
5
Kriging Metamodels and Their
Designs

This chapter is organized as follows. Section 5.1 introduces Kriging, which is
also called Gaussian process (GP) or spatial correlation modeling.
Section 5.2 details so-called ordinary Kriging (OK), including the basic
Kriging assumptions and formulas assuming deterministic simulation. Sec-
tion 5.3 discusses parametric bootstrapping and conditional simulation for
estimating the variance of the OK predictor. Section 5.4 discusses uni-
versal Kriging (UK) in deterministic simulation. Section 5.5 surveys de-
signs for selecting the input combinations that gives input/output data
to which Kriging metamodels can be fitted; this section focuses on Latin
hypercube sampling (LHS) and customized sequential designs. Section 5.6
presents stochastic Kriging (SK) for random simulations. Section 5.7 dis-
cusses bootstrapping with acceptance/rejection for obtaining Kriging pre-
dictors that are monotonic functions of their inputs. Section 5.8 discusses
sensitivity analysis of Kriging models through functional analysis of vari-
ance (FANOVA) using Sobol’s indexes. Section 5.9 discusses risk analysis
(RA) or uncertainty analysis (UA). Section 5.10 discusses several remain-
ing issues. Section 5.11 summarizes the major conclusions of this chapter,
and suggests topics for future research. The chapter ends with Solutions of
exercises, and a long list of references.

© Springer International Publishing Switzerland 2015
J.P.C. Kleijnen, Design and Analysis of Simulation Experiments,
International Series in Operations Research & Management
Science 230, DOI 10.1007/978-3-319-18087-8 5

179



180 5. Kriging Metamodels and Their Designs

5.1 Introduction

In the preceding three chapters we focussed on linear regressionmetamodels
(surrogates, emulators); namely, low-order polynomials. We fitted those
models to the input/output (I/O) data of the—either local or global—
experiment with the underlying simulation model; this simulation model
may be either deterministic or random. We used these metamodels for the
explanation of the simulation model’s behavior, and for the prediction of
the simulation output for input combinations that were not yet simulated.
In the present chapter, we focus on Kriging metamodels. The name Krig-

ing refers to Danie Krige (1919–2013), who was a South African mining
engineer. In the 1960s Krige’s empirical work in geostatistics—see Krige
(1951)—was formalized by the French mathematician George Matheron
(1930–2000), using GPs—see Matheron (1963).
Note: A standard textbook on Kriging in geostatistics involving “spatial

datan” is Cressie (1993); more recent books are Chilès and Delfiner (2012)
and Stein (1999).
Kriging was introduced as a metamodel for deterministic simulation

models or “computer models” in Sacks et al. (1989). Simulation models
have k-dimensional input combinations where k is a given positive integer,
whereas geostatistics considers only two or three dimensions.
Note: Popular textbooks on Kriging in computer models are Forrester

et al. (2008) and Santner et al. (2003). A popular survey article is Simpson
et al. (2001).
Kriging for stochastic (random) simulation models was briefly discussed

in Mitchell and Morris (1992). Next, Van Beers and Kleijnen (2003) details
Kriging in such simulation models, simply replacing the deterministic simu-
lation output by the average computed from the replications that are usual
in stochastic simulation. Although Kriging has not yet been frequently
applied in stochastic simulation, we believe that the track record Kriging
achieved in deterministic simulation holds promise for Kriging in stochastic
simulation; also see Kleijnen (2014).
Note: Kleijnen (1990) introduced Kriging into the discrete-event simu-

lation community. A popular review article is Kleijnen (2009). The classic
discussion of Kriging in stochastic simulation is Ankenman et al. (2010).
More references will follow in the next sections of this chapter.
Kriging is also studied in machine learning. A popular textbook is Ras-

mussen and Williams (2006). Web sites on GPs in machine learning are
http://www.gaussianprocess.org/

http://ml.dcs.shef.ac.uk/gpss/

http://www.mlss.cc/.
Besides the Anglo-Saxon literature, there is a vast French literature on

Kriging, inspired by Matheron’s work; see
http://www.gdr-mascotnum.fr/documents.html.

http://www.gaussianprocess.org/
http://ml.dcs.shef.ac.uk/gpss/
http://www.mlss.cc/
http://www.gdr-mascotnum.fr/documents.html
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Typically, Kriging models are fitted to data that are obtained for larger
experimental areas than the areas used in low-order polynomial regression
metamodels; i.e., Kriging models are global instead of local. Kriging models
are used for prediction. The final goals are sensitivity analysis and risk
analysis—as we shall see in this chapter—and optimization—as we shall
see in the next chapter; these goals were also discussed in Sect. 1.2.

5.2 Ordinary Kriging (OK) in Deterministic
Simulation

In this section we focus on OK, which is the simplest form of universal
Kriging (UK), as we shall see in Sect. 5.4. OK is popular and successful in
practical deterministic simulation, as many publications report.
Note: These publications include Chen et al. (2006), Martin and Simpson

(2005), and Sacks et al. (1989). Recently, Mehdad and Kleijnen (2015a) also
reports that in practice OK is likely to give better predictors than UK.
In Sect. 5.2.1 we present the basics of OK; in Sect. 5.2.2 we discuss the

problems caused by the estimation of the (hyper)parameters of OK.

5.2.1 OK Basics

OK assumes the following metamodel:

y(x) = μ+M(x) with x ∈ R
k (5.1)

where μ is the constant meanE[y(x)] in the given k-dimensional experimen-
tal area, andM(x) is the additive noise that forms a Gaussian (multivariate
normal) stationary process with zero mean. By definition, a stationary pro-
cess has a constant mean, a constant variance, and covariances that depend
only on the distance between the input combinations (or “points” in R

k)
x and x′ (stationary processes were also defined in Definition 3.2).
Because different Kriging publications use different symbols for the same

variable, we now discuss our symbols. We use x—instead of d—because the
Kriging literature uses x for the combination of inputs—even though the
design of experiments (DOE) literature and the preceding chapters use d
for the combination of design variables (or factors); d determines products
such as xjxj′ with j, j′ = 1, . . ., k. The constant mean μ in Eq. (5.1) is also
denoted by β0; also see the section on UK (Sect. 5.4). Ankenman et al.
(2010) calls M(x) the extrinsic noise to distinguish it from the intrinsic
noise in stochastic simulation. OK assumes that the simulation output is
deterministic (say) w. We distinguish between y (metamodel output) and
w (simulation model output), whereas most Kriging publications do not
distinguish between y and w (we also distinguished between y and w in the
preceding chapters on linear regression; an example of our use of y and w
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is the predictor formula in Eq. (5.2) below). We try to stick to the symbols
used in the preceding chapters; e.g., to denote the number of dimensions
we use k (not d, which is used in some Kriging publications), Σ (not Γ) to
denote a covariance matrix, and σ (not γ or Σ(x0, .)) to denote a vector
with covariances.
OK with its constant mean μ does not imply a flat response surface. Ac-

tually, OK assumes that M(x) has positive covariances so cov[y(x), y(x′)]
> 0. Consequently, if it happens that y(x) > μ, then E[y(x′)] > μ is “very
likely” (i.e., the probability is greater than 0.50)—especially if x and x′

lie close in R
k. However, a linear regression metamodel with white noise

implies cov[y(x), y(x′)] = 0; see the definition of white noise that we gave
in Definition 2.3.
OK uses a linear predictor. So let w = (w(x1), . . . , w(xn))

′ denote the
n observed values of the simulation model at the n so-called old points
(in machine learning these old points are called the “training set”). OK
computes the predictor ŷ(x0) for a new point x0 as a linear function of the
n observed outputs at the old points:

ŷ(x0) =
∑n

i=1λiwi = λ′w (5.2)

where wi = fsim(xi) and fsim denotes the mathematical function that is
defined by the simulation model itself (also see Eq. (2.6); the weight λi

decreases with the distance between the new input combination x0 and the
old combination xi, as we shall see in Eq. (5.6); i.e., the weights λ′ = (λ1,
. . . , λn) are not constants (whereas β in linear regression remains constant).
Notice that xi = (xi;j) (i = 1, . . ., n; j = 1, . . ., k) so X′ = (x1, . . . ,xn) is a
k × n matrix.
To determine the optimal values for the weights λ in Eq. (5.2), we need

to specify a criterion for OK. In fact, OK (like other types of Kriging) uses
the best linear unbiased predictor (BLUP), which (by definition) minimizes
the mean squared error (MSE) of the predictor:

min MSE[ŷ(x0)] = min {E[ŷ(x0)− y(x0)}2]; (5.3)

moreover, the predictor must be unbiased so

E[ŷ(x0)] = E[y(x0)]. (5.4)

This bias constraint implies that if the new point coincides with one of the
old points, then the predictor must be an exact interpolator ; i.e., ŷ(xi) =
w(xi) with i = 1, . . ., n (also see Exercise 5.2 below).
Note: Linear regression uses as criterion the sum of squared residuals

(SSR), which gives the least squares (LS) estimator. This estimator is not
an exact interpolator, unless n = q where q denotes the number of regres-
sion parameters; see Sect. 2.2.1.
It can be proven that the solution of the constrained minimization prob-

lem defined by Eqs. (5.3) and (5.4) implies that λ must satisfy the following
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condition where 1 = (1, . . . , 1)′ is an n-dimensional vector with all elements
equal to 1 (a more explicit notation would be 1n):

n
∑

i=1

λi = 1′λ =1. (5.5)

Furthermore, it can be proven that the optimal weights are

λ′
o=

[

σ(x0)+1
1− 1′Σ−1σ(x0)

1′Σ−11

]′
Σ−1 (5.6)

whereΣ = (cov(yi, yi′))—with i, i′ = 1, . . ., n—denotes the n×n symmetric
and positive definite matrix with the covariances between the metamodel’s
“old” outputs (i.e., outputs of input combinations that have already been
simulated), and σ(x0) = (cov(yi, y0)) denotes the n-dimensional vector
with the covariances between the metamodel’s n “old” outputs yi and y0,
where y0 denotes the metamodel’s new output. Equation (5.1) implies Σ =
ΣM , but we suppress the subscriptM until we really need it; see the section
on stochastic simulation (Sect. 5.6). Throughout this book, we use Greek
letters to denote unknown parameters (such as covariances), and bold upper
case letters for matrixes and bold lower case letters for vectors.
Finally, it can be proven (see, e.g., Lin et al. 2004) that Eqs. (5.1), (5.2),

and (5.6) together imply

ŷ(x0) = μ+ σ(x0)
′Σ−1(w−μ1). (5.7)

We point out that this predictor varies with σ(x0); given are the Krig-
ing parameters μ and Σ—where Σ depends on the given old input data
X—and the old simulation output w(X). So we might replace ŷ(x0) by
ŷ(x0|μ,Σ,X,w) or ŷ(x0|μ,Σ,X)—because the output w of a determinis-
tic simulation model is completely determined by X—but we do not use
this unwieldy notation.

Exercise 5.1 Is the conditional expected value of the predictor in Eq. (5.7)
smaller, equal, or larger than the unconditional mean μ if that condition is
as follows: w1 > μ, w2 = μ, . . . , wn = μ?

Exercise 5.2 Use Eq. (5.7) to derive the predictor if the new point is an
old point, so x0 = xi.

The Kriging predictor’s gradient ∇(ŷ) = (∂ŷ/∂x1, . . ., ∂ŷ/∂xk) results
from Eq. (5.7); details are given in Lophaven et al. (2002, Eq. 2.18). Gra-
dients will be used in Sect. 5.7 and in the next chapter (on simulation
optimization). We should not confuse ∇(ŷ) (the gradient of the Kriging
metamodel) and ∇(w), the gradient of the underlying simulation model.
Sometimes we can indeed compute ∇(w) in deterministic simulation (or

estimate ∇(w) in stochastic simulation); we may then use ∇(w) (or ̂∇(w))
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to estimate better Kriging metamodels; see Qu and Fu (2014), Razavi et al.
(2012), Ulaganathan et al. (2014), and Viana et al. (2014)’s references num-
bered 52, 53, and 54 (among the 221 references in that article).
If we let τ2 denote the variance of y—where y was defined in Eq. (5.1)—

then the MSE of the optimal predictor ŷ(x0)—where ŷ(x0) was defined in
Eq. (5.7)—can be proven to be

MSE [ŷ(x0)] = τ2 − σ(x0)
′Σ−1σ(x0)

+
[1− 1′Σ−1σ(x0)]

2

1′Σ−11
. (5.8)

Because the predictor ŷ(x0) is unbiased, this MSE equals the predictor
variance—which is often called the Kriging variance. We denote this vari-
ance by σ2

OK , the variance of the OK predictor. Analogously to the com-
ment we made on Eq. (5.7), we now point out that this MSE depends on
σ(x0) only because the other factors in Eq. (5.8) are fixed by the old I/O
data (we shall use this property when selecting a new point in sequential
designs; see Sect. 5.5.2).

Exercise 5.3 Use Eq. (5.8) to derive that σ2
OK = 0 if x0 equals one of the

points already simulated; e.g., x0 = x1.

