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Abstract The notion of bounded element is fundamental in the framework of the
spectral theory. Before implanting a spectral theory in some algebraic or topological
structure it is needed to establish which are its bounded elements. In this paper, we
want to give an overview on bounded elements of some particular algebraic and
topological structures, summarizing our most recent results on this matter.

1 Introduction

Though the notion of bounded element has been considered, in different forms,
within the theory regarding the structure of (topological) *-algebras, it is not so
for the algebraic structures that do not possess a multiplication or possess just a
partial one. Indeed, for (topological) *-algebras, the notion of bounded element is
strictly linked to the operation of multiplication. In 1965, Allan wanted to construct
a spectral theory for locally convex algebras. He judged natural to mimic the spectral
theory of a closed operator on a Banach space: it is well known that if A is a closed
operator on a Banach space B, then its spectrum is the set of the complex numbers
� such that the operator A � �I has no bounded inverse. It became fundamental for
him, therefore, to fix the concept of bounded element for a locally convex algebra.
He defined (see [1, Def. 2.1]) bounded those and only those elements a of the locally
convex algebra AŒ� � for which there exists a complex number � ¤ 0 such that the
set f.�x/nI n D 1; 2; : : :g is a bounded subset of AŒ� �. This definition does not apply
to the algebraic structures we will examine in this overview: in general, neither a
partial *-algebra nor a C*-inductive locally convex space possesses an everywhere
defined multiplication, hence powers of a given element need not be defined.

Another notion of bounded element of a *-algebra is due to Vidav [11, Definition
in Section 2] and involves a convex pointed cone P of positive elements of the
algebra (which are all and only those elements that can be written as the finite sums
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of elements of the form a�a, with a 2 A): an element a 2 A is bounded if there
exists a positive number � such that e 2 A the identity of A.

In order to extend the notion of bounded element to our case we have at disposal
more than one possibility: we can define bounded elements taking into account
both the topological structure and the algebraic structure of the set where we pick
elements.

The paper is organized as follows. In Section 2 we will summarize the definitions
and results we gave in [2] about bounded elements in a *-semisimple topological
partial *-algebra: in that paper we considered the elements that are bounded with
respect to a sufficient family M of invariant positive sesquilinear (ips) forms (see
also [4]) and elements that are bounded with respect to some positive cone, hence
defined in purely algebraic terms. The outcome is that, under appropriate conditions,
order bounded elements reduce to M-bounded ones. In Section 3, in the setting of
C*-inductive locally convex spaces, we consider both bounded elements defined
starting from the C*-inductive structure and those we have defined by means of an
order cone and finally prove the equivalence of the two different notions we have
given in [5].

2 Bounded elements in *-semisimple partial *-algebras

This section summarizes the results showed in [2] by J-P. Antoine, C. Trapani, and
the author. We refer to that paper for the proofs and further readings. Before going
forth, let us recall, for convenience of the reader, the main definitions we need.

A partial *-algebra A is a complex vector space with conjugate linear involution
� and a distributive partial multiplication �, defined on a subset � � A�A, satisfying
the property that .x; y/ 2 � if, and only if, .y�; x�/ 2 � and .x � y/� D y� � x�. From
now on we will write simply xy instead of x � y whenever .x; y/ 2 � . For every
y 2 A, the set of left (resp. right) multipliers of y is denoted by L.y/ (resp. R.y/),
i.e., L.y/ D fx 2 A W .x; y/ 2 � g (resp. R.y/ D fx 2 A W .y; x/ 2 � g). We denote
by LA (resp. RA) the space of universal left (resp. right) multipliers of A (for more
details, we refer to [3]).

In general, a partial *-algebra is not associative, but in several situations a weaker
form of associativity holds. More precisely, we say that A is semi-associative if
y 2 R.x/ implies yz 2 R.x/, for every z 2 RA, and

.xy/z D x.yz/:

The partial *-algebra A has a unit if there exists an element e 2 A such that e D e�,
e 2 RA \ LA and xe D ex D x, for every x 2 A.

