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Preface

This volume contains the papers presented at ALIA2014: The First Artificial Life and
Intelligent Agents symposium, held during November 5–6, 2014, at Bangor University,
Wales.

ALIA was a two-day event, which invited specialists from academia and industry to
discuss the latest research and challenges in this sub-field of artificial intelligence. Day
1 was opened by Prof. David Shepherd, Pro-Vice Chancellor of Research and Enter-
prise at Bangor University. This first day was research focused, with a series of chaired
presentations, some of which were accepted for publication in this volume. The first
day also included a keynote talk from Prof. Karl Tuyls on bio-inspired autonomous
systems and robotics.

Day 2 involved various invited talks from the commercial sector, discussing current
industry challenges in this field. This was chaired by HPC Wales in the morning, and
New Computing Technologies (NCT) Wales in the afternoon. Both sessions involved
workshops, allowing academia and industry to engage and interact.

The review process was undertaken in two stages. The first round of submissions
was for presentation at the main conference. There were 20 submissions, 12 of which
were accepted for presentation. The second round of submissions gave the authors of
accepted papers time to respond to the reviewers’ comments, and address any concerns
raised during the presentation. From this round, the committee decided to accept ten
papers for the proceedings.

The Organizing Committee would like to extend their thanks to Prof. Peter
McBurney, of Kings College London, whose advice and recommendations during the
planning of the event helped make the ALIA symposium a reality.

The ALIA symposium was sponsored by HPC Wales, the national supercomputing
service provider. HPC Wales also helped secure grant support for day 2 via the Welsh
Government’s Collaborative Research and Innovation Support Program (CRISP).

March 2015 Christopher J. Headleand



Sponsor’s Message

As part of a commitment to support the research objectives of the Welsh universities,
we were pleased to partner with the organizers of the ALIA symposium to support the
running of this event. In addition to sponsorship from ourselves, there was
discretionary grant support via the Welsh Government’s Collaborative Research &
Innovation Support Program (CRISP).

Artificial life and intelligent agents is a highly interdisciplinary field of research,
with applications in many areas including robotics, the creative sector, and life science.
It is in a constant state of development and growth and can have a strong requirement
for access to high-performance computing (HPC); therefore we were excited to be
involved in this event.

HPC Wales is a company formed between the universities and the private sector in
Wales, and provides integrated supercomputing services for businesses and researchers
across Wales and beyond. Host to the UK’s largest distributed general purpose
supercomputing network, HPC Wales offers access to some of the most advanced
computing technology in the world, along with high-level training and customized
support to exploit it effectively.

HPC Wales’ distributed supercomputing network has a 17,000-core, 320-Tflop
capacity and is the third largest civil public sector facility in the UK. The network
includes two large hubs in South Wales and further sites within Welsh universities and
business centers.

Over the course of the venture to date, HPCWales has supported the creation of nine
new enterprises, over 140 new jobs, more than 420 products and processes, and induced
over 3.7m of inward investment into Wales. The venture has provided training to over
2,000 individuals and helped to foster over 110 academic–industry collaborations.

March 2014 Laura M. Redfern
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Towards Real-Time Behavioral
Evolution in Video Games

Christopher J. Headleand(B), Gareth Henshall, Llyr Ap Cenydd,
and William J. Teahan

Bangor University, Bangor, Gwynedd, UK
c.headleand@bangor.ac.uk

Abstract. This paper presents preliminary work in real-time behav-
ioral evolution of non-player characters in video games. We present
an approach, utilizing a modified version of the Template Based Evo-
lution algorithm, to evolve NPCs during a first person shooter game.
Through the research, we demonstrate how this approach could be a
viable method of introducing evolutionary components into industry
quality games, to produce procedural, emergent behaviors.

Keywords: Real-time behavioral evolution · Template Based Evolu-
tion · Games intelligence

1 Motivation

There are examples of using evolutionary algorithms in games, but these tend to be
found in experimental, academic, or independent games, rather than high quality
commercial developments. One of the possible reasons for this is that, while evo-
lutionary algorithms have been used successfully to prime leading technologies,
such as procedural animation systems, they can have turbulent effects in gameplay
mechanics. There is no guarantee that they will evolve a solution that is engaging,
enjoyable or consistent with the established design of the game. However, proce-
dural generation in games is becoming a field which industry is beginning to pay
more attention, partly because it can reduce development times on larger games,
as every unique component need not be designed by hand, but also because it
enables larger, open-world games where manual design may simply be impossible.
It also introduces a new gameplay mechanic, by allowing the same player to have
a different experience every time they enter the game world. Due to this interest
from industry, evolutionary game content warrants additional research. We are
interested in first person shooter games, where an individual’s behavior is clearly
observable, as we believe this is a particularly challenging domain.

2 Related Work

In the vast majority of modern, commercial computer games, all content (levels,
characters etc.) is static within the game. This is almost always the product of
c© Springer International Publishing Switzerland 2015
C.J. Headleand et al. (Eds.): ALIA 2014, CCIS 519, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-18084-7 1



4 C.J. Headleand et al.

human, rather than algorithmic, design. This manual development is time con-
suming and expensive [1], with major titles often requiring hundreds of devel-
opers. Procedural content, when used, is generally limited to the randomization
of a few start-up parameters. But even this needs to be tightly constrained to
avoid generating undesirable content [2].

One of the few examples of commercial games that evolve content during
play is Galactic Arms Race [3]. In Galactic Arms Race new content, specifically
weapons systems, are evolved in real-time while the game is being played. To do
this, the developers created the cgNEAT (content-generating NeuroEvolution of
Augmenting Topologies) method, an extension of the NEAT algorithm [4]. The
cgNEAT algorithm is used to evolve a neural network variant which genetically
encodes particle system weapons. During the game, the weapons that the player
use the most are monitored, creating a data set which is then used to evolve
new weapons to suit the player’s tastes [5]. This allows the player to ultimately
determine how their game develops, and what content populates the scene. This
has an added advantage of promoting replayability, and helping to ensure that
players have unique experiences.

Another mainstream example of evolutionary content in a commercial game
is Petalz [6] where flowers are procedurally evolved in an online game. It is
designed, and implemented, as a social game on the Facebook applications plat-
form, making it accessible to a large demographic of users. One of the principle
objectives of the project was to assess the possible economic value of evolved
content. In the game, users are encouraged to maintain and evolve a unique
collection of flowers. Once they have created content, they can list it for sale on
the virtual market place. This not only rewards the breeder, but also creates a
form of collaboration, as once a flower has been bought, the buyer can create a
whole new lineage. The results from the study indicate that the ability to buy
and sell evolved content positively influenced the game dynamic, and facilitated
social interaction. It also highlighted that user created content had value within
the in-game economy [7].

One interesting game which developed out of research is Nero. In this game,
the player evolves robots through training in a sandbox environment before
deploying them against another player’s team [8]. In this game, the evolution of
the robots is integral to the gameplay mechanic, making it quite unique. Another
interesting item to identify is that, similar to Galactic Arms Race, Nero uses a
variation of the NEAT algorithm.

One study used evolutionary algorithms to train/optimize behavior trees
for game bots in the commercial, real-time strategy game DEFCON [9]. The
approach was capable of beating the Introversion bot (the bot which ships with
the game) over 50 % of the time. In this research, each game represented a new
evolutionary candidate, with fitness being calculated at the end of the match.
This study highlighted the problem of using evolutionary algorithms for online
learning in games, due to the time required to evolve a high fitness solution. Each
experiment ran for 100 generations, and each generation had a population of
100 candidate solutions. With each game taking approximately 90 s to complete,



Towards Real-Time Behavioral Evolution in Video Games 5

four experiments would have taken 41 days of solid game play to complete the
project. We also must assume that many of those candidates would have been
poor quality solutions, and uninteresting to play against.

In another study [10], the concept of Ability versus Enjoyability is discussed,
where enjoyability was defined (within the context of computer games) as the
desire to play the game again after a match; in essence, the number of games
the user will play before getting bored. The authors of this work hypothesize
that optimal enjoyability is a function of ability; the AI controlled player should
be hard to beat, but not too hard. Waiting 41 days (of continuous play) to pro-
duce a suitable solution may result in the player abandoning the game, something
the authors refer to as a “shelf event”.

There are also games where content is evolved offline, including the game
environment [11] and the game play rules [12] but these are typically limited to
academic projects. However, there are no examples of successful games where
NPC (Non Player Character) behavior has been evolved in real-time. We believe
that for real-time behavioral evolution to become a reality in commercial games,
there are two concerns which must first be addressed:

1. If an evolved candidate is a poor solution, it must be removed from the game
as quickly as possible, to prevent the player losing interest in the game due
to poor gameplay.

2. Learning times must be reduced. A player is unlikely to wait for an interesting
opponent to be evolved.

In the following sections, we will describe an approach which attempts to
address these concerns.

3 Template Based Evolution

Template Based Evolution is a method for the behavioral evolution of virtual
agents within a pre-designed set of constraints. Within this method, an agent’s
template is defined which contains all the possible inputs and outputs of the indi-
vidual. These templates contain components to be evolved, including the traits
of the agent, the conditions under which the inputs are evaluated, or the selection
of an activated output (given a set of preconditions). By using this approach,
a designer is able to define an agent prototype, and ensure that all evolved
versions of this template still comply to a basic design criteria. This allows
the designer to steer clear of problems that could be encountered if they had
employed an open evolution method, such as invalid mutations, and implausible
behavior.

Each TBE simulation is designed bottom-up, starting with the task environ-
ment and ending with the individual agents. The process is designed this way to
force the designer to consider the ecological niche of the agents as the principle
driver of evolution.

In the following sub sections we will provide a brief overview of the method.
For a more in-depth description of TBE, see [13,14].
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3.1 The Environment

The environment is the domain where agent fitness is tested through successive
trials. A trial is a particular challenge that the agent must survive if they are to
reproduce. These can be explicit obstacles such as a predator, or more implicit
challenges, such as the need to migrate between two locations before a seasonal
change [13].

TBE simulations make use of implicit fitness functions, which is the key
purpose of the environmental trials. The key distinction between the two is that
explicit fitness functions reward specific behavioral elements, shaping an overall
behavior from a set of predefined primitives. Implicit functions, however, operate
on a more abstracted level, rewarding the completion of a task, but the agent is
free to complete it in any fashion.

3.2 The Species Template

The species template is a prototype of the agent being evolved. It contains a
description of all the inputs and outputs accessible to each agent within that
species, in the form of a subsumption architecture. A common code block is
defined for each agent, with the agent’s genome defining individual components
within that block. From a game perspective, this has the advantage of keep-
ing memory requirements low, as we only need to store an array of genomes
rather than a variety of evolved phenotypes, which could be significantly more
expensive.

3.3 The Agent

Each individual agent is defined by a genome, which is a collection of attributes.
Each position in that genome has a specific role in structuring the behavior of
the agent, or the conditions by which a layer of the subsumption architecture is
either inhibited or suppressed. These positions are the same across all agents.
For example, position 0 in the genome may define how every agent in the species
processes an input, and position 2 may define the agent’s speed. However, the
values stored in each of these positions may be different in each agent, the
product of their evolution.

The Genome in a TBE simulation is a collection of unique attributes, each
attribute taking a specific role in the behavior of the agent. In the original
paper [13], two attribute types were defined, trait and action. This was subse-
quently extended in [15] to include threshold attributes.

Trait. Trait attributes represent the ‘qualities’ of the agent, for example the
color, speed or energy. They can be independent of the actual behavior of the
agent (used outside the main subsumption architecture) but can also be used
to modify specific behaviors; for example, a trait of speed may modify a run
behavior.
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Action. An action attribute represents an index value, selecting a specific action
from an array of possible actions. As the agent traverses its subsumption, the
output from each layer is determined by an action attribute. The actions avail-
able may be common across all layers, or alternatively, each layer may access a
specific array of possible action.

Threshold. The third class of attribute described in [15] extended the possible
applications of the method. This is used within a condition statement to define
thresholds where layers may subsume or inhibit other layers. Additionally it may
be used to define activation functions for input devices [14].

3.4 Modification for Real-Time Game Content Generation

Typically, as with most evolutionary algorithms, TBE uses a relatively large
population and many generations. However, this would be inappropriate in a
computer game where the player will combat against a limited number of agents,
in a continuous fashion. As we established in the background to this work, tradi-
tional population, and generation sizes, may simply be inappropriate for gaming,
due to the time taken to develop a suitable solution.

As discussed in the motivation, we are interested in first person shooter
games. Specifically, we want to observe individual opponents (NPCs) that have
the potential to exhibit unique combat styles. In our proof of concept game
(described in the following section), the player will combat five agents succes-
sively during the game.

To modify TBE for this application, instead of evolving a new generation of
agents to replace the previous, a new “brain” is evolved and deployed into the
existing agents in the scene. If no existing agents are available (for example if
the player has destroyed them) when a new brain is to be deployed, then a new
agent is spawned at the edge of the environment to host it.

This cycle of generation, as opposed to being based on a set time or task, is
instead triggered by combative engagements with the player. At the end of an
engagement, the current genomes in play are evaluated and used to spawn the
replacement genomes.

4 Proof of Concept Game

To test the use of TBE in real-time gaming, a test-bed, first person shooter (FPS)
game was developed. In this implementation, a large game environment made of
block obstacles is randomly spawned, with the player placed in the center. Then,
five starting opponent NPCs are spawned at the edge of the map, in a position
ensuring that they are initially occluded from the player (see Fig. 1).

The objective of the game is for the player to survive 5 min in the game
world. The opponents have the ability to shoot the player, which is moderated for
playability by an artificial stupidity function, which diminishes each opponent’s
accuracy at increased ranges. Both the player and the NPCs can shoot five
rounds per second and survive 200 shots before being destroyed.
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Fig. 1. A birds-eye, and player-perspective view demonstrating the randomly generated
world. The player is spawned towards the center of the map, the team of opponents
are spawned towards one of the edges.

When an NPC is destroyed, after a delay of five seconds, a new agent is
deployed at the edge of the scene (the furthest edge from the player) to take its
place, maintaining five NPCs in the game. The intention of the delay is to provide
a short amount of time for the current combat engagement to conclude. The hope
is that, when the new agent is spawned, it will be with a next generation brain.
If no new brain is available, it would instead be spawned with the same brain
as the agent who was destroyed (temporarily) until a new brain is available.
The intention is to keep the game flowing for the player, ensuring a relatively
consistent pace in the gameplay.

As each generation only contains five agents, a relatively high mutation
chance and range is used to maintain diversity. For each attribute in the genome
there was a 1 in 10 chance of mutation at each generation. The proof of concept
game was developed in Unity3D [16] using the standard assets pack, and no
custom assets were used in the game.

4.1 Species Template

The agent template is a subsumption architecture (see Fig. 2), activated by four
inputs. The inputs allow the agent to know if it could see the player at different
ranges, if it could hear one of its companions calling for help, and if it had
been recently been shot (within 0.5 of a second). Each layer of the subsumption
activated one of the seven behaviors described in Table 1.

The long-range vision length of the NPC was set to 50 units. For comparison,
the width, height and depth of single blocks in Fig. 1 are equal to one unit. This
gave them an equal long range vision to the player, who had their vision occluded
(by fog) at 50 units. Short range vision was set to 15 units, as this represen-
ted half the range of the virtual firearms used in the game. The Companion
Heard input had no maximum range, distress calls sent from the Call for Help
function reached all NPCs in the scene.
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Fig. 2. A visual representation of the subsumption-based species template used within
all the opponent agents.

Table 1. The actions available in the NPCs in the game, each action can be called
from any of the 5 levels of the species template.

Shoot If the opponent agent is able to see the player, and this behavior was
activated, it would shoot in the direction of the player

Retreat The agent would move in a direction 180 degrees away from the
player

Run to NPC The agent would move towards the direction of the last call for help.
If there had been no call for help, then the agent would remain
stationary

Call for help The agent would call for help

Run to player If the agent was able to see the player it would run towards it. If the
agent was unable to see the player, it would move forward at its
current heading

Explore The agent would randomly explore the environment

Regroup The agent would run towards the nearest companion agent

4.2 Evolution Cycle and Fitness

As mentioned in Sect. 3.4, the evolution cycle is defined not by a specific length of
time, or the completion of a task, but is instead punctuated by the termination of
an engagement with a player. An engagement is defined as a combat encounter
between the player and one or more of the agents, notably that shots must
have been fired, and hit at least one of the parties in the confrontation. The
engagement is considered to have concluded when either the NPCs, or the player,
have retreated outside the conflict zone, if no shots have been fired for 5 s, or if
one of the engaging parties have been destroyed. Engagements are based on the
player perspective, thus, if the player is engaged with one agent, and another joins
mid-combat, it is considered a single engagement, not two separate engagements.
The conflict zone is an area defined by the shooting ranges of the opposing NPCs
participating in the engagement; this is illustrated in Fig. 3.

At the end of each encounter, the NPC rated the engagement in one of five
categories:

Successful They inflicted more damage than they received.
Survived They received damage, but inflicted some.
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Fig. 3. A graphical representation of the conflict zone (gray). In this example, three
NPCs (black spots) are engaged with a single player (white spot with black outline).
The gray area created by the maximum ranges of their weapons is the current conflict
zone. One NPC can be seen in the bottom right corner, though as it is not currently
engaged with the player, its weapon range has not contributed to the conflict zone
(indicated by a hashed radius, rather than a gray one (Color figure online)).

Retreat They received damage and inflicted none.
Destroyed The agent was killed in the engagement.
Inactive The agent took no part in the engagement.

If the agent is destroyed, it is removed from the gene pool and is unable
to breed. Any remaining NPCs (post-engagement) are used to breed the next
generation. Each breeding uses two parents to produce one child. The parents are
selected randomly, but with agents that were marked as successful or survived
being given a higher weighting (weighting of 2) to those marked with retreat or
inactive (weighting of 1). This is with the intention of biasing towards proactive
NPCs who engage with the player. This breeding cycle is repeated until five
replacement brains have been generated.

If a single engagement results in all the NPCs being destroyed, leaving no
parents, we still need a way to produce a new generation. In this case, we can
assume that the NPCs have not evolved a tactic capable of competing with the
player. If this happens, a new randomly created generation is spawned, essentially
resetting the evolutionary process.

5 Pilot Study

In this preliminary study, 10 players each played five games (50 games in total),
each game lasting five minutes (as described in Sect. 4). Each player was observed
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during the game, and their playing style was logged and categorized in one of four
groupings, either aggressive, defensive, evasive or mixed (as described below).
This logging was done on a per-game basis, assuming that players may change
their style during the experiment. The investigator took a birds eye viewpoint,
enabling them to observe both the player’s, and the NPCs’ behavior.

Aggressive. Aggressive players actively hunted opponents, searching the envi-
ronment rapidly. Once they found the opponent NPCs, they would close the
distance, engaging quickly.

Defensive. The defensive players tended to search not for opponents, but for
easily defensible positions (areas with a large number of blocks creating
cover). Once they had found a defensible position, they would stay close to
it and use the cover to ambush NPCs where possible.

Evasive. Evasive players tried to approach and assault the enemy without being
noticed using the blocks to hide when the opponent turned in their direction.
If they felt that they had been spotted, they usually tried to flee, rather than
continue the engagement.

Mixed. The mixed players employed a variety of tactics or no particular tactic
during the game.

Additionally, during the game, notes about the NPCs’ playing style were
recorded for later analysis. The players were also asked to rate their enjoyment
of the game on a 1 to 5 scale, and rate the “humanness” of the opponent they
played against (also on a 1 to 5 scale). As a final data collection option, each
player was given the option of a free text response, to allow them to record
specific, qualitative data.

6 Results

During the pilot study, we made some general observations. We will discuss these
before going into greater detail regarding player, and NPC specific observations.

Firstly, the evolving NPCs won around 2/3rds of the total games, 32 out
of 50 (see Fig. 4). Initially we believed this to be quite high, an indication that
the NPCs had evolved to be too competitive. However, we now believe this
was simply a product of how the pilot study and proof of concept game were
designed. Firstly, 7 out of the 10 participants lacked significant experience with
FPS games, and were categorized as novice. Secondly, the users were not given
a practice run, and all of their games were recorded. As a final point, while the
NPCs had an unlimited number of ‘lives’ (a new opponent was spawned at the
edge of the scene when one was destroyed), the player only had one, this greatly
favored the NPC team.

However, even with these factors considered, we believe that the NPCs being
able to evolve to compete with the player is still a significant result. The concept
of NPCs having unlimited lives is also not an unusual concept in commercial
games, and there is whole “horde mode” genera dedicated to it.
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Fig. 4. Player and NPC wins over the 50 games. The NPCs were successful in approxi-
mately 2 out of 3 games, but players showed significant improvement in the final games.

6.1 Player Observations

Observing the player style produced some interesting data on how the play-
ers developed through the game (see Fig. 5). In the first game, players trended
towards a mixed, naive style of playing as they learned to play the game and
interpret the behavior of the NPCs. However, after the first game, 9 out of 10
players abandoned this style, and after three games, no player employed it.

After the mixed style of play, half of the players showed a preference towards
an aggressive style (5 out of 10 players in games 2 and 3). After game 3, most
players had opted to employ either a defensive, or evasive style, with the evasive
accounting for 6 out of 10 players in game 5. This change in tactic seemed bene-
ficial, as can be observed in Fig. 4. Although, one negative aspect of this playing
style is that it prevented the opponents from learning a competitive strategy.
Because the players would try to approach them without being detected, the
engagements were often over before the NPCs had a chance to respond, render-
ing the evaluation mechanism moot. However, in the games where the NPC was
successful, an interesting tactic emerged, which will be described in more detail
in the following subsection.

While this observation is subjective, it does indicate that the players became
quite reserved in actively engaging the NPCs. The two free text responses we
had from players after game 5 seemed to support this, with one user stating “if
you get too close to the opponent, they try to surround and ambush you”. This
anthropomorphism of the NPCs’ behavior was not uncommon, and seemed to
be tied into the player’s enjoyment of the game. While the player’s enjoyment
of the game had little correlation to whether they won or lost, there was some
correlation between enjoyment and the perceived ‘humanness’ of the opponent.
This indicated that the anthropomorphization and believability of non-player
characters may be important factors in the player’s enjoyment of a game. This
is further explored in the following subsection.
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Fig. 5. Distribution of tactics employed by the players over the 50 games.

6.2 NPC Observations

While observing the NPCs, we attempted to categorize their behavior. The stan-
dard categories that we used for the players was not appropriate, as they only
describe the behavior of a single agent, rather than a group. As we did not know
what to expect between individual games and players, we chose to instead record
when there appeared to be coordinated behavior between the NPCs. In these
cases we logged “tactic observed” and attempted to describe the tactic seen.
This data is presented and compared to the humanness assessment of the NPCs,
and the player’s enjoyment in Table 2 and Fig. 6.

In the earlier games (games 1 and 2), for all 10 players we noticed more coor-
dinated behavior. We believe this was a product of increased player interaction,
facilitating the evolutionary process. However, as the players moved towards
more defensive, and evasive tactics, there was little to guide the evolution.

Table 2. Average player Enjoyment and Humanness assessment (0 to 5 scale), Tactics
Observed are based on the number of games (out of 10) that coordinated movement of
the NPCs was observed.

Game Average Enjoyment Average Humanness Tactics Observed

1 3.7 2.7 6

2 4.1 3.6 8

3 3.1 2.2 4

4 2.7 2.4 5

5 2.3 1.5 2
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Fig. 6. Comparison of the Enjoyment, Humanness and Tactic Observed data. Enjoy-
ment and Humanness are an average of the 10 player’s ratings across the 10 games (on
a 0 to 5 scale). Tactic Observed is based on the number of games (out of 10) that a
coordinated movement was observed. This has been interpolated onto the same scale
for comparison.

However, as we can observe in Fig. 6, there is a close correlation between the
perceived ‘humanness’ of the NPCs and the games where tactics were observed.
We can also see that this trend correlates loosely with the player’s enjoyment of
the game.

7 Conclusions

The game demonstrated that evolution can be applied to the real-time generation
of behaviors. Moreover, those behaviors have, in some cases been perceived by
the players as human-like, especially when the player employed tactics which
promoted interaction. In the cases where the opponent was perceived as being
more human-like, the player generally enjoyed the game more.

Another interesting insight we took from this is that when the player inter-
acted with the NPCs, they trended towards learning roles within a team, rather
than single agent strategies. For example, after one particular engagement,
a team of NPCs were evolved who remained motionless, aside from a single agent
who explored the environment and called for help when it saw the player, resem-
bling scouting behavior. Another engagement produced a team of agents who
confronted the player at different ranges (snipers and assault troops), keeping
the player distracted. Tactics were evolved which allowed the NPCs to over-
power the player roughly two out of three games, though losing the game had
little correlation to the player’s enjoyment.

One issue was that, if an NPC survived, its personality sometimes changed
too drastically, breaking immersion in the game. One possible adaptation to
solve this issue in future implementations would be to conduct a similarity match
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between the new genomes being deployed and the current genomes in play. The
algorithm could then attempt to deploy new genomes to the host which has a
similar current genome, causing a more subtle change in personality. Another
option would be to only deploy new genomes when an agent is destroyed, or
simply linearly interpolate between the old and new values.

This pilot study is limited in its conclusions due to the relatively small num-
ber of participants and games played. The next stage of this research will be
to conduct a more in-depth user study to better assess the gameplay quality of
evolved behaviors using TBE. Games developed in Unity3D can be deployed to
a web page and played online. We are currently investigating the possibility of
using this to reach a larger number of participants. Additionally, the next stage
of this study will extend the template to allow for more complex behavior and
add additional behaviors.
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Abstract. This paper describes a methodology wherein genetic algo-
rithms were used to evolve neural network controllers for application
in automatic road driving. The simulated controllers were capable of
dynamically varying the mixture of colour components in the input image
to ensure the ability to perform well across the entire range of possible
environments. During the evolution phase, they were evaluated in a set
of environments carefully designed to encourage the development of flex-
ible and general-purpose solutions. Successfully evolved controllers were
capable of navigating simulated roads across challenging test environ-
ments, each with different geometric and colour distribution properties.
These controllers proved to be more robust and adaptable compared to
the previous work done using this evolutionary approach. This was due
to their improved dynamic colour perception capabilities, as they were
now able to demonstrate feature extraction in three (red, green and blue)
colour channels.

Keywords: Road-following · Genetic algorithm · Neural network ·
Dynamic dimensionality reduction · Autonomous navigation · Active
vision

1 Introduction

Autonomous navigation in its entirety is a vast and diverse field of study and
research tends to be focussed on a number of sub-areas, such as steering control,
obstacle avoidance, road-following, power management and road-sign detection.
Amongst these, road-following or automatic driving on roads is an essential
foundation of any system with desired autonomous navigation capabilities. While
it may seem a trivial problem from a human perspective, accurately extracting
the desired features in the environment and using them to navigate the road
successfully is indeed a significant problem in terms of an AI system. This is
particularly due to the amount of variance and non-uniformity present in terms
of the geometry and colour composition of the road/non-road surfaces. Weather
conditions such as rain, shadows, changing sunlight, etc., all have an effect on
the systems visual perception of the environment and further complicate this
problem.
c© Springer International Publishing Switzerland 2015
C.J. Headleand et al. (Eds.): ALIA 2014, CCIS 519, pp. 17–30, 2015.
DOI: 10.1007/978-3-319-18084-7 2
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1.1 Related Work

The design philosophy behind most engineered road-following solutions is based
on maintaining an internal model of the road/non-road environment which is
continuously updated based on the features extracted from the world [7]. A
commonly used technique is to use sensor fusion, combining sensory data from
multiple cameras and laser range-finders, to produce a more detailed and accu-
rate representation of the world. This approach to the road following problem,
especially when adaptive techniques for maintaining the model of the environ-
ment are used has been successful in real-world trials. However at the core of
most such hand-crafted controllers is the issue of designer bias and the assump-
tions that are made of the road with regards to its geometry, contrast and colour
composition. Thus successful performance may be guaranteed in environments
accounted for in the design process, but often not across the entire range of pos-
sible scenarios such as in the case of [3] and [6] where geometric assumptions and
limited detail meant that the model was less suitable for more complex road-
shapes. There have indeed been a number of AI vehicles capable of complete
autonomous navigation over the years. The foremost of these in recent times is
Google’s driver-less car project which logged over 500,000 km accident free dur-
ing its road-testing phase. Others include Stanford’s Stanley AI vehicle [8], which
won the 2005 DARPA grand-challenge after successfully completing a challenging
unstructured off-road course of 212 km. However in the case of such systems the
cost and hardware requirements often make their implementation prohibitive in
smaller low-power platforms. There have been a few attempts to use traditional
machine learning strategies to train neural networks to provide full navigation
control or at-least lateral steering control for autonomous vehicles, the foremost
among them being the ALVINN project [2]. The neural network employed was
a three layer feed-forward architecture with a single feedback unit. The input
layer was fed in readings from camera pixels and a laser range-finder. This ini-
tial road-following controller paved the way for the ALVINN-VC [7] which was
a more complete road-navigation system capable of dealing with junctions and
intersections.