Because σ2
OK is zero if x0 is an old point, the function σ2

OK(x0) has many
local minima if n > 1—and has many local maxima too; i.e., σ2

OK(x0)
is nonconcave. Experimental results of many experiments suggest that
σ2
OK(x0) has local maxima at x0 approximately halfway between old in-

put combinations xi; see part c of Fig. 5.2 below. We shall return to this
characteristic in Sect. 6.3.1 on “efficient global optimization” (EGO).
Obviously, the optimal weight vector λo in Eq. (5.6) depends on the

covariances—or equivalently the correlations—between the outputs of the
Kriging metamodel in Eq. (5.1). Kriging assumes that these correlations
are determined by the “distance” between the input combinations. In geo-
statistics, Kriging often uses the Euclidean distance (say) h between the
inputs xg and xg′ with g, g′ = 0, 1, . . ., n (so g and g′ range between 0 and
n and consequently xg and xg′ cover both the new point and the n old
points):

hg;g′ = ‖xg − xg′‖2 =
√

∑k
j=1(xg;j − xg′;j)2 (5.9)

where ‖•‖2 denotes the L2 norm. This assumption means that

ρ[y(xg), y(xg′ )] =
σ(hg;g′ )

τ2
, (5.10)

which is called an isotropic correlation function; see
Cressie (1993, pp. 61–62).
In simulation, however, we often assume that the Kriging metamodel

has a correlation function—which implies a covariance function—that is
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FIGURE 5.1. Three types of correlation functions ρ(h) with distance h and
parameter θ = 0.5

not isotropic, but is anisotropic; e.g., in a separable anisotropic correla-
tion function we replace Eq. (5.10) by the product of k one-dimensional
correlation functions:

ρ[y(xg), y(xg′ )] =
k
∏

j=1

ρ(xg;j , xg′ ;j) (g, g
′ = 0, 1, . . . , n). (5.11)

Because Kriging assumes a stationary process, the correlations in Eq. (5.11)
depend only on the distances in the k dimensions:

hg;g′;j = |xg;j − xg′;j | (j = 1, . . . , k); (5.12)

also see Eq. (5.9). So, ρ(xg;j , xg′;j) in Eq. (5.11) reduces to ρ(hg;g′;j). Ob-
viously, if the simulation model has a single input so k = 1, then these
isotropic and the anisotropic correlation functions are identical. Further-
more, Kriging software standardizes (scales, codes, normalizes) the origi-
nal simulation inputs and outputs, which affects the distances h; also see
Kleijnen and Mehdad (2013).
Note: Instead of correlation functions, geostatisticians use variograms,

covariograms, and correlograms; see the literature on Kriging in geostatistcs
in Sect. 5.1.
There are several types of correlation functions that give valid (pos-

itive definite) covariance matrices for stationary processes; see the gen-
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eral literature on GPs in Sect. 5.1, especially Rasmussen and Williams
(2006, pp. 80–104). Geostatisticians often use so-called Matérn correlation
functions, which are more complicated than the following three popular
functions—displayed in Fig. 5.1 for a single input with parameter θ = 0.5:

• Linear: ρ(h) = max (1− θh, 0)

• Exponential: ρ(h) = exp(−θh)

• Gaussian: ρ(h) = exp(−θh2)

Note: It is straightforward to prove that the Gaussian correlation func-
tion has its point of inflection at h = 1/

√
2θ, so in Fig. 5.1 this point lies

at h = 1. Furthermore, the linear correlation function gives correlations
ρ(h) that are smaller than the exponential function gives, for θ > 0 and
h > 0; Fig. 5.1 demonstrates this behavior for θ = 0.5. Finally, the linear
correlation function gives ρ(h) smaller than the Gaussian function does,
for (roughly) θ > 0.45 and h > 0. There are also correlation functions ρ(h)
that do not monotonically decrease as the lag h increases; this is called a
“hole effect” (see
http://www.statistik.tuwien.ac.at/ public/ dutt/ vorles/ geost 03/node80.
html).
In simulation, a popular correlation function is

ρ(h) =
k
∏

j=1

exp
(−θjh

pj

j

)

= exp

⎛

⎝−
k

∑

j=1

θjh
pj

j

⎞

⎠ (5.13)

where θj quantifies the importance of input j—the higher θj is, the less
effect input j has— and pj quantifies the smoothness of the correlation
function—e.g., pj = 2 implies an infinitely differentiable function. Fig-
ure 5.1 has already illustrated an exponential function and a Gaussian
function, which correspond with p = 1 and p = 2 in Eq. (5.13). (We shall
discuss better measures of importance than θj , in Sect. 5.8.)

Exercise 5.4 What is the value of ρ(h) in Eq. (5.13) with p > 0 when
h = 0 and h = ∞, respectively?

Exercise 5.5 What is the value of θj in Eq. (5.13) with pj > 0 when input
j has no effect on the output?

Note: The choice of a specific type of correlation function may also affect
the numerical properties of the Kriging model; see Harari and Steinberg
(2014b).
Because ρ(h) in Eq. (5.13) decreases as the distance h increases, the

optimal weights λo in Eq. (5.6) are relatively high for old inputs close to
the new input to be predicted.

http://www.statistik.tuwien.ac.at/public/dutt/vorles/geost_03/node80.html
http://www.statistik.tuwien.ac.at/public/dutt/vorles/geost_03/node80.html
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Note: Some of the weights may be negative; see Wackernagel (2003,
pp. 94–95). If negative weights give negative predictions and all the ob-
served outputs wi are nonnegative, then Deutsch (1996) sets negative weights
and small positive weights to zero while restandardizing the sum of the re-
maining positive weights to one to make the predictor unbiased.
It is well known that Kriging results in bad extrapolation compared with

interpolation; see Antognini and Zagoraiou (2010). Our intuitive explana-
tion is that in interpolation the new point is surrounded by relatively many
old points that are close to the new point; let us call them “close neighbors”.
Consequently, the predictor combines many old outputs that are strongly
positively correlated with the new output. In extrapolation, however, there
are fewer close neighbors. Note that linear regression also gives minimal
predictor variance at the center of the experimental area; see Eq. (6.7).

5.2.2 Estimating the OK Parameters

A major problem in OK is that the optimal Kriging weights λi (i = 1, . . ., n)
depend on the correlation function of the assumed metamodel—but it is
unknown which correlation function gives a valid metamodel. In Kriging we
usually select either an isotropic or an anisotropic type of correlation func-
tion and a specific type of decay such as linear, exponential, or Gaussian; see
Fig. 5.1. Next we must estimate the parameter values; e.g. θj (j = 1, . . ., k)
in Eq. (5.13). For this estimation we usually select the maximum likelihood

(ML) criterion, which gives the ML estimators (MLEs) ̂θj . ML requires the
selection of a distribution for the metamodel output y(x) in Eq. (5.1). The
standard distribution in Kriging is a multivariate normal, which explains
the term GP. This gives the log-likelihood function

l(μ, τ2, θ) = − ln[(2π)n/2]

− 1

2
ln[

∣

∣τ2R(θ)
∣

∣]− 1

2
(w−μ1)′[τ2R(θ)]−1(w−μ1)

with θ ≥ 0 (5.14)

where |·| denotes the determinant and R(θ) denotes the correlation matrix
of y. Obviously, MLE requires that we minimize

ln[
∣

∣τ2R(θ)
∣

∣] + (w−μ1)
′
[τ2R(θ)]−1(w−μ1). (5.15)

We denote the resulting MLEs by a “hat”, so the MLEs are μ̂, τ̂2, and ̂θ.
This minimization is a difficult mathematical problem. The classic solution
in Kriging is to “divide and conquer”—called the “profile likelihood” or the
“concentrated likelihood” in mathematical statistics—as we summarize in
the following algorithm (in practice we use standard Kriging software that
we shall list near the end of this section).
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Algorithm 5.1

1. Initialize ̂θ, which defines ̂R.

2. Compute the generalized least squares (GLS) estimator of the mean:

μ̂ = (1T
̂R−11)−11

′
̂R−1y. (5.16)

3. Substitute μ̂ resulting from Step 2 and ̂R resulting from Step 1 into
the MLE variance estimator

τ̂2 =
(w−μ̂1)

′
̂R−1(w−μ̂1)

n
. (5.17)

Comment: τ̂2 has the denominator n, whereas the denominator n− 1
is used by the classic unbiased estimator assuming R = I.

4. Solve the remaining problem in Eq. (5.15):

Min τ̂2|̂R|−n. (5.18)

Comment: This equation can be found in Lophaven et al. (2002, equa-
tion 2.25). To solve this nonlinear minimization problem, Lophaven
et al. (2002) applies the classic Hooke-Jeeves heuristic. Gano et al.
(2006) points out that this minimization problem is difficult because
of “the multimodal and long near-optimal ridge properties of the like-
lihood function”; i.e., this problem is not convex.

5. Use the ̂θ that solves Eq. (5.18) in Step 4 to update ̂R, and substitute

this updated ̂R into Eqs. (5.16) and (5.17).

6. If the MLEs have not yet converged, then return to Step 2; else stop.

Note: Computational aspects are further discussed in Bachoc (2013), But-
ler et al. (2014), Gano et al. (2006), Jones et al. (1998), Li and Sudjianto
(2005), Lophaven et al. (2002), Marrel et al. (2008), and Martin and Simp-
son (2005).
This difficult optimization problem implies that different MLEs may

result from different software packages or from initializing the same pack-
age with different starting values; the software may even break down. The
DACE software uses lower and upper limits for θj , which are usually hard

to specify. Different limits may give completely different ̂θj , as the examples
in Lin et al. (2004) demonstrate.
Note: Besides MLEs there are other estimators of θ; e.g., restricted MLEs

(RMLEs) and cross-validation estimators; see Bachoc (2013), Rasmussen
and Williams (2006, pp. 116–124), Roustant et al. (2012), Santner et al.
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(2003, pp. 66–68), and Sundararajan and Keerthi (2001). Furthermore, we
may use the LS criterion. We have already shown estimators for covariances
in Eq. (3.31), but in Kriging the number of observations for a covariance of a
given distance h decreases as that distance increases. Given these estimates
for various values of h, Kleijnen and Van Beers (2004) and Van Beers and
Kleijnen (2003) use the LS criterion to fit a linear correlation function.

Let us denote the MLEs of the OK parameters by ̂ψ = (μ̂, τ̂2, ̂θ
′
)′ with

̂θ
′
= (̂θ1, . . ., ̂θk) in case of an anisotropic correlation function such as

Eq. (5.13); obviously, ̂Σ = τ̂2 ̂R(̂θ). Plugging these MLEs into Eq. (5.7), we
obtain the predictor

ŷ(x0, ̂ψ) = μ̂+ σ̂(x0)
′
̂Σ−1(w−μ̂1). (5.19)

This predictor depends on the new point x0 only through σ̂(x0), because μ̂

and ̂Σ−1(w−μ̂1) depend on the old I/O. The second term in this equation
shows that this predictor is nonlinear (likewise, weighted least squares with
estimated weights gives a nonlinear estimator in linear regression meta-
models; see Sect. 3.4.4). However, most publications on Kriging compute
the MSE of this predictor by simply plugging the MLEs of the Kriging
parameters τ2, σ(x0), and Σ into Eq. (5.8):

MSE[ŷ(x0, ̂ψ)] = τ̂2 − σ̂(x0)
′
̂Σ−1σ̂(x0)

+
(1− 1′

̂Σ
−1

σ̂(x0))2

1′ ̂Σ−11
(5.20)

We shall discuss a bootstrapped estimator of the true MSE of this nonlinear
predictor, in the next section (Sect. 5.3).
Note: Martin and Simpson (2005) discusses alternative approaches—

namely, validation and Akaike’s information criterion (AIC)—and finds
that ignoring the randomness of the estimated Kriging parameters underes-
timates the true variance of the Kriging predictor. Validation for estimating
the variance of the Kriging predictor is also discussed in Goel et al. (2006)
and Viana and Haftka (2009). Furthermore, Thiart et al. (2014) confirms
that the plug-in MSE defined in Eq. (5.20) underestimates the true MSE,
and discusses alternative estimators of the true MSE. Jones et al. (1998)
and Spöck and Pilz (2015) also imply that the plug-in estimator underesti-
mates the true variance. Stein (1999) gives asymptotic results for Kriging

with ̂ψ.
We point out that Kriging gives a predictor plus a measure for the

accuracy of this predictor; see Eq. (5.20). Some other metamodels—e.g.,
splines—do not quantify the accuracy of their predictor; see Cressie (1993,
p. 182). Like Kriging, linear regression metamodels do quantify the accu-
racy; see Eq. (3.41).
The MSE in Eq. (5.20) is also used to compute a two-sided symmet-

ric (1 − α) confidence interval (CI) for the OK predictor at x0, where
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σ̂2
OK{ŷ(x0, ̂ψ)} equals MSE[ŷ(x0, ̂ψ)] and (say) a ± b denotes the interval

[a− b, a+ b]:

P [w(x0) ∈ [ŷ(x0, ̂ψ)± zα/2

√

σ̂2
OK{ŷ(x0, ̂ψ)}] = 1− α. (5.21)

There is much software for Kriging. In our own experiments we have
used DACE, which is a free-of-chargeMATLAB toolbox well documented in
Lophaven et al. (2002). Alternative free software is the R package
DiceKriging—which is well documented in Roustant et al. (2012)—and
the object-oriented software called the “ooDACE toolbox”—documented
in Couckuyt et al. (2014). PeRK programmed in C is documented in Sant-
ner et al. (2003, pp. 215–249). More free software is mentioned in Frazier
(2011) and in the textbooks and websites mentioned in Sect. 5.1; also see
the Gaussian processes for machine learning (GPML) toolbox, detailed in
Rasmussen and Nickisch (2010). We also refer to the following four tool-
boxes (in alphabetical order):
MPERK on
http://www.stat.osu.edu/~comp_exp/jour.club/MperkManual.pdf

STK on
http://sourceforge.net/projects/kriging/

http://octave.sourceforge.net/stk/,
SUMO on
http://www.sumo.intec.ugent.be/,

and Surrogates on
https://sites.google.com/site/felipeacviana/surroga
testoolbox.
Finally, we refer to the commercial JMP/SAS site:
https://www.jmp.com/en_us/software/feature-index.html#K.
Note: For large data sets, the Kriging computations may become prob-

lematic; solutions are discussed in Gramacy and Haaland (2015) and Meng
and Ng (2015).
As we have already stated in Sect. 1.2, we adhere to a frequentist view in

this book. Nevertheless, we mention that there are many publications that
interpret Kriging models in a Bayesian way. A recent article is Yuan and
Ng (2015); older publications are referenced in Kleijnen (2008). Our major
problem with the Bayesian approach to Kriging is that we find it hard to
come up with prior distributions for the Kriging parameters ψ, because we
have little intuition about the correlation parameters θ; e.g., what is the
prior distribution of θ, in the Kriging metamodel of the M/M/1 simulation
model?
Note: Kriging seems related to so-called moving least squares (MLS),

which originated in curve and surface fitting and fits a continuous function
using a weighted least squares (WLS) criterion that gives more weight to
old points close to the new point; see Lancaster and Salkauskas (1986) and
also Forrester and Keane (2009) and Toropov et al. (2005).

http://www.stat.osu.edu/~comp_exp/jour.club/MperkManual.pdf
http://sourceforge.net/projects/kriging/
http://octave.sourceforge.net/stk/
http://www.sumo.intec.ugent.be/
https://sites.google.com/site/felipeacviana/surrogatestoolbox
https://www.jmp.com/en_us/software/feature-index.html#K
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The Kriging metamodel may also include qualitative inputs besides quan-
titative inputs. The challenge is to specify a valid covariance matrix; see
Zhou et al. (2011).

5.3 Bootstrapping and Conditional Simulation
for OK in Deterministic Simulation

In the preceding section we mentioned that in the present section we discuss
a bootstrap approach to estimating the MSE of the nonlinear predictor with
plugged-in estimated Kriging parameters ̂ψ in Eq. (5.19). We have already
discussed the general principles of bootstrapping in Sect. 3.3.5. Now we
discuss parametric bootstrapping of the GP assumed in OK that was spec-
ified in Eq. (5.1). We also discuss a bootstrap variant called “conditional
simulation”. Hasty readers may skip this section, because parametric boot-
strapping and its variant are rather complicated and turn out to give CIs
with coverages and lengths that are not superior compared with the CI
specified in Eq. (5.21).