Let A be a partial *-algebra. We assume that A is a locally convex Hausdorff
vector space under the topology � defined by a (directed) set fp˛g˛2I of seminorms.
Assume that
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(cl) for every x 2 A, the linear map Lx W R.x/ 7! A with Lx.y/ D xy, y 2 R.x/,
is closed with respect to � , in the sense that, if fy˛g � R.x/ is a net such that
y˛ ! y and xy˛ ! z 2 A, then y 2 R.x/ and z D xy.

in this case, A is said to be a topological partial *-algebra. If the involution x 7! x�
is continuous, we say that A is a *-topological partial *-algebra.

Starting from the family of seminorms fp˛g˛2I , we can define a second topology
�� on A by introducing the set of seminorms fp�̨.x/g˛2I , where

p�̨.x/ D maxfp˛.x/; p˛.x�/g; x 2 A:

The involution x 7! x� is automatically ��-continuous. By (cl) it follows that,
for every x 2 A, both maps Lx, R D .Lx�/� are ��-closed. Hence, AŒ��� is a *-
topological partial *-algebra.

Let H be a complex Hilbert space and D a dense subspace of H . We denote
by L �.D ;H / the set of all (closable) linear operators X such that D.X/ D
D ; D.X�/ � D : The set L �.D ;H / is a partial *-algebra with respect to
the following operations: the usual sum X1 C X2, the scalar multiplication �X,
the involution X 7! X� WD X� � D and the (weak) partial multiplication
X1 � X2 WD X1

��
X2, defined whenever X2 is a weak right multiplier of X1 (we

shall write X2 2 Rw.X1/ or X1 2 Lw.X2/), that is, whenever X2D � D.X1
��

/ and
X�

1 D � D.X�
2 /:

It is easy to check that X1 2 Lw.X2/ if and only if there exists Z 2 L �.D ;H /

such that

hX2�jX�
1�i D hZ�j�i; 8�; � 2 D : (1)

In this case Z D X1 � X2. L �.D ;H / is neither associative nor semi-associative. If
I denotes the identity operator of H , ID WD I � D is the unit of the partial *-algebra
L �.D ;H /. We will indicate by ts the strong topology on L �.D ;H /, defined by
the seminorms

p� .X/ D kX�k; X 2 L �.D ;H /; � 2 D :

Let AŒ� � be a topological partial *-algebra with locally convex topology � . Then
a subspace B of RA is called a multiplication core [2, Definition 2.3] if

(d1) e 2 B if A has a unit e;
(d2) B � B � B;
(d3) B is ��-dense in A;
(d4) for every b 2 B, the map x 7! xb , x 2 A, is � -continuous;
(d5) one has b�.xc/ D .b�x/c; 8 x 2 A; b; c 2 B.

AŒ� � is called A0-regular if it possesses a multiplication core A0 which is a *-algebra
and, for every b 2 A0, the map x 7! bx , x 2 A, is � -continuous [4, Def. 4.1].

A *-representation of a partial *-algebra A in the Hilbert space H is a linear
map 	 W A ! L �.D.	/;H / such that: (i) 	.x�/ D 	.x/�, for every x 2 A;
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(ii) x 2 L.y/ in A implies 	.x/ 2 Lw.	.y// and 	.x/ � 	.y/ D 	.xy/: The subspace
D.	/ is called the domain of the *-representation 	 . The *-representation 	 is said
to be bounded if 	.x/ 2 B.H / for every x 2 A. We will denote by Repc.A/ the
set of all .�; ts/-continuous *-representations of A. Let ' be a positive sesquilinear
form on D.'/ � D.'/, where D.'/ is a subspace of A. Then we have

'.x; y/ D '.y; x/; 8 x; y 2 D.'/; (2)

j'.x; y/j2 6 '.x; x/'.y; y/; 8 x; y 2 D.'/: (3)

We put

N' D fx 2 D.'/ W '.x; x/ D 0g:

