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Rahmet Savaş Eren Department of Mathematics, Istanbul Medeniyet University,
Istanbul, Turkey

Khalil Ezzinbi Faculté des Sciences Semlalia, Département de Mathématiques,
Université Cadi Ayyad, Marrakech, Morocco

Abdellah Gherbi EPST d’Oran, Oran, Algeria

Abdelaziz Ghribi Higher Institute of Business Administration of Sfax, Sfax,
Tunisia

Joachim Gwinner Fakultät für Luft- und Raumfahrttechnik, Institut für
Mathamatik und Rechneranwendung, Universität der Bundeswehr München,
Neubiberg/München, Germany

Atizez Hadrich Faculté des Sciences de Sfax, Laboratoire de Probabilités et
Statistique, Universitá de Sfax, Sfax, Tunisie

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale (LISIC-EA 4491),
Calais Cedex, France

Mohamed Ali Hammami University of Sfax Tunisia, Sfax, Tunisia

Bernard Helffer Département de Mathématiques, Université Paris-Sud 11, Orsay,
France

Laboratoire Jean Leray, Université de Nantes, Nantes, French



List of Contributors xix

Aref Jeribi Faculty of Science of Sfax, University of Sfax, Soukra Road Km 3.5,
B.P. 1171, 3000, Sfax, Tunisia

Arezki Kessi Faculty of Mathematics, USTHB, Algiers, Algeria

Bilel Krichen Preparatory Engineering Institute, Sfax, Tunisia

Hela Louati University of Sfax Tunisia, Sfax, Tunisia

Mahdi Louati Faculty of Science, Department of Mathematics, University of Sfax,
Sfax, Tunisia

Fatma Mallouli Laboratory CES-Lab, National School of Engineering of Sfax,
Sfax, Tunisia

Afif Masmoudi Faculté des Sciences de Sfax, Laboratoire de Probabilités et
Statistique, Université de Sfax, Sfax, Tunisie

Atef Masmoudi Laboratory of Probability and Statistics, Faculty of Sciences of
Sfax, Universitá de Sfax, Sfax, Tunisie

Bekkai Messirdi University of Oran, Oran, Algeria

Farouk Mselmi Faculty of Science, Department of Mathematics, University of
Sfax, Sfax, Tunisia

Hatem Najar Faculté des Sciences de Moanstir, Département de Mathématiques,
Université de Monastir, Monastir, Tunisia

Laboratoire de recherche: Algèbre Géométrie et Théorie Spectrale : LR11ES53

Ali Salem College of Arts and Sciences in Noairyya, University of Dammam, King
of Saudi Arabia, Dammam, Saudi Arabia

Laboratory of Engineering Mathematics, Polytechnic School of Tunisia, University
of Carthage, Carthage, Tunisia
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Polaroid operators and Weyl type theorems

Pietro Aiena

Abstract Weyl type theorems have been proved for a considerably large number of
classes of operators. In this work, after introducing the class of polaroid operators
and some notions from local spectral theory, we determine a theoretical and general
framework from which Weyl type theorems may be promptly established for many
of these classes of operators. The theory is exemplified by given several examples
of hereditarily polaroid operators.

Keywords Localized SVEP • polaroid type operators • Weyl type theorems
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1 Introduction

This note is a free-style paraphrase of a presentation at the International Conference
on Advances in Applied Mathematics held in Hammamet (Tunisia), 16–19 Decem-
ber 2013. I would like to thank the organizers for their kind invitation and, overall,
for the generous hospitality.

A bounded linear operator T 2 L.X/, X a complex infinite dimensional Banach
space, which satisfies Weyl’s theorem has a very special structure of its spectrum
�.T/, precisely, T is said to verify Weyl’s theorem, if the complement in the
spectrum of the Weyl spectrum coincides with the isolated points of the spectrum
which are eigenvalues of finite multiplicity. In his pioneering work H. Weyl [53]
discovered that every hermitian operator on a Hilbert space has a such structure of
the spectrum,and many years later it was proved by Coburn [26] that also Toeplitz
operators and hyponormal operators satisfy this property. Later, Berberian [17, 23],
showed that several other classes of operators, including seminormal operators,
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2 P. Aiena

satisfy Weyl’theorem. In [13] it has been observed that Weyl’s theorem holds for
every convolution operator acting on the group algebra L1.G/, G a locally compact
abelian group.

There are also several variants of Weyl’s theorem that have been studied in the
last two decades by several authors, for instance a-Weyl’s theorem and property .w/
and their generalized versions. Most of these Weyl type theorems were essentially
proved for special classes of operators. Many times the arguments used for each
one of these classes of operators, are rather similar. In this paper we outline an
useful and general theoretical framework, which entails, as a particular case, Weyl
type theorems for almost all these classes of operators. Our framework combines
classical arguments of Fredholm theory and a localized version of the single-valued
extension property.

2 Definitions and preliminary results

Let T 2 L.X/ be a bounded linear operator on an infinite-dimensional complex
Banach space X, and denote by ˛.T/ and ˇ.T/, the dimension of the kernel ker T
and the codimension of the range R.T/ WD T.X/, respectively. Let

˚C.X/ WD fT 2 L.X/ W ˛.T/ < 1 and T.X/ is closedg

denote the class of all upper semi-Fredholm operators, and let

˚�.X/ WD fT 2 L.X/ W ˇ.T/ < 1g

denote the class of all lower semi-Fredholm operators. If T 2 ˚˙.X/ WD ˚C .X/ [
˚�.X/, the index of T is defined by ind .T/ WD ˛.T/ � ˇ.T/. If ˚.X/ WD ˚C
.X/ \ ˚�.X/ denotes the set of all Fredholm operators, the set of Weyl operators is
defined by

W.X/ WD fT 2 ˚.X/ W ind T D 0g;

the class of upper semi-Weyl operators is defined by

WC.X/ WD fT 2 ˚C.X/ W ind T � 0g;

and class of lower semi-Weyl operators is defined by

W�.X/ WD fT 2 ˚�.X/ W ind T � 0g:

Clearly, W.X/ D WC.X/ \ W.X/. The classes of operators above defined generate
the following spectra: the Weyl spectrum, defined by
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�w.T/ WD f� 2 C W �I � T … W.X/gI

and the upper semi-Weyl spectrum, defined by

�uw.T/ WD f� 2 C W �I � T … WC.X/g:

Let p WD p.T/ be the ascent of an operator T; i.e. the smallest nonnegative integer
p such that ker Tp D ker TpC1.X/. If such integer does not exist we put p.T/ D 1.
Analogously, let q WD q.T/ be the descent of T; i.e the smallest nonnegative integer
q such that Tq.X/ D TqC1.X/, and if such integer does not exist we put q.T/ D 1.
It is well known that if p.T/ and q.T/ are both finite then p.T/ D q.T/, see [1,
Theorem 3.3].

The class of all Browder operators is defined

B.X/ WD fT 2 ˚.X/ W p.T/; q.T/ < 1gI

while the class of all upper semi-Browder operators is defined

BC.X/ WD fT 2 ˚C.X/ W p.T/ < 1g:

Obviously, B.X/ � W.X/ and BC.X/ � WC.X/, see [1, Theorem 3.4].
Semi-Fredholm operators have been generalized by Berkani [18, 20] and [19] in

the following way: for every T 2 L.X/ and a nonnegative integer n let us denote
by TŒn� the restriction of T to Tn.X/, viewed as a map from the space Tn.X/ into
itself (we set TŒ0� D T). T 2 L.X/ is said to be semi B-Fredholm, (resp. B-Fredholm,
upper semi B-Fredholm, lower semi B-Fredholm,) if for some integer n � 0 the
range Tn.X/ is closed and TŒn� is a semi-Fredholm operator (resp. Fredholm, upper
semi-Fredholm, lower semi-Fredholm). In this case TŒm� is a semi-Fredholm operator
for all m � n [20] with the same index of TŒn�. This enables one to define the index
of a semi B-Fredholm as ind T D ind TŒn�.

A bounded operator T 2 L.X/ is said to be B-Weyl (respectively, upper semi
B-Weyl, lower semi B-Weyl) if for some integer n � 0 the range Tn.X/ is closed
and TŒn� is Weyl (respectively, upper semi-Weyl. lower semi-Weyl). The B-Weyl
spectrum is defined by

�bw.T/ WD f� 2 C W �I � T is not B-Weylg;

and, analogously, the upper semi B-Weyl spectrum of T is defined by

�ubw.T/ WD f� 2 C W �I � T is not upper semi B-Weylg:

The concept of Drazin invertibility has been introduced in a more abstract setting
than operator theory. In the case of the Banach algebra L.X/, T 2 L.X/ is said
to be Drazin invertible (with a finite index) if p.T/ D q.T/ < 1, and this is
equivalent to saying that T D T0 ˚ T1, where T0 is invertible and T1 is nilpotent,
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see [42, Corollary 2.2] and [41, Prop. A]. Every B-Fredholm operator T admits the
representation T D T0 ˚ T1, where T0 is Fredholm and T1 is nilpotent [19], so every
Drazin invertible operator is B-Fredholm. Drazin invertibility for bounded operators
suggests the following definition:

Definition 2.1. T 2 L.X/ is said to be left Drazin invertible if p WD p.T/ < 1 and
TpC1.X/ is closed, while T is said to be right Drazin invertible if q WD q.T/ < 1
and Tq.X/ is closed.

Note that the concept of Drazin invertibility may be given in terms of
B-Fredholm theory: indeed, T is Drazin invertible (respectively, left Drazin
invertible, right Drazin invertible) if and only if T is B-Browder (respectively,
upper semi B-Browder, lower semi B-Browder), see [7].

The Drazin spectrum is then defined as

�d.T/ WD f� 2 C W �I � T is not Drazin invertibleg;

while the left Drazin spectrum is defined as

�ld.T/ WD f� 2 C W �I � T is not left Drazin invertibleg:

In the sequel we denote by �a.T/ the approximate point spectrum, defined by

�a.T/ WD f� 2 C W �I � T is not bounded belowg;

where an operator is said to be bounded below if it is injective and has closed range.
The classical surjective spectrum of T is denoted by �s.T/.

Denote by T 0 the dual of T 2 L.X/, and if T is defined on a Hilbert space denote
by T� the Hilbert adjoint of T . The concepts of left or right Drazin invertibility
lead to the concepts of left or right pole. Let us denote by �a.T/ the classical
approximate point spectrum and by �s.T/ the surjectivity spectrum. It is well known
that �a.T 0/ D �s.T/, where T 0 denotes the dual of T , and �s.T 0/ D �a.T/. Evidently,
�uw.T/ � �a.T/.

Definition 2.2. Let T 2 L.X/, X a Banach space. If �I � T is left Drazin invertible
and � 2 �a.T/, then � is said to be a left pole of the resolvent of T . A left pole � is
said to have finite rank if ˛.�I � T/ < 1. If �I � T is right Drazin invertible and
� 2 �s.T/, then � is said to be a right pole of the resolvent of T .A right pole � is
said to have finite rank if ˇ.�I � T/ < 1.

Evidently, � is a pole of T if and only if � is both a left and a right pole of T .
Moreover, � is a pole of T if and only if � is a pole of T 0. In the case of Hilbert space
operators, � is a pole of T 0 if and only if � is a pole of T�.

Definition 2.3. Let T 2 L.X/. Then

(i) T is said to be left polaroid if every isolated point of �a.T/ is a left pole of the
resolvent of T .
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(ii) T 2 L.X/ is said to be right polaroid if every isolated point of �s.T/ is a right
pole of the resolvent of T .

(iii) T is said to be a-polaroid if every � 2 iso �a.T/ is a pole of the resolvent of T .

The concept of left and right polaroid is dual each other:

Theorem 2.4 ([5]). If T 2 L.X/, X a Banach space, then the following equiva-
lences hold:

(i) T is left polaroid if and only if T 0 is right polaroid.
(ii) T is right polaroid if and only if T 0 is left polaroid.

(iii) T is polaroid if and only if T 0 is polaroid.

If T is a Hilbert space operator, then in the equivalences (i), (ii), and (iii) T 0 may
be replaced by T�. Moreover, T 0 is a-polaroid if and only if T� is a-polaroid.

Polaroid operators on infinite dimensional complex Banach spaces have been
recently investigated, together with the related conditions for an operator of being
left, right polaroid or a-polaroid [6, 30, 31, 34].

The quasi-nilpotent part of T 2 L.X/ is defined as the set

H0.T/ WD fx 2 X W lim
n!1 kTnxk 1

n D 0g:

or, alternatively, H0.T/ in terms of local spectral theory may be defined as the glocal
subspace associated with the set f0g, see [43] or [1]. Clearly, ker Tn � H0.T/ for
every n 2 N. The analytic core of T is defined K.T/ WD fx 2 X W there exist c > 0

and a sequence .xn/n�1 � X such that Tx1 D x;TxnC1 D xn for all n 2 N, and
jjxnjj � cnjjxjjfor all n 2 Ng.

Note that K.T/ may be also defined as the local spectral space associated with
C n f0g, see again [43] or [1]. Note that T.K.T// D K.T/, see [1, Theorem 1.21].

Theorem 2.5 ([9, Theorem 2.2]). If T 2 L.X/, the following statements hold:

(i) T is polaroid if and only if there exists p WD p.�I � T/ 2 N such that

H0.�I � T/ D ker .�I � T/p for all � 2 iso �.T/: (1)

(ii) If T is left polaroid, then there exists p WD p.�I � T/ 2 N such that

H0.�I � T/ D ker .�I � T/p for all � 2 iso �a.T/: (2)

It is easily seen that the following implications hold:

T a-polaroid ) T left polaroid ) T polaroid

Furthermore, if T is right polaroid, then T is polaroid.
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The study of Weyl type theorems needs some typical tools originating from
local spectral theory. In particular, we consider the following basic property that
has relevant role in the theory of decomposable operators, as well as in Fredholm
theory, see Laursen and Neumann [43] and [1].

Definition 2.6. Let X be a complex Banach space and T 2 L.X/. The operator T
is said to have the single valued extension property at �0 2 C (abbreviated SVEP
at �0), if for every open disc D of �0, the only analytic function f W U ! X which
satisfies the equation .�I � T/f .�/ D 0 for all � 2 D is the function f � 0.

An operator T 2 L.X/ is said to have SVEP if T has SVEP at every point � 2 C.

Evidently, T 2 L.X/ has SVEP at every isolated point of the spectrum.
We also have

p.�I � T/ < 1 ) T has SVEP at �; (3)

and dually,

q.�I � T/ < 1 ) T 0 has SVEP at �; (4)

see [1, Theorem 3.8]. Furthermore, from definition of localized SVEP it is easily
seen that

�a.T/ does not cluster at � ) T has SVEP at �; (5)

and dually,

�s.T/ does not cluster at � ) T 0 has SVEP at �: (6)

Note that H0.T/ generally is not closed and [1, Theorem 2.31 ]

H0.�I � T/ closed ) T has SVEP at �: (7)

Remark 2.7. The converse of the implications (1)–(5) holds if �I � T is semi-
Fredholm, see [1, Chapter 3], or if �I � T is semi B-Fredholm [3].

Recall that a bounded operator K 2 L.X/ is said to be algebraic if there exists a
non-constant polynomial h such that h.K/ D 0. Trivially, every nilpotent operator
is algebraic and it is well known that if Kn.X/ has finite dimension for some n 2 N

then K is algebraic.

Theorem 2.8 ([11]). If T 2 L.X/ has SVEP and K 2 L.X/ is an algebraic operator
which commutes with T, then T C K has SVEP.

The polaroid type conditions for T (respectively, for T 0) are equivalent, assuming
the SVEP at the points of certain sets:
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Theorem 2.9. Let T 2 L.X/. Then we have

(i) If T 0 has SVEP at every � … �uw.T/ then the properties of being polaroid,
a-polaroid and left polaroid for T are all equivalent.

(ii) If T has SVEP at every � … �lw.T/, then the properties of being polaroid,
a-polaroid and left polaroid for T 0 are all equivalent.

The polaroid condition is preserved by the functional calculus:

Theorem 2.10 ([4]). For an operator T 2 L.X/ the following statements are
equivalent.

(i) T is polaroid;
(ii) f .T/ is polaroid for every f 2 Hnc.�.T//;

(iii) there exists a non-trivial polynomial p such that p.T/ is polaroid;
(iv) there exists f 2 Hnc.�.T// such that f .T/ is polaroid.

3 Examples of polaroid operators

The following class of operators has been introduced by Oudghiri [51].

Definition 3.1. A bounded operator T 2 L.X/ is said to belong to the class H.p/ if
there exists a natural p WD p.�/ such that:

H0.�I � T/ D ker .�I � T/p for all � 2 C: (8)

In the case that p D p.�/ D 1 for every � 2 C we shall say that T belongs to the
class H.1/. Every convolution operator of the group algebra L1.G/ is H.1/ [13]. In
the sequel we show that some other important classes of operators are H.1/.

(a) Totally paranormal operators. Recall that T 2 L.X/ is said paranormal
if kTxk � kT2xkkxk for all x 2 X. The property of being paranormal is
not translation-invariant. T 2 L.X/ is called totally paranormal if �I � T is
paranormal for all � 2 C. Every totally paranormal operator has property H.1/
[44]. In fact, if x 2 H0.�I � T/, then k.�I � T/nxk1=n ! 0 and since T is
totally paranormal we then have .�I � T/nxk1=n � k.�I � T/xk. Therefore,
H0.�I � T/ � ker.�I � T/, and since the reverse inclusion holds for every
operator then H0.�I � T/ D ker.�I � T/.

(b) Hyponormal operators. A bounded operator T 2 L.H/ on a Hilbert space
is said to be hyponormal if kT�xk � kTxk for all x 2 H, or equivalently
T�T � TT�. It is easily seen that every hyponormal operator is totally para-
normal, hence H.1/. The class of totally paranormal operators includes also
subnormal operators and quasi-normal operators, since these operators are
hyponormal, see [27] or [37].
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Two operators T 2 L.X/, S 2 L.Y/, X and Y Banach spaces, are said to be
intertwined by A 2 L.X;Y/ if SA D AT; and A is said to be a quasi-affinity if it has
a trivial kernel and dense range. If T and S are intertwined by a quasi-affinity, then
T is called a quasi-affine transform of S, and we write T � S. If both T � S and
S � T hold, then T and S are said to be quasi-similar.

The next result shows that property H.1/ is preserved by quasi-affine transforms.

Theorem 3.2. Suppose that S 2 L.Y/ has property H.1/ and T � S. Then T has
property H.1/. Analogously, if S 2 L.Y/ has property H.p/ and T � S, then T has
property H.p/

Proof. Suppose S has property H.1/, SA D AT , with A injective. If � 2 C and
x 2 H0.�I � T/, then

k.�I � S/nAxk1=n D kA.�I � T/nxk1=n � kAk1=nk.�I � T/nxk1=n;

from which it follows that Ax 2 H0.�I � S/ D ker .�I � S/. Hence A.�I � T/
x D .�I � S/Ax D 0 and, since A is injective, this implies that .�I � T/x D 0, i.e.
x 2 ker .�I � T/. Therefore H0.�I � T/ D ker .�I � T/ for all � 2 C.

The more general case of H.p/-operators is proved by a similar argument.

For T 2 L.H/ let T D WjTj be the polar decomposition of T . Then R WD
jTj1=2WjTj1=2 is said the Aluthge transform of T . If R D VjRj is the polar
decomposition of R, define QT WD jRj1=2VjRj1=2.
(c) Log-hyponormal operators. An operator T 2 L.H/ is said to be log-

hyponormal if T is invertible and satisfies log .T�T/ � log .TT�/. If T
is log-hyponormal, then QT is hyponormal and T D K QTK�1, where K WD
jRj1=2jTj1=2, see [25, 52]. Hence T is similar to a hyponormal operator and
therefore, by Theorem 3.2, has property H.1/.

(d) p-hyponormal operators. An operator T 2 L.H/ is said to be p-hyponormal,
with 0 < p � 1, if .T�T/p � .TT�/p. Every p-hyponormal operator is
paranormal, see [16]. Every invertible p-hyponormal T is quasi-similar to a log-
hyponormal operator and consequently, by Theorem 3.2, it has property H.1/
[14, 29]. This is also true for p-hyponormal operators which are not invertible,
see [33].

Theorem 3.3 ([51]). For a bounded operator T 2 L.X/ the following assertions
are equivalent:

(i) T has the property H.p/;
(ii) f .T/ has the property H.p/ for every f 2 H .�.T//;

(iii) There exists an analytic function h defined in an open neighborhood U of
�.T/, non-identically constant in any component of U , such that h.T/ has the
property H.p/.
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Moreover, if T has the property H.p/, then any restriction TjM on a closed
T-invariant subspace has the property H.p/.

An obvious consequence of Theorem 3.3 is that T 2 L.H/ is algebraically
hyponormal (i.e., there exists a non-trivial polynomial h for which h.T/ is hyponor-
mal) then T is H.p/. In [37, §2.72] is given an example of a hyponormal
operator T for which T2 is not hyponormal. However, an important consequence
of Theorem 3.3 is that T2 inherits from T the property of being H.1/.

Theorem 3.4. If T 2 L.X/ has the property H.p/, then T is hereditarily polaroid.
Moreover, T has SVEP.

Proof. Evidently, Theorem 2.5 entails that T is polaroid, while, since H0.�I � T/
is closed for all � 2 C, then T has SVEP by the inclusion (7). Furthermore, T is
hereditarily polaroid by Theorem 3.3.

An operator similar to a restriction of a generalized scalar operator to one of
its closed invariant subspaces is called subscalar. The interested reader can find a
well-organized study of these operators in the Laursen and Neumann book [43].

Theorem 3.5 ([51]). Every subscalar operator T 2 L.X/ is H.p/.

Therefore, we have

subscalarity ) property H.p/ ) SVEP:

Classical example of subscalar operators are hyponormal operators. Theorem 3.5
implies that some other important classes of operators are H.p/.

(e) M-hyponormal operators. Recall that T 2 L.H/ is said to be M-hyponormal
if there exists M > 0 such that TT� � MT�T . Every M-hyponormal operator is
subscalar [43, Proposition 2.4.9] and hence H.p/.

(f) w-hyponormal operators. If T 2 L.H/ and T D UjTj is the polar decom-
position, define OT WD jTj 12 UjTj 12 . T 2 L.H/ is said to be w-hyponormal if
j OTj � jTj � j OT�j. Examples of w-hyponormal operators are p-hyponormal
operators and log-hyponormal operators. All w-hyponormal operators are
subscalar (together with its Aluthge transformation, see [47]), and hence H.p/
(precisely, H.1/, see [39, Theorem 2.5].

(g) p-quasihyponormal operators. A Hilbert space operator T 2 L.H/ is said to
be p-quasihyponormal for some 0 < p � 1 if

T�jT�j2pT � T � jTj2pT:

Every p-quasi-hyponormal is paranormal [46].

Let us denote by p� � QH the class of all p-quasihyponormal operators T
for which ker T � ker T�. The following result is due to Duggal and Jeon [35,
Theorem 2.2 and Theorem 2.12].
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Theorem 3.6. Every p� � QH operator is H.1/.

A bounded linear operator T 2 L.X/, defined on a complex infinite dimensional
Banach space X, is said to be normaloid if kTk D r.T/, r.T/ the spectral radius
of T . An operator T 2 L.X/ is said to be hereditarily normaloid, T 2 H N, if the
restriction TjM of T , to any closed T-invariant subspace M, is normaloid. Finally,
T 2 L.X/ is said to be totally hereditarily normaloid, T 2 T H N , if T 2 H N
and every invertible restriction TjM has a normaloid inverse. Totally hereditarily
normaloid operators were introduced in [32], and have since investigated in [30],
and [34], for establishing Weyl type theorems.

Theorem 3.7 ([4]). If T 2 L.X/ is T H N , then T is polaroid. If X is a separable
Banach space, or a Hilbert space, then T has SVEP.

Now, let C be any class of operators. We say that T is an analytically C -operator if
there exists some analytic function f 2 Hnc.�.T// such that f .T/ 2 C . It should be
noted that the property of being analytically C is translation invariant.

In the sequel we list examples of T H N -operators:

(h) Paranormal operators. Paranormal operators on Banach spaces are
T H N -operators. Note that a paranormal operator need not to be H.p/. A
subclass of paranormal operators is given by the class of all p-quasi-hyponormal
operators on Hilbert spaces, see [35], where an operator T 2 L.H/, H a
separable infinite dimensional Hilbert space, is said to be p-quasi-hyponormal,
for some 0 < p � 1, if

T�.jTj2p � jT�j2pT � 0;

where jTj WD .T�T/1=2. Another subclass of paranormal operators on Hilbert
spaces is given by the A class of operators introduced by Furuta et al. [37],
where T 2 L.H/ is said to be a class A operator if jTj2 � jT2j.

(g) quasi *-paranormal operators. An operator T 2 L.H/, H a Hilbert space, is
called quasi *-paranormal if

kT�Txk2 � kT3xkkTxk for all unit vectors x 2 H

Every quasi *-paranormal operator is totally hereditarily normaloid, see [50].
The class of quasi *-paranormal contains the class of all *-paranormal opera-
tors, i.e. the class of T 2 L.H/ for which

kT�xk2 � kT2xk for all unit vectors x 2 H;

see [49] for details. Every quasi-hyponormal operator is quasi *-paranormal,
see [49].
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(f) k-quasi-*-class A operators. A bounded operator T 2 L.H/, H a separable
Hilbert space, is said to be k-quasi-*-class A operator if

T�kjT2jTk � T�kjT�2kT�

Every k-quasi-*-class A operator is totally hereditarily normaloid, see [48]. For
k D 1 we obtain the class of all quasi-*-class A operators, which is included in
the class of all quasi *-paranormal operators.

In order to give some other examples of polaroid operator, we introduce a new
class of operators. In the sequel by Y we denote the closure of Y � X.

Definition 3.8. An operator T 2 L.X/, X a Banach space, is said to be k-quasi
totally hereditarily normaloid, k a nonnegative integer, if the restriction TjTk.X/ is
T H N .

Evidently, every T H N -operator is quasi-T H N , and if Tk.X/ is dense in X
then a quasi-T H N operator T is T H N .

We recall now some elementary algebraic facts. Suppose that T 2 L.X/ and
X D M ˚ N, with M and N closed subspace of X, M invariant under T . With
respect to this decomposition of X it is known that T may be represented by an upper

triangular operator matrix

�
A B
0 C

�
; where A 2 L.M/, C 2 L.N/ and B 2 L.N;M/.

It is easily seen that for every x D
�

x
0

�
2 M we have Tx D Ax, so A D TjM. Let

us consider now the case of operators T acting on a Hilbert space H, and suppose
that Tk.H/ is not dense in H. In this case we can consider the nontrivial orthogonal
decomposition

H D Tk.H/˚ Tk.H/
?
; (9)

where Tk.H/
? D ker.T�/k, T� the adjoint of T . Note that the subspace Tk.H/ is

T-invariant, so we can represent, with respect the decomposition (9), T as an upper
triangular operator matrix

�
T1 T2
0 T3

�
; (10)

where T1 D TjTk.H/. Moreover, T3 is nilpotent. Indeed, if x 2 Tk.X/
?

, an easy

computation yields Tkx D T

�
0

x

�
D T3kx. Hence T3kx D 0, since Tkx 2 Tk.H/ [

Tk.H/
? D f0g. Therefore we have:
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Theorem 3.9. Suppose that T 2 L.H/ and Tk.H/ non-dense in H. Then, according

to the decomposition (9), T D
�

T1 T2
0 T3

�
is quasi-T HN if and only if T1 is T H N .

Furthermore,

�.T/ D �.T1/ [ �.T3/ D �.T1/ [ f0g:

Proof. The first assertion is clear, since T1 D TjTk.H/. The second assertion

follows from the following general result: if T WD
�

A C
0 B

�
is an upper triangular

operator matrix acting on some direct sum of Banach spaces and �.A/ \ �.B/ has
no interior points, then �.T/ D �.A/ [ �.B/; see [45].

Upper triangular operator matrices have been studied by many authors, see, for
instance, [24, 28, 38, 56]. The next result improves Theorem 3.7.

Theorem 3.10 ([10]). If T 2 L.H/ is an analytically quasi-T H N operator, then
T is hereditarily polaroid. Moreover, T has SVEP.

In the sequel we give some examples of operators which are quasi-totally
hereditarily normaloid.

(i) .n; k/-quasiparanormal operators. The class of quasi-paranormal operators
may be extended as follows: T 2 L.H/ is said to be .n; k/-quasiparanormal if

kTkC1xk � kT1Cn.Tkx/k 1
1Cn kTkxk n

1Cn for all x 2 H:

The class of .1; k/- quasiparanormal operators has been studied in [55]. The
.1; 1/-quasiparanormal operators has been studied in [54]. If Tk.H/ is not dense

then, in the triangulation T D
�

T1 T2
0 T3

�
; T1 D TjTk.H/ is n-quasiparanormal,

and hence T H N , see [55].
(l) k-quasiclass A operators. An extension of class A operators is given by the

class of all k-quasiclass A operators, where T 2 L.H/, H a separable infinite
dimensional Hilbert space, is said to be a k-quasiclass A operator if

T�k
.jTj2 � jTj2/Tk � 0:

Every k-quasiclass A operator is quasi-T H N . Indeed, if T has dense range,
then T is a class A operator and hence paranormal. If T does not have dense
range, then T with respect to the decomposition H D Tk.H/ ˚ ker T�k may

be represented as a matrix T D
�

T1 T2
0 T3

�
; where T1 WD TjTk.H/ is a class A

operator, and hence T HN, see [52].
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As it has been observed in [36, Example 0.2], a quasi-class A operator
(i.e., k D 1) need not to be normaloid. This shows that, in general, a quasi-T H N
operator is not normaloid, so the class of quasi-T H N operators properly contains
the class of T H N operators.

(m) k-quasi *-paranormal operators. An operator T 2 L.H/, H a separable
infinite dimensional Hilbert space, is said to be k-quasi *-paranormal, k 2 N, if

kT�Tkxk2 � kTkC2xkkTkxk for all unit vectors x 2 H:

This class of operators contains the class of all quasi- �-paranormal operators
(which corresponds to the value k D 1). Every k-quasi *-paranormal operator
is quasi-T H N . Indeed, if Tk has dense range then, T is �-paranormal and
hence T H N . If Tk does not dense range, then T may be decomposed,

on H D Tk.H/ ˚ ker T�k, as T D
�

T1 T2
0 T3

�
; where T1 D TjTk.H/ is

�-paranormal, hence T H N , see [49, Lemma 2.1].
(n) .p; k/-quasihyponormal operators. An extension of p-quasi-hyponormal

operators is defined as follows: an operator T 2 L.H/ is said to be .p; k/-
quasihyponormal for some 0 < p � 1 and k 2 N, if

T�kjT�j2pTk � T�kjTj2pTk:

Every .p; k/-quasihyponormal operator T with respect to the decomposition

H D Tk.H/ ˚ ker T�k may be represented as a matrix T D
�

T1 T2
0 0

�
;

where T1 WD TjTk.H/ is k-hyponormal (hence paranormal) and consequently
T H N , see [40].

4 Weyl type theorems

If T 2 L.X/, define

E.T/ WD f� 2 iso �.T/ W 0 < ˛.�I � T/g;

and

Ea.T/ WD f� 2 iso �a.T/ W 0 < ˛.�I � T/g:

Evidently, E0.T/ � E.T/ � Ea.T/ for every T 2 L.X/. Define

�00.T/ WD f� 2 iso �.T/ W 0 < ˛.�I � T/ < 1g;
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and

�a
00.T/ WD f� 2 iso �a.T/ W 0 < ˛.�I � T/ < 1g:

Let p00.T/ WD �.T/ n �b.T/, i.e. p00.T/ is the set of all poles of the resolvent
of T .

Definition 4.1. A bounded operator T 2 L.X/ is said to satisfy Weyl’s theorem,
in symbol (W), if �.T/ n �w.T/ D �00.T/. T is said to satisfy a-Weyl’s theorem,
in symbol (aW), if �a.T/ n �uw.T/ D �a

00.T/. T is said to satisfy property .w/,
if �a.T/ n �uw.T/ D �00.T/.

Recall that T 2 L.X/ is said to satisfy Browder’s theorem if �w.T/ D �b.T/,
while T 2 L.X/ is said to satisfy a-Browder’s theorem if �uw.T/ D �ub.T/.
Weyl’s theorem for T entails Browder’s theorem for T , while a-Weyl’s theorem
entails a-Browder’s theorem. Either a-Weyl’s theorem or property (w) entails Weyl’s
theorem. Property .w/ and a-Weyl’s theorem are independent, see [12].

The generalized versions of Weyl type theorems are defined as follows:

Definition 4.2. A bounded operator T 2 L.X/ is said to satisfy generalized
Weyl’s theorem, in symbol, (gW), if �.T/ n �bw.T/ D E.T/. T 2 L.X/ is
said to satisfies generalized a-Weyl’s theorem, in symbol, (gaW), if �a.T/ n �ubw

.T/ D Ea.T/: T 2 L.X/ is said to satisfy generalized property .w/, in symbol, .gw/,
if �a.T/ n �ubw.T/ D E.T/.

Recall that T 2 L.X/ is said to satisfy generalized Browder’s theorem if �bb.T/ D
�bw.T/, while T 2 L.X/ is said to satisfy generalized a-Browder’s theorem if
�ubb.T/ D �ubw.T/. Browder’s theorem and generalized Browder’s theorem are
equivalent, and analogously a-Browder’s theorem and generalized a-Browder’s
theorem are equivalent, see [15]. a-Browder’s theorems entails Browder’s theorems
and if T , or T 0, has SVEP then a-Browder’s theorem holds for T . General-
ized a-Weyl’s theorem, as well as generalized property .w/, entails generalized
a-Browder’s theorem.

In the following diagrams we resume the relationships between all Weyl type
theorems:

.gw/ ) .w/ ) (W)

(gaW) ) .aW/ ) .W/;

see [21, Theorem 2.3], [12] and [22]. Generalized property .w/ and generalized
a-Weyl’s theorem are also independent, see [21]. Furthermore,

.gw/ ) .gW/ ) (W)

(gaW) ) .gW/ ) .W/
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see [21] and [22]. The converse of all these implications in general does not hold.
Furthermore, by [2, Theorem 3.1],

.W/ holds for T , Browder’s theorem holds for T and p00.T/ D �00.T/:

Under the polaroid conditions we have a very clear situation:

Theorem 4.3 ([6]). Let T 2 L.X/. Then we have:

(i) If T is polaroid, then .W/ and .gW/ for T are equivalent.
(ii) If T is left-polaroid, then .aW/ and .gaW/ are equivalent for T, while .W/ and

.gW/ are equivalent for T.
(iii) If T is a-polaroid, then .aW/, .gaW/, .w/ and .gw/ are equivalent for T, while

.W/ and .gW/ are equivalent for T.

Although the polaroid conditions are neither necessary nor sufficient for an
operator to satisfying Weyl type theorems, almost all of the commonly considered
classes of operators satisfy Weyl type theorems since they are polaroid type and
have the single valued extension property (SVEP). Indeed, we have:

Theorem 4.4. Let T 2 L.X/ be polaroid and suppose that either T 0 has SVEP at
every � … �uw.T/ or T has SVEP at every � … �lw.T/. Then both T and T 0 satisfy
Weyl’s theorem.

Proof. Each one of the assumptions on the SVEP ensures that T , or equivalently T 0,
satisfies Browder’s theorem. In fact, if T 0 has SVEP at every � … �uw.T/, then a-
Browder’s theorem (and hence Browder’s theorem) holds for T , while if T has SVEP
at every � … �lw.T/ then a-Browder’s theorem (and hence Browder’s theorem) holds
for T 0, see [8, Theorem 2.3] The polaroid condition for T entails that p00.T/ D
�00.T/, so Weyl’s theorem holds for T . If T is polaroid, then T 0 is polaroid and
hence p00.T 0/ D �00.T 0/, so Weyl’s theorem holds also for T 0.

For a bounded operator T 2 L.X/, define ˘ a.T/ WD �a.T/ n �ld.T/: It is clear
that ˘ a

00.T/ is the set of all left poles of the resolvent.

Theorem 4.5. Let T 2 L.X/ be left polaroid and suppose that either T or T 0 has
SVEP. Then T satisfies generalized a-Weyl’s theorem.

Proof. T satisfies a-Browder’s theorem and the left polaroid condition entails that
˘ a.T/ D Ea.T/. By [14, Theorem 2.18] then .gaW/ holds for T .

Theorem 4.6. Let T 2 L.X/ be polaroid. Then we have:

(i) if T 0 has SVEP at every � … �uw.T/, then .gaW/ and .gw/ hold for T.
(ii) If T has SVEP at every � … �lw.T/, then .gaW/ and .gw/ hold for T 0.

Proof. (i) We show that �uw.T/ D �w.T/. Let � … �uw.T/. Then �I �T 2 WC.X/,
so ind.�I � T/ � 0. Since T 0 has SVEP at � by Remark 2.7 we have
q.�I � T/ < 1. Consequently, ind.�I � T/ � 0, see [1, Theorem 3.4], and
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hence � … �w.T/. This shows that �w.T/ � �uw.T/ and since the opposite
inclusion holds for every operator then �uw.T/ D �w.T/. Now, as we have seen
in the proof of Theorem 2.9, we have �a.T/ D �.T/, thus �.T/ n �w.T/ D
�a.T/ n �uw.T/ and �00.T/ D �a

00.T/. Therefore, .aW/ holds for T and this by
Theorem 4.3 is equivalent, since by Theorem 2.9 T is a-polaroid, to saying that
.gaW/ and .gw/ hold for T .

(ii) We show that �uw.T 0/ D �w.T 0/, or equivalently �lw.T/ D �w.T/ . Let � …
�lw.T/. Then �I � T 2 W�.X/, so ind.�I � T/ � 0. Since T has SVEP at �
by Remark 2.7 we then have p.�I � T/ < 1. Consequently, ind.�I � T/ � 0,
see [1, Theorem 3.4], and hence � … �w.T/. It is easily seen that �a.T 0/ D
�s.T/ D �.T/ D �.T 0/ from which we obtain �00.T 0/ D �a

00.T
0/. Therefore,

.aW/ holds for T 0 and this by Theorem 4.3 is equivalent, since by Theorem 2.9
T 0 is a-polaroid, to saying that .gaW/ and .gw/ hold for T 0.

Let Hnc.�.T// denote the set of all analytic functions, defined on an open
neighborhood of �.T/, such that f is non-constant on each of the components of its
domain. Define, by the classical functional calculus, f .T/ for every f 2 Hnc.�.T//.

Theorem 4.7. Suppose that T 2 L.X/ has SVEP and let f 2 Hnc.�.T//.

(i) If T is polaroid, then f .T/ satisfies .gW/.
(ii) If T is left polaroid, then f .T/ satisfies .gaW/.

(iii) If T is a-polaroid, then f .T/ satisfies both .gaW/ and .gw/.

Proof. (i) f .T/ is polaroid and by [1, Theorem 2.40] has SVEP. Combining
Theorem 4.4 and Theorem 4.3 we then conclude that f .T/ satisfies .gW/ .

(ii) f .T/ is left polaroid by [6, Lemma 3.11] and has SVEP. Combining Theo-
rem 4.5 and Theorem 4.3 it then follows that f .T/ satisfies .gaW/.

(iii) By part (ii) f .T/ satisfies .gaW/, since it is also left polaroid. f .T/ is a-polaroid
by [6, Lemma 3.11] and has SVEP. By Theorem 4.3 then f .T/ satisfies also
.gw/.

The next two examples show that the assumption of being polaroid in part (i) of
Theorem 4.7 is not sufficient to ensure property .gaW/, or .gw/.

Example 4.8. Let R 2 L.`2.N// be the right shift and let Q denote the quasi-
nilpotent operator defined as

Q.x1; x2; : : : / WD .0;
x2
2
;

x3
3
; : : : / for all x D .x1; x2; : : : / 2 `2.N/:

Let T WD R ˚ Q. Then T has SVEP, since both R and Q have SVEP, and is polaroid,
since �.T/ D D.0; 1/, where D.0; 1/ is the closed unit disc of C centered at 0 and
radius 1, has no isolated points. We also have �a.T/ D � [f0g, where � denotes the
unit circle of C. Therefore, �uw.T/ � �a.T/ D � [ f0g. Now, for every � … �uw.T/
the SVEP of T at � implies that � … acc �a.T/ D � , thus � � �uw.T/. Clearly,
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p.T/ D p.R/ C p.Q/ D 1, so 0 2 �ub.T/ D �uw.T/, where the last equality
holds since T satisfies a-Browder’s theorem. Therefore, �uw.T/ D � [ f0g, hence
�a.T/ n �uw.T/ D ;. But �a

00.T/ D f0g, so a-Weyl’s theorem does not hold for T .
Note that property .gw/ holds for T . Indeed, �ubw.T/ � �uw.T/ D � [ f0g, and

repeating the same argument used above, and generalized a-Browder’s theorem for
T) we easily obtain �ubw.T/ D � [ f0g. Clearly, E.T/ D ; and hence E.T/ D �a

.T/ n �ubw.T/.

Also the assumption of being left polaroid in part (ii) of Theorem 4.7 is not
sufficient to ensure property .gw/:

Example 4.9. Let T be the hyponormal operator given by the direct sum of the
1-dimensional zero operator U and the unilateral right shift R on `2.N/. Evidently,
T has SVEP and iso �a.T/ D f0g since �a.T/ D � [ f0g. Clearly, T 2 ˚C.X/, and
hence T2 2 ˚C.X/, so T2.X/ is closed, and since p.T/ D p.U/ D 1it then follows
that 0 is a left pole of T , i.e. T is left polaroid. We show that T does not satisfy .w/
(and hence .gw/). We know that �uw.T/ � �a.T/ D � [f0g and repeating the same
argument of Example 4.8 we have � � �uw.T/ � � [ f0g. Since T 2 BC.X/ �
WC.X/ it then follows that 0 … �uw.T/, so �uw.T/ D � , and hence

�a.T/ n �uw.T/ D f0g ¤ �00.T/ D ;;

thus T does not satisfy .w/ (and hence .gw/.

The following perturbation result has been proved in [5, Theorem 3.12].

Theorem 4.10. Suppose that T 2 L.X/ and K 2 L.X/ an algebraic operator
commuting with T 2 L.X/. If T 2 L.X/, or T�, has SVEP and T, or T�, is
hereditarily polaroid, then f .T C K/ and f .T� C K�/ ) satisfies .gW/ for every
f 2 Hnc.�.T C K//.

By using Theorem 4.10 and Theorem 4.4 we obtain the following result.

Theorem 4.11 ([10]). Let T 2 L.H/ be an analytically quasi-T H N operator on
a Hilbert space H, and let K 2 L.H/ be an algebraic operator commuting with T.
Then both f .T C K/ and f .T 0 C K0/ satisfy .gW/ for every f 2 Hnc.�.T C K//.

Since H.p/ operators are hereditarily polaroid, we also have:

Theorem 4.12. Suppose that T 2 L.X/ has property H.p/, and let K 2 L.H/ be an
algebraic operator commuting with T. Then both f .T C K/ and f .T 0 C K0/ satisfies
.gW/ for every f 2 Hnc.�.T C K//.

For the dual f .T 0 C K0/ we can say much more.

Corollary 4.13. Suppose that T 2 L.X/ has property H.p/, or T 2 L.H/ be an
analytically quasi-T H N operator on a Hilbert space H. If K 2 L.H/ is an
algebraic operator commuting with T, then f .T 0 C K0/ all Weyl type theorems for
every f 2 Hnc.�.T C K//.



18 P. Aiena

Proof. Suppose that T has property H.p/. Since T is hereditarily polaroid then
T CK, is polaroid and hence also T 0 CK0 is polaroid. By Theorem 2.10 then T 0 CK0
is polaroid. Moreover, T 0 C K0 has SVEP and hence f .T 0 C K0/ has SVEP for every
f 2 Hnc.�.T C K//, by [1, Theorem 2.40]. By Theorem 2.9 we then have that
f .T 0 C K0/ is a-polaroid, so Theorem 4.6 entails that f .T 0 C K0/ satisfies all Weyl
type theorems.

The proof for the case that T is analytically quasi-T H N on a Hilbert space H
is the same.
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9. P. Aiena, M. Chō, M. González: Polaroid type operator under quasi-affinities. J. Math. Anal.
Appl. 371, (2010), 485–495.

10. P. Aiena, J. Guillen, P. Peña : A unifying approach to Weyl type theorems for Banach space
operators. Integ. Equ. Oper. Theory 77 (2013), 371–384.

11. P. Aiena, M. M. Neumann: On the stability of the localized single-valued extension property
under commuting perturbations. Proc. Amer. Math. Soc. 141 (2013), no. 6, 2039–2050.

12. P. Aiena, P. Peña: A variation on Weyl’s theorem. J. Math. Anal. Appl. 324 (2006), 566–579.
13. P. Aiena, F. Villafãne: Weyl’s theorem for some classes of operators. Int. Equa. Oper. Theory

53, (2005), 453–466.
14. A. Aluthge.: On p-hyponormal operators for 1 < p < 1, Integral Equations Operator Theory

13, (1990), 307–315.
15. M. Amouch, H. Zguitti: On the equivalence of Browder’s and generalized Browder’s theorem.

Glasgow Math. Jour. 48, (2006), 179–185.
16. T. Ando: Operators with a norm condition, Acta Sci. Math. (Szeged) 33, (1972), 169–178.
17. S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal

operators. Michigan Math. J. 16 (1969),273–279.
18. M. Berkani: On a class of quasi-Fredholm operators. Integral Equations and Operator Theory

34 (1), (1999), 244–249.
19. M. Berkani: Index of B-Fredholm operators and generalization of a Weyl’s theorem, Proced-

ing American Mathematical Society, vol. 130, 6, (2001), 1717–1723.
20. M. Berkani, M. Sarih: On semi B-Fredholm operators. Glasgow Mathematics Journal 43,

No. 4, (2001), 457–465.



Polaroid operators and Weyl type theorems 19

21. M. Berkani, M. Amouch: On the property (gw). Mediterr. J. Math. 5 (2008), no. 3, 371–378.
22. M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators, Acta Sci. Math.

(Szeged) 69 (2003), no. 1–2, 359–376.
23. M. Berkani, M. Sarih: On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465.
24. X. Cao, M. Guo, B. Meng: Weyl’s theorem for upper triangular operator matrices. Linear

Alg. and Appl. 402 (2005), 61–73.
25. M. Chō, I. H. Jeon, J. I. Lee: Spectral and structural properties of log-hyponormal operators

Glasgow Math. J. 42 (2000), 345–350.
26. L.A. Coburn: Weyl’s theorem for nonnormal operators. Research Notes in Mathematics 51,

(1981).
27. J. B. Conway: Subnormal operators Michigan Math. J. 20 (1970), 529–544.
28. S.V. Djordjevíc , H. Zguitti: Essential point spectra of operator matrices trough local spectral

theory, J. Math. Anal. and Appl. 338 (2008), 285–291.
29. B. P. Duggal: Quasi-similar p-hyponormal operators. Integ. Equ. Oper. theory 26, (1996),

338–345.
30. B.P. Duggal: Polaroid operators satisfying Weyl’s theorem. Linear Algebra Appl. 414 (2006),

271–277.
31. B.P. Duggal: Hereditarily polaroid operators, SVEP and Weyl’s theorem. J. Math. Anal. Appl.

340 (2008), 366–373.
32. B.P. Duggal, S.V. Djordjevíc: Generalized Weyl’s theorem for a class of operators satisfying

a norm condition. Math. Proc. Royal Irish Acad. 104A, (2004), 75–81.
33. B. P. Duggal, H. Jeon: Remarks on spectral properties of p-hyponormal and log-hyponormal

operators. Bull. Kor. Math. Soc. 42, (2005), 541–552.
34. B.P. Duggal, R. E. Harte, I. H. Jeon: Polaroid operators and Weyl’s theorem. Proc. Amer.

Math. Soc. 132 (2004), 1345–1349.
35. B. P. Duggal, I. H. Jeon<. On p-quasi-hyponormal operators. Linear Alg. and Appl. 422,

(2007), 331–340.
36. B. P. Duggal, I. H. Jeon, I H. Kim: On Weyl’s theorem for quasi-class A operators. J. Korean

Math. Soc. 43, (2006), N. 4, 899–909.
37. T. Furuta: Invitation to linear operators., Taylor and Francis, London-N. York 2001.
38. Y. K. Han, H. Y. Lee, W. Y. Lee: Invertible completions of 2 � 2 upper triangular operator

matrices. Proc. Amer. Math. Soc. 129 (2001), 119–123.
39. Y. M. Han, J. I. Lee, D. Wang: Riesz idempotent and Weyl’s theorem for w-hyponormal

operator. Integ. Equ. Oper. theory 53, (2005), 51–60.
40. I. H. Kim: On .p; k/-quasihyponormal operators. Math. Inequal. and Appl.7, 4, (2004),

629–638.
41. J. J. Koliha: Isolated spectral points Proc. Amer. Math. Soc. 124 (1996), 3417–3424.
42. D. C. Lay: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184 (1970),

197–214.
43. K. B. Laursen, M. M. Neumann: Introduction to local spectral theory., Clarendon Press,

Oxford 2000.
44. K.B. Laursen: Operators with finite ascent. Pacific J. Math. 152, (1992), 323–36.
45. W. Y. Lee: Weyl’spectra of operator matrices. Proc. Amer. Math. Soc. 129 (2001), 131–138.
46. W. Y. Lee, S. H. Lee: Some generalized theorems on p-quasihyponormal operators for

0 < p < 1. Nihonkai Math. J. 8, (1997), 109–115.
47. C. Lin, Y. Ruan, Z. Yan: w-hyponormal operators are subscalar. Integr. Equ. oper. theory. 50,

(2004), 165–168.
48. S. Mecheri: Isolated points of spectrum of k-quasi-*-class A operators. Studia Math. 208

(2012), no. 1, 87–96.
49. S. Mecheri: On a new class of operators and Weyl type theorems. Filomat 27(4), (2013),

629—636.
50. S. Mecheri, L. Braha: Polaroid and p�paranormal operators. Mathematical Inequalities and

Appl. 16 (2013), 557–568.



20 P. Aiena

51. M. Oudghiri: Weyl’s and Browder’s theorem for operators satisfying the SVEP Studia Math.
163, 1, (2004), 85–101.

52. K. Tanahashi: On log-hyponormal operators. Integral Equations Operator Theory 34, (1999),
364–372.

53. H. Weyl: Uber beschrankte quadratiche Formen, deren Differenz vollsteig ist. Rend. Circ.
Mat. Palermo 27, (1909), 373–92.

54. J. Yuan, Z. Gao: Weyl spectrum of class A(n) and n-paranormal operators. Integral Equations
Operator Theory 60 (2008), 289–298.

55. J. T. Yuan, G. X. Ji: On .n; k/-quasi paranormal operators. Studia Math. 209, (2012),
289–301.

56. E. H. Zerouali, H. Zguitti: Perturbation of spectra of operator matrices and local spectral
theory. J. Math. Anal. and Appl. 324 (2006), 292–1005.



On non self-adjoint spectral problems occurring
in superconductivity

Bernard Helffer

Abstract In this survey we would like to discuss spectral properties of non
self-adjoint operators appearing in the analysis of the long time behavior of the
solutions of the time-dependent Ginzburg Landau system (due to Eliashberg-
Gorkov) and to consider in particular the global stability of the stationary normal
solutions. We will first recall some standard results on the time independent model
including the Giorgi-Phillips Theorem and will then focus on the role of the electric
current in comparison with the role of the exterior magnetic field for the time
independent problem. The recent theorems have been obtained in collaboration with
Y. Almog, X. Pan, R. Henry, K. Beauchard, and L. Robbiano or by R. Henry alone.
This survey is a short version of a course given in July 2013 in Berder, supported by
the programme ANR 2011 BS01019 01 NOSEVOL.

1 The Ginzburg-Landau model for superconductivity

1.1 The Ginzburg-Landau functional

Let us describe the mathematical problem. It is naturally posed for domains in R
3;

but for cylindrical domains in R
3, it is natural to consider a functional defined in

a domain ˝ 	 R
2; where ˝ is the cross-section of the cylinder. This explains

why we also consider models in R
2 and we will here only consider this case.

We assume to simplify that ˝ is connected and simply connected. The Ginzburg-
Landau functional is defined by

B. Helffer (�)
Département de Mathématiques, Université Paris-Sud 11, UMR 8628 du CNRS,
Bat. 425, Orsay, France

Laboratoire Jean Leray, Université de Nantes, Nantes, France

© Springer International Publishing Switzerland 2015
A. Jeribi et al. (eds.), Applied Mathematics in Tunisia, Springer Proceedings
in Mathematics & Statistics 131, DOI 10.1007/978-3-319-18041-0_2

21



22 B. Helffer

G . ;A/ D
Z
˝

�
jr	�A j2 � 	2j j2 C 	2

2
j j4

�
dx

C .	�/2
Z
˝

jcurl A � ˇj2 dx ; (1)

where, with x D .x; y/; dx denotes the Lebesgue measure dxdy. Here the function  
is called the order parameter (or sometimes the wave function) and A is a magnetic
potential. For A D .A1;A2/; curl A D @xA2 � @yA1 and r	�A denotes the magnetic
gradient: r C i	�A. The symbol ˇ denotes a reference magnetic field and is called
the external magnetic field or the applied magnetic field (in the constant magnetic
field case, we take ˇ � 1), which is assumed to be in L2.˝/. The parameter 	 > 0

(the Ginzburg-Landau parameter) depends on the material, and � > 0 (or rather the
product 	� ) is a measure of the strength of the external magnetic field.

We are concerned with the analysis of the asymptotic regime 	 ! C1; which
corresponds to strong type II samples.

We will sometime write G D G	;� ; if we want to mention the parameters involved
in the definition of the functional.

The natural domain of the functional is H1.˝;C/ 
 H1.˝;R2/ . However, due
to the gauge invariance of G ; it is better to restrict the functional to the smaller set
H1.˝;C/ 
 H1

div.˝/; where

H1
div.˝/ D

n
V D .V1;V2/ 2 H1.˝;R/2

ˇ̌
div V D 0 in ˝ ; V � 
 D 0 on @˝

o
:

(2)

We define the Ginzburg-Landau ground state energy to be the infimum of the
functional, i.e.

E.	; �/ WD inf
. ;A/2H1.˝/�H1

div.˝/

G	;� . ;A/ : (3)

If F is the unique magnetic potential in H1
div.˝/ such that:

curlF D ˇ ;

we observe that:
G	;� . � 0;F/ D 0 ; which implies the inequality:

E.	; �/ � 0 : (4)

The pair .0;F/ is called normal state in Physics and we will, in particular, study
when we have equality or strict inequality in (4).
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1.2 Minimizers and Ginzburg-Landau equations

As ˝ is bounded, the existence of a minimizer is rather standard. A minimizer
should satisfy the Euler-Lagrange equation, which is called in this context the
Ginzburg-Landau system and reads:

��	�A D 	2.1 � j j2/ ;
curl

�
curl A � ˇ� D � 1

	�
<
�
 r	�A 

�
;

)
in ˝ ; (5a)


 � r	�A D 0 ;

curl A � ˇ D 0 ;

�
on @˝ : (5b)

Here, ��	�A is the magnetic Laplacian:

��	�A WD .Dx C 	�A1/
2 C .Dy C 	�A2/

2 ; with Dx D �i@x ; Dy D �i@y ;

and

curl 2A D .@y.curl A/;�@x.curl A// :

The analysis of the system (5) can be performed by PDE techniques which are
recalled in [18]. We note that this system is nonlinear, that H1.˝/ is, when ˝ is
bounded and regular in R

2; compactly embedded in Lp.˝/ for all p 2 Œ1;C1/ .
Actually, the nonlinearity is weak in the sense that the principal part is a linear

elliptic system. One can show in particular that the solution in H1.˝;C/
 H1
div.˝/

of the elliptic system (5) is actually, when ˝ is regular, in C1�˝�.

1.3 Basic properties for solutions of the Ginzburg-Landau
equations

The first important property which is a consequence of the maximum principle is

Proposition 1. If . ;A/ 2 H1.˝/ 
 H1.˝;R2/ is a (weak) solution to (5), then

k kL1.˝/ � 1 : (6)

Using Proposition 1, we can get (see [18] for details) various a priori estimates
on solutions to the Ginzburg-Landau equations (5), which play an important role in
the whole theory.

Proposition 2. Let ˝ 	 R
2 be bounded and smooth, and let ˇ 2 L2.˝/ be given.

Then for all p � 2; there exists a constant C D C.p/ > 0 such that for all solutions
. ;A/ 2 H1.˝/ 
 H1

div.˝/ to (5), we have
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kr2
	�A kp � 	2k kp ; (7)

kr	�A k2 � 	k k2 ; (8)

kcurl A � ˇkW1;p.˝/ � C

	�
k k1 kr	�A kp : (9)

1.4 The Giorgi-Phillips Theorem for minimizers

We observe that .0;F/ is a trivial critical point of the functional G ; i.e., a trivial
solution of the Ginzburg-Landau system (5). The pair .0;F/ is often called the
normal state or normal solution. It is natural to discuss—as a function of �—
whether this pair is a local or global minimizer. When � is large, one will show that
this solution is effectively the unique global minimizer. One says that in this case
the superconductivity is destroyed. In other words, the order parameter is identically
zero in˝ . Let us give a rather simple proof of this result that roughly says that .0;F/
is the unique minimizer of the functional when the strength of the exterior magnetic
field is sufficiently large. We will actually show a stronger result for all the solutions
of the associated Ginzburg-Landau system.

So we assume that we have a nonnormal stationary point . ;A/ for G ; that is a
solution . ;A/ 2 H1.˝/ 
 H1

div.˝/ of (5) satisfying

Z
˝

j .x/j2 dx > 0 : (10)

By (8), (9), and (6), and using a standard inequality on the curl � div system for
controlling kA � Fk2 in ˝ by kcurl A � ˇk2; we get

kr	�A k22 C .	�/2kA � Fk22 � C˝	
2k k22 : (11)

Writing A D A � F C F and implementing (6) and (11) give

Z
˝

j.r C i	�F/ j2 dx � 2C˝	
2

Z
˝

j .x/j2 dx : (12)

Since  satisfies (10), we obtain

�N
1 .�	F/ � 2C˝	

2 ; (13)

where �N
1 .�	F/ denotes the ground state energy of the Neumann realization of

���	F in ˝.
We observe that �N

1 .�	F/ > 0 . So by combining an analysis in the small
B regime (perturbation theory) and for large B (see below Theorem 2), and the
continuity of B 7! �N

1 .BF/; we get the existence of a constant C0 > 0 such that
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�N
1 .�	F/ � 1

C0
min.�	; .�	/2/ : (14)

Thus, we find that if a nontrivial stationary point . ;A/ exists, then

� � C .1C 	/ :

What we have obtained can be reformulated as the following theorem.

Theorem 1 (Giorgi-Phillips). Let ˝ 	 R
2 be smooth, bounded, and simply

connected, and let ˇ in (5) be continuous and satisfy

ˇ.x/ � cmin > 0 ; 8x 2 ˝ :

Then there exists a constant C such that if

� � C maxf	; 1g ;

then the pair .0;F/ is the unique solution to (5) in H1.˝/ 
 H1
div.˝/ .

We have used in the proof of Theorem 1:

Theorem 2 (Lu-Pan).

�N
1 .BF/ D B min.b; �0b

0/C o.B/ ;

where �0 2 .0; 1/; b D infx2˝ ˇ.x/ and b0 D infx2@˝ ˇ.x/.

Two models are indeed involved in the proof by localization: the model with
constant magnetic fields

.Dx � B

2
ˇ.xj; yj/y/

2 C .Dy C B

2
ˇ.xj; yj/x/

2 ;

in R
2 and the Neumann realization of the same operator in R

2C.
The bottom of the spectrum of the first one is Bjˇ.xj; yj/j and the bottom of the

spectrum of the second one is �0Bjˇ.xj; yj/j.
Remark 1. In this form this theorem is due to Lu-Pan [32]. Many improvements
concerning the control the remainder term o.B/ have been obtained (see [18] and
the references therein and for more recent references [34] or [24]).

Remark 2. The Giorgi-Phillips statement is the starting point of the analysis of the
third critical field corresponding to the transition between normal minimizers and
non-normal minimizers. We refer to the books of Fournais-Helffer [18] and Sandier-
Serfaty [37] for a detailed analysis of the behavior of these critical fields and the
references therein.
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To conclude this section, we treat the case when ˇ vanishes in ˝ but

jˇ.x/j C jrˇ.x/j � Ocmin > 0: (15)

More precisely, introducing Z .ˇ/ D ˇ�1.0/; one has the theorem:

Theorem 3 (Pan-Kwek).

lim
B!C1

�N
1 .BA/

B
2
3

D Œ˛1.ˇ/�
2
3 ; (16)

where

˛1.ˇ/ D min

	
1

2
O
 3
2

0 inf
x2˝\Z .ˇ/

jrˇ.x/j ; inf
x2@˝\Z .ˇ/

.#.x//
3
2 jrˇ.x/j

�
; (17)

where O
0 is defined in (29) and #.x/ denotes the angle between curl ˇ and the
tangent vector of @˝ at x and .#/ denotes the lowest eigenvalue of the Neumann

realization of ��A# in R
2C with A# D � jxj2

2
.cos#; sin#/ :

As a consequence, we can extend the Giorgi-Phillips theorem to this case.

Theorem 4. Let ˝ 	 R
2 be smooth, bounded, and simply connected, and let ˇ be

in C1.˝/ and satisfying (15). Then there exists a constant C such that if

� � C maxf	2; 1g;
then the pair .0;F/ is the unique solution to (5) in H1.˝/ 
 H1

div.˝/ .

Notice that a more precise statement is given in [33] in the limit 	 large.

2 Time-Dependent Ginzburg Landau I: models

2.1 The model in superconductivity

The physical problem is posed in a domain ˝ with specific boundary conditions
which will be discussed later. We will first analyze here limiting situations where the
domain, possibly after a blowing argument, becomes the whole space (or the half-
space). We work in dimension 2. We assume that a magnetic field of magnitude
He is applied perpendicularly to the sample and identified (via its intensity) with
a function. We denote the normal conductivity of the sample by & . Then the
time-dependent Ginzburg-Landau system (also known as the Gorkov-Eliashberg
equations) is in .0;T/ 
˝ :

(
@t C i	� D �	A C 	2.1 � j j2/ ;
	2curl 2A C &.@tA C r�/ D 	 Im . N � r	A /C 	2curl He ;

(18)

where the new object is the electric potential �.
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In addition, we assume that . ;A; �/ satisfies an initial condition at t D 0. Note
that many physicists are assuming that curl He D 0 and this is what we will do in
the next section.

In order to solve this equation, one should also define a gauge (Coulomb,
Lorentz,. . . ). The orbit of . ;A; �/ by the gauge group is

f.exp.i	q/  ;A C rq; � � @tq/ j q 2 Qg ;

where Q is a suitable space of regular functions of .t; x; y/. We refer to Bauman-
Jadallah-Phillips [6] (Paragraph B in the introduction). We will choose the Coulomb
gauge which reads div A D 0 for any t. Another possibility could be to take
div A D !� (Lorentz gauge). As in the analysis of the time independent case, the
“normal” solutions will play an important role.

2.2 From Ginzburg-Landau to TDGL

Let us make the parallel between the standard GL case and TDGL at the level of
the models. The Schrödinger operators with constant magnetic field in R

2 and in
R
2C are the basic models for analyzing the general Schrödinger operator in ˝. For

TDGL, the models are D2
x C D2

y C i c y; in R
2; D2

x C D2
y C i c .x cos � C y sin �/ in

R
2C (affine case), D2

x C .Dy � ˛x2/2 C i c y in R
2 analyzed in [3] and in R

2C in [4, 5]

D2
x C .Dy � ˛.x sin � � y cos �/2/2 C ic.x cos � C y sin �/

(only in the case � D �
2

). Here we have used the notation Dx D �i@x ; Dy D �i@y.
The results obtained in [3–5] correspond in some sense to the results which have

been obtained for the Schrödinger operator with constant magnetic field for the
analysis of the time independent problem. In the TDGL case, we are facing many
new difficulties:

• Treat the spectral analysis of non self-adjoint problems. Already in the linear
case, the decay of the associated semi-group does not depend uniquely on the
knowledge of the spectrum, but also on resolvent estimates in the complex planes.

• The notion of stationary solutions has to be defined.
• The global existence of solutions has to be proved.
• The notion of stability has to be defined. Roughly speaking we hope to find

conditions on the initial data and on the current implying the convergence of
the solution to the stationary one and to measure the decay.

• The technical problems relative to the existence of corners have to be controlled.
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2.2.1 Stationary normal solutions: first analysis

We now determine the stationary (i. e. time independent) normal solutions of the
system. From (64), we see that if .0;A; �/ is such a solution, then .A; �/ satisfies
the system

	2curl .curl A/C &r� D 	2curl He ; div A D 0 in ˝ : (19)

Interpreting these two equations as the Cauchy-Riemann equations, this can be
rewritten (in addition to the divergence free condition) as the property that

	2.curl A � He/C i &� ;

is an holomorphic function in ˝.

2.3 Special situation: � affine

Here we follow the exposition of [22] and the reader can also look for a more
elementary presentation at the last chapters of [23]. As simplest non trivial example,
we observe that, if˝ D R

2; (18) has the following stationary normal state solution

A D 1

2J
.Jx C h/2.0; 1/ ; � D 	2J

&
y : (20)

Note that curl A D .JxCh/; that is, the induced magnetic field equals the sum of the
applied magnetic field h and the magnetic field produced by the electric current Jx .

For this normal state solution, the linearization of (18) with respect to the order
parameter is

@t C i	3Jy

&
 D � C i	

J
.Jx C h/2@y � . 	

2J
/2.Jx C h/4 C 	2 : (21)

Applying the transformation x ! x � h=J and taking for simplification 	 D 1; the
time-dependent linearized Ginzburg-Landau equation takes the form

@ 

@t
C i

J

&
y D � C iJx2

@ 

@y
�
�1
4

J2x4 � 1
�
 : (22)

Rescaling x and t by applying: t ! J2=3t I .x; y/ ! J1=3.x; y/ ; yields

@tu D �.A0;c � �/u ; (23)
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where

A0;c WD D2
x C .Dy C 1

2
x2/2 C i c y ; (24)

and

c D 1=& I � D 1

J2=3
I u.x; y; t/ D  .J�1=3x; J�1=3y; J�2=3t/ :

Our main problem will be to analyze the long time property of the attached semi-
group. We now apply the transformation

u ! u eicyt

to obtain

@tu D �
�

D2
xu C .Dy C 1

2
x2 � ct/2u � �u

�
: (25)

Note that considering the partial Fourier transform with respect to the y variable, we
obtain for the partial Fourier transform Ou of u:

@t Ou D �D2
x Ou �


�1
2

x2 C .�ct C !/
�2 � �

�
Ou : (26)

This can be rewritten as the analysis of a family (depending on ! 2 R) of time-
dependent problems on the line

@t Ou D �Mˇ.t;!/ Ou C �Ou ; (27)

with Mˇ being the well-known anharmonic oscillator (also called the Montgomery
operator in other contexts):

Mˇ D D2
x C .

1

2
x2 C ˇ/2 ; (28)

and

ˇ.t; !/ D �ct C ! :

An important quantity appearing also in Theorem 3 is

O
0 D inf
ˇ

.ˇ/ ; (29)

where 
.ˇ/ is the ground state energy of Mˇ .
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2.4 The results by Almog-Helffer-Pan [3]

The main point concerning the previously defined operator A0;c is to obtain an
optimal control of the decay of the associated semi-group as t ! C1.

Theorem 5. If c ¤ 0; A D A0;c has compact resolvent, empty spectrum, and
there exists C > 0 such that

k exp.�tA /k � exp
�
�2

p
2c

3
t3=2 C Ct3=4

�
; (30)

for any t � 1 and

k.A � �/�1k � exp
� 1
6c
.<�/3 C C .<�/3=2

�
; (31)

for all � such that <� � 1.

Here a semi-classical analysis of the operator Mˇ as jˇj ! ˙1 plays an important
role. We refer to [3] for details and to [21] for the involved semi-classical analysis.

If we consider instead the Dirichlet realization A D
c of A0;c in fy > 0g; it is easily

proven that A D
c has compact resolvent if c ¤ 0. We prove in [4] that if the spectrum

of A D
c is not empty then the decay of the semi-group exp �tA D

c is exponential with
a rate corresponding to infz2&.A D

c /
< z. We will explain the argument in the case of

a simpler model: the complex Airy operator. We also conjecture in [4] that &.A D
c /

is not empty and give a proof of the statement for jcj large enough and in [5] for jcj
small enough.

2.5 A simplified model : no magnetic field

We assume, following Almog [1], that a current of constant magnitude J is being
flown through the sample in the x axis direction, and that there is no applied
magnetic field: h D 0. Then (18) has (in some asymptotic regime) the following
stationary normal state solution

A D 0 ; � D Jx : (32)

For this normal state solution, the linearization of (18) gives

@t C iJx D �x;y C  ; (33)

whose analysis is (see ahead) strongly related to the Airy equation.



On non self-adjoint spectral problems occurring in superconductivity 31

The complex Airy operator in R

This operator can be defined as the closed extension A of the differential operator
on C1

0 .R/ A
C
0 WD D2

x C i x . We observe that A D .A �
0 /

� with A �
0 WD D2

x � i x
and that its domain is

D.A / D fu 2 H2.R/ ; x u 2 L2.R/g :

In particular A has compact resolvent.
It is also easy to see that

< hA u j ui � 0 : (34)

Hence �A is the generator of a semi-group St of contraction,

St D exp �tA : (35)

Hence all the results of this theory can be applied.
In particular, we have, for <� < 0

jj.A � �/�1jj � 1

j<�j : (36)

A very special property of this operator is that, for any a 2 R;

TaA D .A � ia/Ta ; (37)

where Ta is the translation operator .Tau/.x/ D u.x � a/ .
As immediate consequence, we obtain that the spectrum is empty and that the

resolvent of A ; which is defined for any � 2 C satisfies

jj.A � �/�1jj D jj.A � <�/�1jj : (38)

One can also look at the semi-classical question, i.e. consider the operator

Ah D h2D2
x C i x ; (39)

and observe that it is the toy model for some results of Dencker-Sjöstrand-Zworski
[13]. We refer for more details to the lectures by J. Sjöstrand [38].

The most interesting property is the control of the resolvent for <� � 0.

