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Preface

This book is the second version of Design and Analysis of Simulation
Ezxperiments, originally published in 2008. Compared with the first edi-
tion, I have made many changes; I think that only a few sentences remain
unchanged. Altogether, the new version has approximately 50% more pages
than the original version. I have also changed the organization of the book;
i.e., I have changed the order of the various chapters. More specifically, I
have moved the chapter called “Screening Designs” from the end of the first
edition, so in the second edition this chapter immediately follows the two
chapters on classic designs (because both screening designs and classic de-
signs assume polynomial regression metamodels). I have also reversed the
order of the two chapters called “Simulation Optimization” and “Kriging
Metamodels.” Now the Kriging chapter immediately follows the chapters
on classic designs and screening designs (Kriging assumes a metamodel
involving a Gaussian process). The optimization chapter uses either regres-
sion models or Kriging models, which are now presented in the preceding
chapters. The chapters on Kriging and optimization show most changes
compared with the first edition; Kriging and simulation optimization are
very active fields of research. I moved the section on validation (includ-
ing R? and cross-validation) from Chap.2 (which assumes “white noise”)
to Chap.3. To the chapter on screening, I added a section on selecting
the number of replications in sequential bifurcation (SB) through Wald’s
sequential probability ratio test (SPRT) and a section on SB for multiple
types of simulation responses. I deleted Chap. 7, which was the last chapter

vii



viii Preface

called Epilogue. Note that in 2010 the first edition was also translated into
Chinese (Beijing: Publishing House of Electronics Industry).

In the new version, I am no longer referring to a specific publication
through a number, but through the name(s) of the author(s) plus the year
of publication; the latter notation is more informative. Furthermore, I have
tried to keep the list of references relatively short, so I exclude older refer-
ences that are listed in newer references—unless I consider the older refer-
ence to be a “classic” publication. Nevertheless, this edition contains many
references. Instead of a single list of references at the end of the book, I now
present a list of references at the end of each chapter so that chapters may
be downloaded separately. To improve the book’s readability, I list many
references at the very end of a paragraph or in a separate paragraph that
starts with “Note”.

In this version, I still focus on those aspects of simulation in which I
have a certain expertise. This expertise is based on more than 40 years
of research in the simulation method and its application in various areas.
Although most of this expertise concerns discrete-event simulations (espe-
cially queueing and inventory simulations), I do have some experience with
deterministic simulation (especially engineering simulations). Furthermore,
this expertise is based on a doctoral degree in business and economics—in
the German, not the Anglo-Saxon tradition—specializing in mathemati-
cal methods; altogether, I am an “operations researcher”, but there are
different types of operations researchers.

Like the first edition, the second edition requires that the readers already
have a basic knowledge of the simulation method; e.g., they know concepts
such as terminating simulation and steady-state simulation. They should
also have a basic understanding of mathematical statistics, including con-
cepts such as distribution functions, averages, and variances.

Information that I consider to be redundant is displayed between paren-
theses; nonredundant, extra information may be placed between em dashes
(or —). Abbreviations and symbols are displayed in italics. Definitions of
abbreviations and symbols are repeated in various chapters, and abbrevi-
ations can also be looked up in the Subject Index at the end of the book;
this redundancy enables readers to browse through the various chapters,
without having to follow a particular order. I do not use any footnotes;
instead some paragraphs start with the word “Note”. To avoid misleading
hyphenation of website addresses, I display each address on a separate line;
a comma or a period at the end of the address is not part of the address.
Sometimes I treat non-English names in a sloppy way; e.g., I write the Rus-
sian name Sobol’ as Sobol, and I always write Van Beers, whereas proper
Dutch sometimes requires “van Beers” and proper Dutch lists “van Beers”
in the References under the letter b instead of v. I write Gaussian (not
gaussian), Kriging, and Studentizing, because these words are derived from
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the proper names Gauss, Krige, and Student (Gosset’s pseudonym). I use
American English (but my native tongue is Dutch), which avoids hyphens
in compounds if there is no compelling reason; e.g., I write “nonnegative”
and “re-estimate”.

For an update of this book, including corrections and new references,
visit my website

https://sites.google.com/site/kleijnenjackpc/

I thank Fred Hillier (Stanford University), who is the former series edi-
tor, for encouraging me to write a second version of my book. Mirko Janc
(INFORMS) provided numerous technical comments on a preliminary ver-
sion. Wim Van Beers (University of Amsterdam) read preliminary versions
of all the chapters in this book and provided me with comments and with
new versions of most Figures. Ehsan Mehdad (Tilburg University) read
the preliminary versions of the chapters on Kriging and optimization and
provided me with some new Figures for these chapters. I also received
valuable comments on preliminary versions of various chapters from the
following colleagues: Bertrand Iooss (Electricité de France R & D), Tom
Lucas (Naval Postgraduate School), Barry Nelson (Northwestern Univer-
sity), Andrea Saltelli (Joint Research Centre of the European Commission),
Lee Schruben (University of California Berkeley), Wen Shi (Huazhong Uni-
versity of Science and Technology), and Felipe Viana (GE Global Research).

I wrote this new edition, while being an emeritus professor at Tilburg
University. The university provided me with an office, a PC with appropri-
ate software, e-mail, and library services.

Furthermore, I reproduce the following text from the back cover of the
original edition:

“This is an advanced expository book on statistical methods for the De-
sign and Analysis of Simulation Ezperiments (DASE). Though the book
focuses on DASE for discrete-event simulation (such as queueing and in-
ventory simulations), it also discusses DASE for deterministic simulation
(such as engineering and physics simulations). The text presents both clas-
sic and modern statistical designs. Classic designs (e.g., fractional factori-
als) assume only a few factors with a few values per factor. The resulting
input/output data of the simulation experiment are analyzed through low-
order polynomials, which are linear regression (meta)models. Modern de-
signs allow many more factors, possible with many values per factor. These
designs include group screening (e.g., Sequential Bifurcation, SB) and space
filling designs (e.g., Latin Hypercube Sampling, LHS). The data resulting
from these modern designs may be analyzed through low-order polynomials
for group screening, and various metamodel types (e.g., Kriging) for LHS.

In this way, the book provides relatively simple solutions for the problem
of which scenarios to simulate and how to analyze the resulting data. The
book also includes methods for computationally expensive simulations.


https://sites.google.com/site/kleijnenjackpc/
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It discusses only those tactical issues that are closely related to strategic
issues; i.e., the text briefly discusses run-length and variance reduction
techniques.

The leading textbooks on discrete-event simulation pay little attention to
the strategic issues of simulation. The author has been working on strate-
gic issues for approximately 40 years, in various scientific disciples [the
original text has a typo: “disciples” should be “disciplines”|—such as oper-
ations research, management science, industrial engineering, mathematical
statistics, economics, nuclear engineering, computer science, and informa-
tion systems.

The intended audience are researchers, graduate students, and mature
practitioners in the simulation area. They are assumed to have a basic
knowledge of simulation and mathematical statistics; nevertheless, the book
summarizes these basics, for the readers’ convenience.”

Finally, I reproduce the following text from the Preface of the original
version:

“I received valuable comments on preliminary versions of various chap-
ters from the following colleagues: Ebru Angiin (Galatasaray University,
Istanbul), Russell Barton (Pennsylvania State), Victoria Chen (University
of Texas at Arlington), Gabriella Dellino (Politecnico di Bari), Dick den
Hertog (Tilburg University), Tony Giunta (Sandia), Yao Lin (Georgia In-
stitute of Technology), Carlo Meloni (Politecnico di Bari), Barry Nelson
(Northwestern), William Notz (Ohio State), Huda Abdullah Rasheed (al-
Mustansiriyah University, Baghdad), Wim van Beers (Tilburg University),
Willem van Groenendaal (Tilburg University), Jim Wilson (North Carolina
State), and Bernard Zeigler (Arizona State).”

This book is summarized in Kleijnen (2015).

Reference
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1

Introduction

This chapter is organized as follows. Section 1.1 defines various types of
simulation. Section 1.2 defines design and analysis of simulation experi-
ments (DASE). Section 1.3 defines DASE symbols and terms. The chapter
ends with Solutions of exercises, and references.

1.1 What Is Simulation?

“Simulation” might be defined in several ways, so it includes (say) the
simulation of an illness. However, we limit simulation to experimenting with
quantitative models; obviously, these models are computerized nowadays.
To define this type of simulation, we use the following two dichotomies:

e Deterministic versus random
e Static versus dynamic

Unlike deterministic models, random models include random or prob-
abilistic variables. Unlike static models, dynamic models include time as
a special independent variable. These two dichotomies may be combined;
simple examples are:

e Deterministic and static model: a first-order polynomial with x as the
independent variable and y as the dependent variable.

(© Springer International Publishing Switzerland 2015 1
J.P.C. Kleijnen, Design and Analysis of Simulation Experiments,

International Series in Operations Research & Management
Science 230, DOI 10.1007/978-3-319-18087-8_1



2 1. Introduction

e Random and static model: the probability of heads or tails in the toss
of a coin.

e Deterministic and dynamic model: a differential equation with time
(say) t as the independent variable; e.g., the net present value (NPV)
of a loan (also see Example 1.1 below).

e Random and dynamic model: a model of the waiting times in a single-
server queueing model (also see Example 1.2).

Definition 1.1 A simulation model is a mathematical model that is solved
by means of experimentation.

So, by definition, we ignore simulation models that are physical (instead
of mathematical); e.g., a miniature airplane in a windtunnel. Mathematical
models are usually converted into computer programs—also called com-
puter codes—so simulation experiments are also called computer experi-
ments. Closely related to simulation are Monte Carlo methods, defined as
methods that use pseudorandom numbers (PRNs). These PRNs are gener-
ated by means of a computer program, so they are not really random, and
yet they are assumed to be independently and uniformly distributed on the
interval [0, 1]. So, Monte Carlo methods involve chance, which explains the
name. Monte Carlo methods are also used to evaluate multiple integrals,
which arise in mathematical statistics, physics, etc. Simulation uses exper-
imentation to solve the mathematical model; i.e., simulation is a numerical
method, not an analytical method. Simulation is applied in many scientific
disciplines—ranging from sociology to astronomy; see the survey on the
spectrum of simulation applications in the classic article Karplus (1983).

Simulation methodology is explained in many textbooks, in many sci-
entific disciplines. Simulation methodology includes DASE, which is also
known as design of computer experiments or DACE. As we mentioned
in the Preface, this book on DASE is oriented towards management sci-
ence/operations research (MS/OR). MS/OR is a discipline that includes
simulation, especially random and dynamic simulation—also known as
discrete-event simulation of discrete-event dynamic systems(DEDS). The
most popular and most recent simulation textbook in MS/OR is Law
(2015); DEDS is discussed in the classic textbook Ho and Cao (1991).
A classic textbook on the theory of modeling and simulation is Zeigler
et al. (2000), using the automata theory of computer science; that book
influences some of the terminology in this book.

Example 1.1 Consider the following NPV problem. Given are 0, the dis-
count factor used by the decision maker; n, the length of the planning period
measured in years; and x¢, the cash flow in year t with t =0,...,n. Then
the NPV—also called the Present Value (PV)—(say) y may be computed
through the following equation:
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Yy= ﬁ (1'1)

n
T
= 146
Engineers often use an alternative formula, assuming continuous time so
> becomes [, etc. Eq. (1.1) may be used to compare alternative cash flow
patterns. Different patterns may be caused by different loan types. One loan
type may require a fixed amount paid back at the end of each year (say)
ze witht =1,...,n and zg = 0, and interest payments determined by the
interest rate ¢ and the loan amount at the end of the year t, namely wy:

xy = —[min(zy, w) +cwy] witht=1,...,n (1.2)
where the loan amount is determined by
wy =wy_1 — 2z witht=1,...,n (1.3)

and
o = Wo (14)

where wq s the original loan amount, so xq is the positive cash flow at the
start of the planning period, whereas x; witht =1,...,n are negative cash
flows (the initial condition zo = 0 has already been specified). Finally, the
stopping conditions of the simulation run must also be given; in this exam-
ple, the simulation stops when the end of the planning period is reached.

Obviously, Example 1.1 illustrates a deterministic dynamic model, in-
cluding a first-order difference equation; namely, Eq. (1.3). Easy program-
ming of such models is possible through spreadsheet software such as Excel;
a recent reference on spreadsheet-based simulation is Schriber (2009).

Exercise 1.1 Derive that NPV = 6.238 in case the original loan is wg =
100, n =2, ¢ = 0.10, and 6 = 0.15 (i.e., the loaner expects to earn a higher
return on investment or ROI than the bank can offer).

The deterministic financial simulation in Example 1.1 may be augmented
to a random simulation, if (say) the discount factor 6 or the cash flows
x; are unknown so their values are sampled from distribution functions.
This type of simulation is called risk analysis (RA) or uncertainty analysis
(UA); see again Schriber (2009). Random simulation is more complicated
than deterministic simulation is, so we recommend random simulation only
if a random model is necessary to obtain a valid representation of the real
system so that the model serves the goals that will be discussed in Sect. 1.2.

Note: RA in chemical engineering is discussed in Saltelli et al. (2005).
Some well-known textbooks on RA are Evans and Olson (1998) and Vose
(2000); a recent survey article is Wu and Olson (2013). Combining risk
management and robust design is discussed in Mordecai and Dori (2013).
We discuss DASE aspects of RA in Sect.5.9 and DASE aspects of robust
design and robust optimization in Sect. 6.4.
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Complicated realistic examples of deterministic simulation are found in
computer aided engineering (CAE) and computer aided design (CAD),
including models of airplanes, automobiles, television sets, chemical pro-
cesses, and computer chips—developed at Boeing, General Motors, Philips,
etc. Many applications use finite-elements analysis. The role of simulation
in engineering is discussed by the Blue Ribbon Panel of the American “Na-
tional Science Foundation (NSF)”; and reported in Oden (2006).

Another type of (primarily) deterministic simulation is system dynamics
(SD), originally called “industrial dynamics” in Forrester (1961). SD is
more than a simulation method; it is a world view. In this view, a crucial
concept is feedback; i.e., compare an output with a norm, and react if
there is an undesirable deviation. Simulation results show that this feedback
often generates counterintuitive behavior. Applications include simulations
of companies, industries (including supply chains), countries, and the whole
globe (including the warming-up of the earth’s atmosphere). A textbook
with more than 1,000 pages is Sterman (2000).

Some deterministic simulation models show numerical inaccuracies, which
make these models related to random simulation. These deterministic sim-
ulations are also called “noisy computer experiments” or “stochastic simu-
lators”; see Picheny et al. (2013). We distinguish the following three types
of random simulation.

e The simulation model is deterministic, but it has numerical noise
caused by numerical approximations; see again Picheny et al. (2013)
and also Forrester et al. (2008, p. 141) and Wiebenga (2014).

e The simulation model is deterministic, but the exact values of its
inputs are uncertain so these values are sampled from a prior input
distribution through Monte Carlo methods (e.g., Latin hypercube
sampling, discussed in Sect.5.5). This is done in RA, and is also
known as uncertainty propagation. This uncertainty is called epis-
temic, subjective, or the analysts’ uncertainty; see Helton and Davis
(2003).

e The simulation model itself includes PRNs; examples are discrete-
event simulation models, including queueing in traffic systems, tele-
communications, and supply chains. These PRNs may be used to
sample the occurrence of events such as the arrival of cars, telephone
calls, and production orders. The times at which these events occur
may be sampled from a given distribution; e.g. an exponential dis-
tribution. This sampling creates so-called aleatory, objective, or the
system’s inherent uncertainty; see again Helton and Davis (2003).

Only a few publications combine epistemic and aleatory uncertainties.
For example, Helton and Davis (2003) discusses the simulation model of
the “waste isolation pilot plant (WIPP)” that combines (i) deterministic
simulation through differential equations that model chemical and physical
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subsystems and (ii) discrete-event simulation that models human inter-
ventions. Another example is discrete-event simulation with uncertain pa-
rameters; e.g., the parameter of the arrival distribution in the queueing
simulation is uncertain. Combining aleatory and epistemic uncertainties is
further discussed in Borgonovo and Plischke (2015), De Rocquigny et al.
(2008), Helton et al. (2014), Kleijnen (2007), Sakalli and Baykog¢ (2011),
and Xie et al. (2014). Besides epistemic uncertainty, Grubler et al. (2015)
discusses more types of uncertainty.

The preceding discussion implies the following two definitions, based on
Zeigler et al. (2000).

Definition 1.2 A model parameter has a value that is inferred from data
on the real system.

This inference is necessary if the parameter value can not be observed
directly in the real system. An example is the arrival rate of customers
into a supermarket; i.e., we can observe the times between two successive
arrivals, and use these observations to estimate the arrival rate.

Definition 1.3 An input variable of a model can be directly observed in
the real system.

Returning to the supermarket example, we can simply observe the num-
ber of servers (checkout lanes).

Exercise 1.2 Consider the following two applications involving the dis-
count factor for a NPV calculation as in Example 1.1: (a) a student wishes
to select the best NPV for several loan alternatives—each with the same in-
terest rate, but with different amortization schemes; (b) a company wishes
to select the highest NPV among several investment alternatives, such that
the company maintains the ROI that it has realized during the last five years.
Is the discount factor a parameter or a variable in (a) and (b)?

Now we focus on discrete-event simulation. This simulation is inherently
random; i.e., without randomness the problem would change completely.
For example, a queueing problem is caused by the randomness of the ar-
rival or the service times; if these times were deterministic, the problem
would become a so-called scheduling problem. A popular discrete-event
simulation—which may be a building block for more complicated simula-
tions, and which is often used in this book and in other publications—is
the M/M/1 model (the symbol M/M/1 is used in the so-called Kendall
notation).

Definition 1.4 An M/M/1 model is a queueing model with one server,
and Markovian interarrival and service times.

These Markovian times are exponentially distributed and “independent”;
i.e., the interarrival times are independent, and so are the service times;
arrival and service times are mutually independent (also see Example 1.2
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below). The exponential distribution has the memoryless property; e.g.,
if many customers happened to arrive during last period, then this does
not affect the number of customers in the next period. Furthermore, the
exponential distribution implies that the number of events (e.g., arrivals)
per period (e.g., per day) has a Poisson distribution. The notation M/M/1
implies that the server’s priority rule is first-in-first-out (FIFO), the waiting
room has infinite capacity, etc. An M/M/1 model may be simulated as
follows.

Example 1.2 Let a;y; denote the interarrival time between customers i
and i + 1, s; the service time of customer i, and r a PRN. Assume that
the output of interest is w, the waiting time of a customer, and that the
probability density function (PDF) of this random output is characterized
by its mean that is estimated through

E?:l Wy

n

w = (1.5)
where n denotes the number of customers that stops the simulation run.
(This example is a terminating simulation, not a steady-state simulation; in
the latter case, n would not be prefized or would be a “very large” number;
see Law (2015).) Furthermore, assume that the simulation starts in the
“empty” state (no customers in the system), so the customer who arrives
first does not need to wait; i.e., the initial condition of this dynamic model
is w1 = 0. The dynamics of the single-server system are specified by the
so-called Lindley recurrence formula

wit1 = max (0,w; + 8; — aiq1). (1.6)

In this equation, the random input variables s and a are sampled such that
these variables have a service rate p and an arrival rate A; so the mean or
expected service and interarrival times are 1/p and 1/, respectively. To
sample these variables, the simulation may use the PRN r as follows:

—Inrg;_
8 = 12l (1.7)
1
and |
— Inro;
Ai+1 = \ 2 (18)
where a single PRN stream (namely, r1, ra, ... Tan—1, T2, ) is used; obvi-

ously, each of the n customers needs two PRNs—namely, one PRN for the
arrival time and one PRN for the service time.