One of the key challenges of the project was to provide data for the back-
propagation algorithm to train the network. In the case of road-following, train-
ing on the basis of real-world conditions to account for all the variations in
the road/non-road environment would be logistically impossible. Therefore great
effort was taken to create a simulated road-generator which would supply images
based on the variations of as many as 200 parameters. Later trials involved train-
ing the network on sensor and motor inputs generated by an actual human driver
in control. The main issue with the back-propagation approach to learning in
general is over-fitting to the training data and thus rendering the system less
effective in new un-encountered environments. Moreover there was still a level of
human bias manifesting in the choice and generation of the training environment
as well as the dictating of what the desired or perfect driving output of the con-
troller should be. Such a control system, trained on human-driving data would
never be able outperform a human driving system and its best case scenario is
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that of matching the human driving. It would also not account for unexpected
scenarios such as the ability to recover from steering errors and deviations.

The evolutionary machine learning approach outlined in this paper attempts
to provide an alternate solution to the road-following problem, one with mini-
mal hardware/computational requirements yet with enough adaptivity to solve
the entire range of road-following scenarios. It attempts at further reducing the
dependency on human-foresight and allowing the AI control system to be in
charge of learning its own feature extraction and control strategies. The authors
of [1] who first implemented this approach, made use of a neural network with
architecture similar to the one used in [2], but instead of supervised learning
the authors used evolutionary computation. Apart from having outputs for con-
trolling motor actions, the network had a further three outputs which were fed
back to the input layer and were capable of influencing the perception of the
input image. Instead of having separate modules for action and perception,
the paper proposed a unified motor-sensory unit. This model bears similarity
to the learning methodologies of biological organisms where functional behav-
iour is developed through interactions with the environment and a clear link is
present between actions and their effect on the perception of the scene.

Thus the aim was to evolve a controller capable of road following behaviour
with the ability to dynamically change its perception of the road as needed.
Because of the prohibitive logistics of carrying out the learning on real-world
platform, the evolution needed to take place in a simulated environment with
the option of later transferring a successfully evolved controller to a real-world
platform. As an initial proof of concept the experiment was successful in show-
ing that such controllers can indeed be evolved to successfully carry out road
following across a number of simulated environments. However there were limi-
tations with regards to their dynamic colour perception abilities and as a result
their performance in certain types of scenes which they had not experienced dur-
ing evolution. This paper details further progress of solving the road-following
problem in simulated environments using this active vision evolutionary robot-
ics approach and aims at addressing the limitations of the previous methodol-
ogy, techniques to ensure increased robustness and adaptability of the evolved
neural networks, as well as further analysing and evaluating their behaviour.
It is hypothesized that the strategies outlined in this paper would enable the
evolution of controllers which would be capable of ultimately performing in real-
world poorly delineated and unstructured roads.

2 Neural Network Controller

A Continuous Time Recurrent Neural Network (CTRNN) is used to control the
robot as shown in Fig. 1. Eqs. 1, 2, and 3 define the activation values for the 25
input, 6 hidden and 7 output neurons. In these equations, yi represents the cell-
potential, τi the decay constant, g the gain factor, Ii the activation of the ith

sensor neuron, wji the weight of synaptic connection from neuron j to neuron i,
βj the bias term and σ(yj +βj) the firing rate. All input neurons share the same
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Fig. 1. (a) Architecture of the neural network controller. (b) The Pioneer robot.

bias (βI); the same being true for output neurons (βO). σ(x) = (1 + e−x)−1 is
the sigmoid function. The decay constants, bias terms, weights and gain factor
are all genetically specified network parameters.

yi = gIi; i ∈ {1, ., 25} (1)

τiẏi = −yi +
j=31∑

j=1

ωjiσ(yi + βj); i ∈ {26, ., 31} (2)

yi =
j=31∑

j=26

ωjiσ(yj + βj); i ∈ {32, ., 38} (3)

Due to the computational overheads associated with updating neural net-
works with large input layers, the number of input neurons was limited to 25.
The image from the camera is divided into 25 equal-sized blocks. For each block,
we compute the averaged red (R̄), green (Ḡ) and blue (B̄) (i.e., average pixel
value). Each block is associated with an input neuron and the final value Ii fed
into an input neuron is computed in the following: Ii = αR̄ + βḠ + γB̄. The
parameters α, β, and γ are generated by the network at each updating cycle,
and normalised such that α + β + γ = 1. These parameters give the system its
dynamic dimensionality reduction properties. Each output neuron can increase
or decrease the magnitude of these parameters to enhance or diminish the colour
channel it is associated with, while at the same time having the opposite effect on
the other two channels. For example, in an environment where red is the channel
which shows contrast between road and non-road, having α at a maximum and
the other channels at a minimum would enable the network to be presented with
the best possible contrast from the scene. Figure 2 shows this effect of enhancing
the correct colour channel to produce contrast between inputs corresponding to
road and non-road areas.

The motion control is based on the 2D two-wheeled differential drive kine-
matics model for mobile robots detailed in [9]. This model takes into account
the robots structural parameters i.e. radius, wheel distance and speed-limits to
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give an output in terms of the robots updated position and orientation. The
output of neuron 32 to 35 (Fig. 1) are used to set the left and the right wheel
speeds. Complex dynamical properties such as friction are not accounted for in
this model. The author in [4] highlights examples of the successful portability of
this model from simulated to real-world platforms.

3 Genetic Algorithm

A population size of 52 individual chromosomes is used, with a generational limit
of 3000. Trials involved the network controllers trying to perform road-following
in either six or twelve simulated environments. The best individual of each gen-
eration is guaranteed a place in the next generation, whereas the one which
performed the worst is truncated and made unavailable for breeding. The rest
51 individuals of the new generation are generated by breeding with the parent
chromosomes selected using the roulette-wheel method. Crossover and mutation
probabilities are set at 50 % and 5 % respectively. These operators remain static
and non-adaptive throughout the evolution. Carrying out this process of artificial
evolution over 3000 generations in a sequential process would mean an unrea-
sonably high training time. Thus the genetic algorithm is parallelized using MPI
and implemented on the HPC Wales computing cluster. Each individual runs its
evaluations as a separate process and the respective fitness values are commu-
nicated to a root process which in turn carries out the evolution, generating the
new generation of controllers.

4 Simulation Scenes

The evaluation scenes are the virtual environment where each controller (i.e.,
chromosome) is evaluated. These scenes form the basis for the network’s learning
process, and the importance of this aspect needs to be stressed. These scenes have
been designed to facilitate the evolution of dynamic colour perception strategies
(i.e., the adaptive variation of α, β, and γ). The evolution scene graphics (see
Fig. 2a) are rendered using OpenGL and are designed to simulate a camera
pointing down at the ground such that the road and surroundings on either side
are visible till a vanishing point further away.

The road is rendered using a modified version of the road generation algo-
rithm employed in [1]. A total of 11 tiles are used each 160 cm long and 100 cm
wide. The length of the road the robot needs to travel is 17.6 m. The virtual robot
model has a diameter of approximately 54 cm. The road starts off with a smooth
bend; each tile rotated 30◦ left or right. The direction of this turn alternates for
consecutive trials. This is followed by a similar smooth bend, with greater prob-
ability (6/7) of it being in the opposite direction as the first one. This provision
allows a controller to demonstrate the ability to make both kinds of turns and
ensures the robot needs to be constantly maintaining its course to stay on the
road. Subsequent turns are random, but checks are made to ensure no unreal-
istic or intersected road shapes are generated. The scene in each trial varies in
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Table 1. Colour combinations of the twelve evaluation scenes.

Scene Road Non road Random (Noise)

1 Bright Blue Dark Blue Red and Green

2 Bright Green Dark Green Blue and Red

3 Bright Red Dark Red Blue and Green

4 Bright Red, Dark Green Dark Red, Bright Green Blue

5 Bright Blue, Dark Red Dark Blue, Bright Red Green

6 Bright Green, Dark Blue Dark Green, Bright Blue Red

7 Dark Blue Bright Blue Red and Green

8 Dark Green Bright Green Blue and Red

9 Dark Red Bright Red Blue and Green

10 Dark Red, Bright Green Bright Red, Dark Green Blue

11 Dark Blue, Bright Red Bright Blue, Dark Red Green

12 Dark Green, Bright Blue Bright Green, Dark Blue Red

terms of the colour of the road and non-road surfaces as shown in Table 1. These
scenes are created such that no contrast can be perceived between the road and
non-road surfaces unless the robot is able to vary the value of α, β, and γ in an
adaptive way. The 12 scenes can appear in three different formats, which differ
in terms of the intensity difference between the dark and the bright colours (see
Table 2).

To simulate the effect of poorly delineated roads, the edges of the textures
were blended together such that there would not be a clear demarcating line
between the road and non-road areas. It should be noted however that evolu-
tionary runs carried out in roads without this effect (i.e. having a clear edge)
did not demonstrate any behavioural difference. This can be attributed to the
extremely low resolution of the final input image (25 pixels), which causes the
network to be immune to such minor environmental variations. An additional
road tile with higher levels of delineation and uneven geometry was created to
be used in the testing period to assess the robustness of the evolved controllers.

Table 2. Contrast and colour distribution characteristics for the three sets of scenes.

Set Contrast between mean intensities of
road and non-road (0–255)

Range of distribution of intensities
(0–255)

A 120 for all scenes 120 for all scenes

B 150 for mono-colour, 120 for dual-colour 10 for mono-colour, 30 for dual-colour

C 80 for all scenes 80 for all scenes
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5 Road Bounds Checking and Fitness Function

Each trial is allowed a maximum of 250 iterations with a check being carried out
after the end of each iteration (update) to see if the robot is still on the road.
If the robot is detected to have moved off the road, the trial gets terminated. At
the end of each trial the distance travelled is calculated by the number of road-
tiles traversed thus far and the position in the current tile. In case of the trial
being terminated due to the robot going off the road the current score value is
divided by 5, to make the contribution of progress in the current tile negligible.
This distance value d(e) for each evaluation is further normalized to the range
of 0.5–1.0 to present the final product, which would otherwise be a result of the
powers of twelve or six, in an acceptable range. The final fitness function (Eq. 4)
comprises of two components multiplied with each other, the product of distance
values of each evaluation and the other a colour term Δ. In initial experiments,
it was observed that the best individuals in the early stages of evolution were
able to solve only a subset of the 12 scenes. These individuals dominated the
population over generations, resulting in local maxima wherein the ability to
solve the other scenes did not evolve. This happened in the case when the fitness
was determined simply by the average distance value across all the trials. Thus
having the fitness comprising of the individual distance values multiplied with
each other ensures that such skewed solutions cannot dominate the population
disproportionately and only individuals which perform consistently well in all the
scenes are rewarded. Furthermore the Δ term was introduced to aid or guide
the final solution by rewarding the correct activation of the colour outputs in
each of the evaluation scenes. Populations initialized with the same random seed
were tested in evolutionary runs with and without this colour term Δ to study
its effect, and successful evolution was observed only in those runs where it was
included.

F = Δfinal × 1
E

E∏

e=1

(
0.5 +

(d(e)
22

))
; (4)

d(e) = NT + CS (5)
CS = TL − μ; (6)

Δfinal =
1
E

t=E∑

t=1

C(e); (7)

C1,2,3,7,8,9 =
s=S∑

s=50

|ORs − OW 1
s | + |ORs − OW 2

s | (8)

C4,5,6,10,11,12 =
s=S∑

s=50

2 × OWs (9)

with E = 12 being the total number of trials; NT equal to the number of tiles
crossed; CS equal to the score on the current tile; TL equal to the tile length;
μ equal to the length of the error vector from the mid-point of the end of the
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(a) (b) (c)

Fig. 2. (a) Grayscale image of scene 10 (see Table 1) (b) Pixel averaged version of the
image with the three colour outputs (α, β and γ) equal. No contrast visible between
road and non-road pixel grids. (c) Final pixel averaged version of the image with β
activated, showing contrast between grids corresponding to the road and non-road
areas (Color figure online).

road tile to the current position of the robot; C(e) corresponding to the quality
of the dynamic color perception strategy in trial e; ORs being the value of the
colour parameters (i.e., α, β, or γ) that has to be used to discriminate between
road and non-road; OW 1

s and OW 2
s being the values of the colour parameters

(i.e., a combination of α, β, and γ) that do not discriminate between road and
non-road in mono-colour scenes; OWs being the value of the colour parameter
(i.e., α, β, or γ) that does not discriminate between road and non-road in the
dual-colour scenes.

A final effect of Δfinal is that since it gets calculated only after the 50th

iteration to allow the controller time to settle on a steady sequence of colour
output values for the trial, any individuals leaving the road before the 50th

iteration will get a 0 for the colour score of that trial. Thus those individuals
which leave the road before the 50th iteration for all the trials receive 0 as the
final fitness value irrespective of any distance values gained.

6 Results and Observations

The first round of evolutionary runs was done with six scenes. These constituted
of three mono-colour (1, 2, 3) and three dual-colour (4, 5, 6) scenes. Scenes were
created with textures chosen from Set A (see Sect. 4). Based on the results of
this stage, the experiment was extended to all 12 scenes using textures from
Sets A, B and C. Each experimental condition was tested with a set of 10
random seeds, resulting in a total of 40 evolutionary runs. Due to the nature
of genetic algorithms and the complexity of the problem, not all experimental
runs were able to evolve a successful solution. Only those experimental runs with
fitness values high enough to indicate the ability to solve more than half of the
evaluation scenes were selected for subsequent rounds of testing and evaluation.
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6.1 Testing Round 1

In this first testing round the best individuals from the last 500 generations of
eleven successful runs were subject to a uniform set of eight road shapes in each
of the twelve scenes. The roads were generated to be approximately 24 m long.
For each individual the inherent contrast levels in the scenes were the kept same
as that they had experienced during evolution. The response of controllers to
previously unseen lower contrast levels is discussed later in Sect. 6.2. The road
shapes consisted of two basic types, an “S”shaped course where the robot needed
to make turns in both directions to reach the end and the other where there was
a constant turn in one direction followed by a straightening of the path. Each of
these was generated twice with initial left and right turns for two different angles
(20◦ and 30◦) which dictated the curvature of these turns. During evolution the
angle of curvature was always 30◦ and the road generation algorithm ensured
that the overwhelming majority (6 out of 7) of shapes generated would be of
the first “S” shaped type. The rationale behind generating this fixed set of road
shapes was to discover the actual best performing individuals in the population.
It was possible that some of the individuals which had obtained high fitness
values could have simply been lucky and not possessed the ability to navigate
multiple road shapes across all the environments. The re-evaluation tests also
provided data on the performance of individuals in each of the twelve scenes,
which gave an insight on the effectiveness and flexibility of their dynamic colour
perception strategies.

A normalized distance score ranging from 0 to 10 was used to assess perfor-
mance in each testing condition. Individuals that managed to reach the end of the
road in a particular scene would thus get the highest possible score of 10. Figure 3
shows the average of this normalized distance score in each of the twelve scenes.
Only data for solutions of evolutionary runs that used six scenes is included
here. Figure 4 shows the same, but for solutions when twelve scenes were used
during evolution. As during the evolutionary stage, the number of time steps
(iterations) in each trial was fixed at 250. Thus individuals with higher scores
not only demonstrated better strategies to stay within the road-boundaries but
also greater speeds as they moved along the course.

Three out of the ten evolutionary runs using only six-scenes, provided solu-
tions which could solve the three basic mono-colour scenes (road brighter than
non-road) and all six dual-colour scenes (Fig. 3). This included scenes 10, 11
and 12 which they had not experienced during evolution. This is proof of the
flexibility and adaptability of the solutions evolved. Not surprisingly they failed
in the three reversed mono-colour scenes as the entire basis of their learning
was dependent on the road being brighter than the non-road. On investigating
the dynamic colour perception strategies of these controllers it was observed
that the colour outputs for the three mono-colour scenes were more or less
steady and above 0.85 throughout the trials. This was expected given their
Δ values (see Sect. 5) from evolution being in the range of 1.4–1.8. However in
places where sharp turns or course corrections were needed, a different behaviour
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Fig. 3. Distance scores in the first round of testing for all twelve scenes. Shown in this
graph are scores of the solutions of the three successful evolutionary runs using six
scenes.

Fig. 4. Distance scores in the first round of testing for all twelve scenes. Shown in this
graph are scores of the solutions of the four best evolutionary runs using twelve scenes.

was observed. The colour nodes instead of staying at a constant high value, oscil-
lated between 0–0.9 every two time steps.

The inclusion of the mono colour scenes and the colour term (Δ) ensured
that an adaptive strategy with utilization of all three colour output nodes was
developed. It could be argued that including Δ in the fitness function was in a
sense dictating a solution to the controllers, rather than truly allowing them to
evolve their own strategy. However as seen from the results and during evolution
it was indeed a necessary inclusion. Moreover the network did not completely
adopt this enforced strategy as suggested by the presence of the periods of oscil-
latory behaviour displayed by the three colour outputs. It is interesting to note
that the motion in terms of dynamics was smoother and faster when the correct
colour output was constantly at a high value (≈ 0.9). During the oscillating
phases the motion was slower and more uneven, with regular course-corrections
having to be made.
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The results of the twelve-scene experiments (Fig. 4) were not as uniform,
with solutions showing greater variability in their colour perception strategies,
depending on the seed and colour distribution set they were evolved in. The
majority of solutions (like S5 and S6) only evolved the ability to dynamically
vary two of their three colour outputs and simply did not use the third. This
meant that two out of the six mono-colour scenes (basic and reversed) could
not be solved. The unused colour output varied with each solution. However
they did manage to solve all six dual-colour scenes because having the ability to
dynamically vary only two colour outputs would be sufficient for these cases.

Only two solutions successfully evolved to show capability of solving all twelve
scenes. Of these S4 evolved in scenes with colour distribution of Set B and S7
with distribution values of Set A. It is interesting to note the effect of these
distribution values on the evolved solutions. The seed for S4 when used to evolve
a solution with contrast values of Set A could develop only a sub-par solution
where the controllers could not navigate the green mono-colour scenes. The
seed for S7 when used with Set B, which could be said to be a less challenging
environment, could only solve two scenes. Also unsurprisingly none of these seeds
when tried with Set C could produce any solutions, as the contrast values were
much lower and the distributions themselves were more spread out across the
intensity spectrum.

Solution S7, developed a strategy wherein their ability to differentiate on the
basis of the green channel was more enhanced than the other two channels. The β
output was constant and near maximum for all scenes where bright green could
be made the differentiating channel. For all other scenes, the colour outputs
oscillated between high and low activations every third time step. While the
controllers did traverse the entire course in scenes 1 and 2, the navigation was
slower and often error-prone at the beginning, contributing to the lower average
scores. Solution S4 evolved behaviour where the α, β and γ terms were near
maximum for the majority of the time for scenes 3, 8 and 9 respectively. In the
rest of the scenes it displayed periods of both stable and oscillatory activations
of the colour output nodes.

6.2 Testing Round 2

Four individuals, two each from the two best six-scene and twelve-scene runs,
were then chosen to be subject to a further round of testing. The aim of this
round was to investigate the robustness and generality of their road-following
strategies by observing their behaviour in environments they had not encoun-
tered during the evolutionary phase. The twelve scenes were recreated with tex-
tures having average contrast of 90 and deviations from mean of around 40 (on
a scale of 0–255). In each of these scenes, the range of distribution of the random
noise channels was set at 0–0.80 for one case and 0–0.25 in another. In the evo-
lutionary runs, the distribution of the random noise channels always varied from
0–1 with uniform probability. However it was observed that narrowing this range
to 0–0.5 during the testing phase caused a few randomly selected controllers to
fail and thus it was decided to add this as a further evaluation parameter. In
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Fig. 5. Average scores received by the two best solutions in the second round of testing.
The error bars depict the associated standard deviation values.

theory, controllers with the correct feature extraction strategy would be able to
completely discard the random channels, as despite the range of the distribution
it had no contribution towards highlighting the desired features. The road was
set to be of the “S” shaped type with an angle of curvature of 25◦ in both left
and right initial starting directions. These shapes were generated twice, giving
a total of 4 trials for each random noise distribution value in each of the 12
scenes. Thus each individual in this second round of testing was evaluated for
96 trials. In order to further enhance the effect of presenting an unfamiliar envi-
ronment to the controllers the road tile used in this testing phase represented a
more delineated and unstructured course, having a maximum width of 110 cm
at places but with only 85–90 cm consistently visible throughout. Figure 5 shows
the distance scores of the two best solutions of this round, averaged across eight
trials for each scene.

The results of this second round of testing (Fig. 5) showed that solutions
S4 (twelve scenes) and S7 (twelve scenes) had developed the most robust and
general-purpose solution. Despite receiving lower scores (below 7) for a few
scenes, only these solutions had the capability of solving all twelve scenes across
all the evaluation parameters, i.e. all road shapes with reduced contrast and
varying random noise values. The performance of S1 (six scenes) in identifying
features in the blue or γ channel was affected by the reduced contrast in the
colour distribution. This in turn not only meant failure in the corresponding
mono-colour scenes but also in the two dual-colour scenes where the blue chan-
nel was brighter on the road. The other two channels could still be successfully
used across both ranges of the random noise variation. It was later tested in a
scene with average contrast for the blue channel at 109 (still a new environment),
and in this case it was able to navigate the corresponding scenes successfully.

While the solution S2 was able to solve almost all scenes when the random
noise was in the range of 0–0.80, it failed to differentiate on the basis of both
blue and green channels when this range was reduced to 0–0.25. This resulted
in lower average scores for scenes 1, 2, 6 and 12. The inability to perform in
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these scenes was because it incorrectly associated the low distribution range of
random values in the red channel with the availability of features. Thus it could
see no contrast between the road and non-road surfaces in those scenes where
red was not a feature differentiating channel.

For the two successful solutions in this round, it can be seen that in both
cases performance in all but one mono-colour scene deteriorated compared to
the earlier round of testing. They were still capable of reaching the end of the
road in these scenes, but with less consistency compared to the earlier tests
contributing to the lower overall score. Interestingly despite being subject to
higher contrasts than S7 during evolution, S4 was still able to match or exceed
its performance in eleven out of twelve scenes. On observing the behaviour of the
controllers in these lower contrast scenes, it was seen that there was a disparity
in their sensitivity to the three colour channels. For each solution there was a
particular colour channel in which the ability to perceive contrast was much more
pronounced. The controllers changed their colour perception strategies in these
scenes, relying increasingly on oscillating the activations of the colour output
neurons. However when the channel they were most sensitive to was available,
they used it exclusively by activating only the associated output neuron for the
majority of the trial.

7 Conclusions

The methodology described in this paper was successful in evolving neural
networks capable of demonstrating road-following by dynamic dimensionality
reduction in a variety of challenging simulated environments. This new set of
controllers have shown improvement in the dynamic colour perceptions abilities
compared to those evolved earlier in [1], with the capability to now recognize fea-
tures based on negative and positive contrast in all three primary colour channels
used. These improved results were brought about by the careful design of simu-
lation scenes as well as the formulation of the new fitness function incorporating
the colour-term Δ. This work is a significant step towards the hardware imple-
mentation of these controllers, as real-world environments would in majority
consist of colour combinations similar to those present in the simulated scenes.
However it is acknowledged that the contrasts between road and non-road sur-
faces would be lower than what the networks were tested on. This is proposed to
be mitigated by introducing a simple contrast stretching step before the process-
ing of the inputs. Future work would also focus on representing the environment
in terms of alternate colour models such as HSV, instead of the traditional RGB
model used thus far. Besides this, there is a need to increase the robustness of
these controllers by minimizing the disparity in the feature extraction capabili-
ties across the three channels. On the whole however, the findings of this paper
strengthen the potential of using these controllers as a viable alternative road-
following solution and further efforts would focus on transferring these evolved
controllers to a mobile robotic platform.
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Abstract. Previous research in Neuro-Evolution controlled Active
Vision Systems has shown its potential to solve various shape catego-
rization and discrimination problems. However, minimal investigation
has been done in using this kind of evolved system in solving more com-
plex vision problems. This is partly due to variability in lighting condi-
tions, reflection, shadowing etc., which may be inherent to these kinds
of problems. It could also be due to the fact that building an evolved
system for these kinds of problems may be too computationally expen-
sive. We present an Active Vision System controlled Neural Network
trained by a Genetic Algorithm that can autonomously scan through an
image pre-processed by Uniform Local Binary Patterns [8]. We demon-
strate the ability of this system to categorize more complex images taken
from the camera of a Humanoid (iCub) robot. Preliminary investigation
results show that the proposed Uniform Local Binary Pattern [8] method
performed better than the gray-scale averaging method of [1] in the cate-
gorization tasks. This approach provides a framework that could be used
for further research in using this kind of system for more complex image
problems.

Keywords: Categorization · Active vision system · Neural network ·
Genetic algorithm · Uniform local binary patterns

1 Introduction

Active vision is the process of exploring a visual scene in order to obtain rele-
vant features for subsequent meaningful and intelligent processing. This is very
important and very useful in that visual systems usually have a form of con-
trol, and are intelligently guided to only those areas of the image surface being
processed that have relevant and valuable information to the task at hand. The
control of the visual system can be done by various techniques, although it is
natural to use a Neural Network because of its biologically based inspiration
and also their suitability for noisy data. However, developing an Active Vision
c© Springer International Publishing Switzerland 2015
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System, particularly using the approach of a evolving Neural Network is still in
its elementary stage [5]. In most cases only simple vision problems have been
solved using this approach, which could be attributed to inherent illumination
conditions such as reflection and shadowing in natural images, and also the com-
putational cost that generally comes with using evolutionary techniques for more
complex image problems. As a result, when the problem domain becomes more
complex, the dimension of the feature vector input to the network increases,
and therefore the benefits from this kind of system are soon outweighed by the
computational cost. Consequently, categorization using active vision has been
used for more simple vision problems and discrimination of very few stimuli. For
instance in [1], an Active Vision System based Genetic Algorithm evolved Neural
Network was used for categorizing five gray-scale italic letters. In [5], an Active
Vision System Genetic Algorithm evolved neural controller was used for basic
2D shape discrimination. In an attempt to overcome these problems, we have
used Uniform Local Binary Patterns [8] for feature extraction and enhancement
of more complex images taken from a Humanoid (iCub) robot camera. This can
filter out to an appreciable degree impacts of image lighting conditions such as
reflection and shadowing.

2 Related Works

The field of Evolved Active Vision Systems for categorization has been exten-
sively studied. Mirolli et al. [1] used an Active Vision System that is based
on a Genetic Algorithm evolved Neural Network to categorize gray-scale italic
alphabet letters in different scales (sizes). The movement of the artificial eye
was controlled by motor neurons of the output units, which determine the eye
location per time step, in-order to capture relevant input features for the neural
controller. James and Tucker [5], developed an Active Vision System that is able
to discriminate different 2D shapes by moving about in any direction with an
ability to zoom and rotate. The system was able to discriminate different 2D
shapes irrespective of their scales, locations and orientations. An Active Vision
System controlled by an evolved Recurrent Neural Network was developed by
Morimoto and Ikegami [6] which dynamically discriminates between rectangular
and triangular objects. In this system when the agent moves through the envi-
ronment it develops neural states which are not just a symbolic representation
of rectangles or triangles, but allow it to distinguish these objects. In the same
vein Aditya and Nakul [2], used a Neuro-Evolution based Active Vision System
to discriminate a target shape. The artificial retina used in their system has the
ability to translate in co-ordinate X and Y directions, zoom-in and zoom-out,
and ability to rotate as it scans over the image features. However in their work,
they introduced constraints to the environment of the active vision based sys-
tem. The constraints to the environment are implemented in the form of force
field in a certain direction. At each time step during the training and evaluation,
a unit force is exerted on the artificial agent by the force field. This implies that
at each step, the agent is forced to move a unit direction in the direction of
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the force field. Consequently, the actual movement of the agent per time step is
determined by the vector sum of the change of location in X and Y directions
as well as the force movement. The constraints were added in order to make the
system closer to the real world and also provides an opportunity to observe if
the system is able to develop intelligent strategies for coping with them. In all the
experiments, the system performed better in the discriminating tasks, despite
the constraints introduced. Floreano et al. [3], also implemented an active vision
based system that autonomously scans through gray-scale images and was able
to discriminate triangular shapes from square shapes. The images used in their
experiment varied in scale and location. Finally, in relation to other research
works listed above, the approach in this paper also uses an Active Vision Sys-
tem based on Genetic Algorithm controlled Neural Network. We have adopted a
similar approach used by Mirolli and Nolfi [1], but extended with the enhance-
ment of the images with Uniform Local Binary Patterns [8] to categorize more
complex images from a Humanoid robot’s camera.

