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I dedicate this book to my wife, Wilma





Preface

This book is the second version of Design and Analysis of Simulation
Experiments, originally published in 2008. Compared with the first edi-
tion, I have made many changes; I think that only a few sentences remain
unchanged. Altogether, the new version has approximately 50% more pages
than the original version. I have also changed the organization of the book;
i.e., I have changed the order of the various chapters. More specifically, I
have moved the chapter called “Screening Designs” from the end of the first
edition, so in the second edition this chapter immediately follows the two
chapters on classic designs (because both screening designs and classic de-
signs assume polynomial regression metamodels). I have also reversed the
order of the two chapters called “Simulation Optimization” and “Kriging
Metamodels.” Now the Kriging chapter immediately follows the chapters
on classic designs and screening designs (Kriging assumes a metamodel
involving a Gaussian process). The optimization chapter uses either regres-
sion models or Kriging models, which are now presented in the preceding
chapters. The chapters on Kriging and optimization show most changes
compared with the first edition; Kriging and simulation optimization are
very active fields of research. I moved the section on validation (includ-
ing R2 and cross-validation) from Chap. 2 (which assumes “white noise”)
to Chap. 3. To the chapter on screening, I added a section on selecting
the number of replications in sequential bifurcation (SB) through Wald’s
sequential probability ratio test (SPRT) and a section on SB for multiple
types of simulation responses. I deleted Chap. 7, which was the last chapter

vii



viii Preface

called Epilogue. Note that in 2010 the first edition was also translated into
Chinese (Beijing: Publishing House of Electronics Industry).
In the new version, I am no longer referring to a specific publication

through a number, but through the name(s) of the author(s) plus the year
of publication; the latter notation is more informative. Furthermore, I have
tried to keep the list of references relatively short, so I exclude older refer-
ences that are listed in newer references—unless I consider the older refer-
ence to be a “classic” publication. Nevertheless, this edition contains many
references. Instead of a single list of references at the end of the book, I now
present a list of references at the end of each chapter so that chapters may
be downloaded separately. To improve the book’s readability, I list many
references at the very end of a paragraph or in a separate paragraph that
starts with “Note”.
In this version, I still focus on those aspects of simulation in which I

have a certain expertise. This expertise is based on more than 40 years
of research in the simulation method and its application in various areas.
Although most of this expertise concerns discrete-event simulations (espe-
cially queueing and inventory simulations), I do have some experience with
deterministic simulation (especially engineering simulations). Furthermore,
this expertise is based on a doctoral degree in business and economics—in
the German, not the Anglo-Saxon tradition—specializing in mathemati-
cal methods; altogether, I am an “operations researcher”, but there are
different types of operations researchers.
Like the first edition, the second edition requires that the readers already

have a basic knowledge of the simulation method; e.g., they know concepts
such as terminating simulation and steady-state simulation. They should
also have a basic understanding of mathematical statistics, including con-
cepts such as distribution functions, averages, and variances.
Information that I consider to be redundant is displayed between paren-

theses; nonredundant, extra information may be placed between em dashes
(or —). Abbreviations and symbols are displayed in italics. Definitions of
abbreviations and symbols are repeated in various chapters, and abbrevi-
ations can also be looked up in the Subject Index at the end of the book;
this redundancy enables readers to browse through the various chapters,
without having to follow a particular order. I do not use any footnotes;
instead some paragraphs start with the word “Note”. To avoid misleading
hyphenation of website addresses, I display each address on a separate line;
a comma or a period at the end of the address is not part of the address.
Sometimes I treat non-English names in a sloppy way; e.g., I write the Rus-
sian name Sobol’ as Sobol, and I always write Van Beers, whereas proper
Dutch sometimes requires “van Beers” and proper Dutch lists “van Beers”
in the References under the letter b instead of v. I write Gaussian (not
gaussian), Kriging, and Studentizing, because these words are derived from
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the proper names Gauss, Krige, and Student (Gosset’s pseudonym). I use
American English (but my native tongue is Dutch), which avoids hyphens
in compounds if there is no compelling reason; e.g., I write “nonnegative”
and “re-estimate”.
For an update of this book, including corrections and new references,

visit my website
https://sites.google.com/site/kleijnenjackpc/

I thank Fred Hillier (Stanford University), who is the former series edi-
tor, for encouraging me to write a second version of my book. Mirko Janc
(INFORMS) provided numerous technical comments on a preliminary ver-
sion. Wim Van Beers (University of Amsterdam) read preliminary versions
of all the chapters in this book and provided me with comments and with
new versions of most Figures. Ehsan Mehdad (Tilburg University) read
the preliminary versions of the chapters on Kriging and optimization and
provided me with some new Figures for these chapters. I also received
valuable comments on preliminary versions of various chapters from the
following colleagues: Bertrand Iooss (Electricité de France R & D), Tom
Lucas (Naval Postgraduate School), Barry Nelson (Northwestern Univer-
sity), Andrea Saltelli (Joint Research Centre of the European Commission),
Lee Schruben (University of California Berkeley), Wen Shi (Huazhong Uni-
versity of Science and Technology), and Felipe Viana (GE Global Research).
I wrote this new edition, while being an emeritus professor at Tilburg

University. The university provided me with an office, a PC with appropri-
ate software, e-mail, and library services.
Furthermore, I reproduce the following text from the back cover of the

original edition:
“This is an advanced expository book on statistical methods for the De-

sign and Analysis of Simulation Experiments (DASE). Though the book
focuses on DASE for discrete-event simulation (such as queueing and in-
ventory simulations), it also discusses DASE for deterministic simulation
(such as engineering and physics simulations). The text presents both clas-
sic and modern statistical designs. Classic designs (e.g., fractional factori-
als) assume only a few factors with a few values per factor. The resulting
input/output data of the simulation experiment are analyzed through low-
order polynomials, which are linear regression (meta)models. Modern de-
signs allow many more factors, possible with many values per factor. These
designs include group screening (e.g., Sequential Bifurcation, SB) and space
filling designs (e.g., Latin Hypercube Sampling, LHS). The data resulting
from these modern designs may be analyzed through low-order polynomials
for group screening, and various metamodel types (e.g., Kriging) for LHS.
In this way, the book provides relatively simple solutions for the problem

of which scenarios to simulate and how to analyze the resulting data. The
book also includes methods for computationally expensive simulations.

https://sites.google.com/site/kleijnenjackpc/
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It discusses only those tactical issues that are closely related to strategic
issues; i.e., the text briefly discusses run-length and variance reduction
techniques.
The leading textbooks on discrete-event simulation pay little attention to

the strategic issues of simulation. The author has been working on strate-
gic issues for approximately 40 years, in various scientific disciples [the
original text has a typo: “disciples” should be “disciplines”]—such as oper-
ations research, management science, industrial engineering, mathematical
statistics, economics, nuclear engineering, computer science, and informa-
tion systems.
The intended audience are researchers, graduate students, and mature

practitioners in the simulation area. They are assumed to have a basic
knowledge of simulation and mathematical statistics; nevertheless, the book
summarizes these basics, for the readers’ convenience.”
Finally, I reproduce the following text from the Preface of the original

version:
“I received valuable comments on preliminary versions of various chap-

ters from the following colleagues: Ebru Angün (Galatasaray University,
Istanbul), Russell Barton (Pennsylvania State), Victoria Chen (University
of Texas at Arlington), Gabriella Dellino (Politecnico di Bari), Dick den
Hertog (Tilburg University), Tony Giunta (Sandia), Yao Lin (Georgia In-
stitute of Technology), Carlo Meloni (Politecnico di Bari), Barry Nelson
(Northwestern), William Notz (Ohio State), Huda Abdullah Rasheed (al-
Mustansiriyah University, Baghdad), Wim van Beers (Tilburg University),
Willem van Groenendaal (Tilburg University), Jim Wilson (North Carolina
State), and Bernard Zeigler (Arizona State).”
This book is summarized in Kleijnen (2015).

Reference

Kleijnen JPC (2015) Regression and Kriging metamodels with their experi-
mental designs in simulation: review. CentER Discussion Paper 2015–035
(http://ssrn.com/abstract=2627131)

http://ssrn.com/abstract=2627131
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1
Introduction

This chapter is organized as follows. Section 1.1 defines various types of
simulation. Section 1.2 defines design and analysis of simulation experi-
ments (DASE). Section 1.3 defines DASE symbols and terms. The chapter
ends with Solutions of exercises, and references.

1.1 What Is Simulation?

“Simulation” might be defined in several ways, so it includes (say) the
simulation of an illness. However, we limit simulation to experimenting with
quantitative models; obviously, these models are computerized nowadays.
To define this type of simulation, we use the following two dichotomies:

• Deterministic versus random

• Static versus dynamic

Unlike deterministic models, random models include random or prob-
abilistic variables. Unlike static models, dynamic models include time as
a special independent variable. These two dichotomies may be combined;
simple examples are:

• Deterministic and static model: a first-order polynomial with x as the
independent variable and y as the dependent variable.

© Springer International Publishing Switzerland 2015
J.P.C. Kleijnen, Design and Analysis of Simulation Experiments,
International Series in Operations Research & Management
Science 230, DOI 10.1007/978-3-319-18087-8 1
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2 1. Introduction

• Random and static model: the probability of heads or tails in the toss
of a coin.

• Deterministic and dynamic model: a differential equation with time
(say) t as the independent variable; e.g., the net present value (NPV)
of a loan (also see Example 1.1 below).

• Random and dynamic model: a model of the waiting times in a single-
server queueing model (also see Example 1.2).

Definition 1.1 A simulation model is a mathematical model that is solved
by means of experimentation.

So, by definition, we ignore simulation models that are physical (instead
of mathematical); e.g., a miniature airplane in a windtunnel. Mathematical
models are usually converted into computer programs—also called com-
puter codes—so simulation experiments are also called computer experi-
ments. Closely related to simulation are Monte Carlo methods, defined as
methods that use pseudorandom numbers (PRNs). These PRNs are gener-
ated by means of a computer program, so they are not really random, and
yet they are assumed to be independently and uniformly distributed on the
interval [0, 1]. So, Monte Carlo methods involve chance, which explains the
name. Monte Carlo methods are also used to evaluate multiple integrals,
which arise in mathematical statistics, physics, etc. Simulation uses exper-
imentation to solve the mathematical model; i.e., simulation is a numerical
method, not an analytical method. Simulation is applied in many scientific
disciplines—ranging from sociology to astronomy; see the survey on the
spectrum of simulation applications in the classic article Karplus (1983).
Simulation methodology is explained in many textbooks, in many sci-

entific disciplines. Simulation methodology includes DASE, which is also
known as design of computer experiments or DACE. As we mentioned
in the Preface, this book on DASE is oriented towards management sci-
ence/operations research (MS/OR). MS/OR is a discipline that includes
simulation, especially random and dynamic simulation—also known as
discrete-event simulation of discrete-event dynamic systems(DEDS). The
most popular and most recent simulation textbook in MS/OR is Law
(2015); DEDS is discussed in the classic textbook Ho and Cao (1991).
A classic textbook on the theory of modeling and simulation is Zeigler
et al. (2000), using the automata theory of computer science; that book
influences some of the terminology in this book.

Example 1.1 Consider the following NPV problem. Given are θ, the dis-
count factor used by the decision maker; n, the length of the planning period
measured in years; and xt, the cash flow in year t with t = 0, . . . , n. Then
the NPV—also called the Present Value (PV)—(say) y may be computed
through the following equation:
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y =

n∑

t=0

xt

(1 + θ)t
. (1.1)

Engineers often use an alternative formula, assuming continuous time so∑
becomes

∫
, etc. Eq. (1.1) may be used to compare alternative cash flow

patterns. Different patterns may be caused by different loan types. One loan
type may require a fixed amount paid back at the end of each year (say)
zt with t = 1, . . . , n and z0 = 0, and interest payments determined by the
interest rate c and the loan amount at the end of the year t, namely wt:

xt = −[min(zt, wt) + cwt] with t = 1, . . . , n (1.2)

where the loan amount is determined by

wt = wt−1 − zt with t = 1, . . . , n (1.3)

and
x0 = w0 (1.4)

where w0 is the original loan amount, so x0 is the positive cash flow at the
start of the planning period, whereas xt with t = 1, . . . , n are negative cash
flows (the initial condition z0 = 0 has already been specified). Finally, the
stopping conditions of the simulation run must also be given; in this exam-
ple, the simulation stops when the end of the planning period is reached.

Obviously, Example 1.1 illustrates a deterministic dynamic model, in-
cluding a first-order difference equation; namely, Eq. (1.3). Easy program-
ming of such models is possible through spreadsheet software such as Excel;
a recent reference on spreadsheet-based simulation is Schriber (2009).

Exercise 1.1 Derive that NPV = 6.238 in case the original loan is w0 =
100, n = 2, c = 0.10, and θ = 0.15 (i.e., the loaner expects to earn a higher
return on investment or ROI than the bank can offer).

The deterministic financial simulation in Example 1.1 may be augmented
to a random simulation, if (say) the discount factor θ or the cash flows
xt are unknown so their values are sampled from distribution functions.
This type of simulation is called risk analysis (RA) or uncertainty analysis
(UA); see again Schriber (2009). Random simulation is more complicated
than deterministic simulation is, so we recommend random simulation only
if a random model is necessary to obtain a valid representation of the real
system so that the model serves the goals that will be discussed in Sect. 1.2.
Note: RA in chemical engineering is discussed in Saltelli et al. (2005).

Some well-known textbooks on RA are Evans and Olson (1998) and Vose
(2000); a recent survey article is Wu and Olson (2013). Combining risk
management and robust design is discussed in Mordecai and Dori (2013).
We discuss DASE aspects of RA in Sect. 5.9 and DASE aspects of robust
design and robust optimization in Sect. 6.4.
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Complicated realistic examples of deterministic simulation are found in
computer aided engineering (CAE) and computer aided design (CAD),
including models of airplanes, automobiles, television sets, chemical pro-
cesses, and computer chips—developed at Boeing, General Motors, Philips,
etc. Many applications use finite-elements analysis. The role of simulation
in engineering is discussed by the Blue Ribbon Panel of the American “Na-
tional Science Foundation (NSF)”; and reported in Oden (2006).
Another type of (primarily) deterministic simulation is system dynamics

(SD), originally called “industrial dynamics” in Forrester (1961). SD is
more than a simulation method; it is a world view. In this view, a crucial
concept is feedback ; i.e., compare an output with a norm, and react if
there is an undesirable deviation. Simulation results show that this feedback
often generates counterintuitive behavior. Applications include simulations
of companies, industries (including supply chains), countries, and the whole
globe (including the warming-up of the earth’s atmosphere). A textbook
with more than 1,000 pages is Sterman (2000).
Some deterministic simulation models show numerical inaccuracies, which

make these models related to random simulation. These deterministic sim-
ulations are also called “noisy computer experiments” or “stochastic simu-
lators”; see Picheny et al. (2013). We distinguish the following three types
of random simulation.

• The simulation model is deterministic, but it has numerical noise
caused by numerical approximations; see again Picheny et al. (2013)
and also Forrester et al. (2008, p. 141) and Wiebenga (2014).

• The simulation model is deterministic, but the exact values of its
inputs are uncertain so these values are sampled from a prior input
distribution through Monte Carlo methods (e.g., Latin hypercube
sampling, discussed in Sect. 5.5). This is done in RA, and is also
known as uncertainty propagation. This uncertainty is called epis-
temic, subjective, or the analysts’ uncertainty; see Helton and Davis
(2003).

• The simulation model itself includes PRNs; examples are discrete-
event simulation models, including queueing in traffic systems, tele-
communications, and supply chains. These PRNs may be used to
sample the occurrence of events such as the arrival of cars, telephone
calls, and production orders. The times at which these events occur
may be sampled from a given distribution; e.g. an exponential dis-
tribution. This sampling creates so-called aleatory, objective, or the
system’s inherent uncertainty; see again Helton and Davis (2003).

Only a few publications combine epistemic and aleatory uncertainties.
For example, Helton and Davis (2003) discusses the simulation model of
the “waste isolation pilot plant (WIPP)” that combines (i) deterministic
simulation through differential equations that model chemical and physical



1.1 What Is Simulation? 5

subsystems and (ii) discrete-event simulation that models human inter-
ventions. Another example is discrete-event simulation with uncertain pa-
rameters; e.g., the parameter of the arrival distribution in the queueing
simulation is uncertain. Combining aleatory and epistemic uncertainties is
further discussed in Borgonovo and Plischke (2015), De Rocquigny et al.
(2008), Helton et al. (2014), Kleijnen (2007), Sakallı and Baykoç (2011),
and Xie et al. (2014). Besides epistemic uncertainty, Grubler et al. (2015)
discusses more types of uncertainty.
The preceding discussion implies the following two definitions, based on

Zeigler et al. (2000).

Definition 1.2 A model parameter has a value that is inferred from data
on the real system.

This inference is necessary if the parameter value can not be observed
directly in the real system. An example is the arrival rate of customers
into a supermarket; i.e., we can observe the times between two successive
arrivals, and use these observations to estimate the arrival rate.

Definition 1.3 An input variable of a model can be directly observed in
the real system.

Returning to the supermarket example, we can simply observe the num-
ber of servers (checkout lanes).

Exercise 1.2 Consider the following two applications involving the dis-
count factor for a NPV calculation as in Example 1.1: (a) a student wishes
to select the best NPV for several loan alternatives—each with the same in-
terest rate, but with different amortization schemes; (b) a company wishes
to select the highest NPV among several investment alternatives, such that
the company maintains the ROI that it has realized during the last five years.
Is the discount factor a parameter or a variable in (a) and (b)?

Now we focus on discrete-event simulation. This simulation is inherently
random; i.e., without randomness the problem would change completely.
For example, a queueing problem is caused by the randomness of the ar-
rival or the service times; if these times were deterministic, the problem
would become a so-called scheduling problem. A popular discrete-event
simulation—which may be a building block for more complicated simula-
tions, and which is often used in this book and in other publications—is
the M/M/1 model (the symbol M/M/1 is used in the so-called Kendall
notation).

Definition 1.4 An M/M/1 model is a queueing model with one server,
and Markovian interarrival and service times.

These Markovian times are exponentially distributed and “independent”;
i.e., the interarrival times are independent, and so are the service times;
arrival and service times are mutually independent (also see Example 1.2
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below). The exponential distribution has the memoryless property; e.g.,
if many customers happened to arrive during last period, then this does
not affect the number of customers in the next period. Furthermore, the
exponential distribution implies that the number of events (e.g., arrivals)
per period (e.g., per day) has a Poisson distribution. The notation M/M/1
implies that the server’s priority rule is first-in-first-out (FIFO), the waiting
room has infinite capacity, etc. An M/M/1 model may be simulated as
follows.

Example 1.2 Let ai+1 denote the interarrival time between customers i
and i + 1, si the service time of customer i, and r a PRN. Assume that
the output of interest is w, the waiting time of a customer, and that the
probability density function (PDF) of this random output is characterized
by its mean that is estimated through

w =

∑n
i=1 wi

n
(1.5)

where n denotes the number of customers that stops the simulation run.
(This example is a terminating simulation, not a steady-state simulation; in
the latter case, n would not be prefixed or would be a “very large” number;
see Law (2015).) Furthermore, assume that the simulation starts in the
“empty” state (no customers in the system), so the customer who arrives
first does not need to wait; i.e., the initial condition of this dynamic model
is w1 = 0. The dynamics of the single-server system are specified by the
so-called Lindley recurrence formula

wi+1 = max (0, wi + si − ai+1). (1.6)

In this equation, the random input variables s and a are sampled such that
these variables have a service rate μ and an arrival rate λ; so the mean or
expected service and interarrival times are 1/μ and 1/λ, respectively. To
sample these variables, the simulation may use the PRN r as follows:

si =
− ln r2i−1

μ
(1.7)

and

ai+1 =
− ln r2i

λ
(1.8)

where a single PRN stream (namely, r1, r2, . . . ,r2n−1, r2n) is used; obvi-
ously, each of the n customers needs two PRNs—namely, one PRN for the
arrival time and one PRN for the service time.

To program the simulation model in Example 1.2, the analysts can choose
from many simulation software packages. In fact, Swain (2013) lists 43
products in the ninth biennial survey of simulation software for discrete-
event simulation; that survey also includes information on DASE and so-
called animation (kind of motion pictures).
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Exercise 1.3 Example 1.2 uses a single PRN stream (namely, r1, r2, . . . ,
r2n−1, r2n) in Eqs. (1.7) and (1.8). What are the advantages of using two
separate PRN streams for the two input processes—namely, the arrival and
the service processes—when applying two well-known variance reduction
techniques (VRTs)—namely, common random numbers (CRN) and an-
tithetic random numbers (ARN)? Do these advantages change when the
single-sever simulation has the last-in-first-out (LIFO) server priority rule
or the service time has a uniform distribution?

Mathematical analysis of the M/M/1 model reveals that the fundamental
input parameter is the so-called traffic rate—also called traffic intensity
or traffic load—(say) ρ defined as ρ = λ/μ with λ and μ defined above
Eq. (1.7). In other words, the M/M/1 model has a single input parameter
(namely, ρ), whereas its computer code has two parameters (λ and μ).
More precisely, mathematical analysis gives the following equation for the
expected value of the waiting time in the “steady-state” so Eq. (1.6) has
i ↑ ∞:

E(wi | i ↑ ∞) =
λ

μ(μ− λ)
=

1

μ

ρ

(1− ρ)
, (1.9)

so selecting the time unit such that μ = 1 (e.g. measure time in either
seconds or hours) gives E(wi | i ↑ ∞) = ρ/(1− ρ).
Though the M/M/1 model will often be used as an example in this book,

we shall also need an example with multiple inputs. Therefore we now
present another well-known building block for discrete-event simulation;
namely, the so-called (s, S) model.

Definition 1.5 An (s, S) model is a model of an inventory management
system with the following properties. Its control variables s and S satisfy the
condition s < S. One of the model inputs is (say) D, the random demand
per period, so the inventory level I becomes I − D. This I is replenished
whenever I decreases to a value smaller than or equal to the reorder level s.
When I is replenished, the order quantity Q is S − I. Altogether the model
implies

Q =

{
S − I if I ≤ s
0 if I > s.

(1.10)

There are several variations on this basic model. For example, review of
the inventory level I may be continuous instead of periodic (e.g., at the end
of each day). The lead time of the order may be either a nonnegative con-
stant or a nonnegative random variable. Demand that exceeds the inventory
at hand (so D > I) may be either lost or backlogged. Costs may consist of
inventory, ordering, and out-of-stock costs (including loss of goodwill and
expediting costs). These cost components are specific mathematical func-
tions; e.g., inventory carrying (or holding) cost may be a constant per item
unit, per time unit. In practice, out-of-stock costs are hard to quantify so
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a service (or fill rate) constraint may be specified instead; e.g., the total
stockout quantity per (say) year should be smaller than 10% of the total
sales during that same period.
Programming this inventory model is harder than programming the

M/M/1 model; the latter has dynamics specified by the simple Eq. (1.6).
Thorough discussions of this programming is found in simulation textbooks
such as Law (2015).
Discrete-event simulation and continuous simulation may be combined

into so-called hybrid simulation. An example is a simulation of the ejection
of the pilot seat (a discrete event) during a flight that is modeled through
differential equations until this event occurs. This type of simulation is also
discussed in textbooks on discrete-event simulation; e.g. Law (2015). We
also refer to Giambiasi and Carmona (2006).
In summary, simulation is a method that is applied in many disciplines.

Simulation provides a flexible, powerful, and intuitive tool for the analysis
of complicated processes. The resulting insight may be used to design better
real systems.
Much more could be said about simulation. There are many more text-

books besides the ones mentioned above; e.g., Nelson (2013) and Pidd
(2004); the latter textbook also discusses system dynamics. The most re-
cent publications on discrete-event simulation can be found in the annual
proceedings of the Winter Simulation Conference; see its web page
http://www.wintersim.org/.

Top journals on MS/OR including discrete-event simulation are published
by INFORMS; see
http://www.informs.org/.

Handbooks in MS/OR also cover discrete-event simulation; an example is
Henderson and Nelson (2006). Many other journals on MS/OR also publish
on simulation. Perspectives on the evolution of discrete-event simulation
during 50 years are provided in Nance and Sargent (2002).

Exercise 1.4 Does the definition of “simulation” hold for (i) entertain-
ment games such as “America’s Army” (see Swain 2005), (ii) serious
games such as the beer game in system dynamics (see Simchi-Levi et al.
2003), and (iii) game theory using the Nash equilibrium (see Shubik 2002)?

1.2 What Is “Design and Analysis of Simulation
Experiments” (DASE)?

This book is about the design and analysis of simulation experiments
(DASE). These terms require explicit definitions—especially because simu-
lation is a method applied in many different scientific fields with their own
terminologies, as we saw above.

http://www.wintersim.org/
http://www.informs.org/
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Simulation implies that the modelers do not solve their model through
mathematical analysis; instead, the modelers try different values for the in-
puts and parameters of their model in order to learn what happens to the
model’s output. For example, for the NPV model in Example 1.1 the mod-
elers may experiment with different values for the parameter θ (discount
factor) and the input variable z (amount paid back every year); see again
Eqs. (1.1) and (1.2). In the M/M/1 model in Example 1.2 the modelers
may experiment with different values for the traffic rate and with differ-
ent priority rules besides the implicit FIFO rule. In the (s, S) inventory
model defined in Eq. (1.10) the modelers may try different combinations of
the control limits s and S and the mean demand E(D). The goals of such
numerical experiments may be (see again Oden (2006), and also Kaminski
(2015), Razavi and Gupta (2015), and Tan (2014)):

• Verification and validation (V & V) of the underlying simulation
model

• Sensitivity analysis (SA)—either global or local—or “what if” anal-
ysis of the simulation model

• Optimization of the simulated real system (SimOpt)

• Risk analysis (RA) of the simulated real system

In practice, these goals may be ambiguous, and they may be known under
other names. One example is SA, which may aim at either “gaining insight”
or “prediction”. Another example is RA, which may aim at estimating the
set of input combinations that give an unacceptably high probability of
exceeding a given threshold. Many methods for SA and RA are surveyed in
Borgonovo and Plischke (2015); we shall detail specific SA and RA methods
in the next chapters; see, e.g., Sect. 5.9.
These goals require that the simulation modelers pay attention to the

design of their experiments; e.g., if the modelers keep an input of their
simulation constant, then they cannot estimate the effect of that input
on the output. In practice, however, many modelers keep many inputs
constant, and experiment with a few remaining inputs only. Chapter 4 (on
screening) shows that there are better ways to run simulation experiments
with many inputs. Another example of bad practice is changing one input at
a time, while keeping all other inputs fixed at their so-called base values;
Chap. 2 shows that this approach is inefficient and does not enable the
estimation of any interactions among inputs.
A main theme of this book is that the design of the experiment is in-

timately related to its analysis. For example, suppose that the modelers
assume the input to have a “linear” effect on the output; i.e., they as-
sume a first-order polynomial approximation (remember the Taylor series
in mathematics) or main effects only (mathematical statistics terminology).
Given this assumption, it obviously suffices to experiment with only two
values of that input. Furthermore, if the modelers assume that there are
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(say) k > 1 inputs (with main effects only), then their design requires a
relatively small experiment (of order k). In this example, changing only one
input at a time does give unbiased estimators of all the first-order or main
effects; Chap. 2, however, will show that minimizing the variances of these
estimators requires a different design—with approximately the same size
of the experiment as the one required by the one-at-a-time design. Note
that this book uses a DASE approach that is frequentist, not Bayesian;
Bayesian versus frequentist approaches are discussed in Efron (2005).
A first-order polynomial approximation is an example of a so-called meta-

model, which is the term used in Kleijnen (1975); metamodels are also
called response surfaces, surrogates, and emulators in different scientific
disciplines.

Definition 1.6 A metamodel is an approximation of the input/output
(I/O) function that is defined by the underlying simulation model.

We point out that a simulation model implicitly defines a mathemati-
cal function. There are different types of metamodels. The most popular
type is a polynomial of either first order or second order (degree), which
are discussed in Chaps. 2–4. A more recent metamodel type that is gaining
popularity in simulation—especially deterministic simulation—is a Kriging
model—also called a Gaussian process model—discussed in Chap. 5. Meta-
models may be used for different goals; e.g., a low-order polynomial best
serves explanation resulting in insight, whereas a Kriging model may give
better predictions which may be used in optimization (see Chap. 6), real-
time decision making, etc.
Note: Less popular metamodels are (in alphabetical order): classifica-

tion and regression trees (CART), game-theoretic metamodels, generalized
linear models (GLM), inverse distance weighting, multivariate adaptive
regression splines (MARS), (artificial) neural networks, nonlinear regres-
sion models, nonparametric regression analysis, nonparametric uncertainty
analysis (NPUA), radial basic functions (RBFs), rational functions, splines,
stochastic polynomial interpolation (or polynomial chaos expansion), sup-
port vector regression (SVR), symbolic regression, wavelets, etc. For these
alternative metamodels, Kleijnen (2008, p. 8) gives twenty-two references.
Additional references are Poropudas and Virtanen (2008) for game-theoretic
models, Shepard (1968) for inverse distance weighting, Dette and Pepely-
shev (2010) for NPUA, Santos and Santos (2008) for nonlinear regres-
sion models, Regis (2014) for RBFs, Tan (2014) for stochastic polynomial
interpolation, and Clarke et al. (2005), Rasmussen and Williams (2006,
pp. 141–146), and Rieck et al. (2012) for SVR. Various metamodels are
compared in Razavi et al. (2012), Can and Heavey (2012), Forrester and
Keane (2009), Levy and Steinberg (2010), Storlie et al. (2009), Van Gelder
et al. (2014), Viana et al. (2014), Villa-Vialaneix et al. (2012), Wang et al.
(2014), and Zhu et al. (2011).
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In theory, modelers may combine several types of metamodels, weighing
each type with its estimated accuracy. In practice, however, such a combi-
nation is rare, because modelers are familiar with one or two types only.
Note: Combining metamodels into a so-called ensemble is further dis-

cussed in Acar and Rais-Rohani (2009), Gorissen (2010, Chapter 7), Müller
and Shoemaker (2014), and Viana et al. (2014, Section IV). Furthermore,
Buchholz et al. (2008) discusses the combination of several regression mod-
els, each with a different subset of inputs. Harari and Steinberg (2014)
discusses the combination of several Kriging models, each with its own
correlation function.
The term “response surface” is used for local metamodels in response sur-

face methodology (RSM); the same term is used for global metamodels in
deterministic simulation. Such a local model implies that only a small sub-
area of the total experimental area is considered. The limit of this “small”
subarea is an area with a size that tends to zero, so partial derivatives are
legitimately considered. These derivatives are the components of the gradi-
ent, which will be further discussed in Sect. 6.2 on RSM for the optimization
of real or simulated systems.
The experimental area is called the experimental frame in Zeigler et al.

(2000). We could also call it the “domain of admissible scenarios”, given
the goals of the simulation study.
We propose the following algorithm for DASE.

Algorithm 1.1

1. Select a tentative metamodel.

2. Select a design that enables the estimation of the parameters of the
selected metamodel, followed by the validation of this tentative esti-
mated metamodel.

3. If this metamodel is rejected because this model seems not to be valid,
then select a different metamodel and return to step 1; else proceed
to the next step.

4. Apply the validated metamodel for one or more goals mentioned
above; namely, V & V, SA, SimOpt, or RA.

Steps 1 and 2 imply that specification of the metamodel precedes selec-
tion of the design. Step 3 implies that the specified tentative metamodel of
Step 1 can be rejected (so the strategy agrees with Popper’s “falsification”
principle). Details of this algorithm will be given in the next chapters,
assuming metamodels that are either “low order” polynomials—namely,
first-order and second-order polynomials—or Kriging models.
DASE has both strategic and tactical aspects. Traditionally, researchers

in discrete-event simulation have focused on tactical issues, such as the run-
length of a steady-state simulation, the number of runs of a terminating
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simulation, and VRTs; see the classic article Conway (1963) and the more
recent literature mentioned above. In deterministic simulation these tac-
tical issues vanish, so statisticians have been attracted to strategic issues;
namely, which input combinations to simulate and how to analyze the re-
sulting output; see the textbooks Fang et al. (2006) and Santner et al.
(2003). Few statisticians have studied random simulation. Few simulation
analysts have focused on strategic issues. In this book, we focus on strate-
gic issues, discussing only those tactical issues that are closely related to
strategic issues; e.g., the consequences of applying CRN.
The statistical theory on design of experiments (DOE or DoE) was de-

veloped for real, nonsimulated experiments in agriculture in the 1920s, and
has been developed in engineering, psychology, etc. since the 1950s. In these
real experiments it is impractical to investigate “many” factors; ten factors
seems a maximum. Moreover, it is then hard to experiment with factors
that have more than “a few” values; five values per factor seems the limit.
In simulated experiments, however, these restrictions do not apply. Indeed,
simulation models may have thousands of factors—each with many values.
Consequently, a multitude of factor combinations may be simulated. More-
over, simulation is well-suited to “sequential” designs instead of “one shot”
designs, because simulation experiments are run on computers that typ-
ically produce output sequentially (apart from parallel computers, which
are used only in specific application areas such as military applications and
energy exploration), whereas agricultural experiments are run during a sin-
gle growing season. So a change of mindset of simulation experimenters is
necessary. A more detailed discussion of simulated versus real experiments
is Sanchez et al. (2012).
In summary, DASE is needed to improve the efficiency and effectiveness

of simulation; i.e., DASE is crucial in the overall process of simulation.

1.3 DASE Symbols and Terminology

Some DASE symbols and terms should be explicitly defined, because DASE
is a combination of mathematical statistics and linear algebra that is ap-
plied to experiments with deterministic and random simulation models;
these models are applied in different scientific disciplines.
Deciding on the DASE symbols is problematic; e.g., mathematicians use

capital letters to denote matrices, whereas statisticians use capitals to de-
note random variables. Consistency would require denoting the error term
in a regression model by (say) E and the matrix of explanatory variables
by x. Such a notation, however, would seem too orthodox. Most authors in
simulation and regression analysis do not always use capitals for random
variables; the readers should infer from the context whether a variable is
random or not. Bold letters denote matrices and vectors. Whenever readers
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might be misled, we explicitly discuss the randomness of a particular vari-
able. For example, Chap. 3 covers “generalized least squares (GLS)”, which
uses the covariance matrix of the simulation responses; in practice this
matrix is estimated, which creates statistical problems that need explicit
discussion.
Greek letters denote parameters ; parameters were introduced in Defi-

nition 1.2. For example, the service rate μ in the M/M/1 model is esti-
mated from the (say) n observations on the service time s so μ̂ = 1/s with
s =

∑n
i=1 si/n. An “estimator” (e.g., the sample average) is a random

variable; the estimator has a specific value called an “estimate”.
Unlike a parameter, a variable can be directly observed in the real world.

For example, the input variable service time s can be measured in a straight-
forward way; we could say that s is the realization of the random variable S.
A variable may be either an input or an output of a model; e.g., the M/M/1
model may have the input s and the output w, denoting waiting time.
Both parameters and input variables may be changed in a simulation

experiment; in that case they have at least two values or levels in the
experiment. Parameters and input variables together are called factors, in
DOE. For example, a simple design in DOE is a 2k factorial experiment;
i.e., there are k factors, each with two levels; all their combinations are
simulated. These combinations are often called scenarios in simulation and
modeling. Scenarios are usually called design points or runs by statisticians,
but we reserve the term “run” for a simulation run; a simulation run starts
in the initial condition (e.g., the empty state in an M/M/1 simulation) and
ends once a specific event occurs (e.g., n customers have been simulated;
see the discussion below Eq. (1.5)).
Factors and responses (outputs) may be either qualitative or quanti-

tative. In the M/M/1 example, quantitative factors are the arrival and
service rates; the traffic rate is the fundamental quantitative factor. In a
single-server queueing simulation, a qualitative factor may be the priority
rule—which may have (say) three levels, namely FIFO, LIFO, or “shortest-
processing time first” (SPT).
Simulation inputs and outputs may be measured on the following five

types of scales :

1. Nominal : This is the only scale that applies to a qualitative (or cat-
egorical) factor. One example was the priority rule with its three
nominal values (FIFO, LIFO, SPT). Another example is a simulation
with two types of customers, namely A (emergencies) and B (regular).
Interpolation or extrapolation makes no sense (so regression analysis
must be applied with care; see Chap. 2).

2. Ordinal : This scale ranks the values of the input or output. For ex-
ample, this scale sorts (say) n observed output values from lowest to
highest, and assigns them ranks from 1 to n. Order statistics uses
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such a scale; see the textbooks on nonparametric (distribution-free)
statistics, Conover (1999) and the more recent Sprent and Smeeton
(2007); order statistics will be used in later chapters. Another exam-
ple is a survey that assigns ranks from 1 to 5 in order to measure how
strongly the respondent agrees with a statement; namely, completely
agree, agree, neutral, disagree, and strongly disagree.

3. Interval : This scale assigns numbers that are unique except for a
linear transformation; i.e., this scale has an arbitrary zero point. An
example is temperature measured in Celsius or Fahrenheit degrees.
Analysts should prefer mathematical and statistical methods that are
not sensitive to the scale that is used to quantify inputs or outputs.
For example, Sect. 6.2.3 covers a scale-independent alternative for the
steepest ascent method; the latter method is standard in RSM.

4. Ratio: This scale has a unique zero, so “2x” means “twice as much
as x”. Examples are length measured in centimeters or inches, and
cash flow measured in euros or US dollars. Other examples are the
arrival and the service rates, which depend on the time unit (e.g.,
seconds). Like the interval scale, the ratio scale should not change
“the” conclusions of mathematical and statistical analyses.

5. Absolute: No transformation applies. An example is the number of
customers arriving during the simulation run of an M/M/1 model;
this is a discrete (not a continuous) variable.

A more detailed discussion of types of variables and measurement scales
is given in Kleijnen (1987, pp. 135–142).

Exercise 1.5 Mathematical statistics often uses Student’s t-statistic. This
statistic has several forms, but the simplest and best-known form is

tm−1 =
x− μx

sx

with

x =

∑m
r=1 xr

m

where xr ∼ NIID(μx, σ
2
x) with NIID standing for “normally, independently,

and identically distributed”, μx = E(x), and σ2
x = Var(x); furthermore

sx =
sx√
m
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with

sx =

√∑m
r=1(xr − x)2

m− 1
.

Obviously, the m outputs of a simulation model with constant parame-
ters (e.g., an M/M/1 simulation model with a constant traffic rate) us-
ing nonoverlapping PRN streams are IID. These outputs are normally
(Gaussian) distributed if the output is (e.g.) the average waiting time (even
though the individual waiting times are autocorrelated; see the “functional
central limit theorem” in Sect. 3.3). The null-hypothesis may be that μx is
given by the steady-state formula for the M/M/1 queueing system given
in Eq. (1.9). This hypothesis is rejected if the 1 − α confidence interval
x± tm−1;1−α/2 does not cover the hypothesized value. Run your experiment
(say) 100 times; i.e., generate 100 macroreplications with nonoverlapping
PRNs and α = 0.10; check whether you indeed reject the null-hypothesis in
approximately 10 (= 100× 0.10) macroreplications.

Exercise 1.6 Because “simulation” involves experimenting with a com-
puter model, you should program the M/M/1 defined in Example 1.2 using
any software you like (e.g., Arena or C++). Select your “favorite” per-
formance measure; e.g., average waiting time. Next you should experiment
with your simulation model; some suggestions follow.

1. Change the run-length (symbol n in Example 1.2) from (say) n =
10 (terminating simulation) to n large enough to reach the steady
state; try these two n values for a “low” and a “high” traffic rate.
Run “several” macroreplications; e.g., m = 10 replications. Ensure
that these replications are identically and independently distributed
(IID); i.e., use nonoverlapping PRN streams. Use either a single PRN
stream for service and arrival times or use two separate streams for
the arrival and service times, respectively. Compare your simulation
estimate with the analytical steady-state mean; use graphical plots and
mathematical statistics such as discussed in Exercise 1.5.

2. To estimate the I/O function, change the traffic load (ρ = λ/μ).
Apply either the same or different PRN seeds when comparing traffic
loads: do CRN give better results?

3. Replace the exponential distribution for service times by a different
distribution; e.g., a uniform distribution with the same mean, keeping
the traffic load constant when changing the distribution. Select some
fixed value for the traffic rate, the number of customers per run, and
the number of macroreplications, respectively; e.g., select one of the
values used above. Does the change in distributions change the selected
performance measure significantly?
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Solutions of Exercises

Solution 1.1

t payback interest NPV
0 100 0 100

1 −50 −10 −(50+10)
1+0.15 = −52.174

2 −50 −5 −(50+5)
(1+0.15)2 = −41.588

100− 52.174− 41.588 = 6.238

Solution 1.2 (a) For the student the discount factor is a variable, quoted
by the bank; (b) for the company it is a parameter to be estimated from its
investments during the last five years.

Solution 1.3 Separate PRN streams improve the performance of CRN and
ARN; see any textbook on discrete-event simulation. This improvement also
holds for LIFO or uniformly distributed service times.

Solution 1.4 Both entertainment games and serious games are simulation
models; gaming theory uses analytical solutions so it is no simulation.

Solution 1.5 Program and run your Monte Carlo experiment.

Solution 1.6 Many answers are possible; compare your results with the
results that you will obtain, once you will have read some of the next
chapters.
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Forrester A, Sóbester A, Keane A (2008) Engineering design via surrogate
modelling: a practical guide. Wiley, Chichester

Forrester JW (1961) Industrial dynamics. MIT, Cambridge

Giambiasi N, Carmona JC (2006) Generalized discrete event abstraction
of continuous systems: GDEVS formalism. Simul Model Pract Theory
14(1):47–70

Gorissen D (2010) Grid-enabled adaptive surrogate modeling for computer
aided engineering. Ph.D. dissertation, Ghent University, Ghent

Grubler, A., Y. Ermoliev, and A. Kryazhimskiy (2015), Coping with
uncertainties-examples of modeling approaches at IIASA. Technological
Forecasting and Social Change, in press

Harari O, Steinberg DM (2014) Convex combination of Gaussian processes
for Bayesian analysis of deterministic computer experiments. Technomet-
rics 56(4):443–454

Helton JC, Davis FJ (2003) Latin hypercube sampling and the propaga-
tion of uncertainty in analyses of complex systems. Reliab Eng Syst Saf
81:23–69



18 1. Introduction

Helton JC, Hansen CW, Swift PN (2014) Performance assessment for the
proposed high-level radioactive waste repository at Yucca mountain,
Nevada. Reliab Eng Syst Saf 122:1–6

Henderson SG, Nelson BL (eds) (2006) Handbooks in operations research
and management science, vol 13. North-Holland, Amsterdam

Ho Y, Cao X (1991) Perturbation analysis of discrete event dynamic
systems. Kluwer, Dordrecht
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2
Classic Regression Metamodels
and Their Designs

This chapter discusses the basics of low-order polynomial regression
metamodels and their designs. This chapter is organized as follows.
Section 2.1 discusses black-box versus white-box approaches in the design
of simulation experiments (DASE). Section 2.2 covers the basics of linear
regression analysis. Section 2.3 focuses on first-order polynomial regres-
sion. Section 2.4 presents designs for estimating such first-order polynomi-
als; namely, so-called resolution-III (R-III) designs. Section 2.5 augments
the first-order polynomial with interactions (cross-products). Section 2.6
discusses resolution-IV (R-IV) designs, which give unbiased estimators of
the first-order effects—even if there are two-factor interactions. Section 2.7
presents resolution-V (R-V) designs, which also enable the estimation of
all the individual two-factor interactions. Section 2.8 extends the first-
order polynomials to second-order polynomials. Section 2.9 presents de-
signs for second-degree polynomials, focussing on central composite designs
(CCDs). Section 2.10 briefly examines “optimal” designs and other designs.
Section 2.11 summarizes the major conclusions of this chapter. The chapter
ends with appendixes, solutions for the exercises, and references.
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2.1 Introduction

In Chap. 1 we introduced the statistical theory on DASE. This theory views
the simulation model as a black box—not as a white box.

Definition 2.1 A black-box view of a simulation model observes the inputs
and outputs of this simulation model, but not the internal variables and
specific functions implied by the simulation’s computer modules.

To explain the difference between the black-box view and the white-box
view, let us return to the M/M/1 example (with its Markovian arrival and
service times and a single queue) in Chap. 1. Now we slightly reformulate
this example; e.g., we replace the symbol n by c because n is a reserved
symbol for another quantity in the current chapter.

Example 2.1 Let the symbol ai+1 denote the interarrival time between
customers i and i+1, si the service time of customer i, and wi the waiting
time of customer i. The output of interest is the average

w =

∑c
i=1 wi

c
(2.1)

where c denotes the number of customers that stops the simulation run. The
simulation starts in the empty state; i.e., the initial condition is w1 = 0.
The dynamics of a single-server system are specified by Lindley’s recurrence
formula

wi+1 = max (0, wi + si − ai+1). (2.2)

The input variables s and a are sampled such that s has the service rate
μ and a has the arrival rate λ, so the mean service and interarrival times
are 1/μ and 1/λ. To sample these variables, the simulation may use the
inverse of the exponential distribution function and a single PRN stream
with 2c PRNs r1, r2, . . . , r2c−1, r2c:

si =
− ln r2i−1

μ
and ai+1 =

− ln r2i
λ

(2.3)

Note that—instead of the average defined in Eq. (2.1)—the output of in-
terest might have been the estimated 90% quantile (also called percentile)
of the waiting times; the estimator may then be the quantile estimator
w(�.90c�)where w(i) (i = 1, . . . , c) denotes the order statistics—so w(1) ≤
w(2) ≤ . . . ≤ w(c−1) ≤ w(c)—and the so-called ceiling function �0.90c�
means that 0.90c is rounded upwards to the next integer. Another output
of interest may be the estimated variance of the waiting time in the steady
state, denoted by s2(wi|i ↑ ∞) or briefly s2(w)—not to be confused with
s2(w), which quantifies the accuracy of the estimator defined in Eq. (2.1).

Note: Example 2.1 illustrates a white-box view. Such a view is used by
perturbation analysis (PA) and the score function (SF) or likelihood ratio
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(LR) method. These methods estimate the gradient for local—not global—
sensitivity analysis and for optimization; see the classic textbooks Ho and
Cao (1991), Rubinstein and Shapiro (1993), and Spall (2003). Gradient
estimation will be further discussed later on, in this chapter and in Chap. 6
on simulation optimization.
DASE does not view the simulation model as a white box, but as a

black box. Such a black-box view is also used by design of experiments
(DOE) for real-world experiments—see the classic textbook Montgomery
(2009) and also Mee (2009)—and by design and analysis of computer exper-
iments (DACE) for deterministic simulation experiments—see the classic
textbooks Fang et al. (2006) and Santner et al. (2003).
Now we consider an example of such a black-box view of any single-

server simulation model—not only the M/M/1 model. This model has as
output w, which may denote the average waiting time (so a more traditional
symbol would be w), the estimated 90% quantile, the estimated variance,
etc. Suppose this simulation model has as inputs the arrival rate λ, the
service rate μ, and the queueing priority rule, denoted by (say) QPR.
Obviously this QPR is a qualitative input (various scales were discussed
in Sect. 1.3). Suppose that QPR has three nominal values; namely, first-
in-first-out (FIFO), last-in-first-out (LIFO), and shortest-processing-time-
first (SPT). Note that the priority rule is implicitly fixed to be FIFO when
using the notation M/M/1. In this example we furthermore assume that
the single-server model has a fixed waiting room capacity, etc. A special
input are the PRNs; e.g., the PRNs are generated through the popular
linear congruential method

ri+1 =
(ani + b)modm

m
(i = 0, 1, . . .) (2.4)

with the nonnegative integers a, b, and m; the symbol mod denotes the
mathematical modulo operation; the seed of the PRNs is the nonnegative
integer n0 so the ni are also nonnegative; we are running out of symbols,
so ni and m have nothing to do with n and m elsewhere in this chapter.
A proper selection of the parameters a, b, and m should make the PRN
stream r1, r2, . . . appear to behave like independent samples from the
uniform distribution on the interval [0, 1).
The default of PRN generators makes the computer select the PRN

seed r0; e.g., the computer uses its internal clock to select the value of
the (micro)second measured at the start of the simulation experiment. In-
stead of using this default, we ourselves may select a seed. If multiple runs
are made, then we should guarantee that the seeds of these runs do not
create PRN streams that may overlap; such an overlap would imply that
the replications are not IID. We might select the same seed for n runs with
the simulation model where n denotes the number of input combinations;
such a selection implies common random numbers (CRN).
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Because Example 2.1 uses a single PRN stream in Eq. (2.3), the black-box
view of this M/M/1 simulation model is

w = fM/M/1(λ, μ,QPR, r0) (2.5)

where fM/M/1(.) denotes the mathematical function defined by the com-
puter program that implements the equations in Example 2.1; namely,
Eq. (2.1) through Eq. (2.3). Obviously, fM/M/1(.) is indeed a mathemati-
cal function; i.e., fM/M/1(.) is a relation between a set of inputs and a set
of outputs such that each input combination gives exactly one output value.
The black box in Eq. (2.5) changes if Example 2.1 uses two separate PRN

streams; namely, one for the interarrival times a and one for the service
times s. Then “the” seed r0 in Eq. (2.5) must be replaced by the vector of
seeds (say) r0 = (r0;a, r0;s) where r0;a and r0;s denote the seed of the (inter)
arrival times a and the service times s, respectively. Because these a and
s are statistically independent in the M/M/1 model, these seeds must be
selected such that the two PRN streams do not overlap. Modern discrete-
event simulation software makes the selection of seeds straightforward, even
if the linear congruential generator specified in Eq. (2.4) is replaced by a
more complicated generator. Details on PRNs can be found in Kelton et al.
(2007) and Law (2015).
Examples that are more complicated than the single server in

Example 2.1, are networks of servers; e.g., customers can choose among
a number of parallel servers (as in a supermarket) or customers must pro-
ceed from one server to the next server (as in a hospital). Each server may
have its own service rate. The priority rule may be more complicated (e.g.,
supermarket customers with no more than ten items may choose a special
server). The computer implementation of such server networks may assign
separate seeds to the arrival process and to each of the (say) e servers, so
the seed r0 is replaced by the seed vector r0 = (r0;1, . . . , r0;e+1)

′.
A more general black-box equation than Eq. (2.5) is

w = fsim(d1, . . . , dk, r0) = fsim(d, r0) (2.6)

wherew denotes the vector of simulation outputs; fsim(.) denotes the math-
ematical function defined by the simulation computer code implementing
the given simulation model; dj (j = 1, . . . , k) is the jth input of the com-
puter code; in deterministic simulation the seed vector r0 vanishes; the k
inputs are collected in the vector d = (d1, . . . , dk)

′.
The design matrix for the simulation experiment is D = (di;j) with

i = 1, . . . , n where n denotes the number of input combinations in that
experiment. Usually, this D is standardized such that −1 ≤ dij ≤ 1; some-
times D is standardized such that 0 ≤ dij ≤ 1. For example, a two-level
design usually has elements that are either −1 or +1; a space-filing design
usually has elements such that 0 ≤ dij ≤ 1.
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The simulation output w in Eq. (2.6) is a multivariate random variable
that is meant to estimate (say) Θ, which denotes the vector with the rel-
evant characteristics of the output distribution; e.g., the simulation’s av-
erage output w estimates μw, which denotes the mean of the distribution
of the simulation output w, and the simulation’s order statistic w(�0.90c�)
estimates the 90% quantile of that same distribution. In deterministic sim-
ulation, r0 vanishes so w becomes a vector with n outputs that is meant
to estimate Θ, which now denotes the vector of relevant output charac-
teristics such as the mean and the maximum of the simulation output in
the experimental domain. In practice, many simulation models have indeed
multiple outputs; examples are given in Kleijnen and Mehdad (2014) and
Shi et al. (2014).
Let us consider a possible metamodel for the black-box model in Eq. (2.5)

representing a single-server simulation model; for simplicity, we assume a
fixed queueing discipline (say, FIFO). This metamodel may be a first-order
polynomial in the arrival rate λ and the service rate μ, augmented with the
additive error term e:

y = β0 + β1λ+ β2μ+ e (2.7)

where y denotes the output of the metamodel for the average simula-
tion output w; β0, β1, and β2 are the parameters of this metamodel; e
is the residual or noise. This e includes both lack-of-fit of the metamodel—
because this metamodel is a Taylor series approximation cutoff after the
first-order effects—and intrinsic noise—caused by the PRNs. (In determin-
istic simulation, e does not include intrinsic noise.)
There are alternatives for Eq. (2.7); e.g., a simpler metamodel is

y = β0 + β1x+ e (2.8)

where x denotes the traffic rate—in queueing theory usually denoted by
ρ—so

x = ρ =
λ

μ
. (2.9)

We observe that statisticians often use ρ to denote a correlation coefficient;
in this book, the context should clarify what the symbol ρ means. Obvi-
ously, Eq. (2.9) combines the two original inputs λ and μ in Eq. (2.7) into
a single input ρ, inspired by queueing theory (and “common sense”?).
Equation (2.9) illustrates the use of transformations. Another useful

transformation replaces y, λ, and μ in Eq. (2.7) by log(y), log(λ), and
log(μ); this logarithmic transformation makes the first-order polynomial
approximate relative changes; i.e., the regression parameters collected in
the vector β = (β0, β1, β2)

′ become “elasticity coefficients”, which measure
percentage changes.

Definition 2.2 The elasticity coefficient of (say) y with respect to x is the
relative change in y caused by a relative change in x: (∂y/∂x)(x/y).
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Exercise 2.1 Prove that the elasticity coefficient of y with respect to λ in
Eq. (2.7) is β1 if y is replaced by log(y) and λ by log(λ).

Elasticity coefficients are popular in econometrics; e.g. Kleijnen and Van
Schaik (2011) applies the logarithmic transformation to some—but not
all—inputs, using data obtained through passive observation of a real sys-
tem (a mussel auction in the Netherlands) instead of active simulation
experimentation. The use of transformations illustrates that simulation an-
alysts should be guided by knowledge of the real system and—if available—
corresponding analytical models.

2.2 Linear Regression

First we discuss basic linear regression analysis. Next we discuss slightly
advanced linear regression analysis, which uses several F -statistics. These
F -statistics are known to be sensitive to the classic regression assumptions;
namely, the outputs are independently and normally distributed with a
common variance. In practice this advanced analysis may be replaced by
the analysis presented in the next chapter. Hence, some readers may wish
to skip this advanced analysis, and proceed to Sect. 2.3.

2.2.1 Basic Linear Regression Analysis

We apply the following general matrix representation for linear regression
models with multiple inputs and a single output:

y = Xβ + e (2.10)

where y = (y1, . . . , yn)
′ denotes the n-dimensional vector with the

dependent variable and n denotes the number of simulated input com-
binations (runs, observations); X = (xi;j) denotes the n × q matrix of
independent (explanatory) regression variables with xi;j denoting the value
of independent variable j in combination i (i = 1, . . . , n; j = 1, . . . , q);
β = (β1, . . . , βq)

′ denotes the q-dimensional vector with regression parame-
ters; and e = (e1, . . . , en)

′ denotes the n-dimensional vector with the resid-
uals in the n combinations. For example, Eq. (2.7) has q = 3 parameters
and Eq. (2.8) has q = 2 parameters; both equations include the dummy
independent variable xi;0 = 1, which remains constant for all i values and
corresponds with β0, the effect of the dummy. If the general regression
model specified in Eq. (2.10) includes a dummy, then β1 in the vector β
denotes the intercept, whereas β0 denoted the intercept in the regression
model specified in Eqs. (2.7) and (2.8). Initially we assume that no in-
put combination is replicated; obviously, this assumption always holds in
deterministic simulation.
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When estimating the parameters β in the linear regression model spec-
ified in Eq. (2.10), the most popular criterion is so-called least squares
(LS)—also called ordinary LS or OLS (generalized LS will be discussed
in the next chapter). By definition, this criterion computes the estimator

β̂ = (β̂1, . . . , β̂q)
′ such that β̂ minimizes the sum of squared residuals, SSR:

min
̂β

SSR =
n∑

i=1

(êi)
2 =

n∑

i=1

(ŷi − wi)
2 = (ŷ −w)′(ŷ −w) (2.11)

where êi = ŷi − wi is the estimated residual for input combination i, ŷi is
the regression predictor defined by

ŷi =

q∑

j=1

xi;j β̂j = x′
iβ̂, (2.12)

and wi denotes the simulation output of run i (e.g., the average waiting time
of that run in discrete-event simulation, or the maximum output during the
run in deterministic simulation). The solution of the minimization problem
defined in Eq. (2.11) can be derived to be

β̂ = (X′X)−1X′w. (2.13)

Obviously, this β̂ exists only if the matrix X is not collinear ; i.e., β̂ exists
only if the inverse (X′X)

−1
exists or this inverse remains stable in its

numerical computation. For example, X is collinear in Eq. (2.7) if the two
inputs λ and μ change simultaneously by the same amount; X is collinear
in Eq. (2.8) if the input ρ is kept constant. The selection of a “good” X is
the focus of the next sections, which discuss various designs.
Actually, the computation of β̂ does not need to use Eq. (2.13); i.e., better

numerical accuracy may result when solving the set of normal equations

X′w = X′Xβ̂, (2.14)

which follows from Eq. (2.10); also see Press et al. (2007). However, the
next sections provide such good design matrixes that the computation of
the LS estimates becomes trivial and numerical problems are negligible.
We emphasize that the LS criterion is a mathematical—not a statistical—

criterion, which is also known as the L2 norm. Other popular mathemati-
cal criteria are the L1 and the L∞ norms; see Cooper (2009), Narula and
Wellington (2007), and Viana et al. (2014, Figure 4).
However, adding statistical assumptions about the output implies that

the LS estimator has interesting statistical properties. We therefore exam-
ine the following definition.

Definition 2.3 White noise (say) u is normally, independently, and iden-
tically distributed (NIID) with zero mean and some variance σ2

u: u ∼
NIID(0, σ2

u).
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This definition leads us to the following comments:

• The concept of “white noise” is used in many disciplines. Not all
these disciplines use the same definition of white noise; e.g., some
definitions do not require normality.

• The linear regression model defined in Eq. (2.10) implies σ2
y = σ2

e .
The noise e is assumed to be white noise, provided the metamodel
is a valid approximation. If the metamodel is indeed valid, then the
dependent variable y in this metamodel may be replaced by the simu-
lation output w. This w may indeed be normally distributed if it is an
average computed from a “long” time series of individual simulation
outputs. These individual outputs are autocorrelated (serially corre-
lated), so the classic central limit theorem (CLT) does not apply. Yet
it can be proven that—under specific conditions—this average tends
to be normally distributed. A counterexample is a simulation with the
estimated 90% quantile w(�0.90c�) as its output; nonnormality may be
assumed for such an estimated quantile, unless the simulation run c is
very long. We also refer to our discussion of the normality assumption
in Sect. 3.3.1.

• Obviously, deterministic simulation violates the white noise assump-
tion, so the statistical properties of the LS estimator β̂ do not hold;
also see Chap. 3 on classic assumptions versus simulation practice.

• The simulation outputs wi and wi′ with i 	= i′ are indeed indepen-
dent if they use PRN streams that do not overlap. CRN violate this
assumption, as we shall detail in Sect. 3.5.

• If a random variable is “identically” distributed, then it has a constant
variance; see σ2

u in Definition 2.3. However, we may expect that the
simulation outputs wi do not have the same variance when the input
combinations change; i.e., we expect that the variances σ2

w are het-
erogeneous (heteroscedastic, heteroskedastic) instead of homogeneous
(homoscedastic, homoskedastic). For example, it is well-known that
the variance of the steady-state waiting time in the M/M/1 model
increases as the traffic rate increases; actually, this variance increases
much more than the steady-state mean (this mean was displayed in
Eq. (1.9)). This issue will be discussed Sect. 3.4.

In this chapter we assume that the simulation outputs wi (i = 1, . . . , n)
are indeed normally and independently distributed with the same variance
(say) σ2

w ; obviously, these wi may have different means in different in-
put combinations i. Let us initially—until the discussion after Eq. (2.23)—
assume that the linear regression model defined in Eq. (2.10) is a “valid”
metamodel, which is defined as follows.
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Definition 2.4 A metamodel is valid if and only if its residual has zero
mean: E(e) = 0.

If E(e) 	= 0, then the metamodel is biased ; i.e., the metamodel may either
overestimate or underestimate the expected simulation output E(w). The
following definition is related to Definition 2.4.

Definition 2.5 A metamodel fits “perfectly” if and only if all its estimated
residuals are zero: êi = 0 (i = 1, . . . , n).

A perfectly fitting metamodel is “too good to be true”; i.e., n (number of
simulation runs) is too small. Such a perfect fit implies that the well-known
coefficient of determination R2 has the ideal value one; see Sect. 3.6.1.
If the regression residual e is white noise, then LS gives the best linear

unbiased estimator (BLUE). The condition is not “if and only if”; see the
Gauss-Markov theorem discussed in Tian and Wiens (2006). Obviously, the
LS estimator is indeed a linear transformation of the simulation responsew:

β̂ = Lw (2.15)

where L = (X′X)−1X′ because of Eq. (2.13); L is not random, whereas w
is random in random simulation. Obviously, this linear estimator has the
expected value

E(β̂) = L[E(w)] (2.16)

and the covariance matrix

Σβ̂ = LΣwL
′ (2.17)

where Σw denotes the covariance matrix of w (if the “white noise” as-
sumption holds, then Σw = σ2

wI).

Exercise 2.2 Prove that the LS estimator β̂ defined in Eq. (2.15) is an
unbiased estimator of β if E(e) = 0.

Equation (2.17) together with the white-noise assumption implies that
the LS estimator has the following covariance matrix:

Σβ̂ = (X′X)−1σ2
w. (2.18)

Like any covariance matrix, thisΣβ̂ must be symmetric and positive semidef-

inite. Equation (2.18) does not assume that the noise is normally dis-
tributed.

Exercise 2.3 Prove that the LS estimator β̂ defined in Eq. (2.15) has the
covariance matrix defined in Eq. (2.18) in case of white noise. (Hint:
(X′X)−1 is symmetric.)
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Exercise 2.4 Use Eq. (2.17) to prove that the variance of the average wait-
ing time of a simulation run with c customers—defined in Eq. (2.1)—would
be σ2/c if and only if the individual waiting times were IID with variance
σ2 (actually, these waiting times have different variances and are autocor-
related).

Given the white noise assumption, it can be proven that—among all
linear unbiased estimators—the LS estimator is best, i.e., this estimator has
the minimum variance. Obviously, the variances of the individual regression
estimators β̂j are given by the main diagonal elements of Eq. (2.18); their
covariances are given by the off-diagonal elements of the symmetric matrix.
The matrix (X′X) is also known as the information matrix.
Instead of deriving an unbiased estimator, some statisticians minimize

the mean squared error (MSE); i.e., they accept possible bias. In regression
analysis, the MSE criterion leads to ridge regression. We do not know any
application of ridge regression in simulation, so we do not further discuss
this type of regression.
The linear LS estimator β̂ has another interesting property if the simula-

tion outputsw are normally distributed; i.e., β̂ is then normally distributed
too. Combining this property with the mean following from Eq. (2.16) and
the covariance given in Eq. (2.18) gives

β̂ ∼ N [β, (X′X)−1σ2
w].

Consequently, the individual estimated regression parameters β̂j may be
tested through the Student t-statistic with n− q degrees of freedom:

tn−q =
β̂j − βj

s(β̂j)
with j = 1, . . . , q (2.19)

where s(β̂j) is the square root of the jth element on the main diagonal of

the covariance matrix for β̂ given in Eq. (2.18) with σ2
w estimated through

the mean squared residuals (MSR):

MSR =
SSR

n− q
=

(ŷ −w)′(ŷ −w)

n− q
(2.20)

where SSR was given in Eq. (2.11). This MSR assumes that degrees of
freedom are left over, after fitting the regression model: n− q > 0.
The t-statistic defined in Eq. (2.19) may be used to test whether an

individual regression parameter βj has a specific value such as the value
zero:

H0 : βj = 0. (2.21)

This null-hypothesis H0 is rejected if the computed t-value is significant :
|tn−q| > tn−q;1−α/2 where tn−q;1−α/2 denotes the 1 − α/2 quantile of the



2.2 Linear Regression 33

(symmetric) distribution of tn−q; this tn−q;1−α/2 is also called the upper
α/2 critical point of the t-distribution (obviously, tn−q;1−α/2 = −tn−q;α/2).
Only if we have strong evidence against H0, we reject this hypothesis and
accept the alternative hypothesis H1; e.g., H0 in Eq. (2.21) implies the
alternative hypothesis H1: βj 	= 0.
To avoid the selection of a specific value for α in tn−q;1−α/2, we may

present the so-called p-value which is the probability of obtaining a test
statistic at least as extreme as the one that was actually observed, assum-
ing that the null hypothesis is true. (We might say that the p-value is the
α-value that changes the observed value of the statistic from nonsignifi-
cant to significant, but a search of the Internet suggests that the correct
interpretation of the p-value is controversial.)
We point out that the nonsignificant inputs are usually removed from

the fitted metamodel. However, we should keep in mind that the BLUE
is still β̂j , so we must have good (nonstatistical) reasons to replace β̂j by
zero. One such reason may be that in sensitivity analysis we may apply
the principle of parsimony, which we may colloquially call “keep it simple,
stupid (KISS)”. In optimization, however, we may keep the nonsignifi-
cant first-order effects because they may become important when we fit
a first-order polynomial in another experimental area (when searching for
the optimum applying RSM). For example, Dengiz et al. (2006) keeps two
nonsignificant first-order effects in the regression metamodel because these
two effects correspond with two decision variables in a simulated decision
support system (DSS) that is to be optimized. Furthermore, we emphasize
that an input may turn out to be significant, but this input may still be
unimportant. For example, Breukers (2006) uses m = 500 replications so all
inputs turn out to be significant; replications will be further discussed be-
low (see the discussion around Eq. (2.24)). Significance versus importance
is also discussed outside simulation; e.g., Lin et al. (2013) points out that
a large sample (with, say, 10,000 observations) may lead to a very signif-
icant statistic (with a corresponding small p-value) and yet the practical
importance may be small. We shall discuss the selection of the number of
replications, in the next chapters.

2.2.2 Advanced Linear Regression Analysis

Instead of formulating a hypothesis involving a single parameter, we may
formulate a composite or joint hypothesis involving several parameters;
e.g., instead of H0 in Eq. (2.21) we may define

H0 : βj′ = . . . = βq = 0 (2.22)

where—for simplicity of presentation—the q parameters are arranged such
that the last q − j′ + 1 parameters are hypothesized to be zero. To test
this hypothesis, we may use an F -statistic; see, e.g., the general regression
textbook Searle (1971). This test proceeds as follows.
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1. Compute the SSR without H0; this is called the SSR of the unre-
stricted or full regression model: SSRfull.

2. Compute the SSR under H0, called the SSR of the restricted or
reduced regression model: SSRreduced. Obviously SSRreduced ≥ SSRfull

because imposing the constraint specified by H0 in Eq. (2.22)
increases the minimum value of SSR.

