamodel, then we have two options:

• Decrease the local area; e.g., halve the range of each input.

6.2 Linear Regression for Optimization 263

• Increase the order of the polynomial; e.g., switch from a first-order
to a second-order polynomial.

We do not explore these options any further, but refer back to Sect. 6.2.2.
To test the KKT conditions, we test the following three null-hypotheses

denoted by the superscripts (1) through (3):

1. The current solution is feasible and at least one constraint is binding;
see Eq. (6.9):

H
(1)
0 : E(wh′ |x = 0) = ah′ with h′ = 1, . . . , r − 1 (6.24)

where x = 0 corresponds with the center of the local area expressed
in the standardized inputs.

2. The expected value of the estimated goal gradient may be expressed
as the expected value of a linear combination of the estimated gra-
dients of the simulation outputs in the binding constraints; i.e., in
Eq. (6.21) we replace the deterministic quantities by their estimators:

H
(2)
0 : E(β̂0;−0) = E(

∑

h∈A(zo)

λ̂hβ̂h). (6.25)

3. The Lagrangian multipliers in Eq. (6.25) are nonnegative:

H
(3)
0 : E(λ̂) ≥ 0. (6.26)

Each of these three hypotheses requires multiple tests, so we apply Bon-
ferroni’s inequality. Moreover, we test these three hypotheses sequentially,
so it is hard to control the final type-I and type-II error probabilities (basic
RSM has the same type of problem, but that RSM has nevertheless acquired
a track record in practice).

Sub 1 : To test H
(1)
0 in Eq. (6.24), we use the classic t-statistic:

t
(h′)
m−1 =

wh′(x = 0)− ah′
√
σ̂h′;h′/m

with h′ = 1, . . . , r − 1 (6.27)

where both the numerator and the denominator use the m replications at
the local center point; see Eq. (6.23). This t-statistic may give the following
three results:

(i) The statistic is significantly positive; i.e., the constraint for output
h′ is not binding. If none of the (r − 1) constraints is binding, then
we have not yet found the optimal solution—assuming that at the
optimum at least one constraint is binding; otherwise, we apply basic
RSM. The search for better solutions continues; see again Sect. 6.2.4.

264 6. Simulation Optimization

(ii) The statistic is significantly negative; i.e., the current local area does
not give feasible solutions so we have not yet found the optimal so-
lution. The search should back-up into the feasible area.

(iii) The statistic is nonsignificant ; i.e., the current local area gives feasible
solutions and the constraint for output h′ is binding. We should then
include the index of this gradient in A (zo); see Eq. (6.25). And the
KKT test proceeds as follows.

Sub 2 and 3 : To estimate the linear combination in Eq. (6.25), we ap-
ply OLS with as explanatory variables the estimated gradients of the (say)
J binding constraints; obviously, these explanatory variables are random.
We collect these J estimated gradients in the k × J matrix B̂J;−0. These
explanatory variables have linear weights λ that equal the parameters that

are estimated through OLS, denoted by λ̂. Let
̂̂
β0;−0 denote the OLS esti-

mator of the goal gradient, so

̂̂
β0;−0 = B̂J;−0(B̂

′
J;−0B̂J;−0)

−1B̂′
J;−0β̂0;−0 = B̂J;−0λ̂ (6.28)

with λ̂ = (B̂′
J;−0B̂J;−0)

−1B̂′
J;−0β̂0;−0; also see the general formula for OLS

in Eq. (2.13). To quantify the validity of this linear approximation, we use
the k-dimensional vector with the residuals

ê(
̂̂
β0;−0) =

̂̂
β0;−0 − β̂0;−0. (6.29)

H
(2)
0 in Eq. (6.25) implies that ê(

̂̂
β0;−0) in Eq. (6.29) should satisfy E[ê

(
̂̂
β0;−0)] = 0. Furthermore, H

(2)
0 involves a product of multivariates, so

standard tests do not apply; therefor we use bootstrapping. We do not ap-
ply distribution-free bootstrapping, because in expensive simulation only
the center point is replicated a few times. Instead, we apply parametric
bootstrapping ; i.e., we assume a Gaussian distribution (like we do in basic
RSM), and we estimate its parameters from the simulation’s I/O data. The
resulting bootstrap algorithm consists of the following four steps, where the
superscript ∗ is the usual symbol for a bootstrapped value.

Algorithm 6.2

1. Use the Monte Carlo method to sample

vec(β̂
∗
0;−0, B̂

∗
J;−0) ∼ N(vec(β̂0;−0, B̂J;−0), Σ̂vec(̂β0;−0,

̂BJ;−0)
) (6.30)

where vec(β̂
∗
0;−0, B̂

∗
J;−0) is a (k + kJ)-dimensional vector formed by

stapling (stacking) the estimated k-dimensional goal gradient vec-

tor and the J k-dimensional vectors of the k × J matrix B̂∗
J;−0;

vec(β̂0;−0, B̂J;−0) is defined analogously to vec(β̂
∗
0;−0, B̂

∗
J;−0) but uses

6.2 Linear Regression for Optimization 265

Eq. (6.12), and Σ̂vec(̂β0;−0,
̂BJ;−0)

is the (k+kJ)×(k+kJ) matrix com-

puted through Eq. (6.22).

2. Use the bootstrap values sampled in step 1 to compute the OLS
estimate of the bootstrapped goal gradient where this OLS uses the
bootstrapped gradients of the binding constraints as explanatory vari-
ables; i.e., use Eq. (6.28) adding the superscript ∗ to all random vari-

ables resulting in
̂̂
β
∗
0;−0 and λ̂

∗
.

3. Use
̂̂
β
∗
0;−0 from step 2 and β̂

∗
0;−0 from step 1 to compute the bootstrap

residual ê(
̂̂
β
∗
0;−0) =

̂̂
β
∗
0;−0 - β̂

∗
0;−0, analogously to Eq. (6.29); if any

of the bootstrapped Lagrangian multipliers λ̂
∗
found in step 2 is

negative, then increase the counter (say) c∗ with the value 1.

4. Repeat the preceding three steps (say) 1,000 times, to obtain the

estimated density function (EDF) of ê(
̂̂
β
∗
0;−0;j)—which denotes the

bootstrapped residuals per input j (j = 1, . . . , k)—and the final value

of the counter c∗. Reject H
(2)
0 in Eq. (6.25) if this EDF implies a

two-sided (1 − α/(2k)) CI that does not cover the value 0, where

the factor k is explained by Bonferroni’s inequality. Reject H
(3)
0 in

Eq. (6.26) if the fraction c∗/1,000 is significantly higher than 50%.
To test the fraction c∗/1,000, approximate the binomial distribution
through the normal distribution with mean 0.50 and variance (0.50×
0.50)/1,000 = 0.00025.
Comment: If the true Lagrangian multiplier is only “slightly” larger
than zero, then “nearly” 50% of the bootstrapped values is negative.

Altogether, this KKT test-procedure uses the following three models:

1. The simulation model, which is treated as a black box in GRSM.

2. The regression metamodel, which uses the simulation I/O data (Z,w)
as input and gives the estimates of the gradients for the goal response
(β̂0;−0) and the constrained responses with binding constraints

(B̂J;−0). The regression analysis also gives the estimator

Σ̂vec(̂β0;−0,
̂BJ;−0)

(estimated covariance matrix of estimated gradi-

ents).

3. The bootstrap model, which uses the regression output (β̂0;−0, B̂J;−0,

Σ̂veĉβ(0;−0,
̂BJ;−0)

as parameters of the multivariate normal distribu-

tion of its output β̂
∗
0;−0 and B̂∗

J;−0.

266 6. Simulation Optimization

FIGURE 6.4. Expected improvement (EI) at x = 8: see shaded area; five
observations on f(x): see dots ; Kriging predictor ŷ and variance of ŷ

6.3 Kriging Metamodels for Optimization

In Sect. 6.2 we discussed optimization through RSM, which uses linear
regression metamodels; namely, first-order and second-order polynomials
fitted locally. Now we discuss optimization through Kriging metamodels,
which are fitted globally. In Sect. 6.3.1 we shall discuss so-called efficient
global optimization (EGO), which was originally developed for the mini-
mization of the unconstrained output of a deterministic simulation model.
In Sect. 6.3.2 we shall discuss constrained optimization in random simula-
tion, using a combination of Kriging and integer mathematical programming
(IMP) called KrIMP. We shall use the symbol x (not z) to denote the input
(ignoring standardization), as the Kriging literature usually does.

6.3.1 Efficient Global Optimization (EGO)

EGO is a well-known sequential method; i.e., EGO selects the next in-
put combination or “point” as experimental I/O results become avail-
able.Typically, EGO balances local and global search; i.e., EGO combines
exploitation and exploration. More precisely, when selecting a new point,
EGO estimates the maximum of the expected improvement (EI) compar-
ing this new point and the best point that was found so far. EI uses the
global Kriging metamodel to predict the output of a new point, while ac-
counting for the predictor variance; this variance increases as a new point
does not lie in a local subarea formed by some old points; also see Fig. 6.4.
Obviously, EI is large if either the predicted value ŷ is much smaller than
the minimum found so far denoted by fmin = minw(xi), or the estimated
predictor variance σ̂(x) is large so the prediction shows much uncertainty.
We shall further explain and formalize EGO in Algorithm 6.3 below.

6.3 Kriging Metamodels for Optimization 267

The classic reference for EGO is Jones et al. (1998), which includes refer-
ences to older publications that inspired EGO. In practice, EGO has shown
to perform well when optimizing the unconstrained output of a determinis-
tic simulation model; its theoretical convergence properties are analyzed in
Bull (2011) and Vazquez and Bect (2010). EGO has also been implemented
in software; see
http://cran.r-project.org/web/packages/DiceOptim/index.html.
We present only the basic EGO algorithm. There are many variants

of EGO for deterministic and random simulations, constrained optimiza-
tion, multi-objective optimization including Pareto frontiers, the “admis-
sible set” or “excursion set”, robust optimization, estimation of a quantile
(instead of the mean), and Bayesian approaches.
Note: For these variants we list only the most recent publications plus

some classic publications: Binois et al. (2015), Chevalier et al. (2014), Davis
and Ierapetritou (2009), Feng et al. (2015), Forrester and Jones (2008),
Forrester and Keane (2009), Forrester et al. (2008, pp. 90–101, 125–131,
141–153), Frazier (2010), Frazier et al. (2009), Gano et al. (2006), Gorissen
(2010), Gramacy et al. (2015), Gramacy and Lee (2010), Huang et al.
(2006), Jala et al. (2014), Jalali and van Nieuwenhuyse (2014), Janusevskis
and Le Riche (2013), Kleijnen et al. (2012), Koch et al. (2015), Marzat
et al. (2013), Mehdad and Kleijnen (2015), Morales-Enciso and Branke
(2015), Müller and Shoemaker (2014), Nakayama et al. (2009), Picheny
et al. (2013a), Picheny et al. (2013b), Preuss et al. (2012), Quan et al.
(2013), Razavi et al. (2012), Regis (2014), Roustant et al. (2012), Salemi
et al. (2014), Sasena et al. (2002), Scott et al. (2011), Scott et al. (2010),
Sun et al. (2014), Svenson and Santner (2010), Tajbakhsh et al. (2013),
Tong et al. (2015), Ur Rehman et al. (2014), Villemonteix et al. (2009a),
Villemonteix et al. (2009b), Wagner (2013), Wiebenga (2014), and Williams
et al. (2010).