3 Experimental Details

We have used a biologically inspired Active Vision System that combines senso-
rimotor information in order to control an artificial agent. The artificial agent
is provided with a moving eye that explores a visual scene (image), in order to
extract relevant information and process the sensory stimuli. The vision system
is controlled by a Recurrent Neural Network evolved by a Genetic Algorithm,
which is similar in approach to [1]. We have adopted the same fitness func-
tion used by Mirolli et al. [1], but with a slightly different Recurrent Neural
Network architecture, of similar update equations to [7]. We have also adopted
the periphery only architecture of [1] (Fig. 1), which gave the best results in all
the different architectures used in their experiments. We shall refer to the entire
eye region as the periphery in the remainder of this paper. We have performed
three sets of experiments, which are: (i) the replication of the periphery only
architecture of the original Active Vision System experiment presented in [1]
for the categorization of five italic letters that is, (l, u, n, o, j), which uses the
gray-scale averaging of the pixel values of the periphery region; (ii) our pro-
posed method of pre-processing the periphery region with Uniform Local Binary
Patterns [8] for the categorization of the objects on more complex images taken
from the iCub camera, namely: soft toy, tv remote control set, microphone, board
wiper, and hammer; (iii) the periphery only architecture, using gray-scale aver-
aging of the pixel values, but in this case it is used to categorize the same set
of objects of images taken from the iCub camera. The neural network, evolu-
tionary process and the fitness function are the same for the three experiments,
except that in Experiment Two we have a different input vector size as the visual
features are being processed by Uniform Local Binary Patterns [8]. The num-
ber of trials and generations in Experiments Two and Three are 250 and 5000,
while that of Experiment One are 50 and 3000. In each experiment we evalu-
ated the performance of the system based on its ability to correctly label the
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Fig. 1. The architecture of our adopted periphery only network used in Experiment
One. It has 32 input neurons, 25 of which are for the periphery visual stimuli and 7 for
efferent copies of the movement and categorization units. It also has 5 hidden neurons
and 7 output neurons (that is, 2 for movement and 5 for categorization units). The left
side of the figure shows the different variations of the letter l, and the periphery vision
scanning part of the letter with white image background (Color figure online).

category of the letters or the objects. The three experiments were undertaken
for quantitative and qualitative comparisons.

The Neural Network. The Neural Network is a recurrent architecture that
consists of one input layer. The visual input vector size is determined by the
method chosen for visual feature processing. It is 243 in the case of Uniform
Local Binary Patterns [8] and 32 for the gray-scale averaging method. It also
has one hidden layer of 5 recurrent neurons, and an output layer of 7 neurons.
In the output layer, 2 of the neurons determine the movement of the eye per
time step (maximal displacement of [−12, 12] pixels in X and Y directions), and
the other 5 neurons are for labelling the category (letters in Experiment One,
and objects in Experiment Two and Three). The input layer consists of units
which encode the current state of activations of the neurons for the visual stimuli
of the periphery region, the efferent copies of the 2 motor neurons, and the 5
categorization units at previous time step t − 1. The activations of the input
neurons are normalized between 0 and 1, and a random value with a uniform
distribution within the range of [-0.05,0.05] is added to those of the gray-scale
methods at each time step, in order to take into account the fact that the gray
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level measured by the photo-receptors of the periphery is subject to noise. The
outputs of the neurons in the hidden layer depend on the input received from
the input neurons through the weighted connections and the activations of the
hidden neurons at the previous time step. The input activations scaled by the
gain factor are represented by equation (1) below;

yi = gIi; i = 1, ., k; (1)

where k stands for the size of the input vector, I is a vector of activation values
of the inputs, yi is the activation value of an input scaled by the gain factor g.
The update equation for the hidden neurons is as shown in equation (2) below;

τi∂yi = −yi +
n∑

j=1

wjiσ(yj + βj); i = 1, ., 5; (2)

the update equation (2) for the hidden neurons is a differential equation. τi is
the decay constant, yi is the output of a hidden neuron at previous time step
t − 1, n is the total number of the input and the hidden neurons, wji is the
weight of a connection from an input neuron to a hidden neuron, σ(yj + βj) is
the firing rate (where βj stands for the bias terms). Equation (3) below is used
to compute the output activations;

yi =
5∑

j=1

wjiσ(yj + βj); i = 1, ., 7; (3)

where yi is the activations of an output neuron, wji is the connection weight
from a hidden unit to an output unit, σ is the sigmoid function used as shown
equation (4);

σ(c) =
1

(1 + e−c)
(4)

The Evolutionary Task. In each trial the eye is left to freely explore the
image, however, a trial is terminated when the eye can no longer perceive any
part of the letter or the object through the periphery vision for three consecutive
time steps. The task of the agent is to correctly label the category of the current
letter or object during the second half of the trial, that is, when the agent has
explored the image for enough time. The agent is evaluated by the fitness func-
tion FF , which is comprised of two components: the first one, F1 (t, c) rewards
the agent’s ability to rank the correct category higher than the other categories;
the second one F2 (t, c) rewards the ability to maximize the activation of the
correct unit while minimizing the activations of the wrong units, with the acti-
vation of the maximization of the correct unit weighting as much as the sum of
the minimization of incorrect units:

F1 (t, c) = 2−rank(t,c) (5)
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F2 (t, c) = 0.5 ∗ yt,c
r +

∑

y∈yt
w

(1 − y) ∗ 0.5
nOL − 1

(6)

FF =
∑nT

t=1

∑nC
c=sFC (0.5 ∗ F1 (t, c) + 0.5 ∗ F2 (t, c))

nT ∗ (nC − sFC)
(7)

where F1 (t, c) and F2 (t, c) are the values of the two fitness components at step
c of trial t, rank (t, c) is the ranking of the activation of the categorization
corresponding to the correct letter or object (that is, from 0, meaning the most
activated and 4, meaning the least activated), yt,c

r is the activation of the output
corresponding to the right letter or object at step c of trial t, yt

w is the set
of activations of the wrong letters or objects at step c of trial t, nOL is the
number of letters or objects, nT is the number of trials, nC is the number of
steps in a trial (that is, 100) and sFC is the time step in which we start to
compute fitness (that is, 50). The initial population consists of 100 randomly
generated genotypes, each encoding the free parameters of the corresponding
neural controller, which include all the connection weights, gain factors, biases,
and the time constants of leaky hidden neurons. The parameters are encoded
with 8 bits each. In order to generate the phenotypes, weights and biases are
linearly mapped in the range [-5,5], while time constants are mapped in [0,1].

3.1 Experiment One

The Experiment was done in order to show the effectiveness of the gray-scale
method in solving a simple image classification problem (i.e. letter categoriza-
tion). The experiment consists of a moving eye located in front of a screen of 100
by 100 pixels and is used to display the letters to be categorized (one at a time).
The artificial eye is a periphery only, which consists of a 5 by 5 photo-receptors
uniformly distributed over a square area that covers the entire retina of the eye.
Each photo-receptor detects the average gray level of an area corresponding to
10 by 10 pixels of the image displayed in front of the screen. The activation
of each photo-receptor ranges from 0 to 1, with 0 representing a fully white
and 1 representing a fully black visual field. The screen is used to display five
italic letters (l, u, n, o, j) of five different sizes each, with a variation of ±10 and
±20 percent to the intermediate size (see Fig. 1, for the letter l). The letters are
displayed in black and gray over a white background as shown in Fig. 1.

The agent is evaluated for 50 trials, lasting 100 time steps each. At the
beginning of each trial: (i) one of the five letters in one of the 5 different sizes is
displayed at the center of the image screen, with each size of each letter presented
twice to an individual; (ii) the state of the internal neurons are initialized to 0.0;
and (iii) the eye is randomly initialized at the centre one third of the screen, so
that the agent can always perceive part of the letter with the periphery vision.
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3.2 Experiments Two and Three

In experiment two, we have used the Uniform Local Binary Pattern method [8]
for the pre-processing of the periphery region for the task of categorizing objects
in images taken from a Humanoid robot’s camera; and in experiment three, we
adopted the gray-scale method for the same problem. The two systems are used
to categorize coloured images (320 by 240 pixels each) of five different objects
namely: soft toy, tv remote control set, microphone, board wiper, and hammer.
Each image of an object has five different sizes with a variation of ±10 and
±20 percent to the intermediate size; and each size is varied in five orientations
in the range [+4,-4]. The total training set is of 125 images, and the original
coloured images are first converted into gray images. The agents are evaluated
for 250 trials lasting 100 time steps each. At the beginning of each trial: (i)
each object in each image is presented twice to each individual, (ii) the state
of the internal neurons are initialized to 0.0, and (iii) the eye is initialized in
a random position within the central one third of the object. Also, in order to
make the images suited for the systems, in which trials are terminated when the
eye (periphery region) loses visual contact with the object for three consecutive
time steps; we used a Canny Edge Detector to detect the edges in each image
loaded per trial, and set a rectangular mask on the objects in the images, and
set every white (edge) pixel outside the boundaries of these to black. Through
this we are able to get edge images that consist of total outside boundaries of
black, and objects of white and black. Figure 2 shows the gray images, Fig. 3
shows the images after being processed by the Canny Edge Detector and Fig. 4
shows the images after setting rectangular masks on the Canny Edge Detector
processed images. It should be noted that the above processing of the gray
images by Canny Edge Detector and rectangular masking, which finally led to
the images shown in Fig. 4 are only used to control the movement of the eye,
so that every trial is terminated after the periphery vision loses total focus of
the object for more than 3 consecutive time steps. It is the gray images that
are processed by the Uniform Local Binary Pattern [8] (Experiment Two), and
gray-scale averaging (Experiment Three), and are used as input vector to the
Neural Network along with efferent copies of the movement and categorization
units (that is, activations at previous time step t − 1).

Fig. 2. The above figure shows the gray images that are used in the categorization
experiments (Color figure online)
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Fig. 3. The above figure shows the images after being processed by the Canny Edge
Detector

Fig. 4. The above figure shows the images after setting rectangular masks on the Canny
Edge Detector processed gray images (Color figure online)

Experiment Two. The experimental set up consists of a moving eye (artificial
agent), covering a total area of 50 by 50 pixels (periphery region) of the presented
image per trial. The periphery image region is pre-processed with Uniform Local
Binary Pattern [8], in order to enhance its quality and also to reduce the fea-
ture vector size. In the experiment, we have divided the periphery region into
4 blocks, in which histograms of uniform patterns are constructed for each block.
Histograms of all the blocks are concatenated to form a feature vector, with each
block giving a histogram of size 59. The feature vector is normalized to sum to
1, to give a probability distribution of Uniform Local Binary Patterns, with
1 representing maximum distribution of patterns and 0 for no pattern; which
forms the input vector of the neural network along with the efferent copies of
the movement and categorization output units

Experiment Three. We performed a third experiment in-order to do a compar-
ative analysis of the results with the results from our proposed method in Experi-
ment Two. In this experiment, we adopted the gray-scale averaging method in [1]
for the processing of the periphery region of the images taken from the Humanoid
robot camera. The Neural Network has the following inputs: (i) the activations
of 5 by 5 photo-receptors, in which each one detects an average gray level of 10
by 10 pixels of the image displayed; and (ii) the efferent copies of the outputs of
2 motor units and 5 categorization units (that is, at the previous time step). The
activations ranges between 0 and 1, with 0 representing a fully white and 1 rep-
resenting a fully black visual scene. The results of the experiment are described
in Sect. 4.

4 Results

We show here the results of our experiments separately, as we have performed
three major experiments.
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4.1 Experiment One

We have performed 10 replications of the evolutionary run, (Fig. 5 shows the
graph of the best fitness); and also assessed the categorization capability of the
system for the five letters (l, u, n, o, j) in the evaluation test (Table 1). We have
used 25 image datasets in the evaluation stage, with each letter of different size
from the one used in the training stage, and of a variation of 3 to 15 percent
of the intermediate size. The system was evaluated for about 100000 trials for
proper generalization. The replicated gray-scale averaging experiment did very
well in the task of categorizing all the letters as demonstrated by higher average
activations of the current categories than those of the other categories. The
average performance accuracy in all categorization tasks was about 95 percent.

Fig. 5. The average of the best fitness in 10 replications of the evolutionary run for
the Experiment One

4.2 Experiment Two

We have also shown here the results of the performance evaluation test of our
proposed Uniform Local Binary Patten method [8], for 10 replications of the
evolutionary run (Fig. 6). The evaluation test was done for a set of 5 objects,
namely: soft toy, tv remote control, microphone, board wiper and hammer; on
images taken from a humanoid robot camera. Each object is of 2 different sizes,
with a variation of 10 and 20 percent to the intermediate size, and each size
of 5 different orientations in the range [+3,-3]. The total evaluation sets are
50 images. The assessment of the performance of the system was done using
average of activations of each labelled category for about 100000 trials (Table 2).
The results from our evaluation test show that the system was able to categorize
the tv remote control and board wiper, and did fairly well for others; especially
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that of the soft-toy, of which its average activation value was slightly lower than
that of the highest one. In the case of incorrect categorization of the current
categories (soft toy, microphone and hammer), the differences between average
activations of the current categories and the higher average activations were
very small. Overall the system has an average performance accuracy of about 50
percent in all categorization tasks (Fig. 7).

Table 1. Experiment one (Gray-scale): Evaluation test

Table 2. Experiment two (Uniform Local Binary Pattern): Evaluation test

Table 3. Experiment three (Gray-Scale): Evaluation test
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Fig. 6. Shows the average of the best fitness of 10 replications of the evolutionary run
for the Uniform Local Binary Patterns [8] Experiment Two, and gray-scale Experiment
Three for categorization of the objects on the images taken from Humanoid (iCub)
robot camera (Color figure online).

Fig. 7. The chart shows the average performance accuracy for the gray-scale and Uni-
form Local Binary Pattern method [8] in categorizing objects taken from the Humanoid
iCub robots camera in 100000 trials (Color figure online).

4.3 Experiment Three

We have performed 10 replications of the evolutionary run (Fig. 6). The per-
formance of the system was evaluated based on average of activations of each
labelled category in about 100000 trials (Table 3). We used the same set of data
of the evaluation stage in Experiment Two, in order to make adequate and
unbiased comparison. The results show that the gray-scale method was able
to categorize only the soft toy; and even in the case of correct categorization,
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the current category (soft toy) average activation value was only slightly higher
than the second highest average activation value. Overall, the system has an
average performance accuracy rate of about 20 percent (Fig. 7).

5 Discussion

The gray-scale method (Experiment One) was used to assess its capability for ordi-
nary letter categorization. The method did very well in all the letter categorization
tasks in the performance evaluation test, with about 95 percent accuracy (Table 1).
In Experiment Two for the proposed pre-processing Uniform Local Binary Pattern
Method [8], the system was able to categorize the tv remote control and board
wiper; although the activation values are close to those of the categories with sec-
ond highest activations (Table 2). It also did fairly well for the other categories
(soft toy, microphone and hammer), in that the differences between the average
activation values of the current category and the other categories with higher acti-
vations are quite small. Overall the system has an average accuracy rate of about
50 percent (Fig. 7). The gray-scale method in Experiment three was only able to
categorize the soft toy; and in this case, the average activation value of the current
category (soft toy) was only slightly higher than those of the other categories, apart
from that of the microphone (Table 3). The system has an average accuracy rate of
about 20 percent in all categorization tasks (Fig. 7). Also, observations made from
the performance evaluation test for the gray-scale Experiment Three show that
the activation values of all the objects in all categorization tasks follow the same
pattern; with the soft toy always having the same and highest activations of 1.0,
and that of microphone with the lowest activation values, that is very close to zero
(Table 3). Furthermore, in all categorization tasks, all the labelled categories had
about the same values, apart from few instances of that of the microphone. This
may be attributed to the fact that the best fitness values in all replications of the
evolutionary run for the Experiment Three were constantly between 0.4 and 0.45
(Fig. 6); and itmayalso shows the erratic nature of the gray-scale averagingmethod
in solving complex image categorization problems. Finally, the proposed Uniform
Local Binary Pattern [8] method is very promising for the following observed rea-
sons: (i) the differences between the average activation rates of the current category
and the other labelled categories are very small for incorrect categorizations; (ii)
the current category always gives high activations, even for the incorrect classifica-
tions. We therefore, have an intuition that if the eye could be better controlled to
detect the most salient region per time for subsequent processing, we may be able
to improve further and achieve better results than the gray-scale method, and so
adapt the system to work in a variety of categorization tasks. Future work will be
in this direction.

6 Conclusion

We have investigated using Uniform Local Binary Patterns [8] for pre-processing
more complex images taken from Humanoid iCub robot camera for a Neuro-
Evolution controlled Active Vision System. Our proposed method had about
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50 percent accuracy as compared to gray-scale method of about 20 percent in the
same categorization tasks. Future research will be done in bottom up models for
filtering features such as colour, intensity and orientation of pixels in generating
saliency maps, in order to detect salient region in a visual scene; thereby giving
a more intelligent control of the eye for subsequent processing.
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Abstract. Many real-world scenarios can be modelled as multi-agent
systems, where multiple autonomous decision makers interact in a sin-
gle environment. The complex and dynamic nature of such interactions
prevents hand-crafting solutions for all possible scenarios, hence learn-
ing is crucial. Studying the dynamics of multi-agent learning is imper-
ative in selecting and tuning the right learning algorithm for the task
at hand. So far, analysis of these dynamics has been mainly limited to
normal form games, or unstructured populations. However, many multi-
agent systems are highly structured, complex networks, with agents only
interacting locally. Here, we study the dynamics of such networked inter-
actions, using the well-known replicator dynamics of evolutionary game
theory as a model for learning. Different learning algorithms are modelled
by altering the replicator equations slightly. In particular, we investigate
lenience as an enabler for cooperation. Moreover, we show how well-
connected, stubborn agents can influence the learning outcome. Finally,
we investigate the impact of structural network properties on the learning
outcome, as well as the influence of mutation driven by exploration.

Keywords: Reinforcement learning · Social networks · Replicator
dynamics

1 Introduction

Understanding the dynamics of networked interactions is of vital importance
to a wide range of research areas. For example, these dynamics play a central
role in biological systems such as the human brain [10] or molecular interaction
networks within cells [4]; in large technological systems such as the word wide
web [16]; in social networks such as Facebook [2,18,37]; and in economic or
financial institutions such as the stock market [12,22]. Recently, researchers have
focused on studying the evolution of cooperation in networks of self-interested
individuals, aiming to understand how cooperative behaviour can be sustained
in the face of individual selfishness [21,26,30,31].

Many studies have targeted the discovery of structural properties of networks
that promote cooperation. For instance, Santos and Pecheco show that cooper-
ation has a higher chance of survival in scale-free networks [31]; Ohtsuki et al.
c© Springer International Publishing Switzerland 2015
C.J. Headleand et al. (Eds.): ALIA 2014, CCIS 519, pp. 44–58, 2015.
DOI: 10.1007/978-3-319-18084-7 4
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find a relation between the cost-benefit ratio of cooperation and the average node
degree of a network that determines whether cooperation can be sustained [27];
and Van Segbroeck et al. investigate heterogeneity and clustering and concludes
that these structural properties influence behaviour on the individual rather
than the overall network [38]. Others have focused on the role of the particu-
lar interaction model between neighbouring nodes in determining the success
of cooperation. For example, Hofmann et al. simulate various update rules in
different network topologies and find that the evolution of cooperation is highly
dependent on the combination of update mechanism and network topology [21].

Cooperation can also be promoted using some incentivising structure in which
defection is punishable [9,32], or in which players can choose beforehand to
commit to cooperation for some given cost [19]. Both incentives increase the
willingness to cooperate in such scenarios where defection would be individually
rational otherwise. Allowing individuals to choose with whom to interact may
similarly sustain cooperation, e.g. by giving individuals the possibility to break
ties with ‘bad’ neighbours and replacing them with a random new connection. For
example, Zimmermann and Egúıluz show how such a mechanism may promote
cooperation, albeit sensitive to perturbations [42]. Similarly, Edmonds et al. use
a tag-based system through which agents identify whom to interact with [17].
Allowing agents to choose which tag to adopt gives rise to social structures that
can enhance cooperation. Finally, control theory is used by Bloembergen et al.
to show how external influence on a subset of nodes can drive the behaviour in
social networks [7].

Most of these works share one important limitation, in that they consider only
imitation-based learning dynamics. Typically in such models, individual agents
update their behaviour by replicating the successful behaviour of their peers. In
evolution terms, the update process only incorporates selection. However, evo-
lutionary success often stems from the interplay between selection on the one
hand, and mutation on the other. Closely related is the exploration/exploitation
dilemma that is well-known in the field of reinforcement learning, where explo-
ration plays the role of mutation, and exploitation yield selection.

Here, we bridge these two interpretations by analysing selection-mutation
dynamics as a predictive model for multi-agent reinforcement learning, where
interaction between agents is modelled as a structured social network. In partic-
ular, we investigate lenience [6,29] as an enabler for cooperation. We report a
great difference between pure selection dynamics, and selection-mutation dynam-
ics that include leniency. Moreover, we show how a subset of stubborn agents can
influence the learning outcome. We find that well connected agents exert a large
influence on the overall network behaviour, and as such can drive the learn-
ing process towards a desired outcome. Furthermore, we show how structural
network properties, such as size and average degree, influence the learning out-
come. Finally, we observe that certain network structures give rise to clusters of
cooperators and defectors coexisting.

In contrast to the majority of related work, which almost exclusively focuses
on Prisoner’s Dilemma type interactions, we use the Stag Hunt to describe the
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interaction between agents. The Stag Hunt provides an intuitive model of many
real-world strategic (economic) interactions, such as the introduction of poten-
tially beneficial new technologies that require a critical mass of adopters in order
to pay off. As such, not switching (defecting) is a safe choice, whereas social
cooperation (adoption) may yield higher rewards for all.

This paper proceeds as follows. Firstly, we explain required background
knowledge on learning, evolutionary game theory, and networks, in Sect. 2. Sec-
ondly, Sect. 3 outlines the methodology used in this work, in particular the formal
link between multi-agent learning and the replicator dynamics. We present our
model of networked replicator dynamics in Sect. 4, accompanied by a range of
experiments in Sect. 5. The paper is closed with main conclusion of this study
in Sect. 6.

2 Background

This section gives an overview of relevant background needed for the remainder of
this work. The section is split into three main parts. Section 2.1 briefly introduces
reinforcement learning; Sect. 2.2 describes basic concepts of evolutionary game
theory; and Sect. 2.3 details networks.

2.1 Reinforcement Learning

The reinforcement learning (RL) paradigm is based on the concept of trial-and-
error learning, allowing agents to optimise their behaviour without explicitly
requiring a model of the environment [34]. The reinforcement learning agent
continuously interacts with the environment, perceiving its state, taking actions,
and observing the effect of those actions. The agent needs to balance exploration
and exploitation in order to ensure good intermediate rewards while avoiding
getting stuck in local optima. RL strategies are powerful techniques for opti-
mising control of large scale control problems [15]. Early RL research focused
on single-agent problems where the full state knowledge of the agent is known.
Later on, RL has been applied to multi-agent domains as well [11]. The compu-
tational complexity of multi-agent reinforcement learning (MARL) algorithms
is much higher than in single-agent problems, since (near) optimal behaviour of
one agent depends on other agents’ policies as well.

Despite this challenge, single-agent RL techniques have been applied suc-
cessfully to multi-agent settings. Arguably the most famous example of an
RL algorithm is the model-free temporal difference algorithm Q-learning [39].
Q-learning1 maintains a value function over actions, Qi, which is updated at
every time step t based on the reward r received after taking action ai:

Qi(t + 1) ← Qi(t) + α
(
r − Qi(t)

)
(1)

1 We describe stateless Q-learning, as this version is suitable for the work presented
in this paper.
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where α ∈ [0, 1] is the learning rate that determines how quickly Q is updated
based on new reward information. Choosing which action to take is crucial for
the learning process. The Boltzmann exploration scheme is often used as it pro-
vides a way to balance exploration and exploitation by selecting an appropriate
temperature τ . The policy x that determines the probability for choosing each
action a is computed as

xi =
eQi/τ

∑
j eQj/τ

(2)

A high temperature drives the mechanism towards exploration, whereas a low
temperature promotes exploitation.

2.2 Evolutionary Game Theory

The strategic interaction between agents can be modelled in the form of a game,
where each player (agent) has a set of actions, and a preference over the joint action
space that is captured in the received payoffs. For two-player games, the payoffs
can be represented by a bi-matrix (A,B), that gives the payoff for the row player
in A, and the column player in B, see Fig. 1 (left). The goal of each player is to
decide which action to take, so as to maximise their expected payoff. Classical game
theory assumes that full knowledge of the game is available to all players, which
together with the assumption of individual rationality does not necessarily reflect
the dynamic nature of real world interaction. Evolutionary game theory (EGT)
relaxes the rationality assumption and replaces it by the concepts of natural selec-
tion and mutation from evolutionary biology [24,41]. Where classical game theory
describes strategies in the form of probabilities over pure actions, EGT models
them as populations of individuals, each of a pure action type, where the popula-
tion share of each type reflects its evolutionary success.

Fig. 1. General payoff bi-matrix (A,B) for two-player two-action games (left) and the
Stag Hunt (center), and a typically valued instance of the Stag Hunt (right)

Central to EGT are the replicator dynamics, that describe how this popu-
lation of individuals evolves over time under evolutionary pressure. Individuals
are randomly paired to interact, and their reproductive success is determined
by their fitness which results from these interactions. The replicator dynamics
dictate that the population share of a certain type will increase if the individuals
of this type have a higher fitness than the population average; otherwise their
population share will decrease. The population can be described by the state
vector x = (x1, x2, . . . , xn)T, with 0 ≤ xi ≤ 1 ∀i and

∑
i xi = 1, representing the

fractions of the population belonging to each of n pure types. Now suppose the
fitness of type i is given by the fitness function fi(x), and the average fitness of
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the population is given by f̄(x) =
∑

j xjfj(x). The population change over time
can then be written as

ẋi = xi

[
fi(x) − f̄(x)

]
(3)

In a two-player game with payoff bi-matrix (A,B), where the two players use
the strategies x and y respectively, the fitness of the first player’s ith candidate
strategy can be calculated as

∑
j aijyj . Similarly, the average fitness of popula-

tion x is defined as
∑

i xi

∑
j aijyj . In matrix form, this leads to the following

multi-population replicator dynamics:

ẋi = xi

[
(Ay)i − xTAy

]

ẏi = yi

[
(xTB)i − xTBy

] (4)

The Stag Hunt is a game that describes a dilemma between safety and social
cooperation [33]. The canonical payoff matrix of the Stag Hunt is given in Fig. 1
(center), where A > B ≥ D > C. Social cooperation between players is rewarded
with A, given that both players choose to cooperate (action C). As the players do
not foresee each others’ strategies, the safe choice of players is to defect (action
D), since typically A+C < B +D (see Fig. 1, right). Although cooperation pays
off more for both players, defection is individually rational when the opponent
strategy is unknown. As both players reason like this, they may end up in a state
of mutual defection, receiving D < A each, hence the dilemma.

The Stag Hunt is typically said to model individuals that go out on a hunt,
and can only capture big game (e.g. a stag) by joining forces, whereas smaller
pray (e.g. a hare) can be captured individually. However, it can also be thought
of to describe the introduction of a new technology, which only really pays off
when more people are using it. Early adopters risk paying the price for this. As
such, despite its simplicity the Stag Hunt is an useful model for many real-world
strategic dilemmas.