5.3.1 Bootstrapped OK (BOK)

For bootstrapping we use the notation that we introduced in Sect. 3.3.5. So
we denote bootstrapped data by the superscript ∗ ; e.g., (X,w∗) denotes
the original input and the bootstrapped output of the simulation model.
We define bootstrapped estimators analogously to the original estimators,
but we compute the bootstrapped estimators from the bootstrapped data

instead of the original data; e.g., we compute ̂ψ from (X,w), but ̂ψ
∗
from

(X,w∗). We denote the bootstrap sample size by B and the bth bootstrap
observation in this sample by the subscript b with b = 1, . . ., B.
Following Kleijnen and Mehdad (2013), we define the following (1 + n)-

dimensional Gaussian or “normal” (N1+n) distribution:

(

y (x0)
y (x)

)

∼ N1+n

[

μ11+n,

(

τ2 σ(x0)
′

σ(x0) Σ

)]

, (5.22)

where all symbols were defined in the preceding section. Obviously, Eq. (5.22)
implies y (x) ∼ Nn (μ1n,Σ).
Li and Zhou (2015) extends Den Hertog et al. (2006)’s bootstrap method

for estimating the variance from univariate GP models to so-called “pair-
wise meta-modeling” of multivariate GP models assuming nonseparable
covariance functions. We saw that if x0 gets closer to an old point x, then
the predictor variance decreases and—because OK is an exact interpola-
tor in deterministic simulation—this variance becomes exactly zero when
x0 = x. Furthermore, N1+n in Eq. (5.22) implies that the distribution of
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the new output—given the n old outputs—is the conditional normal dis-
tribution

N
[

μ̂+ σ̂(x0)
′
̂Σ
−1

[y(x) − μ̂1n], τ̂
2 − σ̂(x0)

′
̂Σ
−1

σ̂(x0)
]

. (5.23)

We propose the following BOK pseudo-algorithm.

Algorithm 5.2

1. Use Nk

(

μ̂1k, ̂Σ
)

B times to sample the n old outputs y∗
b (X, ̂ψ) =

(y∗1;b(X, ̂ψ), . . . , y∗k;b(X, ̂ψ))′ where ̂ψ is estimated from the old simu-
lation I/O data (X,w). For each new point x0 repeat steps 2 through
4 B times.

2. Given the n old bootstrapped outputs y∗
b (X, ̂ψ) of step 1, sample

the new output y∗b (x0, ̂ψ) from the conditional normal distribution
defined in Eq. (5.23).

3. Using the n old bootstrapped outputs y∗
b (X, ̂ψ) of step 1, compute

the bootstrapped MLE ̂ψ
∗
b . Next calculate the bootstrapped predictor

ŷ(x0, ̂ψ
∗
b ) = μ̂∗

b + σ̂(x0, ̂θ
∗
b )

′
̂Σ
−1

(̂θ∗b )[y
∗
b (X, ̂ψ)− μ̂∗

b1n]. (5.24)

4. Given ŷ(x0, ̂ψ
∗
b) of step 3 and y∗b (x0, ̂ψ) of step 2, compute the boot-

strap estimator of the squared prediction error (SPE):

SPE∗
b = SPE[ŷ(x0, ̂ψ

∗
b)] = [ŷ(x0, ̂ψ

∗
b)− y∗b (x0, ̂ψ)]2.

5. Given the B bootstrap samples SPE∗
b (b = 1, . . ., B) resulting from

steps 1 through 4, compute the bootstrap estimator of MSPE[ŷ(x0)]
(this MSPE was defined in Eq. (5.8):

MSPE∗ =

∑B
b=1 SPE

∗
b

B
. (5.25)

If we ignore the bias of the BOK predictor ŷ(x0, ̂ψ
∗
), then Eq. (5.25)

gives σ̂2[ŷ(x0, ̂ψ
∗
)] which is the bootstrap estimator of σ2[ŷ(x0|̂ψ)]. We

abbreviate σ̂2[ŷ(x0, ̂ψ
∗
)] to σ̂2

BOK. The standard error (SE) of σ̂2
BOK follows

from Eq. (5.25):

SE(σ̂2
BOK) =

√

∑B
b=1(SPE

∗
b −MSPE∗)2

(B − 1)B
.

We apply tB−1 (t-statistic with B − 1 degrees of freedom) to obtain a
two-sided symmetric (1− α) CI for σ2

BOK:

P [σ2
OK ∈ σ̂2

BOK ± tB−1;α/2SE(σ̂2
BOK)] = 1− α. (5.26)
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Obviously, if B ↑ ∞, then tB−1;α/2 ↓ zα/2 where zα/2 denotes the α/2
quantile of the standard normal variable z ∼ N(0, 1); typically B is so high
(e.g., 100) that we can indeed replace tB−1;α/2 by zα/2.
Figure 5.2 illustrates BOK for the following test function, taken from

Forrester et al. (2008, p. 83):

w(x) = (6x− 2)2 sin(12x− 4) with 0 ≤ x ≤ 1. (5.27)

This function has one local minimum at x = 0.01, and one global mini-
mum at x = 0.7572 with output w = −6.02074; we shall return to this
function in the next chapter, in which we discuss simulation optimization.
The plot shows that each of the B bootstrap samples has its own old out-
put values y∗

b . Part (a) displays only B = 5 samples to avoid cluttering-up

the plot. Part (b) shows less “wiggling” than part (a); ŷ(x, ̂ψ
∗
b ), which are

the predictions at old points, coincide with y∗
b (X, ̂ψ), which are the values

sampled in part (a). Part (c) uses B = 100.

FIGURE 5.2. BOK for the test function in Forrester et al. (2008): (a) jointly
sampled outputs at 5 equi-spaced old and 98 equi-spaced new points, for
B =5; (b) Kriging predictions for 98 new points based on 5 old points
sampled in (a); (c) estimated predictor variances and their 95% CIs for B
=100
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To compute a two-sided symmetric (1 − α) CI for the predictor at x0,

we may use the OK point predictor ŷ(x0, ̂ψ) and σ̂2
BOK(equal to the MSE

in Eq. (5.25)):

P{w(x0) ∈ ŷ(x0, ̂ψ)± zα/2

√

σ̂2
BOK} = 1− α. (5.28)

If σ̂2
OK < σ̂2

BOK, then this CI is longer and gives a higher coverage than
the CI in Eq. (5.21). Furthermore, we point out that Yin et al. (2010) also
finds empirically that a Bayesian approach accounting for the randomness
of the estimated Kriging parameters gives a wider CI—and hence higher
coverage—than an approach that ignores this estimation.

5.3.2 Conditional Simulation of OK (CSOK)

We denote conditional simulation (CS) of OK by CSOK. This method

ensures ŷ(x, ψ̂
∗
b ) = w(x); i.e., in all the bootstrap samples the prediction

at an old point equals the observed value. Part (a) of Fig. 5.3 may help
understand Algorithm 5.3 for CSOK, which copies steps 1 through 3 of
Algorithm 5.2 for BOK in the preceding subsection.
Note: Algorithm 5.3 is based on Kleijnen and Mehdad (2013), which fol-

lows Chilès and Delfiner (2012, pp. 478–650). CS may also be implemented
through the R software package called “DiceKriging”; see Roustant et al.
(2012).

Algorithm 5.3

1. Use Nn(μ̂1n, ̂Σ) B times to sample the n old outputs y∗
b (X, ̂ψ) =

(y∗1;b(X, ̂ψ), . . . , y∗k;b(X, ̂ψ))
′
where ̂ψ is estimated from the old simu-

lation I/O data (X,w). For each new point x0, repeat steps 2 through
4 B times.

2. Given the n old bootstrapped outputs y∗
b (X, ̂ψ) of step 1, sample

the new output y∗b (x0, ̂ψ) from the conditional normal distribution in
Eq. (5.23).

3. Using the k old bootstrapped outputs y∗
b (X, ̂ψ) of step 1, compute the

bootstrapped MLE ̂ψ
∗
b . Next calculate the bootstrapped predictor

ŷ(x0, ̂ψ
∗
b) = μ̂∗

b + σ̂(x0)
′
̂Σ
−1

(̂θ
∗
b)[y

∗
b (X, ̂ψ)− μ̂∗

b1n]. (5.29)

4. Combining the OK estimator defined in Eq. (5.19) and the BOK es-
timator defined in Eq. (5.29), compute the CSOK predictor

ŷCSOK(x0, b) = μ̂+σ̂(x0)
′
̂Σ
−1

(w−μ̂1n)+[y∗b (x0, ̂ψ)− ŷ(x0, ̂ψ
∗
b)].

(5.30)
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a

b

FIGURE 5.3. CSOK for the test function in Forrester et al. (2008): (a)
predictions at 98 new points, for B = 5; (b) estimated predictor variances
and their 95% CIs for B = 100, and OK’s predictor variances

Given these B estimators ŷCSOK(x0, b) (b = 1, . . ., B), compute the CSOK
estimator of MSPE[ŷ(x0)]:

σ̂2[ŷCSOK(x0)] =

∑B
b=1[ŷCSOK(x0, b)− ŷCSOK(x0)]

2

B − 1
with

ŷCSOK(x0) =

∑B
b=1 ŷCSOK(x0, b)

B
. (5.31)

We abbreviate σ̂2[̂YCSOK(x0)] to σ̂
2
CSOK. Mehdad and Kleijnen (2014) proves

that σ̂2
CSOK ≤ σ̂2

BOK; in practice, it is not known how much smaller σ̂2
CSOK

is than σ̂2
BOK. We therefore apply a two-sided asymmetric (1 − α) CI for

σ2
OK using σ̂2

CSOK and the chi-square statistic χ2
B−1 (this CI replaces the

CI for BOK in Eq. (5.28), which assumes B IID variables):

P

(

(B − 1)σ̂2
CSOK

χ2
B−1;1−α/2

≤ σ2
OK ≤ (B − 1)σ̂2

CSOK

χ2
B−1;α/2

)

= 1− α. (5.32)
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Part (b) of Fig. 5.3 displays σ̂2
CSOK defined in Eq. (5.31) and its 95% CIs

defined in Eq. (5.32) based on B = 100 bootstrap samples; it also displays
σ̂2
OK following from Eq. (5.20). Visual examination of this part suggests

that σ̂2
CSOK tends to exceed σ̂2

OK.
Next, we display both σ̂2

CSOK and σ̂2
BOK and their CIs, for various values

of B, in Fig. 5.4. This plot suggests that σ̂2
CSOK is not significantly smaller

than σ̂2
BOK . These results seem reasonable, because both CSOK and BOK

use ̂ψ, which is the sufficient statistic of the GP computed from the same
(X,w). CSOK seems simpler than BOK, both computationally and con-
ceptually. CSOK gives better predictions for new points close to old points;
but then again, BOK is meant to improve the predictor variance—not the
predictor itself.
We may use σ̂2

CSOK to compute a CI for the OK predictor, using the
analogue of Eq. (5.28):

P

{

w(x0) ∈ ŷ(x0, ̂ψ)± zα/2

√

σ̂2
CSOK

}

= 1− α. (5.33)

a

b

c

FIGURE 5.4. CIs for BOK versus CSOK for various B values, using the
test function in Forrester et al. (2008)
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Moreover, we can derive an alternative CI; namely, a distribution-free two-
sided asymmetric CI based on the so-called percentile method (which we
defined in Eq. (3.14)). We apply this method to ŷCSOK(x0, b) (b = 1, . . ., B),
which are the B CSOK predictors defined in Eq. (5.30). Because the per-
centile method uses order statistics, we now denote ŷCSOK(x0, b) by
ŷCSOK; b (x0), apply the usual subscript (.) (e.g., (Bα/2)) to denote or-
der statistics (resulting from sorting the B values from low to high), and
select B such that Bα/2 and B(1 − α/2) are integers:

P [ŷCSOK; (Bα/2)(x0) ≤ w(x0) ≤ ŷCSOK; (B(1−α/2))(x0)] = 1− α. (5.34)

An advantage of the percentile method is that this CI does not include
negative values if the simulation output is not negative; also see Sect. 5.7
on bootstrapping OK to preserve known characteristics of the I/O functions
(nonnegative outputs, monotonic I/O functions, etc.). We do not apply the
percentile method to BOK, because BOK gives predictions at the n old
points that do not equal the observed old simulation outputs wi.
For OK, BOK, and CSOKMehdad and Kleijnen (2015a) studies CIs with

a nominal coverage of 1 − α and reports the estimated expected coverage
1−E(α̂) and the estimated expected length E(l) of the CIs, for a GP with
two inputs so k = 2 and an anisotropic Gaussian correlation function such
as Eq. (5.13) with p = 2. In general, we prefer the CI with the shortest
length, unless this CI gives too low coverage. The reported results show
that OK with σ̂OK gives shorter lengths than CSOK with σ̂CSOK, and
yet OK gives estimated coverages that are not significantly lower. The
percentile method for CSOK gives longer lengths than OK, but its coverage
is not significantly better than OK’s coverage. Altogether the results do
not suggest that BOK or CSOK is superior, so we recommend OK when
predicting a new output; i.e., OK seems a robust method.

Exercise 5.6 Consider the three alternative CIs that use OK, BOK, and
CSOK, respectively. Do you think that the length of such a CI for a new
point tends to decrease or increase as n (number of old points) increases?

5.4 Universal Kriging (UK) in Deterministic
Simulation

UK replaces the constant μ in Eq. (5.1) for OK by f(x)
′
β where f(x) is a

q × 1 vector of known functions of x and β is a q × 1 vector of unknown
parameters (e.g., if k = 1, then UK may replace μ by β0 + β1x, which is
called a “linear trend”):

y(x) = f(x)
′
β +M(x) with x ∈ R

k. (5.35)

The disadvantage of UK compared with OK is that UK requires the
estimation of additional parameters. More precisely, besides β0 UK involves
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q − 1 parameters, whereas OK involves only β0 = μ. We conjecture that
the estimation of the extra q− 1 parameters explains why UK has a higher
MSE. In practice, most Kriging models do not use UK but OK
Note: This higher MSE for UK is also discussed in Ginsbourger et al.