We present a basic EGO algorithm for minimizing w, which denotes the
output of a given deterministic simulation model. Our algorithm consists
of the following five steps.

Algorithm 6.3

1. Fit a Kriging metamodel y(x) to the old I/O simulation data (X,w).
Comment: In Sect. 5.2 we presented details on Kriging metamodels
for deterministic simulation, where X denoted the n× k matrix with
the n combinations of the k simulation inputs, w denoted the n-
dimensional vector with simulation outputs, and we speak of n “old”
I/O data and a “new” input combination that is yet to be simulated.

2. Find the minimum output simulated so far: fmin = min1≤i≤n w(xi).

3. Defining EI at a point x as

EI(x) = E [max (fmin − y(x), 0)] , (6.31)

http://cran.r-project.org/web/packages/DiceOptim/index.html

268 6. Simulation Optimization

Jones et al. (1998) derives the following closed-form expression for its
estimate:

ÊI(x) = (fmin − ŷ(x)) Φ

(
fmin − ŷ(x)

σ̂(x)

)

+ σ̂(x)φ

(
fmin − ŷ(x)

σ̂(x)

)

(6.32)
where ŷ(x) is the Kriging predictor with plugged-in estimates defined
in Eq. (5.19); ŷ(x) is assumed to be normally distributed with mean
ŷ(x) and standard deviation σ̂(x) which is the square root of σ̂2(x); Φ
and φ are the usual symbols for the cumulative distribution function
and probability density function of the “standard” normal variable,
which has zero mean and unit variance. Using Eq. (6.32), find x̂

o
,

which denotes the estimate of x that maximizes ÊI(x).
Comment: To find the maximizer of Eq. (6.32), we may apply a global
optimizer such as the genetic algorithm (GA) in Forrester et al. (2008,
p. 78), the branch-and-bound algorithm in Jones et al. (1998), the ge-
netic optimization using derivatives in Picheny et al. (2013b), or the
evolutionary algorithm in Viana et al. (2013). Obviously, a local op-
timizer is undesirable, because EI(x) has many local optima; e.g.,
if x = xi, then σ̂2(x) = 0 so EI(x) = 0. Instead of a global opti-
mizer, we may use a set of candidate points selected through Latin
hypercube sampling (LHS), and select the candidate point that max-

imizes ÊI(x); see Boukouvalas et al. (2014), Echard et al. (2011),
Kleijnen and Mehdad (2013), Scott et al. (2012), and Taddy et al.
(2009). Obviously, we may use parallel computer hardware to com-
pute EI(x) for different candidate points x, if we have such hardware
available; also see Ginsbourger et al. (2010).

4. Run the simulation model with the input x̂o found in step 3, to find
the corresponding output w(x̂o).

5. Fit a new Kriging metamodel to the old I/O data of step 1 and the
new I/O of step 4. Update n and return to step 2 if the stopping
criterion is not yet satisfied.
Comment: Sun et al. (2014) presents a fast approximation for re-
estimation of the Kriging metamodel in exploitation versus explo-
ration in discrete optimization via random simulation.
Kamiński (2015) also presents several methods for avoiding
re-estimation of the Kriging parameters. A stopping criterion may be
max ÊI(x) is “close” to zero. Different stopping criteria are discussed
in Razavi et al. (2012), Sun et al. (2014).

6.3 Kriging Metamodels for Optimization 269

DiceOptim, which is an R package, implements EGO and enables the
evaluation of multiple new points instead of a single new point. For details
on DiceOptim we refer to Roustant et al. (2012).

Note: Mehdad and Kleijnen (2015) considers EGO with the predictor
variance estimated through either bootstrapped Kriging (BK) or conditional
simulation (CS); these two methods were discussed in Sect. 5.3. Several
experiments suggest that BK and CS give predicted variances that do not
differ significantly from each other, but that may be significantly bigger
than the classic estimate (nevertheless, BK and CS do not give CIs that
are significantly better than classic Kriging). Experiments with EGO using
these alternative predictor variances suggest that EGO with BK or CS may
or may not perform better than classic Kriging (CK). So, EGO may not
be a good heuristic if the problem becomes complicated; also see Yarotsky
(2013). More precisely, EGO with a specific correlation function and the
classic estimator of the Kriging predictor variance replaced by the BK or
CS estimators may be a refinement that does not improve EGO drastically.
We might therefore stick to CK if we accept some possible inefficiency and
prefer the simple analytical computations in Eq. (6.32).

6.3.2 Kriging and Integer Mathematical Programming
(KrIMP)

Kleijnen et al. (2010) derives a heuristic that is not guided by EGO, but
is more related to classic operations research (OR); this heuristic is called
“Kriging and integer mathematical programming (KrIMP)”. The heuristic
addresses constrained optimization in random simulation, but may be eas-
ily adjusted (simplified) for deterministic simulation. Applications include
an (s, S) inventory system with random lead times and a service level con-
straint that was originally investigated in Bashyam and Fu (1998), and a
complicated call-center simulation in Kelton et al. (2007), which also min-
imizes costs while satisfying a service constraint; moreover, the call-center
simulation must satisfy a budget constraint for the deterministic inputs
(namely, resources such as personnel with specific skills) and these inputs
must be nonnegative integers.
These two applications are examples of the constrained nonlinear random

optimization problem that we have already presented in Eq. (6.8) through
Eq. (6.10), but that we now augment with constraints for the deterministic
inputs z that must satisfy s constraints fg (e.g., budget constraints), and
must belong to the set of non-negative integers N:

minx E(w0|x)
E(wh′ |x) ≥ ch (h′ = 1, . . . , r − 1)

fg(x) ≥ cg (g = 1, . . . , s)

xj ∈ N (j = 1, . . . , d). (6.33)

270 6. Simulation Optimization

To solve this problem, KrIMP combines the following three method-
ologies:

1. sequentialized DOE to specify the next simulation combination (EGO
also uses a sequential design);

2. Kriging to analyze the simulation I/O data that result from method-
ology #1 (like EGO does), and obtain explicit functions for E(wh|x)
(h = 0, 1, . . ., r − 1) instead of the implicit (black box) functions of
simulation;

3. integer nonlinear programming (INLP) to estimate the optimal
solution from the explicit Kriging metamodels that result from
methodology #2; obviously INLP is a part of integer mathematical
programming (IMP).

KrIMP comprises modules that use free off-the-shelf software. We may
replace these modules, as we learn more about DOE, Kriging, and INLP.
For example, we may replace Kriging by intrinsic Kriging (IK); we men-
tioned IK in Sect. 5.4. If our application has continuous inputs, then we may
replace INLP by a solver that uses the gradients; these gradients are esti-
mated by Kriging “for free”, as we discussed in Sect. 5.2 (after Exercise 5.2).
In future research we may adapt KrIMP for deterministic simulations with
constrained multiple outputs and inputs.
Kleijnen et al. (2010) compares the results of KrIMP with those of

OptQuest, which is the popular commercial heuristic embedded in discrete-
event simulation software such as Arena; see Kelton et al. (2007). In the two
applications mentioned above, KrIMP turns out to require fewer simulated
input combinations and to give better estimated optima than OptQuest
does.
Now we discuss some salient characteristics of KrIMP that are summa-

rized in Fig. 6.5; readers may wish to skip to the next section (Sect. 6.4, on
robust optimization). KrIMP simulates a new input combination and uses
the augmented I/O data either to improve the Kriging metamodel or to find
the optimum—similar to “exploration” and “exploitation” in EGO. The r
global Kriging metamodels should be accurate enough to enable INLP to
identify either infeasible points (which violate the constraints on the r − 1
random outputs E(wh′)) or suboptimal points (which give a too high goal
output E(w0) when trying to minimize E(w0)). KrIMP may add a new
point throughout the entire input-feasible area, which implies exploration.
The global Kriging metamodel for output wh (h = 0, 1, . . ., r − 1) uses all
observations for this output, obtained so far. To guide the INLP search,
KrIMP simulates each point with a given relative precision so KrIMP is
reasonably certain of the objective values and the possible violation of the
constraints; i.e., KrIMP selects the number of replications mi such that
the halfwidth of the 90% CI for the average simulation output is within

6.3 Kriging Metamodels for Optimization 271

1. Select initial space-filling design

2. Input design into simulation model, and run

9. Same
optimum goal

a times?

3. Fit Kriging metamodels to simulation I/O data

11. Stop

4. Valid
metamodel?

5. Add ‘worst’
point to design

6. Estimate optimum via
Math Programming

7. New
optimum

point?
8. Add new optimum

point to design
10. Find next

best point

Yes

Yes

No

No

Yes No

FIGURE 6.5. Overview of the KrIMP heuristic, combining Kriging and
integer mathematical programming (IMP)

15% of the true mean for all r outputs; also see our discussion on designs
for linear regression metamodels with heterogeneous response variances,
in Sect. 3.4.5. Furthermore, KrIMP uses CRN to improve the estimate of
the optimum solution. KrIMP applies Kriging to the average output per
simulated input combination, and does so for each of the r types of out-
put; i.e., KrIMP does not use stochastic Kriging (SK) discussed in Sect. 5.6
and does not apply multivariate Kriging discussed in Sect. 5.10. KrIMP
also uses distribution-free bootstrapping, combined with cross-validation.
This bootstrapping gives an estimate of the predictor variance for out-
put h at the deleted combination xi, denoted by σ̂2(ŷ∗h(xi)). Actually, the
bootstrap in KrIMP accounts for multivariate (namely, r-variate) output
created through CRN and for nonconstant replication numbers mi This
bootstrap and cross-validation give the following Studentized prediction
errors for output h of deleted combination i with i = 1, . . ., ncv where
ncv denotes the number of cross-validated combinations (ncv < n because

272 6. Simulation Optimization

KrIMP avoids extrapolation in its Kriging):

th,imi−1 =
wh(xi)− ŷh(−xi)

{σ̂2[wh(xi)] + σ̂2[ŷ∗h(xi)]}1/2
(h = 0, . . . , r − 1) (i = 1, . . . , ncv) (6.34)

where

σ̂2[wh(xi)] =
σ̂2[wh(xi)]

mi

with

σ̂2[wh(xi)] =

mi∑

r=1
[wh;r(xi)− wh(xi)]

2

mi − 1
.