2.3 Networked Interactions

Networks describe collections of entities (nodes) and the relation between them
(edges). Formally, a network can be represented by a graph G = (V,W) consist-
ing of a non-empty set of nodes (or vertices) V = {v1, . . . , vN} and an N × N
adjacency matrix W = [wij ] where non-zero entries wij indicate the (possibly
weighted) connection from vi to vj . If W is symmetrical, such that wij = wji

for all i, j, the graph is said to be undirected, meaning that the connection from
node vi to vj is equal to the connection from node vj to vi. In social networks,
for example, one might argue that friendship is usually mutual and hence undi-
rected. This is the approach followed in this work. In general however this need
not be the case, in which case the graph is said to be directed, and W asym-
metrical. The neighbourhood, N, of a node vi is defined as the set of nodes it is
directly connected to, i.e. N(vi) = ∪jvj : wij > 0. The node’s degree deg[vi] is
given by the cardinality of its neighbourhood.
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Several types of networks have been proposed that capture the structural
properties found in large social, technological or biological networks, two well-
known examples being the small-world and scale-free models. The small-world
model exhibits short average path lengths between nodes and high clustering, two
features often found in real-world networks [40]. Another model is the scale-free
network, characterised by a heavy-tailed degree distribution following a power
law [3]. In such networks the majority of nodes will have a small degree while
simultaneously there will be relatively many nodes with very large degree, the
latter being the hubs or connectors of the network. For a detailed description of
networks and their properties, the interested reader is referred to [22].

3 Evolutionary Models of Multi-agent Learning

Multi-agent learning and evolutionary game theory share a substantial part of
their foundation, in that they both deal with the decision making process of
bounded rational agents, or players, in uncertain environments. The link between
these two fields is not only intuitive, but also formally proven that the continuous
time limit of Cross learning converges to the replicator dynamics [8].

Cross learning [14] is one of the most basic stateless reinforcement learning
algorithms, which updates its policy x based on the reward r received after
taking action j as

xi ← xi +
{

r − xir if i = j
−xir otherwise (5)

A valid policy is ensured by the update rule as long as the rewards are normalised,
i.e., 0 ≤ r ≤ 1. Cross learning is closely related to learning automata (LA) [25,35].
In particular, it is equivalent to a learning automaton with a linear reward-inaction
(LR−I) update scheme and a learning step size of 1.

We can estimate E [Δxi], the expected change in the policy induced by Eq. 5.
Note that the probability xi of action i is affected both if i is selected and if
another action j is selected, and let Ei[r] be the expected reward after taking
action i. We can now write

E [Δxi] = xi

[
Ei[r] − xiEi[r]

]
+

∑

j �=i

xj

[
− Ej [r]xi

]

= xi

[
Ei[r] − ∑

jxjEj [r]
]

(6)

Assuming the learner takes infinitesimally small update steps, we can take the
continuous time limit of Eq. 6 and write is as the partial differential equation

ẋi = xi

[
Ei[r] − ∑

jxjEj [r]
]

In a two-player normal form game, with payoff matrix A and policies x and y
for the two players, respectively, this yields

ẋi = xi

[
(Ay)i − xTAy

]
(7)

which are exactly the multi-population replicator dynamics of Eq. 4.
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The dynamical model of Eq. 7 only describes the evolutionary process of selec-
tion, as Cross learning does not incorporate an exploration mechanism. However,
in many scenarios mutation also plays a role, where individuals not only repro-
duce, but may change their behaviour while doing so. Given a population x
as defined above, we consider a mutation rate Eij indicating the propensity of
species j to mutate into i (note the order of the indices), such that, ∀i:

Eij ≥ 0 and
∑

i

Eij = 1

Adding mutation to Eq. 7 leads to a dynamical model with separate selection
and mutation terms [20], given by

ẋi = xi

[
(Ay)i − xTAy

]

︸ ︷︷ ︸
selection

+
∑

j

(
Eijxj − Ejixi

)

︸ ︷︷ ︸
mutation

(8)

By slightly altering or extending the model of Eq. 7 different RL algorithms
can be modelled as well. A selection-mutation model of Boltzmann Q-learning
(Eqs. 1 and 2) has been proposed by Tuyls et al. [36]. The dynamical system
can again be decomposed into terms for exploitation (selection following the
replicator dynamics) and exploration (mutation through randomization based
on the Boltzmann mechanism):

ẋi =
αxi

τ

[
(Ay)i − xTAy

]

︸ ︷︷ ︸
selection

−αxi

[
log xi − ∑

kxk log xk

]

︸ ︷︷ ︸
mutation

(9)

Technically, these dynamics model the variant Frequency Adjusted Q-learning
(FAQ), which mimics simultaneous action updates [23].

Lenient FAQ-learning (LFAQ) [6] is a variation aimed at overcoming
convergence to suboptimal equilibria by mis-coordination in the early phase
of the learning process, when mistakes by one agent may lead to penalties for
others, irrespective of the quality of their actions. Leniency towards such mis-
takes can be achieved by collecting κ rewards for each action, and updating the
Q-value based on the highest of those rewards. This causes an (optimistic) change
in the expected reward for the actions of the learning agent, incorporating the
probability of a potential reward for that action being the highest of κ consec-
utive tries [29]. The expected reward for each action Ay in Eq. 9 is replaced by
the utility vector u, with

ui =
∑

j

aijyj

[(∑
k:aik≤aij

yk

)κ

−
(∑

k:aik<aij
yk

)κ]

∑
k:aik=aij

yk
(10)

Each of these models approximates the learning process of independent rein-
forcement learners in a multi-agent setting. Specifically, they are presented for
the case of two-agent interacting in a normal-form game. Extensions to n-players
are straightforward, but fall outside the scope of this work. In the next section
we will describe our extension of networked replicator dynamics.
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Algorithm 1. Update procedure for the NRD model
1: initialize X
2: Ẋ ← 0
3: for j = 1 to N do
4: for all xk ∈ N(vj) do
5: ẋj

i ← ẋj
i + xj

i

[
(Axk)i − xjTAxk

]

6: end for
7: ẋj ← ẋj

|N(vj)|
8: end for
9: X ← X + Ẋ

4 Networked Replicator Dynamics

In this work, agents are placed on the nodes of a network, and interact only
locally with their direct neighbours. Assume a graph G with N nodes as defined
in Sect. 2.3, with N agents placed on the nodes {v1, . . . , vN}. If we define
each agent by its current policy x we can write the current network state
X = (x1, . . . ,xN ). The aim of this work is study how X evolves over time,
given the specific network structure and learning model of the agents. For this
purpose, we introduce networked replicator dynamics (NRD), where each agent
(or node) is modelled by a population of pure strategies, interacting with each
if its neighbours following the multi-population replicator dynamics of Eq. 4.

The update mechanism of the proposed networked replicator dynamics is
given in Algorithm 1. At every time step, each agent (line 3) interacts with each
of its neighbours (line 4) by playing a symmetric normal-form game defined by
payoff-matrix A. These interactions are modelled by the replicator dynamics
(line 5), where each neighbour incurs a potential population change, ẋ, in the
agent. Those changes are normalised by the degree, |N(vi)|, of the agent’s node
(line 7). Finally, all agents update their state (line 9).

This model is flexible in that it is independent of the network structure, it can
be used to simulate any symmetric normal form game, and different replicator
models can easily be plugged in (line 5 of Algorithm 1). This means that we can
use any of the dynamical models presented in Sect. 3 as update rule, thereby
simulating different MARL algorithms.

5 Experimental Validation

In this section we present experimental results of the networked replicator
dynamics model in various setups. In particular, we use Barabási-Albert scale-
free [3] and Watts-Strogatz small world [40] networks. The first set of experi-
ments compares the different learning models, focusing in particular on the role
of exploration and lenience in the learning process. We then analyse lenience in
more detail, investigating the influence of the degree of lenience on the speed of
convergence. Hereafter, we look at the relation between network size and degree
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with respect to the equilibrium outcome. The last set of experiments investigates
the role of stubborn nodes, which do not update their strategy, on the resulting
network dynamics. All experiments use the Stag Hunt (page 4, Fig. 1, right) as
the model of interaction.

5.1 Comparing Different Learning Models

We compare the different dynamical models of multi-agent learning presented
before in Sect. 3. We use the following abbreviations: CL is Cross learning (Eq. 7);
CL+ is CL with mutation (Eq. 8); FAQ is frequency adjusted Q-learning (Eq. 9);
LF-κ is lenient FAQ with degree of lenience κ (Eq. 10). In order to ensure smooth
dynamics we multiply the update ẋ of each model by a step size α. CL and CL+
use α = 0.5, FAQ uses α = 0.1, and LF uses α = 0.2. Moreover, the exploration
(mutation) rates are set as follows: CL+ uses Eij = 0.01 for all i �= j, and
Eii = 1 − ∑

j �=i Eij ; and FAQ and LF use τ = 0.1. We simulate the model on
100 randomly generated networks of N = 50 nodes (both scale free and small
world, the latter with rewiring probability p = 0.5), starting from 50 random
initial states X ∈ R

N , and report the average network state X̄ = 1
N

∑
i x

i after
convergence. Since the Stag Hunt only has two actions, the full state can be
defined by x1, the probability of the first action (cooperate).

Figure 2 shows the results of this comparison. The gray scale indicates the
final network state X̄ after convergence, where black means defection, and white
means cooperation. Note the non-linear scale, this is chosen to highlight the
details in the low and high ranges of X̄ . Several observations can be made based
on these results. First of all, there is a clear distinction between non-lenient algo-
rithms, which converge mostly to defection, and lenient algorithms that converge
toward cooperation. As expected, lenience indeed promotes cooperation also in
a networked interactions. Equally striking is the lack of distinction between pure
selection (CL) and selection-mutation (CL+, FAQ) models. Adding mutation (or
exploration) in this setting has no effect on the resulting convergence. Increas-
ing the mutation rate does lead to a change at some point, however, this is to
the exten that the added randomness automatically drives the equilibrium away
from a state of pure defection.

(a) Small World (b) Scale Free

Fig. 2. Dynamics of a networked Stag Hunt game in small world and scale free net-
works. The figure shows the mean network state in equilibrium (gray scale) for different
algorithms (x-axis) and average network degree (y-axis) (Color figure online).
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The most interesting results of Fig. 2 are those of LF-2. Here, we can observe
a range of outcomes, depending on the average network degree. A more strongly
connected network yields a higher probability of cooperation in equilibrium.
Moreover, LF-2 is the only algorithm that yield an “indecisive” final state, that is
significantly removed from pure cooperation or defection. In order to investigate
this situation further, we look in detail at the dynamics of a single network.
Figure 3a shows the network state X over time for one specific (randomly drawn)
initial state of a scale free network with average degree 2. Clearly, the network is
split into clusters of cooperators and defectors, no unanimous outcome is reached.
The final state is highlighted in Fig. 3b, depicting the network structure and state
of each node, and clearly showing two clusters. Depending on initial conditions,
different splits can be observed.

Similar results can be observed in small world networks. Figures 3c and d
show the dynamics in an example network with average degree 4. Again, a cluster
of defectors is maintained in equilibrium amongst a majority of cooperators.
Identifying specific structural network properties that lead to clustering is a
main question for future work.
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(a) Dynamics (scale free) (b) Final state (scale free)
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(c) Dynamics (small world) (d) Final state (small world)

Fig. 3. Example of the convergence of LF-2 on a Scale Free (top) and Small World (bot-
tom) network with average degree 2 and 4, respectively. The network is split between
cooperators (white) and defectors (black) in the final equilibrium state (Color figure
online).
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5.2 The Effect of Lenience on Convergence

In this set of experiments, we take a closer look at the influence of leniency on the
dynamics and convergence of the network. Using the same set of networks as in
the previous section, we zoom in only on the lenient algorithms and compare their
convergence speed for the different networks. Table 1 lists the number of time
steps to convergence, again averaged over 100 networks with 50 random initial
states. Two trends are clearly visible: increasing the degree of lenience decreases
the convergence time (most notably for degree 2 networks); and increasing
the network degree similarly decreases the convergence time (most notably for
LF-2). These results can be explained intuitively, as lenience pushes the learning
process in the direction of cooperation, whereas a higher network degree yield
more interactions per time step, and hence faster convergence. The fact that no
convergence below 33 time steps is observed, independent of the network type,
can be explained by the limit that the step size α and the inherent dynamics of
the model pose.

Table 1. Time to convergence (mean and std. dev.) of lenient FAQ, for Small World
and Scale Free networks of various degree d.

Algorithm Small World Scale Free

d = 2 d = 4 d = 6 d = 8 d = 2 d = 4 d = 6 d = 8

LF-2 148 (71) 72 (50) 47 (21) 43 (12) 81 (53) 50 (28) 41 (7) 40 (6)

LF-3 72 (58) 36 (3) 35 (1) 35 (1) 44 (21) 36 (2) 35 (2) 35 (1)

LF-4 43 (24) 34 (1) 34 (1) 34 (1) 38 (13) 34 (1) 34 (1) 34 (1)

LF-6 35 (12) 33 (1) 33 (1) 33 (1) 35 (8) 33 (1) 33 (1) 33 (1)

5.3 The Relation Between Network Size and Degree

Here we investigate the role that both network size and average degree play
in determining the equilibrium outcome of the learning process. Specifically,
we compare networks of different sizes with a fixed degree, with networks which
have a degree proportional to their size. Figure 4 shows the results for both small
world and scale free networks. For each combination we simulate 100 randomly
generated networks, each using 10 randomly drawn initial states, following the
LF-2 dynamics. The figure shows that the equilibrium state is independent of the
network size if the degree is kept fixed, whereas the probability of cooperation
increases when the degree grows with the network. This result shows that a
more strongly connected network tends to cooperate more than one with sparse
interactions. Intuitively, this can be explained by the inherent dynamics of the
Stag Hunt: a critical mass of cooperators is required for cooperation to be a
beneficial strategy. In more densely connected networks, this critical mass is
reached more easily.
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Fig. 4. The equilibrium state for different network sizes, for Small World and Scale
Free networks using LF-2. Fixed degree is 2, proportional degree is 10% of the network
size.

0% 10% 20% 30% 40% 50%
0

0.2

0.4

0.6

0.8

1

Percentage of fixed nodes

E
qu

ili
br

iu
m

 s
ta

te

 

 

Small World
Scale Free

Fig. 5. The influence of the number of stubborn agents on final network state, for small
world and scale free networks of degree 2.

5.4 The Influence of Stubborn Agents

Finally, we look at the influence of stubborn agents on the final state. Stubborn
agents are ones that do not update their state, regardless of the actions of their
neighbours or the rewards they receive. These agents could be perceived as reg-
ulating bodies in financial networks, or politicians in social networks trying to
spread their views.

Here, we select the highest degree nodes in the network to be stubborn
- future work will investigate this issue further. Figure 5 shows the results
of an extensive set of experiments, simulating networks of different sizes
N ∈ {20, 40, 60, 80, 100} with average degree 2, and varying the percentage of
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stubborn agents. The stubborn agents keep their state fixed at x1 = 0.95.2

Interestingly, the results are independent of the network size when the degree is
fixed, and hence the results in Fig. 5 are averaged. We can observe that stubborn
agents pull the whole network toward cooperation. Moreover, we see that this
effect diminishes as the percentage goes up. Scale free networks in particular
show this effect, which can be explained by the fact the in such networks a small
number of “hubs” take part in a majority of the connections. Once these hubs
are cooperative, the rest follows quickly.

6 Conclusions

Wehaveproposednetworked replicator dynamics (NRD) that canbeused tomodel
learning in (social) networks. The model leverages the link between evolutionary
game theory and multi-agent learning, that exists for unstructured populations,
and extends it to settings in which agents only interact locally with their direct
network neighbours. We evaluated this model in a range of experiments, showing
the effect of various properties of both network and learning mechanism on the
resulting equilibrium state. We found that lenience is an enabler for cooperation
in a networked Stag Hunt game. A higher degree of lenience yields a higher proba-
bility of cooperation in this game; moreover this equilibrium is reached faster. More
densely connected networks promote cooperation in a similar way, and stubborn
agents can pull the network towards their desired state, in particular when they
are well connected within the network. The latter finding is of particular interest
to the scenario of adoption of new technologies, as it shows that getting few key
players to opt-in may pull the whole network to adopt as well.

There are many interesting avenues for future work stemming from these
initial findings. The networked replicator dynamics can be further validated
by comparing these findings with the dynamics that would result from plac-
ing actual learning agents, rather than their dynamical model, on the network.
Moreover, one can look at networks in which different types of learning mecha-
nisms interact. E.g., each agent is modelled by a different dynamical model. This
can be easily integrated in the NRD. Furthermore, different games can be stud-
ied as the model for various real-world scenarios, such as the N-player Stag Hunt
which yields richer dynamics than its two-player counterpart [5,28]. Finally, an
interesting direction for further research would be to extend the NRD model for
more complex learning algorithms. For example, it has been shown that adding
memory can help sustain cooperation by taking past encounters into account,
e.g. by recording the opponent’s intention [1] or by the inclination to stick to
previous actions [13].

Acknowledgements. We thank the anonymous reviewers as well as the audience at
the Artificial Life and Intelligent Agents symposium for their helpful comments and
suggestions.

2 Note that we exclude these fixed nodes from the results presented here, however a
similar trend can be observed it they are included.
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Abstract. In this paper we present a human robot-team interaction
solution for automated task handling in an industrial work environment.
The main idea is that multiple heterogenous robots with different capa-
bilities support human workers by autonomously performing tasks for
them. When a human worker asks for a specific item the robots need to
collaborate as a team to grasp the item and bring it to the user. The app-
roach combines various techniques from vision, robotics and multi-agent
systems to create a flexible, low-cost solution for different task allocation
problems. A proof of concept is implemented on a mobile manipulation
platform and a low-cost personal robot.

1 Introduction

In the past, research in industrial robotics has largely focused on high precision
and repeatability. Unfortunately, these manipulators are highly expensive w.r.t.
purchase, setup and maintenance costs. Recently, the robotics and automation
industry is shifting its focus towards more flexible and low-cost solutions1. Addi-
tionally, the integration of mobility and manipulation on a single platform has
been a recent development in industry. Examples of those platforms are the
KUKA youBot [4] and omniRob which are essential components of the so-called
initiative for the “factory of the future (FoF)” [24].

In contrast to the well developed robotic solutions deployed in common mass-
production environments, the FoF targets smaller companies in which flexible
multi-purpose solutions are required, which are not yet available in industry.
Example tasks are finding and acquiring parts, transportation to and from
dynamic locations, assembly of simple objects etc. From these industrial goals
various scientific challenges arise, i.e. perception, path planning, grasp planning,
decision making, adaptability and learning, as well as challenges in multi-robot
and human-robot cooperation.

The recently launched RoboCup@Work [17] competition is an initiative to
stimulate research into FoF. The RoboCup@Work league (part of RoboCup [22])

1 As for example the “UBR-1” from Unbounded Robotics http://unboundedrobotics.
com/. and “Baxter” from Rethink Robotics http://www.rethinkrobotics.com/
baxter/.
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directly aims at these flexible robotic solutions in work-related scenarios. Specif-
ically, the leagues vision is to “foster research and development that enables use
of innovative mobile robots equipped with advanced manipulators for current
and future industrial applications, where robots cooperate with human workers
for complex tasks ranging from manufacturing, automation, and parts handling
up to general logistics” [23].

A shortcoming of the current RoboCup@Work competition is the limita-
tion to one single robot for each task2. In this paper, we focus on this limita-
tion and propose a distributed heterogenous robot team support system that
is capable of flexibly allocating spatially distributed tasks. More specifically, we
present a system in which different platforms, in this case a KUKA youBot and a
Turtlebot II, perform pick and carry tasks as requested by multiple users.

The remainder of the paper is structured as follows. We start by providing
the problem description in Sect. 2. We continue with necessary background in
Sect. 3. Section 4 describes our approach and Sect. 5 shows an empirical proof of
concept. We conclude in Sect. 6.

2 Environment and Problem Description

In this section we will present the environment and assumptions that are used for
our approach. The problem we are trying to solve is described and the necessary
requirements for the solution are sketched.

2.1 Environment

The environment is inspired by the RoboCup@Work arena. In the arena are
several so-called service areas, i.e. tables, on which the manipulation objects can
be grasped and placed. Figure 1a shows a picture of the 2013 RoboCup@Work
arena and Fig. 1b shows the corresponding annotated map that is used for navi-
gation. The manipulation objects that are used are for instance industrial nuts,
bolts, aluminium profiles. Figure 2 depicts the official competition items.

In addition to the standard RoboCup arena, we assume that there are several
human work spaces in the environment. The map is known and the state of the
environment is fully observable, i.e. the robots and the humans can look up
where each item is located. Also the robots and the humans share a common
reference frame.

2.2 Problem Description

The main idea is now that the human workers can request an item to be brought
to them, so that he is supported in his work and can continue with the more

2 Our team smARTLab@work successfully competed in the RoboCup@Work world
championships in 2013 [1] and 2014, and the German Open competitions in 2013
and 2014.
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(a) (b)

Fig. 1. (a) RoboCup@Work arena with extra static obstacles. (b) Map of the arena.
Annotated with service areas.

Fig. 2. Manipulation objects, from top left to bottom right: M20 100, R20, V20, M20,
M30, F20 20 B, F20 20 G, S40 40 B, S40 40 G.

important tasks. In the workspace, there are multiple robots with different capa-
bilities, i.e. only some robots can grasp and manipulate items, and other cheaper
robots can transport items. These robots autonomously decide, which actions to
take and plan to efficiently fulfil the tasks given by the users.

The solution should be decentralised in order to be robust against single
point of failures and the planning has to be done online in order to cope with
additional tasks that appear. The user needs only a simple interface to interact
with the system, i.e. the necessary item has to be selected and the system takes
care that the item is brought.

This setting is substantially different from other common multi-robot set-
tings. In many cases the robots are homogeneous in type, i.e. many robots that
can all perform the same task, or, if the robot team is heterogeneous, the tasks
are not related or co-operative. To solve the presented problem, the robots need
to be aware of the other robots’ capabilities and co-operate together.
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3 Background

In this section, the necessary background about planning in spatially distributed
tasks and the robotic platforms that we use for our approach are described. We
will give some background on Markov decision processes that can be used to
deal with these kind of problems.

3.1 Planning in Spatially Distributed Tasks

Planning in cooperative multiagent systems can be neatly formalized using
Multi-Agent Markov decision processes (MMDPs), but solving these models is
computationally costly. The approach we follow deals with a sub-class of those
MMDP problems called spatial task allocation problems (SPATAPS) that model
problems in which a team of agents has to service a dynamically changing set of
tasks that is spatially distributed in the environment [6].

Definition 1. A multiagent Markov decision process (MMDP) is defined as a
tuple 〈D,S,A, P,R〉, where D = {1, . . . , n} is the set of n agents, S a finite
set of states s of the environment, A = A1 × · · · × An the set of joint actions
a = 〈a1, . . . , an〉, T the transition probability function specifying P (s′|s, a), and
R(s, a) the immediate reward function.

An MMDP is called factored if its state space is spanned by a set of state
variables. Note that an MMDP is significantly different from a Dec-MDP [3],
since agents in an MMDP can observe the (global) state.

The problem that is tackled in this paper can be transferred into a MMDP,
and more specifically a SPATAPS. The approximations outlined in [6] present a
decentralized solution for online planning. Thus each robot observes the global
state and can plan accordingly. This will be used in our approach.

3.2 Platforms

All of our robots are running the Robot Operating System (ROS) framework [21].
ROS is designed as middle-ware and framework for robotic platforms. Addition-
ally, it is an open source toolkit to prevent “reinventing the wheel”. One of the
primary goals stated on the ROS website is to “support code reuse in robotics
research and development”3. Thus, our approach is not limited to the two plat-
forms that are presented in the following, but any robot running ROS can be
adapted to work in our approach, given that it has similar capabilities.

YouBot. The youBot is an omni-directional platform that has four mecanum
[14] wheels, a 5 DoF manipulator and a two finger gripper. The platform is
manufactured by KUKA4, and is commercially available at the youBot-store5.
3 For more information see: http://www.ros.org/.
4 http://kuka.com.
5 http://youbot-store.com/.

http://www.ros.org/
http://kuka.com
http://youbot-store.com/
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(a) (b)

Fig. 3. (a) CAD model of a stock youBot. (b) smARTLab modified youBot.

It has been designed to work in industrial like environments and to perform
various industrial tasks. With this open-source robot, KUKA is targeting edu-
cational and research markets. Figure 3a shows a model of the stock youBot.

The youBot comes with a 5-degree-of-freedom arm that is made from casted
magnesium, and has a 2-degree-of-freedom gripper. The arm is 655 mm high,
weighs 6.3 kg, and can handle a payload of up to 0.5 kg. The working envelope
of the arm is 0.513 m3, and is is connected over EtherCat [16] with the internal
computer, and has a power consumption limit of 80 Watts. The gripper has
two detachable fingers that can be remounted in different configurations. The
gripper has a stroke of 20 mm and a reach of 50 mm, it opens and closes with an
approximate speed of 1 cm/s.

In order to meet the requirements we demand from the youBot platform,
we made a number of modifications to the robot. In this paragraph we describe
which parts are modified and why these modifications are a necessity for our
approach. Figure 3b shows the modified youBot setup. The gripper is replaced
by two FESTO FinGripper fingers6 mounted on two Dynamixel AX-12A7 servo
motors. This increases the stroke to more than 20 cm and the speed of the gripper
to up to 10 cm/s. Also the fingers passively adapt to the shape of the objects.

To extend the reach of the robot-arm in respect to the chassis, we designed an
extension plate of 5 mm thick aluminium. This plate can extend the arm towards
the bounds of the chassis, and is designed to be a multi-purpose extension for
the youBot arm. Additionally, the position of the arm is elevated by 8 cm.

For perceiving the environment, two Hokuyo URG-04LX-UG01 light detec-
tion and ranging (LIDAR) sensors are mounted parallel to the floor on the front
and back of the robot.

In order to detect and recognize manipulation objects, an ASUS Xtion PRO
LIVE RGBD camera is attached to the last arm joint. This camera is mounted,
6 http://www.festo.com/rep/en corp/assets/pdf/Tripod en.pdf.
7 http://support.robotis.com/en/product/dynamixel/ax series/dxl ax actuator.htm.

http://www.festo.com/rep/en_corp/assets/pdf/Tripod_en.pdf
http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm
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so that it faces away from the manipulator, as can be seen in Fig. 5a. The main
idea of this rather odd mounting position is that we want to use the RGB-D
data of this camera, which is only available for distances larger than ∼0.5 m.

The base computer is upgraded from the stock ATOM based architecture to
an Intel i7 CPU and is powered by a dedicated 14.8V / 5 Ah Lithium Polymer
battery pack that is charged and monitored by an OpenPSU power unit. For
cooling we mounted an additional fan in the base of the robot. The base computer
is supported by an i5 notebook, which is mounted on a rack at the backside of
the robot.

For safety reasons the robot is equipped with an emergency stop button,
that stops all robot movement, without affecting the processing units, so when
the stop is released the robot can continue its movement without having to
re-initialize it again.

(a) (b)

Fig. 4. (a) CAD model of a stock Turtlebot. (b) smARTLab modified Turtlebot.

Turtlebot. The Turtlebot8 platform is a low-cost personal robot with limited
resources. This robot is equipped with a laptop with core-i3 CPU for compu-
tation. We use the second generation, a Turtlebot II, for which a custom base
was developed by Kobuki. As a main sensing unit the Turtlebot is originally
equipped with a Microsoft Kinect RGBD sensor as shown in Fig. 4a, but in our
setup it is replaced by a Hokuyo URG-04LX-UG01 light detection and ranging
(LIDAR) sensor. This in order to decrease the total height of the Turtlebot,
such that the items can be dropped into a carton box mounted on top of the
Turtlebot. In the box, an AR marker is attached such that it can be detected
by the youBot.

Figure 4b shows the final configuration. The LIDAR is mounted up side down
on the top plate for protection and leaving free space for the box on top. For
8 http://www.Turtlebot.com/.

http://www.Turtlebot.com/
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static obstacle detection, we use the information of the sensor together with three
bumpers that are located in the front half of the robot. Furthermore, the robot
estimates its position by integrating the wheel odometry and gyro information
together with the sensor readings as will be explained in more detail in the
following section.

4 Approach

In this section, the different techniques used to tackle the above mentioned app-
roach are explained. We developed different modules for many different capabil-
ities, e.g. basic global navigation, object recognition, inverse kinematics of the
arm, etc. By combining these capabilities in state-machines we are able to show
a first proof of concept. The basic global navigation and marker detection mod-
ules are readily available when using ROS. However, especially the path plan-
ning needed to be heavily adapted to ensure that the robots drive efficiently.
Also while the general AR marker detection is available, a further Kalman filter-
ing step is incorporated in order to ensure a more robust detection. The inverse
kinematic module and the object detection needed to be developed from scratch,
since there were no ROS modules available.