By (3), we have

N' D fx 2 D.'/ W '.x; y/ D 0; 8 y 2 D.'/g;

and so N' is a subspace of D.'/ and the quotient space D.'/=N' WD f�'.x/ �
x C N' I x 2 D.'/g is a pre-Hilbert space with respect to the inner product

h�'.x/j�'.y/i D '.x; y/; x; y 2 D.'/:

We denote by H' the Hilbert space obtained by completion of D.'/=N' .
Our overview on bounded elements starts focusing on the so-called *-semisimple

topological partial *-algebras. A topological partial *algebras. AŒ� � is called *-
semisimple [2, Definition 3.5] if, for every x 2 A n f0g there exists 	 2 Repc.A/

such that 	.x/ ¤ 0 or, equivalently, if the *-radical of A

R�.A/ WD fx 2 A W 	.x/ D 0; for all 	 2 Repc.A/g

is equal to f0g.
A positive sesquilinear form ' on A�A is said to be invariant, and called an ips-

form, if there exists a subspace B.'/ of A (called a core for ') with the properties

(ips1) B.'/ � RA;
(ips2) �'.B.'// is dense in H' ;
(ips3) '.xa; b/ D '.a; x�b/; 8 x 2 A; 8 a; b 2 B.'/;
(ips4) '.x�a; yb/ D '.a; .xy/b/; 8 x 2 L.y/; 8 a; b 2 B.'/.

We will denote by PB.A/ the set of all � -continuous ips-forms with core B.
A family M of continuous ips-forms on A � A is sufficient if x 2 A and

'.x; x/ D 0, for every ' 2 M imply x D 0.

Proposition 1. Let AŒ� � be a topological partial *-algebra with unit e. Let B be a
multiplication core. For an element x 2 A the following statements are equivalent.
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(i) x 2 R�.A/.
(ii) '.x; x/ D 0, for every ' 2 PB.A/.

Remark 1. By Proposition 1, AŒ� � is *-semisimple if, and only if, for some
multiplication core B, the family PB.A/ is sufficient.

If the family M is sufficient, any larger family M0 	 M is sufficient too. In this
case, the maximal sufficient family (having B as core) is obviously PB.A/. Hence
if a sufficient family M � PB.A/ exists, then AŒ� � is *-semisimple.

We say that the weak multiplication x�y is well defined (with respect to M) if there
exists z 2 A such that:

'.ya; x�b/ D '.za; b/; 8 a; b 2 B; 8 ' 2 M:

In this case, we put x�y WD z and the sufficiency of M guarantees that z is unique.
The weak multiplication � clearly depends on M: the larger is M, the stronger is
the weak multiplication, in the sense that if M � M0 � PB.A/ and x�y exists w.r.
to M0, then x�y exists with respect to M too.

Since it may be difficult to identify in practice such a sufficient family of
continuous ips-forms that guarantees the *-semisimplicity of AŒ� �, we examine
in what sense ips-forms may be replaced by a special class of continuous linear
functionals, called representable.

Definition 1. Let ! be a linear functional on A and B a subspace of RA. We say that
! is representable (with respect to B) if the following requirements are satisfied:

(r1) !.a�a/ 
 0 for all a 2 B (B-positiveness);
(r2) !.b�.x�a// D !.a�.xb//; 8 a; b 2 B, x 2 A;
(r3) 8x 2 A there exists 
x > 0 such that j!.x�a/j � 
x !.a�a/1=2, for all a 2 B.

We will denote by Rc.A;B/ the set of � -continuous linear functionals that are
representable (with respect to B).

In this case, one can prove that there exists a triple .	B
! ; �B

! ;H B
! / such that

(a) 	B
! is a *-representation of A in H B

! ;
(b) �B

! is a linear map of A into H B
! with �B

! .B/ D D.	B
! / and 	B

! .x/�B
! .a/ D

�B
! .xa/, for every x 2 A; a 2 B;

(c) !.b�.xa// D h	B
! .x/�B

! .a/j�B
! .b/i, for every x 2 A, a; b 2 B.