The highest absolute value of the th,imi−1 in Eq. (6.34) over all r outputs and

all ncv cross-validated combinations is denoted by max |th,imi−1|. Bonferroni’s
inequality implies that KrIMP divides the traditional type-I error rate α
by r × ncv. If max |th,imi−1| is significant, then KrIMP rejects all r Kriging
metamodels; else, KrIMP uses the metamodels in its INLP, to estimate the
constrained optimum.
Actually, we think that it is not good enough that KrIMP simulates each

point with a given relative precision; i.e., we think that KrIMP should treat
the r − 1 constraints E(wh′ |x) ≥ ch in Eq. (6.33)—or Eq. (6.9) in case of
GRSM—more rigorously such that

P [∀h′ : E(wh′ |x) ≥ ch] ≤ p (6.35)

where p is a given small number; e.g., p = 0.05 is the probability that all
r− 1 constraints are satisfied. Obviously, this chance-constrained formula-
tion concerns the 1−p quantile of the output wh′ given the input combina-
tion x: P [(wh′ |x) < ch] = 1−p. Similar quantiles are used in Feyzioğlu et al.
(2005) applying second-order polynomials (instead of Kriging) to solve a
multi-objective optimization problem (instead of a constrained optimiza-
tion problem such as Eq. (6.33)); Kleijnen et al. (2011) also uses quantiles
in a similar approach. Hong et al. (2015) also considers chance- constrained
optimization in case of a given limited number of alternative simulated sys-
tems. Furthermore—inspired by EGO—we may adapt KrIMP such that it
does not minimize the expected value E(w0|x) in Eq. (6.33), but it mini-
mizes a preselected quantile—namely, the q-quantile—of the goal output:
minx (w0;q|x) where P [(w0|x) < w0;q] = q. Obviously, if q = 0.50 and
w0 has a symmetric distribution (as the Gaussian assumption in Kriging
implies), then w0;q = E(w0). Various choices of q are discussed in Picheny
et al. (2013a). Finally, to predict the joint probability in Eq. (6.35), KrIMP
may use SK defined in Sect. 5.6.

6.4 Robust Optimization 273

x

w

x1 xo

U U

FIGURE 6.6. Robust solution x1 in case of implementation error within
range U , and nominally optimal solution xo for simulation output w =
fsim(x)

6.4 Robust Optimization

We start with a simple artificial example; see Fig. 6.6. In this example we
assume that an implementation error (say) e occurs when a recommended
solution is realized in the system being simulated; the possible values of
this error fall within a range denoted by U , so e ∈ U where the symbol U
stands for the uncertainty set in the mathematical programming approach
to robust optimization (see the next paragraph). The “nominally” optimal
solution ignores this implementation error, so in the plot the global opti-
mum is xo. A better solution accounting for this implementation error is
x1, which is the best worst-case or min-max solution. In Taguchian robust
optimization (also introduced in the next paragraph) we assume a proba-
bility density function (PDF) for e; e.g., we assume a Gaussian PDF with
a mean E(e) = 0 and a variance such that x+ e—the realized value of the
implemented solution—has a 99% probability of falling within the range U
around the recommended solution x. Obviously, this PDF together with
the curvature of the simulation’s I/O function w = fsim(x) implies that
in this example the simulation output w has Var(w|xo) > Var(w|x1). A
Taguchian solution tries to balance the mean and the variance of the out-
put w through a robust solution for the decision variable x.
In general, the practical importance of robust optimization is empha-

sized by the panel reported in Simpson et al. (2004). Indeed, we think
that robustness is crucial, given today’s increased uncertainty in organi-
zations and their environment; e.g., robust optimization may guide strate-

274 6. Simulation Optimization

gic decisions on supply chains that are meant to be “agile” or “resilient”.
More specifically, the optimum solution for the decision variables—that we
may estimate through local linear regression metamodels or global Kriging
metamodels, as we explained in the preceding sections—may turn out to be
inferior when ignoring uncertainties in the noncontrollable environmental
variables; i.e., these uncertainties create a risk. Taguchi (1987) discusses
“robust optimization” for the design of products. Ben-Tal and Nemirovski
(1998) discusses robust optimization in mathematical programming models
with uncertain coefficients.
Note: Taguchi (1987) is updated in Myers et al. (2009) and Wu and

Hamada (2009). Furthermore, Ben-Tal and Nemirovski (1998) is updated
in Ben-Tal and Nemirovski (2008), Gabrel et al. (2014), Wiesemann et al.
(2014), and Yanikoğlu et al. (2015). Finally, robust optimization in simula-
tion is also discussed in Hamarat et al. (2014) and Jalali and Van Nieuwen-
huyse (2015). Robust decision-making is discussed in Grubler et al. (2015).

Taguchi (1987) emphasizes that in practice some inputs of a manufac-
tured product are under complete control of the engineers, whereas other
inputs are not; e.g., the design of a car engine is completely controlled
by the engineers, but the driving style is not. Consequently, an engineer-
ing design—in this chapter we should distinguish between an engineering
design and a statistical design—that allows some flexibility in its use is
“better”; e.g., a car optimized only for the race circuit does not perform
well in the city streets. Likewise, in simulation—either deterministic or
random—our estimated optimum solution may be completely wrong when
we ignore uncertainties in some inputs; e.g., the nominally optimal decision
on the inventory control limits s (reorder level) and S (order-up-to level)
may be completely wrong if we ignore the uncertainty in the parameters
that we assumed for the random demand and delivery time distributions.
Taguchi (1987) therefore distinguishes between two types of inputs:

• decision variables, which we now denote by dj (j = 1, . . ., k) so d =
(d1, . . ., dk)

′, and

• environmental inputs or noise factors eg (g = 1, . . ., c) so e =
(e1, . . ., ec)

′.

Note: Stinstra and Den Hertog (2008) points out that a source of uncer-
tainty may be implementation error, which occurs whenever recommended
values of decision variables are to be realized in practice; e.g., continu-
ous values are hard to realize in practice, because of limited accuracy (see
again Fig. 6.6). Besides implementation errors, there are validation errors of
the simulation model (compared with the real system) and the metamodel
(compared with the simulation model); also see the discussion on the vali-
dation of metamodels in simulation, in Kleijnen and Sargent (2000).

6.4 Robust Optimization 275

We perceive the following major differences between Taguchi’s and Ben-
Tal et al.’s approaches. Originally, Ben-Tal et al. assumed static determin-
istic linear problems solved by LP, whereas we assume dynamic nonlinear
problems solved by either deterministic or random simulation. Ben -Tal et
al. assume that uncertainty implies that the coefficients of the LP problem
lie in a mathematical set called the uncertainty set ; see the example in
Fig. 6.6. We, however, assume that in deterministic or random simulation
some inputs have a given statistical distribution; also see Sect. 5.9, in which
we discussed risk analysis, uncertainty propagation, epistemic uncertainty,
etc. Currently, Ben-Tal et al. also consider multi-stage nonlinear problems
and uncertainty sets based on historical data. Another essential charac-
teristic of simulation is that the objective and constrained functions are
not known explicitly; actually, these functions are defined implicitly by the
simulation model (we may replace these implicit functions by explicit meta-
models, which are linear in the inputs if we use first-order polynomials or
nonlinear if we use either higher-order polynomials or Kriging; metamodels
treat the simulation model as a black box, as we explained in Sect. 2.1).
Moreover, a random simulation model gives random outputs, which only
estimate the true outputs (these outputs may be expected values or specific
quantiles).
The goal of robust optimization is the design of robust products or sys-

tems, whereas the goal of risk analysis is to quantify the risk of a given
engineering design; that design may turn out to be not robust at all.
For example, Kleijnen and Gaury (2003) presents a random simulation of
production-management (through methods such as Kanban, Conwip, and
related methods), using RSM to estimate an optimal solution assuming
a specific—namely the most likely—combination of environmental input
values. Next, the robustness of this solution is estimated when the environ-
ment changes; technically, these environments are generated through LHS.
In robust optimization, however, we wish to find a solution that—from
the start of the analysis—accounts for all possible environments, including
their likelihood; i.e., whereas Kleijnen and Gaury (2003) performs an ex
post robustness analysis, we wish to perform an ex ante analysis.
Note: Whereas optimization is a “hot” topic in simulation (either

deterministic or random), robust optimization is investigated in only a
few publications; see the older references in Kleijnen (2008, pp. 131–132)
and also Bates et al. (2006), Dengiz (2009), Kenett and Steinberg (2006),
Meloni and Dellino (2015), Wiebenga (2014), and the references in the next
subsections.
Next we shall discuss Taguchi’s approach, using RSM in Sect. 6.4.1 and

Kriging in Sect. 6.4.2; we shall discuss Ben-Tal et al.’s approach in
Sect. 6.4.3.

276 6. Simulation Optimization

6.4.1 Taguchian Robust Optimization Through RSM

Taguchi (1987) assumes a single output—which we denote by w—focusing
on its mean μw and its variance caused by the noise factors e so σ2(w|d)
> 0. These two outputs are combined in a scalar loss function such as the
signal-to-noise or mean-to-variance ratio μw/σ

2
w; also see the discussion of

these functions in Myers et al. (2009, pp. 486–488). Instead of this scalar
function, we use both μw and σ2

w separately and formulate the following
mathematical problem:

min E(w|d) such that σ(w|d) ≤ T (6.36)

where E(w|d) is the mean of the simulation output w determined by the dis-
tribution function of the environmental variables e and controlled through
the decision factors d; the constraint concerns σ(w|d), which is the stan-
dard deviation of the goal output w, and has a given upper threshold T .
We also refer to Myers et al. (2009, pp. 488–495) and the surveys on robust
optimization in Beyer and Sendhoff (2007) and Park et al. (2006).

Note: An alternative for the standard deviation σ(w|d) in Eq. (6.36)
may be the variance σ2(w|d), but the standard deviation uses the same
measurement unit as the mean (w|d). Kleijnen and Gaury (2003) uses the
probability of a specific disastrous event happening; e.g., P (w > c|d).
Taguchi’s worldview has been very successful in production engineering,

but statisticians have seriously criticized his statistical techniques; see the
panel report in Nair (1992). To this report we add that in simulation we can
experiment with many more inputs, levels (values), and combinations than
we can in real-life experiments; Taguchians and many statisticians focus on
real-life experiments. Myers et al. (2009, pp. 502–506) combines Taguchi’s
worldview with the statisticians’ RSM. Whereas Myers et al. (2009) as-
sumes that the multivariate noise e has the covariance matrix Ωe = σ2

eI—
and the mean μe— we assume a general Ωe. Whereas Myers et al. (2009)
superimposes contour plots for the mean and variance of the output to find
a robust solution, we use more general and flexible mathematical program-
ming. This mathematical programming, however, requires specification of
threshold values such as T in Eq. (6.36). Unfortunately, managers may find
it hard to select specific values such as T , so we may try different values and
estimate the corresponding Pareto-optimal efficiency frontier. Decreasing T
in Eq. (6.36) increases E(w|d) if the constraint with the old T was binding.
So, changing T gives an estimate of the Pareto-optimal efficiency frontier;
i.e., E(w|d) and σ(w|d) are criteria requiring a trade-off. To estimate the
variability of this frontier resulting from the various estimators, we may
use bootstrapping. For details on our adaptation of the approach in Myers
et al. (2009) we also refer to Dellino et al. (2010).