Proposition 3 (W. Bordeaux-Montrieux [8]). As <� ! C1; we have

jj.A � �/�1jj �
r
�

2
.<�/� 1

4 exp
4

3
.<�/ 32 ; (40)
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This improves a previous result by J. Martinet (see in [23]). The proof of the (rather
standard) upper bound is based on the direct analysis of the semi-group in the
Fourier representation. We note indeed that

F .D2
x C i x/F�1 D �2 � d

d�
: (41)

Then we have

FStF
�1v D exp.��2t � �t2 � t3

3
/v.� C t/ ; (42)

and this implies immediately

jjStjj D exp max
�
.��2t � �t2 � t3

3
/ D exp.� t3

12
/ : (43)

Then one can get an estimate of the resolvent by using, for � 2 C; the formula

.A � �/�1 D
Z C1

0

exp �t.A � �/ dt : (44)

For a closed accretive operator, (44) is standard when <� < 0; but estimate (43)
on St gives immediately an holomorphic extension of the right-hand side to the
whole space, showing independently that the spectrum is empty (see Davies [12])
and giving for � > 0 the estimate

jj.A � �/�1jj �
Z C1

0

exp.�t � t3

12
/ dt: (45)

The asymptotic behavior as � ! C1 of this integral is immediately obtained by
using the Laplace method.

2.6 Pseudo-spectra and semi-groups

We now analyze the properties of a contraction semi-group exp �tA ; with A
maximally accretive. As before, we have, for <� < 0;

jj.A � �/�1jj � 1

j<�j : (46)

If we add the assumption that Im < A u; u >� 0 for all u in the domain of A and
if Im� < 0 one gets also a similar inequality, so the main remaining question is the
analysis of the resolvent in the set <� � 0 ; Im� � 0; which corresponds to the
numerical range of the operator.
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We recall that for any � > 0; we define the �-pseudospectra by

˙�.A / D f� 2 C j jj.A � �/�1jj > 1

�
g ; (47)

with the convention that jj.A � �/�1jj D C1 if � 2 �.A /.
We have

\�>0 ˙�.A / D �.A / : (48)

We define, for any � > 0; the �-pseudospectral abscissa by

Ǫ�.A / D inf
z2˙�.A /

< z ; (49)

and the growth bound of A by

O!0.A / D lim
t!C1

1

t
log jj exp �tA jj : (50)

Of course, we have

lim
�!C1 Ǫ�.A / � inf

z2�.A /
< z ; (51)

but the equality is wrong in general. The right behavior of the semi-group as
t ! C1 is given by:

Theorem 6 (Gearhart-Prüss). Let A be a densely defined closed operator in a
Hilbert space X such that �A generates a contraction semi-group, then

lim
�!0

Ǫ�.A / D � O!0.A / : (52)

We refer to [15] for a proof and to [25] for a more quantitative version of this
theorem which is particularly useful when parameters are involved.

2.7 The complex Airy operator in R
C

Spectral analysis

Here we mainly describe some results presented in [1], who refers to [30]. We
consider the Dirichlet realization A D of the complex Airy operator D2

x C ix on
the half-line. We have

< hA Du j ui � 0 ; 8u 2 D.A D/ ; (53)
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and A D is the generator of a semi-group of contraction, whose adjoint is described
by replacing in the previous description .D2

x C i x/ by .D2
x � i x/. The operator is

injective and its spectrum is contained in <� > 0. Moreover, it has a compact
inverse, hence the spectrum (if any) is discrete.

Using what is known on the usual Airy operator, Sibuya’s theory and a complex
rotation, we obtain [1] that the spectrum of A D is given by

�.A D/ D [C1
jD1 f�jg; (54)

with

�j D �.exp i
�

3
/�j; (55)

the �j’s being real zeroes of the Airy function satisfying

0 > �1 > � � � > �j > �jC1 > � � � : (56)

It is shown in [1] that the vector space generated by the corresponding eigenfunc-
tions is dense in L2.RC/. But there is no way to normalize these eigenfunctions for
getting a good basis of L2.RC/. We refer to Y. Almog [1], E.B. Davies [11] and to
R. Henry [27, 28] who shows that the norm of the spectral projector �n associated
with the n-th eigenvalue increases exponentially like exp˛n for some ˛ > 0.

Decay of the semi-group

We now apply Gearhardt-Pruss theorem to A D and our main theorem is

Theorem 7.

O!0.A D/ D �<�1 : (57)

This statement was established by Almog [1] in a much weaker form. Using the first
eigenfunction it is easy to see that

jj exp �tA Djj � exp �<�1 t : (58)

Hence we have immediately

0 � O!0.A D/ � �<�1 : (59)

To prove the reverse inequality, it is enough to show the following lemma.

Lemma 1. For any ˛ < <�1 ; there exists a constant C such that, for all � s.t.
<� � ˛

jj.A D � �/�1jj � C : (60)
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Proof. By assumption, � is not in the spectrum. Hence the problem is just a control
of the resolvent as j Im�j ! C1. The case, when Im� < 0 has already been
considered, so it remains to control the norm of the resolvent as Im� ! C1 and
<� 2 Œ�˛;C˛�. The main idea is that when Im� ! C1; we have to inverse the
operator

D2
x C i.x � Im�/ � <� :

If we consider the Dirichlet realization in the interval �0; Im�
2
Œ of D2

x Ci.x� Im�/�
<�; it is easy to see that the operator is invertible by considering the imaginary part
of this operator and that this inverse R1.�/ satisfies

jjR1.�/jj � 2

Im�
:

Far from the boundary, we can use the resolvent of the problem on the line for which
we have a uniform control of the norm for <� 2 Œ�˛;C˛�.

Physical interpretation

Coming back to the application in superconductivity (with 	 D 1), one is looking at
the semi-group associated with AJ WD D2

x C iJx � 1 (where J � 0 is a parameter).
The stability analysis leads to a critical value

Jc D .<�1/� 3
2 ; (61)

such that :

• For J 2 Œ0; JcŒ; jj exp �tAJjj ! C1 as t ! C1.
• For J > Jc; jj exp �tAJjj ! 0 as t ! C1.

This was obtained in [22] improving Lemma 2.4 in Almog [1], who gets only this
decay for jj exp �tAJ jj; with  in a specific dense space.

2.8 Higher dimension problems relative to Airy

Here we refer to [1] and [26].

The model in R
2

We consider the operator A2 WD ��x;y C i x; and first show:
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Proposition 4.

�.A2/ D ; : (62)

Proof. After a Fourier transform in the y variable, it is enough to show that .cA2��/
is invertible with cA2 D D2

x C i xC�2 :We have just to control for a given � 2 C; the
resolvent .D2

x C i x C �2 � �/�1 (whose existence is given by the one-dimensional
result) uniformly in L .L2.R// with respect to �.

The model in R
2C : perpendicular current

Here it is useful to reintroduce the parameter J; which is assumed to be positive.
Hence we consider the Dirichlet realization A D;?

2 W D��x;yCi Jx ; in R
2CDfx > 0g .

Proposition 5.

�.A D;?
2 / D [r�0;j2N�.�j C r/ : (63)

Proof. For the inclusion [r�0;j2N�.�j C r/ 	 �.A D;?
2 /; we can use L1 eigenfunc-

tions in the form .x; y/ 7! uj.x/ exp iy�; where uj is the eigenfunction associated
with �j. for the reverse inclusion, we observe that we can control uniformly the
resolvent .A D � �C �2/�1 with respect to � under the condition that

� 62 [r�0;j2N�.�j C r/ :

It is enough to observe the uniform control as �2 ! C1 which results of (46).

Remark 3. The case when the current is not perpendicular has been treated by B.
Helffer [22], R. Henry [26, 29]. The spectrum is actually empty.

Remark 4. The analysis of the previous models permits actually the semi-classical
analysis of the spectrum and of the resolvent for the Dirichlet realization of �h2�C
iV.x/ in L2.˝/. Here V is a C1 potential such that rV ¤ 0 in N̋ . Then using the
results for the models, one can (see [1, 29]) get a lower bound for

lim inf
h!0

h� 2
3 .inf < �.Ah// :

3 Time-Dependent Ginzburg-Landau equation II:
general case

The starting point on the mathematical side is a paper of Yaniv Almog [1]. This work
was continued in collaboration with Y. Almog and X. Pan [3–5] by the analysis of
specific toy models. In [2] (in collaboration with Y. Almog) a rather general situation
is considered showing how the toy models are involved in the question.
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3.1 Boundary conditions

We consider a superconductor placed at a temperature lower than the critical one.
It is well understood from numerous experimental observations that a sufficiently
strong current, applied through the sample, will force the superconductor to arrive
at the normal state. To explain this phenomenon mathematically, we use the time-
dependent Ginzburg-Landau model which was already defined in (18) without to
make explicit the boundary conditions and in a different scaling. Hence we consider
more precisely the following system of equations, referred to as (TDGL1) (Time-
Dependent Ginzburg-Landau equation),

@ 

@t
C i� D �A C  

�
1 � j j2� ; in RC 
˝ ;

(64a)

	2curl 2A C &

�
@A
@t

C r�
�

D Im . N � .r C iA/ / ; in RC 
˝ ;

(64b)

 D 0 ; on RC 
 @˝c ;

(64c)

.r C iA/ � 
 D 0 ; on RC 
 @˝i ;

(64d)

&

�
@A
@t

C r�
�

� 
 D J ; on RC 
 @˝c ;

(64e)

&

�
@A
@t

C r�
�

� 
 D 0 ; on RC 
 @˝i ;

(64f)

1

j@˝j
Z
@˝

curl A.t; x/ ds D hex ; on RC ;

(64g)

 .0; x/ D  0.x/ ; in ˝ ;

(64h)

A.0; x/ D A0.x/ ; in ˝ :

(64i)

In the above, ds denotes the induced measure on @˝. The domain ˝ 		 R
2;

occupied by the superconducting sample, has a smooth interface, denoted by @˝c;

with a conducting metal which is at the normal state. The rest of the boundary,
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denoted by @˝i; is adjacent to an insulator. To simplify some of the arguments
(or simply have a proof) we introduce the following geometrical assumption on @˝:

.R1/

8<
:
.a/ @˝i and @˝c are of class C3 I
.b/ Near each edge, @˝i and @˝c are flat

and meet with an angle of �
2
:

(65)

We also require:

.R2/ Both @˝c and @˝i have two components: (66)

Figure 1 presents a typical sample with properties (R1) and (R2).
We require that J is a smooth current

J D hJr (67)

satisfying

.J1/ Jr 2 C2.@˝c/; (68)

.J2/
Z
@˝c

Jr ds D 0 ; (69)

and

.J3/ the sign of Jr is constant on each connected component of @˝c : (70)

Fig. 1 Typical
superconducting sample. The
arrows denote the direction of
the current flow
(Jin for the inlet, and Jout for
the outlet).
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We assume, for the initial conditions (64h,i), that

 0 2 H1.˝;C/ and A0 2 H1.˝;R2/ ; (71)

and:

k 0k1 � 1 : (72)

We consider Coulomb gauge solutions of (64):

div A D 0 in ˝; A � 
 D 0 on @˝ : (73)

Note, however, that for the proof of existence of solutions it is better to consider first
solutions in the Lorentz gauge: div A D ! �; keeping the condition A�
 D 0 on @˝.

Equivalent boundary conditions: From (TDGL1) to (TDGL2)

Instead of considering the boundary conditions (64e,f,g), it is possible to use
an equivalent boundary condition where we prescribe instead the magnetic field
(see (80) below. By (64b,e,f), on each point on @˝; except for the corners, we have

@

@�
curl A.t; �/ D 1

	2
J.�/ ; (74)

where @=@� denotes the tangential derivative along @˝ in the positive direction. For
convenience we set

Jr.x/ � 0 on @˝i : (75)

Thus, if we introduce on the boundary the function B by

curl A.t; x/ D h Br.t; x/ on @˝ ; (76)

where h denotes a parameter measuring the intensity of the magnetic field.
One can recover the magnetic field B.t; �/

Br.t; x/ D hr � 1

	2 j@˝j
Z
@˝

j� .Qx; x/j Jr.Qx/ds.Qx/ for x 2 @˝ : (77)

where

hr D hex=h (78)

and j� .Qx; x/j is the length inside the boundary between x and Qx.
This shows that Br.t; x/ D Br.x/ on the boundary, hence is time independent.
Note also that the condition (74) gives:

The magnetic field B is constant along each component of@˝i : (79)
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Hence the system (TGDL1) is equivalent to the system (TGDL2), consisting in
the same equations except (1e-1g) replaced by:

curl A.t; x/ D h Br.x/ ; on RC 
 @˝ ; (80)

where Br is given by (77).
Of course functional spaces should be introduced to give a precise mathematical

sense to this statement of equivalence.
Conversely, a solution of (TGDL2) must satisfy (TGDL1) with

Jr D 	2
@Br

@�
on @˝ ;

and

hr D 1

j@˝j
Z
@˝

Br.x/ds :

3.2 Stationary normal solutions

If we assume a time independent solution of (TDGL1) in the form .0;An; �n/;we get
for the magnetic and electric normal potentials An and �n the following equations:

�c curl 2An C r�n D 0 in ˝ ;

�& @�n
@


D Jr on @˝ ;
1

j@˝j
R
@˝

curl An ds D hr ;

(81)

in which

c D 	2=& : (82)

If we fix the Coulomb gauge for An; we can prove the existence, uniqueness, and
regularity of solutions to the above problem.

Note that �n is a solution of

��n D 0 in ˝ ;

Z
˝

�n dx D 0 ; (83)

and

� & @�n

@

D Jr on @˝ : (84)
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This is the problem with Neumann boundary condition but in a domain with
corners. One can prove the H2-regularity when the angle is �

2
. (See Kondratev [31],

Grisvard [20], Dauge [10] for these questions of regularity).
The next assumption (which can be expressed in term of J and hex) is

.B/ Bn WD curl An ¤ 0 at the corners : (85)

For some of the results, we assume for technical reasons

.C/ r�n ? @˝ on B�1
n .0/ \ @˝ : (86)

To recover An we first determine Bn modulo a constant. The constant is fixed by the
mean value. We recover An uniquely by choosing the Coulomb gauge.

We can now state:

Theorem 8. Suppose that ˝ satisfies condition (R1) and that B is in H
1
2 .@˝/

(on each regular component of @˝). Suppose further that . 0;A0/ satisfies (71)
and (72). Then, there exists a unique weak solution . c;Ac; �c/ of (TGDL2) in the
Coulomb gauge. Moreover, this solution is strong and

k c.t; �/k1 � 1 ; 8t > 0 : (87)

Finally, let A1 D Ac � hAn where An is the previously constructed normal solution.
Then

A1 2 L2loc.Œ0;C1/I H2.˝;R2// : (88)

We can now return to the solution of (TGDL1).

Theorem 9. Under the assumptions of Theorem 8, assuming that j is given by (68)–
(69), and Br by (77), the solution of (TDGL2) has the additional property that �c 2
C.Œ0;C1/I W1;p.˝// for all finite p; and is a solution of (TDGL1).

3.3 The question of stability

Here we continue to discuss the results of [2]. One possible mechanism which
contributes to the breakdown of superconductivity by a strong current is the
magnetic field induced by the current. In the absence of electric current, it was
proved (see our first section) by Giorgi-Phillips in [19] that, when a sufficiently
strong magnetic field is applied on the sample’s boundary (or when hex is sufficiently
large), the normal state, for which  � 0; becomes the unique solution for
the steady-state version of (64) (cf. also Fournais-Helffer [18] and the references
therein).
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For the time-dependent Ginzburg-Landau equations it was proved in Feireisl-
Takac [16] that every solution must reach an equilibrium in the long-time limit.
When combined with the results in [19] it follows that when the applied magnetic
field is sufficiently large the normal state becomes globally stable. This will be
discussed in Subsection 3.6.

No such result was available in the presence of electric currents before [2]. The
results in [16] are based on the fact that, in the absence of currents, the Ginzburg-
Landau energy functional serves as a Lyapunov functional. In the presence of a
current one has to take account of the work it produces, which does not necessarily
decrease the energy (cf. [35] for instance).

Moreover, the magnetic field is not the only mechanism which forces the sample
into the normal state when the electric current is sufficiently large.

Consider the reduced model where one neglects the induced magnetic field and
set A � 0 in (18). It has been proved in [1, 30, 36] that the normal state is at least
locally stable when the current is sufficiently strong. In a recent contribution [4], it
has been shown that the critical current where the normal state loses its local stability
tends to the critical value for the reduced model [30] in the small conductivity limit,
or when c ! 1. This result suggests that stability is being forced not only by the
magnetic field that the current induces, but also by the potential term in (64a).

In [2] we proved global stability of the normal state, as a solution of (64), for
sufficiently large currents (see Section 2). We begin by proving global existence and
uniqueness of solutions for (64) and obtain their regularity. While these questions
have previously addressed (cf. [9, 17], and [14] to name just a few references) the
fact that the boundary is not smooth at the corners requires in [2] some additional
attention.

3.4 A non self-adjoint operator

Let

Lh D ��hAn C i h�n ;

be defined (Dirichlet-Neumann problem) over the domain

D.Lh/ D fu 2 H2.˝/ j uj@˝c D 0 I ru � 
j@˝i D 0 g :

We prove in [2] that a proper bound on the resolvent of Lh; which is the elliptic
operator in (64a) linearized near .0; hAn; h�n/ gives the stability.

Theorem 10. Let 
 � 0. There exists 	0 > 0 and C1 > 0 such that, if for some
	 > 	0 we have
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sup
�2R

k.Lh � i� � 
/�1k < 1 � C1
	2
; (89)

then, any solution of (64) must satisfyZ 1

0

e2
t k .t; �/k22 dt < 1 : (90)

Assumption (89) does not guarantee that the semigroup necessarily becomes a
contraction in the long-time limit. The above stability is proved in the large 	 limit.

As the resolvent of Lh in an arbitrary domain is difficult to control, we provide
an estimate of its norm for large values of h; which can be applied for either large
domains, or large 	 values.

3.5 Large domains ˝R

Having in mind the assumptions in Theorem 10, our aim is to show that the norm
of the resolvent can be controlled from two approximated problems, with constant
current defined either in R

2 or in R
2C with Dirichlet boundary conditions.

From resolvent estimates, together with the results of Almog-Helffer-Pan in
[3–5], we deduce that the critical current, for which the normal state loses its local
stability, can be approximated by the same critical current obtained for the above
R
2C problem. Before to give a precise statement let us describe the toy models.

Two toy models

We now give the definitions of these model operators in R
2 and R

2C D fy > 0g.
These models depend on two real parameters c ¤ 0 and j.
The first one is

A .j; c/ D D2
x C .Dy � jx2/2 C icjy ; (91)

defined on

D.A / D fu 2 L2.R2/ jA u 2 L2.R2/g : (92)

It has empty spectrum and we have a good control of the resolvent depending only
on the real part of the spectral parameter.

The second one is AC.j; c/; which is defined (via the Lax-Milgram theorem) by
the same differential formula of A but on the domain

D.AC/ D fu 2 QV W ACu 2 L2.R2C;C/g; (93)

where
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QV D H1;mag
0 .R2C;C/ \ L2.R2C;CI y dxdy/ : (94)

Here the analysis of the spectrum is more difficult. The guess is that it is non-empty.
This is only proven for jcj large enough or small enough [4, 5].

Towards the next theorem

We set, for z 2 N̋ ;

j.z/ WD hjrBn.z/j D h

c
jr�n.z/j ; (95)

and then define

A .z/ D A .j.z/; c/ I AC.z/ D AC.j.z/; c/ (96)

Under all of the above assumptions B�1
n .0/ is either empty, or else consists of a

single curve � connecting between the two connected components of @˝c.
We treat the second case. We denote the two points of intersection by z1 and z2

and then set


m.z1; z2; c/ D min
iD1;2 inf

�2�.AC.zi//
<� : (97)

Large domain limit

Let then R > 0. We denote by ˝R the image of ˝ under the dilation x ! R x We
assume that the domain ˝ has the property (R1)-(R2) and that assumptions (J1)–
(J3), (B) and (C) are met.

Denote the transformed electric field by �R. It satisfies the problem

(
��R D 0 in ˝R ;
@�R
@


D � JR.x/
&

on @˝R ;

where

JR.x/ D Jr.x=R/ :

Note that

�R.x/ D R�n.x=R/ :

The transformed magnetic potential, which we denote by AR then satisfies



On non self-adjoint spectral problems occurring in superconductivity 45

AR.x/ D R2 An.x=R/ :

Let then

L R
h D �r2

hAR
C i h�R ; (98)

and let

�.R/ D inf
�2�.L R

h /

<� and �1 D lim inf
R!1 �.R/ : (99)

The following theorem is proved in [2]:

Theorem 11. Under the previous assumptions, �.R/ has a limit as R ! C1;

which is given by

�1 D 
m :

Furthermore, let us assume that 
 < �1. Then there exist R0; C; such that, for
R � R0;

sup
�2R

k.L R
h � 
 � i�/�1k �

max
�

sup
z02�

k.A .z0/ � 
/�1k; sup
�2R
iD1;2

k.AC.zi/ � 
 � i�/�1k
��
1C C

R1=4

�

C C

R1=4
: (100)

One can deduce from (100) an upper bound for the critical current where the
normal state .0; hAn; h�n/ becomes globally stable. Let

jm D inf
z2� j.z/ ; (101a)

and

jC D inf
iD1;2 j.zi/ : (101b)

When the domain size is multiplied by R; the resolvent norm of Lh is given by
the left-hand side of (100). By (89) it then follows that if R and 	 are sufficiently
large, and if

jm > kA �1.1; c/k3=2 (102a)
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and

jC > sup
�2R

k.AC.1; c/ � i�/�1k3=2 ; (102b)

then the normal state must be globally stable. The above conditions serve as an
upper bound for the critical current where the normal state becomes globally stable.

On the semiclassical side

The above regime corresponds to the spectral analysis of
X

j

.„Dxj C Aj/
2 C i„�.x/;

in the limit „ ! 0. With � D 0; this analysis plays an important role in the analysis
of the superconductivity. In the above questions, we have r� �rcurl A D 0 (see the
first line in (81)) and the zero set of curl A consists in a curve � joining two points
of the boundary where the Dirichlet condition is assumed.

When A D 0; a connected problem is to determine the bottom of the (real part
of the) spectrum under the assumption that � is a Morse function and has no critical
point at the boundary. The answer depends on the presence or not of critical sets
inside ˝. When there are no critical points, the case is treated in [1] (see also [29]).
One should look at all the points where r� is orthogonal to the boundary. Assuming
that these points are isolated, we will get the result by looking at the transversal Airy
operators computed at these points. That is looking at

„2D2
t C i„jr�.x`/jt C i„�.x`/

in R
C , with Dirichlet condition at 0. With j.x`/ D jr�.x`/j; the smallest real part

is j.x`/
2
3 „ 4

3 cos �
3
˛; where ˛ is the lowest eigenvalue of the standard Airy operator

on R
C. Actually, depending on the angle of r� with the normal, we get a model

in R
2C:

„2.D2
t C D2

s /C iJ.cos � t C sin �s/ ;

with boundary condition at t D 0 .
As we have seen in the study of models, the only case when spectrum is present

is the case when � D 0 .
In the case where there are critical points in ˝; we consider the complex

harmonic oscillator in R
2 obtained by considering the quadratic approximation of �

at the various critical points x`:

„2.D2
x C D2

y/C i„hHess�.x`/.x; y/ ; .x; y/i C i„�.x`/:

In this case the bottom is of order O.h
3
2 / and this explains why these points will

have the dominant role.
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A similar question coming from control theory

In the .1D/-case, this question appears also in control theory (Beauchard, Helffer,
Henry, and Robbiano [7]) for two models

A.�R;R/ D � d2

dy2
C iy and HŒ�R;R� D � d2

dy2
C iy2

defined on the segment .�R;R/; R > 0; with Dirichlet boundary conditions at the
ends y D ˙R; with domains

D.A.�R;R// D D.H.�R;R// D H1
0..�R;R/IC/ \ H2..�R;R/IC/:

More precisely, we study the asymptotic behavior, as R ! C1; of the bottom of
the spectrum of A.�R;R/ and H.�R;R/ and we use the following two theorems.

Theorem 12. Let �1 < 0 be the first zero of the Airy function. Then,

lim
R!1

�
inf < �.A.�R;R//

� D j�1j
2
; (103)

where �.A.�R;R// denotes the spectrum of A.�R;R/.

Now, let us consider the case of Davies operator (or ‘complex hamonic
oscillator’)

Theorem 13.

lim
R!1

�
inf < �.H.�R;R//

� D
p
2

2
; (104)

where �.H.�R;R// denotes the spectrum of H.�R;R/.

Analogous questions have been considered in [1, 3–5] and [2]. These two
operators are analyzed thanks to technics developed in these references. The study
of more general cases (dimension 2) complementary to those studied in [1] and [2]
is done by R. Henry in [29].

3.6 The Giorgi-Phillips type theorem for stationary solutions

We finally come back to the discussion started in the second paragraph of Sub-
section 3.3. The aim is to establish the equivalent of Giorgi-Phillips theorem for
the stationary solutions of time-dependent equations. Of course, one can consider
different regimes according to the parameters. We only present one possible choice.
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We assume that 	2=& D c > 0 ; where c is fixed. In [2], it appears useful in order
to get a good scaling to take

Jr D 	2 QJr : (105)

With this scaling, we assume that QJr and hr are independent of h and 	; so Br is also
independent of h and 	 (see (80) and (77)). Looking at (83) and (84), we get a �n

which is independent of h and 	; and through (81) the same property for An.
We now assume that we have a nonnormal stationary point . ;A; �/ of (64),

with condition (80) and that

Z
˝

j .x/j2 dx > 0 : (106)

Then we get:

i� D �A C  .1 � j j2/ ; in ˝ ; (107a)

	2curl 2A C &r� D Im . N � .r C iA/ / ; in ˝ ; (107b)

 D 0 ; on @˝c ; (107c)

.r C iA/ � 
 D 0 ; on @˝i ; (107d)

curl A D hBr ; on @˝i : (107e)

Taking the scalar product with  in the first line, we get (using also the boundary
condition)

i
Z
˝

�.x/j .x/j2 dx C jj.r C iA/ jj2 C
Z
˝

j .x/j4 dx D jj jj2 : (108)

Now for the second equation, we take the scalar product with A � hAn; where
.0;An; �n/ is the normal stationary solution, and observing that div A D 0; we
obtain:

	2jjcurl .A � hAn/jj2 D
Z
˝

�
.A � hAn/ � Im . N � .r C iA/ /

�
dx : (109)

Now (108) implies

jj.r C iA/ jj2 � jj jj2 : (110)

Playing with (109) leads first to

	2jjA � hAnjj2 � C˝	
2jjcurl .A � hAn/jj2 � OC˝ jj.A � hAn/jj jj.r C iA/ jj :
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Hence

	2jjA � hAnjj � OC˝ jj.r C iA/ jj � jj jj
and we get

	4jjA � hAnjj2 C jj.r C iA/ jj2 � QC˝ jj jj2 :

Comparing
R
˝

j.r C ihAn/ j2 dx and
R
˝

j.r C iA/ j2 dx leads to:

Z
˝

j.r C ihAn/ j2 dx � 2 k.r C iA/ k2 C 2.k.A � hAn/j j k2 ;

and
Z
˝

j.r C ihAn/ j2 dx � 2C˝.1C 	�4/
Z
˝

j .x/j2 dx :

Since  satisfies (106) and the Dirichlet condition on @˝c; we obtain

�DN
1 .hAn/ � 2C˝.1C 	�4/ ; (111)

where �DN
1 corresponds to the Dirichlet-Neumann realization of the magnetic

Laplacian (Dirichlet on @˝c and Neumann on @˝i). We now need an asymptotic
behavior of �DN

1 .hAn/ in order to get either a contradiction (if no h satisfies the
inequality) or an upper bound for h. Actually, a lower bound of �DN

1 will suffice.
Here, we observe that �DN

1 � �N
1 .

Observing that Bn is continuous on ˝ and harmonic in ˝; the maximum
principle shows that the minimum Bmin of Bn in ˝ is attained on one component
of @˝i and that the maximum Bmax is attained at the other component. Assume
further that

(B) B�1
n .0/ D ; or Bmin < 0 < Bmax : (112)

Under this assumption, one can show (see [2]) that either B�1
n .0/ is empty or

satisfy (15), Theorems 2 or 3 are consequently relevant for estimating �N
1 .hAn/.

Theorem 14. Under the assumptions of Subsection 3.1 and of this subsection, there
exists, for any c > 0, hr andeJr, h0 such that h � h0; 	 � 1; and 	2=& D c; any
stationary solution of (TDGL1) is normal.

Note that & D 0 is excluded from this last theorem. Hence the comparison with
the first statement of Giorgi-Phillips is not possible.
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16. E. Feireisl and P. Takáč, Long-time stabilization of solutions to the Ginzburg-Landau equations
of superconductivity, Monatsh. Math. 133 (2001),197–221.

17. J. Fleckinger-Pellé, H. G. Kaper, and P. Takáč, Dynamics of the Ginzburg-Landau equations
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Fixed Point Theory for 1-Set Contractions:
a Survey

Smaïl Djebali

(To the memory of Boris Nikolaevich Sadovskii)

Abstract In this report, we first review some classical results concerning the fixed
point theory for an important class of mappings for which the Banach contraction
principle fails, namely nonexpansive mappings. Both metric and topological fixed
point theory will be surveyed. We will also discuss some known results regarding
the extension to nonlinear contractions and to ˛-contractive mappings with respect
to some measure of noncompactness ˛. The second part of this survey paper will be
devoted to some recent progress and development of the fixed point theory of 1-set
contractions that have been achieved during the last couple of years. The theory for
different boundary conditions and when the corresponding space is endowed with
the weak topology are also discussed. Finally, some applications to equations of
Krasnosels’kı̆i type and to the solvability of nonlinear integral equations of Volterra
type are presented.

Keywords fixed point • normal structure • expansive • nonexpansive •
uniformly convex • 1-set contraction •  -expansive • ˛- -expansive •
retraction • weakly compact • weakly continuous • MNC • boundary condition •
weak topology • sum of operators integral equation
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1 Introduction

The fixed point theory is of fundamental importance in almost all branches of
mathematics for many applied problems stem from mechanics, chemistry and
ecological problems may be formulated as nonlinear equations of the form u D Tu;
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where T stands for some nonlinear operator modeling the given equation or system
and obeys some physical laws. For these reasons, fixed point theory has attracted
many researchers for centuries. Presently, the theory has developed in several
directions and has become a wide domain and a very rich area of nonlinear analysis,
in theory as well as in applications. But still many questions remain open to the
specialists. The starting point is the case where T is a k-contraction mapping and is
related to the classical Banach fixed point (Theorem 1 below). Unfortunately, this
theorem fails in the limit case k D 1, i.e., for nonexpansive mappings. Indeed a
nonexpansive mapping on a Banach space need not have a fixed point as shows the
translation mapping T.x/ D x C x0 for some x0 2 X n f0g. Moreover, the identity
operator shows that in general uniqueness does not hold for nonexpansive mappings.

The aim of this article is to present first a brief account on the fixed point theory
for such mappings; we will focus on the main properties of the domains of mappings
as well as on the functional spaces under consideration. As a generalization of
nonexpansive mappings, we will be concerned in the second part of this work with
an important class of mappings, namely that of the 1-set contractions with respect to
some measure of noncompactness. The essential elements which have played a key
role in the development of the fixed point theory for these mappings during the last
four decades are surveyed. For further studies, the interested author may find most
important results in the rich literature given in the bibliography.

The plan of the paper is as follows. After an introductory section, we recall in
Sect. 2 the fixed point theory for nonexpansive mappings (generalities, approxima-
tion, structure of domain, geometry of space, nonlinear alternative, classical and
recent results, boundary conditions). The more general case of 1-set contractions
(MNC, first results, historical review, recent developments) is discussed in Sect. 3.
Sect. 4 is devoted to presenting the theory when the Banach space is endowed with
a weak topology and then some fixed point theorems are derived. We close this
survey paper with some applications to the sum of operators in Sect. 5 and to the
solvability of two nonlinear integral equations in Sect. 6. The paper ends with a
concluding remark given in a short section.

A basic and a very important tool in the fixed point theory is the Banach
contraction principle ((1922) see e.g., [66]):

Theorem 1. Let .X; d/ be a complete metric space and let T W X ! X be a
contraction mapping, i.e., there exists 0 < k < 1 such that

d.T.x/;T.y// � kd.x; y/; 8x; y 2 X:

Then there exists exactly one point Qx 2 X such that T.Qx/ D Qx.

The fixed point Qx is obtained as the limit of the iterative sequence defined recurrently
by xnC1 D T.xn/ and x0 2 X. The speed of convergence of this sequence to its limit
can also be estimated. Indeed, it is easy to check that for every x 2 X

d.Tnx; Qx/ � kn

1 � k
d.x;Tx/:

This result has the following extension.
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Theorem 2. T has a unique fixed point whenever there exists m 2 f1; 2; : : :g such
that Tm is a k-contraction, where Tm is defined recurrently by T0.x/ D T.x/ and
TmC1.x/ D T.Tm/.x/.

Proof (Sketch of the proof). For x 2 X, define '.x/ D d.x;Tm.x//. Then .'.Tn.x///n
is a Cauchy sequence, hence converges to some limit x0. In addition, for all x 2 X,
and all n > m, we have

'.Tn.x// � kl'.Tp.x//;

where l is the integer part of n=m and p D n � lm. Hence x0 D 0 and so .Tn.x//n
is a Cauchy sequence, hence converges to some limit y. d.y;Tm.y// D 0 implies
T.y/ D Tm.T.y//. Since Tm has only one fixed point, we conclude that y D T.y/.

ut
Example 1. Let X D C.Œ0; b�;</ and T W X �! X the mapping defined by
T.x/.t/ D R t

0
x.s/ds. Then T is not a contraction if b > 1; however

T.n/.x/.t/ D 1

.n � 1/Š
Z t

0

.t � s/n�1x.s/ds

is a contraction for n large enough.

2 Nonexpansive mappings

2.1 Generalities

We first consider a particular case

Theorem 3 (Compactness). Let .X; d/ be a compact metric space and T W X ! X
be a mapping satisfying:

d.T.x/;T.y// < d.x; y/; 8x; y 2 X:

(T is said strictly nonexpansive, contracting, or shrinking). Then T has exactly one
fixed point. Also, for each x 2 X, the sequence fT.n/.x/gn2N converges to this unique
fixed point.

Proof. For x 2 X, define the real continuous function '.x/ D d.x;T.x//. Since X is
compact, there exists Nx 2 X such that '.Nx/ D infx2X '.x/. Then T.Nx/ D Nx. On the
contrary

'.T.Nx// D d.T.Nx/;T2.Nx// < d.Nx;T.Nx// D '.Nx/;
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contradicting the definition of the infimum (the greatest lower bound). Regarding
the second part of the theorem, let un.x/ D '.T.n/.x// D d.T.n/.Nx/;T.nC1/.x//.
Then the sequence .un.x//n2N is decreasing hence converges to some limit u.x/; the
continuity of T.k/ .k 2 N/ implies u.x/ D 0. By compactness, we may assume that
there exists y D lim

n!1 T.n/.x/ and again by continuity

0 D u.x/ D lim
n!1 un.x/ D '

�
lim

n!1 T.n/.x/
�

D '.y/ D d.y;T.y//:

Hence T.y/ D y, i.e., y D x, as claimed. ut
Remark 1. (a) The existence result still holds if T W C �! C is strictly

nonexpansive and C is a nonempty convex weakly compact subset of a Banach
space (see [57, Theorem 1.3.19] and Remark 6).

(b) The compactness of the space X is essential as shows the counterexample where
X D Œ1;C1/ and T.x/ D xC 1

x . Indeed, jT.x/�T.y/j < jx�yj, for all x; y 2 X
but T is fixed point free.

Several examples of fixed point free mappings are provided by B. Sims in
[72, Chap. 2].

Theorem 4 (Approximation). Let .X; k:k/ be a Banach space, C 	 X a nonempty
closed convex subset containing the origin, and TW C �! C a bounded nonexpan-
sive mapping. Then for any small ı > 0, T has a ı-fixed point in C, that is xı 2 C
such that kxı � T.xı/k < ı.
Proof. Since T is bounded, there exists R > 0 such that T.C/ 	 B.0;R/.
For 0 < ı < R, the mapping

�
1 � ı

R

�
T is a contraction hence admits a unique

fixed point xı 2 C. Then

0 � kT.xı/ � xık D
����T.xı/ �

�
1 � ı

R

�
T.xı/

���� D ı

R
kT.xı/k � ı:

ut
Remark 2. Since T is nonexpansive, if C is bounded then T.C/ is so and thus
Theorem 4 applies. More generally, it suffices that T verifies the property .K /,
i.e., there exists a nonempty bounded closed convex subset K 	 E such that
T.K \ C/ 	 K.

Remark 3. Theorem 4 (and its proof) show that

(a) every nonexpansive mapping on a bounded closed convex subset can be
approximated by a sequence of contractive mappings,

(b) inf
x2C

fkx � Txkg D 0.

As a consequence, we have
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Corollary 1. Let C be a nonempty bounded closed convex subset in a Banach space
X and T W C �! C be a nonexpansive mapping such that .I � T/.C/ is closed in X.
Then T has a fixed point.

Proof. By Theorem 4, there exists a sequence .xn/n2N 2 C such that lim
n!1 kT.xn/�

xnk D 0. Since .I � T/.C/ is closed, we deduce that 0 2 .I � T/.C/; hence, f has a
fixed point in C. ut

In fact, instead of nonexpansiveness of T , it is sufficient to assume the existence
of approximate fixed points, in which case it is not necessary for T to self-map C.
We have

Corollary 2 (Approximation+compactness). Let C 	 E be a closed subset of a
Banach space and TW C �! E a continuous mapping. Assume that

(a) T.C/ is compact.
(b) T has a ı-fixed point in C for each ı > 0:

Then T has a fixed point in C:

Proof. From (b), there exists a sequence .xn/n2N 2 C such that lim
n!1 kT.xn/�xnkD0

(one may take ı D 1=n for n 2 f1; 2; : : :g). Since T.C/ is compact, there exists a
subsequence .xnk/k2N such that lim

k!1 T.xnk/ D y 2 T.C/. Therefore y D lim
k!1 xnk ,

y 2 C, and T.y/ D y. ut
Remark 4. The compactness of C cannot be relaxed to the weak-compactness as
shows the following counterexample provided by Alspach in 1981 [7]. Let X D
L1Œ0; 1�,

C D
	

h 2 Xj
Z 1

0

h.t/dt D 1 and 0 � h.t/ � 2; for a.e. t 2 .0; 1/
�
;

and let T W C �! C be defined by

T.h/.t/ D
	

minf2; 2h.2t/g; if 0 � t � 1=2

maxf0; 2h.2t � 1/ � 2g; if 1=2 < t � 1:

Then C is a nonempty convex weakly compact subset and T is an isometry which is
fixed point free.

Since T compact implies .I � T/.C/ closed, the following result can be seen as a
consequence of either Theorem 4 or Corollary 2.

Corollary 3. Let C be a nonempty bounded closed convex subset of a Banach space
X and T W C �! C a nonexpansive mapping such that T.C/ is compact. Then T has
a fixed point.
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Two long surveys on nonexpansive mappings were provided by Ivanov in 1976
[61] and by Gulevich [57] in 1996, where the stress was put on the geometry of the
space and the structure of the domain (see also the handbook [72, Chaps. 3, 4, 12],
the book by Agarwal et al. [4], the survey paper [70], and [95]).

Historically, a basic result of great importance concerning the fixed point
theory for nonexpansive mappings was proved in 1965. This result was proved for
Hilbert spaces by Browder [16], for uniformly convex spaces by Browder [17] and
Göhde [54], and for reflexive spaces with normal structure by Kirk [67] (see also
[3, Theorem 2.1], [20, Theorem 4], [56, Theorem 1.3], [50, 51], [60, Theorem 3.4.4],
[98]). In the next two subsections, these existence results are reviewed.

2.2 Structure of domain

Definition 1. (a) Let X be a Banach space and C 	 X a nonempty bounded subset.
A point c 2 C is said to be diametral if sup

x2C
kx � ck D diam C.

(b) We say that a set A has normal structure, if for any given bounded convex subset
C 	 A containing more than one point, there exists a nondiametral c 2 C, i.e. C
is contained in a ball whose center is a point of C and whose radius is less than
the diameter of C.

(c) A bounded sequence .xn/n2N 	 X is called diametrical if diam fxng > 0 and

lim
n!1 dist .xnC1; convfx1; x2; : : : ; xng/ D diam .xn/:

In 1948, Brodskii and Milman [15] proved the following characterization (see also
[4, Proposition 3.3.9], [51, Lemma 4.1], [57, Theorem 1.1.3]).

Proposition 1. A subset A 	 X has a normal structure if and only if it has no
diametrical sequences.

In particular, every convex compact subset of an arbitrary Banach space has normal
structure [4, Proposition 3.3.1]. Moreover, the result still holds true if C is any
bounded closed convex subset (not necessarily compact) of a uniformly convex
space (see Definition 3) [4, Proposition 3.3.3].

Definition 2. (a) A mapping F W C �! C is called demi-closed if for any y 2 X
and any sequence .xn/n2N 	 C; the condition .xn/ converges weakly to x and
kF.xn/ � yk ! 0 imply that x 2 C and F.x/ D y.

(b) We say that a Banach space X satisfies the Opial condition if given any sequence
xn * x and y 6D x in X, we have

lim inf
n!1 kxn � xk < lim inf

n!1 kxn � yk:
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Proposition 2. Let X be a reflexive Banach space satisfying the Opial condition.
Then

(a) X has a normal structure.
(b) If T W C �! C is nonexpansive with C 	 X closed and convex subset, then

I � T is demi-closed.

Proof. (a) Arguing by contradiction and using Proposition 1, assume that X
contains a sequence of diametral points .xn/n2N. Then

lim
n!1 dist.xnC1; convfx1; x2; : : : ; xng/ D diam.xn/:

Without loss of generality, assume that xn * 0 weakly, as n ! 1. Then,
for any y 2 convfx1; x2; : : : ; xng, we have lim

n!1 ky � xnk D diam.xn/, hence

y D 0 and, as a consequence, lim
n!1 kx1 � xnk D diam.xn/, contradicting Opial’s

condition.
(b) Let .xn/ converge weakly to x and k.I � T/.xn/ � yk ! 0. Set Tyx D Tx C y;

then Ty is nonexpansive and lim
n!1 kxn � Tyxnk D 0. Since

kTyx � xnk � kTyx � Tyxnk C kTyxn � xnk;

then

lim inf
n!1 kTyx � xnk � lim inf

n!1 kx � xnk

which yields, by Opial’s condition, Tyx D x, i.e., .I � T/x D y.
ut

Observe that in part (b), the reflexivity of the Banach space is not needed, but only
C weakly compact is required.

Example 2. (a) The sequence spaces lp (1 < p < 1) satisfy the Opial condition
(the weak and strong convergence coincide) while the Lebesgue spaces Lp for
1 < p < 1; p 6D 2 do not (see, e.g., [61]).

(b) Every Hilbert space H satisfies the Opial condition because of the parallelogram
identity:

kxn � yk2 D kxn � xk2 C 2 < xn � x; x � y > Ckx � yk2;

for xn; x; y 2 H.

Now, we consider the fixed point theory for nonexpansive mappings in some
special situations. For the proof of the first result, we refer to [51, Theorem 10.2]
and [72, Theorem 2.1, Chap. 3], [89, Theorem 3.4.3].



60 S. Djebali

Theorem 5. Let C 	 X be a nonempty convex with normal structure subset of a
reflexive Banach space X. Then every nonexpansive mapping T W C �! C has a
fixed point.

In fact, we only need C 	 X to be weakly compact with normal structure, as
noticed by Kirk in 1965 (see [49, Theorem 7.1.23] or [51, Theorem 4.1] or [57,
Theorem 1.1.4]):

Theorem 6. Let C 	 X be a nonempty convex weakly compact with normal struc-
ture subset of a Banach space X. Then every nonexpansive mapping T W C �! C
has a fixed point.

Proof. By Zorn’s Lemma, there is a nonempty minimal T-invariant closed convex
subset K 	 C (in the sense that it contains no proper closed convex subset invariant
under T). Arguing by contradiction, assume that d D diam K > 0. Since C has a
normal structure, there exists r 2 .0; d/ such that

E D fx 2 K j K 	 B.x; r/g 6D ;:

Since T is nonexpansive, for x 2 E, T.K/ 	 B.Tx; r/. Then Conv T.K/ 	 B.Tx; r/.
But Conv T.K/ is invariant by T , then also K 	 B.Tx; r/. Therefore Tx 2 E and E is
invariant by T . In addition, E is closed convex hence E D TfB.y; r/; y 2 Kg: The
minimality of K guarantees that E D K and so kx � yk � r, for all x; y 2 E, proving
that d � r < d, a contradiction; as a consequence, diam K D 0. This means that K
consists of a single point, a fixed point for T . ut

Since, by Proposition 2, in a reflexive Banach space, Opial’s condition implies
the normal structure of the domain, we deduce

Corollary 4. Let C be a nonempty closed convex subset of a reflexive Banach space
with the Opial condition satisfied. Then every nonexpansive mapping T W C �! C
has a fixed point.

Remark 5. The weak-compactness of C cannot be dispensed as the following
counterexample shows. Let X D CŒ0; 1�,

C D fx 2 Xj 0 � x.t/ � 1 for all t 2 .0; 1/ and x.0/ D 0; x.1/ D 1g;

and let T W C �! C be defined by f .x/.t/ D tx.t/; t 2 Œ0; 1�. Then C is a nonempty
weakly compact convex subset but has no normal structure. Indeed, diam K D 1.
In addition, if x 2 K, then for a given " > 0, there is ı > 0 such that x.t/ < ",
for 0 < t < ı. Select a function y 2 K such that y.t/ D 1 for t � ı=2. Then
kx � yk � 1 � ". This proves that the point x is diametrical and our claim follows.
However T is a fixed point free nonexpansive mapping (see [7]).

Example 3. (Sadovskii) In the Banach space X D c0 of null sequences, let C
be the closed unit ball. Then X is not reflexive and C has no normal structure.
However the mapping T W C �! C defined by the shift operator T.x1; x2; x3; : : :/ D
.1; x1; x2; x3; : : :/ is fixed point free.
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2.3 Geometry of space

The following concept was first introduced by Clarkson in 1936 [26].

Definition 3. A space X is said to be uniformly convex if it satisfies the following
geometric condition: 8 " > 0; 9 ı > 0; 8 .x; y/ 2 X2;

kx � yk � "; kxk � 1; kyk � 1 ) k.x C y/=2k � 1 � ı:

We have the characterization:

Proposition 3. (a) X is uniformly convex if and only if for any two sequences
xn; yn 2 B.0; 1/, if kxn C ynk ! 2, then kxn � ynk ! 0, as n ! 1.

(b) X is uniformly convex if and only if for all " 2 Œ0; 2�, ıX."/ > 0, where ıX."/ is
the modulus of continuity defined by

ıX."/ D inff1 � k.x C y/=2k W x; y 2 B.0; 1/; kx � yk � "g:

Remark 6. The uniform convexity is a geometric property of the unit ball: if we
slide a rule of length " > 0 in the unit ball, then its midpoint must stay within a ball
of radius 1 � ı for some ı > 0. In particular, the unit sphere must be “round” and
cannot include any line segment. For instance .<2; k:k2/ is uniformly convex while

.<2; k:k1/ is not, where for i D 1; 2, k.x1; x2/ki D �
xi
1 C xi

2

�1=i
:

Example 4. Hilbert spaces and Lebesgue spaces Lp.˝/ .1 < p < 1/ are uniformly
convex spaces (see, e.g., [41]).

Proposition 4. Any uniformly convex Banach space is reflexive (see, e.g., [5, 25,
41, 101]).

Remark 7. Every nonempty bounded closed convex subset C of a uniformly
convex Banach space X has normal structure (Edelstein, [39], 1974). Indeed, if
d D diam C > 0, then there exist a; b 2 C such that ka � bk � d=2. Then for
every x 2 C, we have

kx � ak � d; kx � bk � d; and k.x � a/ � .x � b/k � d=2:

Hence k.x � a/� .x � b/k � 2 .1 � ı.1=2// d, where ı is the modulus of continuity,
i.e., kx � aCb

2
k � 2 .1 � ı.1=2// d and thus C 	 B. aCb

2
; .1 � ı.1=2// d/.

Basic references for the geometry of Banach spaces are [25, 29, 53]. The
following result is a direct consequence of Theorem 5, Proposition 4, and Remark 7
(see also Subsection 2.5).

Corollary 5. Let C be a nonempty bounded closed convex subset in a uniformly
convex space X. Then each nonexpansive mapping T W C �! C has a fixed point.
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2.4 Recent results

The property that a mapping is  -expansive is related to the closedness of the range.

Definition 4. An operator F W D.F/ 	 X �! X is said to be  -expansive if there
exists a function  W Œ0;1/ �! Œ0;1/ with  .0/ D 0,  .r/ > 0; 8 r > 0,  is
either continuous or nondecreasing, and

kFx � Fyk �  .kx � yk/; 8 x; y 2 D.F/:

Then, we have (see [1, Corollary 2.25], [45, Lemma 3.3, Proposition 3.4])

Theorem 7. Let X be a Banach space, C 3 0 a bounded closed convex subset of X,
and T W C �! C a nonexpansive mapping such that I � T is  -expansive. Then T
has a unique fixed point in C.

Proof. By Theorem 4, T has a sequence .xn/ of approximate fixed points, i.e.,
lim

n!1 kxn � Txnk D 0. We claim that .Txn/ is a Cauchy sequence. We may assume

that  is a nondecreasing function and that .Txn) is not a Cauchy sequence. Then,
there exist "0 > 0 and two increasing sequences .nk/ and .mk/ of positive integers
such that, for all k 2 N, the inequality "0 < kTxmk � Txnk k holds. Since (xn � Txn/ is
a null sequence, it is a Cauchy sequence. Given " D  ."0/ > 0, we have

 ."0/ <  .kTxmk � Txnk k/ � k.xnk � Txnk/ � .xmk � Txmk/k;

which is a contradiction; therefore, .Txn/ is a Cauchy sequence, as claimed. Finally,
since T is a continuous mapping it is clear that the limit of .Txn/ is the unique fixed
point of T . ut
For the proof, see also [92, Theorem 8]. The following result, due to Garcia-Falset
and Muñiz-Pérez, 2013, clarifies the relationship between the closedness of the
range R.I � T/ and the fact that I � T is  -expansive (see [48, Proposition 3.1,
Lemma 3.1]).

Proposition 5. Let C be a nonempty bounded closed subset of a Banach space X
and F W C �! C a mapping.

(a) Assume that F is continuous and injective with F�1 W R.F/ �! C uniformly
continuous. Then the range R.F/ is a closed subset of X.

(b) Assume that F W C �! X is  -expansive. Then F is injective and F�1 is
uniformly continuous.

Remark 8. Combining parts (a) and (b) of Proposition 5, we can see that if I � T is
 -expansive, then R.I � T/ is a closed subset of X and thus Theorem 7 falls into
the scope of Theorem 23. Indeed, Petryshyn proved that if T W X �! X is a 1-set
contraction (see Section 3) and I � T is c-expansive (i.e., with  .s/ D cs; c > 0),
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then I � T is a bijection (see [92, Theorem 8]). If further T is linear, then I � T-
c-expansive is also a necessary condition for the existence and the uniqueness of a
fixed point (see [92, Corollary 9]).

2.5 Demi-closedness and closedness of the range

(1) In case of a nonexpansive mapping T defined on a bounded closed convex
subset of a uniformly convex Banach space X, F. Browder’s demi-closedness
principle [19, Theorem 3] (see also [4, Theorem 5.2.12] or [97, Lemma 3.4]
or [104, Prop. 10.9]), proved in 1968, states that I � T is demi-closed and
has a closed range; this fact follows from Proposition 2, 4 and Remark 7.
In other words, Browder [19, Theorem 1] proved Theorem 23 for the class
of nonexpansive mappings (see also [17]). The proof is outlined. Since T is
nonexpansive, T possesses by Theorem 4 a sequence of approximate fixed
points .xn/n2N 	 U. Now since X is a uniformly convex space, it is reflexive
and then .xn/n2N converges weakly. According to Browder’s principle, 0 2
.I � T/.U/, proving Corollary 5. More generally, in a uniformly convex space,
every weak limit of an approximate fixed point of an operator T is a fixed point
of this operator. Notice finally that Browder’s demi-closedness principle has
been also proved by Opial for Hilbert spaces in 1967 (see [87, Lemma 2]).

(2) Moreover, the result still holds in the wider class of nonexpansive mappings
satisfying Opial’s condition (see [51, Theorem 10.3]); more generally, in a
Banach space X with C 	 X a nonempty weakly compact subset and T W X �!
X a nonexpansive mapping, if lim

n!1 xn D x weakly and lim
n!1.I � T/xn D y

(y 2 X) strongly, then y D .I � T/.x/; otherwise,

kxn � Tx � yk � kxn � Txn � yk C kTxn � Txk

implies

lim inf
n!1 kxn � Tx � yk � lim inf

n!1 kxn � xk:

Then Opial’s condition yields

lim inf
n!1 kxn � xk < lim inf

n!1 kxn � .Tx C y/k;

a contradiction.
(3) When X is reflexive -in particular when X is uniformly convex- every bounded

subset ˝ 	 X is weakly compact and thus I � T demi-closed implies that
.I � T/.˝/ is closed.

(4) When C is a nonempty bounded closed convex subset of a uniformly convex
space, Nussbaum [85, Lemma 3] proved the demi-closedness principle for the
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larger class of locally almost nonexpansive mappings f W C �! C (LANE, for
short). These are mappings that satisfy: for all x 2 C and all " > 0, there exists
a neighborhood U 2 V .x/ such that for all u; v 2 X

kf .u/ � f .v/k � ku � vk C ":

A report on the fixed theory for LANE mappings can be found in [69].
(5) Notice further that the demi-closedness principle is still valid for the sum of a

nonexpansive mapping T and a strongly continuous one, say S (i.e., Sxn �! Sx
whenever xn * x in C) provided C is a bounded closed subset of a uniformly
convex Banach space (see [104, Proposition 11.14(4)]).

2.6 Back to approximation methods

Let C 	 X be a nonempty closed subset of a Banach space X and T W ˝ �! X a
mapping. For some positive ı and a bounded subset ˝ 	 C, consider the following
sets (see [51, 65, 101]):

Fı.T; ˝/ D fx 2 ˝ W kx � Txk � ıg; (1)

the set of the ı-fixed points of T in ˝,

S D f.xn/n2N 	 ˝ j xn D
�
1 � 1

n

�
Txn; 8 n D 1; 2; : : :g; (2)

the set of approximate fixed points, and let

SK D S \ K; (3)

where K is a bounded closed convex subset. For some real parameters " > 0 and
c > 0 such that 0 < c < ˛.˝/C "; define the sets:

N".˝/ D f.x; y/ 2 ˝2 j ˛.˝/ � " � kx � yk � ˛.˝/C "g; (4)

Nc
" .˝/ D f.x; y/ 2 ˝2 j c � kx � yk � ˛.˝/C "g; (5)

where ˛ is the measure of noncompactness of Kuratowski (see Definition 11 below).
In 1974, Bruck [22] proved that Fı.T; ˝/ is path-wise connected. The sets Fı have
been recently used to remove the condition of boundedness of the closed convex
domain to prove fixed point theorems for nonexpansive mappings. In 2003, Penot
[90, Corollary 3] showed that the boundedness of the subset C can be dispensed if
T W C �! C is not only nonexpansive but also asymptotically contractive, that is
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9 x0 2 C; lim sup
x2C; kxk!1

kTx � Tx0k
kx � x0k < 1:

Penot’s result was recently generalized in [65, Theorem 2.4] for the case where Fı
is bounded:

Theorem 8. Let X be a Banach space with the FPP, C be a closed convex subset of
X (not necessarily bounded), and T W C �! C a nonexpansive mapping such that
Fı.T;C/ is nonempty and bounded for some ı > 0. Then T has a fixed point in C.

Recall that X has the FPP (fixed point property) if each of its bounded closed convex
subsets has the fixed point property for nonexpansive self-mappings.

The following technical lemma (see [31, Lemma 3.1]) has been recently used
to show the compactness of the set SK and then the convergence of a sequence of
approximate fixed points.

Lemma 1. Let C 3 0 a closed convex subset of a Banach space X and T W C �!
C a nonexpansive mapping satisfying the property .K /. Assume that there exist
ı0; "0 > 0 such that for all c 2 .0; ˛.SK/C "0/, we have

ŒFı0 .T; SK/ 
 Fı0 .T; SK/� \ Nc
"0
.T; SK/ D ;: (6)

Then ˛.SK/ D 0:

The next proposition provides a sufficient condition for (6) be satisfied (see [33,
Proposition 5.2]).

Proposition 6. Let ˝ be a nonempty bounded subset of X such that ˛.˝/ > 0 and
C a closed convex subset of X. Suppose that T W C �! C is a nonexpansive mapping
such that I � T is  -expansive. Then for every " > 0, 0 < c < ˛.˝/ C ", and all
ı; ı0 > 0 with 0 < ı C ı0 <  .c/; we have

ŒFı.T; ˝/ 
 Fı0.T; ˝/� \ Nc
" .˝/ D ;:

Proof. Let " > 0 and c > 0 be such that 0 < c < ˛.˝/ C ". Arguing by
contradiction, suppose that there exist ı; ı0 > 0 such that 0 < ı C ı0 <  .c/
and

ŒFı.T; ˝/ 
 Fı0.T; ˝/� \ Nc
" .˝/ ¤ ;:

Since I � T is  -expansive, for .x; y/ 2 ŒFı0.T; ˝/ 
 Fı.T; ˝/� \ Nc
" .˝/, we have

 .kx � yk/ � k.x � Tx/ � .y � Ty/k � kx � Txk C ky � Tyk � ı C ı0: (7)

(a) If  is nondecreasing, then since .x; y/ 2 Nc
" .˝/; we have c � kx � yk which

implies that  .c/ �  .kx � yk/ � ı C ı0, leading to a contradiction with
0 < ı C ı0 <  .c/.



66 S. Djebali

(b) If  is continuous, then let .x; y/ 2 Nc
" .˝/ be such that kx � yk D c C 1=n

for large enough n 2 f1; 2; : : :g. By continuity of  , for every � > 0, there is
n0 2 f1; 2; : : :g such that for all n � n0

 .c/ � � <  .kx � yk/ <  .c/C �:

This with (7) yields .c/�� � ıCı0 and a contradiction is reached by choosing
� >  .c/ � .ı C ı0/.

ut
As a consequence, we recapture Theorem 7 (see [31, 33]).

2.7 Nonlinear alternatives

An important tool to prove nonlinear alternatives is the following concept due to K.
Borsuk (1930) [13]:

Definition 5. Let X be a Hausdorff space and C 	 X a nonempty subset. We say
that C is a retract of X if there exists a continuous mapping r W X �! C such
that rj C D Idj C where Id is the identity operator. Then the mapping r is called a
retraction.

Example 5. Let .X; k:k/ be a normed space. Then every closed ball C D BR is a
retract of X via the radial retraction r W X �! C defined by

r.x/ D
	

x; if x 2 C
Rx=kxk; if x 62 C:

In a Hilbert space, the nearest point mapping r is a nonexpansive mapping (see,
e.g., [94, Page 795], [20, Lemma 1], [56, Lemma (1.4)], [60, Theorem 6.1.4]). In the
general case of a Banach space, it has a Lipschitz constant 2. Example 8 will provide
a construction of a retraction on closed convex subsets with nonempty interior. We
also recall that the fixed point set of a nonexpansive mapping T W C �! C is
a nonempty nonexpansive retract of C [21, 22] and that every uniformly convex
Banach space has the nonexpansive retract property [25, 29]. Moreover, we have

Retract H) Closed (in any topological space)

Closed + Convex H) Retract (in any locally convex topological vector space):

The second fact is an immediate consequence of Dugundji’s extension theorem:

Theorem 9 ([37]). Let X be a locally convex topological vector space, A a closed
subset of a metric space E, and f W A ! X a continuous mapping. Then there exists
a continuous extension Qf W X ! X such that Qf .E/ 	 conv .f .A//.
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The following results are commonly called nonlinear alternatives.

Theorem 10. Let H be a Hilbert space, C D BR, and T W C �! X a nonexpansive
map. Then at least one of the following properties holds: either

(a) T has a fixed point, or
(b) there is an x 2 @C and � 2 .0; 1/ such that x D �T.x/.

Proof. Let rC be the radial retraction and ' D rC ı T . Then ' W C �! C is
nonexpansive. Moreover H is a Hilbert space, hence uniformly convex and C has
normal structure. By Theorem 5, ' has a fixed point x 2 C. If T.x/ 2 C, then x D
T.x/ and we are done; otherwise, x D RT.x/

kT.x/k 2 @C in which case for � D R
kT.x/k < 1

we have x D �T.x/, as claimed. ut
Theorem 10 is extended to uniformly convex spaces; for the proof we refer to

[3, Theorem 3.3]] or [97, Theorems 3.2, 3.5]].

Theorem 11. Let X be a uniformly convex space, ˝ 	 X a bounded open subset
with 0 2 ˝, and T W ˝ �! X a nonexpansive mapping. Then at least one of the
following properties holds:

(a) T has a fixed point,
(b) there is an x 2 @˝ and � 2 .0; 1/ such that x D �T.x/.

Each one of the conditions in the following corollary guarantees that the
condition (b) in the above theorem does not occur:

Corollary 6. Let X be a uniformly convex space, ˝ 	 X a bounded open subset
with 0 2 ˝, and T W ˝ �! X a nonexpansive mapping. Assume that, for x 2 @˝,
one of the following conditions holds:

(a) kT.x/k � kxk,
(b) kT.x/k � kx � f .x/k (Petryshyn’s condition),
(c) kT.x/k2 � kxk2 C kx � T.x/k2 (Altman’s condition),
(c) < T.x/; x >� kxk2 and X Hilbert (Krasnoselskii’s condition)

Then T has a fixed point in ˝.

Further existence results can be found in [31–33, 44, 48, 79–81] and the
references therein.

2.8 Boundary conditions

Let C 	 X be a subset of a Banach space. The main boundary conditions
(Leray-Schauder condition, inward condition, Furi-Pera type condition, and interior
condition) are particularly useful and often necessary when a mapping T that does
not self-map C. We are going to prospect them.
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2.8.1 The Leray-Schauder and the inward conditions

Let X be a Banach space, ˝ a bounded open subset and let T W ˝ �! X be a
completely continuous mapping satisfying the so-called Leray-Schauder boundary
condition:

.LS/ Tx 6D x0 C �.x � x0/; 8 x 2 @˝; � > 1;

x0 2 ˝. The geometric interpretation of this condition is that there is no x 2 ˝ such
that T.x/ lies on the continuation of the segment Œx0; x� beyond x. It enables one to
define the Leray-Schauder topological degree for the class of compact perturbations
of the identity [82]. The Leray-Schauder principle states that T has at least one fixed
point in ˝. Indeed, assume that T.x/ 6D x for all x 2 ˝ for otherwise we are
done. Now define the homotopy Tt.x/ D x � x0 � t.T.x/ � x0/ for t 2 Œ0; 1� and
x 2 ˝. If there exist t 2 .0; 1/ and x 2 @˝ such that Tt.x/ D 0. Then T.x/ � x0 D
x�x0

t , contradicting .LS/ for 1=t > 1. By the homotopy invariance property of the
Schauder topological degree [30, 82, 104]

deg .I � T; ˝; 0/ D deg .I � x0;˝; 0/ D deg .I; ˝; x0/ D 1;

for x0 2 ˝; hence, there exists an x 2 ˝ satisfying T.x/ D x, as claimed. It should
be emphasized that .LS/ is not needed when ˝ is convex and T leaves ˝ invariant.

Definition 6. (a) Let X be a Banach space, C 	 X is nonempty closed convex
subset, and x 2 C. Then

IC.x/ D f.1 � �/x C �yj � � 0; y 2 Cg

is called the inner set of x with respect to C.
(b) A mapping T W C �! C is said to be inward if T.x/ 2 IC.x/, for every x 2 C

and weakly inward if T.x/ 2 IC.x/, for every x 2 C.

The set IC.x/ is the union of all rays emanating from x and passing through some
other point y 2 C. Indeed, if y 2 IC.x/, then .1 � �/x C �y 2 IC.x/ for all positive
� [75, Lemma 2.1, Remark 4.1]. The other interesting feature of the weakly inward
condition is that if T.x/ 2 IC.x/ (and T.x/ 62 C), then the distance between T.x/ and
C is controlled by dist .T.x/;C/ < kT.x/ � xk.

Moreover since C is convex, C 	 IC.x/ and

IC.x/ D x C fy 2 Xj lim
h!0C

h�1dist .x C hy;C/ D 0g:

The sets IC.x/ were first used by Halpern and Bergman [58]. In [75, Proposi-
tion 4.1, Remark 4.1], it is proved that C D T

x2C IC.x/. The following fixed point
theorem was proved for LANE mappings by R. Nussbaum in 1972 [86, Theorem 1]
(when T self-maps C or only when T.@C/ 	 C and C has nonempty interior) and
by S. Reich in 1973 [98, Corollary 4].
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Theorem 12 ([4, Theorem 5.2.26]). Let X be a uniformly Banach space, C 	 X
a nonempty bounded closed convex subset, and T W C �! X a weakly inward
nonexpansive mapping. Then T has a fixed point.

When C is a convex subset with nonempty interior, it easy to see that the
inwardness condition is more general than the Rothe condition f .@C/ 	 C or the
condition that .x;T.x/� \ C 6D ;, for every x 2 @C, where

.x;T.x/� D fx C t.T.x/ � x/j 0 < t � 1g:

More precisely, we have (see [98, Remark 1] for the second implication).

Rothe’s cond. H) inwardness cond. H) weak inwardness cond. H) .LS/

Then Theorem 12 takes the following more general form (see [72, Chap. 10,
Theorem 2.8]), a result proved by Browder in 1968 [19]:

Theorem 13. Let X be a uniformly Banach space, C 	 X a nonempty bounded
closed convex subset with nonempty interior, and T W C �! X a nonexpansive
mappings satisfying .LS/. Then T has a fixed point.

This result was improved by J. Caristi in 1976 [24] (see also [89, Theo-
rem 3.4.38]). In fact, Caristi observed that if C is a nonempty closed convex subset
of X and T W C �! X, then I � T weakly inward is equivalent to

lim
h!0C

h�1dist .x � hT.x/;C/ D 0;

for every x 2 C (see [4, Proposition 5.1.1], [24, Theorem 1.2], or [30]). The
latter condition is known as the Nagumo or Brezis’ boundary condition. Then,
Caristi proved the following result for Lipschitz, pseudo-contractive mappings [24,
Theorem 2.6 ]:

Theorem 14. Let X be a Banach space and C 	 X a nonempty closed convex
subset which has the f.p.p. with respect to nonexpansive mappings. If T W C �! X
is a nonexpansive weakly inward mapping, then T has a fixed point.

Notice that the result also holds (with uniqueness) for weakly inward contraction
mappings; for the proof, see, e.g., [4, Proposition 5.1.2]. Then, for every x0 2 C
and t 2 .0; 1/, the mapping Tt.x/ D .1 � t/x0 C tT.x/ has exactly one fixed point
whenever T W C �! X is weakly inward. If further C is bounded, then T has a
sequence of approximate fixed points. Finally T has a fixed point if I � T is closed
and the latter condition turns out to be sufficient too.

Theorem 15. Let X be a Banach space and C 	 X a nonempty bounded closed
convex subset. If T W C �! X is a nonexpansive weakly inward mapping with I � T
closed, then T has a fixed point.



70 S. Djebali

When inffkx � Txk W x 2 @C; Tx 62 Cg > 0, C 	 X is a closed convex subset
with the f.p.p., and X is any Banach space, Kirk [68, Theorem 3.1] proved that T has
a fixed point. As a consequence, a fixed point result is obtained under the sufficient
condition that there exists x0 2 int C such that kx0�Tx0k < kx�Txk, for all x 2 @C.
In the general case of a bounded open subset of an arbitrary Banach space for which
.LS/ holds, one can only assert that inffkx � Txk W x 2 Cg D 0 (see, e.g., [72,
Chap. 10, Proposition 2.14]). We close this subsection with a result analogous to the
one in Theorem 11 but presented here in the more general framework of pseudo-
contractive mappings (for the definition, see Sect. 3). The proof can be found in [4,
Theorem 5.7.20]:

Theorem 16. Let X be a uniformly convex space, C 	 X a nonempty closed convex
subset with 0 2 C, and T W C �! X a weakly inward continuous pseudo-contractive
mapping. Then T has a fixed point if and only if the set fx 2 Cj Tx D �x; � > 1g is
bounded.

2.8.2 The interior condition

We begin with some definitions:

Definition 7. Let X be a Banach space and ˝ 3 0 a bounded open subset. We say
that ˝ is strictly star-shaped with respect to the origin if for each x 2 @˝, we have
ftxj t > 0g \ @˝ D fxg.

Definition 8. ˝ is said to be star-shaped if there exists x0 2 ˝ such that for each
x 2 ˝, it holds that Œx0; x� 	 ˝, where Œx0; x� refers to the closed line segment
ftx C .1 � t/x0; 0 � t � 1g joining the two points x0; x, i.e., Œx0; x� D co.fx0; xg/.

Then a convex set is a set which is star-shaped with respect to each of its
points. When ˝ is a bounded open neighborhood of the origin, the following strict
inclusions hold (see [64, Proposition 1]):

Convex 	 Strictly Star-shaped 	 Star-shaped:

Notice further that the condition F.˝/ 	 ˝ implies .LS/ if˝ is strictly star-shaped.
The proof employs the Minkowski functional introduced in Proposition 8 (see the
proof of Theorem 28).

Definition 9. A mapping T W ˝ �! X satisfies the interior condition if there exists
ı > 0 such that

.IC/ Tx 6D �x; for x 2 ˝ı; � > 1 and T.x/ 62 ˝;

where ˝ı D fx 2 ˝ W dist .x; @˝/ < ıg is the set of ı-interior points.
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In [64, Theorem 2], the authors proved that if T W B �! X is a nonexpansive
mapping, where B is a closed ball in a Hilbert space X, then .IC/ does imply .LS/.
We have

Theorem 17. Let X be a Banach space,˝ 	 X is a nonempty bounded open subset,
and T W ˝ �! X a nonexpansive mapping satisfying .IC/.

(a) If ˝ is strictly star-shaped, then T has a sequence of approximate fixed points.
T has a fixed point if further I � T has a closed range.

(b) If ˝ is convex and X is uniformly convex, then T has a fixed point.

Proof. (a) The first claim follows from [64, Theorem 1] already proved for
condensing mappings. Indeed, it suffices to approximate T by a sequence of
condensing mappings Tn.x/ D .1 � 1=n/T.x/; .n D 1; 2; : : :/. The second
claim is straightforward.