(2009) and Tajbakhsh et al. (2014). However, Chen et al. (2012) finds that
UK in stochastic simulation with CRN may give better estimates of the
gradient; also see Sect. 5.6. Furthermore, to eliminate the effects of esti-
mating β in UK, Mehdad and Kleijnen (2015b) applies intrinsic random
functions (IRFs) and derives the corresponding intrinsic Kriging (IK) and
stochastic intrinsic Kriging (SIK). An IRF applies a linear transformation
such that f(x)

′
β in Eq. (5.35) vanishes. Of course, this transformation also

changes the covariance matrix ΣM , so the challenge becomes to determine
a covariance matrix of IK that is valid (symmetric and “conditionally”
positive definite). Experiments suggest that IK outperforms UK, and SIK
outperforms SK. Furthermore, a refinement of UK is so-called blind Krig-
ing, which does not assume that the functions f(x) are known. Instead,
blind Kriging chooses these functions from a set of candidate functions, as-
suming heredity (which we discussed below Eq. (4.11)) and using Bayesian
techniques (which we avoid in this book; see Sect. 5.2). Blind Kriging is
detailed in Joseph et al. (2008) and also in Couckuyt et al. (2012). Finally,
Deng et al. (2012) compares UK with a new Bayesian method that also tries
to eliminate unimportant inputs in the Kriging metamodel; the elimination
of unimportant inputs we discussed in Chap. 4 on screening.

5.5 Designs for Deterministic Simulation

An n× k design matrix X specifies the n combinations of the k simulation
inputs. The literature on designs for Kriging in deterministic simulation
abounds, and proposes various design types. Most popular are Latin hy-
percube designs (LHDs). Alternative types are orthogonal array, uniform,
maximum entropy, minimax, maximin, integrated mean squared prediction
error (IMSPE), and “optimal” designs.
Note: Many references are given in Chen and Zhou (2014), Damblin

et al. (2013), Janssen (2013), and Wang et al. (2014). Space-filling designs
that account for statistical dependencies among the k inputs—which may
be quantitative or qualitative—are given in Bowman and Woods (2013).
A textbook is Lemieux (2009). More references are given in Harari and
Steinberg (2014a), and Kleijnen (2008, p. 130). Relevant websites are
http://lib.stat.cmu.edu

and
http://www.spacefillingdesigns.nl/.
LHDs are specified through Latin hypercube sampling (LHS). Historically

speaking, McKay et al. (1979) invented LHS not for Kriging but for risk

http://lib.stat.cmu.edu
http://www.spacefillingdesigns.nl/
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Input 3’s level
Input 2’s level 1 2 3 4 5
1 1 4 2 5 3
2 4 1 3 2 5
3 3 2 5 4 1
4 2 5 1 3 4
5 5 3 4 1 2

TABLE 5.1. A Latin square with three inputs, each with five levels

analysis using deterministic simulation models (“computer codes”); LHS
was proposed as an alternative for crude Monte Carlo sampling (for Monte
Carlo methods we refer to Chap. 1). LHS assumes that an adequate meta-
model is more complicated than a low-order polynomial (these polynomial
metamodels and their designs were discussed in the preceding three chap-
ters). LHS does not assume a specific metamodel that approximates the
I/O function defined by the underlying simulation model; actually, LHS fo-
cuses on the input space formed by the k–dimensional unit cube defined by
the standardized simulation inputs. LHDs are one of the space-filling types
of design (LHDs will be detailed in the next subsection, Sect. 5.5.1).
Note: It may be advantageous to use space-filling designs that allow se-

quential addition of points; examples of such designs are the Sobol sequences
detailed on
http://en.wikipedia.org/wiki/Sobol_sequence#References.
We also refer to the nested LHDs in Qian et al. (2014) and the “sliced”

LHDs in Ba et al. (2014), Li et al. (2015), and Yang et al. (2014); these sliced
designs are useful for experiments with both qualitative and quantitative in-
puts. Furthermore, taking a subsample of a LHD—as we do in validation—
destroys the LHD properties. Obviously, the most flexible method allowing
addition and elimination of points is a simple random sample of n points
in the k-dimensional input space.
In Sect. 5.5.1 we discuss LHS for designs with a given number of input

combinations, n; in Sect. 5.5.2 we discuss designs that determine n sequen-
tially and are customized.

5.5.1 Latin Hypercube Sampling (LHS)

Technically, LHS is a type of stratified sampling based on the classic Latin
square designs, which are square matrixes filled with different symbols such
that each symbol occurs exactly once in each row and exactly once in each
column. Table 5.1 is an example with k = 3 inputs and five levels per input;
input 1 is the input of real interest, whereas inputs 2 and 3 are nuisance
inputs or block factors (also see our discussion on blocking in Sect. 2.10).
This example requires only n = 5×5 = 25 combinations instead of 53 = 125
combinations. For further discussion of Latin (and Graeco-Latin) squares
we refer to Chen et al. (2006).

http://en.wikipedia.org/wiki/Sobol_sequence#References
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Input 3’s level
Input 2’s level 1 2 3 4 5
1 1 2 3 4 5
2 5 1 2 3 4
3 4 5 1 2 3
4 3 4 5 1 2
5 2 3 4 5 1

TABLE 5.2. A systematic Latin square with three inputs, each with five
levels

Note: Another Latin square—this time, constructed in a systematic
way—is shown in Table 5.2. This design, however, may give a biased es-
timator of the effect of interest. For example, suppose that the input of
interest (input 1) is wheat, and wheat comes in five varieties. Suppose fur-
ther that this table determines the way wheat is planted on a piece of land;
input 2 is the type of harvesting machine, and input 3 is the type of fer-
tilizer. If the land shows a very fertile strip that runs from north-west to
south-east (see the main diagonal of the matrix in this table), then the
effect of wheat type 1 is overestimated. Therefore randomization should be
applied to protect against unexpected effects. Randomization makes such
bias unlikely—but not impossible. Therefore random selection may be cor-
rected if its realization happens to be too systematic. For example, a LHD
may be corrected to give a “nearly” orthogonal design; see Hernandez et al.
(2012), Jeon et al. (2015), and Vieira et al. (2011).
The following algorithm details LHS for an experiment with n combina-

tions of k inputs (also see Helton et al. (2006b).

Algorithm 5.4

1. Divide the range of each input into n > 1 mutually exclusive and
exhaustive intervals of equal probability.
Comment: If the distribution of input values is uniform on [a, b], then
each interval has length (b − a)/n. If the distribution is Gaussian,
then intervals near the mode are shorter than in the tails.

2. Randomly select one value for x1 from each interval, without replace-
ment, which gives n values x1;1 through x1;n.

3. Pair these n values with the n values of x2, randomly without re-
placement.

4. Combine these n pairs with the n values of x3, randomly without
replacement to form n triplets.

5. And so on, until a set of n n-tupples is formed.
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Table 5.3 and Fig. 5.5 give a LHD example with n = 5 combinations of
the two inputs x1 and x2; these combinations are denoted by as in fig. 5.5.
The table shows that each input has five discrete levels, which are labelled
1 through 5. If the inputs are continuous, then the label (say) 1 may denote
a value within interval 1; see Fig. 5.5.
LHS does not imply a strict mathematical relationship between n (num-

ber of combinations actually simulated) and k (number of simulation in-
puts), whereas DOE uses (for example) n = 2k so n drastically increases
with k. Nevertheless, if LHS keeps n “small” and k is “large”, then the re-
sulting LHD covers the experimental domain R

k so sparsely that the fitted
Kriging model may be an inadequate metamodel of the underlying simu-
lation model. Therefore a well-known rule-of-thumb for LHS in Kriging is
n = 10k; see Loeppky et al. (2009).

x1

x2 1 2 3 4 5
1 •
2 •
3 •
4 •
5 •

TABLE 5.3. A LHS example with n = 5 combinations of two inputs x1

and x2

FIGURE 5.5. LHS example with n = 5 combinations of two inputs x1

and x2



202 5. Kriging Metamodels and Their Designs

Note: Wang et al. (2014) recommends n = 20k. Furthermore, Hernandez
et al. (2012) provides a table for LHDs with acceptable nonorthogonality
for various (n, k) combinations with n ≤ 1,025 and k ≤ 172.
Usually, LHS assumes that the k inputs are independently distributed—

so their joint distribution becomes the product of their k individual marginal
distributions—and the marginal distributions are uniform (symbol U) in
the interval (0, 1) so xj ∼ U(0, 1). An alternative assumption is a mul-
tivariate Gaussian distribution, which is completely characterized by its
covariances and means. For nonnormal joint distributions, LHS may use
Spearman’s correlation coefficient (discussed in Sect. 3.6.1); see Helton et al.
(2006b). If LHS assumes a nonuniform marginal distribution for xj (as we
may assume in risk analysis, discussed in Sect. 5.9), then LHS defines n—
mutually exclusive and exhaustive—subintervals [lj;g, uj′g] (g = 1, . . ., n)
for the standardized xj such that each subinterval has the same probabil-
ity; i.e., P (lj;g ≤ xj ≤ uj;g) = 1/n. This implies that near the mode of the
xj distribution, the subintervals are relatively short, compared with the
subintervals in the tails of this distribution.
In LHS we may either fix the value of xj to the middle of the subinter-

val g so xj = (lj;g + uj;g)/2 or we may sample the value of xj within that
subinterval accounting for the distribution of its values. Fixing xj is attrac-
tive when we wish to estimate the sensitivity of the output to the inputs
(see Sect. 5.8, in which we shall discuss global sensitivity analysis through
Sobol’s indexes). A random xj is attractive when we wish to estimate the
probability of the output exceeding a given threshold as a function of an
uncertain input xj , as we do in risk analysis (see Sect. 5.9).
LHDs are noncollapsing ; i.e., if an input turns out to be unimportant,

then each remaining individual input is still sampled with one observa-
tion per subinterval. DOE, however, then gives multiple observations for
the same value of a remaining input—which is a waste in deterministic
simulation (in stochastic simulation it improves the accuracy of the es-
timated intrinsic noise). Kriging with an anisotropic correlation function
may benefit from the noncollapsing property of LHS, when estimating the
correlation parameters θj . Unfortunately, projections of a LHD point in n
dimensions onto more than one dimension may give “bad” designs. There-
fore standard LHS is further refined, leading to so-called maximin LHDs
and nearly-orthogonal LHDs.
Note: For these LHDs we refer to Damblin et al. (2013), Dette and

Pepelyshev (2010), Deutsch and Deutsch (2012), Georgiou and Stylianou
(2011), Grosso et al. (2009), Janssen (2013), Jourdan and Franco (2010),
Jones et al. (2015), Ranjan and Spencer (2014) and the older references in
Kleijnen (2008, p. 130).
In a case study, Helton et al. (2005) finds that crude Monte Carlo and

LHS give similar results if these two methods use the same “big” sample
size. In general, however, LHS is meant to improve results in simulation
applications; see Janssen (2013).
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There is much software for LHS. For example, Crystal Ball, @Risk, and
Risk Solver provide LHS, and are add-ins to Microsoft’s Excel spreadsheet
software. LHS is also available in the MATLAB Statistics toolbox sub-
routine lhs and in the R package DiceDesign. We also mention Sandia’s
DAKOTA software:
http://dakota.sandia.gov/.

5.5.2 Sequential Customized Designs

The preceding designs for Kriging have a given number of input combi-
nations n and consider only the input domain x ∈ R

k; i.e., these designs
do not consider the output. Now we present designs that select n input
combinations sequentially and consider the specific I/O function fsim of
the underlying simulation model so these designs are application-driven or
customized. We notice that the importance of sequential sampling is also
emphasized in Simpson et al. (2004), reporting on a panel discussion.
Note: Sequential designs for Kriging metamodels of deterministic sim-

ulation models are also studied in Busby et al. (2007), Crombecq et al.
(2011), Koch et al. (2015), and Jin et al. (2002). Sequential LHDs ignor-
ing the output (e.g., so-called “replicated LHDs”) are discussed in Janssen
(2013). Our sequential customized designs are no longer LHDs (even though
the first stage may be a LHD), as we shall see next.
The designs discussed so far in this section, are fixed sample or one shot

designs. Such designs suit the needs of experiments with real systems; e.g.,
agricultural experiments may have to be finished within a single grow-
ing season. Simulation experiments, however, proceed sequentially—unless
parallel computers are used, and even then not the whole experiment is
finished in one shot. In general, sequential statistical procedures are known
to be more “efficient” in the sense that they require fewer observations
than fixed-sample procedures; see, e.g., Ghosh and Sen (1991). In sequen-
tial designs we learn about the behavior of the underlying system as we
experiment with this system and collect data. (The preceding chapter on
screening also showed that sequential designs may be attractive in simula-
tion.) Unfortunately, extra computer time is needed in sequential designs
for Kriging if we re-estimate the Kriging parameters when new I/O data be-
come available. Fortunately, computations may not start from scratch; e.g.,
we may initialize the search for the MLEs in the sequentially augmented
design from the MLEs in the preceding stage.
Note: Gano et al. (2006) updates the Kriging parameters only when the

parameter estimates produce a poor prediction. Toal et al. (2008) examines
five update strategies, and concludes that it is bad not to update the esti-
mates after the initial design. Chevalier and Ginsbourger (2012) presents
formulas for updating the Kriging parameters and predictors for designs
that add I/O data either purely sequential (a single new point with its

http://dakota.sandia.gov/
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output) or batch-sequential (batches of new points with their outputs). We
shall also discuss this issue in Sect. 5.6 on SK.
Kleijnen and Van Beers (2004) proposes the following algorithm for

specifying a customized sequential design for Kriging in deterministic
simulation.

Algorithm 5.5

1. Start with a pilot experiment using some space-filling design (e.g., a
LHD) with only a few input combinations; use these combinations
as the input for the simulation model, and obtain the corresponding
simulation outputs.

2. Fit a Kriging model to the I/O simulation data resulting from Step 1.

3. Consider (but do not yet simulate) a set of candidate combinations
that have not yet been simulated and that are selected through some
space-filling design; find the “winner”, which is the candidate combi-
nation with the highest predictor variance.

4. Use the winner found in Step 3 as the input to the simulation model
that is actually run, which gives the corresponding simulation output.

5. Re-fit (update) the Kriging model to the I/O data that is augmented
with the I/O data resulting from Step 4.
Comment: Step 5 refits the Kriging model, re-estimating the Krig-
ing parameters ψ; to save computer time, this step might not re-
estimate ψ.