More precisely, Myers et al. (2009) fits a second-order polynomial for
the decision variables d that are to be optimized. Possible effects of the
environmental variables e are modelled through a first-order polynomial

6.4 Robust Optimization 277

e combination
d combination 1 2 . . . ne

1
2
. . .
nd

TABLE 6.1. A crossed design combining a design for the decision variables
d and a design for the environmental inputs e

in these variables e. Control-by-noise two-factor interactions (between d
and e) are also considered. Altogether, the following “incomplete” second-
order polynomial is fitted:

y = β0 +
k∑

j=1

βjdj +
k∑

j=1

k∑

j′≥j

βj;j′djdj′ +
c∑

g=1

γgeg +
k∑

j=1

c∑

g=1

δj;gdjeg + ε

= β0 + β′d+ d′Bd+ γ′e+ d′Δe+ ε (6.37)

where we now denote the regression residual through the symbol ε (instead
of e); we denote the first-order effects by β = (β1, . . . , βk)

′ for d and γ =
(γ1, . . . , γc)

′ for e; we let B denote the k×k symmetric matrix with on the
main diagonal the purely quadratic effects βj;j of d and off the diagonal
half the interactions βj;j′/2 of d; and we let Δ denote the k × c matrix
with the interactions δj;g between decision variable dj and environmental
variable eg.
If E(ε) = 0, then Eq. (6.37) implies the following regression predictor for

μw (true mean of output w):

μy = β0 + β′d+ d′Bd+ γ′μe + d′Δμe. (6.38)

Because the covariance matrix of the noise variables e is Ωe, the regression
predictor for σ2

w (true variance of w) is

σ2
y = (γ′ + d′Δ)Ωe(γ +Δ′d) + σ2

ε = l′Ωel+ σ2
ε (6.39)

where l = (γ + Δ′d) = (∂y/∂e1, . . . , ∂y/∂ec)
′ so l is the gradient with

respect to e. Consequently, the larger the gradient’s elements are, the larger
σ2
y is—which stands to reason. Furthermore, if there are no control-by-noise

interactions so Δ = 0, then we cannot control σ2
y through d.

To enable estimation of the regression parameters in Eq. (6.37), we follow
the usual Taguchian approach and use a crossed design; i.e., we combine
the design or inner array for d with nd combinations and the design or
outer array for e with ne combinations such that the crossed design has
nd × ne combinations as in Table 6.1. To estimate the optimal d through
the second-order polynomial in Eq. (6.37), we use a CCD; also see again our

278 6. Simulation Optimization

discussion below Eq. (6.4). For the first-order polynomial in e, we use a R-
III design; see the discussion below Eq. (6.3). Obviously, the combination of
these two designs enables the estimation of the two-factor interactions δj;g.
Note: Designs that are more efficient than crossed designs are discussed

in Dehlendorff et al. (2011), Dellino et al. (2010), Khuri and Mukhopadhyay
(2010), Kolaiti and Koukouvinos (2006), and Myers et al. (2009).

To use linear regression analysis for the estimation of the parameters in
Eq. (6.37), we reformulate that equation as

y = ζ′x+ ε (6.40)

with the q-dimensional vector ζ = (β0, . . ., δk;c)
′ and x defined in the

obvious way; e.g., the element corresponding with β1;2 (interaction between
d1 and d2) is d1d2. Obviously, Eq. (6.40) is linear in ζ, but not in d.

The OLS estimator ζ̂ of ζ in Eq. (6.40) is

ζ̂ = (X′X)−1X′w (6.41)

where X is the N × q matrix of explanatory variables with N =
∑n

i=1mi

where n denotes the number of different combinations of d and e, and mi

denotes the number of replications in combination i (obviously, mi = 1 in
deterministic simulation); w is the vector with the N “stapled”
(or “stacked”) outputs wi;r where r = 1, . . .,mi.

The covariance matrix of the OLS estimator ζ̂ defined in Eq. (6.41) is

Σ
̂ζ = (X′X)−1σ2

w (6.42)

where σ2
w equals σ2

ε because we assume the metamodel in Eq. (6.37) to be
valid and ε to be white nose so ε ∼ NIID(0, σ2

ε). This variance is estimated
by the mean squared residuals (MSR), which we have already defined in
Eq. (2.20) and we repeat here for convenience:

MSR =
(ŷ −w)′(ŷ −w)

N − q
(6.43)

where ŷ = ζ̂
′
x; also see Eq. (6.6).

Note: Santos and Santos (2011) allows σ2
w to be nonconstant, and esti-

mates a metamodel for σw—besides a metamodel for μw. Shin et al. (2011)
also estimates one metamodel for the mean and one for the variance.
To estimate the predictor mean μy in the left-hand side of Eq. (6.38), we

simply plug ζ̂ defined in Eq. (6.41) into the right-hand side of Eq. (6.38),
which also contains the known d and μe. We also estimate the predictor

variance σ2
y by plugging ζ̂ into Eq. (6.39), where Ωe is known. We point

out that Eq. (6.39) involves products of unknown parameters, so it implies
a nonlinear estimator σ̂2

y; plugged-in estimators certainly create bias, but
we ignore this bias.

6.4 Robust Optimization 279

Note: Apley and Kim (2011) follows a Bayesian approach—called “cau-
tious robust design”—which does account for the uncertainty of the param-
eter estimator ζ̂, and gives an analytical (instead of a simulation) solution.

Our final goal is to solve Eq. (6.36). We solve this constrained minimiza-
tion problem through a mathematical programming solver; e.g., Matlab’s
“fmincon”—but a different solver might be used; see Gill et al. (2000). This
solution estimates the robust optimal solution for the decision variables and
the resulting mean and variance.
Dellino et al. (2010) presents an example; namely, the economic order

quantity (EOQ) for an environment with a demand rate that is uncertain—
but this rate has a known distribution (implying “uncertainty propaga-
tion” of “epistemic” uncertainty; see again Sects. 1.1 and 5.9). This example
demonstrates that if management prefers low variability of inventory costs,
then they must pay a price; i.e., the expected costs increases. Furthermore,
different values are indeed found for the robust EOQ and the classic EOQ;
this classic EOQ assumes a known fixed demand rate. More examples are
referenced in Yanikoğlu et al. (2015).
Note: The solution estimated through robust optimization is a nonlinear

function of the simulation output so there are no standard CIs for this so-
lution. We may therefore evaluate the reliability of the estimated solution
through bootstrapping. The final decision on the preferred solution is up to
management; they should select a compromise combination of the decision
variables depending on their risk attitude. Shang et al. (2004) uses plots
to decide on a compromise solution; also see Fig. 6.7 where the horizontal
double-pointed arrows denote the (bootstrap) CIs for the optimal solutions
for the mean and variance, respectively, which do not overlap in this exam-
ple. However, we leave this bootstrapping for future research. We also refer
to Apley and Kim (2011), discussed in the immediately preceding Note.

Note: Future research may also address the following issues. Instead of
minimizing the mean under a standard-deviation constraint as in Eq. (6.36),
we may minimize a specific quantile of the simulation output distribution
or minimize the conditional value at risk (CVaR); CVaR considers only
one-sided deviations from the mean (whereas the standard deviation and
the variance consider deviations on both sides of the mean). Indeed, Angün
(2011) replaces the standard deviation by the CVaR and considers random
simulation of the (s, S) inventory system in Bashyam and Fu (1998) and
the call center in Kelton et al. (2007); in case the problem is found to be
convex, this problem can be solved very efficiently. Instead of Eq. (6.36),
Broadie et al. (2011) estimates the probability of a large loss in financial
risk management, for various “scenarios”—these scenarios correspond with
the combinations of environmental variables e in our approach—and ex-
amines the sequential allocation of the computer budget to estimate this
loss, allowing for variance heterogeneity; we also refer to Sun et al. (2011),
which we shall briefly discuss in Sect. 6.4.2 (last Note). Other risk mea-
sures are the expected shortfall, which is popular in the actuarial literature;

280 6. Simulation Optimization

FIGURE 6.7. Example of robust optimization of a simulation model with
output w, a single controllable input d; and one or more uncontrollable
inputs e so Var(w|d) > 0

see again Angün (2011) and also Gordy and Juneja (2010) and Lan et al.
(2010). Furthermore, multi-objective optimization and genetic algorithms
for estimating Pareto frontiers are discussed in Koziel et al. (2014) and
Shahraki and Noorossana (2014). Another methodology for estimating the
Pareto frontier is developed in Shin et al. (2011), solving a bi-objective ro-
bust design problem considering two quality characteristics. Rashid et al.
(2013) also presents a method for the estimation of the efficiency frontier.
Ardakani and Wulff (2013) gives an extensive overview of various opti-
mization formulations in case of multiple outputs, using a multi-objective
decision-making perspective; these formulations include our Eq. (6.36), the
Pareto frontier, so-called desirability functions, etc.; an application of this
desirability function—combining two outputs into a single criterion—is pre-
sented in Yalçinkaya and Bayhan (2009).

6.4.2 Taguchian Robust Optimization Through Kriging

Dellino et al. (2012) combines the world view of Taguchi (1987) and Krig-
ing metamodels, for robust optimization in deterministic simulation. This
approach is illustrated through the EOQ example with uncertain demand
rate that was also used in Dellino et al. (2010) (discussed in the preceding
subsection, Sect. 6.4.1).
More precisely, Taguchi’s low-order polynomial metamodels are replaced

by ordinary Kriging (OK) metamodels. Moreover, bootstrapping is applied
to quantify the variability in the estimated Kriging metamodels. Instead

6.4 Robust Optimization 281

of Taguchi’s signal-noise criterion μw/σ
2
w, now Kriging is combined with

nonlinear programming (NLP) (NLP is also discussed in the subsection on
KrIMP, Sect. 6.3.2). Changing the threshold values in the NLP model—
that will be defined in Eq. (6.44)—enables the estimation of the Pareto
frontier. The EOQ example shows that robust optimization may require
an order quantity that differs from the classic EOQ (such a difference is
also found through the RSM approach in Sect. 6.4.1).

Specifically, Dellino et al. (2012) uses the following NLP model:

min E(w|d) such that σ(w|d) ≤ T (6.44)

where E(w|d) is the mean of the simulation output w determined by the dis-
tribution function of the environmental variables e and controlled through
the decision factors d; the constraint concerns σ(w|d), which is the stan-
dard deviation of the goal output w, and has a given upper threshold T .
The same problem was defined in Eq. (6.36).
Next, E(w|d) and σ(w|d) are replaced by their Kriging metamodels.

Obviously, the constrained minimization problem in Eq. (6.44)—combined
with the explicit Kriging approximations—is nonlinear in the decision
variables d.
We point out that we are not interested in the functional relationship be-

tween the output w and the environmental inputs e; in the RSM approach—
in Eq. (6.37)—we do estimate a low-order polynomial in e and d. Following
Taguchi (1987), we consider the inputs e as noise. Unlike Taguchi, we now
use LHS to sample (say) ne combinations of the environmental inputs e.
For the decision variables d we do not use a CCD, whereas we did use a
CCD in the RSM approach in Sect. 6.4.1 (between Eqs. (6.39) and (6.40)).
LHS does not impose a relationship between ne (number of combinations
of e) and c (number of environmental inputs), as we explained in our dis-
cussion of LHS in Sect. 5.5.1. If we do not have prior information about the
likelihood of specific values for e, then we might use independent uniform
distributions per environmental input eg (g = 1, . . ., c) (also see our brief
discussion of Bayesian prior distributions at the end of Sect. 5.9 on risk
analysis). Whereas classic optimization assumes a single “scenario” (e.g.,
the most likely combination of environmental inputs), we now estimate
the parameters in the Kriging metamodel for the decision variables d from
the simulation outputs averaged over all simulated combinations of e; these
combinations are sampled through LHS accounting for the distribution of e.
We now explain this Kriging approach to Taguchian optimization, in more
detail.
In general, if we wish to fit a Kriging metamodel to obtain an explicit

approximation for the I/O function of a simulation model, then we often
use LHS to obtain the I/O simulation data—as we have already discussed
in detail in Sect. 5.5. Dellino et al. (2012) also uses LHS, as part of the
following two approaches, especially developed for robust optimization:

282 6. Simulation Optimization

1. Analogously to Dellino et al. (2010), fit two Kriging metamodels;
namely, one model for E(w|d) and one for σ(w|d)—both estimated
from the simulation I/O data.