In particular, if A has a unit e and e 2 B, we have:

(a1) 	B
! is a cyclic *-representation of A with cyclic vector �! ;

(b1) �B
! is a linear map of A into H B

! with �B
! .B/ D D.	B

! /, �! D �B
! .e/ and

	B
! .x/�B

! .a/ D �B
! .xa/, for every x 2 A; a 2 B;

(c1) !.x/ D h	B
! .x/�! j�!i, for every x 2 A.

For what we have already noted, it is interesting to identify a class of topological
partial *-algebras for which representable linear functionals and ips-forms can be
freely replaced by one another, since every representable linear functional comes
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(as for *-algebras with unit) from an ips-form. These partial *-algebras are called
fully representable: a topological partial *-algebra AŒ� �, with multiplication core B
is fully representable if

(fr) D.'!/ D A, for every continuous linear functional ! on A which is repre-
sentable w.r. to the same core B.

The following definitions and results can be found in [2, Subsection 5.1].

Definition 2. Let A be a topological partial *-algebra with multiplication core B
and a sufficient family M of continuous ips-forms with core B. An element x 2 A
is called M-bounded if there exists 
x > 0 such that

j'.xa; b/j � 
x '.a; a/1=2'.b; b/1=2; 8 ' 2 M; a; b 2 B :

A useful characterization of M-bounded elements is given by the following
proposition.

Proposition 2. Let AŒ� � be a topological partial *-algebra with multiplication core
B. Then, an element x 2 A is M-bounded if, and only if, there exists 
x 2 R such
that '.xa; xa/ � 
2

x '.a; a/ for all ' 2 M and a 2 B.

If x; y are M-bounded elements and their weak product x�y exists, then x�y is
also M-bounded.

2.1 Order bounded elements

Before giving the definition of order bounded element of a topological partial
*-algebra AŒ� � with unit and endowed multiplication core, we need to introduce an
order structure in AŒ� �. We have done it by defining several order cones or wedges
of AŒ� �.

2.1.1 Order structure of AŒ��

Let AŒ� � be a topological partial *-algebra with multiplication core B. If AŒ� � is
*-semisimple, there is a natural order on A defined by the family PB.A/ or by any
sufficient subfamily M of PB.A/, and this order can be used to define a different
notion of boundedness of an element x 2 A [8, 10, 11].

Definition 3. Let AŒ� � be a topological partial *-algebra and B a subspace of RA.
A subset K of Ah WD fx 2 A W x D x�g is called a B-admissible wedge if

(1) e 2 K, if A has a unit e;
(2) x C y 2 K; 8 x; y 2 K;
(3) �x 2 K; 8 x 2 K; � 
 0;
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(4) .a�x/a D a�.xa/ DW a�xa 2 K; 8 x 2 K; a 2 B.

As usual, K defines an order on the real vector space Ah by x � y , y � x 2 K.
In the rest of this section, we will suppose that the partial *-algebras under

consideration are semi-associative. Under this assumption, the first equality in (4)
of Definition 3 is automatically satisfied.

Now, let us define a series of admissible cones with respect to some subspace
of RA.

• Let A be a topological partial *-algebra with multiplication core B. We put

B.2/ D
(

nX
kD1

x�
k xk; xk 2 B; n 2 N

)
:

If B is a *-algebra, this is nothing but the set (wedge) of positive elements of B.
The B-strongly positive elements of A are then defined as the elements of
AC.B/ WD B.2/

�
. Since A is semi-associative, the set AC.B/ of B-strongly

positive elements is a B-admissible wedge.
• We also define

AC
alg D

(
nX

kD1

x�
k xk; xk 2 RA; n 2 N

)
;

the set (wedge) of positive elements of A and we put AC
top WD AC

alg

�

. The semi-

associativity implies that RA � RA � RA and then AC
top is RA-admissible.

• Let M � PB.A/. An element x 2 A is called M-positive if

'.xa; a/ 
 0; 8' 2 M; a 2 B:

It can be proved that an M-positive element is automatically hermitian. We
denote by AC

M the set of all M-positive elements. Clearly AC
M is a B-admissible

wedge.