To program the simulation model in Example 1.2, the analysts can choose
from many simulation software packages. In fact, Swain (2013) lists 43
products in the ninth biennial survey of simulation software for discrete-
event simulation; that survey also includes information on DASE and so-
called animation (kind of motion pictures).
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Exercise 1.3 Ezample 1.2 uses a single PRN stream (namely, r1, 4, ...,
Ton—1, T2n) in Egs. (1.7) and (1.8). What are the advantages of using two
separate PRN streams for the two input processes—mnamely, the arrival and
the service processes—when applying two well-known variance reduction
techniques (VRTs)—namely, common random numbers (CRN) and an-
tithetic random numbers (ARN)? Do these advantages change when the
single-sever simulation has the last-in-first-out (LIFO) server priority rule
or the service time has a uniform distribution?

Mathematical analysis of the M/M/1 model reveals that the fundamental
input parameter is the so-called traffic rate—also called traffic intensity
or traffic load—(say) p defined as p = A/u with A and u defined above
Eq. (1.7). In other words, the M/M/1 model has a single input parameter
(namely, p), whereas its computer code has two parameters (A and p).
More precisely, mathematical analysis gives the following equation for the
expected value of the waiting time in the “steady-state” so Eq.(1.6) has
i 7T oo: \

. 1 »p
Blwi |11 c0) plp =2 p(l—p)
so selecting the time unit such that 4 = 1 (e.g. measure time in either
seconds or hours) gives E(w; | i T o0) = p/(1 — p).

Though the M/M/1 model will often be used as an example in this book,
we shall also need an example with multiple inputs. Therefore we now
present another well-known building block for discrete-event simulation;
namely, the so-called (s, S) model.

(1.9)

Definition 1.5 An (s, S) model is a model of an inventory management
system with the following properties. Its control variables s and S satisfy the
condition s < S. One of the model inputs is (say) D, the random demand
per period, so the inventory level I becomes I — D. This I is replenished
whenever I decreases to a value smaller than or equal to the reorder level s.
When I is replenished, the order quantity Q is S — I. Altogether the model

implies
| S=T1 ifI<s
Q_{o if 1> s, (1.10)

There are several variations on this basic model. For example, review of
the inventory level I may be continuous instead of periodic (e.g., at the end
of each day). The lead time of the order may be either a nonnegative con-
stant or a nonnegative random variable. Demand that exceeds the inventory
at hand (so D > I) may be either lost or backlogged. Costs may consist of
inventory, ordering, and out-of-stock costs (including loss of goodwill and
expediting costs). These cost components are specific mathematical func-
tions; e.g., inventory carrying (or holding) cost may be a constant per item
unit, per time unit. In practice, out-of-stock costs are hard to quantify so
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a service (or fill rate) constraint may be specified instead; e.g., the total
stockout quantity per (say) year should be smaller than 10 % of the total
sales during that same period.

Programming this inventory model is harder than programming the
M/M/1 model; the latter has dynamics specified by the simple Eq. (1.6).
Thorough discussions of this programming is found in simulation textbooks
such as Law (2015).

Discrete-event simulation and continuous simulation may be combined
into so-called hybrid simulation. An example is a simulation of the ejection
of the pilot seat (a discrete event) during a flight that is modeled through
differential equations until this event occurs. This type of simulation is also
discussed in textbooks on discrete-event simulation; e.g. Law (2015). We
also refer to Giambiasi and Carmona (2006).

In summary, simulation is a method that is applied in many disciplines.
Simulation provides a flexible, powerful, and intuitive tool for the analysis
of complicated processes. The resulting insight may be used to design better
real systems.

Much more could be said about simulation. There are many more text-
books besides the ones mentioned above; e.g., Nelson (2013) and Pidd
(2004); the latter textbook also discusses system dynamics. The most re-
cent publications on discrete-event simulation can be found in the annual
proceedings of the Winter Simulation Conference; see its web page

http://www.wintersim.org/.

Top journals on MS/OR including discrete-event simulation are published
by INFORMS; see

http://www.informs.org/.

Handbooks in MS/OR also cover discrete-event simulation; an example is
Henderson and Nelson (2006). Many other journals on MS/OR also publish
on simulation. Perspectives on the evolution of discrete-event simulation
during 50 years are provided in Nance and Sargent (2002).

Exercise 1.4 Does the definition of “simulation” hold for (i) entertain-
ment games such as “America’s Army” (see Swain 2005), (ii) serious
games such as the beer game in system dynamics (see Simchi-Levi et al.
2003), and (iii) game theory using the Nash equilibrium (see Shubik 2002)%?

1.2 What Is “Design and Analysis of Simulation
Experiments” (DASE)?

This book is about the design and analysis of simulation experiments
(DASE). These terms require explicit definitions—especially because simu-
lation is a method applied in many different scientific fields with their own
terminologies, as we saw above.
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Simulation implies that the modelers do not solve their model through
mathematical analysis; instead, the modelers try different values for the in-
puts and parameters of their model in order to learn what happens to the
model’s output. For example, for the NPV model in Example 1.1 the mod-
elers may experiment with different values for the parameter 6 (discount
factor) and the input variable z (amount paid back every year); see again
Egs. (1.1) and (1.2). In the M/M/1 model in Example 1.2 the modelers
may experiment with different values for the traffic rate and with differ-
ent priority rules besides the implicit FIFO rule. In the (s,.S) inventory
model defined in Eq. (1.10) the modelers may try different combinations of
the control limits s and .S and the mean demand E(D). The goals of such
numerical experiments may be (see again Oden (2006), and also Kaminski
(2015), Razavi and Gupta (2015), and Tan (2014)):

e Verification and validation (V & V) of the underlying simulation
model

e Sensitivity analysis (SA)—either global or local—or “what if” anal-
ysis of the simulation model

e Optimization of the simulated real system (SimOpt)
e Risk analysis (RA) of the simulated real system

In practice, these goals may be ambiguous, and they may be known under
other names. One example is SA, which may aim at either “gaining insight”
or “prediction”. Another example is RA, which may aim at estimating the
set of input combinations that give an unacceptably high probability of
exceeding a given threshold. Many methods for SA and RA are surveyed in
Borgonovo and Plischke (2015); we shall detail specific SA and RA methods
in the next chapters; see, e.g., Sect. 5.9.

These goals require that the simulation modelers pay attention to the
design of their experiments; e.g., if the modelers keep an input of their
simulation constant, then they cannot estimate the effect of that input
on the output. In practice, however, many modelers keep many inputs
constant, and experiment with a few remaining inputs only. Chapter 4 (on
screening) shows that there are better ways to run simulation experiments
with many inputs. Another example of bad practice is changing one input at
a time, while keeping all other inputs fixed at their so-called base values;
Chap. 2 shows that this approach is inefficient and does not enable the
estimation of any interactions among inputs.

A main theme of this book is that the design of the experiment is in-
timately related to its analysis. For example, suppose that the modelers
assume the input to have a “linear” effect on the output; i.e., they as-
sume a first-order polynomial approximation (remember the Taylor series
in mathematics) or main effects only (mathematical statistics terminology).
Given this assumption, it obviously suffices to experiment with only two
values of that input. Furthermore, if the modelers assume that there are
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(say) k > 1 inputs (with main effects only), then their design requires a
relatively small experiment (of order k). In this example, changing only one
input at a time does give unbiased estimators of all the first-order or main
effects; Chap. 2, however, will show that minimizing the variances of these
estimators requires a different design—with approximately the same size
of the experiment as the one required by the one-at-a-time design. Note
that this book uses a DASE approach that is frequentist, not Bayesian;
Bayesian versus frequentist approaches are discussed in Efron (2005).

A first-order polynomial approximation is an example of a so-called meta-
model, which is the term used in Kleijnen (1975); metamodels are also
called response surfaces, surrogates, and emulators in different scientific
disciplines.

Definition 1.6 A metamodel is an approximation of the input/output
(I/0) function that is defined by the underlying simulation model.

We point out that a simulation model implicitly defines a mathemati-
cal function. There are different types of metamodels. The most popular
type is a polynomial of either first order or second order (degree), which
are discussed in Chaps. 2—4. A more recent metamodel type that is gaining
popularity in simulation—especially deterministic simulation—is a Kriging
model—also called a Gaussian process model—discussed in Chap. 5. Meta-
models may be used for different goals; e.g., a low-order polynomial best
serves explanation resulting in insight, whereas a Kriging model may give
better predictions which may be used in optimization (see Chap.6), real-
time decision making, etc.

Note: Less popular metamodels are (in alphabetical order): classifica-
tion and regression trees (CART), game-theoretic metamodels, generalized
linear models (GLM), inverse distance weighting, multivariate adaptive
regression splines (MARS), (artificial) neural networks, nonlinear regres-
sion models, nonparametric regression analysis, nonparametric uncertainty
analysis (NPUA), radial basic functions (RBFs), rational functions, splines,
stochastic polynomial interpolation (or polynomial chaos expansion), sup-
port vector regression (SVR), symbolic regression, wavelets, etc. For these
alternative metamodels, Kleijnen (2008, p. 8) gives twenty-two references.
Additional references are Poropudas and Virtanen (2008) for game-theoretic
models, Shepard (1968) for inverse distance weighting, Dette and Pepely-
shev (2010) for NPUA, Santos and Santos (2008) for nonlinear regres-
sion models, Regis (2014) for RBFs, Tan (2014) for stochastic polynomial
interpolation, and Clarke et al. (2005), Rasmussen and Williams (2006,
pp. 141-146), and Rieck et al. (2012) for SVR. Various metamodels are
compared in Razavi et al. (2012), Can and Heavey (2012), Forrester and
Keane (2009), Levy and Steinberg (2010), Storlie et al. (2009), Van Gelder
et al. (2014), Viana et al. (2014), Villa-Vialaneix et al. (2012), Wang et al.
(2014), and Zhu et al. (2011).
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In theory, modelers may combine several types of metamodels, weighing
each type with its estimated accuracy. In practice, however, such a combi-
nation is rare, because modelers are familiar with one or two types only.

Note: Combining metamodels into a so-called ensemble is further dis-
cussed in Acar and Rais-Rohani (2009), Gorissen (2010, Chapter 7), Miiller
and Shoemaker (2014), and Viana et al. (2014, Section IV). Furthermore,
Buchholz et al. (2008) discusses the combination of several regression mod-
els, each with a different subset of inputs. Harari and Steinberg (2014)
discusses the combination of several Kriging models, each with its own
correlation function.

The term “response surface” is used for local metamodels in response sur-
face methodology (RSM); the same term is used for global metamodels in
deterministic simulation. Such a local model implies that only a small sub-
area of the total experimental area is considered. The limit of this “small”
subarea is an area with a size that tends to zero, so partial derivatives are
legitimately considered. These derivatives are the components of the gradi-
ent, which will be further discussed in Sect. 6.2 on RSM for the optimization
of real or simulated systems.

The experimental area is called the experimental frame in Zeigler et al.
(2000). We could also call it the “domain of admissible scenarios”, given
the goals of the simulation study.

We propose the following algorithm for DASE.

Algorithm 1.1

1. Select a tentative metamodel.

2. Select a design that enables the estimation of the parameters of the
selected metamodel, followed by the validation of this tentative esti-
mated metamodel.

3. If this metamodel is rejected because this model seems not to be valid,
then select a different metamodel and return to step 1; else proceed
to the next step.

4. Apply the validated metamodel for one or more goals mentioned
above; namely, V & V, SA, SimOpt, or RA.

Steps 1 and 2 imply that specification of the metamodel precedes selec-
tion of the design. Step 3 implies that the specified tentative metamodel of
Step 1 can be rejected (so the strategy agrees with Popper’s “falsification”
principle). Details of this algorithm will be given in the next chapters,
assuming metamodels that are either “low order” polynomials—namely,
first-order and second-order polynomials—or Kriging models.

DASE has both strategic and tactical aspects. Traditionally, researchers
in discrete-event simulation have focused on tactical issues, such as the run-
length of a steady-state simulation, the number of runs of a terminating
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simulation, and VRTS; see the classic article Conway (1963) and the more
recent literature mentioned above. In deterministic simulation these tac-
tical issues vanish, so statisticians have been attracted to strategic issues;
namely, which input combinations to simulate and how to analyze the re-
sulting output; see the textbooks Fang et al. (2006) and Santner et al.
(2003). Few statisticians have studied random simulation. Few simulation
analysts have focused on strategic issues. In this book, we focus on strate-
gic issues, discussing only those tactical issues that are closely related to
strategic issues; e.g., the consequences of applying CRN.

The statistical theory on design of experiments (DOE or DoE) was de-
veloped for real, nonsimulated experiments in agriculture in the 1920s, and
has been developed in engineering, psychology, etc. since the 1950s. In these
real experiments it is impractical to investigate “many” factors; ten factors
seems a maximum. Moreover, it is then hard to experiment with factors
that have more than “a few” values; five values per factor seems the limit.
In simulated experiments, however, these restrictions do not apply. Indeed,
simulation models may have thousands of factors—each with many values.
Consequently, a multitude of factor combinations may be simulated. More-
over, simulation is well-suited to “sequential” designs instead of “one shot”
designs, because simulation experiments are run on computers that typ-
ically produce output sequentially (apart from parallel computers, which
are used only in specific application areas such as military applications and
energy exploration), whereas agricultural experiments are run during a sin-
gle growing season. So a change of mindset of simulation experimenters is
necessary. A more detailed discussion of simulated versus real experiments
is Sanchez et al. (2012).

In summary, DASE is needed to improve the efficiency and effectiveness
of simulation; i.e., DASE is crucial in the overall process of simulation.

1.3 DASE Symbols and Terminology

Some DASE symbols and terms should be explicitly defined, because DASE
is a combination of mathematical statistics and linear algebra that is ap-
plied to experiments with deterministic and random simulation models;
these models are applied in different scientific disciplines.

Deciding on the DASE symbols is problematic; e.g., mathematicians use
capital letters to denote matrices, whereas statisticians use capitals to de-
note random variables. Consistency would require denoting the error term
in a regression model by (say) F and the matrix of explanatory variables
by x. Such a notation, however, would seem too orthodox. Most authors in
simulation and regression analysis do not always use capitals for random
variables; the readers should infer from the context whether a variable is
random or not. Bold letters denote matrices and vectors. Whenever readers
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might be misled, we explicitly discuss the randomness of a particular vari-
able. For example, Chap. 3 covers “generalized least squares (GLS)”, which
uses the covariance matrix of the simulation responses; in practice this
matrix is estimated, which creates statistical problems that need explicit
discussion.

Greek letters denote parameters; parameters were introduced in Defi-
nition 1.2. For example, the service rate p in the M/M/1 model is esti-
mated from the (say) n observations on the service time s so i = 1/35 with
5 = Y, si/n. An “estimator” (e.g., the sample average) is a random
variable; the estimator has a specific value called an “estimate”.

Unlike a parameter, a vartable can be directly observed in the real world.
For example, the input variable service time s can be measured in a straight-
forward way; we could say that s is the realization of the random variable S.
A variable may be either an input or an output of a model; e.g., the M/M/1
model may have the input s and the output w, denoting waiting time.

Both parameters and input variables may be changed in a simulation
experiment; in that case they have at least two walues or levels in the
experiment. Parameters and input variables together are called factors, in
DOE. For example, a simple design in DOE is a 2* factorial experiment;
i.e., there are k factors, each with two levels; all their combinations are
simulated. These combinations are often called scenarios in simulation and
modeling. Scenarios are usually called design points or runs by statisticians,
but we reserve the term “run” for a simulation run; a simulation run starts
in the initial condition (e.g., the empty state in an M/M/1 simulation) and
ends once a specific event occurs (e.g., n customers have been simulated;
see the discussion below Eq. (1.5)).

Factors and responses (outputs) may be either qualitative or quanti-
tative. In the M/M/1 example, quantitative factors are the arrival and
service rates; the traffic rate is the fundamental quantitative factor. In a
single-server queueing simulation, a qualitative factor may be the priority
rule—which may have (say) three levels, namely FIFO, LIFO, or “shortest-
processing time first” (SPT).

Simulation inputs and outputs may be measured on the following five
types of scales:

1. Nominal: This is the only scale that applies to a qualitative (or cat-
egorical) factor. One example was the priority rule with its three
nominal values (FIFO, LIFO, SPT). Another example is a simulation
with two types of customers, namely A (emergencies) and B (regular).
Interpolation or extrapolation makes no sense (so regression analysis
must be applied with care; see Chap. 2).

2. Ordinal: This scale ranks the values of the input or output. For ex-
ample, this scale sorts (say) n observed output values from lowest to
highest, and assigns them ranks from 1 to n. Order statistics uses
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such a scale; see the textbooks on nonparametric (distribution-free)
statistics, Conover (1999) and the more recent Sprent and Smeeton
(2007); order statistics will be used in later chapters. Another exam-
ple is a survey that assigns ranks from 1 to 5 in order to measure how
strongly the respondent agrees with a statement; namely, completely
agree, agree, neutral, disagree, and strongly disagree.

3. Interval: This scale assigns numbers that are unique except for a
linear transformation; i.e., this scale has an arbitrary zero point. An
example is temperature measured in Celsius or Fahrenheit degrees.
Analysts should prefer mathematical and statistical methods that are
not sensitive to the scale that is used to quantify inputs or outputs.
For example, Sect. 6.2.3 covers a scale-independent alternative for the
steepest ascent method; the latter method is standard in RSM.

4. Ratio: This scale has a unique zero, so “2z” means “twice as much
as z”. Examples are length measured in centimeters or inches, and
cash flow measured in euros or US dollars. Other examples are the
arrival and the service rates, which depend on the time unit (e.g.,
seconds). Like the interval scale, the ratio scale should not change
“the” conclusions of mathematical and statistical analyses.

5. Absolute: No transformation applies. An example is the number of
customers arriving during the simulation run of an M/M/1 model;
this is a discrete (not a continuous) variable.

A more detailed discussion of types of variables and measurement scales
is given in Kleijnen (1987, pp. 135-142).