2. Analogously to Lee and Park (2006), fit a single Kriging metamodel
to a relatively small number (say) n of combinations of d and e;
next use this metamodel to compute the Kriging predictions for the
simulation output w for N � n combinations of d and e accounting
for the distribution of e.

First we summarize approach 1, then approach 2, and finally the two
approaches together.
Sub 1 : We start with selecting the input combinations for the simula-

tion model through a crossed design for d and e; see again Table 6.1.
Such crossed designs are traditional in Taguchian design (as we discussed
between Eqs. (6.39) and (6.40)). To facilitate the fitting of a Kriging meta-
model in d, we select the nd combinations of d space-filling ; e.g., we use
a maximin LHS, as we discussed in Sect. 5.5.1. The ne combinations of e,
however, we sample from the distribution of e; we may use LHS for this
(stratified) sampling. The resulting I/O data form an nd×ne matrix. Such a
crossed design enables the following estimators of the nd conditional means
and variances where i = 1, . . ., nd:

wi =

∑ne

j=1 wi;j

ne
and s2i (w) =

∑ne

j=1(wi;j − wi)
2

ne − 1
. (6.45)

These two estimators are unbiased, as they do not use any metamodels.
Sub 2 : We start with a relatively small number (say) n of combinations

of the k+ c inputs d and e; we select these combinations through a space-
filling design (so we not yet sample e from its distribution). Next, we use
this n×(k+c) matrix with the simulation input data and the n-dimensional
vector with the corresponding simulation outputs w, to fit a Kriging meta-
model that approximates w as a function of d and e. Finally, we use a
design with N � n combinations, crossing a space-filling design with Nd

combinations of d and LHS with Ne combinations of e accounting for the
distribution of e. We use this Kriging metamodel to compute the predictors
ŷ of the N outputs. We then derive the Nd conditional means and stan-
dard deviations using Eq. (6.45) replacing nd and ne by Nd and Ne and
replacing the simulation output w by the Kriging predictor ŷ. We use these
predictions to fit two Kriging metamodels; namely, one Kriging model for
the mean output and one for the standard deviation of the output.
Sub 1 and 2 : Next we use the two Kriging metamodels—namely, one

model for the mean and one model for the standard deviation of the sim-
ulation output—as input for the NLP model in Eq. (6.44) to estimate the
robust optimal I/O combination. Finally, we vary the threshold T to esti-
mate the Pareto frontier. We call this frontier the “original” frontier, to be
distinguished from the bootstrapped frontier (discussed in the next Note).

6.4 Robust Optimization 283

Note: The original frontier is built on estimates of the mean and stan-
dard deviation of the simulation output. To quantify the variability in the
estimated mean and standard deviation, we apply distribution-free boot-
strapping. Moreover, bootstrapping assumes that the original observations
are IID; however, the crossed design for d and e (see again Table 6.1) im-
plies that the nd observations on the output for a given combination of
the c environmental factors e are not independent; we might compare this
dependence with the dependence created by CRN. Therefore, we sample
the nd-dimensional vectors wj (j = 1, . . ., ne) ne times with replacement.
This resampling gives the ne bootstrapped observations w∗

j . This gives the
bootstrapped conditional means w∗

i and standard deviations s∗i . To these
w∗

i and s∗i , we apply Kriging. These two Kriging metamodels together with
the NLP model in Eq. (6.44) give the predicted optimal bootstrapped mean
and standard deviation. Repeating this bootstrap sampling (say) B times
gives CIs. More research is needed to discover how exactly to use these
CIs to account for management’s risk attitude; also see Zhang and Ma
(2015). Furthermore, Simar and Wilson (1998) studies bootstrapping for
estimating the variability of a frontier; namely, the efficiency frontier in
data envelop analysis (DEA), estimated through a LP model. We also re-
fer to Dellino and Meloni (2013) for quantifying the variability of a fitted
metamodel, using bootstrapping and cross-validation.
To compare (validate) the robust solution and the classic (nominally

optimal) solution, we may sample new combinations of the environmental
inputs; i.e., we replace the old LHS combinations by new combinations,
because the old combinations favor the robust solution which uses estimates
based on these old combinations.
Note: Using a Bayesian approach to the analysis of the I/O data from

simulation, Tan (2014a) first fits a Kriging model to the I/O data, then ap-
proximates this Kriging model through a so-called orthonormal polynomial
(which is more complicated than the polynomial models that we discussed
in Sect. 2.1), and finally uses this polynomial for “functional analysis of
variance” or FANOVA (we discussed FANOVA in Sect. 5.8). This FANOVA
can decompose σ2(w|d) (the response variance at a given combination of
the decision variables d) into a sum of variances due to the main effects
and interactions among the environmental variables e; several sensitivity
indexes within the context of robust optimization can be defined. We also
refer to Tan (2014b).
Note: EGO (with its EI criterion and Kriging metamodeling, explained

in Sect. 6.3.1) may also be used for robust optimization. Actually, Marzat
et al. (2013) refers to several publications that extend EGO accounting for
a probability distribution of e such that it minimizes a weighted average of
the response w over a discrete set of values for these e. Marzat et al. (2013)
combines EGO with algorithms for solving the following minimax problem:
estimate the combination of d that minimizes the maximum response when
the worst combination of e occurs; several test functions are investigated.
Furthermore, Ur Rehman et al. (2014) extends EGO accounting for im-

284 6. Simulation Optimization

plementation errors within an “uncertainty set” (see Sect. 6.4.3 below) and
estimating the “best worst-case” or “min-max” solution. Janusevskis and
Le Riche (2013) also applies Kriging and EGO for robust optimization.

Note: In Sect. 5.6 on stochastic Kriging (SK) we have already mentioned
that the simulation response may be a quantile, which may be relevant
in chance-constrained (probabilistically constrained) optimization. Simula-
tion optimization with probabilistic constraints—namely, min E(w0) such
that P (w1 ≤ c) ≥ p—is discussed in Andrieu et al. (2011) and Sakallı and
Baykoç (2011); we also refer back to the references on EGO adapted for
chance-constrained optimization in Sect. 6.3.1, and Eq. (6.35) in Sect. 6.3.2
on KrIMP. Stochastically constrained optimization in a R&S context is dis-
cussed in Hong et al. (2015). We also refer back to the “expected shortfall”,
discussed in Sect. 6.4.1 (last Note in that subsection) including references
to Broadie et al. (2011) and Sun et al. (2011); those references and also
Chen and Kim (2014) and Gan and Lin (2015) use nested simulation, which
should be distinguished from the crossed designs—as we briefly discusses
in the Note after Eq. (6.39). Furthermore, NLP may be replaced by some
other optimizer; e.g., an evolutionary algorithm. Finally, we may also apply
Dellino et al. (2012)’s methodology to random simulation models, replacing
ordinary Kriging (OK) by stochastic Kriging (SK) or stochastic intrinsic
kriging (SIK); see the discussions on SK and SIK in Chap. 5. Yin et al.
(2015) use simulation of finite element models with uncertain environmen-
tal inputs. This simulation is followed by univariate Kriging metamodels.
These metamodels are the inputs for a multicriteria optimization problem
that combines the means and standard deviations of the multiple simula-
tion outputs. This problem is solved through particle-swarm heuristics.

6.4.3 Ben-Tal et al.’s Robust Optimization

If the mathematical programming (MP) solution ignores the uncertainty in
the coefficients of the MP model, then the so-called nominal solution may
easily violate the constraints in the given model. The robust solution may
result in a slightly worse value for the goal variable, but it increases the
probability of satisfying the constraints; i.e., a robust solution is “immune”
to variations of the variables within the uncertainty set. Given historical
data on the environmental variables e, Yanikoğlu et al. (2015) derives a
specific uncertainty set for p where p denotes the unknown density func-
tion of e that is compatible with the historical data on e (more precisely,
p belongs to this set with confidence 1−α if we select some phi-divergence
measure such as the well-known chi-square distance). The mathematical
challenge in robust optimization of MP models is to develop a computa-
tionally tractable so-called robust counterpart of the original problem. In
this section we do not present the mathematical details of the derivation
of tractable robust counterparts, but refer to the references that we gave
above.

6.5 Conclusions 285

Note: Taguchians assume a specific distribution for the environmental
variables e, which—in case of a multivariate Gaussian distribution—implies
a mean vector μe and a covariance matrix Ωe; see Eqs. (6.38) and (6.39).
We may estimate this distribution from historical data. However, Yanikoğlu
et al. (2015) develops an approach that uses only the original observed
data on e; several numerical examples demonstrate the effectiveness of this
novel combination of the two approaches originated by Taguchi and Ben-Tal
et al. The uncertainty (or “ambiguity”) of the estimated mean vector μe

and covariance matrix Ωe is also considered in Hu et al. (2012), assuming
a multivariate normal distribution for the parameters e of the underlying
simulation model and ambiguity sets for μe and Ωe with the corresponding
worst-case performance.
The examples in Yanikoğlu et al. (2015) include a deterministic simula-

tion of the television example in Myers et al. (2009, p. 512) and a random
simulation of a distribution-center example in Shi (2011); details on the
latter example are also given in Shi et al. (2014). The latter example has as
response the total throughput, and has five decision variables (e.g., num-
ber of forklifts) and two environmental variables (e.g., delay probabilities
of suppliers); the incomplete second-order polynomial of Eq. (6.37) is fitted.
Yanikoğlu et al. (2015) replaces Eq. (6.36) by the following related problem:

min σ2
w such that μw ≤ T (6.46)

where the statistical parameters μw and σ2
w are based on the historical data

(using the phi-divergence criterion). These two examples demonstrate that
robust solutions may have better worst-case performance and also better
average performance than the nominal solutions have.

6.5 Conclusions

In this chapter we started with basic RSM, which minimizes the expected
value of a single response variable in real-life experiments or determinis-
tic simulation. Next we considered RSM in random simulation. We then
presented the ASD search direction, which improves the classic steepest
descent direction. We also summarized GRSM for simulation with mul-
tivariate responses, assuming that one response is to be minimized while
all the other responses and deterministic inputs should satisfy given con-
straints. Furthermore, we discussed the KKT conditions in constrained
minimization, and presented a parametric bootstrap procedure for testing
these conditions in random simulation. Next we discussed Kriging for opti-
mization. We detailed EGO for unconstrained optimization in deterministic
simulation, and KriMP for constrained optimization in random simulation.
Finally, we considered robust optimization, using either the linear regres-
sion metamodels of RSM or Kriging metamodels; we also briefly discussed
Ben-Tal et al.’s approach to robust optimization.