6. Return to Step 3 until either the Kriging metamodel satisfies a given
goal or the computer budget is exhausted.

Furthermore, Kleijnen and Van Beers (2004) compares this sequential
design with a sequential design that uses the predictor variance with plugged
-in parameters specified in Eq. (5.20). The latter design selects as the next
point the input combination that maximizes this variance. It turns out
that the latter design selects as the next point the input farthest away
from the old input combinations, so the final design spreads all its points
(approximately) evenly across the experimental area—like space-filling de-
signs do. However, the predictor variance may also be estimated through
cross-validation (we have already discussed cross-validation of Kriging mod-
els below Eq. (5.20)); see Fig. 5.6, which we discuss next.
Figure 5.6 displays an example with a fourth-order polynomial I/O func-

tion fsim with two local maxima and three local minima; two minima
occur at the border of the experimental area. Leave-one-out cross-validation
means successive deletion of one of the n old I/O observations (which are
already simulated), which gives the data set (X−i,w−i). (i = 1, . . ., n).
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FIGURE 5.6. Cross-validation in fourth-order polynomial example with
four pilot observations (see circles) and three candidate input values (see
solid dots)

Next, we compute the Kriging predictor, after re-estimating the Kriging
parameters. For each of three candidate points, the plot shows the three
Kriging predictions computed from the original data set (no data deleted),
and computed after deleting observation 2 and observation 3, respectively;
the two extreme inputs (x = 0 and x = 10) are not deleted because Krig-
ing does not extrapolate well. The point that is most difficult to predict
turns out to be the candidate point x = 8.33 (the highest candidate point
in the plot). To quantify this prediction uncertainty, we may jackknife the
predictor variances, as follows.
In Sect. 3.3.3, we have already discussed jackknifing in general (jackknif-

ing is also applied to stochastic Kriging, in Chen and Kim (2013)). Now,
we calculate the jackknife’s pseudovalue J for candidate point j as the
weighted average of the original and the cross-validation predictors, let-
ting c denote the number of candidate points and n the number of points
already simulated and being deleted successively:

Jj;i = nŷj − (n− 1)ŷj;−i with j = 1, . . . , c and i = 1, . . . , n.

From these pseudovalues we compute the classic variance estimator (also
see Eq. (3.12)):

s2(Jj) =

∑n
i=1(Jj;i − Jj)

2

n(n− 1)
with Jj =

∑n
i=1 Jj;i
n

.

Figure 5.7 shows the candidate points that are selected for actual sim-
ulation. The pilot sample consists of four equally spaced points; also see
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FIGURE 5.7. A fourth-degree polynomial example (see curve) of a sequen-
tial and customized design (see diamonds) and four initial points (see solid
dots)

Fig. 5.6. The sequential design selects relative few points in subareas that
generate an approximately linear I/O function; the design selects many
points near the edges, where the function changes much. So the design
favors points in subareas that have “more interesting” I/O behavior.
Note: Lin et al. (2002) criticizes cross-validation for the validation of

Kriging metamodels, but in this section we apply cross-validation for the
estimation of the prediction error when selecting the next design point in a
customized design. Kleijnen and Van Beers (2004)’s method is also applied
by Golzari et al. (2015).

5.6 Stochastic Kriging (SK) in Random
Simulation

The interpolation property of Kriging is attractive in deterministic simu-
lation, because the observed simulation output is unambiguous. In random
simulation, however, the observed output is only one of the many possible
values. Van Beers and Kleijnen (2003) replaces wi (the simulation output
at point i with i = 1, . . ., n) by wi =

∑mi

r=1 wi;r/mi (the average simulated
output computed from mi replications). These averages, however, are still
random, so the interpolation property loses its intuitive appeal. Neverthe-
less, Kriging may be attractive in random simulation because Kriging may
decrease the predictor MSE at input combinations close together.
Note: Geostatisticians often use a model for (random) measurement er-

rors that assumes a so-called nugget effect which is white noise; see Cressie
(1993, pp. 59, 113, 128) and also Clark (2010). The Kriging predictor is
then no longer an exact interpolator. Geostatisticians also study noise with
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heterogeneous variances; see Opsomer et al. (1999). In machine learning
this problem is studied under the name heteroscedastic GP regression; see
Kleijnen (1983) and our references in Sect. 5.1. Roustant et al. (2012) dis-
tinguishes between the nugget effect and homogeneous noise, such that
the former gives a Kriging metamodel that remains an exact interpolator,
whereas the latter does not. Historically speaking, Danie Krige worked in
mining engineering and was confronted with the “nugget effect”; i.e., gold
diggers may either miss the gold nugget “by a hair” or hit it “right on
the head”. Measurement error is a fundamentally different issue; i.e., when
we measure (e.g.) the temperature on a fixed location, then we always get
different values when we repeat the measurement at points of time “only
microseconds apart”, the “same” locations separated by nanomillimeters
only, using different measurement tools or different people, etc.
In deterministic simulation, we may study numerical problems arising

in Kriging. To solve such numerical noise, Lophaven et al. (2002, Eq. 3.16)
and Toal et al. (2008) add a term to the covariance matrix ΣM (also see
Eq. (5.36) below); this term resembles the nugget effect, but with a “vari-
ance” that depends on the computer’s accuracy.
Note: Gramacy and Lee (2012) also discusses the use of the nugget effect

to solve numerical problems, but emphasizes that the nugget effect may also
give better statistical performance such as better CIs. Numerical problems
are also discussed in Goldberg et al. (1998), Harari and Steinberg (2014b),
and Sun et al. (2014).
In Sect. 5.6.1 we discuss a metamodel for stochastic Kriging (SK) and its

analysis; in Sect. 5.6.2 we discuss designs for SK.

5.6.1 A Metamodel for SK

In the analysis of random (stochastic) simulation models—which use pseu-
dorandom numbers (PRNs)—we may apply SK, adding the intrinsic noise
term εr(x) for replication r at input combination x to the GP metamodel
in Eq.(5.1) for OK with the extrinsic noiseM(x) :

yr(x) = μ+M(x) + εr(x) with x ∈ R
k and r = 1, . . . , mi (5.36)

where εr(x) has a Gaussian distribution with zero mean and variance
Var[εr(x)] and is independent of the extrinsic noise M(x). If the sim-
ulation does not use CRN, then Σε—the covariance matrix for the in-
trinsic noise—is diagonal with the elements Var[ε(x)] on the main diago-
nal. If the simulation does use CRN, then Σε is not diagonal; obviously,
Σε should still be symmetric and positive definite. (Some authors—e.g.
Challenor (2013)—use the term “aleatory” noise for the intrinsic noise,
and the term “epistemic noise” for the extrinsic noise in Kriging; we use
these alternative terms in Chaps. 1 and 6.)
Averaging the mi replications gives the average metamodel output y(xi)

and average intrinsic noise ε(xi), so Eq. (5.36) is replaced by

y(xi) = μ+M(xi) + ε(xi) with x ∈ R
k and i = 1, . . . , n. (5.37)
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Obviously, if we obtain mi replicated simulation outputs for input com-
bination i and we do not use CRN, then Σε is a diagonal matrix with
main-diagonal elements Var[ε(xi)]/mi. If we do use CRN and mi is a con-
stant m, then Σε = Σε/m where Σε is a symmetric positive definite
matrix.
SK may use the classic estimators of Var[ε(xi)] using mi > 1 replications,

which we have already discussed in Eq. (2.27):

s2(wi) =

∑mi

r=1(wi;r − wi)
2

mi − 1
(i = 1, . . . n)

Instead of these point estimates of the intrinsic variances, SK may use an-
other Kriging metamodel for the variances Var[ε(xi)]—besides the Kriging
metamodel for the mean E[yr(xi)]— to predict the intrinsic variances. We
expect this alternative to be less volatile than s2(wi); after all, s

2(wi) is a
chi-square variable (with mi − 1 degrees of freedom) and has a large vari-
ance. Consequently, s2(wi) is not normally distributed so the GP assumed
for s2(wi) is only a rough approximation. Because s2(wi) ≥ 0, Goldberg
et al. (1998) uses log[s2(wi)] in the Kriging metamodel. Moreover, we saw
in Sect. 3.3.3 that a logarithmic transformation may make the variable nor-
mally distributed. We also refer to Kamiński (2015) and Ng and Yin (2012).
Note: Goldberg et al. (1998) assumes a known mean E[y(x)], and a

Bayesian approach using Markov chain Monte Carlo (MCMC) methods.
Kleijnen (1983) also uses a Bayesian approach but no MCMC. Both Gold-
berg et al. (1998) and Kleijnen (1983) do not consider replications. Repli-
cations are standard in stochastic simulation; nevertheless, stochastic sim-
ulation without replication is studied in (Marrel et al. 2012). Risk and
Ludkovski (2015) applies SK with estimated constant mean μ̂ (like OK

does) and mean function f(x; ̂β) (like UK does), and reports several case

studies that give smaller MSEs for f(x; ̂β) than for μ̂.
SK uses the OK predictor and its MSE replacing ΣM by ΣM +Σε and

w by w, so the SK predictor is

ŷ(x0, ̂ψ) = μ̂+ σ̂(x0)
′(̂ΣM + ̂Σε)

−1(w−μ̂1) (5.38)

and its MSE is

MSE[ŷ(x0, ̂ψ)] = τ̂2 − σ̂(x0)
′(̂ΣM + ̂Σε)

−1σ̂(x0)

+
[1− 1′(̂ΣM + ̂Σε)

−1σ̂(x0)]
2

1′(̂ΣM + ̂Σε)−11
; (5.39)

also see Ankenman et al. (2010, Eq. 25).
The output of a stochastic simulation may be a quantile instead of an

average (Eq. (5.37) does use averages). For example, a quantile may be rel-
evant in chance-constrained optimization; also see Eq. (6.35) and Sect. 6.4
on robust optimization. Chen and Kim (2013) adapts SK for the latter type
of simulation output; also see Bekki et al. (2014), Quadrianto et al. (2009),
and Tan (2015).
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Note: Salemi et al. (2014) assumes that the simulation inputs are integer
variables, and uses a Gaussian Markov random field. Chen et al. (2013)
allows some inputs to be qualitative, extending the approach for deter-
ministic simulation in Zhou et al. (2011). Estimation of the whole density
function of the output is discussed in Moutoussamy et al. (2014).
There is not much software for SK. The Matlab software available on

the following web site is distributed “without warranties of any kind”:
http://www.stochastickriging.net/.

The R package “DiceKriging” accounts for heterogeneous intrinsic noise;
see Roustant et al. (2012). The R package “mlegp” is available on
http://cran.r-project.org/web/packages/mlegp/mlegp.pdf.

Software in C called PErK may also account for a nugget effect; see Santner
et al. (2003, pp. 215–249).
In Sect. 5.3 we have already seen that ignoring the randomness of the

estimated Kriging parameters ̂ψ tends to underestimate the true variance
of the Kriging predictor. To solve this problem in case of deterministic
simulation, we may use parametric bootstrapping or its refinement called
conditional simulation. (Moreover, the three variants—plugging-in ̂ψ, boot-
strapping, or conditional simulation—may give predictor variances that
reach their maxima for different new input combinations; these maxima
are crucial in simulation optimization through “efficient global optimiza-
tion”, as we shall see in Sect. 6.3.1). In stochastic simulation, we obtain
several replications for each old input combination—see Eq. (5.37)—so a
simple method for estimating the true predictor variance uses distribution-
free bootstrapping. We have already discussed the general principles of boot-
strapping in Sect. 3.3.5. Van Beers and Kleijnen (2008) applies distribution-
free bootstrapping assuming no CRN, as we shall see in the next subsection
(Sect. 5.6.2). Furthermore. Yin et al. (2009) also studies the effects that the
estimation of the Kriging parameters has on the predictor variance.
Note: Mehdad and Kleijnen (2015b) applies stochastic intrinsic Kriging

(SIK), which is more complicated than SK. Experiments with stochastic
simulations suggest that SIK outperforms SK.
To estimate the true variance of the SK predictor, Kleijnen and Mehdad

(2015a) applies the Monte Carlo method, distribution-free bootstrapping,
and parametric bootstrapping, respectively—using an M/M/1 simulation
model for illustration.

5.6.2 Designs for SK

Usually SK employs the same designs as OK and UK do for deterministic
simulation. So, SK often uses a one-shot design such as a LHD ; also see
Jones et al. (2015) and MacCalman et al. (2013).
However, besides the n × k matrix with the n design points xi ∈ R

k

(i = 1, . . ., n) we need to select the number of replications mi. In Sect. 3.4.5
we have already discussed the analogous problem for linear regression meta-

http://www.stochastickriging.net/
http://cran.r-project.org/web/packages/mlegp/mlegp.pdf
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FIGURE 5.8. A LHD and a sequentialized design for the M/M/1 simulation
with traffic rate 0 < x < 1 and n = 10 points

models; a simple rule-of-thumb is to select mi such that with 1− α proba-
bility the average output is within γ% of the true mean; see Eq. (3.30).
Note: For SK with heterogeneous intrinsic variances but without CRN

(so Σε is diagonal), Boukouvalas et al. (2014) examines optimal designs
(which we also discussed for linear regression metamodels in Sect. 2.10.1).
That article shows that designs that optimize the determinant of the so-
called Fisher information matrix (FIM) outperform space-filling designs
(such as LHDs), with or without replications. This FIM criterion minimizes
the estimation errors of the GP covariance parameters (not the parameters
β of the regression function f(x)′β). That article recommends designs with
at least two replications at each point; the optimal number of replications is
determined through an optimization search algorithm. Furthermore, that
article proposes the logarithmic transformation of the intrinsic variance
when estimating a metamodel for this variance (we also discussed such a
transformation in Sect. 3.4.3). Optimal designs for SK with homogeneous
intrinsic variances (or a nugget effect) are also examined in Harari and
Steinberg (2014a), and Spöck and Pilz (2015).
There are more complicated approaches. In sequential designs, we may

use Algorithm 5.5 for deterministic simulation, but we change Step 3—
which finds the candidate point with the highest predictor variance—such
that we find this point through distribution-free bootstrapping based on
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replication, as we shall explain below. Figure 5.8 is reproduced from Van
Beers and Kleijnen (2008); it displays a fixed LHS design with n = 10
values for the traffic rate x in an M/M/1 simulation with experimental area
0.1 ≤ x ≤ 0.9, and a sequentialized design that is stopped after simulating
the same number of observations (namely, n = 10). The plot shows that
the sequentialized design selects more input values in the part of the input
range that gives a drastically increasing (highly nonlinear) I/O function;
namely 0.8 < x ≤ 0.9. It turns out that this design gives better Kriging
predictions than the fixed LHS design does—especially for small designs,
which are used in expensive simulations.
The M/M/1 simulation in Fig. 5.8 selects a run-length that gives a 95%