Exercise 1.5 Mathematical statistics often uses Student’s t-statistic. This
statistic has several forms, but the simplest and best-known form is

with
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where x, ~ NIID(ji,., 02) with NIID standing for “normally, independently,
and identically distributed”, i, = E(z), and o2 = Var(z); furthermore
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with

Obviously, the m outputs of a simulation model with constant parame-
ters (e.g., an M/M/1 simulation model with a constant traffic rate) us-
ing nonoverlapping PRN streams are IID. These outputs are normally
(Gaussian) distributed if the output is (e.g.) the average waiting time (even
though the individual waiting times are autocorrelated; see the “functional
central limit theorem” in Sect. 3.3). The null-hypothesis may be that i, is
given by the steady-state formula for the M/M/1 queueing system given
in Eq.(1.9). This hypothesis is rejected if the 1 — a confidence interval
Tty _1;1—a/2 does not cover the hypothesized value. Run your experiment
(say) 100 times; i.e., generate 100 macroreplications with nonoverlapping
PRNs and oo = 0.10; check whether you indeed reject the null-hypothesis in
approximately 10 (= 100 x 0.10) macroreplications.

Exercise 1.6 Because “simulation” involves experimenting with a com-
puter model, you should program the M/M/1 defined in Example 1.2 using
any software you like (e.g., Arena or C++). Select your “favorite” per-
formance measure; e.q., average waiting time. Next you should experiment
with your simulation model; some suggestions follow.

1. Change the run-length (symbol n in Ezample 1.2) from (say) n =
10 (terminating simulation) to n large enough to reach the steady
state; try these two n values for a “low” and a “high” traffic rate.
Run “several” macroreplications; e.g., m = 10 replications. Ensure
that these replications are identically and independently distributed
(IID); i.e., use nonoverlapping PRN streams. Use either a single PRN
stream for service and arrival times or use two separate streams for
the arrival and service times, respectively. Compare your simulation
estimate with the analytical steady-state mean; use graphical plots and
mathematical statistics such as discussed in Exercise 1.5.

2. To estimate the I/O function, change the traffic load (p = A u).
Apply either the same or different PRN seeds when comparing traffic
loads: do CRN give better results?

3. Replace the exponential distribution for service times by a different
distribution; e.g., a uniform distribution with the same mean, keeping
the traffic load constant when changing the distribution. Select some
fixed value for the traffic rate, the number of customers per run, and
the number of macroreplications, respectively; e.g., select one of the
values used above. Does the change in distributions change the selected
performance measure significantly?
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Solutions of Exercises

t  payback interest NPV
0 100 0 100
Solution 1.1 1 —50 10 500 - 52174
—(50+5
2 —50 =5 sk = —41.588

100 — 52.174 — 41.588 = 6.238

Solution 1.2 (a) For the student the discount factor is a variable, quoted
by the bank; (b) for the company it is a parameter to be estimated from its
investments during the last five years.

Solution 1.3 Separate PRN streams improve the performance of CRN and
ARN; see any textbook on discrete-event simulation. This improvement also
holds for LIFO or uniformly distributed service times.

Solution 1.4 Both entertainment games and serious games are simulation
models; gaming theory uses analytical solutions so it is no simulation.

Solution 1.5 Program and run your Monte Carlo experiment.

Solution 1.6 Many answers are possible; compare your results with the
results that you will obtain, once you will have read some of the next
chapters.
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2

Classic Regression Metamodels
and Their Designs

This chapter discusses the basics of low-order polynomial regression
metamodels and their designs. This chapter is organized as follows.
Section 2.1 discusses black-box versus white-box approaches in the design
of simulation experiments (DASE). Section 2.2 covers the basics of linear
regression analysis. Section 2.3 focuses on first-order polynomial regres-
sion. Section 2.4 presents designs for estimating such first-order polynomi-
als; namely, so-called resolution-III (R-IIT) designs. Section 2.5 augments
the first-order polynomial with interactions (cross-products). Section 2.6
discusses resolution-IV (R-IV) designs, which give unbiased estimators of
the first-order effects—even if there are two-factor interactions. Section 2.7
presents resolution-V (R-V) designs, which also enable the estimation of
all the individual two-factor interactions. Section 2.8 extends the first-
order polynomials to second-order polynomials. Section 2.9 presents de-
signs for second-degree polynomials, focussing on central composite designs
(CCDs). Section 2.10 briefly examines “optimal” designs and other designs.
Section 2.11 summarizes the major conclusions of this chapter. The chapter
ends with appendixes, solutions for the exercises, and references.
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2.1 Introduction

In Chap. 1 we introduced the statistical theory on DASE. This theory views
the simulation model as a black box—mnot as a white box.

Definition 2.1 A black-box view of a simulation model observes the inputs
and outputs of this simulation model, but not the internal variables and
specific functions implied by the simulation’s computer modules.

To explain the difference between the black-box view and the white-box
view, let us return to the M/M/1 example (with its Markovian arrival and
service times and a single queue) in Chap. 1. Now we slightly reformulate
this example; e.g., we replace the symbol n by ¢ because n is a reserved
symbol for another quantity in the current chapter.

Example 2.1 Let the symbol a;+1 denote the interarrival time between
customers i and i+ 1, s; the service time of customer i, and w; the waiting
time of customer i. The output of interest is the average

D Wi (2.1)

c

m:

where ¢ denotes the number of customers that stops the simulation run. The
simulation starts in the empty state; i.e., the initial condition is w; = 0.
The dynamics of a single-server system are specified by Lindley’s recurrence
formula

wit1 = mazx (0,w; + 8; — ait1). (2.2)

The input variables s and a are sampled such that s has the service rate
w and a has the arrival rate A\, so the mean service and interarrival times
are 1/u and 1/X. To sample these variables, the simulation may use the
inverse of the exponential distribution function and a single PRN stream
with 2¢ PRNs r1, 19, ..., Toc_1, ¢!

—In T2;—1 —In T2

5; = T and @iy = 3
Note that—instead of the average defined in Eq. (2.1)—the output of in-
terest might have been the estimated 90 % quantile (also called percentile)
of the waiting times; the estimator may then be the quantile estimator
W([.90c]) where w(;) (i = 1,...,c) denotes the order statistics—so w(y <
wey < ..o < we—1) < wey—and the so-called ceiling function [0.90c]
means that 0.90c is rounded upwards to the next integer. Another output

(2.3)

of interest may be the estimated variance of the waiting time in the steady
state, denoted by s*(w;|i T o) or briefly s*(w)—not to be confused with
s2(w), which quantifies the accuracy of the estimator defined in Eq. (2.1).

Note: Example 2.1 illustrates a white-box view. Such a view is used by
perturbation analysis (PA) and the score function (SF) or likelihood ratio
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(LR) method. These methods estimate the gradient for local—not global—
sensitivity analysis and for optimization; see the classic textbooks Ho and
Cao (1991), Rubinstein and Shapiro (1993), and Spall (2003). Gradient
estimation will be further discussed later on, in this chapter and in Chap. 6
on simulation optimization.

DASE does not view the simulation model as a white box, but as a
black box. Such a black-box view is also used by design of experiments
(DOE) for real-world experiments—see the classic textbook Montgomery
(2009) and also Mee (2009)—and by design and analysis of computer exper-
iments (DACE) for deterministic simulation experiments—see the classic
textbooks Fang et al. (2006) and Santner et al. (2003).

Now we consider an example of such a black-box view of any single-
server simulation model—mnot only the M/M/1 model. This model has as
output w, which may denote the average waiting time (so a more traditional
symbol would be W), the estimated 90 % quantile, the estimated variance,
etc. Suppose this simulation model has as inputs the arrival rate A, the
service rate p, and the queueing priority rule, denoted by (say) QPR.
Obviously this QPR is a qualitative input (various scales were discussed
in Sect. 1.3). Suppose that QPR has three nominal values; namely, first-
in-first-out (FIFO), last-in-first-out (LIFO), and shortest-processing-time-
first (SPT). Note that the priority rule is implicitly fixed to be FIFO when
using the notation M/M/1. In this example we furthermore assume that
the single-server model has a fixed waiting room capacity, etc. A special
input are the PRNs; e.g., the PRNs are generated through the popular
linear congruential method

i +b d .
pag = GmiEbymodm (2.4)

m

with the nonnegative integers a, b, and m; the symbol mod denotes the
mathematical modulo operation; the seed of the PRNs is the nonnegative
integer ng so the n; are also nonnegative; we are running out of symbols,
so n; and m have nothing to do with n and m elsewhere in this chapter.
A proper selection of the parameters a, b, and m should make the PRN
stream 71, 79, ... appear to behave like independent samples from the
uniform distribution on the interval [0,1).

The default of PRN generators makes the computer select the PRN
seed T¢; e.g., the computer uses its internal clock to select the value of
the (micro)second measured at the start of the simulation experiment. In-
stead of using this default, we ourselves may select a seed. If multiple runs
are made, then we should guarantee that the seeds of these runs do not
create PRN streams that may overlap; such an overlap would imply that
the replications are not IID. We might select the same seed for n runs with
the simulation model where n denotes the number of input combinations;
such a selection implies common random numbers (CRN).
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Because Example 2.1 uses a single PRN stream in Eq. (2.3), the black-box
view of this M/M/1 simulation model is

w = fM/M/l()\a Hs QPR7 TO) (25)

where fyi/n/i(.) denotes the mathematical function defined by the com-
puter program that implements the equations in Example 2.1; namely,
Eq. (2.1) through Eq.(2.3). Obviously, fa/n/i(.) is indeed a mathemati-
cal function; i.e., far/my1(.) is a relation between a set of inputs and a set
of outputs such that each input combination gives exactly one output value.

The black box in Eq. (2.5) changes if Example 2.1 uses two separate PRN
streams; namely, one for the interarrival times a and one for the service
times s. Then “the” seed ry in Eq. (2.5) must be replaced by the vector of
seeds (say) ro = (r0.a,70;s) Where 1o, and ro.; denote the seed of the (inter)
arrival times a and the service times s, respectively. Because these a and
s are statistically independent in the M/M/1 model, these seeds must be
selected such that the two PRN streams do not overlap. Modern discrete-
event simulation software makes the selection of seeds straightforward, even
if the linear congruential generator specified in Eq. (2.4) is replaced by a
more complicated generator. Details on PRNs can be found in Kelton et al.
(2007) and Law (2015).

Examples that are more complicated than the single server in
Example 2.1, are networks of servers; e.g., customers can choose among
a number of parallel servers (as in a supermarket) or customers must pro-
ceed from one server to the next server (as in a hospital). Each server may
have its own service rate. The priority rule may be more complicated (e.g.,
supermarket customers with no more than ten items may choose a special
server). The computer implementation of such server networks may assign
separate seeds to the arrival process and to each of the (say) e servers, so
the seed r¢ is replaced by the seed vector rg = (ro.1,...,70;e+1) -

A more general black-box equation than Eq. (2.5) is

W = fam(di,...,di, o) = fsim(d,10) (2.6)

where w denotes the vector of simulation outputs; fsim(.) denotes the math-
ematical function defined by the simulation computer code implementing
the given simulation model; d; (j = 1,...,k) is the jth input of the com-
puter code; in deterministic simulation the seed vector ro vanishes; the &

inputs are collected in the vector d = (dy,...,dy)".
The design matriz for the simulation experiment is D = (d;;;) with
i = 1,...,n where n denotes the number of input combinations in that

experiment. Usually, this D is standardized such that —1 < d;; < 1; some-
times D is standardized such that 0 < d;; < 1. For example, a two-level
design usually has elements that are either —1 or +1; a space-filing design
usually has elements such that 0 <d;; < 1.
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The simulation output w in Eq. (2.6) is a multivariate random variable
that is meant to estimate (say) ©, which denotes the vector with the rel-
evant characteristics of the output distribution; e.g., the simulation’s av-
erage output w estimates p,,, which denotes the mean of the distribution
of the simulation output w, and the simulation’s order statistic w(ro.90c])
estimates the 90 % quantile of that same distribution. In deterministic sim-
ulation, ry vanishes so w becomes a wvector with n outputs that is meant
to estimate ®, which now denotes the vector of relevant output charac-
teristics such as the mean and the maximum of the simulation output in
the experimental domain. In practice, many simulation models have indeed
multiple outputs; examples are given in Kleijnen and Mehdad (2014) and
Shi et al. (2014).

Let us consider a possible metamodel for the black-box model in Eq. (2.5)
representing a single-server simulation model; for simplicity, we assume a
fixed queueing discipline (say, FIFO). This metamodel may be a first-order
polynomial in the arrival rate A and the service rate u, augmented with the
additive error term e:

y=00+BiA+ Bapu+e (2.7)

where y denotes the output of the metamodel for the average simula-
tion output w; By, P1, and B2 are the parameters of this metamodel; e
is the residual or noise. This e includes both lack-of-fit of the metamodel—
because this metamodel is a Taylor series approximation cutoff after the
first-order effects—and intrinsic noise—caused by the PRNs. (In determin-
istic simulation, e does not include intrinsic noise.)

There are alternatives for Eq. (2.7); e.g., a simpler metamodel is

y=P5o+ Pix+e (2.8)

where x denotes the traffic rate—in queueing theory usually denoted by
p—S0 \
xT=p . (2.9)

We observe that statisticians often use p to denote a correlation coefficient;
in this book, the context should clarify what the symbol p means. Obvi-
ously, Eq. (2.9) combines the two original inputs A and u in Eq. (2.7) into
a single input p, inspired by queueing theory (and “common sense”?).

Equation (2.9) illustrates the use of transformations. Another useful
transformation replaces y, A, and g in Eq.(2.7) by log(y), log(\), and
log(u); this logarithmic transformation makes the first-order polynomial
approximate relative changes; i.e., the regression parameters collected in
the vector 8 = (Bo, 1, B2)" become “elasticity coefficients”, which measure
percentage changes.

Definition 2.2 The elasticity coefficient of (say) y with respect to x is the
relative change in y caused by a relative change in x: (Oy/0x)(x/y).
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Exercise 2.1 Prove that the elasticity coefficient of y with respect to X\ in
Eq. (2.7) is By if y is replaced by log(y) and A by log(A).

Elasticity coefficients are popular in econometrics; e.g. Kleijnen and Van
Schaik (2011) applies the logarithmic transformation to some—but not
all—inputs, using data obtained through passive observation of a real sys-
tem (a mussel auction in the Netherlands) instead of active simulation
experimentation. The use of transformations illustrates that simulation an-
alysts should be guided by knowledge of the real system and—if available—
corresponding analytical models.

2.2 Linear Regression

First we discuss basic linear regression analysis. Next we discuss slightly
advanced linear regression analysis, which uses several F-statistics. These
F-statistics are known to be sensitive to the classic regression assumptions;
namely, the outputs are independently and normally distributed with a
common variance. In practice this advanced analysis may be replaced by
the analysis presented in the next chapter. Hence, some readers may wish
to skip this advanced analysis, and proceed to Sect. 2.3.

2.2.1 Basic Linear Regression Analysis

We apply the following general matrix representation for linear regression
models with multiple inputs and a single output:

y=XB+e (2.10)

where y = (y1,...,yn)’ denotes the n-dimensional vector with the
dependent variable and n denotes the number of simulated input com-
binations (runs, observations); X = (x, ;) denotes the n x ¢ matrix of
independent (explanatory) regression varlables with x;.; denoting the value
of independent variable j in combination ¢ (i = 1,...,n; j = 1,...,q);
B = (p1,...,Bq) denotes the g-dimensional vector with regression parame-
ters; and e = (ey, ..., e,)" denotes the n-dimensional vector with the resid-
uals in the n combinations. For example, Eq. (2.7) has ¢ = 3 parameters
and Eq.(2.8) has ¢ = 2 parameters; both equations include the dummy
independent variable z;,0 = 1, which remains constant for all ¢ values and
corresponds with [y, the effect of the dummy. If the general regression
model specified in Eq. (2.10) includes a dummy, then £; in the vector 8
denotes the intercept, whereas 3y denoted the intercept in the regression
model specified in Eqs. (2.7) and (2.8). Initially we assume that no in-
put combination is replicated; obviously, this assumption always holds in
deterministic simulation.
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When estimating the parameters 3 in the linear regression model spec-
ified in Eq.(2.10), the most popular criterion is so-called least squares
(LS)—also called ordinary LS or OLS (generalized LS will be discussed
in the next chapter). By definition, this criterion computes the estimator

B = (31, . ,Eq)’ such that ﬁ minimizes the sum of squared residuals, SSR:

n

min SSR=3_ (@) =3 (@ ~w) =G -w/F-w) (@1
=1 =1

where €; = 7; — w; is the estimated residual for input combination i, ; is
the regression predictor defined by

q
yi = chi;jﬁj =x;3, (2.12)
j=1

and w; denotes the simulation output of run i (e.g., the average waiting time
of that run in discrete-event simulation, or the maximum output during the
run in deterministic simulation). The solution of the minimization problem
defined in Eq. (2.11) can be derived to be

B =(X'X) 'X'w. (2.13)

Obviously, this B exists only if the matrix X is not collinear; i.e., B exists
only if the inverse (X' X)_1 exists or this inverse remains stable in its
numerical computation. For example, X is collinear in Eq. (2.7) if the two
inputs A and p change simultaneously by the same amount; X is collinear
in Eq. (2.8) if the input p is kept constant. The selection of a “good” X is
the focus of the next sections, which discuss various designs.

Actually, the computation of 3 does not need to use Eq. (2.13); i.e., better
numerical accuracy may result when solving the set of normal equations

X'w = X'X3, (2.14)

which follows from Eq. (2.10); also see Press et al. (2007). However, the
next sections provide such good design matrixes that the computation of
the LS estimates becomes trivial and numerical problems are negligible.

We emphasize that the LS criterion is a mathematical—not a statistical—
criterion, which is also known as the Lo norm. Other popular mathemati-
cal criteria are the L; and the L., norms; see Cooper (2009), Narula and
Wellington (2007), and Viana et al. (2014, Figure 4).

However, adding statistical assumptions about the output implies that
the LS estimator has interesting statistical properties. We therefore exam-
ine the following definition.

Definition 2.3 White noise (say) u is normally, independently, and iden-
tically distributed (NIID) with zero mean and some variance o>:
NIID(0,02).

u ~v
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This definition leads us to the following comments:

e The concept of “white noise” is used in many disciplines. Not all

these disciplines use the same definition of white noise; e.g., some
definitions do not require normality.

The linear regression model defined in Eq.(2.10) implies o) = o?.

The noise e is assumed to be white noise, provided the metamodel
is a valid approximation. If the metamodel is indeed valid, then the
dependent variable y in this metamodel may be replaced by the simu-
lation output w. This w may indeed be normally distributed if it is an
average computed from a “long” time series of individual simulation
outputs. These individual outputs are autocorrelated (serially corre-
lated), so the classic central limit theorem (CLT) does not apply. Yet
it can be proven that—under specific conditions—this average tends
to be normally distributed. A counterexample is a simulation with the
estimated 90 % quantile w(rg.90c]) @s its output; nonnormality may be
assumed for such an estimated quantile, unless the simulation run c is
very long. We also refer to our discussion of the normality assumption
in Sect. 3.3.1.

Obviously, deterministic simulation violates the white noise assump-
tion, so the statistical properties of the LS estimator 8 do not hold;
also see Chap. 3 on classic assumptions versus simulation practice.

The simulation outputs w; and w; with ¢ # i’ are indeed indepen-
dent if they use PRN streams that do not overlap. CRN violate this
assumption, as we shall detail in Sect. 3.5.