286 6. Simulation Optimization

Future research may study the selection of the required number of repli-
cations, and the use of replications to estimate the accuracy of the result-
ing estimated search direction or optimum. Bootstrapping might solve this
problem, but more research is needed. Numerical evaluation of the adapted
steepest descent method would benefit from more applications in practice.
We also see a need for more research on the KKT testing procedure when
all local points (not only the center) are replicated and CRN are used; more
practical applications are also needed. Various EGO variants and KriMP
need more research. In Taguchian robust optimization we may vary the
threshold values, to estimate the Pareto frontier; bootstrapping this fron-
tier might enable management to make the final compromise decision—but
more research and applications are needed.

Solutions of Exercises

Solution 6.1 zo = (−5, 15); also see Angün et al. (2009).

Solution 6.2 If Z′Z = NI, then Eq. (6.5) implies C = I/N . Hence,
Eq. (6.7) does not change the steepest descent direction.

Solution 6.3 The ratio of two normal variables has a Cauchy distribution
so its expected value does not exist; its median does.

Solution 6.4 (zo1, zo2) = (1.24, 0.52); also see Angün et al. (2009).

References

Ajdari A, Mahlooji H (2014) An adaptive hybrid algorithm for constructing
an efficient sequential experimental design in simulation optimization.
Commun Stat Simul Comput 43:947–968

Alaeddini A, Yang K, Mao H, Murat A, Ankenman B (2013) An adap-
tive sequential experimentation methodology for expensive response sur-
face optimization—case study in traumatic brain injury modeling. Qual
Reliab Eng Int 30(6): 767–793

Alrabghi A, Tiwari A (2015) State of the art in simulation-based optimi-
sation for maintenance systems. Comput Ind Eng (in press)

Andrieu L, Cohen G, Vázquez-Abad FJ (2011) Gradient-based simulation
optimization under probability constraints. Eur J Oper Res 212:345–351

References 287

Angün ME (2004) Black box simulation optimization: generalized re-
sponse surface methodology. CentER dissertation series, Tilburg Univer-
sity, Tilburg, Netherlands (also published by VDM Verlag Dr. Müller,
Saarbrücken, Germany, 2011)

Angün E (2011) A risk-averse approach to simulation optimization with
multiple responses. Simul Model Pract Theory 19:911–923

Angün E, den Hertog D, Gürkan G, Kleijnen JPC (2009) Response surface
methodology with stochastic constraints for expensive simulation. J Oper
Res Soc 60(6):735–746

Apley DW, Kim J (2011) A cautious approach to robust design with model
parameter uncertainty. IIE Trans 43(7):471–482

Ardakani MK, Wulff SS (2013) An overview of optimization formulations
for multiresponse surface problems. Qual Reliab Eng Int 29:3–16

Atlason J, Epelman MA, Henderson SG (2008) Optimizing call center
staffing using simulation and analytic center cutting-plane methods.
Manag Sci 54(2):295–309

Barnes ER (1986) A variation on Karmarkar’s algorithm for solving linear
programming problems. Math Program 36:174–182

Barton RR, Meckesheimer M (2006) Metamodel-based simulation opti-
mization. In: Simulation. Handbooks in operations research and manage-
ment science, vol 13. Elsevier/North Holland, Amsterdam, pp 535–574

Bashyam S, Fu MC (1998) Optimization of (s, S) inventory systems with
random lead times and a service level constraint. Manag Sci 44:243–256

Bassamboo A, Randhawa RS, Zeevi A (2010) Capacity sizing under
parameter uncertainty: safety staffing principles revisited. Manag Sci
56(10):1668–1686

Bates RA, Kenett RS, Steinberg DM, Wynn HP (2006) Achieving ro-
bust design from computer simulations. Qual Technol Quant Manag
3(2):161–177

Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper
Res 23(4):769–805

Ben-Tal A, Nemirovski A (2008) Selected topics in robust convex optimiza-
tion. Math Program 112(1):125–158

Bettonvil BWM, del Castillo E, Kleijnen JPC (2009) Statistical testing
of optimality conditions in multiresponse simulation-based optimization.
Eur J Oper Res 199(2):448–458

288 6. Simulation Optimization

Beyer H, Sendhoff B (2007) Robust optimization—a comprehensive survey.
Comput Methods Appl Mech Eng 196(33–34):3190–3218

Binois M, Ginsbourger D, Roustant O (2015) Quantifying uncertainty on
Pareto fronts with Gaussian process conditional simulations. Eur J Oper
Res 243: 386–394

Boukouvalas A, Cornford D, Stehĺık M (2014) Optimal design for corre-
lated processes with input-dependent noise. Comput Stat Data Anal
71:1088–1102

Box GEP (1999) Statistics as a catalyst to learning by scientific method,
part II—a discussion. J Qual Technol 31(1):16–29

Box GEP, Wilson KB (1951) On the experimental attainment of optimum
conditions. J R Stat Soc Ser B 13(1):1–38

Brekelmans R, Driessen L, Hamers H, den Hertog D (2005) Gradient es-
timation schemes for noisy functions. J Optim Theory Appl 126(3):
529–551

Broadie M, Du Y, Moallemi CC (2011) Efficient risk estimation via nested
sequential simulation. Manag Sci 57:1172–1194

Bull AD (2011) Convergence rates of efficient global optimization algo-
rithms. J Mach Learn Res 12:2879–2904

Chang K-H, Hong J, Wan H (2013) Stochastic trust-region response-surface
method (STRONG)—a new response-surface framework for simulation
optimization. INFORMS J Comput 25(2):230–243

Chang K-H, Li M-K, Wan H (2014) Combining STRONG with screening
designs for large-scale simulation optimization. IIE Trans 46(4):357–373

Chang K-H, Lin G (2015) Optimal design of hybrid renewable energy sys-
tems using simulation optimization. Simul Model Pract Theory 52:40–51

Chau M, Fu MC, Qu H, Ryzhov I (2014) Simulation optimization: a tuto-
rial overview and recent developments in gradient-based and sequential
allocation methods. In: Tolk A, Diallo SY, Ryzhov IO, Yilmaz L, Buckley
S, Miller JA (eds) Proceedings of the 2014 winter simulation conference,
Savannah, pp 21–35

Chen X, Kim K-K (2014) Stochastic kriging with biased sample estimates.
ACM Trans Model Comput Simul 24(2):8:1–8:23

Chevalier C, Ginsbourger D, Bect J, Vazquez E, Picheny V, Richet Y (2014)
Fast parallel Kriging-based stepwise uncertainty reduction with appli-
cation to the identification of an excursion set. Technometrics 56(4):
455–465

References 289

Chih M (2013) A more accurate second-order polynomial metamodel us-
ing a pseudo-random number assignment strategy. J Oper Res Soc 64:
198–207

Conn AR, Gould NLM, Toint PL (2000) Trust-region methods. SIAM,
Philadelphia

Davis E, Ierapetritou M (2009) A kriging based method for the solution
of mixed-integer nonlinear programs containing black-box functions. J
Glob Optim 43:191–205

Dehlendorff C, Kulahci M, Andersen K (2011) Designing simulation exper-
iments with controllable and uncontrollable factors for applications in
health care. J R Stat Soc Ser C (Appl Stat) 60:31–49

Dellino G, Kleijnen JPC, Meloni C (2010) Robust optimization in sim-
ulation: Taguchi and response surface methodology. Int J Prod Econ
125(1):52–59

Dellino G, Kleijnen JPC, Meloni C (2012) Robust optimization in simula-
tion: Taguchi and Krige combined. INFORMS J Comput 24(3):471–484

Dellino G, Meloni C (2013) Quantitative methods to analyze simulation
metamodels variability. In: Spitaleri RM (ed) Proceedings of the 11th
meeting on applied scientific computing and tools. IMACS series in com-
putational and applied mathematics, vol 17, pp 91–100

Dellino G, Meloni C (eds) (2015) Uncertainty management in simulation-
optimization of complex systems. Algorithms and applications. Springer,
New York

Dengiz B (2009) Redesign of PCB production line with simulation and
Taguchi design. In: Rossetti MD, Hill RR, Johansson B, Dunkin A, In-
galls RG (eds) Proceedings of the 2009 winter simulation conference,
Austin, pp 2197–2204

Dykstra RL (1970) Establishing the positive definiteness of the sample
covariance matrix. Ann Math Stat 41(6):2153–2154

Echard B, Gayton N, Lemaire M (2011) Ak-mcs: an active learning reli-
ability method combining Kriging and Monte Carlo simulation. Struct
Saf 33(2):145–154

Fan S-KS, Huang K-N (2011) A new search procedure of steepest ascent
in response surface exploration. J Stat Comput Simul 81(6):661–678

Feyzioğlu O, Pierreval H, Deflandre D (2005) A simulation-based opti-
mization approach to size manufacturing systems. Int J Prod Res 43(2):
247–266

290 6. Simulation Optimization

Feng Z, Zhang Q, Tang Q, Yang T, Ma Y (2015) A multiobjective opti-
mization based framework to balance the global exploration and local
exploitation in expensive optimization. J Glob Optimi, 61(4):677–694

Figueira G, Almada-Lobo B (2014) Hybrid simulation-optimization meth-
ods: a taxonomy and discussion. Simul Model Pract Theory 46:118–134

Forrester AIJ, Jones DR (2008) Global optimization of deceptive functions
with sparse sampling. In: 12th AIAA/ISSMO multidisciplinary analysis
and optimization conference, Victoria, pp 10–12

Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based opti-
mization. Prog Aerosp Sci 45(1–3):50–79

Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surro-
gate modelling; a practical guide. Wiley, Chichester, pp 79–102

Frazier PI (2010) Learning with dynamic programming. In: Cochran JJ,
Cox LA, Keskinocak P, Kharoufeh JP, Smith JC (eds) Wiley encyclope-
dia of operations research and management science. Wiley, New York

Frazier P, Powell W, Dayanik S (2009) The knowledge-gradient policy for
correlated normal beliefs. INFORMS J Comput 21:599–613

Fu MC, Bayraksan G, Henderson SG, Nelson BL, Powell WB, Ryzhov IO,
Thengvall B (2014) Simulation optimization: a panel on the state of the
art in research and practice. In: Tolk A, Diallo SY, Ryzhov IO, Yilmaz
L, Buckley S, Miller JA (eds) Proceedings of the 2014 winter simulation
conference, Savannah, pp 3696–3706

Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimiza-
tion: an overview. Eur J Oper Res 235(3):471–483

Gano SE, Renaud JE, Martin JD, Simpson TW (2006) Update strategies
for Kriging models for using in variable fidelity optimization. Struct Mul-
tidiscip Optim 32(4):287–298

Gan G, Lin XS (2015) Valuation of large variable annuity portfolios under
nested simulation: a functional data approach. Insurance: Math Econ
62:138–150

Gill PE, Murray W, Wright MH (2000) Practical optimization, 12th edn.
Academic, London

Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited
to parallelize optimization. In: Tenne Y, Goh C-K (eds) Computa-
tional intelligence in expensive optimization problems. Springer, Berlin,
pp 131–162