CI for the mean simulation output with a relative error of no more than
15%. The sample size for the distribution-free bootstrap method is selected
to be B = 50.
To estimate the predictor variance, Van Beers and Kleijnen (2008) uses

distribution-free bootstrapping and treats the observed average bootstrapped
outputs w∗

i (i = 1, . . ., n) as if they were the true mean outputs; i.e., the
Kriging metamodel is an exact interpolator of w∗

i (obviously, this approach
ignores the split into intrinsic and extrinsic noise that SK assumes).
Note: Besides the M/M/1 simulation, Van Beers and Kleijnen (2008) also

investigates an (s, S) inventory simulation. Again, the sequentialized design
for this (s, S) inventory simulation gives better predictions than a fixed-size
(one-shot) LHS design; the sequentialized design concentrates its points in
the steeper part of the response surface. Chen and Li (2014) also determines
the number of replications through a relative precision requirement, but
assumes linear interpolation instead of Kriging; that article also provides a
comparison with the approach in Van Beers and Kleijnen (2008).
Note: Ankenman et al. (2010) does use the SK model in Eq. (5.36), and

tries to find the design that allocates a fixed computer budget such that
“new points” (input combinations not yet simulated) may be selected or
additional replications for old points may be obtained. Chen and Zhou
(2014) uses this approach, applying a variety of design criteria based on
the MSE. Plumlee and Tuo (2014) also examines the number of replications
in SK. Hernandez and Grover (2010) discusses sequential designs for Krig-
ing metamodels of random simulation models; namely, models of so-called
nanoparticles. Furthermore, Forrester (2013) recommends re-estimation of
the Kriging hyperparameters ψ, as the sequential design provides new I/O
data. Kamiński (2015) gives various methods that avoid re-estimation of
ψ in case of SK and sequential designs. Mehdad and Kleijnen (2015b)
discusses sequential designs for stochastic intrinsic Kriging (SIK). More
research on this issue is needed.
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FIGURE 5.9. OK versus monotonic bootstrapped Kriging with accep-
tance/rejection, and the true I/O function for M/M/1 with n = 5 old
input values and m = 5 replications

5.7 Monotonic Kriging: Bootstrapping
and Acceptance/Rejection

In practice we sometimes know (or assume we know) that the I/O function
implicitly specified by the simulation model is monotonic; e.g., if the traffic
rate increases, then the mean waiting time increases. More examples are
given in our chapter on screening (Chap. 4). We define a monotonic function
as follows (as we also did in Definition 4.1):

Definition 5.1 The function w = f(x) is called monotonically increasing
if w(x = x1) ≤ w(x = x2) if x1 ≤ x2.

The Kriging metamodel, however, may show a “wiggling” (erratic) I/O
function, if the sample size is small; see the wiggly curve in Fig. 5.9. To make
the Kriging predictor ŷ(xj) (j = 1, . . ., k) a monotonic function of the in-
put xj , we propose bootstrapping with acceptance/rejection; i.e., we reject
the Kriging metamodel fitted in bootstrap sample b—with b = 1, . . ., B
and bootstrap sample size B—if this metamodel is not monotonic. In this
section we summarize how Kleijnen and Van Beers (2013) uses distribution-
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free bootstrapping assuming stochastic simulation with replications for each
input combination; at the end of this section, we shall briefly discuss para-
metric bootstrapping for deterministic simulation. (The general principles
of distribution-free bootstrapping and parametric bootstrapping were dis-
cussed in Sect. 3.3.5.)
Note: Instead of bootstrapping, Da Veiga and Marrel (2012) solves the

monotonicity problem and related problems analytically. However, their so-
lution suffers from the curse of dimensionality; i.e., its scalability is
questionable.
Kleijnen and Van Beers (2013) uses the popular DACE Matlab Krig-

ing software, which is meant for deterministic simulation so it gives an
exact interpolator. Bootstrapped Kriging, however, is not an exact inter-
polator for the original observations; i.e., its predictor ŷ∗(xi) for the n old
input combinations xi (i = 1, . . ., n) does not necessarily equal the n corre-
sponding original average simulated outputs wi =

∑mi

r=1wi;r/mi where mi

( 2) denotes the number of replications for input combination i. Ac-
tually, bootstrapped Kriging using DACE is an exact interpolator of the
bootstrapped averages w∗

i =
∑mi

r=1 w
∗
i;r/mi, but not of wi. A CI is given

by the well-known percentile method, now applied to the (say) Ba (≤ B)
accepted bootstrapped Kriging predictors ŷ∗ba(x) (ba = 1, . . ., Ba).
More precisely, a monotonic predictor implies that the estimated gra-

dients of the predictor remains positive as the inputs increase; we focus
on monotonically increasing functions, because monotonically decreasing
functions are a strictly analogous problem. An advantage of monotonic
metamodeling is that the resulting sensitivity analysis is understood and
accepted by the clients of the simulation analysts so these clients have more
confidence in the simulation as a decision support tool. Furthermore, we
shall see that monotonic Kriging gives smaller MSE and a CI with higher
coverage and acceptable length. Finally, we conjecture that estimated gra-
dients with correct signs will improve simulation optimization, discussed in
the next chapter.
Technically speaking, we assume that no CRN are used so the number of

replications may vary with the input combination (mi �= m). Furthermore,
we assume a Gaussian correlation function. We let xi < xi′ (i, i

′ = 1, . . ., n;
i �= i′) mean that at least one component of xi is smaller than the corre-
sponding component of xi′ and none of the remaining components is bigger.
For example, the M/M/1 queueing simulation with the traffic rate x as the
single input (so k = 1) implies that xi < xi′ becomes xi < xi′ , whereas
the (s, S) inventory simulation with the k = 2 inputs s and S implies that
xi < xi′ may mean si < si′ and Si≤Si′ . The DACE software gives the esti-
mated gradients ∇ŷ(x), besides the prediction ŷ(x). We use a test set with
v “new” points (in the preceding sections we denoted a single new point by
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x0). We let �x� denote the integer resulting from rounding x upwards, �x�
the integer resulting from rounding x downwards; the subscript () denotes
the order statistics.
We propose the following algorithm (which adapts step 1 of Algorithm 5.2,

and deviates only in its details but not in its overall goal from the algorithm
in Kleijnen and Van Beers 2013); we assume that a 90% CI is desired.

Algorithm 5.6

1. Resample the mi original outputs wi;r (i = 1, . . ., n; r = 1, . . .,mi)
with replacement, to obtain the bootstrapped output vectors w∗

i;b =
(w∗

i;r;b, . . . , w
∗
i;r;b)

′ (b = 1, . . ., B), which give (X,w∗
b ) where X de-

notes the n× k matrix with the original n old combinations of the k
simulation inputs and w∗

b denotes the n-dimensional vector with the

bootstrap averages w∗
i;b =

mi
∑

r=1
w∗

i;r;b/mi.

2. Use DACE to compute ̂ψ
∗
b , the MLEs of the Kriging parameters ψ

computed from the bootstrapped I/O data (X,w∗
b) of step 1.

3. Apply DACE using (X,w∗
b) of step 1 and ̂ψ

∗
b of step 2 to compute

the Kriging predictor ŷ∗b that interpolates so ŷ∗b (xi) = w∗
i;b.

4. Accept the Kriging predictor ŷ∗b of step 3 only if ŷ∗b is monotonically
increasing; i.e., all k components of the n gradients are positive:

∇ŷ∗i;b′ > 0 (i = 1, . . . , n) (5.40)

where 0 denotes an n-dimensional vector with all elements equal to
zero.

5. Use the Ba accepted bootstrapped Kriging metamodels resulting from
step 4 to compute Ba predictions for v new points xu (u = 1, . . ., v)
with the point estimate equal to the sample median ŷ∗u;(�0.50Ba�) and
the two-sided 90% CI equal to [ŷ∗u;(�0.05Ba�), ŷ

∗
u;(�0.95Ba�)].

If we find that step 5 gives a CI interval that is too wide, then we add
more bootstrap samples so B increases and Ba probably increases too.
For example, the M/M/1 simulation starts with B = 100 and augments
B with 100 until either Ba ≥ 100 or—to avoid excessive computational
time—B = 1,000. This M/M/1 example has two performance measures;
namely, the mean and the 90% quantile of the steady-state waiting time
distribution. Furthermore, the example illustrates both “short” and “long”
simulation runs. Finally, n = 5 and mi = 5 with 0.1 ≤ x ≤ 0.9 and
v = 25 new points; also see Fig. 5.9. This plot shows wiggling OK (so
dŷ/dx is negative for at least one x-value in the area of interest), whereas
the bootstrap with acceptance/rejection gives monotonic predictions. This
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plot also shows—for each of the n = 5 input values—the m = 5 replicated
simulation outputs (see dots) and their averages (see stars). Furthermore,
the plot shows the analytical (dotted) I/O curve. Low traffic rates give such
small variability of the individual simulation outputs that this variability is
hardly visible; nevertheless, the bootstrap finds a monotonic Kriging model.
To quantify the performance of the preceding algorithm, we may use the

integrated mean squared error (IMSE) defined in Sect. 2.10.1. To estimate
the IMSE, we select v test points. If we let ζu (u = 1, . . ., v) denote the true
output at test point u, then the estimated integrated mean squared error
(EIMSE) MSE averaged over these v test points is the estimated integrated
MSE (EIMSE) is

EIMSE =

∑v
u=1(ŷ

∗
u;(�0.50B′�) − ζu)

2

v
.

Note: We point out that a disadvantage of the IMSE criterion is that a
high MSE at some point xu can be “camouflaged” by a low MSE at some
other point xu′ (u �= u′).
Furthermore, OK uses the CI defined in Eq. (5.21). This CI is symmet-

ric around its point estimate ŷ and may include negative values—even if
negative values are impossible, as is the case for waiting times—whether it
be the mean or the 90% quantile.
A number of macroreplications (namely, 100) enable the estimation of

the variance of the EIMSE estimate and the CI’s coverage and width. These
macroreplications show that this algorithm gives a smaller EIMSE than OK
does, but this EIMSE is not significantly smaller. Of course, the EIMSE for
the 90% quantile is higher than the EIMSE for the mean. This algorithm
also gives significantly higher estimated coverages, without widening the
CI. Increasing n (number of old points) from 5 to 10 gives coverages close
to the nominal 90%—without significantly longer CIs—whereas OK still
gives coverages far below the desired nominal value.
Besides using bootstrapped Kriging with acceptance/rejection to pre-

serve monotonicity, we may also preserve other characteristics of the sim-
ulation I/O function; e.g., the Kriging predictions should not be negative
for waiting times, variances, and thickness. Deutsch (1996) also investi-
gates negative predictions in OK arising when some weights λi are negative
(see again Sect. 5.2); also see
http://www.gslib.com/.
Furthermore, we may apply bootstrapping with acceptance/rejection to

other metamodeling methods besides Kriging; e.g., linear regression (which
we detailed in Chaps. 2 and 3).
If the simulation model is deterministic, then there are no replications so

we may replace distribution-free bootstrapping by parametric bootstrap-
ping assuming a multivariate Gaussian distribution as implied by a GP;
also see Sect. 5.3.

http://www.gslib.com/
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Kleijnen et al. (2012) applies distribution-free bootstrapping with ac-
ceptance/rejection to find Kriging metamodels that preserve the assumed
convexity of the simulation I/O function. Checking this convexity requires
extending the DACE software to compute Hessians. Unfortunately, it turns
out that this method does not give truly convex Kriging prediction func-
tions. On hindsight, we may argue that in practice we do not really know
whether the I/O function of the simulation model is convex; e.g., is the
cost function of a realistic inventory-simulation model convex? We might
assume that the simulation model has a unique optimal solution; convexity
implies that the global and the local optima coincide. Da Veiga and Marrel
(2012, p. 5) states: “Sometimes, the practitioner further knows that f (the
I/O function) is convex at some locations, due to physical insight”. Jian
et al. (2014) develops a Bayesian approach for estimating whether a noisy
function is convex.

5.8 Global Sensitivity Analysis: Sobol’s
FANOVA

So far we focused on the predictor ŷ(x), but now we discuss sensitivity
analysis (SA) measuring how sensitive the simulation output w is to the
individual inputs x1 through xk and their interactions. Such an analy-
sis may help us to understand the underlying simulation model; i.e., SA
may help us to find the important simulation inputs. In the three previous
chapters we used polynomials of first order or second order to approximate
the simulation I/O function w = fsim(x), so the regression parameters β
quantify the first-order and second-order effects of the inputs. OK gives a
more complicated approximation; namely, Eq. (5.1) including the extrinsic
noise term M(x) which makes y a nonlinear function of x. To quantify
the importance of the inputs of the simulation model—possibly approxi-
mated through a metamodel—we now apply so-called functional analysis of
variance (FANOVA). This analysis uses variance-based indexes that were
originally proposed by the Russian mathematician Sobol; see Sobol (1990)
and the references in Archer et al. (1997).
FANOVA decomposes the variance of the simulation output w into frac-

tions that refer to the individual inputs or to sets of inputs; e.g., FANOVA
may show that 70% of the output variance is caused by the variance in
x1, 20% by the variance in x2, and 10% by the interaction between x1

and x2. As we have already seen in Sect. 5.5.1, we assume that the in-
put x has a prespecified (joint) distribution (which may the product of
k marginal distributions). Below Eq. (5.13) we stated that θj denotes the
importance of xj . However, the importance of xj is much better quantified
through FANOVA, which also measures interactions—as we shall see in this
section.
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It can be proven that the following variance decomposition—into a sum
of 2k−1 components—holds:

σ2
w =

k
∑

j=1

σ2
j +

k
∑

j<j′
σ2
j;j′ + . . .+ σ2

1;...;k (5.41)

with the main-effect (first order) variance

σ2
j = Var[E(w|xj)] (5.42)

and the two-factor interaction variance

σ2
j;j′ = Var[E(w|xj , xj′ )]

and so on, ending with the k-factor interaction variance

σ2
1;...;k = Var[E(w|x1, . . . , xk)]. (5.43)

In Eq. (5.42) E(w|xj) denotes the mean of w if xj is kept fixed while all

k − 1 remaining inputs x−j = (. . . , xj−1, xj+1,. . .)
′
do vary. If xj has a

“large” main effect, then E(w|xj) changes much as xj changes. Further-
more, Eq. (5.42) shows Var[E(w|xj), which is the variance of E(w|xj) if xj

varies; so if xj has a large main effect, then Var[E(w|xj) is high if xj varies.
We point out that in Eq. (5.43) Var[E(w|x1, . . . , xk)] denotes the variance
of the mean of w if all k inputs are fixed; consequently, this variance is zero
in deterministic simulation, and equals the intrinsic noise in stochastic sim-
ulation (the intrinsic noise in stochastic simulation may vary with x, as we
saw in Sect. 5.6).
The measure σ2

j defined in Eq. (5.42) leads to the following variance-
based measure of importance, which the FANOVA literature calls the first-
order sensitivity index or the main effect index and which we denote by γ
(we use Greek letters for parameters, throughout this book):

γj =
σ2
j

σ2
w

.