If arandom variable is “identically” distributed, then it has a constant
variance; see 02 in Definition 2.3. However, we may expect that the
simulation outputs w; do not have the same variance when the input
combinations change; i.e., we expect that the variances o2 are het-
erogeneous (heteroscedastic, heteroskedastic) instead of homogeneous
(homoscedastic, homoskedastic). For example, it is well-known that
the variance of the steady-state waiting time in the M/M/1 model
increases as the traffic rate increases; actually, this variance increases
much more than the steady-state mean (this mean was displayed in
Eq. (1.9)). This issue will be discussed Sect. 3.4.

In this chapter we assume that the simulation outputs w; (i = 1,...,n)

are indeed normally and independently distributed with the same variance

2

(say) o2; obviously, these w; may have different means in different in-
put combinations ¢. Let us initially—until the discussion after Eq. (2.23)—
assume that the linear regression model defined in Eq.(2.10) is a “valid”
metamodel, which is defined as follows.
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Definition 2.4 A metamodel is valid if and only if its residual has zero
mean: E(e) = 0.

If E(e) # 0, then the metamodel is biased; i.e., the metamodel may either
overestimate or underestimate the expected simulation output F(w). The
following definition is related to Definition 2.4.

Definition 2.5 A metamodel fits “perfectly” if and only if all its estimated
residuals are zero: €; =0 (i=1,...,n).

A perfectly fitting metamodel is “too good to be true”; i.e., n (number of
simulation runs) is too small. Such a perfect fit implies that the well-known
coefficient of determination R? has the ideal value one; see Sect. 3.6.1.

If the regression residual e is white noise, then LS gives the best linear
unbiased estimator (BLUE). The condition is not “if and only if”; see the
Gauss-Markov theorem discussed in Tian and Wiens (2006). Obviously, the
LS estimator is indeed a linear transformation of the simulation response w:

B=Lw (2.15)

where L = (X'X) !X’ because of Eq. (2.13); L is not random, whereas w
is random in random simulation. Obviously, this linear estimator has the
expected value

E(B) =L[E(w)] (2.16)

and the covariance matrix
Eﬁ =LY,L (2.17)

where X, denotes the covariance matrix of w (if the “white noise” as-
sumption holds, then Xy, = 02 1).

Exercise 2.2 Prove that the LS estimator B defined in Eq. (2.15) is an
unbiased estimator of B if E(e) = 0.

Equation (2.17) together with the white-noise assumption implies that
the LS estimator has the following covariance matrix:

5= X'X) "o, (2.18)

Like any covariance matrix, this 3 3 must be symmetric and positive semidef-

inite. Equation (2.18) does not assume that the noise is normally dis-
tributed.

Exercise 2.3 Prove that the LS estimator B3 defined in Eq. (2.15) has the
covariance matriz defined in Eq. (2.18) in case of white noise. (Hint:
(X'X)~t is symmetric.)
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Exercise 2.4 Use Eq. (2.17) to prove that the variance of the average wait-
ing time of a simulation Tun with ¢ customers—defined in Eq. (2.1)—would
be o2 /c if and only if the individual waiting times were IID with variance
o2 (actually, these waiting times have different variances and are autocor-
related).

Given the white noise assumption, it can be proven that—among all
linear unbiased estimators—the LS estimator is best, i.e., this estimator has
the minimum variance. Obviously, the variances of the individual regression
estimators 8, are given by the main diagonal elements of Eq. (2.18); their
covariances are given by the off-diagonal elements of the symmetric matrix.
The matrix (X’X) is also known as the information matriz.

Instead of deriving an unbiased estimator, some statisticians minimize
the mean squared error (MSE); i.e., they accept possible bias. In regression
analysis, the MSE criterion leads to ridge regression. We do not know any
application of ridge regression in simulation, so we do not further discuss
this type of regression. R

The linear LS estimator 3 has another interesting property if the simula-
tion outputs w are normally distributed; i.e., 3 is then normally distributed
too. Combining this property with the mean following from Eq. (2.16) and
the covariance given in Eq. (2.18) gives

B~ NIB,(X'X)'o2].

Consequently, the individual estimated regression parameters B\j may be
tested through the Student t-statistic with n — q degrees of freedom:
tn_qzﬂj:ﬁj with j=1,....q (2.19)
s(8;)

where s(@) is the square root of the jth element on the main diagonal of
the covariance matrix for 3 given in Eq. (2.18) with o2 estimated through
the mean squared residuals (MSR):
SSR y—w)(y—
MSR = _ =W -w) (2.20)

n—q n—q

where SSR was given in Eq.(2.11). This MSR assumes that degrees of
freedom are left over, after fitting the regression model: n — g > 0.

The t-statistic defined in Eq.(2.19) may be used to test whether an
individual regression parameter 8; has a specific value such as the value
Zero:

HO : ﬁj =0. (221)

This null-hypothesis Hy is rejected if the computed t-value is significant:
[tn—q| > tn_g1—as2 Where t,_,q_o/o denotes the 1 — a/2 quantile of the
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(symmetric) distribution of #,,_g; this ¢,_q.1_o/2 is also called the upper
/2 critical point of the ¢-distribution (obviously, t,,_q.1—a/2 = —tn_ga/2)-
Only if we have strong evidence against Hy, we reject this hypothesis and
accept the alternative hypothesis Hi; e.g., Hy in Eq.(2.21) implies the
alternative hypothesis Hy: 3; # 0.

To avoid the selection of a specific value for a in ¢, _41_q/2, we may
present the so-called p-value which is the probability of obtaining a test
statistic at least as extreme as the one that was actually observed, assum-
ing that the null hypothesis is true. (We might say that the p-value is the
a-value that changes the observed value of the statistic from nonsignifi-
cant to significant, but a search of the Internet suggests that the correct
interpretation of the p-value is controversial.)

We point out that the nonsignificant inputs are usually removed from
the fitted metamodel. However, we should keep in mind that the BLUE
is still 5;, so we must have good (nonstatistical) reasons to replace §; by
zero. One such reason may be that in sensitivity analysis we may apply
the principle of parsimony, which we may colloquially call “keep it simple,
stupid (KISS)”. In optimization, however, we may keep the nonsignifi-
cant first-order effects because they may become important when we fit
a first-order polynomial in another experimental area (when searching for
the optimum applying RSM). For example, Dengiz et al. (2006) keeps two
nonsignificant first-order effects in the regression metamodel because these
two effects correspond with two decision variables in a simulated decision
support system (DSS) that is to be optimized. Furthermore, we emphasize
that an input may turn out to be significant, but this input may still be
unimportant. For example, Breukers (2006) uses m = 500 replications so all
inputs turn out to be significant; replications will be further discussed be-
low (see the discussion around Eq. (2.24)). Significance versus importance
is also discussed outside simulation; e.g., Lin et al. (2013) points out that
a large sample (with, say, 10,000 observations) may lead to a very signif-
icant statistic (with a corresponding small p-value) and yet the practical
importance may be small. We shall discuss the selection of the number of
replications, in the next chapters.

2.2.2  Advanced Linear Regression Analysis

Instead of formulating a hypothesis involving a single parameter, we may
formulate a composite or joint hypothesis involving several parameters;
e.g., instead of Hp in Eq. (2.21) we may define

Holﬂj/:...:ﬂq:() (222)

where—for simplicity of presentation—the ¢ parameters are arranged such
that the last ¢ — 7' + 1 parameters are hypothesized to be zero. To test
this hypothesis, we may use an F'-statistic; see, e.g., the general regression
textbook Searle (1971). This test proceeds as follows.
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1. Compute the SSR without Hy; this is called the SSR of the unre-
stricted or full regression model: SSRyy.

2. Compute the SSR under Hy, called the SSR of the restricted or
reduced regression model: SSRyequced.- Obviously SSRyeduced = SSRtun
because imposing the constraint specified by Hy in Eq.(2.22)
increases the minimum value of SSR.

3. Compute
SSRreduced - SSRfull

1 —al . _ =
qg—j'+1lin—q
SS R

(2.23)

The Hy in Eq. (2.22) is rejected if F_j/ 41,4 exceeds the 1—a quantile of
the Fy_j41,n—q distribution; that quantile may be denoted by
Fy_j'4+1;n—q;1—a- Note that this Hy uses a one-sided F' test, whereas the
Hy in Eq.(2.21) uses a two-sided ¢ test (obviously, such a two-sided ¢ test
should be used to test Hp : §; = 0).

Actually, before testing the individual inputs in Hy defined in either
Egs. (2.19) or (2.22)—using either Egs. (2.19) or (2.23)—we should test
whether the metamodel as-a-whole is valid. Because classic regression anal-
ysis and DOE assume white noise, we use the so-called lack-of-fit F'-statistic.
In addition to white noise, this F-statistic assumes that at least one input
combination is replicated. (In the next chapter we shall drop the white
noise assumption and present alternative validation statistics based on R?
and cross-validation.) This F-statistic compares § (metamodel predictor)
with w (average output of the underlying simulation model). Obviously,
the probability of a significant difference between 7 and W increases, as m;
(number of replications) increases. The increase of this probability is desir-
able if the metamodel is indeed inadequate; i.e., the power of the test should
increase as m; increases. Whether the lack-of-fit is important is determined
by the goals of the metamodel and the simulation model. An extensive dis-
cussion of the role of these goals in the validation of metamodels is Kleijnen
and Sargent (2000).

Denoting the number of replications of input combination i by m;, we
give the following definition.

Definition 2.6 A replication of the input combination d; of the simulation
model implies that this d; is simulated more than once, so m; > 1.

Below Eq.(2.10) we mentioned that we initially assume that no input
combination is replicated. This assumption is realistic in passive obser-
vation of real systems, as in econometrics. In such passive observation,
the independent variables are not controlled so they are actually ran-
dom and the probability of multiple realizations of the same combina-
tion x; = (z41,...,%ig) (i = 1,...,n) is negligible. However, in active
experimentation with either real systems or random simulation models of
real systems, we do control the input combinations d defined in Eq. (2.6);
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i.e., more than once we may observe at least one combination of the inde-
pendent variables x; in Eq. (2.10). In deterministic simulation, however, it
makes no sense to repeat the simulation with the same input combination,
because it gives the same simulation output. In the rest of this section we
focus on random simulation with replications.

The classic assumption is that replications are IID. In discrete-event sim-
ulation, this assumption is guaranteed if the replications use PRN streams
that do not overlap. If the simulation output is the response of a steady-
state simulation, then this IID assumption is guaranteed if the whole “long”
run is replicated. The assumption is also satisfied if subruns are used and
these subrun outputs have negligible autocorrelations. If the subruns are
actually renewal (regenerative) cycles, then the IID assumption is satisfied
by definition. Obtaining IID outputs in steady-state simulation is exten-
sively discussed in the discrete-event simulation literature; e.g. Law (2015).

Replication implies that the matrix of independent variables X has at
least one combination x repeated; e.g., if the first combination of A and u
in Eq. (2.7) is replicated three times (m; = 3) and these values are 0.5 and
1.0, respectively, then the first three rows of X are

1 05 1.0
1 05 1.0
1 05 1.0

In general, replication increases the number of rows of X from n to (say)
N defined as follows:

N=> m (2.24)

with m; identical rows x} if combination ¢ is simulated m; times. Con-
sequently, MSR defined in Eq.(2.20) now has more degrees of freedom;
namely, N — ¢ instead of n — ¢, as we shall see. Obviously, Eq. (2.24) also
holds in the special case m; = 1 for some i or all 7.

Besides Definition 2.6 we use the following definition, throughout this
book.

Definition 2.7 A macroreplication of an experiment with a simulation
model means that the whole simulation experiment defined by the N X k
design matriz D is repeated such that only the seed vector ro is changed.

It is possible to keep the number of rows in X limited to the n different
combinations. The output corresponding with x; then becomes the output
averaged over the m; replications. So we should distinguish the following
two situations:

e The number of replications is the same in all n simulated input com-
binations: m; = m. The LS estimate may then be computed from
the n simulation output averages, w; (i = 1,...n). The MSR can
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still be computed analogously to Eq.(2.20), replacing w by W =
(wl, .. .mn)/l
SSRw _ (Y -W)'(y —W)

MSRw = = ) (2.25)
n—gq n—gq

which has expected value Var(w) = Var(w)/m instead of Var(w).

e The number of replications is not constant: m; # m. The MSR can
then be computed from the averages w; (i = 1,...n) weighted by m;:

o mi(Yi —w;)?

(Z?:l mi) —q

If x; is replicated m; > 1 times, then an alternative for the MSR estimator
is the classic variance estimator:

MSRa(1my) = 2= (2.26)

m; o T1.)2
$2(w;) = ZT:ﬁ’fI TS 21 ) (2.27)
with s
;= Zr=1 Wi (2.28)
m;

We provide the following comments on Eq. (2.27):

e The average in Eq. (2.28) is computed from the m; replications; this
average should not be confused with the average computed from the
autocorrelated individual waiting times in a single simulation run; see
Eq. (2.1).

e The average in Eq.(2.28) and the sample variance in Eq. (2.27) are
statistically independent if the simulation outputs w;, are NIID, as
any basic statistics textbook mentions.

e The variance estimator in Eq.(2.27) is a chi-square variable with
m; — 1 degrees of freedom; see again any statistics textbook.

e The denominator m; — 1 in Eq. (2.27) makes the estimator unbiased;
the mazimum likelihood estimator (MLE) can be proven to use the
denominator m;. (The LS estimator ﬁ is also the MLE, given the
white noise assumption.)

Because of the common variance assumption implied by the white noise
assumption (see Definition 2.3 above), the n variance estimators in
Eq. (2.27) may be pooled using their degrees of freedom as weights:

o (m; —1)s?
s%(w) = —%;i o _11 )Z : (2.29)
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Altogether—if there are replications—we have the following two variance
estimators:

e MSRy defined in Eq. (2.25) for an equal number of replications per in-
put combination (m; = m > 1), and MSR(m;) defined in Eq. (2.26)
for m; > 1. Obviously, these two estimators use the fitted regression
model; if this regression model is not valid, then they overestimate
the true variance. Therefore we put this estimator in the numerator of
the lack-of-fit F-statistic—discussed next—and use a one-sided test.

e The pooled variance estimator in Eq. (2.29), which uses m; > 1 repli-
cations. This estimator does not use a fitted regression model, so this
estimator is unbiased—assuming the simulation outputs for a repli-
cated combination are IID. Note that these outputs do not need to
be NIID; however, the F-statistic does assume NIID.

These two estimators may be compared through the so-called lack-of-fit
F-statistic. We point out that an F-statistic assumes that its numerator
and denominator are independent. Actually, the lack-of-fit F-statistic has
a numerator that uses MSR, which depends on w; and ¥;; this ¥; uses w;.
The denominator depends on the pooled variance estimator, which uses s?;
it is well known that s? is independent of w; if the responses w are normally
distributed.

We again distinguish between an equal and an unequal number of repli-
cations, as we did in Egs. (2.25) and (2.26).

e If each input combination ¢ is replicated a constant number of times
so m; = m, then the lack-of-fit F-statistic is

m_ (W-y)(W-y)
Foi 4y = - 2.30
A I DL (230
where s%(w;) was defined in Eq.(2.27), and (3.1, s*(w;)/n)/m is
an unbiased estimator of Var(w) = Var(w)/m; however, (W — §)’
(W —79)/(n — q) is an unbiased estimator of the same quantity, only
if the regression model is a valid approximation.

e If the number of replications per combination is not constant, then
this statistic becomes (see Montgomery 2009, p. 413 or any other
textbook on DOE):

i Soiy mi(w; — 5i)?/(n —q)
e Z?:l Z;n:il(wi;r - w1)2/(N — n) '

The numerator uses MSRz(m;) defined in Eq. (2.26) so it is computed
from the average simulation output per combination; at least one
combination is replicated (usually, the center of the experimental area
is replicated when applying classic DOE to simulation).

F, (2.31)
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Obviously, we reject the regression model if the F-statistic defined in
either Eq. (2.30) or Eq. (2.31) is significantly high.

Note: Alternative tests for the validation of the fitted metamodel will
be presented in Sect.3.6.2, including the popular statistic R? and cross-
validation statistics such as PRESS. Those tests do not assume white noise,
so they may also be applied to deterministic simulation. Moreover, they
may be applied to other metamodel types, such as Kriging models.

The lack-of-fit F-statistic becomes statistically significant whenever the
estimated variance of the underlying simulation output w; becomes “small”.
For example, if w represents the waiting time averaged over the simula-
tion run-length (say) T so w = Z;‘ll wy /T, then Var(w) goes to zero as
T goes to infinity. So any deviation between the observed simulation re-
sponse w and the regression predictor is declared significant. In practice,
however, these deviations may be unimportant. (R? does not have this
characteristic.)

So we may use either the individual simulation outputs w;,. or the
averages w;. Both outputs give identical B but different MSE. For exam-
ple, suppose that one individual output increases with the constant ¢, while
another individual output for the same input combination decreases with
that same constant. The average w; then remains the same, so 3 and MSE
computed from the averages remain the same. However, MSE computed
from the individual outputs increases. The best estimator is the latter one,
because it has more degrees of freedom; namely, N — ¢ instead of n — ¢
where N =37 m;.

We conclude this section (on basic regression analysis) with a long exer-
cise that covers many issues discussed in this section.

Exercise 2.5 Because experiments with simulation models do not satisfy
the assumptions of basic regression analysis (e.g., M/M/1 simulation mod-
els do not have constant response variances), you may perform the following
experiments with Monte Carlo models. Suppose that the simulation model

has the I/0 function (also see Eq. (2.5))
w= o+ Pz + 22" +u (2.32)
where u ~NIID(0,0?%) so 0% = 02 = 02. More specifically, suppose

w=100+5z+2>+u if 1<z<10 (2.33)

where u ~NIID(0,4). Following Algorithm 1.1 (in Chap. 1), you start with
the first-order polynomial metamodel

y="v +vz+e with 1<z<10. (2.34)

To fit this metamodel and validate it, you select n values for z in the global
experimental domain 1 < z < 10; e.g., you select n = 5 equispaced values
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in this domain so z1 = 1, z0 = 3.25, z3 = 5.50, z4 = 7.75, and z5 = 10.
Furthermore, you sample m; (i =1,...,5) replications for input value z;;
e.g, mi=4soo0z=o0,/y/m=2/2=1.

(a)
(b)

(c)

(d)

(¢)

()

Compute the LS estimate ¥ = (3o,71)" using Eq. (2.13).

Compute the LS estimate B = (BO,Bl) using a standardized input x
such that 0 < x < 1.

To validate the metamodel fitted in (a) or (b), use the lack-of-fit F'-
test defined in Eq. (2.30). (Hint: § = X3 =z, so this F-statistic is
scale-free.)

Let us assume that (c) gives a significant F-statistic for a type-I error
rate o with the value (say) 0.10; we make this assumption because a
first-order polynomial metamodel is fitted, whereas the simulation has
a second-order polynomial 1/O function including intrinsic noise o>
that seems not too big. Following Algorithm 1.1, you next select an
alternative metamodel; namely, a second-order polynomial

y=v+mnz+mnzi+e with 1<z<I10. (2.35)

Obviously, you have enough I/O combinations to fit this model with
its three parameters: n = 5 > q = 3. You should again validate
this metamodel, using the F-test in Eq. (2.30). We expect that now
you find a nonsignificant F-statistic when using a = 0.10, because
you fit a second-order polynomial and the simulation has indeed a
second-order polynomial I/0 function.