Mapping and Localization. One of the most crucial capabilities of an auto-
nomous agent is to localise itself efficiently in a known environment. To achieve
this, we use gmapping [12] to build a map of the arena beforehand. The map
of this years arena is shown in Fig. 1b. After the map is recorded it can be
used by AMCL [10] for efficient global localization. Another solution could be to
implement a “Northstar” like navigation system, by providing a fixed frame of
reference which is almost always visible from any location. However, this system
would be centralized and while possibly providing more accurate localization, if
the “Northstar” fails, the whole system would break down.

Navigation. Another necessary capability of the robot is to navigate in the known
environment without colliding with obstacles. The map created with gmapping is
used for the basic global navigation. The global path is computed by an A* algo-
rithm and is then executed using a dynamic window approach [11] trajectory roll-
out for the local path planning. This planner samples different velocities and ranks
them according to the distance to the goal and the distance to the path, while veloc-
ities that collide with the environment are excluded.

Object Recognition. Besides all the navigation tasks, object detection and re-
cognition is crucial to be able to interact with the environment, i.e. picking up
objects and placing them in the correct target locations. We use the openCV-
library9 to detect the objects. An adaptive threshold filter is applied to the input

9 http://opencv.org.

http://opencv.org
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(a) (b) (c)

Fig. 5. (a) Pre-grip scan position. (b) Pre-processing of the image. (c) Detected objects,
classification and grasp positions.

image. Afterwards the image is converted into a black and white image and this
is used to detect the contours of the objects as shown in Fig. 5b. We use various
features of the detected objects, e.g., length of principal axis, average intensity
and area, and use a labeled data-set that we created on the location to train a
J4.8 decision tree in weka [13] for the recognition of the objects. This decision
tree is then used for the online classification of the objects. Figure 5c shows the
detection in a service area.

(Local) Communication. Communication is realised over wi-fi with a UDP
connection to each Turtlebot using the LCM library [15]. We have setup two
channels, one channel is reserved for the initial global communication broadcasts,
and furthermore each robot listens only to its own channel. This ensures that
the communication can be initiated between any two robots, but as soon as
the communication is only needed to be bidirectional between two robots, the
broadcast channel does not get flooded with messages.

Inverse Kinematics of the Arm. In order to manipulate the detected objects,
the various joints of the arm have to be controlled such that the objects are
grasped correctly. We implemented a simple inverse kinematics [20] module to
calculate the joint values for any top-down gripping point that is in the reach of
the robot. Since we are gripping from a top-down position, the inverse kinematics
can be solved exactly, when we fix the first joint such that it is always pointing
in the direction of the gripping point as shown in Fig. 6. Then the remaining
joints can be calculated in a straight forward manner, by solving the angles of
a triangle with three known side lengths, since we know the distance of the grip
and also the lengths of all the arm-segments. Since the position-reproducibility
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Fig. 6. Simple inverse kinematics: d and h are the grip distance and height, relative
to the mount point of the arm. By always gripping from a top down position (a) or
vertical position (b), e and f can be calculated and by that we can determine all angles
for the joints.

of the arm is in sub millimetre order, this proved to be sufficient for performing
highly accurate grasp and place trajectories.

Marker Detection. To enable visual robot-robot detection between the Turtle-
bot and the youBot, we equipped the Turtlebot with a AR marker. This is ori-
ented in a way that it is visible when the two robots are facing each other. To
track and decode these markers we make use of a toolkit called ALVAR, more
specifically we use the ROS wrapper10 of this library. The youBot uses the cam-
era on the arm to search for the marker and then it can use the marker’s position
to calculate the inverse kinematics for dropping an object in the box attached
on top of the Turtlebot.

5 Proof of Concept

We implemented a first proof of concept on a Turtlebot II and a youBot. A video
about the approach can be found here: http://youtu.be/II1QEvvkvHg. Figure 7
summarizes the steps implemented in the system.

The user selects an item that is needed using a simple touch interface. The
request is translated to a task and broadcast to the system. In the task descrip-
tion, the target location and the item are specified. The youBot looks up where
the item is located and drives to the target location11. The youBot searches the
item on the source platform and broadcasts a pick-up task to the system. As
soon as a Turtlebot confirms the pick-up, the item is grasped, while the Turtle-
bot drives to the source platform in front of the youBot. The Turtlebot notifies
the youBot that it has arrived. The youBot searches for the marker on top of
the Turtlebot to be able to drop the item into the box. Inverse kinematics are

10 http://wiki.ros.org/ar track alvar.
11 Due to a damaged motor and wheel, the youBot is stationary at the moment.

http://youtu.be/II1QEvvkvHg
http://wiki.ros.org/ar_track_alvar
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(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) The user selects an item. (b) The youBot scans the platform and notifies
the Turtlebot that the item is found. (c) The item is grasped while the Turtlebot is
approaching. (d) The item is placed in the bin ontop of the Turtlebot. (e) The item is
transported back to the user. (f) The user can take the item.

applied in order to compensate for the location of the Turtlebot. After the item
is placed in the box, the youBot notifies the Turtlebot, so that it can leave and
bring the item to the target destination. When the Turtlebot has arrived at the
user’s location, the item can be picked up out of the box and the robots become
free to select the next task.

At the moment, the online planning is very limited, since there is only one
Turtlebot and one youBot in the system. However as soon as the system is
extended to more robots and humans, the online planning mechanism becomes
a major part of the system.

6 Conclusions and Future Work

This paper investigates human team-robot coordination in a factory of the future
setting. It presents a proof-of-concept of an approach based on the combination
of basic global navigation, object recognition, inverse kinematics and human-
robot interaction. A conceptual overview is presented of our human robot-team
interaction solution. Our initial experiment shows the feasibility of the approach.

In the future, the system will be extended to more robots with multiple
tasks that have to be serviced at the same time. We also aim to introduce time
constraints, such as for instance an item has to be delivered within a certain time-
frame. As soon as many robots share a common workspace, a good and efficient
collision avoidance system is necessary. We intend to implement a solution based
on the approach explained in [5]. The advantage of this solution is that it can
also be completely decentralized and does only rely on robot-robot detection.

Additionally, the approach enables to compare different strategies for allocat-
ing the tasks. For instance it would be very insightful to compare the SPATAPS
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approach with a greedy approach and solution based on bidding and auction-
ing for the tasks. Lastly, the approaches can be compared with nature inspired
algorithms such as from ants [7] and bees [8,9,19]. These approaches rely on
indirect communication based on pheromone trails, or more recently also non
pheromone-based approaches have been developed as in [2,18]. An interesting
research direction would be to compare the swarm-based approaches with the
approaches mentioned before based on planning and/or auctioning.
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Abstract. In this paper we present the results of a preliminary study on
behaviour extraction from arbitrary robotic morphologies. Our goal is to
build a universal interface targeting all possible robotic morphologies. For
the exploration of the capabilities of different morphologies, we focus on
the self organisation of the sensorimotor loop for discovering behavioural
capabilities. In this paper we briefly explain the core idea for such an
interface and present preliminary results of our method together with
future remarks.

Keywords: Robotics · Self organisation · Operator behaviour
acquisition

1 Introduction

The remote control of mechanical devices equipped with a large number of actu-
ators, such as humanoid robots, is a challenging task. When dealing with the
resulting large number of degrees-of-freedom, the nature of the interface provided
to the human operator plays a fundamental role in the success of tele-robotic
performance. A wide range of tele-robotic interfaces have been explored so far;
some are very rigid devices that require a great deal of cognitive and manual
effort, while other more intuitive systems, based on one-to-one body mapping,
are in contrast very complex and expensive devices, often specifically tailored to
a single robotic platform [3].

Our goal is the implementation of an agile interface able to control every pos-
sible robotic morphology, a universal interface. To do so we need an automated
mechanism that can examine and explore the robotic morphology connected to
the interface and extract interesting features, with respect to the desired con-
trol pattern. Our interest in this preliminary study is movement control. We
identify interesting features as behaviours that can be produced by the robot
and are meaningful to the user, according to the task in hand. The purpose of
the interface is to map the behaviours of the operator to those produced by the
robots, resulting in the association between the robots and operator behaviours.
In order to achieve this, we reverse the informational flow of the interface, as
suggested in [6]. The robot acts first and the operator responds to the exhibited
behaviour with his own, through the input device. The input device thus, plays
c© Springer International Publishing Switzerland 2015
C.J. Headleand et al. (Eds.): ALIA 2014, CCIS 519, pp. 73–79, 2015.
DOI: 10.1007/978-3-319-18084-7 6
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a critical part on the behaviours the operator can have. Multidimensional input
devices, i.e. Kinect sensor, could enable a whole body mapping, whereas simpler
ones, i.e. on-off switches or joysticks, are more restrictive [2,8,9].

The interface is able to explore the capabilities of the robotic morphology
based on the homeokinesis principle [1]. As described by Martius and colleagues
in [5], self organisation of the sensorimotor loop can explore the behavioural
repertoire of a robot. Based on this research we formulate the principles for the
interaction between the interface and the robot. For the interaction between the
interface and the human operator we propose a framework for a behaviour based
interaction, though currently only capable of exhibiting a simple example of such
interaction. In this study, we explore the applicability of the proposed method
for behavioural exploration of the robotic morphology.

1.1 Operator Behaviour Acquisition

In this section we describe the main ideas guiding the interaction of the operator
with the interface. As previously stated, the overall goal is to build a novel inter-
face that connects intuitive human behaviours to robotics ones. Our approach
follows the research described in [6]. In their approach they define the interac-
tion between the user and the interface as an “intention translation” mechanism,
by which user intentions are translated to instructions or commands that the
interface can understand, so that the user can interact with it. In most inter-
faces users have to familiarise themselves with the interface in order to interact
with it, read the user manual and understand the predefined mechanisms of
interaction [4]. In a more complex interaction paradigm, where the actions to
be performed are formed using simpler actions as building blocks, the user has
to learn sequences of controls in order to communicate their intentions to the
interface. In such case, as the number of sequences, and so, the building blocks
increase, the more laborious it becomes for the user to remember and execute
them.

Providing a mapping between user intentions and robot behaviours can lead
to an intuitive interface. The operator’s intentions are taken into account -
through the manipulation of the input device- making the interfacing process
easier and more personalised. In this reversed paradigm, users do not have to
familiarise themselves with the interface, but the interface can learn from the
interaction with the user. Based on the reactions of the user to the exhibited
behaviours of the robot, the interface is able to correlate the two, forming a
control pattern. For that to happen, a level of consistency is expected from the
users in the behaviours they exhibit. Same or similar input signals should be
expected to yield the same robot behaviour as a response. Studies carried out,
on a similar approach show up to 80 % percent mapping accuracy in the interac-
tion with a 17 degree of freedom robot, using an input device consisting of two
joysticks [6].
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2 Materials and Methods

Based on the principles explained in the introduction, we implemented a system
consisting of two modules. One used for the exploration and self organisation of
the sensorimotor loop of the robot and one for the extraction, storage and reuse
of the acquired behaviours. The robotic morphologies used for the experiments
described in this paper where simulated by the Open Dynamics Engine, ODE [7].
The module for the self organisation of the sensorimotor loop was implemented
according to the system described in [5] and follows a dynamical system app-
roach. The realization of the dynamics of the robot and the world is done using
a Controller (K) and World Model (W ) cooperating for the effective exploration
of the robots dynamics and an accurate prediction of world states, respectively.
Both are described by the equations bescribed below.

The exploration module, in general, is described, according to time t, as:

x̃t+1 = W (K(xt, C), A) (1)

The controller K generates motor outputs yt = K(xt, C) as a function of sensory
inputs x = x1, x2, . . . , xn, in dependence on a set of parameters defined by the
matrix Cn,n+1 and is defined by the equation:

K = g(
n∑

i=1

Cixi + Cn+1), (2)

where g is a sigmoid function.
The world model x̃t+1 = W (yt, A) estimates future sensory inputs x̃t+1 from

motor outputs yt = y1, y2, . . . , yn in dependence on a set of parameters defined
by the matrix An,n+1.

The parameter matrix of the world model, A, is adapted according to the
Widrow - Hoff Learning Rule [10], delta rule, Δw = +ηEWx with the error,
EW , described by the function:

EW = ||xt+1 − x̃t+1||2 (3)

with learning rate η = 0.1.
The controller updates its parameter matrix by gradient descent with respect

to the error function,
EK = ||xt − x̃t||2 (4)

To calculate the above error, we find the x̃t by calculating the motor input ŷt

the world model should have in order to make a perfect prediction and then the
sensory input the controller K should have to predict the motor output ỹt. The
update on the controller parameter follows the rule Ct+1 = Ct − ε∂EK

C , with a
learning rate ε = 0.01.

For the identification, storage and reuse of the different behaviours exhibited
by the robot, we use a series of m neural networks. Each network is defined
according to the equation,

(xt+1,yt) = Ni(xt,xt−1), i = 1, . . . , m (5)
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The neural networks, working in parallel, compete for the prediction of the motor
command yt of time t and the sensory input xt+1 of the next time step. It is
a winner takes it all method, with only the winning network being allowed to
train on the current data xt and xt−1. Because of that, each network specializes
to a region of the possible motoric and sensory space.

The networks consist of 3 layers, input, output and a hidden layer. The hidden
layer consists of sigmoid units whereas the input and output layers from linear
units. No bias units are introduced in the networks.

The algorithm for the training of the networks is backpropagation, with learn-
ing rate η = 0.01. In each time step all the networks are activated with the same
input and the one with the best approximation of the next sensor values and
motor commands is selected as the winning network. The sample won is then
added to the training dataset of the winning network and it is trained for another
epoch. For the selection of network, a smoothed error is used, taking into account
the past errors of the network.

3 Results

In this section we present the experimental results of the exploration method and
the way by which the interface controls the different behaviours extracted. For
testing purposes we applied the method to three different robotic morphologies as
seen in Fig. 1, with varying degrees of freedom and numbers of joints. The acrobot
has 1; Fig. 1(a), the octacrawl has 2; Fig. 1(b) and the arm has 18; shoulder, elbow
and wrist pitch together with finger pitch for three joints in every finger, Fig. 1(c).
In Fig. 2 we can see how the experts are trained to identify different sensor states.
Here, only a couple of behaviours extracted from the octacrawl morphology are
displayed. As we can see from the graph, the outputs of the network, describing
each behaviour -as captured by the sensor values- stabilize and approximate the
real ones more accurately as time and training size increment. In the example
of Fig. 2, behaviour 1 stabilizes faster that behaviour 2 as we can see from the
convergence to a finite set of sensor values for each behaviour. This is caused by
the difference in the size of the datasets for each behaviour. Some behaviours are
more frequent than others making the dataset of the network describing them
to increase in size faster than others. We can also observe a periodicity in the

(a) Acrobot with 1 d.o.f. (b) Octacrawl with 2 d.o.f. (c) Arm with 18 d.o.f.

Fig. 1. The different robotic morphologies used during the experiments
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sensory values recorded, a direct result of the dynamical system approach used
in the exploration mechanism. A behaviour is usually found when the system
enters a basin of attraction, and a long-time behaviour is exhibited by the system
as it approaches the attraction point.

Fig. 2. Plot of the sensor values for two different behaviours extracted from the
octacrawl morphology, as they change through time during the learning phase

Even more interesting features of the system can be observed in the switch-
ing between behaviours. In Fig. 3(a) the behavioural changes of the acrobot
morphology are being displayed against time. The different behaviours become
salient by the different sensor readings they produce. In Fig. 3(c) and (b) the
behaviours of the octacrawl morphology and the arm morphology are being dis-
played against time, respectively. Our interest in these graphs lies in the point
of change between behaviours. We exhibit a behaviour by activating the corre-
sponding network. The id of the active network is noted in the horizontal axis,
above time. For the rest of this section, behavioural change results from the
change of network in charge. So, whenever a behavioural change is stated, the
reader should keep in mind that the network in charge has changed in order to
support the different dynamics dictated by the behaviour.

In all cases the exploration mechanism was able to identify and extract dif-
ferent behaviours. Theses behaviours where triggered through the interface in
random order and the sensor values of each morphology were recorded and
predicted by the network in control. In all graphs of the Fig. 3 we observe
smooth changes in the sensory recordings, regardless of the changes in behav-
iours. The system, readjusts itself, following a trajectory to the new attractor,
described by the network in control each instant. In the first time steps following
a behavioural change, we can observe the readjustment of the morphology, as
recorded through the sensor values, so as to exhibit the desired behaviour.



78 C. Melidis and D. Marocco

(a) Switching between behaviours
using the acrobot morphology

(b) Switching between behaviours
using the arm morphology

(c) Switching between behaviours using the oc-
tacrawl morphology

Fig. 3. Switching between behaviours in the different morphologies used. In the hor-
izontal axis we have time, and the id of the expert(s) at control of the system. The
expert id is displayed and when two or more experts are in control at the same time,
their ids are separated with ‘/’. In the vertical axis the sensor values of the each robot
are being displayed.

At the same graphs of Fig. 3 we can also observe the behaviour of the system
in the case of simultaneous activations. In the horizontal axis we can see the
behaviours exhibited by the morphology, separated with ‘/’ when more than one
behaviours are triggered. In the co-activation of behaviours we have the ability
through the interface to adjust the level in which each behaviour contributes
to the resulting one. The behaviours displayed in the graphs have been equally
contributing to the behaviour exhibited, but experiments with different levels
of contribution yield similar results. From the graphs we can see the ability of
the system to mix the behaviours acquired seamlessly with no abnormal sensory
readings or resulting behaviours being exhibited by the morphology. In Fig. 3(a)
and (c) we observe the change in sensor values through time for the acrobot and
octacrawl morphologies respectively.
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4 Conclusions

In this preliminary study of the proposed interfacing mechanism we were able to
show that the proposed exploration mechanism for robot behaviours was success-
fully implemented. The robustness of the proposed mechanism was shown, both
by the stability of the mechanism when switching between the explored behav-
iours, and by the ability of the explored behaviours to be combined together,
potentially exhibiting more complex behaviours. The next step, will be the imple-
mentation of an interface based on the proposed interfacing principles, able to
support continuous interaction with the user. Once the user is able to provide
continuous feedback based on the robots behaviour, we could use that to guide
the exploration of the behaviours towards desired ones, depending on the task.
On the exploratory mechanism, a proposed extension would be the reuse of the
extracted behaviours inside the self organising mechanism so as to guide the
exploration towards more complex and fine grained behaviours. In this case the
user could be the one deciding which behaviours should be extended and which
not, tailoring the interface system according to their needs.
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Abstract. The ability to de-escalate confrontations with aggressive individuals
is a useful skill, in particular within professions in public domains. Nevertheless,
offering appropriate training that enables students to develop such skills is a
nontrivial matter. As a complementary approach to real-world training, the
STRESS project proposes a simulation-based environment for training of
aggression de-escalation. The main focus of the current paper is to make this
system adaptive to the performance of the trainee. To realize this, first a number
of learning goals have been identified. Based on these, several levels of difficulty
were established, as well as a mechanism to switch up and down between these
levels based on the user’s score. A preliminary evaluation demonstrated that the
system successfully adapts its difficulty level to the performance of the user, and
that users are generally positive about the adaptation mechanism.

Keywords: Virtual reality � Adaptive training � Human-agent interaction

1 Introduction

People working in the public sector (e.g. police officers, ambulance personnel, public
transport employees) are often confronted with aggressive behavior. According to a
recent study, around 60 % of the employees in the public sector in the Netherlands have
been confronted with such behavior in the last 12 months [1]. Being confronted with
(verbal) aggression can have severe consequences and is closely associated with
psychological distress, which in turn can have a negative impact on work performance
[2]. Responses to aggression range from emotions like anger and humiliation through
intent to leave the profession, and verbal aggression by customers may even impair
employees’ recognition and working memory [3]. In case of extreme incidents,
employees may even develop symptoms indicating post-traumatic stress syndrome [4].

To deal with aggression, a variety of techniques are available that may prevent
escalation [5, 6]. These include communication skills (both verbal and non-verbal),
conflict resolution strategies, and emotion regulation techniques. The current paper is
part of a project (called STRESS [7]) that aims to develop a serious game [8] for
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aggression de-escalation training, based on Virtual Reality. VR-based training has
proven to be a cost-effective alternative for real world training in a variety of domains,
including military missions [9], surgery [10] and negotiation [11].

The core of the STRESS project is the development of an intelligent training system
that is able to analyze the behavior of human trainees while they interact with
aggressive virtual agents. Users of the system will be placed in front of a 3D Virtual
Reality (VR) environment (see Fig. 1) that is either projected on a computer screen or
on a head-mounted display. During the training, users will be placed in a virtual
scenario in a particular domain (e.g., issuing parking tickets, or selling tram tickets),
which involves one or more virtual agents that at some point in time start behaving
aggressively (e.g., insulting the tram driver because he is late). The user’s task is to
de-escalate the aggressive behavior of the virtual agents by applying the appropriate
communication techniques. Users will be able to communicate with the agents via
multiple modalities (e.g., text, speech, facial expression). Meanwhile, they will be
monitored by intelligent software that observes and analyzes the behavior and physi-
ological state (e.g., heart rate, skin conductance, brain activity) of the trainee and
provides tailored feedback [12, 13].

Feedback will consist of two categories, namely hints and prompts on the one hand,
and run-time modification in the scenarios on the other hand. An example of the former
would be to inform the trainee that (s)he should use a more empathic communication
style, whereas an example of the latter would be to decrease the difficulty level in case
the trainee makes many mistakes. In order to offer this feedback in a personalized
manner, it is very important that the system adapts it to the needs of individual users.
Adapting a task to the behavior of the trainee is a well-known training paradigm in a
variety of domains. Hence, the current paper presents a mechanism for adaptive
training of aggression de-escalation. The emphasis is on adapting the difficulty level of
the scenarios offered to the performance of the trainee.

The remainder of this paper is organized as follows. In Sect. 2, the existing liter-
ature on aggression is discussed, as well as the prescribed approaches to de-escalate
aggression. In Sect. 3, the state-of-the-art on adaptive training is reviewed. Next, a

Fig. 1. Screenshot of the VR environment used in the STRESS project (The VR environment
has been developed by IC3D Media (www.ic3dmedia.com)).
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conceptual model for adaptive training and its implementation are presented in Sects. 4
and 5, followed by some preliminary results in Sect. 6. In Sect. 7, the paper is con-
cluded with a discussion.

2 Aggression de-Escalation

Within psychological literature, a distinction is made between two important theories
regarding the nature of aggression: aggression can be either functional (or proactive) or
emotional (or reactive). One of the key differences between these two types is the
absence or presence of anger [14].

When the aggression is of a functional nature, the aggressive behavior is not a
response to some negative event, but is used instrumentally to achieve a goal. The
social learning theory states that aggressive behavior can be learned through positive
reinforcement [15]. The essence of this theory is that if a person has used aggression to
achieve a goal in the past, and if this behavior was successful, then by operant con-
ditioning (s)he will be likely to follow the same behavioral pattern in the future.

In contrast with functional aggression, aggression can also have an emotional
nature, meaning that it is an angry reaction to a negative event that frustrates a person’s
desires. The frustration-aggression hypothesis [16] tells us that aggression flows forth
from a person’s goals being frustrated. Such a person is likely to be angry with respect
to whatever stopped him from achieving his goal. By a carry-over effect, the anger can
be transferred to new situations as well [17].

To de-escalate aggressive behavior, it is important that public service workers
understand the specific type of aggression they are dealing with, as each type of
aggression requires a different approach. In particular, in situations when dealing with a
functional aggressor, a directive type of intervention is assumed to be most effective,
focusing on an alteration of the contingencies associated with the aggression. In this
case it is necessary to show the aggressor that there is a limit to how far he can pursue
his aggressive behavior, and making him aware of the consequences of this behavior.
Instead, when dealing with an emotional aggressor, more supportive behavior from the
de-escalator is required, for example by ignoring the conflict-seeking behavior, making
contact with the aggressor and actively listening to what he has to say. According to
[18], such interventions should focus on reducing hostile attribution biases, i.e., the
tendency to perceive others as threatening.

This distinction between functional and emotional aggression, as well as the
associated de-escalation techniques (i.e., directive vs. supportive approaches), are some
of the key assumptions underlying the training system developed in the STRESS
project. The following sections will present a mechanism to train the relevant com-
munication skills in an adaptive manner.

3 Adaptive Training

Adapting the difficulty level of a task to the performance of the player has been a
well-known paradigm in serious gaming (and learning in general) for many years. The
main underlying idea is that players’ learning experience is related to their level of
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motivation. In general, if an activity is more engaging, interesting and engrossing,
motivation will be higher [19]. However, this does not always imply that the difficulty
level of a certain task should be maximal. Instead, especially when it comes to digital
games, there are also situations in which motivation can be increased by lowering the
difficulty level. Van den Hoogen and colleagues describe the relation between a dif-
ficulty level and a player’s mental state as follows: ‘Through striking the balance
between a person’s skills and the challenges an activity offers, that person may arrive
in a psychological state known as flow. […] Flow may gradually increase over the
course of the game in a homeostatic positive feedback loop, until either the challenge
becomes too great (resulting in frustration) or the player’s skill outpaces the chal-
lenges the game can offer (leading to boredom)’ [20]. This suggests that there exists
something like an optimal level of difficulty (or challenge) that yields maximal learning
experience, which is often used as an argument to develop flexible training games that
adapt dynamically to the player’s behavior.

Indeed, the recent literature shows a number of examples of such adaptive training
systems, which in one way or another tune their internal parameters to the user’s state
or behavior. For example, Holmes et al. [21] have demonstrated that adaptive training
may be used to overcome learning difficulties for people with impairments in working
memory. Wickens et al. [22] have shown ‘increasing difficulty’ to be a successful
technique in knowledge transfer when implemented adaptively (but not when increased
in fixed steps). Also, several authors focus on increasing players’ affective experience
by adapting the emotional content of a game; see, e.g., [23]. Finally, Yannakakis et al.
[24] argue that adaptive serious gaming is an effective method for training of conflict
resolution skills. Unlike the current paper, they focus on children as their user group,
rather than on security personnel. An overview of design principles to develop effective
adaptive training systems is provided in [25].

4 Conceptual Model

In this section, the proposed model for adaptive training is described at a conceptual
level. First, a number of relevant learning goals are formulated. After that, the structure
of the model is described, based on the notion of dialog system. Finally, the idea of
difficulty levels is introduced, as well as a mechanism to switch between them.

4.1 Learning Goals

As mentioned in the introduction, the main learning goal of the proposed system is to
be able to de-escalate confrontations with (verbally) aggressive individuals, in order to
prevent these individuals from becoming physically aggressive. Based on discussions
with domain experts, the following sub-goals have been identified:

• Recognizing the type of aggression: are we dealing with a person that is showing
emotional or functional aggression? To assess this, trainees need to observe the
verbal as well as the non-verbal behavior of the aggressive individual. In general,
emotionally aggressive people will show more arousal (e.g., flushed face, emotional
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speech) than functionally aggressive people. Also, the context should be taken into
account (e.g., someone who just finds out that he lost his ticket will be more
emotional that someone who knew this all along, and just tries to intimidate the
tram driver to ride for free).

• Selecting the appropriate response: based on the type of aggression observed, the
trainee needs to either show some empathy (in case of emotional aggression) or act
more dominantly (in case of functional aggression). It is crucial for the training that
these responses are not swapped; in other words, showing empathy is case of
functional aggression, or acting dominantly in case of emotional aggression is
undesired.

• Being able to make decisions under time pressure: after some practice, the trainee
should be able to perform the tasks mentioned above within limited time, and
without much cognitive effort.

4.2 Structure

To train users to acquire the above skills, the STRESS project works with a dialog
system where users (playing the role of the public service worker) engage in a con-
versation with a virtual agent (playing the role of a difficult customer). Conversations
are represented as simple decision trees where user and virtual agent exchange sen-
tences according to a turn-taking protocol. In this paper, the conversations used are
text-based only and consist of a short introduction, the latest response of the customer
and a multiple-choice list of possible answers.1 In the remainder of this paper, we will
refer to this as a question, to which the trainee has to choose the most appropriate
response considering the situation. An example of a question in the context of
aggression de-escalation training for tram drivers is the following, taken from [26]:

‘A passenger enters the tram and wants to check in, but the balance on his public transport card
turns out to be insufficient. You tell him that his balance is too low to check in. The passenger
reacts with surprise, and says: No, are you kidding me?! Really?! O my god, something should
have went wrong with those damn machines of yours! Can’t you for once just take me with you?
I am in an extreme hurry! What do you respond?’

a. I’m sorry sir, I feel really bad for you. But don’t worry, you can just buy a ticket
from me. Or if you prefer, you quickly run to the machine; over there you can
recharge your card in a second!

b. Too bad sir, our policy states that we only take paying customers on board. There is
no other option for you than to buy a ticket or leave the tram.

c. Sir, that’s the way it is, these are the rules. You will have to but a new ticket.’