So, γj quantifies the effect of varying xj alone—averaged over the variations
in all the other k−1 inputs; σ2

w in the denominator standardizes γj to pro-
vide a fractional contribution (in linear regression analysis we standardize
the inputs xj so that βj measures the relative main effect; see Sect. 2.3.1).
The interaction indices σ2

j;j′ through σ2
1;...;k are also divided by σ2

w. The
result of this standardization is the following equation:

k
∑

j=1

γj +

k−1
∑

j=1

k
∑

j′=j+1

γj;j′ + . . .+ γ1;...;k = 1. (5.44)
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As k increases, the number of measures in Eqs. (5.41) or (5.44) increases
dramatically; actually, this number is 2k − 1 (as we know from classic
ANOVA). The estimation of all these measures may require too much com-
puter time, as we shall see below. Moreover, such a large number of mea-
sures may be hard to interpret; also see Miller (1956). So—as we did in
the immediately preceding three chapters—we might assume that only the
first-order measures γj—and possibly the second-order measures γj;j′—are
important, and verify whether they sum up to a fraction “close enough”
to 1 in Eq. (5.44); i.e., do they contribute the major part of the total vari-
ance σ2

w?
Alternatively, we might compute the total-effect index or total-order in-

dex (say) γj;−j , which measures the contribution to σ2
w due to xj including

all variance caused by all the interactions between xj and any other input
variables x−j :

γj;−j =
E[Var(w|x−j)]

σ2
w

= 1− Var[E(w|x−j)]

σ2
w

.

It can be proven that
∑k

j=1γj;−j ≥ 1—unless there are only first-order
effects—because the interaction effect between (say) xj and xj′ is counted
in both γj;−j and γj′;−j′ .
The estimation of the various sensitivity measures uses Monte Carlo

methods. We may improve the accuracy of the estimators, replacing the
“crude” Monte Carlo method by quasi-Monte Carlo methods, such as LHS
and Sobol sequences (which we discussed in Sect. 5.5). To save computer
time, we may replace the simulation model by a metamodel such as an OK
model (with a specific correlation function; e.g., the Gaussian function).
Note: Details are given in Saltelli et al. (2008, pp. 164–67); also see Fang

et al. (2006, pp. 31–33, 193–202), Helton et al. (2006b), Le Gratiet and
Cannamela (2015), and Saltelli et al. (2010). The method in Le Gratiet
and Cannamela (2015) is available in the package “sensitivity” (linked to
the R package DiceKriging).
Note: FANOVA is the topic of much current research; see Anderson et al.

(2014), Borgonovo and Plischke (2015), Farah and Kottas (2014), Gins-
bourger et al. (2015), Henkel et al. (2012), Jeon et al. (2015), Lamboni
et al. (2013), Marrel et al. (2012), Muehlenstaedt et al. (2012), Owen
et al. (2013), Quaglietta (2013), Razavi and Gupta (2015), Shahraki and
Noorossana (2014), Storlie et al. (2009), Tan (2014a), Tan (2014b), Tan
(2015), Wei et al. (2015), and Zuniga et al. (2013).

5.9 Risk Analysis

In the preceding section on global sensitivity analysis through FANOVA
we assumed that the input x ∈ R

k has a given (joint) distribution. This
assumption implies that even a deterministic simulation model gives a ran-
dom output w; by definition, a stochastic simulation model always gives a
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random output. In risk analysis (RA) or uncertainty analysis (UA) we may
wish to estimate P (w > c), which denotes the probability of the output
w exceeding a given threshold value c. RA is applied in nuclear engineer-
ing, finance, water management, etc. A probability such as P (w > c) may
be very small—so w > c is called a rare event—but may have disastrous
consequences (we may then apply “importance sampling”; see Kleijnen
et al. 2013). In Sect. 1.1 we have already discussed the simple Example 1.1
with the net present value (NPV) as output and the discount factor or
the cash flows as uncertain inputs, so the input values are sampled from
given distribution functions; spreadsheets are popular software for such
NPV computations.
Note: Borgonovo and Plischke (2015) applies FANOVA to inventory man-

agement models—such as the economic order quantity (EOQ) model—
with uncertain inputs. We also refer to the publications that we gave in
Sect. 1.1; namely, Evans and Olson (1998) and Vose (2000). Another type
of deterministic simulation is used in project planning through the critical
path method (CPM) and program evaluation and review technique (PERT),
which in RA allows for uncertain durations of the project components so
these durations are sampled from beta distributions; see Lloyd-Smith et al.
(2004). More examples of RA are given in Kleijnen (2008, p. 125); also see
Helton et al. (2014).
The uncertainty about the exact values of the input values is called

subjective or epistemic, whereas the “intrinsic” uncertainty in stochastic
simulation (see Sect. 5.6) is called objective or aleatory; see Helton et al.
(2006a). There are several methods for obtaining subjective distributions
for the input x based on expert opinion.
Note: Epistemic and aleatory uncertainties are also discussed in Bar-

ton et al. (2014), Batarseh and Wang (2008), Callahan (1996), De Roc-
quigny et al. (2008), Helton et al. (2010), Helton and Pilch (2011), and Xie
et al. (2014).
We emphasize that the goals of RA and SA do differ. SA tries to answer

the question “Which are the most important inputs in the simulation model
of a given real system?”, whereas RA tries to answer the question “What is
the probability of a given (disastrous) event happening?”. We have already
seen designs for SA that uses low-order polynomials (which are a type of
linear regression metamodels) in the immediately preceding three chapters;
designs for RA are samples from the given distribution of the input x
through Monte Carlo or quasi-Monte Carlo methods, as we discussed in
the preceding section on FANOVA (Sect. 5.8). SA identifies those inputs
for which the distribution in RA needs further refinement.
Note: Similarities and dissimilarities between RA and SA are further dis-

cussed in Kleijnen (1983, 1994, 1997), Martin and Simpson (2006), Norton
(2015), Oakley and O’Hagan (2004), and Song et al. (2014).
We propose the following algorithm for RA with the goal of estimating

P (w > c).
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Algorithm 5.7

1. Use a Monte Carlo method to sample input combination x from its
given distribution.
Comment: If the inputs are independent, then this distribution is
simply the product of the marginal distributions.

2. Use x of step 1 as input into the given simulation model.
Comment: This simulation model may be either deterministic or
stochastic.

3. Run the simulation model of step 2 to transform the input x of step
2 into the output w.
Comment: This run is called “propagation of uncertainty”.

4. Repeat steps 1 through 3 n times to obtain the estimated distribution
function (EDF) of the output w.

5. Use the EDF of step 4 to estimate the required probability P (w > c).

Exercise 5.7 Perform a RA of an M/M/1 simulation, as follows. Suppose
that you have available m IID observations on the interarrival time, and
on the service time, respectively, denoted by ai and si (i = 1, . . .,m). Actu-
ally, you sample these values from exponential distributions with parameter
λ = ρ and μ = 1 where ρ is the traffic rate that you select. Resample
with replacement (i.e., use distribution-free bootstrapping) to obtain m in-
terarrival times and m service times, which you use to estimate the arrival
and service rates λ and μ. Use this pair of estimated rates as input to
your M/M/1 simulation. In this simulation, you observe the output that
you are interested in (e.g., the estimated steady-state mean waiting time).
Perform M macroreplications, to estimate the aleatory uncertainty. Repeat
the bootstrapping, to find different values for the pair of estimated rates;
again simulate the M/M/1 system to estimate the epistemic uncertainty.
Compare the effects of both types of uncertainty.

Because (by definition) an expensive simulation model requires much
computer time per run, we may perform RA as follows: do not run n simu-
lation runs (see steps 3 and 4 in the preceding algorithm), but run its meta-
model n times. For example, Giunta et al. (2006) uses crude Monte Carlo,
LHS, and orthogonal arrays to sample from two types of metamodels—
namely, Kriging and multivariate adaptive regression splines (MARS)—and
finds that the true mean output can be better estimated through inexpen-
sive sampling of many values from the metamodel, which is estimated from
relatively few I/O values obtained from the expensive simulation model (be-
cause that publication estimates an expected value, it does not perform a
true RA). Another example is Martin and Simpson (2006), using a Kriging
metamodel to assess output uncertainty. Furthermore, Barton et al. (2014)
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uses bootstrapping and stochastic Kriging (SK) to obtain a CI for the mean
output of the real system. Another interesting article on RA is Lemâıtre
et al. (2014). The British research project called Managing uncertainty in
complex models (MUCM) also studies uncertainty in simulation models, in-
cluding uncertainty quantification, uncertainty propagation, risk analysis,
and sensitivity analysis; see
http://www.mucm.ac.uk.
Related to MUCM is the “Society for Industrial and Applied Math-

ematics (SIAM)”’s “Conference on Uncertainty Quantification (UQ16)”,
held in cooperation with the “American Statistical Association (ASA)” and
the “Gesellschaft für Angewandte Mathematik und Mechanik (GAMM)”’s
“Activity Group on Uncertainty Quantification (GAMM AG UQ)”, in Lau-
sanne (Switzerland), 5–8 April 2016; see
http://www.siam.org/meetings/uq16/.
We shall return to uncertainty in the input x in the next chapter, in

which we discuss robust optimization (which accounts for the uncertainty
in some of the inputs); see Sect. 6.4.
Chevalier et al. (2013) and Chevalier et al. (2014) use a Kriging meta-

model to estimate the excursion set defined as the set of inputs—of a de-
terministic simulation model—resulting in an output that exceeds a given
threshold, and quantifies uncertainties in this estimate; a sequential design
may reduce this uncertainty. Obviously, the volume of the excursion set is
closely related to the failure probability P (w > c) defined in the beginning
of this section. Kleijnen et al. (2011) uses a first-order polynomial meta-
model (instead of a Kriging metamodel) to estimate which combinations
of uncertain inputs form the frontier that separates acceptable and un-
acceptable outputs; both aleatory uncertainty—characteristic for random
simulation—and epistemic uncertainty are included.
Note: Stripling et al. (2011) creates a “manufactured universe” (namely,

a nuclear “particle-transport universe”) that generates data on which a sim-
ulation model may be built; next, this simulation model generates data to
which a metamodel is fitted. This metamodel produces predictions, which
may be compared to the true values in the manufactured universe. We may
compare this approach with the Monte Carlo experiment in Exercise 5.7, in
which the manufactured universe is an M/M/1 system and the metamodel
is a SK model; actually, we may use an M/G/1 system—where G stands
for general service time distribution (e.g., a lognormal distribution)—and
the simulator builds an M/M/1 simulation model with exponential arrival
and service parameters estimated from the data generated by the M/G/1
system, so model errors are made besides estimation errors.
RA is related to the Bayesian approach, as the latter approach also

assumes that the parameters of the simulation model are unknown and
assumes given “prior” distributions for these parameters. The Bayesian
paradigm selects these prior distributions in a more formal way (e.g., it se-
lects so-called conjugate priors), obtains simulation I/O data, and calibrates

http://www.mucm.ac.uk
http://www.siam.org/meetings/uq16/
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the metamodel’s parameters; i.e., it computes the posterior distribution (or
likelihood) using the well-known Bayes theorem. Bayesian model averaging
and Bayesian melding formally account—not only for the uncertainty of
the input parameters—but also for the uncertainty in the form of the (sim-
ulation) model itself. The Bayesian approach is very interesting, especially
from an academic point of view; practically speaking, however, classic fre-
quentist RA has been applied many more times. References to the Bayesian
approach are given in Kleijnen (2008, p. 126); also see “Bayesian model av-
eraging” in Wit et al. (2012) and the specific Bayesian approach in Xie
et al. (2014).
Note: We present a methodology that treats the simulation model as a

black box, so this methodology can be applied to any simulation model.
A disadvantage, however, is that this methodology cannot make use of
knowledge about the specific model under discussion; e.g., Bassamboo et al.
(2010) uses knowledge about specific call-center queueing models, when
examining epistemic and aleatory uncertainties.

5.10 Miscellaneous Issues in Kriging

Whereas we focussed on Kriging metamodels for the mean simulation out-
put in the preceding sections, Plumlee and Tuo (2014) examines Kriging
metamodels for a fixed quantile (e.g., the 90% quantile) of the random
simulation output. Jala et al. (2014) uses Kriging to estimate a quantile of
a deterministic simulation with random input (which results in uncertainty
propagation, as we saw in Sect. 5.9). In Sect. 5.6.1 we have already men-
tioned that Chen and Kim (2013) adapts SK for quantiles, and we have also
referred to Bekki et al. (2014), Quadrianto et al. (2009), and Tan (2015).
Another issue is multivariate Kriging, which may be applied in multi-

fidelity metamodeling; i.e., we use several simulation models of the same
real system, and each model has its own degree of detail representing the
real system. Obviously, the various simulation models give external noises
M(x) that are correlated. An example in finite element modeling (FEM) is
the use of different simulation models with different meshes (grids). How-
ever, we are not aware of much multi-fidelity modeling in discrete-event
simulation; however, Xu et al. (2015) does discuss multifidelity in such sim-
ulation.
Note: Multi-fidelity metamodeling is further discussed in Couckuyt et al.