(b) Regarding the second part, we only notice that the Browder demi-closedness
principle applies and then the sequence of approximate fixed points .xn/n
obtained in part (a) converges weakly in the reflexive Banach space to a sought
fixed point.

ut
In [55, Corollary 3], González et al. proved, as in part (a), that if X is a Hilbert

space, a nonexpansive mapping T W ˝ �! X has a fixed point provided either .LS/
or .IC/ holds and ˝ is a bounded strictly star-shaped open neighborhood of the
origin. In fact, the authors proved the continuity of a radial projection on the interior
of strictly star-shaped sets (see [55, Proposition 2]):

Proposition 7. Let X be a Banach space and U a bounded strictly star-shaped open
neighborhood of the origin. Let k D k.U/ D inffkxk; x 2 @Ug D dist.0; @U/ > 0,
K D K.U/ D supfkxk W x 2 @Ug, ı 2 .0; k�, and r D ı

K . Then the function
P W X �! U defined by

Px D
(

rC.1�r/g.x/
g2.x/

x; if x 2 X n U;

x; if x 2 U

is continuous on X, is the identity on ˝ and P.X n U/ 	 Uı . Moreover Px 2
co.f0g [ fxg/ for all x 2 X, where g is the Minkowski functional, as recalled below.

Let X be a normed space and ˝ 	 X a nonempty subset. The Minkowski
functional is the function g˝ D g W X �! Œ0;C1/ defined by (see [11])

g.x/ D inff� > 0 W ��1x 2 ˝g D inff� > 0 W x 2 �˝g:

Proposition 8 ([101, Lemma 4.2.5]). We have

(a) g.�x/ D j�jg.x/, for � 2 < and x 2 X,
(b) 0 � g.x/ � 1, if x 2 ˝.
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Moreover, g.x/ < 1 if and only if ˝ is an absorbing set. ˝ is said to be an
absorbing set if for each x 2 ˝ there is some �0 > 0 such that x 2 �˝ for all
j�j � �0. If ˝ is convex, then g.x/ � 1; 8 x … ˝ and also

g.x C y/ � g.x/C g.y/; 8 x; y 2 X:

If further ˝ is open, then

g.x/ D 1; 8 x 2 @˝; g.x/ < 1; 8 xı˝; and g.x/ > 1; 8 x … ˝:

2.8.3 The Furi-Pera condition

Contrarily to the interior condition, we now present a result when the interior of the
open subset ˝ may be empty. In 1987, Furi and Pera introduced a new condition
and proved the following fixed point theorem in the general framework of Fréchet
spaces:

Theorem 18 (See [3, Theorem 8.5] or [43]). Let E be a Fréchet space, C a closed
convex subset of E, 0 2 C, and T W C ! E a continuous compact mapping. Assume
further that

.FP/

8<
:

if f.xj; �j/gj�1 is a sequence in @C 
 Œ0; 1�
converging to .x; �/ with x D �T.x/ and 0 � � < 1;

then �jT.xj/ 2 C; for j sufficiently large:

Then T has a fixed point in C.

In order to present some recent results with the .FP/ condition, let us give

Definition 10. (a) A subset A 	 of a Banach space is a nonexpansive retract of X
if there exists a nonexpansive mapping r W X �! A such that rx D x for all
x 2 A. The mapping r is called a nonexpansive retraction.

(b) We say that a Banach space E has the nonexpansive retract property (NRP for
short) if each of its nonempty closed convex subsets is a nonexpansive retract
of X. For instance, a Hilbert space enjoys the NRP.

We have (see [32, Theorem 3.1]).

Theorem 19. Let X be a Banach space satisfying the NRP and C 3 0 a closed
convex subset of X (not necessarily bounded). Let T W C �! E be a nonexpansive
mapping satisfying (6) and the property .K /. Assume that the Furi-Pera condition
hold. Then T has a fixed point in C.

Proof. Step 1. Approximate fixed points for TrK : Let r W X �! C \ K be
a nonexpansive retraction where K is a closed convex subset and, for each
n 2 f1; 2; : : :g, consider the nonlinear equation
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x D .1 � 1=n/TrK.x/; (8)

where rK D rjK is the restriction of r on the set K and Trk D T ı rK W K �! K:
Without loss of generality, assume that 0 2 K \C: Indeed, in the case 0 … K; one
may take any p 2 K \ C and instead of equation (8) rather consider the equation
x D .1 � 1=n/TrK.x/ C p=n; n 2 f1; 2; : : :g. Now, since f .K \ C/ 	 K and
rK W K �! K \ C, we have that TrK W K �! K: By convexity of K and the fact
that p 2 K \C 	 K;we deduce that for every x 2 K; .1�1=n/TrK.x/Cp=n 2 K:
Also, since T and r are nonexpansive mappings, then for each n 2 f1; 2; : : :g, the
mapping Tn W K �! K defined by Tn.x/ D .1�1=n/TrK.x/Cp=n is a contraction.
By the Banach fixed point theorem, for each n 2 f1; 2; : : :g, Tn admits a unique
fixed point xn 2 K: This implies that equation (8) has a unique solution xn for
each n 2 f1; 2; : : :g.

Step 2. Approximate fixed points for T . We show that, for each n 2 f1; 2; : : :g,
the following equation:

x D .1 � 1=n/T.x/ (9)

has a solution. For this, it suffices to prove that the sequence .xn/n lies in C
where, for each n 2 f1; 2; : : :g, xn is a solution of the equation (8). Arguing by
contradiction, assume that .xn/n 6	 C and let xn0 62 C for some n0 2 f1; 2; : : :g.
Since C is closed, there exists 0 < ı < dist.xn0 ;C/: Following the proof of
[3, Theorem 5.10], choose an integer m 2 f1; 2; : : :g such that m > 1=ıI then,
for all integer i � m, consider the open set Ui D fx 2 Xj d.x;C/ < 1=ig. It
is clear that dist.xn0 ;C/ > ı and 1=i < ı imply that xn0 … Ui: In addition,
for each i � m, Ui \ K ¤ ; because C \ K 	 Ui \ K and, by definition,
C \ K ¤ ;: Thus, the mapping .1 � 1=n0/TrK W Ui �! K is well defined
and it is further a contraction; in addition, .1 � 1=n0/TrK.Ui/ is bounded for
rK.Ui \ K/ 	 C \ K and, by the property .K /; f .C \ K/ 	 K where K
is a bounded subset. Since xn0 … Ui, a nonlinear alternative [3, Theorem 3.2]
guarantees the existence .yi; �i/ 2 @Ui
.0; 1/ such that yi D �i.1�1=n0/TrK.yi/.
Note that since xn0 … Ui, the mapping .1� 1=n0/Tr has no fixed points in Ui: As
a consequence

�i.1 � 1=n0/TrK.yi/ … C; 8 i � m: (10)

The set

Dn0 D fx 2 X W 9� 2 Œ0; 1�; x D �.1 � 1=n0/TrK.x/g

is nonempty for it contains 0; xn0 and yi; for all i � m. Moreover Dn0 is compact.
Indeed

Dn0 � co ..1 � 1=n0/TrK.Dn0 / [ f0g/
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implies

˛.Dn0 / � ˛ .co..1 � 1=n0/TrK.Dn0 / [ f0g// ;

where ˛ is the Kuratowski MNC. However, since T and r are nonexpansive
mappings, we have

˛.Dn0 / � ˛.co
�
.1 � 1=n0/TrK.Dn0 /

�
� .1 � 1=n0/˛.rK.Dn0 //

� .1 � 1=n0/˛.Dn0 /:

Then ˛.Dn0 / D 0 proving that Dn0 is compact for it is closed. Now, for each
i � m and 0 � �i � 1; we have that d.yi;C/ D 1=i for yi 2 @Ui \ Dn0 :

Then, up to a subsequence, �i �! �� 2 Œ0; 1� and, by the compactness of
Dn0 ; yi �! y� 2 C; as i ! C1: Moreover yi D �i.1 � 1=n0/TrK.yi/ tends
to ��.1 � 1=n0/TrK.y�/ by continuity. Hence y� D ��.1 � 1=n0/TrK.y�/: In
addition xn0 … C implies �� ¤ 1, otherwise we get by uniqueness y� D xn0 ,
which is a contradiction. Therefore 0 � �� < 1. Finally rK.yi/ 2 @C follows
from yi … C and the definition of the retraction r. In addition y� D rK.y�/,
�0

i D .1 � 1=n0/�j, and �0 D .1 � 1=n0/��. Since T satisfies the Furi-Pera
condition, we infer that �i.1 � 1=n0/TrK.yi/ 2 C, for i sufficiently large. This
contradicts (10) and the fact that yi … C; for i � m. Thus, for each n 2 f1; 2; : : :g,
xn 2 C \ K. Hence rK.xn/ D xn and xn D .1 � 1=n/TrK.xn/ D .1 � 1=n/T.xn/:

To sum up, we have proved that the equation xn D .1� 1=n/T.xn/ has a solution
for each n 2 f1; 2; : : :g.

Step 3. A fixed point. It remains to prove that the sequence .xn/n; where xn is a
solution of equation (9), is convergent. Let

SK D fxn 2 C \ Kj xn D .1 � 1=n/T.xn/; 8 n 2 Ng D S \ K:

By Steps 1, 2, the set SK is a nonempty bounded set. Lemma 1 and (6) imply that
the set SK is compact, hence sequentially compact. Therefore we can extract a
sequence converging to x: Finally, by continuity of T , x is a fixed point of T . ut

Remark 9. With the condition (6), Theorem 19 extends a result obtained in
[3, Theorem 5.11] for a Hilbert space X and a bounded subset C 	 X. Moreover (6)
enables us to recover [3, Theorem 5.10] for nonexpansive mappings instead of strict
k-set contractions.

A survey on boundary conditions for nonexpansive mappings is provided by Kirk
in [72, Chap. 10].
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3 1-set contractions

3.1 Measure of noncompactness and related mappings

Definition 11. Let .X; d/ be a metric space and B 	 P.X/ the set of all bounded
subsets of X: For a subset A 2 B; define ˛.A/ D inf D where

D D f" > 0 W A D [iDn
iD1Ai; diam .Ai/ � "; 8 i D 1; : : : ; ng:

˛ is called the Kuratowski measure of noncompactness, ˛-MNC for short (see, e.g.,
[10]).

It satisfies the following properties.

Proposition 9. For any A; B 2 B; we have

(a) 0 � ˛.A/ � diam.A/:
(b) A � B H) ˛.A/ � ˛.B/ (˛ is nondecreasing).
(c) ˛.A [ B/ D max.˛.A/; ˛.B//:
(d) ˛.A/ D ˛.A/:
(e) ˛.A/ D 0 ” A is relatively compact:
(f) If .An/n2N is a decreasing sequence of nonempty closed subsets such that

lim
n!1˛.An/ D 0, then A1 D T

n�0 An is a nonempty compact subset (Cantor’s

property).
If, further, X is a Banach space, then

(g) ˛.Conv A/ D ˛.A/.
(h) ˛.A C B/ � ˛.A/C ˛.B/ (˛ is lower-additive).
(i) ˛.�A/ D j�j˛.A/; 8� 2 <.

Definition 12. Let X; Y be two Banach spaces and T W X �! Y a continuous
mapping which maps bounded subsets of X into bounded subsets of Y .

(a) T is called a k-set contraction (or k-set contractive) (or k-˛-Lipschitz) if there
exists some k � 0 such that ˛.T.A// � k˛.A/; for every bounded subset A 	 X.
It is a 1-set contraction whenever k D 1.

(b) T is a strict k-set contraction (or strict ˛-contraction) when k < 1.
(c) T is said to be ˛-condensing if ˛.T.A// < ˛.A/, for every bounded subset

A 	 X with ˛.A/ 6D 0.

Example 7. (a) LANE mappings are 1-set contractions [85, Lemma 1].
(b) The sum of a nonexpansive mapping and a compact one is a 1-set contraction.
(c) The sum of a contraction and a compact mapping is a strict k-set contraction,

hence a condensing and a 1-set contraction.
(d) More generally, the sum of a nonlinear contraction and a compact mapping is ˛-

condensing (see, e.g., the proof of [88, Theorem 2.1]) hence a 1-set contraction.
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Recall that T W X �! X is called nonlinear contraction if there exists a
continuous nondecreasing function � W <C �! <C such that �.0/ D 0,
�.r/ < r; 8 r > 0, and

kT.x/ � T.y/k � �.kx � yk/; 8 .x; y/ 2 X2:

Example 8. The ball retraction in a Banach space is a 1-set contraction X. More
generally, if C 	 X is a bounded closed convex subset containing the origin, then
making use of the Minkowski functional g, one can define a retraction r by r.x/ D

x
maxf1;g.x/g . By Proposition 8, we know that r.x/ D x for every x 2 C and that, since

C is convex, g.x/ � 1 for every x 62 C and thus g.r.x// D g
�

x
g.x/

�
D 1 implies that

r.x/ 2 @C, i.e. r.X n C/ 	 @C. Moreover, it is easy to see that, for every bounded
subset A 	 X

r.A/ 	 co .A [ f0g/ H) r.˛.A// � ˛.A/;

proving our claim without appealing to Dugundgi’s extension Theorem 9.

Example 9. In [48, Example 3.3], it is showed that, if r is the unit ball retraction
in an infinite Banach space X, then T D �r is a 1-set contraction and I � T is
 -expansive.

Also, we know that if T is expansive, i.e. kTx � Tyk � hkx � yk, (h � 1), for all
x; y 2 C, then T�1 is 1

h�1 -Lipschitz and I�T�1 is -expansive with .r/ D .1� 1
h /r.

3.2 First results with boundary conditions

In the fixed point theory for ˛-mappings with respect to some measure of non-
compactness ˛, a classical result was obtained by Darbo in 1955 for strict k-set
contraction self-mappings [27] defined on bounded closed convex subsets of a
Banach space X (see also [3, Theorem 4.16]).

Theorem 21 ([27]). Let C be a bounded closed convex subset of a Banach space X
and T W C �! C a strict k-set contraction mapping. Then T has a fixed point.

Proof. Define a decreasing sequence of nonempty closed convex T-invariant sets
by C0 D C and CnC1 D Conv.T.Cn//, for n � 0. Then

˛.CnC1/ D ˛.T.Cn// � k˛.Cn/;

and then lim
n!1˛.Cn/ D 0. Property (f) of Proposition 9 guarantees that C1 6D ;,

where C1 D T1
nD0 Cn is also a closed convex T-invariant subset. The Schauder

fixed point theorem then concludes the proof. ut
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For 1-set contractions, strict k-set contractions play the role of contractions for
nonexpansive mappings, whence the importance of Theorem 21. By contrast to the
Banach principle, this theorem does not provide uniqueness, but its proof is very
elegant for it is a melting of the iterative method (the metric approach) and the
Schauder fixed point theorem (the topological approach). In 1967, this theorem was
extended to the class of condensing mappings by Sadovskii [99].

Starting from the seventieth, several authors have been involved in the extension
of the Darbo and Sadovskii fixed point theorems to the broader class of 1-set
contractions, which encompass nonexpansive, LANE, condensing mappings, and
sums of contractive and compact mappings. Some of these fixed point theorems
have been obtained as application of the theory of the fixed point index for 1-set
contractions, which is an extension of the Nussbaum local degree for condensing
mappings [86].

Moreover, several papers have been concerned with k-set contractions, con-
densing mappings, and 1-set contractions when the well-known Leray-Schauder
boundary condition .LS/ holds [78] (see also [102]). We start with a result proved
by Nussbaum in 1969 (see [86, Proposition 4]):

Theorem 22. Let X be a Banach space, C 	 X a bounded closed convex subset
with nonempty interior, and T W C �! X a strict k-set contraction such that T
satisfies the Leray-Schauder condition .LS/. Then T has at least one fixed point
in C.

In 1968, Browder proved this theorem for nonexpansive mappings defined on
bounded closed convex subsets of a uniformly convex space [19] (see Theorem 13).
In 1972, Kirk and Schöneberg [71] extended this theorem to the class of pseudo-
contractive mappings in uniformly convex spaces. This class of mappings is
connected with accretive operators. Recall that an operator A W X �! X on a
Banach space X is said to be accretive (monotone in Hilbert spaces) if the inequality
kx � yk � kx � y C �.Ax � Ay/k holds for all � � 0 and all x; y 2 D.A/ (I C �A is
injective and .I C�A/�1 is nonexpansive on its domain for all � � 0). An operator B
is said to be dissipative if �B is accretive. For an accretive operator A W D.A/ �! X
and � > 0, denote by

JA
� D .I C �A/�1 W R.I C �A/ �! D.A/ and A� D I � JA

�

�

the resolvent and the Yoshida approximant of A, respectively. Hence A is accretive
if and only if T D I � A is pseudo-contractive, i.e.

kx � yk � k.1C r/.x � y/C r.Ty � Tx/k;

for every x; y 2 D.T/ and all r > 0. The class of pseudo-contractive mappings
encompasses the one of nonexpansive mappings; it was first introduced by Browder
in 1967 [18]. Several refinements have been obtained so far; we quote, e.g., a recent
work by C.H. Morales [84], and those in the references therein.
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However, in the more general context of 1-set contraction mappings, we quote
the following result proved by Petryshyn in 1971 (see [91, Theorem 7’] or [80, 85,
92, 93]):

Theorem 23. Let X be a Banach space, U 	 X a bounded open subset, and
T W U �! X a 1-set contraction such that T satisfies the Leray-Schauder boundary
condition .LS/. If .I � T/.U/ is closed, then T has at least one fixed point in U.

When C is a bounded closed convex subset of a Banach space, the following
existence result involving the Furi-Pera condition was proved by O’Regan in [88,
Theorem 2.9].

Theorem 24. Let X be a Banach space and C 3 0 a bounded closed convex subset.
Let T W C �! X be a 1-set contraction with .I � T/.C/ closed. If the Furi-Pera
condition holds, then T has a fixed point.

It is worth noting that the existence of fixed points for a weakly inward semi-
closed 1-set contraction T W ˝ �! X where˝ is a bounded open subset is obtained
in [36, Theorem 2] when .LS/ holds while the assumption that T is weakly inward
is not needed in [92, Theorem 7]. Finally notice that [100, Theorem 2] is exactly
[91, Theorem 7’].

3.3 Historical review

If T W X �! X is a compact linear operator, we know by the basic Riesz-Schauder
theory that I � T is closed. We now discuss the nonlinear case.

(1) The condition that .I � T/.U/ is closed, which has already been considered for
nonexpansive mappings in Theorem 3 (see Subsection 2.5), is crucial for this
class of mappings. We remind that

(a) if T is a k-contraction .0 < k < 1/ (even when it is a nonlinear contraction),
then the mapping I � T is a homeomorphism on the range. Indeed, the
mapping I � T is continuous for k.I � T/x � .I � T/yk � .1C k/kx � yk.
Since

k.I � T/x � .I � T/yk � kx � yk � kT.x/ � T.y/k � .1 � k/kx � yk;

then the mapping .I � T/�1 is continuous and thus .I � T/ is one-to-one.
(b) If D 	 X is a nonempty bounded closed subset and T W D �! X

is continuous condensing (or a strict k-set contraction), then I � T is
proper (the preimage of a compact subset is also a compact subset);
hence, .I � T/.D/ is closed (see, e.g., [85, Lemma 1], [98, Lemma 1],
[104, Proposition 4.44]). Reich [98, Theorem C] proved a result similar
to Theorem 23 for continuous condensing mappings with bounded range.
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(2) Every injective operator X �! Y with continuous inverse and closed range is
proper (compare with Proposition 5).

(3) The interest in the closedness of .I � T/.D/ lies in the procedure employed
to deal with 1-set contractions, more precisely in the approximation methods
(sequential approximation techniques) used to construct fixed points. Indeed, if
T is a 1-set contraction, then tnT is a strict k-set contraction where tn 2 .0; 1/ is
any positive sequence increasing to unity. In 1973, Petryshyn [93, Theorem 1]
observed that the following condition is necessary and sufficient for T have a
fixed point:

“for every .xn/n2N with xn � T.xn/ ! 0 as n ! 1, there is some x 2 U with
.I � T/x D 0”.

In [81, Theorem 2.1]), when this condition is verified by a 1-set contraction
nonself mapping T W K �! X, with K a bounded closed convex subset, then
without boundary conditions, the author proved that there exists some x 2 K
such that

g.Tx � x/ D inffg.Tx � y/; y 2 Kg;

where g is the Minkowski functional. Then some fixed point theorems are
derived in [81, Theorem 3.1].

(4) In [91, Theorem 7], the author even proved that the set of fixed points is compact
if further T is demi-compact, that is for every bounded sequence .xn/n2N such
that .I � T/.xn/ is convergent in X, .xn/n2N has a convergent subsequence.
Notice also that the demi-compactness implies the demi-closedness provided
T is continuous and C is a bounded closed subset of a Banach space (see [104,
Proposition 11.14(3)]).

The topological degree for 1-set contractions, introduced by Petryshyn in [92], is
also developed in [79] and [80] where Theorem 23 is recovered (see [79, Theorem 3]
and [80, Corollary 1]).

In the recent literature, several fixed point theorems are proved for 1-set
contractions with I � T closed under different boundary conditions such as the
inward condition or the Furi-Pera boundary condition, as introduced in [43] (see
[32, Theorem 3.4] and [88, Theorem 2.9]). Some of them are presented in the next
section.

3.4 Recent development

Let T W C 	 X �! X be a mapping, where C is a nonempty subset of a Banach
space X. It is not difficult to see that the boundedness of C can be replaced with the
one of T.C/.

The following existence and uniqueness result was proved by Garcia-Falset in
2010 for nonexpansive mappings (see Theorem 7 and [45, Lemma 3.3]). When
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T W X �! X and  .s/ D cs; c > 0, this is nothing but [92, Theorem 8] (see
Subsection 2.5 and Remark 10). It was recently extended independently by Garcia-
Falset and Muñiz-Pérez [48, Theorem 3.2] and K. Hammache and the author to the
larger class of 1-set contractions [33, Proposition 3.1].

Theorem 25. Let X be a Banach space, C 3 0 a closed convex subset (not
necessarily bounded), and T W C �! C a 1-set contraction satisfying the property
.K / and such that I � T is  -expansive. Then T has a unique fixed point in C.

The existence part of this theorem has been recently extended by K. Hammache
and the author to the broader class of mappings T such that I � T is ˛- -expansive
according to the following sense:

Definition 13. T is called ˛- -expansive if there exists a function  W Œ0;1/ �!
Œ0;1/ with  .0/ D 0,  .r/ > 0; 8 r > 0 and such that for every bounded subset
˝ 	 X, ˛.T.˝// �  .˛.˝//.

Then we have (see [33, Proposition 3.3]). The proof is reproduced for the sake of
completeness.

Theorem 26. Let X be a Banach space, C 3 0 a convex closed subset of X, and
T W C �! C a 1-set contraction satisfying the property .K /. If I � T is ˛- -
expansive, then T has a fixed point in C.

Proof. Step 1. Let K be a bounded closed convex subset such that C \ K is self-
mapped by T and let Tn D .1 � 1=n/T , for n 2 f1; 2; : : :g be a sequence of
approximate mappings. Without loss of generality, assume that 0 2 K: Since T
is a 1-set contraction, Tn is a .1 � 1=n/-set contraction. By Darbo’s fixed point
theorem (Theorem 21), for every n 2 f1; 2; : : :g, Tn has at least one solution
xn 2 C \ K. Let S D fxn j n D 1; 2; : : :g be such a bounded sequence. To
prove its relative compactness, we show that ˛.S/ D 0. First, for some given
n0 2 f1; 2; : : :g, we have ˛.S/ D ˛.S0/, where S0 D fxn j n � n0g/. Arguing by
contradiction, assume that ˛.S/ > 0 and let xp; xq 2 S0 (xp 6D xq). Then

k.I � T/xp � .I � T/xqk D
����1pTxp � 1

q
Txq

���� � 1

n0
.kTxpk C kTxqk/:

Let � > 0 be such that K 	 B.0; �=2/. Then

k.I � T/xp � .I � T/xqk � �

n0
:

xp; xq being arbitrary in S0, diam .I�T/.S0/ � �

n0
. Since .I�T/ is ˛- -expansive,

we get

 .˛.S0// � ˛ ..I � T/.S0// � �

n0
:
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A contradiction is then reached by choosing n0 >
�

 .˛.S// . As a consequence and

taking if need be a subsequence, .xn/n�n0 converges to some limit x 2 C D C.
ut

The importance of the class of mappings covered by Theorem 26 is justified by
the following result [33, Lemma 3.2].

Proposition 10. Let a mapping T W X �! X be  -expansive and assume that
 W Œ0;1/ ! Œ0;1/ is either continuous or nondecreasing and invertible. Then T
is ˛- -expansive.

Proof. Let " > 0 be fixed and ˝ 	 X a nonempty bounded subset. Then there exist
bounded subsets .Yi/1�i�n and "0 > 0 such that

T.˝/ D
n[

iD1
Yi with diam .Yi/ � "0; 8 i 2 f1; : : : ; ng

and ˛.T.˝// � "0 < ˛.f .˝//C "; hence

diam .Yi/ � ˛.T.˝//C "; 8 i 2 f1; : : : ; ng:

Moreover

˝ 	 T�1.T.˝// 	 T�1
 

n[
iD1

Yi

!
D

n[
iD1

T�1.Yi/ D
n[

iD1
˝i: (11)

For every i 2 f1; : : : ; ng, let xi
1; x

i
2 2 ˝i; then, there exist yi

1; y
i
2 2 Yi such that

T.xi
1/ D yi

1 and f .xi
2/ D yi

2. Since T is  -expansive

 .kxi
1 � xi

2k/ � kyi
1 � yi

2k � diam Yi � ˛.T.˝/C "/:

Two cases need to be distinguished separately:

(a)  is invertible and nondecreasing (and so is  �1). Then, for all i 2 f1; : : : ; ng

kxi
1 � xi

2k � diam .˝i/ �  �1.˛.T.˝/C "//:

(11) implies

˛.˝/ � max
1�i�n

˛.˝i/ �  �1.˛.T.˝/C "//:

" > 0 being arbitrary, we deduce that  .˛.˝// � ˛.T.˝//, for all bounded
subsets ˝ 	 X, as claimed.

(b)  is continuous. Hence ˛.˝/ D maxf˛.�i/; i 2 f1; : : : ; ngg D ˛.�l/ for
some l 2 Œ1; n�. By the property of the least upper bound, there exist yl; zl 2 �l

such that
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diam.�l/ � " � kyl � zlk � diam.�l/:

Hence

˛.˝/ � " D ˛.�l/ � " � diam.�l/ � " � kyl � zlk � diam.�l/ � ˛.˝/C ":

This implies that

jkyl � zlk � ˛.˝/j � ": (12)

Let yl
1 D f .yl/ and yl

2 D f .zl/. Since T is  -expansive, we obtain as in case (a):

 .kyl � zlk/ � kyl
1 � yl

2k � diam Yl � ˛.T.˝//C ": (13)

 being continuous, for all positive �, there exists ı > 0 such that

8 r > 0; .jr � ˛.˝/j � ı H) j .r/ �  .˛.S//j � �/ :

Taking � > 0, choosing 0 < " � ı and using (12), (13), we finally get

j .˛.˝// �  .kyl � zlk/j � �

and

0 <  .˛.˝// �  .kyl � zlk/j C � � ˛.T.˝//C �C ":

Since � and " > 0 are arbitrary constants, we conclude that  .˛.˝// �
˛.T.˝//. The proof of the lemma is completed. ut

When T does not self-map C, we still have [34]:

Theorem 27. Let X be a Banach space, C 	 X a closed convex subset, and U 	 C
an open subset with p 2 U. Suppose that T W U �! C is a 1-set contraction
satisfying the property .K / and such that I�T is ˛- -expansive. If .LS/ is satisfied,
then T has a fixed point in C.

A result obtained by J. Garcia-Falset and O. Muñiz-Pérez in 2013 (see [48,
Theorem 3.2]) is now deduced.

Corollary 7. Let X be a Banach space, C 	 X a bounded closed convex subset, and
U 	 C an open subset with p 2 U. Suppose that T W U �! C is a 1-set contraction
satisfying the property .K / and such that I � T is  -expansive. If .LS/ is satisfied,
then T has a unique fixed point in C.
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Remark 10. In case of a 1-set contraction T W X �! X satisfying

k.I � T/.x/ � .I � T/.y/k � ckx � yk; 8 x; y 2 X;

for some positive constant c, the existence result in Corollary 7 is announced in [92,
Theorem 8]. Moreover, Petryshyn and Nussbaum (see [92, Remark 6]) claimed the
validity of the result whenever I � T is  -expansive with  satisfying  .r/ > 0 for
r > 0 and  .rn/ ! 1 implies rn ! 1, as n ! 1.

From Corollary 7, we can easily derive the following nonlinear alternative:

Corollary 8. Let X be a Banach space, C 	 X a closed convex subset, and U 	 C
an open subset with p 2 U. Suppose that T W U �! C is a 1-set contraction
satisfying the property .K / and such that I � T is ˛- -expansive. Then either

(a) f has a fixed point in C, or
(b) there exist x 2 @U and t 2 .0; 1/ such that x D tT.x/C .1 � t/p.

The next result is concerned with the interior condition. For the proof, a Mönch
type existence theorem is needed:

Lemma 2 ([3, Theorem 5.5]). Let X be a Banach space, C 	 X a closed convex
subset, and U 	 C an open subset with p 2 U. Suppose that T W U �! C is a
continuous mapping satisfying the so-called Mönch condition:

.M /
�
D 	 U;D countable, D 	 co.f0g [ T.D//

� H) D compact

both with the boundary condition .LS/. Then T has a fixed point in U.

Theorem 28. Let X be a Banach space and C 3 0 a closed convex subset of X.
Suppose that T W C �! C is a 1-set contraction and U is a bounded strictly star-
shaped open neighborhood of the origin such that

.IC/0 for all � > 1 and all x 2 Uı \ C; T.x/ ¤ �x and T.x/ 62 U \ C;

with 0 < ı � distf0; @Ug.
If further I � T is ˛- -expansive, then T has a fixed point in C.

Proof. The mapping Tn � .1 � 1
n /T W C �! C is a .1 � 1

n /-set contraction, thus
satisfies the Mönch condition. Define the function P W C �! U \ C by

Px D
(

rC.1�r/g.x/
g2.x/

x; if x 2 C n U \ C;

x; if x 2 U \ C;

where g is the Minkowski functional and r is as defined in Proposition 7. Let PıTn W
U \ C �! U \ C. Then U \ C is strictly star-shaped for C is convex and, by
definition of P, P ı Tn satisfies .LS/. If we assume on the contrary that there exist
some x0 2 @.U \ C/ and �0 > 1 such that .P ı Tn/.x0/ D �x0, then g.x0/ D 1
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and g.�x0/ D �0g.x0/ D �0 > 1 which implies that �x0 … U \ C, leading to a
contradiction with .P ı Tn/.U \ C/ 	 U \ C. In fact, we have proved that if ˝ is
strictly star-shaped and T.@˝/ 	 ˝, then .LS/ holds.

Now P ı Tn is further a .1 � 1
n /-set contraction. Indeed, notice that if A is a

nonempty bounded subset of X, then from Proposition 7, we have PA 	 co.f0g[A/.
As a consequence, if A is any bounded subset of X, then

˛..P ı Tn/.A// � ˛.Tn.A// D
�
1 � 1

n

�
˛.T.A// �

�
1 � 1

n

�
˛.A/:

By Lemma 2, P ı Tn has a fixed point xn for each n 2 f1; 2; : : :g, i.e., .P ı Tn/.xn/ D
xn. Now, we show that Tn has a fixed point. According to the definition of the
generalized projection mapping P, we must discuss separately two cases:

[i) If Tn.xn/ 2 U \ C, then Proposition 7 guarantees that Tn.xn/ D .P ı Tn/.xn/ D
xn.

[ii) Otherwise Tn.xn/ … U \ C implies, by Proposition 7, g.Tn.xn// > 1. Hence
g..1 � 1=n/Txn/ > 1 and g.Txn/ > 1, showing that Txn … U \ C which is a
contradiction with .IC/0.

Therefore there exists xn 2 U \ C such that xn D Tn.xn/, for all n 2 f1; 2; : : :g.
Let S D fxn 	 Uj Tn.xn/ D xn; n D 1; 2; : : :g be such a bounded sequence of
approximate fixed points. Arguing as in the proof of Theorem 27, we obtain that
˛.S/ D 0, showing that S is compact. Therefore .xn/ converges to x in U \ C and
since U \C is closed, then x lies in U \C. Finally, T being continuous, we conclude
that T has a fixed point in U \ C. ut

We now state a final existence result in which again C is an arbitrary closed
convex subset while .I � T/.C/ closed is replaced with I � T demi-closed (for the
proof, we refer to [32, Theorem 3.4]).

Theorem 29. Let .E; k � k/ be a reflexive Banach space satisfying the NRP and
C 3 0 a convex closed subset of E. Let T W C �! E be a 1-set contraction with I �T
demi-closed. If the Furi-Pera condition and the property .K / are fulfilled, then T
has a fixed point.

4 The weak topology

4.1 Introduction

Let X be a Banach space and X� its topological dual. The weak topology is generated
by the bounded linear functionals on X. ˝ 	 X is open in the weak topology if for
every x 2 ˝, there are bounded linear functions ffig; i 2 N and positive real
numbers f"ig; i 2 N such that
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fy 2 X W jfi.x/ � fi.y/j < "i; i D 1; 2; : : : ; ng 	 ˝:

Then, instead of balls centered at the origin in case of the strong topology, a base of
neighborhoods of the origin is given, in the weak topology, by

V.f1; : : : ; fnI "ig D fx 2 X W j < x; fi > j < "i; i D 1; 2; : : : ; ng:

So by the weak convergence of a sequence xn to a limit x (in the �.X;X�/ topology),
it is meant that < xn; f >�!< x; f >, for all f 2 X�. We shall write xn * x, as
n ! C1. We recall that the weak topology is Hausdorff locally convex, hence can
be defined by the family of semi-norms:

f�f .x/ D j < x; f > j W f 2 X� and kf kf � � 1g:

However this topology is not metrizable (see, e.g., [38, 41]).
An operator T W X ! X is said to be weakly continuous if for every f 2 X�, the

mapping f ı T W X ! < is continuous.
T is weakly sequentially continuous if for each sequence xn 2 X, we have

Txn * Tx whenever xn * x. T is weakly strongly continuous if Txn �! Tx
whenever xn * x (T is a Dunford-Pettis operator). Then T weakly strongly
continuous implies T weakly sequentially continuous which in turn implies that
T is demi-closed.

A subset C 	 X is said to be weakly closed (resp. compact) if it is closed (resp.
compact) in the weak topology �.X;X�/. The following results are standard results
in functional analysis (see, e.g., [14, 38, 41, 83]).

Theorem 30. A convex subset of a normed space is closed if and only if it is weakly
closed.

Theorem 31. A subset of a reflexive Banach space is weakly compact if and only if
it is closed in the weak topology and bounded in the norm topology.

Theorem 32. Let X be a Banach space. Then the following are equivalent:

(a) X is reflexive.
(b) The unit ball BX is weakly compact.
(c) Every bounded sequence in X (in the strong topology) has a weakly convergent

subsequence.
(d) X� is reflexive.

Theorem 33 (Eberlein-Šmulian Theorem). Let K be a weakly closed subset of a
Banach space X. Then the following are equivalent:

(a) K is weakly compact.
(b) K is weakly sequentially compact.
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4.2 The weak MNC

Let B.X/ be the collection of all nonempty bounded subsets of a Banach space X
and W.X/ the subset of B.X/ consisting of all weakly compact subsets of X: Let
Br denote the closed ball in X centered at 0 with radius r > 0: In [28], De Blasi
introduced the mapping ! W B.X/ ! Œ0;C1/ defined, for all M 2 B.X/ by

!.M/ D inffr > 0; 9 N 2 W.X/ W M � N C Brg:

For the sake of completeness, we recall some important properties of ! we need in
this section; for further details and proofs, we refer the reader to [28].

Lemma 3. Let M1;M2 2 B.X/: Then

(a) !.M1/ � !.M2/ whenever M1 � M2:

(b) !.M/ D 0 if and only if M is relatively weakly compact.
(c) !.M

w
/ D !.M/ where M

w
is the weak closure of M:

(d) !.co.M// D !.M/ where co.M/ refers to the convex hull of M:
(e) !.M1 C M2/ � !.M1/C !.M2/:

(f) !.M1 [ M2/ D max.!.M1/; !.M2//:

(g) (Cantor intersection condition) If fXng1
1 is a decreasing sequence of nonempty

bounded weakly closed subsets of E with lim
n!1!.Xn/ D 0; then the set

T1
nD1 Xn

is nonempty and weakly compact.

The mapping ! is called the De Blasi measure of weak non-compactness. In [8],
Appel and De Pascale gave to ! the following simple form in L1 spaces, also called
measure of nonequiabsolute continuity:

!.M/ D lim sup
"!0

(
sup
 2M


Z
D

k .t/kX dt; D 	 ˝; meas.D/ � "

�)
; (14)

for all bounded M 	 L1.˝;X/, where X is a finite dimensional Banach space,
˝ 	 <n and meas.:/ denotes the Lebesgue measure. This formula is usually
employed to prove the relative weak-compactness of the set M. We point out
however that, for this purpose the relation (14) can be dispensed. Indeed, by the
Dunford-Pettis compactness criterion in L1 spaces (see, e.g., [14, Theorem 4.3.] or
[38, Corollary 11]), it can be directly proved that

lim sup
"!0

(
sup
 2M


Z
D

k .t/kX dt; D 	 ˝; meas.D/ � "

�)
D 0

implies that M is weakly relatively compact, i.e., !.M/ D 0.

Definition 14. (a) A mapping T W M 	 X ! X is said to be !-k-set-contraction
if it maps bounded sets into bounded sets, and there exists some k > 0 such
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that !.T.V// � k!.V/ for all bounded subsets V � M. It is a strict !-set-
contraction whenever it is a !-k-set-contraction with 0 � k < 1 and !-1-set-
contraction if k D 1.

(b) T is said to be !-condensing if its maps bounded sets into bounded sets and for
all V 2 B.M/ we have !.T.V// < !.V/ whenever !.V/ > 0:

(c) T is said to satisfy condition .A 1/ if Txn/n2N has a strongly convergent
subsequence in X whenever .xn/n2N is a weakly convergent sequence in X (T is
weakly strongly compact, ws-compact for short).

(d) T is said to satisfy condition .A 2/ if Txn/n2N has a weakly convergent
subsequence in X whenever .xn/n2N is a weakly convergent sequence in X (T is
weakly compact, ww-compact for short).

4.3 Fixed point theorems

We begin with an existence result which appears in [96, Theorem 2.2] for weakly
sequentially continuous !-k-set contraction mappings, in [42] for weakly continu-
ous !-condensing mappings and in [12, Theorem 3.2], [46, Lemma 3.2] for weakly
sequentially continuous !-condensing mappings.

Theorem 34. Let C be a nonempty bounded closed convex subset of a Banach
space X and let T W C �! C be either a weakly continuous or a weakly sequentially
continuous mapping. If T is !-condensing (or !-k-set contractive), then it has a
fixed point in C.

This result can be easily derived from Arino, Gautier, and Penot fixed point
theorem:

Theorem 35 ([9, Theorem 1]). Let E be a metrizable locally convex topological
vector space and let C be a weakly compact convex subset of E. Then every weakly
sequentially continuous mapping f W C �! C has a fixed point.

This theorem in turn follows from the Schauder-Tychonoff theorem. Now, as a
consequence of Theorem 34, we get

Theorem 36. Let X be a Banach space, C 	 X a nonempty bounded closed convex
subset, and T W C �! X an !-1-set-contraction which is either weakly continuous
or weakly sequentially continuous. If .I � T/.C/ is closed, then T has a fixed point
in C.

Proof. Arguing as in Theorem 4 for nonexpansive mappings, and appealing to
Theorem 34, we obtain that T has a sequence of fixed points .xn/n2N; indeed, it is
sufficient to consider an!-.1�1=n/-set-contraction mapping Tn.x/ D .1� 1

n /TC 1
n x0

for some x0 2 C; this is a convex homotopy between T and the constant x0; hence,
they have the same fixed point index. Since C is bounded, so is T.C/ and then
lim

n!1.xn � Txn/ D 0. Finally .I � T/.C/ is closed, which completes the proof. ut
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The result still holds if C is weakly compact and I � T is demi-closed. Owing to
[44, Theorem 8], the result of Theorem 36 remains true if the weak (resp. the weak
sequential) continuity is replaced with T continuous and satisfies .A 1/. Next, we
recall some recent results without proofs.

Theorem 37 ([48, Theorem 2.3]). Let C be a nonempty closed convex subset of
a Banach space X and suppose that T W C �! C is an !-condensing mapping
satisfying .A 1/. If there exists x0 2 C and R > 0 such that T.x/ � x0 ¤ �.x � x0/
for every � > 1 and for every x 2 C \ SR.x0/, then T has a fixed point.

Theorem 38 ([48, Theorem 3.1]). Let X be a Banach space and C 3 0 be a closed
convex of X. Assume that T W C �! C is a continuous mapping which satisfies
.A 1/ and

(a) T is an !-1-set contraction.
(b) T satisfies .LS/.
(c) I � T is  -expansive. Then T has a unique fixed point in C.

Proposition 11 ([48, Corollary 3.2]). Let C be a bounded closed subset of a
Banach space X and T W C �! C a continuous mapping such that I � T W C �! X
is  -expansive. If there exists an almost fixed point sequence .xn/n of T in C, then T
has a unique fixed point in C.

This result is interesting for we know that a sequence of fixed points can be
obtained when, e.g., T is nonexpansive as in Theorem 17. Next, we present a
nonlinear alternative in the weak topology.

Theorem 39 ([35, Theorem 2.3]). Let C be a nonempty bounded closed convex
subset of a Banach space X and U 	 C an open subset containing some x0. Let
T W U ! C be a continuous !-contraction satisfying .A 1/. Then

(a) either the equation Tu D u has a solution in U, or
(b) there exists an element u 2 @U such that u D �Tu C .1 � �/x0 for some

� 2 .0; 1/:
Our final existence result deals with !-1-set contractions defined on strictly star-

shaped sets and satisfying the interior condition. We will need

Lemma 4 ([48, Corollary 3.2]). Let C be a bounded closed subset of a Banach
space X and T W C �! C a continuous mapping such that I � T W C �! X is
 -expansive. If there exists an almost fixed point sequence .xn/n of T in C, then T
has a unique fixed point x0 in C.

Theorem 40. Let X be a Banach space and C 3 0 a closed convex subset of X.
Assume that T W C �! C is a continuous mapping satisfying .A 1/ and such that

(a) T is an !-1-set contraction.
(b) There exists a bounded strictly star-shaped open neighborhood of the origin U

such that for all � > 1 and x 2 Uı \ C (0 < ı � distf0; @Ug), we have that
T.x/ ¤ �x and T.x/ … U \ C.

If further I � T is  -expansive, then T has a unique fixed point in C.
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Proof. Arguing as in the proof of Theorem 28, define P ı Tn W U \ C �! U \ C.
Since P ı Tn is a .1 � 1

n /-!-set contraction, Theorem 39 guarantees that P ı Tn

has a fixed point. We prove that .xn/n is an almost fixed point sequence. We have
Tn.xn/ D .1 � 1

n /T.xn/, for all n 2 f1; 2; : : :g. Then

kT.xn/k � kT.xn/ � Tn.xn/k C kTn.xn/k:

Since kTn.xn/k D kxnk � K; where K D supfkxk; x 2 @Ug, then kT.xn/k �
K C 1

n kT.xn/k. Therefore kT.xn/k � n
n�1K and

kxn � T.xn/k D 1

n
kT.xn/k � 1

n

n

n � 1K D K

n � 1 :

Finally .xn/n is a bounded almost fixed point sequence for T . By Lemma 4, T has a
unique fixed point. ut

In the next section, further fixed point theorems are proved for the sum of
operators including recent results both in the weak and the strong topologies.

5 Sum of operators

5.1 Introduction

Many problems in physical sciences are modeled by equations of the form:

Ax C Bx D x; x 2 Q; (15)

where Q is a closed convex subset of a Banach space X and A;B are two nonlinear
operators, one of which can be of integral type. A classical and useful tool to
solve Problem (15) is the following celebrated fixed point theorem proved by
Krasnozels’kı̆i in 1958 (see [73]).

Theorem 41. Let Q be a nonempty closed convex subset of a Banach space X and
A;B be two mappings from Q to X such that

(a) A is compact and continuous.
(b) B is a contraction.
(c) AQ C BQ 	 Q.

Then A C B has at least one fixed point in Q.

The proof of Theorem 41 combines the Banach contraction principle and the
Schauder fixed point theorem [104] and uses the fact that if TW D �! X is a
contraction, where D is a subset of a Banach space X, then the mapping I�TW D �!
.I � T/.D/ is a homeomorphism (see Subsect. 3.3). Let y 2 Q be fixed. From the
Banach fixed point theorem, the mapping 'W Q �! Q defined by '.x/ D Bx C Ay
has a unique fixed point in Q. Thus .I � B/�1 ı A.y/ 2 Q, that is F D .I � B/�1 ı A
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maps Q into Q. Since F is continuous, compact, and sends Q into itself, the Schauder
fixed point theorem guarantees that F has a fixed point in Q.

In 1998, Burton [23] observed that the Krasnozels’kı̆i fixed point theorem
remains true if condition (c) is replaced with the weaker one:

8 y 2 M; .x D Ay C Bx/ H) x 2 M:

However, under the weak topology, the first known result is due to Edmunds and
Zabreiko et al., 1967:

Theorem 42 (see [40, Theorem 1], [103, Theorem]).
Let Q be a nonempty closed convex subset of a Hilbert space X and A;B be two

mappings from Q to X such that

(a) A is weakly strongly continuous.
(b) B is nonexpansive.
(c) AQ C BQ 	 Q.

Then A C B has at least one fixed point in Q.

5.2 Recent contributions

The following result is of Krasnosel’skii type (see [74]) and it concerns the sum of a
compact and a nonexpansive mappings. Condition (c) replaces the demi-closedness
of I � B.

Theorem 43 ([1, Theorem 2.19]). Let X be a Banach space and Q 	 X a
nonempty bounded closed convex subset. Let A; B W Q �! X be two operators
such that

(a) A is completely continuous.
(b) B is nonexpansive.
(c) If .xn/ is a sequence of Q such that .I � B/xn is strongly convergent, then .xn/

has a strongly convergent subsequence.
(d) Ax C By 2 Q, for all x; y 2 Q.

Then A C B has a fixed point x 2 Q.

In case where the mapping T is a 1-set-contraction, we have (see
[33, Theorem 3.7]):

Theorem 44. Let X be a Banach space and Q 	 X a nonempty bounded closed
convex subset. Let A; B W Q �! X be two operators such that

(a) A is completely continuous.
(b) B is a 1-set contraction and I � B is  -expansive.
(c) x 2 Q whenever x D Bx C Ay 2 Q, for some y 2 Q.

Then A C B has a fixed point x 2 Q.
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Proof. For fixed x 2 Q, let Ax W Q �! Q be the mapping defined by Ax.y/ D
Ax C By. Since B is a 1-set contraction, Ax is a 1-set contraction too. Since I � B is
 -expansive, then I � Ax is so. By Theorem 25, Ax admits a unique fixed point z in
Q, i.e., z D Ax C Bz. Consequently Ax D .I � B/z and thus the mapping .I � B/ W
Q �! .I � B/.Q/ is bijective; indeed, by definition it is surjective and since .I � B/
is  -expansive, then it is one-to-one. Let JB D .I � B/�1 W .I � B/.Q/ �! Q. Then
JBAx D z 2 Q. By Assumption .c/, T D JB ı A maps Q into itself. According to the
proof of [45, Theorem 3.7], we know that JB is continuous and since A is completely
continuous, we deduce that T is completely continuous too. By the Schauder fixed
point theorem, there exists x 2 Q such that Tx D x: Hence x D Bx C Ax, proving
the theorem. ut

As a consequence, we recover a result due to Garcia-Falset [45, Theorem 3.7]:

Corollary 9. Let X be a Banach space and Q 	 a nonempty closed bounded convex
subset. Let A; B W X �! X be two operators such that

(a) A is completely continuous.
(b) B is nonexpansive and I � B is  -expansive.
(c) x; y 2 Q H) Bx C Ay 2 Q.

Then there exists x 2 Q such that x D Ax C Bx:

Now, we derive two direct consequences from Theorem 26:

Corollary 10. Let X be a Banach space and Q 	 X be a nonempty bounded closed
convex subset. Let A; B W Q �! X be two operators such that

(a) A is completely continuous.
(b) B is a 1-set contraction and I � .A C B/ is ˛- -expansive.
(c) x; y 2 Q H) Bx C Ay 2 Q.

Then A C B has a fixed point x 2 Q.

Proof. By condition (c), A C B maps Q into itself. Since A is completely continuous
and B is a 1-set contraction, A C B is a 1-set contraction too. Moreover I � .A C B/
is ˛- -expansive. By Theorem 26, A C B has a fixed point in Q. ut
Corollary 11. Let X be a Banach space and Q 	 X a nonempty bounded closed
convex subset. Let A; B W Q �! X be two operators such that

(a) A is a 1-set contraction.
(b) B is dissipative and I � .J�B

1 ı A/ is ˛- -expansive.
(c) x; y 2 Q H) Bx C Ay 2 Q.

Then A C B has a fixed point x 2 Q.

Proof. Since B is dissipative, then J�B is nonexpansive and so J�B
1 ı A is a 1-set

contraction. Moreover I � .J�B
1 ı A/ is ˛- -expansive. By Theorem 25, J�B

1 ı A has
a fixed point and so A C B has a fixed point. ut

Our second existence result is (see [33, Theorem 3.9])
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Theorem 45. Let X be a Banach space and Q 	 X a nonempty bounded closed
convex subset. Let A; B W Q �! X be two mappings such that

(a) B is continuous, J�B
1 exists, and I � B is ˛- -expansive.

(b) A is completely continuous.
(c) x; y 2 Q H) Bx C Ay 2 Q.

Then A C B has a fixed point x 2 Q.

Proof. Since J�B
1 exists and A is completely continuous, J�A

1 ı B is completely
continuous. Indeed .I � B/ ı J�B

1 ı A.Q/ D A.Q/ and thus

˛
�
.I � B/ ı J�B

1 ı A.Q/
� D ˛.A.Q//:

Now, since I � B is ˛- -expansive and A is completely continuous, we have
˛.A.Q// D 0 and then  

�
˛
�
J�B
1 ı A.Q/

�� � 0 which implies that

 
�
˛
�
J�B
1 ı A.Q/

�� D 0:

Since  .0/ D 0, then ˛
�
J�B
1 ı A.Q/

� D 0 and thus the mapping .J�B
1 ı A/.Q/ is

completely continuous. By the Schauder fixed point theorem, ACB has a fixed point
in Q. ut

The following nonlinear alternative was recently proved by Garcia-Falset and
Muñiz-Pérez in [48, Theorem 4.2]. Condition (c) is a substitute to the closedness of
the range R.I � B/.

Theorem 46. Let Q be a closed convex subset of a Banach space X and A W Q �!
X, B W X �! X two continuous mappings such that

(a) A is completely continuous.
(b) B is a 1-set contraction.
(c) .I � B/�1 W R.I � B/ �! X exists and is uniformly continuous.
(d) If x D Ay C Bx for some y 2 Q, then x 2 Q.

Then either

(i) the equation x D Ax C Bx has a solution, or
(ii) the set fx 2 Qj x D �B.x=�/C �A.x/; � 2 .0; 1/g is unbounded.

We close this subsection with some Krasnosels’kii fixed point theorems under the
weak topology. First a nonlinear alternative due to O’Regan (see [88, Theorems 2.4,
2.5]) is presented:

Theorem 47. Let ˝ be an open subset of a Banach space X and A W ˝ �! X,
B W X �! X two continuous mappings such that

(a) A is completely continuous.
(b) B is nonexpansive.
(c) Either X is uniformly convex and A is strongly continuous, or ˝ is weakly

compact and I � F is demi-closed.
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Then at least one of the following properties holds:

(i) the equation x D Ax C Bx has a solution;
(ii) there is x 2 @˝ and � 2 .0; 1/ with x D �.A C B/.x/.

The following result can be thought of as a weak version of Theorem 43:

Theorem 48. [1, Theorem 2.1] Let Q be a bounded closed convex subset of a
Banach space X and A W Q �! X, B W X �! X two mappings such that

(a) A is weakly strongly continuous and A.Q/ is relatively weakly compact.
(b) B is nonexpansive and satisfies .A 2/.
(c) If .xn/ is a sequence of Q such that .I �B/xn is weakly convergent, then .xn/ has

a weakly convergent subsequence.
(d) I � B is demi-closed.
(e) Ax C By 2 Q for all x; y 2 Q.

Then A C B has a fixed point x 2 Q.

To round off this section, three recent results obtained by Garcia-falset et al.
(2009, 2012) under the weak topology are presented without proofs:

Theorem 49 ([44, Theorem 15]). Let Q be a bounded closed convex subset of a
Banach space X and A;B W Q �! X two mappings such that

(a) A is continuous and satisfies .A 1/.
(b) B is nonexpansive and I � B is �-expansive.
(c) A C B is !-k-set contraction.
(d) A.Q/C B.Q/ 	 Q.

Then A C B has a fixed point x 2 Q.

Theorem 50 ([47, Theorem 3.2]). Let Q be a bounded closed convex subset of a
Banach space X and A;B W Q �! X two continuous mappings such that

(a) A.Q/ is relatively weakly compact.
(b) A satisfies .A 1/.
(c) B is nonexpansive and !-condensing.
(d) A.Q/C B.Q/ 	 Q.

Then A C B has a fixed point x 2 Q.

Theorem 51 ([47, Theorem 3.4]). Let X be a Banach space X and A;B W X �! X
two mappings such that

(a) A maps bounded sets into relatively weakly compact ones.
(b) A satisfies .A 1/.
(c) B is nonexpansive and !-condensing.
(d) I � B is  -expansive, where  is either strictly increasing or lim

r!1 .r/ D 1.

Then at least one of the following properties holds:

(i) the equation x D Ax C Bx has a solution,
(ii) the set fx 2 Q W x D �B.x=�/C �A.x/; � 2 .0; 1/g is unbounded.
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Theorem 51 is an extension of [35, Theorem 2.5] where B is an !-contraction.
This theorem will be next applied to solve a nonlinear integral equation which
extends the one considered in [35] (see also [76]).

6 Applications

To illustrate some of the fixed point theory developed in this paper, we have selected
two examples dealing with nonlinear integral equations. Further applications to
nonlinear Volterra and Hammerstein equations can be found, e.g., in [2, 45, 62, 63].

Example 10. Let X D C.Œ0;T�;</ be the Banach space of real continuous
functions endowed with the sup-norm. Consider the following integral equation (see
also [48, Theorem 4.4] where the equation is considered in C.Œ0;T�;E/, E being any
Banach space):

u.t/ D f .t; u.t//C
Z t

0

g.s; u.s//ds; t 2 Œ0;T�: (16)

The functions f W Œ0;T� 
 X �! X and g W Œ0;T� 
 X �! X are continuous. Let the
integral and superposition operators A; B W X �! X be defined by

A.u/.t/ D
Z t

0

g.s; u.s//ds and B.u/.t/ D f .t; u.t//:

Assume that the nonlinear functions f and g satisfy the following conditions:

.H1/ f .t; �/ is a 1-set contraction and I � f .t; �/ is  -expansive, for t 2 Œ0;T�.

.H2/ kuk � ku � f .t; uk, for all .t; u/ 2 Œ0;T� 
 X:

.H3/ A.Q/ 	 Q.

To prove existence of solution to Equation (16), Theorem 45 is applied. We
just check the hypotheses. Since f is continuous, it is clear that A is completely
continuous. Assumption .H1/ implies that

k.u � B.u// � .v � B.v//k �  .ku.t/ � v.t/k/; for all t 2 Œ0;T�:

Hence the operator I � B is  -expansive. Moreover, from Assumption .H1/, the
operator B is a 1-set contraction. Finally suppose that u D B.u/ C A.y/ holds for
some y 2 Q: The fact that u 2 Q follows from .H2/ and .H3/; indeed,

kuk � ku.t/ � B.u/.t/k D kA.y/.t/k:

Since A.Q/ 	 Q, we conclude that u 2 Q:
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Example 11. Consider the nonlinear generalized Hammerstein equation (see [47,
Example 4.1]):

y.t/ D �

Z 1

0

&.t; s/g.y.s// ds C
Z 1

0


.t; s/f .s; y.s//ds (17)

posed on L1..0; 1/;</, the space of Lebesgue integrable functions on .0; 1/. The
function &; g; 
; f satisfy the following assumptions:

(1) &.:; :/ is essentially bounded.
(2) f W Œ0; 1� 
 < �! < is of Carathéodory type and there exist � > 0 and � 2

LC
1 .0; 1/ such that jf .t; x/ � �.t/C �jxj.

(3) g W < �! < is nonexpansive.
(4) 
 W Œ0; 1� 
 Œ0; 1� �! < is strongly measurable,

R 1
0

.�; s/y.s/ds 2 L1.0; 1/

whenever y 2 L1.0; 1/, and there exists � W Œ0; 1� �! < such that 
.t; s/ � �.t/
for all .t; s/ 2 Œ0; 1�2.

(5) �k
k < 1.
(6) 0 < �j&k1 C �k�k < 1.

Define the nonlinear operators A;B W L1.0; 1/ �! L1.0; 1/ by:

Ay.t/ D
Z 1

0


.t; s/f .s; y.s//ds; By.t/ D �

Z 1

0

&.t; s/g.y.s//ds:

Then, it can be proved that A is continuous, satisfies .A 1/, and maps bounded
subsets of L1.0; 1/ into relatively compact subsets of L1.0; 1/. This has already been
proved in [35, Theorem 3.1] and in [77, Theorem 3.1]. However, we point out that
A is not weakly strongly continuous unless f is linear in the second argument (see
[59, Theorem 5.1]). Regarding B, it is a separate contraction and satisfies .A 2/;
this follows from Assumptions (3) and (5). Then B is nonexpansive and I � B is
 -expansive where  is strictly increasing. Finally Hypothesis (6) provides a priori
estimates so that condition (ii) in Theorem 51 is fulfilled, proving that Equation (17)
has at least one solution in L1..0; 1/;<//.

7 Conclusion

In this paper, the fixed point theory for nonexpansive mappings and for the
more general class of 1-set contractions was surveyed. The stress was put on
the difficulties encountered when dealing with these mappings as well as on the
methods developed and the techniques that have been used to overcome such
difficulties during the late years. A special attention and emphasis was made on
the historical development of such theories. However, it was not the ambition of
the paper to investigate with very deep details the numerous results obtained by a
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great number of authors since the sixties and especially the great progress recently
achieved on the subject. In particular, and for the sake of limitation of the subject
discussed herein, we have not considered in detail some questions -and even some
extensions- such that those relating to the investigation of the more general classes
of pseudo-contractive mappings -which we discussed briefly- and those concerning
the so-called convex-power mappings. Also, the approximation methods in the spirit
of recursive Halpern type algorithms, which require particular investigation, have
not been covered by this paper (see, e.g., [6, Chapter 8]). Concerning the fixed
point theory for multi-valued mappings, we recommend [6, Chapter 7] and [72,
Chapter 19].

We hope however that this survey article highlights the development of the fixed
point theory for 1-set contractions and also reports in a satisfactory way some recent
advances in this theory. Note finally that some open problems, in connection with
metric fixed point theory can be found in [52] while a recent survey is given in
[6, Chapter 1].
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103. Zabreı̆ko, P.P., Kačurovskiı̆, R.I., Krasnosel’skiı̆, M.A.: On a fixed point principle for
operators in a Hilbert space, (Russian) Funkcional. Anal. i Priložen 1(2), 93–94 (1967)

104. Zeidler, E.: Nonlinear Functional Analysis and its Applications. I: Fixed Point Theorems,
Springer (1985)



Spectral results on quantum waveguides

Hatem Najar

Abstract In this document we review some results dealing with the study of the
spectral properties of quantum waveguide. Precisely we are interested in the bound
states of the Hamiltonian describing a quantum particle living on three dimensional
straight strip of width d. We impose the Neumann boundary condition on a disc
window of radius a and Dirichlet boundary conditions on the remained part of the
boundary of the strip (Najar et al., Math Phys Anal Geom 13:19–28, 2010).

We study the case when we destroy the plan symmetry, i.e. we impose the
Neumann boundary condition on the two concentric disc windows of the radii a
and b located on the opposite walls and the Dirichlet boundary condition on the
remaining part of the boundary of the strip (Najar and Olendski, J Phys A Math
Theor 44, 2011).

The effect of a magnetic field of Aharonov-Bohm type when the magnetic field
is turned on this system is considered (Najar and Raissi, On the spectrum of the
Schrodinger Operator with Aharonov-Bohm Magnetic Field in quantum waveguide
with Neumann window, Math. Meth. App. Sci. (2015)).

1 Introduction

The study of quantum waves on quantum waveguide has gained much interest
and has been intensively studied during the last years for their important physical
consequences. The main reason is that they represent an interesting physical effect
with important applications not only in nanophysical devices, but also in flat
electromagnetic waveguide. See the monograph [15] and the references therein.

Exner et al. have done seminal works in this field. They obtained results in
different contexts, we quote [6, 10, 13, 14]. Also in [16, 20, 21] research has been
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conducted in this area; the first is about the discrete case and the two others for deals
with the random quantum waveguide.

It should be noticed that the spectral properties essentially depend on the
geometry of the waveguide, in particular, the existence of a bound states induced
by curvature [9, 10, 12, 13] or by coupling of straight waveguides through windows
[13, 15] was shown. The waveguide with Neumann boundary condition was also
investigated in several papers [22, 24]. A possible next generalization are waveg-
uides with combined Dirichlet and Neumann boundary conditions on different parts
of the boundary. The presence of different boundary conditions also gives rise to
nontrivial properties like the existence of bound states.

2 The model

The system we are going to study is given in Fig. 1. We consider a Schrödinger
particle whose motion is confined to a pair of parallel plans of width d. For
simplicity, we assume that they are placed at z D 0 and z D d. We shall denote
this configuration space by ˝:˝ D R

2 
 Œ0; d�: Let �.a/ be a disc of radius a,
without loss of generality we assume that the center of �.a/ is the point .0; 0; 0/;

�.a/ D f.x; y; 0/ 2 R
3I x2 C y2 � a2g: (1)

We set � D @˝Ÿ�.a/. We consider Dirichlet boundary condition on � and
Neumann boundary condition in �.a/.

Fig. 1 The waveguide with a disc window and two different boundary conditions
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2.1 The Hamiltonian

Let us define the self-adjoint operator on L2.˝/ corresponding to the particle
Hamiltonian H. This will be done by the means of quadratic forms. Precisely, let
q0 be the quadratic form

q0.f ; g/ D
Z
˝

rf � rgd3x; with domain Q.q0/ D ff 2 H1.˝/I f d� D 0g; (2)

where H1.˝/ D ff 2 L2.˝/jrf 2 L2.˝/g is the standard Sobolev space and we
denote by f d� , the trace of the function f on � . It follows that q0 is a densely
defined, symmetric, positive, and closed quadratic form. We denote the unique
self-adjoint operator associated with q0 by H and its domain by D.˝/. It is the
hamiltonian describing our system. From [25] (page 276), we infer that the domain
D.˝/ of H is

D.˝/ D
n
f 2 H1.˝/I ��f 2 L2.˝/; f d� D 0;

@f

@z
d�.a/ D 0

o

and

Hf D ��f ; 8f 2 D.˝/:

2.2 Some known facts

Let us start this subsection by recalling that in the particular case when a D 0, we
get H0, the Dirichlet Laplacian, and a D C1 we get H1, the Dirichlet-Neumann
Laplacian. Since

H D .��R2 /˝ I ˚ I ˝ .��Œ0;d�/; on L2.R2/˝ L2.Œ0; d�/;

(see [25]) we get that the spectrum of H0 is Œ. �
2d /

2;C1Œ. Consequently, we have

h
.
�

d
/2;C1

h
	 �.H/ 	

h
.
�

2d
/2;C1

h
:

Using the property that the essential spectra are preserved under compact perturba-
tion, we deduce that the essential spectrum of H is

�ess.H/ D
h
.
�

d
/2;C1

i
:

An immediate consequence is the discrete spectrum lies in
h
.
�

2d
/2; .

�

d
/2
i
.
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2.3 Preliminary: Cylindrical coordinates

Let us notice that the system has a cylindrical symmetry, therefore, it is natural to
consider the cylindrical coordinates system .r; �; z/. Indeed, we have that

L2.˝; dxdydz/ D L2.�0;C1Œ
Œ0; 2�Œ
Œ0; d�; rdrd�dz/;

We note by �h�;ir, the scaler product in L2.˝; dxdydz/ D L2.�0;C1Œ
Œ0; 2�Œ
Œ0; d�;
rdrd�dz/ given by

hf ; gir D
Z
�0;C1Œ�Œ0;2�Œ�Œ0;d�

fgrdrd�dz:

We denote the gradient in cylindrical coordinates by rr. The Laplacian operator in
cylindrical coordinates is given by

�r;�;z D 1

r

@

@r
.r
@

@r
/C 1

r2
@2

@�2
C d2

dz2
: (3)

Therefore, the eigenvalue equation is given by

��r;�;zf .r; �; z/ D Ef .r; �; z/: (4)

Since the operator is positive, we set E D k2. The equation (4) is solved by
separating variables and considering f .r; �; z/ D '.r/ �  .�/�.z/: We replace f by
its expression in equation (4) and separate � by putting all the z dependence in one
term so that �

00

�
can only be constant. The constant is taken as �s2 for convenience.

Second, we separate the term
 00

 
which has all the � dependence. Using the fact

that the problem has an axial symmetry and the solution has to be 2� periodic and

single value in � , we obtain
 00

 
should be a constant �n2 for n 2 Z. Finally, we get

the following equation for '

'00.r/C 1

r
'0.r/C Œk2 � s2 � n2

r2
�'.r/ D 0: (5)

We notice that the equation (5) is the Bessel equation and its solutions could be
expressed in terms of Bessel functions. More explicit solutions could be given by
considering boundary conditions.
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3 Results on discrete spectrum

3.1 One Neumann Window

The first result we give is the following theorem.

Theorem 1 ([17]). The operator H has at least one isolated eigenvalue in
. �
2d /

2; . �d /
2
�

for any a > 0.

Moreover for a big enough, if �.a/ is an eigenvalue of H less than
�2

d2
, then we

have

�.a/ D
� �
2d

�2 C o

�
1

a2

�
: (6)

Proof. Let us start by proving the first claim of the theorem. To do so, we define the
quadratic form Q0,

Q0.f ; g/ D hrf ;rgir D
Z
�0;C1Œ�Œ0;2�Œ�Œ0;d�

.@rf@rg C 1

r2
@� f@�g C @zf@zg/rdrd�dz;

(7)

with domain

D0.˝/ D ˚
f 2 L2.˝; rdrd�dz/I rrf 2 L2.˝; rdrd�dz/I f d� D 0

�
:

Consider the functional q defined by

qŒ˚� D Q0Œ˚� � .�
d
/2k˚k2L2.˝;rdrd�dz/: (8)

Since the essential spectrum of H starts at .
�

d
/2, if we construct a trial function

˚ 2 D0.˝/ such that qŒ˚� has a negative value, then the task is achieved. Using the
quadratic form domain, ˚ must be continuous inside˝ but not necessarily smooth.
Let � be the first transverse mode, i.e.

�.z/ D
( q

2
d sin.�d z/ if z 2 .0; d/
0 otherwise:

(9)

For ˚.r; �; z/ D '.r/�.z/, we compute

qŒ˚� D hrr'�;rr'�i � .�
d
/2k'�k2L2.˝;rdrd�dz/;

D 2�k'0k2L2.Œ0;C1Œ;rdr/
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Now let us consider an interval J D Œ0; b� for a positive b > a and a function ' 2
S .Œ0;C1Œ/ such that '.r/ D 1 for r 2 J: We also define a family f'� W � > 0g by

'�.r/ D
	

'.r/ if r 2 .0; b/
'.b C �.ln r � ln b// if r � b:

(10)

Let us write

k'0
�kL2.Œ0;C1/;rdr/ D

Z
.0;1/

j'0
� .r/j2rdr;

D
Z
.b;C1/

�2j'0.b C �.ln r � ln b//j2rdr;

D �

Z
.0;C1/

j'0.s/j2ds D �k'0k2L2..0;C1//
: (11)

Let j be a localization function from C1
0 .0; a/ and for �; " > 0 we define

˚�;".r; z/ D '�.r/Œ�.z/C "j.r/2� D '�.r/�.z/C '�"j
2.r/ D ˚1;�;".r; z/C ˚2;�;".r/:

(12)

qŒ˚� D qŒ˚1;�;" C ˚2;�;"�

D Q0Œ˚1;�;" C ˚2;�;"� � .�
d
/2k˚1;�;" C ˚2;�;"k2L2.˝;rdrd�dz/:

D Q0Œ˚1;�;"� � .�
d
/2k˚1;�;"k2L2.˝;rdrd�dz/ C Q0Œ˚2;�;"� � .�

d
/2k˚2;�;"k2L2.˝;rdrd�dz/

C 2hrr˚1;�;";rr˚2;�;"ir � .�
d
/2h˚1;�;"; ˚2;�;"ir:

Using the properties of �, noting that the supports of ' and j are disjoints and taking
into account equation (11), we get

qŒ˚� D 2��k'0kL2.0;C1/ � 8�d"kj2k2L2.0;C1/

C 2"2�f2kjj0k2
.L2.0;1/;rdr/ � .�

d
/2kj2k2

.L2.0;1/;rdr/g: (13)

Firstly, we notice that only the first term of the last equation depends on � . Secondly,
the linear term in " is negative and could be chosen sufficiently small so that it
dominates over the quadratic one. Fixing this " and then choosing � sufficiently
small the right-hand side of (13) is negative. This ends the proof of the first claim.
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The proof of the second claim is based on bracketing argument. Let
us split L2.˝; rdrd�dz/ as follows: L2.˝; rdrd�dz/ D L2.˝�

a ; rdrd�dz/ ˚
L2.˝C

a ; rdrd�dz/, with

˝�
a D f.r; �; z/ 2 Œ0; a� 
 Œ0; 2�Œ
Œ0; d�g;

˝C
a D ˝n˝�

a :

Therefore

H�;N
a ˚ HC;N

a � H � H�;D
a ˚ HC;D

a :

Here we index by D and N depending on the boundary conditions considered on the
surface r D a. The min-max principle leads to

�ess.H/ D �ess.H
C;N
a / D �ess.H

C;D
r / D

h
.
�

d
/2;C1

h
:

Hence if H�;D
r exhibits a discrete spectrum below

�2

d2
, then H does as well. We

mention that this is not a necessary condition. If we denote by �j.H�;D
a /; �j.H�;N

a /

and �j.H/, the j-th eigenvalue of H�;D
a , H�;N

a and H, respectively, then, again the
minimax principle yields the following

�j.H
�;N
a / � �j.H/ � �j.H

�;D
a / (14)

and for 2 � j

�j�1.H�;D
a / � �j.H/ � �j.H

�;D
a /: (15)

H�;D
a has a sequence of eigenvalues [2, 27], given by

�k;n;l D
�
.2k C 1/�

2d

�2
C
�xn;l

a

�2
;

where xn;l is the l-th positive zero of Bessel function of order n ( see [2, 27]) . The
condition

�k;n;l <
�2

d2
; (16)

yields that k D 0, so we get

�0;n;l D
� �
2d

�2 C
�xn;l

a

�2
:

This yields that the condition (16) to be fulfilled, will depend on the value of
�xn;l

a

�2
.
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We recall that xn;l are the positive zeros of the Bessel function Jn. So, for any
�.a/, eigenvalue of H, there exists n; l; n0; l0 2 N, such that

�2

4d2
C x2n;l

a2
� �.a/ � �2

4d2
C x2n0;l0

a2
: (17)

The proof of (6) is completed by observing that xn;l and xn0;l0 are independent
from a. �

3.2 Two Neumann Windows

We consider a Schrödinger particle whose motion is confined to a pair of parallel
planes separated by the width d. For simplicity, we assume that they are placed at
z D 0 and z D d. We shall denote this configuration space by ˝

Let �.a/ be a disc of radius a with its center at .0; 0; 0/ and �.b/ be a disc of
radius b centered at .0; 0; d/; without loss of generality, we assume that 0 � b � a.