As can be easily checked, the following inclusions hold

AC.B/ � AC
top � AC

M; 8M � PB.A/: (4)

Moreover, it can be proved that, if the family M is sufficient, then AC
M is a cone,

i.e., AC
M \ .�AC

M/ D f0g; this automatically implies that AC.B/ is a cone too.
Put AC

P WD AC
PB.A/. It can be proved that, if A is a fully-representable *-

semisimple *-topological partial *-algebra with multiplication core B and unit
e 2 B and if AŒ� � is a Fréchet space and the following property holds

(P) y 2 A and !.a�ya/ 
 0, for every ! 2 Rc.A;B/ and a 2 A0, imply y 2 AC.B/
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then the chain of inclusions (4) collapses: AC.B/ D AC
P (see [2, Propositions 5.13,

5.14 and Corollary 5.16]).
The following statement shows that PB.A/-positivity is exactly what is needed

if we want the order to be preserved under any continuous *-representation.

Proposition 3. Let A be a topological partial *-algebra with multiplication core B
and unit e 2 B. Let x 2 A. Then, the following are equivalent:

1. x 2 AC
P ;

2. the operator 	.x/ is positive for every .�; ts/-continuous *-representation 	 with
	.e/ D ID.	/.

2.1.2 Order bounded elements

Let AŒ� � be a topological partial *-algebra with multiplication core B and unit e 2
B. As we have seen in Section 2.1.1, AŒ� � has several natural orders, all related to
the topology � . Each of them can be used to define bounded elements.

Let x 2 A; put <.x/ D 1
2
.x C x�/, =.x/ D 1

2i .x � x�/. Then <.x/; =.x/ 2 Ah (the
set of self-adjoint elements of A) and x D <.x/ C i=.x/.

Let now K be an arbitrary B-admissible cone.

Definition 4. An element x 2 A is called K-bounded if there exists 
 
 0 such that

˙<.x/ � 
eI ˙=.x/ � 
e:

We denote by Ab.K/ the family of K-bounded elements.
The following statements are easily checked.

(1) ˛x C ˇy 2 Ab.K/; 8x; y 2 Ab.K/; ˛; ˇ 2 C.
(2) x 2 Ab.K/ , x� 2 Ab.K/.

For x 2 Ah, put

kxkb WD inff
 > 0 W �
e � x � 
eg:

k � kb is a seminorm on the real vector space .Ab.K//h.
Let AŒ� � be a *-semisimple topological partial *-algebra with multiplication core

B. We can then specify the wedge K as one of those defined above. Take first K D
AC

M, where M D PB.A/ is the sufficient family of all continuous ips-forms with
core B. For simplicity, we write again P WD PB.A/, hence AC

P WD AC
PB.A/ and

Ab.P/ WD Ab.AC
P/.

Proposition 4. If x 2 Ab.P/, then 	.x/ is a bounded operator, for every .�; ts/-
continuous *-representation of A. Moreover, if x D x�, k	.x/k � kxkb.

Hence, as it is natural, the Ab.P/-bounded elements are those that are repre-
sented by a bounded operator in any .�; ts/-continuous *-representation of A.
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The following theorem states the equivalence, under opportune hypothesis, of
the notions of order bounded element and of element bounded with respect to a
sufficient family of ips-forms.

Theorem 1. Let AŒ� � be a *-semisimple topological partial *-algebra with mul-
tiplication core B and unit e 2 B. For x 2 A, the following statements are
equivalent.

(i) x is PB.A/-bounded;
(ii) x 2 Ab.P/;

(iii) 	.x/ is bounded, for every 	 2 Repc.A/, and

supfk	.x/k; 	 2 Repc.A/g < 1:

Another possible choice for the order cone is, for instance, AC.B/. It is clear that
Ab.AC.B// � Ab.P/; it can be proved also that the two wedges coincide if AŒ� �

is a Fréchet space which is also a fully representable, semi-associative *-topological
partial *-algebra, with multiplication core B and unit e 2 B and the property (P)
(see Subsection 2.1.1) holds.

3 Bounded elements for a C*-inductive locally convex space

In this section we recap what S. Di Bella, C. Trapani and the author have done in
[5], i.e. extending the notion of bounded element to the case of C*-inductive locally
convex spaces; for this reason, we refer to that paper for the proofs of every result
we report on.