3. Compute

Fq−j′+1;n−q =
SSRreduced − SSRfull

SSRfull
. (2.23)

TheH0 in Eq. (2.22) is rejected if Fq−j′+1;n−q exceeds the 1−α quantile of
the Fq−j′+1;n−q distribution; that quantile may be denoted by
Fq−j′+1;n−q;1−α. Note that this H0 uses a one-sided F test, whereas the
H0 in Eq.(2.21) uses a two-sided t test (obviously, such a two-sided t test
should be used to test H0 : βj = 0).
Actually, before testing the individual inputs in H0 defined in either

Eqs. (2.19) or (2.22)—using either Eqs. (2.19) or (2.23)—we should test
whether the metamodel as-a-whole is valid. Because classic regression anal-
ysis and DOE assume white noise, we use the so-called lack-of-fit F -statistic.
In addition to white noise, this F -statistic assumes that at least one input
combination is replicated. (In the next chapter we shall drop the white
noise assumption and present alternative validation statistics based on R2

and cross-validation.) This F -statistic compares ŷ (metamodel predictor)
with w (average output of the underlying simulation model). Obviously,
the probability of a significant difference between ŷ and w increases, as mi

(number of replications) increases. The increase of this probability is desir-
able if the metamodel is indeed inadequate; i.e., the power of the test should
increase as mi increases. Whether the lack-of-fit is important is determined
by the goals of the metamodel and the simulation model. An extensive dis-
cussion of the role of these goals in the validation of metamodels is Kleijnen
and Sargent (2000).
Denoting the number of replications of input combination i by mi, we

give the following definition.

Definition 2.6 A replication of the input combination di of the simulation
model implies that this di is simulated more than once, so mi > 1.

Below Eq. (2.10) we mentioned that we initially assume that no input
combination is replicated. This assumption is realistic in passive obser-
vation of real systems, as in econometrics. In such passive observation,
the independent variables are not controlled so they are actually ran-
dom and the probability of multiple realizations of the same combina-
tion xi = (xi1, . . . , xiq)

′ (i = 1, . . . , n) is negligible. However, in active
experimentation with either real systems or random simulation models of
real systems, we do control the input combinations d defined in Eq. (2.6);
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i.e., more than once we may observe at least one combination of the inde-
pendent variables xi in Eq. (2.10). In deterministic simulation, however, it
makes no sense to repeat the simulation with the same input combination,
because it gives the same simulation output. In the rest of this section we
focus on random simulation with replications.
The classic assumption is that replications are IID. In discrete-event sim-

ulation, this assumption is guaranteed if the replications use PRN streams
that do not overlap. If the simulation output is the response of a steady-
state simulation, then this IID assumption is guaranteed if the whole “long”
run is replicated. The assumption is also satisfied if subruns are used and
these subrun outputs have negligible autocorrelations. If the subruns are
actually renewal (regenerative) cycles, then the IID assumption is satisfied
by definition. Obtaining IID outputs in steady-state simulation is exten-
sively discussed in the discrete-event simulation literature; e.g. Law (2015).
Replication implies that the matrix of independent variables X has at

least one combination x repeated; e.g., if the first combination of λ and μ
in Eq. (2.7) is replicated three times (m1 = 3) and these values are 0.5 and
1.0, respectively, then the first three rows of X are

⎡

⎣
1 0.5 1.0
1 0.5 1.0
1 0.5 1.0

⎤

⎦ .

In general, replication increases the number of rows of X from n to (say)
N defined as follows:

N =
n∑

i=1

mi (2.24)

with mi identical rows x′
i if combination i is simulated mi times. Con-

sequently, MSR defined in Eq. (2.20) now has more degrees of freedom;
namely, N − q instead of n− q, as we shall see. Obviously, Eq. (2.24) also
holds in the special case mi = 1 for some i or all i.
Besides Definition 2.6 we use the following definition, throughout this

book.

Definition 2.7 A macroreplication of an experiment with a simulation
model means that the whole simulation experiment defined by the N × k
design matrix D is repeated such that only the seed vector r0 is changed.

It is possible to keep the number of rows in X limited to the n different
combinations. The output corresponding with xi then becomes the output
averaged over the mi replications. So we should distinguish the following
two situations:

• The number of replications is the same in all n simulated input com-
binations: mi = m. The LS estimate may then be computed from
the n simulation output averages, wi (i = 1, . . . n). The MSR can
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still be computed analogously to Eq. (2.20), replacing w by w =
(w1, . . . wn)

′:

MSRw =
SSRw

n− q
=

(ŷ −w)′(ŷ −w)

n− q
, (2.25)

which has expected value Var(w) = Var(w)/m instead of Var(w).

• The number of replications is not constant: mi 	= m. The MSR can
then be computed from the averages wi (i = 1, . . . n) weighted by mi:

MSRw(mi) =

∑n
i=1 mi(ŷi − wi)

2

(
∑n

i=1 mi)− q
. (2.26)

If xi is replicated mi > 1 times, then an alternative for the MSR estimator
is the classic variance estimator:

s2(wi) =

∑mi

r=1(wi;r − wi)
2

mi − 1
(i = 1,. . . , n) (2.27)

with

wi =

∑mi

r=1 wi;r

mi
. (2.28)

We provide the following comments on Eq. (2.27):

• The average in Eq. (2.28) is computed from the mi replications; this
average should not be confused with the average computed from the
autocorrelated individual waiting times in a single simulation run; see
Eq. (2.1).

• The average in Eq. (2.28) and the sample variance in Eq. (2.27) are
statistically independent if the simulation outputs wi;r are NIID, as
any basic statistics textbook mentions.

• The variance estimator in Eq. (2.27) is a chi-square variable with
mi − 1 degrees of freedom; see again any statistics textbook.

• The denominator mi − 1 in Eq. (2.27) makes the estimator unbiased;
the maximum likelihood estimator (MLE) can be proven to use the

denominator mi. (The LS estimator β̂ is also the MLE, given the
white noise assumption.)

Because of the common variance assumption implied by the white noise
assumption (see Definition 2.3 above), the n variance estimators in
Eq. (2.27) may be pooled using their degrees of freedom as weights:

s2(w) =

∑n
i=1(mi − 1)s2i∑n
i=1(mi − 1)

. (2.29)
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Altogether—if there are replications—we have the following two variance
estimators:

• MSRw defined in Eq. (2.25) for an equal number of replications per in-
put combination (mi = m > 1), and MSRw(mi) defined in Eq. (2.26)
for mi > 1. Obviously, these two estimators use the fitted regression
model; if this regression model is not valid, then they overestimate
the true variance. Therefore we put this estimator in the numerator of
the lack-of-fit F -statistic—discussed next—and use a one-sided test.

• The pooled variance estimator in Eq. (2.29), which uses mi > 1 repli-
cations. This estimator does not use a fitted regression model, so this
estimator is unbiased—assuming the simulation outputs for a repli-
cated combination are IID. Note that these outputs do not need to
be NIID; however, the F -statistic does assume NIID.

These two estimators may be compared through the so-called lack-of-fit
F -statistic. We point out that an F -statistic assumes that its numerator
and denominator are independent. Actually, the lack-of-fit F -statistic has
a numerator that uses MSR, which depends on wi and ŷi; this ŷi uses wi.
The denominator depends on the pooled variance estimator, which uses s2i ;
it is well known that s2i is independent of wi if the responses w are normally
distributed.
We again distinguish between an equal and an unequal number of repli-

cations, as we did in Eqs. (2.25) and (2.26).

• If each input combination i is replicated a constant number of times
so mi = m, then the lack-of-fit F -statistic is

Fn−q;n(m−1) =
m

n− q

(w − ŷ)′(w − ŷ)∑n
i=1 s

2(wi)/n
(2.30)

where s2(wi) was defined in Eq. (2.27), and (
∑n

i=1 s
2(wi)/n)/m is

an unbiased estimator of Var(w) = Var(w)/m; however, (w − ŷ)′

(w − ŷ)/(n− q) is an unbiased estimator of the same quantity, only
if the regression model is a valid approximation.

• If the number of replications per combination is not constant, then
this statistic becomes (see Montgomery 2009, p. 413 or any other
textbook on DOE):

Fn−q;N−n =

∑n
i=1 mi(wi − ŷi)

2/(n− q)∑n
i=1

∑mi

r=1(wi;r − wi)2/(N − n)
. (2.31)

The numerator uses MSRw(mi) defined in Eq. (2.26) so it is computed
from the average simulation output per combination; at least one
combination is replicated (usually, the center of the experimental area
is replicated when applying classic DOE to simulation).



38 2. Classic Regression Metamodels and Their Designs

Obviously, we reject the regression model if the F -statistic defined in
either Eq. (2.30) or Eq. (2.31) is significantly high.
Note: Alternative tests for the validation of the fitted metamodel will

be presented in Sect. 3.6.2, including the popular statistic R2 and cross-
validation statistics such as PRESS. Those tests do not assume white noise,
so they may also be applied to deterministic simulation. Moreover, they
may be applied to other metamodel types, such as Kriging models.
The lack-of-fit F -statistic becomes statistically significant whenever the

estimated variance of the underlying simulation output wi becomes “small”.
For example, if w represents the waiting time averaged over the simula-
tion run-length (say) T so w =

∑T
t=1 wt/T , then Var(w) goes to zero as

T goes to infinity. So any deviation between the observed simulation re-
sponse w and the regression predictor is declared significant. In practice,
however, these deviations may be unimportant. (R2 does not have this
characteristic.)
So we may use either the individual simulation outputs wi;r or the

averages wi. Both outputs give identical β̂ but different MSE. For exam-
ple, suppose that one individual output increases with the constant c, while
another individual output for the same input combination decreases with
that same constant. The average wi then remains the same, so β̂ and MSE
computed from the averages remain the same. However, MSE computed
from the individual outputs increases. The best estimator is the latter one,
because it has more degrees of freedom; namely, N − q instead of n − q
where N =

∑n
i=1mi.

We conclude this section (on basic regression analysis) with a long exer-
cise that covers many issues discussed in this section.

Exercise 2.5 Because experiments with simulation models do not satisfy
the assumptions of basic regression analysis (e.g., M/M/1 simulation mod-
els do not have constant response variances), you may perform the following
experiments with Monte Carlo models. Suppose that the simulation model
has the I/O function (also see Eq. (2.5))

w = β0 + β1z + β2z
2 + u (2.32)

where u ∼NIID(0, σ2) so σ2 = σ2
w = σ2

u. More specifically, suppose

w = 100 + 5z + z2 + u if 1 ≤ z ≤ 10 (2.33)

where u ∼NIID(0, 4). Following Algorithm 1.1 (in Chap. 1), you start with
the first-order polynomial metamodel

y = γ0 + γ1z + e with 1 ≤ z ≤ 10. (2.34)

To fit this metamodel and validate it, you select n values for z in the global
experimental domain 1 ≤ z ≤ 10; e.g., you select n = 5 equispaced values
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in this domain so z1 = 1, z2 = 3.25, z3 = 5.50, z4 = 7.75, and z5 = 10.
Furthermore, you sample mi (i = 1, . . . , 5) replications for input value zi;
e.g., mi = 4 so σz = σz/

√
m = 2/2 = 1.

(a) Compute the LS estimate γ̂ = (γ̂0, γ̂1)
′ using Eq. (2.13).

(b) Compute the LS estimate β̂ = (β̂0, β̂1) using a standardized input x
such that 0 ≤ x ≤ 1.

(c) To validate the metamodel fitted in (a) or (b), use the lack-of-fit F -

test defined in Eq. (2.30). (Hint: ŷ = x′
iβ̂ = z′iγ̂ so this F -statistic is

scale-free.)

(d) Let us assume that (c) gives a significant F -statistic for a type-I error
rate α with the value (say) 0.10; we make this assumption because a
first-order polynomial metamodel is fitted, whereas the simulation has
a second-order polynomial I/O function including intrinsic noise σ2

that seems not too big. Following Algorithm 1.1, you next select an
alternative metamodel; namely, a second-order polynomial

y = γ0 + γ1z + γ1z
2 + e with 1 ≤ z ≤ 10. (2.35)

Obviously, you have enough I/O combinations to fit this model with
its three parameters: n = 5 > q = 3. You should again validate
this metamodel, using the F -test in Eq. (2.30). We expect that now
you find a nonsignificant F -statistic when using α = 0.10, because
you fit a second-order polynomial and the simulation has indeed a
second-order polynomial I/O function.

(e) Next, consider the following alternative for a second-order polynomial
metamodel; namely, a first-order polynomial restricted to a local area
that is concentrated around the middle of the experimental domain:

y = γ0 + γ1z + e with 5 ≤ z ≤ 6. (2.36)

To fit and validate this metamodel, you select n values for z in the
local experimental domain 5 ≤ z ≤ 6; e.g., select n = 3 equispaced
values in this domain so z1 = 5, z2 = 5.5, and z3 = 6. You still
sample mi = 4 replications. You may use this local metamodel if the
goal of your experiment is to estimate the gradient for simulation
optimization. Does your (BLUE) estimate γ̂1 point you in the right
direction when you wish to maximize the simulation output; i.e., is
γ̂1 positive?

(f) Next we pretend that the simulation is so expensive that the number
of new simulation runs should be minimized. Therefore you assume
a first-order polynomial instead of a second-order polynomial. You
fit this first-order polynomial for the following three old input values:
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FIGURE 2.1. Scatterplot for Monte Carlo experiment defined in
Exercise 2.5

z2 = 3.25, z3 = 5.50, and z4 = 7.75; i.e., you ignore the extreme
inputs z1 = 1 and z5 = 10. Use the m = 4 replications for each of
these three old input values. Validate this fitted metamodel.

(g) Instead of using the approach in (f), you obtain m = 4 replications—
assuming that fewer replications would make the observed average
simulation output too noisy—for a single new input value; namely,
z = 6. Fit a first-order polynomial to these new data (z = 6, w6) and
the old I/O data that are closest to these new input value; namely,
(z = 5.50, w5.5). Do you find γ̂1 > 0?

Summarize your experimental results in a scatterplot such as Fig. 2.1,
which shows results for a specific PRN stream; i.e., the horizontal axis rep-
resents zi (i = 1, . . . , n) and the vertical axis represents wi;r (r = 1, . . . ,m);
various metamodels are fitted.

2.3 Linear Regression: First-Order Polynomials

To estimate the parameters of a black-box metamodel—e.g., the parame-
ter vector β in the linear regression model defined in Eq. (2.10)—we must
experiment with the simulation model; i.e., we must first change the in-
puts of the simulation and run the simulation, and next we must analyze
the resulting I/O data. In this section, we examine first-order polynomial
metamodels.
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Let us start with the simplest metamodel; namely, the first-order poly-
nomial with a single standardized input x:

y = β0 + β1x+ e. (2.37)

Obviously, this polynomial has q = 2 regression parameters; whereas math-
ematicians use the symbols β0 and β1 as we do in Eq. (2.37), statisticians
use β1 and β2 as we do in Eq. (2.10) for the general linear regression model.
Geometrically, Eq. (2.37) implies a straight line in the (x, y) plane. To fit
such a straight line, it obviously suffices to have only n = 2 observations
(xi, yi) (i = 1, 2); see again Fig. 2.1, which includes a first-order polynomial
(besides a second-order polynomial). A first-order polynomial may provide
a valid metamodel for a “small” experimental area; i.e., the first-order poly-
nomial is fitted only locally (Taylor series argument). Furthermore, select-
ing the two input values x1 and x2 as far apart as possible gives the “best”
estimator of the first-order effect (slope) β1—given the white noise assump-
tion for e. This assumption implies a constant variance σ2

w = σ2
y = σ2

e and

statistical independence orΣw = σ2
wI. SoΣβ̂ = σ2

w(X
′X)

−1
; see Eq. (2.18).

Exercise 2.6 Prove that the OLS estimator β̂1 has minimum variance if
the lower value of x in Eq. (2.37) denoted by (say) l and the upper value u
are as far apart as possible.

Next we consider the (more general) first-order polynomial metamodel
with k ≥ 1 independent variables xj (j = 1, . . . , k):

y = β0 + β1x1 + . . .+ βkxk + e. (2.38)

This metamodel implies that the general linear regression model defined
in Eq. (2.10) now has q = k + 1 regression parameters. An example is the
first-order polynomial metamodel with the arrival rate λ and the service
rate μ for the M/M/1 simulation model, given in Eq. (2.7).
In practice, such a metamodel may be useful when estimating the optimal

values for the inputs of a simulation model. For example, we may wish to
estimate the combination of input values that maximizes the profit of a
simulated company. There are many methods for estimating the optimal
input combination (see Chap. 6). Some of these methods use the gradient,
which quantifies local marginal effects; see the next definition.

Definition 2.8 The gradient ∇(y) of a function y(x1, . . ., xk) is the vector
with the first-order partial derivatives: ∇(y) = (∂y/∂x1, . . . , ∂y/∂xk)

′.

2.3.1 Scaling the Inputs

It is convenient and traditional in DOE to use scaled—also called coded or
standardized—inputs. If each input has only two values in the whole exper-
iment involving n input combinations, then these values may be denoted
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by −1 and +1. This implies the following linear transformation where zj
denotes the quantitative input j measured on the original scale, lj denotes
the lower value of zj in the experiment (so l = mini zi with i = 1, . . . , n),
and uj the upper value (so u = maxi zi):

xij = aj + bjzij

with aj =
lj + uj

lj − uj
; bj =

2

uj − lj
; j = 1, . . . , k; i = 1, . . . n. (2.39)

This transformation implies

xij =
zij − zj

(uj − lj)/2
(2.40)

where zj denotes the average value of input j in a balanced experiment,
which means that each input is observed at its lower value in n/2 combina-
tions (hence this input is observed at its upper value in the other half), as is
the case in a 2k design. The factor (uj− lj) in the denominator of Eq. (2.40)
is known as the range of input j; the range is a well-known quantitative
measure for the variation of a variable, besides the variance.

Exercise 2.7 Simulate an M/M/1 queue with a traffic rate between 0.2
and 0.5, and fit a first-order polynomial metamodel; also see Eq. (2.8). Use
standardized inputs for this metamodel applying Eq. (2.39). Use this meta-
model to predict the simulation output for a traffic rate of 0.3 and 0.4,
respectively. Which standardized x-values correspond with the original traf-
fic rates 0.3 and 0.4?

The scale of the original input z in Eq. (2.39) may be an interval, a ratio,
or an absolute scale; see the discussion of scales at the end of Sect. 1.3. If z
has either a nominal scale or an ordinal scale and z has only two levels, then
the coding remains simple; i.e., we arbitrarily associate one level with −1
and the other level with +1 (on purpose, we now speak of “level” instead
of “value”). For example, in a queueing simulation, one level may represent
the FIFO priority rule, and the other level may represent LIFO.
The coding does not remain so simple if an input has a nominal scale with

more than two levels. For example, Kleijnen (1995) discusses a simulation
model of a sonar system that searches for mines on the sea bottom; this bot-
tom is a nominal input with the three values clay, sand, or rocks. The type
of sea bottom may affect the sonar’s output. In this case study, the simula-
tion analysts erroneously coded these three bottom types as −1, 0, and +1.
The correct coding may be done through multiple binary variables—each
coded as 0 and 1; mathematical details are discussed in Appendix 1. In the
remainder of this book, we do not consider qualitative inputs with more
than two levels.
Standardizing in such a way that each input—either quantitative or

qualitative—varies between −1 and +1 is useful when comparing the ef-
fects of multiple inputs, as we do in sensitivity analysis. Figure 2.2 gives an
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FIGURE 2.2. Scaling effects when comparing the effects of two inputs z1
and z2 with different ranges, in a first-order metamodel with output y

example with two quantitative inputs with different ranges, but the same
scale (if the two scales were different, then two horizontal axes would be
needed). The marginal effect of z2 is higher than the marginal effect of z1;
see the slopes of the dashed lines (response curves). However, the range of
z1 is much bigger so “the” effect of this input is larger. If the standard-
ization defined in Eq. (2.40) is applied, then the standardized effect of z1
exceeds that of z2.
Instead of the standardized inputs xj in Eq. (2.38), we may use the orig-

inal inputs zj with lj ≤ zj ≤ uj:

y = γ0 + γ1z1 + . . .+ γkzk + e. (2.41)

The intercept in Eq. (2.38) equals the expected output at the center of
the experimental area, because E(y) = β0 if xj = 0 for all j. However,
the intercept in Eq. (2.41) equals the output when zj = 0 for all j—which
may be very far away from the experimental area! Obviously, the marginal
effects in Eq. (2.38) are ∂y/∂xj = βj ; the marginal effects in Eq. (2.41)
are ∂y/∂zj = γj . The total effect in Eq. (2.38) when changing the inputs
over their experimental domain is 2βj , because all standardized inputs xj

have the same range; namely, 1 − (−1) = 2. So β = (β1, . . . βk)
′ quantifies

the relative importance of the k inputs. The total effect in Eq. (2.41) when
changing the inputs over their experimental domain are γj(uj− lj). To rank
the input effects, the absolute values of the standardized effects βj should
be sorted—if a first-order polynomial is a valid metamodel (else, interac-
tions should also be considered; see Sect. 2.5 below); the absolute values
are needed for qualitative inputs, which have levels that are arbitrarily as-
sociated with the standardized values −1 and 1. We find the original scales
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less convenient in sensitivity analysis. The original scales are used in op-
timization through response surface methodology (RSM), which uses the
gradient ∇(y) = (∂y/∂z1, . . . , ∂y/∂zk)

′; see Sect. 6.2. The t-statistic de-
fined in Eq. (2.19) has the same value for the original and the standardized
effects, as is easy to prove (Var[(aj + bj γ̂j)] = b2jVar(γ̂j), etc).

Exercise 2.8 Bettonvil and Kleijnen (1990) discusses a third type of stan-
dardization that centers the original inputs zj around zj, defined below
Eq. (2.40):

y = δ0 + δ1(z1 − z1) + . . .+ δk(zk − zk) + e. (2.42)

Derive the marginal effects of zj, and the total effect over the range of zj,
when using this metamodel and a balanced design.

2.3.2 One-Factor-at-a-Time Designs Versus Factorial
Designs

To estimate the gradient (defined in Definition 2.8), many mathematicians
change one input at a time—using two or three values for each input.
However, the statistical theory on DOE proves that it is more efficient to
estimate the gradient from a first-order polynomial estimated through a so-
called factorial design that is either a full factorial or a fractional factorial
design (we shall define these designs below). Not only for optimization but
also for other goals of simulation, the LS estimator of the k+1 parameters in
the vector β = (β0, β1, . . . , βk)

′ in Eq. (2.38) often uses one of the following
two design types:

• One-factor-at-a-time designs

• Full factorial designs

In practice, the simulationists often change each input one-at-a-time
(called the ceteris paribus approach in econometrics). DOE, however, may
use a 2k design where k denotes the number of inputs and 2 denotes the
number of levels (values) per input; this design is called a two-level full fac-
torial. Obviously, two values suffice to estimate the first-order polynomial
in Eq. (2.38).
To compare one-at-a-time designs and full factorial designs, we first dis-

cuss the simplest example with multiple inputs—namely, k = 2 inputs—in
detail.

Example 2.2 Suppose that the number of inputs is only two, so k = 2.
To evaluate the different design types, we compare the variances of the es-
timated regression parameters in a one-at-a-time design and in a full fac-
torial design, respectively—assuming a first-order polynomial metamodel.
We also assume that there are no replications, so mi = 1.
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(1) (2)

(3)

-1 +1

-1

+1

x1

FIGURE 2.3. A one-at-a-time design for two inputs x1 and x2

A one-at-a-time design is presented in Fig. 2.3. This design is only one
of the possible designs that belong to this popular design class; other designs
in this class use three (instead of two) values, but we have already pointed
out that two values suffice for a first-order polynomial (see the discussion
of Eq. (2.37)). Moreover, we assume that the combination denoted by (1)
in this plot, is the so-called base value; e.g., the current input combination
in the real system being simulated. The other two combinations in Fig. 2.3
increase input 1 and input 2, respectively. Obviously, the design could also
be “mirrored” so the first combination would become (+1,+1) instead of
(−1,−1). Figure 2.3 corresponds with the following design matrix:

D =

⎡

⎣
−1 −1
+1 −1
−1 +1

⎤

⎦ .

This D gives X for the general linear regression model in Eq. (2.10):

X =

⎡

⎣
+1 −1 −1
+1 +1 −1
+1 −1 +1

⎤

⎦ = [13D]

where 13 = (1, 1, 1)′; in general, we let 1n denote a column vector with
all its n elements equal to 1. For convenience we assume that σ2

w = 1.
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This gives

Σβ̂ = (X′X)
−1

=

⎡

⎣
3 −1 −1
−1 3 −1
−1 −1 3

⎤

⎦
−1

=

⎡

⎣
0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

⎤

⎦

where

β̂=(β̂0, β̂1, β̂2)
′=(X′X)

−1
X′w=

⎡

⎣
0 0.5 0.5

−0.5 0.5 0
−0.5 0 0.5

⎤

⎦

⎡

⎣
w1

w2

w3

⎤

⎦=

⎡

⎣
0.5w2 + 0.5w3

0.5w2 − 0.5w1

0.5w3 − 0.5w1

⎤

⎦ .

This β̂ agrees with common sense; e.g., β2 is estimated by the difference
between the third observation in Fig. 2.3 and the base observation which is
combination 1 in this plot. We point out that each of the three regression
parameters is estimated from only two of the three simulation outputs.
The 22 design adds a fourth combination to Fig. 2.3; namely, the combi-

nation (+1,+1). Hence, X becomes

X =

⎡

⎢⎢⎣

+1 −1 −1
+1 +1 −1
+1 −1 +1
+1 +1 +1

⎤

⎥⎥⎦

This X together with σ2
w = 1 gives

Σβ̂ = (X′X)
−1

=

⎡

⎣
4 0 0
0 4 0
0 0 4

⎤

⎦
−1

=

⎡

⎣
0.25 0 0
0 0.25 0
0 0 0.25

⎤

⎦

and

β̂ = (X′X)
−1

X′w =

⎡

⎣
0.25w1 + 0.25w2 + 0.25w3 + 0.25w4

0.25w2 − 0.25w1 − 0.25w3 + 0.25w4

0.25w3 − 0.25w2 − 0.25w1 + 0.25w4

⎤

⎦ .

This β̂ again agrees with common sense; e.g., β2 is now estimated by sub-
tracting the average of the first and second outputs from the average of the
third and fourth outputs—which agrees with Fig. 2.3 augmented with the
fourth combination. We emphasize that each of the three regression param-
eters is now estimated from all four outputs.
The variances of the estimated parameters are 0.25 for the factorial de-

sign, whereas these variances are 0.5 for the one-at-a-time design. These
variances, however, should be corrected for the number of combinations;
this correction gives 4 × 0.25 = 1.0 and 3 × 0.5 = 1.5 . So the factorial
design is more “efficient”. (We shall also discuss examples with exactly
the same number of combinations in both design types, which simplifies
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the comparison of their efficiencies.) Moreover, the estimated parameters
are uncorrelated in the factorial design; in the one-at-a-time design, the
correlations are 0.25/0.5 = 0.5. Under the normality assumption, zero cor-
relation implies independence; obviously, independent estimators simplify
the statistical analysis.

The 22 design, which features in this example, has “orthogonal” columns,
defined as follows.

Definition 2.9 Two n-dimensional vectors (say) zj and zj′ (with j 	= j′)
are orthogonal if their inner product

∑n
i=1 zi;jzi;j′ is zero.

Note: A similar critique of one-at-a–time designs can be found in Spall
(2010). However, Voelkel (2005) gives a more favorable discussion of one-
at-a-time designs; e.g., factorial designs imply input combinations that are
more extreme (the distance between these combinations and the center
coded as 0 is

√
k). Such extreme combinations may lead to nonrealistic

simulation outputs; an example is the ecological case study in Chap. 4 on
screening. Actually, Voelkel (2005) assumes 2k input combinations instead
of only k + 1 combinations. Frey and Wang (2006) recommends one-at-a-
time designs if the goal of the experiment is “to seek improvements in the
performance”, which is closely related to the goal called “optimization”
in the preceding chapter (see Sect. 1.2). Frey and Wang (2006) assumes
small experimental error σ2

w and large two-factor interactions. One-at-a-
time designs are also reviewed in Alaeddini et al. (2013).
Let us examine one more example; namely, a 2k design with k = 3 inputs.

Example 2.3 Obviously, a 2k design with k = 3 inputs has an 8×3 design
matrix D. We use the notation that is conventional in DOE; i.e., we display
only the signs of the elements of D so − means −1 and + means +1:

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− − −
+ − −
− + −
+ + −
− − +
+ − +
− + +
+ + +

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because of the intercept β0, the matrix of explanatory variables X adds the
column 18 = (1, . . . , 1)′with eight elements equal to 1, to D so X = [18,D].
It is easy to verify that the columns of this X are orthogonal. Further-

more, the design D is balanced; i.e., each column has the same number
of pluses and minuses; namely, 2k−1 = 4. We may use orthogonality and
balance to have the computer check for typos in D and X.
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In general, a 2k design results in an orthogonal matrix of independent
variables for the first-order polynomial in Eq. (2.38):

X′X = nI with n = 2k (2.43)

where I denotes an n × n identity matrix. This orthogonality property
follows directly from the following general procedure for constructing a 2k

design (also see the preceding example with k = 3):

1. Make the first 2 elements of column 1 of D equal to (−1,+1)′; repeat
these two elements, until the column is filled with n = 2k elements.

2. Make the first 22 elements of column 2 equal to (−1,−1,+1,+1)′;
repeat these 22 elements, until this column is filled.

3. Make the first 23 elements of column 3 equal to (−1,−1,−1,−1,
+1,+1,+1,+1)′; repeat these 23 elements, until this column is filled.

4. . . .

5. Make the first 2k−1 elements of column k equal to 2k−1 consecutive
elements −1, followed by 2k−1 consecutive elements +1.

Note: Orthogonal matrixes are related to so-called Hadamard matrixes; see
Craigen (1996). The orthogonality property in Eq. (2.43) simplifies the LS
estimator; i.e., substituting Eq. (2.43) into Eq. (2.13) gives

β̂ = (nI)
−1

X′w = X′w/n = (xjw/n) =

(∑n
i=1 xi;jwi

n

)
(j = 1, . . . q).

(2.44)
This equation does not require matrix inversion. Avoiding matrix inversion
improves the numerical accuracy of the LS estimation (numerical inaccu-
racy may be a major problem in Kriging metamodels, as we shall see in
Chap. 5). Historically, avoiding matrix inversion was very useful when no
computers were available, as was the case when DOE started seriously with
Fisher (1935).
Obviously, 2k designs are balanced; i.e., for each j, half the xij equals −1

and the other half equals +1. Consequently, the estimator β̂j is simply the
difference between the two averages w1;j denoting the average simulation
output when input j is +1, and w2;j denoting the average simulation output
when factor j is −1:

β̂j =

∑n
i=1 xijwi/(n/2)

2
=

w1;j − w2;j

2
. (2.45)

So the mathematical criterion of LS gives an “intuitive” estimator.
Furthermore, the orthogonality property simplifies the covariance matrix

in Eq. (2.18) to

Σβ̂ = (nI)−1σ2
w = I

σ2
w

n
. (2.46)
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So all the q estimators β̂j have the same variance σ2
w/n, and they are sta-

tistically independent. Because the β̂j have the same estimated variances,

we can rank β̂j—in order of importance—using either these β̂j themselves
or the t-values defined in Eq. (2.19). Because all q estimated effects are
independent, the “full” regression model with q effects and the “reduced”
model with nonsignificant effects eliminated have identical values for those
estimated effects that occur in both models. If X is not orthogonal, then
this so-called “backwards elimination” of nonsignificant effects changes the
remaining estimates. Finally, it can be proven that the variances of β̂j—the
elements on the main diagonal in Eq. (2.18)—are minimal if X is orthogo-
nal; see Box (1952).
Altogether, 2k designs have many attractive properties. Unfortunately,

the number of combinations is n = 2k, so n grows exponentially with the
number of inputs k. At the same time, the number of effects is only q = k+1
in a first-order polynomial metamodel, so 2k designs become inefficient for
high values of k; e.g., k = 7 gives n = 27 = 128 whereas q = 8. Therefore we
now present designs that require only a fraction of these 2k combinations.

Definition 2.10 An incomplete design has fewer combinations than the
corresponding full factorial design.

This definition deserves the following comments:

• The simplest incomplete designs are 2k−p designs, which are a fraction
2−p of the 2k design. For example, if k = 7, then a 27−4 design
with only n = 8 combinations suffices to fit a first-order polynomial.
Details will follow in Sect. 2.4.

• There are also fractions of mixed-level designs such as 2k13k2 designs.
These designs are rather complicated, and are hardly ever applied in
simulation. We shall briefly discuss such designs in Sect. 2.10.

2.4 Designs for First-Order Polynomials:
Resolution-III

Definition 2.11 A resolution-III (R-III) design gives unbiased estimators
of the parameters of a first-order polynomial, assuming such a polynomial
is a valid metamodel.

We provide the following comments on this definition.

• This definition goes back to the definition in Box and Hunter (1961a).

• These designs are also known as Plackett-Burman designs, originally
published in Plackett and Burman (1946).
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Combination 1 2 3 = 1.2
1 − − +
2 + − −
3 − + −
4 + + +

TABLE 2.1. A fractional factorial two-level design for three inputs with
generator 3 = 1.2

• A subclass of Plackett-Burman designs are fractional factorial two-
level or 2k−p designs with positive integer p such that p < k and 2k−p ≥
q where q denotes the number of parameters in the metamodel—or in
a more explicit notation 2k−p

III designs. Obviously, 2k−p designs have
n (number of combinations) equal to a power of two. More general,
Plackett-Burman designs have n equal to a multiple of four and at
least equal to k+ 1; e.g., for 8 ≤ k ≤ 11 the Plackett-Burman design
has n = 12. First we discuss 2k−p

III designs in Sect. 2.4.1; next we
discuss general Plackett-Burman designs in Sect. 2.4.2.

2.4.1 2k−p Designs of Resolution-III

Let us start with the simplest example of a 2k−p
III design with 0 < p < k;

namely, a design with k = 3 (k = 2 and p = 1 would imply n = 22−1 =
2 < q = k + 1 = 3 so a 22−1 design does not have resolution III). A
full-factorial 23 design would require n = 8 combinations; see again Ex-
ample 2.3. However, the number of parameters is only q = k + 1 = 4.
Therefore a 23−1 design suffices to estimate the q = 4 parameters; this
23−1
III design requires only n = 4 combinations. Table 2.1 gives a 23−1

III de-
sign, which we now discuss in detail. Its heading “Combination” stands
for “input combination”. The symbol 1 stands for the column (x1;1, . . .,
xn;1)

′ for input 1 where in this example n = 4. Likewise, 2 stands for the
column for input 2. The heading 3 stands for input 3 and 3 = 1.2 for
xi;3 = xi;1xi;2 with i = 1, . . . , n, so the first element (i = 1) in the last
column is x1;3 = x1;1x1;2 = (−1)(−1) = +1 so the entry is a plus (+).
The DOE literature calls “3 = 1.2” a design generator ; we will discuss
generators in more detail, when discussing the 27−4

III design in Table 2.3.
It is easy to verify that Table 2.1 gives an orthogonal X. The design is

also balanced; i.e., each column of D in Table 2.1 has two minuses and two
pluses.
Figure 2.4 gives a geometric presentation of the design in Table 2.1. This

plot has the following property: each combination corresponds with a vertex
that cannot be reached via traversing only one edge of the cube.
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Combination 1 2 3 = −1.2
1 − − −
2 + − +
3 − + +
4 + + −

TABLE 2.2. A fractional-factorial two-level design for three factors with
generator 3 = -1.2

x1

x2

x3

Combi. 1

Combi. 2

Combi.  3

Combi. 4

FIGURE 2.4. The fractional factorial two-level design for three inputs with
generator 3 = 1.2

Actually, the design in Table 2.1 is only one of the two possible 23−1
III

designs; the other 23−1
III design is displayed in Table 2.2. It is straightforward

to verify that this design is also balanced and gives an orthogonal X.
The two designs specified in Tables 2.1 and 2.2 belong to the same fam-

ily. In this simple example with k = 3, these two designs together form
the full factorial design that was listed in Example 2.3; i.e., the “dots”
in Fig. 2.4 represent the 23−1

III design with the generator 3 = 1.2, but the
corners without dots represent the 23−1

III design with 3 = −1.2. The choice
between these two designs is arbitrary (random). The association between
the three inputs and the three columns in the design is also arbitrary; e.g.,
input 1 may be associated with (say) column 3. The association between
the original levels (lj and uj) and the + and − signs is also arbitrary; e.g.,
the highest value of an input may be associated with the minus sign. If the
input is quantitative, then such an association may confuse some users so
we do not recommend it.
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Combination 1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 = 1.2.3
1 − − − + + + −
2 + − − − − + +
3 − + − − + − +
4 + + − + − − −
5 − − + + − − +
6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

TABLE 2.3. A one-sixteenth fractional factorial design for seven inputs

Now we continue with another example of a 2k−p
III design; namely, a design

with n = 8 combinations (the preceding example had n = 4). The number
of inputs follows from 2k−p = 8 so k − p = 3 with positive integers k and
p such that 0 < p < k and 2k−p > k because n ≥ q = 1 + k. A solution is
k = 7 and p = 4. This gives Table 2.3, which is the analogue of Table 2.1.
It is again easy to check that this design gives an orthogonal X, and it is
balanced (each column has 27−5 = 4 minuses and 4 pluses).
The design in Table 2.3 belongs to a bigger family. This family is formed

by substituting a minus sign for the (implicit) plus sign in one or more
generators; e.g., substituting 4 = −1.2 for 4 = 1.2 in Table 2.3 gives one
other member of the family. All the 27/27−4 = 16 family members together
form the 27 design, which is the unique full-factorial two-level design.
Table 2.3 gives a so-called saturated design for seven inputs; Tables 2.1

and 2.2 gave saturated designs for three inputs.

Definition 2.12 A saturated design has as many combinations as the num-
ber of parameters to be estimated.

This definition leads to the following comments.

• In symbols, the definition means n = q in Eq. (2.10).

• Hence, no degrees of freedom are left for the MSR in Eq. (2.20), so
MSR is not defined and the lack-of-fit F -test in Eq. (2.31) cannot be
applied. This problem can be easily solved: randomly select one or
more combinations from another member of the family, and simulate
this combination; if the inputs are quantitative, then simulate the
center point x = 0.

After our discussion of the 23−1
III and the 27−4

III designs, we now consider
intermediate k values; namely, 4 ≤ k ≤ 6. We can still use Table 2.3; i.e., for
k = 4 we delete three columns (e.g., the last three columns), for k = 5 we
delete two columns, and for k = 6 we delete one column. Obviously, the
resulting designs are not saturated. Of course, we may also add one or more
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extra inputs to our original list with 4 ≤ k ≤ 6 inputs; these extra inputs
do not require a bigger experiment; i.e., n remains eight.
Our next example (after Table 2.1 with n = 4 and Table 2.3 with n = 8)

has n = 2k−p = 16 input combinations. So a saturated design implies
k = 15 inputs. Hence k− p = 4 implies p = 15− 4 = 11. We may construct
this 215−11 design through the following simple algorithm.

Algorithm 2.1

1. Construct the 24 design for the first four inputs, and obtain a 16× 4
design matrix.
Comment: The 24 design is a full-factorial two-level design with
k = 4.

2. Add all 4 × (4 − 1)/2 = 6 pairwise generators 5 = 1.2, 6 = 1.3,
7 = 1.4, . . ., 10 = 3.4.

3. Add all four triplet generators 11 = 1.2.3, 12 = 1.2.4, 13 = 1.3.4,
14 = 2.3.4.

4. Add the single quadruple generator, 15 = 1.2.3.4.

Exercise 2.9 Specify the design that follows from this algorithm.

Obviously, the design that follows from this algorithm is only one of the
members of the family with 215 = 32,768 members that can be generated
through the addition of one or more minus signs to one or more generators
in Algorithm 2.1.
Our final example of a 2k−p

III design has n = 32 combinations (the preced-
ing examples had n = 4, 8, 16). Obviously, a saturated design with n = 32
implies k = 31. Hence k − p = 5 so 25 = 32. This implies p = 31− 5 = 26.
The construction of this 231−26 design remains quite simple, but tedious. A
computerized algorithm is then helpful. To check the computed results, we
recommend to verify the orthogonality and balance of the resulting design.
It is simple to write such an algorithm.
Note: A different algorithm with so-called Walsh functions is applied in

Sanchez and Sanchez (2005, p. 366).

We do not discuss 2k−p
III designs with higher k values, because in practice

such high k values are rare—except for some military simulations discussed
in Oh et al. (2009). One explanation is the psychological argument origi-
nally formulated in Miller (1956); namely, a human’s capacity for process-
ing information is limited to seven plus or minus two inputs. In simulation
experiments, this argument implies that 2k−p

III designs with k > 9 enable
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Combination 1 2 3 4 5 6 7 8 9 10 11
1 + − + − − − + + + − +
2 + + − + − − − + + + −
3 − + + − + − − − + + +
4 + − + + − + − − − + +
5 + + − + + − + − − − +
6 + + + − + + − + − − −
7 − + + + + + + − + − −
8 − − + + − − + + − + −
9 − − − + + + − + + − +
10 + − − − + + + − + + −
11 − + − − − + + + − + +
12 − − − − − − − − − − −

TABLE 2.4. The Plackett-Burman design for eleven inputs

the estimation of all k first-order effects βj (j = 1, . . . , k), but the esti-

mates β̂j are used only to estimate the 7 ± 2 most important inputs. In
Chap. 4 on screening we shall discuss designs that are more efficient than
2k−p
III designs, provided we know the signs of the first-order effects. Differ-

ent computer procedures for the construction of 2k−p
III designs with high k

values are presented in Ryan and Bulutoglu (2010) and Shrivastava and
Ding (2010).

2.4.2 Plackett-Burman Designs of Resolution-III

As we have already mentioned in the beginning of Sect. 2.4, Plackett-
Burman designs include 2k−p

III designs. So we may define Plackett-Burman
designs in the narrow sense as R-III designs that have a number of combi-
nations that is a multiple of four but not a power of two. Actually, Plackett
and Burman (1946) lists such designs for 12 ≤ n ≤ 96; for 12 ≤ n ≤ 36
these designs are reproduced in Montgomery (2009, p. 326) and Myers et al.
(2009, pp. 165). For simulation practice, we display a Plackett-Burman de-
sign in the narrow sense in Table 2.4, which has n = 12 combinations of
k = 11 inputs. Plackett-Burman designs are again balanced and orthogonal.

Exercise 2.10 Use a R-III design to experiment with a simulation model
of your own choice, provided this model enables you to experiment with
(say) between five and twenty inputs. Select the ranges of these inputs so
“small” (e.g., 1% changes from the base values) that you may assume
a first-order polynomial is a valid metamodel. If the simulation model is
random, then simulate (say) five replications. Estimate the first-order ef-
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fects of these inputs, using the standardized and the original input values,
respectively. Test whether these effects are significantly different from zero.
Give a list that sorts the inputs in their order of importance.

2.5 Linear Regression: Interactions

Definition 2.13 Interaction means that the effect of one input depends on
the levels of one or more other inputs.

Let us consider the simplest example; namely, only two inputs, a first-
order polynomial augmented with the interaction between these two inputs,
and white noise so e ∼ NIID(0, σ2

e):

y = β0 + β1x1 + β2x2 + β1;2x1x2 + e. (2.47)

This equation implies ∂y/∂x1 = β1 + β1;2x2, so the effect of x1 indeed
depends on x2. In geometric terms, interaction means that the response
curves for y(x1|x2) are not parallel for different values of x2; see Fig. 2.5,
which uses the standardized values −1 and +1 for the two inputs. Obvi-
ously, interaction is also defined for deterministic simulation models, which
imply that e vanishes in Eq. (2.47) so the E operator in Fig. 2.5 becomes
redundant. If interactions are important, then the relative importance of an
input is not measured by (the absolute value of) its first-order effect only.
Note: In metamodels that are more general than Eq. (2.47), we have

∂y/∂xj = f(xj′) with j 	= j′. If the residual e is not white noise but has
a variance that depends on the input combination x = (x1, . . . , xk)

′, then
interaction between xj and xj′ may imply the effect of the other input
xj′ . In Sect. 5.8 we shall discuss a generalized definition of interactions in
nonlinear metamodels such as Kriging models, and their analysis through
functional analysis of variance (FANOVA) using so-called Sobol indexes.
If the interaction between two inputs is positive, then the inputs are

called complementary. A classic example is a pair of shoes; i.e., obtaining
more shoes for the left foot gives higher utility only if more shoes for the
right foot are also obtained. If the interaction is negative, then the inputs
are substitutes for each other. A classic example is provided by butter and
margarine.
In the general case of k inputs, we may augment the first-order polyno-

mial in Eq. (2.38) with the interactions between all pairs of inputs k and
k′ with k 	= k′:

y = β0 +

k∑

j=1

βjxj +

k−1∑

j=1

k∑

j′=j+1

βj;j′xjxj′ + e (2.48)

where βj;j′ is called the two-factor interaction between the inputs j and
j′; βj;j′ is also called the two-way or pairwise interaction, or the cross-
product. It is easy to prove that the total number of two-factor interactions
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FIGURE 2.5. Interaction between two inputs x1 and x2, in a first-order
metamodel with output y

in this equation is k(k − 1)/2, so the total number of parameters is q =
1+ k+ k(k − 1)2 = 1+ k(k+ 1)/2. It is easy to see that the N × q matrix
of independent variables X follows from the n×k design matrix D and the
n-dimensional vector m with the number of replications for combination i
(i = 1, . . . , n) so m = (m1, . . . ,mn)

′:

X = (xi) = (1, di;1, . . . , di;k, di;1di;2, . . . , di;k−1di;k) (i = 1, . . . , N) (2.49)

with N =
∑n

i=1mi where mi is a positive integer, possibly 1; see again
Eq. (2.24). If the simulation output is an average, then a single replication
gives an unbiased estimator of the expected simulation output; however, an
estimated quantile requires m � 1 replications. Obviously, in deterministic
simulation we have mi = 1 so N = n. We shall further discuss the selection
of the number of replications, later in this chapter and in the following
chapters.
In the following example a first-order polynomial does not give a valid

metamodel, but augmenting this polynomial with two-factor interactions
does give an adequate approximation.
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Example 2.4 Kleijnen and Standridge (1988) studies a deterministic sim-
ulation model of a flexible manufacturing system (FMS). The machine mix
for this FMS is determined by the input combination d of the simulation
experiment. This d determines the original inputs z1, z2, and z3 that de-
note the number of machines performing operation #1, #2, and #3, and
z4 that denotes the number of “flexible” machines or robots capable of per-
forming any of these three operations. The experimental area is defined
by the following constraints: 5 ≤ z1 ≤ 6, 1 ≤ z2 ≤ 2, 2 ≤ z3 ≤ 3, and
0 ≤ z4 ≤ 2. This domain is quite small, so a first-order polynomial may
result in a valid metamodel. Originally, an incomplete design with n = 8
combinations is intuitively specified. Next a 24−1 design is specified; this
design has the same number of combinations n = 8; see Table 2.3 with
the last three columns deleted so the generator is 4 = 1.2. Both designs
give I/O data that allow the fitting of first-order polynomials using LS; see
Eq. (2.38) with k = 4. Kleijnen and Standridge (1988) ignores the fact that
the fitting error e is not white noise, and applies classic regression analysis.
Because the original scales are used instead of the standardized scales, the
24−1 design does not give constant estimated variances for the estimated re-
gression parameters. The intuitive design gives bigger estimated variances
for the estimated regression parameters; e.g., the estimated variance for the
estimated effect of z4 is nearly four times higher. Further analysis of the
fitted metamodel—based on the data from the 24−1 design—suggests that
the first-order polynomial is not adequate, and that the effects of z1 and z3
are negligible (this analysis uses cross-validation, which we shall discuss in
Sect. 3.6.2). So next, a first-order polynomial is fitted for the remaining two
inputs z2 and z4 and their interaction; see Eq. (2.47). This metamodel is
fitted to the “old” I/O data resulting from the 24−1 design. Further analysis
suggests that the resulting metamodel is valid. This metamodel implies that
the machines in groups #2 and #4 are the bottlenecks of the FMS, and—
because the estimated interaction turns out to be negative—that machine
group #4 (the robots) can serve as a substitute for machine group #2.

This example demonstrates the usefulness of first-order polynomials aug-
mented with two-factor interactions. The DOE literature also uses higher-
order interactions, e.g., three-factor interactions:

y = β0 +

k∑

j=1

βjxj +

k−1∑

j=1

k∑

j′=j+1

βj;j′xjxj′

+

k−2∑

j=1

k−1∑

j′=j+1

k∑

j′′=j′+1

βj;j′;j′′xjxj′xj′′ + e. (2.50)

We do not give the definition of these high-order interactions, for two
reasons:
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1. High-order interactions are hard to interpret, so these interactions
are difficult to explain to the simulation users.

2. High-order interactions are often unimportant in practice.

Throughout this book, we assume that interactions among three or more
inputs are unimportant. Of course, this assumption should be checked; see
the “lack-of-fit” and “validation” of metamodels discussed throughout this
book. A counterexample is Ekren and Ornek (2008), discussing a simulation
model of a manufacturing system that gives a metamodel with significant
three-factor interactions among a few factors.

2.6 Designs Allowing Two-Factor Interactions:
Resolution-IV

Definition 2.14 A resolution-IV (R-IV) design gives unbiased estimators
of the parameters of a first-order polynomial, even if two-factor interactions
are nonzero; all other effects are assumed to be zero.

Box and Wilson (1951) includes a proof of the so-called foldover theorem,
which we briefly formulate as follows:

Theorem 2.1 If a R-III design D is augmented with its so-called mirror
design −D, then the resulting design is a R-IV design.

So the price for augmenting a R-III design to a R-IV design is the dou-
bling of the number of combinations. We give some examples.

Example 2.5 Table 2.1 gave the 23−1
III design with the generator 3 = 1.2.

The mirrored design was shown in Table 2.2, which is the 23−1
III design with

the generator 3 = −1.2. Combining these two designs into a single design
gives a 23 design. This design results in X, which has n = 8 rows and
q = 1+3(3+1)/2 = 7 columns that correspond with the intercept, the three
first-order effects, and the three two-factor interactions. Because all these
columns are orthogonal, X is certainly not collinear so LS estimation is
possible. The q = 7 estimators leave n− q = 8 − 7 = 1 degree of freedom,
which could be used to estimate the three-factor interaction; see Eq. (2.50)
with k = 3. However, if we assume that this high-order interaction is zero,
then we can use this degree of freedom to estimate the common variance
σ2
w = σ2

y = σ2
e through MSR defined in Eq. (2.20).

The following example demonstrates that adding the mirror design gives
unbiased estimators of the first-order effects, but does not always enable
unbiased estimators of the individual two-factor interactions.
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Example 2.6 Table 2.3 gave a 27−4
III design. Combining this design with

its mirrored design gives a design with n = 16 combinations; namely, a
27−3
IV design, as we shall see below. X follows from Eq. (2.48) with k = 3;

i.e., X has n = 16 rows and q = 1 + 7(7 + 1)/2 = 29 columns so n < q,
which implies that X is collinear. Hence, LS estimation of the 29 individual
regression parameters is impossible. However, it is possible to compute the
LS estimator of the intercept and the seven first-order effects; see the next
exercise.

Exercise 2.11 Derive X for the intercept and the seven first-order effects,
using the combined design in Example 2.6. Check that—for example—the
column for the interaction between the inputs 6 and 7 is balanced and or-
thogonal to the columns for the first-order effects of the inputs 6 and 7.

The construction of R-IV designs is easy, once a R-III design is available;
i.e., we simply augment a DIII (Plackett-Burman) design with its mirror

design, denoted by −DIII . For the Plackett-Burman subclass of 2
(k−1)−p
III

designs, we may construct the 2k−p
IV designs by first defining the full-factorial

design in k − p inputs, and then aliasing or confounding the remaining p
inputs with high-order interactions among these first k − p inputs; i.e.,
we use these interactions as generators (we shall return to aliasing at the
end of this section; see Eq. (2.52)). For example, k = 8 and n = 16 = 24

leads to a 28−4 design. So first we construct a 24 design in four inputs.
Suppose we label these four inputs 1, 2, 3, and 4. Next, we may use the
following generators: 5 = 1.3.4, 6 = 2.3.4, 7 = 1.2.3, and 8 = 1.2.4. It
can be derived that the 28 two-factor interactions are confounded in seven
groups of size four; see Kleijnen (1975, pp. 336–344) or Kleijnen (19857,
pp. 303–305). In Appendix 2 we present some useful manipulations with
generators, following the DOE literature.
Now we consider Plackett-Burman designs in the narrow sense, which

do not have the simple confounding patterns of 2k−p designs. The latter
designs use design generators, which imply that a given column is identical
to some other column of X when that X includes columns for all the inter-
actions among these k inputs. Plackett-Burman designs in the narrow sense
lead to an X that also has q = 1+ k+ k(k− 1)/2 columns. Applying linear
algebra, we can prove that if n < q then X is collinear. A R-IV design
implies that the columns for the first-order effects and the intercept are
orthogonal to the two-factor interaction columns, but the latter k(k− 1)/2
columns are not necessarily mutually orthogonal or identical.
The R-IV designs discussed so far imply that the number of combinations

increases with jumps of eight (nIV = 8, 16, 24, 32, 40, . . .), because the un-
derlying R-III designs have a number of combinations that jump with four
(nIII = 4, 8, 12, 16, 20, . . .). However, Webb (1968) derives R-IV designs
with nIV increasing in smaller jumps; i.e., nIV = 2k where k does not need
to be a multiple of four. Webb’s designs also use the foldover theorem. Be-
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cause we are not aware of any simulation applications, we refer to Kleijnen
(1975, pp.344–348) for details of these designs and their analysis.
In practice, a single simulation run may require so much computer time

that a R-IV design is hardly possible. In case of such expensive simulation,
the following algorithm may help—but we have no experience with the
application of this algorithm in practice.

Algorithm 2.2

1. Simulate all combinations of the R-III design.

2. Use the I/O data resulting from step 1, to estimate the first-order
polynomial metamodel.

3. Use the metamodel resulting from step 2, to predict the simulation
outputs of the mirror design of the R-III design.
Comment: The original R-III design plus its mirror design form the
R-IV design.

4. Initialize a counter (say) i: i = 1.

5. Simulate combination i of the mirror design.

6. Compare the metamodel prediction from step 3 and the simulation
output from step 5; if the prediction error is not acceptable, then
increase the counter to i+1 and return to step 5; else stop simulating.

We conclude this section on R-IV designs with a general discussion of
aliasing or confounding. Assume that a valid linear regression metamodel is

y = X1β1 +X2β2 + e (2.51)

where e denotes white noise. An example of this equation is an X1 corre-
sponding with the intercept and the first-order effects collected in β1, and
an X2 corresponding with the two-factor interactions β2. Suppose that we
start with a tentative simple metamodel without these interactions. Then
we estimate the first-order polynomial parameters through

β̂1 = (X′
1X1)

−1X′
1w. (2.52)

So combining Eqs. (2.52) and (2.51) and assuming a valid metamodel is
Eq. (2.51) so E(w) = E(y) gives

E(β̂1) = (X′
1X1)

−1X′
1E(w) =(X′

1X1)
−1X′

1(X1β1 +X2β2)

= β1 + (X′
1X1)

−1X′
1X2β2. (2.53)

This equation includes the matrix (say) A = (X′
1X1)

−1X′
1X2, which Box

and Draper (1959) calls the alias matrix. Equation (2.53) implies an unbi-
ased estimator of β1 if either β2 = 0 or X′

1X2 = 0. Indeed, R-III designs
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assume that β2 = 0 where β2 consists of the two-factor interactions; R-IV
designs ensure that X′

1X2 = 0 (the two-factor interaction columns are
orthogonal to the columns for the first-order effects and the intercept).
Note: In this section we discussed the construction of R-IV designs from

R-III designs, using the foldover principle. However, instead of reversing
the signs of all columns of the R-III design, we may reverse the signs of
only one column or a few columns. Of course, the latter construction gives a
different alias pattern compared with the former construction, and does not
give a R-IV design. Detailed discussions of various foldover constructions
for two-level fractional factorials are Elsawah and Qin (2015) and Li and
Lin (2015).

2.7 Designs for Two-Factor Interactions:
Resolution-V

Definition 2.15 A resolution-V (R-V) design enables LS estimation of the
first-order effects, the two-factor interactions, and the intercept; all other
effects are assumed to be zero.

Estimation of the individual two-factor interactions may be desirable, as
Example 2.4 involving a FMS has already illustrated. In that example, the
number of inputs was originally k = 4, but analysis of the I/O data of the
original 24−1

III design resulted in elimination of two nonsignificant inputs;
consequently, k = 2 and the original 24−1

III design gave a 22 design for these
k = 2 significant inputs.
Let us consider a 28−4

IV design; such a design is derived in Appendix 2 and
can also be found in the DOE literature. Obviously, it is impossible to com-
pute the LS estimators of the q = 1+8(8+1)/2 = 37 regression parameters
from only n = 16 combinations; LS estimation of these 37 parameters is
possible from n = 28−2 = 64 combinations—provided these combinations
are selected correctly; again see Appendix 2. In general, the first-order
polynomial augmented with all the two-factor interactions implies that q
(number of parameters) becomes 1+k+k(k−1)/2 = (k2+k)/2+1, so the
number of parameters is of order k2; i.e., many more combinations need
to be simulated compared with a first-order polynomial. Box and Hunter
(1961b) includes a table—reproduced in Table 2.5—with generators for
2k−p designs of resolution V and higher; the definition of a resolution higher
than V is unimportant for DASE.
Note: Sanchez and Sanchez (2005) includes an algorithm for constructing

R-V designs in case the number of inputs is very large; e.g., k = 120
leads to a 2120−105

V design. Unfortunately, 2k−p
V designs—except for the 25−1

V

design (see Table 2.5)—require relatively many combinations to estimate
the regression parameters; i.e., these designs are certainly not saturated. For
example, the 29−2

V I design in Table 2.5 requires 128 combinations to estimate
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k n Generators

5 25−1
V = 16 5 = 1.2.3.4

6 26−1
V I = 32 6 = 1.2.3.4.5

7 27−1
V II = 64 7 = 1.2.3.4.5.6

8 28−2
V = 64 7 = 1.2.3.4; 8 = 1.2.5.6

9 29−2
V I = 128 9 = 1.4.5.7.8; 10 = 2.4.6.7.8

10 210−3
V = 128 8 = 1.2.3.7; 9 = 2.3.4.5; 10 = 1.3.4.6

11 211−4
V = 128 See k = 10; 11 = 1.2.3.4.5.6.7

TABLE 2.5. Generators for fractional-factorial two-level designs of resolu-
tion V, VI, and VII

Effect type Generator
Intercept (−1, . . . ,−1) for all k inputs
First-order effect (−1,+1, . . . ,+1) for all k inputs
Two-factor interaction (1, 1,−1, . . . ,−1) for k > 3 inputs

TABLE 2.6. Generators for Rechtschaffner’s resolution-V designs

q = 1+ 9(9+ 1)/2 = 46 parameters so its efficiency is only 46/128 = 0.36;
the 2120−105

V design requires n = 32,768 whereas q = 7,261 so its efficiency
is only 7,261/32,768 = 0.22. There are R-V designs that require fewer runs.
For example, Mee (2004) gives a design for 47 factors that requires 2,048
combinations so its efficiency is 1,129/2,048 = 0.55, whereas Sanchez and
Sanchez (2005) requires 4,096 combinations so its efficiency is 0.28. For
further comparisons among these types of R-V designs, we refer to Sanchez
and Sanchez (2005, pp. 372–373).
Actually, if a simulation run takes much computer time, then saturated

designs are attractive (whereas the designs in Table 2.5 are not saturated).
Rechtschaffner (1967) includes saturated fractions of two-level (and three-
level) designs; see Table 2.6. Their construction is simple: the generators
are permuted in the different input combinations; see the design for k = 4
inputs in Table 2.7. These designs are not orthogonal. Qu (2007) further
investigates the statistical properties of Rechtschaffner’s designs.

Exercise 2.12 Compute the variances of the estimated regression param-
eters that result from the design in Table 2.7, assuming σ2

w = 1. What
would these variances have been, had there been an orthogonal saturated
R-V design for k = 4?

Rechtschaffner’s type of design is applied in the following example.

Example 2.7 The Dutch OR Society organized a competition, challenging
the participants to find the combination of k = 6 inputs that maximizes the
output of a simulated system. This challenge was accepted by twelve teams
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Combination Generator 1 2 3 4
1 (−1, . . . ,−1) −1 −1 −1 −1
2 (−1,+1, . . . ,+1) −1 +1 +1 +1
3 +1 −1 +1 +1
4 +1 +1 −1 +1
5 +1 +1 +1 −1
6 (+1,+1,−1, . . . ,−1) +1 +1 −1 −1
7 +1 −1 +1 −1
8 +1 −1 −1 +1
9 −1 +1 +1 −1
10 −1 +1 −1 +1
11 −1 −1 +1 +1

TABLE 2.7. Rechtschaffner’s design for four inputs

from academia and industry. Because each team was allowed to run only
32 combinations, Kleijnen and Pala (1999, Table 1) uses Rechtschaffner’s
saturated R-V design; so the number of combinations is n = 1 + 6 + 6
(6− 1)/2 = 22.

2.8 Linear Regression: Second-Order
Polynomials

A second-order polynomial may be a better metamodel as the experimental
area of the simulation experiment gets bigger or the I/O function of the
underlying simulation model gets more complicated; see the Taylor series
expansion of a function about a point given by a specific input combination.
An example is the M/M/1 simulation, in which—for higher traffic rates
x—a better metamodel than the first-order polynomial defined in Eq. (2.8)
seems

y = β0 + β1x+ β2x
2 + e. (2.54)

Obviously, estimation of the three parameters in Eq. (2.54) requires the
simulation of at least three input values. Indeed, practitioners often use a
one-at-a-time design with three values per input (they even do so, when
fitting a first-order polynomial; Example 2.2 showed that such a design
is inferior compared with a factorial design). DOE also provides designs
with three values per input; e.g., 3k designs. However, more popular in
simulation are central composite designs (CCDs), which usually have five
values per input; see Sect. 2.9 below.
We emphasize that second-order polynomials such as Eq. (2.54) are non-

linear in x (independent regression variables) but linear in β (regression
parameters). Consequently, second-order polynomial metamodels remain
linear regression models, which were specified in Eq. (2.10).
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FIGURE 2.6. A CCD for two inputs

The general second-order polynomial metamodel in k factors is

y = β0 +

k∑

j=1

βjxj +

k∑

j=1

k∑

j′≥j

βj;j′xjxj′ + e. (2.55)

Obviously, this metamodel adds k purely quadratic effects βj;j to Eq. (2.48);
consequently, q (number of effects) becomes (k +1)(k+ 2)/2. Substitution
of the linear transformation defined in Eq. (2.39) into Eq. (2.55) gives the
metamodel in the original input values. The purely quadratic effects βj;j

quantify diminishing or increasing rates of return. In practice, second-order
polynomials are applied either locally or globally. Local fitting may be
used when searching for the optimum input combination; an example is
Example 2.7. We shall return to simulation optimization in Chap. 6. Global
fitting (e.g., an M/M/1 queueing model with a traffic rate x such that
0 < x < 1) using second-order polynomials has indeed been applied, but in
general Kriging provides better metamodels; see Chap. 5.

2.9 Designs for Second-Degree Polynomials:
Central Composite Designs

A CCD enables LS estimation of all the effects in a second-order polyno-
mial, assuming all effects of higher order are zero. More precisely, a CCD
augments a R-V design such that the purely quadratic effects can also be
estimated. Figure 2.6 gives a possible CCD for k = 2 standardized inputs
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denoted by x1 and x2. In general, a CCD consists of the following combi-
nations of the standardized inputs:

• a R-V design or a design of higher resolution (see Sect. 2.7);

• the central point (0, . . . 0)′;

• the 2k axial points, which form a so-called star design, where the
“positive” axial point for input j (j = 1, . . . , k) is xj = c while all
other (k − 1) inputs are fixed at the center so xj′ = 0 (j′ = 1, . . . , k
and j′ 	= j), and the “negative” axial point for input j is xj = −c
and xj′ = 0.

If we select the appropriate value c for the axial points, then we obtain a
so-called rotatable design; i.e., if e is white noise, then the CCD gives a con-
stant variance for the predicted output at a fixed distance from the origin
(so the contour functions for these variances are circles). Such a rotatable

design requires c = n
1/4
V where nV denotes the number of combinations in

the R-V fractional factorial design that is part of the CCD; see Myers et al.
(2009, pp. 307). Obviously, if c 	= 1, then a CCD has five values per input;
if c = 1, then a CCD has only three values per input.
A CCD does not give an orthogonal X, so the estimated parameters of

the second-degree polynomial are correlated. Letting nCCD denote the total
number of combinations in a CCD, we obtain nCCD = nV + 1 + 2k; e.g.,
Fig. 2.6 with k = 2 implies nCCD = 22 + 1 + 2 × 2 = 9. (For k = 120, the
design in Sanchez and Sanchez (2005) implies nCCD = 32,768 + 1 + 2 ×
120 = 33,009.) Most experiments with real systems or random simulation
models replicate only the central point, to estimate the common variance σ2

e

and to compute the lack-of-fit F -statistic defined in Eq. (2.31). For further
discussion of CCDs, we refer to Myers et al. (2009, pp. 296–317) and to
NIST/SEMATECH’s e-handbook of statistical methods on the website
http://www.itl.nist.gov/div898/handbook/

Exercise 2.13 By definition, a rotatable CCD gives a constant variance
for the predicted output at a given distance from the origin. Will this con-
stant variance increase or decrease as the output is predicted at a distance
farther away from the origin?

CCDs are rather inefficient because they use inefficient R-V designs and
add 2k axial points so—together with the center point—CCDs use five
(or three if c = 1) values per input. Therefore, Example 2.7 simulates
only half of the star design; e.g., if the better outputs seem to lie in the
southwestern corner of Fig. 2.6, then it is efficient to simulate only the two
points (−c, 0)′ and (0,−c)′. We have already emphasized that classic R-V
designs are very inefficient, so we prefer Rechtschaffner’s saturated designs.
Kleijnen (19857, pp. 314–316) presents three other types of saturated de-
signs for second-order polynomials; namely, Koshall, Scheffé, and Notz de-
signs. Furthermore, Draper and Lin (1990) also presents small designs for

http://www.itl.nist.gov/div898/handbook/


66 2. Classic Regression Metamodels and Their Designs

such polynomials. More designs for second-order polynomials are surveyed
in Barton and Meckesheimer (2006) and Khuri and Mukhopadhyay (2010).
However, we are not aware of any simulation applications of these designs.

Exercise 2.14 Select a model with a known unconstrained optimum in
your favorite literature (e.g., the Operations Research/Management Sci-
ence literature on inventory management). Fit a second-order polynomial
in the neighborhood of the true optimum, using the standardized and the
original input values, respectively. To fit this polynomial, use a design that
enables unbiased estimation of all the coefficients of this polynomial; e.g., a

CCD with axial points with a standardized value equal to c = n
1/4
V . Replicate

only the center point of this design m > 1 times. Next estimate the opti-
mal input and output of this simulation model, using the fitted polynomial
with standardized and original values, respectively. Furthermore, you should
estimate the optimal input and output using the full and the reduced meta-
model, respectively, where the reduced model eliminates all nonsignificant
effects in the full model—except for those nonsignificant effects that in-
volve inputs that have significant higher-order effects; e.g., if the estimated
main effect β̂1 is not significant, but β̂1;2 is, then β̂1 is not set to zero (see
the heredity assumption in Wu and Hamada (2009)). Check whether the
estimated optimal input combination lies inside the experimental area.