�.a/ D f.x; y; 0/ 2 R
3I x2 C y2 � a2gI �.b/ D f.x; y; d/ 2 R

3I x2 C y2 � b2g:
(18)

We set � D @˝Ÿ.�.a/ [ �.b//. We consider Dirichlet boundary condition on �
and Neumann boundary condition in �.a/ and �.b/.

Theorem 2 ([18]). The operator H has at least one isolated eigenvalue in

0; .�d /

2
�

for any a and b such that a C b > 0.

Moreover for a big enough, if �.a/ is an eigenvalue of H less than
�2

d2
, then we

have

�.a; b/ 2
�
1

a2
;
1

b2

�
: (19)

Remark 1. 1. The first claim of Theorem 2 is valid for more general shape of
bounded surface S , with Neumann boundary condition, not necessarily a disc;
(see Figure 2) it suffices that the surface contains a disc of radius a > 0.

2. For more general shape S using discs of radius a and a0, such that

�.a/ 	 S 	 �.a0/I (20)

In [1] Assel and Ben Salah considered the case of square window.

˝ D R
2 
 Œ0; d�:

When b is big enough, we get the result.
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Fig. 2 Dirichlet wave guide with two concentric Neumann disc windows on the opposite walls
with (in general) different radii a and b.

Proposition 1 ([18]). When the radius a is equal to a critical value al at which
a new bound state emerges from the continuum, equation (4) with E D 1 has a
solution f .0/l .r; �; z/, unique to a multiplicative constant which at infinity behaves
like (valid for both configurations of the boundary conditions)

f .0/l .r; �; z/ D eim�

p
2�

"p
2 sin�z

rjmj C ˇl
e��p

3r

p
r

sin 2�z C O

 
e��p

8r

p
r

!#
; r ! 1

(21)

with some constants ˇl. Here the two quantum numbers n and m are compacted into
the single index l: l � .n;m/.

A proof of this statement will be given in the next section.

Remark. Compared to the corresponding equation for the quasi-one-dimensional
wave guide [5, 6, 14], this asymptotics has a different form which is explained by
the additional degree of the in-plane motion.

3.3 Effect of Aharonov-Bohm filed

Results on the discrete spectrum of a magnetic Schrödinger operator in waveguide-
type domains are scarce. A planar quantum waveguide with constant magnetic field
and a potential well is studied in [11], where it was proved that if the potential
well is purely attractive, then at least one bound state will appear for any value
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of the magnetic field. Stability of the bottom of the spectrum of a magnetic
Schrödinger operator was also studied in [26]. Magnetic field influence on the
Dirichlet-Neumann structures was analyzed in [7, 23], the first dealing with a
smooth compactly supported field as well as with the Aharonov-Bohm field in a
two dimensional strip and second with perpendicular homogeneous magnetic field
in the quasi-dimensional.

Despite numerous investigations of quantum waveguides during the last few
years, many questions remain to be answered, this concerns, in particular, effects of
external fields. Most attention has been paid to magnetic fields, either perpendicular
to the waveguides plane or threaded through the tube, while the influence of the
Aharonov-Bohm magnetic field alone remained mostly untreated.

In their celebrated 1959 paper [4] Aharonov and Bohm pointed out that while the
fundamental equations of motion in classical mechanics can always be expressed in
terms of field alone, in quantum mechanics the canonical formalism is necessary,
and as a result, the potentials cannot be eliminated from the basic equations.
They proposed several experiments and showed that an electron can be influenced
by the potentials even if no field acts upon it. More precisely, in a field-free
multiply-connected region of space, the physical properties of a system depend on
the potentials through the gauge-invariant quantity

H
Adl, where A represents the

vector potential. Moreover, the Aharonov-Bohm effect only exists in the multiply
connected region of space. The Aharonov-Bohm experiment allows in principle
to measure the decomposition into homotopy classes of the quantum mechanical
propagator.

A possible next generalization are waveguides with combined Dirichlet and
Neumann boundary conditions on different parts of the boundary with an Aharonov-
Bohm magnetic field with the flux 2�˛. The presence of different boundary
conditions and Aharonov-Bohm magnetic field also gives rise to nontrivial prop-
erties like the existence of bound states. This question is the main object of the
paper. The rest of the paper is organized as follows: in Section 2, we define the
model and recall some known results. In section 3, we present the main result of
this note followed by a discussion. Section 4 is devoted to numerical computations.

3.3.1 The model

Let HAB be the Aharonov-Bohm Schrödinger operator in L2.˝/, defined initially on
the domain C1

0 .˝/, and given by the expression

HAB D .ir C A/2; (22)

where A is a magnetic vector potential for the Aharonov-Bohm magnetic field B,
and given by

A.x; y; z/ D .A1;A2;A3/ D ˛

�
y

x2 C y2
;

�x

x2 C y2
; 0

�
; ˛ 2 R n Z: (23)
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The magnetic field B W R3 ! R
3 is given by

B.x; y; z/ D curlA D 0 (24)

outside the z-axis and
Z
%

A D 2�˛; (25)

where % is a properly oriented closed curve which encloses the z-axis. It can be
shown that HAB has a four-parameter family of self-adjoint extensions which is
constructed by means of von Neumann ’s extension theory [8]. Here we are only
interested in the Friedrichs extension of HAB on L2.˝/ which can be constructed by
means of quadratic forms. We get that the domain D.˝/ of H is

D.˝/ D fu 2 H1.˝/I .ir C A/2u 2 L2.˝/; ud� D 0; 
:.ir C A/ud�.a/ D 0g;

where 
 the normal vector and

Hu D .ir C A/2u; 8u 2 D.˝/: (26)

Let’s start by recalling that in the particular case when a D 0, we get H0, the
magnetic Dirichlet Laplacian, and when a D C1 we get H1, the magnetic
Dirichlet-Neumann Laplacian.

Proposition 2. The spectrum of H0 is Œ. �d /
2;C1Œ; and the spectrum of H1

coincides with Œ. �
2d /

2;C1Œ:

Proof. We have

H D .ir C QA/2 ˝ I ˚ I ˝ .��Œ0;d�/; on L2.R2 n f0g/˝ L2.Œ0; d�/;

where QA WD ˛
�

y
x2Cy2

; �x
x2Cy2

�
. Consider the quadratic form

QqŒu� D
Z
R2

j .ir C QA/u j2 dxdy

D
Z
R2

ˇ̌̌
ˇ
�

i@x C ˛
y

x2 C y2

�
u

ˇ̌̌
ˇ
2

dxdy C
Z
R2

ˇ̌̌
ˇ
�

i@y � ˛ x

x2 C y2

�
u

ˇ̌̌
ˇ
2

dxdy:

(27)

By introducing polar coordinates we get

r D
p

x2 C y2I x

r
D cos �;

y

r
D sin �;
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and

@�

@x
D �y

r2
;

@�

@y
D x

r2
; @x D cos �

@

@r
� y

r2
@

@�
; @y D sin �

@

@r
C x

r2
@

@�
:

Hence (27) becomes

QqŒu� D
Z �

j @ru j2 C 1

r2
j .i@�u � ˛u/ j2

�
rdrd�: (28)

Expanding u into Fourier series with respect to �

u.r; �/ D
1X

kD�1
uk.r/

eik�

p
2�
:

we get

Z
R2

j .ir C QA/u j2 dxdy � min
k

j k C ˛ j2
Z

1

x2 C y2
j u.x; y/ j2 dxdy: (29)

Here the form in the right-hand side is considered on the function class H1.R2/,
obtained by the completion of the class C1

0 .R2nf0g/. Inequality (29) is the Hardy
inequality in two dimensions with Aharonov-Bohm vector potential [3]. This yields

that �
�
.ir C QA/2

�
	 Œ0;C1Œ

Since �.��/ D �ess.��/ D Œ0;C1Œ, then there exists a Weyl sequences
fhng1

nD1 for the operator �� in L2.R2/ at � � 0. Construct the functions

'n.x; y/ D
	

hn if x > n and y > n;
0 if not.

k
�
.ir C QA/2 � �

�
'n k � k .� � �/'n k C k QA2'n k C k QAr'n k

� k .� � �/'n k C c

n
;

where c is positive.

Therefore, the functions  n D 'n

k 'n k is Weyl sequence for .ir C QA/2 at � � 0,

thus Œ0;C1Œ	 �ess

�
.ir C QA/2

�
	 �

�
.ir C QA/2

�
.

Then we get that the spectrum of .ir C QA/2 is Œ0;C1Œ, we know that the

spectrum of ��0
Œ0;d� and ��1

Œ0;d� is f. j�

d
/2; j 2 N

?g and f. .2j C 1/�

2d
/2; j 2 Ng,
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respectively. Therefore we have the spectrum of H0 is Œ.
�

d
/2;C1Œ. And the

spectrum of H1 coincides with Œ.
�

2d
/2;C1Œ. �

Consequently, we have

h
.
�

d
/2;C1

h
	 �.H/ 	

h
.
�

2d
/2;C1

h
:

Using the property that the essential spectra are preserved under compact perturba-
tion, we deduce that the essential spectrum of H is

�ess.H/ D
h
.
�

d
/2;C1

h
:

Theorem 3 ([19]). Let H be the operator defined on (26) and ˛ 2 R n Z. There

exist a0 > 0 such that for any 0 <
a

d
< a0, we have

�d.H/ D ;:

There exist a1 > 0, such that
a

d
> a1, we have

�d.H/ ¤ ;:

Remark. The presence of magnetic field in three dimensional straight strip of width

d with the Neumann boundary condition on a disc window of radius 0 <
a

d
< a0

and Dirichlet boundary conditions on the remained part of the boundary destroys

the creation of discrete eigenvalues below the essential spectrum. If
a

d
> a1, the

effect of the magnetic field is reduced.

Remark. This result is still true for more general Neumann window containing some
disc. To get the optimal result of a0 and a1, we need explicit calculation.

Proof. The proof follows the same steps as in the previous two subsections. The
main difference is by introducing the magnetic field we get a new Bessel equation

we obtain
1

P
.i
@

@�
C ˛/2P should be a constant �.m � ˛/2 D �
2 for m 2 Z.

Finally, we get the new equation for R

R00.r/C 1

r
R0.r/C Œ� � k2z � 
2

r2
�R.r/ D 0: (30)

We notice that the equation (30) is a Bessel equation which by the introduction of
the term ˛ is different from equation (5). The solutions of (30) could be expressed
in terms of Bessel functions. More explicit solutions could be given by considering
boundary conditions.
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The solution of the equation (30) is given by R.r/ D cJ
.ˇr/, where c 2 R
?,

ˇ2 D � � k2z and J
 is the Bessel function of first kind of order 
.
We assume that

R0.a/ D 0 , J
.ˇa/ D 0

, aˇ D x0

;n; (31)

where x0

;n is the n�th positive zero of the Bessel function J0


 .
Consequently to equation (31), H�;N

a has a sequence of eigenvalues given by

�j;
;n D x02

;n

a2
C k2z

D x02

;n

a2
C
�
.2j C 1/�

2d

�2
:

As we are interested in discrete eigenvalues which belong to Œ
� �
2d

�2
;
��

d

�2
/ only

�0;
;n intervenes.
If

��
d

�2 � �0;
;n; (32)

then there H does not have a discrete spectrum. We recall that 
2 D .m � ˛/2

and it is related to magnetic flux, also recall that x0

;n are the positive zeros of the

Bessel function J0
n and 8
 > 0, 8n 2 N

?; 0 < x0

;n < x0


;nC1 ( see [2]). So, for any
eigenvalue of H�;N

a ,

x02

;1

a2
C
� �
2d

�2
<

x02

;n

a2
C
� �
2d

�2 D �0;
;n:

An immediate consequence of the last inequality is that to satisfy (32) it is sufficient
to have

3
� �
2d

�2
<

x02

;1

a2
;

therefore

p
3�

2d
<

x0

;1

a
;
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then

a

d
<
2x0

;1p
3�
:

We have( see [2, 27])


 C ˛n

1=3 < x0


;n;

where ˛n D 2�1=3ˇn and ˇn is the n�th positive root of the equation

J 2
3

�
2

3
x3=2

�
� J �2

3

�
2

3
x3=2

�
D 0:

For n D 1, we have ˛n

1=3  0:6538 (see [2]), then

c0 WD 0:6538C ˛ < 0:6538C 
 < x0

;1: (33)

Then we get that for d and a positives such that
a

d
< a0 WD 2c0p

3�
,

�d.H/ D ;:

This ends the proof of the first result of the theorem (3).
By the min-max principle and (14), we know that if H�;D

a exhibits a discrete
spectrum below .�d /

2, then H does as well.
H�;D

a has a sequence of eigenvalues [17, 18, 27], given by

�j;
;n D
�x
;n

a

�2 C
�
.2j C 1/�

2d

�2
;

here x
;n is the n�th positive zero of Bessel function of order 
 (see [2]). As we are

interested in discrete eigenvalues which belong to Œ.
�

2d
/2; .

�

d
/2/ only for �0;
;n.

If the following condition

�0;
;n <
��

d

�2
(34)

is satisfied, then H has a discrete spectrum.
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We recall that 0 < x
;n < x
;nC1 for any 
 > 0 and any n 2 N
? ( see [2]). So, for

any eigenvalue of H�;D
a ,

x2
;1
a2

C
� �
2d

�2
<

x2
;n
a2

C
� �
2d

�2 D �0;
;n:

An immediate consequence of the last inequality is that to satisfy (34) it is sufficient
to set then

2x
;1p
3�

<
a

d
:

We have

s�
n � 1

4

�2
�2 C 
2 < x
;n;

For n D 1, we have

c1 WD
s�

3�

4

�2
C ˛2 <

s�
3�

4

�2
C 
2 < x
;1: (35)

Then we get that for d and a positives such that
a

d
> a1 WD 2c1p

3�
,

�d.H/ ¤ ;:

�

References

1. R. Assel, M. Ben Salah Spectral properties of the Dirichlet wave guide with square Neumann
window prepint.

2. M. Abramowitz and I. A. Stegun Handbook of Mathematical Functions With Formulas,
Graphs, and Mathematical Tables New York: Dover, (1972).

3. L. Aermark: Spectral and Hardy Inequalities for some Sub-Elliptic Operators. Thesis.
4. Y. Aharonov and D. Bohm: Significance of Electromagnetic Potentials in the Quantum

Theory.Phys. Rev.115, 485–491(1959).
5. D. Borisov, P. Exner and R. Gadyl’shin Geometric coupling thresholds in a two-dimensional

strip Jour. Math. Phy. 43 6265 (2002)
6. D. Borisov and P. Exner: Exponential splitting of bound states in a waveguide with a pair of

distant windows. J. Phys. A 37 nı 10, p3411–3428 (2004).
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Multi-field Modeling of Nonsmooth Problems
of Continuum Mechanics, Differential Mixed
Variational Inequalities and Their Stability

Joachim Gwinner

Abstract This paper surveys various nonsmooth problems in continuum mechan-
ics, presents multi-field variational models for these problems in the form of mixed
variational inequalities and differential mixed variational inequalities, and exhibits
stability results for differential variational inequalities with respect to perturbations
of the data.

1 Introduction

In this survey paper we consider various nonsmooth problems in continuum
mechanics, present multi-field variational models for these problems in the form of
mixed variational inequalities and differential mixed variational inequalities (DVIs),
and exhibit stability results for DVIs with respect to perturbations of the data.

Herewith nonsmoothness is not understood as nonsmoothness of domains with
corners and edges what is investigated in the mathematical regularity theory of
partial differential equations. Instead nonsmoothness comes from the nonsmooth
data of the problems itself, in particular from constraints and from functionals that
are classically not differentiable. Thus for such problems the classical approach of
characterization of solutions by variational equations has to be abandoned. Similar
to finite dimensional optimization with implicit set constraints we have to work with
variational inequalities instead. Also similar to finite dimensional optimization with
inequality constraints, Lagrange multipliers and - in their physical interpretations -
dual variables become signed.

Since it is not a priori known where those dual variables are positive or vanish,
respectively where the associated inequality constraint to the Lagrange multiplier
becomes active and where not, the boundary between those regions is unknown too.
So these problems belong to the class of free boundary value problems. Moreover
these problems are nonlinear.
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On the other hand, with a linear regime, e.g. with linear elasticity in solid
mechanics, we arrive at convex variational problems, i.e. the energy becomes a
convex functional. This allows to apply methods of convex analysis. We also can
treat nonlinear material behavior. Then monotonicity methods of nonlinear analysis
come into play. But we do not enter solid mechanic problems with geometric
nonlinearity and large deformations.

To introduce into multiple field modeling in continuum mechanics let us shortly
review the literature. The classical Babuška-Brezzi theory [5] addresses variational
problems with equality constraints as saddle point problems and establishes unique
solvability by means of inf-sup conditions what are the basis of the mixed finite
element method (mixed FEM) for the numerical treatment of these problems.
A prominent instance of this two-field modeling is incompressible Stokes flow with
the velocity and pressure as coupled unknown fields. This classical saddle point
theory linked with two-field modeling has been extended by Gatica [17, 18] to
some classes of nonlinear variational problems and to three-field variational models
that can be understood as dual-dual mixed variational models or as two-fold saddle
point formulations. Such augmented variational models are well adapted for multi-
physics problems with different coupled unknown quantities and in particular for
engineering problems, where in terms of solid mechanics, strains and stresses are
often of more interest than the displacements.

The present paper extends this novel modeling approach to nonsmooth boundary
value problems with inequality constraints. This has to be distinguished from the
standard duality approach which hinges on the Lagrange duality theory of convex
analysis in calculus of variations (see [13] for a systematic study) and which
is employed in the numerical FEM analysis of various unilateral boundary and
obstacle problems as pioneered by Haslinger and Lovíšek [28, 29], see also the
monograph [31]. More recent work in this direction is [10] on error estimates of
mixed FEM applied to Signorini elastic contact and [47] on mixed formulations and
mixed FEM for a class of variational inequalities in a more general framework; see
also the recent exhaustive exposition [48] on variationally consistent discretization
schemes for the frictional contact problem. More related to, but different from the
present paper is [11] that investigates nonconvex unilateral contact problems and
analyzes a three-field augmented Lagrangian formulation in the triple of the bulk
displacement, normal boundary displacement, and normal boundary stress fields.

In addition to steady-state problems we also consider time-dependent problems.
Here we focus on problems that are first order in time neglecting mass effects and
that are thus of parabolic type. Because of the presence of constraints these problems
fit to the frame of differential mixed variational inequalities (DMVIs). For such
nonsmooth evolution problems we present very recent stability results. Herewith
stability is not understood as stability over an infinite time horizon like Liapunov
stability. Instead we are concerned with stability of solutions in a fixed time interval
with respect to perturbations of the data. These stability results can be interpreted as
set convergence results for the solution set and are very much linked to the stability
of numerical schemes that arise from the application of numerical discretization
techniques like boundary element, finite difference, finite element, and finite volume
methods.
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The paper has the following outline. In the subsequent section we introduce to
the multi-field modeling approach and consider a scalar nonlinear boundary problem
from heat conduction and its time-dependent extension what leads to a first example
of a (DMVI). Then in section 3 we extend the multi-field modeling of a boundary
value problem in nonlinear material elasticity given in [4] to a frictionless unilateral
contact problem. Section 4 addresses nonsmooth problems in elastoplasticity. First
we recall from [26, 27] the variational formulation as a multi-field evolutionary
variational inequality, which can be readily rewritten as a (DMVI). Then we expand
further this formulation, using the modeling approach of [4] and of section 3, and
arrive at another (DMVI). The bulk of the more analytic results is in section 5.
There we survey the recent stability results from [25], discuss the nonlinear heat
conduction problem as an example, and provide more applications. In the final
section we delineate some further directions of research.

2 Multiple field modelling of a nonsmooth heat
conduction problem

To demonstrate this novel approach of multiple field modelling, let us consider a
nonlinear boundary value problem with Signorini boundary conditions that arises
from nonlinear heat conduction [8] with semi-permeable walls [12]. We first show
how the steady-state problem can be variationally formulated as a variational
inequality in mixed form. Then we turn to the transient problem and derive the
associated differential mixed variational inequality.

To describe the problem of interest, let˝ be a bounded simply connected domain
in R

2 with the Lipschitz boundary @˝ D � . Then � the outward normal to � ,
exists almost everywhere and � 2 ŒL1.� /�2. Let �D and �S be parts of � such that
j�Dj > 0; j�Sj > 0; � D � D [ � S, and �D \ �S D ;. Also let ai W ˝ 
 R

2 !
R; i D 1; 2 be nonlinear functions satisfying certain conditions (specified in what
follows) and write

a.x; �/ WD �
a1.x; �/; a2.x; �/

�T
for all .x; �/ 2 ˝ 
 R

2:

Then, for a given right-hand side f W ˝ ! R, given function g W @˝ ! R defining
the boundary conditions, we look for a function u W ˝ ! R such that

�div a.�;ru.�// D f on ˝

u D g on �D

u � g; a.�;ru.�// � � � 0; .u � g/ a
��;ru.�/� � � D 0 on �S ;

9>=
>; (1)

where div is the usual divergence operator. As in [19] in the case of the Dirichlet
problem, let us introduce the gradient p WD ru in ˝ and the flux � WD a.�;p/ in ˝
as additional unknowns. In this way, the elliptic pde (11) in (1) writes as the three
equations
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�div � D f

a.�;p/ D �

p D ru

9>=
>; (2)

that should hold in the distributional sense in˝. By this reformulation we can relax
the regularity of the unknown u. We require that u 2 L2.˝/;p 2 L2.˝;R2/ and
� 2 H.div ; ˝/ WD f� 2 L2.˝;R2/ j div � 2 L2.˝/g. Thus testing (11), (2) with
v 2 L2.˝/;q 2 L2.˝;R2/, respectively, gives

�
Z
˝

div � v dx D
Z
˝

f v dx DW hf ; viL2.˝/ ;

Z
˝

a.�;p/ � q dx D
Z
˝

� � q dx DW h� ;qiL2.˝;R2/ :

For the last equation (2)3 in (2) we incorporate the boundary conditions and use
Green’s formula (see [20])

hr';�iL2.˝;R2/ C h'; div �iL2.˝/ D h�0'; ���iL2.� / (3)

for ' 2 H1.˝/;� 2 H.div ; ˝/, where �0' and ��� D � � � denote the traces.
Testing (2)3 with � � � 2 H.div ; ˝/ results in

hp;� � � iL2.˝;R2/ C hu; div � � div � iL2.˝/

D h�0u; ��.� � � /iL2.� /

D h�0u � g; ���i � h�0u � g; ��� i C hg; ��.� � � /i :

By the boundary conditions, the second term above vanishes. The second
inequality in the Signorini boundary condition (1)3 tells us that we have to require
that � belongs to the closed convex cone

HC WD HC.div ; ˝; �S/ WD ˚
� 2 H.div ; ˝/ W ���j�S � 0

�
;

where “� 0” means that h�0%; ���i � 0 for any smooth function % on˝ with % D 0

on �D and % � 0 on �S. Thus we obtain for any � 2 HC.div; ˝; �S/,

hp;� � � iL2.˝;R2/ C hu; div.� � � /iL2.˝/

� hg; ��.� � � /iL2.�S/ :

Altogether we arrive at the following variational problem in mixed form: Find
Œu; � ;p� 2 L2.˝/ 
 HC.div ; ˝; �S/ 
 L2.˝;R2/ such that for all Œv;�;q� 2
L2.˝/ 
 HC.div ; ˝; �S/ 
 L2.˝;R2/,
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� hdiv � ; vi D hf ; vi ;
hp;� � � i C hu; div .� � � /i � hg; ��.� � � /i�S ;

ha.�;p/;qi � h� ;qi D 0 :

9>=
>; (4)

Note that if the functions ai are Caratheodory functions and satisfy the growth
conditions W 9 C > 0; 'i 2 L2.˝/; i D 1; 2 such that

jai.x; �/j � Cf1C j�jg C j'i.x/j; 8 � 2 R
2; a.e. x 2 ˝;

then we obtain the Nemytskii operator A W q 2 L2.˝;R2/ 7! a.�;q/ 2 L2.˝;R2/.
Clearly, this nonlinear operator A inherits monotonicity from the vector field a, see,
e.g., [35]. To reveal the separable structure in (4), (1), introduce the linear operator
B W H.div ; ˝/ ! L2.˝/;B� WD div � and the embedding E W H.div ; ˝/ !
L2.˝;R2/;E� WD �. Then with the zero operator 0 at appropriate places, the left-
hand side of (4), (1) is given by the following operator in block form:

0
@0 �B 0

B� 0 E�
0 �E A.�/

1
A (5)

Now we turn to the time-dependent case. Let I D .0;T/ be the given time
interval. Then instead of the elliptic pde (1)1 we have the parabolic pde

@tu � div a
��;ru.�/� D f in ˝ 
 I:

Also the boundary conditions have to hold in ˝ 
 I, where we assume the gap
function g to be time-independent. In addition, we have the initial condition u D u0
in ˝ 
 f0g with some given u0.

As the solution space for the unknown u we introduce

W WD ˚
u 2 L2.˝ 
 I/ W @tu 2 L2.˝ 
 I/

�
:

Then the three-field variational formulation of the considered initial boundary
value problem reads as the following differential mixed variational inequality: Find
Œu; � ;p� 2 W 
 L2

�
I;HC.div ; ˝; �S/

� 
 L2.˝ 
 I;R2/ DW X such that for all
Œv;�;q� 2 X there holds

R
I

R
˝

.@tu � div � / v dx dt D R
I

R
˝

f v dx dt;
R

I

R
˝

udiv .� � � / dx dt C R
I

R
˝

p � .� � � / dx dt

� R
I

R
�S

g.� � � / � � ds dt

� RI

R
˝

� � q dx dt C R
I

R
˝

a.�;p/ � q dx dt D 0; :

9>>>>>>=
>>>>>>;

(6)
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3 Multiple field modelling of frictionless unilateral contact
problems in nonlinear elasticity

In this section we extend the two-fold saddle point approach of [4] from the
nonlinear elasticity boundary value problem with Dirichlet/Neumann boundary
conditions to frictionless unilateral contact problems including Signorini type
boundary conditions. We show how the steady-state problem can be variationally
formulated as a variational inequality in mixed form.

Let a hyperelastic body occupy a bounded simply connected domain ˝ in R
2

with the Lipschitz boundary @˝ D � . Then the outward normal � to � is in
ŒL1.� /�2. Let �D; �N , and �S be parts of � such that j�Dj > 0; j�Cj > 0,
� D � D [ � N [ � C. and �D \ �C D ;.

The hyperelastic behavior of the body is assumed to be described by a Hencky-
von Mises stress-strain relation as discussed in [9, 41]. Then the Cauchy stress tensor
� 2 R

2�2 depends on the displacement field u 2 R
2 via the kinematic relation

e D 1

2
Œgrad u C grad uT � (7)

with the linearized strain tensor e and the constitutive equation

� D Q�.dev.e// tr.e/ I C Q�.dev.e// e : (8)

Here Q�; Q� are nonlinear Lamé functions that under appropriate assumptions on
the stored energy function give rise to a monotone stress-strain relation. Moreover,
I is the identity matrix in R

2�2, tr.�/ D � jj denotes the trace, dev W R2�2 ! R
C is

defined by dev.�/ D .� � 1
2

tr.�/ I/ W .� � 1
2

tr.�/ I/, where � W � D � ij� ij is the
scalar product for matrices in R

2�2.
Then, for given right-hand sides f 2 ŒL2˝/�2; g 2 ŒH

1
2 .�D/�

2; h 2 H
1
2 .�C/ our

nonlinear boundary value problem reads as follows: Find a tensor field � and a
vector field u that satisfy (7), (8), the equilibrium equation

� div� D f in ˝ (9)

and the boundary conditions

u D g on �D

� � D 0 on �N

u� � h; � � � 0;

.u� � h/�� D 0; � t D 0 on �C ;

9>>>=
>>>;

(10)
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where u� WD u � �, �� WD � � � �, � t WD �� � ���, and for any � D .�ij/ 2 R
2�2,

div � WD
 

div .�11�12/

div .�21�22/

!
:

To derive a multi-field variational formulation of the above boundary value
problem, introduce the tensor spaces

H.div ; ˝/ WD f� 2 L2.˝;R2�2/ W div � 2 L2.˝;R2/g
H0.div ; ˝/ WD f� 2 H.div ; ˝/ W �� D 0 on �N ;� t D 0 on �Cg

with scalar product

h�; � iH.div ;˝/ WD h�; �iL2.˝;R2�2/ C hdiv �;div �iL2.˝;R2/

where

h�; � iL2.˝;R2�2/ WD
Z
˝

� W � dx 8�; � 2 L2.˝;R2�2/

hv;wiL2.˝;R2/ WD
Z
˝

v � w dx 8v;w 2 L2.˝;R2/ :

Moreover we need the convex closed cone

H�
0 .div ; ˝/ WD f� 2 H0.div ; ˝/ W �� � 0 on �Cg

As in [4] in the case of a mixed boundary value problem, the strain field e will
be an extra unknown. Here (7) will be rewritten to

e D grad u � � (11)

where the further unknown

� WD 1

2
.grad u � .grad u/T/ ;

is the skew-symmetric part of the deformation tensor grad u, represents rotations,
and lies in the space

R WD f� 2 L2.˝;R2�2/ W � C �T D 0g :

Then in view of the boundary condition (10)3 we impose � 2 H�
0 .div ; ˝/,

multiply (11) by � � � with a test function � 2 H�
0 .div ; ˝/, integrate by part

on ˝, use the boundary conditions (10)1, (10)2 to get
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Z
˝

e W .� � � / dx C
Z
˝

u � div .� � � / dx C
Z
˝

� W .� � � / dx

D
Z
�D

g � .� � � /� dx C
Z
�C

u � .� � � /� dx

and by the boundary conditions (10)1, (10)2 estimate the latter boundary integral,

Z
�C

u � .� � � /� dx

D
Z
�C

h � � .� � � /� dx C
Z
�C

.u� � h/� � �� dx

�
Z
�C

h � � .� � � /� dx

Altogether we obtain the following variational inequality for � 2 H�
0 .div ; ˝/:

Z
˝

e W .� � � / dx C
Z
˝

u � div .� � � / dx C
Z
˝

� W .� � � / dx (12)

�
Z
�D

g � .� � � /� dx C
Z
�C

h � � .� � � /� dx ;8� 2 H�
0 .div ; ˝/ :

Further with the shorthands

O�.e/ WD Q�.dev.e// ; O�.e/ WD Q�.dev.e//

the constitutive equation (8) and the equilibrium equation (9), respectively, yield

R
˝

O�.e/tr.e/tr.d/C O�.e/e W d dx � R
˝

� W d dx D 0 ;8d 2 L2.˝;R2�2/ (13)

� R
˝

v � div � dx D R
˝

f � v dx ;8v 2 L2.˝;R2/ (14)

Finally, the symmetry of � is weakly required by

Z
˝

� W � dx D 0 ;8� 2 R : (15)

Consequently, collecting (12), (13), (14), and (15) we arrive at the following
multi-field variational problem: Find Œe; � ;u;�� 2 L2.˝;R2�2/ 
 H�

0 .div ; ˝/ 

L2.˝;R2/ 
 R such that for all Œd;�; v;�� 2 L2.˝;R2�2/ 
 H�

0 .div ; ˝/ 

L2.˝;R2/ 
 R,
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h O�.e/tr.e/; tr.diL2.˝/ C h O�.e/e/;diL2.˝;R2�2/ � h� ;diL2.˝;R2�2/ D 0 ;

he;� � � iL2.˝;R2�2/ C hu;div .� � � /iL2.˝;R2/ C h�;� � � iL2.˝;R2�2/

� hg; .� � � /�iL2.�D;R2/ ;C hh; � � .� � � /�iL2.�C/ ;

hv;div � iL2.˝;R2/ C h� ;�iL2.˝;R2�2/ D �hf; viL2.˝;R2/ :

4 Multiple field modelling in quasistatic elastoplasticity
and differential mixed variational inequalities

In this section we first recall from [26, 27] the variational formulation of quasistatic
problems in elastoplasticity as an evolutionary variational inequality. This evolution-
ary variational inequality can be readily cast as a (DMVI). Moreover, by a procedure
similar to [4] exploited in the previous section, we expand this multi-field model by
adding the elastic stress and elastic strain fields as further unknown variable. This
involves the H.div; ˝/ space and is more related to the classical mixed approach of
the Babuška-Brezzi theory. Also this new expanded formulation fits into the (DMVI)
setting, which is investigated in a more formal way in the subsequent section.

4.1 Primal formulation

Let the elastoplastic body occupy a bounded simply connected domain ˝ in R
3

with the Lipschitz boundary @˝ D � . Following [26, 27], the unknowns are the
displacement u, the plastic strain p, and the internal hardening variable � that are
required to satisfy in ˝ the equilibrium equation

� div� D f (16)

for some given volume load vector f, the kinematic relation

e D 1

2
Œgrad u C grad uT � (17)

with the linearized strain tensor e and the constitutive equation

� D C.e � p/ (18)

with the fourth order elasticity tensor C and the plastic strain p, and moreover, the
flow law,

Œ Pp; P�� 2 Kp

D.q;	/ � D. Pp; P�/C � W .q � Pp/ � .H�/ � .	 � P�/ ;8Œq;	� 2 Kp

)
(19)
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with the hardening modulus H 2 R
m�m and with Kp D dom D. There the dissipation

function D is assumed to be nonnegative, convex, positively homogeneous with
D.0/ D 0 and Kp closed.

The initial condition is u.�; 0/ D 0 and for simplicity zero Dirichlet boundary
conditions are prescribed, i.e. u D 0 on � and in the time interval Œ0;T�.

For the variational formulation introduce the following function spaces. The
displacement, plastic strain, internal variable live in

V D ŒH1
0.˝/�

3;Q0 WD fq 2 L2symm.˝;R
3/ W tr q D 0g;M D ŒL2.˝/�m ;

respectively. This gives the product space Y WD V 
 Q0 
 M. Corresponding to the
set Kp D dom D is the closed, convex cone

Yp D fy D Œv;q;	� 2 Y W Œq;	� 2 Kp a.e. in ˝g :

With [26, 27], (17) is understood as a function e D e.u/. Integrating (19) and
using (17), (18) gives for Œ Pp; P�� 2 Kp,

R
˝

D.q;	/ dx � R
˝

D. Pp; P�/ dx

� R
˝

�
C.e.u/ � p/ W .q � Pp/ � .H�/ � .	 � P�/� dx ;8Œq;	� 2 Kp :

)
(20)

Testing (16) with v � Pu for arbitrary v 2 V , integrating by parts, and using (18)
yield

Z
˝

C.e.u/ � p/ W .e.v/ � e. Pu// dx D
Z
˝

f � .v � Pu/ dx ;8v 2 V : (21)

Adding (20) and (21) we arrive at the differential mixed variational inequality:
Find y D Œu;p; �� such that y.0/ D 0, for almost all t 2 .0;T/, y.t/ 2 Y and

Py.t/ D w.t/ 2 Yp

a.y.t/; z � w.t//C j.z/ � j.w.t// � hl.t/; z � w.t/i ;8z 2 Yp ;

)
(22)

where as in [27] the bilinear form a W Y 
 Y ! R, the linear form l.t/ W Y ! R, the
functional j W Yp ! R are defined, respectively, by

a.y; z/ D
Z
˝

�
C.e.u/ � p/ W .e.v/ � q/C � W H	

�
dx ;

hl.t/; zi D
Z
˝

f.t/ � v dx ;

j.z/ D
Z
˝

D.q;	/ dx

for y D Œu;p; ��; z D Œv;q;	�.
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4.2 A mixed formulation

Similar to [4] in the case of a mixed boundary value problem of nonlinear elasticity
and similar to the previous section, both the stress field � and the strain field e
can be considered as extra unknowns. This will lead to a new mixed formulation in
elastoplasticity.

Again (17) is rewritten to

e D grad u � � (23)

with the further unknown � WD 1
2
.grad u � .grad u/T/ in R as defined in the

previous section. Then multiply (23) by � 2 H.div; ˝/ and integrate by part on
˝, to get

Z
˝

e W � dx C
Z
˝

u � div.�/ dx C
Z
˝

� W � dx D 0 : (24)

Further the constitutive equation (18) and the equilibrium equation (16), respec-
tively, yield

Z
˝

C.e � p/ W d dx �
Z
˝

� W d dx D 0 ; 8d 2 L2.˝;R2�2/ I (25)

�
Z
˝

v � div� dx D
Z
˝

f � v dx ; 8v 2 L2.˝;R2/ : (26)

Again, the symmetry of � is weakly required by

Z
˝

� W � dx D 0 ;8� 2 R : (27)

Observe that Pe is in ŒL2.˝/�2�2 WD L2.˝;R2�2/. Hence, (25) writes for all d 2
ŒL2.˝/�2�2 as

Z
˝

C.e � p/ W .d � Pe/ dx �
Z
˝

� W .d � Pe/ dx D 0 : (28)

Add (28) and (20) to obtain

R
˝

D.q;	/ dx � R
˝

D. Pp; P�/ dx

C R
˝

C.e.u/ � p/ W �.d � q/ � .Pe � Pp/� �R
˝

�
� W .d � Pe/ � .H�/ � .	 � P�/� dx ;8Œq;	� 2 Kp :

9>=
>; (29)
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Consequently, collecting the variational equalities (24), (26) and (27), and the
variational inequality (29) we arrive at another DMVI: Find y D Œe;p; ��, z D
Œ� ;u;p� such that y.0/ D 0, for almost all t 2 .0;T/, y.t/ 2 ŒL2.˝/�2�2 
 Q0 
 M,
z.t/ 2 H.div; ˝/ 
 V 
 Q0 satisfies (24), (26), and (27), and moreover

Py.t/ D w.t/ 2 Zp;

A
�
Œy;w�.t/;  � w.t/

�C J./ � J.w.t//

� hL.t/;  � w.t/i ;8 D Œv;q;	� 2 Zp ;

9>=
>; (30)

where the closed convex cone Zp, the bilinear form A, the linear form L.t/, and the
convex positively homogeneous functional J are appropriately defined. Since these
definitions are obvious, details are omitted.

5 Differential mixed variational inequalities
and their stability

Motivated by the nonsmooth boundary value problems and their variational for-
mulation in the previous sections, we deal in this section with a general class of
differential mixed variational inequalities. Indeed, with some change of notation, all
the concrete time-dependent variational inequalities of the previous sections can be
subsumed in this class, when introducing some appropriate product spaces. This will
be elaborated with the nonsmooth transient heat conduction problem of section 2.

Since in our stability analysis, we permit perturbations in the nonsmooth convex
functionals and in the convex constraint set, we provide auxiliary results on
epiconvergence and Mosco convergence. We sketch how the monotonicity method
of Browder and Minty can be used to establish a general stability result under weak
convergence assumptions.

5.1 The general setting of differential mixed variational
inequalities

Let X;V be two real, separable Hilbert spaces that are endowed with norms k � kX ,
k � kV , respectively and with scalar products denoted by h�; �i; .�; �/ respectively.
Further let there be given T > 0, a convex closed subset K 	 V , a convex, lower
semicontinuous (lsc) proper functional � W V ! R[C1, maps F W Œ0;T�
X
V !
X, and G W Œ0;T� 
 X 
 V ! V , and some fixed x0 2 X. Then we consider the
following problem: Find an X - valued function y and a V - valued function w both
defined on Œ0;T� that satisfy for a.a. (almost all) t 2 Œ0;T�
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(DMVI).F;G;K; �I x0/

( Py.t/ D F.t; y.t/;w.t//

w.t/ 2 ˙.K; �;G.t; y.t/; �//

complemented by the initial condition y.0/ D y0. Here Py.t/ denotes the time
derivative of y.t/. ˙.K; �;G.t; y.t/; �// stands for the solution set of the mixed
variational inequality defined by K; � and G.t; y.t/; �/, that is, w.t/ has to satisfy

w.t/ 2 K;
�
G.t; y.t/;w.t//; z � w.t/

� C �.z/ � �.w.t// � 0; 8z 2 K :

To give a precise meaning to a DMVI we have to introduce appropriate function
spaces and impose some hypotheses on the data.

The fixed finite time interval Œ0;T� gives rise to the Hilbert space L2.0;TI V/
endowed with the scalar product

Œv;w� WD
TZ
0

�
v.t/;w.t/

�
dt :

We consider weak solutions of the differential equation in a DMVI in the
sense of Caratheodory. In particular, the X-valued function y has to be absolutely
continuous with derivative Py.t/ defined almost everywhere. Moreover to define the
initial condition, the “trace” y.0/ is needed. Therefore we are led to the function
space

Y .0;TI X/ WD fy j y 2 L2.0;TI X/; Py.t/ 2 L2.0;TI X/g ;

a Hilbert space endowed with the scalar product Œx; y�C ŒPx; Py�.
We assume that the map G satisfies the following growth condition: There exist

g0 2 L1.0;T/ and g0 2 L2.0;T/ such that 8t 2 .0;T/ ;8.y;w/ 2 X 
 V there holds

kG.t; y;w/kV � g0.t/ .kykX C kwkV/ C g0.t/ : (31)

Hence the Nemytskii operator G that acts from L2.0;TI X/ 
 L2.0;TI V/ to
L2.0;TI V/ derives from G by

G .y;w/.t/ WD G.t; y.t/;w.t// ; t 2 .0;T/ :

We introduce the closed convex subset

K WD L2.0;TI K/ WD fw 2 L2.0;TI V/ j w.t/ 2 K;8a:a: t 2 .0;T/g (32)

For the time-independent functional �, we simply require that the functional ˚
given by
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˚.w/ WD
Z T

0

�.w.t// dt; w 2 L2.0;TI V/ (33)

is real-valued on L2.0;TI K/.
Then it makes sense to replace the above pointwise formulation of the mixed

variational inequality in a DMVI by its integrated counterpart,

w 2 K ;
h
G .y;w/; v � w

i
C ˚.v/ � ˚.w/ � 0; 8v 2 K :

Concerning the map F, we assume the following growth condition similar to (31):
There exist f0 2 L1.0;T/ and f 0 2 L2.0;T/ such that 8t 2 .0;T/; 8.y;w/ 2 X 
 V
there holds

kF.t; y;w/kX � f0.t/ .kykX C kwkV/ C f 0.t/ : (34)

Hence the Nemitskii operator F derived from F by

F .y;w/.t/ WD F.t; y.t/;w.t// ; t 2 .0;T/

acts from L2.0;TI X/ 
 L2.0;TI V/ to L2.0;TI X/.
Using a standard device in dynamical systems (see, e.g., [36]), we can introduce

the unknown Qy WD .y; t/ and write the above DMVI as

8̂
<̂
ˆ̂:

dQy
d�

D d

d�

 
y

t

!
D QF.Qy;w/ WD

 
F.Qy.t/;w.t//

1

!

w.t/ 2 ˙.K; �;G.Qy.t/; �// ;

complemented by the initial condition Qy.0/ D .y0; 0/. Therefore in the following
we can consider the autonomous problem without any loss of generality and drop in
DMVI the dependence on t.

Example 1. To subsume the nonsmooth transient heat conduction problem of
section 2 in the framework of a DMVI define the Hilbert spaces X WD L2.˝/;
V WD H.div; ˝/ 
 L2.˝;R2/, hence Y D W. Further K WD HC.div; ˝; �S/ 

L2.˝;R2/ is a convex cone such that the variational inequality (6)2 and
the nonlinear variational equation (6)3 can be written as a single variational
inequality. Here for z D Œ� ; p�, simply �.z/ WD hg; ��� iL2.� / is a linear
form. Then for y D u, w D Œ� ;p� we let F.y;w/ WD div � C f . To
define the operator G we use the Riesz representation theorem as follows.
For any u 2 L2.˝/;p 2 L2.˝;R2/, � 7! hp; � iL2.˝;R2/ C hu; div � iL2.˝/

is a continuous linear form on H.div; ˝/, hence can be represented by some
� 2 H.div; ˝/. This leads to the continuous linear operator R W Œu;p� 7! �. Thus
finally we define G.y;w/ D G.u; � ;p/ WD �

R.u;p/; a.�;p/ � �
�

and arrive at a
concrete example of a DMVI.
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In what follows we study stability of differential mixed variational inequalities
formulated as DMVI and admit perturbations y0;n of y0 in the initial condition
y.0/ D y0, Fn;Gn of the maps F W X 
 V ! X;G W X 
 V ! V , Kn of the convex
closed subset K 	 V . and �n of the convex, lower semicontinuous proper functional
� W V ! R [ C1. Suppose that .yn;wn/ solves (DMVI)(Fn;Gn;Kn; �

nI y0;n)
and assume that .yn;wn/ ! .y;w/ with respect to an appropriate convergence
for X-valued, respectively V-valued functions on Œ0;T�. Then we are interested in
conditions on Fn ! F;Gn ! G;Kn ! K; �n ! �; y0;n ! y0 that guarantee
that .y;w/ solves the limit problem (DMVI).F;G;K; �I y0/. Such a stability result
can be understood as a result of upper set convergence for the solution set of
(DMVI).F;G;K; �I y0/.

5.2 Preliminaries; Mosco convergence of sets; epiconvergence
of functions

As the convergence of choice in variational analysis we employ Mosco set conver-
gence for a sequence fKng of closed convex subsets which is defined as follows. A
sequence fKng of closed convex nonvoid subsets of the Hilbert space V is called

Mosco convergent to a closed convex nonvoid subset K of V , written Kn
M�! K, if

and only if

� � lim sup
n!1

Kn 	 K 	 s � lim inf
n!1 Kn:

Here the prefix � and
�! mean sequentially weak convergence in contrast to strong

convergence denoted by the prefix s and by
s!. Further, lim sup, respectively lim inf

are in the sense of Kuratowski upper, resp. lower limits of sequences of sets (see [2]
for more information on Mosco convergence). Here we note that for the nonempty

set K the second inclusion provides the existence of gn 2 Kn such that gn
s! g for

some given g 2 K. Clearly, Kn
M�! K, if and only if Cn WD Kn �gn

M�! C WD K �g,
This simple translation argument shows there is no loss of generality to assume later
that 0 2 Kn;K.

As a preliminary result we need that Mosco convergence of convex closed sets
Kn inherits to Mosco convergence of the associated sets Kn D L2.0;TI Kn/, derived
from Kn similar to (32). To prove this convergence we first show Mosco convergence
of the polars K0

n to K0 WD f 2 V� W .jz/ � 1 ;8z 2 Kg using the duality .�j�/ on
V� 
 V .

Lemma 1. Let Kn
M�! K. Then (a) K0

n
M�! K0; (b) Kn

M�! K in L2.0;TI V/.

Let us sketch the proof. To verify � � lim supn!1 K0
n 	 K0 let  D � � lim

n!1 n

with n 2 K0
n . Choose z 2 K arbitrarily. Then by assumption, there exist (eventually
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for a subsequence) zn 2 Kn with z D s � limn!1 zn: By definition of the polar K0
n ,

.njzn/ � 1; 8n, hence in the limit .jz/ � 1; 8z 2 K what gives  2 K0. To show
K0 	 s � lim infn!1 K0

n , we use a result in [2] on the convergence of s.Kn/ to s.K/,
where s.K/./ WD supf.jz/ W z 2 Kg ;  2 V is the support function of K.

To verify � � lim supn!1 L2.0;TI Kn/ 	 L2.0;TI K/ let w D � � lim
n!1 wn with

wn 2 L2.0;TI Kn/. By the bipolar theorem (K00 D K) it is enough to show that
8 2 K0, for a.a. t 2 .0;T/ there holds .jw.t// � 1. This follows from an indirect
argument. To show K 	 s � lim infn!1 Kn it is enough to verify the claim for the
subset of K - valued simple functions on .0;T/ that is dense in K . For more details,
see [25].

As a further preliminary result we next need that epiconvergence [2] of convex
lsc functions �n inherits to epiconvergence of the associated functionals ˚n, derived
from �n similar to (33).

Lemma 2. Let the convex lsc proper functionals �n epiconverge to a convex lsc
proper functional � on V. Suppose, the functionals �n are equi-lower bounded in the
sense that there exist co 2 R;w0 2 V such that

�n.w/ � c0 C .w0;w/; 8n 2 N;w 2 V :

Then the associated functionals ˚n epiconverge to ˚ on L2.0;TI V/.

For the proof of the claimed convergence properties of the integral functions we
use the Lemma of Fatou; for details, see [25].

By combination of the previous lemmas we obtain the following auxiliary result.

Lemma 3. Let Kn
M�! K in V. Let the convex lsc proper functionals �n W Kn ! R

epiconverge to � W K ! R on V. Suppose, the functionals �n are equi-lower bounded
in the sense that there exist co 2 R;w0 2 V such that

�n.wn/ � c0 C .w0;wn/; 8n 2 N;wn 2 Kn : (35)

Then the associated functionals ˚n W L2.0;TI Kn/ ! R epiconverge to ˚ W L2

.0;TI K/ ! R in L2.0;TI V/.

5.3 The stability result

Before stating the result, some remarks are in order. In view of the existence theory
of variational inequalities in infinite dimensional spaces (see, e.g., [35]) the best
one can hope for is weak convergence of the perturbations un in the general case
of nonunique solutions of the underlying variational inequalities in (DMVI). Weak
convergence can namely be readily derived from a posteriori estimates. However,
continuity of a nonlinear map (here G, F) with respect to weak convergence is a
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hard requirement. To circumvent these weak convergence difficulties we apply the
monotonicity method of Browder and Minty. Then as we shall see below, a stability
condition on the maps Gn with respect to the basic Hilbert space norm suffices.

These weak convergence difficulties also affect Fn. Therefore we have to impose
a generally strong stability condition on the nonlinear maps Fn. In the situation of
linear operators this condition can be drastically simplified to a stability condition
with respect to convergence in the operator norm, see [24, Theorem 4.1] in the case
� D �n D 0.

On the other hand, stronger assumptions on Gn, like uniform monotonicity, imply
that the solution sets ˙.Kn; �

n;G .yn; �// are single-valued. Uniform monotonicity
with respect to n moreover entails that the sequence wn strongly converges. Then
the stability assumption for Fn can be relaxed.

Since our stability assumptions pertain the given maps Gn;G, not the derived
maps G n;G , we have a delicate interplay between the pointwise almost everywhere
formulation and the integrated formulation of the variational inequality in the
perturbed DMVI and in the limit DMVI.

We need the following hypotheses on the convergence of .Fn;Gn/ to .F;G/:

(H1) Let zn
s! z in X and vn

�! v in V . Moreover, let Fn.zn; vn/
s! p in X. Then

p D F.z; v/.

(H2) All maps Gn.z; �/ for any z 2 X are monotone. If zn
s! z; vn

s! v in X,

respectively in V , then Gn.zn; vn/
s! G.z; v/ in V . G is hemicontinuous in

the sense that for any z 2 XI v;w 2 V the real-valued function r 2 R 7!
.g.z; v C rw/; rw/ is lower semicontinuous.

Now we can state the following stability result.

Theorem 1. Let .yn;wn/ solve (DMVI)(Fn;Gn;Kn; �
nI y0;n). Suppose, Fn;F,

respectively Gn;G satisfy (H1), (H2) respectively. Let y0;n
s! y0. Let the convex

closed nonvoid sets Kn Mosco-converge to K in V and let the convex lsc proper
functions �n W Kn ! R epiconverge to � W K ! R on V. Suppose, the functions �n

are equi-lower bounded in the sense of (35). Assume that yn s! y in Y .0;TI X/ and
that wn 2 L2.0;TI V/ converges weakly to w pointwise in V for a.a. t 2 .0;T/ with
kwn.t/kV � m.t/; 8 a:a:t 2 .0;T/ for some m 2 L2.0;T/. Then .y;w/ is a solution
to (DMVI)(F;G;K; �I y0).

For the proof, we refer to [25].
When the DMVI has a separable structure, the hypotheses (H1) and (H2)

can be expressed more explicitly and thus simplified. An instance are dynamical
systems (31)1 that are affine in w. More precisely let as in the paper [38] on
differential mixed variational inequalities in finite dimensions,

F.z;w/ D F1.z/C B.z/w; Fn.z;w/ D F1;n.z/C Bn.z/w :
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Then obviously (H1) splits in conditions on F1;n ! F1 and Bn ! B, separately.
In the important case of bilinear dynamical systems, B and Bn become linear
operators in L .X;L .V;X//. Then Bn ! B in the operator norm along with

F1;n.zn/
s! F1.z/ for zn

s! z implies (H1).
Also similarly to [38], let

G.z;w/ D G1.z/C G2.w/; Gn.z;w/ D G1;n.z/C G2;n.w/ :

Then (H2) is satisfied, if the G2;n are monotone, G2 is hemicontinuous, G1;n.zn/
s!

G1.z/ for zn
s! z, and G2;n.wn/

s! G2.w/ for wn
s! w.

Another instance of a separable structure are linear differential variational
inequalities (see [24] and the references given there) which are of the form

8̂<
:̂

 
Py.t/
q.t/

!
D A

 
y.t/

w.t/

!
C
 

f .t/

g.t/

!

w.t/ 2 K;
�
q.t/; z � w.t/

� � 0; 8z 2 K

and where A W X 
 V ! X 
 V is a given linear continuous operator defined by

A D
�

A B
C D

�

with appropriate linear operators A;B;C;D. Then the hypotheses (H1) and (H2) are
satisfied and a stability result with respect to perturbations An; fn; gn can be proved,
provided the operators Dn D projVAn.0; �/ are monotone, An ! A in the operator
norm, and fn ! f ; gn ! g in L2.0;TI X/, respectively in L2.0;TI V/; see [24] for
details.

In the multi-field formulation of the nonsmooth problems considered we find
this separable structure, too. Here in particular for the nonsmooth heat conduction
problem of section 2, see in particular (5) and Example 1, we have for w D Œ� ;p�,

G2.w/ D
�

0 E�
�E A.�/

� 
�

p

!
�
 

g

0

!
:

Then G2 inherits monotonicity from the nonlinear operator A.
We refrain from deriving a stability result for stationary problems from the

present Theorem 1. Instead we can refer to [23, Theorem 3] for a much stronger
result.



Multi-field Modeling 137

6 Some concluding remarks: An outlook

Finally let us shortly outline some main streams of potential applications of multiple
field modelling to nonsmooth multiphysics problems and nonsmooth nonconvex
variational problems.

Let us first note that the present paper confines in section 3 to frictionless contact
of a deformable body with a rigid foundation. Unilateral contact [14] or bilateral
multi-body contact [33] with friction can be similarly described by a multi-field
variational formulation. There in the model of Tresca friction (given friction model),
a nonsmooth convex integral functional on the boundary part �C appears in addition;
see [25] for a multi-field variational formulation of a simplified scalar frictional
unilateral contact problem. Similar boundary value problems involving a nonsmooth
functional appear in micropolar hemitropic contact [16], moreover in Stokes flow
and non-Newtonian flow with friction or with leak boundary conditions; see [3, 34,
45, 46]. For quasistatic contact with friction, we refer to the monograph [44].

In section 4 we focused on the multi-field modeling approach to the simplest
quasi-static elastoplasticity problem. More involved problems arise in multi-surface
elastoplasticity [6], elastoplasticity with hysteresis, see, e.g., [7], and in viscoplas-
ticity [21].

Nowadays nonsmooth multiphysics problems where differential equations of
different type are coupled receive much attention. A prominent example are
thermoelastic contact problems with frictional heating (see, e.g., [1]) or even
thermoelectroconductive problems with Signorini contact [32]. Intelligent “smart”
devices use piezoceramic material, here the coupling of the electricity field with
solid mechanics is of interest (see, e.g., [15, 37]).

Another line of research are nonsmooth nonconvex variational problems that use
the theory of nonconvex hemivariational inequalities as coined by Panagiotopoulos
[43]. Here instead of convex analysis, the Clarke generalized differential calculus
comes into play. This theory [22, 39, 40] and also their recent numerical treatment
[30, 42] by regularization techniques and finite element methods allow to tackle
nonconvex contact problems, like adhesion and delamination problems.
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I
-statistical convergence of order
˛ in topological groups

Ekrem Savaş and Rahmet Savaş Eren

Abstract In this paper, we introduce and study I -lacunary statistical convergence
of order ˛ in topological groups and we shall also present some inclusion theorems.

1 Introduction

Before continuing with this paper we present some definitions and preliminaries:
The notion of statistical convergence, which is an extension of the idea of usual

convergence, was introduced by Fast [9] and Schoenberg [28] and its topological
consequences were studied first by Fridy [10] and Šalát [19]. Di Maio and Kočinac
[17] introduced the concept of statistical convergence in topological spaces and
statistical Cauchy condition in uniform spaces and established the topological nature
of this convergence. The notion has also been defined and studied in different
steps, for example, in the locally convex space [16]; in intuitionistic fuzzy normed
spaces[18]. In [1] Albayrak and Pehlivan studied this notion in locally solid Riesz
spaces. Quite recently, Das and Savas [6] introduced the ideas of I� -convergence,
I� -boundedness, and I� -Cauchy condition of nets in a locally solid Riesz space
and also I�-statistical convergence in a locally solid Riesz space was introduced by
Das and Savas [8]. Savas [26] introduced and studied I - double lacunary statistical
convergence in a locally solid Riesz space.

If N denotes the set of natural numbers and K 	 N, then K.m; n/ denotes the
cardinality of the set K \ Œm; n�: The upper and lower natural density of the subset
K is defined by

d.K/ D lim
n!1 sup

K.1; n/

n
and d.K/ D lim

n!1 inf
K.1; n/

n
:
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If d.K/ D d.K/, then we say that the natural density of K exists and it is denoted

simply by d.K/: Clearly d.K/ D lim
n!1

K.1; n/

n
. A sequence x D .xk/ of real numbers

is said to be statistically convergent to L if for arbitrary � > 0; the set K.�/ D fn 2
N W jxk � Lj � �g has natural density zero. In this case, we write st � limk xk D L
and we denote the set of all statistical convergent sequences by st.

By a lacunary sequence, we mean an increasing sequence � D .kr/ of positive
integers such that k0 D 0 and hr W kr � kr�1 ! 1 as r ! 1. Throughout this
paper, the intervals determined by � will be denoted by Ir D .kr�1; kr�, and the ratio
.kr/ .kr�1/�1 will be abbreviated by qr.

In another direction in [11], a new type of convergence called lacunary statistical
convergence was introduced as follows: A sequence .xk/ of real numbers is said to
be lacunary statistically convergent to L (or, S� -convergent to L ) if for any � > 0;

lim
r!1

1

hr
jfk 2 Ir W jxk � Lj � �gj D 0

where jAj denotes the cardinality of A 	 N: In [11] the relation between lacunary
statistical convergence and statistical convergence was established among other
things.

The order of statistical convergence of a sequence of numbers was given by
Gadjiev and Orhan in [12] and later on statistical convergence of order ˛ and
strongly p- Cesàro summability of order ˛ studied by Çolak [4].

In [13], P. Kostyrko et al. introduced the concept of I -convergence of sequences
in a metric space and studied some properties of such convergence. Note that
I -convergence is an interesting generalization of statistical convergence. More
investigations in this direction and more applications of ideals can be found in
[5, 14, 15, 20–25].

Recently in [5] we used ideals to introduce the concepts of I -statistical con-
vergence and I -lacunary statistical convergence. Also Das and Savas[7] extended
the concepts of I -statistical convergence and I -lacunary statistical convergence to
the concepts of I -statistical convergence and I -lacunary statistical convergence of
order ˛, 0 < ˛ � 1.

The purpose of this paper is to study I -lacunary statistical convergence of order
˛, 0 < ˛ � 1 in topological groups and to give some important inclusion theorems.

2 Definitions and Notations

The following definitions and notions will be needed.

Definition 1. A family I 	 2N is said to be an ideal of N if the following
conditions hold:

(a) A;B 2 I implies A [ B 2 I ;
(b) A 2 I ; B 	 A implies B 2 I ;
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Definition 2. A non-empty family F 	 2N is said to be a filter of N if the following
conditions hold:

(a) � … F;
(b) A;B 2 F implies A \ B 2 F;
(c) A 2 F; A 	 B implies B 2 F;

If I is a proper ideal of N (i.e., N … I ), then the family of sets F.I / D fM 	
N W 9 A 2 I W M D N n Ag is a filter of N: It is called the filter associated with the
ideal.

Definition 3. A proper ideal I is said to be admissible if fng 2 I for each n 2 N:

Throughout I will stand for a proper admissible ideal of N.

Definition 4 (see [13]). Let I 	 2N be a proper admissible ideal in N: The
sequence x D .xk/ of elements of R is said to be I -convergent to L 2 R if for
each � > 0 the set A.�/ D fn 2 N W jxk � Lj � �g 2 I :

In [7], Das and Savaş defined I - statistical convergence and I - lacunary
statistical convergence of order ˛ as follows:

Definition 5. A sequence x D .xk/ is said to be I -statistically convergent of order
˛ to L or S.I /˛-convergent to L, where 0 < ˛ � 1, if for each � > 0 and ı > 0

fn 2 N W 1
n˛

jfk � n W jxk � Lj � �gj � ıg 2 I :

In this case we write xk ! L.S.I /˛/: The class of all I -statistically convergent of
order ˛ sequences will be denoted by simply S.I /˛:

Definition 6. Let � be a lacunary sequence. A sequence x D .xk/ is said to be
I -lacunary statistically convergent of order ˛ to L or S� .I /˛-convergent to L if for
any � > 0 and ı > 0

fr 2 N W 1
h˛r

jfk 2 Ir W jxk � Lj � �gj � ıg 2 I :

In this case we write xk ! L.S� .I /˛/: The class of all I -lacunary statistically
convergent sequences of order ˛ will be denoted by S� .I /˛ .

By X, we will denote an abelian topological Hausdorff group, written additively,
which satisfies the first axiom of countability. In [2], a sequence .xk/ in X is called
to be statistically convergent to an element L of X if for each neighborhood U of 0,

lim
n!1

1

n
jfk � n W xk � L … Ugj D 0;

where the vertical bars indicate the number of elements in the enclosed set. The set
of all statistically convergent sequences in X is denoted by st.X/.
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Also, Cakalli [3] defined lacunary statistical convergence in topological
groups as follows: A sequence .xk/ is said to be S� -convergent to L (or
lacunary statistically convergent to L) if for each neighborhood U of 0,
limr!1.hr/

�1 jk 2 Ir W xk � L … Ugj D 0. In this case, we define

S� .X/ D
	
.xk/ W for some L; S� � lim

k!1 xk D L

�
:

Now we are ready to give the main definitions of I -statistical convergence and
I - lacunary statistical convergence of order ˛ in topological groups as follows:

Definition 7. A sequence x D .xk/ in X is said to be statistically convergent of
order ˛ to L or S.I /˛-convergent of order ˛ to L if for each ı > 0 and for each
neighborhood U of 0,

fn 2 N W 1
n˛

jfk � n W xk � L … Ugj � ıg 2 I :

In this case, we write xk ! L.S.I /˛/: The class of all S.I /˛-statically convergent
sequences will be denoted by simply S.I /˛.X/:

Remark 1. For ˛ D 1 the definition coincides with I -statistical convergence in
topological groups [27]. For I D Ifin D fA � N W A is a finite subset}, and ˛ D 1,
I - statistical convergence becomes statistical convergence in topological groups
which is studied by Cakalli [2].

Definition 8. Let � be a lacunary sequence. A sequence x D .xk/ in X is said to be
I -lacunary statistically convergent of order ˛ to L or S� .I /˛-convergent to L if for
any ı > 0 and for each neighborhood U of 0,

fr 2 N W 1
h˛r

jfk 2 Ir W xk � L … Ugj � ıg 2 I :

In this case, we write

S� .I /
˛ � lim

k!1 xk D L or xk ! L.S� .I /
˛/

and define

S� .I /
˛.X/ D

	
.xk/ W for some L; S� .I /

˛ � lim
k!1 xk D L

�

and in particular,

S� .I /
˛.X/0 D

	
.xk/ W S� .I /

˛ � lim
k!1 xk D 0

�
:
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Remark 2. For ˛ D 1, the definition coincides with I -lacunary statistical con-
vergence in topological groups [27]. Further it must be noted in this context
that lacunary statistical convergence of order ˛ in topological groups has not
been studied till now. Obviously lacunary statistical convergence of order ˛ in
topological groups is a special case of I -lacunary statistical convergence of order
˛ in topological groups when we take I D Ifin. Also, for I D Ifin, and
˛ D 1, I -lacunary statistical convergence of order ˛ becomes lacunary statistical
convergence in topological groups which is studied by Cakalli [3].

It is obvious that every I -lacunary statistically convergent of order ˛ has only
one limit, that is, if a sequence is I -lacunary statistically convergent of order ˛ to
L1 and L2, then L1 D L2:

3 Inclusion Theorems

In this section, we prove the following theorems.

Theorem 1. Let 0 < ˛ � ˇ � 1. Then S� .I /˛.X/ 	 S� .I /ˇ.X/.

Proof. Let 0 < ˛ � ˇ � 1. Then

jfk 2 Ir W xk � L … Ugj
hˇr

� jfk 2 Ir W xk � L … Ugj
h˛r

and so for any ı > 0 and for each neighborhood U of 0,

fn 2 N W jfk 2 Ir W xk � L … Ugj
hˇr

� ıg 	 fn 2 N W jfk 2 Ir W xk � L … Ugj
h˛r

� ıg:

Hence, if the set on the right-hand side belongs to the ideal I , then obviously the set
on the left-hand side also belongs to I . This shows that S� .I /˛.X/ 	 S� .I /ˇ.X/.

Corollary 1. If a sequence is I -lacunary statistically convergent of order ˛ to
L for some 0 < ˛ � 1, then it is I -lacunary statistically convergent to L, i.e.
S� .I /˛.X/ 	 S� .I /.X/.

Similarly we can show that

Theorem 2. Let 0 < ˛ � ˇ � 1. Then

(i) S.I /˛.X/ 	 S.I /ˇ.X/.
(ii) In particular S.I /˛.X/ 	 S.I /.X/.

Theorem 3. For any lacunary sequence �; I -statistical convergence of order
˛ implies I -lacunary statistical convergence of order ˛, that is S.I /˛.X/ 	
S� .I /˛.X/ if lim inf

r
q˛r > 1:
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Proof. Suppose first that lim inf
r

q˛r > 1: Then there exists � > 0 such that q˛r �
1C � for sufficiently large r which implies that

h˛r
k˛r

� �

1C �
:

Since xk ! L.S.I/˛.X//; then for any neighborhood U of 0 and for sufficiently large
r; we have

1

k˛r
jfk � kr W xk � L … Ugj � 1

k˛r
jfk 2 Ir W xk � L … Ugj

� �

1C �
:
1

h˛r
jfk 2 Ir W xk � L … Ugj:

Then for any ı > 0; we get

fr 2 N W 1
h˛r

jfk 2 Ir W xk � L … Ugj � ıg

� fr 2 N W 1
k˛r

jfk � kr W xk � L … Ugj � ı�

.1C �/
g 2 I :

This proves the result.

Remark 3. The converse of this result is true for ˛ D 1 (see Theorem 1 [27]).
However for ˛ < 1 it is not clear and we leave it as an open problem.

For the next result we assume that the lacunary sequence � satisfies the condition
that for any set C 2 F.I /,

Sfn W kr�1 < n < kr; r 2 Cg 2 F.I /.

Theorem 4. For a lacunary sequence � satisfying the above condition, I -lacunary
statistical convergence of order ˛ implies I -statistical convergence of order ˛,

0 < ˛ � 1, that is, S� .I /˛.X/ 	 S.I /˛.X/ if sup
r

r�1X
iD0

h˛iC1
.kr�1/˛

D B.say/ < 1:

Proof. Suppose that xk ! L.S� .I /˛.X//. Take any neighborhood U of 0. For
ı; ı1 > 0 define the sets

C D fr 2 N W 1

hr
˛ jfk 2 Ir W xk � L … Ugj < ıg

and

T D fn 2 N W 1
n˛

jfk � n W xk � L … Ugj < ı1g:
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It is obvious from our assumption that C 2 F.I /, the filter associated with the
ideal I . Further observe that

Aj D 1

hj
˛ jfk 2 Ij W xk � L … Ugj < ı

for all j 2 C. Let n 2 N be such that kr�1 < n < kr for some r 2 C. Now

1

n˛
jfk � n W xk � L … Ugj � 1

k˛r�1
jfk � kr W xk � L … Ugj

D 1

k˛r�1
jfk 2 I1 W xk � L … Ugj C � � � C 1

k˛r�1
jfk 2 Ir W xk � L … Ugj

D k˛1
k˛r�1

1

h˛1
jfk 2 I1 W xk � L … Ugj C .k2 � k1/˛

k˛r�1
1

h˛2
jfk 2 I2 W xk � L … Ugj C � � � C

C .kr � kr�1/˛

k˛r�1
1

h˛r
jfk 2 Ir W xk � L … Ugj

D k˛1
k˛r�1

A1 C .k2 � k1/˛

k˛r�1
A2 C � � � C .kr � kr�1/˛

k˛r�1
Ar

� sup
j2C

Aj:sup
r

r�1X
iD0

.kiC1 � ki/
˛

k˛r�1
< Bı:

Choosing ı1 D ı
B and in view of the fact that

Sfn W kr�1 < n < kr; r 2 Cg 	 T
where C 2 F.I / it follows from our assumption on � that the set T also belongs to
F.I / and this completes the proof of the theorem.