Next, consider the following alternative for a second-order polynomial
metamodel; namely, a first-order polynomial restricted to a local area
that is concentrated around the middle of the experimental domain:

y="v +v1z+e with 5<z<6. (2.36)

To fit and validate this metamodel, you select n values for z in the
local experimental domain 5 < z < 6; e.g., select n = 3 equispaced
values in this domain so z; = 5, z9 = 5.5, and z3 = 6. You still
sample m; = 4 replications. You may use this local metamodel if the
goal of your experiment is to estimate the gradient for simulation
optimization. Does your (BLUE) estimate 41 point you in the right
direction when you wish to maximize the simulation output; i.e., is
1 positive?

Next we pretend that the simulation is so expensive that the number
of new simulation runs should be minimized. Therefore you assume
a first-order polynomial instead of a second-order polynomial. You
fit this first-order polynomial for the following three old input values:
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FIGURE 2.1. Scatterplot for Monte Carlo experiment defined in
Exercise 2.5

za = 3.25, z3 = 5.50, and z4 = 7.75; i.e., you ignore the extreme
inputs z1 = 1 and z5 = 10. Use the m = 4 replications for each of
these three old input values. Validate this fitted metamodel.

(9) Instead of using the approach in (f), you obtain m = 4 replications—
assuming that fewer replications would make the observed average
stmulation output too noisy—for a single new input value; namely,
z = 6. Fit a first-order polynomial to these new data (z = 6, We) and
the old I/O data that are closest to these new input value; namely,
(z = 5.50, Ws.5). Do you find 7y, > 07

Summarize your experimental results in a scatterplot such as Fig. 2.1,
which shows results for a specific PRN stream; i.e., the horizontal axis rep-
resents z; (1 =1,...,n) and the vertical azis represents wi., (r=1,...,m);
various metamodels are fitted.

2.3 Linear Regression: First-Order Polynomials

To estimate the parameters of a black-box metamodel—e.g., the parame-
ter vector B in the linear regression model defined in Eq. (2.10)—we must
experiment with the simulation model; i.e., we must first change the in-
puts of the simulation and run the simulation, and next we must analyze
the resulting I/O data. In this section, we examine first-order polynomial
metamodels.
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Let us start with the simplest metamodel; namely, the first-order poly-
nomial with a single standardized input z:

y=Po+ Pz +e. (2.37)

Obviously, this polynomial has ¢ = 2 regression parameters; whereas math-
ematicians use the symbols 5y and 7 as we do in Eq. (2.37), statisticians
use 31 and B2 as we do in Eq. (2.10) for the general linear regression model.
Geometrically, Eq. (2.37) implies a straight line in the (z,y) plane. To fit
such a straight line, it obviously suffices to have only n = 2 observations
(xi,9:) (1 =1,2); see again Fig. 2.1, which includes a first-order polynomial
(besides a second-order polynomial). A first-order polynomial may provide
a valid metamodel for a “small” experimental area; i.e., the first-order poly-
nomial is fitted only locally (Taylor series argument). Furthermore, select-
ing the two input values x1 and 2 as far apart as possible gives the “best”
estimator of the first-order effect (slope) S1—given the white noise assump-
tion for e. This assumption implies a constant variance o2 2 2 and

w = Oy = O¢
statistical independence or Ty, = 03 1. So X = o7, (X'X) ™" see Bq. (2.18).
Exercise 2.6 Prove that the OLS estimator Bl has minimum variance if
the lower value of x in Eq. (2.37) denoted by (say) | and the upper value u
are as far apart as possible.

Next we consider the (more general) first-order polynomial metamodel
with k£ > 1 independent variables z; (j =1,...,k):

y=Po+ frx1+ ...+ Brar +e. (2.38)

This metamodel implies that the general linear regression model defined
in Eq.(2.10) now has ¢ = k + 1 regression parameters. An example is the
first-order polynomial metamodel with the arrival rate A and the service
rate p for the M/M/1 simulation model, given in Eq. (2.7).

In practice, such a metamodel may be useful when estimating the optimal
values for the inputs of a simulation model. For example, we may wish to
estimate the combination of input values that maximizes the profit of a
simulated company. There are many methods for estimating the optimal
input combination (see Chap.6). Some of these methods use the gradient,
which quantifies local marginal effects; see the next definition.

Definition 2.8 The gradient V(y) of a function y(x1, ..., xx) is the vector
with the first-order partial derivatives: V(y) = (0y/0x1,...,0y/0xy)".

2.3.1 Scaling the Inputs

It is convenient and traditional in DOE to use scaled—also called coded or
standardized—inputs. If each input has only two values in the whole exper-
iment involving n input combinations, then these values may be denoted
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by —1 and +1. This implies the following linear transformation where z;
denotes the quantitative input j measured on the original scale, I; denotes
the lower value of z; in the experiment (so [ = min; z; with ¢ = 1,...,n),
and wu; the upper value (so v = max; z;):
Tij = aj +bjzi
lj+u, 2
with a; = L; bj=——;j=1,... ki=1,...n.  (2.39)
lj — Uj Uj — lj

This transformation implies

Zij — Rj
(uj = 15)/2
where Z; denotes the average value of input j in a balanced experiment,
which means that each input is observed at its lower value in n/2 combina-
tions (hence this input is observed at its upper value in the other half), as is
the case in a 2% design. The factor (u; —[;) in the denominator of Eq. (2.40)
is known as the range of input j; the range is a well-known quantitative
measure for the variation of a variable, besides the variance.

(2.40)

Tij =

Exercise 2.7 Simulate an M/M/1 queue with a traffic rate between 0.2
and 0.5, and fit a first-order polynomial metamodel; also see Eq. (2.8). Use
standardized inputs for this metamodel applying Eq. (2.39). Use this meta-
model to predict the simulation output for a traffic rate of 0.3 and 0.4,
respectively. Which standardized x-values correspond with the original traf-
fic rates 0.8 and 0.47

The scale of the original input z in Eq. (2.39) may be an interval, a ratio,
or an absolute scale; see the discussion of scales at the end of Sect. 1.3. If z
has either a nominal scale or an ordinal scale and z has only two levels, then
the coding remains simple; i.e., we arbitrarily associate one level with —1
and the other level with +1 (on purpose, we now speak of “level” instead
of “value”). For example, in a queueing simulation, one level may represent
the FIFO priority rule, and the other level may represent LIFO.

The coding does not remain so simple if an input has a nominal scale with
more than two levels. For example, Kleijnen (1995) discusses a simulation
model of a sonar system that searches for mines on the sea bottom; this bot-
tom is a nominal input with the three values clay, sand, or rocks. The type
of sea bottom may affect the sonar’s output. In this case study, the simula-
tion analysts erroneously coded these three bottom types as —1, 0, and +1.
The correct coding may be done through multiple binary variables—each
coded as 0 and 1; mathematical details are discussed in Appendix 1. In the
remainder of this book, we do not consider qualitative inputs with more
than two levels.

Standardizing in such a way that each input—either quantitative or
qualitative—varies between —1 and +1 is useful when comparing the ef-
fects of multiple inputs, as we do in sensitivity analysis. Figure 2.2 gives an
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FIGURE 2.2. Scaling effects when comparing the effects of two inputs z;
and zo with different ranges, in a first-order metamodel with output y

example with two quantitative inputs with different ranges, but the same
scale (if the two scales were different, then two horizontal axes would be
needed). The marginal effect of z5 is higher than the marginal effect of zq;
see the slopes of the dashed lines (response curves). However, the range of
z1 is much bigger so “the” effect of this input is larger. If the standard-
ization defined in Eq. (2.40) is applied, then the standardized effect of z;
exceeds that of zs.

Instead of the standardized inputs z; in Eq. (2.38), we may use the orig-
inal inputs z; with [; < z; < uy:

y=Ytmza+...+%2 te (2.41)

The intercept in Eq.(2.38) equals the expected output at the center of
the experimental area, because E(y) = fo if z; = 0 for all j. However,
the intercept in Eq. (2.41) equals the output when z; = 0 for all j—which
may be very far away from the experimental area! Obviously, the marginal
effects in Eq. (2.38) are Jy/dz; = B;; the marginal effects in Eq. (2.41)
are 0y/0z; = ;. The total effect in Eq. (2.38) when changing the inputs
over their experimental domain is 2/3;, because all standardized inputs z;
have the same range; namely, 1 — (—1) = 2. So 8 = (81, ... k)’ quantifies
the relative importance of the k inputs. The total effect in Eq. (2.41) when
changing the inputs over their experimental domain are 7;(u; —1;). To rank
the input effects, the absolute values of the standardized effects 3; should
be sorted—if a first-order polynomial is a valid metamodel (else, interac-
tions should also be considered; see Sect. 2.5 below); the absolute values
are needed for qualitative inputs, which have levels that are arbitrarily as-
sociated with the standardized values —1 and 1. We find the original scales
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less convenient in sensitivity analysis. The original scales are used in op-
timization through response surface methodology (RSM), which uses the
gradient V(y) = (0y/0z1,...,0y/0z)’; see Sect.6.2. The t-statistic de-
fined in Eq. (2.19) has the same value for the original and the standardized
effects, as is easy to prove (Var[(a; + b;7;)] = b5Var(7;), etc).

Exercise 2.8 Bettonvil and Kleijnen (1990) discusses a third type of stan-
dardization that centers the original inputs z; around Z;, defined below

Eq. (2.40):
y=00+0(z1—%Z1)+ ...+ k(2 —Zk) +c. (2.42)

Derive the marginal effects of zj, and the total effect over the range of z;,
when using this metamodel and a balanced design.

2.3.2  One-Factor-at-a-Time Designs Versus Factorial
Designs

To estimate the gradient (defined in Definition 2.8), many mathematicians
change one input at a time—using two or three values for each input.
However, the statistical theory on DOE proves that it is more efficient to
estimate the gradient from a first-order polynomial estimated through a so-
called factorial design that is either a full factorial or a fractional factorial
design (we shall define these designs below). Not only for optimization but
also for other goals of simulation, the LS estimator of the k+1 parameters in
the vector B = (Bo, f1, - - -, Br)" in Eq. (2.38) often uses one of the following
two design types:

e One-factor-at-a-time designs
e Full factorial designs

In practice, the simulationists often change each input one-at-a-time
(called the ceteris paribus approach in econometrics). DOE, however, may
use a 2% design where k denotes the number of inputs and 2 denotes the
number of levels (values) per input; this design is called a two-level full fac-
torial. Obviously, two values suffice to estimate the first-order polynomial
in Eq. (2.38).

To compare one-at-a-time designs and full factorial designs, we first dis-
cuss the simplest example with multiple inputs—namely, &k = 2 inputs—in
detail.

Example 2.2 Suppose that the number of inputs is only two, so k = 2.
To evaluate the different design types, we compare the variances of the es-
timated regression parameters in a one-at-a-time design and in a full fac-
torial design, respectively—assuming a first-order polynomial metamodel.
We also assume that there are no replications, so m; = 1.
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FIGURE 2.3. A one-at-a-time design for two inputs x; and xg

A one-at-a-time design is presented in Fig. 2.3. This design is only one
of the possible designs that belong to this popular design class; other designs
in this class use three (instead of two) values, but we have already pointed
out that two values suffice for a first-order polynomial (see the discussion
of Eq. (2.37)). Moreover, we assume that the combination denoted by (1)
in this plot, is the so-called base value; e.g., the current input combination
in the real system being simulated. The other two combinations in Fig. 2.3
increase input 1 and input 2, respectively. Obuviously, the design could also
be “mirrored” so the first combination would become (+1,41) instead of
(—1,-1). Figure 2.8 corresponds with the following design matriz:

-1 -1
D=| +1 -1
-1 +1

This D gives X for the general linear regression model in Eq. (2.10):

+1 -1 -1
X=|+1 +1 -1 |=][15D]
41 -1 +1

where 13 = (1,1,1)’; in general, we let 1, denote a column vector with
all its n elements equal to 1. For convenience we assume that o2 = 1.
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This gives
3 -1 117" o5 025 025
Yp=(XX)"'=|-1 3 -1| =025 05 025
-1 -1 3 0.25 0.25 0.5
where

o 0 05 05] [w] [0.5ws+ 0.5ws
B=(Bo, b1, B2)'=(X'X) 'X'w=|—-05 05 0| |wa|=]0.5ws—0.5uw;
—05 0 05| |ws| [0.5w5— 05w,

This ,@ agrees with common sense; e.q., B2 is estimated by the difference
between the third observation in Fig. 2.3 and the base observation which is
combination 1 in this plot. We point out that each of the three regression
parameters is estimated from only two of the three simulation outputs.

The 22 design adds a fourth combination to Fig. 2.3; namely, the combi-
nation (+1,+1). Hence, X becomes

+1 -1 -1
+1 41 -1
X = +1 -1 +1
+1 41 +1

This X together with o2 =1 gives

-1

4.0 0 025 0 0
Yp;=XX)'=]|0 40 =/ 0 025 0
00 4 0 0 025

and

R 0.25w1 + 0.25wg + 0.25ws3 + 0.25w4
B=XX)"'"X'w=| 025wy —0.25w; — 0.25w3 + 0.25w;4
0.25ws3 — 0.25wy — 0.25w; 4 0.25wy

This E again agrees with common sense; e.g., P2 is now estimated by sub-
tracting the average of the first and second outputs from the average of the
third and fourth outputs—which agrees with Fig. 2.3 augmented with the
fourth combination. We emphasize that each of the three regression param-
eters is now estimated from all four outputs.

The variances of the estimated parameters are 0.25 for the factorial de-
sign, whereas these variances are 0.5 for the one-at-a-time design. These
variances, however, should be corrected for the number of combinations;
this correction gives 4 x 0.25 = 1.0 and 3 x 0.5 = 1.5 . So the factorial
design is more “efficient”. (We shall also discuss examples with ezxactly
the same number of combinations in both design types, which simplifies
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the comparison of their efficiencies.) Moreover, the estimated parameters
are uncorrelated in the factorial design; in the one-at-a-time design, the
correlations are 0.25/0.5 = 0.5. Under the normality assumption, zero cor-
relation implies independence; obviously, independent estimators simplify
the statistical analysis.

The 22 design, which features in this example, has “orthogonal” columns,
defined as follows.

Definition 2.9 Two n-dimensional vectors (say) z; and z; (with j # j')
are orthogonal if their inner product y | 2,z is zero.

Note: A similar critique of one-at-a—time designs can be found in Spall
(2010). However, Voelkel (2005) gives a more favorable discussion of one-
at-a-time designs; e.g., factorial designs imply input combinations that are
more extreme (the distance between these combinations and the center
coded as 0 is vk). Such extreme combinations may lead to nonrealistic
simulation outputs; an example is the ecological case study in Chap.4 on
screening. Actually, Voelkel (2005) assumes 2k input combinations instead
of only k + 1 combinations. Frey and Wang (2006) recommends one-at-a-
time designs if the goal of the experiment is “to seek improvements in the
performance”, which is closely related to the goal called “optimization”
in the preceding chapter (see Sect.1.2). Frey and Wang (2006) assumes
small experimental error o2 and large two-factor interactions. One-at-a-
time designs are also reviewed in Alaeddini et al. (2013).

Let us examine one more example; namely, a 2¥ design with k& = 3 inputs.

Example 2.3 Obviously, a 2F design with k = 3 inputs has an 8 x 3 design
matriz D. We use the notation that is conventional in DOE; i.e., we display
only the signs of the elements of D so — means —1 and + means +1:

+__
_+_
+ + -
D=1 _ _ 4
+ - +
- + +
L+

Because of the intercept By, the matrix of explanatory variables X adds the
column 1g = (1, ..., 1) with eight elements equal to 1, to D so X = [1g, D].

It is easy to verify that the columns of this X are orthogonal. Further-
more, the design D is balanced; i.e., each column has the same number
of pluses and minuses; namely, 281 = 4. We may use orthogonality and
balance to have the computer check for typos in D and X.
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In general, a 2F design results in an orthogonal matrix of independent
variables for the first-order polynomial in Eq. (2.38):

X'X =nl with n=2" (2.43)

where I denotes an n x n identity matrix. This orthogonality property
follows directly from the following general procedure for constructing a 2*
design (also see the preceding example with & = 3):

1. Make the first 2 elements of column 1 of D equal to (—1,+1)’; repeat
these two elements, until the column is filled with n = 2% elements.

2. Make the first 22 elements of column 2 equal to (—1,—1,+1,+1);
repeat these 22 elements, until this column is filled.

3. Make the first 23 elements of column 3 equal to (—1,—1,—1,—1,
+1,+1,+1,+1); repeat these 23 elements, until this column is filled.

5. Make the first 2°=1 elements of column k equal to 2¥~1 consecutive
elements —1, followed by 2~1 consecutive elements +1.

Note: Orthogonal matrixes are related to so-called Hadamard matrixes; see
Craigen (1996). The orthogonality property in Eq. (2.43) simplifies the LS
estimator; i.e., substituting Eq. (2.43) into Eq. (2.13) gives

B = (nl) 'X'w=X'w/n= (x;w/n) = (M) (j=1,...q).
(2.44)

This equation does not require matrix inversion. Avoiding matrix inversion
improves the numerical accuracy of the LS estimation (numerical inaccu-
racy may be a major problem in Kriging metamodels, as we shall see in
Chap. 5). Historically, avoiding matrix inversion was very useful when no
computers were available, as was the case when DOE started seriously with
Fisher (1935).

Obviously, 2 designs are balanced; i.e., for each j, half the z;; equals —1
and the other half equals +1. Consequently, the estimator Bj is simply the
difference between the two averages wi,; denoting the average simulation
output when input j is +1, and ws,; denoting the average simulation output
when factor j is —1:

Dic1 Tigwi/(n/2) _ Wy — Wy

8. — = = 2 24

So the mathematical criterion of LS gives an “intuitive” estimator.
Furthermore, the orthogonality property simplifies the covariance matrix
in Eq. (2.18) to

2
Ow

5= (nI) loy, =1 (2.46)

n
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So all the ¢ estimators Ej have the same variance 02 /n, and they are sta-
tistically independent. Because the Bj have the same estimated variances,
we can rank gj—in order of importance—using either these Bj themselves
or the t-values defined in Eq.(2.19). Because all ¢ estimated effects are
independent, the “full” regression model with ¢ effects and the “reduced”
model with nonsignificant effects eliminated have identical values for those
estimated effects that occur in both models. If X is not orthogonal, then
this so-called “backwards elimination” of nonsignificant effects changes the
remaining estimates. Finally, it can be proven that the variances of 3;—the
elements on the main diagonal in Eq. (2.18)—are minimal if X is orthogo-
nal; see Box (1952).

Altogether, 2* designs have many attractive properties. Unfortunately,
the number of combinations is n = 2¥, so n grows exponentially with the
number of inputs k. At the same time, the number of effects is only ¢ = k+1
in a first-order polynomial metamodel, so 2* designs become inefficient for
high values of k; e.g., k = 7 gives n = 27 = 128 whereas ¢ = 8. Therefore we
now present designs that require only a fraction of these 2¥ combinations.