2.10 Optimal Designs and Other Designs

In this section we shall discuss various optimality criteria for selecting a
design, and we shall mention some more design types besides the designs we
discussed in the preceding sections; namely, two-level designs of resolution
III, IV, and V and the CCDs.

2.10.1 Optimal Designs

Below Eq. (2.46) we mentioned that Box (1952) proves that the variances of

β̂j with j = 1, . . . , q are minimal if X is orthogonal. Now we might wonder
whether orthogonal designs are “optimal”; consequently, we might wonder
whether nonorthogonal CCDs are not optimal. However, this raises the
question: what is an optimal design? The DOE literature discusses the fol-
lowing optimality criteria, which include the so-called alphabetic optimality
criteria (A, D, and G).

• A-optimality: minimize the trace of Σβ̂. Obviously, this criterion is
related to minimizing the individual variances of the estimated re-
gression parameters, Var(β̂j). The A-optimality criterion neglects the
off-diagonal elements of Σβ̂; these elements are incorporated in the
following criterion.
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• D-optimality: minimize the determinant of Σβ̂.

• G-optimality: minimize the maximum variance of the regression pre-
dictor, Var(ŷ) with ŷ defined in Eq. (2.12).

• IMSE-optimality: integrated mean squared error means minimization
of the MSE integrated over the experimental area, with MSE defined
in Eq. (2.20); related to the MSE criterion is the root MSE, RMSE =√
MSE.

This literature shows that optimal designs do not need to be orthogonal;
i.e., these designs may give correlated β̂j .
Note: Actually, there is quite some literature on optimal designs. A clas-

sic article is Kiefer and Wolfowitz (1959), and a classic textbook is Fedorov
(1972); recent updates are Fedorov and Leonov (2013) and Pronzato and
Zhigljavsky (2009). An article on optimal designs specifically for simula-
tion is Bursztyn and Steinberg (2006). Algorithms for the construction of
“optimal” designs can be found on the Internet; see
http://optimal-design.biostat.ucla.edu/optimal/home.aspx

and
http://www.itl.nist.gov/div898/handbook/pri/section5/pri521.

htm.
Algorithms for the construction of optimal designs assume a given n

(total number of combinations) and a specified metamodel; e.g., a first-
order polynomial. Other approaches allow for sequential designs (so n is not
fixed) and competing metamodels (e.g., first-order and second-order poly-
nomials). Selecting a metamodel among competing models is called model
discrimination. Tommasi (2009) discusses various optimal-design criteria
for model discrimination and parameter estimation.
We shall return to algorithms for the construction of optimal designs

in the chapters on Kriging (Chap. 5) and optimization (Chap. 6). We may
also use such algorithms to find design types that have the characteristics
discussed next.

2.10.2 More Design Types

The DOE literature gives many more design types. For example, R-V de-
signs enable the estimation of all k(k − 1)/2 two-factor interactions, but
some designs enable the estimation of specific two-factor interactions only—
besides the k first-order effects and the intercept.
Note: Ghosh and Tian (2006) assumes that not all two-factor interac-

tions are important; this reference investigates how to discriminate among
regression models with different subsets of two-factor interactions. A recent
article including references to more publications and software is Grömping
(2013).

http://optimal-design.biostat.ucla.edu/optimal/home.aspx
http://www.itl.nist.gov/div898/handbook/pri/section5/pri521.htm
http://www.itl.nist.gov/div898/handbook/pri/section5/pri521.htm
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We may be interested in the identification and estimation of higher-order
effects (e.g., third-order effects and thresholds)—in addition to the second-
order effects. MacCalman et al. (2013) focuses on sensitivity
analysis through metamodels for random simulation models, using a nearly-
orthogonal type of Latin hypercube sampling (LHS); we shall further
discuss LHS in Sect. 5.5. The resulting LHS designs for 3 ≤ k ≤ 12 inputs
are catalogued at
http://harvest.nps.edu.

This website gives many more design types for simulation studies at the
Naval Postgraduate School (NPS) in Monterey, California.
In mixed-level designs, some inputs have two levels, some inputs have

three levels, etc.; e.g., some inputs are qualitative with more than two
levels and some inputs are quantitative with two levels. A textbook that
includes mixed-level designs is Wu and Hamada (2009); a recent article is
Vieira et al. (2013).
The DOE literature gives many details on blocked designs. Such block-

ing is important in real-life experiments, but not in simulation experiments.
Indeed, in real life the environment cannot be controlled, which may lead
to effects such as learning effects during experimentation involving hu-
mans, and extra wear during experiments with car tires (the right-front
tire may wear more than any of the other three tires). In simulation exper-
iments, however, such undesired effects do not occur because everything is
completely controlled—except for the PRNs. Antithetic random numbers
(ARN) and CRN can be used as a block factor, as originally proposed by
Schruben and Margolin (1978) and later on extended in Chih (2013) and
Song and Chiu (2007).
In weighing designs—also called mixture designs—the input values sum-

up to 100%; e.g., chemical experiments may involve inputs that denote
the proportion of chemicals used to produce a specific product; see the
textbooks Cornell (2011) and Sinha et al. (2014), and the recent article
Ceranka and Graczyk (2013).
Usually the experimental area is a k-dimensional rectangle or—if the in-

puts are standardized—a square. Some applications, however, have exper-
imental areas that do not have simple “box” constraints, but more general
constraints such that the experimental areas have different shapes. For ex-
ample, Kleijnen et al. (1979) includes a specific polygon experimental area
because the harbor simulation has inputs with values such that the traffic
rate remains smaller than 100%.

2.11 Conclusions

In this chapter we explained linear regression metamodels—especially first-
order and second-order polynomials augmented with white noise—and the
corresponding statistical designs—namely, designs of resolution III, IV, and

http://harvest.nps.edu
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FIGURE 2.7. Input A with three levels

V, and designs called CCDs. We also discussed the lack-of-fit F -test for the
validation of the estimated metamodel. In the next chapter, we shall drop
the white-noise assumption and discuss the consequences.

Appendix 1: Coding of Nominal Inputs

To illustrate how to represent nominal inputs with two or more levels,
Kleijnen (1975, p. 299) discusses an example with two inputs, called A and
B; input A has three levels, B has two levels, and there are no replications
(so mi = 1). So the matrix of independent variables in the general linear
regression model defined in Eq. (2.10) is

X =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
(2.56)

where column 1 corresponds with the dummy input, columns 2 through 4
correspond with input A, and columns 5 and 6 with input B. Row 1 means
that in input combination 1, A is at its first level and B is also at its first
level. Row 2 means that in combination 2, A is still at its first level, but
B is at its second level. Row 3 means that in combination 3, A is at its
second level, and B is at its first level. And so on, until the last combination
(row 6) where A is at its third level, and B is at its second level.
This example implies that the column of regression parameters in Eq.

(2.10) becomes β = (β0, β
A
1 , β

A
2 , β

A
3 , β

B
1 , βB

2 )′. If w denotes the simulation
output, then β0 is the overall or grand mean:

β0 =

∑3
i=1

∑2
j=1 E(wi;j)

6
. (2.57)



70 2. Classic Regression Metamodels and Their Designs

FIGURE 2.8. Input B with two levels only

The main effect of A at level i is

βA
i =

∑2
j=1 E(wi;j)

2
− β0 (i = 1, 2, 3) (2.58)

—also see Fig. 2.7—and the main effect of B at level j is

βB
j =

∑3
i=1 E(wi;j)

3
− β0 (j = 1, 2); (2.59)

see Fig. 2.8, especially the Legend sub 1. Equations (2.57)–(2.59) give the
following two constraints:

βA
1 + βA

2 + βA
3 = 0 (2.60)

and

βB
1 + βB

2 = 0, (2.61)

because the three main effects of A are defined as the deviations from the
average response, as is illustrated in Fig. 2.7 where this average is the dotted
horizontal line; for B a similar argument applies.
If an input is quantitative, then interpolation makes sense; see the dashed

line that connects the two responses in Fig. 2.8, especially the legend sub 2.
(Input A seems to require a second-order polynomial.) Now we may use
the coding that gives −1 and +1 discussed in Sect. 2.3.1 (instead of 0 and
+1, used so far in this appendix). Then β0 becomes the intercept of the
polynomial, βB becomes the marginal effect ∂E(w)/∂B (which is an ele-
ment of the gradient) or the slope of the first-order polynomial, etc. If the
inputs have two levels only, then an alternative definition also makes sense;
see the legend sub 3 in the plot. This alternative defines “the” effect of an
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input not as the deviation from the average, but as the difference between
the two mean outputs averaged over all levels of the other inputs:

βB =

∑3
i=1 E(wi1)

3
−
∑3

i=1 E(wi2)

3
. (2.62)

This definition gives values twice as big as the original definition.
The 6× 6 matrix X in Eq. (2.56) does not have full rank; e.g., summing

the columns 2 through 4 or the columns 5 and 6 gives column 1. It can be
proven that the rank of X is only four. The normal equations defined in
Eq. (2.14) together with the two constraints in Eq. (2.60) and Eq. (2.61) give

the unique LS estimate β̂; see Bayhan (2004) and its references to classic
textbooks. Analysis-of-variance (ANOVA) software uses these
computations.

Appendix 2: Manipulating the Generators

Following the DOE literature, we demonstrate some manipulations with
design generators. Table 2.1 specified the 23−1

III design with the generator 3 =
1.2. Remember that 3 = 1.2 stands for xi3 = xi1xi2 with i = 1, . . . , n. So
postmultiplying both sides of xi3 = xi1xi2 by xi3 gives (xi3)

2 = xi1xi2xi3.
Because xi3 is either −1 or +1 in a 2k−p design, we may write (xi3)

2 = +1.
Hence, xi1xi2xi3 = +1. Moreover, the dummy input corresponding with the
intercept β0 implies xi0 = +1. So, xi1xi2xi3 = xi0; i.e., the estimates β̂0

and β̂1;2;3 are identical. The DOE literature calls β̂0 and β̂1;2;3 confounded

or aliased. It is quite easy to prove that E(β̂0) = β0+β1;2;3. So, if β1;2;3 = 0,

then β̂0 is unbiased. Actually, in this book we always start our experiments
with the (tentative) assumption that high-order interactions are zero; see
Algorithm 1.1.
The DOE literature also writes these manipulations in short-hand nota-

tion, using the mathematical function mod(2). Let us start again with the
generator 3 = 1.2. Postmultiplying both sides with 3 gives 3.3 = 1.2.3
or 32 = 1.2.3. Applying mod(2) to the exponent gives 30 = 1.2.3 where
30 = I with I denoting a column with n ones; in this appendix, we fol-
low the DOE literature and use the symbol I instead of 1n because 1n or
briefly 1 may be confused with 1, the column for input 1. So 1.2.3 = I,
which means that β̂1;2;3 and β̂0 are confounded. The DOE literature calls
I = 1.2.3 the defining relation. It can be proven that in a 2k−p design this
relation has 2p members—called words.
Similar manipulations can be used to derive that more effects are con-

founded in this example. Let us start again with the generator 3 = 1.2 or
I = 1.2.3. So (2.3)I = (2.3)(1.2.3) = 1.22.32 = 1.20.30 = 1.I.I = 1. So

2.3 = 1, which implies E(β̂1) = β1 + β2;3. However, Table 2.1 is a 23−1
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design with 3 = 1.2, so we assume that a first-order polynomial (no inter-
actions) is valid so this 23−1 design is a R-III design. Likewise, it is easy
to derive that 1.3 = 2. Summarizing these equations—in the order of the
main effects—gives 1 = 2.3, 2 = 1.3, and 3 = 1.2.
Table 2.2 gave the 23−1 design with the generator 3 = −1.2. It is easy

to derive that this generator implies 1 = −2.3, 2 = −1.3, and 3 = −1.2,
so E(β̂1) = β1 − β2;3, E(β̂2) = β2 − β1;3, and E(β̂3) = β3 − β1;2.

Another example is the 27−4 design in Table 2.3. This design has p = 4
generators; namely, 4 = 1.2, 5 = 1.3, 6 = 2.3, and 7 = 1.2.3. Hence
I = 1.2.4 = 1.3.5 = 2.3.6 = 1.2.3.7. So 1 = 2.4 = 3.5 = 1.2.3.6 = 2.3.7.
If we assume that high-order interactions are zero, then the latter equations
reduce to 1 = 2.4 = 3.5. Analogously, we derive that the other first-
order effect estimators are not confounded with any other first-order effect
estimators; the first-order effect estimators are confounded with two-factor
interaction estimators. So this 27−4 design is a R-III design.

Exercise 2.15 Derive the expected value of the first-order effect estimator
for input 2 in a 27−4 design with the generators 4 = 1.2, 5 = 1.3, 6 = 2.3,
and 7 = 1.2.3, assuming that all high-order interactions are zero.

A R-IV design for k = 7 inputs may be constructed by adding the mirror
design of the preceding 27−4

III design. This gives a design with n = 16 com-
binations. Kleijnen (1975, pp. 336–344) shows how to derive the generators

of a 2k−p
IV design. Furthermore, n = 16 combinations give a R-IV design for

eight inputs, denoted as a 28−4
IV design; i.e., we may study one extra input

when we augment the 27−4
III with its mirror design.

In general, adding the mirror design to a R-III design for k inputs gives a
R-IV design for k+1 inputs with nIV = 2nIII and nIII a multiple of four,
possibly a power of two. For example, k = 11 requires a Plackett-Burman
R-III design with nIII = 12 combinations; see Eq. (2.4). So a R-IV design
with nIV = 24 combinations enables the estimation of k = 12 first-order
effects unbiased by two-factor interactions.
A final example is a 28−2 design. Obviously, this design has two gener-

ators. A possible generator is 7 = 1.2, but this generator gives I = 1.2.7
so 1 = 2.7, 2 = 1.7, and of course 7 = 1.2. Another bad generator is
7 = 1.2.3, because this generator implies I = 1.2.3.7 so 1.2 = 3.7, etc.
In general, a better selection avoids aliasing two-factors interactions, first-
order effects, and the intercept. Therefore the generators should multiply
more than two inputs; e.g., 7 = 1.2.3.4 and 8 = 1.2.5.6, which imply
I = 1.2.3.4.7 = 1.2.5.6.8 = 3.4.5.6.7.8 where the last equality follows
from multiplying the first two members of the identity relation. Hence,
these two generators confound two-factor interactions with interactions
among three or more inputs—the latter (high-order) interactions are as-
sumed to be zero, in this book.
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Exercise 2.16 Prove that if there are k = 7 inputs, then 6 = 1.2.3.4.5
and 7 = 1.2.3.4 imply confounding of first-order effects and two-factor
interactions; e.g., 5 = 6.7.

Solutions of Exercises

Solution 2.1 log(y) = β0 + β1 logλ+ . . . so y = eβ0+β1 log λ+.... Hence

d

dλ
(eβ0+β1 log λ) = β1e

β0λβ1−1,

which upon substitution into the expression for the elasticity coefficient
(dy/dλ)(λ/y) gives

(β1e
β0λβ1−1)(λ/eβ0+β1 log λ) = λβ1

eβ0

eβ0+(lnλ)β1
λβ1−1,

which after some manipulation reduces to β1.

Solution 2.2 E(β̂) = L[E(w)] = (X′X)−1X′[Xβ] = (X′X)−1(X′X)
β = β.

Solution 2.3 Σβ̂ = LΣwL
′ = [(X′X)−1X′][σ2

wI][(X
′X)−1X′]′. Because

(X′X)−1 is symmetric, this expression becomes [(X′X)−1X′][X(X′X)−1]
σ2
w = (X′X)−1(X′X)(X′X)−1)σ2

w = (X′X)−1)σ2
w.

Solution 2.4 Equation (2.1) can be written in matrix notation as w = Lw
with L = (1, . . . , 1)/c and w = (w1, . . . , wc)

′. The assumption of wait-
ing times being independent with constant variance σ2 gives Σw = σ2I.
Combining this result with Eq. (2.17) gives Var(w) = [(1, . . . , 1)/c][σ2I]
[(1, . . . , 1)′/c] = σ2[(1, . . . , 1)/c][(1, . . . , 1)′/c] = σ2[c/(c2)] = σ2/c.

Solution 2.5 Program this Monte Carlo model, and experiment with this
model and variations on this model. These are the results that we found:

(a) γ̂0 = 80.84 and γ̂1 = 16.00

(b) β̂0 = 168.84 and β̂1 = 56.92

(c) F5−2;5×(4−1) = 9.68 > F3;15;0.90 = 2.48 so lack-of-fit is significant

(d) γ̂0 = 100.97, γ̂1 = 5.00 and γ̂2 = 1.00 (extremely close to the true
values γ0 = 100.00, γ1 = 5.00 and γ2 = 1.00 ); F5−3;5×(4−1) =
2.0455E−28 < F2;15;0.90 = 2.69 (Note: F2;15;0.90 = 2.69 > F3;15;0.90 =
2.48; see (c))

(e) γ̂0 = 70.89 and γ̂1 = 16.00; F3−2;3×(4−1) = 0.0034 < F1;9;0.90 = 3.36
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(f) γ̂0 = 74.09 and γ̂1 = 16.00; F3−2;3×(4−1) = 1.38 < F1;9;0.90 = 3.36

(g) γ̂0 = 67.97 and γ̂1 = 16.50; the numerator of F2−2;3×(4−1) has zero
degrees of freedom so no lack-of-fit test is possible.

Solution 2.6 Equation (2.18) implies Σβ̂ = (X′X)
−1

σ2
w. Suppose σ2

w = 1
and

X =

[
1 l
1 u

]
.

Then

X′X =

[
1 1
l u

] [
1 l
1 u

]
=

[
2 l + u

l + u l2 + u2

]

so

(X′X)
−1

=

[
l2+u2

−2lu+l2+u2
−l−u

−2lu+l2+u2

−l−u
−2lu+l2+u2

2
−2lu+l2+u2

]

so

V ar(β̂1) =
2

−2lu+ l2 + u2
=

2

(u− l)2
.

This variance is minimal if the denominator (u − l)2 is maximal, which
occurs if l and u are as far apart as possible.

Solution 2.7 The experimental area 0.2 ≤ z ≤ 0.5 implies a = (0.2 +
0.5)/(0.2 − 0.5) = −2. 333 and b = 2/(0.5 − 0.2) = 6.667. Hence x =
−2.333 + 6.667z so xmin = −2.333 + (6.667)(0.2) = −1 and xmax =
−2.333 + (6.667)(0.5) = 1. Further, z = 0.3 implies x = −2.333 + (6.667)
(0.3) = −0.333. Likewise z = 0.4 implies x = −2.333 + (6.667)(0.4) =
0.333.

Solution 2.8 The average zj is a constant determined before the experi-
ment is carried out; if the design is balanced, then zj = (lj + uj)/2. Hence,
the marginal effect of zj is δj. The total effect over the range of zj is
δj(uj − lj) = 2βj.

Solution 2.9 The design matrix is a 16 × 15 matrix with all elements
either −1or +1; to verify that you correctly applied the algorithm, you can
use a computer to check that each column has exactly 8 pluses (balanced
design), and that all 15× 14/2 = 105 columns are orthogonal.
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Solution 2.10 The solution depends on the simulation model that you
selected.

Solution 2.11 Table 2.3 gives the following table:

Combination 1 2 3 4 5 6 7
1 − − − + + + −
2 + − − − − + +
3 − + − − + − +
4 + + − + − − −
5 − − + + − − +
6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

so adding its mirror design and adding the column 6.7 for the interaction
β6;7 gives the augmented design

Combination 1 2 3 4 5 6 7 6.7
1 − − − + + + − −
2 + − − − − + + +
3 − + − − + − + −
4 + + − + − − − +
5 − − + + − − + −
6 + − + − + − − +
7 − + + − − + − −
8 + − − + + + + +
9 + + + − − − + −
10 − + + + + − − +
11 + − + + − + − −
12 − − + − + + + +
13 + + − − + + − −
14 − + − + − + + +
15 + − − + + − + −
16 − − − − − − − +

so it is easy to check that the column 6.7 is balanced and orthogonal to the
columns 6 and 7
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Solution 2.12 Adding the dummy column for the intercept to
Rechtschaffner’s design gives

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 −1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1
1 1 1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1
1 −1 1 1 −1
1 −1 1 −1 1
1 −1 −1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so

X′X =

⎡

⎢⎢⎢⎢⎣

11 1 1 1 1
1 11 −1 −1 −1
1 −1 11 −1 −1
1 −1 −1 11 −1
1 −1 −1 −1 11

⎤

⎥⎥⎥⎥⎦

so

(X′X)
−1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
21 − 1

84 − 1
84 − 1

84 − 1
84

− 1
84

2
21

1
84

1
84

1
84

− 1
84

1
84

2
21

1
84

1
84

− 1
84

1
84

1
84

2
21

1
84

− 1
84

1
84

1
84

1
84

2
21

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whereas an orthogonal design matrix and σ2
w = 1 would imply Var(β̂j) =

1/n = 1/11 = 0.09 < 2/21 = 0.95.

Solution 2.13 The variance of the predicted output increases as the input
combination moves away from the center of the experimental area. (Also
see the discussion on steepest ascent in Sect. 6.2.3.)

Solution 2.14 The answer depends on the simulation model that you se-
lect. Because you select a model with a known optimal solution, you can
easily examine the performance of the CCD.

Solution 2.15 I = 1.2.4 = 1.3.5 = 2.3.6 = 1.2.3.7 implies 2 = 1.4 =
1.2.3.5 = 3.6 = 1.3.7. Assuming zero high-order effects, we obtain 2 =
1.4 = 3.6 so E(β̂2) = β2 + β1;4 + β3;6.

Solution 2.16 6 = 1.2.3.4.5 implies I = 1.2.3.4.5.6, and 7 = 1.2.3.4
implies I = 1.2.3.4.7. So 6.7 = (1.2.3.4.5)(1.2.3.4) = 5.
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3
Classic Assumptions Versus
Simulation Practice

This chapter is organized as follows. Section 3.1 summarizes the classic
assumptions of regression analysis, which were given in the preceding chap-
ter. Section 3.2 discusses multiple simulation outputs (responses, perfor-
mance measures), which are usual in simulation practice. Section 3.3 ad-
dresses possible nonnormality of either the simulation output itself or the
regression residuals (fitting errors), including tests of normality, normalizing
transformations of the simulation output, and jackknifing and bootstrap-
ping of nonnormal output. Section 3.4 covers variance heterogeneity of
the simulation output, which is usual in random simulation. Section 3.5
discusses cross-correlated simulation outputs created through common ran-
dom numbers (CRN); the use of CRN is popular in random simulation.
Section 3.6 discusses the validation of estimated regression models, includ-
ing the coefficient of determination R2 and the adjusted coefficient R2

adj,
and cross-validation; this section also discusses how classic low-order poly-
nomial metamodels (detailed in the preceding chapter) may be improved
in practice. Section 3.7 summarizes the major conclusions of this chapter.
The chapter ends with solutions for the exercises, and a long list with
references for further study.
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3.1 Introduction

In this chapter, we examine the assumptions of classic linear regression
analysis and its concomitant designs that we discussed in the preceding
chapter. These assumptions stipulate a single type of output (univariate
output) and white noise. In practice, however, these assumptions usually
do not hold. Indeed, many simulation models give multiple responses or—
in statistical jargon—a multivariate random variable. One example is the
simple M/M/1 simulation model (see Definition 1.4), which may have as
outputs both the mean waiting time and the (say) 90% quantile of the
waiting time distribution (in practice, such a quantile may be more impor-
tant than the mean). A second related example is the M/M/1 simulation
model that has as outputs the mean waiting time and the mean queue
length. More examples will follow in Sect. 3.2. White noise was defined in
Definition 2.3 and was used many times in the preceding chapter; for the
reader’s convenience we repeat this definition.

Definition 3.1 White noise (say) u is normally, independently, and iden-
tically distributed (NIID) with zero mean: u ∼NIID(0, σ2

u).

This definition implies the following assumptions.

• Normally distributed simulation responses

• No use of CRN across the (say) n combinations of inputs (factors)

• Homogeneous variances; i.e., the variances of the simulation outputs
remain constant across the n input combinations

• Valid metamodel so the estimated metamodel has zero mean residuals.

In this chapter, we shall try to answer the following questions:

1. How realistic are the classic assumptions in either deterministic or
random simulation?

2. How can we test these assumptions if it is not obvious that these
assumptions are violated (e.g., the use of CRN obviously violates the
independence assumption)?

3. If an assumption is violated, can we then transform the simulation’s
input/output (I/O) data so that the assumption holds for the trans-
formed data?

4. If we cannot find such a transformation, which statistical methods
can we then apply?

The answers to these questions are scattered throughout the literature on
statistics and simulation; in this chapter, we try to answer these questions
in a coherent way. We focus on random simulation, but we also briefly
discuss deterministic simulation.
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3.2 Multivariate Output

In practice, simulation models often give multiple outputs. We shall discuss
the consequences for deterministic simulation, in the last paragraph of
Sect. 3.2.1. In the rest of this section we focus on random simulation with
multivariate output.
Examples are inventory simulations ; a classic inventory model is the

(s, S) model defined in Definition 1.5. Practical inventory simulations often
have the following two outputs:

1. the sum of the holding costs and the ordering costs, averaged over
the simulated periods;

2. the service (or fill) rate, averaged over the same simulation periods.

The precise definitions of these two outputs vary in practice. For exam-
ple, the holding costs may have fixed and variable components; the ser-
vice rate may be the fraction of total demand per year that is delivered
from the stock at hand. Academic inventory simulations often have a sin-
gle output; namely, the total costs including out-of-stock costs. In practice,
however, these out-of-stock costs are hard to quantify; e.g., what are the
costs of loss-of-goodwill? Therefore, inventory simulations often have the
two outputs listed above. Moreover, in practice the inventory managers
may have to control hundreds or thousands of inventory items or “stock
keeping units (SKUs)”. Further discussion can be found in simulation text-
books such as Law (2015) and in many Management Science/Operations
Research (MS/OR) textbooks.
A case study with multiple simulation responses is the decision support

system (DSS) for the production planning of steel tubes based on a simu-
lation model, presented in Kleijnen (1993). In the beginning of that study
the simulation had a multitude of outputs; however, to support decision
making it turned out that it suffices to consider only the following two
(random) outputs:

1. the total production of steel tubes manufactured, which is of major
interest to the production manager;

2. the 90% quantile of delivery times, which is the sales manager’s major
concern.

In Eq. (2.6) we have already formulated the general black-box equation,
which we repeat now:

w = fsim(d1, . . . , dk, r0) = fsim(d, r0) (3.1)

where w = (w1, . . . , wr)
′ denotes the vector with the (say) r types of

simulation outputs; fsim(.) denotes the mathematical function defined by



86 3. Classic Assumptions Versus Simulation Practice

the simulation computer code implementing the given simulation model;
dj(j = 1, . . . , k) is input j of the computer code; in deterministic simulation,
r0 denoting the vector with the seeds of the pseudorandom number (PRN)
streams vanishes; the k inputs are collected in the vector d = (d1, . . . , dk)

′.
We let D = (di;j) denote the design matrix for the simulation experiment,
with i = 1, . . . , n and n the number of input combinations in that experi-
ment. For simplicity of notation and explanation we assume in this section
that the number of replications is mi = 1.

3.2.1 Linear Regression Metamodels

Analogous to Eq. (2.10) in the preceding chapter (with a single type of sim-
ulation output so r = 1), we now assume that the multivariate I/O function
fsim(.) in Eq. (3.1) is approximated by r univariate linear regression meta-
models (e.g., low-order polynomials):

yh = Xhβh + eh with h = 1, . . . r (3.2)

where yh = (y1;h, . . . , yn;h)
′ denotes the n-dimensional vector with the

dependent variable yh corresponding with simulation output type h; n de-
notes the number of simulated input combinations; Xh = (xi;j;h) denotes
the n × qh matrix of independent regression variables with xi;j;h denot-
ing the value of independent variable j in combination i for metamodel
h (i = 1, . . . , n; j = 1, . . . , qh); βh = (β1;h, . . . , βqh;h)

′ denotes the vector
with the qh regression parameters for metamodel h; eh = (e1;h, . . . , en;h)

′

denotes the n-dimensional vector with the residuals of metamodel h, in the
n combinations. Usually column 1 of Xh equals 1n = (1, . . . , 1)′, which
denotes a vector with n ones corresponding with the intercept β1;h (often
denoted as β0;h) and columns 2 through 1 + k equal di;1 through di;k. For
simplicity we might assume that all the r fitted regression metamodels are
polynomials of the same order (e.g., second-order), so Xh = X and qh = q.
Altogether, multivariate regression analysis requires a rather complicated
notation.
The literature uses the following terminology: if q > 1 and the metamodel

has an intercept, then the metamodel is called a multiple regression model;
if r > 1, then the metamodel is called a multivariate regression model.
A multivariate linear regression model violates the classic assumptions, as
the following simplistic example illustrates.

Example 3.1 Consider only two input combinations, so n = 2. Suppose
further that each combination gives three outputs, so r = 3. Furthermore,
suppose that the simulation is random and does not use CRN. Finally, sup-
pose that the variances and covariances do not vary over the n combina-
tions. These assumptions give the following covariance matrix, where we
display only the elements on and above the main diagonal because covari-
ance matrixes are symmetric:
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Σe =

⎡

⎢⎢⎢⎢⎢⎢⎣

σ2
1 σ1;2 σ1;3 0 0 0

σ2
2 σ2;3 0 0 0

σ2
3 0 0 0

σ2
1 σ1;2 σ1;3

σ2
2 σ2;3

σ2
3

⎤

⎥⎥⎥⎥⎥⎥⎦
.

This example illustrates that multivariate residuals e have the following two
properties in random simulation (we shall discuss deterministic simulation
at the end of this subsection).

1. The residuals eh have variances that may vary with the type of simu-
lation output h so σ2

h 	= σ2. Practical examples are simulation models
that estimate inventory costs and service percentages; obviously, these
two output types have different variances.

2. The residuals eh and eh′ are not independent for a given input com-
bination i, because they are (different) transformations of the same
PRN stream; so if h 	= h′, then σh;h′;i 	= 0. Obviously, if these co-
variances (like the variances) do not vary with combination i, then
this property may be written as σh;h′;i = σh;h′ 	= 0 for h 	= h′. For
example, the seed vector r0 may give “unusual” PRN streams in a
given combination i so the inventory costs are “relatively high”—that
is, higher than expected—and the service percentage is also relatively
high; obviously, in this example the two outputs are positively corre-
lated so σh;h′> 0.

Because of these two properties (σ2
h 	= σ2 and σh;h′ 	= 0 for h 	= h′),

the classic assumptions do not hold. Consequently, it might seem that in
multivariate regression we need to replace classic ordinary least squares
(OLS) by generalized least squares (GLS); see Khuri and Mukhopadhyay
(2010). Such an approach tends to be rather complicated, because GLS
involves the covariance matrix Σe so simulation analysts may be daunted;
also see Gilbert and Zemč́ık (2006). Fortunately, Rao (1967) proves that if
Xh = X, then GLS reduces to OLS computed per type of output variable;
In this section we assume that Xh = X; e.g., we fit a (different) first-order
polynomial per type of simulation output h. Consequently, the best linear
unbiased estimator (BLUE) of βh in Eq. (3.2) is

β̂h = (X′X)−1X′wh (h = 1, . . . , r). (3.3)

References more recent than Rao (1967) are Markiewicz and Szczepańska
(2007) and Ruud (2000, p. 703).
Given Eq. (3.3), we can easily obtain confidence intervals (CIs) and sta-

tistical tests for the regression parameters per output type; i.e., we may
use the classic formulas presented in the preceding chapter.
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Deterministic simulation gives residuals eh in Eq. (3.2) that certainly
violate the classic assumptions. Nevertheless, we may still fit the linear
metamodel defined in Eq. (3.2). To fit this model, we may still apply OLS,
using the mathematical distance measurement known as the L2 norm. This
norm is much more popular than the L1 and L∞ norms, because the L2

norm results in a linear estimator β̂ that is easy to compute and analyze
(also see the discussion below Eq. (2.14)). Obviously, these mathematical
norms differ from statistical norms such as the BLUE and the MLE (maxi-
mum likelihood estimator) criteria. These mathematical norms do not give
CIs and statistical tests; nevertheless, we may evaluate the quality of the
β̂h estimates defined in Eq. (3.3) through cross-validation, as we shall see
in Sect. 3.6.2.

3.2.2 Designs for Multivariate Simulation Output

To the best of our knowledge, there are no general one-shot (nonsequential)
designs for multivariate output; see Khuri and Mukhopadhyay (2010). Let
us consider a simple, artificial example that is inspired by Breukers (2006).

Example 3.2 Suppose we are interested in two types of simulation out-
put so r = 2 in Eq. (3.1), and the number of simulation inputs is 15 so
k = 15 in Eq. (3.1). First, we try to estimate the first-order effects, so
we use a resolution-III (R-III) design; namely, a 215−11 design defined in
Sect. 2.4. Suppose that after running this design, we find that the inputs
labeled 1 through 7 have important first-order effects for response type 1,
while the inputs labeled 6 through 15 have important first-order effects for
response type 2. In the next stage of our investigation, we want to esti-
mate the two-factor interactions between those inputs that have important
first-order effects in the first stage; i.e., we use the “strong heredity” as-
sumption, which states that if an input has no important first-order effect,
then this input does not interact with any other input; see Wu and Hamada
(2009). Because the number of possible two-factor interactions is k(k−1)/2,
this number sharply increases with k. In this example it is therefore effi-
cient to estimate the interactions in two separate experiments; namely, one
experiment per type of simulation output. So we split the original group
of k = 15 inputs into two subgroups; namely, one subgroup with k0 = 7
inputs for the simulation response labeled 1 and k1 = 10 inputs for the
simulation response labeled 2 where the inputs labeled 6 and 7 are mem-
bers of both subgroups. The original group with 15 inputs would require
1+ 15+ 15× (15− 1)/2 = 121 combinations at least (121 is a high number
of combinations; moreover, classic resolution-V designs are often not satu-
rated at all, so these designs require even more than 121 combinations; see
the detailed discussion in Sect. 2.7). Now the first subgroup requires at least
1 + 7 + 7× (7 − 1)/2 = 29 combinations, and the second subgroup requires
at least 1 + 10 + 10 × (10 − 1)/2 = 56 combinations. So, together the two
subgroups require at least 29 + 56 = 85 instead of 121 combinations; i.e., a
“divide and conquer” strategy turns out to pay off.
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3.3 Nonnormal Output

We repeat the comment in Sect. 3.2.1 (last paragraph); namely, OLS is a
mathematical criterion so OLS does not assume a normal (Gaussian) dis-
tribution. Only if we require statistical properties—such as BLUEs, CIs,
and tests—then we usually assume a normal distribution (alternative dis-
tributions corresponding to alternative criteria such as the L1 and the L∞
norms are discussed in Narula and Wellington, 2007). In this section we
try to answer the following questions (already formulated more generally
in Sect. 3.1):

1. How realistic is the normality assumption?

2. How can this assumption be tested?

3. How can the simulation output be transformed so that the normality
assumption holds?

4. Which statistical methods that do not assume normality, can be
applied?

3.3.1 Realistic Normality Assumption?

By definition, deterministic simulation models do not have a normally dis-
tributed output for a given input combination; actually, this output is a
single fixed value. Nevertheless, we often assume a normal distribution for
the residuals of the fitted metamodel. An example is the case study on
coal mining, using deterministic “system dynamics” simulation, in Kleij-
nen (1995). Another case study examines global heating caused by the CO2

greenhouse effect, using deterministic simulation, in Kleijnen et al. (1992).
We also refer to our discussion of deterministic simulation in the chapter on
Kriging (Chap. 5). Indeed, we might argue that so many things affect the
residuals that the classic central limit theorem (CLT) applies, so a normal
distribution is a good assumption for the residuals; we shall return to the
CLT below (immediately after Definition 3.2).
In this subsection we again focus on random simulation models. We need

the following definition, which uses notation σ|t−t′| such that σ|0| = σ2.

Definition 3.2 The time series (say) wt is a stationary process if it has a
constant mean E(wt) = μ, a constant variance Var(wt) = σ2, and covari-
ances that depend only on the so-called lag |t− t′| so cov(wt, wt′) = σ|t−t′|.

In practical and academic simulation models, the normality assumption
often holds asymptotically; i.e., if the “sample” size is large, then func-
tions of the random simulation data—in particular the sample average
of those data—give nearly normal output. Basic statistics books mention
that the CLT explains why an average is often normally distributed. The
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CLT assumes that this average has independent components. In simula-
tion, however, the output of a simulation run is often an average computed
over that run so the components are autocorrelated (serially correlated).
Fortunately, there are (sophisticated) variations of the CLT that explain
why and when this correlation does not destroy the normality of the av-
erage in many simulations. For example, Kim et al. (2007) discusses the
functional central limit theorem (FCLT) and gives references including the
classic textbook Billingsley (1968). Furthermore, the textbook Lehmann
(1999, Chap. 2.8) implies that the average of a stationary process remains
asymptotically normally distributed if the covariances tend to zero suffi-
ciently fast for large lags.
We add that in inventory simulations the output is often the costs av-

eraged over the simulated periods; this average is probably normally dis-
tributed. Another output of an inventory simulation may be the service per-
centage calculated as the fraction of demand delivered from on-hand stock
per (say) week, so “the” output is the average per year computed from these
52 weekly averages. This yearly average may be normally distributed—
unless the service goal is “close” to 100%, so the average service rate is cut
off at this threshold and the normal distribution is a bad approximation.
Quantiles of correlated or uncorrelated observations may be very nonnor-
mal, especially if they are rather extreme (such as the 99% quantile). We
point out that the t-statistic is quite insensitive to nonnormality, whereas
the F -statistic is more sensitive to nonnormality; see the many references
in the textbook Kleijnen (1987).

Example 3.3 Kleijnen and Van Beers (2013) investigates an M/M/1 sim-
ulation model; such a model has already been discussed in Example 1.2.
That investigation considers two outputs; namely, (i) the average, and
(ii) the 90% quantile of the waiting time, after simulating (say) T cus-
tomers. So the model generates a time series of length T or a vector output
w = (w1, . . . , wT )

′ with positively correlated scalar components wt. These
components have variances Var(wt) that increase as t increases, until the
steady state is reached (so Var(wt) becomes a constant that is independent
of t). The two performance measures are nonlinear functions of the traf-
fic rate x = λ/μ where λ and μ denote the arrival and the service rate,
respectively. The simulation does not start with w1 = 0 (the usual initial-
ization) but with w1 equal to the mean steady-state waiting time; i.e., the
experiment “cheats” and uses the analytical solution for the mean steady-
state waiting time. The reason for this initialization is that it accelerates
the convergence of the sample average to the steady-state mean; see Law
(2015, Figure 9.2). The two outputs of interest are (i) the steady-state
mean waiting time E(wt | t ↑ ∞) = μw; (ii) the steady-state 90% quan-
tile w0.9 defined by P (wt ≤ w0.9| t ↑ ∞) = 0.9. The classic estimator

of this mean is the time-series average w =
∑T

t=1wt/T . To estimate the
90% quantile, the (autocorrelated) time series w is sorted from low to high,
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which gives the (autocorrelated) order statistics w(1), . . ., w(T ) which give
the classic point estimator ŵ0.9 = w(�0.9T�). To observe the sampling vari-
ability of w and ŵ0.9, the experiment uses m replications. So, replication r
(r = 1, . . . ,m) gives the average waiting time wr and the estimated quantile
ŵ0.9;r. We expect these averages wr to be normally distributed because of
the FCLT. The quantile estimators ŵ0.9;r, however, are only asymptotically
normally distributed; see Chen (2008) and Hong (2009). The experiment
includes results for a “short” simulation run T = 1,000 and for a “long”run
T = 100,000, with a time unit for the arrival and service times such that
the service rate μ equals one. Furthermore, the experiment includes two
traffic rates; namely, λ/μ = 0.5 and λ/μ = 0.9. A higher traffic rate gives
stronger autocorrelation so we may then expect nonnormality. To obtain
accurate estimates of the true behavior of the simulated outputs, the exper-
iment has m = 1,000 replications. We shall continue this example in the
next subsection, testing the normality of w and ŵ0.9.

In summary, a limit theorem may explain why random simulation out-
puts are asymptotically normally distributed. Whether the actual simula-
tion run is long enough, is always hard to know. Therefore it seems good
practice to check whether the normality assumption holds—as we explain
in the next subsection.

3.3.2 Testing the Normality Assumption

In this subsection we again focus on random simulation, but in Eq. (3.4) we
shall consider the residuals of deterministic and random simulations. In gen-
eral, to test whether a set of observations has a specific probability density
function (PDF) (e.g., a Gaussian PDF), we may use various residual plots
and goodness-of-fit statistics such as the chi-square, Kolmogorov-Smirnoff,
Anderson-Darling, and Shapiro-Wilk statistics. These plots and statistics
can also be generated through software that is available as an add-on to
simulation or statistics software.
Note: For details we refer to basic statistics textbooks and articles such as

Alba Fernández et al. (2014), Arcones and Wang (2006), Gel et al. (2007),
Jimenez-Gamero and Kim (2015), and Jurečková and Picek (2007); we also
refer to simulation textbooks such as Kleijnen (1987) and Law (2015) and
articles such as Strang (2012) and Tofallis (2008).
Note: Instead of testing whether the output distribution is Gaussian,

Montevechi et al. (2010) tests—through a chi-square statistic—whether
the distribution is Poisson, because the output of interest is the number
of units produced per month in a factory. Turner et al. (2013) considers
several other outputs of interest; e.g., the sample variance s2w which has
the χ2

n−1 distribution if w has a Gaussian distribution; we notice that as n
increases, the χ2

n−1 distribution converges to a Gaussian distribution.
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Run-length T 1,000 100,000
Traffic rate λ/μ 0.5 0.9 0.5 0.9
p for average <0.01 <0.01 >0.15 0.11
p for 0.9 quantile <0.01 <0.01 >0.15 0.116

TABLE 3.1. p-values for Kolmogorov-Smirnov test of normality

A basic assumption of goodness-of-fit tests is that the observations are
identically and independently distributed (IID). We may therefore obtain
“many” (say, m = 100) replications for a specific input combination (e.g.,
the base scenario) if the simulation is not computationally expensive. How-
ever, if a single simulation run takes relatively much computer time, then
only “a few” (say, 2 ≤ m ≤ 10) replications are feasible, so the plots are too
rough and the goodness-of-fit tests lack power. (To obtain more observa-
tions on an expensive simulation in an inexpensive way, we may bootstrap
a goodness-of-fit test; see Cheng (2006a) and Sect. 3.3.5 below.)

Example 3.4 We continue Example 3.3, in which m = 1,000 replications
are obtained for the M/M/1 simulation model. Kleijnen and Van Beers
(2013) tests the goodness-of-fit through the chi-square and the Kolmogorov-
Smirnov tests. Both tests give similar results. For the Kolmogorov-Smirnov
test, Table 3.1 displays the resulting p-values; we discussed p-values below
Eq. (2.21). The p-values reported in this table imply that the estimated av-
erage and quantile are not normally distributed if the simulation run is only
T = 1,000—even for a traffic rate as low as λ/μ = 0.5.

Actually, the white-noise assumption concerns the metamodel’s resid-
uals e, not the simulation model’s outputs w. The estimated residuals
êi = ŷi − wi with i = 1, . . . , n were defined in Eq. (2.11), and an alter-
native definition êi = ŷi −wi was given in Eq. (2.25); these two definitions
coincide if there are no replications—as is the case in deterministic simu-
lation and passive observation of real systems (e.g., in econometrics). We,
however, assume that we obtain at least a few replications for each input
combination. For simplicity of presentation, we further assume that the
number of replications is constant so mi = m. If the simulation outputs w
have a constant variance σ2

w , then σ2
w = σ2

w/m is also constant. Unfortu-
nately, even if the average simulation outputs have a constant variance σ2

w

and are independent (no CRN), then it can be proven that the estimated
residuals ê do not have a constant variance and are not independent; i.e.,
the covariance matrix of ê is given by

Σ
̂e= [I−X(X′X)−1X′]σ2

w (3.4)
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where X is the n × q matrix of explanatory regression variables; also see
Eq. (3.50) below. Eq. (3.4) uses the so-called hat matrix H = X(X′X)−1X′,
which we shall also use in Eq. (3.48).
Simulation examples of normality testing through visual inspection of

residual plots are Ayanso et al. (2006) and Noguera and Watson (2006);
such plots are standard output of many statistical packages.

3.3.3 Normalizing Transformations

We may transform a simulation output (say) w, in order to obtain (ap-
proximately) normally distributed output v; e.g., v = log(w) may be more
normally distributed than the original simulation output w. Actually, this
logarithmic transformation is a special case of the Box-Cox power trans-
formation defined by

v =
wλ − 1

λ
if λ 	= 0; else v = ln(w) (3.5)

where λ is estimated from the original simulation output data; λ is the clas-
sic symbol in this transformation, and has nothing to do with the arrival
rate in M/M/1 models. A complication is that the metamodel now explains
the behavior of the transformed output—not the original output! We shall
return to the Box-Cox transformation when discussing transformations for
variance stabilization in Sect. 3.4.3. For further discussion we refer to Atkin-
son and Riani (2000), Bekki et al. (2009), Cho and Loh (2006), Freeman
and Modarres (2006) and Spöck and Pilz (2015).
If the actual distribution has “fatter” tails than the normal distribution

has, then outliers may occur more frequently. We may then apply robust
regression analysis ; see again Atkinson and Riani (2000) and also Renaud
and Victoria-Feser (2010). However, we are not aware of any applications
of such an analysis in simulation.

3.3.4 Jackknifing

Jackknifing—or the jackknife—is a general statistical method for solving
the following two types of problems:

1. Confidence intervals (CIs) for nonnormal responses

2. Biased estimators.

Examples of nonnormal simulation outputs (see problem type 1) are the
estimated service rate close to 100% in inventory models, and quantiles
such as the 0.90 quantile in Table 3.1 and quantiles such as the 0.95 quan-
tile in production planning detailed in Kleijnen et al. (2011). Examples of
biased estimators (see problem type 2) will follow in Sect. 3.4; see Eq. (3.24).
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Note: Jackknifing was proposed by Quenouille in 1949 for bias reduction,
and by Tukey in 1969 for CI construction; see the classic review article on
jackknifing, Miller (1974). A recent publication on jackknifing is Chen and
Yu (2015).
To explain jackknifing, we use the following linear regression problem.

Suppose we want CIs for the q individual regression coefficients in β =
(β1, . . . , βq)

′ in case the simulation output has a very nonnormal distri-
bution. The linear regression metamodel is still given by Eq. (2.10). For
simplicity, we assume that each input combination i (i = 1, . . . , n) is repli-
cated an equal number of times mi = m > 1. The original OLS estimator
(see again Eq. (2.13)) is

β̂ = (X′X)−1X′w. (3.6)

The jackknife deletes replication r (r = 1, . . . ,m) for each input combina-
tion i, and computes the estimator

β̂−r = (X′X)
−1

X′w−r (r = 1, . . . ,m) (3.7)

where the n-dimensional vector w−r = (w1;−r, . . . , wi;−r, . . . , wn;−r)
′ has

as component i the average of the m− 1 replications after deleting replica-
tion r; i.e.,

wi;−r =

∑m
r′ �=r wi;r′

m− 1
(3.8)

where for the case r = m the summation runs from 1 to m− 1 (not m) (a
more elegant but more complicated mathematical notation is possible).

The m estimators β̂−1, . . ., β̂−m in Eq. (3.7) are correlated because they
share m−2 elements. For ease of presentation, we focus on βq (last element
of β). Jackknifing uses the pseudovalue usually denoted by J , which is

defined as the following weighted average of β̂q (the original estimator)

and β̂q;−r (element q of the jackknifed estimator β̂−r defined in Eq. (3.7))
with the number of observations as weights:

Jr = mβ̂q − (m− 1)β̂q;−r. (3.9)

In this example, both the original and the jackknifed estimators are unbi-
ased, so the pseudovalues also remain unbiased estimators. Otherwise, it
can be proven that the bias is reduced by the jackknife point estimator

J =

∑m
r=1 Jr
m

, (3.10)

which is simply the average of the m pseudovalues Jr in Eq. (3.9).
To compute a CI, jackknifing treats the pseudovalues as if they were

NIID:

P (J − tm−1;1−α/2σ̂J < βq < J + tm−1;1−α/2σ̂J ) = 1− α (3.11)
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where tm−1;1−α/2 denotes the 1 − α/2 quantile (upper α/2 point) of the
distribution of the t-statistic with m− 1 degrees of freedom, and

σ̂J =

√∑m
r=1(Jr − J)2

m(m− 1)
. (3.12)

We can use the CI defined in Eq. (3.11) to test whether the true regression
parameter is zero; see the null-hypothesis in Eq. (2.21).
Applications of jackknifing in simulation are numerous. For example,

Gordy and Juneja (2010) applies jackknifing for the estimation of large loss
probabilities in financial “portfolio risk management” simulation. Kleijnen
et al. (1987) applies jackknifing to obtain a CI for a regression estimator
that uses the estimated covariance matrix of the simulation output, so the
estimator becomes nonlinear; see Eq. (3.24). Kleijnen et al. (1989) applies
jackknifing to reduce the bias and compute CIs for a variance reduction
technique (VRT) called “control variates” or “regression sampling”. Jack-
knifing may also be applied in the renewal analysis of steady-state simula-
tion; this analysis uses ratio estimators, which are known to be biased; see
Kleijnen and Van Groenendaal (1992, pp. 202–203).

Exercise 3.1 Apply jackknifing to derive a CI for the average waiting time
of the first c customers arriving into an M/M/1 system with a traffic rate of
0.8. Vary c between 10 (terminating simulation) and 107 (steady-state sim-
ulation), and vary m (number of replications) between 10 and 102. Do these
CIs cover the analytical steady-state value?

Exercise 3.2 Apply jackknifing to derive a CI for the slope β1 in the sim-
ple regression model wir = β0 + β1xi + eir where eir is nonnormally dis-
tributed (i = 1, . . . , n; r = 1, . . . ,m), e.g., eir has a lognormal distribution
shifted such that eir has zero mean. Design a Monte Carlo experiment with
β0 = 0 and β1 = 1, x1 = 1 and x2 = 2 (so n = 2), m = 5 and m = 25,
respectively and 1,000 macroreplications; sample eir from a lognormal dis-
tribution with standard deviation σe = 0.1 and shifted such that E(e) = 0.

Note: Jackknifing resembles cross-validation, in the sense that both meth-
ods drop observations; i.e., jackknifing deletes replication r (r = 1, . . . ,m),
whereas leave-one-out cross-validation deletes I/O combination i from the
complete set of n combinations which gives the remaining I/O data set
(X−i,w−i) (we shall detail cross-validation in Sect. 3.6.2).
Actually, the jackknife is a linear approximation of the bootstrap; see

Efron and Tibshirani (1993). We discuss bootstrapping in the next subsec-
tion. Under the name “resampling techniques”. MATLAB offers software
for bootstrapping, jackknifing, and cross-validation.
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3.3.5 Bootstrapping

Like jackknifing, bootstrapping—or the bootstrap—is a general statisti-
cal method that does not assume normality. Like jackknifing, bootstrap-
ping has become popular since powerful and cheap computers have become
available. Bootstrapping is well-suited for parallel computers, as we shall
see. Moreover, special bootstrap software is available in many statistical
software packages; e.g., “R boot” in the R package, BOOT in SAS, and the
“bootstrap” command in S-Plus. For further discussion of such statistical
software we refer to Novikov and Oberman (2007).
There are two types of bootstrapping; namely,

• distribution-free or nonparametric bootstrapping and

• parametric bootstrapping.

In this section we focus on distribution-free bootstrapping, because para-
metric bootstrapping is simply Monte Carlo sampling with the parame-
ters of the assumed distribution being estimated from the available orig-
inal data; we shall present several examples of parametric bootstrapping
throughout this book.
Note: Efron (1982) is a famous monograph on jackknifing and bootstrap-

ping. Efron and Tibshirani (1993) is the classic textbook on bootstrapping.
Other textbooks on bootstrapping—a resampling method, as we shall see—
are Chernick (2007), Davison and Hinkley (1997), Good (2005), Horowitz
(2001), and Lunneborg (2000). Interesting articles on bootstrapping are
Cheng (2006a,b), Davidson and MacKinnon (2007), Ghosh and Polansky
(2014), Kreiss and Paparoditis (2011), Mammen and Nandi (2012), and
Mart́ınez-Camblor and Corral (2012). Furthermore, Efron (2011) discusses
bootstrapping in Bayesian inference, as an alternative for the “Markov
chain Monte Carlo” (MCMC) method; MCMC is also applied in Goldberg
et al. (1998). More references will follow below.
Bootstrapping may be used to solve two types of problems:

1. Nonnormal distributions

2. Nonstandard statistics.

Sub 1: Nonnormal distributions
Let us consider the same example as we considered for jackknifing; i.e.,

we want a CI for the regression coefficients in case of nonnormal simula-
tion output w. Again we assume that each of the n input combinations is
replicated an equal number of times, mi = m > 1 (i = 1, . . . , n).
When we bootstrap, we distinguish between the original observations w

and the bootstrapped observations w∗; the superscript ∗ is the standard no-
tation for the bootstrapped observations. Standard bootstrapping assumes
that the original observations are IID. In the example, there are mi = m
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IID original simulated observations for input combination i; namely, wi;1,
. . ., wi;m. These observations give the average simulation output for com-
bination i; namely, wi. These averages give the n-dimensional vector w,
which determines the original OLS estimator in Eq. (3.6).
Most theory on bootstrapping assumes univariate output such as w, but

we shall also discuss distribution-free and parametric bootstrapping for
multivariate (vector) output w created through CRN; see Sect. 3.5 (and
also Chap. 6).
Note: Bootstrapping of time series (which violates the IID assumption) is

discussed in Cheng (2006b), Hsieh and Chen (2007), Lahiri (2003), Martin
(2007), Park et al. (2001), and Psaradakis (2006).
In general, we obtain the bootstrap observations through resampling with

replacement from the original observations. In the example, this resampling
may result in the original observation wi;1 being sampled m times, and—
because the sample size is kept constant, at m—all the other m−1 original
observationswi;2, . . .,wi;m being sampled zero times. Obviously, this specific
sampling outcome has low probability, but it is not impossible. Resampling
in this example implies that the bootstrapped observations w∗

i;1, . . ., w
∗
i;m

occur with frequencies f1, . . ., fm such that f1 + . . .+ fm = m.
Note: These frequencies f1, . . ., fm follow the multinomial (or polyno-

mial) distribution with parameters m and p1 = . . . = pm = 1/m; the
multinomial distribution is discussed in many statistics textbooks.
We do this resampling for each combination i (i = 1, . . . , n). The re-

sulting bootstrapped outputs w∗
i;1, . . ., w

∗
i;m give the bootstrapped average

simulation output w∗. Substitution of this w∗ into Eq. (3.6) gives the boot-
strapped OLS estimator

β̂
∗
= (X′X)

−1
X′w∗. (3.13)

To reduce sampling variation or “sampling error”, we repeat this resam-
pling (say)B times; B is known as the bootstrap sample size. A typical value

for B is 100 or 1,000. This sample size gives β̂
∗
1, . . ., β̂

∗
B , which we may also

denote as β̂
∗
b with b = 1, . . . , B. Obviously, bootstrapping is well-suited for

parallel computers.
Let us again focus on the single regression parameter βq, as we did in

the jackknife example. In practice, the most popular CI uses the so-called
percentile method :

P (β̂∗
q(	Bα/2)
) < βq < β̂∗

q(	B(1−α/2)
)) = 1− α (3.14)

where the left endpoint of the interval β̂∗
q(	Bα/2)
) is the (lower) α/2 quan-

tile of the empirical density function (EDF) of the bootstrap estimate β̂∗
q

so this EDF is obtained through sorting the B values of the bootstrap es-
timate β̂∗

q from low to high; analogously, β̂∗
q(	B(1−α/2)
) is the upper limit

of the interval. If we wish CIs that hold simultaneously for all q regres-
sion parameters, then we can apply Bonferroni’s inequality replacing α by
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α/q in Eq. (3.14). This inequality implies that the classic type-I error rate
(in this case α/2) is replaced by the same value divided by the number
of CIs (in this case q)–resulting in the “experimentwise” or “familywise”
type-I error rate α. Obviously, the qCIs are highly correlated. References
on Bonferroni’s inequality are given in Gordon (2007); alternatives for this
conservative inequality are discussed in Döhler (2014).
Note: Besides the percentile method there are alternative procedures

that are detailed in the bootstrap literature; see the double bootstrap in
Cheng (2006b) and the smoothed and iterated bootstrap methods in Ghosh
and Polansky (2014). If we wish simultaneous CIs for all q regression pa-
rameters, then we may replace Bonferroni’s inequality and obtain tighter
CIs through an algorithm detailed in Mandel and Betensky (2008). Fur-
thermore, Ghosh and Polansky (2014) discusses ellipsoidal confidence re-
gions for a vector of parameters, which are generalizations of symmetric
CIs for a single parameter. Our description of bootstrapping explains why
Godfrey (2006) describes bootstrapping as “an artificial bootstrap world is
constructed, conditional on the observed data”.
We can apply bootstrapping in many situations where classic statistics

do not seem appropriate. For example, Kleijnen et al. (2001) applies boot-
strapping to validate so-called “trace-driven” simulation models when the
test statistic is the difference between the average outputs of the real sys-
tem and the simulated system, and these two averages are not normally
distributed. Turner et al. (2013) applies bootstrapping to estimate a CI
for s2w (sample variance of w) if w does not have a Gaussian distribution.
Jimenez-Gamero and Kim (2015) applies bootstrapping to solve the prob-
lem of limited data in production control.

Exercise 3.3 Analogously to Exercise 3.1, apply bootstrapping to derive a
CI for the average waiting time of the first c customers arriving into the
M/M/1 system with a traffic rate of 0.8. Vary c between 10 (terminating
simulation) and 107 (steady-state simulation), and m (number of replica-
tions) between 10 and 102. Does this CI cover the analytical steady-state
value?

Exercise 3.4 Analogously to Exercise 3.2, apply bootstrapping to derive a
CI for the slope β1 in the simple regression model y = β0 + β1x + e where
e is nonnormally distributed (i = 1, . . . , n; r = 1, . . . ,m), e.g., e has a
lognormal distribution shifted such that e has zero mean. To evaluate this
bootstrapping, design a Monte Carlo experiment with β0 = 0 and β1 = 1,
x1 = 1 and x2 = 2 (so n = 2), m = 5 and m = 25, respectively and 1,000
macroreplications; sample e from a lognormal distribution with standard
deviation σe = 0.1 and shifted such that E(e) = 0.

In expensive simulation there may be so few replications (e.g., m = 1 or
m = 2) that distribution-free bootstrapping does not work; i.e., resampling
with replacement gives the same result “many” times. We may then apply
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parametric bootstrapping, as follows. We assume a specific type of distribu-
tion; e.g., a Poisson distribution. From the original data we estimate the
parameters of this distribution; e.g., the parameter λ of the assumed Pois-
son distribution. Next we use PRNs to sample bootstrapped observations
from the resulting distribution; e.g., the Poisson distribution with param-
eter λ̂. Altogether, we conclude that parametric bootstrapping is a Monte
Carlo experiment with parameters estimated from the original data. Chang
et al. (2010) discusses the comparison of several means through parametric
bootstrapping. We shall give examples in Sects. 5.2 and 6.2.5.

Sub 2: Nonstandard statistics
Classic statistics such as t and F have tables with critical values that

provide CIs, assuming Gaussian parent distributions; e.g., tn−1 is computed
from normally distributed xi with i = 1, . . . , n. If this normality assumption
does not hold, then we may apply bootstrapping as we explained sub 1.
We may also be interested in statistics such as R2, for which there are no
tables with critical values. Kleijnen and Deflandre (2006) bootstraps R2 to
test the validity of regression metamodels in simulation. Sadooghi-Alvandi
and Malekzadeh (2014) uses parametric bootstrapping for the ratios of the
means of lognormal distributions; i.e., nonstandard statistics are considered
for nonnormal distributions.
As we have already mentioned in our discussion of parametric bootstrap-

ping for nonnormal distributions, in expensive simulation with only a few
replications we may apply parametric bootstrapping. For example, in case
of a nonstandard statistic we assume a specific type of distribution; e.g.,
a Gaussian distribution. From the original data we estimate the parame-
ters of this distribution; e.g., the mean and the variance of the assumed
Gaussian distribution. Next we sample bootstrapped observations from the
resulting distribution. From these bootstrapped observations we compute
the nonstandard statistic. We repeat this bootstrapping B times, etc.
Note: A special family of distributions is the “generalized gamma dis-

tribution”. Bootstrapping such a distribution may give better results than
distribution-free bootstrapping if we wish to estimate extreme quantiles;
see Wang et al. (2010).
We emphasize that using bootstrapping to test a null-hypothesis (e.g.,

H0 : E(e) = 0 or H0 : βq = 0) requires some more care than estimating
a CI for some parameter (e.g., βq). Indeed, Shao and Tu (1995, p. 189)
warns: “bootstrap hypothesis testing . . . is not a well-developed topic.”
Note: Further discussion of hypothesis testing versus CI estimation in

bootstrapping is found in Martin (2007), Paparoditis and Politis (2005),
and Racine and MacKinnon (2007). Examples of bootstrapping for testing
the null-hypothesis of a valid simulation model or the null-hypothesis of a
valid regression metamodel, are found in Kleijnen et al. (2001) and Kleijnen
and Deflandre (2006).
In general, it is better not to bootstrap the original statistic of inter-

est but the pivotal statistic, which (by definition) has a distribution that
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does not depend on unknown nuisance parameters. For example, the sam-
ple average x has the distribution N(μ, σ2/n) with the unknown nuisance
parameter σ, whereas the Studentized statistic (x−μ)/(s/

√
n) has a tn−1-

distribution, which does not depend on σ so the latter statistic is pivotal.
Instead of bootstrapping β̂q in Eq. (3.14), it is better to bootstrap the stu-

dentized version β̂q /s(β̂q); also see Eq. (2.19).
Note: Further discussion of bootstrapping pivotal statistics is found in

Cheng (2006b), Paparoditis and Politis (2005), Racine and MacKinnon
(2007), and Sadooghi-Alvandi and Malekzadeh (2014).

3.4 Heterogeneous Output Variances

A deterministic simulation model gives a single fixed value for a given
input combination, so it has a zero output variance—given a fixed input
combination. We often assume a normal distribution for the residuals of the
metamodel fitted to the I/O data of the deterministic simulation model;
also see the discussion at the beginning of Sect. 3.3.1. Usually, we then
assume a normal distribution with a constant variance. Actually, we do
not know a better assumption that works in practice, for deterministic
simulation.
In the rest of this section we focus on random simulation models. We try

to answer the following questions (formulated more generally in Sect. 3.1):

1. How realistic is the constant variance assumption?

2. How can this assumption be tested?

3. How can the simulation output be transformed such that the constant
variance assumption holds?

4. Which statistical analysis methods can be applied that allow non-
constant variances?

5. Which statistical design methods can be applied that allow noncon-
stant output variances?

3.4.1 Realistic Constant Variance Assumption?

In practice, random simulation outputs usually do not have constant vari-
ances as input combinations change. For example, in the M/M/1 queueing
simulation not only the expected value (first moment) of the steady-state
waiting time changes as the traffic rate changes—the variance (central sec-
ond moment) of this output changes even more; see Cheng and Kleijnen
(1999) and Cheng et al. (2000). Variance heterogeneity is also discussed
in Yang et al. (2007) for cycle time-throughput (CT-TH) curves, which
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quantify the relationship of long-run average cycle time to the throughput
rate in manufacturing systems. Variance heterogeneity is discussed in Mon-
tevechi et al. (2010) for the output that follows a Poisson distribution; it is
well-known that a Poisson distribution has a variance that changes as the
mean changes.

3.4.2 Testing for Constant Variances

It may be a priori certain that the variances of the simulation outputs
are not constant at all, as the previous subsection demonstrated; in some
applications, however, we may hope that the variance heterogeneity is neg-
ligible. Unfortunately, the output variances are unknown so we must esti-
mate them. If there are mi replications, then the classic unbiased variance
estimator s2 of σ2 follows from Eq. (2.27). We point out that this estima-
tor itself has high variance; i.e., using the classic assumption of normally
distributed output, any statistics textbook mentions that (m− 1)s2 has a
chi-square or χ2 distribution with m− 1 degrees of freedom, and

σ2
s2 =

2σ4

m
.

Given the same assumption, we may compare two independent variance
estimators (say) s21 and s22 through

Fm1−1.m2−1 =
(m1 − 1)s21
(m2 − 1)s22

.

In practice, simulation experiments have n combinations of k inputs
(with k < n), so we need to compare n variance estimators s2i (i = 1, . . . , n).
This problem may be solved in many different ways; e.g., Kleijnen (1987,
p. 225) speaks of approximately 60 different tests. Here we mention only
three of these tests.

1. Hartley (1950) presents the maximum F -ratio:

Fmax =
max (s2i )

min (s2i )
. (3.15)

2. Scheffé (1964) proposes analysis of variance (ANOVA), treating the
data as an experiment with a single input and n levels (values). How-
ever, the s2i have χ2 distributions whereas ANOVA assumes normal-
ity. Therefore we may apply a normalizing transformation such as
the Box-Cox transformation defined in Eq. (3.5). Details are given in
Scheffé (1964).

3. Conover (1999) gives a distribution-free test; for details we again refer
to that publication.
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Exercise 3.5 Apply bootstrapping to derive the distribution of Hartley’s
statistic defined in Eq. (3.15) for the following simple case: wi;r ∼ NID
(μi, σ

2
i ) (i = 1, . . . , n; r = 1, . . . ,m) with n = 3 and homogeneous variances

so σ2
i = σ2. Design a Monte Carlo experiment with μi = 0 and σ2 = 1, m =

25, and 1,000 macroreplications. Repeat the experiment for heterogeneous
variances (σ2

i 	= σ2). Repeat for nonnormally distributed wi;r.

3.4.3 Variance Stabilizing Transformations

The logarithmic transformation—which is a special case of the Box-Cox
transformation in Eq. (3.5)—may be used not only to obtain Gaussian out-
put but also to obtain outputs with constant variances. Montevechi et al.
(2010) applies the so-called Johnson transformation to solve the problem
of nonnormality and variance heterogeneity of the original output with a
Poisson distribution; this transformation is detailed in Yeo and Johnson
(2000). A problem may again be that the metamodel now explains the
transformed output instead of the original output. To solve this problem,
Irizarry et al. (2003) proposes the so-called “MLE-delta method”, which
gives asymptotically exact CIs for the original metamodel. We give no de-
tails on this method, because we prefer accepting heterogeneous variances
and adapting our analysis—as we detail in the next subsection (Sect. 3.4.4).

3.4.4 Least Squares Estimators

In case of heterogeneous output variances, the LS criterion still gives an
unbiased estimator β̂ of β. To prove this lack of bias, it suffices to assume
that the residuals have zero mean so E(e) = 0; see again the solution of
Exercise 2.2.
The variance of β̂, however, is no longer given by Eq. (2.18). Actually,

this variance is given by the main diagonal of the covariance matrix that
follows from Eq. (2.17):

Σβ̂ = (X′
NXN )

−1
X′

NΣwXN (X′
NXN )

−1
(3.16)

where XN is an N × q matrix with N =
∑n

i=1m. We give the following
comments on this equation.