Corollary 2. Let � D f.kr/g be a lacunary sequence, then S.I /˛.X/ D S�
.I /˛.X/ iff

1 < lim inf
r

qr � lim sup
r

qr < 1.
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8. P. Das and E. Savaş, On I�-statistical convergence in locally solid Riesz spaces, Math. Slovaca
(Preprint)

9. H. Fast, Sur la convergence statistique, Colloq Math. 2, 241–244 (1951)
10. J. A. Fridy, On ststistical convergence, Analysis. 5, 301–313 (1985)
11. J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160, 43–51 (1993)
12. A. D. Gadjiev and C. Orhan, some approximation theorems via statistical convergence, Rocky

Mountain J. Math. 32(1), 508–520 (2002)
13. P. Kostyrko, T. Šalát, W.Wilczynki, I -convergence, Real Anal. Exchange. 26 (2), 669–685

(2000/2001)
14. P. Kostyrko, M. Macaj, T. Šalát, and M. Sleziak, I -convergence and extremal I -limit points,

Math. Slovaca. 55, 443–464 (2005)
15. B.K. Lahiri and Pratulananda Das, On I and I� convergence of nets, Real Anal.Exchange,

33(2), 431–442 (2007–2008)
16. I. J Maddox, Statistical convergence in locally convex spaces, Math Proc. Camb. Phil. Soc.

104, 141–145 (1988)
17. G. D. Maio and L. D. R. Kocinac, Statistical convergence in topology, Topology Appl. 156,

28–45 (2008)
18. M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the

intuitionistic fuzzy normed space, Journal of Computational and Applied Mathematics. 233(2),
142–149 (2009)

19. T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca. 30, 139–150
(1980)
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Periodic Solutions of Cohen-Grossberg type
model of Neural Networks with Delay
and Impulses

Zehour Nedjraoui Benbouziane and Nadira Boukli-Hacene

Abstract An iterative method and some analysis techniques are applied to study the
existence of periodic solutions of Cohen-Grossberg type model of neural networks
with delay and impulses. Our result extends those existing ones.

Keywords Cohen-Grossberg type neural networks (CGNN) • Periodic solution •
Impulses • upper and lower solutions

1 Introduction

We consider the differential system from CGNN model

8̂
ˆ̂<
ˆ̂̂:

dxi

dt
D � di

�
xi.t/

� h
ai xi.t/�

mX
j D 1

bij fj
�
xi.t/

��
mX

j D 1

cij fj
�
xj.t � �ij/

�C Ji.t/
i

t > t0; t ¤ tk

� xi.tk/ D xi.t
C
k /� xi.t�k / D � �ik

�
xi.tk/

�I i D 1; � � � ;m ; k 2 N
�

(1)

where m � 2 is the number of neurons in the networks; �xi.tk/ are the impulses at
moments tk and t1 < t2 < � � � is a strictly increasing sequence such that tk ! C1
when k ! C1; xi.t/ denote the potential (or voltage ) of cell i at time t; di.t/
represents an amplification function; ai.t/ is the rate with which the unit self-
regulates or rests its potential when isolated from others and inputs; bij.t/; cij.t/
denote the strengths of connectivity between cell i and j time t, respectively. The
activation function fj.�/ shows how the i neuron reacts to the inputs time delay
�ij is nonnegative constant, which corresponds to the finite speed of the axonal
signal transmission; Ji.t/ is the external bias of cell i at time t. The system (1) is
supplemented with initial values given by:

xi.s/ D 'i.s/ s 2 Œ��; 0� (2)

Z.N. Benbouziane (�) • N. Boukli-Hacene
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� D maxf�ij 1 � i; j � mg
'i 2 C.Œ��; 0�;R/ i D 1; � � � ;m:
In this communication, we consider the system (1), (2) and apply a different

method from the ones in the literature; our method is based on upper and lower
solutions and an iterative technique; our assumptions on the activation function and
ai.t/; bij.t/; cij.t/; Ji.t/ are less restrictive, we note that we don’t need the periodicity
for all the functions.

2 Notations and Definitions

We suppose that there exists T > 0 and q 2 N
� W tkCqDtk C T 8kD1; 2; � � � Set

that :

• Ai
�
xi.t/

� D di
�
xi.t/

� h
ai xi.t/ � Pm

j D 1 bij.t/ fj
�
xj.t/

� C Pm
j D 1 cij fj�

xj.t � �ij/
� � Ji.t/

i

• D D ft1; � � � ; tqg and the Banach space PCD

�
Œ��;T�

�
of piece-wise continuous

functions on Œ��;T�
And we study the auxiliary system

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

dxi

dt
D �Ai

�
xi.t/

�
t ¤ tk; t 2�0;T�

� xi.tk/ D � �ik
�
xi.tk/

�I k D 1; 2; � � � ; q

xi.s/ D 'i.s/ s 2 Œ��; 0�; xi.0/ D xi.T/

(3)

The lower solution of CGNN model satisfies differential system
8̂̂
ˆ̂̂̂<
ˆ̂̂̂
ˆ̂:

d˛i

dt
� �Ai

�
˛i.t/

�
t ¤ tk; t 2�0;T�

� ˛i.tk/ � � �ik
�
˛i.tk/

�I k D 1; 2; � � � ; q

˛i.s/ � 'i.s/ s 2 Œ��; 0�; ˛i.0/ D ˛i.T/

The upper solution ˇi is defined by:
8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

dˇi

dt
� �Ai

�
ˇi.t/

�
t ¤ tk; t 2�0;T�

� ˇi.tk/ � � �ik
�
ˇi.tk/

�I k D 1; 2; � � � ; q

ˇi.s/ � 'i.s/ s 2 Œ��; 0�; ˇi.0/ D ˇi.T/
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Proposition 1. If x D .xi/iD1;��� ;m; is a solution for the system (3), then the piece-
wise continuous functions defined on Œ��;C1Œ by :

Qx.t/ D

8̂
ˆ̂<
ˆ̂̂:

X
n � 0

�ŒnT;.nC1/T� x.t � nT/ if t > 0

'.t/ if t 2 Œ��; 0�
where

�.t/ D
8<
:
1 if t 2 ŒnT; .n C 1/T�

0 if not:

is a periodic solution for the system (1), (2).

3 The Main Result

Through this paper we assume that:

• .H1/ ai; bij; cij 2 C.R;RC/; di; Ji 2 C.R;R/ 8 i ; j D 1; � � � ;m:
• .H2/ di.�/ Ji.�/ is decreasing 8 i D 1; � � � ;m:
• .H3/ 8u1; u2; v1; v2 2 R; 9lij > 0 W di.u1/fj.v1/ � di.u2/fj.v2/ � lij.u1 �

u2/.v1 � v2/ 8 i ; j D 1; � � � ;m:
• .H4/ �ik.u/��ik.v/ � ıik.u�v/ with .1�ıik/ > 0I i D 1; � � � ;mI k D 1; � � � ; q:
• .H5/ 8u; v 2 R; u � v; di.u/u � di.v/v � v � u:

Theorem 1. Let .˛i/iD1;��� ;m; .ˇi/iD1;��� ;m be the lower and the upper solutions
of the system (3), such that ˛i � ˇi; i D 1; � � � ;m: Under conditions (H1)–(H5)
the system (3) admits at last one solution x D .xi/iD1;��� ;m; such that : ˛i � xi �
ˇi; i D 1; � � � ;m:
Proof. The proof is based on an iterative method and Ascoli-Arzela Theorem. We
construct a recurrent suite of functions .yn;i/i in PCD.I/ such that y0;i D ˛i and
verifies the system:

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

y
0

n;i.t/ D Ai
�
yn�1;i.t/

�
t ¤ tk; t 2�0;T�

yn;i.t
C
k / D yn�1;i.t�k / � �ik

�
yn�1.tk/

�
k D 1; � � � ; q:

yn;i.0/ D yn�1;i.T/ ; yn;i.T/ D yn�1;i.0/:

We show that there exists a subsequence which converges to the solution of the
system (3).



Some Fixed Point Theorems
for Orbitally-.p; q/-Quasi-contraction Mappings

Wajdi Chaker, Abdelaziz Ghribi, Aref Jeribi, and Bilel Krichen

Abstract In this paper, we provide some existence and uniqueness results for a
.p; q/-quasi-contraction mapping acting on an orbitally-complete cone metric space.
These results generalize several fixed point theorems, in particular those due to Ilić
and Rakočević’s for quasi-contraction mappings (Ilić and Rakočević, Appl Math
Lett 22(5):728–731, 2009), convex contraction mapping, and two-sided convex
contraction of order 2.

1 Introduction

The Banach contraction principle is the simplest and one of the most versatile
elementary results in fixed point theory [3, 11]. It was introduced by Banach in
[2] and remained a fundamental tool in nonlinear analysis. Especially for nonlinear
mappings, this principle has incited several authors to extend it. At this level, we
can mention the contraction type of Kannan [14], Chatterjea [5], Zamfirescu [19],
Reich [16], and Ćirić [6] who gave one of the most general contraction conditions
called Quasi-contraction.
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Inspired by the paper of Huang and Zhang [8], Ilić and Rakočević [9] have
extended the concept of quasi-contraction mappings to the cone metric spaces and
have also generalized Theorem 1 in [8] to quasi-contraction mappings in complete
cone metric spaces.

Recently, many authors have studied some variants of contraction conditions and
proved some fixed point theorems in cone metric space whether the underlying cone
is normal or not normal. We mention for examples [4, 12, 13, 15, 17, 18, 20].

This paper is organized as follows. In Section 2, we give some definitions and
preliminary results needed in the sequel. In Section 3, we extend the concept of
.p; q/-quasi-contraction mappings [7] in cone metric space. This mapping type
extends the Ilić and Rakočević’s quasi-contraction mappings, convex contraction
mappings of order n (see, for instance, [1, 10]) and the two-sided convex contraction
mappings [10]. The main result of this section is that every continuous .p; q/-
quasi-contraction mapping in complete cone metric space has a unique fixed point
and the Piccard iteration converges to this point. Moreover, we obtain fixed point
theorems for certain classes of not continuous mappings which generalize many
known results.

2 Preliminaries

Let E be a real Banach space. A nonempty subset P of E is called a cone if, and only
if, we have

(i) P is closed and P ¤ f0g.
(ii) For every positive real a, aP 	 P.

(iii) P C P 	 P and P \ .�P/ D f0g.

Given a cone P 	 E, we can define a partial ordering 4 on E with respect to P
by x 4 y if, and only if, y � x 2 P. We will indicate by x � y that x 4 y but x ¤ y,
and by x � y that y � x 2 intP, where intP denotes the interior of P. The cone P is
called normal, if there is a number K > 0 such that, for all x; y 2 E, we have

0 4 x 4 y implies kxk 4 K kyk : (1)

The least positive number satisfying the above inequality is called the normal
constant of P. In [8], Huang and Zhang introduce the notion of cone metric space
which generalizes the metric space.

Definition 1 ([8]). Let P be a cone in a Banach space such that intP ¤ ¿ and 4
is a partial ordering in E with respect to P. A cone metric on a nonempty set X is a
function d W X 
 X �! E such that, for all x; y; z 2 X, we have

(a) x D y if, and only if, d.x; y/ D 0,
(b) 0 4 d.x; y/ D d.y; x/,
(c) d.x; y/ 4 d.x; z/C d.z; y/.
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A cone metric space is a pair .X; d/ such that X is a nonempty set and d is a cone
metric on X. We recall some definitions:

Definition 2 ([8]). Let .X; d/ be a cone metric space. Let fxng be a sequence in X.
Then,

(i) fxng converges to x 2 X if, for every c 2 E with 0 � c, there exists a natural
number N such that, for all n � N, we have d.xn; x/ � c. We denote this by
xn ! x.n ! 1/ or lim

n!1 xn D x.

(ii) fxng is a Cauchy sequence if, for every c 2 E with 0 � c, there exists a natural
number N such that, for all n;m � N, we have d.xn; xm/ � c.

(iii) .X; d/ is a complete cone metric space, if every Cauchy sequence is convergent.

In the case where P is a normal cone, we have the following lemmas.

Lemma 1 ([8]). Let .X; d/ be a cone metric space, let P be a normal cone with a
normal constant K, and let fxng be a sequence in X.

(i) If the limit of fxng exists, then it is unique.
(ii) Every convergent sequence in X is a Cauchy sequence.

(iii) fxng is a Cauchy sequence if, and only if, d.xn; xm/ ! 0 .n;m ! 1/.

Lemma 2 ([8]). Let .X; d/ be a cone metric space and let P be a normal cone with
a normal constant K. If fxng and fyng are two sequences in X such that xn ! x and
yn ! y, then

d.xn; yn/ ! d.x; y/ .n ! 1/: (2)

3 Main results

In the sequel, we suppose that E is a Banach space, P is a normal cone in E with
intP ¤ ¿, K is the normal constant of P, and 4 is a partial ordering in E with
respect to P. We generalize the .p; q/-quasi-contraction mapping on a cone metric
space as follows. Such a mapping is a generalization of Ilić and Rakočević’s quasi-
contraction mapping on a cone metric space [9].

Definition 3. Let .X; d/ be a cone metric space and let p; q be two natural numbers
such that 0 < p � q. The mapping T W X �! X is said a .p; q/-quasi-contraction, if
there exists a number c 2 Œ0; 1/ such that, for every x; y 2 X, there is u 2 Cp;q.x; y/,
such that

d.Tpx;Tqy/ 4 c:u; (3)

where Cp;q.x; y/ D fd.Trx;Tsy/; d.Trx;Tr0

x/; d.Tsy;Ts0

y/ W 0 � r; r0 � p and
0 � s; s0 � qg.
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Let n 2 N, x 2 X and O.x W n/ D fx;Tx;T2x; : : : ;Tnxg, the set O.x W 1/ D
fx;Tx;T2x; : : :g is called the orbit of T at x. The partial cone metric space .X; d/ is
said to be T-orbitally complete, if every Cauchy sequence contained in an orbit of
T converges in X. It is obvious that each complete cone metric space is T-orbitally
complete, but the converse does not hold [Example 3.1, [15]].

Let .X; d/ be a cone metric space. The mapping T W X �! X is called orbitally
.p; q/-quasi-contraction if it is .p; q/-quasi-contraction on any orbit of X.

Example 1. E D R
2,

P D f.x; y/ 2 E W x; y � 0g;

X D R and d W X 
 X ! E is defined by

d.x; y/ D .jy � xj; ˛jy � xj/;

where ˛ � 0 is a constant. .X; d/ is a cone metric space.

The mapping T , which is defined in the cone metric space .X; d/ by Tx D x, is
an orbitally .p; q/-quasi-contraction, but it is not a .p; q/-quasi-contraction.

Let �.x; p; n/ D fd.a; b/ W a; b 2 fTix; p � i � ngg. For more simplicity, we
denote �.x; n/ D �.x; 0; n/ and �.x W 1/ D fd.a; b/ W a; b 2 O.x W 1/g. For
F 	 E, we define ı.F/ D supfkxk ; x 2 Fg. We will need the following result.

Lemma 3. Let .X; d/ be a cone metric space. Let T W X �! X be an orbitally
.p; q/-quasi-contraction mapping. Then, �.x W 1/ is bounded.

Proof. Let x 2 X. If Tx D x, it is obvious that �.x W 1/ is bounded. We suppose
that Tx ¤ x, and let n0 2 N such that maxfcn0K; cn0K2g < 1 and Tx ¤ x. Let’s
choose i; j; n 2 N such that n0:q � i < j � n. Since T is a .p; q/-quasi-contraction,
we deduce that

d.Tix;Tjx/ 4 c:u1;

where u1 2 �.x; i � q; n/. By using the same argument, we infer that there exists
u2 2 �.x; i � 2q; n/, such that u1 4 c:u2. Hence,

d.Tix;Tjx/ 4 c2:u2:

After n0 iterations, we conclude that there exists un0 2 �.x; n/, such that

d.Tix;Tjx/ 4 cn0 :un0 : (4)

Since P is normal and cn0K < 1, we have

��d.Tix;Tjx/
�� < ı.�.x; n//: (5)
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We conclude that

ı.�.x; n// D maxf��d.Tix;Tlx/
�� ; ��d.Tix;Tjx/

�� W 0 � i; j < n0:q � l � ng: (6)

In the first case, we suppose that ı.�.x; n// D ��d.Tix;Tlx/
�� for some 0 � i <

n0:q � l � n. Since d is a cone metric, we deduce that

d.Tix;Tlx/ 4 d.Tix;Tn0:qx/C d.Tn0:qx;Tlx//;

which implies that
��d.Tix;Tlx/

�� � K
��d.Tix;Tn0:qx/

��C cn0K2ı.�.x; n//:

Hence,

ı.�.x; n// � K

1 � cn0K2
:ı.�.x; n0:q//: (7)

In the second case, we assume that ı.�.x; n// D ��d.Tix;Tjx/
�� for some1 � i;

j � n0. Since d.Tix;Tjx/ 2 �.x; n0/, we have

ı.�.x; n// � ı.�.x; n0:q//: (8)

The Inequalities (7) and (8) imply

ı.�.x; n// � maxf1; K

1 � cn0K
gı.�.x; n0:q//: (9)

Since ı.�.x;1// D supfı.�.x; n// W n 2 Ng, we conclude that �.x;1/ is
bounded.

Theorem 1. Let .X; d/ be a cone metric space and let T W X �! X be a continuous
and a T-orbitally .p; q/-quasi-contraction mapping. If X is T-orbitally complete,
then the sequence fTnxg converges to a fixed point, for every x 2 X. Further, if T is
a .p; q/-quasi-contraction, then for any x 2 X, the fixed point is unique.

Proof. If Tx D x, the result holds. In the sequel, we assume that Tx ¤ x, and we
prove that fTnxg is a Cauchy sequence.

Let � > 0 and let’s choose N so that K:cN :ı.�.x;1// < �. For every two natural
numbers, namely n and m, such that m � n � N:q, there exists u1 2 �fx; n � q;mg,
such that

d.Tnx;Tmx/ 4 c:u1:

Since T represents a T-orbitally .p; q/-quasi-contraction mapping, every v1 2
�.x; n � q;m/ satisfies v1 4 cv2 where v2 2 �.x; n � 2q;m/, and after N steps,
we deduce that there exists uN 2 �.x;m/, such that

d.Tnx;Tmx/ 4 cN :uN :



158 W. Chaker et al.

By applying Lemma 3, we get

kd.Tnx;Tmx/k � k:cNı.�.x W 1// < �;

and fTnxg is a Cauchy sequence in .X; d/. Since (X,d) is orbitally complete, there
exists y 2 X, such that fTnxg converges to y. By using the continuity of T , we
conclude that y is a fixed point of T .

Further, if T is a .p; q/-quasi-contraction on X, suppose that there exists another
z 2 X such that Tz D z, then we get

d.z; y/ D d.Tpz;Tqy/ 4 c:d.z; y/: (10)

Since c < 1, we deduce that d.z; y/ D 0. Hence, the fixed point of T is unique.

As a corollary, when X is a metric space, we obtain Fisher’s main result
[Theorem 2, [7]].

Corollary 1. Let T be a .p; q/-quasi-contraction on the complete metric space X
into itself, and let T be continuous. Then, T has a unique fixed point in X.

In Theorem 2, we didn’t need the continuity of T when p D 1. In this case, we
mention the following theorem.

Theorem 2. Let .X; d/ be a cone metric space and let T W X �! X be a continuous
and T-orbitally .1; q/-quasi-contraction mapping. If X is T-orbitally complete, then
the sequence fTnxg converges to a fixed point, for every x 2 X. Further, if T is
a .1; q/-quasi-contraction, then for any x 2 X, the fixed point is unique and T is
continuous in such a point.

Proof. According to Theorem 2, the sequence fTnxg converges to an element y 2 X.
Let n 2 N be big enough. Then, we have

d.y;Ty/ 4 d.y;Tny/C d.Tny;Ty/

4 d.y;Tny/C c:u;

where u 2 fd.Tn�iy;Tn�jy/; d.Ty;Tn�jy/; d.y;Tn�jy/; d.y;Ty/ W 0 � i; j � qg. By
using the fact that P is a normal cone with a constant K, we deduce that

kd.y;Ty/k � K: kd.y;Tny/k C K:c: kuk : (11)

Since the sequence fTnxg converges to y, we infer that d.y;Ty/ D 0. Hence, y is
a fixed point of T . Further, if T is a .1; q/-quasi-contraction, then the uniqueness
of the fixed point is similar to that of Theorem 2. We will have to prove that T is
continuous in the fixed point y. For this purpose, let fyng be a sequence of points
in the cone metric space X which converges to y. Then there exists u 2 C1;q.yn; y/,
such that

d.Tyn; y/ D d.Tyn;T
qy/ 4 c:u

4 cŒd.yn; y/C d.y;Tyn/�:
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It follows that

d.Tyn; y/ 4 c

1 � c
d.yn; y/:

Hence,

kd.Tyn; y/k � cK

1 � c
kd.yn; y/k : (12)

We conclude that lim
n!1 kd.Tyn; y/k D 0, which completes the proof.

As a corollary, when p D q D 1, we get the main result of Ilić and Rakočević [9].

Corollary 2. Let .X; d/ be a complete cone metric space and let T W X �! X
satisfy the inequality

d.Tx;Ty/ 4 c:u (13)

for some u 2 fd.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.y;Tx/g. Then, T has a unique
fixed point in X, and for every x 2 X, the sequence fTnxg converges to this fixed
point.

When X is a metric space and p D 1, we obtain Theorem 3 in [7].

Corollary 3. Let T be a .1; q/-quasi-contraction on the complete metric space X
into itself. Then, T has a unique fixed point in X.

Remark 1. If P is minihedral, i.e. supfx; yg exists for all x; y 2 E, and p D q D 2,
then we obtain, as particular cases, the Istratescu’s fixed point theorem for convex
contraction mappings of order 2 [Theorem 1.2., [10]], the Istratescu’s fixed point
theorem for a two-sided convex contraction of order 2 [Theorem 2.3., [10]] in
complete metric spaces, and their generalizations to the cone metric spaces obtained
by Alghamdi et al. in [1].
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Third order rational ordinary differential
equations with integer indices of Fuchs

Yassine Adjabi and Arezki Kessi

Abstract A series of papers was devoted to the investigation of third order ordinary
differential equations of P-type. The interest in such problems is due to their
applications in physics, chemistry, etc.

In the year 2007, Conte et al. in the paper entitled “Painlevé structure of a multi-
ion electrodiffusion system” showed that the coupled nonlinear system descriptive
of multi-ion electrodiffusion of the first order corresponds to a nonlinear ordinary
differential equation of P-type (solutions of such equations have no movable critical
singular points). We understand that the solutions of this problem are not completely
known; a topic addressed in the present paper.

Some new third order rational ordinary differential equations with integer indices
of Fuchs as well as recent ones are found.

Keywords Nonlinear differential equation • Painlevé property • fixed singular
points • Painlevé test • Fuchs indices (resonances) • homographic transformations

Mathematics Subject Classification 34M55, 34A34, 34E20, 33E30

1 Introduction

The current interest in the “Painleve property (PP)” stems from the observation
by Ablowitz and Segur [1] that reductions of partial differential equations of
soliton type gave rise to ODEs whose movable singularities were only poles. The
Painleve property and test are concerned with the singularity structure of the general
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solution of a nonlinear differential equation, which can “spontaneously evolve”
with positions depending upon constants of integration and, therefore, upon initial
conditions. Such singularities are said to be movable. The Painlevé test has been a
very successful tool for isolating integrable differential equations (both ODEs and
PDEs). The test could be any algorithm designed to determine necessary conditions
for a differential equation to have the PP.

The undergone work is motivated by the recent appearance of Painlevé equations
type in the following coupled nonlinear system describing a multi-ion electrodiffu-
sion (see [5]) 8̂<

:̂
dni
dx D 
inip � ci; 
ini ¤ 0; i D 0; 1; : : : ;m;

dp
dx D

mP
iD1

ini;

(1)

where x is the coordinate normal to the planar boundaries, p is the electric field,
and nj is the number of ions. On the basis of the established connection between
solutions of the system (1) and solutions of nonlinear P-type equations, a particular
solution of the equation for the case m D 3 is given by

p2p000 D a1pp00p0 C a2p
03 C subdominant terms D 0: (2)

In section 5 of [5, page 6], the authors reported that the coupled system (1)
contains numerous other interesting questions. It should be noted that the details
of (1) and (2) were not given in [5]. For this reason, we study in this article the latter
equation.

Equation (2) is a differential equation of Chazy type [4]. This class has been
investigated in [2, 5, 10–12], but the results therein are insufficient.

The present paper deals with investigating the nonlinear third order rational dif-
ferential equations possessing the Painlevé property. This is achieved by considering
the differential equations of the form

y000 D a1
y00y0

y
C a2

y03

y2
C B .z; y/ y00 C C .z; y/

�
y0�2 C D .z; y/ y0 C E .z; y/ ; (3)

where B .z; y/ ; C .z; y/ ; D .z; y/, and E .z; y/ are rational functions of y with
coefficients analytic in z:

Using the small parameter method [9]; we find that if equation (3) belongs to the
Painlevé type, then

B .z; y/ D
1X

iD�1
biy

i; C .z; y/ D
0X

iD�2
ciy

i; D .z; y/ D
2X

iD�2
diy

i; E .z; y/ D
4X

iD�2
eiy

i;

(4)

where the coefficients bi; ci; di; and ei are analytic functions of z:
A number of papers, in particular [2, 5, 8, 11, 12] deal with movable singularities

of solutions of third order rational differential equations of the form (3) but
fails to provide complete classification. In contrast, a complete classification was
constructed for third order ordinary equations of polynomial class in [7]:
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As a continuation to [2], our main task is to find all the canonical (distinct)
reduced equations of the form (3) that have the Painlevé property and hence all full
equations that are built upon these reduced equations. The full equations necessarily
take the form (3) with (4) above. We are looking for such values of constants a1, a2
and the expressions bi, ci, di, and ei so that equation (3) passes the Conte-Fordy-
Pickering test.

Using the compatibility condition for the Painlevé type equations .see [6, 7]/,
several new third order ordinary differential equations (ODEs) were found.

2 Corresponding simplified equations

The method of small parameter [3, 8] plays an important role in Painlevé analysis.
It permits one to justify the Painlevé property by studying a simplified equation
obtained by a special procedure. For the simplified equation, the properties of
movable singularities of solutions can often be established directly (either by
integrating the simplified equation or by finding a family of solutions with a movable
singularity).

The simplified equation corresponding to (3) is easily determined by setting
.z 7! z0 C "z/, where " ¤ 0 is a parameter, then we put " D 0, if the equation (3) is
to be free of mobile critical points, it is necessary that y be uniform, so that it must
be given by an equation of the form

y000y2 D a1yy0y00 C a2y
03: (5)

By making the change of variable

y0 D vy; (6)

in the equation (5), the following equation is produced

v00 D .a1 � 3/ vv0 C .a1 C a2 � 1/ v3: (7)

Equation (7) is referred to in [3]. It is known that, for solutions of (5) to have only
single-valued nonstationary polar singularities, it is necessary and sufficient that all
nonstationary singularities of solutions of (7) are simple poles with integer residues.

The expansion of general solution for equation (7) in the formal Laurent series
takes the form

v D v0 .z � z0/
q C v1 .z � z0/

.qC1/ C v2 .z � z0/
.qC2/ C : : : ; (8)

with v0 nonzero and r is the leading power that needs to be found. When we
substitute this series into (7), we see that q D �1 and the residue v0 of any moving
pole must be an integer root of the equation

.a1 C a2 � 1/ v20 � .a1 � 3/ v0 � 2 D 0: (9)
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Moreover, the roots of the indicial equation corresponding to

.r C 1/
��r2 C ..a1 � 3/ v0 C 3/ r C 3 .a1 C a2 � 1/ v20 � 2 .a1 � 3/ v0 � 2� D 0

(10)
must be distinct integers.

Firstly, by taking into account these requirements, we find that the equation (5)
is with fixed critical points only if the couple .a1; a2/ takes one of the following
values

.a1; a2/ 2

8̂<
:̂

�
3 n�1

n ; � .n�1/.2n�1/
n2

�
;
�
3n�1

n ; � .n�1/.2nC1/
n2

�
;

�
3n�2

n ; �2 n�1
n

�
; .3; �2/ ;

�
3; �2 n2�1

n2

�
9>=
>; ; (11)

where n is an integer number different from 0.

Remark 1. In ref. [2], it was shown that the corresponding list of reduced equa-
tions (3) that associate the coefficients ak; k D 1; 2 in equation (11) with n is an
integer number different from 0 has passed the Painlevé test.

Secondly, two equations will be regarded as equivalent if they are related by a
gauge transformation of the form

v .z/ D � .z/V .t/C � .z/ ; t D ' .z/ ; (12)

we observe also that to obtain canonical forms for the Painlevé-type equations, it is
often most convenient to use a transformation (12), where �; � and ' are analytic
functions of the complex variables z, does not alter the form of equation (7) which
becomes

RV D AV PV C BV3 C C PV C EV2 C FV C G; (13)

According to [3]; the necessary condition for equation (13) satisfies the Painlevé
property

.A; B/ 2 f.�3; �1/; .�2; 0/; .�1; C1/; .0; 2/; .0; 0/g ;
we assume that this condition is satisfied; one has only to determine �; �; ' by

8̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:̂

'0A D .a1 � 3/ �;
'02B D .a1 C a2 � 1/ �2;
'0C D

�
.a1 � 3/� � 2�

0

�
� '00

'0

�
;

'02E D .a1 � 3/ �0 C 3 .a1 C a2 � 1/�;
'02F D .a1 � 3/

�
�0

�
�C �0

�
C 3 .a1 C a2 � 1/�2 � �00

�
;

�'02G D .a1 � 3/��0 C .a1 C a2 � 1/�3 � �00;

(14)

where C; E; F; and G are given by system (14).
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Consequently one can see that one of the roots of (9) may be taken equal to 1
.i.e., n D 1/, then it is necessary that the couple .a1; a2/ takes one of the following
values in order to obtain solutions of (5) with no movable critical points

.a1; a2/ 2 f.0; 0/; .1; 0/; .2; 0/; .3; 0/; .3; �2/g :
The Painleve analysis of third order polynomial equation (3) was carried out in

Chazy [4], Bureau [3], and Cosgrove [7] for a1 D 0 and a2 D 0.

3 Corresponding reduced equations

In this section, we need to find all reduced equations of the form (3) having the
Painlevé property.

Now consider the dominant behavior in the neighborhood of a critical point
z D z0;

y D y0 .z � z0/
q ; as z ! z0; q 2 Z; (15)

where q is the singularity order, and substitute equation (15) in equation (3). For
certain values of the exponent q, two or more terms may balance and the remainder
of the terms can be ignored as z ! z0: The terms which balance for each choice of
the exponent q are called the dominant terms.

In the following subsections, the reduced equations that retain only leading terms
as z ! z0 will be considered for q D �1;�2; �3 with distinct Fuchs indices or q is
negative integer.

3.1 Leading order q D �1

3.1.1 Determination of the values of b1; c0; d2 and e4

Here, we have used the result obtained in [2]. If b1; c0; d2, or e4 is nonzero, then
it may be possible to construct analogous solutions of (3) which feature a leading
term containing a pole of order q D �1; then the Painlevé "� test,

z ! z0 C "z; y ! "�1y; " ! 0;

reduces equation (3) to

y000 D a1
y00y0

y
C a2

y03

y2
C b1yy00 C c0

�
y0�2 C d2y

2y0 C e4y
4: (16)

The last equation is investigated in [8, 11] and [12], but the results obtained
are not complete. Here we investigated also the situation in which a1 D 3 and
a2 D 0 this case is not examined in [8, 11, 12]. For more details the reader is
referred to [2].
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Case 1. when a1 D 1 and a2 D 0

	
I W yy000 D y0y00I

y01 D arbitrary .r11; r12/ D .0; 2/ ;	
II W yy000 D y0y00 C y3y0I

y01 D �1; y02 D 1 .r11; r12/ D .2; 4/ ; .r21; r22/ D .2; 4/ :	
III W yy000 D y0y00 C y2y00 � 2

9
y3y0I

y01 D �3; y02 D �6 .r11; r12/ D .2;�3/ ; .r21; r22/ D .�2; 2/ :	
IV W yy000 D y0y00 C y2y00 C 2y3y0I

y01 D �1; y02 D 2 .r11; r12/ D .2; 3/ ; .r21; r22/ D .2; 6/ :8<
:

V W yy000 D y0y00 C y2y00 C 1
4
y3y0 � 1

8
y5I

y01 D 4; y02 D �4; y03 D �2; .r11; r12/ D .4; 6/ ;

.r21; r22/ D .�2; 4/ ; .r31; r32/ D .1; 3/ ;8<
:

VI W yy000 D y0y00 C y2y00 C 4y3y0 � 2y5I
y01 D �1; y02 D 1; y03 D �2; .r11; r12/ D .1; 4/ ;

.r21; r22/ D .3; 4/ ; .r31; r32/ D .�2; 6/ :

Case 2. when a1 D 2 and a2 D 0

	
VII W yy000 D 2y0y00I

y01 D arbitrary .r11; r12/ D .0; 3/ ;	
VIII W yy000 D 2y0y00 C y3y0I

y01 D �1; y02 D 1 .r11; r12/ D .1; 4/ ; .r21; r22/ D .1; 4/ :	
IX W yy000 D 2y0y00 C 2y2y00 � 2yy02I

y01 D �2 .r11; r12/ D .1; 2/ ;	
X W yy000 D 2y0y00 C y2y00 � yy02 C y3y0I

y01 D �1; y02 D 2 .r11; r12/ D .1; 3/ ; .r21; r22/ D .1; 6/ :8<
:

XI W yy000 D 2y0y00 C y2y00 � 3
2
yy02 C 2y3y0 � 1

2
y5I

y01 D �4; y02 D 1; y03 D �1; .r11; r12/ D .�5; 6/ ;
.r21; r22/ D .1; 5/ ; .r31; r32/ D .1; 3/ ;8̂

<
:̂

XII W yy000 D 2y0y00 C 2y5I
y01 D �1; y02 D �1CI

p
3

2
; y03 D �1�I

p
3

2
; .r11; r12/ D .2; 3/ ;

.r21; r22/ D .2; 3/ ; .r31; r32/ D .2; 3/ ;8<
:

XIII W yy000 D 2y0y00 C 2y2y00 � 3yy02 C 2y3y0 � y5I
y01 D �1; y02 D 1; y03 D �2; .r11; r12/ D .1; 2/ ;

.r21; r22/ D .1; 6/ ; .r31; r32/ D .�2; 3/ :

Case 3. when a1 D 3 and a2 D 0

	
XIV W yy000 D 3y0y00I

y01 D arb:; .r1; r2/ D .0; 4/,
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XV W yy000 D 3y0y00 C .2 � n/ y2y00 � 4yy02 C 2ny3y0I

y01 D �1; .r1; r2/ D .2; n/ ;

	
XVI W yy000 D 3y0y00 C .4 � n/ y2y00 � 2 .4 � n/ yyI

y01 D arb:; .r1; r2/ D .0; 4C .4 � n/ y01/;	
XVII W yy000 D 3y0y00 C .1 � n/ y2y00 � 2yy02 C ny3y0 C ny5I

y01 D �1, y02 D 2; .r11; r12/ D .3; n/ ; .r21; r22/ D .6;�2n/ ,
	

XVIII W yy000 D 3y0y00 C .3 � n/ y2y00 � 6yy02 C 3ny3y0 � ny5I
y01 D �1, y02 D �2; .r11; r12/ D .1; n/ ; .r21; r22/ D .�2; 2n/ ,

	
XIX W yy000 D 3y0y00 � ny2y00 C 2ny5I

y01 D �1 , y02 D 1; .r11; r12/ D .4; n/ ; .r21; r22/ D .4;�n/.

where n is an integer number :

Case 4. when a1 D 3 and a2 D �2
	

XIX W y2y000 D 3yy0y00 � 2y03I
XX W y2y000 D 3yy0y00 � 2y03 C y3y00:

3.1.2 Study of obtained equations

Now, we rewrite (16) as a system

8<
:

y0 D vy2;
v0 D ty;
tt�v D H.v/t C R .v/ ;

�� denotes d
dv

�
;

(17)

the last equation of the (17) is formally satisfied by the series

t D
C1P
jD0

Ejv
j; (18)

where Ej are constants .see [8]/.
From the first and second equation in (17) yields

y00y D 2y02 C ty4: (19)

According to [3], the first necessary condition for equation (17) satisfies the
Painlevé property. That is the right-hand side of (19), with respect to y0; is a
polynomial of the second degree, takes the form

y00y D .E2 C 2/ y02 C E1y
0y2 C E0y

4; (20)
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where E2; E1, and E0 are unknown coefficients that should be found. Substituting
(18) into the third equation of the (17) and solving the system of the linear algebraic
equations for coefficients E2; E1 and E0, we conclude that all the equations (16)
have the particular integrals with the Painlevé property in the form (20).

Case .a/ W Study of equations .I � VI/
� We can see that equations .I; II; III; IV/ can be presented in the form:

I W y00 D kyI
II W y00 D 1

2
y3 C kyI

III W y00 D yy0 � 1
9
y3 C kyI

IV W y00 D yy0 C y3 C ky;

after integration over z; where k is an arbitrary complex constant. According to [3];
all equations .I; II; III/ possess the Painlevé property, but .IV/ is an equation with
critical mobile points.

� On one hand, introducing the change of variable

y D ˛
w0

w
; with ˛ D �1; (21)

in .V;VI/ ; we obtain

V W w000 D kww0;

VI W w000 D kw2w0:

Therefore, equations .V;VI/ possess the Painlevé property .see [7]/.
On the other hand, the first integrals of the equations .V;VI/ are, respectively,

given by the following formulas:

V W
�

y00

y2
� y0

�2
D 1

4

�
y0 � 1

2
y2
�2 C k;

VI W
�

y00

y2
� y0

�2
D 4

�
y0 � 1

2
y2
�2 C k:

The corresponding full equations .V;VI/ are, respectively, determined in section 4.
Case .b/ W Study of equations .VII � XIII/
� The first integrals of the equations .VII;VIII/ are, respectively, given by the

following formulas:

VII W y00 D ky2; or yy00 D 3

2
y02 C kI

VIII W yy00 D 3
2
y02 C 1

4
y4 C k;

these equations possess the Painlevé property [3].
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� The stability conditions of the equations .IX;X/ are, respectively, given by the
formulas:

IX W Q.0/
2 � �4y.0/21 D 0I y.0/1 arbitrary.

X W Q.0/
3 � �16y.0/31 D 0I

in spite of this, the equations .IX; X/ admit the first integrals, which are, respec-
tively, given by the following formulas:

IX W y00 D yy0 C ky2I
X W y00 D yy0 C y3 C ky2:

and so none of them have the Painlevé property [3].
� The stability condition at Fuchs indice .r22 D 6/ of the equation .XI/ is given

by the formula:

XI W Q.6/
6 � � 25488135689221697295007

79330949271303634944000000

�
y.1/�5

�6 �
y.0/6

�6 D 0;

where the coefficients y.1/�5; y.1/�1 and y.0/6 are arbitrary, these being obtained by using
the perturbative Painlevé test (the CFP test) of Conte, Fordy, and Pikering to order
"6 .see [6]/ ; which is a strong indication that equation .XI/ does not possess the
Painlevé property, however, the corresponding particular integral is given by

y00y D 3
2
y02 C 1

2
y4; (22)

and this latter equation is easily integrated, which is solvable by means of elliptic
functions.

� On one hand, the general solution of equation .XII/ possesses three families
of simple poles, one can see that the necessary condition for the absence of movable
critical singularities of the logarithmic type is satisfied.

On the other hand, be integrated by a process which may be considered as a
method of “ variation of parameters” [3]. As this method will be used often later
on, we shall explain its particulars on equation .XII/. The general solution of the
equation

yy000 D 2y0y00;

is

y00 D wy2;

where w is an arbitrary constant. Suppose now that w .z/ is a function of z and

y00 D 2wy2;
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we obtain

w0 D y2:

By direct calculation we obtain

w00 D 2y0y and y0 D w2 C k;

where k is an arbitrary complex constant.
Indeed, the equation .XII/ is equivalent to the differential system	

y0 D w2 C k;
w0 D y2:

By setting

y D �ˇu � v and w D ˇu � v; where ˇ2 D �3;
one obtains

(
u0 D 2uv � k1;where k1 D k

2ˇ

v0 D �ˇ2u2 � v2 � ˇk1;

on eliminating v between these relations, one finds

uu00 D 1
2
u02 � 2ˇ2u4 � 2ˇk1u

2 � k21
2
; (23)

equation (23) is solvable by means of the elliptic functions, and equation .XII/ has
no moving critical points.

Furthermore, the differential equation .XII/ has the first integral in the form:

y002 � 4y0y4 C ky4 D 0;

this latter possess the Painlevé property (see Cosgrove and Scoufis). Hence the
reduced form of equation .XII/ has the Painlevé property.

� The insertion of the well-known Riccati transformation (21) into .XIII/
transforms the equation into the form

w000 D kw02 ; (24)

where k is an arbitrary complex constant. Equation .XIII/ has no moving critical
points because the corresponding equation (24) has the Painlevé property.

Case .c/ W Study of equation .XIV � XIX/
� The differential equation .XIV/ has the first integral in the form:

XIV W y00 D ky3; or yy00 D 2y02 C k;

where k is the constant of integration. Hence equation .XIV/ has the Painlevé
property.
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� It is necessary that n D 1; in order that the equations of type (20) will be with
fixed critical points. In this case the stability condition at Fuchs indice .r22 D 3/ of
the equation .XVnD1/ is given by the formula:

XVnD1 W Q.0/
3 � 128y.0/31 D 0;

thus the equation exhibits logarithmic branching, which is an equation with critical
mobile points.

For example, the stability conditions of the equations
�
XVn¤1

�
are given by the

formulas:

n D C4 W Q.4/
�8 � y.1/4�8 y.0/46 D 0;

n D �4 W Q.1/
�1 � 132y.1/�4y

.0/
3 D 0;

n D �6 W Q.2/
�1 � 50

7
y.1/�1y

.1/
�6y

.0/2
3 D 0:

thus the equation exhibits logarithmic branching, which is an equation with critical
mobile points.

� It is necessary that n D 2; in order that the equations of type (20) will be
with fixed critical points. In this case the equation .XVI/ admits double indices,
consequently does not have the Painlevé property. In particular for n D 4; the
equation .XVInD4/ has the first integral

XVInD4 W yy00 D 2y02 � 2y2y0 C 2y4 C k: (25)

For example, the stability conditions of the equations
�
XVIn¤4

�
are given by the

formulas, for example :

n D C1 W Q.0/
2 � �8y.0/21 D 0;

n D �2 W Q.2/
�2 � �48y.1/2�2 y.0/2 D 0;

n D �3 W Q.1/
�1 � 42y.1/�3y

.0/
2 D 0:

thus the equation exhibits logarithmic branching, which is an equation with critical
mobile points.

� When n D 3, in order that the equation of type (20) will be with fixed critical
points. In this case, the stability condition at Fuchs indice .r22 D 6/ of the equation
.XVIInD3/ is given by the following formula:

XVIInD3 W Q.3/
6 � 1248

5
y.1/3�2 y.0/26 D 0;

consequently, .XVII/ is an equation with critical mobile points.
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When n D �1; the equation .XVIInD�1/ admits double indices and so does not
have the Painlevé property.

The stability conditions of the equations .XVIInD�2;�3;�4;�5;�6;�9/ are given by
the formulas:

XVIInD�2;�3;�4;�5;�6;�9 W

8̂<
:̂

Q.1/
�1 � terms proportional to y.0/.�1�n/

1 y.1/n D 0I
Q.1/
1 � terms proportional to y.0/.1�n/

1 y.1/n D 0I
Q.2/

n � terms proportional to y.0/.�n/
1 y.1/2n D 0:

On the other hand, by making the change of variable (21), we obtain the third-
order equation,

w000 D kw03wn�2: (26)

If we take n D 2 in equation (26), we obtain the second-order equation in the
form ı00 D kı3. Here ı D w0 is a Jacobian elliptic function with simple poles.
Hence a series expansion of w around such a singularity z0; say, must start with
log.z � z0/: The remainder of the series is a power series expansion in powers of
.z�z0/: In such cases, the Painlevé property holds for the new variables ı: However,
when n D 2; the stability condition of equation .XVIInD2/ is given by the following
formula:

XVIInD2 W Q.3/
4 � 756y.0/24 y.1/�2y

.1/2
�1 � 180y.0/24 y.1/2�2 D 0;

implying the existence of a movable logarithmic branch point.
� When n is in f�1; �4; 4g ; the equation .XVIII/ admits the double indices and

so it is with moving critical points.
The stability conditions of the equation .XVIIInD˙1;˙2;˙3;˙5;˙6;˙7; : : :/ in which

we fixed the parameter n ¤ 0 are given by the formulas:

XVIIInD˙1 W Q.0/
4 � ˙864y.0/41 D 0I

XVIIInD˙2 W Q.0/
4 � ˙36y.0/22 D 0I

XVIIInD˙3 W Q.3/
�1 � � 66675

26
y.1/�3y

.0/2
4 D 0I

XVIIInD˙5 W Q.1/
�1 � 300y.0/4 y.1/�5 D 0I

XVIIInD˙6 W Q.6/
4 � Coeff :y.0/104 y.1/6�6 D 0I

XVIIInD˙7 W Q.3/
�1 � ˙ 3509611875

8704
y.0/54 y.1/3�7 D 0;

XVIIInD˙8 W Q.4/
4 � Coeff :y.0/94 y.1/4�8 D 0;

where the coefficients y.1/n ; y.1/�1, and y.0/4 are arbitrary, implying the existence of
a movable logarithmic branch point, we think that the equation of type .XVIII/
does not have the Painlevé property .see [6]/, however, the corresponding particular
integral is such that

y00 D 2y3:
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Case .d/ W Study of equation .XIX; XX/
The first integrals of the equations .XIX; XX/ are, respectively, given by the

following formulas:

XIX W yy00 D y02 C ky2I
XX W yy00 D y02 C y2y0 C ky2;

these equations possess the Painlevé property .see Ref:[3]/ :

3.2 Leading order q D �2

If d1 ¤ 0; then it may be possible to construct analogous solutions of (16) which
feature a leading term containing a pole of order q D �2; then the Painlevé "� test,

z D z0 ! "z; y ! "�2y; " ! 0;

will produce a nontrivial reduced equation, which admits the particular integral

y D y0 .z � z0/
q :

The dominant terms arise from y000y2, y00y0y; y03 and y3y0. Then q D �2 and the
corresponding equation is

y000y2 D a1y
00y0y C a2y

03 C d1y
3y0: (27)

If we substitute

y Š y0 .z � z0/
.�2/ C : : :C Ǒ .z � z0/

.r�2/

into (27), we obtain the following equations for the Fuchs indices r and y0

.r C 1/
�
r2 C .2a1 � 10/ r � 12a1 � 8a2 C 24

�
.3a1 C 2a2 � 6/2 D 0; (28)

and

d1y0 C 6a1 C 4a2 � 12 D 0; (29)

equation (29) implies that there is only one branch.
Now, we determine y0 and d1, if y0 ¤ 0, then equations (28) and (29) imply that

the values of Fuchs indices are:
For a1 D 0; 1; 3; and a2 D 0

y0 D � 6.a1�2/
d1

; r1;2 D .6; 4 � 2a1/ : (30)
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If a1 D 1 and a2 D 0; the Fuchs indices are as follows: r1 D 6 and r2 D 2;

equation (27) has the first integral in the form:

y00 D y2 C ky or y00 D y02

y
C 1

3
y2 C k

y
:

If a1 D 2 and a2 D 0; the Fuchs indices are as follows: r1 D 6 and r2 D 0; but
y0 cannot equal 0. Equation (27) has the first integral in the form:

y00 D 3
2

y02

y
C 1

3
y3 C k:

If a1 D 3 and a2 D 0; the Fuchs indices are as follows: r1 D 6 and r2 D �2;
equation (27) has the first integral in the form :

y00 D 2
y02

y
C 1

3
y2 C k

y
;

equation (27) does not pass the Painlevé test, since the compatibility condition at
.r2 D �2/ is not satisfied identically, i.e.,

Q.4/
�2 D � 104

9

�
y.1/�2

�4 �
y.0/6

�
D 0 and Q.4/

�1 D � 322
9

�
y.1/�2

�3 �
y.1/�1

� �
y.0/6

�
D 0;

where y.0/6 ; y.1/�1, and y.1/�2 are arbitrary constants.
For a1 D 3 and a2 D �2; equation (27) admits the double indices .r1;2 D .2; 2//

and so does not have the Painlevé property.

3.3 Leading order q D �3

In particular if e2 ¤ 0 and q D �3; the Painlevé "� test,

z ! z0 C "z; y ! "�3y; " ! 0;

gives, in the limit " �! 0; the reduced equation

y000y2 D a1y
00y0y C a2y

03 C e2y
4: (31)

If we substitute

y Š y0 .z � z0/
.�3/ C : : :C Ǒ .z � z0/

.r�3/ ;

into (31), we obtain the following equations for the Fuchs indices r and y0

.r C 1/
�
r2 C .3a1 � 13/ r � 36a1 � 27a2 C 60

� D 0; (32)
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and

e2y0 � 36a1 � 27a2 C 60 D 0; (33)

equation (33) implies that there is only one branch.
Now, we determine y0 and e2, if y0 ¤ 0, then the only values of a1 that satisfy (32)

and (33) are a1 D 1; then the corresponding equation has the form

(
y000y D y00y0 C e2y3;

y0 D �24
e2
; resonances: .r1; r2/ D .4; 6/ :

(34)

By setting y D w0 and e2 D 1 from (34), we obtain the following equation

w0 �w00 D 1
2
w2 C k1w C k2

�
; (35)

The differential equation (35) has the first integral in the form:

w02 D 1

3
w3 C k1w

2 C 2k2w C 2k3; (36)

where k1; k2, and k3 are arbitrary constants, equation (36) is solvable by means of
the elliptic functions and equation (34) has no moving critical points.

Furthermore, the differential equation (34) has the first integral in the form:

y002 C 4y0y2 C ky2 D 0; e2 D 2;

this latter possess the Painlevé property (see Cosgrove and Scoufis):

3.4 Leading order q W negative integer .q � �4/

If b1 D c0 D d1 D d2 D e2 D e4, then the reduced equation can be written

y2y000 D a1yy0y00 C a2y
03 C b�1y2y00 C c�2yy02 C d�1y2y0 C e0y

3: (37)

Putting y0 D vy in (37), we obtain for v the differential equation

v00 D .a1 � 3/ vv0C.a1 C a2 � 1/ v3C.b�1 C c�2/ v2Cb�1v0Cd�1vCe0: (38)

The equation (37) occupies a position in these studies analogous to the occupied
by (38) in the study of the second order case (see [3]).



176 Y. Adjabi and A. Kessi

Example 1. We consider the equation

8̂̂
ˆ̂<
ˆ̂̂̂
:

y2y000 D 3yy0y00 C d0y2y0; w D y0

y
;

w00 D 2w3 C d0 .z/w;

d0 .z/ D C1z C C2;

	
if C1 D 0 W w .z/ elliptic function
if C1 ¤ 0 W y D Ce

R
w.z/dz:

Example 2. We consider the equation

yy000 D 3y0y00 C 6
y02

z
:

On setting w D y0

y , one obtains

w00 D 2w3 C 6
w2

z
:

Thus, y is the Painlevé type.

(
yy000 D 3y0y00 C 3 y02

z ; w00 D 2w3 C 3w2

z ;

yy000 D 3y0y00 C 1
z3

y2 C 1
z2

yy0 C 1
z y02:

Example 3. We consider the equation

y2y000 D 3yy00y0 � 2y03 C b0
�
y2y00 � yy02�C d0y

2y0 C e1y
3: (39)

We rewrite (39) as

�
y0

y

�00 D b0
�

y0

y

�0 C d0
�

y0

y

�
C e1: (40)

On setting

y D ev;

from (40), we obtain

v000 D b0v
00 C d0v

0 C e1;

this latter is linear equation, therefore, v and y are Painlevé type.
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4 Corresponding full equations

In this section, we complete the determination of the remaining coefficients in the
full equations (3). Our approach has the following steps:

1. The first step is to use gauge freedom to simplify the problem. The form of the
equation (3) is preserved under changes of variables of the form

y .z/ D � .z/V .t/C � .z/ ; t D ' .z/ : (41)

We first simplify the complete equation by means of the substitution (41), here
V is a new function, t is the independent variable, and �; �, and ' are chosen so
that the resulting equations for V become simpler.

2. The second step, we are looking for such values of constants a1, a2 and the
expressions bi, ci, di and ei so that equation (3) passes the Conte-Fordy-Pickering
test.

3. The third step is to use the substitution wy D 1, we reduce equation (3) with
coefficients (4) to the form

w000 D .6 � a1/
w00w0

w
C .2a1 C a2 � 6/ w03

w2
C

1P
jD�1

biw�iw00

�
"
2

1P
jD�1

biw�1�i C
0P

jD�2
ciw�2�i

#
.w0/2 �

2P
jD�2

diw�iw0 C
4P

jD�2
eiw2�i:

(42)

4.1 Leading order q D �1

In this subsection, we consider the problem of constructing all equations of the
form (16), for example:

yy000 D y0y00 C y2y00 C4y3y0 �2y5C B .z; y/ y00 C C .z; y/
�
y0�2C D .z; y/ y0 C E .z; y/ :

(43)

There are three sets of resonance numbers:

y01 D �1; y02 D 1; y03 D �2; .r11; r12/ D .1; 4/ ;

.r21; r22/ D .2; 4/ ; .r31; r32/ D .�2; 6/ :

We show details of the calculation only for (43), since the other cases are similar.
We are going to apply the Painlevé test to equation (43) in this section using the

perturbative Painlevé approach presented in [6].
For the case y01 D �1; the coefficient y2 in the Laurent series

y D y0 .z � z0/
q Cy1 .z � z0/

qC1Cy2 .z � z0/
qC2C: : :Cyi .z � z0/

qCi C: : : (44)
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can be set to zero by the gauge choice,

c�1 D 3e3 C d1; e2 D �c�2 � 2b�1 � d0:

Hence, the resonances .r11; r12/ D .1; 4/ give the constraints

b0 D �d1 � 2e3; d1 D �3e3; e1 D 1
2
e3c�2 � 2d�1;

d0 D �3b�1 � 5
2
c�2; e0 D � 1

2
c�2e23 C d�1e3 � d�2:

For the case y02 D 1; the coefficient y1 can be set to zero by the gauge choice,

e3 D 0:

Hence, the resonances .r21; r22/ D .2; 4/ give the constraints

d�1 D 0; d�2 D � 45
8

c2�2 � 13b�1c�2 � 15
2

b2�1:

For the case y03 D �2; the coefficient y0 can be set to zero by the gauge choice,

c�2 D 0:

Hence, the resonances .r31; r32/ D .�2; 6/ give the constraints

e�1 D 0; e�2 D 0:

Because, the compatibility conditions are given by the formulas:

Q.2/
6 � � 1

8

�
e2�1

� �
y.1/�2

�2 D 0 and Q.5/
6 � 15

32
.e�2/

�
y.1/�2

� �
y.1/�1

�4 �
y.0/6

�
D 0:

Finally, the remaining conditions at the resonances �2 and 6 force all recessive
terms to vanish. We therefore conclude that the full equation (43) is

yy000 D y0y00 C y2y00 C 4y3y0 � 2y5: (45)

The second example is

yy000 D y0y00 Cy2y00 C 1
4
y3y0 � 1

8
y5CB .z; y/ y00 CC .z; y/

�
y0�2CD .z; y/ y0 CE .z; y/ :

(46)

There are three sets of resonance numbers:

y01 D �2; y02 D 4; y03 D �4; .r11; r12/ D .1; 3/ ;

.r21; r22/ D .4; 6/ ; .r31; r32/ D .�2; 4/ ;
For the case y01 D �2; the coefficient y2 in the Laurent series (44) can be set to

zero by the gauge choice,

c�1 D 12e3 C 2d1; c�2 D �4e2 � 2b�1 � 2d0:

Hence the resonances .r11; r12/ D .1; 3/ give the constraints

b0 D �8e3 � 2d1; d1 D �6e3; b�1 D �8e3 � 2d0; d�1 D �2e1:
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For the case y02 D 4; the coefficient y1 can be set to zero by the gauge choice,

e3 D 0:

Hence the resonances .r21; r22/ D .4; 6/ give the constraints

d�2 D 12d0e2 � 12e22 � 3d20 C 4e0; e2 D 0; e�2 D � 27
8

d30 C 32e21 C 3d0e0:

For the case y03 D �4; the coefficient y0 can be set to zero by the gauge choice,

d0 D 0:

Hence the resonances .r31; r32/ D .�2; 6/ give the constraints

e1 D 0; e0 D 0 or e0 D �435
26

�
y.0/4

�
� C; e�1 D 0:

Because, the compatibility conditions are given by the formulas:

Q.1/
4 � 128e1

�
y.1/�2

�
D 0;

Q.2/
4 � e0

�
�290

�
y.0/4

�
� 52

3
e0
� �

y.1/�2
�2 D 0;

Q.3/
4 � 1

128
e2�1

�
y.1/�2

�3 D 0:

The result is that compatibility conditions at the resonance numbers are satisfied
identically. There are no tests to run.

The final form of full equation (46) is

yy000 D y0y00 C y2y00 C 1
4
y3y0 � 1

8
y5 C C

�
4 y0

y C y
�
: (47)

Using the above-mentioned approach we obtained a list of equations, which can
be with fixed critical points, these are the following ones:

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

yy000 D y0y00 C y3y0 C C1y2 C C2y0I
yy000 D y0y00 C y2y00 C 2y3y0 C Cy0 C C

2
y2I

yy000 D y0y00 C y2y00 C 2y3y0 C Cyy0 C
�
60
z3

C C
2

�
y2I

yy000 D y0y00 C y2y00 C 4y3y0 � 2y5 C 4 .C1z C C2/ y3 � 2C1y2 C 2C1y0I
yy000 D y0y00 C y2y00 C 1

4
y3y0 � 1

8
y5 � 2 .C1z C C2/ y3 � 2C1y2 � 4C1y0I

yy000 D y0y00 C y2y00 C 1
4
y3y0 � 1

8
y5 � 2 .C1z C C2/ y3 C C1y2 � C1y0I

(48)
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8̂̂
<
ˆ̂:

yy000 D 2y0y00 � 3yy0 C b0 .y00 � y/ ;
yy000 D 2y0y00 C y3y0 C Cy0I
yy000 D 2y0y00 C y3y0 C Cyy0I
yy000 D 2y0y00 C 2y2y00 � 3yy02 C 2y3y0 � y5 C CyI

(49)

yy000 D 3y0y00 � .2C1z � C2/ yy0 C C3y0 C C2y2I (50)

y2y000 D 3yy0y00 � 2y03 C y3y00 C b0
�
y2y00 � 2yy02 � y5

�
Cb�1

�
yy00 � 2y02�C d0

�
y2y0 C y4

�C �
2 .b�1/0 � 3b0b�1

�
yy0

Ce1y3 � �
.b�1/00 � b0 .b�1/0 � d0b�1

�
y2 � b0 .b�1/2 y:

(51)

4.2 Leading order q D �2

Equation (27) with (4) can be analyzed in a similar fashion to the preceding
subsection, for example:

yy000 D y0y00Cy2y00C2y3y0CB .z; y/ y00CC .z; y/
�
y0�2CD .z; y/ y0CE .z; y/ : (52)

There are two sets of resonance numbers

y01 D �1; y02 D 2; .r11; r12/ D .2; 3/ ; .r21; r22/ D .2; 6/ :

A choice of gauge that sets y1 D 0 in both corresponding Laurent series is

d1 D �e3 � 2b0 � c�1; b0 D � 3
2
c�1:

The resonance r21 D 2 gives the constraints

d0 D �2b�1 � e2 � c�2; c�2 D �2b�1 � 2e2:

The compatibility conditions at the second resonance r12 D 3 is linear in y2; we
obtain

e1 D �d�1; e3 D c�1:

and the condition at the second resonance r22 D 6 is second degree in y2 and
therefore gives three separate constraints, we obtain

b�1 D �2e2 � 1
4
c2�1;

e0 D � 1
16

c4�1 � 5
8
e2c

2�1 � 1
2
d�1c�1 C d�2 C 1

2
e22;

e�2 D � 1
2
e32 C 3

8
c2�1e22 � 1

2

�
d�2 � 3

4
c4�1 C 2c�1d�1

�
e2 C 1

32
c6�1
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C 1
4
d�1c3�1 � 1

4
d�2c2�1 � c�1e�1 � 4d2�1:

A similar calculation and choice of gauge can be used to construct the full
equations (52). The complete list of the full equations is found to be:

8<
:

y000y D y00y0 C 6y2y0 C C1y0;
y000y D y00y0 C 6y2y0 C .C1z C C2/ y0;
y000y D y00y0 C 6y2y0 C C1y C �

C1z2 C C2z C C3
�

y0 C .C1z C C2/ y:
(53)

4.3 Leading order q D �3

In this subsection, we consider the problem of constructing all equations of the
form (31), for example:

y000y D y00y0 C e2y
3 C F3 .x; y/ ; (54)

where

F3 .x; y/ D b0y
2y00 C b�1yy00 C c�1yy02 C c�2y02 C d0y

2y0

C d�1yy0 C d�2y0 C e1y
3 C e0y

2 C e�1y C e�2:

There is only one set resonance numbers:

y01 D �24
e2
; .r11; r12/ D .4; 6/ ;

the coefficient y1 in the Laurent series (44) can be set to zero by the gauge choice,
by means of a transformation T .�; �; '/, one may set

12b0 C 9c�1 D 0:

The compatibility condition at the second resonance r12 D 6 is linear in y.0/4 ; we
obtain

Q.0/
6 � Ay.0/4 C B D 0; A D B D 0:

and hence

d0 D 15
4

c2�1; e0 D 880875
1024

c6�1 C 4455
16

e1c
3�1 C 45

16
b�1c2�1 C 45

4
d�1c�1 � 8e21:

The compatibility condition at the second resonance r11 D 4 is



182 Y. Adjabi and A. Kessi

c�2 D �2c�1b0 � 9
8
c2�1d0 � 3

2
d20 � 4

3
b�1:

By means of a transformation T .�; �; '/, one may set

b0 D c�1 D 0; b1 D c0 D d�2 D e�2 D e3 D 0:

On setting wy D 1, one obtains

w2w000 D 5ww0w00 � 4w03 C d�1w3w0 C F3.x; w/I
d�1y0 D �2; .r1; r2/ D .�2; 2/ :

By means of a transformation T .�; �; '/, one may set

d�1 D �2; b0 D c�1 D d0 D 0;

Hence the resonances .r31; r32/ D .�2; 2/ give the constraints

e2 D e0 D 0; e1 D 0; d1 D k .arbitrary/:

The full equation (54) takes the following form:

yy000 D y0y00 � 24y3 C ky0. (55)

The complete list of full equations is found to be:

	
y000y D y00y0 C y3 C Cy0y;
y000y D y00y0 C y3 C C1y2 C .C2z C C3/ y0 � C2y;

(56)

Example 4. We consider the equation

yy000 D y0y00 C 6y3 � y0: (57)

Multiplying (57) by .y00 � 1/ we can rewrite it as

d

dz

�
.y00�1/2�12y2.y0�z/

y2

�
D 0;

and absorbing the integration constant by a translation of z, we obtain

�
y00 � 1�2 � 12y2

�
y0 � z

� D 0:

This latter is particular case of the SDv equation in Cosgrove’s classification
Œ1993�. It is solved, expectedly, in terms of Painlvé I equations PI .
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5 Conclusion and prospects

In this paper we have used the perturbative Painlevé approach presented in
[6] for equations (3) to find several new rational third order ODEs with integer
Fuchs indices. Our results improve and extend various known results existing in the
literature.

To conclude this article, we point out some problems that are still unresolved:
It remains to examine whether the general integral equations found in section 4 are
effectively a Painleve property and are general solutions of these equations.
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Existence of Weighted Pseudo Almost Periodic
Solutions for some Partial Differential
Equations with Delay

Nadira Boukli-Hacene and Khalil Ezzinbi

Abstract In this work, sufficient conditions are derived to get the existence
and uniqueness of a weighted pseudo almost periodic solutions for some partial
functional differential equations in hyperbolic case. To illustrate our main result, we
study the existence of a weighted pseudo almost periodic solution for some diffusion
equation with delay.

Keywords Partial functional differential equation • Hyperbolic semigroup •
Weighted pseudo almost periodic solution

1 Introduction

The notion of pseudo-almost periodicity was introduced in the literature in the
early 90s by C. Zhang [18–20], as a natural generalization of the classical almost
periodicity in the sense of Bohr. Since then, the existence of pseudo-almost periodic
solutions to differential equations, partial differential equations, and functional
differential equations has been of a great interest to several authors and hence
generated various contributions: E. Aitdads, O. Arino, and K. Ezzinbi [3–5]
obtained sufficient condition for existence of pseudo almost periodic solutions of
some delay differential equations, and other contributions upon pseudo almost
periodic solutions to various differential equations have recently been made in
T. Diagana, E.M. Hernàndez, G.M. Mahop, G.M. N’Guérékata [8, 9, 11–13].

T. Diagana [7, 10] introduced a new generalization of the concept of pseudo
almost periodicity, some new classes of functions called weighted pseudo almost
periodic functions which is the central issue in this paper, to construct those
new spaces, the main idea consists of enlarging the so-called ergodic component,
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utilized in Zhang’s definition of pseudo-almost periodicity, with the help of a
weighted measure d�.x/ D �.x/ dx, where � W R ! .0;1/ is a locally
integrable function over R, which is commonly called weight, the author obtained
conditions for existence of the weighted pseudo almost periodic solutions for
abstract differential equations; however, L. Zhang and Y. Xu [21] give sufficient
condition for the existence of a weighted pseudo almost periodic solutions for
functional differential equations.

The existence, uniqueness, and stability of almost periodic, pseudo-almost
periodic, weighted pseudo-almost periodic, almost automorphic and pseudo-almost
automorphic solutions are among the most attractive topics in the qualitative
theory of differential equations due to their applications in several areas such as
mathematical biology, physics, control theory, and others.

To study those weighted pseudo-almost periodic spaces we consider a binary
equivalence relation, �, on the set of weights U1, which enables us to categorize
and reorganize those weights into different equivalence classes. Among other things,
if two weights �1 and �2 are equivalent, that is, �1 � �2, then their corresponding
weighted pseudo-almost periodic spaces coincide. In particular, when a weight � is
bounded with inf

x2R �.x/ > 0, it is then equivalent to the constant function 1, and hence

the weighted pseudo-almost periodic space with weight � coincides with ZhangŠs
spaces (Corollary 1).

This work extends the corresponding results in [21], our objective is to show the
existence of a weighted pseudo almost periodic solutions for the following delay
functional differential equation

d

dt
x.t/ D Ax.t/C L.xt/C f .t/ for t 2 R; (1)

where A W D.A/ ! E is a linear operator (not necessarily densely defined) on
a Banach space E, we assume that A satisfies the Hille-Yoshida condition, which
means that A satisfies the following spectral condition: there exists M � 1 and ! 2
R such that

.!;C1/ 	 �.A/ and j.�I � A/�nj � M

.� � !/n for n 2 N and � > !;

where �.A/ is the resolvent set of A.
C WD C.Œ�r; 0�;E/ is the Banach space of continuous functions on Œ�r; 0� into E

provided with the uniform norm topology, L is a bounded linear operator from
C.Œ�r; 0�;E/ to E and f is a weighted pseudo almost periodic E-valued function
on R (will be precise in the next).

For every t � 0; as usual the history function xt 2 C is defined by

xt.�/ D x.t C �/ for � r � � � 0:

There are many examples where A is nondensely defined. In particular, nonden-
sity occurs in many situations due to restrictions on the space where the equation
is considered (for example, periodic continuous functions, Hölder continuous



Existence of Weighted Pseudo Almost Periodic Solutions for some Partial. . . 187

functions) or due to boundary conditions (for example, the space C1 with null value
on the boundary is nondense in the space of continuous functions).

The organization of this work is as follows: In Section 2, we recall some notations
and definitions of a weighted pseudo almost periodic functions. In Section 3, we give
the variation of constants formula that will be the principal working tools in this
work, moreover, we establish fundamental results about the spectral decomposition
of solutions. in Section 4, we prove the main theorem of existence and uniqueness
of a weighted pseudo almost periodic solutions. In Section 5 we apply the result in
the previous section to the nonlinear functional differential equation. In particular,
Section 6 is to illustrate our main result (Theorem 9), we will examine sufficient
conditions for the existence and uniqueness of pseudo almost periodic solutions to
the diffusion equation with delay.

8̂̂
<
ˆ̂:

@

@t
y.t; x/ D @2

@x2
y.t; x/C

Z 0

�r
q.�/ y.t C �; x/ d� C z.t; x/ for t 2 R and x 2 Œ0; ��;

y.t; 0/ D y.t; �/ D 0 for t 2 R;

where q; u are functions satisfying some additional assumptions.

2 Weighted Pseudo Almost Periodic Functions

In what follows we recall some definitions and notations needed in the sequel.
Let .E; k k/ be a Banach space and L1loc.R/ denote the space of all locally

integrable functions on R:

Let U be defined by

U WD ˚
� 2 L1loc.R/ W �.x/ > 0 almost everywhere x 2 R

�
From now, if � 2 U and for R > 0, we then set

m.R; �/ WD
Z R

�R
�.x/ dx

The space of weighted functions is defined by

U1 WD
	
� 2 U W lim

R!1 m .R; �/ D 1
�

UB WD
n
� 2 U1 W � is bounded and inf

x2R �.x/ > 0
o
:

Throughout this work BC.R;E/ is the space of all E-valued bounded continuous
functions equipped with the sup norm defined by k�k1 WD sup

t2R
k�.t/k:

Definition 1 ([6, 15]). A function f W R �! E is called almost periodic if
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(i) f is continuous,
(ii) for each " > 0 there exists an l."/ > 0, such that every interval I of length l."/

contains a number � with the property that kf .t C �/ � f .t/k < " for all t 2 R:

The number � above is called "-translation number of f .

Let AP.E/ denote the space of almost periodic functions.
Denote by PAP0.E/ the space of ergodic perturbations defined by

PAP0.E/ WD
n
f 2 BC.R;E/ W lim

R!1
1

2R

Z R

�R
kf .t/k dt D 0

o

Definition 2 ([9]). A function f W R �! E is called pseudo almost periodic if
f D g C �; where g 2 AP.E/ and � 2 PAP0.E/:

The collection of all pseudo almost periodic functions from R into E is denoted by
PAP.E/.