Before going forth, we recall the notions of directed system of C*-algebras and
of C*-inductive locally convex space we introduced in [7].

Let A be a vector space over C. Let F be a set of indices directed upward and
consider, for every ˛ 2 F, a Banach space A˛ � A such that:

(I.1) A˛ � Aˇ , if ˛ � ˇ;
(I.2) A D S

˛2F A˛;
(I.3) 8˛ 2 F, there exists a C*-algebra B˛ (with unit e˛ and norm k � k˛) and a

norm-preserving isomorphism of vector spaces �˛ W B˛ ! A˛;
(I.4) x˛ 2 BC̨ ) xˇ D .��1

ˇ �˛/.x˛/ 2 BC
ˇ , for every ˛; ˇ 2 F with ˇ 
 ˛.

We put jˇ˛ D ��1
ˇ �˛ , if ˛; ˇ 2 F; ˇ 
 ˛.

If x 2 A, there exist ˛ 2 F such that x 2 A˛ and (a unique) xˇ 2 Bˇ such that
x D �ˇ.xˇ/, for all ˇ 
 ˛.

Then, we put

jˇ˛.x˛/ WD xˇ if ˛ � ˇ:
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By (I.4), it follows easily that jˇ˛ preserves the involution; i.e., jˇ˛.x�̨/ D
.jˇ˛.x˛//�.

The family fB˛; jˇ˛; ˇ 
 ˛g is a directed system of C*-algebras, in the sense
that:

(J.1) for every ˛; ˇ 2 F, with ˇ 
 ˛, jˇ˛ W B˛ ! Bˇ is a linear and injective map;
j˛˛ is the identity of B˛ ,

(J.2) for every ˛; ˇ 2 F, with ˛ � ˇ, �˛ D �ˇjˇ˛:

(J.3) j
ˇjˇ˛ D j
˛ , ˛ � ˇ � 
 .

We assume that, in addition, the jˇ˛’s are Schwarz maps (see, e.g., [9]); i.e.,

(sch) jˇ˛.x˛/�jˇ˛.x˛/ � jˇ˛.x�̨x˛/; 8x˛ 2 B˛; ˛ � ˇ.

For every ˛; ˇ 2 F, with ˛ � ˇ, jˇ˛ is continuous [9] and, moreover,

kjˇ˛.x˛/kˇ � kx˛k˛; 8x˛ 2 B˛:

An involution in A is defined as follows. Let x 2 A. Then x 2 A˛ , for some
˛ 2 F, i.e., x D �˛.x˛/, for a unique x˛ 2 B˛ . Put x� WD �˛.x�̨/. Then if ˇ 
 ˛,
we have

��1
ˇ .x�/ D ��1

ˇ .�˛.x�̨// D jˇ˛.x�̨/ D .jˇ˛.x˛//� D x�̌:

It is easily seen that the map x 7! x� is an involution in A. Moreover, by
the definition itself, it follows that every map �˛ preserves the involution; i.e.,
�˛.x�̨/ D .�˛.x˛//�, for all x˛ 2 B˛; ˛ 2 F.

Definition 5. A locally convex vector space A, with involution �, is called a C*-
inductive locally convex space if

(i) there exists a family ffB˛; �˛g; ˛ 2 Fg, where F is a direct set and, for every
˛ 2 F, B˛ is a C*-algebra and �˛ is a linear injective map of B˛ into A,
satisfying the above conditions (I.1)–(I.4) and (sch), with A˛ D �˛.B˛/, ˛ 2
F;

(ii) A is endowed with the locally convex inductive topology �ind generated by the
family ffB˛; �˛g; ˛ 2 Fg.

The family ffB˛; �˛g; ˛ 2 Fg is called the defining system of A. We notice that the
involution is automatically continuous in AŒ�ind�.

A C*-inductive locally convex space has a natural positive cone.
An element x 2 A is called positive if there exists 
 2 F such that ��1

˛ .x/ 2 BC̨,
8˛ 
 
 .