• Σw in the right-hand side of this equation is a diagonal matrix if the
simulation outputs have different variances σ2

i (i = 1, . . . , n) but no
CRN are used so these outputs are independent.

• If there are no replications, then XN becomes the n× q matrix Xn,
and Σw becomes an n×n matrix with element i on its main diagonal
equal to σ2

i (i = 1, . . . , n).
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• If input combination i is replicated mi times, then XN is N × q so
Σw is also an N ×N matrix with the first m1 elements on its main
diagonal all equal to σ2

1 , . . ., the lastmn elements on its main diagonal
equal to σ2

n.

• If the number of replications is constant (mi = m), then

β̂ = (X′
nXn)

−1
X′

nw (3.17)

where w denotes the vector with the n simulation outputs averaged
over the m replications; see wi in Eq. (2.28) with mi = m.

Exercise 3.6 Prove that Eq. (3.16) (general formula for the covariance
matrix of the LS estimator) reduces to the classic formula in Eq. (2.17) if
Σw = σ2

wI.

Kleijnen (1992) examines CIs for the q individual OLS estimators in
Eq. (3.17). Their standard errors follow from the main diagonal of the fol-
lowing corrected covariance matrix, which is the analogue of Eq. (3.16):

Σβ̂ = (X′X)−1X′ΣwX(X′X)−1. (3.18)

CIs may be computed through a t-statistic with m− 1 degrees of freedom.
We shall present an alternative method that does not require the estimation
of Σw in Eq. (3.18); see Eq. (3.33) below. One more alternative is presented
in Wen et al. (2007).

Though the OLS estimator β̂ remains unbiased, it is no longer the BLUE.
It can be proven that the BLUE is now the weighted LS (WLS) estimator,
which we denote through a tilde instead of a hat:

β̃ = (X
′′
NΣ−1

w XN )
−1

X′
NΣ−1

w w. (3.19)

If the number of replications is constant such that mi = m, then we may
write analogously to Eq. (3.17):

β̃ = (X
′
Σ−1

w X)
−1

X′Σ−1
w w (3.20)

where X is an n× q matrix and Σw = Σw/m where Σw is an n×n matrix
The covariance matrix of the WLS estimator can be proven to be

Σ
̂β = (X′Σ−1

w X)
−1

. (3.21)

If we have access to classic OLS software only, then we may compute
the WLS estimator through that software replacing the original I/O data
(xi;j , wi) by (xi;j/σi, wi/σi) where σi denotes the standard deviation of wi

(i = 1, . . . , n and j = 1, . . . , q). Obviously, these transformed outputs have
a constant variance, which has the value 1. It can be proven that WLS
minimizes the sum of squared residuals weighted with 1/σ2

i .
In practice, Σw is unknown so we must estimate this covariance matrix.

We distinguish two types of situations (as we did in the preceding chapter):
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1. passive observation of a real system or active experimentation with a
deterministic simulation model: no replications

2. active experimentation with a real system or a random simulation
model: replications.

In case of passive observation of a real system (included in type 1), we
may estimate Σw from the residuals; see any econometrics textbook or see
again Godfrey (2006). In type-2 situations, we may estimate σ2

i through
Eq. (2.27). In the rest of this subsection, we focus on the latter type of
situations.
Substituting the estimated output variances s2i into the main diagonal of

Σw gives Σ̂w. Next we substitute this Σ̂w into the classic WLS estimation
formula; namely, Eq. (3.19). This gives what we call the estimated WLS
(EWLS), which is also known as the Aitken estimator. For a constant
number of replications this EWLS estimator is

̂̃
β = (X

′
Σ̂

−1

w X)
−1

X′Σ̂
−1

w w. (3.22)

The EWLS defined in Eq. (3.22) is a nonlinear estimator. Consequently,
the statistical analysis becomes more complicated. For example, the covari-
ance matrix of the EWLS estimator does no longer follow from Eq. (2.17).
The analogue of Eq. (3.21) holds only asymptotically:

Σ
̂

˜β
≈ (X′Σ−1

w X)−1; (3.23)

see Arnold (1981), Godfrey (2006), and Kleijnen et al. (1985). CIs are no
longer similar to Eq. (2.19). We have already presented relatively simple
solutions for this type of problems; namely, jackknifing and bootstrapping
(see the Sects. 3.3.4 and 3.3.5). For EWLS we may apply these two tech-
niques as follows.
Jackknifed EWLS—or JEWLS—is detailed in Kleijnen et al. (1987), as-

suming a constant number of replications m. In JEWLS we delete replica-
tion r of the m replications, and recompute the estimator analogously to
the jackknifed OLS estimator in Eq. (3.7):

̂̃
β−r = (XΣ̂

−1

w;−rX)
−1

X′Σ̂
−1

w;−rw−r (r = 1, . . . ,m) (3.24)

where w−r is the vector with the n averages of the m − 1 replications

after deleting replication r, and Σ̂w;−r is computed from the same repli-

cations. From these
̂̃
β−r and the original

̂̃
β in Eq. (3.22) we compute the

pseudovalues, which give the desired CI.
Bootstrapped EWLS (BEWLS) will be explained in the section on CRN,

which leads to estimated generalized LS (EGLS). This BEWLS is applied
in Kleijnen and Deflandre (2006); also see Godfrey (2006) and You and
Chen (2006).
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Altogether, we may compute both the OLS estimate and the EWLS
estimate, analyze both estimates, and check whether these estimates give
the same qualitative conclusions; e.g., do they suggest that the same inputs
are important? We conjecture that in general EWLS gives estimates that
are more significant, because EWLS gives smaller standard errors.
Note: Santos and Santos (2011) apply EWLS to estimate polynomials,

not only to approximate the expected value but also the standard devi-
ation of the simulation output. This standard deviation is important in
robustness, as we shall see in Sect. 6.4.

3.4.5 Designs for Heterogeneous Output Variances

If the output variances σ2
i are not constant, then classic designs still give

the unbiased OLS estimator β̂ and WLS estimator β̃. The DOE literature
pays little attention to the derivation of alternative designs for cases with
heterogeneous output variances. An exception is Ceranka et al. (2006),
discussing A-optimal designs for heterogeneous variances; unfortunately,
that article considers real-life chemical experiments instead of simulation
experiments.
Kleijnen and Van Groenendaal (1995) investigates designs with a num-

ber of replications mi of input combination i (i = 1, . . . , n) such that the
estimated variances of the output averages per combination are approxi-
mately constant. We summarize that approach as follows. We defined the
average wi in Eq. (2.28), so

V ar(wi) =
σ2
i

mi
(i =1, . . ., n).

To ensure that Var(wi) does not vary with i, we select the number of
replications such that

mi = c0σ
2
i (3.25)

where c0 is a common positive constant such that the mi become integers
and the common variance of the wi becomes σ2 = 1/c0. In other words,
the higher the variability of the output wi is, the more replications we sim-
ulate. The allocation of the total number of simulation runs N =

∑n
i=1mi

through Eq. (3.25) is not necessarily optimal, but it simplifies the regres-
sion analysis and the design of the simulation experiment (an alternative
allocation rule replaces the variances σ2

i by the standard deviations σi).
Indeed, in the regression analysis we now apply OLS to the averages wi

to obtain the BLUE. In practice, however, we must estimate σ2
i . A two-

stage procedure takes a pilot sample of size (say) m0 ≥ 2 for each input
combination, and estimates the variances σ2

i through

s2i (m0) =

∑m0

r=1 [wi;r − wi(m0)]
2

m0 − 1
(i =1, . . ., n) (3.26)
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with

wi(m0) =

∑m0

r=1 wi;r

m0
. (3.27)

Combining Eqs. (3.26) and (3.25), we select a number of additional repli-
cations in the second stage; namely, m̂i −m0 with

m̂i = m0 × nint

[
s2i (m0)

min s2i (m0)

]
(3.28)

where nint[x] denotes the integer closest to x. Obviously, in this sec-
ond stage we do not obtain additional replications for the combination
with the smallest estimated variance, which features in the denominator of
Eq. (3.28). After the second stage, we use all m̂i replications to compute the
average output and its variance. To these averages we apply OLS. We esti-
mate Σ

̂β through Eq. (3.16) with Σw estimated through a diagonal matrix

with diagonal elements s2i (m̂i)/m̂i. We base the CIs for the estimated re-
gression parameters on the classic t-statistic with degrees of freedom equal
to m0 − 1.
We have the following comments on this design and analysis. The de-

sired number of replications specified in Eq. (3.28) uses a ratio of random
variables; in general, such ratios are known to be biased estimators of the
true ratios. Moreover, the denominator of Eq. (3.28) is the minimum of n
random variables; such a minimum (extreme) is also known to be hard to
analyze. The final estimators of the average output and its variance are
also ratio estimators, because their denominators involve the random vari-
ables m̂i; see Eqs. (2.28) and (2.27) with m replaced by m̂i. In general,
the statistical literature uses asymptotic analysis for such problems; how-
ever, in expensive simulation the actual number of replications is relatively
small. Therefore the simulation literature uses Monte Carlo experiments to
quantify the performance of allocation rules such as Eq. (3.28).
After the second stage these variance estimates s2i (m̂i)/m̂i may still dif-

fer considerably. Therefore, we may replace the two-stage approach by a
purely sequential approach. In the latter approach we add one replication
at a time, until the estimated variances of the average outputs have become
practically constant. This sequential procedure may require fewer simula-
tion outputs, but this procedure is also harder to understand, program,
and implement.

Exercise 3.7 Simulate the M/M/1 model, as follows. Pick a single (scalar)
performance measure; e.g., the steady-state mean waiting time. Select an
experimental area; e.g., the traffic load is 0.3 and 0.5. Fit a first-order
polynomial. Use mi replicated simulation runs; each run should be “suffi-
ciently long”. Simulate more replications for the higher traffic rate, using
Eq. (3.28). Do not apply CRN for different traffic rates. Now estimate the
parameters of the metamodel and predict the simulation output at a 0.4
traffic load including a CI; does this CI cover the analytical solution?
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Hoad et al. (2010) states that there is little guidance for selecting the
number of replications, m. That article, therefore, describes a heuristic for
determining m in discrete-event simulation, in order to achieve a desired
precision for the estimated mean output for an input combination. The
same problem is discussed in Law (2015). The solution is based on the
following well-known CI:

P

[
(x− tm−1;1−α/2

sx√
m

≤ μx ≤ x+ tm−1;1−α/2
sx√
m

]
= 1− α (3.29)

with estimated mean x and estimated standard deviation sx. The desired
precision is the maximum relative error of x that we are prepared to toler-
ate, achieved with probability 1−α. We may compute the CI in Eq. (3.29)
sequentially, and stop as soon as the CI reaches the desired length. Hoad
et al. (2010) suggests to start the sequential heuristic with m0 = 5. Test
results show that the heuristic can indeed obtain the desired coverage. How-
ever, if x is close to zero, then the desired relative precision increases m
drastically so the relative precision should be replaced by an absolute pre-
cision. In practice, a simulation model gives multiple types of output, so we
should select m such that the desired precision holds for all these outputs.
The heuristic is implemented within the SIMUL8 simulation package. Law
(2015) gives the following formula for the desired number of replications m̂
when estimating the mean μw with a relative error of γ:

m̂ = min

[
r ≥ m :

tr−1;1−α/2

√
s2i (m)/i

|w(m)| ≤ γ

1 + γ

]
(3.30)

where the symbols follow from our Eq. (3.26).
Note: Hartung and Knapp (2010) also studies sample-size selection based

on Eq. (3.29), but that article focuses on hypothesis testing with a desired
power. Turner et al. (2013) uses Monte Carlo experiments to measure the
sensitivity of the rule for selecting m̂ to kurtosis and skewness of the distri-
bution of the output w; if the output is the sample meanw (as in Eq. (3.30)),
then this sensitivity is low; if the output is the sample variance s2w, then this
sensitivity is high. Brantley et al. (2014) selects the number of replications,
assuming a second-order polynomial metamodel per subregion within the
total experimental region; the context is simulation optimization through
a multiple ranking and selection (R&S) procedure with optimal computer
budget allocation (OCBA), within a Bayesian framework. Pasupathy et al.
(2014) also considers a R&S procedure with OCBA. We shall discuss sim-
ulation optimization in Chap. 6.
However, heuristics such as Eq. (3.30) select m̂ for a single input combi-

nation and a specific performance measure; namely, the estimated mean
performance. Consequently, such heuristics do not solve problems that
arise in metamodeling. Notice that Turner et al. (2013) also states that
m̂ for a single combination does not matter, as long as the metamodel
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is an accurate approximation. Actually, we think that in metamodeling,
the signal-noise ratio should guide our selection of m̂i, the desired number
of replications for input combination i. Let us consider a simple example;
namely, a first-order polynomial with two inputs; also see Eq. (2.7). If the
noise σe = σy = σw is much lower than the signals or first-order effects
β1 and β2, then a relatively low m̂i suffices to estimate which input has
the higher effect. Unfortunately, we do not know a general solution for
selecting m̂i in linear regression metamodels of simulation models. Equa-
tion (3.28) only guides the relative number of replications m̂i/m̂i′ , which
should converge to σ2

i /σ
2
i′ with i, i′ = 1, . . . , n. In practice we also have the

additional problem that we do not know which linear regression model is a
valid metamodel of the underlying simulation model. Therefore we should
save part of our computational budget to test the validity of the estimated
metamodel and—if necessary—to increase the number of simulated input
combinations n to estimate and validate a more complicated metamodel.
Because this problem is not yet solved, we recommend that a simple rule
such as Eq. (3.30) should guide the selection of m̂i. In Chap. 5 (on Kriging)
we shall again discuss the choice of m̂i (i = 1, . . . , n) and n.

3.5 Common Random Numbers (CRN)

Deterministic simulation does not use CRN because this type of simulation
does not use PRNs. Random simulation often uses CRN, because CRN is
the default in software for discrete-event simulation. Intuitively speaking,
CRN are meant to compare the outputs of different input combinations
while all other “circumstances” are the same; e.g., the average waiting
times are compared for one or two servers while the randomness in the
customer arrivals is the same. Statistically speaking, CRN are meant to
create correlation between wi;r and wi′;r; these two symbols denote the
output of input combination i and i′ (i, i′ = 1, . . . , n) in the same repli-
cation r. If each combination has a common number of replications m,
then r = 1, . . . ,m; else r = 1, . . . ,m0 with m0 = min m i. Obviously, we
assume that two different replications use nonoverlapping PRN streams,
so their outputs wi;r and wi;r′ with r 	= r′ are independent; i.e., the two
vectors of outputs wr and wr′ with r, r′ = 1, . . . ,m0 are independent. If
the number of replications is constant, then we may use the n × q ma-
trix of explanatory variables X and the n-dimensional vector with average
outputs wr = (w1;r, . . . , wn;r)

′; see Eq. (3.17). If the number of replica-
tions is not constant, then we use the N × q matrix of explanatory vari-
ables X with N =

∑n
i=1mi and the N -dimensional vector with outputs

wr = (w1;r, . . . , wN ;r)
′ and r = 1, . . . ,mi; i.e., we replicate combination i

of the explanatory variables mi times, and we “staple” the N outputs.



3.5 Common Random Numbers (CRN) 109

The goal of CRN is to reduce the variance of the estimated regression
effects; i.e., to decrease Var(β̂j) with j = 1, . . . , q. Actually, CRN increase

Var(β̂1), the variance of the intercept.

Exercise 3.8 Prove that Var(β̂1) increases if CRN are used and β1 denotes
the intercept; assume that no replications are used so m = 1 and that CRN
does “work”; i.e., the outputs wi and wi′ are positively correlated.

So we may use CRN to better explain the input effects, as scenarios are
compared under the “same circumstances”. CRN are also useful to better
predict the output of combinations not yet simulated, provided the lower
accuracy of the estimated intercept is outweighed by the higher accuracy
of all other estimated effects.
Because CRN violate the classic assumptions of regression analysis, we

have two options that are analogous to the options in the case of heteroge-
neous output variances:

1. Continue to use OLS

2. Switch to GLS

Sub 1 : If we continue to use OLS, then we should know that the variance
of the OLS estimator β̂ is given by Eq. (3.16) but now Σw is not a diagonal
matrix. Assuming a constant number of replications, we may estimate this
Σw analogously to Eq. (2.27):

σ̂i;i′ =

∑m
r=1(wi;r − wi)(wi′ ;r − wi′)

(m− 1)
. (3.31)

However, the resulting matrix Σ̂w is singular if the number of replications
is “too small”; i.e., if m ≤ n; see Dykstra (1970).
Note: Xu et al. (2014) discusses the estimation of a covariance matrix

under a weighted quadratic loss function.
Kleijnen (1992) shows that we may compute CIs for the individual OLS

estimators β̂j (j = 1, . . . , q) from a t-statistic with m−1 degrees of freedom,

provided m > n. In this t-statistic, the standard errors s(β̂j) are the square
roots of the elements on the main diagonal of the estimated covariance
matrix using Eqs. (3.16) and (3.31).

An alternative method does not require Σ̂w, so it suffices that m > 1
(this method can also be found in Law (2015) and Schruben (2010)). This
alternative does require that we compute the OLS estimate m times; i.e.,
using replication r, we estimate β through

β̂r = (X′X)
−1

X′wr (r = 1, . . . ,m). (3.32)

Obviously, the n elements of wr are correlated because of CRN, and these
elements may have different variances. The m estimators β̂j;r (j = 1, . . . , q;
r = 1, . . . ,m) of an individual regression parameter βj are independent
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because these estimators use nonoverlapping PRN streams; these m
estimators have a common standard deviation (say) σ

̂βj
. Therefore we re-

place Eq. (2.19) by

tm−1 =
β̂j − βj

s(β̂j)
with j = 1, . . . , q (3.33)

where the numerator includes β̂j =
∑m

r=1β̂j;r/m and the denominator is
given by

s(β̂j) =

√√√√
∑m

r=1(β̂j;r − β̂j)
2

m(m− 1)
.

However, we cannot apply this alternative method when we wish to esti-
mate a quantile instead of an expected value. In case of an expected value,
each replication gives an unbiased estimator of that value; in case of a
quantile, many replications are needed to estimate this quantile. In case of
a quantile, we recommend distribution-free bootstrapping; see Exercise 3.10
below, and also the example in Kleijnen et al. (2011).
Sub 2 : We may decide to switch to GLS, because CRN imply that

the BLUE is not the OLS but the GLS estimator, which is analogous to
Eq. (3.19) with a nondiagonal Σw. The covariance matrix of the GLS esti-
mator is analogous to Eq. (3.21). In practice, Σw is unknown so we must

estimate it. This estimator Σ̂w has the elements given by Eq. (3.31). This
matrix is singular if the number of replications is “too small”; i.e., ifm ≤ n.
Substituting Σ̂w into the classic GLS estimation formula, we obtain esti-

mated GLS (EGLS) which is analogous to EWLS in Eq. (3.22). The EGLS
estimator can again be analyzed through jackknifing and bootstrapping.
Kleijnen (1992), however, compares OLS and EGLS relying on the asymp-
totic covariance matrix of the EGLS estimator in Eq. (3.23) with a nondi-

agonal Σ̂w. However, Davidson and MacKinnon (2007) states: “bootstrap
tests . . . yield more reliable inferences than asymptotic tests in a great
many cases.”
In conclusion, CRN with EGLS may give better point estimates of the

input effects than CRN with OLS, but the EGLS estimate requires “many”
replications—namely m > n—to obtain a nonsingular Σ̂w.

Exercise 3.9 Analogously to Exercise 3.7, simulate the M/M/1 model, as
follows. Pick a single (scalar) performance measure; e.g., the steady-state
mean waiting time. Select an experimental area; e.g., the traffic load is 0.3
and 0.5. Each run should be “sufficiently long”. Apply CRN for the dif-
ferent traffic rates. Use m replicated simulation runs; vary the number of
replications between its minimum 2 and (say) 10. Fit a first-order polyno-
mial. Now estimate the parameters of the metamodel, including a CI for
the predicted output at a traffic rate of 0.4; does this CI cover the analytical
solution?
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The literature pays no attention to the derivation of alternative designs
for situations with CRN. Combining common and antithetic random num-
bers in classic designs is discussed in Schruben and Margolin (1978), and
is extended in Chih (2013) and Song and Chiu (2007).
Equation (2.30) gave a lack-of-fit F -test assuming white noise. If we

apply CRN, then we may apply the following variant of this test that is
derived in Rao (1959):

Fn−q;m−n+q =
m− n+ q

(n− q)(m− 1)
(w − ŷ)′Σ̂

−1

w (w − ŷ) (3.34)

where ŷ denotes the EGLS estimator; obviously, n > q and m > n.
Note: If the number of replications tends to infinity, then both the classic

test and Rao’s test converge in distribution to χ2
n−q/(n−q) if the metamodel

is valid.
Equation (3.34) also applies to EWLS instead of EGLS. Normality of

the output w is an important assumption for both the classic lack-of-fit F -
test and Rao’s test; see Kleijnen (1992). In case of nonnormality, we may
apply jackknifing or bootstrapping. We explain bootstrapping of EGLS as
follows.
Suppose we apply CRN when simulating the n input combinations xi

(i = 1, . . . , n), and we obtain a fixed number m of replications for each
xi. Obviously, the n elements wi of the vector w = (w1, . . . , wn)

′ are
not IID; actually, we expect wi and wi′ (i, i′ = 1, . . . , n) to be posi-
tively correlated. However, the m observations on this vector (say) wr

(r = 1, . . . ,m) are IID, because they are transformations of nonoverlap-
ping PRN streams. In distribution-free bootstrapping we resample—with
replacement—the m multivariate outputs wr. This bootstrapping gives the
bootstrapped averages w∗

i =
∑m

r=1w
∗
i;r/m, which give the n-dimensional

vector w∗ = (w∗
1, . . . , w

∗
n)

′. We can also compute the estimated covari-

ance matrix of the bootstrapped averages Σ̂w∗ from Eq. (3.31) with wi;r

replaced by w∗
i;r and wi replaced by w∗

i . Using the original n× q matrix X

and the bootstrapped outputs w∗ and covariance matrix Σ̂w∗ , we compute

the bootstrapped EGLS
̂̃
β
∗
. Repeating this bootstrapping B times gives

̂̃
β
∗
b (b = 1, . . . , B), which enables us to compute the EDF for the regres-

sion parameters β, and the EDF of Rao’s statistic defined by Eq. (3.34).
Kleijnen and Deflandre (2006) indeed bootstraps Rao’s statistic (and also
the classic R2 statistic, which will be discussed in Sect. 3.6.1), under the
null-hypothesis that the fitted metamodel is valid (bootstrapping under a
null-hypothesis was discussed in Sect. 3.3.5).

Exercise 3.10 Simulate the M/M/1 model, as follows. Pick a single
(scalar) performance measure; e.g., the steady-state mean waiting time.
Simulate n = 3 traffic rates. Apply CRN for these traffic rates. Fit a first-
order polynomial, so q = 2. Use m = 25 replications; each run should be
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“sufficiently long”. Use distribution-free bootstrapping to compute the EDF
of the EGLS estimator of the regression parameters of the metamodel, and
the EDF of Rao’s lack-of-fit statistic.

Note: CRN combined with Eq. (3.30) (Law (2015)’s formula for the de-
sired number of replications m̂ when estimating the mean μw with relative
error γ) gives unequal replication numbers, and is examined in Kleijnen
et al. (2010)—albeit for Kriging instead of linear regression metamodels.

3.6 Validation of Metamodels

In this section we discuss the following questions (again, these questions
were formulated more generally in Sect. 3.1):

1. How can we test the validity of the fitted linear regressionmetamodel?

2. If we find that this metamodel is not valid, can we then transform
the simulation’s I/O data such that a linear regression model becomes
valid?

3. Which alternative metamodels can we apply, if the original meta-
model turns out to be inadequate?

In practice, we do not know which type of metamodel gives a valid
approximation—given the goals of the underlying simulation model; these
goals were discussed in Sect. 1.2. For example—given a “small” experimen-
tal area—is the estimated first-order polynomial adequate to estimate the
gradient (used to search for the optimum; see Chap. 6)? In Sect. 2.2 we
have already discussed the classic lack-of-fit F -test assuming white noise,
and in Eq. (3.34) we discussed Rao’s variant. Now we present the following
alternatives:

• two related coefficients of determination; namely, R2 and R2
adj

• cross-validation.

In practice, these alternatives have been applied to deterministic and
random simulations, and to other metamodels than linear regression mod-
els; e.g., Kriging models. These alternatives may also be used to compare
competing metamodels; e.g., a first-order polynomial versus a second-order
polynomial, or a linear regression model versus a Kriging model. Valida-
tion of metamodels is also discussed in Bischl et al. (2012) and Santos and
Santos (2011) and on. Pérez-Cruzado et al. (2015) also discusses several
statistics for the validation of metamodels.
http://cran.r-project.org/web/packages/DiceEval/index.html

and
http://www.modelselection.org/.

http://cran.r-project.org/web/packages/DiceEval/index.html
http://www.modelselection.org/
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3.6.1 The Coefficients of Determination R2 and R2
adj

R2 is a very popular statistic in passive observation of real systems and
in simulation models that are either deterministic or random. Whether or
not replications are available, R2 may be defined as follows (also see, e.g.,
Draper and Smith 1981, p. 33):

R2 =

∑n
i=1(ŷi − w)2∑n
i=1(wi − w)2

= 1−
∑n

i=1(ŷi − wi)
2

∑n
i=1(wi − w)2

(3.35)

where ŷi denotes the metamodel’s predictor defined in Eq. (2.12), wi de-
notes the simulation output of input combination i averaged over itsmi ≥ 1
replications defined in Eq. (2.28), and w =

∑n
i=1wi/n denotes the “overall”

average simulation output. The right-most equality in Eq. (3.35) shows that
R2 = 1 if ŷi = wi for all n values of i. The statistic R2 measures how much
of the variation in the simulation output is explained by the metamodel; see
the denominator in Eq. (3.35), which is the numerator of the classic variance
estimator computed over the n combinations—analogous to Eq. (2.27). We
may also use R2 in deterministic simulation, where we do not obtain any
replications so in Eq. (3.35) wi becomes wi and w becomes w.
Renaud and Victoria-Feser (2010) points out that R2 also equals the

square of ρ—which is the classic symbol for Pearson’s correlation coeffi-
cient—between wi and ŷi:

R2 = ρ̂2w;ŷ =

(
σ̂w;ŷ

σ̂wσ̂ŷ

)2

=

⎛

⎝
∑n

i=1(wi − w)(ŷi − y)
√∑n

i=1(wi − w)2
√∑n

i=1(ŷi − ŷ)2

⎞

⎠
2

(3.36)

where we may replace σ̂ by s—as Eq. (2.27) demonstrates—and we use the
definition ŷ =

∑n
i=1 ŷi/n. In general, ρ quantifies the strength of the linear

relationship between two random variables; e.g., w and ŷ in Eq. (3.36). Like
R2, the statistic ρ2 ranges between 0 and 1. If ρ̂ = 1, then w and ŷ are
perfectly related by an increasing linear relationship; i.e., in the scatterplot
all n pairs (wi, ŷi) lie on a straight line with intercept 0 and slope 1 (45 ◦).
Details on ρ are given in Kleijnen (2008, pp. 55–57) and Sun and Wong
(2007); details on the numerical calculation and statistical tests are given
in Press et al. (2007, pp. 745–748).
When ρ is computed from the ranked data or order statistics (w(i), ŷ(i)),

the result is known as Spearman’s correlation coefficient. Transformations
such as this ranking will also be discussed in Sect. 3.6.3.
We do not define R2 as a function of the individual outputs wi;r, because

we accept the metamodel as valid if it adequately predicts the expected out-
put of the simulation model. Defining R2 as a function of the individual
outputs would give a lower R2, because of the variability of the individ-
ual outputs per combination.
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If n = q (the design is saturated, so no degrees of freedom are left; see
Chap. 2), then R2 = 1—even if E(e) 	= 0. If n > q and q increases, then R2

increases—whatever the size of |E(e)| is. Because of this problem of over-
fitting, the regression literature adjusts R2 for the number of explanatory
variables, as follows:

R2
adj = 1− n− 1

n− q
(1 −R2). (3.37)

So, if q = 1, then R2
adj = R2; if q > 1, then R2

adj < R2.

Lower critical values for either R2 or R2
adj are unknown, because these

statistics do not have well-known distributions. We might use subjective
lower thresholds. However, Kleijnen and Deflandre (2006) demonstrates
how to estimate the distributions of these two statistics through distribution-
free bootstrapping of the replicated outputs (bootstrapping was discussed
in Sect. 3.3.5).
Note: Wang (2013) discusses a variant of R2 that measures the ability

of predicting a newly observed sample by using the fitted model. We do
not further discuss this variant because we prefer cross-validation, which
considers both the predictive use and the explanatory use of metamodels—
as we shall see in Sect. 3.6.2. Furthermore, R2 and R2

adj are sensitive to
outliers, which we briefly discussed in Sect. 3.3.3. Renaud and Victoria-
Feser (2010) therefore discusses several robust variants of R2, assuming
a constant output variance σ2

w. We do not further discuss these variants,
because we prefer cross-validation over R2.

3.6.2 Cross-Validation

Before we discuss cross-validation, we discuss the following algorithm that
is often used for the validation of the predictive adequacy of any model, in
any scientific discipline.

Algorithm 3.1

1. Use the model to compute a prediction ŷ.
Comment: This ŷ may be the outcome of the metamodel in DASE;
in other areas, ŷ may be the outcome of a simulation model or some
other model.

2. Observe the actual outcome w.
Comment: This w is the simulation outcome in DASE; in other areas,
w is the outcome of the real system.

3. Compare the two outcomes.
Comment: This comparison checks whether these outcomes are close.
This comparison may proceed as follows.
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First we discuss this comparison of ŷ and w, in deterministic simula-
tion, Next we discuss this comparison in random simulation, which is more
complicated because of the random nature of w.
For deterministic simulation we assume that we compute ŷn+1, the pre-

diction for the “new” input combination xn+1 through a linear regression
metamodel with parameters β estimated from the n “old” simulation out-
puts wi of the combinations xi (i = 1, . . . , n). Next we simply compute
either the relative prediction error ŷn+1/wn+1 provided wn+1 	= 0 or the
absolute prediction error |ŷn+1 − wn+1|. The relative error ŷn+1/wn+1 is
scale-free; other validation measures are discussed below. Finally, we “eye-
ball” this prediction error, and decide whether the metamodel is acceptable
for the goal of the simulation study; various goals are discussed in Sect. 1.2.
For random simulation we assume that we compute the prediction through

a linear regression metamodel with parameters β estimated from the simu-
lation output wi;r of input combination xi where combination i is replicated
mi times (i = 1, . . . , n and r = 1, . . . ,mi). We use this metamodel to pre-
dict the actual simulation output for the new combination xn+1:

ŷn+1 = x′
n+1β̂ (3.38)

where for simplicity we assume that we use the OLS estimator β̂ (a more
complicated estimator would use EGLS; see Sect. 3.5). To estimate the
expected simulation output for the same combination xn+1, we obtain
mn+1 >1 replications and compute the average simulation output

wn+1 =

∑mn+1

r=1 wn+1;r

mn+1
. (3.39)

To compare the outcomes of Eqs. (3.38) and (3.39), we may use the scale-
free Studentized statistic

t
(i)
m−1 =

wi − ŷi√
s2(wi) + s2(ŷ−i)

(i = 1, ..., n) (3.40)

where

s2(wn+1) =

∑mn+1

r=1 (wn+1;r − wn+1)
2

mn+1(mn+1 − 1)

is the classic variance estimator, and

s2(ŷn+1) = x′
n+1Σ̂̂βxn+1 (3.41)

follows from Eq. (2.17); the correct value for ν (degrees of freedom) in
Eq. (3.40) is not so easy to determine, because wn+1 and ŷn+1 have differ-
ent variances: so-called Behrens-Fisher problem. A simple solution of this
problem is

ν = minmi′ − 1.
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If the statistic in Eq. (3.40) is not significant, then we may accept the
metamodel as being valid. Next, we may add the “new” simulation out-
puts wn+1;r (r = 1, . . . ,mn+1) to the I/O data set. and re-estimate the
regression parameters β. We expect that the resulting new estimate does
not deviate much from the old estimate—assuming the metamodel is indeed
valid.
Actually, once we have added the new I/O data to the old data set, we

may let the new and the old data change roles; e.g., we may replace x1 by
xn+1 in the preceding equations. This idea leads to cross-validation.
Cross-validation is applied not only in linear regression analysis, but

also in nonlinear regression analysis, Kriging, etc. The basic idea of cross-
validation is quite old; see Stone (1974). Here we present so-called leave-
one-out cross-validation, though Simpson et al. (2004) claims that more
general “leave-k-out cross-validation” or “k-fold cross-validation” may be
better; here k is the usual symbol for the subset of size k selected from the
complete set of n I/O data (xi,wi) with i = 1, . . . , n and wi = (wi;1, . . .,
wi;mi)

′ (in the rest of this book k denotes the number of inputs). Software
for cross-validation is available on
http://cran.r-project.org/web/packages/DiceEval/index.html.
For ease of presentation, we first assume that X has only n instead of

N =
∑n

i=1mi rows; i.e., we assume that the number of replications is
constant, possibly one: mi = m ≥ 1. If mi is a constant m higher than
one (m > 1), then we may replace the OLS estimate using wi;r (individual
output for combination i) by wi (average output for combination i), as we
have already mentioned several times.
Note: If mi > 1 and mi 	= m (different replication numbers), then the

white noise assumption implies that the variance of the average output is
σ2
w/mi; i.e., this variance is not constant. In case of such variance hetero-

geneity we should correct the OLS formulas; see again Sect. 3.4.
We present the following algorithm for leave-one-out cross-validation,

which has five steps.

Algorithm 3.2

1. Delete I/O combination i from the complete set of n combinations,
to obtain the remaining I/O data set (X−i,w−i).
Comment: We assume that this step results in a noncollinear matrix
X−i (i = 1, . . . , n); see Eq. (3.42) below. To satisfy this assumption,
the original matrix X must satisfy the condition n > q. Counterex-
amples are saturated designs. A simple solution in case of a saturated
design is to simulate one more combination, e.g., the center point if
the original design is not a central composite design (CCD).

2. Use the data set resulting from step 1 to recompute the OLS estimator
of the regression parameters:

β̂−i = (X′
−iX−i)

−1X′
−iw−i. (3.42)

http://cran.r-project.org/web/packages/DiceEval/index.html
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3. Use the estimator β̂−i of step 2 to compute the regression prediction
for the combination deleted in step 1:

ŷ−i = x′
iβ̂−i. (3.43)

4. Repeat the preceding three steps until all n combinations have been
processed, giving the n predictions ŷ−i.
Comment: Obviously, these steps can also be executed simultane-
ously, so cross-validation suits parallel computers.

5. “Eyeball” a scatterplot with the n pairs (wi, ŷ−i), and decide whether
the metamodel is valid.

Note: It would be wrong to proceed as follows, unless mi = 1 (which
is the case in deterministic simulation). Start with the N × q matrix XN

(instead of the n× q matrix X), and the corresponding N -dimensional vec-
tor of outputs w (instead of w). Next, delete one row of this XN and the
corresponding w so XN becomes XN−1. From the remaining I/O data,

recompute the OLS estimator β̂ and the regression predictor ŷ. We em-
phasize that this predictor uses mi − 1 simulation outputs for combination
i, so it does not challenge the metamodel to correctly predict the mean
simulation output for this combination.
To illustrate this cross-validation, we return to Example 2.4.

Example 3.5 Kleijnen and Standridge (1988) studies a deterministic sim-
ulation model of a flexible manufacturing system (FMS). A 24−1 design is
used, so n (number of combinations) is eight. This design gives I/O data,
to which a first-order polynomial is fitted using OLS. Cross-validation sug-
gests that the first-order polynomial is not adequate; Table 3.2 displays the
relative prediction errors in percentages (e.g., deleting input combination
1 results in a prediction error of 10%). Furthermore, cross-validation sug-
gests that the effects of inputs z1 and z3 are negligible (not displayed in
Table 3.2). So next, a first-order polynomial is fitted for the remaining
two inputs z2 and z4 and their interaction. This metamodel is fitted to the
“old” I/O data resulting from the 24−1 design. Cross-validation of this new
metamodel suggests that the resulting metamodel is valid; see Table 3.3.
Furthermore, the estimated first-order effects of z2 and z4 and their inter-
action are found not to be very sensitive to the deletion of a combination;
we do not display these data, but refer to the various tables in Kleijnen and
Standridge (1988)
.

Deleted combination i 1 2 3 4 5 6 7 8
Percentage prediction error 10 27 −19 −18 13 33 −38 −35

TABLE 3.2. Cross-validation of FMS example: relative predition error
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Deleted combination i 1 2 3 4 5 6 7 8
Percentage prediction error 2 2 −1 1 −16 14 0 0

TABLE 3.3. Cross-validation of FMS example: relative predition error for
new metamodel

Illustrations of cross-validation are also provided in the following two
case studies:

• a deterministic spreadsheet simulation for the economic appraisal of
natural gas projects; see Van Groenendaal (1998)

• a random simulation for the control of animal diseases; see Vonk
Noordegraaf (2002).

Instead of the subjective judgment in step 5, Kleijnen (1983) proposes
the following alternative that is inspired by Eq. (3.40). Compute

t
(i)
m−1 =

wi − ŷi
s(wi) + s(ŷ−i)

(i = 1, . . ., n) (3.44)

where s(wi) = s(wi)/
√
m and s(wi) follows from Eq. (2.27), and s(ŷ−i)

follows from Eq. (3.43) and the analogue of Eq. (2.17) so

s(ŷ−i) =
√
x′
iΣ̂̂β−i

xi (3.45)

where
Σ̂

̂β−i
= s2(wi)(X

′
−iX−i)

−1
. (3.46)

Because i runs from 1 through n, Eq. (3.44) gives n values. We reject the
regression metamodel if

maxi |t(i)m−1| > tm−1;1−[α/(2n)] (3.47)

where the right-hand side follows from Bonferroni’s inequality. This in-
equality implies that the classic type-I error rate (in this case α/2) is re-
placed by the same value divided by the number of tests (in this
case n)—resulting in the “experimentwise” or “familywise” type-I error

rate α. Obviously, the n statistics t
(i)
m−1 are highly correlated because they

have many outputs in common. We also refer back to our discussion of
Bonferroni’s inequality below Eq. (3.14).

Note: We may replace the OLS estimator β̂ by the EWLS or EGLS esti-

mator
̂̃
β. The t-statistic is less sensitive to nonnormality than the F -statistic;

see the extensive Monte Carlo study in Kleijnen (1992).
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There is a shortcut for the n computations in this cross-validation pro-
cedure; this shortcut is used in regression software, and is also discussed
in Miller (1990, pp. 201–202). The shortcut uses the hat matrix H, which we
have already defined below Eq. (3.4) and we again define here for
convenience:

H = (hi;i′ ) = X(X
′
X)

−1
X′ with i, i′ = 1, . . ., n. (3.48)

This H is implicitly used in Eq. (2.12) where ŷi = x′
iβ̂, because this equa-

tion implies the vector ŷ = (ŷi) = Xβ̂, which together with Eq. (2.13)
gives

ŷ = X(X′X)
−1

X′w= Hw. (3.49)

Geometrically speaking, H projects the vector of observations w onto the
subspace spanned by X. Such a projection matrix is idempotent: HH = H.
Obviously, H is an n×n matrix, so it assumes that the number of replica-
tions is constant, possibly one.
Note: If mi > 1 and mi 	= m (different replication numbers), then the

white noise assumption implies that the variance of the output averagewi is
σ2
w/mi so this variance is not constant. Then a more complicated definition

of the hat matrix becomes necessary for the shortcut; see Kleijnen and Van
Groenendaal (1992, p. 157).
Equation (3.48) implies that element i on the main diagonal of H is

hii. Atkinson and Riani (2000, pp. 18, 24) proves that the numerator of
Eq. (3.44) may be written as

wi − ŷ−i =
wi − ŷi
1− hi;i

and Eq. (3.44) itself may be written as

tmi−1 =
wi − ŷi

s(wi)
√
1− hi;i

(i = 1, . . ., n) (3.50)

so the cross-validation computations can be based solely on the original
I/O data, (X,w), which give ŷi and hi;i (the subscripts involve i, not −i).
Below Eq. (2.21) we have already pointed out the difference between sig-

nificance and importance ( an input may be significant but not important,
and vice versa). In situations with many simulation replications, a meta-
model may give a predicted value that differs significantly from the simula-
tion output, and yet the metamodel may adequately serve its purpose. For
example, Breukers (2006) uses m = 500 replications when comparing the
outcomes of a first-order polynomial metamodel and the original simula-
tion for a new input combination, using Eq. (3.40). This comparison gives
a significant difference. Yet the metamodel adequately helps identify the
important inputs, even though the metamodel is not perfect.
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Note: In deterministic simulation, we should not apply Eq. (3.47)—for
the following reasons. Deterministic simulation implies that s(wi) = 0 in
Eq. (3.44). We might compute s(ŷ−i) in Eq. (3.45), using Eq. (3.46) with
s2(wi) now computed from the mean squared residuals (MSR) defined in
Eq. (2.20). But the worse the metamodel fits, the bigger this MSR gets—so
the smaller the test statistic in Eq. (3.44) becomes so the smaller the prob-
ability of rejecting this false metamodel becomes. Therefore we proposed to
compute the relative prediction errors ŷ−i/wi, and decide whether these er-
rors are acceptable—practically speaking; see again Example 3.5. In other
words, instead of Studentizing the prediction errors, we now standardize
the prediction errors by using relative errors. An alternative remains the
scatterplot described in Step 5 of the cross-validation procedure above.
Cross-validation affects not only the regression predictions ŷ−i(i = 1, . . . , n),

but also the estimated q-dimensional vector with regression parameters
β̂−i; see Eq. (3.42). So we may be interested not only in the predictive
performance of the metamodel, but also in its explanatory performance.
In Example 3.5 we mentioned that cross-validation gave stable first-order
effects for z2 and z4 and for the interaction between these two inputs.
Related to Eq. (3.50) are several so-called diagnostic statistics that are

proposed in the regression literature. Examples are DEFITS, DFBETAS,
and Cook’s D—also see Kleijnen and Van Groenendaal (1992, p. 157)—
but the most popular diagnostic statistic is the prediction sum of squares
(PRESS):

PRESS =

√∑n
i=1(ŷ−i − wi)2

n

where we assume leave-one-out cross-validation. Viana et al. (2014) gives
examples of PRESS in deterministic simulation, for various types of meta-
model; e.g., Kriging, but not linear regression.
The simulation literature proposes validation measures that are related

to the mean squared error (MSE); e.g., the root MSE (RMSE), the aver-
age absolute error (AAE) or mean absolute error (MAE), and the average
absolute relative error (AARE). In the statistics literature, AAE is also
known as the mean absolute deviation (MAD); also see Gorissen (2010,
chapter 8) and Tofallis (2015). Instead of taking the mean (see the letter
M in the preceding acronyms) or average (see the A in these acronyms),
we may take the maximum; e.g., we may compute the maximum absolute
error. The mean is relevant for risk-neutral users, whereas the maximum
is for risk-averse users. For further discussion, we refer to Hamad (2011),
Kleijnen and Sargent (2000), Lin et al. (2002), and
http://cran.r-project.org/web/packages/DiceEval/index.html.
We may apply bootstrapping to estimate the distribution of these vali-

dation statistics; for details we refer to Bischl et al. (2012), Cheng (2006a),
Efron and Tibshirani (1993, pp. 247–255), and Harrell et al. (1996).

http://cran.r-project.org/web/packages/DiceEval/index.html
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Exercise 3.11 Simulate the M/M/1 model (also see Exercise 1.6). Pick
a single (scalar) performance measure; e.g., the mean waiting time in the
steady-state, or the mean waiting time of the first 100 or 1,000 customers.
Select two different experimental areas; e.g., the traffic load ρ = λ/μ varies
between 0.1 and 0.3 and between 0.5 and 0.8. Select these two areas such
that a first-order polynomial seems to give good and bad fit, respectively; for
“high” traffic rates, the first-order polynomial is not a valid metamodel. To
select these areas, “cheat” as follows: draw a plot of the analytical steady-
state mean against the traffic rate. Use mi replications. Either ignore the
variance heterogeneity within the experimental area or use more replications
for the higher traffic rate; see Eq. (3.28). Use either a single PRN stream or
two streams for arrival and service times. To simplify the analysis, do not
apply CRN for different traffic rates. Now validate the fitted metamodel,
using different techniques; e.g., R2 and cross-validation.

Note: Besides quantitative tests, we may use graphical methods to judge
the validity of a fitted metamodel. We have already discussed scatterplots
in Step 5 of the cross-validation procedure above. Hamad (2011) mentions
several other plots for judging the validity of metamodels. Viana et al.
(2014) also emphasizes the importance of visualization. The following soft-
ware may give various plots; namely, the residuals êi versus the index i,
the residuals against the fitted values ŷi, the EDF of e, and the so-called
normal Q-Q plot :
http://cran.r-project.org/web/packages/DiceEval/DiceEval.pdf.

3.6.3 Transformations of Regression Variables

If the validation tests suggest important approximation errors in the fitted
metamodel, then we may consider the following alternatives. In Eq. (2.9) we
have already seen that a transformation combining two simulation inputs—
namely, the arrival rate λ and the service rate μ—into a single indepen-
dent regression variable—namely, the traffic rate x = λ/μ—may give a
better metamodel. In Eq. (2.7) we have seen another useful transforma-
tion,; namely, replace y, λ, and μ by log(y), log(λ), and log(μ) so that
the first-order polynomial approximates relative changes through elasticity
coefficients.
Another simple transformation assumes that the I/O function of the

underlying simulation model is monotonic. Then it makes sense to replace
the dependent and independent variables by their ranks, which results in
so-called rank regression; see Conover and Iman (1981) and also Saltelli
et al. (2005), and Saltelli and Sobol (1995).
Note: Spearman’s correlation coefficient also uses the rank transforma-

tion, but for only two correlated random variables. Kleijnen (2008, p. 57)
and Kleijnen and Helton (1999) use Spearman’s coefficient and rank
regression to find the most important inputs in a random simulation model
of nuclear waste disposal.

http://cran.r-project.org/web/packages/DiceEval/DiceEval.pdf
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Note: Monotonic linear regression models are discussed in Tan (2015).
We may also apply transformations to make the simulation output

(dependent regression variable) better satisfy the assumptions of normality
and variance homogeneity; see again Sects. 3.3.3 and 3.4.3. Unfortunately,
different goals of a transformation may conflict with each other; e.g., we
may apply the logarithmic transformation to reduce nonnormality, but this
transformation may give a metamodel with variables that are not of imme-
diate interest.

3.6.4 Adding High-Order Terms

In the preceding chapter, we discussed designs for low-order polynomial
metamodels. Resolution-III designs assume first-order polynomial meta-
models; resolution-IV and resolution-V designs assume two-factor interac-
tions; CCDs assume second-order polynomials. If these designs do not give
valid metamodels, then we may look for transformations, as discussed in
the preceding subsection. We do not recommend routinely adding higher-
order terms to the metamodel, because these terms are hard to interpret.
However, if the goal is not to better explain or understand the underlying
simulation model but to better predict the output of an expensive simula-
tion model, then we may add such high-order terms. Indeed, full factorial
2k designs enable the estimation of all interactions, such as the interaction
among all k inputs.
The regression literature calls the addition of more explanatory variables

stepwise regression. That literature calls the elimination of nonsignificant
variables backwards elimination; also see testing the significance of one or
more variables in Eqs. (2.21) and (2.22).
Note: If we simulate more than two levels per input, then we may con-

sider other types of metamodels; e.g., Kriging models (see Chap. 5). These
alternatives may give better predictions than low-order polynomials do,
but they are so complicated that they do not give much help when we
try to better understand the underlying simulation model. Furthermore,
these alternatives require alternative design types; e.g., Latin Hypercube
Sampling (see Sect. 5.5.1).

3.7 Conclusions

In this chapter we discussed the assumptions of classic linear regression
analysis and the concomitant statistical designs when these methods are ap-
plied in simulation practice. We pointed out that–given specific
assumptions–multiple simulation outputs may still be analyzed through
OLS per output type. We addressed possible nonnormality of the simula-
tion output, including normality tests, normalizing transformations of the
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simulation output, and the distribution-free methods called jackknifing and
bootstrapping. If the simulation outputs do not have a common variance,
then we may apply alternative analysis and design methods. We discussed
how to analyze simulation I/O data that use CRN, which make the sim-
ulation outputs correlated across different input combinations, within the
same replication. We discussed the validation of linear regression metamod-
els, and transformations to improve the metamodel’s validity.

Solutions of Exercises

Solution 3.1 The jackknife results for this M/M/1 simulation depend on
the PRN stream; see Kleijnen and Deflandre (2003) for examples.

Solution 3.2 The jackknife results for this Monte Carlo experiment
depend on the PRN stream; see Kleijnen and Van Groenendaal (1992,
pp. 141–146) and also Kleijnen (1992) and Kleijnen et al. (1987) for ex-
amples.

Solution 3.3 The bootstrap results for this M/M/1 simulation depend on
the PRN stream; see Kleijnen and Deflandre (2003) for an example.

Solution 3.4 The bootstrap results for this Monte Carlo experiment de-
pend on the PRN stream; see Kleijnen and Deflandre (2003) for examples.

Solution 3.5 See Sect. 3.3.5 on bootstrapping.

Solution 3.6 If Σw = σ2
wI, then Σβ̂ = (X′X)

−1
X′ΣwX(X′X)

−1
=

σ2
w(X

′X)
−1

(X′X)(X′X)
−1

= σ2
w(X

′X)
−1

.

Solution 3.7 The results for this M/M/1 simulation depend on the specific
PRNs, etc.

Solution 3.8 Let the intercept be estimated through

β̂1 =
n∑

i=1

wi/n = 1′
nw/n

with 1′
n a vector with n ones. Then

V ar(β̂1) = 1′Σw1/n
2 =

n∑

i=1

n∑

i′=1

σi;i′/n
2

where σi;i′ denotes the covariance between wi and wi′ if i 	= i′ and σi;i = σ2
i ;

so Var(β̂1) increases if CRN “works” so σi;i′ > 0.
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Solution 3.9 The results for this M/M/1 simulation depend on the specific
PRNs, etc.

Solution 3.10 The results for this M/M/1 simulation with CRN depend
on the specific PRNs, etc.

Solution 3.11 The results for this M/M/1 simulation depend on the spe-
cific PRNs, etc.
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Spöck G, Pilz J (2015) Incorporating covariance estimation uncertainty in
spatial sampling design for prediction with trans-Gaussian random fields.
Front Environ Sci 3(39):1–22

Stone M (1974) Cross-validatory choice and assessment of statistical pre-
dictions. J R Stat Soc Ser B 36(2):111–147

Strang KD (2012) Importance of verifying queue model assumptions before
planning with simulation software. Eur J Oper Res 218(2):493–504

Sun Y, Wong ACM (2007) Interval estimation for the normal correlation
coefficient. Stat Probab Lett 77(17):1652–1661

Tan MHY (2015) Monotonic quantile regression with Bernstein polynomi-
als for stochastic simulation. Technometrics, (in press)

Tofallis C (2008) Selecting the best statistical distribution using multiple
criteria. Comput Ind Eng 54(3):690–694

Tofallis C (2015) A better measure of relative prediction accuracy for model
selection and model estimation. J Oper Res Soc 66:524

Turner AJ, Balestrini-Robinson S, Mavris D (2013) Heuristics for the re-
gression of stochastic simulations. J Simul 7:229–239

Van Groenendaal WJH (1998) The economic appraisal of natural gas
projects. Oxford University Press, Oxford

Viana FAC, Simpson TW, Balabanov V, Toropov V (2014) Metamodeling
in multidisciplinary design optimization: how far have we really come?
AIAA J 52(4):670–690

Vonk Noordegraaf A (2002) Simulation modelling to support national pol-
icy making in the control of bovine herpes virus. Doctoral dissertation,
Wageningen University, Wageningen

Wang B, Mishra SN, Mulekar MS, Mishra N, Huang K (2010) Compari-
son of bootstrap and generalized bootstrap methods for estimating high
quantiles. J Stat Plan Inference 140(10):2926–2935

Wang Y (2013) On efficiency properties of an R-square coefficient based on
final prediction error. Stat Probab Lett 83(10):2276–2281

Wen M-J, Chen S-Y, Chen HJ (2007) On testing a subset of regres-
sion parameters under heteroskedasticity. Comput Stat Data Anal
51(12):5958–5976



References 133

Xu J, Zhang S, Huang E, Chen C-H, Lee H, Celik N (2014) Efficient
multi-fidelity simulation optimization. In: Tolk A, Diallo SY, Ryzhov IO,
Yilmaz L, Buckley S, Miller JA (eds) Proceedings of the 2014 winter sim-
ulation conference, pp 3940–3951

Yang F, Ankenman B, Nelson B (2007) Efficient generation of cycle time-
throughput curves through simulation and metamodeling. Nav Res Lo-
gist 54:78–93

Yeo I-K, Johnson R (2000) A new family of power transformations to im-
prove normality or symmetry. Biometrika 87:954–959

You J, Chen G (2006) Wild bootstrap estimation in partially linear models
with heteroscedasticity. Stat Probab Lett 76(4):340–348



4
Screening the Many Inputs of Realistic
Simulation Models

This chapter is organized as follows. Section 4.1 introduces “screening”
defined as searching for the really important inputs in experiments with
simulation models that have “very many” inputs (say, hundreds of inputs);
this section also gives an overview of several screening methods. Section 4.2
explains a screening method called sequential bifurcation (SB); for simplic-
ity, this section assumes deterministic simulation and first-order polyno-
mial metamodels. Section 4.3 explains SB for deterministic simulations and
second-order polynomial metamodels that satisfy the “heredity” assump-
tion; this assumption states that if a specific input has no first-order effect,
then this input has no second-order effects either. Section 4.4 explains SB
for random simulations with a fixed number of replications per input com-
bination. Section 4.5 explains SB for random simulations with a variable
number of replications determined through Wald’s sequential probability
ratio test (SPRT). Section 4.6 discussesmultiresponse sequential bifurcation
(MSB), which extends SB to problems with multiple types of simulation
responses (multivariate output). Section 4.7 discusses validation of the SB
and MSB assumptions. Section 4.8 summarizes the major conclusions of
this chapter. The chapter ends with solutions for the exercises, and a list
with references for further study.
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4.1 Introduction

Screening or factor screening means searching for the really important fac-
tors or inputs among the many inputs that can be varied in an experiment
with a given simulation model or real system. We assume that effects are
sparse; i.e., only a few inputs among these many inputs are really impor-
tant. Many simulation publications speak of the curse of dimensionality;
see the extensive and recent survey in Viana et al. (2014) and also Singh
et al. (2014). In business and economics, the Pareto principle or 20–80
rule states that only a few inputs (namely, 20%) are really important—or
“active”, as some authors say. In philosophy, the parsimony principle or
Occam’s razor implies that a simpler explanation is preferred to a more
complex explanation—all other things being equal. In Sect. 2.4.1 we have
already mentioned the psychological argument—originally formulated in
Miller (1956)—stating that human capacity for processing information is
limited to seven plus or minus two inputs. So we conclude that there is
really a need for screening in the design and analysis of simulation experi-
ments (DASE).
Note: Compared with mathematical programming models, simulation

models have relatively few inputs—even if we speak of “many” simulation
inputs; see Tenne and Goh (2010) for further discussion.
To illustrate the need for screening, we now summarize two practical

simulation models with many inputs; one example is deterministic and one
example is random.

Example 4.1 “The Netherlands National Institute for Public Health and
the Environment”—abbreviated to RIVM in Dutch—is a research institute
of the Ministry of Health, Welfare and Sport; this institute developed a
deterministic simulation model (called “IMAGE”) that explains the world-
wide increase of temperatures known as the “greenhouse phenomenon”. In
a submodel of this simulation model, Bettonvil and Kleijnen (1997) varies
281 inputs. After simulating only 154 input combinations (scenarios), a
shortlist with 15 inputs is presented; this list includes some inputs that the
ecological experts had not expected to be important! Next, this shortlist was
used to support national policy makers in their decision-making. It is also
important to know which inputs are unimportant so decision-makers are
not bothered by details about these inputs.

Example 4.2 Persson and Olhager (2002) develops a random supply-chain
simulation for the Ericsson company in Sweden, simulating only nine in-
put combinations. Kleijnen et al. (2006) also uses this simulation model,
but considers 92 inputs. Even an experiment with the minimum number
of values per input—namely, two values—would require 292 ≈ 5 × 1027.
Changing one input at a time would still require 93 input combinations;
moreover, such an approach does not enable the estimation of any fac-
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tor interactions (also see Sect. 2.3.2). In Sect. 4.4.2 we shall show how we
actually simulate only 21 combinations—each combination replicated five
times—to identify a shortlist with the 11 most important inputs among the
original 92 inputs. Note that in this case study a single replication takes
40minutes, after modifying the simulation code that originally took 3 hours
per replication.

We emphasize that the importance of inputs depends on the experimental
domain, which is also called the experimental area or the experimental
frame (also see Sect. 2.3). Information on this domain should be given by
the users of the given simulation model, including realistic ranges of the
individual inputs and limits on the admissible input combinations (e.g.,
some input values must add up to 100%; also see the mixture designs in
Sect. 2.10.2). So, in practice, user involvement is crucial for the application
of screening.
To solve the screening problem, several types of screening designs may

be used. We focus on designs that treat the simulation as a black box ; i.e.,
only the inputs and outputs of the simulation model are observed (also
see Definition 2.1). We use the symbol n to denote the number of input
combinations actually simulated, and the symbol k to denote the number of
inputs changed in the simulation experiment. We summarize the following
four types of screening designs.

• Resolution-III (R-III) designs require n ≈ k input combinations to
estimate the k first-order effects (see Sect. 2.4), and are often called
screening designs in the literature on the classic design of experiments
(DOE). By definition, R-III designs give unbiased estimators of these
first-order effects if there are no higher-order effects. Definition 2.12
implies that a saturated design has a number of input combinations
equal to the number of parameters to be estimated; so, if a R–III
design is saturated, then n = 1+ k. Actually, R-III designs are either
saturated or nearly saturated (see again Sect. 2.4). Related to these
R-III designs are so-called “definitive screening” designs, which are
resolution-IV (R-IV) designs and require n ≈ 2k combinations; see
Jones and Nachtsheim (2015).

• Supersaturated designs have fewer input combinations than inputs,
by definition: n < k. These designs assume that the designs are
not sequential; by definition, sequential designs enable us to learn
about the input/output (I/O) behavior of the simulated system as
we collect data on this system before we decide on the next input
combination to be simulated. Obviously, nonsequential or one-shot
designs are less efficient. Kleijnen (1975) compares supersaturated,
R-III, and group-screening designs; group-screening will be discussed
under the next bullet. A bibliography on supersaturated designs is
given on the following website maintained by the Indian Agricultural
Statistics Research Institute (IASRI):
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http://www.iasri.res.in/design/Supersaturated_Design/SSD/

Supersaturated.html.

We also refer to some more recent articles than Kleijnen (1975);
namely, Claeys-Bruno et al. (2011), Draguljiċ et al. (2014), Edwards
and Mee (2011), Holcomb et al. (2007), Koukouvinos et al. (2011),
Phoa et al. (2015), Sarkar et al. (2009), and Xing et al. (2013).

• Group-screening designs aggregate (or confound) individual inputs
into groups so that the k original individual inputs may be evalu-
ated in less than k input combinations. Consequently, these designs
are supersaturated—but they are sequential; i.e., they are executed in
two or more steps or stages. There are several types of group-screening
designs. Examples are one-factor-at-a-time (OAT), Morris’s OAT,
Cotter’s design, Andres’s iterated fractional factorial design (IFFD),
multi-stage group screening, and sequential bifurcation (SB); see Bor-
gonovo and Plischke (2015) Boukouvalas et al. (2014), Campolongo
et al. (2007), Campolongo et al. (2000), De Vos et al. (2006), Fédou
and Rendas (2015), Huang et al. (2015), Khare et al. (2015), Kleijnen
(1975, 2008, pp. 159–160), Martin et al. (2016), Morris (2006), Pujol
(2009), Schonlau and Welch (2006), Shen et al. (2010), and Van der
Sluijs et al. (2005).

Note: Originally, group screening was developed in Dorfman (1943),
to detect syphilis among men called up for induction and subjected to
a blood test; also see Xiong and Ding (2015). Watson (1961) extends
this screening to the screening of inputs in experiments with real
systems.

• Frequency domain experiments (FDE) oscillate the input values (lev-
els) during a simulation run, whereas all other types of designs keep
these values constant during the simulation run. More precisely, each
input has its own carefully chosen oscillation frequency. FDE require
only n = 2 input combinations; namely, one combination with all k
inputs kept constant during the simulation run, and one combina-
tion that is run while each input oscillates at its own frequency. FDE
try to find which input oscillations significantly affect observed out-
put oscillations. For this analysis FDE use Fourier spectral analysis.
Originally, Schruben and Cogliano (1987) proposed this approach.
Sanchez et al. (2006) applies FDE for second-order polynomial meta-
models, including an example of a simulation model with k = 34
inputs. Sohi et al. (2012) proposes an alternative test statistic to con-
trol the error rates of type-I and type-II.

The preceding types of screening designs are based on different math-
ematical assumptions concerning the smoothness of the I/O function im-
plied by the underlying simulation model, possible monotonicity of this
function, etc.; e.g., Moon et al. (2010) assumes a Kriging metamodel,
Rosen and Guharay (2013) assumes a neural network metamodel, and

http://www.iasri.res.in/design/Supersaturated_Design/SSD/Supersaturated.html
http://www.iasri.res.in/design/Supersaturated_Design/SSD/Supersaturated.html
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Shih et al. (2014) assumes multivariate adaptive regression splines (MARS).
In this chapter we focus on SB, because SB is very efficient and effective if
its assumptions are satisfied, as we shall see below.
Note: Mathematically speaking, SB resembles binary search, which is a

well-known procedure in computer science. SB, however, not only estimates
which inputs are important, but also estimates themagnitudes of the effects
of the important inputs.
We repeat that the assumption of a fixed sample size in R-III and super-

saturated designs does not hold in sequential designs, which select the next
input combination after analyzing the preceding I/O data. Such an analysis
may also give designs that are not purely sequential, but are multi-stage
or two-stage. Moreover, these designs are customized ; i.e., they account for
the specific simulation model.

4.2 Sequential Bifurcation (SB) for Deterministic
Simulations and First-Order Polynomial
Metamodels

Originally, SB was developed in Bettonvil (1990), a doctoral dissertation.
Note: This dissertation is summarized in Bettonvil and Kleijnen (1997).

Later on, other authors extended SB; see Frazier et al. (2012), Kleijnen
(2008, p. 160, 2009), Sanchez et al. (2009), and Shen and Wan (2009).
Some specific extensions will be mentioned below.
In this section we explain the basic idea of SB, assuming deterministic

simulation so the I/O function is not disturbed by noise. Furthermore, we
assume that this I/O function can be adequately approximated through a
first-order polynomial metamodel—which is the simplest metamodel that
can still reflect input effects (a zero-order polynomial implies that not a
single input affects the output; a second-order polynomial will be discussed
in later sections). So the metamodel with the response (output) y, the k
inputs zj (j = 1, . . ., k) measured on the original scale (not coded, scaled,
or standardized), and the approximation error (or fitting error) e is

y = γ0 + γ1z1 + . . .+ γkzk + e. (4.1)

Finally, we assume that the signs of these first-order effects γj are known
so that we may define the lower and upper bounds lj and uj of the input
zj such that all k first-order effects are nonnegative: γj ≥ 0 (we follow the
notation of Sect. 2.3.1).
The metamodel in Eq. (4.1) and the known signs γj ≥ 0 imply that

the inputs may be ranked (sorted) by their first-order effects; i.e., the
most important inputs are the ones with the largest first-order effects;
the least important inputs are the ones with the effects closest to zero.
If the metamodel is valid (or “adequate”), then by definition the approxi-
mation error has zero expected value: E(e) = 0.
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SB is illustrated in Fig. 4.1, which is adapted from Bettonvil and Klei-
jnen (1997). This plot applies SB to an example in Jacoby and Harrison
(1962). The example has k = 128 inputs, but only three important inputs;
namely,the inputs labeled 68, 113, and 120. The symbols ← and → show
which simulation outputs estimate group effects; ↓ means that a group is
split into two subgroups; ↑ refers to the individual input that SB finally
identifies as important. Furthermore, wj denotes the simulation output
when the first j inputs are at their high levels hj and the remaining inputs
are at their low levels lj ; this symbol wj is also used in Shi et al. (2014a),
whereas w(j) is used in Bettonvil (1990) and other publications. Finally,
γj′−j denotes the sum of the first-order effects of inputs j′ through j; to
simplify the notation in this plot, we do not display the hat in γ̂j′−j that
denotes an estimator.
In general, SB is sequential; i.e., SB consists of a sequence of steps.

In the first (initial) step, SB aggregates all k inputs into a single group,
and checks whether or not that group of inputs has an important effect.
Input j is called important if γj > Δ where Δ ≥ 0 is determined by the
users; obviously, Δ depends on the problem. So in this step, SB obtains the
simulation output w when all k simulation inputs are “low”; this output
may be denoted by w(z = l) where z = (z1, . . . , zk)

′ and l = (l1, . . . , lk)
′.

In this step, SB also obtains w when all inputs are “high”, denoted by
w(z = h) where h = (h1, . . . , hk)

′. Obviously, if all inputs have zero effects
so γj = 0 (j = 1, . . ., k), then the values of these two outputs are the same:
w(z = l) = w(z = h). However, if one or more inputs have positive effects
(so ∃j: γj > 0), then these two outputs differ: w(z = l) < w(z = h).
In practice, not all k inputs have zero effects. We point out that it may
happen that all effects are unimportant so 0 ≤ γj < Δ, but that w(z =
h)−w(z = l) > Δ. If SB finds that the group has an important effect, then
the next step of SB splits the group into two subgroups, which explains the
term bifurcation. Let k1 denote the size of subgroup 1 and k2 the size of
subgroup 2, so k1 + k2 = k. “Good” values for k1 and k2 will be discussed
below. For the time being, we may suppose that the two subgroups have
“approximately” the same size; e.g., Fig. 4.1 shows k1 = k2 = 64.
In this next step, SB obtains the simulation output w when all k1 simu-

lation inputs within subgroup 1 are “high”. So in this step, SB obtains wk1 .
SB compares this wk1 with w0 = w(z = l); if wk1 − w0 < Δ, then none
of the individual inputs in subgroup 1 is important and SB eliminates this
subgroup from further experimentation.
SB also compares this wk1 with wk = w(z = h); if wk − wk1 < Δ, then

none of the individual inputs in subgroup 2 is important and SB eliminates
this subgroup from further experimentation. However, in the example of
Fig. 4.1 the result wk − wk1 < Δ is impossible, because at least one input
is important and this input is labeled such that this input is a member of
subgroup 2.
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SB continues splitting important subgroups into smaller subgroups, and
discards unimportant subgroups. It may happen that SB finds both sub-
groups to be important; e.g., w96 in Fig. 4.1 leads to further experimenta-
tion with two important subgroups. Finally, SB identifies and estimates all
individual inputs that are not in subgroups identified as unimportant; see
the symbol ↑ at the bottom of Fig. 4.1.
In this section we standardize (scale, code) the inputs such that the high

values of the original inputs correspond with the value 1 for the standard-
ized inputs, but the low values of the original inputs correspond with the
value 0 (instead of -1) for the standardized inputs (also see Sect. 2.3.1):

xj = aj + bjzj with aj =
−lj

uj − lj
; bj =

1

uj − lj
; j = 1, . . . , k. (4.2)

If an original input is qualitative, then we randomly associate its levels
with the standardized values 0 and 1. So Eq. (4.1) for the original inputs z
implies the following metamodel for the standardized inputs x:

y = β0 + β1x1 + . . .+ βkxk + e. (4.3)

To estimate βj in Eq. (4.3), it is most efficient to experiment with only two
levels (values) per input (see again Chap. 2). In practice, it is important
that these levels are realistic extreme values; i.e., the users of the under-
lying simulation model should provide these values. We also refer to the
discussion of scaling in Wan et al. (2006).
Below Eq. (4.1) we assumed γj ≥ 0 for the original inputs, so now we

assume βj ≥ 0 for the scaled inputs. Without this assumption first-order
effects might cancel each other within a group. Part (a) of Fig. 4.2 illustrates
that the “known signs” assumption is related to the “monotonicity” of the
I/O function, defined as follows.