Definition 3 ([10]). Let � 2 U1: We define the weighted ergodic space by

PAP0.E; �/ WD
n
f 2 BC.R;E/ W lim

R!1
1

m.R; �/

Z R

�R
kf .t/k�.t/ dt D 0

o

Definition 4 ([10]). Let � 2 U1:A function f W R �! E is called weighted pseudo
almost periodic (or �-pseudo almost periodic) if it is expressed as follows:

f D g C �;

where g 2 AP.E/ and � 2 PAP0.E; �/:

The collection of all weighted-pseudo almost periodic functions from R into E

is denoted by PAP.E; �/:

Remark 1 ([10]). The functions g and � appearing in definition 4 are, respectively,
called the almost periodic and the weighted ergodic components of f .

Remark 2 ([10]). The decomposition of a �-pseudo almost periodic function
f D g C �, where g 2 AP.E/ and � 2 PAP0.E; �/, is unique. This is mainly
based upon the fact that g.R/ 	 f .R/: Hence, PAP.E; �/ D AP.E/˚ PAP0.E; �/:

Definition 5 ([10]). Let .F; k k/ be a Banach space. A function F W R 
 F ! E

is called almost periodic in t 2 R uniformly in y 2 F if for each " > 0 and any
compact K 	 F there exists l."/ such that every interval of length l."/ contains a
number � with the property that

kF.t C �; y/ � F.t; y/k < " for each t 2 R and y 2 K:

The collection of those functions is denoted by AP.F;E/.
In the same way, we define PAP0.F;E; �/ as the collection of jointly continuous

functions F W R 
 F ! E such that F.�; y/ is bounded and
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lim
R!1

1

m.R; �/

Z R

�R
kF.s; y/k�.s/ ds D 0 for all y 2 F:

Definition 6 ([10]). A function F W R 
 F ! E is called weighted pseudo almost
periodic if

F D G C H;

where G 2 AP.F;E/ and H 2 PAP0.F;E; �/:

The class of such functions is denoted by PAP.F;E; �/:
We give now some properties of a weighted pseudo almost periodic functions.

Definition 7 ([10]). Let �1; �2 2 U1. One says that �1 is equivalent to �2 or
�1 � �2 whenever �1

�2
2 UB:

Theorem 1 ([10]). Let �1; �2 2 U1: If �1 is equivalent to �2, then PAP.E; �1/ D
PAP.E; �2/.

An immediate consequence of Theorem 1 is the next corollary, which enables us
to connect the Zhang’s space PAP.E/ D AP.E/˚ PAP0.E/ with a weighted pseudo
almost periodic class PAP.E; �/.

Corollary 1 ([10]). If � 2 UB; then PAP.E; �/ D PAP.E/:

Theorem 2 ([7]). The space PAP.E; �/ is a closed subspace of BC..R;E/; k k1/
provided with the uniform norm topology. This yields PAP.E; �/ is a Banach space.

Example 1. Let �.t/ D et for each t 2 R.
It is easy to see that m.R; �/ D eR � e�R and hence � 2 U1:
Set f .t/ D sin t C sin

p
2 t C e�t: It is clear that f belongs to PAP.R; �/:

Namely, sin t C sin
p
2 t is its almost periodic component and the weighted

ergodic component of f verify

lim
R!1

1

eR � e�R

Z R

�R
e�t et dt D 0;

while lim
R!1

1

2R

Z R

�R
e�t dt D C1.

Hence, f does not belong to PAP.R/.

3 Partial Functional Differential Equations

Here and hereafter, we suppose that
.H0/ A satisfies the Hille-Yoshida condition: there exists M � 0; ! 2 R such that
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.!;C1/ 	 �.A/ and j.�I � A/�nj � M

.� � !/n for n 2 N and � > !;

where �.A/ is the resolvent set of A:
To Eq. (1), we associate the following initial value problem

8̂̂
<
ˆ̂:

d

dt
x.t/ D Ax.t/C L.xt/C f .t/ for t � 0;

x0 D ' 2 C WD C.Œ�r; 0�IE/:
(2)

Definition 8 ([1]). We say that a continuous function x from Œ�r;1/ into E is an
integral solution of Eq. (2), if the following conditions hold:

(i)
Z t

0

x.s/ ds 2 D.A/ for t � 0,

(ii) x.t/ D '.0/C A
Z t

0

x.s/ ds C
Z t

0

.L.xs/C f .s// ds for t � 0;

(iii) x0 D ':

If D.A/ D E; the integral solutions coincide with the known mild solutions. From
the closed-ness property of A, we can see that if x is an integral solution of Eq. (2),
then x.t/ 2 D.A/ for all t � 0; in particular '.0/ 2 D.A/:

Let us introduce the part A0 of the operator A in D.A/ which is defined by

(
D.A0/ D

n
y 2 D.A/ W Ay 2 D.A/

o
;

A0y D Ay for y 2 D.A0/:

Lemma 1 ([14]). A0 generates a strongly continuous semigroup .T0.t//t�0 on
D.A/:

For the existence of integral solutions, we have the following result.

Theorem 3 ([1]). Assume that (H0) holds. Then for all ' 2 C such that '.0/ 2
D.A/; Eq. (2) has a unique integral solution x on Œ�r;C1/:Moreover, x is given by

x.t/ D T0.t/ '.0/C lim
�!1

Z t

0

T0.t � s/B�.L.xs/C f .s// ds for t � 0;

where B� D �.�I � A/�1 for � > !:

The phase space C0 of Eq. (2) is defined by

C0 D
n
' 2 C W '.0/ 2 D.A/

o
:

For each t � 0; we define the linear operator T.t/ on C0 by
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T.t/' D xt.0; '/ for t � 0;

where x.0; '/ is the solution of the following linear equation

8̂̂
<
ˆ̂:

d

dt
x.t/ D Ax.t/C L.xt/ for t � 0;

x0 D ' 2 C WD C.Œ�r; 0�IE/:

Proposition 1 ([1]). .T.t//t�0 is a strongly continuous semigroup of linear opera-
tors on C0 :

(i) for all t � 0; T(t) is a bounded linear operator on C0I
(ii) T(0)DI;

(iii) T.t C s/ D T.t/T.s/ for all t; s � 0I
(iv) for all ' 2 C0; T.t/' is a continuous function of t � 0 with values in C0:

Theorem 4 ([2]). Let AT be defined on C0 by

(
D.AT/ D

n
' 2 C1.Œ�r; 0�I X/ W '.0/ 2 D.A/; '0.0/ 2 D.A/ and '0.0/ D A'.0/C L.'/

o
;

AT' D '0 for ' 2 D.AT/:

Then, AT is the infinitesimal generator of the semigroup .T.t//t�0 on C0:

In order to give the variation of constants formula, we need to recall some notations
and results which are taken from [2].

Let hX0i be the space defined by

hX0i D
n
X0c W c 2 X

o
;

where the function X0c is defined by

.X0c/.�/ D
(
0 if � 2 Œ�r; 0/;

c if � D 0:

The space C0 ˚ hX0i is equipped with the norm

j� C X0cj D j�jC C jcj for .�; c/ 2 C0 
 X;

is a Banach space and consider the extension QAT defined on C0 ˚ hX0i by
(

D. QAT/ D
n
' 2 C1.Œ�r; 0�IE/ W '.0/ 2 D.A/ and '0.0/ 2 D.A/

o
;

AT' D '0 C X0.A'.0/C L.'/ � '0.0//:
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Lemma 2 ([2]). Assume that (H0) holds. Then, QAT satisfies the Hille-Yoshida
condition on C0 ˚ hX0i: there exist QM � 0 and Q! 2 R such that

. Q!;C1/ 	 �. QAT/ and j.�I � QAT/
�nj �

QM
.� � Q!/n for n 2 N and � > Q!:

Moreover, the part of QAT on D. QAT/ D C0 is exactly the operator AT :

Theorem 5 ([2]). Assume that (H0) holds. Then for all ' 2 C0; the solution x of
Eq. (2) is given by the following variation of constants formula

xt D T.t/ ' C lim
�!C1

Z t

0

T.t � s/ QB�.X0f .s// ds for t � 0;

where QB� D � .�I � QAT/
�1 for � > Q!:

In the following, we assume that (H1) The operator T0.t/ is compact on D.A/ for
every t > 0:

Theorem 6 ([2]). Assume that (H0) and (H1) hold, then T(t) is compact for t > r.

As a consequence from the compactness property of the operator T.t/, we have
that the spectrum �.AT/ is the point spectrum

�.AT/ D ˚
� 2 C W ker�.�/ ¤ f0g�

where the linear operator �.�/ W D.A/ ! E is given by

�.�/ D �I � A � L.e�I/

and e�I W E ! C is defined by

.e�x/.�/ D e��x for x 2 E and � 2 Œ�r; 0�:

4 Weighted Pseudo Almost Periodic Solution

In this section we study the existence and uniqueness of a weighted pseudo almost
periodic solution to Eq. (1).

Definition 9 ([16]). We say that the semigroup .T.t//t�0 is hyperbolic if �.AT/ \
iR D ¿:

Theorem 7 ([14]). Assume that (H0) and (H1) hold. If the semigroup .T.t//t�0 is
hyperbolic, then the space C0 is decomposed as the direct sum of the stable and
unstable subspaces

C0 D S ˚ U
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and there exist positive constants K and c such that

kT.t/'k � Ke�ctk'k for t � 0 and ' 2 S;

kT.t/'k � Kectk'k for t � 0 and ' 2 U:

Theorem 8 ([14]). Assume that (H0) and (H1) hold and the semigroup .T.t//t�0 is
hyperbolic. If f is bounded on R, then Eq. (1) has a unique bounded solution on R

which is given by the following formula

xt D lim
n!C1

Z t

�1
Ts.t��/˘ s. QBnX0f .�// d�C lim

n!C1

Z t

C1
Tu.t��/˘ u. QBnX0f .�// d�

where ˘ s and ˘ u are the projections of C onto the stable and unstable subspaces,
respectively.

We give the main result of this work, which shows the existence and uniqueness
of �-pseudo almost periodic solution if the input function f is �-pseudo almost
periodic.

Theorem 9. Fix � 2 U1: Assume that (H0) and (H1) hold and the semigroup
.T.t//t�0 is hyperbolic. If f is �-pseudo almost periodic in t 2 R and � is decreasing
with

P.c/ WD sup
R>0

� Z R

�R
e�c.tCR/�.t/ dt

�
< 1; (3)

then, Eq. (1) has one and only one bounded solution which is also �-pseudo almost
periodic.

Proof. Eq. (1) has one and only one bounded solution on R which is given by

xt D lim
n!C1

Z t

�1
Ts.t � �/ ˘ s. QBnX0f .�// d�

C lim
n!C1

Z t

C1
Tu.t � �/ ˘ u. QBnX0f .�// d�

We will show that both functions

lim
n!C1

Z t

�1
Ts.t � �/ ˘ s. QBnX0f .�// d� and

lim
n!C1

Z t

C1
Tu.t � �/ ˘ u. QBnX0f .�// d�

are weighted pseudo almost periodic.
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Since f is �-pseudo almost periodic then, f D g C � where g is almost periodic
and � 2 PAP0.E; �/.

Recall that � 2 PAP0 .E; �/ if and only if

� 2 BC.R;E/ and lim
R!1

1

m.R; �/

Z R

�R
k�.t/k �.t/dt D 0:

lim
n!C1

Z t

�1
Ts.t � �/ ˘ s. QBnX0f .�// d�

D lim
n!C1

Z t

�1
Ts.t � �/ ˘ s. QBnX0g.�// d�

C lim
n!C1

Z t

�1
Ts.t � �/ ˘ s. QBnX0�.�// d�

lim
n!C1

Z t

C1
Tu.t � �/ ˘ u. QBnX0f .�// d�

D lim
n!C1

Z t

C1
Tu.t � �/ ˘ u. QBnX0g.�// d�

C lim
n!C1

Z t

C1
Tu.t � �/ ˘ u. QBnX0�.�// d�

We will show that both

lim
n!C1

Z t

�1
Ts.t��/ ˘ s. QBnX0g.�// d� and lim

n!C1

Z t

C1
Tu.t��/ ˘ u. QBnX0g.�// d�

are almost periodic.
Let y D .ym/ be a real sequence. By almost periodicity of g, there exists a

subsequence of ym noted by y
0

m and a continuous function h.t/ such that h.t/ D
lim

m!1 g.t C y
0

m/ uniformly in R.
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So,

lim
m!1

h
lim

n!1

Z t

�1
Ts.t � �/˘ s. QBnX0g.� C y

0

m//d�
i

D lim
n!1

Z t

�1
Ts.t � �/˘ s. QBnX0 lim

m!1 g.� C y
0

m//d�

D lim
n!C1

Z t

�1
Ts.t � �/ ˘ s. QBnX0h.�// d�

uniformly in R.
Similarly,

lim
m!1

h
lim

n!1

Z t

C1
Tu.t � �/˘ u. QBnX0g.� C y

0

m//d�
i

D lim
n!1

Z t

C1
Tu.t � �/˘ u. QBnX0 lim

m!1 g.� C y
0

m//d�

D lim
n!C1

Z t

C1
Tu.t � �/˘ u. QBnX0h.�//d�

uniformly in R.
Thus,

lim
n!C1

Z t

�1
Ts.t��/˘ s. QBnX0g.�// d� and lim

n!C1

Z t

C1
Tu.t��/˘ u. QBnX0g.�// d�

are almost periodic.
It remains to show that

lim
R!1

1

m.R; �/

Z R

�R

��� lim
n!C1

Z t

�1
Ts.t � �/˘ s. QBnX0�.�// d�

����.t/ dt D 0

and

lim
R!1

1

m.R; �/

Z R

�R

��� lim
n!C1

Z t

C1
Tu.t � �/˘ u. QBnX0�.�// d�

����.t/ dt D 0

Let us put

I.t/ D lim
n!C1

Z t

�1
Ts.t � �/˘ s. QBnX0�.�// d�

J.t/ D lim
n!C1

Z t

C1
Tu.t � �/˘ u. QBnX0�.�// d�
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Using the relation (3) and (2) there exists a positive constants K and QM such that

lim
R!1

1

m.R; �/

Z R

�R
kI.t/k �.t/ dt

� lim
R!1

K QM
m.R; �/

Z R

�R

h Z t

�1
e�c.t��/ k�.�/k d�

i
�.t/ dt

D lim
R!1

K QM
m.R; �/

Z R

�R

h Z t

�R
e�c.t��/ k�.�/k d�

i
�.t/ dt

C lim
R!1

K QM
m.R; �/

Z R

�R

h Z �R

�1
e�c.t��/ k�.�/k d�

i
�.t/ dt

D I1.�/C I2.�/

By using the Fubini’s theorem, one has

I1.�/ D lim
R!1

K QM
m.R; �/

Z R

�R

h Z t

�R
e�c.t��/ k�.�/k d�

i
�.t/ dt

D lim
R!1

K QM
m.R; �/

Z R

�R
k�.�/k

h Z R

�

e�c.t��/ �.t/ dt
i

d�

Since � is a decreasing function then we have

I1.�/ � lim
R!1

K QM
m.R; �/

Z R

�R
k�.�/k �.�/

h1
c

�
1 � e�c.R��/�i d�:

Furthermore �R � t � R and c > 0 then
1

c

�
1 � e�c.R��/� is bounded uniformly

in � .

I1.�/ � lim
R!1

K QM
c m.R; �/

Z R

�R
k�.�/k �.�/ d� D 0:

By (3) we have

I2.�/ D lim
R!1

K QM
m.R; �/

Z R

�R

h Z �R

�1
e�c.t��/ k�.�/k d�

i
�.t/ dt

D lim
R!1

K QM
m.R; �/

Z R

�R
e�ct

h Z �R

�1
ec� k�.�/k d�

i
�.t/ dt

D lim
R!1

K QM
m.R; �/

Z R

�R
e�ct �.t/ dt

h Z �R

�1
ec� k�.�/k d�

i
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D lim
R!1

K QM
c m.R; �/ ecR

sup
�2R

k�.�/k
Z R

�R
e�ct �.t/ dt

D 0:

By the similar argument we show that

lim
R!1

1

m.R; �/

Z R

�R
kJ.t/k �.t/ dt:

This completes the proof of the theorem.

5 Nonlinear Partial Functional Differential Equation

In this section, we consider the nonlinear partial differential equation

d

dt
x.t/ D Ax.t/C L.xt/C h.t; x.t � r// for t 2 R: (4)

.H2/ h W R
E �! E is continuous and Lipschitzian with respect to the second
argument:

there exists QK > 0 such that

kh.t; x/ � h.t; y/k � QK kx � yk for all x; y 2 F and t 2 R:

Theorem 10 ([10]). Assume that (H0), (H1), and (H2) hold. Then, if u 2 PAP.E; �/,
then h.�; u.� � r// 2 PAP.E; �/:

Theorem 11. Assume that (H0), (H1), and (H2) hold, the semigroup .T.t//t�0 is
hyperbolic and � is decreasing with

P.c/ WD sup
R>0

� Z R

�R
e�c.tCR/�.t/ dt

�
< 1:

Then, (4) has one and only one bounded solution which is also �-pseudo almost
periodic whenever QK is small enough.

Proof. Let v 2 PAP.E; �/ consider the following equation

d

dt
u.t/ D Au.t/C L.ut/C h.t; v.t � r// for t 2 R: (5)
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By theorem 10, PAP.E; �/ is translation invariant we have that

h.t; v.t � r// 2 PAP.E; �/:

Then Eq. (5) has one and only one solution u in PAP.E; �/ which is given by

ut D lim
n!C1

Z t

�1
Ts.t � �/˘ s. QBnX0h.�; v.� � r//d�

C lim
n!C1

Z t

C1
Tu.t � �/˘ u. QBnX0h.�; v.� � r///d�

Let the operator H be defined by

H W PAP.E; �/ �! PAP.E; �/

v 7�! H .v/ D u

Due to the hyperbolicity, we can see that for some positive constant QN
kH .v/ � H .w/k � QN QK kv � wk

If QN QK < 1; then H has a unique fixed point which is the unique �-pseudo almost
periodic solution of Eq. (4).

6 Example

To illustrate the result in Theorem 9, we consider the following partial functional
differential equation with diffusion which describes the evolution of a single
diffusive animal species with population density v. For more details about this
model, we refer to [17].

8̂
<̂
ˆ̂:

@

@t
y.t; x/ D @2

@x2
y.t; x/C

Z 0

�r
q.�/ y.t C �; x/ d� C z.t; x/ for t 2 R and x 2 Œ0; ��;

y.t; 0/ D y.t; �/ D 0 for t 2 R;
(6)

where q W Œ�r; 0� �! R is continuous, z W R 
 Œ0; �� �! R is continuous and
defined by

z.t; x/ D  .t/ �.x/; � W Œ0; �� �! R is a continuous function;

where  .t/ D sin t C sin
p
2 t C e˛t for each t 2 R and ˛ > 0:

Let E D C .Œ0; ��IR/ be the space of continuous functions from Œ0; �� to R

equipped with the uniform norm topology.
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Define the operator A W D.A/ 	 E �! E by

8̂<
:̂

D.A/ D
n
y 2 C2.Œ0; ��IR/ W y.0/ D y.�/ D 0

o
;

Ay D y00:

Lemma 3 ([14]). .0;C1/ 	 �.A/ and j.�I � A/�1j � 1

�
for � > 0:

Moreover, D.A/ D
n
y 2 E W y.0/ D y.�/ D 0

o
: Consequently, the condition

.H0/ is satisfied.
In order to rewrite Eq. (6) in the abstract form (1), we introduce the operator
L W C �! E defined by

L.�/.x/ D
Z 0

�r
q.�/ �.�/.x/ d� for x 2 Œ0; �� and � 2 C;

and the function f W R ! E defined by

f .t/.x/ D z.t; x/ D  .t/ �.x/ for t 2 R and x 2 Œ0; ��:
Then, L is a bounded linear operator from C to E and from continuity of  we get
that f is a continuous function from R to E.

Then, the equation (6) takes the abstract form (1).
Let A0 be the part of A in D.A/. Then, A0 is given by
8̂<
:̂

D.A0/ D
n
y 2 C2.Œ0; ��IR/ W y.0/ D y.�/ D y00.0/ D y00.�/ D 0

o
;

A0y D Ay for y 2 D.A0/:

A0 generates a strongly continuous compact semigroup .T0.t//t�0 on D.A/:
In order to study the existence and uniqueness of a bounded solution of Eq. (1),

we suppose that

.H3/

Z 0

�r
jq.�/j d� < 1:

Proposition 2. Assume that (H3) holds. Then, the semigroup .T.t//t�0 is expo-
nentially stable: there exist constants M � 1 and ! > 0 such that kT.t/k �
M e�!t for all t � 0:

Proof. Let � 2 �.AT/, then there exists x 2 D.A//, x ¤ 0 such that �.�/ x D 0,
which implies that

�x � Ax �
� Z 0

�r
q.�/ e�� d�

�
x D 0;



200 N. Boukli-Hacene and K. Ezzinbi

and

� �
Z 0

�r
q.�/ e�� d� 2 �p .A/;

where �p .A/ is the point spectrum �p .A/ of A and is

�p .A/ D
n

� n2 W n 2 N
�o:

Consequently, � 2 �.AT/ if and only if

� �
Z 0

�r
q.�/ e�� d� D � n2 for some n � 1: (7)

Taking the real part in formula (7), we obtain that

Re.�/ D
Z 0

�r
q.�/ eRe.��/ cos.Im� �/ d� � n2 for n � 1:

Assume that Re.�/ � 0; then

Re.�/ �
Z 0

�r
jq.�/j d� � 1 < 0:

This gives a contradiction. Consequently, �.AT/ 	 f� 2 C W Re .�/ < 0g, which
implies that the semigroup .T.t//t�0 is exponentially stable.

Set

�.t/ D
8<
:
1 if t < 0;

e�ˇt if t � 0 and ˇ > 0:

Then, lim
R!C1 m.R; �/ D C1 and hence � 2 U1.

Proposition 3. Assume that 0 < ˛ < ˇ. Then, Eq. (6) has a unique bounded and
weighted pseudo almost periodic solution.

Proof. If ˛ < ˇ, the condition (3) is satisfied as

P.!/ WD sup
R>0

� 1

e!R

Z R

�R
e�!t�.t/ dt

�
< 1:

It is easy to check that  doesn’t belong to PAP.R/ since

lim
R!1

1

2R

Z R

�R
e˛t dt D 1:
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and  2 PAP.R; �/ with sin t C sin.
p
2 t/ as its almost periodic component and e˛t

as its weighted ergodic component which verify

lim
R!1

1

m.R; �/

Z R

�R
e˛t �.t/ dt D 0:

By Theorem 9, we deduce that Eq. (6) has a unique bounded and weighted pseudo
almost periodic solution.
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Using B-splines functions and EM algorithm
for Hidden Markov Model-based Unsupervised
Image Segmentation

Atizez Hadrich, Mourad Zribi, and Afif Masmoudi

Abstract Hidden Markov models have been used in image processing, especially
in image segmentation. In this paper, we propose a new approach for the unsu-
pervised image segmentation, based on hidden Markov models and B-splines
functions. The estimation of the new parameters for the hidden Markov model by
using B-splines functions is performed from the expectation maximization (EM)
algorithm. Then, we introduce a new algorithm (EMMB) based on EM Markov
B-spline. Experimental results on synthetic and color images show that the new
approach can provide a more homogeneous segmentation than the classical one.

Keywords Hidden Markov models • Unsupervised image segmentation • EM
algorithm • Color image • B-splines function

1 Introduction

Hidden Markov random field (HMRF) models revealed themselves as a powerful
tool for image segmentation [9]. They are very applied in accounting for spatial
dependencies between the different pixels of an image but these spatial dependen-
cies are also responsible for a typically large amount of computation. In practice,
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Markov model-based segmentation requires the estimation of the model parameters.
A common approach consists of alternatively restoring the unknown segmentation
based on a maximum a posteriori (MAP) rule and then estimating the model
parameters using the observations and the restored data. In our work, we introduce
a new hidden Markov model by using B-splines functions. In order to estimate
the model parameters, we apply the EM algorithm called EM Markov B-spline
algorithm (EMMB). This procedure is widely used in the context of incomplete data
and in particular to estimate independent mixture models due to its simplicity. In this
paper, we propose a generalization of the mean field principle of statistical physics to
make the EM algorithm tractable. More specifically, we consider approximations of
Markov models, with complex dependencies, by systems of independent variables.
These approximations are obtained by fixing the neighborhood of each pixel
to arbitrary constants. They lead to valid probability models, with factorization
properties, much simpler to deal with. We then use these approximations to carry
out the EM algorithm and derive a class of algorithms. They can be interpreted
as the EM algorithm for independent mixture models with the difference that the
mixture model adaptatively changes at each iteration depending on the current
choice for the pixels’ neighbors labels. It follows algorithms that have the advantage
to take the spatial information into account while keeping each iteration as simple
as in the independent mixture case. The paper is organized as follows. Section II
specifies the context of nonparametric density estimation methods and B-splines
functions. Hidden Markov models for image segmentation in Section III. Parameters
estimation using the EMMB algorithm in Section IV. Performance comparison in
section V and the conclusion in section VI.

2 Nonparametric density estimation methods
and B-splines functions.

In the mathematical subfield of numerical analysis, a B-splines [1–4, 11] is a spline
function that has a minimum support with respect to a given degree, smoothness,
and domain partition. It’s well known that every spline density function can be
represented as a finite linear combination of B-splines. The term B-splines stands for
basis splines according to Isaac Jacob Schoenberg [3]. A B-splines nonparametric
density estimator with uniformly spaced knots convenient for large data sets was
discussed by Gehringer and Redner [6].

Curry and Schoenberg (1966) [3] have proved that every spline function S of
degree d .d D 1; 2; : : :/ with m knots .m D 1; 2; : : :/ has a unique expansion

S.y/ D
mCdX
lD1

bl

hl
Bd

l .y/; for a < y < b and hl D
Z

Bd
l .y/dy; (1)
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where a, b 2 R, and bl’s are unknown parameters which need to be estimated.

Note that, bl � 0, and
mCdX
lD1

bl D 1 is a special requirement when using B-splines to

estimate probability density functions. For general splines, this special requirement
is not true. The case d D 1 corresponds to a piecewise approximation which is
attractively simple but produces a visible roughness, unless the knots are close to
each other.

The B-splines of d degree are defined recursively by

Bd
l .y/ D y � yl

ylCd � yl
Bd�1

l .y/C ylCdC1 � y

ylCdC1 � ylC1
Bd�1

lC1 .y/ (2)

where

B0l .y/ D
	
1; if y 2 Œyl; ylC1/
0; elsewhere.

In more technical terms, a spline function S of degree d with m knots, a D y1 <
y2 < : : : < ymC2 D b is .d � 1/ continuous derivative function such that S 2
Pd, (Pd is the class of polynomials of a maximum degree d in each of intervals
.a; y2/; .y2; y3/; : : : ; .ymC1; b/.

In our work, we use the second order B-splines functions .B2l /lD1:::mC2 defined by

B2l .y/ D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

.y � yl/
2

.ylC1 � yl/.ylC2 � yl/
; y 2 Œyl; ylC1/

1

ylC2 � ylC1
Œ
.y � yl/.ylC2 � y/

ylC2 � yl
C

.y � ylC1/.ylC3 � y/

ylC3 � ylC1
�; y 2 ŒylC1; ylC2/

.ylC3 � y/2

.ylC3 � ylC1/.ylC3 � ylC2/
; y 2 ŒylC2; ylC3/

0; elsewhere

where l is integer as usual. We notice that 0 � B2l .y/ � 1 is always verified.
Non-zero parts of three B2 D .B2l /lD1:::mC2 splines are plotted in Fig. 1. The

support of each spline covers three intervals. It is a quadratic polynomial on each
support interval. Note that the peak value of B2l .y/ is less than 1. If all the B2l splines
could be plotted, in any interval, there would be contributions from three splines.
But we only see this in ŒylC1; ylC2� in Fig. 1. It’s interesting to notice that these three
contributions sum to unity.

Let Y1;Y2; : : : ;Yn be n random variables with an unknown common pdf f . By
using the second order B-splines, we can approximate f by the following ‘mixture’
of B-splines:
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Fig. 1 Non-zero parts of B-splines of degree 2. Note that the peak values are less than 1.

f .y; b/ D
mC2X
lD1

blB
2
l;hl
.y/

with bl � 0,
mC2X
lD1

bl D 1; B2l;hl
.y/ D B2l .y/

hl
and hl D

Z
B2l .y/dy.

Although the mixture model is widely used [14], it is not considered to be a
complete model in practice because it only describes the data statistically and no
spatial information about the data is utilized. Under certain intensity distributions,
we want the model to be “adaptive” to structural information or spatially dependent
in order to fit the actual image better. This leads to the consideration of Hidden
Markov model (HMM).

3 Hidden Markov model

The spatial property can be modeled through different aspects, amongst which
the contextual constraint is a general and powerful one. HMM theory provides a
convenient and consistent way to model context-dependent entities such as image
pixels and correlated features.

Let K D f1; 2; : : : ;Kg, D D f1; 2; : : : ;Dg.
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Let S D f1; 2; : : : ;Ng be the set of indexes and R D fri; i 2 Sg denotes any
family of random variables indexed by S, in which each random variable Ri takes
a value ri in its state space. Such a family r is called a random field. The joint
event .Ri D ri; : : : ;RN D rN/ is simplified to R D r where r D fr1; : : : ; rNg is a
configuration of R, corresponding to a realization of this random field. Let X and Y
be two such random fields whose state spaces are K and D, respectively, so that for
8i 2 S we have Xi 2 K and Yi 2 D. Let x denote a configuration of X and X be the
set of all possible configurations so that

X D fx D .x1; : : : ; xN/ j xi 2 K; i 2 Sg:

The state of X is unobservable.
Similarly, let y be a configuration of Y and Y be the set of all possible

configurations so that

Y D fy D .y1; : : : ; yN/ j yi 2 D; i 2 Sg:

Let b D fb:;k=k 2 Kg and let b:;k D .b1;k; : : : ; bmC2;k/; k 2 K.
Given Xi D k, Yi follows a conditional probability distribution

p.yi j k/ D f .yiI b:;k/ D
mC2X
lD1

bl;kB2l;hl
.yi/;8k 2 KI l D 1; : : : ;m C 2 (3)

where b:;k is the set of parameters. For all l, the function family f .:I b:;k/ has the
same known analytic form. We also have that

p.x j y/ / p.y j x/p.x/

/ p.x/
Y
i2S

p.yi j xi/ (4)

In an HMM, the sites in S are related to one another via a neighborhood system,
which is defined as N D fNi; i 2 Sg, where Ni is the set of sites neighboring i, i … Ni

and i 2 Nj ” j 2 Ni. A random field X is said to be an HMM on S with respect to
a neighborhood system N if and only if

p.x/ > 0;8x 2 X

p.xi j xSjfig/ D p.xi j xNi/:

Note that the neighborhood system can be multidimensional. According to the
Hammersley-Clifford theorem [8], an HMM can equivalently be characterized by
a Gibbs distribution. Thus

p.x/ D Z�1 exp.�U.x// (5)
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where Z is a normalizing constant called the partition function, and U.x/ is an energy
function of the form

U.x/ D
X
c2C

Vc.x/ (6)

which is a sum of clique potentials Vc.x/ over all possible cliques C. A clique is
defined as a subset of sites in S in which all the pairs of distinct sites are neighbors,
except the single-site cliques. The value of Vc.x/ depends on the local configuration
of clique c. For more details on HMM and Gibbs distribution, see [13].

4 Parameters estimation using the EMMB algorithm

For any x 2 X , the realizations y1; : : : ; yN are conditionally independent:

p.y j x/ D
Y
i2S

p.yi j xi/: (7)

The image classification problem we consider involves assigning to each pixel a
class label taking a value from the set K. Each pixel is characterized by an intensity
value yi from the set D. A labeling of S is denoted by x, where xi, i 2 S is the
corresponding class label of pixel i. We write x� for the true but unknown labeling
configuration and Ox for an estimate of x�, both of which are interpreted as particular
realizations of a random field X, which is an HMM with a specified distribution
p.x/. The observable image itself is denoted by y. The problem of classification is
the problem of recovering x�, given the observed image y.

We seek a labeling Ox of an image, which is an estimate of the true labeling x�,
according to the MAP criterion

Ox D arg max
x2X fp.y j x/p.x/g: (8)

From (8), we need to compute the prior probability of the class and the likelihood
probability of the observation. Since x is considered as a realization of an HMM, its
prior probability can be derived from

p.x/ D Z�1 exp.�U.x// (9)

It is also assumed that the pixel intensity yi follows a B-spline distribution with
parameters bl;xi , given the class label xi

p.yi j xi/ D
mC2X
lD1

bl;xi B
2
l;hl
.yi/ (10)



Using B-splines functions and EM algorithm for Hidden Markov Model-based. . . 209

Based on the conditional independence assumption of y and according to (7), the
likelihood function is given by

p.y j x/ D
Y
i2S

p.yi j xi/

D
Y
i2S

.

mC2X
lD1

bl;xi B
2
l;hl
.yi//

which can be written as

p.y j x/ D QZ�1 exp.�U.y j x// D QZ�1 exp.�
X
i2S

U.yi j xi// (11)

where U.yi j xi/ D � log.
mC2X
lD1

bl;xi B
2
l;hl
.yi// and

U.y j x/ D
X
i2S

U.yi j xi/

D �
X
i2S

log.
mC2X
lD1

bl;xi B
2
l;hl
.yi//

(12)

and the constant normalization term QZ D 1. It is easy to show that

log p.x j y/ / �U.x j y/; (13)

where

U.x j y/ D U.y j x/C U.x/C const (14)

is the posterior energy. The MAP estimation is equivalent to minimizing the
posterior energy function

Ox D arg min
x2X fU.y j x/C U.x/g (15)

The strategy underlying the EM algorithm [5, 7] consists of the following:
estimate the missing part as Ox, given the current b estimate and then use it to form
the complete data set fOx; yg; new b can be estimated by maximizing the expectation
of the complete-data Log likelihood. Mathematically, the EM algorithm can be
described by the following.

Start an initial estimate b.o/.
The E-step calculates the conditional expectation

Q D Q.b jj b.t// D
X
x2X

p.t/.x j y; b.t// log p.x; y j b/: (16)
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where

log.p.x; y/ D
X
i2S

flog.
mC2X
lD1

b.t/l;xi
B2l;hl

.yi//C log.p.t/.xi//g;

p.t/.x j y; b.t// D
Y
i2S

p.t/.xi j yi; b
.t//

and

p.t/.xi j yi; b.t// D p.t/.yi j xi; b.t//p.t/.xi/

p.yi/

/
mC2X
lD1
.b.t/l;xi

B2l;hl
.yi//p

.t/.xi/:

The M-step maximizes Q.b jj b.t// to obtain the next estimate

b.tC1/ D arg max
b

Q.b jj b.t//: (17)

Let b.tC1/ �! b.t/ and repeat from the E-step.
Under certain reasonable conditions, EM estimates converge locally to the

maximum likelihood estimates. We denote by p.t/.k j yi; b.t// the locally dependent
probability of xi D k and the parameters b D fb:;k=k 2 Kg.

By taking first and second derivative of Q with respect to bl;k and b2l;k we have

@Q

@bl;k
D
X
i2S

p.t/.k j yi; b
.t//
�B2l;hl

.yi/ � B2k;hl
.yi/

p.k; yi j b/

� D 0

and

@2Q

@b2l;k
D �

X
i2S

p.t/.k j yi; b
.t//
�B2l;hl

.yi/ � B2k;hl
.yi/

p.k; yi j b/

�2I

l D 1; : : : ;m C 2I k 2 K:

Let

@Q

@bl;k
D Fl.b/ and

@2Q

@b2l;k
D F0

l.b/I

l D 1; : : : ;m C 2I k 2 K:

In order to solve Fl.b/ D 0; we use the Newton Raphson method or the steepest
descent method

F0
l.b

.t//.b.tC1/ � b.t// D �Fl.b
.t//I

l D 1; : : : ;m C 2:
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Fig. 2 Image simulation by the Standard EM model and the EMMB model with 3-class case and
4-connected using Potts model.

Hence, we obtain

b.tC1/l;k D b.t/l;k C

X
i2S

p.t/.k j yi; b
.t//.

B2l;hl
.yi/ � B2k;hl

.yi/

p.k; yi j b/
/

X
i2S

p.t/.k j yi; b
.t//.

B2l;hl
.yi/ � B2k;hl

.yi/

p.k; yi j b/
/2

(18)

for l D 1; : : : ;m C 2; k 2 K.
The calculation of the conditional p.t/.k j yi; b.t// involves the estimation of the

class labels xi, which are obtained through the estimation (8).

Our algorithm converges to the estimated density Of .yi/ D
mC2X
lD1

bl;Oxi B
2
l;hl
.yi/ where

Ox D .Ox1; : : : ; OxN/ denotes the set of class label of pixel i (see Figs. 2 and 3).

5 Performance comparison

The EMMB algorithm presented in Section V not only provides an effective method
for parameters estimation, but also it gives a complete framework for unsupervised
classification using iterative updating.

Without prior information, histogram analysis is widely used out initial estima-
tion using a discriminant measure based thresholding method proposed by [12].
The basic idea is to find thresholds maximizing the interclass variances. According
to theories of discriminant analysis, such thresholds are optimal solutions. Once
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Fig. 3 Image simulation by the Standard EM model and the EMMB model with 3-class case and
8-connected using Potts model.

the optimal thresholds have been determined, the initial classification can also be
obtained either directly through the thresholding, or through an ML estimation with
those known parameters.

We illustrate the performance of EMMB segmentation with different examples.
First, we show a comparison between the standard EM method and our EMMB
method for segmenting and parameter estimating. Second, we calculate the Mean

Squared Errors (MSE) which is defined by MSE D 1

n

nX
jD1
.f .yj/ � Of .yj//

2 and the

Kullback-Leibler divergence (KL) which is defined by KL D 1

n

nX
jD1

f .yj/ log.
f .yj/

Of .yj/
/

of the estimated mixture density Of from the true density f for each method.
In what follows, we consider the following clique potential function defined by

Vc.x/ D
	 �ı; if xi D xj

ı; if xi ¤ xj
where ı > 0.

In Table 1, we have first computed the MSE and KL between the empirical
distribution and the estimated mixture density by using the standard EM. Second,

Table 1 MSE and KL of
mixture distribution obtained
by EM and EMMB.

MSE Image vegetable img R img G img B

Standard EM 0.2981 0.3124 0.4236 0.1344

EMMB 0.0406 0.0068 0.0497 0.0232

KL Image vegetable img R img G img B

Standard EM 0.329 0.125 0.286 0.147

EMMB 0.0258 0.0012 0.097 0.095
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Fig. 4 Image segmented with EMMB and standard EM.

we have computed the MSE and KL between the empirical distribution and the
estimated mixture density by using the EMMB algorithm. This work was done
for an image (vegetable) which will be described later. We notice that the EMMB
method gives a much lower MSE and KL for both images.

In Fig 4, we consider a real image (vegetable) which is a photograph of 512 

512 
 3 pixels resolution and is represented by 256 color levels segmented with
EMMB model and standard EM.

6 Conclusions

In this paper, we have introduced a new nonparametric B-splines using Hidden
Markov model. Many results presented prove that the estimation of density by using
the proposed estimator is better than those of other methods.
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Iris Localization Using Mixture of Gamma
Distributions in the Segmentation Process

Fatma Mallouli, Atef Masmoudi, Afif Masmoudi, and Mohamed Abid

Abstract This paper contributes to more accurate iris segmentation. We propose a
new approach for iris image segmentation based on mixture of Gamma distributions
modeling and an extended Expectation Maximization (EM) algorithm. We apply our
approach to segment iris images from the CASIA (Chinese Academy of Sciences
Institute of Automation)-Iris-Twins testing database. The accuracy of our algorithm
is proved based on Kullback Leibler distance computation.

Keywords Iris • Segmentation • Mixture of Gamma distributions • EM
algorithm • CASIA Iris images database

1 Introduction

Biometric identification is a process based on measurable biological and behavioral
characteristic information that can be used for automated recognition. This process
is preferred on traditional methods, while its information constitutes an important
emphasis on security and cannot be stolen virtually. Iris recognition is a biometric
authentication approach that applies pattern recognition procedure based on high
resolution of iris images of a person’s eye [5]. An iris recognition system is
composed of various sub-systems: Picture taking process, segmentation of the
picture, normalization, encoding and matching processes [3]. Every one of these
steps is important to better identify subjects, but in an early step, iris segmentation
plays the important role. In other words, a well-segmented picture would be an
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excellent input to the steps that follow. In real life, images are captured at a distance
and on the move which makes iris segmentation much more difficult due to the
effects of: eye position and size variation, eyebrows, eyelashes, glasses and contact
lenses, and hair; all along with changing illumination and focusing condition.
Image segmentation is among the most important frequently addressed fundamental
problems in image analysis and pattern recognition. It is the process of division
of the image into homogenous regions. In the past decades, many segmentation
methods for analyzing various images have been studied [1, 8, 10, 13]. Statistical
modeling for analyzing various images has been reported [11]. The process of
image segmentation, particularly, iris segmentation [15], is a complex step in
irisrecognition systems. The level of complexity is well multiplied when trying to
segment non-cooperative and noisy iris images [7, 11]. The segmentation process
leads to: Localization of the iris, eye lid boundaries (lower and upper), skin region
detection, eyebrow and eye lashes detection, and pupil identification [2]. Our paper
deals with finding the region where the iris is located. In many studies [7, 11] authors
eliminate the skin regions, the eyebrows, and most of miscellaneous regions. Then,
the output is a binary image that could be a much better input to locating the iris than
the raw image. This approach is very crucial to noisy images taken on the move
or/and at a distance. After that, they apply segmentation algorithms to segment it
into three regions where one of them contains the iris [7]. Many of these algorithms
utilize probability models mainly finite mixture Gaussian distributions [6]. In the
present paper we propose to model different regions of iris image by mixture of
gamma distributions. The parameters of the proposed mixture model are estimated
by using the Expectation-Maximization algorithm through maximum likelihood.
Note that, we extend the EM algorithm by adding an update step to the M step, in
order to better estimate the parameters of our model. To confirm the efficiency and
robustness of the proposed method, we apply our gamma modeling to the CASIA
Iris images database. We compare our results to classical Gaussian approach. The
outline of this paper is as follows: In the second section, we present the mixture of
gamma model and the EM algorithm. In the third section, we apply our extended
EM algorithm to segment the iris image into three regions. Finally we discuss results
and we conclude.

2 Mixture of Gamma Distributions and EM Algorithm

2.1 Mixture of Gamma distributions

The finite mixture of gamma distributions has been used as the statistical modeling
of a continuous feature space. The feature space can be modeled as a finite mixture
of gamma distributions with a known number K of components. Let X D x1; : : : ; xN

be a set of observable sample drawn independently according to the density mixture
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f .x/ and xi denotes the observation at the ith pixel of an image modeled as a mixture
of Gamma distributions. The mixture model with K components is given by:

f .x/ D
KX

kD1
�k�.x=ak; bk/ (1)

where �k is the mixing proportions such that 0 < �k < 1 and
KX

kD1
�k D 1

�.x=ak; bk/ D bak
k

� .ak/
e�bk.x/xak�1IRC.x/

denotes the density of Gamma distribution with shape parameter bk and with scale
parameter ak. The log likelihood function of the mixture of Gamma distributions for
a parameter � D .a1; : : : ; akI b1; : : : ; bkI�1; : : : ; �k/ is given by:

L.�/ D
NX

iD1
LogŒ f .xi/�

D
NX

iD1
LogŒ

KX
kD1

�k�.xi=ak; bk/� (2)

In this section, we will present our approach for estimating the parameters
.a1; : : : ; akI b1; : : : ; bkI�1; : : : ; �k/ by using our extension of the EM algorithm.

2.2 Extended EM algorithm

The EM algorithm is a general iterative technique for computing maximum-
likelihood (ML) estimates when the observed data can be regarded as incomplete
[4]. In maximum-likelihood estimation [9, 12], the unknown parameter � is
estimated by maximizing the log-likelihood function which is given by equation
(2). The initial condition of the EM algorithm can be chosen using K-means method.
The EM algorithm consists of an E-step and an M-step is proposed to estimate this
problem. Suppose that �n denotes the estimation of obtained after the nth iteration
of the algorithm. Then at the .n C 1/th iteration, the E-step computes the expected
complete data log-likelihood function:

Q.�; �n/ D
NX

iD1

KX
kD1

�n
k .xi/LogŒ�k�.xi=ak; bk/� (3)
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where �n
k .xi/ is a posterior probability and is computed as:

�n
k .xi/ D �n

k �.xi=an
k ; b

n
k/

kX
kD1

�n
k �.xi=an

k ; b
n
k/

(4)

The M-step maximizes Q.�; �n/ function with respect to � in order to obtain the
new parameter value �nC1 using the following equation:

�nC1 D arg max
�

Q.�; �n/ (5)

After some calculations, the estimations of ak; bk, and �k are, respectively, given

by anC1
k D  �1

0 Œ

NX
iD1

�n
k .xi/Log.xib

n
k/

NX
iD1

�n
k .xi/

�, bnC1
k D

NX
iD1

an
k�

n
k .xi/

NX
iD1

xi�
n
k .xi/

and

�nC1
k D 1

N

NX
iD1

�n
k .xi/ (6)

where  �1
0 denotes the reciprocal function of the digamma function  0.x/ D � .x/

::‹

and � .x/ D R1
0

e�ttx�1dt for all x > 0. Note that �nC1
k and SnC1

k represent,
respectively, the estimation of the mean and the standard deviation parameters in the
mixture of Gaussian distributions. The problem of using the EM algorithm in image
segmentation lies in the difficulty to estimate the number of components in mixture.
Many approaches, for example, the method used in [14] assumes that the number is
known in advance, this means that, the number of segmentation region is determined
in advance by the user. In our case the number of segmentation region is fixed
to three: iris, papillary, and spectra (KD3). The segmentation is carried out by
assigning each pixel into a proper class according to the Bayesian rule. After the
mixture identification, the Bayesian rule is applied in order to classify the pixels
according to their gray level x. Let j.x/ be the label of the class of the pixel x and bak,bbk, and b�k are the estimated mixture parameters:

j.x/ D arg max
1�k�3 �k�.xi=an

k ; b
n
k/ (7)
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3 Experimentations and Results

3.1 Data

CASIA Iris Image Database (CASIA-Iris) [2] has been released to the international
biometrics community and updated from CASIA-IrisV1 to CASIA-IrisV4. Great
progress of iris recognition has been achieved since 1990s. However, iris images
captured at a distance are more challenging than traditional close-up iris images.
Most current iris recognition methods have been typically evaluated on medium
sized iris image databases with a few hundreds of subjects. However, more and
more large-scale iris recognition systems are deployed in real-world applications.
Many new problems are met in classification and indexing of large-scale iris image
databases. CASIA-Iris-Twins contains iris images of pairs of twins, which were
collected using OKI’s IRISPASS-h camera [2].

We took 100 iris images of the CASIA database, in order to segment them. We
used the classical model and the Mixture of Gamma distributions for each eye
image. Figure 1 shows a sample of the results composed of the original image,
segmented image by usual approach and segmented image by our approach.

We notice from this figure that the segmented images using our approach are
better than those segmented with the classical approach. In fact, the first are more
close to the original eye images.

Based on Kullback distance, the performance of our method is evaluated using
two criteria, the first one is the evaluation of the estimation method and the second
is the evaluation of the segmentation results.

3.2 Segmentation method evaluation

As a criterion of similarity to evaluate the estimation methods, the Kullback
Leibler divergence is computed between the usual empirical distribution and the
estimated Gamma or Normal distribution for each eye image (Figure 2). The fact
that one model is better than the other can be observed by the minimal Kullback
Leibler distance or divergence. From Figure 2 we notice that for large number of
eyes, the divergence between the empirical and the Gamma distributions is lower
than the divergence between the empirical and the Normal distributions, which
implies that our method performs better than the usual normal method. On the other
hand, and in order to evaluate the segmentation process, we calculated Kullback
Leibler distance between each two estimated density regions, after that we sum
the three different distances for each segmented eye image. This sum is calculated
for the classical method and for our approach. The better is the segmentation, the
higher is the distance between the classes, and therefore, the best method gives
the larger distance value. The graphical representation of the sum of three class
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Fig. 1 Original and segmented eye images by usual and our approaches

distances for every individual eye, estimated by Gamma and Normal approaches is
shown in Figure 3.

This figure shows a good performance of our algorithm in iris image processing,
since our approach gives higher sum of distances for most of the eyes tested, which
implies a better segmentation given by the adopted mixture of the Gamma model.
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Fig. 3 Graphical representation of class distances between Gamma and Gaussian approaches

4 Conclusion

Mixture of distributions has provided a mathematical based approach to the
statistical modeling of a wide variety of random phenomena. These models are
required in many applications in particular in automated recognition. In this paper,
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we considered eye image segmentation process. We apply mixture of Gamma
distributions and we extend the EM algorithm to improve the segmentation process.
Iris images from CASIA database were segmented based on two methods (usual
and our method). The efficiency of our approach is proven by comparison to the
reference method segmentation.
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Gamma stopping and drifted stable processes

Mahdi Louati, Afif Masmoudi, and Farouk Mselmi

Abstract Let Y D .Y.t//t�0 be a Lévy process on the real line and T be a
Gamma random variable independent from Y . We proved that, for all p > 1,
Y.T/ and Y.T/=Tp are independent if, and only if, Y is stable with parameter 1=p.
This represents an extension of the result given by Letac and Seshadri [4] which
represents the case where T is an exponential random variable.

Keywords Cumulant function • infinitely divisible process • Lévy process

1 Introduction

In probability theory, a stable process is a type of stochastic process. It includes
stochastic processes whose associated probability distributions are stable distribu-
tions. This is why, many research have been devoted to this class of stochastic
processes. References [7] and [5] studied this class by characterizing it by its
Fourier transform and Laplace transform. Combining this class with the class of
Lévy processes which represent a very important class of stochastic processes,
we get many important results by using the formula of Lévy-Khinchine. A major
emphasis was put on Lévy processes in many applied fields such as the theory of
financial mathematics. Hence, several papers and books have been devoted to these
processes in the past few years. Some of these works have dealt with the relationship
between Lévy processes and infinitely divisible distributions (see [6] and [1]). First,
we consider a Lévy process Y D .Y.t//t�0 defined on a probability space .˝;F ;P/

with a value on the real line. Let �t be the distribution of Y.t/ and let k.s/ be the
cumulant function of �1, i.e.,

k.s/ D logE
�
esY.1/

�
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defined on � D intfs 2 RIE �esY.1/
�
< C1g ¤ ;. So, the cumulant function of

�t is kt.s/ D tk.s/. An interesting paper of [4] has characterized a Lévy process
Y D .Y.t//t�0 by using a mixture of Y and an exponential standard random variable
T independent from Y in order to get the cumulant function and the stability of Y.t/.

The idea of this work is based on the results given by [4] in order to extend these
results by replacing the exponential distribution by a Gamma distribution and find a
new characterization and find the stability of the class of Lévy processes on the real
line.

The remaining part of this paper is structured as follows. After recalling some
preliminary results in section 2, we establish our main results in section 3. In
section 4, we give a conclusion.

To make clear the results of this paper, we need to introduce some notations that
will be used in this paper.

2 Preliminary

2.1 Natural exponential family

To make clear our introduction, we need to introduce some basic notations. As a
reference of these notations, we have [3]. Let � be a positive random measure on
the real line, we denote by

L�.s/ D
Z
R

exp.sx/�.dx/ < 1

its Laplace transform and

�.�/ D intfs 2 RI L�.s/ < 1g:

Let � be a probability measure such that �.�/ ¤ ;. We define the cumulant
function of the measure � by

k�.s/ D ln
�
L�.s/

�
:

The set

�.�/ D f� > 0I 9 �� such that k��.s/ D �k�.s/;8s 2 �.�/g

is called the Jørgensen set of � and the measure �� is its �� power of convolution.
The set �.�/ is equal to �0;C1Œ if and only if � is infinitely divisible (see [7],
p. 155). For � a positive measure on the real line, the probability set
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F D F.�/ D fP.s; �/.dx/ D esx�k�.s/�.dx/I s 2 �.�/g

is called the natural exponential family (NEF) generated by �.

2.2 Lévy process

Let .Y.t//t�0 be a Lévy process on the real line. An important result which
characterizes Lévy processes is the Lévy-Khinchine formula expressed by the
cumulant function, for all s � 0,

kY.t/.s/ D t



1

2
�2s2 C bs C

Z
Rnf0g

.esx � 1C s�.x//
.dx/

�
;

where b; � 2 R, the measure 
 satisfies the condition
R
Rnf0g min.1; x2/
.dx/ < 1

and � is a some fixed bounded continuous function such that limx!0
�.x/�x

x2
< 1

and nonzero. The measure 
 is called Lévy measure. If 
.�0;C1Œ/ D 0, then we
said that 
 is spectrally negative Lévy measure and it is said spectrally positive, if

.�� 1; 0Œ/ D 0. If 
 is bounded, the semigroup .�t/t�0 is said to be of type 0. If 

is unbounded but such that

R
Rnf0g min.1; jxj/
.dx/ < C1, the semigroup .�t/t�0 is

said to be of type 1. It is said to be of type 2 if
R
Rnf0g min.1; jxj/
.dx/ diverges. The

function � is not useful for types 0 or 1 and we can write in this case

kY.t/.s/ D t



1

2
�2s2 C bs C

Z
Rnf0g

.esx � 1/
.dx/

�
: (1)

2.3 Stable process

Let ˛ 2�0; 2�, a random variable X on R is ˛-stable in the broad sense if for each
n � 2, there exist fn 2 R and n random variables X1;X2; : : : ;Xn i.i.d such that

X1 C X2 C : : :C Xn D n1=˛X C fn: (2)

Furthermore X is strictly stable if (2) holds with fn D 0 for all n � 2.
Let p > 1. If a random variable X is 1

p -stable on the real line, then its Laplace
transform is given as follows, for all s � 0

LX.s/ D e�.�s/1=p
:
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Using a result given by [2], we get that there exist t; ˇ > 0 such that a stable process
.X.t//t�0 has the following Laplace transform, for all s � 1

ˇ

LX.t/.s/ D et.1�.1�ˇs/1=p/:

3 Main Results

In this section, we study a generalization of [4] on the real line of a Lévy process
Y D .Y.t//t�0 on R. For this reason, we denote by �t the distribution of Y.t/.
Without loss of generality, we suppose that 0 2 �.�1/ and �1 is non-Dirac
distribution. Then, we get these following theorems.

Theorem 3.1. Let Y D .Y.t//t�0 be a non-negative, non-Dirac real Lévy process.
Let T be a random variable with Gamma �.n; b/ distribution independent from Y.
Assume that for p > 1, Y.T/=Tp and Y.T/ are independent. Then

i) P.Y.t/ D 0/ D 0.
ii) For all s < 1

ˇ

E.esY.t// D exp
� t

b
.1 � .1 � ˇs/1=p/

�
; (3)

where
1

ˇ
D n� .n/

pbp� .n C p/
E

�
Tp

Y.T/

�
.

iii) For all s < 1
ˇ

E.esY.T// D .1 � ˇs/�
n
p : (4)

iv) For all a > 0

E

��
Tp

Y.T/

�a�
D � .n=p/� .pa C n/bpa

� .n=p C a/� .n/ˇa
: (5)

Proof. i) Since Y is a Lévy process, then as a consequence we get for all s � 0,

L�t.s/ D
Z C1

0

esy�t.dy/ D etk�1 .s/:

For all t > 0, denote pt D P.Y.t/ D 0/, then

pt D lim
s!�1

Z C1

0

esy�t.dy/ D �t.0/ D pt
1:
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Assume that pt > 0, for t > 0, then

q D P.Y.T/ D 0/

D
Z C1

0

e� t
b tn�1

� .n/bn
P.Y.t/ D 0/dt

D
Z C1

0

e� t
b tn�1

� .n/bn
pt
1dt

D
Z C1

0

e� t
b .1�b ln p1/tn�1

� .n/bn
pt
1dt D .1 � b ln p1/

�n > 0:

Since Y.T/=Tp and Y.T/ are independent, hence

q D P .Y.T/ D 0I Y.T/=Tp D 0/ D P .Y.T/ D 0/2 D q2:

Hence q D 1, this contradicts that Y is non-Dirac. Then for all t � 0,
P.Y.t/ D 0/ D 0.

ii) There exists � > 0 such that

E

�
Tp

Y.T/

�
D E

�
Tp

Y.T/

ˇ̌̌
Y.T/

�
D �:

This implies that

E

�
Tp
ˇ̌̌
Y.T/

�
D �Y.T/:

Using this, then we have

Z C1

0

tp e� t
b tn�1

� .n/bn
�t.y/dt D

Z C1

0

�y
e� t

b tn�1

� .n/bn
�t.y/dt (6)

Then, for s < 0, we multiply both sides of (1) by esy and integrate with respect
to y, we get

Z C1

0

Z C1

0

esytp e� t
b tn�1

� .n/bn
�t.dy/dt D �

Z C1

0

Z C1

0

esyy
e� t

b tn�1

� .n/bn
�t.dy/dt:

Using the property of infinite divisibility of Y , we get

Z C1

0

etk�1 .s/
e� t

b tpCn�1

� .n/bn
dt D �

@

@s

 Z C1

0

etk�1 .s/
e� t

b tn�1

� .n/bn
dt

!
:
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Thus

Z C1

0

e� t
b .1�bk�1 .s//tpCn�1

� .n/bn
dt D �

@

@s

 Z C1

0

e� t
b .1�bk�1 .s//tn�1

� .n/bn
dt

!
:

It follows that

.1 � bk�1.s//
�p�n bp� .n C p/

� .n/
D �

@

@s

�
.1 � bk�1.s//

�n
�
:

This implies that

.1 � bk�1.s//
p�1bk0

�1
.s/ D �bp� .n C p/

�n� .n/
:

Then we get

k�1.s/ D 1

b
.1 � .1 � ˇs/1=p/;

where
1

ˇ
D n� .n/

pbp� .n C p/
E

�
Tp

Y.T/

�
.

iii) Using the result (3), we have

E
�
esY.T/

� D
Z C1

0

e� t
b tn�1

� .n/bn
E
�
esY.t/

�
dt

D
Z C1

0

e� t
b tn�1

� .n/bn
e

t
b .1�.1�ˇs/1=p/dt

D
Z C1

0

tn�1

� .n/bn
e� t

b .1�ˇs/1=p
dt

D .1 � ˇs/�n=p:

Then the distribution of Y.T/ is Gamma �.n=p; ˇ/.
iv) Since Y.T/=Tp and Y.T/ are independent, then

E

��
Tp

Y.T/

�a�
D E

�
Tpa

Y.T/a

�
E .Y.T/a/

E .Y.T/a/
D E .Tpa/

E .Y.T/a/
:

Using the fact that T � �.n; b/ and Y.T/ � �.n=p; ˇ/, then we get

E

��
Tp

Y.T/

�a�
D E .Tpa/

E .Y.T/a/
D � .n=p/� .pa C n/bpa

� .n=p C a/� .n/ˇa
:
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Theorem 3.2. Let Y D .Y.t//t�0 be a non-negative, non-Dirac real Lévy process.
Let T be a random variable with Gamma �.n; b/ distribution independent from Y.
Then for p > 1, Y.T/=Tp and Y.T/ are independent if, and only if, Y is stable and
has the following Laplace transform, for all s � 1

ˇ

LY.t/.s/ D e
t
b .1�.1�ˇs/1=p/:

Proof. Assume that Y is stable and has the following Laplace transform, for
all s � 1

ˇ

LY.t/.s/ D e
t
b .1�.1�ˇs/1=p/:

As a consequence, we get (4) and (5). On the other hand,

E

��
Tp

Y.T/

�a

esY.T/

�
D
Z C1

0

Z C1

0

tpa

ya
esy e� t

b tn�1

bn� .n/
�t.dy/dt

Using the fact that y�a D 1
� .a/

R C1
0

e�yvva�1dv, then we get

E

��
Tp

Y.T/

�a

esY.T/

�
D 1

� .a/

Z C1

0

Z C1

0

va�1 e� t
b tpaCn�1

bn� .n/

 Z C1

0

e.s�v/y�t.dy/

!
dtdv

D 1

� .a/

Z C1

0

Z C1

0

va�1 e� t
b .1�bk�1 .s�v//tpaCn�1

bn� .n/
dtdv

D 1

� .a/

Z C1

0

va�1

 Z C1

0

e� t
b .1�bk�1 .s�v//tpaCn�1

bn� .n/
dt

!
dv

D � .pa C n/

� .a/� .n/

Z C1

0

va�1.1� bk�1 .s � v//�pa�nbpadv

D � .pa C n/bpa

� .a/� .n/

Z C1

0

va�1.1� ˇ.s � v//
�a� n

p dv:

Assume that u D ˇ

1�ˇsv, thus

E

��
Tp

Y.T/

�a

esY.T/

�
D � .pa C n/bpa

� .a/� .n/

1

.1 � ˇs/
n
pˇa

Z C1

0

ua�1

.1C u/aC n
p

du

D � .n=p/� .pa C n/bpa

� .a C n=p/� .n/ˇa
.1 � ˇs/�

n
p

D E

��
Tp

Y.T/

�a�
E
�
esY.T/

�
:

This implies that Y.T/=Tp and Y.T/ are independent.



230 M. Louati et al.

Remark 3.1. Using the Lévy-Khinchine formula given in (1) with � D b D 0

and spectrally positive Lévy measure 
, we get that the Laplace transform
LY.t/.s/ D e

t
b .1�.1�ˇs/1=p/ has the following Lévy measure of type 1:


.dx/ D �1
b

e� x
ˇ

x� 1
p �1
ˇ1=p

� .1 � 1
p /
1�0;C1Œ.x/dx:

Consider now a Lévy process X D .Xt/t�0 governed by a convolution semigroup
.�t/t�0 which is spectrally negative, let us fix a level x0 > 0 and consider the hitting
time

Y.x0/ D infft � 0I X.t/ D x0g

with the convention that Y.x0/ D C1 if this set of t is empty. Because X is
spectrally negative, this is a consequence of the general theory of Lévy processes
(see [1]) that Y.x0/ < C1 if and only if there exists t such that X.t/ > x0. This
occurs lim supt!C1 X.t/ D C1 when almost surely.

Theorem 3.3. Let X D .Xt/t�0 be a spectrally negative Lévy process such that
lim supt!C1 X.t/ D C1 a.s. Let x0 be a realization of Gamma �.n; b/ random
variable T independent from X. Define Y.x0/ D infft � 0I X.t/ D x0g. Then there
exists p 2�1; 2� such that Y.T/=Tp and Y.T/ are independent if and only if there
exists ˇ > 0 such that for z � 0, one has

E.ezX.t// D e
t
ˇ ..1Cbz/p�1/

:

Proof. Consider the Lévy process Y D .Y.x0//x0>0. Then T and Y are independent.
From Theorem 3.1, there exists a number ˇ > 0 such that, for all s � 0,

LY.x0/.s/ D e
x0
b .1�.1�ˇs/1=p/:

Since X is a Lévy process, then, for all z � 0

LX.t/.z/ D etkX.1/.z/:

Using the fact that X is spectrally negative, then we get that for suitable �2, b, 
 one
has the Lévy-Khinchine formula

kX.1/.z/ D 1

2
�2z2 C bz C

Z 0

�1
.ezx � 1 � z�.x//
.dx/:
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Note that k0
X.1/.0/ D b C

Z 0

�1
.x � �.x//
.dx/ 2 Œ�1;C1Œ. Since lim supt!C1

X.t/ D C1 a.s, then E.X.t// D tk0
X.1/.0/ � 0. Using the fact that kX.1/.0/ D 0

and kX.1/ is convex, thus kX.1/.z/ > 0, for all z > 0. For z > 0, consider the
process Mz D .Mz.t//t�0 defined by Mz.t/ D ezX.t/�tkX.1/.z/. With respect to the
natural filtration of X, we get that Mz is a martingale. For fixed d > 0, consider
the regular stopping time Yd D min.Y.x0/; d/. Hence

1 D E.Mz.Yd// D E.Mz.Yd/1fY.x0/>dg/C E.Mz.Yd/1fY.x0/�dg/

D E.ezX.d/�dkX.1/.z/1fY.x0/>dg/C E.ezx0�x0kX.1/.z/1fY.x0/�dg/:

Since

0 � E.ezX.d/�dkX.1/.z/1fY.x0/>dg/ � ezx0�dkX.1/.z/ �!d!C1 0:

This implies that

1 D ezx0E.e�Y.x0/kX.1/.z// D ezx0e
x0
b .1�.1CˇkX.1/.z//1=p/:

Then, we get

kX.1/.z/ D 1

ˇ
..1C bz/p � 1/:

4 Conclusion

The aim of this work was to explain the importance of the role of a Gamma random
variable in terms of finding a characterization of a very important class of stochastic
processes which is the class of Lévy processes. This was achieved by mixing a Lévy
process with a Gamma random variable and using some independence conditions
between this random matrix and the Lévy process. A fundamental property which
has been used many times was the property of infinite divisibility Lévy processes
which allowed us to get these results. Hence, the main result was to give the
cumulant function of the Lévy process.

As a motivation of this work is to extend this on the multivariate case on the
cone of symmetric matrices. This work has many important results because the
natural extension of the Gamma distribution on the cone of symmetric matrices
is the Wishart distribution. Moreover, it isn’t an easy task to find a characterization
and the stability of Lévy processes on the cone of symmetric matrices.
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On the Born-Oppenheimer asymptotic
expansions

Abderrahmane Senoussaoui

Abstract We study the discrete spectrum of a general class of Born-Oppenheimer
Hamiltonians of the type:

H D �h2�x C P
�
x; y;Dy

�
on L2

�
R

n
x 
 R

p
y

�
; n; p 2 N

�

when h tends to 0C, here P
�
x; y;Dy

�
is a pseudodifferential operator on L2

�
R

p
y

�
:

In the case where the first eigenvalue �1 .x/ of P
�
x; y;Dy

�
on L2

�
R

p
y

�
admits

one nondegenerate point well, we obtain WKB-type expansions for all order in
h1=2 of eigenvalues (in the interval Œ0;C0h�; C0 > 0/ and associated normalized
eigenfunctions of H; and this for all orders in h1=2.

1 Introduction

The Born-Oppenheimer approximation is a method introduced in [2] to analyze the
spectrum of molecules. It consists in studying the behavior of the associate Hamil-
tonian when the nuclear mass tends to infinity. This Hamiltonian can be written in
the form:

P D �h2�x ��y C V .x; y/

where x 2 R
n represents the position of the nuclei, y 2 R

p is the position of the
electrons, h is proportional to the inverse of the square-root of the nuclear mass, and
V .x; y/ is the interaction potential.

In the last decade, many efforts have been made in order to study in the
semiclassical limit the spectrum of P (see, e.g., [4, 6–10],. . . ). These authors
have shown that in many situations it is still possible to perform, by Grushin’s
method, semiclassical constructions related to the existence of some hidden effective
semiclassical operator.
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It has been proved, both for smooth potentials [7] and for the physically
interesting case of Coulomb interaction potentials (see, [6, 9]), the existence for the
operator P of asymptotic expansions for eigenvalues and associated eigenfunctions
of the types:

X
j�0

˛jh
j=2 and e� .x/=h

0
@X

j�0
aj .x; y/ hj=2

1
A ;

where  .x/ is the Agmon distance between x and the potential well.
Here we plan to give a unified version of the two results in [7] and [6], which can

be applied to the general class of operators of the type H D �h2�x C P
�
x; y;Dy

�
;

where P
�
x; y;Dy

�
is a pseudodifferential operator on H2 D L2

�
R

p
y

�
(the so-called

electronic Hamiltonian and its eigenvalues are the so-called electronic levels).
By using the h-pseudodifferential operators with operator-valued symbol and

the general Feshbach reduction scheme (see [1, 11]), the spectral study of H on
L2
�
R

n
x 
 R

p
y

�
is reduced to that of a matrix of h-pseudodifferential operators F .�/

on
�
L2
�
R

n
x

��˚m
(the so-called effective Hamiltonian) with principal symbol the

diagonal matrix diag
�
�2 C �j .x/

�
1�j�m where m > 0 depends on the energy level

and
�
�j .x/

�
1�j�m are the electronic levels. In particular, we obtain the following

equivalence:

� 2 Sp .H/ ” � 2 Sp .F .�//

(here Sp stands for the spectrum).
The general theory of Helffer and Sjöstrand in [5] can be applied to the operator

F .�/ and shows the existence of formal WKB-type expansions for eigenfunctions
of this operator. This finally gives the formal WKB-type expansions for the operator
H itself.

The argument of Martinez in [7] gives a justification to the formal WKB-
constructions by showing that, modulo an error of size O .h1/ ; the formal
eigenfunctions approximate correctly the true eigenfunctions of H:

The plan of this paper is the following. In the first section we introduce our
assumptions and give preliminaries. The spectral reduction of the problem is given
in the second section. The third section is devoted to state our main result and apply
the reduction theorem obtained in the section 2 to establish the proof.

2 Assumptions and preliminaries

On the pseudodifferential operator Q .x/ D P
�
x; y;Dy

�
; we assume (H1), (H2), and

(H3) below.

(H1) For every x 2 R
n; Q .x/ is self-adjoint and bounded from below on H2 with

x-independent domain H1.
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(H2) The spectrum of the pseudodifferential operator Q .x/ has two disjoint
components for every x 2 R

n:

Sp .Q .x// D f�1 .x/ ; �2 .x/ ; : : : ; �m .x/g [ � .x/
where �1 .x/ ; �2 .x/ ; : : : ; �m .x/ depend continuously on x; there is a gap
between them and the rest of Sp .Q .x// more precisely:

9ı > 0; inf� .x/ > max f�1 .x/ ; �2 .x/ ; : : : ; �m .x/g C ı; 8x 2 R
n

and remain uniformly separated outside some compact subset of Rn:

9 QC > 0; inf
j¤k

jxj�C

ˇ̌
�j .x/ � �k .x/

ˇ̌ � QC; C > 0:

(H3) Q .x/ 2 C1
b .Rn;L .H1;H2// ; Q .x/ depends smoothly on x and is

uniformly bounded together with all its derivatives as an operator from H1 to H2.

Example 1. • The operator Q .x/ D � d2

dy2
C �

1C x2
�2l

y2; x 2 R; l 2 R satisfies
the assumptions (H1) to (H3) with domain

H1 D H2
�
Ry
� \ ˚

' 2 L2
�
Ry
� I y2' 2 L2

�
Ry
� �

;

�j .x/ D .2j C 1/
�
1C x2

�l I j D 1; : : : ;m and

� .x/ D
n
.2j C 1/

�
1C x2

�l I j � m C 1
o
:

• A second example is given in [9, 10] for the differential operator OQ .x/ D
U .x/

���y C V .x; y/
�

U�1 .x/ where U .x/ is a diffeomorphism regularizing the
physical case of the Coulomb interaction potential V .x; y/.