Note that this example addresses a case of emotional aggression, where the cus-
tomer shows clear signs of emotional arousal (most notably swearing), probably caused

1 Nevertheless, the project as a whole also explores other interaction modalities, such as speech, facial
expressions and gestures.

84 T. Bosse et al.



by the unexpected message that his balance is too low. In such cases, the most
appropriate way to respond would be by showing empathy and offering potential
solutions for the problem: this is represented by answer (a). The other two answers,
(b) and (c), have an increasingly dominant (and less empathic) tone, which makes them
the less appropriate responses in this type of situation.

For each question, a database with potential answers is established (although during
training only a few of them (e.g., three) are offered in the multiple-choice menu). To
enable the system to assess automatically which answers should be considered as
appropriate, for each question all answers are divided into three categories, namely
exemplary, acceptable and unacceptable. For example, for the above question, answer
(a) is exemplary, answer (b) is acceptable, and answer (c) is unacceptable.

In addition, for each question, a variant is defined with the other type of aggression
(e.g., instrumental instead of emotional). For instance, such a variant for the above
example would involve a passenger that is not emotional at all, but simply wants to use
intimidation as an instrument to get a free ride. Also for these other variants, exem-
plary, acceptable and unacceptable answers are included in the database.2 This allows
the system to add extra difficulty by mixing up answers for both types of aggression.
The types of answers that are included in the multiple-choice menu depend on the level
the trainee is in, as explained in the next section.

4.3 Difficulty Levels

In order to make the dialog system adapt to the performance of the trainee, different
levels of difficulty need to be distinguished. This way, the trainee can climb in levels
when (s)he is performing well, and decline when many errors are made. For the
proposed system, six levels of difficulty are used (see Table 1 for an overview):

1. Here, the type of aggression that is applicable to the current question (i.e., emotional
or functional) is already revealed to the user, so all (s)he needs to do is to decide
upon the appropriate response. Three potential answers are offered: one answer that
is exemplary and two answers that are clearly wrong (the ‘unacceptable’ answers).

2. Similar to level 1, but the applicable type of aggression is not revealed anymore.
3. Similar to level 2, but instead of two ‘unacceptable’ answers, this time two

‘acceptable’ answers are provided, in addition to the ‘exemplary’ one. Hence, the
main challenge for the user is to distinguish the exemplary answer from the
acceptable ones.

4. Similar to level 3, but now the list of potential answers also includes an answer that
is applicable to the type of aggression that is not applicable.

5. Similar to level 4, but now the difference between the answers is again more subtle
(see Table 1), with makes it even harder to select the ideal one.

6. Similar to level 5, but with an additional time limit included. If no answer is
selected before that time, the answer is considered unacceptable.

2 Note that in some cases, answers that are unacceptable for one type of aggression may be exemplary
for the other type. However, this is not necessarily always the case.
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In principle, the system determines at random whether it offers a case of emotional
or instrumental aggression. However, if the trainee performs significantly worse on one
type of aggression, that particular question type will be offered more often, to facilitate
learning. Furthermore, also the order in which the answers are presented in the
multiple-choice menu is determined randomly.

4.4 Transitions Between Levels

To determine when the difficulty level needs to increase or decrease, the system needs
to keep track of the user’s performance. This can be done by keeping score. Because
the training will consist of different questions for the two types of aggression, for each
type a separate score will be kept (as some trainees could be good in de-escalating one
type of aggression, but may have difficulties with the other type). In order to reach a
higher level, the score for both types of aggression needs to be sufficiently high to meet
the demands of a level. To be a bit lenient, one error can be made without directly
falling back a level.

The first part of the training (level 1−3) will focus on training the correct approach
per aggression type. Once this is mastered, the second part of the training (level 4−6)
will give answers that match reactions for both types of aggression, to test if the trainee
can tell them apart. Levels are determined per aggression type separately, with one
exception: after the first part of the training (i.e., level 1−3), the trainee needs to have

Table 1. Difficulty levels.

Level Type of
Aggression
mentioned

Types of answers Time
limit

Level 1 Yes 2 × unacceptable for right type aggression No
1 × exemplary for right type aggression

Level 2 No 2 × unacceptable for right type aggression No
1 × exemplary for right type aggression

Level 3 No 2 × acceptable for right type aggression No
1 × exemplary for right type aggression

Level 4 No 1 × acceptable or unacceptable for right type
aggression

No

1 × acceptable or unacceptable for wrong type
of aggression

1 × exemplary for right type aggression
Level 5 No 1 × acceptable or exemplary for wrong type aggression No

1 × acceptable for right type of aggression
1 × exemplary for right type aggression

Level 6 No 1 × acceptable or exemplary for wrong type aggression Yes
1 × acceptable for right type of aggression
1 × exemplary for right type aggression
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sufficient knowledge of both types of aggression before (s)he can continue. The
transitions between levels are depicted in Fig. 2.

Scores below 0 in level 1 will remain zero. To complete the training, a score of 36
or higher is needed for both types of aggression.

Because each level has different combinations of answer types, the score for each
type of answer is determined per level. The entire scoring mechanism is shown in
Table 2 (note that this mechanism is the same for both types of aggression).

5 Implementation

In order to evaluate the conceptual model described above, it has been implemented
using the Python programming language. For this implementation, abstract text-based
questions have been used, as the intended VR was not yet fully functional. Nonethe-
less, this version implements the entire conceptual model and can be used within the
VR environment with little effort.

To implement the model, a program has been written that loops through a number
of different functions, as shown in Fig. 3. The double line shows where the loop starts
at the beginning of the training, and where it stops at the end of the training. It will
determine the level the trainee is in, and the question type that will be given (i.e.,
emotional or functional aggression). Given the level, it will determine the list of
potential answers and present the question to the user. After the user gives input, the
input is processed and the score is determined based on the given answer. If the trainee
has got enough points for both types of aggression, the training ends.

Fig. 2. Transitions between levels.
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Determine Level. Before a question can be selected, first the level the trainee is in has
to be determined. Based on the current level and score, a decision is made whether or
not to advance (or demote) the trainee to another level.

Start training. Part of this function is a sub-function which initializes the training for
the current setup. This is only done the first time the trainee starts a training session.

Determine Question Type. As mentioned before, the type of aggression can be either
emotional or functional. Normally, the type of question is selected at random. How-
ever, when the difference between the scores is larger than some predefined value d,

Table 2. Scoring mechanism.

Level Types of answers Score

Level 1 2 × unacceptable for right type aggression -1
1 × exemplary for right type aggression +1

Level 2 2 × unacceptable for right type aggression -1
1 × exemplary for right type aggression +

Level 3 2 × acceptable for right type aggression -1
1 × exemplary for right type aggression +1

Level 4 1 × acceptable or unacceptable for wrong type of aggression -2
1 × acceptable/unacceptable for right type aggression -1
1 × exemplary for right type aggression +1

Level 5 1 × acceptable or exemplary for wrong type aggression -2
1 × acceptable for right type of aggression -1
1 × exemplary for right type aggression +1

Level 6 1 × acceptable or exemplary for wrong type aggression -2
1 × acceptable for right type of aggression -1
1 × exemplary for right type aggression +1

Determine level

Determine 
question type

Determine answers

Process input

Determine score

Fig. 3. The main functions of the implementation of the adaptive model.
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questions will be selected for the type with the lowest score. Currently, a value of 5 is
used for d.

Determine Answers. The options to appear in the multiple choice list presented to the
trainee need to be carefully selected, depending on the current level of the trainee. Each
conversation contains many possible responses to particular questions, categorized on
aggression type and degree of correctness (unacceptable, acceptable, exemplary).
Answers are selected for the current question according to the scheme depicted in
Table 1. If there are more options for a particular answer, one is selected at random.

Process Input. At this point, all information about the current question to be presented
to the user is available. For the interaction with the user, two sub-functions are created;
the first presents the question to the user, while the second waits for his or her input.

Present Question. This function simply displays the current question, with the pos-
sible options displayed in the multiple choice list in random order. Only in the lowest
level, the aggression type is shown to the user as well.

Process Input. The trainee can select his or her choice of answer by pressing the
corresponding key on the keyboard. Only when the trainee is currently in the highest
level, a time limit is imposed on the user. Otherwise, the trainee can take as much time
as desired in coming to a decision on which response to give.

Determine Score. To determine the score, the given answer is evaluated based on the
question type and correctness of the answer. Next, the score is updated based on the
scheme presented in Table 2.

6 Preliminary Evaluation

To test whether the implementation works as described in the conceptual model, a
number of functional evaluations have been performed. By systematically running the
program for a number of test sessions, a range of information has been obtained about
how the training progressed in different situations. Below, an overview is presented of
the results of one illustrative test session, and an analysis is made of whether they
correspond to the expected behavior.

First, in Figs. 4 and 5 below the scores are shown for functional and emotional
aggression respectively. In gray on the background, the current level of the trainee for
that type of aggression is displayed. Here, it can be seen that the score increases
throughout the training and drops in some cases where incorrect answers are provided.
Although it is difficult to see in these graphs, a closer inspection of the data has shown
that this changing score follows the scheme as described in Table 2.

Focusing on level progression, Fig. 4 shows clearly that the levels increase if the
trainee reaches the required score, except for level 4 which is only reached if the score
for both types of aggression is sufficient. Looking at Fig. 5, the trainee’s level decreases
a couple of times after (s)he made a number of mistakes. However, when the trainee
has reached level 4, and again makes some mistakes, the level does not drop back down
to three, which is consistent with the intended behavior of the model.

Adaptive Training for Aggression de-Escalation 89



Another important aspect of this approach is the selection of the possible answers
for each level. Figure 6 shows an overview of how the multiple choice options were
distributed among the various categories of possible answers. As there are three options
the trainee can choose from for each question, for each level always a third of the
answers is from the category exemplary, meaning that there is always one exemplary
option to choose from. In level 1 and 2, the other options come from the unacceptable
category (with the difference between the levels being whether or not the type of
aggression is given), while in level 3 acceptable answers are given as alternatives.
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Starting from level 4, options for the other type of aggression are also given in such a
manner that there is always one non-exemplary alternative for the right type of
aggression and another alternative for the wrong type of aggression. In level 4, both
alternatives can be of the unacceptable kind, while in level 5 it is either acceptable or en
exemplary answer, but for the other type of aggression. Between level 5 and 6, no
difference can be seen, as the only addition for level 6 is the time pressure.

To obtain these results, a few people have already worked with the adaptive system.
Although this is not yet an extensive subjective evaluation, feedback from these users
was of such a positive nature that we consider it noteworthy to mention here. Nev-
ertheless, as discussed below, a more extensive evaluation of this adaptive training
method is planned for the near future.

7 Discussion

Being able to de-escalate confrontations with aggressive individuals is a useful skill, in
particular within professions where such confrontations are likely to happen, e.g., in the
domains of public transport or public safety. Nevertheless, offering appropriate training
that enables students to develop such skills is a nontrivial matter. In particular, existing
(real world) training approaches are limited in terms of personalization: since the
training is typically offered to groups of students together, it is hard to tune the content
of training scenarios to individual needs.

As a complementary approach to real-world training, the current paper proposed a
simulation-based environment for training of aggression de-escalation. The environ-
ment consists of a dialog system that allows a trainee to engage in a conversation with a
(possibly aggressive) virtual agent. The agent can show aggressive behavior in terms of
emotional speech, gestures and facial expressions. By observing these cues, the trainee
needs to assess the situation (specifically: assess which type of aggression is shown)
and select an appropriate response via a multiple choice menu.

The main focus of the current paper was on a module to make the system adaptive
to the performance of the trainee. To this end, first a number of separate learning goals
were identified, such as ‘recognizing the type of aggression’ and ‘being able to make
decisions under time pressure’. Based on these learning goals, a number of levels of
difficulty were identified, as well as a mechanism to switch up and down between these
levels based on the user’s score. A preliminary evaluation demonstrated that the system
successfully adapted its difficulty level to the performance of the user, and that users
were generally positive about the effect of this adaptation mechanism.

Obviously, this finding should not be interpreted as a definitive proof that the
adaptation mechanism results in quicker or better learning than a non-adaptive training
system. To test this more specific hypothesis, future research will involve an experi-
ment to systematically compare the effectiveness of the proposed training system with a
non-adaptive one. Additionally, for follow-up research it will be interesting to compare
the proposed (manual) adaptation mechanism with a mechanism in which the transi-
tions between levels are learned automatically based on user performance data, and to
explore possibilities of using data gathered across multiple trainees to improve the
experience for any individual trainee.
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Abstract. It is desirable for a robot to be able to run on-board simula-
tions of itself in a model of the world to evaluate action consequences and
test new controller solutions, but simulation is computationally expen-
sive. Modern mobile System-on-Chip devices have high performance at
low power consumption levels and now incorporate powerful graphics
processing units, making them good potential candidates to host on-
board simulations. We use the parallel language OpenCL on two such
devices to accelerate the widely-used Stage robot simulator and demon-
strate both higher simulation speed and lower energy use on a multi-
robot benchmark. To the best of our knowledge, this is the first time that
GPGPU on mobile devices have been used to accelerate robot simulation,
and moves towards providing an autonomous robot with an embodied
what-if capability.

1 Introduction

The capability of an autonomous robot to perform on-board simulations of real-
ity is desirable for a number of reasons.

In the area of swarm robotics [20] the design of controllers to produce
a desired emergent collective behaviour is notoriously hard. Some successful
approaches use an evolutionary algorithm where controller solutions are evolved
off-line in repeated simulations of a swarm of robots prior to implementation in
real robots but the resultant controller is not adaptive to changing environmen-
tal conditions. It is possible to have communication links between robots and
off-board simulations to give adapability but at the cost of autonomy. One app-
roach to provide both adaptability and autonomy is to move the evolutionary
algorithm and simulation onto the robots so that controllers can be evolved in
response to the environment. O’Dowd et al. in [15,16] describe work in this area.

An on-board simulation might also be used to equip a robot with a ‘functional
imagination’ [12] allowing a robot to evaluate courses of action or strategies in the
safety of simulation, rather than in the real world where it may have potentially
catastrophic consequences. Recent work by Winfield et al. [25] extends this to pro-
vide a robot with a form of ‘ethical’ action selection, where a robot has an internal
model which it can use to make predictions about the consequences of both its
own and others actions through simulation of multiple scenarios and even act to
c© Springer International Publishing Switzerland 2015
C.J. Headleand et al. (Eds.): ALIA 2014, CCIS 519, pp. 97–109, 2015.
DOI: 10.1007/978-3-319-18084-7 8
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prevent danger to another robot. Currently this capability is dependent on a wifi
link to a laptop due to the lack of sufficient on-board processing power. Clearly,
where this what-if capability is safety critical or inherent in the behaviour of the
robot, as in the ‘ethical’ robot above, it would not be possible to use an unreliable
communications link and embodied simulation would be essential.

In both cases, the performance of the on-board simulation is critical in two
ways. Firstly, simulation speed. Faster simulations allow larger numbers of robots,
more scenarios, and longer simulated times within a given real time. Secondly,
energy usage. Energy is a precious resource in a mobile robot and minimising the
energy cost of performing a given simulation is an important goal.

Over the last decade, the performance of desktop PC graphics processors
(GPU) in GFLOPS has outstripped that of CPUs and the emergence of parallel
programming APIs such as CUDA [14], and more recently OpenCL [8], have
made General Purpose Programming on the Graphics Processor (GPGPU) more
accessible. GPGPU techniques are now widely used in scientific computing. This
trend on the desktop is being mirrored on mobile platforms but within a far
more restrictive power envelope; current mobile devices are as powerful as the
desktop of around ten years ago but with power consumption at least an order
of magnitude lower.1

Performing computation on a GPU is generally more energy efficient at a
given performance level than performing the same computation on a CPU, pro-
vided the problem can be expressed in a suitably parallel way, because the CPU
has to devote large amounts of silicon area to structures designed to extract
instruction level parallelism while preserving the illusion of the semantically ser-
ial instruction stream, and will also generally run at a higher clock frequency.
The GPU, on the other hand, is explicitly parallel and a much larger proportion
of the silicon area can be devoted to performing computation rather than con-
trol. The design goal is massively multi-threaded throughput rather than single
thread performance. See Keckler et al. [7] for a good discussion of these trends.

Stage is a widely used 2D robot sensorimotor simulator that is capable of
simulating large populations of robots. Vaughan [21] introduces version 3 of Stage
and examines its performance scalability, demonstrating near-linear execution
time scaling with populations up to 100000 robots when each robot is running
an identical simple controller. Vaughan also proposes a method of benchmarking
the performance.

It is clear that accelerating Stage using GPGPU techniques could have wide
applicability, both on and off robotic platforms. In this paper we present a
method to apply OpenCL acceleration to the central time-consuming function-
ality of Stage without requiring a major re-write. We then evaluate its per-
formance on the Samsung Exynos 5250 and 5420 SoCs, both mobile GPGPU
capable devices, demonstrating a speed increase of 82 % and a drop in energy
usage of 30 % for some benchmarks, compared to the unaccelerated software on
the same platform.

1 Nvidia 6800 Ultra 40 GFLOPS, 100W, Pentium 4 7 GFLOPS [11]. Chromebook with
Samsung Exynos 5250 72GFLOPS GPU, 27 GFLOPS CPU, <7 W.
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2 Previous Work

The scalability of Stage is measured and discussed in Vaughan [21], along with a
good overview and some discussion of the internal structure and design choices.
Piniciroli et al. [19] describe a different robot simulator and also measure its
performance using a similar methodology to that described by Vaughan.

An early demonstration of the use of evolutionary algorithms to design swarm
robot controllers is given by Dorigo et al. in [3] where controllers for two dif-
ferent collective tasks are evolved within a simplified simulation which are then
tested within a high fidelity physics-based simulation. Hauert et al. [5] tackle the
problem of adaptability of evolved controllers by reverse engineering and para-
meterising them. O’Dowd et el in [15,16] move towards providing robustness to
environmental change by using a distributed evolutionary algorithm on board
a swarm of e-puck [13] robots, with simple reality simulations running on the
Linux Extension Board [9]. This allows the co-evolution both of the simulated
environment and the swarm controllers.

Bongard et al. in [1] use a process of continuous self modelling to give a robot
the ability to autonomously detect and compensate for damage. Vaughan and
Zuluaga [22] introduce the use of self simulation to provide a form of imagination,
whereby a robot can safely evaluate different courses of action in simulation
before applying them in the real world. This is taken further by Winfield et al.
in [25] who describe using simulation to give a robot the ability to predict the
consequence of both its own and others actions and then using this to provide
an ‘ethical’ action selection mechanism.

Ohkura et al. [17] demonstrate performance benefits from using CUDA on
a desktop GPU to accelerate the evolution of a swarm robotics controller for a
food-foraging problem. Wang et al. [23,24] and Kang et al. [6] both demonstrate
performance benefits through the use of OpenCL on mobile devices to accelerate
image processing algorithms. Maghazeh et al. [10] investigate the performance
and energy efficiency of five different non-graphic benchmarks implemented in
OpenCL on a mobile device, showing benefits with most but noting the need to
consider different optimisation strategies compared to desktop GPUs. Grasso et
al. [4] evaluate the ARM Mali GPU of the Exynos 5250 SoC for energy efficient
HPC usage, porting a number of benchmarks to OpenCL and demonstrating
average speedups of 8.7x and energy consumption of only 32 % compared to an
ARM A15 CPU core.

3 Accelerating Stage

We briefly discuss the internals of Stage, particularly the ray tracing operation
that is the most time consuming operation and outline how we used OpenCL to
accelerate this functionality. Our goal was to make as few changes to the code
of Stage as possible because we wished to minimise both development risk and
time, and demonstrate a proof-of-concept rather than an optimised solution2.
2 The modified source code is available at https://bitbucket.org/siteks/stage opencl.

https://bitbucket.org/siteks/stage_opencl
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3.1 Overview of Stage Internals

Stage is a mature, well optimised piece of software, written in C++. All entities
within the simulated world are based on the Model class and its derivatives,
which include things like ModelPosition two-wheeled motion kinematics and
ModelRanger range sensors. Each instance of Model can have physical charac-
teristics such as geometry within the world, represented as blocks, which are
polygons in the XY plane with Z extents (‘two and a half D’). The space of the
world is a discrete grid, and the presence of geometry within the world grid is
represented internally with a sparse data structure.

The ModelRanger derivative class implements range sensing and is used to
model sensors such as laser range finders and ultrasonic sensors. The process of
modelling range sensing is implemented by performing a ray tracing operation
using Cohen’s algorithm [2] through the sparse occupancy grid from the location
of the sensor. At every grid location, each block at that location is checked to see
if it has Z extents that cover the Z position of the sensor, and then a predicate
function is invoked on the block to ensure it both doesn’t belong to the model
the sensor belongs to, and is visible to the sensor. Other Model derivative classes
such as ModelBlobfinder define this predicate function differently.

This ray tracing operation is the most time consuming part of the simulation,
typically taking upwards of 90 % of the execution time.

The sparse data structure representing the world grid divides the space into
32× 32 squares of cells called regions, and 32× 32 squares of regions called super-
regions. Only regions and superregions which actually contain geometry are rep-
resented, which saves memory and allows the ray tracing function to skip over
known empty parts of the world.

Every simulation timestep, the following simplified sequence takes place:
Firstly, all the ModelPosition models have their geometry moved within the
world grid, being removed from old locations and redrawn into their new loca-
tions. Then all the ModelRanger models perform ray tracing through the world
grid to create sensor data. Finally, all the robot controllers are updated. This
sequence repeats until the end of the simulation.

3.2 OpenCL Acceleration Strategy

As illustrated in Fig. 1, the process of ray tracing involves checking every location
within the world grid along the path of a ray from the sensor to the limit of the
sensor range or until there is an intersection with an object. The sparse nature of
the data structure means that known empty regions of the world can be skipped
over, but checking for the presence of geometry dominates execution time.

Each ray is completely independent, except for traversing the same world
data structure, making ray tracing a parallel problem well suited to running on
a GPU. The problem with using OpenCL to accelerate ray tracing in Stage is
the use of an arbitrary predicate function for testing whether an occupied grid
cell on the ray path is actually an intersection. An OpenCL kernel exists in a
different memory space and has no knowledge of the data structures of the host,
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Fig. 1. Ray tracing process. In order to model a sensor, each cell of the world grid along
the path of the ray is visited in turn to check if there is anything at that location. There
may be many potential ray intersections before an actual intersection that corresponds
to the sensor detecting an object. Objects within the world are shown as dark grey, the
path of the ray as light grey, and potential intersections as black cells. The first four
intersections are with the robots own geometry, which is not regarded as a hit, then
there are four more with a non-visible object, perhaps because its Z position is below
that of the sensor. Finally there is an actual intersection, at this point the ray trace
function would normally terminate.

and no way to easily interpret them even if they were made available3. Making
the intersection test a fixed function would radically and unacceptably change
the behaviour and flexibility of Stage, keeping the functionality while performing
all ray tracing on the GPU would require a major rewrite.

The solution we chose was to perform the parallel ray tracing on the GPU
using a minimal version of the world grid data structure, and create a list of
potential intersections for each ray. This information is then be used by the
normal Stage ray trace function to skip over all cells now known not to contain
any geometry and only apply the predicate test to occupied cells. Complete
functionality is preserved.

This is illustrated in Fig. 2. At each timestep, two data structures representing
all the rays and a minimal world occupancy grid are prepared and made available
to the GPU. The OpenCL kernel version of the ray trace algorithm is invoked on

3 The data structures are composed of C++ classes, while OpenCL is based on C99.
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Fig. 2. Original and accelerated ray tracing data flow, box surrounds newly added
functionality. Normally, each event associated with a sensor model is pulled off the
queue, its rays created and then immediately fed to the RayTrace() method to create
sensor data before being returned to the queue for the next timestep. In the accelerated
version, all the rays are first created to make a complete set. These are then traced on
the GPU using a minimal representation of the world occupancy grid to generate a set
of potential ray intersections. The created rays are then fed to the RayTrace() method
in the expected order but with the additional information allowing empty cells to be
skipped.

this data and runs in parallel across all the rays to the extent that the hardware
allows, generating the potential ray hits data structure. This, and the rays, are
fed back to the RayTrace() method, enhanced to allow it to skip over the cells
now known to be empty.

There is obviously a certain amount of additional processing overhead that
didn’t exist before; preparing the world grid and ray set, making buffers avail-
able to the GPU, and bringing the potential intersection data back again. In
a desktop GPU, the overhead is exacerbated by the need to copy data to the
distinct memory of the GPU, but mobile SoCs typically have a unified mem-
ory architecture. In addition, each individual ray tracing thread of execution on
the GPU will be much slower than on the CPU, we gain only when there are
enough rays to trace in parallel. What might that number be? The ARM Mali
T604 GPU has four cores, each with 256 threads, so we expect that we will need
thousands of rays to show performance gains.

4 Testing Methodology

In order to evaluate the effectiveness of the acceleration of Stage, we propose two
figures of merit and a series of benchmark scenarios. We then run the benchmarks
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on the target systems, measuring the power consumption and run times for both
normal and accelerated versions of Stage.

4.1 Figures of Merit

Since we are interested in both the speed and the energy cost of simulation, as
well as the scalability of the our acceleration with numbers of robots, we use two
figures of merit. The first, rACC , is a measure of how much faster than real time
an individual robot is simulated, defined as:

rACC =
n · tSIM

tMEAS
(1)

where n is the number of robots, tSIM is the simulated time, and tMEAS is the
measured run time. The second, rEPSS , is a measure of how much energy is
consumed to simulate each robot for one simulated second. This is defined as:

rEPSS =
PRUN · tMEAS

n · tSIM
=

PRUN

rACC
(2)

where PRUN is the average power consumption of the system while running the
benchmark.

Some previous work on mobile GPGPU, Maghazeh et al. [10], uses the differ-
ence between idle and running power when making energy cost measurements,
while other work, Pathania et al. [18], considers the total system energy cost. We
take the latter approach since it is more conservative, taking the view that the
entire system is necessary in order to run the benchmark. A system designer may
be able to reduce this overhead but never eliminate it. An on-board simulation
can only be of use to a robot if there is enough power to run the robot too.

4.2 Benchmarks

We use a similar methodology to that described by Vaughan [21], using two
worlds, cave, and hospital, populated with an increasing number of robots, each
running an identical maximum dispersal controller. As Vaughan points out, this
represents a worst-case scenario for a ray-tracing simulator like Stage, since it
maximises the space through which rays must propagate. The characteristics of
the two benchmark series are summarised in Table 1.

The cave series uses the simple Pioneer 2DX robot model supplied with stage,
which has a laser scanner range finder with 180 samples, and 16 ultrasonic range
finders, each with a single sample. The robot body geometry is modelled with
two polygons. The maximum number of robots simulated is 1000.

The hospital series uses a much larger world based on the hospital section
bitmap supplied with Stage, with a smaller simpler robot. The body is only a
single polygon with fewer sides, and just a laser sensor, though extended to a 350
degree field of view with a sample per degree. The maximum number of robots
with hospital is 10000.

In both series, we measure the real time taken to simulate 600 s of simulated
time, and the total energy consumed, for each of the population numbers. In all
cases, the tests are run with graphics disabled.
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Table 1. Benchmarks

cave hospital

Size 64 m × 64 m 540m × 220m

Resolution 0.02 m 0.1 m

Grid locations 1 × 107 1.2 × 107

Robots 1-1000 1-10000

Robot size 0.4 m × 0.4 m 0.24 m × 0.24 m

Sensors per robot 16 sonar + 180 sample laser 350 sample laser

Rays per robot 196 350

4.3 Target Devices

We targeted two mobile devices; the Samsung Chromebook and the Arndale
Octa development board. We used these devices because they both have a
System-on-Chip (SoC) with a GPU that supports the OpenCL language. The
Samsung Chromebook is a low-cost lightweight laptop that runs the Chrome
browser-based operating system. It is based on a Samsung Exynos 5250 SoC.
The Arndale Octa is based around a more recent Samsung Exynos 5420 SoC.
Some relevant specifications are shown in Table 2.

Table 2. Technical specifications of the two systems used. Note that due to limitations
in the available Linux kernel it was only possible to run the Octa CPU at 800MHz. Sys-
tem power values are typical, measured with the screen turned off for the Chromebook
and with an accelerated Stage simulation running for the busy power.