References 291

Gordy MB, Juneja S (2010) Nested simulation in portfolio risk measure-
ment. Manag Sci 56(11):1833–1848

Gorissen D (2010) Grid-enabled adaptive surrogate modeling for computer
aided engineering. Ph. D. dissertation Ghent University, Ghent, Belgium

Gosavi A (2015) Simulation-based optimization: parametric optimization
techniques and reinforcement learning, 2nd edn. Springer, Boston

Gramacy RB, Gray GA, Le Digabel S, Lee HKH, Ranjan P, Wells G, Wild
SM (2015) Modeling an augmented Lagrangian for blackbox constrained
optimization. Technometrics (in press)

Gramacy RB, Lee HKH (2010) Optimization under unknown constraints.
Bayesian Stat 9:1–18

Grubler A, Ermoliev Y, and Kryazhimskiy A (2015) Coping with uncer-
tainties examples of modeling approaches at IIASA. Technological Fore-
casting and Social Change (in press)

Hamarat C, Kwakkel JH, Pruyt E, Loonen ET (2014) An exploratory ap-
proach for adaptive policymaking by using multi-objective robust opti-
mization. Simul Model Pract Theory 46:25–39

Homem-de-Mello T, Bayraksan G (2014) Monte Carlo sampling-based
methods for stochastic optimization. Surv Oper Res Manag Sci 19(1):
56–85

Hong LJ, Luo J, Nelson BL (2015) Chance constrained selection of the
best. INFORMS J Comput 27(2):317–334

Hu Z, Cao J, Hong LJ (2012) Robust simulation of global warming policies
using the DICE model. Manag Sci 58(12):2190–2206

Huang D, Allen TT, Notz W, Zheng N (2006) Global optimization of
stochastic black-box systems via sequential Kriging meta-models. J Glob
Optim 34:441–466

Huang Y, Hsieh C-Y (2014) Influence analysis in response surface method-
ology. J Stat Plan Inference 147:188–203

Huerta A, Elizondo M (2014) Analysis of scientific collaboration patterns
in co-authorship network of simulation-optimization of supply chains.
Simul Model Pract Theory 46:135–148

Jala M, Lévy-Leduc C, Moulines É, Conil E, Wiart J (2014) Sequential
design of computer experiments for the assessment of fetus exposure to
electromagnetic fields. Technometrics (in press)

292 6. Simulation Optimization

Jalali H, van Nieuwenhuyse I (2014) Evaluation of Kriging-based methods
for simulation optimization with homogeneous noise. In: Tolk A, Diallo
SY, Ryzhov IO, Yilmaz L, Buckley S, Miller JA (eds) Proceedings of the
2014 winter simulation conference, pp 4057–4058

Jalali H, Van Nieuwenhuyse I (2015, accepted) Simulation optimization in
inventory replenishment: a classification. IIE Trans

Janusevskis J, Le Riche R (2013) Simultaneous kriging-based estimation
and optimization of mean response. J Glob Optim 55(2):313–336

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of
expensive black-box functions. J Glob Optim 13:455–492

Joshi S, Sherali HD, Tew JD (1998) An enhanced response surface method-
ology (RSM) algorithm using gradient deflection and second-order search
strategies. Comput Oper Res 25(7/8):531–541

Kamiński B (2015) A method for updating of stochastic Kriging meta-
models. Eur J Oper Res (accepted)

Kasaie P, Kelton WD (2013) Simulation optimization for allocation of
epidemic-control resources. IIE Trans Healthc Syst Eng 3(2):78–93

Kasaie P, Vaghefi A, Naieni G (2009) Optimal resource allocation for con-
trol of epidemics: an agent based simulation approach. Working Paper,
Dept. of Industrial Engineering, Iran University of Science & Technology,
Tehran, 16844, Iran

Kelton WD, Sadowski RP, Sturrock DT (2007) Simulation with Arena, 4th
edn. McGraw-Hill, Boston

Kenett R, Steinberg D (2006) New frontiers in design of experiments. Qual
Progress 61–65

Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley
Interdiscip Rev Comput Stat 2:128–149

Kleijnen JPC (1975) Statistical techniques in simulation, part II. Dekker,
New York

Kleijnen JPC (1993) Simulation and optimization in production planning:
a case study. Decis Support Syst 9:269–280

Kleijnen JPC (2008) Design and analysis of simulation experiments.
Springer, New York

Kleijnen JPC (2014) Response surface methodology. In: Fu MC (ed) Hand-
book of simulation optimization. Springer, New York

References 293

Kleijnen JPC, Den Hertog D, Angün E (2004) Response surface methodol-
ogy’s steepest ascent and step size revisited. Eur J Oper Res 159:121–131

Kleijnen JPC, Den Hertog D, Angün E (2006) Response surface methodol-
ogy’s steepest ascent and step size revisited: correction. Eur J Oper Res
170:664–666

Kleijnen JPC, Gaury EGA (2003) Short-term robustness of production-
management systems: a case study. Eur J Oper Res 148(2):452–465

Kleijnen JPC, Mehdad E (2013) Conditional simulation for efficient global
optimization. In: Proceedings of the 2013 winter simulation conference,
Washington, pp 969–979

Kleijnen JPC, Pierreval H, Zhang J (2011) Methodology for determining
the acceptability of system designs in uncertain environments. Eur J
Oper Res 209(2):176–183

Kleijnen JPC, Sargent RG (2000) A methodology for the fitting and vali-
dation of metamodels in simulation. Eur J Oper Res 120(1):14–29

Kleijnen JPC, Van Beers WCM, van Nieuwenhuyse I (2010) Constrained
optimization in simulation: a novel approach. Eur J Oper Res 202:
164–174

Kleijnen JPC, Van Beers W, Van Nieuwenhuyse I (2012) Expected im-
provement in efficient global optimization through bootstrapped Kriging.
J Glob Optim 54:59–73

Kleijnen JPC, Wan J (2007) Optimization of simulated systems: OptQuest
and alternatives. Simul Model Pract Theory 15:354–362

Koch P, Wagner T, Emmerich MTM, Bäck T, Konen W (2015) Efficient
multi-criteria optimization on noisy machine learning problems. Appl
Soft Comput (in press)

Kolaiti E, Koukouvinos C (2006) On the use of three level orthogonal arrays
in robust parameter design. Stat Probab Lett 76(3):266–273

Koziel S, Bekasiewicz A, Couckuyt I, Dhaene T (2014) Efficient multi-
objective simulation-driven antenna design using co-Kriging. IEEE Trans
Antennas Propag 62(11):5901–5915

Lan H, Nelson BL, Staum J (2010) A confidence interval procedure for
expected shortfall risk measurement via two-level simulation. Oper Res
58(5):1481–1490

Law AM (2015) Simulation modeling and analysis, 5th edn. McGraw-Hill,
Boston

294 6. Simulation Optimization

Lee KH, Park GJ (2006) A global robust optimization using Kriging based
approximation model. J Jpn Soc Mech Eng 49:779–788

Lee LH, Chew EP, Frazier PI, Jia Q-S, Chen C-H (2013) Foreword:
advances in simulation optimization and its applications. IIE Trans
45(7):683–684

Lee S, Nelson BL (2014) Bootstrap ranking & selection revisited. In: Tolk A,
Diallo SY, Ryzhov IO, Yilmaz L, Buckley S, Miller JA (eds) Proceedings
of the 2014 winter simulation conference, Savannah, pp 3857–3868

Leijen MCF (2011) Response surface methodology for simulation opti-
mization of a packaging line. Master’s thesis, Eindhoven University of
Technology, Department of Mechanical Engineering, Systems Engineer-
ing Group, Eindhoven

Mahdavi I, Shirazi B, Solimanpur M (2010) Development of a simulation-
based decision support system for controlling stochastic flexible job shop
manufacturing systems. Simul Model Pract Theory 18:768–786

Marzat J, Walter E, Piet-Lahanie H (2013) Worst-case global optimization
of black-box functions through Kriging and relaxation. J Glob Optim
55:707–727

Mehdad E, Kleijnen JPC (2015) Classic Kriging versus Kriging with boot-
strapping or conditional simulation: classic Kriging’s robust confidence
intervals and optimization. J Oper Res Soc (in press)

Mehdad E, Kleijnen JPC (2014) Global optimization for black-box sim-
ulation through sequential intrinsic Kriging. CentER Discussion Paper
2014-063, Tilburg University, Tilburg, Netherlands

Meloni C, Dellino G (eds) (2015) Uncertainty management in simulation-
optimization of complex systems; algorithms and applications. Springer

Miller GA (1956) The magical number seven plus or minus two: some limits
on our capacity for processing information. Psychol Rev 63:81–97

Montevechi JAB, de Almeida Filho RG, Paiva AP, Costa RFS, and A.L.
Medeiros (2010) Sensitivity analysis in discrete-event simulation using
fractional factorial designs. J Simul 4(2):128–142

Morales-Enciso S and Branke J (2015) Tracking global optima in dy-
namic environments with efficient global optimization. Eur J Oper Res
242(3):744–755

Müller J, Shoemaker CA (2014) Influence of ensemble surrogate models
and sampling strategy on the solution quality of algorithms for com-
putationally expensive black-box global optimization problems. J Glob
Optim 60(2):123–144

References 295

Myers RH, Khuri AI, Carter WH (1989) Response surface methodology:
1966–1988. Technometrics 31(2):137–157

Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface
methodology: process and product optimization using designed experi-
ments, 3rd edn. Wiley, New York

Nair VN (ed) (1992) Taguchi’s parameter design: a panel discussion. Tech-
nometrics 34(2):127–161

Nakayama H, Yun Y, Yoon M (2009) Sequential approximate multiob-
jective optimization using computational intelligence. Springer, Berlin,
pp 133–141

Ng SH, Xu K, Wong WK (2007) Optimization of multiple response sur-
faces with secondary constraints for improving a radiography inspection
process. Qual Eng 19(1):53–65

Oden JT (2006) Revolutionizing engineering science through simulation.
National Science Foundation (NSF), Blue Ribbon Panel on Simulation-
Based Engineering Science

Park G-J, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an
overview. AIAA J 44(1):181–191

Pasupathy R, Ghosh S (2014) Simulation optimization: a concise overview
and implementation guide. INFORMS Tutorials in Operations Re-
search, pp 122–150. http://pubsonline.informs.org/doi/book/10.