Definition 2.10 An incomplete design has fewer combinations than the
corresponding full factorial design.

This definition deserves the following comments:

e The simplest incomplete designs are 2¥~P designs, which are a fraction
27P of the 2% design. For example, if k& = 7, then a 27~* design
with only n = 8 combinations suffices to fit a first-order polynomial.
Details will follow in Sect. 2.4.

e There are also fractions of mized-level designs such as 251352 designs.
These designs are rather complicated, and are hardly ever applied in
simulation. We shall briefly discuss such designs in Sect. 2.10.

2.4 Designs for First-Order Polynomials:
Resolution-III

Definition 2.11 A resolution-IIT (R-III) design gives unbiased estimators
of the parameters of a first-order polynomial, assuming such a polynomial
is a valid metamodel.

We provide the following comments on this definition.
e This definition goes back to the definition in Box and Hunter (1961a).

e These designs are also known as Plackett-Burman designs, originally
published in Plackett and Burman (1946).
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Combination |1 | 2 | 3=1.2
1 — | =]+
2 + | =1 -
3 |+ | -
4 + |+ |+

TABLE 2.1. A fractional factorial two-level design for three inputs with
generator 3 = 1.2

e A subclass of Plackett-Burman designs are fractional factorial two-
level or 2F~P designs with positive integer p such that p < k and 2¥—P >
q where g denotes the number of parameters in the metamodel—or in
a more explicit notation 2];1_117 designs. Obviously, 2°~7 designs have
n (number of combinations) equal to a power of two. More general,
Plackett-Burman designs have n equal to a multiple of four and at
least equal to k + 1; e.g., for 8 < k < 11 the Plackett-Burman design
has n = 12. First we discuss 2];;}” designs in Sect.2.4.1; next we

discuss general Plackett-Burman designs in Sect. 2.4.2.

2.4.1 2%7P Designs of Resolution-II1

Let us start with the simplest example of a 2?;}’ design with 0 < p < k;

namely, a design with k = 3 (k = 2 and p = 1 would imply n = 227! =
2 <q=k+1=3s0a 22! design does not have resolution III). A
full-factorial 22 design would require n = 8 combinations; see again Ex-
ample 2.3. However, the number of parameters is only ¢ = k + 1 = 4.
Therefore a 237! design suffices to estimate the ¢ = 4 parameters; this
2?;11 design requires only n = 4 combinations. Table 2.1 gives a 2?;11 de-
sign, which we now discuss in detail. Its heading “Combination” stands
for “input combination”. The symbol 1 stands for the column (x1.1, ...,
Zn:1)' for input 1 where in this example n = 4. Likewise, 2 stands for the
column for input 2. The heading 3 stands for input 3 and 3 = 1.2 for
Tiy = Tin%ie with ¢ = 1,...,n, so the first element (; = 1) in the last
column is x1.3 = z1,121,2 = (—1)(=1) = 41 so the entry is a plus (+).
The DOE literature calls “3 = 1.2” a design generator; we will discuss
generators in more detail, when discussing the 2;;14 design in Table 2.3.

It is easy to verify that Table 2.1 gives an orthogonal X. The design is
also balanced; i.e., each column of D in Table 2.1 has two minuses and two
pluses.

Figure 2.4 gives a geometric presentation of the design in Table 2.1. This
plot has the following property: each combination corresponds with a vertex
that cannot be reached via traversing only one edge of the cube.



2.4 Designs for First-Order Polynomials: Resolution-II1 51

Combination | 1 | 2 | 3=-1.2
1 — = | =
2 + | = |+
3 -1+ [+
4 + |+ | =

TABLE 2.2. A fractional-factorial two-level design for three factors with
generator 3 = -1.2

e )
o .

Combi. 4

FIGURE 2.4. The fractional factorial two-level design for three inputs with
generator 3 = 1.2

Actually, the design in Table 2.1 is only one of the two possible 2?;11
designs; the other 2?;11 design is displayed in Table 2.2. It is straightforward
to verify that this design is also balanced and gives an orthogonal X.

The two designs specified in Tables 2.1 and 2.2 belong to the same fam-
ily. In this simple example with £ = 3, these two designs together form
the full factorial design that was listed in Example 2.3; i.e., the “dots”

in Fig. 2.4 represent the 2?;11 design with the generator 3 = 1.2, but the
corners without dots represent the 2?1_11 design with 3 = —1.2. The choice

between these two designs is arbitrary (random). The association between
the three inputs and the three columns in the design is also arbitrary; e.g.,
input 1 may be associated with (say) column 3. The association between
the original levels (I; and u;) and the + and — signs is also arbitrary; e.g.,
the highest value of an input may be associated with the minus sign. If the
input is quantitative, then such an association may confuse some users so
we do not recommend it.
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Combination | 1 |2 |3 |4=12]5=13]|6=23 | 7=1.23
1 -=-1-1+ - + -
2 + [ -1-1- - + +
3 -1+ ]-1- - - +
4 + [+ -1+ - — —
5 - =1+1+ — - +
6 + [ =-1+1- - - -
7 -+ 1+]- — + —
8 + [+ 1+ 1+ - + +

TABLE 2.3. A one-sixteenth fractional factorial design for seven inputs

Now we continue with another example of a 2];;}” design; namely, a design

with n = 8 combinations (the preceding example had n = 4). The number
of inputs follows from 2P = 8 so k — p = 3 with positive integers k and
p such that 0 < p < k and 2P > k because n > g = 1 + k. A solution is
k =7 and p = 4. This gives Table 2.3, which is the analogue of Table 2.1.
It is again easy to check that this design gives an orthogonal X, and it is
balanced (each column has 277° = 4 minuses and 4 pluses).

The design in Table 2.3 belongs to a bigger family. This family is formed
by substituting a minus sign for the (implicit) plus sign in one or more
generators; e.g., substituting 4 = —1.2 for 4 = 1.2 in Table 2.3 gives one
other member of the family. All the 27/27~% = 16 family members together
form the 27 design, which is the unique full-factorial two-level design.

Table 2.3 gives a so-called saturated design for seven inputs; Tables 2.1
and 2.2 gave saturated designs for three inputs.

Definition 2.12 A saturated design has as many combinations as the num-
ber of parameters to be estimated.

This definition leads to the following comments.
e In symbols, the definition means n = ¢ in Eq. (2.10).

e Hence, no degrees of freedom are left for the MSR in Eq.(2.20), so
MSR is not defined and the lack-of-fit F-test in Eq. (2.31) cannot be
applied. This problem can be easily solved: randomly select one or
more combinations from another member of the family, and simulate
this combination; if the inputs are quantitative, then simulate the
center point x = 0.

After our discussion of the 23, and the 27, designs, we now consider

intermediate k values; namely, 4 < k < 6. We can still use Table 2.3; i.e., for
k = 4 we delete three columns (e.g., the last three columns), for k = 5 we
delete two columns, and for £ = 6 we delete one column. Obviously, the
resulting designs are not saturated. Of course, we may also add one or more
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extra inputs to our original list with 4 < k < 6 inputs; these extra inputs
do not require a bigger experiment; i.e., n remains eight.

Our next example (after Table 2.1 with n = 4 and Table 2.3 with n = 8)
has n = 2¥"P = 16 input combinations. So a saturated design implies
k = 15 inputs. Hence kK — p = 4 implies p = 15 —4 = 11. We may construct
this 215711 design through the following simple algorithm.

Algorithm 2.1

1. Construct the 2* design for the first four inputs, and obtain a 16 x 4
design matrix.

Comment: The 2% design is a full-factorial two-level design with
k=4.

2. Add all 4 x (4 —1)/2 = 6 pairwise generators 5 = 1.2, 6 = 1.3,
7—14,.. ., 10=34.

3. Add all four triplet generators 11 =1.2.3, 12 =1.2.4, 13 = 1.3.4,
14 =2.34.

4. Add the single quadruple generator, 15 =1.2.3.4.

Exercise 2.9 Specify the design that follows from this algorithm.

Obviously, the design that follows from this algorithm is only one of the
members of the family with 215 = 32,768 members that can be generated
through the addition of one or more minus signs to one or more generators
in Algorithm 2.1.

Our final example of a 2];;}” design has n = 32 combinations (the preced-
ing examples had n = 4, 8, 16). Obviously, a saturated design with n = 32
implies k = 31. Hence k — p = 5 so 2° = 32. This implies p = 31 — 5 = 26.
The construction of this 231 =26 design remains quite simple, but tedious. A
computerized algorithm is then helpful. To check the computed results, we
recommend to verify the orthogonality and balance of the resulting design.
It is simple to write such an algorithm.

Note: A different algorithm with so-called Walsh functions is applied in
Sanchez and Sanchez (2005, p. 366).

We do not discuss 2?;}’ designs with higher k£ values, because in practice
such high k values are rare—except for some military simulations discussed
in Oh et al. (2009). One explanation is the psychological argument origi-
nally formulated in Miller (1956); namely, a human’s capacity for process-
ing information is limited to seven plus or minus two inputs. In simulation

experiments, this argument implies that 2];;}” designs with k£ > 9 enable
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Combination |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 11
1 + =+ ===+ |+|+] - |+
2 + |+ =+ ==+ +|+ |-
3 -+ |+ =+ === +]+ |+
4 + =+ |+ =+ =+ |+
5 + |+ =+ F+| =+ == —- |+
6 + |+ |+ =+ ]+ =]+ == | =
7 -+ |+ |+ |+ |+ |+ =]+ = |-
8 =+ +| ==+ +| =]+ |-
9 - ==+ +|+| =+ +] - |+
10 + ===+ +|+|—-|+]|+ |-
11 -+ ==+ +|+]| =]+ |+
12 - === =-1=1=-1=-1=-1- 1=

TABLE 2.4. The Plackett-Burman design for eleven inputs

the estimation of all k first-order effects 5; (j = 1,...,k), but the esti-
mates B\j are used only to estimate the 7 + 2 most important inputs. In
Chap. 4 on screening we shall discuss designs that are more efficient than
2’;;}" designs, provided we know the signs of the first-order effects. Differ-
ent computer procedures for the construction of 2];1_11) designs with high k&

values are presented in Ryan and Bulutoglu (2010) and Shrivastava and
Ding (2010).

2.4.2  Plackett-Burman Designs of Resolution-I111

As we have already mentioned in the beginning of Sect.2.4, Plackett-
Burman designs include 2?;}’ designs. So we may define Plackett-Burman
designs in the narrow sense as R-III designs that have a number of combi-
nations that is a multiple of four but not a power of two. Actually, Plackett
and Burman (1946) lists such designs for 12 < n < 96; for 12 < n < 36
these designs are reproduced in Montgomery (2009, p. 326) and Myers et al.
(2009, pp. 165). For simulation practice, we display a Plackett-Burman de-
sign in the narrow sense in Table 2.4, which has n = 12 combinations of
k = 11 inputs. Plackett-Burman designs are again balanced and orthogonal.

Exercise 2.10 Use a R-III design to experiment with a simulation model
of your own choice, provided this model enables you to experiment with
(say) between five and twenty inputs. Select the ranges of these inputs so
“small” (e.g., 1% changes from the base values) that you may assume
a first-order polynomial is a valid metamodel. If the simulation model is
random, then simulate (say) five replications. Estimate the first-order ef-
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fects of these inputs, using the standardized and the original input values,
respectively. Test whether these effects are significantly different from zero.
Give a list that sorts the inputs in their order of importance.

2.5 Linear Regression: Interactions

Definition 2.13 Interaction means that the effect of one input depends on
the levels of one or more other inputs.

Let us consider the simplest example; namely, only two inputs, a first-
order polynomial augmented with the interaction between these two inputs,
and white noise so e ~ NIID(0, 02):

y = Bo + frx1 + Poxa + Broz122 + €. (2.47)

This equation implies Jy/dx1 = 81 + P1,222, so the effect of 1 indeed
depends on x3. In geometric terms, interaction means that the response
curves for y(x|ze) are not parallel for different values of x; see Fig. 2.5,
which uses the standardized values —1 and +1 for the two inputs. Obvi-
ously, interaction is also defined for deterministic simulation models, which
imply that e vanishes in Eq. (2.47) so the E operator in Fig. 2.5 becomes
redundant. If interactions are important, then the relative importance of an
input is not measured by (the absolute value of) its first-order effect only.

Note: In metamodels that are more general than Eq.(2.47), we have
0y/0x; = f(x;) with j # j'. If the residual e is not white noise but has
a variance that depends on the input combination x = (z1,...,zx)’, then
interaction between z; and x;; may imply the effect of the other input
x;. In Sect. 5.8 we shall discuss a generalized definition of interactions in
nonlinear metamodels such as Kriging models, and their analysis through
functional analysis of variance (FANOVA) using so-called Sobol indezes.

If the interaction between two inputs is positive, then the inputs are
called complementary. A classic example is a pair of shoes; i.e., obtaining
more shoes for the left foot gives higher utility only if more shoes for the
right foot are also obtained. If the interaction is negative, then the inputs
are substitutes for each other. A classic example is provided by butter and
margarine.

In the general case of k inputs, we may augment the first-order polyno-
mial in Eq. (2.38) with the interactions between all pairs of inputs k and
k' with k # k'

k k=1 k
y=PBo+ Zﬁjwj + Z Z Bjjrxjxy +e (2.48)
Jj=1 J=1j'=j+1

where (;.;: is called the two-factor interaction between the inputs j and
j'; By, is also called the two-way or pairwise interaction, or the cross-
product. It is easy to prove that the total number of two-factor interactions
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E(y|x)

X
-1 +1

FIGURE 2.5. Interaction between two inputs x; and x5, in a first-order
metamodel with output y

in this equation is k(k — 1)/2, so the total number of parameters is ¢ =
1+k+k(k—1)2=1+k(k+1)/2. It is easy to see that the N x ¢ matrix
of independent variables X follows from the n x k design matrix D and the
n-dimensional vector m with the number of replications for combination 4
(i=1,...,n)som= (mqy,...,my)":

X = (Xl) = (1, di;17 ey di;ku di;ldi;g, ceey di;k—ldi;k) (Z = 1, ey N) (249)

with N = "  m; where m; is a positive integer, possibly 1; see again
Eq. (2.24). If the simulation output is an average, then a single replication
gives an unbiased estimator of the expected simulation output; however, an
estimated quantile requires m > 1 replications. Obviously, in deterministic
simulation we have m; = 1 so N = n. We shall further discuss the selection
of the number of replications, later in this chapter and in the following
chapters.

In the following example a first-order polynomial does not give a valid
metamodel, but augmenting this polynomial with two-factor interactions
does give an adequate approximation.
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Example 2.4 Kleijnen and Standridge (1988) studies a deterministic sim-
ulation model of a flexible manufacturing system (FMS). The machine mix
for this FMS is determined by the input combination d of the simulation
experiment. This d determines the original inputs z1, z2, and z3 that de-
note the number of machines performing operation #1, #2, and #3, and
z4 that denotes the number of “flexible” machines or robots capable of per-
forming any of these three operations. The experimental area is defined
by the following constraints: 5 < z1 < 6, 1 < z0 < 2,2 < 23 < 3, and
0 < z4 < 2. This domain is quite small, so a first-order polynomial may
result in a valid metamodel. Originally, an incomplete design with n = 8
combinations is intuitively specified. Next a 2*~1 design is specified; this
design has the same number of combinations n = 8; see Table 2.3 with
the last three columns deleted so the generator is 4 = 1.2. Both designs
give I/0 data that allow the fitting of first-order polynomials using LS; see
Eq. (2.38) with k = 4. Kleijnen and Standridge (1988) ignores the fact that
the fitting error e is not white noise, and applies classic regression analysis.
Because the original scales are used instead of the standardized scales, the
241 design does not give constant estimated variances for the estimated re-
gression parameters. The intuitive design gives bigger estimated variances
for the estimated regression parameters; e.g., the estimated variance for the
estimated effect of z4 is nearly four times higher. Further analysis of the
fitted metamodel—based on the data from the 2*~1 design—suggests that
the first-order polynomial is not adequate, and that the effects of z1 and z3
are negligible (this analysis uses cross-validation, which we shall discuss in
Sect. 3.6.2). So next, a first-order polynomial is fitted for the remaining two
inputs zo and z4 and their interaction; see Eq. (2.47). This metamodel is
fitted to the “old” I/0 data resulting from the 24~1 design. Further analysis
suggests that the resulting metamodel is valid. This metamodel implies that
the machines in groups #2 and #4 are the bottlenecks of the FMS, and—
because the estimated interaction turns out to be negative—that machine
group #4 (the robots) can serve as a substitute for machine group #2.

This example demonstrates the usefulness of first-order polynomials aug-
mented with two-factor interactions. The DOE literature also uses higher-
order interactions, e.g., three-factor interactions:

y—%"’Zﬁﬂa"‘Z Z Bjigr i
Jj=1j5'=j+1
k=2 k—1

—I—Z Z Z Bjigrgrxjzyxjr +e. (2.50)

J=1j'=j+15"=j'+1

We do not give the definition of these high-order interactions, for two
reasons:
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1. High-order interactions are hard to interpret, so these interactions
are difficult to explain to the simulation users.

2. High-order interactions are often unimportant in practice.

Throughout this book, we assume that interactions among three or more
inputs are unimportant. Of course, this assumption should be checked; see
the “lack-of-fit” and “validation” of metamodels discussed throughout this
book. A counterexample is Ekren and Ornek (2008), discussing a simulation
model of a manufacturing system that gives a metamodel with significant
three-factor interactions among a few factors.

2.6 Designs Allowing Two-Factor Interactions:
Resolution-IV

Definition 2.14 A resolution-1V (R-1V) design gives unbiased estimators
of the parameters of a first-order polynomial, even if two-factor interactions
are nonzero; all other effects are assumed to be zero.

Box and Wilson (1951) includes a proof of the so-called foldover theorem,
which we briefly formulate as follows:

Theorem 2.1 If a R-1II design D s augmented with its so-called mirror
design —D, then the resulting design is a R-IV design.

So the price for augmenting a R-III design to a R-IV design is the dou-
bling of the number of combinations. We give some examples.

Example 2.5 Table 2.1 gave the 2?;11 design with the generator 3 = 1.2.
The mirrored design was shown in Table 2.2, which is the 2?1_11 design with
the generator 3 = —1.2. Combining these two designs into a single design
gives a 23 design. This design results in X, which has n = 8 rows and
q=1+3(3+1)/2="7 columns that correspond with the intercept, the three
first-order effects, and the three two-factor interactions. Because all these
columns are orthogonal, X is certainly not collinear so LS estimation is
possible. The g = 7 estimators leave n — q =8 — 7 = 1 degree of freedom,
which could be used to estimate the three-factor interaction; see Eq. (2.50)
with k = 3. However, if we assume that this high-order interaction is zero,
then we can use this degree of freedom to estimate the common variance
07, = 0o = 0. through MSR defined in Eq. (2.20).