Definition 4.1 The function w = f(x) is called monotonically increasing
if w(x = x1) ≤ w(x = x2) if x1 ≤ x2.

Obviously, we can define the inputs such that if the function is mono-
tonically decreasing in the original inputs zj , then this function becomes
monotonically increasing in the standardized inputs xj .
Our experience shows that in practice the users often do know the signs.

One example is the RIVM case study in Example 4.1, in which the eco-
logical experts could specify the signs of all 281 inputs. Another example
is the random simulation in Example 4.2, in which some inputs refer to
transportation speeds so the higher these speeds, the lower the “work in
process (WIP)” and hence the lower the cost; this cost is the output of
interest in this SB experiment.
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FIGURE 4.2. Known signs of I/O function: (a) monotonic (b) nonmono-
tonic (c) nonmonotonic with misleading sign
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Note: More examples of known monotonic I/O functions are given in
other publications, including publications on so-called isotonic regression,
which assumes that the mean function is monotone increasing (or decreas-
ing); see Antoniadis et al. (2007), Draguljiċ et al. (2014), Kleijnen (2008,
p. 162), Lim and Glynn (2006), Murray et al. (2013), Siem et al. (2008),
Tan (2015), Wang and Xue (2015), and Wu et al. (2015). However, if the
signs are unknown, then SB may be preceded by a saturated or nearly satu-
rated R-III design; see Oh et al. (2009) and Sanchez et al. (2009), detailing
this so-called fractional factorial controlled sequential bifurcation (FFCSB)
and several variants.
Part (b) of Fig. 4.2 illustrates a nonmonotonic I/O function. Nonetheless,

switching the standardized input from −1 to +1 increases the output so
SB will find that this input is important.
Part (c) of Fig. 4.2 gives a (“pathological”?) counterexample; i.e., the

I/O function is not monotonic and happens to give the same output values
for the two observed input levels −1 and +1 so the input effect seems to
be zero and SB will eliminate this input.
Nevertheless, if in a particular case study it is hard to specify the signs

of a few specific inputs, then we should treat these inputs individually; i.e.,
we should not group these inputs with other inputs in SB. For example,
De Vos et al. (2006) creates some subgroups of size one in a multi-stage
group-screening design; this design is less efficient than SB, but (like SB)
it also uses aggregation. Treating such inputs individually is safer than
assuming a negligible probability of cancellation within a subgroup.
The efficiency of SB—measured by the number of simulated input com-

binations (and hence computer time)—improves if the individual inputs
are labeled such that inputs are placed in increasing order of importance,
as proven in Bettonvil (1990, p. 44). This labeling implies that the im-
portant inputs are clustered. To realize this efficiency gain, it is crucial
to utilize prior knowledge of users and analysts about the real system be-
ing simulated; e.g., in the Ericsson case-study of Example 4.2, the input
“demand” is placed at the very end of the list with 92 individual inputs.
The efficiency further improves when placing similar inputs within the same
subgroup; e.g., in the Ericsson case-study, all “test yield” inputs are placed
together, because the conjecture is that if one yield input is unimportant,
then all yield inputs are unimportant too. Finally, the efficiency increases
if input subgroups are split such that the number of inputs for the first
new subgroup is a power of two; e.g., split a group of 48 inputs into a sub-
group of 32 (= 25) inputs and a subgroup of the remaining 16 inputs so
the important inputs are placed in the smallest subgroup—assuming the
inputs are sorted from unimportant to most important. However, we do not
recommend such splitting if it implies splitting a group of related inputs.
Anyhow, we conclude that splitting a group into subgroups of equal size—
like some authors do—is not necessarily optimal. For further discussion we
refer to Bettonvil (1990, pp. 40–43).
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Analogously to the symbol wj , we let the symbol w−j denote the observed
simulation output with the inputs 1 through j set to their low levels and the
remaining inputs set to their high levels. Notice that w0 = w−k. Combining
wj and w−j with the scaling in Eq. (4.2) and the metamodel in Eq. (4.3),
we obtain

E(wj) = β0 +

j∑

h=1

βh (4.4)

and

E(w−j) = β0 −
j∑

h=1

βh. (4.5)

Combining Eqs. (4.4) and (4.5), we obtain

E(wj)− E(w−j) = 2

j∑

h=1

βh. (4.6)

Let βj′−j denote the sum of the first-order effects of the standardized inputs
j′ through j:

βj′−j =

j∑

h=j′
βh. (4.7)

A simple unbiased estimator of this group effect βj′−j follows from Eq. (4.6):

β̂j′−j =
wj − wj′−1

2
. (4.8)

Consequently, the individual first-order effect of input j may be estimated
through the analogue of Eq. (4.8):

β̂j =
wj − wj−1

2
. (4.9)

Note: Ankenman et al. (2006) derives a more complicated estimator that
uses the ordinary least squares (OLS) criterion with the k additional con-

straints β̂j ≥ 0 (j = 1, . . ., k), assuming random simulation (deterministic
simulation, which is the focus of this section, is a limiting case of random
simulation). This so-called “polytope” method requires fewer combinations
to be simulated, but it is also more complicated because it requires the
solution of a linear programming (LP) problem after each additional ob-
servation; this LP problem arises because the method computes the OLS
estimate—so it minimizes the sum of squared residuals, SSR, defined in
Eq. (2.11)—under the constraints stipulating that all regression coefficients
be nonnegative. Moreover this method assumes a first-order polynomial,
whereas we shall also present simple estimators like Eq. (4.8) for second-
order polynomials (see Sect. 4.3).
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The way SB proceeds may be interpreted through the following metaphor
that is inspired by Japanese zero-inventory management; also see Cachon
and Terwiesch (2006, Fig. 10.6). Figure 4.3 reproduced from Kleijnen et al.
(2006) suggests a lake with murky water that is controlled through a dam.
The goal of this control is to identify the highest (most important) rocks
(actually, SB not only identifies, but also measures the height of these
“rocks”). The dam is controlled in such a way that the level of the wa-
ter slowly drops. Obviously, the highest rock first emerges from the water.
The most-important-but-one rock turns up next. And the water level con-
tinues to decrease . . . . Actually, SB may stop when we feel that all the
“important” inputs are identified; once we stop, we know that all remain-
ing (unidentified) inputs have effects that are smaller than the effects of
the inputs that have been identified so far.
Moreover, the aggregated effect of a given (sub)group is an upper limit

for the value of any individual first-order effect within that group; see U
in Fig. 4.3 (actually, this plot illustrates a more complicated case-study;
namely, the Ericsson random simulation in Example 4.2, assuming a second-
order polynomial). If we must terminate SB prematurely (e.g., because our
computer breaks down or our users get impatient), then SB still allows
identification of the inputs with first-order effects larger than the current
upper limit U . For example, Fig. 4.3 shows that if SB is terminated af-
ter Step 11, then the most important input—namely, the input labelled 92,
which is demand for the product—has already been identified, and its first-
order effect has been estimated; none of the other inputs has a first-order
effect exceeding that of the input 92.

4.3 SB for Deterministic Simulations
and Second-Order Polynomial Metamodels

In this section we assume that a valid metamodel is a second-order poly-
nomial plus approximation error e with zero mean so E(e) = 0:

y = β0 +
k∑

j=1

βjxj +
k−1∑

j=1

k∑

j′=j+1

βj;j′xjxj′ +
k∑

j=1

βj;jx
2
j + e, (4.10)

which we have already discussed in Sect. 2.8 assuming a relatively small
number of inputs so classic designs could be applied. Actually, Bettonvil
(1990) and Bettonvil and Kleijnen (1997) ignore the purely quadratic
effects βj;j .
In this section (unlike the preceding section, which includes Eq. (4.2))

we standardize the original inputs z such that the standardized inputs x
are either −1 or 1 in the experiment (also see Sect. 2.3.1):

xj = aj + bjzj with aj =
lj + uj

lj − uj
and bj =

2

uj − lj
. (4.11)
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Moreover, we assume that if input j has no first-order effect so βj = 0,
then this input has no second-order effects either so β2

j;j = 0 and βj;j′ = 0
(j′ 	= j). This assumption is the analogue of the heredity assumption in Wu
and Hamada (2009).
Note: Heredity is related to “functional marginality” discussed in Tsai

et al. (2007). Heredity is questioned in Draguljiċ et al. (2014), and Rosen
and Guharay (2013); also see Archer et al. (1997).
In Theorem 2.1 we have already presented the foldover principle, used

to construct resolution-IV (R-IV) designs from R-III designs. This princi-
ple implies that we simulate the “mirror” input combination besides the
original combination; i.e., −1 and 1 in the original design become 1 and
−1 in the mirror design. Likewise, SB enables the estimation of first-order
effects unbiased by second-order effects if SB simulates the mirror input
of the original input in its sequential design. Obviously, SB now doubles
the number of simulated combinations compared with SB assuming a first-
order polynomial.
More specifically, the second-order polynomial in Eq. (4.10) gives the

analogue of Eq. (4.4):

E(wj) = β0 +

j∑

h=1

βh −
k∑

h=j+1

βh +

k∑

h=1

β2
h;h +

j−1∑

h=1

j∑

h′=h+1

βh;h′

+

k−1∑

h=j+1

k∑

h′=h+1

βh;h′ −
j∑

h=1

k∑

h′=j+1

βh;h′ . (4.12)

For example, if in Eq. (4.12) k = 92 (as in Example 4.2) and (say) j = 49,
then

E(w49) = β0 + (β1 + . . .+ β49)− (β50 + . . .+ β92)

+ (β1;1 + . . .+ β92;92) + (β1;2 + . . .+ β48;49)

+ (β50;51 + . . .+ β91;92)− (β1;50 + . . .+ β49;92).

Likewise, the metamodel in Eq. (4.10) gives the analogue of Eq. (4.5):

E(w−j) = β0 −
j∑

h=1

βh +

k∑

h=j+1

βh +

k∑

h=1

β2
h;h +

j−1∑

h=1

j∑

h′=h+1

βh;h′

+

k−1∑

h=j+1

k∑

h′=h+1

βh;h′ −
j∑

h=1

k∑

h′=j+1

βh;h′ . (4.13)

For example, k = 92 and j = 49 give

E(w−49) = β0 − (β1 + . . .+ β49) + (β50 + . . .+ β92)

+ (β1;1 + . . .+ β92;92) + (β1;2 + . . .+ β48;49)

+ (β50;51 + . . .+ β91;92)− (β1;50 + . . .+ β49;92).
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Subtracting Eq. (4.13) from Eq. (4.12) cancels all second-order effects.
An unbiased estimator of the first-order group effect is the analogue of

Eq. (4.8):

β̂j′−j =
(wj − w−j)− (wj′−1 − w−(j′−1))

4
. (4.14)

An unbiased estimator of the individual effect is the analogue of Eq. (4.9):

β̂j =
(wj − w−j)− (wj−1 − w−(j−1))

4
. (4.15)

Exercise 4.1 What is the mirror scenario of the extreme input combina-
tion that has all k inputs at their low levels?

If we suspect that the heredity assumption is violated for a specific input,
then we should not use SB to investigate that particular input, but we
should investigate that input after the screening phase.
Note: SB with mirror scenarios does not enable estimation of individ-

ual interactions, but it does show whether interactions are important—
as follows. First we estimate the first-order effects from the original input
combinations ignoring the mirror combinations. Next we compute the first-
order effects from the outputs for the mirror combinations. If these two
types of estimators give roughly the same values, then we may conclude
that interactions are unimportant. An example is the ecological simula-
tion in Example 4.1. In that example, the input values change relatively
little (because larger changes would give unrealistic simulation output);
because of these small changes a first-order polynomial is adequate. How-
ever, the Ericsson case-study in Example 4.2 gives interactions that turn
out to be important. In a follow-up experiment with the inputs declared to
be important in SB, we may estimate the individual interactions through
a resolution-V (R-V) design (these designs are discussed in Sect. 2.7). SB
with mirror observations may give a different path through the list of indi-
vidual inputs; e.g., the path in Fig. 4.4 (displayed in the next section) may
change.

4.4 SB for Random Simulations and Constant
Number of Replications

In Sect. 4.4.1 we present the SB method for a constant number of repli-
cations m per input combination. In Sect. 4.4.2 we present a case study;
namely, Ericsson’s supply-chain simulation.

4.4.1 The SB Method

We extend our notation such that wj;r denotes replication r of the sim-
ulation output with the inputs 1 through j at their high levels and the
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remaining inputs at their low levels; we assume a fixed number of replica-
tions m per simulated input combination so r = 1, . . .,m.
Assuming a first-order polynomial, we obtain the following unbiased es-

timator of the group effect based on replication r:

β̂(j′−j);r =
wj;r − w(j′−1);r

2
,

which is the analogue of Eq. (4.8). The analogous estimator of an individual
first-order effect is

β̂j;r =
wj;r − w(j−1);r

2
.

Assuming a second-order polynomial metamodel, we obtain the following
unbiased estimator of the first-order group effect based on replication r that
is the analogue of Eq. (4.14):

β̂(j′−j);r =
(wj;r − w(−j);r)− (w(j′−1);r − w−(j′−1);r)

4
. (4.16)

And the analogous estimator of an individual effect is

β̂j;r =
(wj;r − w(−j);r)− (w(j−1);r − w−(j−1);r)

4
. (4.17)

Whether we assume a first-order or a second-order polynomial, the m
replications enable us to estimate the mean and the variance for each ag-
gregated and individual estimated effect; also see Eq. (3.33). For example,
Eq. (4.17) gives

β̂
j
=

∑m
r=1 β̂j;r

m
and s(β̂

j
) =

√√√√
∑m

r=1(β̂j;r − β̂
j
)2

m(m− 1)
. (4.18)

This variance estimator allows unequal output variances and common ran-
dom numbers (CRN). Consequently, the individual estimated regression

parameters β̂j may be tested through the t-statistic with m− 1 degrees of
freedom:

tm−1 =
β̂

j
− βj

s(β̂
j
)
. (4.19)

In SB we apply a one-sided test because all individual first-order effects
are assumed to be nonnegative; our “favorite” or “null” hypothesis (H0) is
that the SB assumption holds:

H0 : βj > 0 versus H1 : βj = 0. (4.20)
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4.4.2 Case Study: Ericsson’s Supply Chain

We return to the Ericsson simulation model in Example 4.2. For this model,
Kleijnen et al. (2006) examines k = 92 inputs and obtains m = 5 replica-
tions for each simulated input combination. Table 4.1 gives the simulation
outputs for each replication of the two extreme combinations,which have
the first j = 0 and j = 92 inputs at their high levels. The next-to-last
row in this table displays the average output w0 = 3,981,627 and w92 =
34,013,832. Combining these averages with Eqs. (4.7), (4.6), and (4.18)
gives the estimated group effect of all 92 inputs; namely,

β̂1−92 = (34,013,832 − 3,983,627)/2 = 15,016,102. Moreover, the last row
in the table combined with Eq. (4.18) gives the standard error of this

estimated group effect; namely, s(β̂1−92) = 94,029.3/
√
5 = 42,051. So

Eq. (4.19) gives t4 = 15,016,102/42,051 = 357.09; i.e., this effect is very sig-
nificant. In hindsight, these two extreme combinations require fewer repli-
cations than m = 5; e.g., m = 2 replications would have shown that this
group effect is important (also see the next exercise).

Exercise 4.2 Compute the t-statistic using only the first two replications
in Table 4.1.

Given the simulation outputs in Table 4.1 for the first two extreme in-
put combinations, SB continues its search for important inputs. Figure 4.4
shows the successive SB steps; this plot uses the same symbols as Fig. 4.1
does. For example, after the initial step with its two extreme input combina-
tions, SB divides the total group of 92 inputs into two subgroups; namely,
the subgroup in the left-hand side of the plot that aggregates all the 79
“decision” inputs, and the other subgroup that aggregates all 13 “environ-
mental” inputs (controllable and environmental inputs will be discussed
in Sect. 6.4). We expect that simulation of this (less extreme) combination
gives an average output between the average outputs of the preceding two
extreme combinations; these values are not displayed. Comparison of w79

and w0 gives γ̂1−79. Similarly, comparison of w
92

and w
79

gives γ̂80−92.

Replication r w0;r w92;r β̂(1−92);r

1 3,954,024 34,206,800 15,126,388.0
2 3,975,052 33,874,390 14,949,669.0
3 3,991,679 33,775,326 14,891,823.5
4 4,003,475 34,101,251 15,048,888.0
5 3,983,905 34,111,392 15,063,743.5
Average 3,981,627 34,013,832 15,016,102.4
Standard error 18,633 180,780 94,029.3

TABLE 4.1. Five replications for the two extreme combinations in the
Ericsson supply-chain model
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So, this step splits the total effect γ̂
1−92

into its two additive components.
This step decreases the upper limit U for any individual effect in the first
subgroup and the second subgroup, respectively; see again Fig. 4.3.
SB does not split a subgroup any further when its estimated aggregated

first-order effect is not significantly positive. Note that if the estimate were
significantly negative in a two-sided t-test, then the assumption of known
signs would be rejected. For example, the estimated aggregated first-order
effect of inputs 50 through 79 turns out to be negative but not significant,
so this group is not further split.
The input labeled 87 is a “dummy” input in SB that does not occur in

the simulation model itself, so this input is known to have zero effect; also
see the discussion leading to Exercise 4.3 below.
In this case study, SB stops after 21 steps. The upper limit, U(21), for

the first-order effect of any remaining individual input is then reduced to
87,759; see again Fig. 4.3. The shortlist has 11 inputs; the most important
input has label 92 (and is “demand”). We have already pointed out that
the efficiency of SB improves if the inputs are labeled from least important
to most important; we now conclude that input 92 is indeed the most
important input and that no input labelled smaller than 43 is declared
to be important. This plot also shows that the most important individual
input (namely, input 92) has already been identified and estimated after
only ten steps; the next important input (input 49) is identified after 16
observations.
More details are given in Kleijnen et al. (2006). These details include the

programming and validation of the simulation model, steady-state analy-
sis including estimation of a warm-up period, and the role of two-factor
interactions and dummy inputs; see the next exercise.

Exercise 4.3 The Ericsson model concerns three successive variants of the
supply chain such that the oldest variant has more inputs (namely, 92) than
the latest variant (which has 78 inputs). Hence, applying SB to the latest
variant uses 14 dummy inputs. Will the group effect after simulating the
two extreme input combinations for the latest variant be smaller or larger
than for the old variant?

Note: Kleijnen et al. (2006) also discusses the need for software that
implements sequential screening in simulation experiments. That software
should generate an input file, once a particular design type (e.g., SB) has
been chosen. Such a file can then be executed sequentially and efficiently,
in batch mode; i.e., no human intervention is required while the computer
executes the sequential design including rules for selecting the next input
combination based on all preceding observations. Good computer program-
ming avoids fixing the inputs at specific numerical values within the code;
instead, the computer reads input values so that the program can be run for
many combinations of these values. Of course, the computer should check
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whether these values are admissible; i.e., are these combinations within the
experimental domain? Such a practice can automatically provide a long list
of potential inputs.

4.5 SB for Random Simulations and Variable
Number of Replications

Whereas the t-statistic in Eq. (4.19) assumes a fixed m (number of repli-
cations) and a “favorite” null-hypothesis (namely, H0) in Eq. (4.20), the
SPRT in Wan et al. (2010) selects the number of replications such that it
improves the control over the type-I or α error rate (“false positive”) and
has no favorite null-hypothesis but considers two comparable hypotheses—
as we shall see in this section.
Note: The origin of the SPRT is Wald (1945). False positives are also

discussed in Draguljiċ et al. (2014) and Shih et al. (2014).
Ankenman et al. (2015) derives an alternative for the SPRT in Wan et al.

(2010), and shows how to save on simulation observations. That publication
also considers situations with the dispersion instead of the mean response
as “the” output of interest.
To define this SPRT, we use the symbols in Wan et al. (2010) as much

as possible. This SPRT is meant to control the type-I error probability
through the whole procedure and to hold the type-II or β error probability
at each step. We claim that ideally SB should also control the type II error
probability over the whole procedure with its sequence of steps (also see De
and Baron (2015) and Döhler (2014) for interesting discussions of so-called
familywise error probabilities). We therefore consider SB to be no more
than a heuristic, but this heuristic is better than apriori assuming that the
majority of potentially important individual inputs are unimportant, and
experimenting with a small group of inputs that are subjectively assumed
to be important. The numerical results for this heuristic—published in Wan
et al. (2010) and Shi et al. (2014a)—look very promising.
Wan et al. (2010) assumes a second-order polynomial metamodel (such

a metamodel requires mirror combinations; fewer combinations would be
required when assuming a first-order polynomial metamodel; however, a
second-order polynomial may require fewer replications per combination).
Simulation outputs are assumed to have (marginal) Gaussian distributions.
Variances may vary with the input combination x. Moreover, the four input
combinations including mirror observations—such as Eq. (4.16)—may use
CRN. If CRN are indeed applied, then the number of replications for the
four input combinations used to estimate βj′−j are equal, before beginning
the SPRT (see Wan et al. (2010) near the end of their Section 3.2).
In general, an SPRT adds one replication at a time, and terminates as

soon as a conclusion can be reached; also see Kleijnen (1987, pp. 54–55,
108–109). Wan et al. (2010) applies a novel SPRT each time when testing
either a group effect (in the early stages) or an individual effect.
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FIGURE 4.5. SPRT example

Wan et al. (2010) classifies inputs with βj ≤ Δ0 as unimportant and
inputs with βj ≥ Δ1 as important where Δ0 and Δ1 are determined by the
users (Δ was determined analogously, in Sect. 4.2). For these unimportant
inputs, the type-I error probability is controlled such that it does not ex-
ceed α; for important inputs, the statistical power of the test should be at
least γ (the symbol γ used in Wan et al. should not be confused with γ in
the preceding sections, where γ denotes the effects of the original, nonstan-
dardized inputs). For intermediate inputs—which have Δ0 < βj < Δ1—the
power should be “reasonable”; also see Table 4.2 below.
The initial number of replications when estimating βj′−j is N0;j′−j . Wan

et al. (2010) selects a value for N0;j′−j that remains constant over all the
SB stages; e.g., N0;j′−j = N0 = 25. We, however, expect that N0;j′−j may
be smaller in the early stages, because those stages estimate the sum of the
positive first-order effects of bigger groups so the signal-noise ratio is larger;
see again Exercise 4.2. These N0;j′−j replications are used to estimate the

variance S2
j′−j of β̂(j′−j);r (where β̂(j′−j);r denotes the estimator of βj′−j

computed in replication r with r = 1, . . ., N0;j′−j):

Sj′−j =

∑N0;j′−j

r=1 (β̂(j′−j);r − β̂j′−j)
2

N0;j′−j − 1
with β̂j′−j =

∑N0;j′−j

r=1 β̂(j′−j);r

N0;j′−j
.

(4.21)
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The remainder of this section gives statistical details on the SPRT derived
in Wan et al. (2010). Hence, some readers may wish to skip these details,
and proceed to the Monte Carlo experiment with this SPRT in Sect. 4.5.1.
Wan et al. (2010) uses a SPRT based on

mj′−j∑

r=1

[β̂(j′−j);r − r0;j′−j ] (4.22)

where mj′−j denotes the current number of replications (so mj′−j ≥
N0;j′−j) and r0;j′−j denotes the so-called drift parameter defined below (be-
cause we want to stick close to the symbols in Wan et al. (2010), we do not

write [
∑mj′−j

r=1 β̂(j′−j);r]− r0;j′−j , where the new place of the square brack-
ets would emphasize that r0;j′−j does not change as r changes). Shi et al.
(2014a) illustrates this SPRT for two types of outputs, denoted through the
superscripts (1) and (2) in Fig. 4.5 (SB for multiple output types will be
detailed in Sect. 4.6). This plot shows that each type of output has its own
continuation region that turns out to be a triangle; see the solid lines for
type 1 and the dotted lines for type 2. For these two outputs, the symbols
“•” and “�” represent the observed values of the SPRT statistic defined in
Eq. (4.22) as functions of the number of replications r. The test sequentially
checks whether the statistic in Eq. (4.22) crosses a termination boundary
(TB), defined such that TB1 denotes the TB of the region in which the
effect is declared to be unimportant and TB2 is defined analogously for
important effects. This SPRT does not go on for ever; i.e., it ends with a
maximum number of observations that is one more than Mj′−j which de-
notes the value at which the solid or dotted lines cross the horizontal axis
r. Actually, the final number of replications for estimating βj′−j is mj′−j ;
the plot displays N0;j′−j < mj′−j < Mj′−j. The two triangular regions are
defined by the two slopes ±λ with

±λ = ±(Δ1 −Δ0)/4.

Notice that the slopes of the triangles increase as Δ1 increases; conse-
quently, fewer replications are needed when estimating bigger effects. These
regions have the two intercepts ±aj′−j with

±aj′−j = ±a0;j′−jSj′−j ,

where S2
j′−j was defined in Eq. (4.21), and the constant a0;j′−j and the

drift r0;j′−j in Eq. (4.22) are the solutions of rather complicated equations
specified in Wan et al. (2010, Eq. 5 and Eq. 6) and the Matlab code in
Appendix C in the Online Supplement.
However, Shi et al. (2014a) corrects an error in this code (adding the

SumInt function that is missing in the Online Supplement). Notice that the
intercept aj′−j increases as S

2
j′−j increases; consequently, more replications

are needed if the simulation outputs—and consequently the estimated input
effects—have more noise. Further details of the SPRT algorithm are given
in Wan et al. (2010, Fig. 3).
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4.5.1 Monte Carlo Experiment with SPRT

The advantage of Monte Carlo experiments is that we can guarantee that
all SB assumptions are satisfied, whereas we cannot do so in case studies.
Moreover, we know which inputs are truly important in Monte Carlo exper-
iments. Finally, experiments with practical simulation models may be very
expensive; i.e., a single simulation run may take hours or days, whereas
Monte Carlo experiments may generate an output in (micro)seconds (de-
pending on the computer hardware and software).
Wan et al. (2010) uses a Monte Carlo experiment to evaluate SB com-

bined with the SPRT, considering only k = 10 inputs, and selecting Δ0 = 2
and Δ1 = 4; the noise e in the metamodel is normally distributed with mean
zero and a standard deviation equal to 1 + |E(w)|. Obviously, these rather
large standard deviations require many replications (as we shall illustrate
in Table 4.2 and Fig. 4.6). Furthermore, Wan et al. (2010) selects for the
type-I error probability α = 0.05 and for the power γ = 0.90. In this Monte
Carlo experiment with additive noise e, CRN would generate a linear cor-
relation coefficient with value 1; therefore no CRN are used in this Monte
Carlo experiment. The values for the two-factor interactions are resampled
in the 1,000 macroreplications. The performance measure of the Monte
Carlo experiment is P̂r(DI), which denotes the probability of declaring an

individual input to be important; this P̂r(DI) is estimated from the 1,000
macroreplications.
Wan et al. (2010) examines several cases, including the following case.

There are five first-order effects between Δ0 and Δ1 (remember that Δ0 = 2
and Δ1 = 4) and five first-order effects exceeding Δ1 but not exceeding the
value 6. More specifically, these effects have the values 2.00, 2.44, 2.88,
3.32, 3.76, 4.20, 4.64, 5.08, 5.52, and 6.00; see the columns 1 and 2 in
Table 4.2. Shi et al. (2014a) presents results that we reproduce in Table 4.2
with a fixed initial sample size N0 equal to either 5 or 25 and (see the last
four columns) N0 that is either 5 or 25 in the first stage and either 25%
or 50% of the final number of replications in the immediately preceding
stage. This table shows that the selection of N0 does not seriously affect
the SB performance quantified through P̂r(DI). This table does show in its
last line that a fixed N0 (columns 3 and 4) requires more replications than
a variable N0; the number of replications are added over all stages. Note
that it is well known that in general the selection of the initial sample size
in sequential procedures is difficult; maybe there is an “optimal” value for
N0 and maybe N0 = 25 is closer to that optimal value than N0 = 5 is. Our
conclusion is that the rule that makes N0 vary from stage to stage increases
the efficiency of SB.
Some details of this sample-size selection are shown in Fig. 4.6. This

plot displays initial sample sizes that are not fixed—except in the very
first stage where k = 10 and N0 = 5—but are 25% of the final number
of replications in the immediately preceding stage. Results are displayed
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TABLE 4.2. P̂r(DI) and number of replications for a constant N0 and a
variable N0;j′−j with Δ0 = 2 and Δ1 = 4

Input Effect βj N0 = 5 N0 = 25 (5,25%) (5,50%) (25,25%) (25,50%)

1 2.00 0.01 0.03 0.04 0.05 0.02 0.03
2 2.44 0.15 0.14 0.17 0.13 0.14 0.12
3 2.88 0.38 0.34 0.38 0.40 0.36 0.38

4 3.32 0.65 0.61 0.69 0.69 0.68 0.57
5 3.76 0.83 0.89 0.84 0.91 0.80 0.76
6 4.20 0.96 0.94 0.96 0.95 0.97 0.96
7 4.64 0.98 0.98 0.97 0.98 0.98 0.99
8 5.08 1.00 1.00 1.00 1.00 1.00 1.00
9 5.52 1.00 1.00 1.00 1.00 1.00 1.00
10 6.00 1.00 1.00 1.00 1.00 1.00 1.00

# replications 21,798 22,008 15,203 14,875 16,860 15,048

for the first macroreplication. So, the initial number in the first stage is
N0;1−10 = 5 and this stage ends with m1−10 = 39. In the next stage, SB
tries to increases its efficiency, so SB splits the total group of 10 inputs
into a subgroup with 23 = 8 inputs and a subgroup with the remaining
10 − 8 = 2 inputs. The initial number of replications in this stage is 25%
of 39, so rounding to the next integer makes this number equal to 10. This
stage ends with 214 replications for the first subgroup. We note that the
final number of replications tends to increase as the group size decreases
so the signal-noise ratio decreases.
Shi et al. (2014a) also studies SB with this SPRT in a Monte Carlo ex-

periment, but this experiment has k = 100 inputs, two types of simulation
outputs, and several other problem characteristics. Moreover, that article
includes a case study concerning a Chinese third-party logistics (TPL) com-
pany with a just-in-time (JIT) system for its customer, a car manufacturer.
We shall summarize these experiments in the next section.

4.6 Multiresponse SB: MSB

In practice, simulation models have multiple response types, which in ran-
dom simulation may be called multivariate output. Only recently Shi et al.
(2014a) extended SB to multivariate output, calling the resulting method
multiresponse SB (MSB). This MSB selects groups of inputs such that
within a group all inputs have the same sign for a specific type of output,
so no cancellation of first-order effects occurs. MSB also applies the SPRT
derived in Wan et al. (2010) to select the number of replications. The per-
formance of MSB is examined through extensive Monte Carlo experiments
and a case study concerning a logistic system in China; this performance
is very promising, as we shall see.
To define MSB, we use the symbols in Shi et al. (2014a) as much as pos-

sible. A basic MSB rule is to declare a group of inputs to be important if
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that group is important for at least one of the multiple outputs. Moreover,
MSB estimates the effects of groups for all outputs, while minimizing the
experimental effort compared with SB applied per output type. MSB uses
the same assumptions as SB does. Specifically, MSB assumes that an ade-
quate metamodel for simulation output l with l = 1, . . ., n (in this section,
n does not denote the number of input combinations) is a second-order
polynomial:

y(l) = β
(l)
0 +

k∑

j=1

β
(l)
j xj +

k∑

j=1

k∑

j′≥j

β
(l)
j;j′xjxj′ + e(l) (l = 1, . . ., n). (4.23)

Furthermore, MSB assumes that the signs of all first-order effects are

known; i.e., it is known that either β
(l)
j ≥ 0 or β

(l)
j ≤ 0 for given j and l.

Finally, MSB assumes the heredity property (like SB does).

By definition, changing the level of input j from L
(l)
j to H

(l)
j increases

output l. This change, however, may decreases output l′ 	= l. So, L
(l)
j equals

either L
(l′)
j or H

(l′)
j ; e.g., L

(l)
j = H

(l′)
j if input j has opposite effects on the

outputs l and l′. An example is given in Table 4.3. This example has k
simulation inputs and n = 2 simulation outputs. Columns 4 and 5 show
that in example (a) the inputs 1 through k1 have the same signs, whereas

inputs k1 + 1 through k have opposite signs; i.e., changing from L
(l)
j to

H
(l)
j with l = 1, 2 and 1 ≤ j ≤ k1 increases both outputs—as the + signs

denote—whereas changing from L
(l)
j to H

(l)
j with l = 1 and k1 +1 ≤ j ≤ k

increases output 1 but decreases output 2—as the − signs denote). In
example (b) we wish to increase output 2 for all k inputs. Therefore, for

1 ≤ j ≤ k1 we have L
(1)
j = L

(2)
j and H

(1)
j = H

(2)
j , but for k1 ≤ j ≤ k we

have L
(1)
j = H

(2)
j and H

(1)
j = L

(2)
j .

The remainder of this section gives statistical details on MSB, so some
readers may wish to skip these details, and proceed to the Monte Carlo
experiment with MSB and SB in Sect. 4.6.1. First we need some extra

TABLE 4.3. Input values for two output types, in examples (a) and (b)
(a) Input values for w(1) (b) Input values for w(2)

Input Low level High level w(1) w(2) Low level High level w(1) w(2)

for w(1) for w(1) for w(2) for w(2)

1 L
(1)
1 H

(1)
1 + + L

(2)
1 H

(2)
1 + +

2 L
(1)
2 H

(1)
2 + + L

(2)
2 H

(2)
2 + +

. . . . . . . . . + + . . . . . . + +

k1 L
(1)
k1

H
(1)
k1

+ + L
(2)
k1

H
(2)
k1

+ +

k1 + 1 L
(1)
k1+1 H

(1)
k1+1 + – L

(2)
k1+1 H

(2)
k1+1 – +

. . . . . . . . . . . . . . . . . . . . . . . . . . .

k L
(1)
k H

(1)
k + – L

(2)
k H

(2)
k – +
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symbols for MSB compared with SB. We let w
(l)
j denote output l when

inputs 1 though j are at their high levels H(l) and the remaining inputs

(j + 1 through k) are at their low levels L(l). Analogously, we let w
(l)
−j

denote output l when inputs 1 though j are at L(l) and the remaining
inputs (j + 1 through k) are at H(l). We let the symbol “l → l′” in a
superscript denote that output l′ is observed “for free”; i.e., running the
simulation model to observe output l also gives an observation on the other

output l′. For example, w
(1→2)
k denotes output 2 when all k inputs are at

H
(1)
j ; analogously, w

(1→2)
−k denotes output 2 when all k inputs are at L

(1)
j

(j = 1, . . ., k). Therefore, w
(1→2)
k and w

(1)
k are observed for the same input

combination H
(1)
1−k. This gives the following definitions: w

(l→l′)
j denotes

output l′ when inputs 1 through j are at H(l) and the remaining inputs are

at L(l); likewise, the mirror output w
(l→l′)
−j denotes output l′ when inputs

1 through j are at L(l) and the remaining inputs are at H(l).
Next we define an input group as a group of inputs with no cancella-

tion of individual effects within the group. Table 4.3 included example (a),
which has two groups with group 1 containing inputs 1 through k1 so both
outputs increase and group 2 containing inputs k1+1 through k so output
1 increases and output 2 decreases. In general, an input group has either
all n output types increase or all n output types decrease when changing
all the individual inputs in this group from −1 to 1.
Shi et al. (2014a) proves that the estimators of group effects and indi-

vidual effects are analogous to Eq. (4.16). If inputs j′ through j are in the
same group and they have the same signs for outputs l and l′, then unbi-
ased group estimators of the first-order group effects for outputs l and l′

are

β̂
(l)
j′−j =

[w
(l)
j − w

(l)
−j ]− [w

(l)
j′−1 − w

(l)
−(j′−1)]

4
(4.24)

and

β̂
(l′)
j′−j =

[w
(l→l′)
j − w

(l→l′)
−j ]− [w

(l→l′)
j′−1 − w

(l→l′)
−(j′−1)]

4
(4.25)

where j′ ≤ j and corresponding terms in Eqs. (4.24) and (4.25) are observed
for the same input combination. Obviously, for the individual effects the
subscript j′ − j is replaced by j. If the inputs j′ through j are in the same
group, but they have opposite signs for outputs l and l′, then

β̂
(l)
j′−j =

[w
(l)
j − w

(l)
−j ]− [w

(l)
j′−1 − w

(l)
−(j′−1)]

4
(4.26)

and

β̂
(l′)
j′−j = −

[w
(l→l′)
j − w

(l→l′)
−j ]− [w

(l→l′)
j′−1 − w

(l→l′)
−(j′−1)]

4
(4.27)
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where the last equation has a minus sign immediately after the equality
sign.
To select the number of replications, MSB uses the SPRT discussed in

Sect. 4.5 for SB. In MSB the symbols obviously need the superscript (l), so

the symbols become Δ
(l)
0 , Δ

(l)
1 , [S

(l)
j′−j ]

2, r
(l)
0;j′−j , a

(l)
j′−j , λ

(l), etc. MSB uses
Bonferroni’s inequality so α is replaced by α/n and (1−γ) by (1−γ)/n. This
change implies bigger triangles in Fig. 4.5, in which sampling is continued
until either the group of inputs is declared unimportant for all output types
or the group is declared important for one or more output types.
Note: MSB is conservative, because it controls the type-I and type-II

error rates through Bonferroni’s inequality and ignores information on cor-
relations among simulation outputs. Wang and Wan (2014) details two
procedures based on a SPRT, assuming a first-order polynomial metamodel
estimated through a fractional factorial design and assuming a multivari-
ate normal distribution for the simulation outputs. These two procedures
require the solution of (classic) quadratic programming problems, and per-
form better than MSB.

4.6.1 Monte Carlo Experiments with MSB and SB

Shi et al. (2014a) studies problems with n = 2 outputs and k = 100 inputs;
these inputs can be arranged into two “input groups” (these groups were

TABLE 4.4. Monte Carlo experiments (i = 1, . . ., 16) with four problem
characteristics, and resulting number of replications in MSB versus SB

Combinations Replications
i σ Other three characteristicsa MSB SB
1 5 Inputs (1,2,99,100) = (2, 5,±2,±5) 135 242
2 5 Inputs (1,10,91,100) = (2, 5,±2,±5) 313 600
3 5 Inputs (1,2,99,100) = (5, 5,±2,±5) 119 218
4 5 Inputs (1,10,91,100) = (2, 5,±2,±5) 233 463
5 10 Inputs (1,2,99,100) = (2, 5,±2,±5) 350 656
6 10 Inputs (1,10,91,100) = (2, 5,±2,±5) 933 1,607
7 10 Inputs (1,2,99,100) = (5, 5,±2,±5) 250 470
8 10 Inputs (1,10,91,100) = (2, 5,±2,±5) 641 1,112
9 5 Inputs (1,2,3,4,97,98,99,100) = (2,3,4,5,±2,±3,±4,±5) 178 354
10 5 Inputs (1,10,20,30,71,81,91,100) = (2,3,4,5,±2,±3,±4,±5) 536 1,058
11 5 Inputs (1,2,3,4,97,98,99,100) = (5,5,5,5,±5,±5,±5,±5) 145 290
12 5 Inputs (1,10,20,30,71,81,91,100) = (5,5,5,5,±5,±5,±5,±5) 410 818
13 10 Inputs (1,2,3,4,97,98,99,100) = (2,3,4,5,±2,±3,±4,±5) 464 922
14 10 Inputs (1,10,20,30,71,81,91,100) = (2,3,4,5,±2,±3,±4,±5) 1,713 3,233
15 10 Inputs (1,2,3,4,97,98,99,100) = (5,5,5,5,±5,±5,±5,±5) 319 620
16 10 Inputs (1,10,20,30,71,81,91,100)=(5,5,5,5,±5,±5,±5,±5) 1,126 2,248
a Symbol “+” means positive effect on output 1; i.e., β(1) > 0

Symbol “–” means negative effect on output 2; i.e., β(2) < 0
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defined in the discussion of Table 4.3). MSB is compared with SB when
SB is applied per output type. The same thresholds are selected as in Wan

et al. (2010); namely, Δ
(l)
0 = 2 and Δ

(l)
1 = 4 (l = 1, 2). The initial number

of replications in the first stage is N0;1−100 = 5, and the initial number of
replications in the next stages are 25% of the final number of replications
in the immediately preceding stage (again see Fig. 4.6 with k = 10). The
prespecified type-I error rate is α = 0.05 and the prespecified power is
γ = 0.9. Because there are two output types, application of Bonferroni’s
inequality replaces α by α/2 = 0.025 and 1 − γ by (1 − γ)/2 = 0.05. The
following four problem characteristics—with each characteristic having two
levels (values)—are studied; also see Table 4.4 (the last two columns will
be discussed below).

• Sparsity of effects; i.e., either four or eight of the hundred first-order
effects are “important”. Actually, rows 1 through 8 of Table 4.4 dis-
play four important effects, and rows 9 through 16 display eight im-
portant effects.

• Signal-noise ratio; the higher the noise is, the more replications should
be obtained. The standard deviation σ of el is either five or ten; see
column 2.

• Variability of effects; i.e., either all important first-order effects have

the same value |β(l)
j | = 5 (see rows 11, 12, 15, 16) or all these effects

are different; namely, −5, −2, 2, 5 (so |β(l)
j | is either two or five) when

there are four important inputs (see characteristic 1), and |β(l)
j | = 2,

3, 4, 5 when there are eight important inputs.

• Clustering of effects; the more clustered the individual important ef-
fects are, the more efficient SB and MSB are expected to be. When
there are four important inputs and they are clustered, then the im-
portant inputs are 1, 2, 99, and 100 (see, e.g., row 1), and the non-
clustered inputs are 1, 10, 91, and 100 (see, e.g., row 2); when there
are eight important inputs, then the clustered inputs are 1, 2, 3, 4,
97, 98, 99, 100, and the nonclustered inputs are 1, 10, 20, 30, 71, 81,
91, and 100.

Experimenting with two levels per characteristic gives 16 combinations;
see the first three columns of Table 4.4. As footnote a at the bottom of the
table shows, in all these 16 combinations there are two inputs groups: the
± signs mean that all important first-order effects are positive for output
1 and some important first-order effects are negative for output 2; e.g., in
combination 1 the four important inputs 1, 2, 99, and 100 have positive
effects for output 1 but the inputs 99 and 100 have negative effects for
output 2.
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These Monte Carlo experiments use 1,000 macroreplications. The last
two columns of Table 4.4 display the average number of replications per
stage, for MSB and SB; these columns quantify the efficiency. Both MSB
and SB require more replications for a higher number of important inputs,
more variability of effects, more noise of outputs, and lack of clustering
of important inputs. For example, combination 3—with σ = 5, only four
important inputs and much clustering—requires the minimum number of
replications; namely, 119 for MSB. However, combination 14—with σ = 10,
eight important inputs with different values and even spread—requires the
maximum number of replications; namely, 1,723 for MSB. In general, MSB
requires only approximately half the number of replications needed by SB;
our explanation is that input combinations used to estimate effects for one
output in MSB are also used for the other output. Altogether, MSB requires
fewer input combinations and replications than SB does.
Efficacy is quantified through P̂r(DI), which was also used in Table 4.2.

Figure 4.7 displays P̂r(DI) only for the four combinations numbered 2, 7, 9,
and 14, because similar results are found for the remaining 12 combinations.

The x-axis of this plot gives |β(l)
j | and the y-axis gives P̂r(DI); e.g., |β(l)

j | =
0, 2, and 5 in combination 2, and |β(l)

j | = 0, 2, 3, 4, and 5 in combination 9.

Because |β(1)
j | = |β(2)

j |, we display P̂r(DI) for output 1 only. This plot

suggests that |β(l)
j | has an important positive effect on P̂r(DI); we may

indeed expect that the power of the method for screening inputs increases
as the input has a higher effect. In all combinations, P̂r(DI) = 0 when

|β(l)
j | = 0 and P̂r(DI) = 1 when |β(l)

j | = 5; P̂r(DI) lies in the interval

[0.025, 0.95] when Δ
(l)
0 = 2 ≤ |β(l)

j | ≤ Δ
(l)
1 = 4; in combination 9 the type-I

error rate is virtually the same for MSB and SB, and in combination 14
this rate is not significantly higher than the rate for SB. So, both MSB and
SB give appropriate results for their type-I error rates and power. However,

P̂r(DI) in MSB exceeds P̂r(DI) in SB when Δ
(l)
0 ≤ |β(l)

j | ≤ Δ
(l)
1 ; e.g., in

combination 9 (south-west corner of the plot), P̂r(DI) for MSB is 0.7 and

P̂r(DI) for SB is only 0.38 and 0.43 when |β(l)
j | = 3 (also see combination

14 in the south-east corner). The explanation may be that an input that
is unimportant for one output has a chance to be important for the other
output, so the probability of declaring this input to be important increases.
Shi et al. (2014a) conducts another experiment in which the two outputs

do not have effects with the same magnitudes; i.e., the magnitudes for
output 1 are double those for output 2. It is realistic that the thresholds

for the two outputs also differ; i.e., Δ
(1)
0 	= Δ

(2)
0 , and Δ

(1)
1 	= Δ

(2)
1 . Actually,

Δ
(1)
0 = 2Δ

(2)
0 and Δ

(1)
1 = 2Δ

(2)
1 ; i.e., Δ

(1)
0 = 4 	= Δ

(2)
0 = 2, Δ

(1)
1 = 8 	=

Δ
(2)
1 = 4. The results for this experiments turn out to be very similar to the

results for the former experiments. The conclusion of these Monte Carlo
experiments is that MSB is more efficient and effective than SB.
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4.6.2 Case Study: Chinese Supply-Chain

Shi et al. (2014a) presents a case study concerning a Chinese third-party lo-
gistics (TPL) company that wants to improve the just-in-time (JIT) system
for its customer, a car manufacturer; more details are given in Shi et al.
(2014b). The discrete-event simulation model represents a flow of parts,
truck scheduling, etc. The Chinese car market is expected to grow by ten
to fifteen percent over the next decade. To satisfy this growing demand,
the TPL customer expects to open another assembly plant. When this new
plant becomes operational, the current TPL capacity will not meet the
logistic needs. Management wants to maintain the current logistic perfor-
mance, measured through the average cycle time (CT) of a part and the
number of throughput (NT) per “month” or 30-day period. A high CT con-
flicts with the JIT philosophy. NT is the sum of the shipments collected at
the part suppliers and delivered to the assembly plants within a production
cycle of 30 days. The goal of this case study is to identify the inputs that
are important for one or both outputs (CT, NT).
The simulation model has 26 inputs that may affect CT or NT. These

inputs and their low and high values are detailed in Shi et al. (2014a).
All inputs are quantitative, except for one input; namely, the queueing
discipline. Inputs 1 through 5 are known to have the same signs for both
outputs, so two input groups are formed; namely, group 1 with inputs 1
though 5, and group 2 with the remaining inputs labeled 6 through 26.
(Shi et al. (2014b) considers only 21 instead of 26 inputs, and uses a fixed
number of replications—namely m = 5—and applies SB per output.)

The SPRT uses Δ
(CT)
1 = 5 and Δ

(NT)
1 = 3,000 as the performance im-

provement not to be missed, and Δ
(CT)
0 = 2.5 and Δ

(NT)
0 = 2,000 as the

minimum critical values. The initial number of replications in the first
stage is inspired by Fig. 4.6 (the Monte Carlo experiment); for input group
1 N0;1−5 = 5 and for group 2 N0;6−26 = 5 too; the initial number of repli-
cations in the next stages is 25% of the final number of replications in
the immediately preceding stage, but not smaller than 5. Because there
are two outputs, applying Bonferroni’s inequality implies that α = 0.05
and 1 − γ = 0.1 are replaced by α/2 = 0.025 and (1 − γ)/2 = 0.05.
Figure 4.8 displays the MSB results per stage, where shaded blocks denote
individual inputs declared to be important. Altogether, MSB requires 233
replications—namely, m1−5 + m6−26 + . . . + m21—to identify five impor-
tant inputs—namely, inputs 4, 5, 14, 17, and 20; the inputs 4 and 5 are in
input group 1 (see the first left bifurcation) and inputs 14, 17, and 20 are
in input group 2 (see the first right bifurcation).
Shi et al. (2014a) shows that SB requires 238 and 117 replications for CT

and NT, respectively. So, altogether SB requires 355 replications, whereas
MSB requires only 233 replications. SB and MSB declare the same inputs
to be important; SB identifies the inputs 4, 5, 14, 17, and 20 for CT and
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input 17 for NT. It turns out that MSB and SB do not use the same input
combinations in every stage.
We emphasize that Fig. 4.8 implies that MSB requires fewer combinations

than there are inputs, so MSB is supersaturated. Moreover, the number
of replications increases as the group size decreases, so selecting a fixed
number of replications may give misleading results.

4.7 Validating the SB and MSB Assumptions

We now present a method for the validation of the assumptions that are the
basis of SB and MSB. By definition, “screening” means that the number of
inputs k is too big to enable the estimation of all the individual effects of
a second-order polynomial. Actually, this number of effects is 1 + k + k +
k(k − 1)/2; e.g., the case study in Sect. 4.6.2 is a relatively small screening
example with k = 26 inputs, and yet the number of effects is 378. To
validate the screening results for SB in random simulation, Wan et al.
(2010) uses a central composite design (CCD) based on a R-V design for
all k inputs. Our method, however, is inspired by Shi and Kleijnen (2015),
and is more efficient and—we expect—is still effective. We focus on random
simulation, but conjecture that our approach may easily be adapted to
deterministic simulation.
The three assumptions of SB and MSB are:

1. a second-order polynomial per output is an adequate approximation
(a valid metamodel) of the implicit I/O function of the underlying
simulation model;

2. the signs of the first-order effects are known (so the first-order poly-
nomial approximation per output is monotonic);

3. heredity applies; i.e., if an input has no important first-order effect,
then this input has no important second-order effects.

We denote the number of unimportant inputs identified through SB or
MSB by kU where the subscript “U”stands for unimportant; likewise, we
denote the number of important inputs by kI where “I”stands for important
(obviously kU+ kI = k). Each of the kU unimportant inputs has nearly the
same magnitude for its estimated first-order effect for output type l; namely

virtually zero; see the threshold Δ
(l)
0 (l = 1, . . ., n) in the SPRT discussed

in Sect. 4.5. So we do not need to estimate the many individual—first order
and second order—effects of the unimportant inputs; it suffices to test that
these kU inputs have virtually no effects. We therefore test the effects of
the kU unimportant inputs through the simulation of only a few extreme
combinations of these inputs. First we explain our method for a simulation
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model with a single output type (n = 1) so SB suffices; next we explain
this method for MSB with two output types (as in the Chinese case study).
In SB with a single output type, we simulate only the following two

extreme combinations of the unimportant inputs:

(a) All kU inputs declared to be unimportant are at their low levels
(coded −1), while we fix (freeze) all inputs declared to be impor-
tant; e.g., we fix these important inputs at their base levels (so the
important “factors” become “constants”).

(b) All these kU inputs are at their high levels (coded 1), while we fix the
kI remaining inputs at the same values as in combination (a).

To simplify our explanation, we assume that these kI inputs are quan-
titative and are fixed at their coded values 0. Furthermore, we relabel the
k inputs such that the first kU inputs are declared to be unimportant. Fi-
nally, we let xU denote the kU-dimensional vector with the values of the
unimportant inputs, and we let 1 denote the kU-dimensional vector with
all elements equal to 1. Consequently, the second-order polynomial meta-
model in Eq. (4.10) gives the following results for combinations (a) and (b),
respectively:

E(y | xU = −1) = β0 −
kU∑

j=1

βj +

kU∑

j=1

kU∑

j′=j

βj;j′

and

E(y | xU = 1) = β0 +

kU∑

j=1

βj +

kU∑

j=1

kU∑

j′=j

βj;j′ .

These two equations together give

E(y | xU = 1)− E(y|xU = −1) = 2

kU∑

j=1

βj (4.28)

where Eq. (4.7) implies
∑kU

j=1 βj = β1−kU .
We assume that the number of replications for these two combinations

is mval. To select a value for mval, we may examine the final number of
replications that the SPRT needed to test the significance of individual
inputs; see m in the boxes at the bottom of Fig. 4.6. We use CRN, to
reduce the noise in our estimator of the difference

δ = E(w|xU = 1)− E(w|xU = −1)

where w denotes the output of the simulation model. This enables us to
compute the mval differences between the simulation outputs of the com-
binations (a) and (b):

dr = wr(xU = 1)− wr(xU = −1) (r = 1, . . . , mval).
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These mval differences give the t-statistic for paired differences :

tmval−1 =
d− E(d)

s(d)/
√
mval

(4.29)

where d and s(d) are the classic symbols for the sample average and stan-
dard deviation of d. This t-statistic gives a CI for the mean difference δ.
Finally, we may use this CI to test the following null-hypothesis:

H0 : E(d) ≤ Δ versus H1 : E(d) > Δ (4.30)

where ≤ implies that we use a one-sided hypothesis, because Assumption 2
(known signs) implies that the first-order effects are not negative. We reject
this H0 only if the observed value of the t-statistic defined in Eq. (4.29)
with E(d) replaced by Δ is “too high”; namely, higher than tmval−1;1−α

where tmval−1;1−α denotes the 1−α quantile (or upper α point) of tmval−1.
We propose to select Δ = 2kUΔ0 where Δ0 was used to define unimportant
inputs. So we expect that an individual input is declared unimportant if
its effect is Δ0; together, the kU unimportant inputs might have a total
effect of 2kUΔ0; see the factor 2 in Eq. (4.28). Altogether, we accept bigger
differences between the outputs for the extreme input combinations, as the
number of unimportant inputs increases; see again Eq. (4.28).
Finally, we test whether the heredity assumption indeed holds. This as-

sumption implies that the kU unimportant inputs have no second-order
effects βj;j′ (j, j′ = 1, . . ., kU). Our test of the two extreme combinations
(a) and (b), is completely insensitive to these βj;j′ ; i.e., even if βj;j′ 	= 0,
then these βj;j′ do not affect this test. Therefore we now consider the cen-
ter combination x0 = 0 where 0 denotes the kU-dimensional vector with
all elements equal to zero. Obviously, if the heredity assumption does not
apply, then E(y | xU = 0) 	= E(y | xU = −1) = E(y | xU = 1). To test
this assumption we assume that the number of replications for the central
combination equals mval; we used the same mval for the two extreme com-
binations above. We again use the CRN that are also used for these two
extreme combinations. This gives the following difference:

δ0 = E(w | xU = 0)− [
E(w | xU = 1) + E(w | xU = −1)

2
]

We observe that—whatever the magnitudes and signs of the first-order
effects are—if the second-order polynomial for the kU unimportant inputs
holds, then δ0 = −∑kU

j=1

∑kU

j′=j βj;j′ where some of the kU(kU − 1)/2+ kU
second-order effects βj;j′ may be negative and some may be positive so
we do not make any assumptions about the magnitude of this sum. To
estimate δ0, we compute the mval differences

d0;r = wr(xU = 0)− [
wr(xU = −1) + wr(xU = 1)

2
] (r = 1, . . . , mval).
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These differences give the analogue of Eq. (4.29):

t0;mval−1 =
d0 − E(d0)

s(d0)/
√
mval

. (4.31)

We use this t-statistic to test

H0 : E(d0) = 0 versus H1 : E(d) 	= 0 (4.32)

where we now use a two-sided hypothesis, because the second-order effects
may be negative or positive. We reject this H0 if H0 gives |t0;mval−1| >
tmval−1;1−α/2. If we wish to preserve the experimentwise type-I error rate,
then we apply Bonferroni’s inequality and replace α by α/2 because we
test two null-hypotheses; see Eqs. (4.30) and (4.32).
Now we explain our method for MSB in the case of n = 2 output types

(n = 2 holds in the Chinese case-study). If there were a single input group
(q = 1), then our method would be the same as the method for the SB
explained in the preceding paragraph. If we suppose that there are q = 2
input groups, then we simulate the two extreme combinations for each of
the n = 2 output types; i.e., we simulate the following four combinations:

(a) All kU unimportant inputs are at their low levels for output type
l = 1, while we fix the kI important inputs (e.g., at their base levels).

(b) All kU unimportant inputs are at their high levels for output type
l = 1, while we still fix the kI important inputs at the same values as
in combination (a).

(c) All kU unimportant inputs are at their low levels for output type
l = 2, while we fix the kI important inputs at the same values as in
combination (a).

(d) All kU unimportant inputs are at their high levels for output type
l = 2, while we fix the kI important inputs at the same values as in
combination (a).

We replace H0 defined in (4.30) for SB by

H0 : β
(l)
1−kU

≤ Δ(l) versus H1 : β
(l)
1−kU

> Δ(l) (l=1,. . . , n). (4.33)

Using Bonferroni’s inequality, we reject this H0 if

max
l

d
(l) −Δ(l)

s(d(l))/
√
mval

> tmval−1;1−α/n (l = 1, . . . , n); (4.34)

we propose to select Δ(l) = 2kUΔ
(l)
0 . In general, our method requires only

2n (extreme) combinations; e.g., if n = 2, then the method requires the
2n = 4 combinations labeled (a) through (d) above.
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Shi and Kleijnen (2015) also presents a method that takes advantage of
the existence of input groups. These input groups enable us to estimate
the effects of an input group for all n output types simultaneously, so we
save on simulation effort. The total number of input combinations needed

to estimate β
(l)
1−kU

can be proven to be 2q with q ≤ n so this method
may be more efficient than the method we detailed above. For example,
the Chinese case-study has q = n = 2 so both methods have the same
efficiency, but if this case study would involve n = 3 output types and still
have q = 2 input groups, then the method that we detailed is less efficient.
Shi and Kleijnen (2015) also presents numerical results for a Monte Carlo
experiment and the Chinese case study, investigating various methods for
validating the SB and MSB assumptions.
If a validation method suggests that the SB or MSB assumptions do

not hold, then we need to look for a different screening method; see again
Sect. 4.1.

4.8 Conclusions

In this chapter we started with an overview of different screening de-
signs, including R-III, supersaturated, and group-screening designs. Then
we focused on SB. This screening method may be applied to deterministic
and random simulation models. We detailed the various assumptions of SB;
namely, a first-order or a second-order polynomial metamodel with know
signs of the first-order effects, and heredity for the second-order polynomial
metamodel. We considered SB for random simulation with either a fixed
number of replications or a number selected through a SPRT applied in
each stage such that the type-I and the type-II error rates are controlled.
We extended SB to MSB for multiple output types, selecting input groups
such there is no cancellation of first-order effects for any output type. We
concluded with a method for validating the assumptions of SB and MSB.
Monte Carlo experiments—ensuring that all assumptions of SB or MSB

are satisfied—suggest that MSB is more efficient (requires fewer observa-
tions) than SB, and more effective (gives better control of the two error
rates). Various case studies suggest that in practice the SB or MSB as-
sumptions are not too restrictive.
Future research may consider SPRT variants, MSB for more than two

output types, and additional case studies. Moreover, future research may
compare SB and MSB with the other screening methods mentioned in the
introduction of this chapter.
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Solutions of Exercises

1. The mirror combination of the extreme combination with all k inputs
at their low levels, is the other extreme combination with all inputs at
their high levels. So the very first stage of SB uses only two different
observations.

2. β̂
1−92

= (15,126,388.0+14,949,669.0)/2 = 15,038,000 and s(β̂1−92) =

694,610/
√
2 = 491,160 so t1 = 15,038,000/491,160 = 30.62.

3. The group effect of the two extreme combinations for the latest vari-
ant of the supply chain is smaller than for the old variant.
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5
Kriging Metamodels and Their
Designs

This chapter is organized as follows. Section 5.1 introduces Kriging, which is
also called Gaussian process (GP) or spatial correlation modeling.
Section 5.2 details so-called ordinary Kriging (OK), including the basic
Kriging assumptions and formulas assuming deterministic simulation. Sec-
tion 5.3 discusses parametric bootstrapping and conditional simulation for
estimating the variance of the OK predictor. Section 5.4 discusses uni-
versal Kriging (UK) in deterministic simulation. Section 5.5 surveys de-
signs for selecting the input combinations that gives input/output data
to which Kriging metamodels can be fitted; this section focuses on Latin
hypercube sampling (LHS) and customized sequential designs. Section 5.6
presents stochastic Kriging (SK) for random simulations. Section 5.7 dis-
cusses bootstrapping with acceptance/rejection for obtaining Kriging pre-
dictors that are monotonic functions of their inputs. Section 5.8 discusses
sensitivity analysis of Kriging models through functional analysis of vari-
ance (FANOVA) using Sobol’s indexes. Section 5.9 discusses risk analysis
(RA) or uncertainty analysis (UA). Section 5.10 discusses several remain-
ing issues. Section 5.11 summarizes the major conclusions of this chapter,
and suggests topics for future research. The chapter ends with Solutions of
exercises, and a long list of references.
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5.1 Introduction

In the preceding three chapters we focussed on linear regressionmetamodels
(surrogates, emulators); namely, low-order polynomials. We fitted those
models to the input/output (I/O) data of the—either local or global—
experiment with the underlying simulation model; this simulation model
may be either deterministic or random. We used these metamodels for the
explanation of the simulation model’s behavior, and for the prediction of
the simulation output for input combinations that were not yet simulated.
In the present chapter, we focus on Kriging metamodels. The name Krig-

ing refers to Danie Krige (1919–2013), who was a South African mining
engineer. In the 1960s Krige’s empirical work in geostatistics—see Krige
(1951)—was formalized by the French mathematician George Matheron
(1930–2000), using GPs—see Matheron (1963).
Note: A standard textbook on Kriging in geostatistics involving “spatial

datan” is Cressie (1993); more recent books are Chilès and Delfiner (2012)
and Stein (1999).
Kriging was introduced as a metamodel for deterministic simulation

models or “computer models” in Sacks et al. (1989). Simulation models
have k-dimensional input combinations where k is a given positive integer,
whereas geostatistics considers only two or three dimensions.
Note: Popular textbooks on Kriging in computer models are Forrester

et al. (2008) and Santner et al. (2003). A popular survey article is Simpson
et al. (2001).
Kriging for stochastic (random) simulation models was briefly discussed

in Mitchell and Morris (1992). Next, Van Beers and Kleijnen (2003) details
Kriging in such simulation models, simply replacing the deterministic simu-
lation output by the average computed from the replications that are usual
in stochastic simulation. Although Kriging has not yet been frequently
applied in stochastic simulation, we believe that the track record Kriging
achieved in deterministic simulation holds promise for Kriging in stochastic
simulation; also see Kleijnen (2014).
Note: Kleijnen (1990) introduced Kriging into the discrete-event simu-

lation community. A popular review article is Kleijnen (2009). The classic
discussion of Kriging in stochastic simulation is Ankenman et al. (2010).
More references will follow in the next sections of this chapter.
Kriging is also studied in machine learning. A popular textbook is Ras-

mussen and Williams (2006). Web sites on GPs in machine learning are
http://www.gaussianprocess.org/

http://ml.dcs.shef.ac.uk/gpss/

http://www.mlss.cc/.
Besides the Anglo-Saxon literature, there is a vast French literature on

Kriging, inspired by Matheron’s work; see
http://www.gdr-mascotnum.fr/documents.html.

http://www.gaussianprocess.org/
http://ml.dcs.shef.ac.uk/gpss/
http://www.mlss.cc/
http://www.gdr-mascotnum.fr/documents.html
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Typically, Kriging models are fitted to data that are obtained for larger
experimental areas than the areas used in low-order polynomial regression
metamodels; i.e., Kriging models are global instead of local. Kriging models
are used for prediction. The final goals are sensitivity analysis and risk
analysis—as we shall see in this chapter—and optimization—as we shall
see in the next chapter; these goals were also discussed in Sect. 1.2.

5.2 Ordinary Kriging (OK) in Deterministic
Simulation

In this section we focus on OK, which is the simplest form of universal
Kriging (UK), as we shall see in Sect. 5.4. OK is popular and successful in
practical deterministic simulation, as many publications report.
Note: These publications include Chen et al. (2006), Martin and Simpson

(2005), and Sacks et al. (1989). Recently, Mehdad and Kleijnen (2015a) also
reports that in practice OK is likely to give better predictors than UK.
In Sect. 5.2.1 we present the basics of OK; in Sect. 5.2.2 we discuss the

problems caused by the estimation of the (hyper)parameters of OK.