Samsung Chromebook Arndale Octa

System-on-chip Samsung Exynos 5250 Samsung Exynos 5420

CPU Dual A15 Quad A15 + Quad A7

Max CPU frequency 1.7 GHz 1.8 GHz

Max CPU GFLOPS 27 58

GPU ARM Mali T604 ARM Mali T628 MP6

Max GPU frequency 533 MHz 600 MHz

Max GPU GFLOPS 72 122

System idle power 1.8 W 1.2 W

System busy power 3.5 W 2.7 W

4.4 Energy Measurement

We measured the power by using 50 mR current sensing resistor in series with
the system power supply, and measuring both the voltage drop across it and
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the voltage of the supply. The voltages were sampled at 10 ms intervals while a
simulation was running and the product integrated to give a value for the total
energy used for the simulation.

5 Results

Performance of unaccelerated Stage across the range of robot populations on all
platforms and benchmarks showed the expected linear execution time. Energy
usage was also relatively flat across the range. The GPU accelerated Stage
performs poorly at low robot numbers, particularly for energy use, which is
expected, but then overtakes the CPU-only version at higher robot population
numbers. Figure 3 shows the results for the hospital series running on the Arn-
dale Octa board. The other three results are omitted for brevity but show the
same general picture, see Fig. 4 for a comparison.
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Fig. 3. Arndale Octa hospital. The CPU performance is broadly flat across the whole
range of robot populations, demonstrating roughly linear scaling as described by
Vaughan [21]. GPU performance is poor at low robot populations but exceeds the
CPU in both speed and energy efficiency once above a population of 100 robots, or
35000 rays.

Figure 4 shows the relative performance between the GPU and CPU versions
across all combinations of benchmark and hardware platform demonstrating
the expected characteristics of a massively parallel throughput engine in that
performance gains are not apparent until the level of parallelisation is high.
Table 3 shows the points where the GPU performance reaches that of the CPU.
The Arndale Octa and Chromebook show almost identical behaviour with regard
to energy efficiency, but the break-even points for speed are much higher with
the Chromebook than the Octa, probably due to the higher relative performance
of the GPU compared to the CPU on the Octa.

We summarise the performance gains from GPU acceleration in Fig. 5. Taking
the average for all data points with a population of 100 robots or more, there
are clear benefits across all benchmark and hardware combinations with both
figures of merit.
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Fig. 4. The relative performance between the GPU accelerated and the CPU versions
of Stage shows broad similarities across all four combinations of simulation series and
hardware targets. Somewhere between a population of 10 to 100 robots, performance
in both speed and energy efficiency on the GPU exceeds that of the unaccelerated
software. The Chromebook demonstrates lower speed gains but almost identical energy
efficiency gains with the GPU. The best improvement is the Octa cave series at 2000
robots, with at least 82 % increase in speed and 30 % drop in energy use.

Table 3. Break-even points for GPU performance versus CPU performance in number
of rays.

rACC rEPSS

Octa cave 1800 2200

Octa hospital 7000 21000

Chromebook cave 7800 2200

Chromebook hospital 32000 18000
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Fig. 5. Average performance at 100 robots or more.
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6 Conclusions and Further Work

We have demonstrated a proof-of-concept GPU acceleration of the robot sim-
ulator Stage showing both simulation speed and energy efficiency gains. There
are many further avenues down which this work can be taken.

In this initial proof-of-concept, we focussed on maximising benefit for min-
imal development risk. We intend to investigate many further optimisations of
this approach. The execution on GPU and CPU can be overlapped, the con-
struction of the data structures for the GPU could be made much faster, and a
smart allocation of rays to GPU cores could increase speed by improving cache
behaviour through increasing locality of access within the world grid data struc-
ture. In addition, alternative ray tracing algorithms may be a better fit for the
characteristics of a GPU.

We intend to adapt our approach to support further work on the ‘conse-
quence engine’ described in Winfield et al. [25] in which each of the simulation
scenarios contain only a few robots. By constructing a world containing many
such scenarios arranged in a grid, we can have a single simulation with many
robots, such that GPU acceleration will be beneficial. An essential requirement
for such an ‘ethical’ robot is that what-if simulations are conducted embod-
ied in the robot, rather than at the other end of an unreliable communications
link. Accelerated simulation on a low-power mobile platform moves towards that
goal, and we also intend to equip e-puck robots with mobile GPU hardware to
demonstrate embodied simulation.

The use of mobile System-on-Chip devices with GPUs opens new possibilities
for robot self simulation. This paper demonstrates the viability of one possible
approach and points the way towards autonomous robots with what-if capability.
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20. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
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Abstract. In Design for a Brain, W. Ross Ashby speculates about the
possibility of creating a mobile homeostat “with its critical states set so
that it seeks situations of high illumination.” This paper explores a real-
ization of Ashby’s homeostat within a simulated robot and environment
exploring the question as to whether the classic homeostat architecture
is able to adapt to this environment. Remaining faithful to the physi-
cal design of Ashby’s device, this simulation enables us to quantitatively
evaluate Ashby’s proposition that homeostasis can be achieved through
ultrastability. Following his law of requisite variety it is demonstrated
that increasing the number of units increases the time taken to reach
equilibrium, and that conversely, reducing internal connectivity reduces
the time taken to reach equilibrium.

Keywords: Homeostat · Ultrastability · Robotics · Ashby

1 Introduction

Attendees of the ninth Macy Conference on Cybernetics in 1952 were presented
with an account of an astonishing machine called the homeostat [9]. Completed
in March 1948, its inventor was W. Ross Ashby, Research Director at Barnwood
House Hospital in Gloucester. The homeostat comprised four functional units
constructed from ex-RAF bomb control switch-gear kits, identified by the colours
red, green, blue, and yellow1. Each unit represents a single variable, each one
acting on all the other units resulting in a complex pattern of behaviour. As
a physical model it allowed Ashby to demonstrate his principle of ultrastability
and the law of requisite variety. The homeostat’s most challenging feature, which
many found counter-intuitive, was its bias towards inaction. It was no wonder
then that Cyberneticist Julian Bigelow famously asked, “whether this particular
model has any relation to the nervous system? It may be a beautiful replica of
something, but heaven only knows what.”[9].

Completed in March 19482, the most distinctive features of the ‘Automatic
homeostat’ are the indicator needles that sit atop each unit and provide the

1 W. Ross Ashby journals, vol.12, p2747, February 1950.
2 W. Ross Ashby journals, vol.11, p2435, 16th March 1948.
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read-out for each variable. Each unit takes input from every other unit, and
their effect on the needle is determined by a combination of a potentiometer
and commutator that change the magnitude and polarity of the input voltage.
A group of magnetic coils sum these weighted inputs to deflect the needle from
its central position, “The position of the needle provides a beautiful functionator
to get a linear function of the inputs.”3 However, these needles not only provide
a read-out of the state the homeostat, but are integral to its function. They
pick up a small electrical potential from a vane that dips into a trough of water.
This signal is amplified and adjusted via a resistive load so that the output is
proportional to the needle’s deviation from the central position. When the needle
is central the output is zero. The movement of the vanes through the water also
provides a useful dampening effect, slowing the system dynamics to a human
timescale.

The input weights can be changed using an electro-mechanical uniselector
which allows a random selection from 25 resistances and polarities. This selector
not only affords plasticity in weighting but also in connectivity, “Zeros occur,
and when this happens the units are, in effect, cut off from one another” [9].
One of the inputs to the unit is a feedback loop from its own output which
is not under uniselector control but may be set manually. This provides first-
order positive or negative feedback creating oscillations that are a source of the
dynamic behaviour of the homeostat. All the experiments presented in this paper
are conducted with negative feedback.

The linear equations of the homeostat are defined in the appendices of Design
for a Brain [2] and are represented in Eq. 1 below, assuming four units as in the
original homeostat (1 ≤ i ≤ 4).

dxi

dt
= ẋi

dẋi

dt
= h

4∑

k=1

ai,kxk − jẋi (1)

The variables xi represent the outputs of the four homeostat units. The signed
weights ai,k combine the potentiometer and commutator settings. The factor h
controls the torque acting on the read-out needle through an induction coil, and
j is the ratio of the viscosity of the fluid in the trough to the moment of inertia
of the magnet, determining the rate of change.

A contemporary of Ross Ashby (and fellow member of the Ratio club [14]),
W. Grey Walter inventor of the first autonomous robots, likened the homeostat
to a “fireside cat or dog which only stirs when disturbed, and then methodically
finds a comfortable position and goes to sleep again” leading him to describe
the homeostat as Machina sopora [16]. Walter was contrasting the behaviour of
the homeostat with his own Machina speculatrix which exhibited a more lively,
exploratory behavior, “a typical animal propensity is to explore the environment
rather than to wait passively for something to happen.” Yet the explorations of

3 W. Ross Ashby journals, vol.9, p2095, December 1946.
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M. speculatrix would be all for nought in the face of a fundamental change in
the environment threatening the very survival of the robot. An organism cannot
simply ignore such extreme conditions but must act to remedy the causes of
the problem. Franchi [10] traces these ideas back to Sigmund Freud‘s’ Project
for a Scientific Psychology’ [12], “The organism cannot withdraw itself from
[the major needs] as it does from external stimuli.” In a fickle environment the
homeostat comes into its own.

Ashby’s great innovation was the double feedback loop, augmenting the con-
ventional sensorimotor loop. This models how an organism detects conditions
that threaten its survival and its escape strategy which “changed one machine
into another.” [4] A subset of homeostat units are deemed essential variables
with lower and upper acceptable limits. When the limits on an essential vari-
able are exceeded the output current for that unit is sufficient to close a relay.
When this occurs in conjunction with a system clock it triggers the unit’s unis-
elector reconfiguring the unit at random. After some time the homeostat hits
upon a configuration that achieves equilibrium in its new environment. This is
adaptation through ultrastability.

The mathematical model presented in Eq. 1 above, assume a linear relation-
ship between the inputs and the visible output. In the physical realization of
the homeostat it is (approximately) linear only in the range ±45◦ either side
of the needle centre. As Ashby notes, the system may be “unstable and self-
aggravating, running away to the limits of the troughs.” When the needle hits
one of the end-stops of the trough, the needle can move no further and thus the
output saturates at that value. This is a classic saturating linear function. The
full simulation models this effect with the outputs saturating at the points of
low and high potential.

An experiment from Ashby’s Design for a Brain4 is reproduced here. He was
impressed by the ability of the nervous system to adapt to surgical reversals of
muscles and nerve fibres. This experiment demonstrates an analogous effect in
the homeostat by reversing the polarity of the connection between two units.
This is illustrated in Fig. 1 where unit 1 (solid line) represents the trace of an
essential variable with bounds [−1, 1], while unit 2 (dashed line) is under manual
control.

In this scenario the needles were used as input devices by Ashby physically
deflecting a needle one way or the other. The output of unit 1 indicated by the
solid line shows how the system adapts to the manual deflections of unit 2. This
is modelled in the simulation by the addition of a given (simulated) voltage.
A baseline deflection of 0.2 volts is added to unit 2 throughout the experiment
except at the deflection points D1 & D2 when this is raised to 0.3 volts. After an
initial settling time (from t = 0) the units adjust to the baseline deflection. At
point D1 (t = 50) the deflection of unit 2 is briefly raised to 0.3 volts and unit 1
can be seen to follow in the same direction.

Following D1 the deflection is returned to the baseline. Without this baseline
the magnitude at R1 would be zero and the reversal of polarity would have

4 Design for a Brain, 2nd edition, Sect. 8/4.
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no effect. At point R1 (t = 100) the polarity of the connection from unit 1 to
unit 2 is reversed under manual control. This in turn causes instability in unit
1 that transgresses the limits of the essential variable, causing a step-change in
the weights connecting unit 2 back to unit 1. Now, when the same deflection
is applied at D2 (t = 150) the response of unit 1 is to move in the opposite
direction. The manual reversal in unit 2 at R1 is balanced by an automatic
weight reversal in the selector of unit 1.

Fig. 1. Two units interacting. Identical deflections applied at D1 and D2 to unit 2
(dashed line) have opposite effects on unit 1 (solid line) after polarity reversal at R1
and subsequent recovery of stability.

A MATLAB simulation reproducing this scenario is included in AppendixA.
The parameters are set as follows: h = 1.0, j = 1.0 with negative feedback on
each unit of −0.5. The weight from unit 1 to unit 2 is initially −0.1, reversed
at R1. The weight from unit 2 to unit 1 changes from 1.0 to −0.668, a value
drawn from observation of the full homeostat simulation and known to result
in a stable solution. The behaviour of the uniselector is not included in this
version of the simulation. Like other simulations [8,13] the aim is to capture
the key features of Ashby’s homeostat including the linear equations of Eq. 1,
essential bounds on variables and environmental coupling consistent with the
architecture of the homeostat. The full simulation is based on Euler’s forward
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method which provides a rapid iterative approach that lends itself to solving
differential equations in real-time. For all the experiments in this paper the
essential variables are bounded to the range [−1, 1].

2 The Mobile Homeostat

In Design for a Brain Ashby tantalisingly mentions the possibility of construct-
ing a mobile homeostat in a thought experiment, “Suppose U is mobile and is
ultrastable, with its critical states set so that it seeks situations of high illumina-
tion.” The homeostat as demonstrated by Ashby never was mobile and the four
variable machine represents within itself both organism and environment, brain
and anti-brain together5. A mobile homeostat must be configured to interact
with its external environment via appropriate transducers.

Like other researchers in this field [6,7,11,13] I have used the Braitenberg
vehicle as an idealized platform on which to study the mobile homeostat. In
1984 neuroscientist Valentino Braitenberg published a small but influential book
outlining a series of thought experiments that develop simple mobile robots
displaying increasingly sophisticated behaviours [5]. Each Braitenberg Vehicle
has light sensing eyes and is adapted to its simple environment containing light
sources which attract or repel them (phototaxis). Vehicles 1 to 5 develop the
concepts of (1) motility; (2) tropisms; (3) excitatory and inhibitory synapses;
(4) non-linear activation functions; and (5) recurrent networks. With vehicle 6
we are invited to imagine these vehicles roaming the finite surface of a kitchen
tabletop. Vehicles that wander too far from the light source at the centre of
their tabletop universe are greeted with a precipitous fall to their doom from
whence they are recycled for their parts. Braitenberg considers the possibilities
of stochastic and evolutionary approaches to developing vehicles that adapt and
survive in this environment.

Franchi’s research [11] considers a type 1 Braitenberg Vehicle with a single
motor that can run forwards or backwards. This motor is controlled by a single
homeostat unit. The robot inhabits a 1-dimensional world that presents a light-
gradient to a single cyclopic eye. This single essential variable favours a band of
high illumination and consequently the vehicle will eventually come to rest or
achieve a dynamic equilibrium (oscillation) within this illuminated region. The
independent control of two motors requires at least two homeostat units, one
per motor. This vehicle will live in a 2-dimensional plane with the light source
at the centre of its world. It is equipped with a pair of directional eyes that can
sense its position relative to this light source.

The homeostat realizes a system of variables that represent measurements
taken in the environment or within the reacting organism itself. The first step
is to identify these variables in the simulation. Starting with the environment
the eyes detect the position of the robot relative to a single light source. Phys-
iologically our eyes have a logarithmic response to light that compensates for
the fall in intensity due to the inverse square law. Ignoring distance then, each
5 W. Ross Ashby Aphorisms, “Every brain is also an anti-brain”.



Ashby’s Mobile Homeostat 115

eye returns the cosine of its angle of incidence to the light source. The output
of the eyes is therefore a pair of sine-waves at 90 ◦ to each other defining the
angular position of the robot relative to the light source. Another variable in
the environment is the distance from the light source. As for outputs, within the
simulated robot chassis there are two motors, each one connected to a separate
unit. As motors can run backwards as well as forwards the speed of the motor
is represented by a number in the range [−1, 1]. These two motor variables are
the only way in which the robot can act on, or react to, the environment.

The simulated environment is based on a simple kinematic model for 2-
wheeled robots [15] where the robot’s position and angle are expressed as a
function of the left and right motor variables. The robot turns using differential

Fig. 2. A simulated mobile homeostat in a 2-dimensional environment with a central
source of illumination. The trajectory of an adapted robot is plotted as a series of
points.
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steering described by a differential equation for the change in angle with respect
to time. The robot’s velocity is the average of the two wheels so its coordinates
change as a function of velocity and angle. We find that a classic 2-unit home-
ostat is able to adapt to this environment. This is to be expected because it is
possible to construct type 2 & 3 Braitenberg vehicles of similar complexity by
hand. A wide range of behaviours that achieve stability are possible including
straightforward orbital motion and the epicyclic trajectory illustrated in Fig. 2
showing actual output from the simulation.

Ashby’s secondary feedback loop acts directly on the variables essential to
the survival of the robot, namely the distance from the light source which is
inversely correlated with the proximity of the edge of the table. The robot can
directly control the variables that represent the motor speeds, but it can only
indirectly influence the essential variables. By affecting a favourable trajectory
through the world its goal is to bring these essential variables under control.
In other words, it can only influence its essential variables and the values of its
sensors by acting on them through the environment.

Fig. 3. Secondary feedback loop where the environment acts on essential variables, is
necessary for ultrastability. The essential variable influences the behavior of the robot
via the step-mechanism S.

The simple sensorimotor loop is illustrated in Fig. 3 as the effect of the motor
variables on the environment and the environmental influence of the light on the
eyes of the robot. The mobile homeostat represents the two motor variables
known as the main variables. The observable variables in its environment cor-
respond to its sensors and the variables essential to its survival. All of the main
variables in the mobile homeostat have essential limits, but this diagram empha-
sises the importance of the distance as being essential to its survival. When the
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distance exceeds a critical value, the equivalent of the edge of Braitenberg’s
tabletop, the uniselector step-mechanism must be triggered for all of the main
variables.

The mobile homeostat is configured along the lines of Ashby’s machine with
input as described in Introduction to Cybernetics [3]. Each external input is
identified as a parameter. For a set of n internal variables xi(1 ≤ i ≤ n) and
a set of m external parameters aj(1 ≤ j ≤ m) the state-determined system is
described6 as a set of functions as in Eq. 2. The mobile homeostat will have
n = 2 internal units, one per motor. Each homeostat unit receives input from
every other unit including feedback from itself together with an additional m = 3
parameters giving each simulated unit m + n inputs.

dxi

dt
= fi(x1, ..., xn, a1, ..., am) (2)

The architecture of the homeostat, intended as a static demonstrator, does not
readily lend itself to being hooked up to essential variables in the environment.
Each unit is self-contained such that when its needle goes out of bounds then
the relay and uniselector for that unit only is activated. The only global control
is the frequency at which activation may occur which Ashby judged should be
somewhere between 1 and 10 s. Thus the relay mechanism represents the essen-
tial variable for a single unit only. There is no obvious mechanism by which
uniselectors in multiple units can be activated via a common signal.

Ashby comes to the rescue with his description of the fully joined system in
which he describes a setup with “three essential variables ...all affected by the
environment, and all able to veto the stability of the step-mechanisms S.”7 This
many-to-one relationship can only represent a configuration where the essential
variables are external parameters to a set of step-mechanisms. In the case of
our mobile homeostat a single environmental variable representing the robot’s
distance from the light source is input to the robot as a parameter, as with the
sensor inputs. This creates a channel from this parameter to both of the robot’s
internal variables by which their stability can be vetoed.

The power of veto can only be ensured if the parametric input from the essen-
tial variable remains under manual control. If this were placed under control of
the uniselector then it would simply be able to disable the threatening input
rather than adapting to it. It would be akin to an organism choosing to ignore
pain rather than rectifying the cause of the pain. The veto signal needs to come
as a short sharp shock so that it doesn’t normally interfere with the stable fields
of the internal variables. The distance parameter value is the output of a (Heav-
iside) function that is 0 when the distance is less than a threshold representing
the perimeter and 1 otherwise. This veto signal is sufficient to drive both units
into their critical regions causing the uniselectors of each unit to be activated at
the point where the mobile homeostat falls off the edge of the world.

6 Design for a Brain, 2nd revised edition, p262.
7 Figure 11/10/1 Design for a Brain, 2nd revised edition.
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2.1 Ultrastability

The first experiment is to verify that the mobile homeostat coupled with this
environment produces stable solutions in a reasonable time-scale. Each sample
is the number of trials required to achieve a stable solution. The length of a
trial is defined to be the time period after which the essential variables are
checked for being within their limits. Ashby suggested that essential variables
are not checked continuously but perhaps every 3 s or so, the value used for
these experiments. Robots that remain stable (with no uniselector events) for a
full minute (20 trials) are deemed to be stable solutions (the 20 stable trials are
subtracted from the total). Each test contains 100 independent samples initiated
at a random position and parameter configuration. The data are merged and
ranked so that the mean ranks may be compared.

Table 1. Ultrastability in 2,3,4 variables

Variables 2 3 4

Sample size 100 100 100

Mean rank 23.64 46.12 80.74

Table 1 captures the results for 2, 3, and 4-unit homeostats. We stop at four
simply because that’s how many units the original homeostat contained, but also
the direction the results are headed is plain to see. Each is a fully-joined system
such that every unit of the homeostat is fully (and bi-directionally) joined with
every other. Firstly, we note that the 2-unit homeostat does indeed produce
stable solutions. Ashby’s law of requisite variety states that a control system
need have no more variety than the environment it controls, and this demon-
strates that no more than two units are required. Furthermore, he predicted that
as we add additional redundant units then the required adaptation time would
increase. Given that 2-units are sufficient to control the robot in this environ-
ment, in the experiment with 3 and 4 units we would expect to see an increase
in the time taken to reach stability.

The results follow a geometric distribution so a non-parametric Kruskal-
Wallis analysis of variance (H-test) is used to compare the mean ranks of the
three sample sets. Under the null hypothesis the mean ranks of the three sample
sets are the same. For at least a 95 % degree of certainty (alpha = 0.05) with
k(groups)−1 = 2 degrees of freedom the H critical value is 5.991. The H-statistic
is calculated to be 197.85 > 5.991 therefore there is a significant difference
between the mean ranks of the three groups with varying number of homeostat
units (at least two of the sample sets differ). With a mean rank score of 23.64
for 2-units, 46.12 for 3-units, and 80.74 for 3-units, this indicates that the time
taken to reach stability increases with the number of (redundant) units.
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3 Reducing Connectivity

Ashby observed that while the fully joined system retains generality it would
be an impractical solution in reality. Real organisms exploit constraint in the
world by limiting their own internal connectivity where it is not needed. First
and foremost this is a property of the environment. Only if there are real con-
straints in the world can the homeostat exploit this by reducing its own internal
connectivity.

The diagram of immediate effects for the simulated environment is illustrated
in Fig. 4. This captures additional variables that are part of the simulated envi-
ronment but are not parameters to the robot (The set of m + n function para-
meters). For example the robot cannot directly sense its absolute position nor
absolute angle. The left and right motor values are the two main variables of the
robot and are parameters (square boxes) of the environment, while the distance,
left and right eyes are input parameters to the robot. There is considerable con-
straint in this environment. For example the values of the eyes are independent
of the distance given the position of the robot.

Ashby’s counter-intuitive thesis is that “coordination can take place through
the environment; communication within the nervous system is not always nec-
essary.” This can be tested in the mobile homeostat by severing all connections
between the two halves of the 2-unit homeostat brain. Both units still receive
all the available input parameters and their recurrent inputs. This is achieved
in the homeostat by switching just those severed connections to manual control
and setting their weights to zero. The effect of this is to reduce the variety of
the system towards that of the environment.

Fig. 4. Diagram of immediate effects showing constraint among environmental vari-
ables (circles) and parameters to/from the homeostat (squares).
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If this is a cut too far then there will be no stable solutions. However,
the hard-wired neural circuits of Braitenberg’s Vehicles 2 and 3, with crossed
and uncrossed channels between eye and motor but no lateral communication,
demonstrate the workability of low-connectivity adaptations in this environment.
The mobile homeostat with disjoint variables includes this space of simpler vehi-
cles while excluding more complex models with internally recurrent networks.
There is no direct connection between the two main variables of the disjoint
homeostat, but they may still influence each other indirectly through the envi-
ronment.

Table 2. Ultrastability in 2 variables with varying connectivity

Variables 2 (disjoint) 2 (fully joined)

Sample size 100 100

Mean rank 37.27 63.23

The data for the system of two fully-joined (bidirectionally connected) vari-
ables from above is compared with a system of two internally disjoint variables.
The results are shown in Table 2. To compare the two sample sets both with 2-
units but with different internal connectivities, a non-parametric Mann-Whitney
(U-test) for large sample sizes is used to determine whether the two samples are
drawn from different populations. Under the null hypothesis the mean ranks of
the two sample sets are the same. A one tailed test is used because the time
taken to reach stability is expected to increase with the number of units. For a
95 % degree of certainty (alpha = 0.05) the critical value of Z for a one-tailed
test is −1.645. In this case with a calculated Z score of 6.34 > 1.645 we can state
with 95 % certainty that there is a difference between the two groups. Reducing
internal connectivity reduces the time taken to reach stability.

3.1 Discussion

While these experiments demonstrate that the classic homeostat architecture is
able to control a robot with two degrees-of-freedom they also highlight a short-
coming in the way that the essential variables are connected to the environment.
The distance veto must be artificially forced through both main variables in
order to trigger the essential limits on those variables. Ashby noted this weak-
ness in his journal, “In the homeostat, further variables are put between the
environment and the essential variables (the relay). The relay thus never ‘sees’
the environment directly.”8 This arrangement is the equivalent of growing a pro-
tective shell around the essential variables rather than employing intelligence to
avoid a threat. Ashby experimented with eliminating this one-to-one connection

8 W. Ross Ashby journals, vol.12, p2960, August 1950.
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between the main and essential variables in the homeostat9 by switching out the
relays and placing the uniselectors under manual control.

Experiments with decoupling the essential variables from the main variables
serve to highlight another early postulate of Ashby, the equivalence of levels, “all
levels are equivalent for the formulation of the general laws of psychology”10. In
decoupling the essential variables from the motor variables and slaving them
only to the essential variable representing distance, the unintended consequence
is that these variables inevitably get stuck at saturation (full forward or full
reverse). These stuck variables create a wall of constancy that render the robot
unreactive. The conclusion is that homeostasis is indeed necessary at all levels
from individual internal variables to essential variables directly observed in the
environment.

A theory of how the essential variables might be re-connected did not begin to
emerge until the design of the DAMS (Dispersive and Multistable System)
putting it beyond the scope of this paper. According to Ashby, “This picture
must be used if any severe test of a reacting system (artificial brain) is to be
applied.”11

3.2 Conclusion

This research extends previous work in applying the classic homeostat archi-
tecture to the problem of controlling a robot in a simulated two-dimensional
environment with two degrees-of-freedom. This is inspired by Ashby’s thought
experiment of a mobile homeostat seeking situations of high-illumination. This
experimental setup allowed us to explore the principle of ultrastability, Ashby’s
law of requisite variety, and the effects of increasing the number of units or
decreasing connectivity. The next steps will be to explore the potential for social
interaction between multiple mobile homeostats and also to validate these sim-
ulations by embedding the homeostat within a physical robot. In the words of
Ashby, “How will it end? I suggest that the simplest way to find out is to make
the thing and see.” [1].