We denote by AC the set of all positive elements of A.
Then,

(i) Every positive element x 2 A is hermitian; i.e., x 2 Ah WD fy 2 A W y� D yg.
(ii) AC is a nonempty convex pointed cone; i.e., AC \ .�AC/ D f0g.

(iii) If ˛ 2 F and x˛ 2 BC̨, �˛.x˛/ is positive.
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Moreover, every hermitian element x D x� is the difference of two positive
elements, i.e. there exist xC; x� 2 AC such that x D xC � x�.

Now, let A be a C*-inductive locally convex space with defining family of
C*-algebras fB˛I ˛ 2 Fg (F is an index set directed upward). There are also in
this case several possibilities: the first one consists in taking elements that have
representatives in every C*-algebra B˛ of the family whose norms are uniformly
bounded; the second one consists in taking into account the order structure of A, in
the same spirit of the quoted papers of Vidav and Schmüdgen.

3.1 Bounded elements and the C*-inductive structure of A

In this section we will report definitions and results that can be found in [5],
regarding bounded elements defined through the C*-inductive structure of the space.

Definition 6. Let A be a C*-inductive locally convex space. An element x 2 A is
called bounded if x 2 A˛ , for every ˛ 2 F and sup˛2F kx˛k˛ < 1.

The set of bounded elements of A is denoted by Ab.
It is easy to see that the set Ab is a Banach space under the norm kxkb D

sup˛2F kx˛k˛ .
In what follows we will consider *-representations of a C*-inductive locally

convex space. We recall the basic definitions.
Let F be a set directed upward by �. A family fH˛; Uˇ˛; ˛; ˇ 2 F; ˇ 
 ˛g,

where each H˛ is a Hilbert space (with inner product h�j�i˛ and norm k � k˛) and,
for every ˛; ˇ 2 F, with ˇ 
 ˛, Uˇ˛ is a linear map from H˛ into Hˇ , is
called a directed contractive system of Hilbert spaces if the following conditions
are satisfied

(i) Uˇ˛ is injective;
(ii) kUˇ˛�˛kˇ � k�˛k˛; 8�˛ 2 H˛;

(iii) U˛˛ D I˛ , the identity of H˛;
(iv) U
˛ D U
ˇUˇ˛ , ˛ � ˇ � 
 .

A directed contractive system of Hilbert spaces defines a conjugate dual pair
.D�;D/ which is called the joint topological limit [6] of the directed contractive
system fH˛; Uˇ˛; ˛; ˇ 2 F; ˇ 
 ˛g of Hilbert spaces.

Definition 7. Let A be the C*-inductive locally convex space defined by the system
ffB˛; ˚˛g; ˛ 2 Fg as in Definition 5. For each ˛ 2 F, let 	˛ be a *-representation of
B˛ in Hilbert space H˛ . The collection 	 WD f	˛g is said to be a *-representation
of A if

(i) for every ˛; ˇ 2 F there exists a linear map Uˇ˛ W H˛ ! Hˇ such that the
family fH˛; Uˇ˛; ˛; ˇ 2 F; ˇ 
 ˛g is a directed contractive system of Hilbert
spaces;
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(ii) the following equality holds

	ˇ.jˇ˛.x˛// D Uˇ˛	˛.x˛/U�̌
˛; 8x˛ 2 B˛; ˇ 
 ˛: (5)

In this case we write 	.x/ D lim�! 	˛.x˛/ for every x D .x˛/ 2 A or, for short,
	 D lim�! 	˛ .

The *-representation 	 is said to be faithful if x 2 AC and 	.x/ D 0 imply x D 0 (of
course, 	.x/ D 0 means that there exists 
 2 F such that 	˛.x˛/ D 0, for ˛ 
 
 ).