5.2.1 OK Basics

OK assumes the following metamodel:

y(x) = μ+M(x) with x ∈ R
k (5.1)

where μ is the constant meanE[y(x)] in the given k-dimensional experimen-
tal area, andM(x) is the additive noise that forms a Gaussian (multivariate
normal) stationary process with zero mean. By definition, a stationary pro-
cess has a constant mean, a constant variance, and covariances that depend
only on the distance between the input combinations (or “points” in R

k)
x and x′ (stationary processes were also defined in Definition 3.2).
Because different Kriging publications use different symbols for the same

variable, we now discuss our symbols. We use x—instead of d—because the
Kriging literature uses x for the combination of inputs—even though the
design of experiments (DOE) literature and the preceding chapters use d
for the combination of design variables (or factors); d determines products
such as xjxj′ with j, j′ = 1, . . ., k. The constant mean μ in Eq. (5.1) is also
denoted by β0; also see the section on UK (Sect. 5.4). Ankenman et al.
(2010) calls M(x) the extrinsic noise to distinguish it from the intrinsic
noise in stochastic simulation. OK assumes that the simulation output is
deterministic (say) w. We distinguish between y (metamodel output) and
w (simulation model output), whereas most Kriging publications do not
distinguish between y and w (we also distinguished between y and w in the
preceding chapters on linear regression; an example of our use of y and w
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is the predictor formula in Eq. (5.2) below). We try to stick to the symbols
used in the preceding chapters; e.g., to denote the number of dimensions
we use k (not d, which is used in some Kriging publications), Σ (not Γ) to
denote a covariance matrix, and σ (not γ or Σ(x0, .)) to denote a vector
with covariances.
OK with its constant mean μ does not imply a flat response surface. Ac-

tually, OK assumes that M(x) has positive covariances so cov[y(x), y(x′)]
> 0. Consequently, if it happens that y(x) > μ, then E[y(x′)] > μ is “very
likely” (i.e., the probability is greater than 0.50)—especially if x and x′

lie close in R
k. However, a linear regression metamodel with white noise

implies cov[y(x), y(x′)] = 0; see the definition of white noise that we gave
in Definition 2.3.
OK uses a linear predictor. So let w = (w(x1), . . . , w(xn))

′ denote the
n observed values of the simulation model at the n so-called old points
(in machine learning these old points are called the “training set”). OK
computes the predictor ŷ(x0) for a new point x0 as a linear function of the
n observed outputs at the old points:

ŷ(x0) =
∑n

i=1λiwi = λ′w (5.2)

where wi = fsim(xi) and fsim denotes the mathematical function that is
defined by the simulation model itself (also see Eq. (2.6); the weight λi

decreases with the distance between the new input combination x0 and the
old combination xi, as we shall see in Eq. (5.6); i.e., the weights λ′ = (λ1,
. . . , λn) are not constants (whereas β in linear regression remains constant).
Notice that xi = (xi;j) (i = 1, . . ., n; j = 1, . . ., k) so X′ = (x1, . . . ,xn) is a
k × n matrix.
To determine the optimal values for the weights λ in Eq. (5.2), we need

to specify a criterion for OK. In fact, OK (like other types of Kriging) uses
the best linear unbiased predictor (BLUP), which (by definition) minimizes
the mean squared error (MSE) of the predictor:

min MSE[ŷ(x0)] = min {E[ŷ(x0)− y(x0)}2]; (5.3)

moreover, the predictor must be unbiased so

E[ŷ(x0)] = E[y(x0)]. (5.4)

This bias constraint implies that if the new point coincides with one of the
old points, then the predictor must be an exact interpolator ; i.e., ŷ(xi) =
w(xi) with i = 1, . . ., n (also see Exercise 5.2 below).
Note: Linear regression uses as criterion the sum of squared residuals

(SSR), which gives the least squares (LS) estimator. This estimator is not
an exact interpolator, unless n = q where q denotes the number of regres-
sion parameters; see Sect. 2.2.1.
It can be proven that the solution of the constrained minimization prob-

lem defined by Eqs. (5.3) and (5.4) implies that λ must satisfy the following
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condition where 1 = (1, . . . , 1)′ is an n-dimensional vector with all elements
equal to 1 (a more explicit notation would be 1n):

n∑

i=1

λi = 1′λ =1. (5.5)

Furthermore, it can be proven that the optimal weights are

λ′
o=

[
σ(x0)+1

1− 1′Σ−1σ(x0)

1′Σ−11

]′
Σ−1 (5.6)

whereΣ = (cov(yi, yi′))—with i, i′ = 1, . . ., n—denotes the n×n symmetric
and positive definite matrix with the covariances between the metamodel’s
“old” outputs (i.e., outputs of input combinations that have already been
simulated), and σ(x0) = (cov(yi, y0)) denotes the n-dimensional vector
with the covariances between the metamodel’s n “old” outputs yi and y0,
where y0 denotes the metamodel’s new output. Equation (5.1) implies Σ =
ΣM , but we suppress the subscriptM until we really need it; see the section
on stochastic simulation (Sect. 5.6). Throughout this book, we use Greek
letters to denote unknown parameters (such as covariances), and bold upper
case letters for matrixes and bold lower case letters for vectors.
Finally, it can be proven (see, e.g., Lin et al. 2004) that Eqs. (5.1), (5.2),

and (5.6) together imply

ŷ(x0) = μ+ σ(x0)
′Σ−1(w−μ1). (5.7)

We point out that this predictor varies with σ(x0); given are the Krig-
ing parameters μ and Σ—where Σ depends on the given old input data
X—and the old simulation output w(X). So we might replace ŷ(x0) by
ŷ(x0|μ,Σ,X,w) or ŷ(x0|μ,Σ,X)—because the output w of a determinis-
tic simulation model is completely determined by X—but we do not use
this unwieldy notation.

Exercise 5.1 Is the conditional expected value of the predictor in Eq. (5.7)
smaller, equal, or larger than the unconditional mean μ if that condition is
as follows: w1 > μ, w2 = μ, . . . , wn = μ?

Exercise 5.2 Use Eq. (5.7) to derive the predictor if the new point is an
old point, so x0 = xi.

The Kriging predictor’s gradient ∇(ŷ) = (∂ŷ/∂x1, . . ., ∂ŷ/∂xk) results
from Eq. (5.7); details are given in Lophaven et al. (2002, Eq. 2.18). Gra-
dients will be used in Sect. 5.7 and in the next chapter (on simulation
optimization). We should not confuse ∇(ŷ) (the gradient of the Kriging
metamodel) and ∇(w), the gradient of the underlying simulation model.
Sometimes we can indeed compute ∇(w) in deterministic simulation (or

estimate ∇(w) in stochastic simulation); we may then use ∇(w) (or ∇̂(w))
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to estimate better Kriging metamodels; see Qu and Fu (2014), Razavi et al.
(2012), Ulaganathan et al. (2014), and Viana et al. (2014)’s references num-
bered 52, 53, and 54 (among the 221 references in that article).
If we let τ2 denote the variance of y—where y was defined in Eq. (5.1)—

then the MSE of the optimal predictor ŷ(x0)—where ŷ(x0) was defined in
Eq. (5.7)—can be proven to be

MSE [ŷ(x0)] = τ2 − σ(x0)
′Σ−1σ(x0)

+
[1− 1′Σ−1σ(x0)]

2

1′Σ−11
. (5.8)

Because the predictor ŷ(x0) is unbiased, this MSE equals the predictor
variance—which is often called the Kriging variance. We denote this vari-
ance by σ2

OK , the variance of the OK predictor. Analogously to the com-
ment we made on Eq. (5.7), we now point out that this MSE depends on
σ(x0) only because the other factors in Eq. (5.8) are fixed by the old I/O
data (we shall use this property when selecting a new point in sequential
designs; see Sect. 5.5.2).

Exercise 5.3 Use Eq. (5.8) to derive that σ2
OK = 0 if x0 equals one of the

points already simulated; e.g., x0 = x1.

Because σ2
OK is zero if x0 is an old point, the function σ2

OK(x0) has many
local minima if n > 1—and has many local maxima too; i.e., σ2

OK(x0)
is nonconcave. Experimental results of many experiments suggest that
σ2
OK(x0) has local maxima at x0 approximately halfway between old in-

put combinations xi; see part c of Fig. 5.2 below. We shall return to this
characteristic in Sect. 6.3.1 on “efficient global optimization” (EGO).
Obviously, the optimal weight vector λo in Eq. (5.6) depends on the

covariances—or equivalently the correlations—between the outputs of the
Kriging metamodel in Eq. (5.1). Kriging assumes that these correlations
are determined by the “distance” between the input combinations. In geo-
statistics, Kriging often uses the Euclidean distance (say) h between the
inputs xg and xg′ with g, g′ = 0, 1, . . ., n (so g and g′ range between 0 and
n and consequently xg and xg′ cover both the new point and the n old
points):

hg;g′ = ‖xg − xg′‖2 =
√∑k

j=1(xg;j − xg′;j)2 (5.9)

where ‖•‖2 denotes the L2 norm. This assumption means that

ρ[y(xg), y(xg′ )] =
σ(hg;g′ )

τ2
, (5.10)

which is called an isotropic correlation function; see
Cressie (1993, pp. 61–62).
In simulation, however, we often assume that the Kriging metamodel

has a correlation function—which implies a covariance function—that is
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FIGURE 5.1. Three types of correlation functions ρ(h) with distance h and
parameter θ = 0.5

not isotropic, but is anisotropic; e.g., in a separable anisotropic correla-
tion function we replace Eq. (5.10) by the product of k one-dimensional
correlation functions:

ρ[y(xg), y(xg′ )] =
k∏

j=1

ρ(xg;j , xg′ ;j) (g, g
′ = 0, 1, . . . , n). (5.11)

Because Kriging assumes a stationary process, the correlations in Eq. (5.11)
depend only on the distances in the k dimensions:

hg;g′;j = |xg;j − xg′;j | (j = 1, . . . , k); (5.12)

also see Eq. (5.9). So, ρ(xg;j , xg′;j) in Eq. (5.11) reduces to ρ(hg;g′;j). Ob-
viously, if the simulation model has a single input so k = 1, then these
isotropic and the anisotropic correlation functions are identical. Further-
more, Kriging software standardizes (scales, codes, normalizes) the origi-
nal simulation inputs and outputs, which affects the distances h; also see
Kleijnen and Mehdad (2013).
Note: Instead of correlation functions, geostatisticians use variograms,

covariograms, and correlograms; see the literature on Kriging in geostatistcs
in Sect. 5.1.
There are several types of correlation functions that give valid (pos-

itive definite) covariance matrices for stationary processes; see the gen-
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eral literature on GPs in Sect. 5.1, especially Rasmussen and Williams
(2006, pp. 80–104). Geostatisticians often use so-called Matérn correlation
functions, which are more complicated than the following three popular
functions—displayed in Fig. 5.1 for a single input with parameter θ = 0.5:

• Linear: ρ(h) = max (1− θh, 0)

• Exponential: ρ(h) = exp(−θh)

• Gaussian: ρ(h) = exp(−θh2)

Note: It is straightforward to prove that the Gaussian correlation func-
tion has its point of inflection at h = 1/

√
2θ, so in Fig. 5.1 this point lies

at h = 1. Furthermore, the linear correlation function gives correlations
ρ(h) that are smaller than the exponential function gives, for θ > 0 and
h > 0; Fig. 5.1 demonstrates this behavior for θ = 0.5. Finally, the linear
correlation function gives ρ(h) smaller than the Gaussian function does,
for (roughly) θ > 0.45 and h > 0. There are also correlation functions ρ(h)
that do not monotonically decrease as the lag h increases; this is called a
“hole effect” (see
http://www.statistik.tuwien.ac.at/ public/ dutt/ vorles/ geost 03/node80.
html).
In simulation, a popular correlation function is

ρ(h) =
k∏

j=1

exp
(−θjh

pj

j

)
= exp

⎛

⎝−
k∑

j=1

θjh
pj

j

⎞

⎠ (5.13)

where θj quantifies the importance of input j—the higher θj is, the less
effect input j has— and pj quantifies the smoothness of the correlation
function—e.g., pj = 2 implies an infinitely differentiable function. Fig-
ure 5.1 has already illustrated an exponential function and a Gaussian
function, which correspond with p = 1 and p = 2 in Eq. (5.13). (We shall
discuss better measures of importance than θj , in Sect. 5.8.)

Exercise 5.4 What is the value of ρ(h) in Eq. (5.13) with p > 0 when
h = 0 and h = ∞, respectively?

Exercise 5.5 What is the value of θj in Eq. (5.13) with pj > 0 when input
j has no effect on the output?

Note: The choice of a specific type of correlation function may also affect
the numerical properties of the Kriging model; see Harari and Steinberg
(2014b).
Because ρ(h) in Eq. (5.13) decreases as the distance h increases, the

optimal weights λo in Eq. (5.6) are relatively high for old inputs close to
the new input to be predicted.

http://www.statistik.tuwien.ac.at/public/dutt/vorles/geost_03/node80.html
http://www.statistik.tuwien.ac.at/public/dutt/vorles/geost_03/node80.html
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Note: Some of the weights may be negative; see Wackernagel (2003,
pp. 94–95). If negative weights give negative predictions and all the ob-
served outputs wi are nonnegative, then Deutsch (1996) sets negative weights
and small positive weights to zero while restandardizing the sum of the re-
maining positive weights to one to make the predictor unbiased.
It is well known that Kriging results in bad extrapolation compared with

interpolation; see Antognini and Zagoraiou (2010). Our intuitive explana-
tion is that in interpolation the new point is surrounded by relatively many
old points that are close to the new point; let us call them “close neighbors”.
Consequently, the predictor combines many old outputs that are strongly
positively correlated with the new output. In extrapolation, however, there
are fewer close neighbors. Note that linear regression also gives minimal
predictor variance at the center of the experimental area; see Eq. (6.7).

5.2.2 Estimating the OK Parameters

A major problem in OK is that the optimal Kriging weights λi (i = 1, . . ., n)
depend on the correlation function of the assumed metamodel—but it is
unknown which correlation function gives a valid metamodel. In Kriging we
usually select either an isotropic or an anisotropic type of correlation func-
tion and a specific type of decay such as linear, exponential, or Gaussian; see
Fig. 5.1. Next we must estimate the parameter values; e.g. θj (j = 1, . . ., k)
in Eq. (5.13). For this estimation we usually select the maximum likelihood

(ML) criterion, which gives the ML estimators (MLEs) θ̂j . ML requires the
selection of a distribution for the metamodel output y(x) in Eq. (5.1). The
standard distribution in Kriging is a multivariate normal, which explains
the term GP. This gives the log-likelihood function

l(μ, τ2, θ) = − ln[(2π)n/2]

− 1

2
ln[
∣∣τ2R(θ)

∣∣]− 1

2
(w−μ1)′[τ2R(θ)]−1(w−μ1)

with θ ≥ 0 (5.14)

where |·| denotes the determinant and R(θ) denotes the correlation matrix
of y. Obviously, MLE requires that we minimize

ln[
∣∣τ2R(θ)

∣∣] + (w−μ1)
′
[τ2R(θ)]−1(w−μ1). (5.15)

We denote the resulting MLEs by a “hat”, so the MLEs are μ̂, τ̂2, and θ̂.
This minimization is a difficult mathematical problem. The classic solution
in Kriging is to “divide and conquer”—called the “profile likelihood” or the
“concentrated likelihood” in mathematical statistics—as we summarize in
the following algorithm (in practice we use standard Kriging software that
we shall list near the end of this section).
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Algorithm 5.1

1. Initialize θ̂, which defines R̂.

2. Compute the generalized least squares (GLS) estimator of the mean:

μ̂ = (1T R̂−11)−11
′
R̂−1y. (5.16)

3. Substitute μ̂ resulting from Step 2 and R̂ resulting from Step 1 into
the MLE variance estimator

τ̂2 =
(w−μ̂1)

′
R̂−1(w−μ̂1)

n
. (5.17)

Comment: τ̂2 has the denominator n, whereas the denominator n− 1
is used by the classic unbiased estimator assuming R = I.

4. Solve the remaining problem in Eq. (5.15):

Min τ̂2|R̂|−n. (5.18)

Comment: This equation can be found in Lophaven et al. (2002, equa-
tion 2.25). To solve this nonlinear minimization problem, Lophaven
et al. (2002) applies the classic Hooke-Jeeves heuristic. Gano et al.
(2006) points out that this minimization problem is difficult because
of “the multimodal and long near-optimal ridge properties of the like-
lihood function”; i.e., this problem is not convex.

5. Use the θ̂ that solves Eq. (5.18) in Step 4 to update R̂, and substitute

this updated R̂ into Eqs. (5.16) and (5.17).

6. If the MLEs have not yet converged, then return to Step 2; else stop.

Note: Computational aspects are further discussed in Bachoc (2013), But-
ler et al. (2014), Gano et al. (2006), Jones et al. (1998), Li and Sudjianto
(2005), Lophaven et al. (2002), Marrel et al. (2008), and Martin and Simp-
son (2005).
This difficult optimization problem implies that different MLEs may

result from different software packages or from initializing the same pack-
age with different starting values; the software may even break down. The
DACE software uses lower and upper limits for θj , which are usually hard

to specify. Different limits may give completely different θ̂j , as the examples
in Lin et al. (2004) demonstrate.
Note: Besides MLEs there are other estimators of θ; e.g., restricted MLEs

(RMLEs) and cross-validation estimators; see Bachoc (2013), Rasmussen
and Williams (2006, pp. 116–124), Roustant et al. (2012), Santner et al.
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(2003, pp. 66–68), and Sundararajan and Keerthi (2001). Furthermore, we
may use the LS criterion. We have already shown estimators for covariances
in Eq. (3.31), but in Kriging the number of observations for a covariance of a
given distance h decreases as that distance increases. Given these estimates
for various values of h, Kleijnen and Van Beers (2004) and Van Beers and
Kleijnen (2003) use the LS criterion to fit a linear correlation function.

Let us denote the MLEs of the OK parameters by ψ̂ = (μ̂, τ̂2, θ̂
′
)′ with

θ̂
′
= (θ̂1, . . ., θ̂k) in case of an anisotropic correlation function such as

Eq. (5.13); obviously, Σ̂ = τ̂2R̂(θ̂). Plugging these MLEs into Eq. (5.7), we
obtain the predictor

ŷ(x0, ψ̂) = μ̂+ σ̂(x0)
′Σ̂−1(w−μ̂1). (5.19)

This predictor depends on the new point x0 only through σ̂(x0), because μ̂

and Σ̂−1(w−μ̂1) depend on the old I/O. The second term in this equation
shows that this predictor is nonlinear (likewise, weighted least squares with
estimated weights gives a nonlinear estimator in linear regression meta-
models; see Sect. 3.4.4). However, most publications on Kriging compute
the MSE of this predictor by simply plugging the MLEs of the Kriging
parameters τ2, σ(x0), and Σ into Eq. (5.8):

MSE[ŷ(x0, ψ̂)] = τ̂2 − σ̂(x0)
′Σ̂−1σ̂(x0)

+
(1− 1′Σ̂

−1
σ̂(x0))2

1′Σ̂−11
(5.20)

We shall discuss a bootstrapped estimator of the true MSE of this nonlinear
predictor, in the next section (Sect. 5.3).
Note: Martin and Simpson (2005) discusses alternative approaches—

namely, validation and Akaike’s information criterion (AIC)—and finds
that ignoring the randomness of the estimated Kriging parameters underes-
timates the true variance of the Kriging predictor. Validation for estimating
the variance of the Kriging predictor is also discussed in Goel et al. (2006)
and Viana and Haftka (2009). Furthermore, Thiart et al. (2014) confirms
that the plug-in MSE defined in Eq. (5.20) underestimates the true MSE,
and discusses alternative estimators of the true MSE. Jones et al. (1998)
and Spöck and Pilz (2015) also imply that the plug-in estimator underesti-
mates the true variance. Stein (1999) gives asymptotic results for Kriging

with ψ̂.
We point out that Kriging gives a predictor plus a measure for the

accuracy of this predictor; see Eq. (5.20). Some other metamodels—e.g.,
splines—do not quantify the accuracy of their predictor; see Cressie (1993,
p. 182). Like Kriging, linear regression metamodels do quantify the accu-
racy; see Eq. (3.41).
The MSE in Eq. (5.20) is also used to compute a two-sided symmet-

ric (1 − α) confidence interval (CI) for the OK predictor at x0, where



190 5. Kriging Metamodels and Their Designs

σ̂2
OK{ŷ(x0, ψ̂)} equals MSE[ŷ(x0, ψ̂)] and (say) a ± b denotes the interval

[a− b, a+ b]:

P [w(x0) ∈ [ŷ(x0, ψ̂)± zα/2

√
σ̂2
OK{ŷ(x0, ψ̂)}] = 1− α. (5.21)

There is much software for Kriging. In our own experiments we have
used DACE, which is a free-of-chargeMATLAB toolbox well documented in
Lophaven et al. (2002). Alternative free software is the R package
DiceKriging—which is well documented in Roustant et al. (2012)—and
the object-oriented software called the “ooDACE toolbox”—documented
in Couckuyt et al. (2014). PeRK programmed in C is documented in Sant-
ner et al. (2003, pp. 215–249). More free software is mentioned in Frazier
(2011) and in the textbooks and websites mentioned in Sect. 5.1; also see
the Gaussian processes for machine learning (GPML) toolbox, detailed in
Rasmussen and Nickisch (2010). We also refer to the following four tool-
boxes (in alphabetical order):
MPERK on
http://www.stat.osu.edu/~comp_exp/jour.club/MperkManual.pdf

STK on
http://sourceforge.net/projects/kriging/

http://octave.sourceforge.net/stk/,
SUMO on
http://www.sumo.intec.ugent.be/,

and Surrogates on
https://sites.google.com/site/felipeacviana/surroga
testoolbox.
Finally, we refer to the commercial JMP/SAS site:
https://www.jmp.com/en_us/software/feature-index.html#K.
Note: For large data sets, the Kriging computations may become prob-

lematic; solutions are discussed in Gramacy and Haaland (2015) and Meng
and Ng (2015).
As we have already stated in Sect. 1.2, we adhere to a frequentist view in

this book. Nevertheless, we mention that there are many publications that
interpret Kriging models in a Bayesian way. A recent article is Yuan and
Ng (2015); older publications are referenced in Kleijnen (2008). Our major
problem with the Bayesian approach to Kriging is that we find it hard to
come up with prior distributions for the Kriging parameters ψ, because we
have little intuition about the correlation parameters θ; e.g., what is the
prior distribution of θ, in the Kriging metamodel of the M/M/1 simulation
model?
Note: Kriging seems related to so-called moving least squares (MLS),

which originated in curve and surface fitting and fits a continuous function
using a weighted least squares (WLS) criterion that gives more weight to
old points close to the new point; see Lancaster and Salkauskas (1986) and
also Forrester and Keane (2009) and Toropov et al. (2005).

http://www.stat.osu.edu/~comp_exp/jour.club/MperkManual.pdf
http://sourceforge.net/projects/kriging/
http://octave.sourceforge.net/stk/
http://www.sumo.intec.ugent.be/
https://sites.google.com/site/felipeacviana/surrogatestoolbox
https://www.jmp.com/en_us/software/feature-index.html#K
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The Kriging metamodel may also include qualitative inputs besides quan-
titative inputs. The challenge is to specify a valid covariance matrix; see
Zhou et al. (2011).

5.3 Bootstrapping and Conditional Simulation
for OK in Deterministic Simulation

In the preceding section we mentioned that in the present section we discuss
a bootstrap approach to estimating the MSE of the nonlinear predictor with
plugged-in estimated Kriging parameters ψ̂ in Eq. (5.19). We have already
discussed the general principles of bootstrapping in Sect. 3.3.5. Now we
discuss parametric bootstrapping of the GP assumed in OK that was spec-
ified in Eq. (5.1). We also discuss a bootstrap variant called “conditional
simulation”. Hasty readers may skip this section, because parametric boot-
strapping and its variant are rather complicated and turn out to give CIs
with coverages and lengths that are not superior compared with the CI
specified in Eq. (5.21).

5.3.1 Bootstrapped OK (BOK)

For bootstrapping we use the notation that we introduced in Sect. 3.3.5. So
we denote bootstrapped data by the superscript ∗ ; e.g., (X,w∗) denotes
the original input and the bootstrapped output of the simulation model.
We define bootstrapped estimators analogously to the original estimators,
but we compute the bootstrapped estimators from the bootstrapped data

instead of the original data; e.g., we compute ψ̂ from (X,w), but ψ̂
∗
from

(X,w∗). We denote the bootstrap sample size by B and the bth bootstrap
observation in this sample by the subscript b with b = 1, . . ., B.
Following Kleijnen and Mehdad (2013), we define the following (1 + n)-

dimensional Gaussian or “normal” (N1+n) distribution:

(
y (x0)
y (x)

)
∼ N1+n

[
μ11+n,

(
τ2 σ(x0)

′

σ(x0) Σ

)]
, (5.22)

where all symbols were defined in the preceding section. Obviously, Eq. (5.22)
implies y (x) ∼ Nn (μ1n,Σ).
Li and Zhou (2015) extends Den Hertog et al. (2006)’s bootstrap method

for estimating the variance from univariate GP models to so-called “pair-
wise meta-modeling” of multivariate GP models assuming nonseparable
covariance functions. We saw that if x0 gets closer to an old point x, then
the predictor variance decreases and—because OK is an exact interpola-
tor in deterministic simulation—this variance becomes exactly zero when
x0 = x. Furthermore, N1+n in Eq. (5.22) implies that the distribution of
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the new output—given the n old outputs—is the conditional normal dis-
tribution

N
[
μ̂+ σ̂(x0)

′Σ̂
−1

[y(x) − μ̂1n], τ̂
2 − σ̂(x0)

′Σ̂
−1

σ̂(x0)
]
. (5.23)

We propose the following BOK pseudo-algorithm.

Algorithm 5.2

1. Use Nk

(
μ̂1k, Σ̂

)
B times to sample the n old outputs y∗

b (X, ψ̂) =

(y∗1;b(X, ψ̂), . . . , y∗k;b(X, ψ̂))′ where ψ̂ is estimated from the old simu-
lation I/O data (X,w). For each new point x0 repeat steps 2 through
4 B times.

2. Given the n old bootstrapped outputs y∗
b (X, ψ̂) of step 1, sample

the new output y∗b (x0, ψ̂) from the conditional normal distribution
defined in Eq. (5.23).

3. Using the n old bootstrapped outputs y∗
b (X, ψ̂) of step 1, compute

the bootstrapped MLE ψ̂
∗
b . Next calculate the bootstrapped predictor

ŷ(x0, ψ̂
∗
b ) = μ̂∗

b + σ̂(x0, θ̂
∗
b )

′
Σ̂

−1
(θ̂∗b )[y

∗
b (X, ψ̂)− μ̂∗

b1n]. (5.24)

4. Given ŷ(x0, ψ̂
∗
b) of step 3 and y∗b (x0, ψ̂) of step 2, compute the boot-

strap estimator of the squared prediction error (SPE):

SPE∗
b = SPE[ŷ(x0, ψ̂

∗
b)] = [ŷ(x0, ψ̂

∗
b)− y∗b (x0, ψ̂)]2.

5. Given the B bootstrap samples SPE∗
b (b = 1, . . ., B) resulting from

steps 1 through 4, compute the bootstrap estimator of MSPE[ŷ(x0)]
(this MSPE was defined in Eq. (5.8):

MSPE∗ =

∑B
b=1 SPE

∗
b

B
. (5.25)

If we ignore the bias of the BOK predictor ŷ(x0, ψ̂
∗
), then Eq. (5.25)

gives σ̂2[ŷ(x0, ψ̂
∗
)] which is the bootstrap estimator of σ2[ŷ(x0|ψ̂)]. We

abbreviate σ̂2[ŷ(x0, ψ̂
∗
)] to σ̂2

BOK. The standard error (SE) of σ̂2
BOK follows

from Eq. (5.25):

SE(σ̂2
BOK) =

√∑B
b=1(SPE

∗
b −MSPE∗)2

(B − 1)B
.

We apply tB−1 (t-statistic with B − 1 degrees of freedom) to obtain a
two-sided symmetric (1− α) CI for σ2

BOK:

P [σ2
OK ∈ σ̂2

BOK ± tB−1;α/2SE(σ̂2
BOK)] = 1− α. (5.26)
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Obviously, if B ↑ ∞, then tB−1;α/2 ↓ zα/2 where zα/2 denotes the α/2
quantile of the standard normal variable z ∼ N(0, 1); typically B is so high
(e.g., 100) that we can indeed replace tB−1;α/2 by zα/2.
Figure 5.2 illustrates BOK for the following test function, taken from

Forrester et al. (2008, p. 83):

w(x) = (6x− 2)2 sin(12x− 4) with 0 ≤ x ≤ 1. (5.27)

This function has one local minimum at x = 0.01, and one global mini-
mum at x = 0.7572 with output w = −6.02074; we shall return to this
function in the next chapter, in which we discuss simulation optimization.
The plot shows that each of the B bootstrap samples has its own old out-
put values y∗

b . Part (a) displays only B = 5 samples to avoid cluttering-up

the plot. Part (b) shows less “wiggling” than part (a); ŷ(x, ψ̂
∗
b ), which are

the predictions at old points, coincide with y∗
b (X, ψ̂), which are the values

sampled in part (a). Part (c) uses B = 100.

FIGURE 5.2. BOK for the test function in Forrester et al. (2008): (a) jointly
sampled outputs at 5 equi-spaced old and 98 equi-spaced new points, for
B =5; (b) Kriging predictions for 98 new points based on 5 old points
sampled in (a); (c) estimated predictor variances and their 95% CIs for B
=100
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To compute a two-sided symmetric (1 − α) CI for the predictor at x0,

we may use the OK point predictor ŷ(x0, ψ̂) and σ̂2
BOK(equal to the MSE

in Eq. (5.25)):

P{w(x0) ∈ ŷ(x0, ψ̂)± zα/2

√
σ̂2
BOK} = 1− α. (5.28)

If σ̂2
OK < σ̂2

BOK, then this CI is longer and gives a higher coverage than
the CI in Eq. (5.21). Furthermore, we point out that Yin et al. (2010) also
finds empirically that a Bayesian approach accounting for the randomness
of the estimated Kriging parameters gives a wider CI—and hence higher
coverage—than an approach that ignores this estimation.

5.3.2 Conditional Simulation of OK (CSOK)

We denote conditional simulation (CS) of OK by CSOK. This method

ensures ŷ(x, ψ̂
∗
b ) = w(x); i.e., in all the bootstrap samples the prediction

at an old point equals the observed value. Part (a) of Fig. 5.3 may help
understand Algorithm 5.3 for CSOK, which copies steps 1 through 3 of
Algorithm 5.2 for BOK in the preceding subsection.
Note: Algorithm 5.3 is based on Kleijnen and Mehdad (2013), which fol-

lows Chilès and Delfiner (2012, pp. 478–650). CS may also be implemented
through the R software package called “DiceKriging”; see Roustant et al.
(2012).

Algorithm 5.3

1. Use Nn(μ̂1n, Σ̂) B times to sample the n old outputs y∗
b (X, ψ̂) =

(y∗1;b(X, ψ̂), . . . , y∗k;b(X, ψ̂))
′
where ψ̂ is estimated from the old simu-

lation I/O data (X,w). For each new point x0, repeat steps 2 through
4 B times.

2. Given the n old bootstrapped outputs y∗
b (X, ψ̂) of step 1, sample

the new output y∗b (x0, ψ̂) from the conditional normal distribution in
Eq. (5.23).

3. Using the k old bootstrapped outputs y∗
b (X, ψ̂) of step 1, compute the

bootstrapped MLE ψ̂
∗
b . Next calculate the bootstrapped predictor

ŷ(x0, ψ̂
∗
b) = μ̂∗

b + σ̂(x0)
′
Σ̂

−1
(θ̂

∗
b)[y

∗
b (X, ψ̂)− μ̂∗

b1n]. (5.29)

4. Combining the OK estimator defined in Eq. (5.19) and the BOK es-
timator defined in Eq. (5.29), compute the CSOK predictor

ŷCSOK(x0, b) = μ̂+σ̂(x0)
′
Σ̂

−1
(w−μ̂1n)+[y∗b (x0, ψ̂)− ŷ(x0, ψ̂

∗
b)].

(5.30)
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a

b

FIGURE 5.3. CSOK for the test function in Forrester et al. (2008): (a)
predictions at 98 new points, for B = 5; (b) estimated predictor variances
and their 95% CIs for B = 100, and OK’s predictor variances

Given these B estimators ŷCSOK(x0, b) (b = 1, . . ., B), compute the CSOK
estimator of MSPE[ŷ(x0)]:

σ̂2[ŷCSOK(x0)] =

∑B
b=1[ŷCSOK(x0, b)− ŷCSOK(x0)]

2

B − 1
with

ŷCSOK(x0) =

∑B
b=1 ŷCSOK(x0, b)

B
. (5.31)

We abbreviate σ̂2[ŶCSOK(x0)] to σ̂
2
CSOK. Mehdad and Kleijnen (2014) proves

that σ̂2
CSOK ≤ σ̂2

BOK; in practice, it is not known how much smaller σ̂2
CSOK

is than σ̂2
BOK. We therefore apply a two-sided asymmetric (1 − α) CI for

σ2
OK using σ̂2

CSOK and the chi-square statistic χ2
B−1 (this CI replaces the

CI for BOK in Eq. (5.28), which assumes B IID variables):

P

(
(B − 1)σ̂2

CSOK

χ2
B−1;1−α/2

≤ σ2
OK ≤ (B − 1)σ̂2

CSOK

χ2
B−1;α/2

)
= 1− α. (5.32)
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Part (b) of Fig. 5.3 displays σ̂2
CSOK defined in Eq. (5.31) and its 95% CIs

defined in Eq. (5.32) based on B = 100 bootstrap samples; it also displays
σ̂2
OK following from Eq. (5.20). Visual examination of this part suggests

that σ̂2
CSOK tends to exceed σ̂2

OK.
Next, we display both σ̂2

CSOK and σ̂2
BOK and their CIs, for various values

of B, in Fig. 5.4. This plot suggests that σ̂2
CSOK is not significantly smaller

than σ̂2
BOK . These results seem reasonable, because both CSOK and BOK

use ψ̂, which is the sufficient statistic of the GP computed from the same
(X,w). CSOK seems simpler than BOK, both computationally and con-
ceptually. CSOK gives better predictions for new points close to old points;
but then again, BOK is meant to improve the predictor variance—not the
predictor itself.
We may use σ̂2

CSOK to compute a CI for the OK predictor, using the
analogue of Eq. (5.28):

P

{
w(x0) ∈ ŷ(x0, ψ̂)± zα/2

√
σ̂2
CSOK

}
= 1− α. (5.33)

a

b

c

FIGURE 5.4. CIs for BOK versus CSOK for various B values, using the
test function in Forrester et al. (2008)
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Moreover, we can derive an alternative CI; namely, a distribution-free two-
sided asymmetric CI based on the so-called percentile method (which we
defined in Eq. (3.14)). We apply this method to ŷCSOK(x0, b) (b = 1, . . ., B),
which are the B CSOK predictors defined in Eq. (5.30). Because the per-
centile method uses order statistics, we now denote ŷCSOK(x0, b) by
ŷCSOK; b (x0), apply the usual subscript (.) (e.g., (Bα/2)) to denote or-
der statistics (resulting from sorting the B values from low to high), and
select B such that Bα/2 and B(1 − α/2) are integers:

P [ŷCSOK; (Bα/2)(x0) ≤ w(x0) ≤ ŷCSOK; (B(1−α/2))(x0)] = 1− α. (5.34)

An advantage of the percentile method is that this CI does not include
negative values if the simulation output is not negative; also see Sect. 5.7
on bootstrapping OK to preserve known characteristics of the I/O functions
(nonnegative outputs, monotonic I/O functions, etc.). We do not apply the
percentile method to BOK, because BOK gives predictions at the n old
points that do not equal the observed old simulation outputs wi.
For OK, BOK, and CSOKMehdad and Kleijnen (2015a) studies CIs with

a nominal coverage of 1 − α and reports the estimated expected coverage
1−E(α̂) and the estimated expected length E(l) of the CIs, for a GP with
two inputs so k = 2 and an anisotropic Gaussian correlation function such
as Eq. (5.13) with p = 2. In general, we prefer the CI with the shortest
length, unless this CI gives too low coverage. The reported results show
that OK with σ̂OK gives shorter lengths than CSOK with σ̂CSOK, and
yet OK gives estimated coverages that are not significantly lower. The
percentile method for CSOK gives longer lengths than OK, but its coverage
is not significantly better than OK’s coverage. Altogether the results do
not suggest that BOK or CSOK is superior, so we recommend OK when
predicting a new output; i.e., OK seems a robust method.

Exercise 5.6 Consider the three alternative CIs that use OK, BOK, and
CSOK, respectively. Do you think that the length of such a CI for a new
point tends to decrease or increase as n (number of old points) increases?

5.4 Universal Kriging (UK) in Deterministic
Simulation

UK replaces the constant μ in Eq. (5.1) for OK by f(x)
′
β where f(x) is a

q × 1 vector of known functions of x and β is a q × 1 vector of unknown
parameters (e.g., if k = 1, then UK may replace μ by β0 + β1x, which is
called a “linear trend”):

y(x) = f(x)
′
β +M(x) with x ∈ R

k. (5.35)

The disadvantage of UK compared with OK is that UK requires the
estimation of additional parameters. More precisely, besides β0 UK involves
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q − 1 parameters, whereas OK involves only β0 = μ. We conjecture that
the estimation of the extra q− 1 parameters explains why UK has a higher
MSE. In practice, most Kriging models do not use UK but OK
Note: This higher MSE for UK is also discussed in Ginsbourger et al.

(2009) and Tajbakhsh et al. (2014). However, Chen et al. (2012) finds that
UK in stochastic simulation with CRN may give better estimates of the
gradient; also see Sect. 5.6. Furthermore, to eliminate the effects of esti-
mating β in UK, Mehdad and Kleijnen (2015b) applies intrinsic random
functions (IRFs) and derives the corresponding intrinsic Kriging (IK) and
stochastic intrinsic Kriging (SIK). An IRF applies a linear transformation
such that f(x)

′
β in Eq. (5.35) vanishes. Of course, this transformation also

changes the covariance matrix ΣM , so the challenge becomes to determine
a covariance matrix of IK that is valid (symmetric and “conditionally”
positive definite). Experiments suggest that IK outperforms UK, and SIK
outperforms SK. Furthermore, a refinement of UK is so-called blind Krig-
ing, which does not assume that the functions f(x) are known. Instead,
blind Kriging chooses these functions from a set of candidate functions, as-
suming heredity (which we discussed below Eq. (4.11)) and using Bayesian
techniques (which we avoid in this book; see Sect. 5.2). Blind Kriging is
detailed in Joseph et al. (2008) and also in Couckuyt et al. (2012). Finally,
Deng et al. (2012) compares UK with a new Bayesian method that also tries
to eliminate unimportant inputs in the Kriging metamodel; the elimination
of unimportant inputs we discussed in Chap. 4 on screening.

5.5 Designs for Deterministic Simulation

An n× k design matrix X specifies the n combinations of the k simulation
inputs. The literature on designs for Kriging in deterministic simulation
abounds, and proposes various design types. Most popular are Latin hy-
percube designs (LHDs). Alternative types are orthogonal array, uniform,
maximum entropy, minimax, maximin, integrated mean squared prediction
error (IMSPE), and “optimal” designs.
Note: Many references are given in Chen and Zhou (2014), Damblin

et al. (2013), Janssen (2013), and Wang et al. (2014). Space-filling designs
that account for statistical dependencies among the k inputs—which may
be quantitative or qualitative—are given in Bowman and Woods (2013).
A textbook is Lemieux (2009). More references are given in Harari and
Steinberg (2014a), and Kleijnen (2008, p. 130). Relevant websites are
http://lib.stat.cmu.edu

and
http://www.spacefillingdesigns.nl/.
LHDs are specified through Latin hypercube sampling (LHS). Historically

speaking, McKay et al. (1979) invented LHS not for Kriging but for risk

http://lib.stat.cmu.edu
http://www.spacefillingdesigns.nl/
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Input 3’s level
Input 2’s level 1 2 3 4 5
1 1 4 2 5 3
2 4 1 3 2 5
3 3 2 5 4 1
4 2 5 1 3 4
5 5 3 4 1 2

TABLE 5.1. A Latin square with three inputs, each with five levels

analysis using deterministic simulation models (“computer codes”); LHS
was proposed as an alternative for crude Monte Carlo sampling (for Monte
Carlo methods we refer to Chap. 1). LHS assumes that an adequate meta-
model is more complicated than a low-order polynomial (these polynomial
metamodels and their designs were discussed in the preceding three chap-
ters). LHS does not assume a specific metamodel that approximates the
I/O function defined by the underlying simulation model; actually, LHS fo-
cuses on the input space formed by the k–dimensional unit cube defined by
the standardized simulation inputs. LHDs are one of the space-filling types
of design (LHDs will be detailed in the next subsection, Sect. 5.5.1).
Note: It may be advantageous to use space-filling designs that allow se-

quential addition of points; examples of such designs are the Sobol sequences
detailed on
http://en.wikipedia.org/wiki/Sobol_sequence#References.
We also refer to the nested LHDs in Qian et al. (2014) and the “sliced”

LHDs in Ba et al. (2014), Li et al. (2015), and Yang et al. (2014); these sliced
designs are useful for experiments with both qualitative and quantitative in-
puts. Furthermore, taking a subsample of a LHD—as we do in validation—
destroys the LHD properties. Obviously, the most flexible method allowing
addition and elimination of points is a simple random sample of n points
in the k-dimensional input space.
In Sect. 5.5.1 we discuss LHS for designs with a given number of input

combinations, n; in Sect. 5.5.2 we discuss designs that determine n sequen-
tially and are customized.

5.5.1 Latin Hypercube Sampling (LHS)

Technically, LHS is a type of stratified sampling based on the classic Latin
square designs, which are square matrixes filled with different symbols such
that each symbol occurs exactly once in each row and exactly once in each
column. Table 5.1 is an example with k = 3 inputs and five levels per input;
input 1 is the input of real interest, whereas inputs 2 and 3 are nuisance
inputs or block factors (also see our discussion on blocking in Sect. 2.10).
This example requires only n = 5×5 = 25 combinations instead of 53 = 125
combinations. For further discussion of Latin (and Graeco-Latin) squares
we refer to Chen et al. (2006).

http://en.wikipedia.org/wiki/Sobol_sequence#References
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Input 3’s level
Input 2’s level 1 2 3 4 5
1 1 2 3 4 5
2 5 1 2 3 4
3 4 5 1 2 3
4 3 4 5 1 2
5 2 3 4 5 1

TABLE 5.2. A systematic Latin square with three inputs, each with five
levels

Note: Another Latin square—this time, constructed in a systematic
way—is shown in Table 5.2. This design, however, may give a biased es-
timator of the effect of interest. For example, suppose that the input of
interest (input 1) is wheat, and wheat comes in five varieties. Suppose fur-
ther that this table determines the way wheat is planted on a piece of land;
input 2 is the type of harvesting machine, and input 3 is the type of fer-
tilizer. If the land shows a very fertile strip that runs from north-west to
south-east (see the main diagonal of the matrix in this table), then the
effect of wheat type 1 is overestimated. Therefore randomization should be
applied to protect against unexpected effects. Randomization makes such
bias unlikely—but not impossible. Therefore random selection may be cor-
rected if its realization happens to be too systematic. For example, a LHD
may be corrected to give a “nearly” orthogonal design; see Hernandez et al.
(2012), Jeon et al. (2015), and Vieira et al. (2011).
The following algorithm details LHS for an experiment with n combina-

tions of k inputs (also see Helton et al. (2006b).

Algorithm 5.4

1. Divide the range of each input into n > 1 mutually exclusive and
exhaustive intervals of equal probability.
Comment: If the distribution of input values is uniform on [a, b], then
each interval has length (b − a)/n. If the distribution is Gaussian,
then intervals near the mode are shorter than in the tails.

2. Randomly select one value for x1 from each interval, without replace-
ment, which gives n values x1;1 through x1;n.

3. Pair these n values with the n values of x2, randomly without re-
placement.

4. Combine these n pairs with the n values of x3, randomly without
replacement to form n triplets.

5. And so on, until a set of n n-tupples is formed.
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Table 5.3 and Fig. 5.5 give a LHD example with n = 5 combinations of
the two inputs x1 and x2; these combinations are denoted by as in fig. 5.5.
The table shows that each input has five discrete levels, which are labelled
1 through 5. If the inputs are continuous, then the label (say) 1 may denote
a value within interval 1; see Fig. 5.5.
LHS does not imply a strict mathematical relationship between n (num-

ber of combinations actually simulated) and k (number of simulation in-
puts), whereas DOE uses (for example) n = 2k so n drastically increases
with k. Nevertheless, if LHS keeps n “small” and k is “large”, then the re-
sulting LHD covers the experimental domain R

k so sparsely that the fitted
Kriging model may be an inadequate metamodel of the underlying simu-
lation model. Therefore a well-known rule-of-thumb for LHS in Kriging is
n = 10k; see Loeppky et al. (2009).

x1

x2 1 2 3 4 5
1 •
2 •
3 •
4 •
5 •

TABLE 5.3. A LHS example with n = 5 combinations of two inputs x1

and x2

FIGURE 5.5. LHS example with n = 5 combinations of two inputs x1

and x2
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Note: Wang et al. (2014) recommends n = 20k. Furthermore, Hernandez
et al. (2012) provides a table for LHDs with acceptable nonorthogonality
for various (n, k) combinations with n ≤ 1,025 and k ≤ 172.
Usually, LHS assumes that the k inputs are independently distributed—

so their joint distribution becomes the product of their k individual marginal
distributions—and the marginal distributions are uniform (symbol U) in
the interval (0, 1) so xj ∼ U(0, 1). An alternative assumption is a mul-
tivariate Gaussian distribution, which is completely characterized by its
covariances and means. For nonnormal joint distributions, LHS may use
Spearman’s correlation coefficient (discussed in Sect. 3.6.1); see Helton et al.
(2006b). If LHS assumes a nonuniform marginal distribution for xj (as we
may assume in risk analysis, discussed in Sect. 5.9), then LHS defines n—
mutually exclusive and exhaustive—subintervals [lj;g, uj′g] (g = 1, . . ., n)
for the standardized xj such that each subinterval has the same probabil-
ity; i.e., P (lj;g ≤ xj ≤ uj;g) = 1/n. This implies that near the mode of the
xj distribution, the subintervals are relatively short, compared with the
subintervals in the tails of this distribution.
In LHS we may either fix the value of xj to the middle of the subinter-

val g so xj = (lj;g + uj;g)/2 or we may sample the value of xj within that
subinterval accounting for the distribution of its values. Fixing xj is attrac-
tive when we wish to estimate the sensitivity of the output to the inputs
(see Sect. 5.8, in which we shall discuss global sensitivity analysis through
Sobol’s indexes). A random xj is attractive when we wish to estimate the
probability of the output exceeding a given threshold as a function of an
uncertain input xj , as we do in risk analysis (see Sect. 5.9).
LHDs are noncollapsing ; i.e., if an input turns out to be unimportant,

then each remaining individual input is still sampled with one observa-
tion per subinterval. DOE, however, then gives multiple observations for
the same value of a remaining input—which is a waste in deterministic
simulation (in stochastic simulation it improves the accuracy of the es-
timated intrinsic noise). Kriging with an anisotropic correlation function
may benefit from the noncollapsing property of LHS, when estimating the
correlation parameters θj . Unfortunately, projections of a LHD point in n
dimensions onto more than one dimension may give “bad” designs. There-
fore standard LHS is further refined, leading to so-called maximin LHDs
and nearly-orthogonal LHDs.
Note: For these LHDs we refer to Damblin et al. (2013), Dette and

Pepelyshev (2010), Deutsch and Deutsch (2012), Georgiou and Stylianou
(2011), Grosso et al. (2009), Janssen (2013), Jourdan and Franco (2010),
Jones et al. (2015), Ranjan and Spencer (2014) and the older references in
Kleijnen (2008, p. 130).
In a case study, Helton et al. (2005) finds that crude Monte Carlo and

LHS give similar results if these two methods use the same “big” sample
size. In general, however, LHS is meant to improve results in simulation
applications; see Janssen (2013).
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There is much software for LHS. For example, Crystal Ball, @Risk, and
Risk Solver provide LHS, and are add-ins to Microsoft’s Excel spreadsheet
software. LHS is also available in the MATLAB Statistics toolbox sub-
routine lhs and in the R package DiceDesign. We also mention Sandia’s
DAKOTA software:
http://dakota.sandia.gov/.

5.5.2 Sequential Customized Designs

The preceding designs for Kriging have a given number of input combi-
nations n and consider only the input domain x ∈ R

k; i.e., these designs
do not consider the output. Now we present designs that select n input
combinations sequentially and consider the specific I/O function fsim of
the underlying simulation model so these designs are application-driven or
customized. We notice that the importance of sequential sampling is also
emphasized in Simpson et al. (2004), reporting on a panel discussion.
Note: Sequential designs for Kriging metamodels of deterministic sim-

ulation models are also studied in Busby et al. (2007), Crombecq et al.
(2011), Koch et al. (2015), and Jin et al. (2002). Sequential LHDs ignor-
ing the output (e.g., so-called “replicated LHDs”) are discussed in Janssen
(2013). Our sequential customized designs are no longer LHDs (even though
the first stage may be a LHD), as we shall see next.
The designs discussed so far in this section, are fixed sample or one shot

designs. Such designs suit the needs of experiments with real systems; e.g.,
agricultural experiments may have to be finished within a single grow-
ing season. Simulation experiments, however, proceed sequentially—unless
parallel computers are used, and even then not the whole experiment is
finished in one shot. In general, sequential statistical procedures are known
to be more “efficient” in the sense that they require fewer observations
than fixed-sample procedures; see, e.g., Ghosh and Sen (1991). In sequen-
tial designs we learn about the behavior of the underlying system as we
experiment with this system and collect data. (The preceding chapter on
screening also showed that sequential designs may be attractive in simula-
tion.) Unfortunately, extra computer time is needed in sequential designs
for Kriging if we re-estimate the Kriging parameters when new I/O data be-
come available. Fortunately, computations may not start from scratch; e.g.,
we may initialize the search for the MLEs in the sequentially augmented
design from the MLEs in the preceding stage.
Note: Gano et al. (2006) updates the Kriging parameters only when the

parameter estimates produce a poor prediction. Toal et al. (2008) examines
five update strategies, and concludes that it is bad not to update the esti-
mates after the initial design. Chevalier and Ginsbourger (2012) presents
formulas for updating the Kriging parameters and predictors for designs
that add I/O data either purely sequential (a single new point with its

http://dakota.sandia.gov/
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output) or batch-sequential (batches of new points with their outputs). We
shall also discuss this issue in Sect. 5.6 on SK.
Kleijnen and Van Beers (2004) proposes the following algorithm for

specifying a customized sequential design for Kriging in deterministic
simulation.

Algorithm 5.5

1. Start with a pilot experiment using some space-filling design (e.g., a
LHD) with only a few input combinations; use these combinations
as the input for the simulation model, and obtain the corresponding
simulation outputs.

2. Fit a Kriging model to the I/O simulation data resulting from Step 1.

3. Consider (but do not yet simulate) a set of candidate combinations
that have not yet been simulated and that are selected through some
space-filling design; find the “winner”, which is the candidate combi-
nation with the highest predictor variance.

4. Use the winner found in Step 3 as the input to the simulation model
that is actually run, which gives the corresponding simulation output.

5. Re-fit (update) the Kriging model to the I/O data that is augmented
with the I/O data resulting from Step 4.
Comment: Step 5 refits the Kriging model, re-estimating the Krig-
ing parameters ψ; to save computer time, this step might not re-
estimate ψ.

6. Return to Step 3 until either the Kriging metamodel satisfies a given
goal or the computer budget is exhausted.

Furthermore, Kleijnen and Van Beers (2004) compares this sequential
design with a sequential design that uses the predictor variance with plugged
-in parameters specified in Eq. (5.20). The latter design selects as the next
point the input combination that maximizes this variance. It turns out
that the latter design selects as the next point the input farthest away
from the old input combinations, so the final design spreads all its points
(approximately) evenly across the experimental area—like space-filling de-
signs do. However, the predictor variance may also be estimated through
cross-validation (we have already discussed cross-validation of Kriging mod-
els below Eq. (5.20)); see Fig. 5.6, which we discuss next.
Figure 5.6 displays an example with a fourth-order polynomial I/O func-

tion fsim with two local maxima and three local minima; two minima
occur at the border of the experimental area. Leave-one-out cross-validation
means successive deletion of one of the n old I/O observations (which are
already simulated), which gives the data set (X−i,w−i). (i = 1, . . ., n).
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FIGURE 5.6. Cross-validation in fourth-order polynomial example with
four pilot observations (see circles) and three candidate input values (see
solid dots)

Next, we compute the Kriging predictor, after re-estimating the Kriging
parameters. For each of three candidate points, the plot shows the three
Kriging predictions computed from the original data set (no data deleted),
and computed after deleting observation 2 and observation 3, respectively;
the two extreme inputs (x = 0 and x = 10) are not deleted because Krig-
ing does not extrapolate well. The point that is most difficult to predict
turns out to be the candidate point x = 8.33 (the highest candidate point
in the plot). To quantify this prediction uncertainty, we may jackknife the
predictor variances, as follows.
In Sect. 3.3.3, we have already discussed jackknifing in general (jackknif-

ing is also applied to stochastic Kriging, in Chen and Kim (2013)). Now,
we calculate the jackknife’s pseudovalue J for candidate point j as the
weighted average of the original and the cross-validation predictors, let-
ting c denote the number of candidate points and n the number of points
already simulated and being deleted successively:

Jj;i = nŷj − (n− 1)ŷj;−i with j = 1, . . . , c and i = 1, . . . , n.

From these pseudovalues we compute the classic variance estimator (also
see Eq. (3.12)):

s2(Jj) =

∑n
i=1(Jj;i − Jj)

2

n(n− 1)
with Jj =

∑n
i=1 Jj;i
n

.

Figure 5.7 shows the candidate points that are selected for actual sim-
ulation. The pilot sample consists of four equally spaced points; also see
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FIGURE 5.7. A fourth-degree polynomial example (see curve) of a sequen-
tial and customized design (see diamonds) and four initial points (see solid
dots)

Fig. 5.6. The sequential design selects relative few points in subareas that
generate an approximately linear I/O function; the design selects many
points near the edges, where the function changes much. So the design
favors points in subareas that have “more interesting” I/O behavior.
Note: Lin et al. (2002) criticizes cross-validation for the validation of

Kriging metamodels, but in this section we apply cross-validation for the
estimation of the prediction error when selecting the next design point in a
customized design. Kleijnen and Van Beers (2004)’s method is also applied
by Golzari et al. (2015).

5.6 Stochastic Kriging (SK) in Random
Simulation

The interpolation property of Kriging is attractive in deterministic simu-
lation, because the observed simulation output is unambiguous. In random
simulation, however, the observed output is only one of the many possible
values. Van Beers and Kleijnen (2003) replaces wi (the simulation output
at point i with i = 1, . . ., n) by wi =

∑mi

r=1 wi;r/mi (the average simulated
output computed from mi replications). These averages, however, are still
random, so the interpolation property loses its intuitive appeal. Neverthe-
less, Kriging may be attractive in random simulation because Kriging may
decrease the predictor MSE at input combinations close together.
Note: Geostatisticians often use a model for (random) measurement er-

rors that assumes a so-called nugget effect which is white noise; see Cressie
(1993, pp. 59, 113, 128) and also Clark (2010). The Kriging predictor is
then no longer an exact interpolator. Geostatisticians also study noise with
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heterogeneous variances; see Opsomer et al. (1999). In machine learning
this problem is studied under the name heteroscedastic GP regression; see
Kleijnen (1983) and our references in Sect. 5.1. Roustant et al. (2012) dis-
tinguishes between the nugget effect and homogeneous noise, such that
the former gives a Kriging metamodel that remains an exact interpolator,
whereas the latter does not. Historically speaking, Danie Krige worked in
mining engineering and was confronted with the “nugget effect”; i.e., gold
diggers may either miss the gold nugget “by a hair” or hit it “right on
the head”. Measurement error is a fundamentally different issue; i.e., when
we measure (e.g.) the temperature on a fixed location, then we always get
different values when we repeat the measurement at points of time “only
microseconds apart”, the “same” locations separated by nanomillimeters
only, using different measurement tools or different people, etc.
In deterministic simulation, we may study numerical problems arising

in Kriging. To solve such numerical noise, Lophaven et al. (2002, Eq. 3.16)
and Toal et al. (2008) add a term to the covariance matrix ΣM (also see
Eq. (5.36) below); this term resembles the nugget effect, but with a “vari-
ance” that depends on the computer’s accuracy.
Note: Gramacy and Lee (2012) also discusses the use of the nugget effect

to solve numerical problems, but emphasizes that the nugget effect may also
give better statistical performance such as better CIs. Numerical problems
are also discussed in Goldberg et al. (1998), Harari and Steinberg (2014b),
and Sun et al. (2014).
In Sect. 5.6.1 we discuss a metamodel for stochastic Kriging (SK) and its

analysis; in Sect. 5.6.2 we discuss designs for SK.

5.6.1 A Metamodel for SK

In the analysis of random (stochastic) simulation models—which use pseu-
dorandom numbers (PRNs)—we may apply SK, adding the intrinsic noise
term εr(x) for replication r at input combination x to the GP metamodel
in Eq.(5.1) for OK with the extrinsic noiseM(x) :

yr(x) = μ+M(x) + εr(x) with x ∈ R
k and r = 1, . . . , mi (5.36)

where εr(x) has a Gaussian distribution with zero mean and variance
Var[εr(x)] and is independent of the extrinsic noise M(x). If the sim-
ulation does not use CRN, then Σε—the covariance matrix for the in-
trinsic noise—is diagonal with the elements Var[ε(x)] on the main diago-
nal. If the simulation does use CRN, then Σε is not diagonal; obviously,
Σε should still be symmetric and positive definite. (Some authors—e.g.
Challenor (2013)—use the term “aleatory” noise for the intrinsic noise,
and the term “epistemic noise” for the extrinsic noise in Kriging; we use
these alternative terms in Chaps. 1 and 6.)
Averaging the mi replications gives the average metamodel output y(xi)

and average intrinsic noise ε(xi), so Eq. (5.36) is replaced by

y(xi) = μ+M(xi) + ε(xi) with x ∈ R
k and i = 1, . . . , n. (5.37)
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Obviously, if we obtain mi replicated simulation outputs for input com-
bination i and we do not use CRN, then Σε is a diagonal matrix with
main-diagonal elements Var[ε(xi)]/mi. If we do use CRN and mi is a con-
stant m, then Σε = Σε/m where Σε is a symmetric positive definite
matrix.
SK may use the classic estimators of Var[ε(xi)] using mi > 1 replications,

which we have already discussed in Eq. (2.27):

s2(wi) =

∑mi

r=1(wi;r − wi)
2

mi − 1
(i = 1, . . . n)

Instead of these point estimates of the intrinsic variances, SK may use an-
other Kriging metamodel for the variances Var[ε(xi)]—besides the Kriging
metamodel for the mean E[yr(xi)]— to predict the intrinsic variances. We
expect this alternative to be less volatile than s2(wi); after all, s

2(wi) is a
chi-square variable (with mi − 1 degrees of freedom) and has a large vari-
ance. Consequently, s2(wi) is not normally distributed so the GP assumed
for s2(wi) is only a rough approximation. Because s2(wi) ≥ 0, Goldberg
et al. (1998) uses log[s2(wi)] in the Kriging metamodel. Moreover, we saw
in Sect. 3.3.3 that a logarithmic transformation may make the variable nor-
mally distributed. We also refer to Kamiński (2015) and Ng and Yin (2012).
Note: Goldberg et al. (1998) assumes a known mean E[y(x)], and a

Bayesian approach using Markov chain Monte Carlo (MCMC) methods.
Kleijnen (1983) also uses a Bayesian approach but no MCMC. Both Gold-
berg et al. (1998) and Kleijnen (1983) do not consider replications. Repli-
cations are standard in stochastic simulation; nevertheless, stochastic sim-
ulation without replication is studied in (Marrel et al. 2012). Risk and
Ludkovski (2015) applies SK with estimated constant mean μ̂ (like OK

does) and mean function f(x; β̂) (like UK does), and reports several case

studies that give smaller MSEs for f(x; β̂) than for μ̂.
SK uses the OK predictor and its MSE replacing ΣM by ΣM +Σε and

w by w, so the SK predictor is

ŷ(x0, ψ̂) = μ̂+ σ̂(x0)
′(Σ̂M + Σ̂ε)

−1(w−μ̂1) (5.38)

and its MSE is

MSE[ŷ(x0, ψ̂)] = τ̂2 − σ̂(x0)
′(Σ̂M + Σ̂ε)

−1σ̂(x0)

+
[1− 1′(Σ̂M + Σ̂ε)

−1σ̂(x0)]
2

1′(Σ̂M + Σ̂ε)−11
; (5.39)

also see Ankenman et al. (2010, Eq. 25).
The output of a stochastic simulation may be a quantile instead of an

average (Eq. (5.37) does use averages). For example, a quantile may be rel-
evant in chance-constrained optimization; also see Eq. (6.35) and Sect. 6.4
on robust optimization. Chen and Kim (2013) adapts SK for the latter type
of simulation output; also see Bekki et al. (2014), Quadrianto et al. (2009),
and Tan (2015).
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Note: Salemi et al. (2014) assumes that the simulation inputs are integer
variables, and uses a Gaussian Markov random field. Chen et al. (2013)
allows some inputs to be qualitative, extending the approach for deter-
ministic simulation in Zhou et al. (2011). Estimation of the whole density
function of the output is discussed in Moutoussamy et al. (2014).
There is not much software for SK. The Matlab software available on

the following web site is distributed “without warranties of any kind”:
http://www.stochastickriging.net/.

The R package “DiceKriging” accounts for heterogeneous intrinsic noise;
see Roustant et al. (2012). The R package “mlegp” is available on
http://cran.r-project.org/web/packages/mlegp/mlegp.pdf.

Software in C called PErK may also account for a nugget effect; see Santner
et al. (2003, pp. 215–249).
In Sect. 5.3 we have already seen that ignoring the randomness of the

estimated Kriging parameters ψ̂ tends to underestimate the true variance
of the Kriging predictor. To solve this problem in case of deterministic
simulation, we may use parametric bootstrapping or its refinement called
conditional simulation. (Moreover, the three variants—plugging-in ψ̂, boot-
strapping, or conditional simulation—may give predictor variances that
reach their maxima for different new input combinations; these maxima
are crucial in simulation optimization through “efficient global optimiza-
tion”, as we shall see in Sect. 6.3.1). In stochastic simulation, we obtain
several replications for each old input combination—see Eq. (5.37)—so a
simple method for estimating the true predictor variance uses distribution-
free bootstrapping. We have already discussed the general principles of boot-
strapping in Sect. 3.3.5. Van Beers and Kleijnen (2008) applies distribution-
free bootstrapping assuming no CRN, as we shall see in the next subsection
(Sect. 5.6.2). Furthermore. Yin et al. (2009) also studies the effects that the
estimation of the Kriging parameters has on the predictor variance.
Note: Mehdad and Kleijnen (2015b) applies stochastic intrinsic Kriging

(SIK), which is more complicated than SK. Experiments with stochastic
simulations suggest that SIK outperforms SK.
To estimate the true variance of the SK predictor, Kleijnen and Mehdad

(2015a) applies the Monte Carlo method, distribution-free bootstrapping,
and parametric bootstrapping, respectively—using an M/M/1 simulation
model for illustration.

5.6.2 Designs for SK

Usually SK employs the same designs as OK and UK do for deterministic
simulation. So, SK often uses a one-shot design such as a LHD ; also see
Jones et al. (2015) and MacCalman et al. (2013).
However, besides the n × k matrix with the n design points xi ∈ R

k

(i = 1, . . ., n) we need to select the number of replications mi. In Sect. 3.4.5
we have already discussed the analogous problem for linear regression meta-

http://www.stochastickriging.net/
http://cran.r-project.org/web/packages/mlegp/mlegp.pdf
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FIGURE 5.8. A LHD and a sequentialized design for the M/M/1 simulation
with traffic rate 0 < x < 1 and n = 10 points

models; a simple rule-of-thumb is to select mi such that with 1− α proba-
bility the average output is within γ% of the true mean; see Eq. (3.30).
Note: For SK with heterogeneous intrinsic variances but without CRN

(so Σε is diagonal), Boukouvalas et al. (2014) examines optimal designs
(which we also discussed for linear regression metamodels in Sect. 2.10.1).
That article shows that designs that optimize the determinant of the so-
called Fisher information matrix (FIM) outperform space-filling designs
(such as LHDs), with or without replications. This FIM criterion minimizes
the estimation errors of the GP covariance parameters (not the parameters
β of the regression function f(x)′β). That article recommends designs with
at least two replications at each point; the optimal number of replications is
determined through an optimization search algorithm. Furthermore, that
article proposes the logarithmic transformation of the intrinsic variance
when estimating a metamodel for this variance (we also discussed such a
transformation in Sect. 3.4.3). Optimal designs for SK with homogeneous
intrinsic variances (or a nugget effect) are also examined in Harari and
Steinberg (2014a), and Spöck and Pilz (2015).
There are more complicated approaches. In sequential designs, we may

use Algorithm 5.5 for deterministic simulation, but we change Step 3—
which finds the candidate point with the highest predictor variance—such
that we find this point through distribution-free bootstrapping based on
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replication, as we shall explain below. Figure 5.8 is reproduced from Van
Beers and Kleijnen (2008); it displays a fixed LHS design with n = 10
values for the traffic rate x in an M/M/1 simulation with experimental area
0.1 ≤ x ≤ 0.9, and a sequentialized design that is stopped after simulating
the same number of observations (namely, n = 10). The plot shows that
the sequentialized design selects more input values in the part of the input
range that gives a drastically increasing (highly nonlinear) I/O function;
namely 0.8 < x ≤ 0.9. It turns out that this design gives better Kriging
predictions than the fixed LHS design does—especially for small designs,
which are used in expensive simulations.
The M/M/1 simulation in Fig. 5.8 selects a run-length that gives a 95%

CI for the mean simulation output with a relative error of no more than
15%. The sample size for the distribution-free bootstrap method is selected
to be B = 50.
To estimate the predictor variance, Van Beers and Kleijnen (2008) uses

distribution-free bootstrapping and treats the observed average bootstrapped
outputs w∗

i (i = 1, . . ., n) as if they were the true mean outputs; i.e., the
Kriging metamodel is an exact interpolator of w∗

i (obviously, this approach
ignores the split into intrinsic and extrinsic noise that SK assumes).
Note: Besides the M/M/1 simulation, Van Beers and Kleijnen (2008) also

investigates an (s, S) inventory simulation. Again, the sequentialized design
for this (s, S) inventory simulation gives better predictions than a fixed-size
(one-shot) LHS design; the sequentialized design concentrates its points in
the steeper part of the response surface. Chen and Li (2014) also determines
the number of replications through a relative precision requirement, but
assumes linear interpolation instead of Kriging; that article also provides a
comparison with the approach in Van Beers and Kleijnen (2008).
Note: Ankenman et al. (2010) does use the SK model in Eq. (5.36), and

tries to find the design that allocates a fixed computer budget such that
“new points” (input combinations not yet simulated) may be selected or
additional replications for old points may be obtained. Chen and Zhou
(2014) uses this approach, applying a variety of design criteria based on
the MSE. Plumlee and Tuo (2014) also examines the number of replications
in SK. Hernandez and Grover (2010) discusses sequential designs for Krig-
ing metamodels of random simulation models; namely, models of so-called
nanoparticles. Furthermore, Forrester (2013) recommends re-estimation of
the Kriging hyperparameters ψ, as the sequential design provides new I/O
data. Kamiński (2015) gives various methods that avoid re-estimation of
ψ in case of SK and sequential designs. Mehdad and Kleijnen (2015b)
discusses sequential designs for stochastic intrinsic Kriging (SIK). More
research on this issue is needed.
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FIGURE 5.9. OK versus monotonic bootstrapped Kriging with accep-
tance/rejection, and the true I/O function for M/M/1 with n = 5 old
input values and m = 5 replications

5.7 Monotonic Kriging: Bootstrapping
and Acceptance/Rejection

In practice we sometimes know (or assume we know) that the I/O function
implicitly specified by the simulation model is monotonic; e.g., if the traffic
rate increases, then the mean waiting time increases. More examples are
given in our chapter on screening (Chap. 4). We define a monotonic function
as follows (as we also did in Definition 4.1):

Definition 5.1 The function w = f(x) is called monotonically increasing
if w(x = x1) ≤ w(x = x2) if x1 ≤ x2.