The following example demonstrates that adding the mirror design gives
unbiased estimators of the first-order effects, but does not always enable
unbiased estimators of the individual two-factor interactions.
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Example 2.6 Table 2.3 gave a 2;;14 design. Combining this design with
its mirrored design gives a design with n = 16 combinations; namely, a
2;(/3 design, as we shall see below. X follows from Eq. (2.48) with k = 3;
i.e., X hasn =16 rows and g = 1+ 7(7+ 1)/2 = 29 columns so n < q,
which implies that X is collinear. Hence, LS estimation of the 29 individual
regression parameters is impossible. However, it is possible to compute the
LS estimator of the intercept and the seven first-order effects; see the next
exercise.

Exercise 2.11 Derive X for the intercept and the seven first-order effects,
using the combined design in Example 2.6. Check that—for example—the
column for the interaction between the inputs 6 and 7 is balanced and or-
thogonal to the columns for the first-order effects of the inputs 6 and 7.

The construction of R-IV designs is easy, once a R-III design is available;
i.e., we simply augment a Dj;; (Plackett-Burman) design with its mirror

design, denoted by —Dj;;. For the Plackett-Burman subclass of 2%;1)7]0

designs, we may construct the 2];;” designs by first defining the full-factorial
design in k — p inputs, and then aliasing or confounding the remaining p
inputs with high-order interactions among these first £ — p inputs; i.e.,
we use these interactions as generators (we shall return to aliasing at the
end of this section; see Eq. (2.52)). For example, k = 8 and n = 16 = 2*
leads to a 2874 design. So first we construct a 2* design in four inputs.
Suppose we label these four inputs 1, 2, 3, and 4. Next, we may use the
following generators: 5 = 1.3.4, 6 = 2.34, 7 =123, and 8 =1.24. It
can be derived that the 28 two-factor interactions are confounded in seven
groups of size four; see Kleijnen (1975, pp. 336-344) or Kleijnen (19857,
pp. 303-305). In Appendix 2 we present some useful manipulations with
generators, following the DOE literature.

Now we consider Plackett-Burman designs in the narrow sense, which
do not have the simple confounding patterns of 2*~P designs. The latter
designs use design generators, which imply that a given column is identical
to some other column of X when that X includes columns for all the inter-
actions among these k inputs. Plackett-Burman designs in the narrow sense
lead to an X that also has ¢ = 1+ k+ k(k —1)/2 columns. Applying linear
algebra, we can prove that if n < ¢ then X is collinear. A R-IV design
implies that the columns for the first-order effects and the intercept are
orthogonal to the two-factor interaction columns, but the latter k(k —1)/2
columns are not necessarily mutually orthogonal or identical.

The R-IV designs discussed so far imply that the number of combinations
increases with jumps of eight (n;y = 8,16,24,32,40,...), because the un-
derlying R-IIT designs have a number of combinations that jump with four
(nrrr = 4,8,12,16,20,...). However, Webb (1968) derives R-IV designs
with nyy increasing in smaller jumps; i.e., nyy = 2k where k does not need
to be a multiple of four. Webb’s designs also use the foldover theorem. Be-
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cause we are not aware of any simulation applications, we refer to Kleijnen
(1975, pp.344-348) for details of these designs and their analysis.

In practice, a single simulation run may require so much computer time
that a R-IV design is hardly possible. In case of such expensive simulation,
the following algorithm may help—but we have no experience with the
application of this algorithm in practice.

Algorithm 2.2
1. Simulate all combinations of the R-III design.

2. Use the I/O data resulting from step 1, to estimate the first-order
polynomial metamodel.

3. Use the metamodel resulting from step 2, to predict the simulation
outputs of the mirror design of the R-III design.
Comment: The original R-III design plus its mirror design form the
R-IV design.

4. Initialize a counter (say) i: ¢ = 1.
5. Simulate combination ¢ of the mirror design.

6. Compare the metamodel prediction from step 3 and the simulation
output from step 5; if the prediction error is not acceptable, then
increase the counter to ¢+ 1 and return to step 5; else stop simulating.

We conclude this section on R-IV designs with a general discussion of
aliasing or confounding. Assume that a valid linear regression metamodel is

Yy = Xlﬁl + X2,82 +e (251)

where e denotes white noise. An example of this equation is an X; corre-
sponding with the intercept and the first-order effects collected in 3;, and
an Xy corresponding with the two-factor interactions 8,. Suppose that we
start with a tentative simple metamodel without these interactions. Then
we estimate the first-order polynomial parameters through

B, = (X,X1) X, w. (2.52)

So combining Egs. (2.52) and (2.51) and assuming a valid metamodel is
Eq. (2.51) so E(w) = E(y) gives

B(B,) = (XiX1) X[ E(w) =(X|X1) 7' X (X418, + X2B,)
= B + (X1 X1) ' X X203, (2.53)
This equation includes the matrix (say) A = (X;X;) X} X5, which Box

and Draper (1959) calls the alias matriz. Equation (2.53) implies an unbi-
ased estimator of B, if either 3, = 0 or X[ X3 = 0. Indeed, R-IIT designs
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assume that B, = 0 where 3, consists of the two-factor interactions; R-IV
designs ensure that XX, = 0 (the two-factor interaction columns are
orthogonal to the columns for the first-order effects and the intercept).

Note: In this section we discussed the construction of R-IV designs from
R-IIT designs, using the foldover principle. However, instead of reversing
the signs of all columns of the R-IIT design, we may reverse the signs of
only one column or a few columns. Of course, the latter construction gives a
different alias pattern compared with the former construction, and does not
give a R-IV design. Detailed discussions of various foldover constructions
for two-level fractional factorials are Elsawah and Qin (2015) and Li and
Lin (2015).

2.7 Designs for Two-Factor Interactions:
Resolution-V

Definition 2.15 A resolution-V (R-V) design enables LS estimation of the
first-order effects, the two-factor interactions, and the intercept; all other
effects are assumed to be zero.

Estimation of the individual two-factor interactions may be desirable, as
Example 2.4 involving a FMS has already illustrated. In that example, the
number of inputs was originally k& = 4, but analysis of the I/O data of the
original 2‘}1_11 design resulted in elimination of two nonsignificant inputs;
consequently, k = 2 and the original 2?;11 design gave a 22 design for these
k = 2 significant inputs.

Let us consider a 2?;4 design; such a design is derived in Appendix 2 and
can also be found in the DOE literature. Obviously, it is impossible to com-
pute the LS estimators of the ¢ = 14+8(8+1)/2 = 37 regression parameters
from only n = 16 combinations; LS estimation of these 37 parameters is
possible from n = 2872 = 64 combinations—provided these combinations
are selected correctly; again see Appendix 2. In general, the first-order
polynomial augmented with all the two-factor interactions implies that ¢
(number of parameters) becomes 1+k+k(k—1)/2 = (k* +k)/2+1, so the
number of parameters is of order k2; i.e., many more combinations need
to be simulated compared with a first-order polynomial. Box and Hunter
(1961b) includes a table—reproduced in Table 2.5—with generators for
2k=P designs of resolution V and higher; the definition of a resolution higher
than V is unimportant for DASE.

Note: Sanchez and Sanchez (2005) includes an algorithm for constructing
R-V designs in case the number of inputs is very large; e.g., k = 120
leads to a 2%/207105 design. Unfortunately, 2]‘6;7” designs—except for the 2?;1
design (see Table 2.5)—require relatively many combinations to estimate
the regression parameters; i.e., these designs are certainly not saturated. For

example, the 2?,_12 design in Table 2.5 requires 128 combinations to estimate
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n Generators

2, '=16 |5=1.234

20,/ =32 |6=12345

20,4 =64 | 7=1.23456

272=64 |7=1234;8=1.256

20,2=128 | 9=1.457.8;10=2.46.7.8
0]2))°=128 | 8=1.2.3.7;9=2.34.5;10=1.3.4.6
127" =128 | See k=10; 11 = 1.2.3.4.5.6.7

— = © 00 O U

TABLE 2.5. Generators for fractional-factorial two-level designs of resolu-
tion V, VI, and VII

Effect type Generator

Intercept (=1,...,—1) for all k inputs
First-order effect (—=1,41,...,41) for all k inputs
Two-factor interaction | (1,1,—1,...,—1) for k > 3 inputs

TABLE 2.6. Generators for Rechtschaffner’s resolution-V designs

g=1+9(9+1)/2 = 46 parameters so its efficiency is only 46/128 = 0.36;
the 2%/20_105 design requires n = 32,768 whereas ¢ = 7,261 so its efficiency
is only 7,261/32,768 = 0.22. There are R~V designs that require fewer runs.
For example, Mee (2004) gives a design for 47 factors that requires 2,048
combinations so its efficiency is 1,129/2,048 = 0.55, whereas Sanchez and
Sanchez (2005) requires 4,096 combinations so its efficiency is 0.28. For
further comparisons among these types of R-V designs, we refer to Sanchez
and Sanchez (2005, pp. 372-373).

Actually, if a simulation run takes much computer time, then saturated
designs are attractive (whereas the designs in Table 2.5 are not saturated).
Rechtschaffner (1967) includes saturated fractions of two-level (and three-
level) designs; see Table 2.6. Their construction is simple: the generators
are permuted in the different input combinations; see the design for k =4
inputs in Table 2.7. These designs are not orthogonal. Qu (2007) further
investigates the statistical properties of Rechtschaffner’s designs.

Exercise 2.12 Compute the variances of the estimated regression param-
eters that result from the design in Table 2.7, assuming o2 = 1. What
would these variances have been, had there been an orthogonal saturated
R-V design for k=47%

Rechtschaffner’s type of design is applied in the following example.

Example 2.7 The Dutch OR Society organized a competition, challenging
the participants to find the combination of k = 6 inputs that mazximizes the
output of a simulated system. This challenge was accepted by twelve teams
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Combination | Generator 1 2 3 4

1 (-1,...,-1) —1|-1]-11|-1
2 (=1,41,...,41) —1 |41 |41 +1
3 +1 | —-1]|+1 | +1
4 +1 | +1| -1 +1
5 +1 | +1 | +1 ] -1
6 (+1,+1,-1,...,—1) | +1 | +1 | =1 | -1
7 +1 | —-1|+1| -1
8 +1 | -1|-1]+1
9 1| +1|+1| -1
10 1| +1|-1|+1
11 1| -1|+4+1|+1

TABLE 2.7. Rechtschaffner’s design for four inputs

from academia and industry. Because each team was allowed to run only
32 combinations, Kleijnen and Pala (1999, Table 1) uses Rechtschaffner’s
saturated R-V design; so the number of combinations is n = 14+ 6 + 6
(6—1)/2=22.

2.8 Linear Regression: Second-Order
Polynomials

A second-order polynomial may be a better metamodel as the experimental
area of the simulation experiment gets bigger or the I/O function of the
underlying simulation model gets more complicated; see the Taylor series
expansion of a function about a point given by a specific input combination.
An example is the M/M/1 simulation, in which—for higher traffic rates
x—a better metamodel than the first-order polynomial defined in Eq. (2.8)
seems

y = Bo+ Pz + oz’ +e. (2.54)

Obviously, estimation of the three parameters in Eq.(2.54) requires the
simulation of at least three input values. Indeed, practitioners often use a
one-at-a-time design with three values per input (they even do so, when
fitting a first-order polynomial; Example 2.2 showed that such a design
is inferior compared with a factorial design). DOE also provides designs
with three values per input; e.g., 3¥ designs. However, more popular in
simulation are central composite designs (CCDs), which usually have five
values per input; see Sect. 2.9 below.

We emphasize that second-order polynomials such as Eq. (2.54) are non-
linear in x (independent regression variables) but linear in § (regression
parameters). Consequently, second-order polynomial metamodels remain
linear regression models, which were specified in Eq. (2.10).
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FIGURE 2.6. A CCD for two inputs

The general second-order polynomial metamodel in k factors is

k k k
Yy = BO + Zﬁjxj + ZZﬂj;j/Zijj/ + e. (255)
j=1

J=1j5'2j

Obviously, this metamodel adds k purely quadratic effects §;.; to Eq. (2.48);
consequently, ¢ (number of effects) becomes (k + 1)(k + 2)/2. Substitution
of the linear transformation defined in Eq. (2.39) into Eq. (2.55) gives the
metamodel in the original input values. The purely quadratic effects (;.;
quantify diminishing or increasing rates of return. In practice, second-order
polynomials are applied either locally or globally. Local fitting may be
used when searching for the optimum input combination; an example is
Example 2.7. We shall return to simulation optimization in Chap. 6. Global
fitting (e.g., an M/M/1 queueing model with a traffic rate z such that
0 < z < 1) using second-order polynomials has indeed been applied, but in
general Kriging provides better metamodels; see Chap. 5.

2.9 Designs for Second-Degree Polynomials:
Central Composite Designs

A CCD enables LS estimation of all the effects in a second-order polyno-
mial, assuming all effects of higher order are zero. More precisely, a CCD
augments a R-V design such that the purely quadratic effects can also be
estimated. Figure 2.6 gives a possible CCD for k = 2 standardized inputs
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denoted by x1 and x3. In general, a CCD consists of the following combi-
nations of the standardized inputs:

e a R-V design or a design of higher resolution (see Sect. 2.7);

/

e the central point (0,...0);

e the 2k azial points, which form a so-called star design, where the

“positive” axial point for input j (j = 1,...,k) is ; = ¢ while all
other (k — 1) inputs are fixed at the center so z;; =0 (' =1,...,k
and j' # j), and the “negative” axial point for input j is z; = —c

and z; = 0.

If we select the appropriate value ¢ for the axial points, then we obtain a
so-called rotatable design; i.e., if e is white noise, then the CCD gives a con-
stant variance for the predicted output at a fixed distance from the origin
(so the contour functions for these variances are circles). Such a rotatable
design requires ¢ = n%,/ * where ny denotes the number of combinations in
the R-V fractional factorial design that is part of the CCD; see Myers et al.
(2009, pp. 307). Obviously, if ¢ # 1, then a CCD has five values per input;
if c=1, then a CCD has only three values per input.

A CCD does not give an orthogonal X, so the estimated parameters of
the second-degree polynomial are correlated. Letting nccp denote the total
number of combinations in a CCD, we obtain nccp = ny + 1 + 2k; e.g.,
Fig.2.6 with k = 2 implies nccp =22 +1+2x 2 =9. (For k = 120, the
design in Sanchez and Sanchez (2005) implies ncop = 32,768 + 1 + 2 X
120 = 33,009.) Most experiments with real systems or random simulation
models replicate only the central point, to estimate the common variance o2
and to compute the lack-of-fit F-statistic defined in Eq. (2.31). For further
discussion of CCDs, we refer to Myers et al. (2009, pp. 296-317) and to
NIST/SEMATECH’s e-handbook of statistical methods on the website

http://www.itl.nist.gov/div898/handbook/

Exercise 2.13 By definition, a rotatable CCD gives a constant variance
for the predicted output at a given distance from the origin. Will this con-
stant variance increase or decrease as the output is predicted at a distance
farther away from the origin?

CCDs are rather inefficient because they use inefficient R-V designs and
add 2k axial points so—together with the center point—CCDs use five
(or three if ¢ = 1) values per input. Therefore, Example 2.7 simulates
only half of the star design; e.g., if the better outputs seem to lie in the
southwestern corner of Fig. 2.6, then it is efficient to simulate only the two
points (—¢,0)" and (0, —c)’. We have already emphasized that classic R-V
designs are very ineflicient, so we prefer Rechtschaffner’s saturated designs.
Kleijnen (19857, pp. 314-316) presents three other types of saturated de-
signs for second-order polynomials; namely, Koshall, Scheffé, and Notz de-
signs. Furthermore, Draper and Lin (1990) also presents small designs for
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such polynomials. More designs for second-order polynomials are surveyed
in Barton and Meckesheimer (2006) and Khuri and Mukhopadhyay (2010).
However, we are not aware of any simulation applications of these designs.

Exercise 2.14 Select a model with a known unconstrained optimum in
your favorite literature (e.g., the Operations Research/Management Sci-
ence literature on inventory management). Fit a second-order polynomial
in the neighborhood of the true optimum, using the standardized and the
original input values, respectively. To fit this polynomial, use a design that
enables unbiased estimation of all the coefficients of this polynomial; e.g., a
CCD with axial points with a standardized value equal to ¢ = n%//4. Replicate
only the center point of this design m > 1 times. Next estimate the opti-
mal input and output of this simulation model, using the fitted polynomial
with standardized and original values, respectively. Furthermore, you should
estimate the optimal input and output using the full and the reduced meta-
model, respectively, where the reduced model eliminates all nonsignificant
effects in the full model—except for those nonsignificant effects that in-
volve inputs that have significant higher-order effects; e.g., if the estimated
main effect B1 is not significant, but B1.2 is, then B1 is not set to zero (see
the heredity assumption in Wu and Hamada (2009)). Check whether the
estimated optimal input combination lies inside the experimental area.

2.10  Optimal Designs and Other Designs

In this section we shall discuss various optimality criteria for selecting a
design, and we shall mention some more design types besides the designs we
discussed in the preceding sections; namely, two-level designs of resolution
III, IV, and V and the CCDs.

2.10.1  Optimal Designs

Below Eq. (2.46) we mentioned that Box (1952) proves that the variances of
Bj with 7 = 1,...,q are minimal if X is orthogonal. Now we might wonder
whether orthogonal designs are “optimal”; consequently, we might wonder
whether nonorthogonal CCDs are not optimal. However, this raises the
question: what is an optimal design? The DOE literature discusses the fol-
lowing optimality criteria, which include the so-called alphabetic optimality
criteria (A, D, and G).

e A-optimality: minimize the trace of X 5. Obviously, this criterion is
related to minimizing the individual variances of the estimated re-
gression parameters, Var(3;). The A-optimality criterion neglects the
off-diagonal elements of X L these elements are incorporated in the
following criterion.
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e D-optimality: minimize the determinant of Eﬁ.

e G-optimality: minimize the maximum variance of the regression pre-
dictor, Var(y) with 7 defined in Eq. (2.12).

o IMSE-optimality: integrated mean squared error means minimization
of the MSE integrated over the experimental area, with MSE defined
in Eq. (2.20); related to the MSE criterion is the root MSE, RMSE =

MSE.

This literature shows that optimal designs do not need to be orthogonal;
i.e., these designs may give correlated f3;.

Note: Actually, there is quite some literature on optimal designs. A clas-
sic article is Kiefer and Wolfowitz (1959), and a classic textbook is Fedorov
(1972); recent updates are Fedorov and Leonov (2013) and Pronzato and
Zhigljavsky (2009). An article on optimal designs specifically for simula-
tion is Bursztyn and Steinberg (2006). Algorithms for the construction of
“optimal” designs can be found on the Internet; see

http://optimal-design.biostat.ucla.edu/optimal/home.aspx
and

http://www.itl.nist.gov/div898/handbook/pri/section5/prib21.
htm.

Algorithms for the construction of optimal designs assume a given n
(total number of combinations) and a specified metamodel; e.g., a first-
order polynomial. Other approaches allow for sequential designs (so n is not
fixed) and competing metamodels (e.g., first-order and second-order poly-
nomials). Selecting a metamodel among competing models is called model
discrimination. Tommasi (2009) discusses various optimal-design criteria
for model discrimination and parameter estimation.