Remark 2. With this definition (which is formally different from that given in [7]
but fully equivalent), 	.x/, x 2 A, is not an operator but rather a collection of
operators. However, as it was shown in [7], 	.x/ can be regarded as an operator
acting on the joint topological limit .D�;D/ of fH˛; Uˇ˛; ˛; ˇ 2 F; ˇ 
 ˛g (see
[6]). The corresponding space of operators was denoted by LB.D ;D�/; it behaves
in the very same way as the space LB.D ;D�/ studied in [5, Section 3] and reduces
to it when the family of Hilbert spaces is exactly fHAI A 2 L �.D/g. The main
difference consists in the fact that the H˛’s need not be all subspaces of a certain
Hilbert space H .

Let 	 D lim�! 	˛ be a faithful representation. Then, for every ˛ 2 F, 	˛ is a
faithful *-representation of B˛ .

As shown in [7, Proposition 3.16], if a C*-inductive locally convex space A
fulfills the following conditions

(r1) if x˛ 2 B˛ and jˇ˛.x˛/ 
 0, ˇ 
 ˛, then x˛ 
 0;
(r2) eˇ 2 jˇ˛.B˛/; 8˛; ˇ 2 F; ˇ 
 ˛;
(r3) every positive linear functional ! D lim�! !˛ on A satisfies the following

property

• if ˛ 2 F and !ˇ.jˇ˛.x�̨/jˇ˛.x˛// D 0, for some ˇ 
 ˛ and x˛ 2 B˛ , then
!˛.x�̨x˛/ D 0;

then, A admits a faithful representation. These conditions, in fact, guarantee that A
possesses sufficiently many positive linear functionals, in the sense that for every
x 2 AC, x ¤ 0, there exists a positive linear functional ! such that !.x/ > 0 [7,
Theorem 3.14].

The following theorem provides a relation between the bounded elements of A
and its bounded representations.

Theorem 2. Let A be a C�-inductive locally convex space and x D .x˛/ 2 A.

(i) If x 2 Ab, then, for every representation 	 D lim�! 	˛ of A, one has

sup
˛2F

k	˛.x˛/k˛˛ < 1;

where k � k˛˛ denote the norm of B.H˛/.
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(ii) Conversely, if A admits a faithful *-representation 	 f D lim�! 	
f
˛ and

sup
˛2F

k	 f
˛.x˛/k˛˛ < 1;

then x 2 Ab.

3.2 Bounded elements and the order structure of A

Here we collect a series of definitions and results given in [5] about bounded
elements of a C*-inductive locally convex space defined by an order cone. As
before, we refer to that paper for the proofs.

The reader will immediately realize that the following definitions are very similar
to those given in Subsection 2.1.2, however we search here a characterization of
bounded elements that originates from the bounded elements of the C*-algebras
that give raise to the C*-inductive locally convex space.

Let A be a C*-inductive locally convex space. If x 2 A, we put, as before,

<.x/ D x C x�

2
and =.x/ D x � x�

2i
:

Both <.x/ and =.x/ are symmetric elements of A.
Assume that A has an element u D u� such that ku˛k˛ � 1, for every ˛ 2 F,

and there exists 
 2 F such that uˇ D jˇ
 .e
 / 8ˇ 
 
 (e
 is the unit of B
 ). For
shortness we call the element u a pre-unit of A. It is not difficult to prove that the
pre-unit u 2 A, if any, is unique.

Definition 8. Let A be a C*-inductive locally convex space with pre-unit u. We say
that x 2 A is order bounded (with respect to u) if there exists � > 0 such that

��u � <.x/ � �u � �u � =.x/ � �u:

The following theorem shows that the notions of bounded element and of order
bounded element we gave within the present section are equivalent.

Theorem 3. Let A be a C*-inductive locally convex space satisfying condition (r1).
Assume that A has a pre-unit u. Then, x 2 Ab if, and only if, x has a representative
for every ˛ 2 F (i.e., for every ˛ 2 F, there exists x˛ 2 B˛ such that x D �˛.x˛/)
and x is order bounded with respect u.

Now, recalling that the set Ab is a Banach space under the norm kxkb D
sup˛2F kx˛k˛ , we can draw a consequence of Theorem 3.
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Proposition 5. Let x D x� 2 Ab and put

p.x/ D inff� > 0I ��u � x � �ug:

Then, p.x/ D kxkb.
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