The Kriging metamodel, however, may show a “wiggling” (erratic) I/O
function, if the sample size is small; see the wiggly curve in Fig. 5.9. To make
the Kriging predictor ŷ(xj) (j = 1, . . ., k) a monotonic function of the in-
put xj , we propose bootstrapping with acceptance/rejection; i.e., we reject
the Kriging metamodel fitted in bootstrap sample b—with b = 1, . . ., B
and bootstrap sample size B—if this metamodel is not monotonic. In this
section we summarize how Kleijnen and Van Beers (2013) uses distribution-
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free bootstrapping assuming stochastic simulation with replications for each
input combination; at the end of this section, we shall briefly discuss para-
metric bootstrapping for deterministic simulation. (The general principles
of distribution-free bootstrapping and parametric bootstrapping were dis-
cussed in Sect. 3.3.5.)
Note: Instead of bootstrapping, Da Veiga and Marrel (2012) solves the

monotonicity problem and related problems analytically. However, their so-
lution suffers from the curse of dimensionality; i.e., its scalability is
questionable.
Kleijnen and Van Beers (2013) uses the popular DACE Matlab Krig-

ing software, which is meant for deterministic simulation so it gives an
exact interpolator. Bootstrapped Kriging, however, is not an exact inter-
polator for the original observations; i.e., its predictor ŷ∗(xi) for the n old
input combinations xi (i = 1, . . ., n) does not necessarily equal the n corre-
sponding original average simulated outputs wi =

∑mi

r=1wi;r/mi where mi

(� 2) denotes the number of replications for input combination i. Ac-
tually, bootstrapped Kriging using DACE is an exact interpolator of the
bootstrapped averages w∗

i =
∑mi

r=1 w
∗
i;r/mi, but not of wi. A CI is given

by the well-known percentile method, now applied to the (say) Ba (≤ B)
accepted bootstrapped Kriging predictors ŷ∗ba(x) (ba = 1, . . ., Ba).
More precisely, a monotonic predictor implies that the estimated gra-

dients of the predictor remains positive as the inputs increase; we focus
on monotonically increasing functions, because monotonically decreasing
functions are a strictly analogous problem. An advantage of monotonic
metamodeling is that the resulting sensitivity analysis is understood and
accepted by the clients of the simulation analysts so these clients have more
confidence in the simulation as a decision support tool. Furthermore, we
shall see that monotonic Kriging gives smaller MSE and a CI with higher
coverage and acceptable length. Finally, we conjecture that estimated gra-
dients with correct signs will improve simulation optimization, discussed in
the next chapter.
Technically speaking, we assume that no CRN are used so the number of

replications may vary with the input combination (mi 	= m). Furthermore,
we assume a Gaussian correlation function. We let xi < xi′ (i, i

′ = 1, . . ., n;
i 	= i′) mean that at least one component of xi is smaller than the corre-
sponding component of xi′ and none of the remaining components is bigger.
For example, the M/M/1 queueing simulation with the traffic rate x as the
single input (so k = 1) implies that xi < xi′ becomes xi < xi′ , whereas
the (s, S) inventory simulation with the k = 2 inputs s and S implies that
xi < xi′ may mean si < si′ and Si≤Si′ . The DACE software gives the esti-
mated gradients ∇ŷ(x), besides the prediction ŷ(x). We use a test set with
v “new” points (in the preceding sections we denoted a single new point by
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x0). We let �x� denote the integer resulting from rounding x upwards, �x�
the integer resulting from rounding x downwards; the subscript () denotes
the order statistics.
We propose the following algorithm (which adapts step 1 of Algorithm 5.2,

and deviates only in its details but not in its overall goal from the algorithm
in Kleijnen and Van Beers 2013); we assume that a 90% CI is desired.

Algorithm 5.6

1. Resample the mi original outputs wi;r (i = 1, . . ., n; r = 1, . . .,mi)
with replacement, to obtain the bootstrapped output vectors w∗

i;b =
(w∗

i;r;b, . . . , w
∗
i;r;b)

′ (b = 1, . . ., B), which give (X,w∗
b ) where X de-

notes the n× k matrix with the original n old combinations of the k
simulation inputs and w∗

b denotes the n-dimensional vector with the

bootstrap averages w∗
i;b =

mi∑
r=1

w∗
i;r;b/mi.

2. Use DACE to compute ψ̂
∗
b , the MLEs of the Kriging parameters ψ

computed from the bootstrapped I/O data (X,w∗
b) of step 1.

3. Apply DACE using (X,w∗
b) of step 1 and ψ̂

∗
b of step 2 to compute

the Kriging predictor ŷ∗b that interpolates so ŷ∗b (xi) = w∗
i;b.

4. Accept the Kriging predictor ŷ∗b of step 3 only if ŷ∗b is monotonically
increasing; i.e., all k components of the n gradients are positive:

∇ŷ∗i;b′ > 0 (i = 1, . . . , n) (5.40)

where 0 denotes an n-dimensional vector with all elements equal to
zero.

5. Use the Ba accepted bootstrapped Kriging metamodels resulting from
step 4 to compute Ba predictions for v new points xu (u = 1, . . ., v)
with the point estimate equal to the sample median ŷ∗u;(�0.50Ba�) and
the two-sided 90% CI equal to [ŷ∗u;(	0.05Ba
), ŷ

∗
u;(�0.95Ba�)].

If we find that step 5 gives a CI interval that is too wide, then we add
more bootstrap samples so B increases and Ba probably increases too.
For example, the M/M/1 simulation starts with B = 100 and augments
B with 100 until either Ba ≥ 100 or—to avoid excessive computational
time—B = 1,000. This M/M/1 example has two performance measures;
namely, the mean and the 90% quantile of the steady-state waiting time
distribution. Furthermore, the example illustrates both “short” and “long”
simulation runs. Finally, n = 5 and mi = 5 with 0.1 ≤ x ≤ 0.9 and
v = 25 new points; also see Fig. 5.9. This plot shows wiggling OK (so
dŷ/dx is negative for at least one x-value in the area of interest), whereas
the bootstrap with acceptance/rejection gives monotonic predictions. This
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plot also shows—for each of the n = 5 input values—the m = 5 replicated
simulation outputs (see dots) and their averages (see stars). Furthermore,
the plot shows the analytical (dotted) I/O curve. Low traffic rates give such
small variability of the individual simulation outputs that this variability is
hardly visible; nevertheless, the bootstrap finds a monotonic Kriging model.
To quantify the performance of the preceding algorithm, we may use the

integrated mean squared error (IMSE) defined in Sect. 2.10.1. To estimate
the IMSE, we select v test points. If we let ζu (u = 1, . . ., v) denote the true
output at test point u, then the estimated integrated mean squared error
(EIMSE) MSE averaged over these v test points is the estimated integrated
MSE (EIMSE) is

EIMSE =

∑v
u=1(ŷ

∗
u;(�0.50B′�) − ζu)

2

v
.

Note: We point out that a disadvantage of the IMSE criterion is that a
high MSE at some point xu can be “camouflaged” by a low MSE at some
other point xu′ (u 	= u′).
Furthermore, OK uses the CI defined in Eq. (5.21). This CI is symmet-

ric around its point estimate ŷ and may include negative values—even if
negative values are impossible, as is the case for waiting times—whether it
be the mean or the 90% quantile.
A number of macroreplications (namely, 100) enable the estimation of

the variance of the EIMSE estimate and the CI’s coverage and width. These
macroreplications show that this algorithm gives a smaller EIMSE than OK
does, but this EIMSE is not significantly smaller. Of course, the EIMSE for
the 90% quantile is higher than the EIMSE for the mean. This algorithm
also gives significantly higher estimated coverages, without widening the
CI. Increasing n (number of old points) from 5 to 10 gives coverages close
to the nominal 90%—without significantly longer CIs—whereas OK still
gives coverages far below the desired nominal value.
Besides using bootstrapped Kriging with acceptance/rejection to pre-

serve monotonicity, we may also preserve other characteristics of the sim-
ulation I/O function; e.g., the Kriging predictions should not be negative
for waiting times, variances, and thickness. Deutsch (1996) also investi-
gates negative predictions in OK arising when some weights λi are negative
(see again Sect. 5.2); also see
http://www.gslib.com/.
Furthermore, we may apply bootstrapping with acceptance/rejection to

other metamodeling methods besides Kriging; e.g., linear regression (which
we detailed in Chaps. 2 and 3).
If the simulation model is deterministic, then there are no replications so

we may replace distribution-free bootstrapping by parametric bootstrap-
ping assuming a multivariate Gaussian distribution as implied by a GP;
also see Sect. 5.3.

http://www.gslib.com/
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Kleijnen et al. (2012) applies distribution-free bootstrapping with ac-
ceptance/rejection to find Kriging metamodels that preserve the assumed
convexity of the simulation I/O function. Checking this convexity requires
extending the DACE software to compute Hessians. Unfortunately, it turns
out that this method does not give truly convex Kriging prediction func-
tions. On hindsight, we may argue that in practice we do not really know
whether the I/O function of the simulation model is convex; e.g., is the
cost function of a realistic inventory-simulation model convex? We might
assume that the simulation model has a unique optimal solution; convexity
implies that the global and the local optima coincide. Da Veiga and Marrel
(2012, p. 5) states: “Sometimes, the practitioner further knows that f (the
I/O function) is convex at some locations, due to physical insight”. Jian
et al. (2014) develops a Bayesian approach for estimating whether a noisy
function is convex.

5.8 Global Sensitivity Analysis: Sobol’s
FANOVA

So far we focused on the predictor ŷ(x), but now we discuss sensitivity
analysis (SA) measuring how sensitive the simulation output w is to the
individual inputs x1 through xk and their interactions. Such an analy-
sis may help us to understand the underlying simulation model; i.e., SA
may help us to find the important simulation inputs. In the three previous
chapters we used polynomials of first order or second order to approximate
the simulation I/O function w = fsim(x), so the regression parameters β
quantify the first-order and second-order effects of the inputs. OK gives a
more complicated approximation; namely, Eq. (5.1) including the extrinsic
noise term M(x) which makes y a nonlinear function of x. To quantify
the importance of the inputs of the simulation model—possibly approxi-
mated through a metamodel—we now apply so-called functional analysis of
variance (FANOVA). This analysis uses variance-based indexes that were
originally proposed by the Russian mathematician Sobol; see Sobol (1990)
and the references in Archer et al. (1997).
FANOVA decomposes the variance of the simulation output w into frac-

tions that refer to the individual inputs or to sets of inputs; e.g., FANOVA
may show that 70% of the output variance is caused by the variance in
x1, 20% by the variance in x2, and 10% by the interaction between x1

and x2. As we have already seen in Sect. 5.5.1, we assume that the in-
put x has a prespecified (joint) distribution (which may the product of
k marginal distributions). Below Eq. (5.13) we stated that θj denotes the
importance of xj . However, the importance of xj is much better quantified
through FANOVA, which also measures interactions—as we shall see in this
section.
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It can be proven that the following variance decomposition—into a sum
of 2k−1 components—holds:

σ2
w =

k∑

j=1

σ2
j +

k∑

j<j′
σ2
j;j′ + . . .+ σ2

1;...;k (5.41)

with the main-effect (first order) variance

σ2
j = Var[E(w|xj)] (5.42)

and the two-factor interaction variance

σ2
j;j′ = Var[E(w|xj , xj′ )]

and so on, ending with the k-factor interaction variance

σ2
1;...;k = Var[E(w|x1, . . . , xk)]. (5.43)

In Eq. (5.42) E(w|xj) denotes the mean of w if xj is kept fixed while all

k − 1 remaining inputs x−j = (. . . , xj−1, xj+1,. . .)
′
do vary. If xj has a

“large” main effect, then E(w|xj) changes much as xj changes. Further-
more, Eq. (5.42) shows Var[E(w|xj), which is the variance of E(w|xj) if xj

varies; so if xj has a large main effect, then Var[E(w|xj) is high if xj varies.
We point out that in Eq. (5.43) Var[E(w|x1, . . . , xk)] denotes the variance
of the mean of w if all k inputs are fixed; consequently, this variance is zero
in deterministic simulation, and equals the intrinsic noise in stochastic sim-
ulation (the intrinsic noise in stochastic simulation may vary with x, as we
saw in Sect. 5.6).
The measure σ2

j defined in Eq. (5.42) leads to the following variance-
based measure of importance, which the FANOVA literature calls the first-
order sensitivity index or the main effect index and which we denote by γ
(we use Greek letters for parameters, throughout this book):

γj =
σ2
j

σ2
w

.

So, γj quantifies the effect of varying xj alone—averaged over the variations
in all the other k−1 inputs; σ2

w in the denominator standardizes γj to pro-
vide a fractional contribution (in linear regression analysis we standardize
the inputs xj so that βj measures the relative main effect; see Sect. 2.3.1).
The interaction indices σ2

j;j′ through σ2
1;...;k are also divided by σ2

w. The
result of this standardization is the following equation:

k∑

j=1

γj +

k−1∑

j=1

k∑

j′=j+1

γj;j′ + . . .+ γ1;...;k = 1. (5.44)
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As k increases, the number of measures in Eqs. (5.41) or (5.44) increases
dramatically; actually, this number is 2k − 1 (as we know from classic
ANOVA). The estimation of all these measures may require too much com-
puter time, as we shall see below. Moreover, such a large number of mea-
sures may be hard to interpret; also see Miller (1956). So—as we did in
the immediately preceding three chapters—we might assume that only the
first-order measures γj—and possibly the second-order measures γj;j′—are
important, and verify whether they sum up to a fraction “close enough”
to 1 in Eq. (5.44); i.e., do they contribute the major part of the total vari-
ance σ2

w?
Alternatively, we might compute the total-effect index or total-order in-

dex (say) γj;−j , which measures the contribution to σ2
w due to xj including

all variance caused by all the interactions between xj and any other input
variables x−j :

γj;−j =
E[Var(w|x−j)]

σ2
w

= 1− Var[E(w|x−j)]

σ2
w

.

It can be proven that
∑k

j=1γj;−j ≥ 1—unless there are only first-order
effects—because the interaction effect between (say) xj and xj′ is counted
in both γj;−j and γj′;−j′ .
The estimation of the various sensitivity measures uses Monte Carlo

methods. We may improve the accuracy of the estimators, replacing the
“crude” Monte Carlo method by quasi-Monte Carlo methods, such as LHS
and Sobol sequences (which we discussed in Sect. 5.5). To save computer
time, we may replace the simulation model by a metamodel such as an OK
model (with a specific correlation function; e.g., the Gaussian function).
Note: Details are given in Saltelli et al. (2008, pp. 164–67); also see Fang

et al. (2006, pp. 31–33, 193–202), Helton et al. (2006b), Le Gratiet and
Cannamela (2015), and Saltelli et al. (2010). The method in Le Gratiet
and Cannamela (2015) is available in the package “sensitivity” (linked to
the R package DiceKriging).
Note: FANOVA is the topic of much current research; see Anderson et al.

(2014), Borgonovo and Plischke (2015), Farah and Kottas (2014), Gins-
bourger et al. (2015), Henkel et al. (2012), Jeon et al. (2015), Lamboni
et al. (2013), Marrel et al. (2012), Muehlenstaedt et al. (2012), Owen
et al. (2013), Quaglietta (2013), Razavi and Gupta (2015), Shahraki and
Noorossana (2014), Storlie et al. (2009), Tan (2014a), Tan (2014b), Tan
(2015), Wei et al. (2015), and Zuniga et al. (2013).

5.9 Risk Analysis

In the preceding section on global sensitivity analysis through FANOVA
we assumed that the input x ∈ R

k has a given (joint) distribution. This
assumption implies that even a deterministic simulation model gives a ran-
dom output w; by definition, a stochastic simulation model always gives a
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random output. In risk analysis (RA) or uncertainty analysis (UA) we may
wish to estimate P (w > c), which denotes the probability of the output
w exceeding a given threshold value c. RA is applied in nuclear engineer-
ing, finance, water management, etc. A probability such as P (w > c) may
be very small—so w > c is called a rare event—but may have disastrous
consequences (we may then apply “importance sampling”; see Kleijnen
et al. 2013). In Sect. 1.1 we have already discussed the simple Example 1.1
with the net present value (NPV) as output and the discount factor or
the cash flows as uncertain inputs, so the input values are sampled from
given distribution functions; spreadsheets are popular software for such
NPV computations.
Note: Borgonovo and Plischke (2015) applies FANOVA to inventory man-

agement models—such as the economic order quantity (EOQ) model—
with uncertain inputs. We also refer to the publications that we gave in
Sect. 1.1; namely, Evans and Olson (1998) and Vose (2000). Another type
of deterministic simulation is used in project planning through the critical
path method (CPM) and program evaluation and review technique (PERT),
which in RA allows for uncertain durations of the project components so
these durations are sampled from beta distributions; see Lloyd-Smith et al.
(2004). More examples of RA are given in Kleijnen (2008, p. 125); also see
Helton et al. (2014).
The uncertainty about the exact values of the input values is called

subjective or epistemic, whereas the “intrinsic” uncertainty in stochastic
simulation (see Sect. 5.6) is called objective or aleatory; see Helton et al.
(2006a). There are several methods for obtaining subjective distributions
for the input x based on expert opinion.
Note: Epistemic and aleatory uncertainties are also discussed in Bar-

ton et al. (2014), Batarseh and Wang (2008), Callahan (1996), De Roc-
quigny et al. (2008), Helton et al. (2010), Helton and Pilch (2011), and Xie
et al. (2014).
We emphasize that the goals of RA and SA do differ. SA tries to answer

the question “Which are the most important inputs in the simulation model
of a given real system?”, whereas RA tries to answer the question “What is
the probability of a given (disastrous) event happening?”. We have already
seen designs for SA that uses low-order polynomials (which are a type of
linear regression metamodels) in the immediately preceding three chapters;
designs for RA are samples from the given distribution of the input x
through Monte Carlo or quasi-Monte Carlo methods, as we discussed in
the preceding section on FANOVA (Sect. 5.8). SA identifies those inputs
for which the distribution in RA needs further refinement.
Note: Similarities and dissimilarities between RA and SA are further dis-

cussed in Kleijnen (1983, 1994, 1997), Martin and Simpson (2006), Norton
(2015), Oakley and O’Hagan (2004), and Song et al. (2014).
We propose the following algorithm for RA with the goal of estimating

P (w > c).
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Algorithm 5.7

1. Use a Monte Carlo method to sample input combination x from its
given distribution.
Comment: If the inputs are independent, then this distribution is
simply the product of the marginal distributions.

2. Use x of step 1 as input into the given simulation model.
Comment: This simulation model may be either deterministic or
stochastic.

3. Run the simulation model of step 2 to transform the input x of step
2 into the output w.
Comment: This run is called “propagation of uncertainty”.

4. Repeat steps 1 through 3 n times to obtain the estimated distribution
function (EDF) of the output w.

5. Use the EDF of step 4 to estimate the required probability P (w > c).

Exercise 5.7 Perform a RA of an M/M/1 simulation, as follows. Suppose
that you have available m IID observations on the interarrival time, and
on the service time, respectively, denoted by ai and si (i = 1, . . .,m). Actu-
ally, you sample these values from exponential distributions with parameter
λ = ρ and μ = 1 where ρ is the traffic rate that you select. Resample
with replacement (i.e., use distribution-free bootstrapping) to obtain m in-
terarrival times and m service times, which you use to estimate the arrival
and service rates λ and μ. Use this pair of estimated rates as input to
your M/M/1 simulation. In this simulation, you observe the output that
you are interested in (e.g., the estimated steady-state mean waiting time).
Perform M macroreplications, to estimate the aleatory uncertainty. Repeat
the bootstrapping, to find different values for the pair of estimated rates;
again simulate the M/M/1 system to estimate the epistemic uncertainty.
Compare the effects of both types of uncertainty.

Because (by definition) an expensive simulation model requires much
computer time per run, we may perform RA as follows: do not run n simu-
lation runs (see steps 3 and 4 in the preceding algorithm), but run its meta-
model n times. For example, Giunta et al. (2006) uses crude Monte Carlo,
LHS, and orthogonal arrays to sample from two types of metamodels—
namely, Kriging and multivariate adaptive regression splines (MARS)—and
finds that the true mean output can be better estimated through inexpen-
sive sampling of many values from the metamodel, which is estimated from
relatively few I/O values obtained from the expensive simulation model (be-
cause that publication estimates an expected value, it does not perform a
true RA). Another example is Martin and Simpson (2006), using a Kriging
metamodel to assess output uncertainty. Furthermore, Barton et al. (2014)
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uses bootstrapping and stochastic Kriging (SK) to obtain a CI for the mean
output of the real system. Another interesting article on RA is Lemâıtre
et al. (2014). The British research project called Managing uncertainty in
complex models (MUCM) also studies uncertainty in simulation models, in-
cluding uncertainty quantification, uncertainty propagation, risk analysis,
and sensitivity analysis; see
http://www.mucm.ac.uk.
Related to MUCM is the “Society for Industrial and Applied Math-

ematics (SIAM)”’s “Conference on Uncertainty Quantification (UQ16)”,
held in cooperation with the “American Statistical Association (ASA)” and
the “Gesellschaft für Angewandte Mathematik und Mechanik (GAMM)”’s
“Activity Group on Uncertainty Quantification (GAMM AG UQ)”, in Lau-
sanne (Switzerland), 5–8 April 2016; see
http://www.siam.org/meetings/uq16/.
We shall return to uncertainty in the input x in the next chapter, in

which we discuss robust optimization (which accounts for the uncertainty
in some of the inputs); see Sect. 6.4.
Chevalier et al. (2013) and Chevalier et al. (2014) use a Kriging meta-

model to estimate the excursion set defined as the set of inputs—of a de-
terministic simulation model—resulting in an output that exceeds a given
threshold, and quantifies uncertainties in this estimate; a sequential design
may reduce this uncertainty. Obviously, the volume of the excursion set is
closely related to the failure probability P (w > c) defined in the beginning
of this section. Kleijnen et al. (2011) uses a first-order polynomial meta-
model (instead of a Kriging metamodel) to estimate which combinations
of uncertain inputs form the frontier that separates acceptable and un-
acceptable outputs; both aleatory uncertainty—characteristic for random
simulation—and epistemic uncertainty are included.
Note: Stripling et al. (2011) creates a “manufactured universe” (namely,

a nuclear “particle-transport universe”) that generates data on which a sim-
ulation model may be built; next, this simulation model generates data to
which a metamodel is fitted. This metamodel produces predictions, which
may be compared to the true values in the manufactured universe. We may
compare this approach with the Monte Carlo experiment in Exercise 5.7, in
which the manufactured universe is an M/M/1 system and the metamodel
is a SK model; actually, we may use an M/G/1 system—where G stands
for general service time distribution (e.g., a lognormal distribution)—and
the simulator builds an M/M/1 simulation model with exponential arrival
and service parameters estimated from the data generated by the M/G/1
system, so model errors are made besides estimation errors.
RA is related to the Bayesian approach, as the latter approach also

assumes that the parameters of the simulation model are unknown and
assumes given “prior” distributions for these parameters. The Bayesian
paradigm selects these prior distributions in a more formal way (e.g., it se-
lects so-called conjugate priors), obtains simulation I/O data, and calibrates

http://www.mucm.ac.uk
http://www.siam.org/meetings/uq16/
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the metamodel’s parameters; i.e., it computes the posterior distribution (or
likelihood) using the well-known Bayes theorem. Bayesian model averaging
and Bayesian melding formally account—not only for the uncertainty of
the input parameters—but also for the uncertainty in the form of the (sim-
ulation) model itself. The Bayesian approach is very interesting, especially
from an academic point of view; practically speaking, however, classic fre-
quentist RA has been applied many more times. References to the Bayesian
approach are given in Kleijnen (2008, p. 126); also see “Bayesian model av-
eraging” in Wit et al. (2012) and the specific Bayesian approach in Xie
et al. (2014).
Note: We present a methodology that treats the simulation model as a

black box, so this methodology can be applied to any simulation model.
A disadvantage, however, is that this methodology cannot make use of
knowledge about the specific model under discussion; e.g., Bassamboo et al.
(2010) uses knowledge about specific call-center queueing models, when
examining epistemic and aleatory uncertainties.

5.10 Miscellaneous Issues in Kriging

Whereas we focussed on Kriging metamodels for the mean simulation out-
put in the preceding sections, Plumlee and Tuo (2014) examines Kriging
metamodels for a fixed quantile (e.g., the 90% quantile) of the random
simulation output. Jala et al. (2014) uses Kriging to estimate a quantile of
a deterministic simulation with random input (which results in uncertainty
propagation, as we saw in Sect. 5.9). In Sect. 5.6.1 we have already men-
tioned that Chen and Kim (2013) adapts SK for quantiles, and we have also
referred to Bekki et al. (2014), Quadrianto et al. (2009), and Tan (2015).
Another issue is multivariate Kriging, which may be applied in multi-

fidelity metamodeling; i.e., we use several simulation models of the same
real system, and each model has its own degree of detail representing the
real system. Obviously, the various simulation models give external noises
M(x) that are correlated. An example in finite element modeling (FEM) is
the use of different simulation models with different meshes (grids). How-
ever, we are not aware of much multi-fidelity modeling in discrete-event
simulation; however, Xu et al. (2015) does discuss multifidelity in such sim-
ulation.
Note: Multi-fidelity metamodeling is further discussed in Couckuyt et al.

(2014), Koziel et al. (2014), Le Gratiet and Cannamela (2015), Razavi et al.
(2012), Tuo et al. (2014), and Viana et al. (2014, Section III).
We may also combine the output of a simulation model with the output

of the real system, so-called field data. For such problems Goh et al. (2013)
uses a Bayesian approach.
In practice, a discrete-event simulation model usually produces multiple

responses, which have intrinsic noises ε(x) that are correlated because these
outputs are (different) functions of the same PRNs. For such a simulation
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model we might use a multivariate Kriging metamodel. However, Kleijnen
and Mehdad (2014) finds that we might as well apply univariate Kriging
to each type of simulation response separately. Notice that FANOVA for
multivariate Kriging is examined in Zhang (2007) and Zhang et al. (2007).
Li and Zhou (2015) considers multivariate GP metamodels for deterministic
simulation models with multiple output types.
We may combine Kriging metamodels, each with a different type of corre-

lation function (e.g., Gaussian and exponential) in an ensemble; see Harari
and Steinberg (2014b), Viana et al. (2014, Figure 5), and the other refer-
ences in Sect. 1.2.
We may partition the input domain x ∈ R

k into subdomains, and fit
a separate GP model within each subdomain; these subdomains may be
determined through classification and regression trees (CART); for CART
we also refer to Chap. 1. Gramacy and Lee (2008) speak of a treed Gaussian
process. An R package for treed GPs is available on
http://users.soe.ucsc.edu/~rbgramacy/tgp.html.
Another issue in Kriging is the validation of Kriging metamodels. In

deterministic simulation we may proceed analogously to our validation
of linear regression metamodels in deterministic simulation, discussed in
Sect. 3.6; i.e., we may compute the coefficients of determination R2 and
R2

adj, and apply cross-validation (as we also did in Fig. 5.6). We also refer
to the free R package DiceEval; see
http://cran.r-project.org/web/packages/DiceEval/index.html.
Scatterplots with (wi, ŷi)—not (wi, ŷ−i) as in cross-validation—are used

in many deterministic simulations; an example is the climate simulation in
Hankin (2005). The validation of Kriging metamodels is also discussed in
Bastos and O’Hagan (2009), following a Bayesian approach. An interesting
issue in cross-validation is the fast re-computation of the Kriging model
(analogous to the shortcut in Eq. (3.50) for linear regression that uses the
hat matrix); also see Hubert and Engelen (2007), discussing fast cross-
validation for principle component analysis (PCA).
For deterministic simulations Challenor (2013) and Iooss et al. (2010)

examine LHDs with an extra criterion based on the distances between the
points in the original and the validation designs (so no cross-validation is
applied).
A final issue in Kriging is the variant that Salemi et al. (2013) intro-

duces; namely, generalized integrated Brownian fields (GIBFs). Related to
these GIBFs are the intrinsic random functions that Mehdad and Klei-
jnen (2015b) introduces into Kriging metamodeling of deterministic and
stochastic simulation models, as we have already seen in Sect. 5.4.

5.11 Conclusions

In this chapter we started with an introduction of Kriging and its applica-
tion in various scientific disciplines. Next we detailed OK for deterministic

http://users.soe.ucsc.edu/~rbgramacy/tgp.html
http://cran.r-project.org/web/packages/DiceEval/index.html
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simulation. For the unbiased estimation of the variance of the OK predic-
tor with estimated Kriging parameters we discussed parametric bootstrap-
ping and conditional simulation. Next we discussed UK for deterministic
simulation. Then we surveyed designs for Kriging metamodels, focusing
on one-shot standardized LHS and sequentialized, customized designs. We
continued with SK for random simulation. To preserve the monotonicity
of the I/O function, we proposed bootstrapping with acceptance/rejection.
Next we discussed FANOVA using Sobol’s sensitivity indexes. Furthermore
we discussed RA. Finally, we discussed several remaining issues. Through-
out this chapter we also mentioned issues requiring further research.

Solutions of Exercises

Solution 5.1 E(y|w1>μ,w2 = μ, . . . , wn=μ) > μ because σ(x
′
0)Σ

−1>0′.

Solution 5.2 In general ΣΣ−1 = I. If x0 = xi, then σ(x0) is a vector of
Σ. So σ(x0)

′Σ−1 equals a vector with n − 1 zeroes and one element with
the value one. So σ(x0)

′Σ−1(w−μ1) reduces to wi − μ. Finally, ŷ(x0|w)
becomes μ+ (wi − μ) = wi.

Solution 5.3 If x0 = x1, then λ1 = 1 and λ2 = . . . = λn = 0 (because
ŷ(x0) is an exact interpolator), so Var[ŷ(x0)] = 2cov(y1, y1)− [cov(y1, y1)+
cov(y1, y1)] = 0.

Solution 5.4 When h = 0, then ρ = 1/ exp(0) = 1/1 = 1. When h = ∞,
then ρ = 1/ exp(∞) = 1/∞ = 0.

Solution 5.5 When input j has no effect on the output, then θj = ∞ in
Eq. (5.13) so the correlation function drops to zero.

Solution 5.6 As n (number of old points) increases, the new point has
neighbors that are closer and have outputs that are more correlated with
the output of the new point. So the length of the CI decreases.

Solution 5.7 The results depend on your choice of the parameters of this
Monte Carlo experiment; e.g., the parameter m.
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6
Simulation Optimization

This chapter is organized as follows. Section 6.1 introduces the optimization
of real systems that are modeled through either deterministic or random
simulation; this optimization we call simulation optimization or briefly op-
timization. There are many methods for this optimization, but we focus on
methods that use specific metamodels of the underlying simulation models;
these metamodels were detailed in the preceding chapters, and use either
linear regression or Kriging. Section 6.2 discusses the use of linear regres-
sion metamodels for optimization. Section 6.2.1 summarizes basic response
surface methodology (RSM), which uses linear regression; RSM was devel-
oped for experiments with real systems. Section 6.2.2 adapts this RSM to
the needs of random simulation. Section 6.2.3 presents the adapted steepest
descent (ASD) search direction. Section 6.2.4 summarizes generalized RSM
(GRSM) for simulation with multiple responses. Section 6.2.5 summarizes
a procedure for testing whether an estimated optimum is truly optimal—
using the Karush-Kuhn-Tucker (KKT) conditions. Section 6.3 discusses
the use of Kriging metamodels for optimization. Section 6.3.1 presents effi-
cient global optimization (EGO), which uses Kriging. Section 6.3.2 presents
Kriging and integer mathematical programming (KrIMP) for the solution
of problems with constrained outputs. Section 6.4 discusses robust op-
timization (RO), which accounts for uncertainties in some inputs. Sec-
tion 6.4.1 discusses RO using RSM, Sect. 6.4.2 discusses RO using Kriging,
and Sect. 6.4.3 summarizes the Ben-Tal et al. approach to RO. Section 6.5
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summarizes the major conclusions of this chapter, and suggests topics for
future research. The chapter ends with Solutions of exercises, and a long
list of references.

6.1 Introduction

In practice, the optimization of engineered systems (man-made artifacts)
is important, as is emphasized by Oden (2006)’s “National Science Foun-
dation (NSF) Blue Ribbon Panel” report on simulation-based engineering.
That report also emphasizes the crucial role of uncertainty in the input data
for simulation models; we find that this uncertainty implies that robust
optimization is important.
In academic research, the importance of optimization is demonstrated by

the many sessions on this topic at the yearlyWinter Simulation Conferences
on discrete-event simulation; see
http://www.wintersim.org/.
The simplest type of optimization problems has no constraints for the

input or the output, has no uncertain inputs, and concerns the expected
value of a single (univariate) output; see the many test functions in Regis
(2014). Obviously, in deterministic simulation the expected value is iden-
tical to the observed output of the simulation model for a given input
combination. In random simulation, the expected value may also represent
the probability of a binary variable having the value one, so P (w = 1) = p
and P (w = 0) = 1 − p so E(w) = p. The expected value, however, ex-
cludes quantiles (e.g., the median and the 95% quantile or percentile) and
the mode of the output distribution. Furthermore, the simplest type of op-
timization assumes that the inputs are continuous (not discrete or nominal;
see the various scales discussed in Sect. 1.3). The assumption of continuous
inputs implies that there is an infinite number of systems, so we cannot
apply so-called ranking and selection (R&S) and multiple comparison pro-
cedures (there are many publications on these procedures; see the next
paragraph). We also refer to
http://simopt.org/index.php,

which is a testbed of optimization problems in discrete-event simulation.
There are so many optimization methods that we do not try to summa-
rize these methods. Neither do we refer to references that do summarize
these methods—except for some very recent comprehensive references on
simulation optimization that we list in the following note.
Note: Ajdari and Mahlooji (2014), Alrabghi and Tiwari (2015),

Chau et al. (2014), Dellino and Meloni (2015), Figueira and
Almada-Lobo (2014), Fu et al. (2014), Gosavi (2015), Homem-de-Mello
and Bayraksan (2014), Hong et al. (2015), Jalali and Van Nieuwenhuyse
(2015), Lee et al. (2013), Lee and Nelson (2014), Qu et al. (2015), Pasupa-
thy and Ghosh (2014), Tenne and Goh (2010), Van der Herten et al. (2015)
with its 800 pages, Xu et al. (2015) and Zhou et al. (2014).

http://www.wintersim.org/
http://simopt.org/index.php
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In this chapter we focus on optimization that uses metamodels (approx-
imations, emulators, surrogates); metamodels were introduced in Sect. 1.2.
Moreover, we focus on metamodels that use either linear regression or Krig-
ing; these two types of metamodels are detailed in the preceding four chap-
ters. Jalali and Van Nieuwenhuyse (2015) claims that metamodel-based
optimization is “relatively common” and that RSM is the most popular
metamodel-based method, while Kriging is popular in theoretical publica-
tions. Like we did in the preceding chapters, we consider both deterministic
and random simulation models in the present chapter. We define random
simulation (including discrete event simulation) as simulation that uses
pseudorandom numbers (PRN).
Note: Outside the discrete-event simulation area, some authors speak of

RSM but they mean what we call the what-if regression-metamodeling ap-
proach, not the sequential (iterative) optimization approach. Other authors
speak of RSM, but use global Kriging instead of local low-order polynomi-
als. Many authors use the term “response surface” instead of “metamodel”;
an example is Rikards and Auzins (2002).
Like in the preceding chapters, we focus on expensive simulation, in which

it takes relatively much computer time for a single simulation run (such a
run is a single realization of the time path of the simulated system). For ex-
ample, 36 to 160h of computer time were needed to simulate a crash model
at Ford Motor Company; see the panel discussion reported in Simpson
et al. (2004). This panel also reports the example of a (so-called “cooling”)
problem with 12 inputs, 10 constraints, and 1 objective function. For such
expensive simulations, many simulation optimization methods are unprac-
tical. An example is the popular software called OptQuest (which combines
so-called tabu search, neural networks, and scatter search; it is an add-on to
discrete-event simulation software such as Arena, CrystallBall, MicroSaint,
ProModel, and Simul8); see
http://www.opttek.com/OptQuest.

OptQuest requires relatively many simulation replications and input com-
binations; see the inventory example in Kleijnen and Wan (2007). For-
tunately, the mathematical and statistical computations required by op-
timization based on RSM or Kriging are negligible—compared with the
computer time required by the “expensive” simulation runs.
In many OR applications, a single simulation run is computationally

inexpensive, but there are extremely many input combinations; e.g., an
M/M/1 model may have one input—namely, the traffic rate—that is con-
tinuous, so we can distinguish infinitely many input values but we can
simulate only a fraction of these values in finite time. Actually, most sim-
ulation models have multiple inputs (say) k, so there is the “curse of di-
mensionality”; e.g., if we have k = 7 inputs (also see Miller 1956) and we
experiment with only 10 values per input, then we still have 107 (10 mil-
lion) combinations. Moreover, a single run may be expensive if we wish to
estimate the steady-state performance of a queueing system with a high

http://www.opttek.com/OptQuest
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traffic rate; e.g. we might need to simulate one million customers. Finally,
if we wish to estimate the failure probability of a highly reliable system,
then we need to simulate extremely many customers—unless we apply im-
portance sampling.
Note: This chapter is based on Kleijnen (2014).

6.2 Linear Regression for Optimization

Linear regression models are used in RSM. We shall discuss RSM in several
subsections; namely Sect. 6.2.1 on basic RSM, Sect. 6.2.2 on RSM in ran-
dom simulation, Sect. 6.2.3 on adapted steepest descent (ASD), Sect. 6.2.4
on generalized RSM (GRSM) for multiple responses, and Sect. 6.2.5 on
testing the KKT conditions of an optimum estimated through GRSM. We
shall return to RSM in the section on robust optimization; see especially
Sect. 6.4.1.

6.2.1 Response Surface Methodology (RSM): Basics

Originally, RSM was developed for the optimization of real (physical)
systems.
Note: The classic article is Box and Wilson (1951). The origin of RSM is

nicely discussed in Box (1999), an overview of RSM publications during the
period 1966–1988 is Myers et al. (1989) and a recent overview is Khuri and
Mukhopadhyay (2010), a popular handbook is Myers et al. (2009), and
recent RSM software can be found on the Web; e.g., the Design-Expert
software and Minitab’s “Response Optimizer” are found on
www.statease.com

http://www.minitab.com/.
RSM in simulation was first detailed in the monograph Kleijnen (1975).

Unfortunately, RSM (unlike search heuristics such as OptQuest) has not
yet been implemented as an add-on to commercial off the shelf (COTS)
simulation software.
Note: One of the first case-studies on RSM in random simulation is

Van den Bogaard and Kleijnen (1977), reporting on a computer center
with two servers and three priority classes—with small, medium, and large
jobs—estimating the 90% quantiles of the waiting times per class for dif-
ferent class limits, and applying RSM to find the optimal class limits. RSM
in random simulation is also discussed in Alaeddini et al. (2013), Barton
and Meckesheimer (2006), Huerta and Elizondo (2014), Law (2015), and
Rosen et al. (2008). Google gave more than two million results for the term
“Response Surface Methodology”, on 4 February 2014.
RSM treats the real system or its simulation model—either a determinis-

tic or a random model—as a black box ; i.e., RSM observes the input/output

www.statease.com
http://www.minitab.com/
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(I/O) of the simulation model—but not the internal variables and specific
functions implied by the simulation’s computer modules. RSM is a sequen-
tial heuristic; i.e., it uses a sequence of local experiments that is meant
to lead to the optimum input combination. Note that an input combina-
tion is also called a point or a scenario. RSM uses design of experiments
(DOE) and the concomitant linear regression analysis. Though RSM is only
a heuristic, it has gained a good track record, as we shall see in the next
subsections.
Regarding this track record, we add that practitioners may not be in-

terested in convergence proofs, because realistic experiments may be so
expensive that large sample sizes are impossible; e.g., the computer budget
may be so limited that only a small sample is possible (see the literature
on optimal computer budget allocation or OCBA). Practitioners may be
more interested in finding better solutions than the current one. Actually,
we may claim that “the best is the enemy of the better” (this claim is
inspired by Voltaire’s expression “le mieux est l’ennemi du bien” or “per-
fect is the enemy of good”). Herbert Simon (1956) claims that humans
strive for a “satisficing” solution instead of the optimal solution. Samuel-
son (2010) also emphasizes that it may be impractical to search for the
very best. Furthermore, the website
http://simopt.org/index.php

states “We are particularly interested in increasing attention on the fi-
nite time performance of algorithms, rather than the asymptotic results
that one often finds in related literature”. Finally, we quote an anonymous
source: “Unfortunately, these theoretical convergence results mean little in
practice where it is more important to find high quality solutions within a
reasonable length of time than to guarantee convergence to the optimum
in an infinite number of steps.”
We assume that RSM is applied, only after the important inputs and

their experimental area have been identified; i.e., before RSM starts, we
may need to use screening to identify the really important inputs among
the many conceivably important inputs. Case studies illustrating screen-
ing followed by RSM are Morales-Enciso and Branke (2015) and Shi et al.
(2014). In Chap. 4 we detailed various screening methods, focusing on se-
quential bifurcation. Chang et al. (2014) combines RSM with screening in a
single method. We point out that RSM without a preceding screening phase
may imply the simulation of extremely many combinations of simulation
inputs, as we shall see in this section.
RSM starts with a sequence of local metamodels that are first-order poly-

nomials in the inputs. Once the optimum seems close, RSM augments the
latest first-order polynomial to a second-order polynomial. Basic RSM tries
to minimize the expected value of a single output, with continuous inputs
and without any constraints:

min E(w0|z) (6.1)

http://simopt.org/index.php
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where E(w0|z) is the goal or objective output (in Sect. 6.2.4 we shall discuss
multiple outputs wh with h = 0, 1, . . ., r), which is to be minimized through
the choice of the input combinations z = (z1, . . . , zk)

′ where zj (j = 1, . . . k)
denotes the jth “original” input; i.e., the inputs are not standardized such
that they lie between −1 and 1 (sometimes, the inputs are standardized
such they lie between 0 and 1). Obviously, if we wish to maximize (instead
of minimize) the output E(w0), then we simply add a minus sign in front of
the output in Eq. (6.1) before we minimize it. If the output is deterministic,
then E(w0) = w0.
Note: In random simulation, we may write E(w0|z) in Eq. (6.1) as

E(w0|z) =
∫ 1
0
· · · ∫ 1

0
fsim(z, r)dr

where fsim(z, r) denotes the computer simulation program, which is a math-
ematical function that maps the inputs z and the PRN vector r (with ele-
ments r that have a uniform marginal distribution on (0, 1)) to the random
simulation response (output) w0.
RSM has the following characteristics, which we shall detail below.

• RSM is an optimization heuristic that tries to estimate the input
combination that minimizes a given goal function; see again Eq. (6.1).
Because RSM is only a heuristic, it does not guarantee success.

• RSM is a stepwise (multi-stage) method; see the steps below.

• In each step, RSM fits a local first-order polynomial regression (meta)
model—except for the last step, in which RSM fits a second-order
polynomial.

• To fit (estimate, calibrate) these first-order polynomials, RSM uses
I/O data obtained through so-called resolution-III (R-III) designs ; for
the second-order polynomial, RSM uses a central composite design
(CCD); we have already detailed these R-III designs and CCDs in
Chap. 2.

• Each step—except the last one—selects the direction for changing the
inputs through the gradient implied by the first-order polynomial
fitted in that step. This gradient is used in the mathematical (not
statistical) technique of steepest descent—or steepest ascent, in case
the output is to be maximized.

• In the final step, RSM takes the derivatives of the locally fitted
second-order polynomial to estimate the optimum input combina-
tion. RSM may also apply the mathematical technique of canonical
analysis to this polynomial, to examine the shape of the optimal sub-
region; i.e., does that region have a unique minimum, a saddle point,
or a ridge with stationary points?



6.2 Linear Regression for Optimization 247

More specifically, the RSM algorithm (for either real or simulated sys-
tems) consists of the following steps (also see Fig. 6.1 in Sect. 6.2.4, which
gives an example with a random goal output w0 and two constrained ran-
dom outputs w1 and w2; these constrained outputs vanish in basic RSM).

Algorithm 6.1

1. Initialize RSM; i.e., select a starting point.
Comment: This starting point may be the input combination that is
currently used in practice if the system already exists; otherwise, we
should use intuition and prior knowledge (as in many other heuristics).

2. In the neighborhood of this starting point, approximate the I/O be-
havior through a local first-order polynomial metamodel augmented
with additive white noise e:

y = β0 +

k∑

j=1

βjzj + e (6.2)

with the regression parameters β = (β0, β1, . . ., βk)
′ where β0 denotes

the intercept and βj denotes the first-order or “main” effect of input
j with j = 1, . . ., k.
Comment: The first-order polynomial approximation may be
explained by Taylor’s series expansion.White noise (see Definition 2.3
in Chap. 2) means that e is normally, independently, and identically
distributed (NIID) with zero mean and a constant variance (say) σ2

in the local experimental area: e ∼ NIID(0, σ2). However, when the
next step moves to a new local area, RSM allows the variance to
change.
Compute the best linear unbiased estimator (BLUE) of β; namely,

the least squares (LS) estimator

β̂ = (Z
′
Z)

−1
Z′w (6.3)

where Z denotes the N×(k+1) matrix determined by the R-III design
and the mi replications of combination i (i = 1, . . ., n) with n ≥ k+1
and w = (w1, . . . wN )′ denotes the vector with the N outputs with
N =

∑n
i=1mi where mi ≥ 1 denotes the number of replications of

combination i.
Comment: Z hasmi identical rows where each row has as first element
the value 1 which corresponds with the intercept β0. Obviously, de-
terministic simulation implies mi = 1 so N = n. Unfortunately, there
are no general guidelines for determining the appropriate size of the
local area in a step of RSM; again, intuition and prior knowledge are
important. However, Chang et al. (2013) decides on the size of the
local area, using a so-called trust region; we shall give some details
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in Sect. 6.2.2. Furthermore, so-called “finite differencing” replaces the
R-III design by a less efficient one-factor-at-a-time design (see again
Sect. 2.3.2) and also faces the problem of selecting an appropriate size
for the local area; the optimal size depends on the unknown variance
and second-order derivatives; see Brekelmans et al. (2005), Safizadeh
(2002), Saltelli et al. (2005), and Zazanis and Suri (1993).

3. Select the next subarea, following the steepest descent direction.
Comment: For example, if the estimated local first-order polynomial
is ŷ = β̂0 + β̂1z1 + β̂2z2, then a corresponding contour line is ŷ = a
where a denotes some constant (if the goal output w0 denotes costs,
then the contour is also called the iso-costs line). The steepest descent
path is perpendicular to the local contour lines. This path implies that
if β̂1 � β̂2, then z1 is decreased much more than z2. Unfortunately,
the steepest-descent method is scale dependent ; i.e., linear transfor-
mations of the inputs affect the search direction; see Myers et al.
(2009, pp. 193–195). We shall present a scale-independent variant in
Sect. 6.2.3, which may interest both practitioners and researchers.

4. Take a step in the direction of steepest descent (estimated in step 3),
experimenting with some intuitively selected values for the step size.
Comment: If the intuitively selected step size yields an output that
is significantly higher instead of lower, then we reduce the step size.
Otherwise, we take one more step in the current steepest descent
direction. A more sophisticated mathematical procedure for selecting
the step size will follow in Sect. 6.2.4.

5. If the observed output w increases, then generate n outputs for a new
local area centered around the best point found so far.
Comment: After a number of steps in the steepest descent direction,
the output will increase instead of decrease because the first-order
polynomial in Eq. (6.2) is only a local approximation of the true I/O
function. When such deterioration occurs, we simulate the n > k
combinations specified by a R-III design centered around the best
point found so far; i.e., we use the same design as in step 2 (see
Table 2.3 for an example), but we translate the standardized inputs
xj into different values for the original inputs zj. One of the corner
points of this R-III design may be the best combination found so far;
see again Fig. 6.1 below.

6. Estimate the first-order effects in the new local polynomial approxi-
mation, using Eq. (6.3).

7. Return to step 3, if the latest locally fitted first-order polynomial is
found to be adequate; else proceed to the next step.
Comment: To test the adequacy of the fitted first-order polynomial,
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we may apply one or more methods that we have already discussed for
estimated linear regression metamodels in general; namely, the lack-
of-fit F -statistic for testing whether all estimated first-order effects
and hence the gradient are zero (see Sect. 2.2.2), and the coefficient
of determination R2 and cross-validation (see Sect. 3.6).

8. Fit the second-order polynomial

y = β0 +
k∑

j=1

βjzj +
k∑

j=1

k∑

j′≥k

βj;j′zjzj′ + e, (6.4)

where β0 denotes the intercept, βj (j = 1, . . ., k) the first-order effect
of input j, βj;j the purely quadratic effect of input j, and βj;j′

(j < j′) the interaction between inputs j and j′; estimate these
q = 1+2k+k(k−1)/2 effects through a CCD with n ≥ q combinations
Comment: It is intuitively clear that the plane implied by the most re-
cently estimated local first-order polynomial cannot adequately repre-
sent a hill top when searching to maximize the output or—equivalently
—minimize the output as in Eq. (6.1). So in the neighborhood of the
optimum, a first-order polynomial is not adequate. We therefore fit
the second-order polynomial defined in Eq. (6.4); RSM uses a CCD
to generate the I/O data.

9. Use this fitted second-order polynomial, to estimate the optimal values
of the inputs by straightforward differentiation or by more
sophisticated canonical analysis ; see Myers et al. (2009, pp. 224–242).

10. If time permits, then try to escape from a possible local minimum
and restart the search; i.e., return to step 1 with a different initial
local area.

Comment: We shall discuss a global search method (namely, efficient
global optimization, EGO) in Sect. 6.3.1.

We recommend not to eliminate inputs that have nonsignificant effects
in a first-order polynomial fitted within the current local experimental area:
these inputs may have significant effects in a next experimental area. The
selection of the number of replications mi is a moot issue in metamodel-
ing, as we have already discussed for experimental designs in case of linear
regression with heterogeneous variances (see Sect. 3.4.5) and for the se-
lection of the number of replications through the sequential probability
ratio test (SPRT) for sequential bifurcation (see Sect. 4.5), and for Kriging
(see Sect. 5.6.2). For the time being, we recommend estimating the true
mean response for a given input combination such that a relative precision
of (say) 10% has a (say) 90% probability, using the method detailed in
Law (2015).
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The Taylor series argument suggests that a higher-order polynomial is
more accurate than a lower-order polynomial. A statistical counterargu-
ment, however, is that overfitting gives less accurate estimators of the poly-
nomial coefficients. Consequently, the higher-order polynomial may give a
predictor ŷ with lower bias but higher variance such that its mean squared
error (MSE) increases. Moreover, a higher-order polynomial requires the
simulation of more input combinations.
In Sect. 3.4 we have already mentioned that a deterministic simulation

model gives a fixed value for a given input combination, so we might assume
white noise for the residuals e of the metamodel and apply basic RSM. In
random simulation, however, we prefer the RSM variant detailed in the
next section.

6.2.2 RSM in Random Simulation

We consider the following two characteristics of random simulation that
violate the assumption of white noise within a given local area:

1. The constant variance assumption does not hold.

2. The independence assumption does not hold if common random num-
bers (CRN) are applied.

Sub 1: Many simulation models represent queueing systems; e.g., supply
chains and telecommunication networks. The simplest queueing model is
the so-called M/M/1 model (see Definition 1.4) for which we know that
as its traffic rate increases, its mean steady-state waiting time increases
and the variance increases even more; consequently, the assumption of a
constant variance does not hold.
Sub 2: CRN are often applied in experiments with random simulation

models, because CRN are the default option in many simulation software
packages (e.g., Arena); moreover, CRN are a simple and intuitive variance
reduction technique that gives more accurate estimators of the first-order or
second-order polynomial metamodel in Eqs. (6.2) and (6.4). Obviously, the
outputs of all input combinations that use CRN are statistically dependent;
actually, we expect these outputs to be positively correlated.
Note: CRN are related to blocking in real-life experiments. In simulation

experiments, we may use blocking when combining CRN and antithetic
random numbers through the so-called Schruben-Margolin strategy; this
strategy is recently discussed in Chih (2013).
Sub 1 and 2: The preceding two characteristics imply that ordinary LS

(OLS) does not give the BLUE. As we have already discussed in Sect. 3.5,
generalized LS (GLS) gives the BLUE, but assumes known response vari-
ances and covariances. We therefore recommend the following simple esti-
mator, which we have already detailed in Sect. 3.5.
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We assume a constant number of replications mi = m (i = 1, . . ., n),
which is a realistic assumption if CRN are applied. We then compute the
OLS estimator per replication replacingw in Eq. (6.3) bywr to get the esti-

mator β̂r (r = 1, . . .,m). So, replication r gives an estimator of the steepest
descent direction—if a first-order polynomial is used—or the optimum in-
put combination—if a second-order polynomial is used. Together, the m
replications give an estimator of the accuracy of this estimated direction
or optimum. If we find the estimated accuracy to be too low, then we may
simulate additional replications so m increases. Unfortunately, we have not
yet any experience with this simple sequential approach for selecting the
number of replications.
Actually, if we have mi > 1 (i = 1, . . ., n) replications, then we can fur-

ther explore the statistical properties of the OLS estimator of β through
distribution-free bootstrapping, as we have already discussed in Sect. 3.3.5.

We can also use the bootstrapped estimator β̂
∗
to derive confidence in-

tervals (CIs) for the corresponding estimated steepest ascent direction and
optimum.
Instead of distribution-free bootstrapping we can apply parametric boot-

strapping, which assumes a specific type of distribution; e.g., a Gaussian
distribution (also see the testing of the KKT conditions in Sect. 6.2.5 be-
low). Parametric bootstrapping may be attractive if mi is small and no
CRN are used; e.g., the n expected values E(wi) and n variances σ2

i can be
estimated if the weak condition mi > 1 holds. If CRN are used, then the
n×n covariance matrixΣw = (cov(wi, wi′ )) with i, i′ = 1, . . ., n needs to be
estimated; this estimation requires m > n, as proven in Dykstra (1970). So
parametric bootstrapping may require fewer replications, but the assumed
distribution may not hold for the simulated outputs.
Chang et al. (2013) presents the stochastic trust-region response-surface

method (STRONG), which is a completely automated variant of RSM com-
bined with so-called trust regions. STRONG is proven to converge to the
true optimum (but see again our discussion of convergence, in Sect. 6.2.1).
Originally, trust regions were developed in Conn et al. (2000) for determin-
istic nonlinear optimization. By definition, a trust region is a subregion in
which the objective function is approximated such that if an adequate ap-
proximation is found within the trust region, then the region is expanded;
else the region is contracted. STRONG uses these trust regions instead
of the “local” regions of basic RSM, detailed in the preceding section.
STRONG includes statistical tests to decide whether trust regions should
be expanded or shrunken in the various steps, and to decide how much these
areas should change. If necessary, the trust region is small and a second-
order polynomial is used. Next, Chang et al. (2014) combines STRONG
with screening, and calls the resulting procedure STRONG-S where S de-
notes screening. This method is applied to several test functions with mul-
tiple local minima. Contrary to the Taylor-series argument, STRONG may
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have a relatively large trust region that does not require a second-order
polynomial metamodel but only a first-order polynomial metamodel. Chang
and Lin (2015) applies STRONG—including some adaptation—to a renew-
able energy system. RSM in random simulation is also discussed in Law
(2015, pp. 656–679). Ye and You (2015) uses trust regions, not applied to
low-order polynomial metamodels but to deterministic Kriging metamodels
of the underlying random simulation model.
Note: I/O data in RSM may contain outliers, which should be detected;

for this detection, Huang and Hsieh (2014) presents so-called influence
analysis.

Exercise 6.1 Apply RSM to the following problem that is a simple Monte
Carlo model of a random simulation:

min E[5(z1 − 1)2 + (z2 − 5)2 + 4z1z2 + e]

where z = (z1, z2)
′ and e ∼ NIID(0, 1). RSM treats this example as a black

box; i.e., you select the input combination z, sample e from NIID(0, 1), and
use these input data to compute the output (say) w. You (not RSM) may
use the explicit function to derive the true optimum solution, zo.

6.2.3 Adapted Steepest Descent (ASD) for RSM

Kleijnen et al. (2004) derives the so-called adapted steepest descent (ASD)
direction that accounts for the covariances between the k components of
the estimated gradient β̂−0 = (β̂1, . . . , β̂k)

′ where the subscript −0 means

that the intercept β̂0 of the estimated first-order polynomial vanishes in
the estimated gradient; i.e., β̂ = (β̂0, β̂−0)

′ with β̂ defined in Eq. (6.3).
Obviously, white noise implies

Σ
̂β = σ2

w(Z
′Z)−1 = σ2

w

(
a b′

b C

)
(6.5)

where σ2
w denotes the variance of the output w; Z is the N × (1 + k)

matrix of explanatory regression variables including the column with N
one’s; N =

∑n
i=1mi where n is the number of different observed input

combinations; mi is the number of IID replications for combination i; a is
a scalar; b is a k-dimensional vector; and C is a k × k matrix such that
Σ

̂β−0
= σ2

wC.

We notice that Z’s first column corresponds with the intercept β0. Fur-
thermore, Z is determined by the R-III design, transformed into the original
values of the inputs in the local area. To save computer time, we may repli-
cate only the center of the local area; this center is not part of the R-III
design.



6.2 Linear Regression for Optimization 253

The variance σ2
w in Eq. (6.5) is estimated through themean squared resid-

uals (MSR):

σ̂2
w =

∑n
i=1

∑mi

r=1(wi;r − ŷi)
2

N − (k + 1)
(6.6)

where ŷi = z′iβ̂; also see Eq. (2.26).
It can be proven that the predictor variance Var(ŷ|z) increases as z—the

point to be predicted—moves away from the local area where the gradient
is estimated. The point with the minimum predictor variance is −C−1b,
where C and b were defined below Eq. (6.5). ASD means that the new
point to be simulated is

d = −C−1b− λC−1β̂−0 (6.7)

where −C−1b is the point where the local search starts (namely, the point

with the minimum local variance), λ is the step size, β̂−0 is the steepest

descent direction, and C−1β̂−0 is the steepest descent direction adapted
for Σ

̂β−0
. It is easy to see that if C is a diagonal matrix, then the higher

the variance of an estimated input effect is, the less the search moves into
the direction of that input.

Exercise 6.2 Prove that the search direction in Eq. (6.7) does not change
the steepest descent direction if the design matrix is orthogonal (so Z′

Z = NI).

It can be proven that ASD, which accounts for Σ
̂β−0

, gives a scale-

independent search direction. Experimental results are presented in Kleij-
nen et al. (2004, 2006). These results imply that ASD performs “better”
than steepest descent; i.e., the angle between the search direction based on
the true β−0 and the search direction estimated in ASD is smaller. In one
example this angle reduces from 89.87 for steepest descent to 1.83 for ASD.
Note: Fan and Huang (2011) derives another alternative for steepest as-

cent, using conjugate gradients (which were originally developed for uncon-
strained optimization in mathematical programming). Joshi et al. (1998)
derives one more alternative, using gradient deflection methods. Safizadeh
(2002) examines how to balance the variance and the bias via the MSE
of the estimated gradient for different sizes of the local experimental area,
assuming random simulation with CRN.

6.2.4 Multiple Responses: Generalized RSM (GRSM)

In practice, simulation models have multiple responses types (multivariate
output); e.g., a realistic inventory simulation model may estimate (i) the
sum of all inventory costs excluding the (hard-to-quantify) out-of-stock
costs and (ii) the service rate (fill rate), and the goal of this simulation
is to minimize this sum of inventory costs such that the service rate is
not lower than (say) 90%. Simulation software facilitates the collection of
multiple outputs. There are several approaches to solve the resulting issues;
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FIGURE 6.1. GRSM example with two inputs, two contour plots for the
goal output, two constraints for the other outputs, three local areas, three
search directions, and six steps in these directions

see the survey in Rosen et al. (2008). The RSM literature also offers several
approaches for such situations, but we shall focus on GRSM.
Note: For RSM with multiple responses we refer to the surveys in Angün

(2004), Khuri and Mukhopadhyay (2010), and Ng et al. (2007) and the
recent case study in Shi et al. (2014) combining two output types into
a single criterion. We shall discuss Kriging for simulation with multiple
outputs, in Sect. 6.3.
GRSM is explained in Angün et al. (2009). Informally, we may say that

GRSM is RSM for problems with multiple random outputs such that one
goal output is minimized while the other outputs satisfy prespecified con-
straints (so GRSM does not use multi-objective optimization); moreover,
the deterministic input variables may also be subjected to constraints.
GRSM combines RSM and mathematical programming; i.e., GRSM gen-
eralizes the steepest descent direction of RSM through the affine scaling
search direction, borrowing ideas from interior point methods (a variation
on Karmarkar’s algorithm) as explained in Barnes (1986). As Fig. 6.1 illus-
trates, the GRSM search avoids creeping along the boundary of the feasible
area that is determined by the constraints on the random outputs and the
deterministic inputs. So, GRSM moves faster to the optimum than steepest
descent. Moreover, this search tries to stay inside the feasible area, so the
simulation program does not crash. We shall discuss Fig. 6.1 in detail, at
the end of this subsection. We point out that Angün et al. (2009) proves
that the GRSM search direction is scale independent. Though we focus on
random simulations, we might easily adapt GRSM for deterministic simu-
lations and real systems.
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Because GRSM is rather complicated, readers may wish to skip the rest
of this subsection and also skip the next subsection (Sect. 6.2.5)—on testing
an estimated optimum in GRSM through testing the Karush-Kuhn-Tucker
conditions—without lessening their understanding of the rest of this book.
Formally, GRSM extends the basic RSM problem in Eq. (6.1) to the

following constrained nonlinear random optimization problem:

min E(w0|z) (6.8)

such that the other (r − 1) random outputs satisfy the constraints

E(wh′ |z) ≥ ah′ with h′ = 1, . . . , r − 1, (6.9)

and the k deterministic inputs zj satisfy the box constraints

lj ≤ zj ≤ uj with j = 1, . . . , k. (6.10)

An example is an inventory simulation, in which the sum of the expected
inventory carrying costs and ordering costs should be minimized while the
expected service percentage should be at least 90% so a1 = 0.9 in Eq. (6.9);
both the reorder quantity z1 = Q and the reorder level z2 = s should be
non-negative so z1 ≥ 0 and z2 ≥ 0 in Eq. (6.10). A stricter input constraint
may be that z2 should at least cover the expected demand during the
expected order lead time; obviously, these expectations are known inputs
of the simulation. More complicated input constraints than Eq. (6.10)—
namely, linear budget constraints—feature in a call-center simulation in
Kelton et al. (2007).
Note: Optimization of simulated call-centers—but not using GRSM—is

also studied in Atlason et al. (2008). Aleatory and epistemic uncertainties—
discussed in Sect. 5.9 on risk analysis—in call-center queueing models are
studied in Bassamboo et al. (2010). Geometry constraints are discussed in
Stinstra and Den Hertog (2008). Input constraints resulting from output
constraints are discussed in Ng et al. (2007).
Analogously to RSM’s first steps using Eq. (6.2), GRSM locally approxi-

mates the multivariate I/O function by r univariate first-order polynomials
augmented with white noise:

yh = Zβh+eh with h = 0, . . . r − 1. (6.11)

Analogously to RSM, GRSM assumes that locally the white noise assump-
tion holds for Eq. (6.11), so the BLUEs are the following OLS estimators:

β̂h = (Z′Z)−1
Z′wh with h = 0, . . . r − 1. (6.12)

The vector β̂0 (OLS estimator of first-order polynomial approximation of
goal function) and the goal function in Eq. (6.8) result in

min β̂0;−0z (6.13)
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where β̂0;−0 = (β̂0;1, . . . , β̂0,k)
′ is the OLS estimator of the local gradient of

the goal function. Combining Eq. (6.12) and the original output constraints
in Eq. (6.9) gives

β̂
′
h′;−0z ≥ ch′ with h′ = 1, . . . , r − 1 (6.14)

where β̂h′;−0 = (β̂h′;1, . . . , β̂h′,k)
′ is the estimator of the local gradient of

constraint function h′, and ch′ = ah′ − β̂h′;0 is the modified right-hand
side of this constraint function. The box constraints in Eq. (6.10) remain
unchanged.
Now we collect the k-dimensional vectors β̂h′;−0 (h′ = 1, . . . , r − 1) in

Eq. (6.14) in the (r−1)×k matrix denoted by (say) B. Likewise, we collect
the (r − 1) elements ch′ in the vector c. Furthermore, we define l as the
vector with the k elements lj , and u as the vector with the k elements uj.
Finally, we introduce the k-dimensional vectors with the non-negative slack
variables s, r, and v, to get the following problem formulation that is the
equivalent of the problem formulated in Eq. (6.8) through Eq. (6.10):

minimize β̂
′
0;−0z

subject to Bz− s = c
z+ r = u
z− v = l.

(6.15)

Obviously, the constrained optimization problem in Eq. (6.15) is linear in

the inputs z (the OLS estimates β̂0;−0 and β̂h′;−0 in B use the property
that this problem is also linear in the regression parameters). Angün et al.
(2009) uses this problem formulation to derive the following GRSM search
direction:

d = −(B
′
S−2B+R−2 +V−2)−1β̂0;−0 (6.16)

where S, R, and V are diagonal matrixes with as main-diagonal elements
the current estimated slack vectors s, r, and v in Eq. (6.15). Note that β̂0;−0

in Eq. (6.16) is the estimated steepest ascent direction in basic RSM. As
the value of a slack variable in Eq. (6.16) decreases—so the corresponding
constraint gets tighter—the GRSM search direction deviates more from the
steepest descent direction. Possible singularity of the various matrices in
Eq. (6.16) is discussed in Angün (2004).
Following the GRSM direction defined by Eq. (6.16), we must decide on

the step size (say) λ along this path. Angün et al. (2009) selects

λ = 0.8 min

[
ch′ − β̂

′
h′;−0zc

β̂
′
h′;−0d

]
(6.17)

where the factor 0.8 decreases the probability that the local metamodel in
Eq. (6.14) is misleading when applied globally; zc denotes the current (see
the subscript c) input combination.
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Combining the search direction in Eq. (6.16) and the step size in Eq. (6.17)
gives the new combination zc + λd. The box constraints in Eq. (6.10) for
the deterministic inputs hold globally, so it is easy to check whether this
new combination zc + λd satisfies these constraints.
Analogously to basic RSM, GRSM proceeds stepwise. After each step

along the search path, GRSM tests the following two null-hypotheses H
(1)
0

and H
(2)
0 :

1. Pessimistic null-hypothesis: w0(zc+λd) (output of new combination)
is no improvement over w0(zc) (output of old combination):

H
(1)
0 : E[w0(zc + λd)] ≥ E[w0(zc)]. (6.18)

2. Optimistic null-hypothesis: this step is feasible; i.e., wh′(zc + λd)
satisfies the (r − 1) constraints in Eq. (6.9):

H
(2)
0 : E[wh′(zc + λd)] ≥ ah′ with h′ = 1, . . . , r − 1. (6.19)

To test these two hypotheses, we may apply the following simple sta-
tistical procedures; more complicated parametric bootstrapping is used in
Angün (2004), permitting nonnormality and testing the relative improve-
ment w0(zc + λd)/w0(zc) and slacks sh′(zc + λd)/sh′(zc).

Exercise 6.3 Which statistical problem arises when testing the ratio of the
slack at the new solution and the slack at the old solution,
sh′(zc + λd)/sh′(zc)?