A Appendix: MATLAB Model for Fig. 1

f unc t i on i = inputs1 ( t )
# return a row vector o f inputs over time ( d e f l e c t i o n )
# d e f l e c t i o n at D1 , D2
i f ((50< t && t<55) | | (150< t && t <155))

i = [ 0 . 3 ] ;
e l s e

i = [ 0 . 2 ] ;

9 W. Ross Ashby journals, vol.12, p2748, February 1950.
10 W. Ross Ashby journals, vol.1, p40, 1928.
11 W. Ross Ashby journals, vol.12, p2962, August 1950.
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end i f
endfunct ion

func t i on w = weights1 ( t )
i f ( t<100)

# three rows : un i t 1 output ; un i t 2 output ; d e f l e c t i o n
# two columns : un i t 1 input , un i t 2 input ( manually

c on t r o l l e d )
# each un i t has f i x ed negat ive feedback −0.5
# i n i t i a l 1−>2 weight ing −0.1 r eve r s ed at R1
# d e f l e c t i o n e f f e c t s un i t 2 with weight 1 .0
w = [ −0.5 , −0.1; 1 . 0 , −0.5; 0 . 0 , 1 . 0 ] ;

e l s e i f ( t<110)
# r ev e r s e commutator on input to 2nd un i t (1−>2) at R1
w = [ −0.5 , +0.1 ; 1 . 0 , −0.5; 0 . 0 , 1 . 0 ] ;

e l s e
# un i s e l e c t o r s e l e c t s new weights on 1 s t un i t (2−>1)

post R1
w = [ −0.5 , +0.1 ; −0.668 , −0.5; 0 . 0 , 1 . 0 ] ;

e nd i f
endfunct ion

func t i on xdot = h1 (x , t )
h = 1 . 0 ; j = 1 . 0 ;
# mult ip ly inputs by weights , a
xa = [ x ( 1 : 2 ) ’ , inputs1 ( t ) ] ∗ weights1 ( t ) ;
# output ( xdot ) r ep r e s en t s x1 , x2 , x1 ’ , x2 ’
xdot (1 ) = x ( 3 ) ;
xdot (2 ) = x ( 4 ) ;
xdot (3 ) = h∗xa (1 ) − j ∗x ( 3 ) ;
xdot (4 ) = h∗xa (2 ) − j ∗x ( 4 ) ;

endfunct ion

t=l i n s p a c e (0 ,200 ,1000)
x0 = [ 0 ; 0 ; 0 ; 0 ]
x = l s ode (”h1 ” , x0 , t )
p l o t ( t , x ( : , 1 ) , ” − ; un i t 1 ; k” , t , x ( : , 2 ) , ” : ; un i t 2 ; k ” ) ;
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Abstract. In this paper we propose BeePCo, a multi-robot coverage
approach based on honey bee colony behaviour. Specifically, we pro-
pose a honey bee inspired pheromone signalling method that allows a
team of robots to maximise the total area covered in an environment
in a distributed manner. The effectiveness of the proposed algorithm
is experimentally evaluated on three different sizes of multi robot sys-
tems (MRSs) and compared against an ant-inspired coverage algorithm
(StiCo) to show the different characteristics of these two approaches.

Keywords: Multi-robot systems · Bio-inspired · Bee-inspired ·
Coverage

1 Introduction

Recent years have seen a rapidly growing interest in multi-robot systems for
automatically surveilling environments of different size, type and complexity.
Multi-robot systems (MRS) consist of multiple interacting robots, each execut-
ing an application-specific control strategy, which is not centrally steered. The
interest in MRS for surveillance is largely motivated by the wide range of appli-
cation areas including the protection of safety-critical technical infrastructures
and buildings, search and rescue scenarios, the monitoring of danger zones which
cannot be entered by humans, for instance, in the case of a nuclear incident, a
bio-hazard, etc. As such automated surveillance has become a well studied topic
in multi-robot research with a strong practical relevance.

A key advantage of robot-based surveillance lies in its flexibility achieved
through possible positional changes of the robots, which makes this form also
suited for surveillance applications in unknown or complex environments. In
contrast to stationary wireless sensor-based surveillance systems or networks,
however, robot-based surveillance systems have not yet found their way to real-
world applications on a broader scale. Two interrelated key components of every
multi-robot surveillance system are exploration and coverage of a potentially
unknown environments. The term exploration refers to the discovery of all tra-
versable regions of the environment through one or several robots [30]. The term
coverage refers to the maximisation of (or the process of maximising) the total
area covered by the sensors of the involved robot(s) [30].
c© Springer International Publishing Switzerland 2015
C.J. Headleand et al. (Eds.): ALIA 2014, CCIS 519, pp. 124–140, 2015.
DOI: 10.1007/978-3-319-18084-7 10
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Previously, we have investigated three different biological inspirations: the
stigmergy principle of ants, the foraging behaviour of honey bee colonies and
the pheromone signalling procedure of honey bees. StiCo, the stigmergy princi-
ple, is based on the observations of ant colonies, and is used as a coordination
mechanism for coverage by multi-robot systems [30]. The foraging behaviour of
honey bee colonies [24] are inspected and used to solve robot coordination, nav-
igation and path planning issues in multi-robot platforms. PS [7], a honey bee
inspired pheromone signalling procedure, is used to address load balancing and
redundancy control issues in wireless sensor networks.

In this paper we are concerned with coverage issues of multi-robot systems.
Specifically we explore the performance outcomes of the bees pheromone sig-
nalling procedure, which we call BeePCo, when applied to the coverage problem
in multi-robot systems. The proposed BeePCo mechanism is inspired by bio-
logical processes: how social insects (bees) control and orchestrate with other
members of a hive [1, 2]. As abstract agents, individual bees have many similari-
ties with robots (as do bee colonies with MRSs). The required similarities are in
terms of individual wellbeing (bee/robot) and collective welfare (colony/MRS).
With our approach, we enable group coordination among robots, where the indi-
vidual movement-related decisions of each robot is based on its local information.
The proposed approach is evaluated in simulation against the well-known ant
algorithm, StiCo [30].

The remainder of this paper is structured as follows. Section 2 reviews the
related work in the areas of multi-agent coverage and bio-inspired techniques
in networked distributed systems. Section 3 covers pheromone signalling based
coverage algorithms for MRSs together with the required biological background.
The paper continues with the experimental setup and results in Sect. 4. We
conclude in Sect. 5.

2 Related Work

This section gives an overview of relevant literature that has attempted to
describe, analyse, or efficiently exploit bio-inspired techniques for addressing the
multi-agent coverage problem. This section is split into two main parts of the
problem targeted in this research: Sect. 2.1 provides examples of existence work
in the fields of multi-agent coverage in MRSs, whereas Sect. 2.2 shows the sig-
nificant bio-inspired research work in the field of networked distributed systems
in general.

2.1 Multi Robot Coverage

The concept of coverage as a metric for evaluating robotic systems which was
first introduced by Gage [13]. Gage defines three basic types of coverage: blanket
coverage, where its objective is to achieve a node formation which maximises the
total detection area; barrier coverage, which aims to minimise the probability
of undetected intrusion through the barrier; and sweep- or repetitive-coverage
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with the goal to cover all accessible interest points in a given environment over
time, while maximising the rate of visits over all points and minimising the total
distance travelled by all robots.

Blanket coverage is most common for the deployment of mobile sensor net-
works in an unknown environment; the sensor nodes are initially placed in a
compact configuration, and the nodes try to spread out to maximise the area
covered by the network. One example for such a use case is a hazardous material
leak in a damaged structure. Mobile sensor nodes equipped with chemical sen-
sors spread out from a initial position to gather information about location and
concentration of the hazard. Due to the fact that the communication infrastruc-
ture could be damaged, the nodes have to ensure their own network structure
even if single nodes get lost or destroyed. Many approaches in this field are based
on the potential field technique first introduced by Khatib [22].

Barrier and repetitive-coverage problems originate from the computational
geometry Art Gallery Problem [10] and its variant for mobile guard for mobile
guards, the Watchman Route Problem [25]. Barrier coverage is the problem of
placing sensors (of robots) to act as guards to protect a region from being entered
by an intruder and often used in randomly deployed military applications [23].
In robotics, repetitive-coverage can be described as a problem where a team of
robots has to visit multiple points of interests (POI) in a known environment
frequently, to perform certain tasks. The goal of such algorithms is to keep
the average visit frequency over all POIs high, while achieving a minimal total
travelled distance and a balanced workload over all robots. Typical real world use
cases for such problems are patrolling, lawn mowing and cleaning up chemical
spills. Many approaches concerning multi-robot patrol partition the area into
sub-areas divided between the robots. Inside such a sub-area, each robot applies a
single robot patrol algorithm. Ahmadi and Stone [1] describe a negotiation-based
approach for distributing the area between the robots and dealing with events
such as addition or removal of robots to the environment. Jung and Sukhatme
[19] introduce a region based approach for tracking targets in a system with
mobile robots and stationary sensors.

Another important form of multi-robot coverage is terrain coverage or multi-
robot exploration. It can be defined as a problem where a robot tries to visit each
and every location in a continuous bounded unknown environment by avoiding
obstacles and perform defined tasks [8,12,26]. A terrain coverage algorithm must
generate a coverage path, which is a chain of motion steps for a robot, the optimal
coverage path takes minimal time and guarantee to cover the entire terrain and
perform the task efficiently.

Many approaches divide the environment into grid cells and explore one cell
at the time until the whole area is covered. One of the first approaches was Span-
ning Tree Coverage (STC) which solves single robot coverage optimistically [11].
The same idea was applied by Hazon and Kaminka on a multi-robot system [17].

Batalin et al. propose a multi-robot algorithm, which spread the robots in
the terrain and makes them avoid each others sensing area [3].
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Several authors propose marked based approaches in multi-robot exploration,
in which robots make bids on a sub-task of an exploration attempted [35,38].
These bids are based on values such as expected information gain and travelled
cost to a particular location. This approach seems to minimise the costs while
maximising the benefit.

2.2 Bio-inspired Solutions

Bio-inspired solutions are often used to solve complex problems (e.g. MAC level
routing, load balancing, task allocation and resource scheduling, network cov-
erage, and emergence) in the broad research area of distributed systems with
a particular interest on wireless sensor networks, many and multicore systems,
swarm intelligence and multi-robot systems to make systems more reliable, effi-
cient and self-organised. Ant colony optimisation, bee colony optimisation and
artificial immune systems are three of the most commonly used biological inspi-
rations.

Based on the observation of the collective foraging behaviour of ants, many
research studies are held on Ant Colony Optimisation (ACO) on the ability
of ants to converge on the shortest path from their nest to a food source to
improve energy efficiency and QoS in routing. ARA [15], AntHocNet [9], ARO
[37] and StiCo [30] can be listed as some of the key research in ACO.

Conforming to this swarm metaphor, Bee Colony Optimisation (BCO)
was introduced by Karaboga et al. [20,21]. Scientists are inspired by variety of
different behaviours of bees: foraging behaviour in Lemmens et al. [24], Bee-
hive protocol [36], BeeSensor [31]; bees mating procedure in [29,34]; pheromone
signalling mechanism in PS [7].

Artificial Immune Systems (AIS) are inspired by the human/ mammalian
immune system. Sensitivity to detecting environmental change, and identifying
the foreign/infectious agents is used, particularly for security purposes in anom-
aly detections. SASHA [4], DSR [32,33], DNRS [2] are some of the significant
research in the field of autonomous distributed systems inspired by AIS.

BTMS [16] uses zygote differentiation to extend the network lifetime whilst
speeding up task mapping and scheduling. Homogeneous nodes begin in a default
state and within time nodes differentiate themselves dynamically to perform
distinct tasks according to their location.

In our previous work, pheromone signalling based load-balancing, PS [5,7],
we present a dynamic technique for Wireless Sensor Networks (WSNs) that is
applied at run time at the application layer. PS is inspired from the pheromone
signalling mechanism found in bees and provides distributed WSN control that
uses local information only. PS is unique; unlike many load balancing approaches
are applied at link or network layer [14,18,36] and balance only communication
load, PS is an application-layer protocol and manages both computation and
communication load. In [6], we extend our initial PS technique by introducing
additional network elements in the form of robotic vehicles for Wireless Sensor
and Robot Networks (WSRNs). We merge different subclasses of cyber-physical
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systems (sensors and robots) together to increase the area coverage effectively,
which directly increases the service availability and extends the network lifetime
by benefiting from their heterogeneity. Effective area coverage in this research
is defined as achieving the highest service availability while minimising move-
ment to conserve energy. To achieve the desired effective area coverage, we have
extended our PS technique to guide robots towards the areas of the sensor field
where the sensor nodes have run out of battery and are unable to provide service.
The same pheromone signalling process is applied into multi-robot systems in
this research and explained in detail in the next section.

3 Pheromone Signalling Based Coverage Technique

We describe our previous work on a pheromone signalling algorithm which is
applied to the WSN domain. Unlike our previous work on WSNs, this paper
focuses on applying the pheromone signalling technique to MRSs. WSNs and
MRSs have different application requirements, and in order to indicate the
application domain we change the name of the pheromone signalling technique
(from PS for WSNs) to BeePCo for MRSs. The bee-inspired coverage algorithm,
BeePCo, described in this section is a completely decentralised approach that
has low computational overhead and direct local communication.

Changes in pheromone levels are used by many social animals to orches-
trate the colony by assigning responsibilities to each individual. Roberts [28]
explains the process of larvae differentiation in beehives as an example of such
orchestration. Bees have developed a special hormonal system to ensure every
beehive has a queen, which maintains the stability of the colony and orches-
trates the behaviour of all other bees. Throughout its life, a queen bee stimu-
lates a pheromone called Queen Mandibular Pheromone (QMP), which makes
the worker bees aware of its presence as queen. This hormonal mechanism works
as follows: the worker bees lick the queen bee and pass the pheromone to the
others. If there is no pheromone passed through the worker bees, they will then
consider the queen as dead. In that case, workers will select a larva to be fed with
large amounts of the royalactin protein. That protein induces the differentiation
of honey bee larvae into a queen. If worker bees keep receiving the pheromone,
they will be aware that there is a queen bee to orchestrate the colony and will
take no action towards building a new queen.

The proposed coverage technique is inspired by the behaviour described
above. The role of a queen bee denotes a robot that is responsible for man-
aging the execution of all service requests it receives. Throughout this paper
we will refer these robots as Queen Robots (QR) and their responsibility (ser-
vice) is to patrol an unknown area. The basic strategy of the algorithm is based
on the periodic transmission of pheromone by QRs, and its retransmission by
recipients to their neighbours. The pheromone level of each robot decays with
time and with distance to the source. All robots accumulate pheromone received
from other QRs and if at a particular time the pheromone level of a robot is
below a given threshold this robot will differentiate itself into a QR. To make it
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clear, the threshold we used for this work is 10,000 for this paper - a very high
value, which means all the robots are assigned to be QRs and they remain as
QRs until they run out of energy. Although we do not particularly benefit from
robot differentiation for this work, we still describe the differentiation process
for the completeness of this work and to provide a base for our future work.
In the BeePCo technique, the level of pheromone indicates how well a certain
area is covered. Areas in the robotic arena that have lower level of pheromone,
at a given time, demonstrate a lower robot density as opposed to other parts.
This means, areas with low pheromone level have either low coverage or are not
covered at all.

The proposed BeePCo algorithm consists of four parts which are executed on
every robot of the MRS: two of them are time-triggered (differentiation cycle and
decay of pheromone), whereas the other two (propagation of received pheromone
and robotic move) occur together in a single event-triggered process. The first
time-triggered part, referred to as the differentiation cycle (Algorithm1), is exe-
cuted by every robot of the MRS every TQR time units. On each execution,
each robot checks its current pheromone level hi against a predefined level
thresholdQR. We set the thresholdQR to 10,000 for this paper - a level unreach-
able in practice - which means all of the differentiate into QRs and remain as
QRs until they run out of energy. QRs transmits pheromone to its network neigh-
bourhood to make its presence felt. Each pheromone dose hd is represented as
a two-position vector. The first element of the vector denotes the distance in
hops to the QR that has produced it (and therefore is initialised as 0 in line 4
of Algorithm 1). The second element is the actual dosage of the pheromone that
will be absorbed by the neighbours.

Algorithm 1. Differentiation Cycle
1: every TQR do
2: if (hi < thresholdQR) then
3: QRi = true
4: broadcast hd = {0, hQR}
5: else
6: QRi = false
7: end if

The event-triggered part of BeePCo deals with the propagation of the phero-
mone released by QRs (as described above in the differentiation cycle) and
received at neighbouring robots. The purpose of propagation is to extend the
influence of QRs to their surroundings (neighbouring robots in the communica-
tion range). Propagation is not a periodic activity, and happens every time a
robot receives a pheromone dose. The pseudocode given in Algorithm2. Upon
receiving a pheromone dose, a robot checks whether the transmitting QR is
located sufficiently near for the pheromone to be effective. It does that by com-
paring the first element of hd with a predefined thresholdhopcount. If the hd has
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travelled more hops than the thresholdhopcount, the robot simply discards it. If
not, it adds the received dosage of the pheromone to its own pheromone level
hi and propagates the pheromone to its neighbourhood. Before forwarding it,
the robot updates the hd vector element by incrementing the hop count, and
by multiplying the dosage by a decay factor 0 < KHOPDECAY < 1. This repre-
sents pheromone transmission decaying with distance from the source. Once the
pheromones are propagated, a move cycle is triggered. As well as the propagation
cycle, move cycle also occurs when a robot receives pheromones. The move cycle
illustrates the general movement behaviour of a robot as given in Algorithm3.

Algorithm 2. Pheromone Propagation Cycle
1: while hd is received do
2: if (hd[1] < thresholdhopcount) then
3: hi = hi + hd[2]
4: broadcast hd = {hd[1] + 1, hd[2].KHOPDECAY }
5: else
6: drop hd
7: end if
8: go to BeePCo Move Cycle
9: end while

Algorithm 3. Move Cycle
1: if (pheromone received) then
2: PS-guided moving decision
3: else
4: keep moving in the direction of the last move
5: broadcast communication link request
6: establish local communication links
7: end if

If a robot receives pheromone it makes the decision of where to move by
selecting a target destination in the opposite direction of the received pheromone,
based on BeePCo. The moving decision of robots are based on vector addition
and its pseudo code appears in Algorithm4. Given the robot’s movement behav-
iour and assuming that all robots know their location, we calculate the angle
of the received pheromone with the use of the sender’s x and y coordinates. To
do this, we resolve the horizontal and vertical components based on the amount
of received pheromone level, hi, and the coordinates of the QRs. In order to
find the magnitude, we sum up all the horizontal and vertical components. In
order to determine the direction of the magnitude, we take the arctangent of the
magnitude and resolve x and y coordinates. This process happens on-demand as
the robotic agents receive pheromone from as part of propagation cycle.



Multi-Robot Coverage: A Bee Pheromone Signalling Approach 131

Algorithm 4. Moving Decision
1: if (hi > 0) then
2: for all the received pheromones (p) of the robot do
3: diffX = pSenderX − currentCoordinateX
4: diffY = pSenderY − currentCoordinateY
5: θ = ArcTangentQuadrant(diffY , diffX)
6: componentX = p.hd ∗ cos θ
7: componentY = p.hd ∗ sin θ
8: SumX+ = componentX
9: SumY + = componentY

10: end for
11: end if
12: magnitude =

√
SumX

2 + SumY
2

13: θdestination = ArcTangentQuadrant(SumY , SumX)
14: apply 180 degrees shift to θdestination

15: clear all received pheromones

If a robot does not receive any pheromone at its destination location, it
surveils this position provided it does not receive any new pheromone. This
happens when robots are not in each others’ communication ranges (when they
cannot receive pheromones from each other) and allows them to spread out in
the area.

The second time-triggered part of the algorithm, shown in Algorithm5 is a
simple periodic decay of the pheromone level of each robot. Every TDECAY time
units, hi is multiplied by a decay factor 0 < KTIMEDECAY < 1 to indicate
reduced pheromone levels due to elapsed time.

Algorithm 5. Decay Cycle
1: for every TDECAY do
2: hi = hi.KTIMEDECAY

3: end for

Although decay and differentiation cycles have zero effect on the coverage
presented in this paper, we have explicitly formalised and explained them to
establish a ground for our future work and for the completeness of this research.
In our future work, we will build up on these cycles and use our approach to con-
trol redundant processing and task executions as well as coverage issues in MRSs.

4 Evaluation Environment and Experimental Results

To evaluate the effectiveness of BeePCo at providing network coverage, and to
establish a valid comparison between StiCo and BeePCo, we apply both algo-
rithms on the simulation platform that StiCo is developed on. For further details
about the simulation framework, we refer to [27].
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The experimental work presented in this section aims to show the area cover-
age of the BeePCo and StiCo techniques. Area coverage in this study is defined
as maximising the total area covered by the sensors of the robot(s), as defined in
[30]. The algorithms are applied on a MSR of 20, 30 and 40 robots, each having
a sensing and communication radius of 25 cm (simulating E-puck robots). The
application arena size is set to 300 cm × 300 cm, and the robots are initially
deployed randomly in the centre of the arena, in a square 5 cm × 5 cm region.
We evaluate the three following scenarios:

– BeePCo represents a case where a wide spread of the robots in the arena is
based on bees pheromone signalling mechanism. Parameters for the algorithm
is TDECAY = 0.5 sec, TQR = 0.066 sec, and thresholdQR = 10, 000.

– StiCo represents a case where the wide spread of the robots in the arena is
based on ants stigmergy principle [27].

– MaxCo represents the optimal case where the robots’ transmission range does
not intersect with each other. This scenario is a benchmark for the maximum
possible coverage of deployed robots with zero surveillance area overlap within
a 300 cm × 300 cm arena. This can also be referred to as potential coverage.

(a) StiCo (b) BeePCo

Fig. 1. The distribution of robots in the arena using a MRS of 20 robots on StiCo and
BeePCo techniques.

Figures 1, 2 and 3 illustrate how evenly the area is covered over time, using
20, 30 and 40 robots on a single run. The colour scale used for Figs. 1, 2, and 3
is from dark to light: uncovered areas are represented in black and the lighter
the colour of an area, the higher the percentage of the area being covered over
the total time of the experiment. The more evenly the total area is coloured, the
more uniform is the distribution of the robots positions over time. These three
figures do not only show the performance of the StiCo and BeePCo approaches,
but also illustrates the effects of the number of the robots on the eventual cov-
erage, i.e., more robots improve the performance. The improvement on area
coverage using StiCo can clearly be seen in Figs. 1a, 2a, and 3a incrementally.
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(a) StiCo (b) BeePCo

Fig. 2. The distribution of robots in the arena using a MRS of 30 robots on StiCo and
BeePCo techniques.

(a) StiCo (b) BeePCo

Fig. 3. The distribution of robots in the arena using a MRS of 40 robots on StiCo and
BeePCo techniques.

Although it is slightly more difficult to see the same effect on BeePCo, Figs. 1b,
2b and 3b exhibit the same behaviour. The continuous rotation of StiCo enables
an uniform distributed coverage in all three figures. On the other hand, the area
coverage of BeePCo is non-uniform and mainly cluttered in the middle of the
arena. This is due to the disconnected communication links. As the robots send
pheromone in BeePCo, they push each other away until they are no longer con-
nected to the network. Therefore, BeePCo is applied on a single robot as long as
it possesses communication links to other robots. Once the communication links
are no longer available, robots do not move in the BeePCo until they establish
new connections, otherwise, they remain on their positions until they run out of
battery.

Figures 4, 5, 6 and 7 are averaged over 30 independent runs to ensure statis-
tical significance of the results on area coverage. Figure 4 illustrates the experi-
mental results of a MRS with 20 robots comparing the performance of the StiCo,
BeePCo and MaxCo approaches against each other in terms of the percentage
of area coverage. As shown in Fig. 4, the StiCo approach initially spreads the
robots faster than BeePCo and converges faster. In the BeePCo approach, the



134 I. Caliskanelli et al.

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

 %
 A

re
a 

C
o

ve
ra

g
e

BeePCo 20 robots
StiCo 20 robots
MaxCo 20 robots

Fig. 4. The percentage of area coverage using MRSs with 20 robots: StiCo and BeePCo.

robots stop spreading after communication links with the other robots are broken
because they are outside of the inter-robot transmission range.

Similarly, Fig. 5 illustrates the experimental results on a MRS with 30 robots
and compares the performance of the StiCo, BeePCo and MaxCo approaches
against each in terms of the percentage of area coverage. Results show that
BeePCo achieves better area coverage than StiCo technique whilst encouraging
not moving once the communication network is lost. This feature of BeePCo
prevents the algorithm from achieving a more evenly covered area as we explained
previously in Fig. 2.

Figure 6 exhibits the experimental results on a MRS with 40 robots and com-
pares the performance of the StiCo, BeePCo and MaxCo approaches against each
in terms of the percentage of area coverage as well as previous figures. In this
set of experiments with 40 robots, we also observe the same behaviour: BeePCo
achieves higher area coverage than the StiCo technique through out the simu-
lation time although it does not allow robots to move once the communication
network is lost.

In Fig. 7, the StiCo and BeePCo algorithms are compared against each other
with respect to area coverage using 20, 30 and 40 robots. MaxCo illustrates the
maximum possible area coverage that can be achieved using 20, 30 or 40 robots.
These are plotted to show the effectiveness of the StiCo and BeePCo algorithms
in comparison to the maximum possible coverage.
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Fig. 5. The percentage of area coverage using MRSs with 30 robots: StiCo and BeePCo.
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Fig. 6. The percentage of area coverage using MRSs with 40 robots: StiCo and BeePCo.
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versus BeePCo

For both StiCo and BeePCo, we observe that the percentage of area covered
increases as the number of robots increases as expected based on comparison
on Figs. 4, 5 and 6. The difference in the percentage area coverage between
StiCo and BeePCo considerably increases as the number of robots increases.
This indicates that the pheromone signalling approach forces robots to explore
more of the arena where other robots are not active and as a result, BeePCo
achieves higher performance in terms of percentage of covered area in denser
systems. We believe this is mainly due to the direct communication exchange
as it allows the robots to more quickly spread in the environment rather than
indirect communication that StiCo applies.

On the other hand, in Figs. 4, 5, 6 and 7 the percentage of area coverage
starts improving faster between 100 to 101 time period in StiCo. This is due to
the propagation cycle period, TQR, which is set as 0.06 seconds. BeePCo does
not allow robots to move before the period occurs and as a result area coverage
in this time period is lower than StiCo. Although BeePCo performs lower in this
time period, it closes the difference in the percentage of area coverage quickly.
This steep hill between 101 to 102 time period indicates that BeePCo scatters
around the arena faster than StiCo. BeePCo achieves a stable period between
102 to 103 time period where robots do not move any more. Minor changes on
the percentage of the coverage area in StiCo indicates that once the robots are
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scattered around they keep being scattered around and not getting cluttered
after a certain time, which indicates a high stability in this approach too.

5 Conclusions

This paper had two major goals: providing a novel bee-inspired algorithm to
address the coverage problem in MRSs (BeePCo), and evaluating the different
performances and properties of BeePCo and StiCo in different scenarios. In this
paper, we have described a bee-inspired robot guidance technique, BeePCo in an
attempt to address multi-robot coverage problem. The multi-robot coordination
and coverage is a complicated problem in itself, especially when the capacity
of robots are limited. As all communications between the robots are through
the wireless medium, it is essential to manage the robot coordination with a
computationally lightweight algorithm that consumes less energy. Therefore, we
propose to improve multi-robot coverage by guiding the robots towards the areas
where the robot density is low with the use of bees pheromone signalling algo-
rithm. Simulated experimental results on three different scales of such systems
demonstrate that our proposed BeePCo technique encourages robots to spread
apart from each other using the pheromone signalling process.

Moreover, we have compared our proposed bee-inspired pheromone signalling
algorithm (BeePCo) against an ant-inspired stigmergic principle (StiCo) to show
how these bio-inspired behaviours affect coverage on MRSs. Experimental results
show that the StiCo approach starts spreading the robots as soon as they are
deployed. On the other hand, in BeePCo, robots start spreading once the periodic
cycles occur and therefore takes longer than StiCo. In BeePCo robots continue
expanding the coverage until the robots have moved apart from each other that
the communication links are no longer exist, whereas in StiCo robots keep mov-
ing until they run out of energy. The current BeePCo approach fails to improve
coverage and remains static when the robots are further apart from each other as
this approach requires direct packet exchange based on the local network. This
results in uncovered areas in the arena as marked with black in Figs. 1, 2 and 3.
The StiCo move strategy is based on the indirect pheromone communication
and allows robots to explore the arena excessively.

Based on the simulated experiments in this paper, BeePCo needs to be
improved to decrease the uncovered areas of the arena. We believe merging the
advantages of BeePCo and StiCo may solve the MRS coverage problem which
for now remains as future work. In the future, we would also like to consider
the resource limitations of the robots, examining the trade off between the total
distance taken by a robot and the total service availability of the MRS. From our
experience in pheromone signalling algorithm on WSNs, the BeePCo algorithm
can be applied to MRSs for redundancy control on top of the current coverage
and connectivity procedure in a multi-objective manner. It can be easily inferred
from the BeePCo differentiation cycle that each robot makes its own decision on
whether and when it becomes a QR by referring to local information only: its
own pheromone level hi. Although, for this paper we have allowed all robots to be
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QRs by setting the predefined thresholdQR to 10000, that is done only to focus
the single objective: to tackle multi-robot coverage problem. In future, we would
like to inspect the MRSs behaviour when thresholdQR is set to a lower and more
appropriate number to actually enable robot differentiation. This should allow
for highly self-organised behaviour which fits the requirements for high-density
networked MRSs.
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