We shall return to algorithms for the construction of optimal designs
in the chapters on Kriging (Chap. 5) and optimization (Chap.6). We may
also use such algorithms to find design types that have the characteristics
discussed next.

2.10.2 More Design Types

The DOE literature gives many more design types. For example, R-V de-
signs enable the estimation of all k(k — 1)/2 two-factor interactions, but
some designs enable the estimation of specific two-factor interactions only—
besides the k first-order effects and the intercept.

Note: Ghosh and Tian (2006) assumes that not all two-factor interac-
tions are important; this reference investigates how to discriminate among
regression models with different subsets of two-factor interactions. A recent
article including references to more publications and software is Gromping
(2013).
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We may be interested in the identification and estimation of higher-order
effects (e.g., third-order effects and thresholds)—in addition to the second-
order effects. MacCalman et al. (2013) focuses on sensitivity
analysis through metamodels for random simulation models, using a nearly-
orthogonal type of Latin hypercube sampling (LHS); we shall further
discuss LHS in Sect. 5.5. The resulting LHS designs for 3 < k < 12 inputs
are catalogued at

http://harvest.nps.edu.

This website gives many more design types for simulation studies at the
Naval Postgraduate School (NPS) in Monterey, California.

In mized-level designs, some inputs have two levels, some inputs have
three levels, etc.; e.g., some inputs are qualitative with more than two
levels and some inputs are quantitative with two levels. A textbook that
includes mixed-level designs is Wu and Hamada (2009); a recent article is
Vieira et al. (2013).

The DOE literature gives many details on blocked designs. Such block-
ing is important in real-life experiments, but not in simulation experiments.
Indeed, in real life the environment cannot be controlled, which may lead
to effects such as learning effects during experimentation involving hu-
mans, and extra wear during experiments with car tires (the right-front
tire may wear more than any of the other three tires). In simulation exper-
iments, however, such undesired effects do not occur because everything is
completely controlled—except for the PRNs. Antithetic random numbers
(ARN) and CRN can be used as a block factor, as originally proposed by
Schruben and Margolin (1978) and later on extended in Chih (2013) and
Song and Chiu (2007).

In weighing designs—also called mizture designs—the input values sum-
up to 100 %; e.g., chemical experiments may involve inputs that denote
the proportion of chemicals used to produce a specific product; see the
textbooks Cornell (2011) and Sinha et al. (2014), and the recent article
Ceranka and Graczyk (2013).

Usually the experimental area is a k-dimensional rectangle or—if the in-
puts are standardized—a square. Some applications, however, have exper-
imental areas that do not have simple “box” constraints, but more general
constraints such that the experimental areas have different shapes. For ex-
ample, Kleijnen et al. (1979) includes a specific polygon experimental area
because the harbor simulation has inputs with values such that the traffic
rate remains smaller than 100 %.

2.11 Conclusions

In this chapter we explained linear regression metamodels—especially first-
order and second-order polynomials augmented with white noise—and the
corresponding statistical designs—namely, designs of resolution III, IV, and
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FIGURE 2.7. Input A with three levels

V, and designs called CCDs. We also discussed the lack-of-fit F-test for the
validation of the estimated metamodel. In the next chapter, we shall drop
the white-noise assumption and discuss the consequences.

Appendix 1: Coding of Nominal Inputs

To illustrate how to represent nominal inputs with two or more levels,
Kleijnen (1975, p. 299) discusses an example with two inputs, called A and
B; input A has three levels, B has two levels, and there are no replications
(so m; = 1). So the matrix of independent variables in the general linear
regression model defined in Eq. (2.10) is

110 0 10
110 0 01
101 010
X = 101 0 01 (2.56)
100 1 10
10 01 01

where column 1 corresponds with the dummy input, columns 2 through 4
correspond with input A, and columns 5 and 6 with input B. Row 1 means
that in input combination 1, A is at its first level and B is also at its first
level. Row 2 means that in combination 2, A is still at its first level, but
B is at its second level. Row 3 means that in combination 3, A is at its
second level, and B is at its first level. And so on, until the last combination
(row 6) where A is at its third level, and B is at its second level.

This example implies that the column of regression parameters in Eq.
(2.10) becomes B = (Bo, 31, B3, B4\, BE, BP). If w denotes the simulation
output, then fy is the overall or grand mean:

iy Yy Elwiy)

Bo = 5 . (2.57)
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Response w 1) Definition for two or more levels
2) Interpolation
3) Revised definition for two levels

MM~ 3)e.,
1) S "
] Input B
Level 1 Level 2

FIGURE 2.8. Input B with two levels only

The main effect of A at level ¢ is

2
A_ Zj:l E(wi;)

8 b (i=123) (2.58)

—also see Fig. 2.7—and the main effect of B at level j is

3

. E Wi 5 .
By = % —Bo (1=1,2); (2.59)
see Fig. 2.8, especially the Legend sub 1. Equations (2.57)-(2.59) give the
following two constraints:

B+ B3+ 85 =0 (2.60)

and
B+ 85 =0, (2.61)

because the three main effects of A are defined as the deviations from the
average response, as is illustrated in Fig. 2.7 where this average is the dotted
horizontal line; for B a similar argument applies.

If an input is quantitative, then interpolation makes sense; see the dashed
line that connects the two responses in Fig. 2.8, especially the legend sub 2.
(Input A seems to require a second-order polynomial.) Now we may use
the coding that gives —1 and +1 discussed in Sect.2.3.1 (instead of 0 and
+1, used so far in this appendix). Then Sy becomes the intercept of the
polynomial, 32 becomes the marginal effect 0F(w)/0B (which is an ele-
ment of the gradient) or the slope of the first-order polynomial, etc. If the
inputs have two levels only, then an alternative definition also makes sense;
see the legend sub 3 in the plot. This alternative defines “the” effect of an
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input not as the deviation from the average, but as the difference between
the two mean outputs averaged over all levels of the other inputs:

Yooy Bwin) 0, E(wi)
3 3 '

BB = (2.62)
This definition gives values twice as big as the original definition.

The 6 x 6 matrix X in Eq. (2.56) does not have full rank; e.g., summing
the columns 2 through 4 or the columns 5 and 6 gives column 1. It can be
proven that the rank of X is only four. The normal equations defined in
Eq. (2.14) together with the two constraints in Eq. (2.60) and Eq. (2.61) give
the unique LS estimate 3; see Bayhan (2004) and its references to classic
textbooks.  Analysis-of-variance (ANOVA) software wuses these
computations.

Appendix 2: Manipulating the Generators

Following the DOE literature, we demonstrate some manipulations with
design generators. Table 2.1 spemﬁed the 237 133; ! design with the generator 3 =
1.2. Remember that 3 = 1.2 stands for x;3 = z;1250 withi=1,...,n. So
postmultiplying both sides of x;3 = x;1x;2 by x;3 gives (xi3)2 = T;1%i2%;3-
Because ;3 is either —1 or +1 in a 28~P design, we may write (z;3)? = +1.
Hence, z;1x0x;3 = +1. Moreover, the dummy input corresponding with the
intercept Bo implies z;0 = +1. So, x;1T0%i3 = Tip; 1.e., the estimates BO
and 61 .2:3 are identical. The DOE literature calls ﬁo and ﬁl .2:3 confounded
or aliased. It is quite easy to prove that E(ﬁo) = Bo+P1;2;3- S0, if fr1,2.3 = 0,
then 30 is unbiased. Actually, in this book we always start our experiments
with the (tentative) assumption that high-order interactions are zero; see
Algorithm 1.1.

The DOE literature also writes these manipulations in short-hand nota-
tion, using the mathematical function mod(2). Let us start again with the
generator 3 = 1.2. Postmultiplying both sides with 3 gives 3.3 = 1.2.3
or 32 = 1.2.3. Applying mod(2) to the exponent gives 3° = 1.2.3 where
3% = I with I denoting a column with 7 ones; in this appendix, we fol-
low the DOE literature and use the symbol I instead of 1,, because 1,, or
briefly 1 may be confused with 1, the column for input 1. So 1.2.3 = 1,
which means that 31,2.3 and fy are confounded. The DOE literature calls
I = 1.2.3 the defining relation. It can be proven that in a 25~P design this
relation has 2P members—called words.

Similar manipulations can be used to derive that more effects are con-
founded in this example. Let us start again with the generator 3 = 1.2 or
I=123 So0(23)I=(23)(1.23)=1223%=12°3"=1II1=1. S0
2.3 = 1, which implies E(3;) = 81 + fB2.3. However, Table 2.1 is a 237!
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design with 3 = 1.2, so we assume that a first-order polynomial (no inter-
actions) is valid so this 237! design is a R-III design. Likewise, it is easy
to derive that 1.3 = 2. Summarizing these equations—in the order of the
main effects—gives 1 =2.3,2=1.3, and 3 =1.2.

Table 2.2 gave the 237! design with the generator 3 = —1.2. It is easy
to derive that this generator implies 1 = —2.3, 2 = —1.3, and 3 = —1.2,
so E(81) = B1 — B3, E(B2) = B2 — P13, and E(f3) = B3 — S1.2.

Another example is the 27~* design in Table 2.3. This design has p = 4
generators; namely, 4 = 1.2, 5 = 1.3, 6 = 2.3, and 7 = 1.2.3. Hence
I1=124=135=236=1237.501=24=35=1.23.6=2.3.7.
If we assume that high-order interactions are zero, then the latter equations
reduce to 1 = 2.4 = 3.5. Analogously, we derive that the other first-
order effect estimators are not confounded with any other first-order effect
estimators; the first-order effect estimators are confounded with two-factor
interaction estimators. So this 27~* design is a R-III design.

Exercise 2.15 Derive the expected value of the first-order effect estimator
for input 2 in a 27* design with the generators 4=1.2,5=1.3,6 = 2.3,
and 7 =1.2.3, assuming that all high-order interactions are zero.

A R-IV design for k = 7 inputs may be constructed by adding the mirror
design of the preceding 2;;14 design. This gives a design with n = 16 com-
binations. Kleijnen (1975, pp. 336-344) shows how to derive the generators
of a 2’;‘;7” design. Furthermore, n = 16 combinations give a R-IV design for
eight inputs, denoted as a 2?;4 design; i.e., we may study one extra input
when we augment the 2;;14 with its mirror design.

In general, adding the mirror design to a R-III design for k& inputs gives a
R-IV design for k4 1 inputs with nyy = 2ny7; and nryr a multiple of four,
possibly a power of two. For example, k£ = 11 requires a Plackett-Burman
R-IIT design with nyr; = 12 combinations; see Eq. (2.4). So a R-IV design
with n;y = 24 combinations enables the estimation of k = 12 first-order
effects unbiased by two-factor interactions.

A final example is a 2872 design. Obviously, this design has two gener-
ators. A possible generator is 7 = 1.2, but this generator gives I = 1.2.7
so 1 =272 = 1.7, and of course 7 = 1.2. Another bad generator is
7 = 1.2.3, because this generator implies I = 1.2.3.7 so 1.2 = 3.7, etc.
In general, a better selection avoids aliasing two-factors interactions, first-
order effects, and the intercept. Therefore the generators should multiply
more than two inputs; e.g., 7 = 1.2.3.4 and 8 = 1.2.5.6, which imply
I =12347=1.256.8 = 3.4.5.6.7.8 where the last equality follows
from multiplying the first two members of the identity relation. Hence,
these two generators confound two-factor interactions with interactions
among three or more inputs—the latter (high-order) interactions are as-
sumed to be zero, in this book.
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Exercise 2.16 Prove that if there are k = 7 inputs, then 6 = 1.2.3.4.5
and 7 = 1.2.3.4 imply confounding of first-order effects and two-factor
interactions; e.g., 5 = 6.7.

Solutions of Exercises

Solution 2.1 log(y) = By + Bilog A + ... so y = efotPrlog At [ence

i(eﬁrﬂrﬁl 10g>\) — ﬁleﬁo)\ﬁlfly

dX

which upon substitution into the expression for the elasticity coefficient
(dy/dN)(A/y) gives

ebo 811

(51650)\51*1)(/\/6504#‘31 log /\) = /\ﬂlm/\ ’

which after some manipulation reduces to By.

Solution 2.2 E(8) = L[E(w)] = (X'X)"'X/[X8] = (X'X)~'(X'X)
B =p.

Solution 2.3 35 = LY.L’ = [(X'X) "1 X[e2 1) [(X'X) "1 X')". Because
(X'X)~ is symmetric, this expression becomes [(X'X)™1X'][X(X'X) "]
on = (X' X)X X)(X'X) oy, = (X'X) 7)o}

w*

Solution 2.4 FEquation (2.1) can be written in matriz notation as w = Lw
with L = (1,...,1)/c and w = (w1,...,w.) . The assumption of wait-
ing times being independent with constant variance o? gives By = 021
Combining this result with Eq. (2.17) gives Var(w) = [(1,...,1)/c][c*]]
[(1,...,1)/d =02[(1,...,1)/d[(1,...,1) /] = 02[c/(c?)] = o?/c.

Solution 2.5 Program this Monte Carlo model, and experiment with this
model and variations on this model. These are the results that we found:

(a) o = 80.84 and 71 = 16.00
(b) Bo = 168.84 and By = 56.92
(c) F5_25xa—1) = 9.68 > F3.150.90 = 2.48 s0 lack-of-fit is significant

(d) 70 = 100.97, 41 = 5.00 and 72 = 1.00 (extremely close to the true
values o = 100.00, 71 = 5.00 and v2 = 1.00 ); F5_35xu—1) =
2.0455F—28 < F2;15;0,90 =2.69 (NOL‘@.’ F2;15;0,90 = 2.69 > F3;15;0.90 =
2.48; see (c))

(6) :)70 = 70.89 and 71 = 16.00; F3_2;3><(4_1) =0.0034 < Fl;g;o_go = 3.36



74 2. Classic Regression Metamodels and Their Designs

(f) '/7\0 = 74.09 and ’/}/\1 = 16.00, F3,2;3><(4,1) =1.38< Fl;g;o,go = 3.36

(9) Ho = 67.97 and 71 = 16.50; the numerator of F5_s.3x(4—1) has zero
degrees of freedom so no lack-of-fit test is possible.

Solution 2.6 Equation (2.18) implies X5 = (X'X) 02 Suppose 02 =1

and
1 1
=1 ]
Then
~ |11 171 1 B 2 I+ u
XX_[Z u_[l u | | l+u P+
S0
! -1 _ —2llj+lu22 u? —2l;l72u u?
(X'X) " = R Bt
| —2lu+1?24u? —2lu+12+u?
S0

A 2 2
Vv = = .
ar(%1) =2u+124+u?  (u-1)2

This variance is minimal if the denominator (u — 1)? is mawimal, which
occurs if I and u are as far apart as possible.

Solution 2.7 The ezperimental area 0.2 < z < 0.5 implies a = (0.2 +
0.5)/(0.2 — 0.5) = —2.333 and b = 2/(0.5 — 0.2) = 6.667. Hence z =
—2.333 4+ 6.667z S0 Tyin = —2.333 4+ (6.667)(0.2) = —1 and Tpmer =
—2.333 4+ (6.667)(0.5) = 1. Further, z = 0.3 implies x = —2.333 + (6.667)
(0.3) = —0.333. Likewise z = 0.4 implies © = —2.333 + (6.667)(0.4) =
0.333.

Solution 2.8 The average Z; is a constant determined before the experi-
ment is carried out; if the design is balanced, then Z; = (I; +u;)/2. Hence,
the marginal effect of z; is d;. The total effect over the range of z; is

0j(u; — 1) = 2B;.

Solution 2.9 The design matriz is a 16 x 15 matriz with all elements
either —lor +1; to verify that you correctly applied the algorithm, you can
use a computer to check that each column has exactly 8 pluses (balanced
design), and that all 15 x 14/2 = 105 columns are orthogonal.
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Solution 2.10 The solution depends on the simulation model that you
selected.

Solution 2.11 Table 2.3 gives the following table:

Combination |1 |2 |3 |4 |5 |6 |7
1 | =1=1T+]+]+]-
2 +-1=-1=-1T-1+1+
3 -+ =1=-1T+]=-1+
4 + |+ -1+]=-1-1-
5 - =1T+]+]=-1=-1+
6 + =1+ =1+]-1-
7 -+ +]=-1=-1T+]-
s + |+ + [+ ][+ ]+ ]+

so adding its mirror design and adding the column 6.7 for the interaction
Be;7 gives the augmented design

Combination |1 |2 |3 |4 |5 |6 |7 | 6.7
1 - =T-1+1+1+]-1-
2 + = =1-1=-1T+1+1]+
3 -+ =-1-1T+1-1T+1-
4 + |+ =1+ -1-1-1+
5 =T+ +]=-1T-T+1-
6 + =T+ =-T+]=-1-1T+
7 -1+ +=-1-1T+1-1T-
8 + =1 =T+[+]+]+]+
9 + |+ [+ =-1=-1-1+1-
10 -+ +]+]+]=-1=-1+
11 + =+ +]-1T+]-1-
12 — | =T+ =1+ +[+]+
13 + |+ ==+ +]=-1-
17 |+ =1+ =1+[+]+
15 + =1 =T+]+]=-T+]-
16 - === =-1-|-1+

so it is easy to check that the column 6.7 is balanced and orthogonal to the
columns 6 and 7
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Solution 2.12 Adding the dummy column for the intercept to
Rechtschaffner’s design gives

-1 -1 -1 -1
-1 1 1 1
1 -1 1 1

1 1 -1 1
1 1 1 -1
1 1 -1 -1
1 -1 1 -1

Il
e el el el el

s0
1 1 1 1 1
1 11 -1 -1 -1
X'X = 1 -1 11 -1 -1
1 -1 -1 11 -1
1 -1 -1 -1 11
50
r 2 _1r _1 _ 1 17
21 84 84 84 84
_L 2 L L L
84 21 84 84 84
-1
XX)"=| -5 s ow owm s |
L L L 2 L
84 84 84 21 84
-1 L L L 2
L ~ 84 84 84 84 21 |
whereas an orthogonal design matriz and o2 = 1 would imply Var(Ej) =

1/n =1/11=0.09 < 2/21 = 0.95.

Solution 2.13 The variance of the predicted output increases as the input
combination moves away from the center of the experimental area. (Also
see the discussion on steepest ascent in Sect. 6.2.3.)

Solution 2.14 The answer depends on the simulation model that you se-
lect. Because you select a model with a known optimal solution, you can
easily examine the performance of the CCD.

Solution 2.15 I =1.24 = 1.3.5 = 2.3.6 = 1.2.3.7 implies 2 = 1.4 =
1.2.3.5 = 3.6 = 1.3.7. Assuming zero high-order effects, we obtain 2 =

1.4 = 3.6 s0 E(B2) = B2+ Brua + Bae-

Solution 2.16 6 = 1.2.3.4.5 implies I = 1.2.3.4.5.6, and 7 = 1.2.3.4
implies 1 =1.2.3.4.7. S0 6.7 =(1.2.3.4.5)(1.2.3.4) = 5.
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