We denote by Sm
�
R
2n;L .A;B/

�
the space of operator-valued symbols of order

m 2 R:
	

a W R2n 7! L .A;B/ 2 C1I 8 .˛; ˇ/ 2 R
2n;

���@˛x @ˇ� a .x; �/
���
L .A;B/

D O .< � >m/

�

with < � >D
�
1C j�j2

�1=2
and L .A;B/ the space of bounded linear operators

from the Hilbert space A to the Hilbert space B.
For ' 2 S .Rn;A/ (the Schwartz space); x 2 R

n and a 2 Sm
�
R
2n;L .A;B/

�
;

the h-pseudodifferential operator (the Weyl quantification of the symbol a) is
defined by:

Opw
h .a/ ' .x/ D .2�h/�1

Z
R2n

e
i
h<x�y;�>a

�
x C y

2
; �

�
' .y/ dyd�:
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Note that Opw
h .a/maps continuously S .Rn;A/ into S .Rn;B/. In particular, due to

a slight generalization of the Caldéron-Vaillancourt theorem (see [3, 11]), if m � 0

then Opw
h .a/ 2 L

�
L2 .Rn;A/ ;L2 .Rn;B/

�
:

Using the constructions made in [6] lemma 1.1, we have the following lemma:

Lemma 1. Under .H1/ to .H3/, there exist an orthonormal family fu1 .x/ ; u2
.x/ ; : : : ; um .x/g in H2 such that:

1. 8j 2 f1; : : : ;mg ; uj .x/ 2 C1
b .Rn;H2/ ;

2. fu1 .x/ ; u2 .x/ ; : : : ; um .x/g generates the space
mL

jD1
ker

�
Q .x/ � �j .x/

�
:

3 Feshbach reduction

If
m˚

jD1
 j D . 1; : : : ;  m/ 2 �L2 .Rn/

�˚m
and ' 2 L2 .Rn;H1/, then we define:

m˚
jD1

uj .x/

�
m˚

jD1
 j

�
D

mX
jD1

uj .x/  j,

< ';
m˚

jD1
uj .x/ >H2D

m˚
jD1
.< '; uj .x/ >H2 /:

For � 2 R, we consider the following matrix operator (the so-called Grushin
operator):

P .�/ D

0
B@

H � � m˚
jD1

uj .x/

< :;
m˚

jD1
uj .x/ >H2 0

1
CA on L2 .Rn;H1/˚ �

L2 .Rn/
�˚m

:

Denote by �C D inf
x2Rn

fSp .Q .x// n f�1 .x/ ; �2 .x/ ; : : : ; �m .x/gg. Then we have:

Theorem 1. Assume (H1)–(H3). Then for any � < �C; the Grushin operator
P .�/ W H2 .Rn;H1/ ˚ �

L2 .Rn/
�˚m �! L2 .Rn;H2/ ˚ �

L2 .Rn/
�˚m

is invertible
and its inverse can be written as:

P .�/�1 D
�

E .�/ EC .�/
E� .�/ E�C .�/

�

where E .�/ ;E˙ .�/ and E�C .�/ are h-pseudodifferential operators.
Moreover, we have the following equivalence:

� 2 Sp .H/ ” � 2 Sp .F .�// (1)
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where F .�/ D ��E�C .�/ is an m 
 m matrix of h-pseudodifferential operators on�
L2 .Rn/

�˚m
with the diagonal matrix diag

�
�2 C �j .x/

�
1�j�m as principal symbol.

Proof. We can consider the Grushin operator P .�/ as an h-pseudodifferential
operator with operator-valued symbol p� .x; �/ given by:

p� .x; �/ D

0
B@
�2 C Q .x/ � � m˚

jD1
uj .x/

< :;
m˚

jD1
uj .x/ >H2 0

1
CA W H1 ˚ C

m �! H2 ˚ C
m:

Using the fact that for any � < �C and x 2 R
n,

O� .x/Q .x/ O� .x/ � � > 0 (2)

the symbol p� .x; �/ is invertible and its inverse q� .x; �/ is given by:

q� .x; �/ D

0
B@

r .x; �; �/
m˚

jD1
uj .x/

< :;
m˚

jD1
uj .x/ >H2

�
� � �2 � �j .x/

�
1�j�m

1
CA

where O� .x/ D 1 � � .x/ ; � .x/ denotes the orthogonal projection on the space
mL

jD1
ker

�
Q .x/ � �j .x/

�
and r .x; �; �/ D O� .x/ ��2 C O� .x/Q .x/ O� .x/ � ���1 O� .x/ :

Due to (H3) and (2), we can consider the Weyl quantification Q .�/ D Opw
h .q�/ W

L2 .Rn;H2/˚ �
L2 .Rn/

�˚m �! H2 .Rn;H1/˚ �
L2 .Rn/

�˚m
:

The symbolic calculus and especially the composition theorem of h-pseudodiff-
erential operators allow us to obtain

8<
:
P .�/Q .�/ D I C hR1I kR1kL �

L2.Rn;H2/˚.L2.Rn//
˚m

� D O .1/

Q .�/P .�/ D I C hR2I kR2kL �
H2.Rn;H1/˚.L2.Rn//

˚m
� D O .1/

:

Here, the estimates of kR1k and kR2k are uniform with respect to h: As a
consequence, for h small enough, P .�/ is invertible and its inverse is given by
the Neumann series:

P .�/�1 D Q .�/

 
I C

C1X
kD1

hkRk
1

!
D
 

I C
C1X
kD1

hkRk
2

!
Q .�/ : (3)

In view of (4) and the expression of the symbol q� .x; �/ it remains to prove the
equivalence (1). This comes from the two following algebraic identities:
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..H � �/ u D v/ , P .�/ .u ˚ 0/ D v ˚ .< u;
m˚

jD1
uj .x/ >H2 /

, .u ˚ 0/ D P .�/�1 .v ˚ .< u;
m˚

jD1
uj .x/ >H2 //

..H � �/ u D v/ ,

8̂<
:̂

u D E .�/ v C EC .�/ .< u;
m˚

jD1
uj .x/ >H2 /

0 D E� .�/ v C E�C .�/ .< u;
m˚

jD1
uj .x/ >H2 /

(4)

and

.E�C .�/ ˛ D ˇ/ , P .�/�1 .0˚ ˛/ D .EC .�/ ˛/˚ ˇ

, 0˚ ˛ D P .�/ ..EC .�/ ˛/˚ ˇ/

.E�C .�/ ˛ D ˇ/ ,

8̂
<
:̂
0 D .H � �/ .EC .�/ ˛/C m˚

jD1
uj .x/ ˇ

˛ D< EC .�/ ˛;
m˚

jD1
uj .x/ >H2

: (5)

If � … Sp .H/ ; then from (7) we deduce:

E�C .�/ ˛ D ˇ ,

8̂
<
:̂

EC .�/ ˛ D � .H � �/�1 . m˚
jD1

uj .x/ ˇ/

˛ D< � .H � �/�1 . m˚
jD1

uj .x/ :/;
m˚

jD1
uj .x/ >H2 ˇ

:

In particular,

0 … Sp .E�C .�// and

E�C .�/�1 D � < .H � �/�1 . m˚
jD1

uj .x/ :/;
m˚

jD1
uj .x/ >H2 :

Conversely, if 0 … Sp .E�C .�// ; then (6) gives:

.H � �/ u D v ,
8<
:
< u;

m˚
jD1

uj .x/ >H2D �E�C .�/�1 .E� .�/ v/

u D E .�/ v � EC .�/E�C .�/�1 E� .�/ v
:

As a consequence,

� … Sp .H/ and .H � �/�1 D E .�/ � EC .�/E�C .�/�1 E� .�/
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4 WKB-Constructions

In this section we will give asymptotic expansions in powers of h1=2 for eigenvalues
and eigenfunctions of H near the potential well formed by the first electronic level
�1 .x/ of Q .x/ : Assume (H2) with m D 1: By adding a constant to Q .x/ and a
translation in the variable x, we assume that �1 .x/ has a minimum strict at zero
(a one point well not degenerate):

0 D inf
x2Rn

�1 .x/ ; lim
jxj7!1

�1 .x/ > 0; �
�1
1 .0/ D f0g ; �00

1 .0/ > 0:

Denoting by  .x/ the distance between x 2 R
n and 0 in the Agmon metric

�1 .x/ dx2; it is known (see [5]) that there is a neighborhood ˝ of 0 such that:

 2 C1 .˝;R/ ; .r /2 .x/ D �1 .x/ ; 8x 2 ˝:

We fix some (arbitrarily large) constant C0 > 0 outside the spectrum of the
harmonic oscillator H0 D ��x C 1

2
< �00

1 .0/ x; x >Rn . Denote by e1; : : : ; eN0 the
eigenvalues of H0 in Œ0;C0� ;

Sp .H0/ D
(

nX
iD1

.2˛i C 1/
p
�iI ˛ D .˛1; : : : ; ˛n/ 2 N

n

)

where �1; : : : ; �n are the eigenvalues of the matrix �00
1 .0/ : The main result is as

follows:

Theorem 2. Assume .H1/–.H3/. H has N0 eigenvalues E1 .h/ ; E2 .h/ ; : : : ;EN0 .h/
in Œ0;C0h� such that, for every j 2 f1; : : : ;N0g and for h sufficiently small, Ej .h/
admit the following asymptotic expansion:

Ej .h/ D ejh C
X
k�1

˛j;kh1Ck=2 modulo O .h1/ (6)

˛j;k 2 R. If Ej .h/ is asymptotically simple (in the sense that the expansion (6)
determines Ej .h/ in a unique way), then the associated normalized eigenfunction
'j .x; yI h/ satisfies:

e .x/=h'j .x; yI h/ D h�mj
X
k�0

aj;k .x; y/ hk=2 modulo O .h1/

in C1 .˝;H1/, where a0;0 D Qa0 .x/ u1 .x; y/, Qa0 .x/ ¤ 0; 8x 2 ˝, mj 2 R,
m1 D n=4.
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Before turning to the proof of the theorem 2, let us recall some basic facts on
formal h-pseudodifferential operators with operator valued symbol. If ˝ is an open
set in R

n; H is a Hilbert space and m 2 R; we introduce the space of formal power
series:

Sm .˝;H/ D
8<
:
X
k�0

h�mCk=2sk .x/ I sk 2 C1 .˝;H/

9=
; :

For  2 C1 .˝;R/ and V a neighborhood of 0 in R
n we set

˝� D f.x; �/ 2 ˝ 
 C
nI � � ir .x/ 2 V g (7)

and the space of formal symbol

S0
�
˝�;L .H;K/

� D
8<
:
X
k�0

hkpk .x; �/ I pk 2 C1 �
˝�;L .H;K/

�
9=
;

where H; K denote Hilbert spaces. For any symbol b .x; �; h/ D b D P
k�0

hkbk 2
S0 .˝�;L .H;K//, one can define the action of the operator of symbol b on
e� .x/=hSm .˝;H/ by setting for s 2 Sm .˝;H/:

e .x/=hOpw
h .b/

�
e� .x/=hs

�

D
X
˛2Nn

hj˛j

ij˛j˛Š
@˛z



@˛� b

�
x C z

2
; ir .x/ ; h

�
s .z; h/ e�K .x;z/=h

�
zDx

(8)

where

K .x; z/ D  .z/ �  .x/ � .z � x/r .x/ D O
�
jz � xj2

�
:

Opw
h .b/ is called a formal h-pseudodifferential operator, this definition coincides

with a formal stationary phase expansion.
One can verify as in [11] that

e .x/=hOpw
h .b/

�
e� .x/=hs

�
2 Sm .˝;K/ :

Furthermore, if G is an Hilbert space and c D P
j�0

hjcj 2 S0 .˝�;L .K;G// ; then

Opw
h .c/ ı Opw

h .b/ D Opw
h .d/ is a formal h-pseudodifferential operator with symbol

d .x; �; h/ D P
j�0

hjdj .x; �/ 2 S0 .˝�;L .H;G// given by:

dj .x; �/ D
X

j˛jCjˇjCkClDj

.�1/jˇj

˛ŠˇŠ .2i/j˛jCjˇj
�
@˛� @

ˇ
x bk

� �
@˛� @

˛
x cl

�
: (9)
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Proof. The main idea of the proof is to use a simplified formal version of the
theorem 1. For � < �C we set

QP .�/ D
�

H � � u1 .x/
< :; u1 .x/ >H2 0

�
on e� .x/=hSm .˝;H1 ˚ C/ ;

QP .�/ is a formal h-pseudodifferential operator with symbol

Qp .x; �I�/ D
�
�2 C Q .x/ � � u1 .x/
< :; u1 .x/ >H2 0

�
2 S0

�
˝�;L .H1 ˚ C;H2 ˚ C/

�

where ˝� is defined as in (7) with  .x/ being the Agmon distance. As in the proof
of the theorem 1, the inverse of the symbol Qp .x; �I�/ is given by:

q0 .x; �I�/ D
 

O� .x/ ��2 C O� .x/Q .x/ O� .x/ � ���1 O� .x/ u1 .x/
< :; u1 .x/ >H2 � � �2 � �1 .x/

!
:

This permits us, using the composition formula (9), to construct a formal
h-pseudodifferential operator QQ .�/ of symbol (see [7, 11])

q� .x; �; h/ D q0 .x; �I�/C
X
k�1

hkqk .x; �I�/ 2 S0
�
˝�;L .H2 ˚ C;H1 ˚ C/

�

such that

QP .�/ QQ .�/ D Id on e� .x/=hSm .˝;H2 ˚ C/ : (10)

Writing

QQ .�/ D
� QE .�/ QEC .�/

QE� .�/ QE�C .�/

�

and setting QF .�/ D � � QE�C .�/ ; by construction, the operator QF .�/ is a nice
formal h-pseudodifferential operator with scalar symbol

e� .x; �; h/ D �2 C �1 .x/C
X
k�1

hkek .x; �I�/ 2 S0
�
˝�;C

�
:

Since QF .�/ is formally self-adjoint and �1 .x/ admits a nondegenerate minimum
at 0; the construction of Helffer and Sjöstrand in [5] Sect. 3 gives N0 formal series
QEj .hI�/ for j 2 f1; ::;N0g of the form:

QEj .hI�/ D ejh C
X
k�1

h1Ck=2ej;k .�/ and aj .x; hI�/ 2 Smj .˝IC/
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such that

� QF .�/ � QEj .hI�/� �e� .x/=haj .x; hI�/
�

D 0 in e� .x/=hSmj .˝IC/ :

Fix j 2 f1; ::;N0g. Using the analytical dependence in � of the symbol e� .x; �; h/
of QF .�/ and applying again the construction of Helffer and Sjöstrand for
QF �ejh C �0h3=2

�
(�0 indicates a new parameter); this gives formal series of the

form:

QE0
j

�
hI�0� D ejh C ej;1h

3=2 C
X
k�2

h1Ck=2 Qej;k
�
�0� :

Setting �0 D ej;1 C�00h1=2 (where �00 indicates a new parameter) and reiterating this
process, we obtain finally formal series (independent of �/:

QEj .h/ D ejh C
X
k�1

h1Ck=2ej;k and aj .x; h/ 2 Smj .˝IC/ :

Furthermore, we have:

� QF � QEj .h/
� � QEj .h/

� �
e� .x/=haj .x; h/

�
D 0 in e� .x/=hSmj .˝IC/ (11)

< aj .:; h/ ; aj0 .:; h/ > D ıjj0 C O .h/ (12)

where (12) holds in the sense of formal power series in h with complex coefficients.
The inner product < :; : > is defined by a formal stationary phase expansion at 0:

< u .x; h/ ; v .x; h/ > D
Z
˝

e�2 .x/=hu .x; h/ v .x; h/dx:

Using (10) and the definitions of QP .�/ and QQ .�/, the equation (11) yields that the
formal symbol:

bj .x; yI h/ D e .x/=h QEC
� QEj .h/

� �
e� .x/=haj .x; h/

�
2 Smj .˝IH1/

solves

�
H � QEj .h/

� �
e� .x/=hbj .x; yI h/

�
D 0 in e� .x/=hSmj .˝IH2/ :

Since

QEC .�/ D u1 .x; :/C O .h/ and < u1 .x; :/ ; u1 .x; :/ >H2D 1;
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we get

< e� .x/=hbj .:; :I h/ ; e� .x/=hbj0 .:; :I h/ >L2.˝�Rp/D ıjj0 C O .h/ :

By a standard argument in [7] and [5] Sec. 5, one can show that the eigenvalues
Ej .h/ of H in Œ0;C0h� (C0 > 0 arbitrarily large) admit for asymptotic expansions
QEj .h/ found above. Moreover, if Ej .h/ is asymptotically simple, the formal series
e� .x/=hbj .x; yI h/ are the asymptotic expansions for the associated normalized
eigenfunctions 'j .x; yI h/ (j D 1; : : : ;N0): This is the case for the first eigenfunction
'1 .x; yI h/ (since E1 .h/ is simple) and m1 D n=4 is chosen for the normalization.
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Finite Kibble’s Bivariate Gamma Mixtures
for Color Image Segmentation

Taher Ben Arab, Mourad Zribi, and Afif Masmoudi

Abstract The segmentation of a color image is an important research field of
image processing. A color image could be considered as the result of a finite
mixture model. Although the most well known used distribution when considering
mixture models is the Gaussian one, it is certainly not the best approximation for
image segmentation. It is well known that the statistics of natural images are not
Gaussian at all. In this paper, an efficient method of image segmentation is proposed.
The method uses Kibble’s bivariate Gamma mixture model and K-Means algorithm.
Using the K-Means algorithm, the number of image regions is identified and the
model parameters inside the image regions are estimated by using the EM algorithm.
Experimental results that demonstrate the performance of the proposed model for
image segmentation are presented.

Keywords Segmentation • Mixture model • Kibble’s Bivariate Gamma •
K-Means algorithm • EM algorithm
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1 Introduction

In the last few decades, the researchers have shown a major focus on satellite image
segmentation in terms of image processing. Several papers have been published,
focusing mainly on gray scale images, hence giving less attention to color image
segmentation [6], which is able to give us much more information about the object
or images [1, 3, 7, 12, 16]. Image Segmentation is typically used in order to locate
the objects and the boundaries of images [8]. Image Segmentation is a process
based on selected image features in order to ensure the partition of image pixels.
The pixels belonging to the same region must be spatially connected and must have
similar image features. If the selected segmentation feature is color, then the image
segmentation process will separate pixels having distinct color features into different
regions and, simultaneously, will gather the pixels which are spatially connected and
have a similar color into the same region [9]. In color imagery [15], image pixels can
be represented by a number of different color spaces, e.g. Red Green Blue (RGB),
Hue Saturation Value (HSV) or Hue Saturation Intensity (HSI) [11].

In the literature, several works have been dealing with color image segmentation
under HSI color space, since the Hue and Saturation Values of the pixels in the
image are not negative [10, 14, 18].

In this paper, we introduce a Kibble’s Gamma bivariate Mixture model in order
to ensure the segmentation of a color image. The Expectation Maximization (EM)
algorithm [4] is used to estimate the model parameters. The number of image
segments can be initialized by using the K-means algorithm [16].

This paper is organized as follows. In section II, we describe briefly the bivariate
Kibble’s Gamma distribution. Section III is dealing with the estimation of unknown
parameters of Kibble’s Gamma distribution using two methods, namely the Maxi-
mum Likelihood Estimation (ML) and the Method of the Moments (MOM). Section
IV describes the bivariate Kibble’s Gamma Mixture model. This description shows
how to initialize the model parameters and also presents the segmentation algorithm.
The experimental results are given in section V before concluding in section VI.

2 Kibble’s Bivariate Gamma

Let Y D .Y1;Y2/ be a bivariate random variable representing the feature vector of
pixels of a satellite image region. Since these two variables are highly influenced by
various random factors such as vision, lighting, moisture, environmental conditions,
etc., this feature vector can be viewed as a bivariate random vector. To model the
bivariate features of the image, it is very common to assume that the feature vector
of the image follows a Kibble’s bivariate Gamma distribution (KBGD) [2, 13].

Definition 1. A random vector Y D .Y1;Y2/ is distributed according to a Kibble’s
Bivariate Gamma distribution with positive shape parameter s and the scale vector
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parameter ˙ D .˙11;˙22;˙
2
12/, where 0 < ˙2

12 < ˙11˙22, if its probability
density function (pdf) is defined as follows:

fY.y1; y2/ D exp.�˙22y1 C˙11y2
˙11˙22 �˙2

12

/ 
 .y1y2/s�1

.˙11˙22 �˙2
12/

s� .s/


 fs.ıy1y2/1Œ0;C1Œ2 .y1; y2/; (1)

where 1Œ0;C1Œ2 .y1; y2/ is the indicator function defined on Œ0;C1Œ2, ı D
˙2
12

.˙11˙22 �˙2
12/

2
, and fs.x/ is given by fs.x/ D

1X
kD0

xk

� .s C k/kŠ
; 8 x 2 R:

In Fig. 1 and Fig. 2, we present a KBGD for different values of parameters.
The marginal distribution Yi, i D 1; 2; is distributed according to a univariate

Gamma distribution with pdf defined by

fYi.yi/ D .
yi

˙ii
/s�1

exp.� yi
˙ii
/

˙ii� .s/
1Œ0;C1Œ.yi/: (2)

where s > 0 represents the shape parameter and˙ii > 0, i D 1; 2; is called the scale
parameter.

To define the parameters of the random variable Y , we introduce the following
proposition.
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Fig. 1 Pdf of KBGD with parameters s D 1, ˙11 D 10, ˙22 D 3, and ˙2
12 D 2
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Fig. 2 Pdf of KBGD with parameters s D 3, ˙11 D 1, ˙22 D 10, and ˙2
12 D 5

Proposition 1. Let Y D .Y1;Y2/ have a Kibble’s bivariate Gamma distribution
with positive shape parameter s and the scale parameter ˙ D .˙11;˙22;˙

2
12/,

where 0 < ˙2
12 < ˙11˙22. Then, for all �1; �2 � 0, the Laplace transform of Y is

given by

L..�1; �2// D
h
1 � �11˙11 � �22˙22 C .˙11˙22 �˙2

12/�11�22

i�s

with
�11˙11 C �22˙22 � .˙11˙22 �˙2

12/�11�22 < 1.

For a proof, see [13].

Proposition 2. The moments and the covariance of the random variable Y, with
pdf defined in Eq. 4, are given by

EŒY1� D s˙11; EŒY2� D s˙22

var.Y1/ D s˙2
11; var.Y2/ D s˙2

22

cov.Y2;Y2/ D s˙2
12:

These different moments cited in Proposition 2 can be obtained by differentiating
this expression of the Laplace transform defined in Proposition 1 with respect to
�i;j; i; j D 1; 2:
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3 Parameter Estimation

This section deals with the problem of estimating the unknown parameter vector
˙ D .˙11;˙22;˙

2
12/, for a known parameter s, from n independent vectors

Y1; : : : ;Yn, where Yi D .Yi
1;Y

i
2/ is distributed according to a Kibble’s bivariate

Gamma distribution with a parameter vector ˙ .

3.1 Maximum Likelihood Estimation (ML)

The log-likelihood function of a sample bivariate observations Y1;Y2; : : : ;Yn; with
same density defined in Eq. 1 is given by

l.˙/ D �ns ln.˙1:2/ � n˙22Y1
˙1:2

C .s � 1/
nX

iD1
log.Yi

1Y
i
2/

� log� .s/ � n˙11Y2
˙1:2

C
nX

iD1
ln.fs.ıY

i
1Y

i
2//; (3)

where Yj D 1
n

Pn
iD1 Yi

j ; j D 1; 2; ˙1:2 D ˙11˙22 �˙2
12 and ı D ˙2

12

˙2
1:2

.

By taking the differential, with respect to ˙11, ˙22, and ˙2
12, one has

� ns C n˙22Y1
˙1:2

� nY2
˙22

C n˙11Y2
˙1:2

� 2 ˙
2
12

˙2
1:2

H D 0; (4)

� ns C n˙11Y2
˙1:2

� nY1
˙11

C n˙22Y1
˙1:2

� 2 ˙
2
12

˙2
1:2

H D 0; (5)

ns � n˙22Y1
˙1:2

� n˙11Y2
˙1:2

C ˙2
12 C˙11˙22

˙2
1:2

H D 0; (6)

with H D
nX

iD1
yi
1y

i
2

fsC1.ıyi
1y

i
2/

fs.ıyi
1y

i
2/

and fsC1 D f 0
s .

From Eq. 4, Eq. 5, and Eq. 6, the ML estimators of Ȯ
11 and Ȯ

22 are defined by

Ȯ
11 D Y1

s
; Ȯ

22 D Y2
s

(7)
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By replacing ˙11 and ˙22 by their estimators in Eq. 6, then the estimator of ˙2
12 is

the root of the following function

�.˙2
12/ D n � s

Y1Y2 � s2˙2
12

nX
iD1

yi
1y

i
2

fsC1. Oıyi
1y

i
2/

fs. Oıyi
1y

i
2/

D 0; (8)

where Oı D s41˙
2
12

.Y1Y2 � s2˙2
12/

2
.

Closed-form solutions of Eq. 8 do not exist for the parameter Ȯ 2
12. We can

get a solution by using a Newton-Raphson procedure [19]. We generally get the
convergence of the Newton-Raphson procedure after few iterations.

3.2 Method of Moments (MOM)

The estimator of the vector parameter ˙ D .˙11;˙22;˙
2
12/ by the MOM is the

solution of the following system
8̂<
:̂

Y1 D EŒY1�; Y2 D EŒY2�
1

n

nX
iD1
.Y.i/1 � Y1/

t.Y.i/2 � Y2/ D cov.Y2;Y2/

Consequently,

Ȯ
11 D Y1

s
; Ȯ

22 D Y2
s

(9)

Ȯ 2
12 D 1

ns

nX
iD1
.Y.i/1 � Y1/

t.Y.i/2 � Y2/: (10)

In this case, we conclude that the parameters ˙11 and ˙22 have the same estimators
obtained by the ML and the MOM.

3.3 Simulations

In order to compare the performance of the MOM estimator and the ML estimator,
we propose some simulations.

We generate a random vector Y according to a KBGD with different
parameters

i) s D 3, ˙11 D 0:3; ˙22 D 0:5,
ii) s D 3, ˙11 D 10; ˙22 D 5.
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Fig. 3 MSE versus n for parameter ˙2
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Fig. 4 MSE versus n for parameter ˙2
12 (s D 3, ˙11 D 10; ˙22 D 5)

The comparative study of the MOM and ML is characterized by the MSE as a
function of n, where n is the size of the sample. The number of resampling is
N D 1000. We present, respectively, in Fig. 3 and Fig. 4 the MSE of the estimator
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of the parameter ˙2
12 in two cases .˙2

12 D 0:105 and ˙2
12 D 45/. The circle curves

correspond to the estimator of MOM whereas the triangle curves correspond to the
estimator of ML. We observe from the two figures that the ML method is more
efficient than the MOM method.

4 Kibble’s Bivariate Gamma Segmentation Algorithm

4.1 Kibble’s bivariate Gamma mixture model

A crucial problem here is the choice of the mixture pdf. Generally the Gaussian
distribution is considered [17], yet recent works have shown that other distributions
may provide better modelling capabilities. Among these distributions that we shall
consider in this work, we have the Kibble’s bivariate Gamma KBG for a known
value of s which represents the KBGD defined in Definition II.1. It is important
to note that for a known value of s, a KBG is fully characterized by ˙ D
.˙11;˙22;˙

2
12/, where 0 < ˙2

12 < ˙11˙22.
Since the entire image is a collection of regions, which are characterized by KBG

presented in Definition II.1, it can be characterized through a K-component finite
KBG and its pdf is of the form

f ..y1; y2/; ˚/ D
KX

kD1
�kf ..y1;k; y2;k/I˙k/

D
KX

kD1
�k exp.�˙22;ky1;k C˙11;ky2;k

˙11;k˙22;k �˙2
12;k

/

.y1;ky2;k/s�1

.˙11;k˙22;k �˙2
12;k/

s� .s/


 fs.ıky1;ky2;k/

where ˚ D .�1; : : : ; �K ; ˙11;1; : : : ; ˙11;K ; ˙22;1; : : : ; ˙22;K ; ˙
2
12;1; : : : ; ˙

2
12;K/;

ık D ˙12;k

˙2
1:2;k

, 0 < ˛k < 1 and
KX

kD1
˛k D 1:

4.2 Estimation of the parameters mixture by EM-Algorithm

The problem of estimating the parameters which determine a mixture has been the
subject of diverse studies. During the last two decades, the MML has become the
most common approach to deal with this problem. Of the variety of iterative meth-
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ods which have been suggested as alternatives to optimize the parameters of a
mixture [3], the one most widely used is expectation maximization (EM). EM
was originally proposed by [4] for estimating the ML of stochastic models.
The algorithm employs an iterative procedure and the practical form is usually
simple.

To obtain the estimation of the model parameters, we utilized the EM-algorithm
by maximizing the expected likelihood function for carrying out the EM-algorithm.
The log-likelihood function of bivariate observations .y11;:; y

1
2;:/ : : : ; .y

n
1;:; y

n
2;:/ drawn

from an image is

l.˚/ D
nX

jD1
log

� KX
kD1

�kf ..yj
1;k; y

j
2;k/I˙k/

�

D
nX

jD1
log

� KX
kD1

�k exp.�˙22;kyj
1;k C˙11;kyj

2;k

˙11;k˙22;k �˙2
12;k

/

.yj
1;kyj

2;k/
s�1

.˙11;k˙22;k �˙2
12;k/

s� .s/

 fs.ıkyj

1;kyj
2;k/
�

where ık D ˙2
12;k

.˙11;k˙22;k �˙2
12;k/

2
.

The model parameters

˚ D .�1; : : : ; �K ; ˙11;1; ˙22;1; ˙
2
12;1; : : : ; ˙11;K ; ˙22;K ; ˙

2
12;K/

is estimated by using the EM algorithm.
The EM algorithm is decomposed in the following two steps:

Step E: The updated equation of the parameter �k is

�
.lC1/
k D 1

n

nX
jD1

�k;j.y
j
1;k; y

j
2;kI˙.l// (11)

D 1

n

nX
jD1

�
.l/
k fk.y

j
1;k; y

j
2;kI˙.l//

KX
k0D1

�
.l/
k0 fk0.yj

1;k0 ; y
j
2;k0 I˙.l//

(12)

where fk.y1;j; y2;jI˙.l// is given by Eq. 4.
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Step M: The updated equations of ˙11;k, ˙22;k, and ˙2
12;k at .l C 1/th iteration is

nX
jD1

�
.l/
k;j .y

j
1;k; y

j
2;kI˙.l//

h
� s C ˙22;kyj

1;k

˙1:2;k
� yj

2;k

˙22;k
C

˙11;kyj
2;k

˙1:2;k
� 2yj

1;kyj
2;k

˙22;k˙
2
12;k

˙2
1:2;k

fsC1.ıkYj
1;kyj

2;k/

fs.ıkyj
1;kYj

2;k/

i
D 0; (13)

nX
jD1

�
.l/
k;j .y

j
1;k; y

j
2;kI˙.l//

h
� s C ˙11;kyj

2;k

˙1:2;k
� yj

1;k

˙11;k
C

˙22;kyj
1;k

˙1:2;k
� 2yj

1;kYj
2;k

˙11;k˙
2
12;k

˙2
1:2;k

fsC1.ıkyj
1;kyj

2;k/

fs.ıkyj
1;kyj

2;k/

i
D 0; (14)

nX
jD1

�
.l/
k;j .y

j
1;k; y

j
2;kI˙.l//

h
s � ˙22;kyj

1;k C˙11;kyj
2;k

˙1:2;k
C

yj
1;kyj

2;k 
 ˙2
12;k C˙11;k˙22;k

˙2
1:2;k

fsC1.ıkyj
1;kyj

2;k/

fs.ıkyj
1;kyj

2;k/

i
D 0; (15)

where fs1 .x/ D P1
lD0 xl

� .s1Cl/lŠ ; 8 x 2 R, fsC1 D f 0
s , et˙1:2;kD˙11;k˙22;k�˙2

12;k.

A closed-form solution does not exist for the ˙11;k; ˙22;k and ˙2
12;k, k D

1; 2; : : : ;K, parameters. We can get a solution by using a Newton-Raphson
procedure initialized by estimator .˙11;k; ˙22;k; ˙

2
12;k/ defined in Eq. 9 and

Eq. 10. The convergence of the Newton-Raphson procedure is generally obtained
after few iterations.

The efficiency of the EM-algorithm in estimating the parameters is heavily
dependent on the number of regions in the image. The number of mixture com-
ponents initially taken for K-means algorithm is by plotting the histogram of the
pixel intensities of the two images. The number of peaks in the histogram can be
taken as the initial value of the number of regions K. Usually the mixing parameter
�k and the region parameters .˙11;k; ˙22;k; ˙

2
12;k/ are unknown. A commonly used

method in initialization is by drawing a random sample in the entire image data.
This method performs well only when the sample size is large, and the computation
time is heavily increased. When the sample size is small it is likely that some small
regions may not be sampled. To overcome this problem, we use K-means algorithm
[16] to divide the whole images into various homogeneous regions. We obtain the
initial estimates of the parameters .˙11;k; ˙22;k; ˙

2
12;k/ for each image region using

the method of moment estimators for KBGD and for the parameters �k as �k D 1
K .

Therefore the initial estimates of .˙11;k; ˙22;k; ˙
2
12;k/ can be obtained by the MOM

presented in section III.B.
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4.3 Application of the KBG mixture in segmentation

After estimating the parameters of the KBG mixture the prime step in image
segmentation is allocating the pixels to the segments of the image. The image
segmentation steps are the following:

Step 1) Plot the histogram of the pixel intensities of the two images.
Step 2) Obtain the initial estimates of the model parameters using K-means

algorithm and moment estimators as discussed in section III.
Step 3) Obtain the refined estimates of the model parameters by using the

EM-algorithm with the updated equations given in section IV.B.
Step 4) Assign each pixel into the corresponding kth region (segment). That is,

j.y/ D arg max
1�k�K

.�kfk.y//:

where j.y/ represents the label of the class of the pixel y D .y1;:; y2;:/.

5 Experimentation

In order to demonstrate the utility of the image segmentation algorithm developed
in this paper, an experiment is conducted with two colors satellites images (sat 1
and sat 2) which the size is 256
 256
 3. A random sample of this images is taken
the feature vector consisting of HS for each pixel of the each image is computed
utilizing HSI color space. In HSI color space the HS values are computed from the
values of RGB for each pixel in the image using the formula for

H D cos�1.
.R � G/C .R � B/

2
p
.R � G/2 C .R � B/.G � B/

/; B < G;

S D 1 � min.R;G;B/

I
; where I D R C G C B

3
:

With the feature vector .H; S/ each image is modelled by using the two-component
mixture KBG. The number of segments in each of the four colors images considered
for experimentation is determined by the histogram of pixel intensities. The
histograms of the two images are shown in Fig. 5.

The initial estimates of the number of regions K in each image are obtained and
given in Table 1.

Table 1 Initial Estimates
of K

Image sat 1 sat 2

Estimate of K 3 3
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Fig. 5 Histograms of the pixel intensities of the two images

Table 2 Estimated of Mixture parameters for image sat 1, after 10 itera-
tions, with known parameter value s

Initial by K-means Final by EM Algorithm
Parameters k1 k2 k3 k1 k2 k3
KBGM

s 9 5 2

�i 1/3 1/3 1/3 0.0819 0.5768 0.3413

˙11 0.17 0.0528 0.0939 1.1879 2.3531 1.4263

˙22 0.19 0.0171 0.0239 0.0031 0.0354 0.0332

˙2
12 0.003 0.0003 0.0014 0.0027359 0.0010 0.0290

BGAUM

�i 1/3 1/3 1/3 0.9363 0.0038 0.0017

�1 0.0152 0.2642 0.1878 0.0091 0.3657 0.1106

�2 0.0175 0.0857 0.0477 0.0162 0.0607 0.0001

�1 0.0013 0.0596 0.1178 0.6613 0.0482 0.0675

�2 0.0005 0.0083 0.0217 0.4483 0.0018 10�4

� 0.0003 0.0016 0.0278 0.1807 0.0001 10�5

After assigning these initial values of K to each image data set, the
K-means algorithm is performed. Using these initial parameters estimates
.�k; �1;k; �2;k; �1;k; �2;k; �k/ for a bivariate Gaussian mixture (BGAUM) and
.�k; ˙11;k; ˙22;k; ˙1:2;k/ for the Kibble’s bivariate Gamma mixture (KBGM), where
k D 1; : : : ;K, by the K-means algorithm to the EM algorithm. The computed values
of the initial estimates and the final estimates of the two models parameters for each
image are shown in Tables 2 and 3.

Substituting the final estimates of the model parameters, the pdfs of the feature
vector of each image are estimated. Using the estimated pdfs and the image
segmentation algorithm given in sub-section IV.C, the image segmentation is
achieved for each of the two color images under consideration. After developing
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Table 3 Estimated of Mixture parameters for image sat 2, after 10
iterations, with known parameter value s

Initial by K-means Final by EM Algorithm
Parameters k1 k2 k3 k1 k2 k3
KBGM

s 9 4 2

�i 1/3 1/3 1/3 10�5 0.6895 0.3105

˙11 0.015 0.0452 0.0425 6.4627 1.1649 1.6137

˙22 0.29 0.0442 0.0498 0.0034 0.0105 0.0521

˙2
12 0.0005 0.0018 0.0017 0.0021 0.0013 0.0487

BGAUM

�i 1/3 1/3 1/3 0.9295 0.0314 0.0392

�1 0.0131 0.1808 0.085 0.011 0.0998 0.0001

�2 0.026 0.1941 0.0996 0.0225 0.2174 0.78

�1 0.004 0.0443 0.075 0.0003 0.0147 0.001

�2 0.0025 0.0185 0.0437 0.0021 0.0092 0.3367

� 0.0005 0.007 0.0349 0.0005 0.0003 10�5

Table 4 Comparative study
of Image Quality Metrics
from MBGM and MBGAUM

Images Quality Metrics KBGM BGAUM
sat 1 MSE

PSNR

M D

0:4101

8:9124

0:5499

0:8402

1:7417

0:8915

sat 2 MSE

PSNR

M D

0:5928

5:2288

0:6194

0:9516

0:4964

0:9313

the image segmentation method, it is necessary to verify the utility of segmentation
in model building of the image for image retrieval. Using the estimated pdfs of the
images under consideration, we are able to get the retrieved images. The original,
segmented, and retrieved images are shown in Fig. A.1 and Fig. A.2 (see Appendix).

The performance evaluation of the retrieved images is made by Subjective
Image Quality (SIQ) testing or by Objective Image Quality (OIQ) testing. The OIQ
testing methods are often used since the numerical results of an objective measure
are readily computed and allow a significant comparison between the different
algorithms. There are SIQ measures available for performance evaluation of the
image segmentation method. An extensive survey of quality measures is given by
[5]. For the performance evaluation of the developed segmentation algorithm, we
consider the Image Quality Measures [5], namely MSE, Peak Signal to Noise Ratio
(PSNR) and Maximum Distance (MD), which are computed for the two images with
respect to the developed method and earlier methods and are presented in Table 4.

From the Table 4, we notice that all the image quality metrics for the two images
are satisfying the standard criteria. This implies that using the proposed algorithm
allows the images to be retrieved accurately. A comparative study of the proposed
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algorithm, with the ones based on the KBGM and BGAUM models with K-means,
reveals that the MSE of the proposed model KBGM is lower than the one associated
with BGAUM. Concerning all other quality metrics, it is also observed that the
performance of the proposed model in retrieving the images is again better when
compared with the BGAUM.

6 Conclusion

In this paper, we have proposed a segmentation algorithm adapted to color image
by the use of the Kibble’s bivariate Gamma distribution. Here, it is assumed that
the color image is characterized by the HSI color space, in which the HS values
are nonnegative. The model parameters are estimated using the EM-algorithm. The
initialization and the number of image segments are both determined through the
K-means algorithm and the Moment Method of estimation. Experimental results
have demonstrated the efficiency of the proposed method KBGM.

Appendix

See Figs. A.1 and A.2.
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Fig. A.1 Sat 1 segmented with KBGM and BGAUM
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Fig. A.2 Sat 2 segmented with KBGM and BGAUM



Stabilization of a class of time-varying
systems in Hilbert spaces

Hanen Damak and Mohamed Ali Hammami

Abstract This paper studies the problem of stabilization of the infinite-dimension
time-varying systems in Hilbert space where the associated nominal system is a
certain class of linear time-varying systems and the perturbation term satisfies some
certain conditions. In contrast to the previous results, the stabilizability conditions
are obtained by solving a Ricatti differential equation and do not involve any
stability property of the evolution operator. Our goal is to prove the sufficient
conditions for the case of uniform exponential stability of the origin. The obtained
result extends existing results in the literature to infinite-dimensional and time-
varying control systems.

1 Introduction

The problem of controllability and stabilizability for linear control systems has
received a considerable amount of interest in the past decades [7–11] and the
references therein. This problem regarding as an extension of the classical Kalman
result [3] on controllability and stability of linear control systems is to find an admis-
sible control u.t/; such that the corresponding solution x.t/ of the system has desired
properties. Depending on the properties involved one defines various quantitative
problems. For time-varying control systems in finite-dimensional spaces, using
Kalman’s decomposition method, in [2] we prove that the system is completely
stabilizable if it is uniformly globally null-controllable. In [6], we develop the
relationship between the exact controllability and complete stabilizability for linear
time-varying control systems in Hilbert spaces.

In this paper, we discuss the problem of global uniform stabilizability for a
class of nonlinear dynamical systems in Hilbert spaces, it means that the solutions
converge exponentially to the origin.
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2 Stabilization of a class of time-varying systems
in Hilbert spaces

We will use the following notation throughout this paper: X denotes a Hilbert space
with the norm k:kX and inner product < :; : >X : L.X/ (respectively, L.X;Y//
denotes the Banach space of all linear bounded operators S mapping X into X
(respectively, X into Y) endowed with the norm

kSk D supfkSxk W x 2 X; kxk � 1g:

X� denotes the dual space of XI L2.Œt; s�;X/ denotes the set of all strongly
measurable L2-integrable and X-valued functions on Œt; s�I D.A/; A�1 and A� denote
the domain, the inverse and the adjoint of the operator A; respectively; clM denotes
the closure of a set MI I the identity operator; LO.Œt;C1Œ;XC/ denotes the set
of all linear bounded self-adjoint non-negative definite operator-valued function on
Œt;C1Œ: Let X;U be real Hilbert spaces.

We consider the control dynamical system

8<
:

Px.t/ D A.t/x.t/C B.t/u.t/C F.t; x.t//

x.t0/ D x0

(1)

where x.t/ 2 X is the system state, u.t/ 2 U is the control input, A.t/ W X �! X and
B.t/ 2 L.U;X/:We assume that F.t; x/ W Œ0;C1Œ
X �! X is a nonlinear operator,
continuous and satisfying the following inequality

kF.t; x/k � �.t/kxk; 8t � 0; 8x 2 X

where � W Œ0;C1Œ�! R is continuous non-negative function with

Z C1

0

�.s/ds � M� < C1:

The corresponding nominal system is described by

8<
:

Px.t/ D A.t/x.t/C B.t/u.t/

x.t0/ D x0

(2)

In the sequel, we say that control u.t/ is admissible if u.t/ 2 L2.Œt0;C1Œ;U/:
As in [1] we will assume the following conditions that guarantee the existence and
uniqueness of the solution of linear control system (2).
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H 1/ Operator functions A.:/x and B.:/u are continuous and bounded in t � t0 � 0

for all x 2 X; u 2 UI
H 2/ clD.A.t// D X; t � 0 and A.:/x is a continuous function on Œt0;C1Œ for

every x 2 D.A.://:
H 3/ For each t � t0 � 0; A.t/ generates a C0-semigroup on X and there is an

evolution operator U.t; s/ W f.t; s/ W t � s � t0 � 0g �! L.X/; such that
U�.t; s/ is continuous in t; s and for each x 2 D.A.t//; U.t; s/x 2 D.A.t// the
following conditions holds:

i/
@U.t; s/x

@t
D A.t/U.t; s/x; U.s; s/ D I;

lim
n!C1 Un.t; s/x D U.t; s/x;

where Un.t; s/ is the evolution operator generated by the Yosida approxima-
tion [5]

An.t/ D n2ŒnI � A.t/��1 � nI

of A.t/:
ii/ U.t; s/ D U.t; r/U.r; s/; for all t � r � s � t0 � 0:

In this case, we say that A.t/ generates a strongly continuous evolution operator
U.t; s/ and then for every initial state x0 2 X; for every admissible control u.t/; the
linear control system (2) has a mild solution given by

x.t/ D U.t; t0/x0 C
Z t

t0

U.t; s/B.s/u.s/ds:

Remark 1. It is well known that if the operator A.t/ 2 L.X/; t � 0; which is
bounded in Œ0;C1Œ; then the semigroup evolution operator U.t; s/ satisfying the
above conditions always exists. However, if A.t/; t 2 Œ0;C1Œ is unbounded, the
evolution operator U.t; s/ exists provided additional assumptions, see [1, 5] for the
details.

Definition 1. An Operator Q.t/ 2 L.X/ is called definite positive if there exist a
positive constant m > 0; such that

< Q.t/x; x >� mkxk2; 8x 2 X; 8t � 0:

Definition 2. The system ŒA.t/;B.t/� is called globally null-controllable (GNC) in
finite time if for every x0 2 X; there exist a number T > 0 and an admissible control
u.t/; such that

U.T; t0/x0 C
Z t

t0

U.T; s/B.s/u.s/ds D 0:

We state the following well-known controllability criterion for infinite-dimensional
control system that be used later.
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Proposition 1 ([1, 2]). The system ŒA.t/;B.t/� is globally null-controllable in time
T > 0 if and only if one of the following conditions hold:

.i/ There is a number c > 0; such that

Z t

t0

kB�.s/U�.t; s/xk2ds � ckU�.T; t0/xk2; 8x 2 X:

.ii/
Z t

t0

U.T; s/B.s/B�.s/E�.T; s/ds is positive definite.

Definition 3. The system (2) is called completely stabilizable (CSz) if for every
number ı > 0; there exists a feedback control u.t/ D K.t/x.t/; where K.t/ 2
L.X;U/ is bounded on Œt0;C1Œ; such that the solution x.t; x0/ of the closed-loop
system Px.t/ D ŒA.t/C B.t/K.t/�x.t/; x.t0/ D x0 satisfies

9N > 0 W kx.t/k � kkx.t0/ke.�ı.t � t0//; 8t � t0:

The solution to the stabilizability problem involves a Riccati operator equation
(ROE) of the form

PP.t/C A�.t/P.t/C P.t/A.t/ � P.t/B.t/B�.t/P.t/C Q.t/ D 0 (3)

where Q.t/ � 0 is a given self-adjoint operator function. Since A.t/; t � t0 � 0 is
an unbounded operator, it is not clear a priori what a solution of (ROE) means. We
will define, as in [1], the solution of (ROE) as follows.

Definition 4. The solution of (ROE) (3) is a linear operator function P.t/ 2 L.X/
satisfying the following two conditions:

i/ The scalar function < P.:/x; y > is differentiable on Œt0;C1Œ for every x; y 2
D.A.://:

ii/ For all x; y 2 D.A.t//; t � t0 � 0 W
d

dt
< P.t/x; y > C < P.t/x;A.t/y > C < P.t/A.t/x; y >

� < P.t/B.t/B.t/P.t/x; y > C < Q.t/x; y >D 0:

Definition 5. Let Q.t/ 2 LO.Œt0;C1Œ;XC/: The control system (2) is called Q.t/�
stabilizable if for every initial state x0; there is a control u.t/ 2 L2.Œt0;C1Œ;U/ such
that the cost function

J.u/ D
Z 1

t0

Œku.t/k2C < Q.t/x.t; x0/; x.t; x0/ >�dt; (4)

exists and is finite.
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Proposition 2 ([1]). If linear control system (2) is Q.t/-stabilizable, then the
Riccati differential equation (ROE) (3) has the solution P.t/ 2 LO.Œt0;C1Œ;XC/
bounded on Œt0;C1Œ:

Definition 6. The system (1) is called uniformly exponentially stable if there exists
an operator function K.t/ 2 L.X;U/; such that the solution of the closed-loop
system Px.t/ D ŒA.t/C B.t/K.t/�x.t/C F.t; x/ satisfies

kx.t/k � kkx.t0/ke.��.t � t0//;

where � > 0; k � 0; t0 2 Œ0;C1Œ:

Proposition 3 ([4]). If the system ŒA.t/;B.t/� is globally null-controllable (GNC) in
finite time, then the linear time-varying control system (2) is completely stabilizable
(CSz).

Theorem 1. Under assumptions H 1/;H 2/ and H 3/; if the system ŒA.t/;B.t/�
is globally null-controllable (GNC) in finite time, then the system (1) is globally
uniformly exponentially stable.

Proof. We choose an operator function Q.t/ 2 LO.Œt0;C1Œ;XC/ bounded on
Œ0;C1Œ; such that

Q.t/ > 2A.t/C B.t/B�.t/; t � 0:

Then, there exists c1 > 0; such that

< Q.t/ � 2A.t/C B.t/B�.t/x; x >� c1kxk2; t � 0:

The system ŒA.t/;B.t/� is globally null-controllable (GNC) in finite time. Then, for
every initial state x0 2 X there is an admissible control u.t/ 2 L2.Œt0;T�;U/; such
that the solution x.t/ of the system (2), according to the control u.t/ satisfies

x.t0/ D x0; x.T/ D 0:

Let ux.t/ denote an admissible control according to the solution x.t/ of the system.
Define

Qux.t/ D
	

ux.t/ if t 2 Œt0;T�;
0 if t > T �

Since Q.t/ 2 LO.Œt0;C1Œ;XC/ and Qux 2 L2.Œt0;T�;U/; we have

J.Qux/ D
Z 1

t0

ŒkQux.t/k2C < Q.t/x.t; x0/; x.t; x0/ >�dt
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D
Z T

t0

Œkux.t/k2C < Q.t/x.t; x0/; x.t; x0/ >�dt < C1;

which means that the linear control system ŒA.t/;B.t/� is Q.t/-stabilizable. Applying
Proposition 2, we can find an operator function P.t/ 2 LO.Œt0;C1Œ;XC/; which is
a solution of the following (ROE)

PP.t/C A�.t/P.t/C P.t/A.t/ � P.t/B.t/B�.t/P.t/C Q.t/ D 0: (5)

We now consider a Lyapunov-like function

V.t; x/ D< P.t/x; x > Ckxk2;

and construct a feedback control of the form

u.t/ D �1
2

B�.t/ŒP.t/ � I�x.t/; t � t0:

Since P.t/ 2 LO.Œt0;C1Œ;XC/; then there exists M > 0; such that

kP.t/k � M; 8t � t0:

It is easy to verify that

kx.t/k2 � V.t; x.t// � .M C 1/kx.t/k2; 8t � t0:

Taking the derivative of V in t along the solution of x.t/ of the system (1) and
using the chosen feedback control and the (ROE) (5), we have

PV.t; x.t// D< PP.t/x.t/; x.t/ > C2 < P.t/Px.t/; x.t/ > C2 < Px.t/; x.t/ > :

We obtain

PV.t; x.t// � �
�

c1
M C 1

� 2.M C 1/�.t/

�
V.t; x.t//:

Then, V.t/ satisfies the following estimation

V.t/ � V.t0/e
�
Z t

t0

˛.s/ ds

with

˛.t/ D c1
.M C 1/

� 2.M C 1/ı.t/:
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Moreover,

e
�
Z t

t0

˛.s/ ds
� e2.M C 1/M� e

� c1
M C 1

.t � t0/
:

Thus, we obtain

V.t/ � V.t0/e
2.M C 1/M� e

� c1
M C 1

.t � t0/
:

It follows that

kx.t/k �
p
.M C 1/e.M C 1/M� kx.t0/ke

�
c1

2.M C 1/
.t � t0/

:

Hence, the system (1) in closed-loop with the linear feedback u.t/ D K.t/x.t/ is
globally uniformly exponentially stable. ut
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Weighted Sobolev Spaces for the Laplace
Equation in an Exterior Domain

Hela Louati

Abstract This work solves Dirichlet problem for the Laplace operator in an
exterior domain of R

3. We are interested in the existence and the uniqueness of
weak and strong solutions in Lp-theory which makes our work more difficult. Our
analysis is based on the principle that linear exterior problems can be solved by
combining their properties in the whole space R

3 and the properties in bounded
domains. Our approach rests on the use of weighted Sobolev spaces.

1 Introduction

Let˝ 0 be a bounded connected open set in R
3 with boundary @˝ 0 D � of class C1;1

representing an obstacle and let ˝ its complement which means that ˝ D R
3 n˝ 0.

Let x D .x1; x2; x3/ be a typical point in R
3 and let r D jxj D .x21 C x22 C x23/

1=2

denote its distance to the origin. In order to control the behavior at infinity of our
functions and distributions we use for basic weights the quantity �.x/ D .1C r2/1=2

which is equivalent to r at infinity, and to one on any bounded subset of R3 and the
quantity ln.2C r2/. We define D.˝/ to be the linear space of infinite differentiable
functions with compact support on ˝. Now, let D 0.˝/ denote the dual space of
D.˝/, often called the space of distributions on ˝. We denote by < :; : > the
duality pairing between D 0.˝/ and D.˝/. For each p 2 R and 1 < p < 1, the
conjugate exponent p0 is given by the relation 1

p C 1
p0 D 1. Then, for any nonnegative

integers m and real numbers p > 1 and ˛, setting

k D k.m; p; ˛/ D
(

�1; if 3
p C ˛ … f1; : : : ;mg ;

m � 3
p � ˛; if 3

p C ˛ 2 f1; : : : ;mg ;
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we define the following space:

Wm;p
˛ .˝/ D fu 2 D 0.˝/I

8� 2 N
3 W 0 � j�j � k; �˛�mCj�j.ln.2C r2//�1D�u 2 Lp.˝/I

8� 2 N
3 W k C 1 � j�j � m; �˛�mCj�jD�u 2 Lp.˝/g:

It is a reflexive Banach space equipped with its natural norm:

jjujjWm;p
˛ .˝/ D

0
@ X
0�j�j�k

jj�˛�mCj�j.ln.2C r2//�1D�ujjpLp.˝/

C
X

kC1�j�j�m

jj�˛�mCj�jD�ujjpLp.˝/

1
A
1=p

:

For m D 0, we set

W0;p
˛ .˝/ D fu 2 D 0.˝/I �˛ u 2 Lp.˝/g:

We note that the logarithmic weight only appears if
3

p
C ˛ 2 f1; : : : ;mg and all

the local properties of Wm;p
˛ .˝/ coincide with those of the corresponding classical

Sobolev spaces Wm;p.˝/. We set VWm;p
˛ .˝/ as the adherence of D.˝/ for the norm

k : kW
m;p
˛ .˝/. Then, the dual space of VWm;p

˛ .˝/, denoting by W�m;p0

�˛ .˝/, is a space of

distributions. When ˝ D R
3, we have Wm;p

˛ .R3/ D VWm;p
˛ .R3/. If ˝ is a Lipschitz

exterior domain, then we have

VW1;p
˛ .˝/ D ˚

v 2 W1;p
˛ .˝/; v D 0 on @˝

�
;

and

VW2;p
˛ .˝/ D

	
v 2 W2;p

˛ .˝/; v D @v

@n
D 0 on @˝

�
;

where
@v

@n
is the normal derivate of v.

W1;p
˛ .˝/ ,! W0;p�

˛ .˝/ where p� D 3p

3 � p
(1)

and, by duality, we have

W0;q�˛.˝/ ,! W�1;p0

�˛ .˝/ where q D 3p0

3C p0 :
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On the other hand, if m > 0 and 3
p C ˛ ¤ 1 or m � 0 and 3=p0 � ˛ ¤ 0, we have

the following continuous embedding:

Wm;p
˛ .˝/ ,! Wm�1;p

˛�1 .˝/: (2)

Moreover the space Wm;p
˛ .˝/ sometimes contains some polynomials functions. For

any q 2 N, Pq (respectively, P�
q ) stands for the space of polynomials (respectively,

harmonic polynomials) of degree � q. If q is a strictly negative integer, we set by
convention Pq D f0g. For m � 0 and if 3

p C ˛ does not belong to fi 2 Z I i � mg,

then PŒm�˛� 3
p �

is the space of all polynomials included in Wm;p
˛ .˝/. The norm of

the quotient space Wm;p
˛ .˝/=PŒm�˛� 3

p �
is:

jjujjWm;p
˛ .˝/=P

Œm�˛� 3
p �

D inf
Q2P

Œm�˛� 3
p �

jju C QjjWm;p
˛ .˝/: (3)

In addition, the Hardy inequality holds, for 1 < p < 1,

8 u 2 VWm;p
˛ .˝/; jjujjWm;p

˛ .˝/ � Cjjr ujjWm�1;p
˛ .˝/

;

where C D C.p; ˛;˝/ > 0 and when ˝ D R
3, we have

8u 2 W1;p
˛ .R3/;

8<
:

jjujj
W
1;p
˛ .R3/

� jjr ujjW0;p
˛ .R3/

; if 3=p C ˛ > 1;

jjujj
W
1;p
˛ .R3/=P0

� jjr ujjW0;p
˛ .R3/

; otherwise;

where P0 stands for the space of constant functions in W1;p
˛ .R3/ when 3=p C˛ � 1

and C satisfies C D C.p; ˛/ > 0.
Finally, given a Banach space B, with dual space B0 and a closed subspace X of

B, we denote by B0 ? X the subspace of B0 orthogonal to X, i.e.

B0 ? X D ff 2 B0I< f ; v >D 0 8 v 2 Xg D .B=X/0:

The space B0 ? X is also called the polar space of X in B0.

2 Preliminary results

Now, we give some results related to solving the Dirichlet problem and Neumann
problem which are essential to ensure the existence and the uniqueness of some
vectors potentials and one usually forces either the normal component to vanish or
the tangential components to vanish. We start by giving the definition of the kernel
of the Laplace operator for any integer ˛ 2 Z:

A �
˛;p.˝/ D ˚

� 2 W1;p
˛ .˝/I �� D 0 in ˝ and � D 0 on �

�
:
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In contrast to a bounded domain, the Dirichlet problem for the Laplace operator
with zero data can have nontrivial solutions in an exterior domain; it depends upon
the exponent of the weight. The result that we state below is established by Giroire
when p D 2; see [5] for more details.

Proposition 1. For any integer ˛ < 0, the space A �
˛;2.˝/ is a subspace of all

functions in W1;2
˛ .˝/ of the form v.p/ � p, where p runs over all polynomials of

P��˛�1 and v.p/ is the unique solution in W1;2
0 .˝/ of the Dirichlet problem

�v.p/ D 0 in ˝ and v.p/ D p on �: (4)

A �
˛;2.˝/ is a finite-dimensional space of the same dimension as P��˛�1 and

A �
˛;2.˝/ D f0g when ˛ � 0.

Our analysis is based on the principle that linear exterior problems can be solved
by combining their properties in the whole space R

3 and the properties in bounded
domains. Let us begin by recalling some results in R

3 previously established by
Amrouche, Girault, and Giroire in [3].

Theorem 1. Let ˛ � 0 be an integer. The following Laplace operators are
isomorphisms:

� W W1;p
˛ .R3/=PŒ1�˛� 3

p �
7! W�1;p

˛ .R3/ ? P�

Œ1C˛� 3
p0 �

if
3

p0 … f1; : : : ; ˛g

� W W1;p�˛.R3/=PŒ1C˛� 3
p �

7! W�1;p�˛ .R3/ if ˛ > 0 and
3

p
… f1; : : : ; ˛g:

3 The Dirichlet problem for the Laplace operator

In this section, we propose to solve the Laplace equation with Dirichlet boundary
condition:
Let p > 1 and f given in W�1;p

˛ .˝/ and g given in W1=p0;p.� /, find u in W1;p
˛ .˝/

solution of:

�� u D f in ˝; u D g on �: (5)

We are really interested by the case where ˛ in H1 or in H2 with

H1 D f˛ 2 Z such that ˛ < 0 and 3=p … f1; : : : ;�˛gg
and

H2 D ˚
˛ 2 Z such that ˛ > 0 and 3=p0 … f1; : : : ; ˛g� ;

with the convention that f1; : : : ;�˛g or f1; : : : ; ˛g are empty if ˛ D 0.
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Note that when ˛ D 0, problem (5) has been studied in [2]. We start our study
by solving the Laplace equation in R

3:

�� u D f in R
3; (6)

with a right-hand side that has a bounded support.

Lemma 1. Assume that p > 2 and ˛ 2 Z. Let f in W �1;p
˛ .R3/ with compact

support. Then

i) if ˛ 2 H1, problem (6) has a solution u in W 1;2
˛ .R3/\ W 1;p

˛ .R3/ unique up to an
element of PŒ�˛� 1

2 �
.

ii) If ˛ 2 H2, problem (6) has a unique solution u in W 1;2
˛ .R3/ \ W 1;p

˛ .R3/ if and
only if

8� 2 P�

Œ˛� 1
2 �
; hf ; �iW�1;2

˛ .R3/�W1;2
�˛.R3/

D 0: (7)

Proof. At first, note that the duality pairing hf ; �i
W�1;2
˛ .R3/� VW1;2

�˛.R3/
is well defined

for all f 2 W�1;p
˛ .R3/ with compact support and p > 2.

The proof of point i/ and ii/ is very similar, so we do only the proof of the first
result (˛ < 0 and 3=p … f1; : : : ;�˛g). The proof follows the idea of [2]. Since p > 2
and support of f is compact, we have f in W�1;2

˛ .R3/. Using Theorem 1 we deduce
that problem (6) has exactly one solution u in W1;2

˛ .R3/=PŒ�˛� 1
2 �

. The remainder

of the proof is devoted to establish that u in W 1;p
˛ .R3/. For any positive real number

R0, let BR0 denote the open ball centered at the origin, with radius R0; and assuming
that R0 is sufficiently large for˝ 0 	 BR0 , we denote by˝R0 the intersection˝\BR.
Take R0 sufficiently large so that the support of f is contained in BR0 . Let � and �
be two scalar, nonnegative functions in C1.R3/ that satisfy

8 x 2 BR0 ; �.x/ D 1; supp� 	 BR0C1; 8 x 2 R
3; �.x/C �.x/ D 1:

Then, we can write

u D � u C � u:

As � is very smooth and vanishes on BR0 , then � f D 0. After an easy calculation,
we obtain that � u satisfies the following equations in R

3:

��.� u/ WD f1 in R
3;

with f1 D �.��/u � 2r � � r u. Moreover, owing to the support of �, f1
belongs to L2.R3/. In addition, if O is a Lipschitzian bounded domain, we have
L2.O/ ,! W�1;q.O/ for any 2 � q � 6. Hence, we shall assume for the time
being that 2 < p � 6 and afterward, we shall use a bootstrap argument. Then f1
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belongs to W�1;p
˛ .R3/. Since 3=p … f1; : : : ;�˛g, it follows from Theorem 1 that

there exists a unique v in W1;p
˛ .R3/=PŒ1�˛�3=p� such that ��� u D �v. Hence

�u �v is a harmonic tempered distribution and therefore a polynomial belonging to
W1;p
˛ .R3/C W1;2

˛ .R3/. Thus there exists a polynomial K 2 PŒ1�˛�3=p� 	 W1;p
˛ .R3/

such that�u D vCK. Consequently, �u belongs to W1;p
˛ .R3/. In particular, we have

� u D u outside BR0C1, so the restriction of u to @BR0C1 belongs to W1=p0;p.@BR0C1/.
Therefore, u satisfies:

�� u D f in BR0C1; uj@BR0C1
D � u: (8)

This problem has a unique solution u 2 W1;p.BR0C1/. This implies that u 2
W1;p
˛ .R3/ if 2 < p � 6. Now, suppose that p > 6. The above argument shows

that u belongs to W1;6
˛ .˝/ and we can repeat the same argument with p D 6

instead of p D 2 using the fact that if O is a Lipschitzian bounded domain, we
have L6.O/ ,! W �1;t.O/ for any real number t. This establishes the existence of
solution u in W 1;2

˛ .R3/ \ W 1;p
˛ .R3/ of Problem (6).

The next lemma solves problem (5) with homogeneous boundary conditions and
a right-hand side f with bounded support:

�� u D f in ˝; u D 0 on �: (9)

Lemma 2. Let p > 2 and ˛ 2 Z. Suppose that � is of class C1;1 and let f in
W �1;p
˛ .˝/ with compact support. Then

i) if ˛ 2 H1, problem (9) has a solution u in W 1;2
˛ .˝/ \ W 1;p

˛ .˝/ unique up to an
element of A �

˛;2.˝/.

ii) If ˛ 2 H2, problem (9) has a unique solution u in W 1;2
˛ .˝/ \ W 1;p

˛ .˝/ if and
only if

8� 2 A ��˛;2.˝/; hf ; �i
W�1;2
˛ .˝/� VW1;2

�˛.˝/
D 0: (10)

Proof. The proof of point i/ and ii/ is very similar, so we do only the proof of the
first result. Proceed as in Lemma 1. Since p > 2 and support of f is compact, we
have f which belongs to W �1;2

˛ .˝/. Due to Theorem 3:5 of [4], problem (9) has
exactly one solution u in W1;2

˛ .˝/=A �
˛;2.˝/. The remainder of the proof is devoted

to establish that u in W 1;p
˛ .˝/. Take R0 sufficiently large so that both the support of

f and ˝ 0 are contained in BR0 . Let us extend u by zero in ˝ 0. Then, the extended
distribution denoted by Qu belongs to W 1;2

˛ .R3/. With the above partition of unity, we
split u into � u C � u and after an easy calculation, we obtain that �Qu satisfies the
following equations in R

3:

��.� Qu/ WD f1 in R
3 with f1 D �.��/Qu � 2r � � r Qu: (11)
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Suppose at first that 2 < p � 6, then f1 2 W�1;p
˛ .R3/. Since 3=p … f1; : : : ;�˛g,

it follows from Theorem 1 that (11) has a unique solution in W1;p
˛ .R3/=PŒ1�˛�3=p�

and hence � Qu belongs to W1;p
˛ .R3/. Thus, as � Qu D u outside BR0C1, the restriction

of u to @BR0C1 belongs to W1=p0;p.@BR0C1/. Therefore, u satisfies:

�� u D f in ˝R0C1; uj@BR0C1
D Qu and uj� D 0;

where ˝R0C1 denotes the intersection ˝ \ BR0C1. Since the boundary of ˝R0C1 is
of class C1;1, this problem has a unique solution u in W1;p.˝R0C1/. This implies that
u belongs to W1;p

˛ .˝/ if 2 < p � 6 and the same bootstrap argument extends this
result to any real value of p > 2.

As a consequence of Lemma 2, we can solve the following problem:

�� u D 0 in ˝; u D g on �: (12)

Corollary 1. Let p > 2 and ˛ 2 Z. Suppose that � is of class C1;1 and let g in
W1=p0;p.� /. Then

i) if ˛ 2 H1, problem (12) has a solution u in W 1;2
˛ .˝/ \ W 1;p

˛ .˝/ unique up to
an element of A �

˛;2.˝/.

ii) If ˛ 2 H2, problem (12) has a unique solution u in W 1;2
˛ .˝/ \ W 1;p

˛ .˝/ if and
only if

8� 2 A ��˛;2.˝/;
�
g;
@�

@n

�
�

D 0; (13)

where the duality on � is defined by:

< :; : >� D< :; : >H1=2.� /�H�1=2.� / :

Proof. The proof of point i/ and ii/ is very similar, so we do only the proof of the
second result. Let R be chosen so that ˝ 0 is contained in BR and let v be the lifting
function of g satisfying:

��v D 0 in ˝R; vj@BR D 0 and vj� D g:

This set of equations defines a unique function v in W1;p.˝R/ and when we extend it
by zero outside BR, the extended function, still denoted by v, belongs to W 1;2

˛ .˝/\
W 1;p
˛ .˝/. Then problem (12) is equivalent to

�� z D �v in ˝; z D 0 on �; (14)

where �v belongs to W �1;p
˛ .˝/ and has a bounded support and thus belongs to

W �1;2
˛ .˝/. Thanks to the density of D.˝/ in W1;2

˛ .˝/, for all � 2 A ��˛;2.˝/
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h�v; �i
W �1;2
˛ .˝/� VW 1;2

�˛.˝/
D �

�
@�

@n
; v

�
�

D �
�
@�

@n
; g

�
�

:

Applying (13) and Lemma 2, we deduce that problem (14) has a unique solution z
in W 1;2

˛ .˝/ \ W 1;p
˛ .˝/. Thus u D z C v is the unique solution of problem (12).

The next theorem characterizes the kernel A �
˛;p.˝/ with ˛ 2 H2 of the Laplace

operator with Dirichlet boundary conditions. We will start by p > 2 and we shall
see at the end of this section the characterization of the kernel A �

˛;p.˝/ when p � 2.

Theorem 2. Assume that p > 2 and ˛ 2 H2 and suppose that � is of class C1;1.
Then

A �
˛;p.˝/ D f0g :

Proof. The proof follows the idea of [5]. Let p > 2 and ˛ 2 H2. Let z be an element
of A �

˛;p.˝/ and let us extend it by zero in ˝ 0. The extended function, denoted by Qz
belongs to W1;p

˛ .R3/ and thus� Qz belongs to W �1;p
˛ .R3/with compact support. Since

3=p0 … f1; : : : ; ˛g and h� Qz; �i D 0 for all � 2 P�

Œ˛� 1
2 �

, it follows from Lemma 1

that there exists a solution w in W1;2
˛ .R3/ \ W1;p

˛ .R3/ such that � Qz D �w. Hence
w � Qz is a harmonic tempered distribution belonging to W1;p

˛ .R3/ and thus w � Qz
belongs to P�

Œ1�˛�3=p�. Since ˛ > 0, we deduce that w� Qz D 0. Therefore, z belongs

to A �
˛;2.˝/ which is reduced to f0g (see Proposition 1).

Remark 1. 1. Note that if ˛ D 0, A �
0;p.˝/ has been studied in Theorem 2:7 of

[2]:

i) If 1 < p < 3, A �
0;p.˝/ D f0g.

ii) If p � 3,

A �
0;p.˝/ D fw.�/ � � with � 2 Rg ;

where w.�/ denotes the unique solution in W1;2
˛ .˝/ \ W1;p

˛ .˝/ of the
following equations:

��w.�/ D 0 in ˝; w.�/ D � on �: (15)

2. We shall see at the end of this section that in fact A �
˛;p.˝/ D f0g for 1 < p < 2

and ˛ > 0 such that 3=p0 … f1; : : : ; ˛g.