1287/educ.2014#Chapters

Picheny V, Ginsbourger D, Richet Y, Caplin G (2013a) Quantile-based
optimization of noisy computer experiments with tunable precision (in-
cluding comments and rejoinder). Technometrics 55(1):1–36

Picheny V, Wagner T, Ginsbourger D (2013b) A benchmark of kriging-
based infill criteria for noisy optimization. Struct Multidiscip Optim
48:607–626

Preuss M, Wagner T, Ginsbourger D (2012) High-dimensional model-based
optimization based on noisy evaluations of computer games. In: Hamadi
Y, Schoenauer M (eds) Learning and intelligent optimization: 6th inter-
national conference (LION 6), Paris. Springer, Berlin, pp 145–159

Quan N, Yin J, Ng SH, Lee LH (2013), Simulation optimization via kriging:
a sequential search using expected improvement with computing budget
constraints. IIE Trans 45:763–780

Qu H, Ryzhov IO, Fu MC, Ding Z (2015) Sequential selection with unknown
correlation structures. Oper Res 63(4):931–948

http://pubsonline.informs.org/doi/book/10.1287/educ.2014#Chapters
http://pubsonline.informs.org/doi/book/10.1287/educ.2014#Chapters

296 6. Simulation Optimization

Rashid K, Bailey, WJ Couet B, and Wilkinson D (2013) An efficient proce-
dure for expensive reservoir-simulation optimization under uncertainty.
SPE Econ Manage 5(4):21–33

Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in
water resources. Water Resour Res 48, W07401:1–322

Regis RG (2014) Locally-biased efficient global optimization using Kriging
metamodels Working paper, Department of Mathematics, Saint Joseph’s
University, Philadelphia

Rikards R, Auzins J (2002) Response surface method for solution of struc-
tural identification problems. In: Fourth international conference on in-
verse problems in engineering, Rio de Janeiro

Rosen SC, Harmonosky CM, Traband MT (2008) Optimization of systems
with multiple performance measures via simulation: survey and recom-
mendations. Comput Ind Eng 54(2):327–339

Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging, DiceOptim: two
R packages for the analysis of computer experiments by Kriging-based
metamodeling and optimization. J Stat Softw 51(1):1–55

Safizadeh MH (2002) Minimizing the bias and variance of the gradient
estimate in RSM simulation studies. Eur J Oper Res 136(1):121–135

SakallıÜS, Baykoç ÖF (2011) An optimization approach for brass casting
blending problem under aletory and epistemic uncertainties. Int J Prod
Econ 133(2):708–718

Salemi P, Nelson BL, Staum J (2014) Discrete optimization via simulation
using Gaussian Markov random fields. In: Tolk A, Diallo SY, Ryzhov
IO, Yilmaz L, Buckley S, Miller JA (eds) Proceedings of the 2014 winter
simulation conference, Savannah, pp 3809–3820

Saltelli A, Ratto M, Tarantola S, Campolongo F (2005) Sensitivity analysis
of chemical models. Chem Rev 105(7):2811–2827

Samuelson D (2010) When close is better than optimal: combining simu-
lation and stochastic optimization for better risk management. OR/MS
Today 37(6):38–41

Santos MI, Santos PM (2011) Construction and validation of distribution-
based regression simulation metamodels. J Oper Res Soc 62:1376–1384

Sasena MJ, Papalambros P, Goovaerts P (2002) Exploration of metamod-
eling sampling criteria for constrained global optimization. Eng Optim
34(3):263–278

References 297

Scott W, Frazier P, Powell W (2011) The correlated knowledge gradient for
simulation optimization of continuous parameters using Gaussian process
regression. SIAM J Optim 21(3):996–1026

Scott WR, Powell WB, Simao HP (2010) Calibrating simulation models us-
ing the knowledge gradient with continuous parameters. In: Proceedings
of the 2010 winter simulation conference, Baltimore, pp 1099–1109

Shang JS, Li S, Tadikamalla P (2004) Operational design of a supply chain
system using the Taguchi method, response surface methodology, simu-
lation, and optimization. Int J Prod Res 42(18):3823–3849

Shahraki AF, Noorossana R (2014) Reliability-based robust design opti-
mization: a general methodology using genetic algorithm. Comput Ind
Eng 74:199–207

Shi W (2011) Design of pre-enhanced cross-docking distribution center un-
der supply uncertainty: RSM robust optimization method. Working Pa-
per, Huazhong University of Science & Technology, China

Shi W, Shang J, Liu Z, Zuo X (2014) Optimal design of the auto parts
supply chain for JIT operations: sequential bifurcation factor screening
and multi-response surface methodology. Eur J Oper Res 236(2):664–676

Shin S, Samanlioglu F, Cho BR, Wiecek MM (2011) Computing trade-offs
in robust design: perspectives of the mean squared error. Comput Ind
Eng 60(2):248–255

Simar L, Wilson PW (1998) Sensitivity analysis of efficiency scores: how
to bootstrap in nonparametric frontier models. Manag Sci 44(1):49–61

Simon HA (1956) Rational choice and the structure of the environment.
Psychol Rev 63(2):129–138

Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN, Yang R-J (2004)
Approximation methods in multidisciplinary analysis and optimization:
a panel discussion. Struct Multidiscip Optim 27(5):302–313

Stinstra E, den Hertog D (2008) Robust optimization using computer ex-
periments. Eur J Oper Res 191(3):816–837

Sun L, Hong LJ, Hu Z (2014) Balancing exploitation and exploration in
discrete optimization via simulation through a Gaussian process-based
search. Oper Res 62(6):1416–1438

Sun Y, Apley DW, Staum J (2011) Efficient nested simulation for estimat-
ing the variance of a conditional expectation. Oper Res 59(4):998–1007

298 6. Simulation Optimization

Svenson JD, Santner TJ (2010) Multiobjective optimization of expensive
black-box functions via expected maximin improvement. The Ohio State
University, Columbus, Ohio

Taddy MA, Lee HKH, Gray GA, Griffin JD (2009) Bayesian guided pattern
search for robust local optimization. Technometrics 5(4):389–401

Taguchi G (1987) System of experimental designs, vols 1 and 2. UNIPUB/
Krauss International, White Plains

Tajbakhsh S, del Castillo E, Rosenberger JL (2013) A fully Bayesian ap-
proach to the efficient global optimization algorithm. Working Paper,
Pennsylvania State University

Tan MHY (2014a) Robust parameter design with computer experiments
using orthonormal polynomials. Technometrics (in press)

Tan MHY (2014b) Stochastic polynomial interpolation for uncertainty
quantification with computer experiments. Technometrics (in press)

Tenne Y, Goh C-K (eds) (2010) Computational intelligence in expensive
optimization problems. Springer, Berlin

Tong C, Sun Z, Zhao Q, Wang Q, Wang S (2015) A hybrid algorithm for
reliability analysis combining Kriging and subset simulation importance
sampling. J Mech Sci Technol 29(8):3183–3193

Ur Rehman S, Langelaar M, van Keulen F (2014) Efficient Kriging-based
robust optimization of unconstrained problems. J Comput Sci (in press)

Van den Bogaard W, Kleijnen JPC (1977) Minimizing waiting times using
priority classes: a case study in response surface methodology. Discus-
sion Paper FEW 77.056. http://arno.uvt.nl/show.cgi?fid=105001.
Accessed 12 Mar 2014

Van der Herten J, Couckuyt I, Deschrijver D, Dhaene T (2015) A fuzzy
hybrid sequential design strategy for global surrogate modeling of high-
dimensional computer experiments. SIAM J Sci Comput 37(2):A1020–
A1039

Vazquez E, Bect J (2010) Convergence properties of the expected improve-
ment algorithm with fixed mean and covariance functions. J Stat Plan
Inference 140(11):3088–3095

Viana FAC, Haftka RT, Watson LT (2013) Efficient global optimiza-
tion algorithm assisted by multiple surrogate techniques. J Glob Optim
56(2):669–689

http://arno.uvt.nl/show.cgi?fid=105001

References 299

Villemonteix J, Vazquez E, Sidorkiewicz M, Walter E (2009a) Global opti-
mization of expensive-to-evaluate functions: an empirical comparison of
two sampling criteria. J Glob Optim 43:373–389

Villemonteix J, Vazquez E, Walter E (2009b) An informational approach to
the global optimization of expensive-to-evaluate functions. J Glob Optim
44(4):509–534

Wagner T (2013) Planning and multi-objective optimization of manufac-
turing processes by means of empirical surrogate models. Doctoral dis-
sertation, Technische Universität Dortmund, Dortmund, Germany

Wan J, Li L (2008) Simulation for constrained optimization of inventory
system by using Arena and OptQuest. In: 2008 international conference
on computer science and software engineering (CSSE 2008). IEEE, Wake-
field, MA, pp 202–205

Wiebenga JH (2014) Robust design and optimization of forming processes.
Ph.D. thesis, University of Twente, Enschede, Netherlands

Wiesemann W, Kuhn D, Sim M (2014) Distributionally robust convex op-
timization. Oper Res (in press)

Williams BJ, Santner TJ, Notz WI, Lehman JS (2010) Sequential design of
computer experiments for constrained optimization. In: Kneib T, Tutz
G (eds) Festschrift for Ludwig Fahrmeir, Springer, Berlin, pp 449–471

Wu CFJ, Hamada M (2009) Experiments; planning, analysis, and param-
eter design optimization, 2nd edn. Wiley, New York

Xu J, Huang E, Chen C-H, Lee LH (2015) Simulation optimization: a
review and exploration in the new era of cloud computing and big data.
Asia Pacific J Oper Res (in press)

Yalçinkaya, Ö, Bayhan GM (2009) Modelling and optimization of average
travel time for a metro line by simulation and response surface method-
ology. Eur J Oper Res 196(1):225–233

Yanikoğlu İ, den Hertog D, and Kleijnen JPC (2015), Robust dual response
optimization. IIE Trans (in press)

Yarotsky D (2013) Examples of inconsistency in optimization by expected
improvement. J Glob Optim 56, pp. 1773–1790

Yin H, Fang H, Xiao Y, Wen G, Qing Q (2015) Multi-objective robust op-
timization of foam-filled tapered multi-cell thin-walled structures. Struct
Multidiscip Optim (in press)

300 6. Simulation Optimization

YeW, You F (2015) A fast simulation-based optimization method for inven-
tory control of general supply chain networks under uncertainty Amer-
ican control conference, Palmer House Hilton, Chicago, 1–3 July 2015,
pp 2001–2006

Zazanis MA, Suri R (1993) Convergence rates of finite-difference sensitivity
estimates for stochastic systems. Oper Res 41(4):694–703

Zhang J, Ma Y (2015) Stochastic Kriging-assisted multi-objective simu-
lation optimization and uncertainty analysis. Simul: Trans Soc Model
Simul Int (in press)

Zhou E, Bhatnagar S, Chen X (2014) Simulation optimization via gradient-
based stochastic search. In: Tolk A, Diallo SY, Ryzhov IO, Yilmaz L,
Buckley S, Miller JA (eds) Proceedings of the 2014 winter simulation
conference, Savannah, pp 3869–3879

	6 Simulation Optimization
	6.1 Introduction
	6.2 Linear Regression for Optimization
	6.2.1 Response Surface Methodology (RSM): Basics
	6.2.2 RSM in Random Simulation
	6.2.3 Adapted Steepest Descent (ASD) for RSM
	6.2.4 Multiple Responses: Generalized RSM (GRSM)
	6.2.5 Testing a GRSM Optimum: Karush-Kuhn-Tucker(KKT) conditions

	6.3 Kriging Metamodels for Optimization
	6.3.1 Efficient Global Optimization (EGO)
	6.3.2 Kriging and Integer Mathematical Programming(KrIMP)

	6.4 Robust Optimization
	6.4.1 Taguchian Robust Optimization Through RSM
	6.4.2 Taguchian Robust Optimization Through Kriging
	6.4.3 Ben-Tal et al.'s Robust Optimization

	6.5 Conclusions
	Solutions for Exercises
	References