(2014), Koziel et al. (2014), Le Gratiet and Cannamela (2015), Razavi et al.
(2012), Tuo et al. (2014), and Viana et al. (2014, Section III).
We may also combine the output of a simulation model with the output

of the real system, so-called field data. For such problems Goh et al. (2013)
uses a Bayesian approach.
In practice, a discrete-event simulation model usually produces multiple

responses, which have intrinsic noises ε(x) that are correlated because these
outputs are (different) functions of the same PRNs. For such a simulation
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model we might use a multivariate Kriging metamodel. However, Kleijnen
and Mehdad (2014) finds that we might as well apply univariate Kriging
to each type of simulation response separately. Notice that FANOVA for
multivariate Kriging is examined in Zhang (2007) and Zhang et al. (2007).
Li and Zhou (2015) considers multivariate GP metamodels for deterministic
simulation models with multiple output types.
We may combine Kriging metamodels, each with a different type of corre-

lation function (e.g., Gaussian and exponential) in an ensemble; see Harari
and Steinberg (2014b), Viana et al. (2014, Figure 5), and the other refer-
ences in Sect. 1.2.
We may partition the input domain x ∈ R

k into subdomains, and fit
a separate GP model within each subdomain; these subdomains may be
determined through classification and regression trees (CART); for CART
we also refer to Chap. 1. Gramacy and Lee (2008) speak of a treed Gaussian
process. An R package for treed GPs is available on
http://users.soe.ucsc.edu/~rbgramacy/tgp.html.
Another issue in Kriging is the validation of Kriging metamodels. In

deterministic simulation we may proceed analogously to our validation
of linear regression metamodels in deterministic simulation, discussed in
Sect. 3.6; i.e., we may compute the coefficients of determination R2 and
R2

adj, and apply cross-validation (as we also did in Fig. 5.6). We also refer
to the free R package DiceEval; see
http://cran.r-project.org/web/packages/DiceEval/index.html.
Scatterplots with (wi, ŷi)—not (wi, ŷ−i) as in cross-validation—are used

in many deterministic simulations; an example is the climate simulation in
Hankin (2005). The validation of Kriging metamodels is also discussed in
Bastos and O’Hagan (2009), following a Bayesian approach. An interesting
issue in cross-validation is the fast re-computation of the Kriging model
(analogous to the shortcut in Eq. (3.50) for linear regression that uses the
hat matrix); also see Hubert and Engelen (2007), discussing fast cross-
validation for principle component analysis (PCA).
For deterministic simulations Challenor (2013) and Iooss et al. (2010)

examine LHDs with an extra criterion based on the distances between the
points in the original and the validation designs (so no cross-validation is
applied).
A final issue in Kriging is the variant that Salemi et al. (2013) intro-

duces; namely, generalized integrated Brownian fields (GIBFs). Related to
these GIBFs are the intrinsic random functions that Mehdad and Klei-
jnen (2015b) introduces into Kriging metamodeling of deterministic and
stochastic simulation models, as we have already seen in Sect. 5.4.

5.11 Conclusions

In this chapter we started with an introduction of Kriging and its applica-
tion in various scientific disciplines. Next we detailed OK for deterministic

http://users.soe.ucsc.edu/~rbgramacy/tgp.html
http://cran.r-project.org/web/packages/DiceEval/index.html
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simulation. For the unbiased estimation of the variance of the OK predic-
tor with estimated Kriging parameters we discussed parametric bootstrap-
ping and conditional simulation. Next we discussed UK for deterministic
simulation. Then we surveyed designs for Kriging metamodels, focusing
on one-shot standardized LHS and sequentialized, customized designs. We
continued with SK for random simulation. To preserve the monotonicity
of the I/O function, we proposed bootstrapping with acceptance/rejection.
Next we discussed FANOVA using Sobol’s sensitivity indexes. Furthermore
we discussed RA. Finally, we discussed several remaining issues. Through-
out this chapter we also mentioned issues requiring further research.

Solutions of Exercises

Solution 5.1 E(y|w1>μ,w2 = μ, . . . , wn=μ) > μ because σ(x
′
0)Σ

−1>0′.

Solution 5.2 In general ΣΣ−1 = I. If x0 = xi, then σ(x0) is a vector of
Σ. So σ(x0)

′Σ−1 equals a vector with n − 1 zeroes and one element with
the value one. So σ(x0)

′Σ−1(w−μ1) reduces to wi − μ. Finally, ŷ(x0|w)
becomes μ+ (wi − μ) = wi.

Solution 5.3 If x0 = x1, then λ1 = 1 and λ2 = . . . = λn = 0 (because
ŷ(x0) is an exact interpolator), so Var[ŷ(x0)] = 2cov(y1, y1)− [cov(y1, y1)+
cov(y1, y1)] = 0.

Solution 5.4 When h = 0, then ρ = 1/ exp(0) = 1/1 = 1. When h = ∞,
then ρ = 1/ exp(∞) = 1/∞ = 0.

Solution 5.5 When input j has no effect on the output, then θj = ∞ in
Eq. (5.13) so the correlation function drops to zero.

Solution 5.6 As n (number of old points) increases, the new point has
neighbors that are closer and have outputs that are more correlated with
the output of the new point. So the length of the CI decreases.

Solution 5.7 The results depend on your choice of the parameters of this
Monte Carlo experiment; e.g., the parameter m.
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Forrester A, Sóbester A, Keane A (2008) Engineering design via surrogate
modelling: a practical guide. Wiley, Chichester

Frazier PI (2011) Learning with dynamic programming. In: Cochran JJ,
Cox LA, Keskinocak P, Kharoufeh JP, Smith JC (eds) Encyclopedia of
operations research and management science. Wiley, New York

Gano SE, Renaud JE, Martin JD, Simpson TW (2006) Update strategies
for Kriging models for using in variable fidelity optimization. Struct Mul-
tidiscip Optim 32(4):287–298

Georgiou SD, Stylianou S (2011) Block-circulant matrices for constructing
optimal Latin hypercube designs. J Stat Plan Inference 141:1933–1943

Ghosh BK, Sen PK (eds) (1991) Handbook of sequential analysis. Marcel
Dekker, New York

Ginsbourger D, Dupuy D, Badea A, Carraro L, Roustant O (2009) A note
on the choice and the estimation of Kriging models for the analysis of
deterministic computer experiments. Appl Stoch Models Bus Ind 25:
115–131

Ginsbourger D, Iooss B, Pronzato L (2015) Editorial. J Stat Comput Simul
85(7):1281–1282

Giunta AA, McFarland JM, Swiler LP, Eldred MS (2006) The promise and
peril of uncertainty quantification using response surface approximations.
Struct Infrastruct Eng 2(3–4):175–189

Goel T, Haftka R, Queipo N, Shyy W (2006) Performance estimate and
simultaneous application of multiple surrogates. In: 11th AIAA/ISSMO
multidisciplinary analysis and optimization conference, multidisciplinary
analysis optimization conferences. American Institute of Aeronautics and
Astronautics, Reston, VA 20191–4344, pp 1–26



References 229

Goh J, Bingham D, Holloway JP, Grosskopf MJ, Kuranz CC, Rutter E
(2013) Prediction and computer model calibration using outputs from
multi-fidelity simulators. Technometrics 55(4):501–512

Goldberg PW, Williams CKI, Bishop CM (1998) Regression with input-
dependent noise: a Gaussian process treatment. In: Jordan MI, Kearns
MJ, Solla SA (eds) Advances in neural information processing systems,
vol 10. MIT, Cambridge, pp 493–499

Golzari A, Sefat MH, Jamshidi S (2015) Development of an adaptive sur-
rogate model for production optimization. J Petrol Sci Eng (in press)

Gramacy RB and Haaland B (2015) Speeding up neighborhood search in
local Gaussian process prediction. Technometrics (in press)

Gramacy RB, Lee HKH (2008) Bayesian treed Gaussian process mod-
els with an application to computer modeling. J Am Stat Assoc
103(483):1119–1130

Gramacy RB, Lee HKH (2012) Cases for the nugget in modeling computer
experiments. Stat Comput 22:713–722

Grosso A, Jamali ARMJU, Locatelli M (2009) Finding maximin Latin
hypercube designs by iterated local search heuristics. Eur J Oper Res
197(2):541–54

Hankin RKS (2005) Introducing BACCO, an R bundle for Bayesian anal-
ysis of computer code output. J Stat Softw 14(16):1–21

Harari O, Steinberg DM (2014a) Optimal designs for Gaussian process
models via spectral decomposition. J Stat Plan Inference (in press)

Harari O, Steinberg DM (2014b) Convex combination of Gaussian processes
for Bayesian analysis of deterministic computer experiments. Technomet-
rics 56(4):443–454

Helton JC, Davis FJ, Johnson JD (2005) A comparison of uncertainty and
sensitivity results obtained with random and Latin hypercube sampling.
Reliab Eng Syst Saf 89:305–330

Helton JC, Johnson JD, Oberkampf WD, Sallaberry CJ (2006a) Sensitivity
analysis in conjunction with evidence theory representations of epistemic
uncertainty. Reliab Eng Syst Saf 91:1414–1434

Helton JC, Johnson JD, Oberkampf WD, Sallaberry CJ (2010) Represen-
tation of analysis results involving aleatory and epistemic uncertainty.
Int J Gen Syst 39(6):605–646



230 5. Kriging Metamodels and Their Designs

Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006b) Survey of
sampling-based methods for uncertainty and sensitivity analysis. Reliab
Eng Syst Saf 91:1175–1209

Helton JC, Pilch M (2011) Guest editorial: quantification of margins and
uncertainty. Reliab Eng Syst Saf 96:959–964

Helton JC, Hansen CW, Sallaberry CJ (2014) Conceptual structure and
computational organization of the 2008 performance assessment for the
proposed high-level radioactive waste repository at Yucca Mountain,
Nevada. Reliab Eng Syst Saf 122:223–248

Henkel T, Wilson H, Krug W (2012) Global sensitivity analysis of non-
linear mathematical models – an implementation of two complementing
variance-based algorithms. In: Laroque C, Himmelspach J, Pasupathy R,
Rose O, Uhrmacher AM (eds) Proceedings of the 2012 winter simulation
conference, Washington, DC, pp 1737–1748

Hernandez AF, Grover MA (2010) Stochastic dynamic predictions using
Gaussian process models for nanoparticle synthesis. Comput Chem Eng
34(12):1953–1961

Hernandez AS, Lucas TW, Sanchez PJ (2012) Selecting random Latin
hypercube dimensions and designs through estimation of maximum ab-
solute pairwise correlation. In: Laroque C, Himmelspach J, Pasupathy R,
Rose O, Uhrmacher AM (eds) Proceedings of the 2012 winter simulation
conference, Berlin, pp 280–291

Hubert M, Engelen S (2007) Fast cross-validation of high-breakdown
resampling methods for PCA. Comput Stat Data Anal 51(10):5013–5024

Iooss B, Boussouf L, Feuillard V, Marrel A (2010) Numerical studies of the
metamodel fitting and validation processes. Int J Adv Syst Meas 3:11–21

Jala M, Lévy-Leduc C, Moulines É, Conil E, Wiart J (2014) Sequential
design of computer experiments for the assessment of fetus exposure to
electromagnetic fields. Technometrics (in press)

Janssen H (2013) Monte-Carlo based uncertainty analysis: sampling effi-
ciency and sampling convergence. Reliab Eng Syst Saf 109:123–132

Jeon JS, Lee SR, Pasquinelli L, Fabricius IL (2015) Sensitivity analysis of
recovery efficiency in high-temperature aquifer thermal energy storage
with single well. Energy (in press)

Jian N, Henderson S, Hunter SR (2014) Sequential detection of convex-
ity from noisy function evaluations. In: Tolk A, Diallo SY, Ryzhov IO,
Yilmaz L, Buckley S, Miller JA (eds) Proceedings of the 2014 winter
simulation conference, Savannah, pp 3892–3903



References 231

Jin, R, Chen W, Sudjianto A (2002) On sequential sampling for global
metamodeling in engineering design. In: Proceedings of DET’02, ASME
2002 design engineering technical conferences and computers and infor-
mation in engineering conference, DETC2002/DAC-34092, Montreal, 29
Sept–2 Oct 2002

Jones B, Silvestrini RT, Montgomery DC, Steinberg DM (2015) Bridge
designs for modeling systems with low noise. Technometrics 57(2):
155–163

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of
expensive black-box functions. J Glob Optim 13:455–492

Joseph VR, Hung Y, Sudjianto A (2008) Blind Kriging : a new method for
developing metamodels. J Mech Des 130(3):31–102

Jourdan A, Franco J (2010) Optimal Latin hypercube designs for the
Kullback-Leibler criterion. AStA Adv Stat Anal 94:341–351

Kamiński B (2015) A method for updating of stochastic Kriging meta-
models. Eur J Oper Res (accepted)

Kersting K, Plagemann C, Pfaff P, Burgard W (2007) Most-likely het-
eroscedastic Gaussian process regression. In: Ghahramani Z (ed) Pro-
ceedings of the 24th annual international conference on machine learning
(ICML-07), Corvalis, pp 393–400

Kleijnen JPC (1983). Risk analysis and sensitivity analysis: antithesis or
synthesis?. Simuletter, 14(1–4):64–72

Kleijnen JPC (1990) Statistics and deterministic simulation models: why
not? In: Balci O, Sadowski RP, Nance RE (eds) Proceedings of the 1990
winter simulation conference, Washington, DC, pp 344–346

Kleijnen JPC (1994) Sensitivity analysis versus uncertainty analysis: when
to use what? In: Grasman J, van Straten G (eds) Predictability and non-
linear modelling in natural sciences and economics. Kluwer, Dordrecht,
pp 322–333

Kleijnen JPC (1997) Sensitivity analysis and related analyses: a review of
some statistical techniques. J Stat Comput Simul 57(1–4):111–142

Kleijnen JPC (2008) Design and analysis of simulation experiments.
Springer, New York

Kleijnen JPC (2009) Kriging metamodeling in simulation: a review. Eur J
Oper Res 192(3):707–716

Kleijnen JPC (2014) Simulation-optimization via Kriging and bootstrap-
ping: a survey. J Simul 8(4):241–250



232 5. Kriging Metamodels and Their Designs

Kleijnen JPC, Mehdad E (2013) Conditional simulation for efficient global
optimization. In: Pasupathy R, Kim S-H, Tolk A, Hill R, Kuhl ME (eds)
Proceedings of the 2013 winter simulation conference, Washington, DC,
pp 969–979

Kleijnen JPC, Mehdad E (2014) Multivariate versus univariate Krig-
ing metamodels for multi-response simulation models. Eur J Oper Res
236:573–582

Kleijnen JPC, Mehdad E (2015) Estimating the correct predictor variance
in stochastic Kriging. CentER Discussion Paper, 2015, Tilburg

Kleijnen JPC, Mehdad E, Van Beers WCM (2012) Convex and monotonic
bootstrapped Kriging. In: Laroque C, Himmelspach J, Pasupathy R,
Rose O, Uhrmacher AM (eds) Proceedings of the 2012 winter simula-
tion conference, Washington, DC, pp 543–554

Kleijnen JPC, Pierreval H, Zhang J (2011) Methodology for determining
the acceptability of system designs in uncertain environments. Eur J
Oper Res 209:176–183

Kleijnen JPC, Ridder AAN, Rubinstein RY (2013) Variance reduction tech-
niques in Monte Carlo methods. In: Gass SI, Fu MC (eds) Encyclopedia
of operations research and management science, 3rd edn. Springer, New
York, pp 1598–1610

Kleijnen JPC, Van Beers WCM (2004) Application-driven sequential
designs for simulation experiments: Kriging metamodeling. J Oper Res
Soc 55(9):876–883

Kleijnen JPC, Van Beers WCM (2013) Monotonicity-preserving boot-
strapped Kriging metamodels for expensive simulations. J Oper Res Soc
64:708–717

Koch P, Wagner T, Emmerich MTM, Bäck T, Konen W (2015) Efficient
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