To test H
(1)
0 defined in Eq. (6.18), we apply the paired Student statistic

tm−1; we use the “paired” statistic because we assume that CRN are used.
We reject the hypothesis if significant improvement is observed. To test

H
(2)
0 in Eq. (6.19), we again apply a tm−1 -statistic; because we test multiple

hypotheses, we apply Bonferroni’s inequality so we divide the classic α value
by (r − 1) (number of tests).
Actually, a better solution may lie somewhere between zc (old combina-

tion) and zc+λd (new combination). Therefore GRSM uses binary search;
i.e., GRSM simulates a combination that lies halfway between these two
combinations—and is still on the search path. This halving of the step size
may be applied several times; also see Fig. 6.1.
Next, GRSM proceeds analogously to basic RSM; i.e., around the best

combination found so far, GRSM selects a new local area. Again a R-III
design specifies the new simulation input combinations, and r first-order
polynomials are fitted, which gives a new search direction, etc. Note that
we might use the m replications β̂r to estimate the accuracy of the search
direction; to test the accuracy of the estimated optimum, we shall present
a test in the next subsection.
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Now we discuss Fig. 6.1 in more detail. This plot illustrates GRSM for a
problem with simple known test functions (in practice, we use simulation to
estimate the true outputs of the various implicit I/O functions of the sim-
ulation model). This plot shows two inputs, corresponding to the two axes
labeled z1 and z2. Because the goal function is to be minimized, the plot
shows two contour plots or iso-costs functions defined by E(w0) = a0;1 and
E(w0) = a0;2 with a0;2 < a0;1. The plot also shows two constraints; namely,
E(w1) = a1 and E(w2) = a2. The search starts in the lower-right local area
of the plot, using a 22 design; see the four elongated points. Together with
the replications that are not shown, the I/O data give the search direction
that is shown by the arrow leaving from point (0). The maximum step-size
along this path takes the search from point (0) to point (1). The binary
search takes the search back to point (2), and next to point (3). Because
the best point so far turns out to be point (1), the 22 design is again used
to select four points in this new local area; point (1) is selected as one of
these four points. Simulation of the four points of this 22 design gives a
new search direction, which indeed avoids the boundary. The maximum
step-size now takes the search to point (4). The binary search takes the
search back to point (5), and next to point (6). Because the best point so
far turns out to be point (4), the 22 design is simulated in a new local area
with point (4) as one of its points. A new search direction is estimated, etc.
Angün (2004) gives details on two examples, illustrating and evaluat-

ing GRSM. One example is an inventory simulation with a service-level
constraint specified in Bashyam and Fu (1998); no analytical solution is
known. The other example is a test function with a known solution. The
results for these examples are encouraging, as GRSM finds solutions that
are both feasible and give low values for the goal functions. Leijen (2011)
applies GRSM to a bottle-packaging line at Heineken with nine inputs and
one stochastic output constraint besides several deterministic input con-
straints; the analysis of the solutions generated by GRSM indicates that
GRSM can find good estimates of the optimum. Mahdavi et al. (2010) ap-
plies GRSM to a job-shop manufacturing system. We shall briefly return
to GRSM when discussing Eq. (6.35).

Exercise 6.4 Apply GRSM to the following artificial example reproduced
from Angün et al. (2009):

Minimize E[5(z1 − 1)2 + (z2 − 5)2 + 4z1z2 + e0]
subject to E[(z1 − 3)2 + z22 + z1z2 + e1] ≤ 4

E[z21 + 3 (z2 + 1.061)
2
+ e2] ≤ 9

0 ≤ z1 ≤ 3, −2 ≤ z2 ≤ 1

(6.20)

where e0, e1, and e2 are the components of a multivariate normal variate
with mean 0, variances σ0;0 = 1 (so σ0 = 1), σ1;1 = 0.0225 (so σ1 = 0.15),
and σ2;2 = 0.16 (so σ2 = 0.4), and correlations ρ0;1 = 0.6, ρ0;2 = 0.3,
ρ1;2 = −0.1.
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6.2.5 Testing a GRSM Optimum: Karush-Kuhn-Tucker
(KKT) conditions

Obviously, it is uncertain whether the optimum estimated by the GRSM
heuristic is close enough to the true optimum. In deterministic nonlinear
mathematical programming, the first-order necessary optimality-conditions
are known as the KKT conditions; see Gill et al. (2000). First we present
the basic idea behind these conditions; next, we explain how to test these
conditions in random simulation.
To explain the basic idea of the KKT conditions, we use Fig. 6.2 that

illustrates the same type of problem as the one in Fig. 6.1. Figure 6.2 shows
a goal function E(w0) with three contour plots that correspond with the
threshold values 66, 76, and 96; also see Eq. (6.8). Furthermore, there are
two constrained simulation outputs; namely, E(w1) ≥ 4 and E(w2) ≥ 9;
also see Eq. (6.9). So, the plot shows the boundaries of the feasible area
that is determined by the equalities E(w1) = 4 and E(w2) = 9. Obviously,
the optimum combination is point A. The two points B and C lie on the
same boundary; namely, the boundary E(w2) = 9. Point D lies on the other
boundary; namely, the boundary E(w1) = 4. Obviously, the optimal point
A and the point D lie far away from each other. The plot also displays the
local gradients at the four points A through D for the goal function and
for the binding constraint, which is the constraint with a zero slack value in
Eq. (6.9). These gradients are perpendicular to the local tangent lines; those
lines are shown only for the binding constraint—not for the goal function.
These tangent lines are first-order polynomials; see Eq. (6.11). (Obviously,
the estimated gradient is biased if second-order effects are important and
yet a first-order polynomial is fitted.)
Note: There is a certain constraint qualification that is relevant when

there are nonlinear constraints in the problem; see Gill et al. (2000, p. 81).
There are several types of constraint qualification, but many are only of
theoretical interest; a practical constraint qualification for nonlinear con-
straints is that the r− 1 constraint gradients at the locally optimal combi-
nation be linearly independent.
Now we present the statistical procedure for testing the KKT conditions

in random simulation that was derived in Bettonvil et al. (2009). Before
we shall discuss the technical details of this procedure, we point out that
the empirical results for this procedure are encouraging; i.e., the classic
t-test for zero slacks performs as expected and the new bootstrap tests give
observed type-I error rates close to the prespecified (nominal) rates, while
the type-II error rate decreases as the tested input combination is farther
away from the true optimum; see the points A through D in Fig. 6.2.
Note: We add that Kasaie et al. (2009) also applies this procedure to

an agent-based simulation model of epidemics; this model is also discussed
in Kasaie and Kelton (2013). Furthermore, Wan and Li (2008) applies the
asymptotic variant of this procedure to the (s, S) inventory problem for-
mulated in Bashyam and Fu (1998) with good results.
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FIGURE 6.2. A constrained nonlinear random optimization problem: three
contour plots with goal values 66, 76, and 96; two other outputs with lower
bounds 4 and 9; optimal point A; points B and C on bound 9; point D
on bound 4; local gradients at A through D for goal function and binding
constraint, perpendicular to local tangent lines for binding constraint

Let zo denote the input combination that gives a local minimum
(or optimum; see the subscript o) for the deterministic variant of the prob-
lem defined in Eq. (6.8) through Eq. (6.10). The KKT conditions for zo are
then(besides some regularity conditions)

β0;−0 =
∑

h∈A(zo)

λhβh;−0

λh ≥ 0
h ∈ A(zo)

(6.21)

where β0;−0 denotes the k-dimensional vector with the gradient of the
goal function, as we have already seen in Eq. (6.13); A (zo) is the index
set with the indices of those constraints that are binding at zo; λh is the
Lagrangian multiplier for binding constraint h; βh;−0 is the gradient of the
output in that binding constraint. Now we give two examples illustrating
that Eq. (6.21) implies that the gradient of the objective is a nonnegative
linear combination of the gradients of the binding constraints, at zo.

Example 6.1 Figure 6.2 has only one binding constraint at the point A,
so Eq. (6.21) then stipulates that the goal gradient β0;−0 and the gradient
of the output with a binding constraint (namely, output h = 2) are two
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FIGURE 6.3. A LP problem: one contour line with goal value w0 = a0;
two other outputs with upper bounds a1 and a2; optimal point A; local
gradients at A for goal function and two binding constraints

vectors that point in the same direction. Indeed, point B has two gradients
that point in different but similar directions—and so does C—whereas D
has two gradients that point in completely different directions.

Example 6.2 Figure 6.3 is actually a linear programming (LP) problem.
One contour line for the goal output w0 shows the input combination (z1, z2)
that result in w0(z1, z2) = a0; the two other outputs are w1 and w2, which
should satisfy the constraints w1 ≤ a1 and w2 ≤ a2; point A is the optimal
input combination zo; the local gradients at point A are displayed for the
goal function and the two binding constraints. Obviously, the goal gradient
is a linear combination with positive coefficients of the two other gradients.

Note: If the optimum occurs inside the feasible area, then there are no
binding constraints so the KKT conditions reduce to the condition that
the goal gradient be zero. Basic RSM includes tests for a zero gradient
estimated from a second-order polynomial; see again Sect. 6.2.1.
In random simulation we must estimate the gradients; moreover, to check

which constraints are binding, we must estimate the slacks of the con-
straints. This estimation changes the KKT conditions into a problem of
nonlinear statistics. An asymptotic test is presented in Angün (2004), us-
ing the so-called Delta method and a generalized form of the so-called
Wald statistic. A small-sample bootstrap test is presented in Bettonvil
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et al. (2009), which we now present because it is simpler and it suits ex-
pensive simulation. Nevertheless, this bootstrap test is still rather com-
plicated, so readers may skip to the next section (Sect. 6.3, on Kriging
for optimization)—without lessening their understanding of the rest of
this book.
As in basic RSM, we assume locally constant variances and covariances

for each of the r simulation outputs wh (h = 0, 1, . . ., r − 1). OLS per uni-

variate simulation output gives β̂h defined in Eq. (6.12). These estimators
have the following estimated covariance matrix:

Σ̂β̂h,β̂h′ = Σ̂wh,wh′ ⊗ (Z′Z)−1
(h, h′ = 0, . . . , r − 1) (6.22)

where ⊗ denotes the Kronecker product and Σ̂wh,wh′ is the r × r matrix
with the classic estimators of the (co)variances based on the m replications
at the local center so the replication number l runs from 1 through m (we
use the symbol l instead of our usual symbol r, because r now stands for
the number of output types); so Σ̂wh,wh′ is defined by

Σ̂wh,wh′ = (σ̂h;h′) = (

∑m
l=1 wh;l − wh)(wh′;l − wh′)

m− 1
). (6.23)

The Kronecker product implies that Σ̂β̂h,β̂h′ is an rq × rq matrix where

q denotes the number of regression parameters (so q = 1 + k in a first-

order polynomial); this matrix is formed from the r× r matrix Σ̂wh,wh′ by

multiplying each of its elements by the entire q × q matrix (Z′Z)−1 (e.g.,

Z is an N × (1 + k) matrix in Eq. (6.5)). The matrix Σ̂wh,wh′ is singular if
m ≤ r; e.g., the case study in Kleijnen (1993) has r = 2 output types and
k = 14 inputs so m ≥ 3 replications of the center point are required. Of
course, the higher m is, the higher is the power of the tests that use these
replications. Bettonvil et al. (2009) does not consider cases with all n local
points replicated or with CRN; these cases require further research.
Basic RSM (explained in Sect. 6.2.1) assumes that the output is Gaus-

sian, and now in GRSM we assume that the r-variate simulation output is
multivariate Gaussian. We use the center point to test whether a constraint
is binding in the current local area, because this point is more representative
of the local behavior than the extreme points of the R-III design applied in
this area. To save simulation runs, we should start a local experiment at its
center point including replications; if it turns out that either no constraint
is binding or at least one constraint is violated in Eq. (6.24) below, then
we do not need to test the other two hypotheses given in Eq. (6.25) and
Eq. (6.26) and we do not need to simulate the remainder of the local design.
Like we do in basic RSM, we should test the validity of the local meta-

model. GRSM assumes multiple outputs, so we may apply Bonferroni’s
inequality. If we reject a metamodel, then we have two options:

• Decrease the local area; e.g., halve the range of each input.
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• Increase the order of the polynomial; e.g., switch from a first-order
to a second-order polynomial.

We do not explore these options any further, but refer back to Sect. 6.2.2.
To test the KKT conditions, we test the following three null-hypotheses

denoted by the superscripts (1) through (3):

1. The current solution is feasible and at least one constraint is binding;
see Eq. (6.9):

H
(1)
0 : E(wh′ |x = 0) = ah′ with h′ = 1, . . . , r − 1 (6.24)

where x = 0 corresponds with the center of the local area expressed
in the standardized inputs.

2. The expected value of the estimated goal gradient may be expressed
as the expected value of a linear combination of the estimated gra-
dients of the simulation outputs in the binding constraints; i.e., in
Eq. (6.21) we replace the deterministic quantities by their estimators:

H
(2)
0 : E(β̂0;−0) = E(

∑

h∈A(zo)

λ̂hβ̂h). (6.25)

3. The Lagrangian multipliers in Eq. (6.25) are nonnegative:

H
(3)
0 : E(λ̂) ≥ 0. (6.26)

Each of these three hypotheses requires multiple tests, so we apply Bon-
ferroni’s inequality. Moreover, we test these three hypotheses sequentially,
so it is hard to control the final type-I and type-II error probabilities (basic
RSM has the same type of problem, but that RSM has nevertheless acquired
a track record in practice).

Sub 1 : To test H
(1)
0 in Eq. (6.24), we use the classic t-statistic:

t
(h′)
m−1 =

wh′(x = 0)− ah′√
σ̂h′;h′/m

with h′ = 1, . . . , r − 1 (6.27)

where both the numerator and the denominator use the m replications at
the local center point; see Eq. (6.23). This t-statistic may give the following
three results:

(i) The statistic is significantly positive; i.e., the constraint for output
h′ is not binding. If none of the (r − 1) constraints is binding, then
we have not yet found the optimal solution—assuming that at the
optimum at least one constraint is binding; otherwise, we apply basic
RSM. The search for better solutions continues; see again Sect. 6.2.4.
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(ii) The statistic is significantly negative; i.e., the current local area does
not give feasible solutions so we have not yet found the optimal so-
lution. The search should back-up into the feasible area.

(iii) The statistic is nonsignificant ; i.e., the current local area gives feasible
solutions and the constraint for output h′ is binding. We should then
include the index of this gradient in A (zo); see Eq. (6.25). And the
KKT test proceeds as follows.

Sub 2 and 3 : To estimate the linear combination in Eq. (6.25), we ap-
ply OLS with as explanatory variables the estimated gradients of the (say)
J binding constraints; obviously, these explanatory variables are random.
We collect these J estimated gradients in the k × J matrix B̂J;−0. These
explanatory variables have linear weights λ that equal the parameters that

are estimated through OLS, denoted by λ̂. Let
̂̂
β0;−0 denote the OLS esti-

mator of the goal gradient, so

̂̂
β0;−0 = B̂J;−0(B̂

′
J;−0B̂J;−0)

−1B̂′
J;−0β̂0;−0 = B̂J;−0λ̂ (6.28)

with λ̂ = (B̂′
J;−0B̂J;−0)

−1B̂′
J;−0β̂0;−0; also see the general formula for OLS

in Eq. (2.13). To quantify the validity of this linear approximation, we use
the k-dimensional vector with the residuals

ê(
̂̂
β0;−0) =

̂̂
β0;−0 − β̂0;−0. (6.29)

H
(2)
0 in Eq. (6.25) implies that ê(

̂̂
β0;−0) in Eq. (6.29) should satisfy E[ê

(
̂̂
β0;−0)] = 0. Furthermore, H

(2)
0 involves a product of multivariates, so

standard tests do not apply; therefor we use bootstrapping. We do not ap-
ply distribution-free bootstrapping, because in expensive simulation only
the center point is replicated a few times. Instead, we apply parametric
bootstrapping; i.e., we assume a Gaussian distribution (like we do in basic
RSM), and we estimate its parameters from the simulation’s I/O data. The
resulting bootstrap algorithm consists of the following four steps, where the
superscript ∗ is the usual symbol for a bootstrapped value.

Algorithm 6.2

1. Use the Monte Carlo method to sample

vec(β̂
∗
0;−0, B̂

∗
J;−0) ∼ N(vec(β̂0;−0, B̂J;−0), Σ̂vec(̂β0;−0,

̂BJ;−0)
) (6.30)

where vec(β̂
∗
0;−0, B̂

∗
J;−0) is a (k + kJ)-dimensional vector formed by

stapling (stacking) the estimated k-dimensional goal gradient vec-

tor and the J k-dimensional vectors of the k × J matrix B̂∗
J;−0;

vec(β̂0;−0, B̂J;−0) is defined analogously to vec(β̂
∗
0;−0, B̂

∗
J;−0) but uses
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Eq. (6.12), and Σ̂vec(̂β0;−0,
̂BJ;−0)

is the (k+kJ)×(k+kJ) matrix com-

puted through Eq. (6.22).

2. Use the bootstrap values sampled in step 1 to compute the OLS
estimate of the bootstrapped goal gradient where this OLS uses the
bootstrapped gradients of the binding constraints as explanatory vari-
ables; i.e., use Eq. (6.28) adding the superscript ∗ to all random vari-

ables resulting in
̂̂
β
∗
0;−0 and λ̂

∗
.

3. Use
̂̂
β
∗
0;−0 from step 2 and β̂

∗
0;−0 from step 1 to compute the bootstrap

residual ê(
̂̂
β
∗
0;−0) =

̂̂
β
∗
0;−0 - β̂

∗
0;−0, analogously to Eq. (6.29); if any

of the bootstrapped Lagrangian multipliers λ̂
∗
found in step 2 is

negative, then increase the counter (say) c∗ with the value 1.

4. Repeat the preceding three steps (say) 1,000 times, to obtain the

estimated density function (EDF) of ê(
̂̂
β
∗
0;−0;j)—which denotes the

bootstrapped residuals per input j (j = 1, . . . , k)—and the final value

of the counter c∗. Reject H
(2)
0 in Eq. (6.25) if this EDF implies a

two-sided (1 − α/(2k)) CI that does not cover the value 0, where

the factor k is explained by Bonferroni’s inequality. Reject H
(3)
0 in

Eq. (6.26) if the fraction c∗/1,000 is significantly higher than 50%.
To test the fraction c∗/1,000, approximate the binomial distribution
through the normal distribution with mean 0.50 and variance (0.50×
0.50)/1,000 = 0.00025.
Comment: If the true Lagrangian multiplier is only “slightly” larger
than zero, then “nearly” 50% of the bootstrapped values is negative.

Altogether, this KKT test-procedure uses the following three models:

1. The simulation model, which is treated as a black box in GRSM.

2. The regression metamodel, which uses the simulation I/O data (Z,w)
as input and gives the estimates of the gradients for the goal response
(β̂0;−0) and the constrained responses with binding constraints

(B̂J;−0). The regression analysis also gives the estimator

Σ̂vec(̂β0;−0,
̂BJ;−0)

(estimated covariance matrix of estimated gradi-

ents).

3. The bootstrap model, which uses the regression output (β̂0;−0, B̂J;−0,

Σ̂veĉβ(0;−0,
̂BJ;−0)

as parameters of the multivariate normal distribu-

tion of its output β̂
∗
0;−0 and B̂∗

J;−0.
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FIGURE 6.4. Expected improvement (EI) at x = 8: see shaded area; five
observations on f(x): see dots ; Kriging predictor ŷ and variance of ŷ

6.3 Kriging Metamodels for Optimization

In Sect. 6.2 we discussed optimization through RSM, which uses linear
regression metamodels; namely, first-order and second-order polynomials
fitted locally. Now we discuss optimization through Kriging metamodels,
which are fitted globally. In Sect. 6.3.1 we shall discuss so-called efficient
global optimization (EGO), which was originally developed for the mini-
mization of the unconstrained output of a deterministic simulation model.
In Sect. 6.3.2 we shall discuss constrained optimization in random simula-
tion, using a combination of Kriging and integer mathematical programming
(IMP) called KrIMP. We shall use the symbol x (not z) to denote the input
(ignoring standardization), as the Kriging literature usually does.

6.3.1 Efficient Global Optimization (EGO)

EGO is a well-known sequential method; i.e., EGO selects the next in-
put combination or “point” as experimental I/O results become avail-
able.Typically, EGO balances local and global search; i.e., EGO combines
exploitation and exploration. More precisely, when selecting a new point,
EGO estimates the maximum of the expected improvement (EI) compar-
ing this new point and the best point that was found so far. EI uses the
global Kriging metamodel to predict the output of a new point, while ac-
counting for the predictor variance; this variance increases as a new point
does not lie in a local subarea formed by some old points; also see Fig. 6.4.
Obviously, EI is large if either the predicted value ŷ is much smaller than
the minimum found so far denoted by fmin = minw(xi), or the estimated
predictor variance σ̂(x) is large so the prediction shows much uncertainty.
We shall further explain and formalize EGO in Algorithm 6.3 below.
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The classic reference for EGO is Jones et al. (1998), which includes refer-
ences to older publications that inspired EGO. In practice, EGO has shown
to perform well when optimizing the unconstrained output of a determinis-
tic simulation model; its theoretical convergence properties are analyzed in
Bull (2011) and Vazquez and Bect (2010). EGO has also been implemented
in software; see
http://cran.r-project.org/web/packages/DiceOptim/index.html.
We present only the basic EGO algorithm. There are many variants

of EGO for deterministic and random simulations, constrained optimiza-
tion, multi-objective optimization including Pareto frontiers, the “admis-
sible set” or “excursion set”, robust optimization, estimation of a quantile
(instead of the mean), and Bayesian approaches.
Note: For these variants we list only the most recent publications plus

some classic publications: Binois et al. (2015), Chevalier et al. (2014), Davis
and Ierapetritou (2009), Feng et al. (2015), Forrester and Jones (2008),
Forrester and Keane (2009), Forrester et al. (2008, pp. 90–101, 125–131,
141–153), Frazier (2010), Frazier et al. (2009), Gano et al. (2006), Gorissen
(2010), Gramacy et al. (2015), Gramacy and Lee (2010), Huang et al.
(2006), Jala et al. (2014), Jalali and van Nieuwenhuyse (2014), Janusevskis
and Le Riche (2013), Kleijnen et al. (2012), Koch et al. (2015), Marzat
et al. (2013), Mehdad and Kleijnen (2015), Morales-Enciso and Branke
(2015), Müller and Shoemaker (2014), Nakayama et al. (2009), Picheny
et al. (2013a), Picheny et al. (2013b), Preuss et al. (2012), Quan et al.
(2013), Razavi et al. (2012), Regis (2014), Roustant et al. (2012), Salemi
et al. (2014), Sasena et al. (2002), Scott et al. (2011), Scott et al. (2010),
Sun et al. (2014), Svenson and Santner (2010), Tajbakhsh et al. (2013),
Tong et al. (2015), Ur Rehman et al. (2014), Villemonteix et al. (2009a),
Villemonteix et al. (2009b), Wagner (2013), Wiebenga (2014), andWilliams
et al. (2010).
We present a basic EGO algorithm for minimizing w, which denotes the

output of a given deterministic simulation model. Our algorithm consists
of the following five steps.

Algorithm 6.3

1. Fit a Kriging metamodel y(x) to the old I/O simulation data (X,w).
Comment: In Sect. 5.2 we presented details on Kriging metamodels
for deterministic simulation, where X denoted the n× k matrix with
the n combinations of the k simulation inputs, w denoted the n-
dimensional vector with simulation outputs, and we speak of n “old”
I/O data and a “new” input combination that is yet to be simulated.

2. Find the minimum output simulated so far: fmin = min1≤i≤n w(xi).

3. Defining EI at a point x as

EI(x) = E [max (fmin − y(x), 0)] , (6.31)

http://cran.r-project.org/web/packages/DiceOptim/index.html
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Jones et al. (1998) derives the following closed-form expression for its
estimate:

ÊI(x) = (fmin − ŷ(x)) Φ

(
fmin − ŷ(x)

σ̂(x)

)
+ σ̂(x)φ

(
fmin − ŷ(x)

σ̂(x)

)

(6.32)
where ŷ(x) is the Kriging predictor with plugged-in estimates defined
in Eq. (5.19); ŷ(x) is assumed to be normally distributed with mean
ŷ(x) and standard deviation σ̂(x) which is the square root of σ̂2(x); Φ
and φ are the usual symbols for the cumulative distribution function
and probability density function of the “standard” normal variable,
which has zero mean and unit variance. Using Eq. (6.32), find x̂

o
,

which denotes the estimate of x that maximizes ÊI(x).
Comment: To find the maximizer of Eq. (6.32), we may apply a global
optimizer such as the genetic algorithm (GA) in Forrester et al. (2008,
p. 78), the branch-and-bound algorithm in Jones et al. (1998), the ge-
netic optimization using derivatives in Picheny et al. (2013b), or the
evolutionary algorithm in Viana et al. (2013). Obviously, a local op-
timizer is undesirable, because EI(x) has many local optima; e.g.,
if x = xi, then σ̂2(x) = 0 so EI(x) = 0. Instead of a global opti-
mizer, we may use a set of candidate points selected through Latin
hypercube sampling (LHS), and select the candidate point that max-

imizes ÊI(x); see Boukouvalas et al. (2014), Echard et al. (2011),
Kleijnen and Mehdad (2013), Scott et al. (2012), and Taddy et al.
(2009). Obviously, we may use parallel computer hardware to com-
pute EI(x) for different candidate points x, if we have such hardware
available; also see Ginsbourger et al. (2010).

4. Run the simulation model with the input x̂o found in step 3, to find
the corresponding output w(x̂o).

5. Fit a new Kriging metamodel to the old I/O data of step 1 and the
new I/O of step 4. Update n and return to step 2 if the stopping
criterion is not yet satisfied.
Comment: Sun et al. (2014) presents a fast approximation for re-
estimation of the Kriging metamodel in exploitation versus explo-
ration in discrete optimization via random simulation.
Kamiński (2015) also presents several methods for avoiding
re-estimation of the Kriging parameters. A stopping criterion may be
max ÊI(x) is “close” to zero. Different stopping criteria are discussed
in Razavi et al. (2012), Sun et al. (2014).
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DiceOptim, which is an R package, implements EGO and enables the
evaluation of multiple new points instead of a single new point. For details
on DiceOptim we refer to Roustant et al. (2012).
Note: Mehdad and Kleijnen (2015) considers EGO with the predictor

variance estimated through either bootstrapped Kriging (BK) or conditional
simulation (CS); these two methods were discussed in Sect. 5.3. Several
experiments suggest that BK and CS give predicted variances that do not
differ significantly from each other, but that may be significantly bigger
than the classic estimate (nevertheless, BK and CS do not give CIs that
are significantly better than classic Kriging). Experiments with EGO using
these alternative predictor variances suggest that EGO with BK or CS may
or may not perform better than classic Kriging (CK). So, EGO may not
be a good heuristic if the problem becomes complicated; also see Yarotsky
(2013). More precisely, EGO with a specific correlation function and the
classic estimator of the Kriging predictor variance replaced by the BK or
CS estimators may be a refinement that does not improve EGO drastically.
We might therefore stick to CK if we accept some possible inefficiency and
prefer the simple analytical computations in Eq. (6.32).

6.3.2 Kriging and Integer Mathematical Programming
(KrIMP)

Kleijnen et al. (2010) derives a heuristic that is not guided by EGO, but
is more related to classic operations research (OR); this heuristic is called
“Kriging and integer mathematical programming (KrIMP)”. The heuristic
addresses constrained optimization in random simulation, but may be eas-
ily adjusted (simplified) for deterministic simulation. Applications include
an (s, S) inventory system with random lead times and a service level con-
straint that was originally investigated in Bashyam and Fu (1998), and a
complicated call-center simulation in Kelton et al. (2007), which also min-
imizes costs while satisfying a service constraint; moreover, the call-center
simulation must satisfy a budget constraint for the deterministic inputs
(namely, resources such as personnel with specific skills) and these inputs
must be nonnegative integers.
These two applications are examples of the constrained nonlinear random

optimization problem that we have already presented in Eq. (6.8) through
Eq. (6.10), but that we now augment with constraints for the deterministic
inputs z that must satisfy s constraints fg (e.g., budget constraints), and
must belong to the set of non-negative integers N:

minx E(w0|x)
E(wh′ |x) ≥ ch (h′ = 1, . . . , r − 1)

fg(x) ≥ cg (g = 1, . . . , s)

xj ∈ N (j = 1, . . . , d). (6.33)
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To solve this problem, KrIMP combines the following three method-
ologies:

1. sequentialized DOE to specify the next simulation combination (EGO
also uses a sequential design);

2. Kriging to analyze the simulation I/O data that result from method-
ology #1 (like EGO does), and obtain explicit functions for E(wh|x)
(h = 0, 1, . . ., r − 1) instead of the implicit (black box) functions of
simulation;

3. integer nonlinear programming (INLP) to estimate the optimal
solution from the explicit Kriging metamodels that result from
methodology #2; obviously INLP is a part of integer mathematical
programming (IMP).

KrIMP comprises modules that use free off-the-shelf software. We may
replace these modules, as we learn more about DOE, Kriging, and INLP.
For example, we may replace Kriging by intrinsic Kriging (IK); we men-
tioned IK in Sect. 5.4. If our application has continuous inputs, then we may
replace INLP by a solver that uses the gradients; these gradients are esti-
mated by Kriging “for free”, as we discussed in Sect. 5.2 (after Exercise 5.2).
In future research we may adapt KrIMP for deterministic simulations with
constrained multiple outputs and inputs.
Kleijnen et al. (2010) compares the results of KrIMP with those of

OptQuest, which is the popular commercial heuristic embedded in discrete-
event simulation software such as Arena; see Kelton et al. (2007). In the two
applications mentioned above, KrIMP turns out to require fewer simulated
input combinations and to give better estimated optima than OptQuest
does.
Now we discuss some salient characteristics of KrIMP that are summa-

rized in Fig. 6.5; readers may wish to skip to the next section (Sect. 6.4, on
robust optimization). KrIMP simulates a new input combination and uses
the augmented I/O data either to improve the Kriging metamodel or to find
the optimum—similar to “exploration” and “exploitation” in EGO. The r
global Kriging metamodels should be accurate enough to enable INLP to
identify either infeasible points (which violate the constraints on the r − 1
random outputs E(wh′)) or suboptimal points (which give a too high goal
output E(w0) when trying to minimize E(w0)). KrIMP may add a new
point throughout the entire input-feasible area, which implies exploration.
The global Kriging metamodel for output wh (h = 0, 1, . . ., r − 1) uses all
observations for this output, obtained so far. To guide the INLP search,
KrIMP simulates each point with a given relative precision so KrIMP is
reasonably certain of the objective values and the possible violation of the
constraints; i.e., KrIMP selects the number of replications mi such that
the halfwidth of the 90% CI for the average simulation output is within
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FIGURE 6.5. Overview of the KrIMP heuristic, combining Kriging and
integer mathematical programming (IMP)

15% of the true mean for all r outputs; also see our discussion on designs
for linear regression metamodels with heterogeneous response variances,
in Sect. 3.4.5. Furthermore, KrIMP uses CRN to improve the estimate of
the optimum solution. KrIMP applies Kriging to the average output per
simulated input combination, and does so for each of the r types of out-
put; i.e., KrIMP does not use stochastic Kriging (SK) discussed in Sect. 5.6
and does not apply multivariate Kriging discussed in Sect. 5.10. KrIMP
also uses distribution-free bootstrapping, combined with cross-validation.
This bootstrapping gives an estimate of the predictor variance for out-
put h at the deleted combination xi, denoted by σ̂2(ŷ∗h(xi)). Actually, the
bootstrap in KrIMP accounts for multivariate (namely, r-variate) output
created through CRN and for nonconstant replication numbers mi This
bootstrap and cross-validation give the following Studentized prediction
errors for output h of deleted combination i with i = 1, . . ., ncv where
ncv denotes the number of cross-validated combinations (ncv < n because
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KrIMP avoids extrapolation in its Kriging):

th,imi−1 =
wh(xi)− ŷh(−xi)

{σ̂2[wh(xi)] + σ̂2[ŷ∗h(xi)]}1/2
(h = 0, . . . , r − 1) (i = 1, . . . , ncv) (6.34)

where

σ̂2[wh(xi)] =
σ̂2[wh(xi)]

mi

with

σ̂2[wh(xi)] =

mi∑
r=1

[wh;r(xi)− wh(xi)]
2

mi − 1
.

The highest absolute value of the th,imi−1 in Eq. (6.34) over all r outputs and

all ncv cross-validated combinations is denoted by max |th,imi−1|. Bonferroni’s
inequality implies that KrIMP divides the traditional type-I error rate α
by r × ncv. If max |th,imi−1| is significant, then KrIMP rejects all r Kriging
metamodels; else, KrIMP uses the metamodels in its INLP, to estimate the
constrained optimum.
Actually, we think that it is not good enough that KrIMP simulates each

point with a given relative precision; i.e., we think that KrIMP should treat
the r − 1 constraints E(wh′ |x) ≥ ch in Eq. (6.33)—or Eq. (6.9) in case of
GRSM—more rigorously such that

P [∀h′ : E(wh′ |x) ≥ ch] ≤ p (6.35)

where p is a given small number; e.g., p = 0.05 is the probability that all
r− 1 constraints are satisfied. Obviously, this chance-constrained formula-
tion concerns the 1−p quantile of the output wh′ given the input combina-
tion x: P [(wh′ |x) < ch] = 1−p. Similar quantiles are used in Feyzioğlu et al.
(2005) applying second-order polynomials (instead of Kriging) to solve a
multi-objective optimization problem (instead of a constrained optimiza-
tion problem such as Eq. (6.33)); Kleijnen et al. (2011) also uses quantiles
in a similar approach. Hong et al. (2015) also considers chance- constrained
optimization in case of a given limited number of alternative simulated sys-
tems. Furthermore—inspired by EGO—we may adapt KrIMP such that it
does not minimize the expected value E(w0|x) in Eq. (6.33), but it mini-
mizes a preselected quantile—namely, the q-quantile—of the goal output:
minx (w0;q|x) where P [(w0|x) < w0;q] = q. Obviously, if q = 0.50 and
w0 has a symmetric distribution (as the Gaussian assumption in Kriging
implies), then w0;q = E(w0). Various choices of q are discussed in Picheny
et al. (2013a). Finally, to predict the joint probability in Eq. (6.35), KrIMP
may use SK defined in Sect. 5.6.
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FIGURE 6.6. Robust solution x1 in case of implementation error within
range U , and nominally optimal solution xo for simulation output w =
fsim(x)

6.4 Robust Optimization

We start with a simple artificial example; see Fig. 6.6. In this example we
assume that an implementation error (say) e occurs when a recommended
solution is realized in the system being simulated; the possible values of
this error fall within a range denoted by U , so e ∈ U where the symbol U
stands for the uncertainty set in the mathematical programming approach
to robust optimization (see the next paragraph). The “nominally” optimal
solution ignores this implementation error, so in the plot the global opti-
mum is xo. A better solution accounting for this implementation error is
x1, which is the best worst-case or min-max solution. In Taguchian robust
optimization (also introduced in the next paragraph) we assume a proba-
bility density function (PDF) for e; e.g., we assume a Gaussian PDF with
a mean E(e) = 0 and a variance such that x+ e—the realized value of the
implemented solution—has a 99% probability of falling within the range U
around the recommended solution x. Obviously, this PDF together with
the curvature of the simulation’s I/O function w = fsim(x) implies that
in this example the simulation output w has Var(w|xo) > Var(w|x1). A
Taguchian solution tries to balance the mean and the variance of the out-
put w through a robust solution for the decision variable x.
In general, the practical importance of robust optimization is empha-

sized by the panel reported in Simpson et al. (2004). Indeed, we think
that robustness is crucial, given today’s increased uncertainty in organi-
zations and their environment; e.g., robust optimization may guide strate-
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gic decisions on supply chains that are meant to be “agile” or “resilient”.
More specifically, the optimum solution for the decision variables—that we
may estimate through local linear regression metamodels or global Kriging
metamodels, as we explained in the preceding sections—may turn out to be
inferior when ignoring uncertainties in the noncontrollable environmental
variables; i.e., these uncertainties create a risk. Taguchi (1987) discusses
“robust optimization” for the design of products. Ben-Tal and Nemirovski
(1998) discusses robust optimization in mathematical programming models
with uncertain coefficients.
Note: Taguchi (1987) is updated in Myers et al. (2009) and Wu and

Hamada (2009). Furthermore, Ben-Tal and Nemirovski (1998) is updated
in Ben-Tal and Nemirovski (2008), Gabrel et al. (2014), Wiesemann et al.
(2014), and Yanikoğlu et al. (2015). Finally, robust optimization in simula-
tion is also discussed in Hamarat et al. (2014) and Jalali and Van Nieuwen-
huyse (2015). Robust decision-making is discussed in Grubler et al. (2015).
Taguchi (1987) emphasizes that in practice some inputs of a manufac-

tured product are under complete control of the engineers, whereas other
inputs are not; e.g., the design of a car engine is completely controlled
by the engineers, but the driving style is not. Consequently, an engineer-
ing design—in this chapter we should distinguish between an engineering
design and a statistical design—that allows some flexibility in its use is
“better”; e.g., a car optimized only for the race circuit does not perform
well in the city streets. Likewise, in simulation—either deterministic or
random—our estimated optimum solution may be completely wrong when
we ignore uncertainties in some inputs; e.g., the nominally optimal decision
on the inventory control limits s (reorder level) and S (order-up-to level)
may be completely wrong if we ignore the uncertainty in the parameters
that we assumed for the random demand and delivery time distributions.
Taguchi (1987) therefore distinguishes between two types of inputs:

• decision variables, which we now denote by dj (j = 1, . . ., k) so d =
(d1, . . ., dk)

′, and

• environmental inputs or noise factors eg (g = 1, . . ., c) so e =
(e1, . . ., ec)

′.

Note: Stinstra and Den Hertog (2008) points out that a source of uncer-
tainty may be implementation error, which occurs whenever recommended
values of decision variables are to be realized in practice; e.g., continu-
ous values are hard to realize in practice, because of limited accuracy (see
again Fig. 6.6). Besides implementation errors, there are validation errors of
the simulation model (compared with the real system) and the metamodel
(compared with the simulation model); also see the discussion on the vali-
dation of metamodels in simulation, in Kleijnen and Sargent (2000).
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We perceive the following major differences between Taguchi’s and Ben-
Tal et al.’s approaches. Originally, Ben-Tal et al. assumed static determin-
istic linear problems solved by LP, whereas we assume dynamic nonlinear
problems solved by either deterministic or random simulation. Ben -Tal et
al. assume that uncertainty implies that the coefficients of the LP problem
lie in a mathematical set called the uncertainty set ; see the example in
Fig. 6.6. We, however, assume that in deterministic or random simulation
some inputs have a given statistical distribution; also see Sect. 5.9, in which
we discussed risk analysis, uncertainty propagation, epistemic uncertainty,
etc. Currently, Ben-Tal et al. also consider multi-stage nonlinear problems
and uncertainty sets based on historical data. Another essential charac-
teristic of simulation is that the objective and constrained functions are
not known explicitly; actually, these functions are defined implicitly by the
simulation model (we may replace these implicit functions by explicit meta-
models, which are linear in the inputs if we use first-order polynomials or
nonlinear if we use either higher-order polynomials or Kriging; metamodels
treat the simulation model as a black box, as we explained in Sect. 2.1).
Moreover, a random simulation model gives random outputs, which only
estimate the true outputs (these outputs may be expected values or specific
quantiles).
The goal of robust optimization is the design of robust products or sys-

tems, whereas the goal of risk analysis is to quantify the risk of a given
engineering design; that design may turn out to be not robust at all.
For example, Kleijnen and Gaury (2003) presents a random simulation of
production-management (through methods such as Kanban, Conwip, and
related methods), using RSM to estimate an optimal solution assuming
a specific—namely the most likely—combination of environmental input
values. Next, the robustness of this solution is estimated when the environ-
ment changes; technically, these environments are generated through LHS.
In robust optimization, however, we wish to find a solution that—from
the start of the analysis—accounts for all possible environments, including
their likelihood; i.e., whereas Kleijnen and Gaury (2003) performs an ex
post robustness analysis, we wish to perform an ex ante analysis.
Note: Whereas optimization is a “hot” topic in simulation (either

deterministic or random), robust optimization is investigated in only a
few publications; see the older references in Kleijnen (2008, pp. 131–132)
and also Bates et al. (2006), Dengiz (2009), Kenett and Steinberg (2006),
Meloni and Dellino (2015), Wiebenga (2014), and the references in the next
subsections.
Next we shall discuss Taguchi’s approach, using RSM in Sect. 6.4.1 and

Kriging in Sect. 6.4.2; we shall discuss Ben-Tal et al.’s approach in
Sect. 6.4.3.
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6.4.1 Taguchian Robust Optimization Through RSM

Taguchi (1987) assumes a single output—which we denote by w—focusing
on its mean μw and its variance caused by the noise factors e so σ2(w|d)
> 0. These two outputs are combined in a scalar loss function such as the
signal-to-noise or mean-to-variance ratio μw/σ

2
w; also see the discussion of

these functions in Myers et al. (2009, pp. 486–488). Instead of this scalar
function, we use both μw and σ2

w separately and formulate the following
mathematical problem:

min E(w|d) such that σ(w|d) ≤ T (6.36)

whereE(w|d) is the mean of the simulation output w determined by the dis-
tribution function of the environmental variables e and controlled through
the decision factors d; the constraint concerns σ(w|d), which is the stan-
dard deviation of the goal output w, and has a given upper threshold T .
We also refer to Myers et al. (2009, pp. 488–495) and the surveys on robust
optimization in Beyer and Sendhoff (2007) and Park et al. (2006).
Note: An alternative for the standard deviation σ(w|d) in Eq. (6.36)

may be the variance σ2(w|d), but the standard deviation uses the same
measurement unit as the mean (w|d). Kleijnen and Gaury (2003) uses the
probability of a specific disastrous event happening; e.g., P (w > c|d).
Taguchi’s worldview has been very successful in production engineering,

but statisticians have seriously criticized his statistical techniques; see the
panel report in Nair (1992). To this report we add that in simulation we can
experiment with many more inputs, levels (values), and combinations than
we can in real-life experiments; Taguchians and many statisticians focus on
real-life experiments. Myers et al. (2009, pp. 502–506) combines Taguchi’s
worldview with the statisticians’ RSM. Whereas Myers et al. (2009) as-
sumes that the multivariate noise e has the covariance matrix Ωe = σ2

eI—
and the mean μe— we assume a general Ωe. Whereas Myers et al. (2009)
superimposes contour plots for the mean and variance of the output to find
a robust solution, we use more general and flexible mathematical program-
ming. This mathematical programming, however, requires specification of
threshold values such as T in Eq. (6.36). Unfortunately, managers may find
it hard to select specific values such as T , so we may try different values and
estimate the corresponding Pareto-optimal efficiency frontier. Decreasing T
in Eq. (6.36) increases E(w|d) if the constraint with the old T was binding.
So, changing T gives an estimate of the Pareto-optimal efficiency frontier;
i.e., E(w|d) and σ(w|d) are criteria requiring a trade-off. To estimate the
variability of this frontier resulting from the various estimators, we may
use bootstrapping. For details on our adaptation of the approach in Myers
et al. (2009) we also refer to Dellino et al. (2010).
More precisely, Myers et al. (2009) fits a second-order polynomial for

the decision variables d that are to be optimized. Possible effects of the
environmental variables e are modelled through a first-order polynomial
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e combination
d combination 1 2 . . . ne

1
2
. . .
nd

TABLE 6.1. A crossed design combining a design for the decision variables
d and a design for the environmental inputs e

in these variables e. Control-by-noise two-factor interactions (between d
and e) are also considered. Altogether, the following “incomplete” second-
order polynomial is fitted:

y = β0 +

k∑

j=1

βjdj +

k∑

j=1

k∑

j′≥j

βj;j′djdj′ +

c∑

g=1

γgeg +

k∑

j=1

c∑

g=1

δj;gdjeg + ε

= β0 + β′d+ d′Bd+ γ′e+ d′Δe+ ε (6.37)

where we now denote the regression residual through the symbol ε (instead
of e); we denote the first-order effects by β = (β1, . . . , βk)

′ for d and γ =
(γ1, . . . , γc)

′ for e; we let B denote the k×k symmetric matrix with on the
main diagonal the purely quadratic effects βj;j of d and off the diagonal
half the interactions βj;j′/2 of d; and we let Δ denote the k × c matrix
with the interactions δj;g between decision variable dj and environmental
variable eg.
If E(ε) = 0, then Eq. (6.37) implies the following regression predictor for

μw (true mean of output w):

μy = β0 + β′d+ d′Bd+ γ′μe + d′Δμe. (6.38)

Because the covariance matrix of the noise variables e is Ωe, the regression
predictor for σ2

w (true variance of w) is

σ2
y = (γ ′ + d′Δ)Ωe(γ +Δ′d) + σ2

ε = l′Ωel+ σ2
ε (6.39)

where l = (γ + Δ′d) = (∂y/∂e1, . . . , ∂y/∂ec)
′ so l is the gradient with

respect to e. Consequently, the larger the gradient’s elements are, the larger
σ2
y is—which stands to reason. Furthermore, if there are no control-by-noise

interactions so Δ = 0, then we cannot control σ2
y through d.

To enable estimation of the regression parameters in Eq. (6.37), we follow
the usual Taguchian approach and use a crossed design; i.e., we combine
the design or inner array for d with nd combinations and the design or
outer array for e with ne combinations such that the crossed design has
nd × ne combinations as in Table 6.1. To estimate the optimal d through
the second-order polynomial in Eq. (6.37), we use a CCD; also see again our
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discussion below Eq. (6.4). For the first-order polynomial in e, we use a R-
III design; see the discussion below Eq. (6.3). Obviously, the combination of
these two designs enables the estimation of the two-factor interactions δj;g.
Note: Designs that are more efficient than crossed designs are discussed

in Dehlendorff et al. (2011), Dellino et al. (2010), Khuri and Mukhopadhyay
(2010), Kolaiti and Koukouvinos (2006), and Myers et al. (2009).
To use linear regression analysis for the estimation of the parameters in

Eq. (6.37), we reformulate that equation as

y = ζ ′x+ ε (6.40)

with the q-dimensional vector ζ = (β0, . . ., δk;c)
′ and x defined in the

obvious way; e.g., the element corresponding with β1;2 (interaction between
d1 and d2) is d1d2. Obviously, Eq. (6.40) is linear in ζ, but not in d.

The OLS estimator ζ̂ of ζ in Eq. (6.40) is

ζ̂ = (X′X)−1X′w (6.41)

where X is the N × q matrix of explanatory variables with N =
∑n

i=1mi

where n denotes the number of different combinations of d and e, and mi

denotes the number of replications in combination i (obviously, mi = 1 in
deterministic simulation); w is the vector with the N “stapled”
(or “stacked”) outputs wi;r where r = 1, . . .,mi.

The covariance matrix of the OLS estimator ζ̂ defined in Eq. (6.41) is

Σ
̂ζ = (X′X)−1σ2

w (6.42)

where σ2
w equals σ2

ε because we assume the metamodel in Eq. (6.37) to be
valid and ε to be white nose so ε ∼ NIID(0, σ2

ε ). This variance is estimated
by the mean squared residuals (MSR), which we have already defined in
Eq. (2.20) and we repeat here for convenience:

MSR =
(ŷ −w)′(ŷ −w)

N − q
(6.43)

where ŷ = ζ̂
′
x; also see Eq. (6.6).

Note: Santos and Santos (2011) allows σ2
w to be nonconstant, and esti-

mates a metamodel for σw—besides a metamodel for μw. Shin et al. (2011)
also estimates one metamodel for the mean and one for the variance.
To estimate the predictor mean μy in the left-hand side of Eq. (6.38), we

simply plug ζ̂ defined in Eq. (6.41) into the right-hand side of Eq. (6.38),
which also contains the known d and μe. We also estimate the predictor

variance σ2
y by plugging ζ̂ into Eq. (6.39), where Ωe is known. We point

out that Eq. (6.39) involves products of unknown parameters, so it implies
a nonlinear estimator σ̂2

y ; plugged-in estimators certainly create bias, but
we ignore this bias.
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Note: Apley and Kim (2011) follows a Bayesian approach—called “cau-
tious robust design”—which does account for the uncertainty of the param-
eter estimator ζ̂, and gives an analytical (instead of a simulation) solution.
Our final goal is to solve Eq. (6.36). We solve this constrained minimiza-

tion problem through a mathematical programming solver; e.g., Matlab’s
“fmincon”—but a different solver might be used; see Gill et al. (2000). This
solution estimates the robust optimal solution for the decision variables and
the resulting mean and variance.
Dellino et al. (2010) presents an example; namely, the economic order

quantity (EOQ) for an environment with a demand rate that is uncertain—
but this rate has a known distribution (implying “uncertainty propaga-
tion” of “epistemic” uncertainty; see again Sects. 1.1 and 5.9). This example
demonstrates that if management prefers low variability of inventory costs,
then they must pay a price; i.e., the expected costs increases. Furthermore,
different values are indeed found for the robust EOQ and the classic EOQ;
this classic EOQ assumes a known fixed demand rate. More examples are
referenced in Yanikoğlu et al. (2015).
Note: The solution estimated through robust optimization is a nonlinear

function of the simulation output so there are no standard CIs for this so-
lution. We may therefore evaluate the reliability of the estimated solution
through bootstrapping. The final decision on the preferred solution is up to
management; they should select a compromise combination of the decision
variables depending on their risk attitude. Shang et al. (2004) uses plots
to decide on a compromise solution; also see Fig. 6.7 where the horizontal
double-pointed arrows denote the (bootstrap) CIs for the optimal solutions
for the mean and variance, respectively, which do not overlap in this exam-
ple. However, we leave this bootstrapping for future research. We also refer
to Apley and Kim (2011), discussed in the immediately preceding Note.
Note: Future research may also address the following issues. Instead of

minimizing the mean under a standard-deviation constraint as in Eq. (6.36),
we may minimize a specific quantile of the simulation output distribution
or minimize the conditional value at risk (CVaR); CVaR considers only
one-sided deviations from the mean (whereas the standard deviation and
the variance consider deviations on both sides of the mean). Indeed, Angün
(2011) replaces the standard deviation by the CVaR and considers random
simulation of the (s, S) inventory system in Bashyam and Fu (1998) and
the call center in Kelton et al. (2007); in case the problem is found to be
convex, this problem can be solved very efficiently. Instead of Eq. (6.36),
Broadie et al. (2011) estimates the probability of a large loss in financial
risk management, for various “scenarios”—these scenarios correspond with
the combinations of environmental variables e in our approach—and ex-
amines the sequential allocation of the computer budget to estimate this
loss, allowing for variance heterogeneity; we also refer to Sun et al. (2011),
which we shall briefly discuss in Sect. 6.4.2 (last Note). Other risk mea-
sures are the expected shortfall, which is popular in the actuarial literature;
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FIGURE 6.7. Example of robust optimization of a simulation model with
output w, a single controllable input d; and one or more uncontrollable
inputs e so Var(w|d) > 0

see again Angün (2011) and also Gordy and Juneja (2010) and Lan et al.
(2010). Furthermore, multi-objective optimization and genetic algorithms
for estimating Pareto frontiers are discussed in Koziel et al. (2014) and
Shahraki and Noorossana (2014). Another methodology for estimating the
Pareto frontier is developed in Shin et al. (2011), solving a bi-objective ro-
bust design problem considering two quality characteristics. Rashid et al.
(2013) also presents a method for the estimation of the efficiency frontier.
Ardakani and Wulff (2013) gives an extensive overview of various opti-
mization formulations in case of multiple outputs, using a multi-objective
decision-making perspective; these formulations include our Eq. (6.36), the
Pareto frontier, so-called desirability functions, etc.; an application of this
desirability function—combining two outputs into a single criterion—is pre-
sented in Yalçinkaya and Bayhan (2009).

6.4.2 Taguchian Robust Optimization Through Kriging

Dellino et al. (2012) combines the world view of Taguchi (1987) and Krig-
ing metamodels, for robust optimization in deterministic simulation. This
approach is illustrated through the EOQ example with uncertain demand
rate that was also used in Dellino et al. (2010) (discussed in the preceding
subsection, Sect. 6.4.1).
More precisely, Taguchi’s low-order polynomial metamodels are replaced

by ordinary Kriging (OK) metamodels. Moreover, bootstrapping is applied
to quantify the variability in the estimated Kriging metamodels. Instead
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of Taguchi’s signal-noise criterion μw/σ
2
w, now Kriging is combined with

nonlinear programming (NLP) (NLP is also discussed in the subsection on
KrIMP, Sect. 6.3.2). Changing the threshold values in the NLP model—
that will be defined in Eq. (6.44)—enables the estimation of the Pareto
frontier. The EOQ example shows that robust optimization may require
an order quantity that differs from the classic EOQ (such a difference is
also found through the RSM approach in Sect. 6.4.1).
Specifically, Dellino et al. (2012) uses the following NLP model:

min E(w|d) such that σ(w|d) ≤ T (6.44)

whereE(w|d) is the mean of the simulation output w determined by the dis-
tribution function of the environmental variables e and controlled through
the decision factors d; the constraint concerns σ(w|d), which is the stan-
dard deviation of the goal output w, and has a given upper threshold T .
The same problem was defined in Eq. (6.36).
Next, E(w|d) and σ(w|d) are replaced by their Kriging metamodels.

Obviously, the constrained minimization problem in Eq. (6.44)—combined
with the explicit Kriging approximations—is nonlinear in the decision
variables d.
We point out that we are not interested in the functional relationship be-

tween the output w and the environmental inputs e; in the RSM approach—
in Eq. (6.37)—we do estimate a low-order polynomial in e and d. Following
Taguchi (1987), we consider the inputs e as noise. Unlike Taguchi, we now
use LHS to sample (say) ne combinations of the environmental inputs e.
For the decision variables d we do not use a CCD, whereas we did use a
CCD in the RSM approach in Sect. 6.4.1 (between Eqs. (6.39) and (6.40)).
LHS does not impose a relationship between ne (number of combinations
of e) and c (number of environmental inputs), as we explained in our dis-
cussion of LHS in Sect. 5.5.1. If we do not have prior information about the
likelihood of specific values for e, then we might use independent uniform
distributions per environmental input eg (g = 1, . . ., c) (also see our brief
discussion of Bayesian prior distributions at the end of Sect. 5.9 on risk
analysis). Whereas classic optimization assumes a single “scenario” (e.g.,
the most likely combination of environmental inputs), we now estimate
the parameters in the Kriging metamodel for the decision variables d from
the simulation outputs averaged over all simulated combinations of e; these
combinations are sampled through LHS accounting for the distribution of e.
We now explain this Kriging approach to Taguchian optimization, in more
detail.
In general, if we wish to fit a Kriging metamodel to obtain an explicit

approximation for the I/O function of a simulation model, then we often
use LHS to obtain the I/O simulation data—as we have already discussed
in detail in Sect. 5.5. Dellino et al. (2012) also uses LHS, as part of the
following two approaches, especially developed for robust optimization:
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1. Analogously to Dellino et al. (2010), fit two Kriging metamodels;
namely, one model for E(w|d) and one for σ(w|d)—both estimated
from the simulation I/O data.

2. Analogously to Lee and Park (2006), fit a single Kriging metamodel
to a relatively small number (say) n of combinations of d and e;
next use this metamodel to compute the Kriging predictions for the
simulation output w for N � n combinations of d and e accounting
for the distribution of e.

First we summarize approach 1, then approach 2, and finally the two
approaches together.
Sub 1 : We start with selecting the input combinations for the simula-

tion model through a crossed design for d and e; see again Table 6.1.
Such crossed designs are traditional in Taguchian design (as we discussed
between Eqs. (6.39) and (6.40)). To facilitate the fitting of a Kriging meta-
model in d, we select the nd combinations of d space-filling; e.g., we use
a maximin LHS, as we discussed in Sect. 5.5.1. The ne combinations of e,
however, we sample from the distribution of e; we may use LHS for this
(stratified) sampling. The resulting I/O data form an nd×ne matrix. Such a
crossed design enables the following estimators of the nd conditional means
and variances where i = 1, . . ., nd:

wi =

∑ne

j=1 wi;j

ne
and s2i (w) =

∑ne

j=1(wi;j − wi)
2

ne − 1
. (6.45)

These two estimators are unbiased, as they do not use any metamodels.
Sub 2 : We start with a relatively small number (say) n of combinations

of the k+ c inputs d and e; we select these combinations through a space-
filling design (so we not yet sample e from its distribution). Next, we use
this n×(k+c) matrix with the simulation input data and the n-dimensional
vector with the corresponding simulation outputs w, to fit a Kriging meta-
model that approximates w as a function of d and e. Finally, we use a
design with N � n combinations, crossing a space-filling design with Nd

combinations of d and LHS with Ne combinations of e accounting for the
distribution of e. We use this Kriging metamodel to compute the predictors
ŷ of the N outputs. We then derive the Nd conditional means and stan-
dard deviations using Eq. (6.45) replacing nd and ne by Nd and Ne and
replacing the simulation output w by the Kriging predictor ŷ. We use these
predictions to fit two Kriging metamodels; namely, one Kriging model for
the mean output and one for the standard deviation of the output.
Sub 1 and 2 : Next we use the two Kriging metamodels—namely, one

model for the mean and one model for the standard deviation of the sim-
ulation output—as input for the NLP model in Eq. (6.44) to estimate the
robust optimal I/O combination. Finally, we vary the threshold T to esti-
mate the Pareto frontier. We call this frontier the “original” frontier, to be
distinguished from the bootstrapped frontier (discussed in the next Note).
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Note: The original frontier is built on estimates of the mean and stan-
dard deviation of the simulation output. To quantify the variability in the
estimated mean and standard deviation, we apply distribution-free boot-
strapping. Moreover, bootstrapping assumes that the original observations
are IID; however, the crossed design for d and e (see again Table 6.1) im-
plies that the nd observations on the output for a given combination of
the c environmental factors e are not independent; we might compare this
dependence with the dependence created by CRN. Therefore, we sample
the nd-dimensional vectors wj (j = 1, . . ., ne) ne times with replacement.
This resampling gives the ne bootstrapped observations w∗

j . This gives the
bootstrapped conditional means w∗

i and standard deviations s∗i . To these
w∗

i and s∗i , we apply Kriging. These two Kriging metamodels together with
the NLP model in Eq. (6.44) give the predicted optimal bootstrapped mean
and standard deviation. Repeating this bootstrap sampling (say) B times
gives CIs. More research is needed to discover how exactly to use these
CIs to account for management’s risk attitude; also see Zhang and Ma
(2015). Furthermore, Simar and Wilson (1998) studies bootstrapping for
estimating the variability of a frontier; namely, the efficiency frontier in
data envelop analysis (DEA), estimated through a LP model. We also re-
fer to Dellino and Meloni (2013) for quantifying the variability of a fitted
metamodel, using bootstrapping and cross-validation.
To compare (validate) the robust solution and the classic (nominally

optimal) solution, we may sample new combinations of the environmental
inputs; i.e., we replace the old LHS combinations by new combinations,
because the old combinations favor the robust solution which uses estimates
based on these old combinations.
Note: Using a Bayesian approach to the analysis of the I/O data from

simulation, Tan (2014a) first fits a Kriging model to the I/O data, then ap-
proximates this Kriging model through a so-called orthonormal polynomial
(which is more complicated than the polynomial models that we discussed
in Sect. 2.1), and finally uses this polynomial for “functional analysis of
variance” or FANOVA (we discussed FANOVA in Sect. 5.8). This FANOVA
can decompose σ2(w|d) (the response variance at a given combination of
the decision variables d) into a sum of variances due to the main effects
and interactions among the environmental variables e; several sensitivity
indexes within the context of robust optimization can be defined. We also
refer to Tan (2014b).
Note: EGO (with its EI criterion and Kriging metamodeling, explained

in Sect. 6.3.1) may also be used for robust optimization. Actually, Marzat
et al. (2013) refers to several publications that extend EGO accounting for
a probability distribution of e such that it minimizes a weighted average of
the response w over a discrete set of values for these e. Marzat et al. (2013)
combines EGO with algorithms for solving the following minimax problem:
estimate the combination of d that minimizes the maximum response when
the worst combination of e occurs; several test functions are investigated.
Furthermore, Ur Rehman et al. (2014) extends EGO accounting for im-
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plementation errors within an “uncertainty set” (see Sect. 6.4.3 below) and
estimating the “best worst-case” or “min-max” solution. Janusevskis and
Le Riche (2013) also applies Kriging and EGO for robust optimization.
Note: In Sect. 5.6 on stochastic Kriging (SK) we have already mentioned

that the simulation response may be a quantile, which may be relevant
in chance-constrained (probabilistically constrained) optimization. Simula-
tion optimization with probabilistic constraints—namely, min E(w0) such
that P (w1 ≤ c) ≥ p—is discussed in Andrieu et al. (2011) and Sakallı and
Baykoç (2011); we also refer back to the references on EGO adapted for
chance-constrained optimization in Sect. 6.3.1, and Eq. (6.35) in Sect. 6.3.2
on KrIMP. Stochastically constrained optimization in a R&S context is dis-
cussed in Hong et al. (2015). We also refer back to the “expected shortfall”,
discussed in Sect. 6.4.1 (last Note in that subsection) including references
to Broadie et al. (2011) and Sun et al. (2011); those references and also
Chen and Kim (2014) and Gan and Lin (2015) use nested simulation, which
should be distinguished from the crossed designs—as we briefly discusses
in the Note after Eq. (6.39). Furthermore, NLP may be replaced by some
other optimizer; e.g., an evolutionary algorithm. Finally, we may also apply
Dellino et al. (2012)’s methodology to random simulation models, replacing
ordinary Kriging (OK) by stochastic Kriging (SK) or stochastic intrinsic
kriging (SIK); see the discussions on SK and SIK in Chap. 5. Yin et al.
(2015) use simulation of finite element models with uncertain environmen-
tal inputs. This simulation is followed by univariate Kriging metamodels.
These metamodels are the inputs for a multicriteria optimization problem
that combines the means and standard deviations of the multiple simula-
tion outputs. This problem is solved through particle-swarm heuristics.

6.4.3 Ben-Tal et al.’s Robust Optimization

If the mathematical programming (MP) solution ignores the uncertainty in
the coefficients of the MP model, then the so-called nominal solution may
easily violate the constraints in the given model. The robust solution may
result in a slightly worse value for the goal variable, but it increases the
probability of satisfying the constraints; i.e., a robust solution is “immune”
to variations of the variables within the uncertainty set. Given historical
data on the environmental variables e, Yanikoğlu et al. (2015) derives a
specific uncertainty set for p where p denotes the unknown density func-
tion of e that is compatible with the historical data on e (more precisely,
p belongs to this set with confidence 1−α if we select some phi-divergence
measure such as the well-known chi-square distance). The mathematical
challenge in robust optimization of MP models is to develop a computa-
tionally tractable so-called robust counterpart of the original problem. In
this section we do not present the mathematical details of the derivation
of tractable robust counterparts, but refer to the references that we gave
above.
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Note: Taguchians assume a specific distribution for the environmental
variables e, which—in case of a multivariate Gaussian distribution—implies
a mean vector μe and a covariance matrix Ωe; see Eqs. (6.38) and (6.39).
We may estimate this distribution from historical data. However, Yanikoğlu
et al. (2015) develops an approach that uses only the original observed
data on e; several numerical examples demonstrate the effectiveness of this
novel combination of the two approaches originated by Taguchi and Ben-Tal
et al. The uncertainty (or “ambiguity”) of the estimated mean vector μe

and covariance matrix Ωe is also considered in Hu et al. (2012), assuming
a multivariate normal distribution for the parameters e of the underlying
simulation model and ambiguity sets for μe and Ωe with the corresponding
worst-case performance.
The examples in Yanikoğlu et al. (2015) include a deterministic simula-

tion of the television example in Myers et al. (2009, p. 512) and a random
simulation of a distribution-center example in Shi (2011); details on the
latter example are also given in Shi et al. (2014). The latter example has as
response the total throughput, and has five decision variables (e.g., num-
ber of forklifts) and two environmental variables (e.g., delay probabilities
of suppliers); the incomplete second-order polynomial of Eq. (6.37) is fitted.
Yanikoğlu et al. (2015) replaces Eq. (6.36) by the following related problem:

min σ2
w such that μw ≤ T (6.46)

where the statistical parameters μw and σ2
w are based on the historical data

(using the phi-divergence criterion). These two examples demonstrate that
robust solutions may have better worst-case performance and also better
average performance than the nominal solutions have.

6.5 Conclusions

In this chapter we started with basic RSM, which minimizes the expected
value of a single response variable in real-life experiments or determinis-
tic simulation. Next we considered RSM in random simulation. We then
presented the ASD search direction, which improves the classic steepest
descent direction. We also summarized GRSM for simulation with mul-
tivariate responses, assuming that one response is to be minimized while
all the other responses and deterministic inputs should satisfy given con-
straints. Furthermore, we discussed the KKT conditions in constrained
minimization, and presented a parametric bootstrap procedure for testing
these conditions in random simulation. Next we discussed Kriging for opti-
mization. We detailed EGO for unconstrained optimization in deterministic
simulation, and KriMP for constrained optimization in random simulation.
Finally, we considered robust optimization, using either the linear regres-
sion metamodels of RSM or Kriging metamodels; we also briefly discussed
Ben-Tal et al.’s approach to robust optimization.
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Future research may study the selection of the required number of repli-
cations, and the use of replications to estimate the accuracy of the result-
ing estimated search direction or optimum. Bootstrapping might solve this
problem, but more research is needed. Numerical evaluation of the adapted
steepest descent method would benefit from more applications in practice.
We also see a need for more research on the KKT testing procedure when
all local points (not only the center) are replicated and CRN are used; more
practical applications are also needed. Various EGO variants and KriMP
need more research. In Taguchian robust optimization we may vary the
threshold values, to estimate the Pareto frontier; bootstrapping this fron-
tier might enable management to make the final compromise decision—but
more research and applications are needed.

Solutions of Exercises

Solution 6.1 zo = (−5, 15); also see Angün et al. (2009).

Solution 6.2 If Z′Z = NI, then Eq. (6.5) implies C = I/N . Hence,
Eq. (6.7) does not change the steepest descent direction.

Solution 6.3 The ratio of two normal variables has a Cauchy distribution
so its expected value does not exist; its median does.

Solution 6.4 (zo1, zo2) = (1.24, 0.52); also see Angün et al. (2009).
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Jala M, Lévy-Leduc C, Moulines É, Conil E, Wiart J (2014) Sequential
design of computer experiments for the assessment of fetus exposure to
electromagnetic fields. Technometrics (in press)



292 6. Simulation Optimization

Jalali H, van Nieuwenhuyse I (2014) Evaluation of Kriging-based methods
for simulation optimization with homogeneous noise. In: Tolk A, Diallo
SY, Ryzhov IO, Yilmaz L, Buckley S, Miller JA (eds) Proceedings of the
2014 winter simulation conference, pp 4057–4058

Jalali H, Van Nieuwenhuyse I (2015, accepted) Simulation optimization in
inventory replenishment: a classification. IIE Trans

Janusevskis J, Le Riche R (2013) Simultaneous kriging-based estimation
and optimization of mean response. J Glob Optim 55(2):313–336

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of
expensive black-box functions. J Glob Optim 13:455–492

Joshi S, Sherali HD, Tew JD (1998) An enhanced response surface method-
ology (RSM) algorithm using gradient deflection and second-order search
strategies. Comput Oper Res 25(7/8):531–541
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Yalçinkaya, Ö, Bayhan GM (2009) Modelling and optimization of average
travel time for a metro line by simulation and response surface method-
ology. Eur J Oper Res 196(1):225–233
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