The proof of the following theorem is very similar to that of Theorem 2.

Theorem 3. Assume that 1 < p < 1 and ˛ � 0 such that 3=p … f1; : : : ;�˛g, with
the convention that this set is empty if ˛ D 0 and suppose that � is of class C1;1.
Then

A �
˛;p.˝/ D ˚

w.�/ � � with � 2 PŒ1�˛�3=p�
�
;
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where w.�/ denotes the unique solution in W1;2
˛ .˝/ \ W1;p

˛ .˝/ of problem (15) if
p > 2 and w.�/ denotes the unique solution in W1;p

˛ .˝/ of problem (15) if p � 2.

We are now in a position to solve problem (5) for p � 2.

Theorem 4. Let p � 2 and ˛ 2 Z. Suppose that � is of class C1;1 and let f in
W �1;p
˛ .˝/ and g in W1=p0;p.� /. Then

i) if ˛ 2 H1, problem (5) has a unique solution u in W1;p
˛ .˝/=A �

˛;p.˝/.

ii) If ˛ 2 H2, problem (5) has a unique solution u in W 1;p
˛ .˝/ if and only if

8� 2 A ��˛;p0.˝/; hf ; �i
W

�1;p
˛ .˝/� VW 1;p0

�˛ .˝/
D
�
g;
@�

@n

�
�

; (16)

where the duality on � is defined by:

< :; : >� D< :; : >W1=p0 ;p.� /�W�1=p0 ;p0
.� / :

Proof. Note that the case p D 2 has been studied in Theorem 3:5 of [4]. So we can
suppose that p > 2. The proof of point i/ and ii/ is very similar, so we do only the
proof of the second result. The proof can be done in two steps:
First case: we suppose that g D 0. We want to extend the data f by zero in˝ 0. As f
belongs to W�1;p

˛ .˝/, it follows from Corollary 1:3 of [1] that there exists a function
F in W0;p

˛ .˝/ such that f D div F in ˝. Let QF denote the extension by zero of F in
˝ 0 and set Qf D div QF. Then Qf belongs to W�1;p

˛ .R3/. It follows from Theorem 1 that
there exists a unique Qw in W1;p

˛ .R3/ such that �� Qw D Qf in R
3. Denoting by w the

restriction of Qw to ˝ and by �w 2 W1=p0;p.� / the trace of w on � . Thanks to the
density of D.˝/ in W1;p

˛ .˝/, we have for all � 2 A ��˛;p0.˝/

hf ; �i
W

�1;p
˛ .˝/� VW 1;p0

�˛ .˝/
D h�w; �i

W
�1;p
˛ .˝/� VW 1;p0

�˛ .˝/
D
�
@�

@n
;��w

�
�

:

Applying (16) and Corollary 1, we have the existence of a unique solution � in
W 1;2
˛ .˝/ \ W 1;p

˛ .˝/ such that

��� D 0 in ˝; � D ��w on �: (17)

Hence, u D w C � belongs to W 1;p
˛ .˝/ and satisfies problem (5) with g D 0.

Second case: nonhomogeneous boundary data. Each g in W1=p0;p.� / has a lifting
function v introduced in the proof of Corollary 1. Then problem (5) is equivalent to

�� z D f C�v in ˝; v D 0 on �: (18)

As f C�v belongs to W�1;p
˛ .˝/ and for all � 2 A ��˛;p0.˝/ we have
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hf C�v; �i
W

�1;p
˛ .˝/� VW 1;p0

�˛ .˝/
D �

�
@�

@n
; g

�
�

C hf ; �i
W

�1;p
˛ .˝/� VW 1;p0

�˛ .˝/
D 0;

it follows from the first case (g D 0) that problem (18) has a solution in W 1;p
˛ .˝/.

Hence u D vC z belongs to W 1;p
˛ .˝/ and satisfies problem (5). Uniqueness follows

from the definition of the kernel A �
˛;p.˝/.

The following existence result can be stated via a dual argument.

Theorem 5. Suppose that 1 < p < 2 and ˛ 2 H2 and assume that � is of class
C1;1. Then for any f in W�1;p

˛ .˝/ and g in W1=p0;p.� / such that (16) is satisfied,
problem (5) has a unique solution u in W1;p

˛ .˝/.

Proof. i) First case: we suppose that g D 0. Then problem (5) has the following
equivalent variational formulation: Find u in VW1;p

˛ .˝/ such that for any ' in
VW1;p0

�˛ .˝/,

hu;��'i VW1;p
˛ .˝/�W

�1;p0

�˛ .˝/
D hf ; 'i

W
�1;p
˛ .˝/� VW1;p0

�˛ .˝/
:

According to Theorem 4, for any f 0 in W�1;p0

�˛ .˝/ there exists a unique solution
' in VW1;p0

�˛ .˝/=A ��˛;p0.˝/ such that ��' D f 0 in ˝ and we have

inf
�2A �

�˛;p0 .˝/

jj' C �jj
W
1;p0

�˛ .˝/
� Cjjf 0jj

W
�1;p0

�˛ .˝/
: (19)

Let T be a linear form defined from W �1;p0

�˛ .˝/ onto R by:

T W .f 0/ 7! hf ; 'i
W

�1;p
˛ .˝/� VW1;p0

�˛ .˝/
:

Observe that for any f 0 2 W �1;p0

�˛ .˝/ and � 2 A ��˛;p0.˝/, we have

jT.f 0/j D j hf ; ' C �i
W

�1;p
˛ .˝/� VW1;p0

�˛ .˝/
j

� jjf jj
W

�1;p
˛ .˝/

jj' C �jj
W
1;p0

�˛ .˝/
� Cjjf jj

W
�1;p
˛ .˝/

jjf 0jj
W

�1;p0

�˛ .˝/
:

Thus the linear form T is continuous on the following space W �1;p0

�˛ .˝/ and we
deduce that there exists a unique u in VW1;p

˛ .˝/ such that

T.f 0/ D ˝
u; f 0˛

VW1;p
˛ .˝/�W

�1;p0

�˛ .˝/
;

with

jjujj
W
1;p
˛ .˝/

� Cjjf jj
W

�1;p
˛ .˝/

:
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By definition of T , it follows

hf ; 'i
W

�1;p
˛ .˝/� VW1;p0

�˛ .˝/
D ˝

u; f 0˛
VW1;p
˛ .˝/�W

�1;p0

�˛ .˝/
;

which is the variational formulation of problem (5).
ii) Second case: the nonhomogeneous boundary data, i.e. u D g on � . Each g in

W1=p0;p.� / has a lifting function v in W1;p
˛ .˝/. Then problem (5) is equivalent

to (18) and to conclude, we can use the first case.

In the same way, we can prove the following theorem:

Theorem 6. Suppose that 1 < p < 2 and ˛ 2 H1 and assume that � is of class
C1;1. Then for any f in W�1;p

˛ .˝/ and g in W1=p0;p.� /, problem (5) has a unique
solution u in W 1;p

˛ .˝/=A �
˛;p.˝/.

Proof. i) First case: we suppose that g D 0. Then problem (5) has the following
equivalent variational formulation: Find u in VW1;p

˛ .˝/ such that for any ' in
VW1;p0

�˛ .˝/,

hu;��'i VW1;p
˛ .˝/�W

�1;p0

�˛ .˝/
D hf ; 'i

W
�1;p
˛ .˝/� VW1;p0

�˛ .˝/
:

According to Theorem 4, for any f 0 in W�1;p0

�˛ .˝/ ? A �
˛;p.˝/ there exists a

unique solution ' in VW1;p0

�˛ .˝/ such that ��' D f 0 in ˝ and we have

jj'jj
W
1;p0

�˛ .˝/
� Cjjf 0jj

W
�1;p0

�˛ .˝/
: (20)

Let T be a linear form defined from W �1;p0

�˛ .˝/ ? A �
˛;p.˝/ onto R by:

T W .f 0/ 7! hf ; 'i
W

�1;p
˛ .˝/� VW1;p0

�˛ .˝/
:

Observe that for any f 0 2 W �1;p0

�˛ .˝/, we have

jT.f 0/j D j hf ; 'i
W

�1;p
˛ .˝/� VW1;p0

�˛ .˝/
j

� jjf jj
W

�1;p
˛ .˝/

jj'jj
W
1;p0

�˛ .˝/
� Cjjf jj

W
�1;p
˛ .˝/

jjf 0jj
W

�1;p0

�˛ .˝/
:

Thus the linear form T is continuous on the following space W �1;p0

�˛ .˝/ and we
deduce that there exists a unique u in VW1;p

˛ .˝/ such that

T.f 0/ D ˝
u; f 0˛

VW1;p
˛ .˝/�W

�1;p0

�˛ .˝/
;

with
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jjujj
W
1;p
˛ .˝/

� Cjjf jj
W

�1;p
˛ .˝/

:

By definition of T , it follows

hf ; 'i
W

�1;p
˛ .˝/� VW1;p0

�˛ .˝/
D ˝

u; f 0˛
VW1;p
˛ .˝/�W

�1;p0

�˛ .˝/
;

which is the variational formulation of problem (5).
ii) Second case: the nonhomogeneous boundary data, i.e. u D g on � . Each g in

W1=p0;p.� / has a lifting function v in W1;p
˛ .˝/. Then problem (5) is equivalent

to (18) and to conclude, we can use the first case.

The next theorem summarizes the result of this section.

Theorem 7. Let � be of class C1;1 if p ¤ 2 or Lipschitz-continuous if p D 2. Let f
in W�1;p

˛ .˝/ and g in W1=p0;p.� / with ˛ 2 Z. Then

1. if ˛ 2 H1, problem (5) has a unique solution u in W1;p
˛ .˝/=A �

˛;p.˝/.

2. If ˛ 2 H2, problem (5) has a unique solution u in W 1;p
˛ .˝/ if and only if f and g

satisfy the compatibility condition (16).
3. If ˛ D 0, problem (5) has a unique solution u in W1;p

˛ .˝/=A �
0;p.˝/ if p � 2 and

if p < 2, problem (5) has a unique solution u in W1;p
˛ .˝/ if and only if f and g

satisfy the compatibility condition (16).

In addition, there exists a constant C, independent of u, f , and g, such that

jjujj
W
1;p
˛ .˝/=A �

˛;p.˝/
� C

�
jjf jj

W
�1;p
˛ .˝/

C jjgjjW1=p0 ;p.� /

�
: (21)

We will prove now a regularity result, when the external forces belong to W0;p
˛ .˝/

with ˛ 2 Z.

Theorem 8. Let � be of class C1;1 if p ¤ 2 or Lipschitz-continuous if p D 2. Let f
in W0;p

˛ .˝/ and g in W1C1=p0;p.� / with ˛ 2 Z. Then

1. if ˛ 2 H1 and 3=p C ˛ ¤ 1, problem (5) has a unique solution u in
W2;p
˛ .˝/=A �

˛�1;p.˝/.
2. If ˛ 2 H2, problem (5) has a unique solution u in W 2;p

˛ .˝/=A �
˛�1;p.˝/ if and

only if f and g satisfy the compatibility condition (16).
3. If ˛ D 0 and p ¤ 3, problem (5) has a unique solution u in W2;p

0 .˝/=A ��1;p.˝/.

In addition, there exists a constant C, independent of u, f , and g, such that

jjujj
W
2;p
˛ .˝/=A �

˛;p.˝/
� C

�
jjf jj

W
0;p
˛ .˝/

C jjgjjW1C1=p0 ;p.� /

�
: (22)

Proof. The proof of point 1/, 2/, and 3/ is very similar, so we do only the proof of the
second result. First observe that W2�1=p;p.� / ,! W1=p0;p.� / and since 3=p0 ¤ ˛ we
have W0;p

˛ .˝/ ,! W �1;p
˛�1 .˝/, then we deduce thanks to Theorem 7 that problem (5)
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has a solution u 2 W 1;p
˛�1.˝/ unique if ˛ � 2 and unique up to an element of

A �
0;p.˝/ if ˛ D 1. The rest of the proof is similar to that of Lemma 2, we introduce

the same partition of unity as in Lemma 2. With the same notation, we can write

u D � u C � u:

Let us extend � u by zero in ˝ 0. Then, the extended distributions denoted by f� u
belongs to W 1;p

˛�1.R3/. A quick computation in D 0.R3/ shows that f� u satisfies the
following equations:

��.f� u/ WD f1

with

f1 D � Qf � .��/Qu � 2r � � r Qu:

Moreover, owing to the support of �, f1 belongs to W0;p
˛ .R3/ ? P�

Œ˛�3=p0�
.

According to Theorem 9:9 see [3], there exists z 2 W2;p
˛ .R3/ such that�z D �.f� u/

in R
3 (z is unique up to an element of PŒ2�˛�3=p�). Hence z � f� u is a harmonic

tempered distribution belonging to W2;p
˛ .R3/ C W1;p

˛�1.R3/, therefore a polynomial
k 2 PŒ2�˛�3=p� 	 W2;p

˛ .R3/. Then, we deduce that f� u D zCk belongs to W2;p
˛ .R3/.

In particular, we have f� u D u outside BR0C1, so the restriction of u to @BR0C1
belongs to W2�1=p;p.@BR0C1/. Therefore, u satisfies:

�� u D f in ˝R0C1 uj@BR0C1
D f� u and uj� D g:

Since the boundary of ˝R0C1 is of class C1;1, this problem has a unique solution
u in W2;p.˝R0C1/. This implies that u belongs to W2;p

˛ .˝/. The uniqueness of the
solution u follows from this inclusion W2;p

˛ .˝/ 	 W1;p
˛�1.˝/ which is valid if 3=p C

˛ ¤ 1 and since ˛ > 0 this inclusion holds.

Remark 2. To prove the uniqueness of the solution u in Theorem 8 we need to have
the following condition:

3=p C ˛ ¤ 1: (23)

because the inclusion W2;p
˛ .˝/ 	 W1;p

˛�1.˝/ holds if (23) is satisfied.
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About the quotient of two bounded operators

Abdellah Gherbi and Bekkai Messirdi

Abstract The quotient operators are introduced in order to extend the class of all
closed operators acting on a Hilbert space H. In fact, Kaufman proved in Kaufman
(Proc Am Math Soc 72:531–534, 1978) using A and B such that R.A�/C R.B�/ D
fA�x C B�y W xI y 2 Hg is closed in H, that a linear operator T on H is closed if and
only if T is represented as a quotient B=A. So that every closed operator is included
in the class of quotients. Moreover, he proved that if T is a closed densely defined
operator, then T is represented as T D B=.I�B�B/

1
2 using a unique pure contraction

B, i.e., an operator such that kBxk < kxk for all nonzero x in H. In this paper we
attempt to study some algebraic and topological properties of quotient operators
acting on Hilbert space, such that the boundedness, compactness and invertibility,
other results such that the powers of quotient and the quotient character of limit of
converging sequence of quotient operators are also established.

Keywords Quotient operator • closed range • generalized inverse • nilpotent •
idempotent and compact operator

2010 Mathematics Subject Classifications: 47 A05

1 Introduction and preliminaries

Throughout this paper, let B.H/ denote the algebra of all bounded operators
acting on a complex Hilbert space H equipped with the inner product h:I :i and the
associated norm k:k. For T closed densely defined linear operator on H, we denote
by N.T/ and R.T/ the null space and range of T . For two bounded operators A and
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B in B.H/ with the kernel condition N.A/ 	 N.B/, we define the quotient operator
B=A to be the mapping Au �! Bu for all u 2 H. It’s clear that R.A/ and R.B/ are,
respectively, the domain and the range of B=A. Note that the quotient of two bounded
operators is not necessarily bounded. It was shown in [9, 10] that the sum and the
product of two quotients are again represented as quotients, and that if a quotient
operator is densely defined, its adjoint is also represented as quotient. In [12] W. E.
Kaufman showed, using A and B such that R.A�/CR.B�/ D fA�xCB�y W xI y 2 Hg
is closed in H, that a linear operator T on H is closed if and only if T is represented
as a quotient B=A. So that every closed operator is included in the class of quotients.
Moreover, he proved that if T is a closed densely defined operator, then T is
represented as T D B=.I � B�B/

1
2 using a unique pure contraction B, i.e., an

operator such that kBxk < kxk for all nonzero x in H. Let the function � defined
by � .B/ D B=.I � B�B/

1
2 , then W. Kaufman proved that there is a one-to-one

correspondence between C0.H/ and C .H/ via � . This function is also used to
reformulate questions about unbounded operators in terms of bounded ones

• In [12, 14], Kaufman proved that the map � preserves many properties of oper-
ators: self-adjointness, nonnegative conditions, normality, and quasinormality.

• In [8] Hirasawa showed that a pure contraction B is hyponormal if and only
if T D B=.I � B�B/

1
2 is formally hyponormal , and if B is quasinormal then

Tn D Bn=.I � B�B/
n
2 is quasinormal for all integers n � 2.

The aim of this paper is to characterize some algebraic, topological properties of
quotient operator. In fact, our work is organized as follows:

In the second section we study some algebraic and topological properties of
quotient operator such as boundedness, compactness, invertibility. The powers
of quotient (idempotent, nilpotent, and quasi-nilpotent quotients) and the limit of
converging sequence of quotient operators are also established.

Throughout this paper, B=A is quotient operator of two bounded operators
A;B 2 B.H/.

2 Mains results

2.1 Bounded, compact quotient operator

First, we recall the Douglas majorization lemma.

Lemma 1 ([5, 6]). Let A;B 2 B.H/. Then the following conditions are equiva-
lent:

1. R.B/ 	 R.A/.
2. BB� � �AA�.
3. There exists a bounded operator X 2 B.H/I such that B D AX.
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If one of these conditions holds, then there exists a unique operator D 2 B.H/ such
that AD D B and R.D/ � R.A�/. D is called Douglas solution of the equation
AX D B

For a quotient operator B=A, we can easily deduce from this lemma the following:

Corollary 1. If R.B�/ 	 R.A�/, then B=A is bounded.

Proof. Since R.B�/ 	 R.A�/, there exists X� 2 B.H/ such that A�X� D B�, in
other words, B D XA where .X�/� D X. Hence X is a bounded extension of B=A,
so, B=A is bounded on H.

Obviously, if R.B�/ 	 R.A�/, then N.A/ 	 N.B/. Thus, for what conditions on A
and B we have the converse implication?

As answer of this question, we have the following result due to Barnes [2].

Proposition 1. For two bounded operator A;B 2 B.H/ such that A has closed
range and N.A/ 	 N.B/ we have R.B�/ 	 R.A�/:

This proposition imply immediately the following:

Theorem 1. If B=A is quotient operator with closed domain, that is, R.A/ is closed
in .H/, then B=A is bounded.

Recall from [1, 4] and [15] that if R.A/ is closed, then there exists a unique bounded
operator A� called the Moore penrose generalized inverse of A such that

AA�A D AI A�AA� D A�I .A�A/� D A�AI
.AA�/� D AA�I A�A D PR.A�/I AA� D PR.A/:

This yields a question about the expression of the quotient operator B=A using A�.
For this, we have the following corollary.

Corollary 2. If B=A is quotient operator with closed domain, then B=A D BA�.
(Respectively, if A is invertible, then B=A D BA�1).

Proof. It follows immediately from the properties of A�. It my be very important to
note that Kaufman proved in [13] that the quotient operator is only what was called
semi closed operator and we obtain from [3] and [17] the following result:

Corollary 3. If B=A is quotient operator, then it is bounded from .R.A/; h:; :iB=A/

onto H, where h:; :iB=A is the inner product define for all x; y 2 R.A/ by

hx; yiB=A D hx; yi C h.B=A/x; .B=A/yi

Recall from [7, 11] that an operator T 2 B.H/ is called compact if for any
bounded sequence .fn/n2N in H, the sequence .Tfn/n2N has a Cauchy subsequence.

According to this definition, we characterize the compact quotient operator as
follows:
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Proposition 2. B=A is also compact if only if B is compact on H.

Proof. Let .fn/n2N be a bounded sequence in H. Since A is bounded in H, the
sequence .Afn/n2N is also in H, and by the compactness of B, the sequence
..B=A/Afn/n2N D .Bfn/n2N has a Cauchy subsequence in H. Hence B=A is compact
on H. With similar manner we prove the converse implication.

Note that if B=A is compact, then B=A is bounded. In fact, we have

sup
kf k�1

k.B=A/f k < 1

Otherwise we have a sequence .fn/n2N with kfnk � 1 for all n 2 N such that
lim

n�!1 k.B=A/fnk D 1, which excludes the existence of a Cauchy subsequence of

..B=A/fn/n2N.

Corollary 4. The quotient of two compact operators is compact.

2.2 About the inverse of quotient operator

Our intention in this paragraph is to prove the following theorem concerning the
invertibility of quotient operator.

Theorem 2. Let B=A be a quotient operator on H. Then

1. If N.A/ D N.B/, then B=A is invertible and .B=A/�1 D A=B.
2. If B=A is a bounded quotient with a closed range R.B/ in H, then B=A has a

generalized inverse .B=A/� D AB�

.B=A/� is then called the Moore-Penrose generalized inverse of B=A.

Proof. 1. The operator A=B is well defined from the condition N.A/ D N.B/.
Since the domain of A=B is R.B/, we notice that the compositions

.A=B/.B=A/ W Au �! Bu �! Au for all u 2 H

.B=A/.A=B/ W Bv �! Av �! Bv for all v 2 H

give the desired equality.
2. If B=A is bounded, then R.A/ is closed in H and B=A D BA�. Thus,

.B=A/�.B=A/ D AB�BA� D A.B�B/A� D PR.A/

.B=A/.B=A/� D BA�AB� D B.A�A/B� D PR.B/
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Corollary 5. The quotient operator B=A has an everywhere defined and bounded
inverse if and only if the operator B is invertible and

T�1 D A=B D AB�1

For a closed densely defined operator T 2 C .H/ we have the following theorem.

Theorem 3. Let T 2 C .H/ represented by T D � .B/ D B=A D BA�1 with
B 2 C0.H/ and A D .I � B�B/

1
2 . If B� exists, then T� exists and T� D AB�.

Proof. Define S D AB�. By the definition of � .B/, we have D.T/ D R.A/ and
R.T/ D R.B/. Since B�B commutes with B�B, and AA�1x D x for any x 2 R.A/,
we have

STx D AB�BA�1x D B�BAA�1x D B�Bx

for any x 2 D.T/. On the other hand,

TSy D BA�1AB�y D BB�y

for any y 2 R.T/, and the uniqueness of T� implies that S D T�.

2.3 Powers of quotient operator

First, we note that it is necessary to assume that R.B/ 	 R.A/, so that we can discuss
about the powers of the quotient operator B=A.

Theorem 4. Let B=A be quotient of two commuting bounded operators A and B
such that R.B/ 	 R.A/. Then

.B=A/n D Bn=An for all n 2 N:

Proof. We proceed by induction on the values of n using the definition of product
of quotient operators.

The quotient B=A is nilpotent (resp. idempotent) if R.B/ 	 R.A/ and .B=A/2 D 0

(resp. .B=A/2 D B=A). This implies immediately the following.

Theorem 5. The quotient operator B=A is nilpotent (resp. idempotent) if the
solution X of the Douglas equation AX D B is nilpotent (resp. idempotent).

It follows from this theorem that the quotient of two idempotent operators is
idempotent, and that if B is nilpotent then B=A is again nilpotent.

In general, for n 2 N, B=A is n-nilpotent (resp. n-idempotent) if AX D B and
Xn D 0 (resp. Xn D X).
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The quotient operator B=A is said to be quasi-nilpotent if it is a null spectral
radius, that is

lim
n�!1 k.B=A/nAxk 1

n D 0

Theorem 6. The quotient operator B=A is quasi-nilpotent if the solution X of the
Douglas equation AX D B is quasi-nilpotent.

Proof. Since

k.B=A/nAxk 1
n D kAXnxk 1

n for all x 2 H:

Then, if X is quasi-nilpotent, we have

lim
n�!1 k.B=A/nAxk 1

n D lim
n�!1 kAk 1

n kXnxk 1
n D 0

2.4 Limit of a sequence of quotient operators

In the following theorem, we prove that the limit of a converging quotient operators
sequence is also quotient operator.

Theorem 7. Let .Bn=An/n2N be a sequence of quotient operators converging to an
operator C with domain D.C/ D \

n2N R.An/\ K, where K the Hilbert space of all x

in H such that lim
n�!1.Bn=An/nx exists. Then C is quotient of two bounded operators.

Proof. First let Qn D Bn=An for all n 2 N. As we have done above (Corollary 3),
we consider for all .x; y/ 2 .D.C//2 the inner product:

hx; yiC D hx; yiK C hCx;Cyi D hx; yiK C lim
n�!1hQnx;Qnyi:

We now show that .D.C/; k:kC/ is complete.
Let .xm/m2N be a Cauchy sequence in .D.C/; k:kC/. Clearly, .xm/m2N is Cauchy

in K;H and .R.An/; k:kQn/. Hence, .xm/m2N converges to x in D.C/. We have from
Corollary 3

kQnxm � Qnxk �!
m�!1 0:

Therefore

kxm � xkC D kxm � xkK C lim
n�!1 kQnxm � Qnxk �!

m�!1 0

So, .D.C/; k:kC/ is complete.
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It follows from a result of Mac-Nerney [16],Theorem 3 that there exists an
operator A 2 B.H/ such that R.A/ D D.C/ and for all .x; y/ 2 .D.C//2

hx; yiC D hA�1x;A�1yi

Set B D CA. Then we have for all x 2 H

kBxk2 � hAx;AxiC � kxk2

Hence, B is bounded on H and C is the quotient B=A.
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Exact Controllability For Korteweg-De
Vries Equation and its Cost in the
Zero-Dispersion Limit

Hajer Dbebria and Ali Salem

Abstract In this paper, we consider the problem of exact boundary controllability
of a linear Korteweg-de Vries (KdV) equation in a bounded domain when the
condition for the control is the difference between the derivative of the solution in
the left and right endpoint. We prove the existence of a countable set of critical
lengths out of which we have the exact controllability. In the second part of
this paper, we study the behavior of the optimal control and how the cost of
controllability evolves as the dispersive term brought to zero.

Keywords Exact Controllability • Korteweg-de Vries equation • Hilbert Unique-
ness Method (HUM) • Ingham’s inequality • Cost of null controllability

1 Introduction and Main Results

The Korteweg-de Vries (KdV) equation:

yt C yx C yxxx C yyx D 0; (1)

may serve as a model for propagation of small amplitude long water waves in a
uniform channel. In this context, t is the time variable, x is the space variable, and y
the state, stands for the deviation of the liquid surface from the equilibrium position.

Let us be more specific on the problem under view. Let T > 0 (final time), L > 0
(the length of the domain), and y0, yT 2 H�1.0;L/; does it exist a control function
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v.t/ 2 L2.0;T/ such that the solution of the following Cauchy problem:

8̂
<̂
ˆ̂:

yt C yx C "yxxx D 0 in .0;T/ 
 .0;L/;
y.t; 0/ D y.t;L/ D 0 in .0;T/;
yx.t;L/ � yx.t; 0/ D v.t/ in .0;T/;
y.0; x/ D y0.x/ in .0;L/

(2)

satisfies y.T; x/ D yT.x/?
Here, " is a positive dispersion cœfficient and v.t/ 2 R constitute the control of

our system.
In this paper, we are interested in two types of controllability results concerning

this system. These two types are the following.

• First, we consider the problem of exact controllability for system (2), when the
dispersion coefficient is fixed (Theorems 3).

• Next, we are interested in how the cost of null controllability evolves as the
dispersive term tends to 0 (Theorem 4).

Many results of controllability have been studied in recent years for KdV equa-
tion (1). In particular several different cases have been considered: the case where
all three boundary conditions are used as controls (see [4]). If we act on the left
Dirichlet boundary condition and homogeneous data is considered at the right,
then the system behaves like a heat equation and only null controllability can be
proven [6, 11]. On the other hand, if we act on the two right data and homogeneous
boundary condition is considered at the left, then the system behaves like a wave
equation with an infinite speed of propagation (see [10]). When we put only
one control input at the right endpoint and keep homogeneous the other two
boundary conditions: there exist some spatial domains (intervals of some given
lengths) for which the corresponding linearized KdV equation is not any more
controllable [10, 11]. In spite of that, in these critical cases the nonlinearity gives
the exact controllability of the nonlinear KdV equation [2, 3, 5].

This paper is organized as follows. In Section 2, we recall the well-posedness
results for the linear KdV control system and prove the exact controllability. It
is done by using spectral analysis and the HUM method; see [9]. In Section 3
we establish that the cost of null controllability will dramatically increase as the
dispersive term brought to zero.

2 Exact Controllability

In this section we aim to apply the HUM [9], so we have to study the backward
problem:
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8̂̂
<
ˆ̂:

zt C zx C "zxxx D 0

z.t; 0/ D z.t;L/ D 0;

zx.t;L/ � zx.t; 0/ D 0;

z.T; x/ D zT.x/:

(3)

Performing the change of variables � D T � t and � D �x in (3) and replacing
.�; �/ by .t; x/, we get the following homogeneous problem:

8̂̂
<
ˆ̂:

zt C zx C "zxxx D 0;

z.t; 0/ D z.t;L/ D 0;

zx.t;L/ � zx.t; 0/ D 0;

z.0; x/ D z0.x/:

(4)

We begin by showing the well-posedness of homogeneous problem (4).

2.1 Well-posedness of Cauchy Problem

Let A denote the operator

A W z 7! �zx � "zxxx (5)

on the (dense) domain D.A/ 	 L2.0;L/ defined by

D.A/ WD
n
z 2 H3.0;L/I z.0/ D z.L/ D 0I zx.0/ D zx.L/

o
: (6)

Hence, from the classical semigroup results, one sees that the operator A is an
infinitesimal generator of a continuous group. Also it’s not difficult to see that the
skew-adjoint operator A has a compact resolvent. Hence the spectrum �.A/ of A
consists only of eigenvalues. Furthermore the spectrum of A is a discrete subset
of iR and the eigenfunctions form an orthonormal basis of H1.0;L/. We denote by
.i�k/k2Z the eigenvalues of A and by .�k/k2Z its eigenfunctions. We can then state
the following well-posedness result:

Theorem 2.1. For any z0 2 H1.0;L/; there exists a unique solution of the
homogeneous problem (4), which belongs to H1.0;L/ and is given by:

	
z.t; x/ D P

k2Z ei�ktzk
0�k.x/;

z0 D P
k2Z zk

0�k:
(7)

Moreover,

8t 2 R W kz.t; :/kH1.0;L/ D kz0kH1.0;L/:
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Let us now define what we mean by a solution of our control system (2).

Definition 1. Let " > 0; T > 0; y0 2 H�1.0;L/ and v 2 L2.0;T/: A solution of
the nonhomogeneous problem (2) is a function y 2 C.Œ0;T�;H�1.0;L// satisfying

y.0/ D y0 and 8 � 2 Œ0;T�; 8 z0 2 H1.0;L/;

< y.�/; z.�/ >�1;1D< y0; z0 >�1;1 C
Z T

0

"zx.t;L/v.t/dt:

With this definition, we obtain the following result

Proposition 1. Let " > 0; T > 0: Let y0 2 H�1.0;L/ and v 2 L2.0;T/: Then the
problem (2) has a unique weak solution (defined by transposition).

2.2 Observability of the Homogeneous Problem

In this subsection, we apply the duality between controllability and observability
which reduces the control problem to an observability problem to the adjoint
problem (3). There are many techniques that are useful to address the problem of
observability such as the Ingham’s inequalities.

2.2.1 Ingham’s Inequality

Lemma 1 ([7]). Let T > 0. Let .ˇk/k2Z 2 R be a sequence of pairwise distinct real
numbers such that

lim
jkj!1

ˇkC1 � ˇk D C1:

Then there exist two strictly positive constants c1.T/ and c2.T/ such that for any
sequence .�k/k2Z 2 R satisfying

P
k2Z �2k < C1, the series f .t/ D P

k2Z �keiˇkt

converges in L2.0;T/ and satisfies

c1.T/
X
k2Z

�2k �
Z T

0

j f .t/ j2 dt � c2.T/
X
k2Z

�2k :

In order to apply this lemma we first study the sequences of eigenvalues and
eigenfunctions of A.

Proposition 2. The real numbers .�k/k2Z have the asymptotic form

�k D 8"
k3�3

L3
C o.k2/ as k ! ˙1: (8)
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Proof. The eigenvalue problem to be considered is

8<
:

��0 � "�000 D i��;
�.0/ D �.L/ D 0;

�0.0/ D �0.L/:
(9)

The characteristic equation of (9) is

"z3 C z C i� D 0 (10)

Let us denote a solution of this equation z D 2ia, where a 2 R: It follows that the
eigenvalues are

� D 2a.4"a2 � 1/:

Thus the three solutions of (10) are

z0 D
r

j 3a2 � 1

"
j � ia; z1 D �

r
j 3a2 � 1

"
j � ia; z2 D 2ia:

We distinguish 3 cases.

1. 3a2 � 1

"
< 0:

In this case, it is easy to see that the eigenfunction � of A associated with the
eigenvalue � D 2a.4"a2 � 1/ may be written

�.x/ D e�iax˛ cos.x

r
�.3a2 � 1

"
// C e�iaxˇ sin.x

r
�.3a2 � 1

"
// C �e2iax

where ˛; ˇ, and � are some constants such that:

�.0/ D �.L/ D 0 and �0.0/ D �0.L/:

That means, such that

˛ C � D 0:

e�iaL˛ cos.L

r
�.3a2 � 1

"
// C e�iaLˇ sin.L

r
�.3a2 � 1

"
// � ˛e�2iaL D 0:

(11)
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� 3ia˛ C ˇ

r
�3a2 C 1

"

D �iae�iaL

 
˛ cos.L

r
�3a2 C 1

"
/C ˇ sin.L

r
�.3a2 � 1

"
//

!

� e�iaL˛

r
�3a2 C 1

"
sin.L

r
�3a2 C 1

"
/

C e�iaLˇ

r
�3a2 C 1

"
cos.L

r
�3a2 C 1

"
// � 2ia˛e2iaL: (12)

From (11), one obtains

ˇ D ˛

e3ial � cos.L

r
�.3a2 � 1

"
//

sin.L

r
�.3a2 � 1

"
//

:

Taking the real part of equation (12), one obtains that a must satisfy

r
�.3a2 � 1

"
/ cos.2aL/ D 3a sin.aL/ sin.L

r
�.3a2 � 1

"
//C

r
�.3a2 � 1

"
/ cos.aL/ cos.L

r
�.3a2 � 1

"
// (13)

The number of parameters a satisfying (13) is finite and depends on L and ".
As if a satisfies (13), then .�a/ so, we find in this case 2NL;" eigenvalues
f��NL;" ; : : : ; ��1; �1; : : : ; �NL;"g:

2. 3a2 � 1

"
D 0

In this case, we don’t find any eigenfunction satisfy the boundary conditions.

3. 3a2 � 1

"
> 0

In this case, it is not difficult to see that the eigenfunction � of A associated
with the eigenvalue � D 2a.4"a2 � 1/ may be written as

�.x/ D e�iax˛ cosh.x

r
3a2 � 1

"
/Ce�iaxˇ sinh.x

r
3a2 � 1

"
/C�e2iax (14)

where ˛; ˇ, and � are some constants such that �.0/ D �.L/ D 0 and �0.0/ D
�0.L/: That means, such that

˛ C � D 0;
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e�iaL

 
˛ cosh.L

r
3a2 � 1

"
/C ˇ sinh.L

r
3a2 � 1

"
/

!
� ˛e2iaL D 0 (15)

� iae�iaL

 
˛ cosh.L

r
3a2 � 1

"
/C ˇ sinh.L

r
3a2 � 1

"
/

!
C

e�iaL

r
3a2 � 1

"

 
˛ sinh.L

r
3a2 � 1

"
/C ˇ cosh.L

r
3a2 � 1

"
/

!

� 2ia˛e2iaL D �3ia˛ C ˇ

r
3a2 � 1

"
L: (16)

We deduce from (15)-(16) that

ˇ D ˛

e3iaL � cosh.L

r
3a2 � 1

"
/

sinh.L
q
3a2 � 1

" /

;

and

� 3a˛ C I .ˇ/

r
3a2 � 1

"
D �3a˛ cos.2aL/C ˛

r
3a2 � 1

"
sin.�aL/

 
sinh.L

r
3a2 � 1

"
/C R.ˇ/ cosh.L

r
3a2 � 1

"
/

!

C
r
3a2 � 1

"
cos.aL/I .ˇ/ cosh.L

r
3a2 � 1

"
/:

From these equations, one obtains that a satisfies the following one

�3a sinh.L

r
3a2�1

"
/ sin.aL/C

r
3a2�1

"
cos.2aL/� cosh.

r
3a2�1

"
/ cos.aL/D0:

(17)

If one neglects the terms e�L
p
3a2� 1

" as a ! ˙1; one gets

eL
p
3a2� 1

" D cos.2aL/p
3

2
sin.aL/C 1

2
cos.aL/

D cos.2aL/

cos.aL � �

3
/

and hence there exists a unique solution akCNL;" defined by equation (17) and given
asymptotically by
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ak D 5�

6L
C k�

L
C o.

1

k
/ .respectively a�k D �5�

6L
� k�

L
C o.

1

k
//: (18)

The associated eigenfunction �k is

�k.x/ D ˛k

2
64e�iakx

0
B@cosh.x

r
3a2 � 1

"
/C

e3iakL � cosh.L
q
3a2 � 1

"
/

sinh.L
q
3a2 � 1

"
/

sinh.x

r
3a2 � 1

"
/

1
CA
3
75

� ˛ke2iakx: (19)

where ˛k is chosen in such a way that k �k kH1.0;L/D 1: Thus, from (18), one
deduces the asymptotic behavior of the eigenvalues and therefore the proof of this
proposition is complete. ut

From the proof of the last proposition, we deduce the following lemma.

Lemma 2. There exists a constant C > 0 such that

lim
k!1

j �0
k.L/ j
j k j D C: (20)

Proof. By using the formula of the eigenfunctions, we get

j �0
k.L/ jDj ˛k jˇ̌̌

ˇ̌
ˇ̌�3iak C

r
3a2k � 1

"

0
B@cosh.L

q
3a2k � 1

"
/

sinh.L
q
3a2k � 1

"
/

� e�3iakL

sinh.L
q
3a2k � 1

"
/

1
CA
ˇ̌̌
ˇ̌
ˇ̌ :

With (18), we find that

lim
k!˙1

j �0
k.L/ j
j k j Dj ˛ j

ˇ̌̌
�3i

�

L
C �

L

p
3
ˇ̌̌

Dj ˛ j 2�
p
3

L
> 0:

ut
We apply the Ingham’s inequality lemma to the function:

f .t/ D
X
k2Z

�keiˇkt D "zx.t;L/

where
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8k 2 Z;

8<
:
�k D "zk

0�
0
k.L/;

z0 D P
k2Z zk

0�k 2 H1.0;L/;
ˇk D �k:

Then, we get the existence of two constants c1.T/; c2.T/ > 0 (see [8]) such that for
any z0 2 H1.0;L/,

c1
X
k2Z

"2 j zk
0 j2j �0

k.L/ j2�
Z T

0

j "zx.t;L/ j2 dt � c2
X
k2Z

"2 j zk
0 j2j �0

k.L/ j2 :

(21)

Remark 2.1. The left-hand inequality in (21) is called an observability inequality
and the right-hand one is called an admissibility inequality.

We can estimate by above this two inequalities in terms of the H1-norm of z0. In
order to do that the following condition

8k 2 Z; �0
k.L/ ¤ 0 (22)

is required.

In the following lemma we focus on the length of the domain L such that �0
k.L/ ¤ 0:

Lemma 3. Let L > 0: Consider the following assertion:
.A / W 9� 2 C; 9' 2 H3.0;L/nf0g such that:

	
�' C '0 C "'000 D 0;

'.0/ D '.L/ D '0.0/ D '0.L/ D 0:

Then .A / , L 2 N" D
	
2�

q
" k2CklCl2

3
I k; l 2 N

�
�
:

Remark 2.2. 1.
P

k2Z k2 j zk
0 j2 is the square norm of kz0k2H1.0;L/

: In fact, we have

kz0k2H1.0;L/ D
�����
X
k2Z

zk
0�k

�����
2

H1.0;L/

D
X
k2Z
.1C j �k j/2=3 j zk

0 j2 : (23)

From the asymptotic form of the eigenvalues, we can deduce

kz0k2H1.0;L/ D
X
k2Z
.1C j �k j/2=3 j zk

0 j2

D
X
k2Z
.C."//2=3k2 j zk

0 j2 Co.1=k/4=3:
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2. Given the asymptotic behavior of �0
k.L/ as k ! ˙1, there exist two constants

m.L/ and M.L/ such that

j m.L/ j k �j �0
k.L/ j�j M.L/ j k

With those remarks we obtain the following result:

Theorem 2.2. Let z0 2 H1.0;L/; there exist two positive constants cT;L;" and CT;L;"

such that

cT;L;"kz0k2H1.0;L/ �
Z T

0

j "zx.t;L/ j2 dt � CT;L;"kz0k2H1.0;L/ (24)

where cT;L;" D L2

4�2
c1m.L/2"4=3 and CT;L;" D L2

4�2
c2M.L/2"4=3 with c1, c2 are the

constants of Ingham’s lemma.

2.2.2 Application of HUM

Thanks to the observability inequality, we can apply the Hilbert Uniqueness Method.
We consider the map:

� W H1.0;L/ ! H�1.0;L/

z0 7! y.T; :/:

where y is the solution of nonhomogenous problem (2) and z the solution of
homogeneous problem (4). Thanks to the time reversibility of (2) and Proposition
1,� is a well-defined continuous map from H1.0;L/ into its dual H�1.0;L/: On the
other hand,

< �.z0/; z0 >H�1;H1D
Z T

0

j "zx.t;L/ j2 dt:

Thanks to the following observability inequality

cT;L;"kz0k2H1.0;L/ �
Z T

0

j "zx.t;L/ j2 dt;

we conclude that

< �.z0/; z0 >�1;1� cT;L;"kz0k2H1.0;L/ where cT;L;" D L2

4�2
c1 j m.L/ j2 "4=3:
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We deduce then from the Lax-Milgram’s theorem [1] that � is an isomorphism
from H1.0;L/ into H�1.0;L/: We now prove the exact controllability of the linear
KdV equation and we have the following theorem of controllability.

Theorem 2.3. Let T > 0 and L > 0 be such that L 2 RCnN where

N" WD f2�
q
" k2CklCl2

3
; k; l 2 N

�g: Let y0; yT 2 H�1.0;L/. Then there exists

a control v 2 L2.0;T/ such that the solution of (4) satisfies y.T; :/ D yT :

Remark 2.3. Thanks to the HUM, one can choose a control v 2 L2.0;T/ of minimal
L2-norm among all the controls driving the system from y0 at t D 0 to yT at t D T:

Remark 2.4. Thanks to the linearity and the reversibility in time of the KdV
equation, we have equivalence between the exact controllability and the null
controllability.

3 Cost of Null Controllability

In this section our goal is to define the quantity which measures the cost of the null
controllability for system (2) and to give an estimate to this cost as " is brought
to 0C: We begin by introducing some results. Then in the second paragraph we
study the behavior of the cost of the null controllability.

3.1 Main Results

The cost of null controllability for linear KdV equation has been studied by O. Glass
and S. Guerrero (see [6]). The control problem is the following:

8<
:

yt C .My/x C "yxxx D 0; in .0;T/ 
 .0; 1/;
yjxD0 D u1; yjxD1 D u2; yxjxD1 D u3 in .0;T/;
yjtD0 D y0 in .0; 1/:

(25)

when " is a positive dispersion coefficient, M is a transport coefficient, ui .i D
1; 2; 3/ are time-dependent functions which constitute the controls of the system.
In this section we use only the Neumann boundary control on the right .u2 D u3 D
0/: Our system is the following one:
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8<
:

yt C yx C "yxxx D 0;

y.t; 0/ D 0; y.t; 1/ D 0; yx.t; 1/ D u.t/
y.0; x/ D y0.x/:

(26)

Performing the change of variables

u.t/ D yx.t; 0/C v.t/

our system becomes

8̂
<̂
ˆ̂:

yt C yx C "yxxx D 0;

y.t; 0/ D y.t;L/ D 0;

yx.t;L/ � yx.t; 0/ D v.t/;
y.0; x/ D y0.x/:

(27)

Now we focus on the behavior of the cost of null controllability when " vanishes.

3.2 Behavior of Cost of Controllability

For y0 2 H�1.0;L/;we denote by U.";T;L; y0/ the set of controls v 2 L2.0;T/ such
that the corresponding solution of (2) satisfies y.T; :/ D 0: It’s easy to see that the
set U.";T;L; y0/ is a closed affine subspace of L2.0;T/. Let us denote by U T.y0/
the projection of 0 on this closed affine subspace, i.e., the element of U.";T;L; y0/
of the smallest L2.0;T/-norm. Then it is not hard to see that the map

U T W H�1.0;L/ ! L2.0;T/

y0 7! U T.y0/

is a linear continuous map. Let us now define the quantity which measures the cost
of the null controllability for system (2):

K.";T;L/ D supky0kH�1.0;L/D1
fminfkvkL2.0;T/ W v 2 U.";T;L; y0/gg; (28)

i.e.,

K.";T;L/ Dk U T kL .H�1.0;L/;L2.0;T// :

Our result is the following:

Proposition 3. Let T > 0. Let z0 be the initial data and z.t; x/ the solution of the
homogeneous problem (4). The control system (2) is exactly controllable in time T
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if and only if there exists cT;L;" > 0 such that

cT;L;"kz0k2H1.0;L/ �
Z T

0

j "zx.t;L/ j2 dt (29)

Moreover, if such a cT;L;" > 0 exists and if cT is the maximum of the set of cT;L;" > 0

such that (29) holds, one has

K.";T;L/ D 1p
cT
:

Then from the observability inequality

cT;L;"kz0k2H1.0;L/ �
Z T

0

j "zx.t;L/ j2 dt

we have

kz0k2H1 � 1

cT;L;"

Z T

0

j "zx.t;L/ j2 dt:

The constant 1p
cT;L;"

is called constant of observability Cobs:

On the other hand, from the admissibility inequality:

Z T

0

j "zx.t;L/ j2 dt � CT;L;"kz0k2H1

we have

1

CT;L;"

Z T

0

j "zx.t;L/ j2 dt � kz0k2H1 :

The constant 1p
CT;L;"

is called admissibility constant Cad.

Given the definition of the cost of controllability, we have

Cad < K.";T;L/ < Cobs:

In order to study the behavior of K.";T;L/ as " leads to 0, it is natural to look at the
limits of the observability’s constant and the admissibility one as " leads to 0:

lim
"!0C

Cobs D lim
"!0C

2�

L j m.L/ j "2=3
p

c1.T/
D C1

and
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lim
"!0C

Cad D lim
"!0C

2�

L j M.L/ j "2=3
p

c2.T/
D C1:

It follows directly that

Theorem 3.1.

lim
"!0C

K.";T;L/ D C1:
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Existence of solutions of a class of second order
sweeping process in Banach spaces

F. Aliouane and D. Azzam-Laouir

Abstract In a previous work the authors proved in a separable Banach space
under the assumption of the global upper semicontinuity of the perturbation, the
existence of Lipschitz solutions for second order non convex sweeping processes in
a separable reflexive uniformly smooth Banach space. In the present paper we prove
the same results, where the perturbation is assumed to be separately measurable and
separately upper semicontinuous.

1 Introduction

In [1], the authors proved the following theorem which is an extension of sweeping
processes from Hilbert spaces to Banach spaces

Theorem 1. Let I D Œ0;T� .T > 0/ and E be a separable reflexive uniformly
smooth Banach space, which is I-smoothly weakly compact for an exponent
p 2 Œ2;1/. Let F W I 
 E 
 E � E be an upper semicontinuous set-valued mapping
with nonempty closed convex values. We assume that there exists a constant m > 0

such that

F.t; x; u/ 	 mBE; 8.t; x; u/ 2 I 
 E 
 E: (1)

Let r > 0 and K W Œ0;T� � E be a set-valued mapping taking nonempty ball-
compact and r-prox-regular values. We assume that K.:/ moves in a Lipschitz way,
that is, there exists a constant k > 0 such that for all s; t 2 I,

H .K.t/;K.s// � kjt � sj: (2)
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Then for all x0 2 E and u0 2 K.0/, the differential inclusion

.PF/

8̂
<̂
ˆ̂:

u.0/ D u0I
x.t/ D x0 C R t

0
u.s/ds; 8t 2 II

u.t/ 2 K.t/; 8t 2 II
�Pu.t/ 2 NK.t/.u.t//C F.t; x.t/; u.t//; a:e: t 2 I;

has Lipschitz solutions u; x W I ! E. Moreover, we have for almost every t 2 I

kPu.t/k � 2m C k:

In other words, the differential inclusion

.PF/

8<
:

�Rx.t/ 2 NK.t/.Px.t//C F.t; x.t/; Px.t//; a:e: t 2 II
Px.t/ 2 K.t/; 8t 2 II
x.0/ D x0I Px.0/ D u0

has at least a Lipschitz solution x.:/ 2 C1
E.I/.

In this paper, our main purpose is to obtain the existence of solutions of .PF/, in
the case when the perturbation F is assumed to be separately Lebesgue-measurable
on Œ0;T� and separately upper semicontinuous on E 
 E. Before proving our main
result in Theorem 2, we recall some needed concepts and definitions.

2 Notation and Preliminaries

Let .E; k:k/ be a separable Banach space, E0 its topological dual, and h:; :i their
duality product. BE.0; r/ is the closed ball of E of center 0 and radius r, BE the
closed unit ball and SE is the unit sphere of E.

Let CE.Œ0;T�/ .T > 0/ be the Banach space of all continuous mappings u W
Œ0;T� ! E, endowed with the sup-norm k:kC and C1

E.Œ0;T�/ be the Banach space of
all continuous mappings u W Œ0;T� ! E with continuous derivative, equipped with
the norm

kukC1 D maxf max
t2Œ0;T� ku.t/k; max

t2Œ0;T� kPu.t/kg:

We denote by L .Œ0;T�/ the � -algebra of Lebesgue measurable subsets of Œ0;T�,
� D dt is the Lebesgue measure on Œ0;T�, .L1E.Œ0;T�/; k:k1/ is the Banach space
of Lebesgue-Bochner integrable E-valued mappings, and .L1

E .Œ0;T�/; k:k1/ is the
Banach space of essentially bounded E-valued mappings.

We said that a mapping u W Œ0;T� ! E is absolutely continuous if there is a
mapping v 2 L1E.Œ0;T�/ such that u.t/ D u.0/C R t

0
v.s/ds; for all t 2 Œ0;T�; in this

case v D Pu a.e.
For A 	 E; co.A/ denotes the convex hull of A and co.A/ its closed convex hull.
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We denote by ı�.x0;A/ the support function associated with A, i.e.,

ı�.x0;A/ D sup
y2A

hx0; yi:

It is well known that the support function of an upper semicontinuous set-valued
mapping is upper semicontinuous.

For closed subsets A and B of E, the Hausdorff distance between A and B is
defined by

H .A;B/ D sup.e.A;B/; e.B;A//

where

e.A;B/ D sup
a2A

d.a;B/

stands for the excess of A over B and

d.a;B/ D inf
x2B

ka � xk:

We recall that for a closed convex subset A of E, one has

d.x;A/ D sup
x02BE0

.hx0; xi � ı�.x0;A//: (3)

Definition 1. A subset A 	 E is said to be ball-compact if for all closed ball B D
B.x;R/ of E, the set B \A is compact. Obviously, a ball-compact subset A is closed.

Definition 2. Let A be a closed subset of E. Then the set-valued projection operator
PA is defined by

8x 2 E; PA.x/ D fy 2 E; kx � yk D d.x;A/g:

Definition 3. Let A be a closed subset of E and x 2 A, we denote by NA.x/ the
proximal normal cone of A at x, defined by

NA.x/ D fv 2 E; 9s > 0; x 2 PA.x C sv/g:

We now come to the main notion of prox-regularity. It was initially introduced by H.
Federer [14] in spaces of finite dimension under the name of positively reached sets.
Then, it was extended in Hilbert spaces by A. Canino in [7] and A. S. Shapiro in [16].
After, this notion was studied by F. H. Clarke, R. J. Stern, and P. R. Wolenski in [11]
(see also [12]) and by R. A. Poliquin, R. T. Rockafellar and L. Thibault in [15].
Few years later, F. Bernard, L. Thibault, and N. Zlateva have defined this notion in
Banach spaces (see [2] and [3, 4]).
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Definition 4. Let A be a closed subset of E and r > 0. The set A is said to be
r- prox-regular if for all x 2 A and v 2 NA.x/nf0g

B.x C r
v

kvk ; r/ \ A D ;:

Now we recall some useful definitions due to the geometric theory of Banach
spaces (we refer the reader to [13] for these concepts and more details).

Definition 5. The vectorial normed space .E; k:k/ is said to be uniformly smooth
if his norm is uniformly Fréchet differentiable away of 0, it means that for any two
unit vectors x0; h 2 E, the limit

lim
t!0

kx0 C thk � kx0k
t

exists uniformly with respect to h; x0 2 SE.

As we know that the norm could be non-differentiable at the origin 0, we study the
function x 7�! kxkp for an exponent p > 1:

Proposition 1. Let E be a uniformly smooth Banach space and p 2 .1;1/ be an
exponent. The function x 7�! kxkp is C1 over the whole space E.

Definition 6. For E a uniformly smooth Banach space and p 2 .1;1/, we denote

Jp.x/ WD 1

p
.rk:kp/.x/ 2 E0:

Definition 7. Let I be an interval of R. A separable reflexive uniformly smooth
Banach space E is said to be “I-smoothly weakly compact” for an exponent
p 2 .1;1/ if for all bounded sequence .xn/n of L1

E .I/;we can extract a subsequence
.yn/n weakly converging to a point y 2 L1

E .I/ such that for all z 2 L1
E .I/ and

� 2 L1
R
.I/;

lim
n!1

Z
I
hJp.z.t/C yn.t// � Jp.yn.t//; yn.t/i�.t/dt

D
Z

I
hJp.z.t/C y.t// � Jp.y.t//; y.t/i�.t/dt: (4)

The following proposition describes a useful property of weak continuity of the
projection operator. For the proof, we refer the reader to [5].

Proposition 2. Let .E; k:k/ be a separable reflexive and uniformly smooth Banach
space. Let Cn;C W I � E be set-valued mappings taking nonempty closed values
and satisfying

sup
t2I

H .Cn.t/;C.t// �!n!1 0:
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We assume that for an exponent p 2 Œ2;1/ and a bounded sequence .vn/n of L1
E .I/;

we can extract a subsequence .vk.n//n weakly converging to a point v 2 L1
E .I/ such

that for all z 2 L1
E .I/ and � 2 L1

R
.I/;

lim sup
n!1

Z
I
hJp.z.t/C vk.n/.t// � Jp.vk.n/.t//; vk.n/.t/i�.t/dt

D
Z

I
hJp.z.t/C v.t// � Jp.v.t//; v.t/i�.t/dt: (5)

Then the projection PC.:/ is weakly continuous in L1
E .I/ (relatively to the directions

given by the sequence .vn/n) in the following sense: for all r > 0 and for any
bounded sequence .un/n of L1

E .I/ satisfying

	
un �! u in L1

E .I/I
un.t/ 2 PCn.t/.un.t/C rvn.t///; a.e. t 2 I

one has for almost every t 2 I,

u.t/ 2 PC.t/.u.t/C rv.t//:

3 Main Results

Now, we are able to prove our main theorem.

Theorem 2. The conclusion of Theorem 1 holds true if we replace the assumption
of global upper semicontinuity of F W I 
 E 
 E � E by the following hypotheses

8.x; u/ 2 E 
 E; t 7�! F.t; x; u/ is measurableI (6)

8t 2 I; .x; u/ 7�! F.t; x; u/ is upper semicontinuous: (7)

Proof. By the Scorza-Dragoni’s Theorem (e.g., [8, 9]), there is a multifunction F0 W
I 
 E 
 E � E, which is measurable and has the following properties.

(1) There is a set N 	 I, independent of .t; x; u/ such that �.N/ D 0 and
F0.t; x; u/ 	 F.t; x; u/; for all t 2 InN and for all .x; u/ 2 E 
 EI

(2) if u; x; z W I ! E are measurable mappings with z.t/ 2 F.t; x.t/; u.t// a.e.,
then z.t/ 2 F0.t; x.t/; u.t// a.e.;

(3) for every � > 0, there is a compact subset J� 	 I such that �.InJ�/ < �, the
restriction of F0 on J� 
 E 
 E is upper semicontinuous and

; ¤ F0.t; x; u/ 	 F.t; x; u/I for all .t; x; u/ 2 J� 
 E 
 E:
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By the property (3), there exists a sequence of compact sets Jn 	 I with
�.InJn/ D �n �! 0 when n ! 1 such that the restriction of F0 to Jn 
 E 
 E

is upper semicontinuous and has nonempty values. We may also assume that .Jn/

is increasing. By Dugundji’s Theorem (e.g., [6]), there is an upper semicontinuous
extension QFn of F0nJn�E�E to I 
 E 
 E; and

QFn.t; x; u/ 	 mB; 8.t; x; u/ 2 I 
 E 
 E: (8)

So QFn satisfies the hypotheses of Theorem 1. Thus, for every x0 2 E and u0 2 K.0/,
there are Lipschitz solutions un; xn W I ! E for the differential inclusion

8̂
<̂
ˆ̂:

un.0/ D u0I
xn.t/ D x0 C R t

0
un.s/ds; 8t 2 II

un.t/ 2 K.t/; 8t 2 II
�Pun.t/ 2 NK.t/.un.t//C QFn.t; xn.t/; un.t//; a:e: t 2 I:

Moreover, we have for almost every t 2 I

kPun.t/k � 2m C k: (9)

Consequently, for each n 2 N, there is a measurable mapping zn.:/ such that

zn.t/ 2 QFn.t; xn.t/; un.t//; 8t 2 I; (10)

and

� Pun.t/ 2 NK.t/.un.t//C zn.t/; a:e: t 2 I: (11)

In other words, the differential inclusion

8<
:

�Rxn.t/ 2 NK.t/.Pxn.t//C QFn.t; xn.t/; Pxn.t//; a:e: t 2 II
Pxn.t/ 2 K.t/; 8t 2 II
xn.0/ D x0I Pxn.0/ D u0

has at least a Lipschitz solution xn.:/ 2 C1
E.I/.

From the relation (9), we see that .Pun.:// is uniformly bounded by .2m C k/: So
.un.:// is a bounded sequence of CE.I/ since for every t 2 I

kun.t/k � ku0k C
Z t

0

kPun.s/kds � ku0k C T.2m C k/ WD M: (12)

Now, we will show that .un.:// is relatively compact. Obviously, .un.:// is equicon-
tinuous. Let us prove that for every fixed t, the sequence .un.t// is relatively
compact. We have, for all t 2 I,

un.t/ 2 K.t/ \ B.0;M/ WD �.t/: (13)
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Remark that the set �.t/ is compact since K.t/ is ball-compact. Consequently
.un.t// is relatively compact. By Ascoli-Arzelà’s Theorem, the sequence .un.:// is
relatively compact in CE.I/, by extracting a subsequence still denoted .un.:// we
may suppose the uniform convergence of .un.:// to some mapping u.:/ 2 CE.I/.
Obviously u.0/ D u0; u.:/ is a Lipschitz mapping and for all t 2 I

u.t/ 2 K.t/ (14)

since K.t/ is closed.
Now, we will prove the convergence of .xn.:// in CE.I/. For all t; s 2 I

kxn.t/ � xn.s/k � kx0 C
Z t

0

un.�/d� � x0 �
Z s

0

un.�/d�k

�
Z t

s
kun.�/kd� � Mjt � sj:

That is, .xn.:// is equicontinuous. Furthermore for all t 2 I

kxn.t/k D kx0 C
Z t

0

un.s/dsk � kx0k C
Z t

0

kun.s/kds � kx0k C MT:

On the other hand, as

xn.t/ D x0 C
Z t

0

un.s/ds;

by the relation (13), we get

xn.t/ 2 x0 C
Z t

0

co.�.s//ds WD Q�.t/;

which is a compact set since for all t 2 I; co.�.t// is a convex compact set
(see [10] for more details). Therefore, .xn.:// is relatively compact. By, the Ascoli-
Arzela’s Theorem we conclude that .xn.:// has a subsequence (still denoted .xn.://)
converging uniformly on I to some mapping x.:/ 2 CE.I/. Obviously x.0/ D x0 and
x.:/ is a Lipschitz mapping with ratio M. Observe that for all t 2 I,

x.t/ D lim
n!1 xn.t/ D x0 C

Z t

0

lim
n!1 un.s/ds D x0 C

Z t

0

u.s/ds (15)

using Lebesgue’s theorem since .un.:// is equibounded (relation (12)), hence, Px.:/ D
u.:/ a.e. We see by the relation (9), that .Pun.://n is bounded in L1

E .I/, up to a
subsequence, we may suppose that .Pun.://n weakly* converges in L1

E .I/ to some
mapping w.:/ and that w.:/ D Pu.:/. Indeed, for all y 2 L1E0.I/,
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lim
n!1hPun.:/; y.:/i D hw.:/; y.:/i;

i.e.,

lim
n!1

Z t

0

hPun.s/; y.s/ids D
Z t

0

hw.s/; y.s/ids;

in particular for y.:/ D 1Œ0;t�.:/ej; with t 2 I, 1Œ0;t� the characteristic function of the
interval Œ0; t�, and .ej/ a sequence of the space E0 which separates the points of E
(such a sequence exists since E is separable), then we obtain

h lim
n!1

Z t

0

Pun.s/ds; eji D h
Z t

0

w.s/ds; eji; 8j;

which ensures

lim
n!1

Z t

0

Pun.s/ds D
Z t

0

w.s/ds:

As .un.:// is a sequence of absolutely continuous mappings, we have the following
equality

lim
n!1.un.t/ � un.0// D lim

n!1

Z t

0

Pun.s/ds D
Z t

0

w.s/ds;

then

u.t/ D u.0/C
Z t

0

w.s/ds;

so u.:/ is absolutely continuous, and hence w.:/ D Pu.:/:
By the relation (8) and (10), we deduce that .zn.:// is a bounded sequence

in L1
E .I/, then we can extract a subsequence still denoted .zn.:// converging

�.L1
E ;L

1
E0/ to z.:/ in L1

E .I/. We will show that for all t 2 I, z.t/ 2
F.t; x.t/; u.t// a.e.

As xn; un, and zn are three measurable mappings and satisfy the relation (10),
then by the property (2), we get

zn.t/ 2 F0.t; xn.t/; un.t//; a.e.;

that is, for all n 2 N, there is a Lebesgue null set Nn 	 Jn such that

zn.t/ 2 F0.t; xn.t/; un.t//; 8t 2 JnnNn: (16)

Let N0 WD .In [n Jn/ [ .[nNn/ which is Lebesgue-negligible. Indeed;

�.N0/ D �..In [n Jn/ [ .[nNn//
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� �.In [n Jn/C �.[nNn//

� �.\n.InJn//C
X

n

�.Nn/;

We have that the set J0 has finite measure and the sequence .InJn/ is decreasing
because .Jn/ is increasing, thus

�.\n.InJn// D lim
n!1�.InJn/ D lim

n!1 �n D 0;

and therefore

�.N0/ � lim
n!1�.InJn/C

X
n

�.Nn/ D 0:

For all t 2 InN0, there is an integer n0 D n0.t/ 2 N such that for all n � n0,
t 2 JnnNn, so by the relation (16), we obtain

zn.t/ 2 F0.t; xn.t/; un.t//; 8n � n0:

On the other hand, since F0 is upper semicontinuous on Jn 
 E 
 E and
xn.t/ ! x.t/; un.t/ ! u.t/ when n ! 1, it follows that for all x0 2 E0;

lim sup
n!1

ı�.x0;F0.t; xn.t/; un.t/// � ı�.x0;F0.t; x.t/; u.t///:

For t 62 N0 and n � n0, we have

hx0; zn.t/i � ı�.x0;F0.t; xn.t/; un.t///;

thus

lim sup
n!1

hx0; zn.t/i � lim sup
n!1

ı�.x0;F0.t; xn.t/; un.t///

� ı�.x0;F0.t; x.t/; u.t///;

by Fatou’s Lemma, we deduce that for every measurable set A 	 I and every x0 2 E0;
Z

A
hx0; z.t/idt D lim

n!1

Z
A
hx0; zn.t/idt

D lim sup
n!1

Z
A
hx0; zn.t/idt

�
Z

A
lim sup

n!1
hx0; zn.t/idt
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�
Z

A
ı�.x0;F0.t; x.t/; u.t///dt:

So,

hx0; z.t/i � ı�.x0;F0.t; x.t/; u.t/// a.e.;

then

sup
x02E0

.hx0; z.t/i � ı�.x0;F0.t; x.t/; u.t//// D 0;

since F0 has closed convex values, by the relation (3), we get
d.z.t/;F0.t; x.t/; u.t/// D 0, this known to imply that, z.t/ 2 F0.t; x.t/; u.t// a.e..
We have shown that there exists a negligible set N0 	 I such that

z.t/ 2 F0.t; x.t/; u.t//; 8t 2 InN0:

By property (1),

z.t/ 2 F.t; x.t/; u.t//; 8t 2 InN0;

this shows that

z.t/ 2 F.t; x.t/; u.t//; a.e. t 2 I: (17)

Now, we have by (11)

�Pun.t/ 2 NK.t/.un.t//C zn.t/; a:e: t 2 I:

By the definition of the proximal normal cone, we deduce that there exists ˛ > 0

such that

un.t/ 2 PK.t/.un.t/ � ˛.Pun.t/C zn.t///I a:e: t 2 I: (18)

Set �n.t/ D Pun.t/C zn.t/. By the arguments given above we know that .�n.://n
weakly*-converges in L1

E .I/ to Pu.:/C z.:/ WD �.:/: Supplying the property
“I-smoothly weakly compact” supposed on the space E to the sequence .˛�n.://n

we get that for all y 2 L1
E .I/ and all � 2 L1

R
.I/,

lim
n!1

Z
I
hJp.y.t/ � ˛�n.t// � Jp.�˛�n.t//;�n.t/i�.t/dt

D
Z

I
hJp.y.t/ � ˛�.t// � Jp.�˛�.t//;�.t/i�.t/dt:
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On the other side, we have that the sequence .un.:// strongly converges in L1
E .I/ to

u.:/ (because of its uniform convergence to u.:/ in CE.I/).
Then, by the relation (18) and the Proposition 2, we have for almost every t 2 I

u.t/ 2 PK.t/.u.t/ � ˛�.t//;

that is, ��.t/ 2 NK.t/.u.t//, or equivalently

�Pu.t/ � z.t/ 2 NK.t/.u.t//; a:e: t 2 I;

and then by (17) we get

�Pu.t/ 2 NK.t/.u.t//C F.t; x.t/; u.t//; a:e: t 2 I:

Finally, by the relation (14) and (15) we conclude that our problem .PF/ has at least
a Lipschitz solution x 2 C1

E.I/. Furthermore,

kRx.t/k � 2m C k; a:e: t 2 I:

This finishes the proof. ut

References

1. F. Aliouane and D. Azzam. Laouir, A second order differential inclusion with proximal normal
cone in Banach spaces. Topol Methods in Nonlinear Analysis 44 (2014), 143–160.

2. F. Bernard and L. Thibault, Prox-regularity of functions and sets in Banach spaces. Set-valued
Anal. 12 (2004), 25–47.

3. F. Bernard, L. Thibault and N. Zlateva, Characterizations of Prox-Regular sets in uniformaly
convex Banach spaces. J. Convex Anal. 13 (2006), 525–560.

4. F. Bernard, L. Thibault and N. Zlateva, Prox-regular sets and epigraphs in uniformly convex
Banach spaces: various regularities and other properties. Trans. Amer. Math. Soc. Volume 363,
Number 4, (2010) 2211–2247.

5. F. Bernicot, J. Venel, Existence of sweeping process in Banach spaces under directional prox-
regularity. J. Convex Anal. 17 (2010), 451–484.

6. H. Benabdellah and A. Faik, Perturbations convexes et nonconvexes des equations d’évolution,
Portugal. Math, 53(2) (1996), 187–208.

7. A. Canino, On p-convex sets and geodesics. J. Diff. Euations 75 (1988), 118–157.
8. C. Castaing and M.D.P. Monteiro-Marques, Evolution problems associated with nonconvex

closed moving sets with bounded variation. Portugal. Math. 53 (1996), 73–87.
9. C. Castaing and M. D. P. Monteiro Marques, A multivalued version of Scorza- Dragonis

theorem with an application to normal integrands, Bull. Pol. Acad. Sci. Mathematics, 42 (1994)
133–140.

10. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. LNM 580,
Springer Verlag, Berlin (1977).

11. F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-C2 property.
J. Convex Anal. 2 (1995), 117–144.



318 F. Aliouane and D. Azzam-Laouir

12. F. H. Clarke, Y. S. Ledyaev, R. j. Stern and P. R. Wolenski, Nonsmooth Analysis and control
theory. Springer-Verlag, (1998).

13. J. Diestel, Geometry of Banach spaces: selected topics, Springer-Verlag, New-York, (1975).
14. H. Federer, Curvature measures. Trans. Amer. Math. Soc. 93 (1959); 418–491.
15. R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions.

Trans. Amer. Math. Soc. 352 (2000), 5231–5249.
16. A. S. Shapiro, Existence and differentiability of metric projections in Hilbert spaces. SIAM J.

Optim. 4 (1994) 130–141.



Concave and convex nonlinearities
in nonstandard eigenvalue problems

Nawel Benouhiba and Amina Bounouala

Abstract This work deals with eigenvalues of the p.x/-Laplacian with a concave-
convex nonlinearity in a bounded domain, subject to Dirichlet boundary conditions.

1 Introduction

In this paper we discuss the eigenvalue problem

(
�4p.x/u C h.x/jujs1.x/�2u D �g.x/jujq.x/�2u C k.x/jujs2.x/�2u in ˝;

u.x/ D 0 on @˝
(1)

where ˝ is a bounded domain with smooth boundary @˝ in R
N ;N � 2. g; h; k W

˝ ! R
C are measurable functions, p; q; s1; s2 W ˝ ! .1;C1Œ are variable

exponents, and � is a real parameter. The operator 4p.x/u D div
�jrujp.x/�2ru

�
is the p.x/-Laplacian which is the natural generalization of the p-Laplacian when p
is constant.

The study of the p.x/-Laplacian equations is being of an increasing interest in
the recent years due to their applications in elasticity theory and electrorheological
fluids. Further information, modeling and applications of the p.x/-Laplacian can be
found in [4, 9] and [10].

Besides being of a nonstandard growth type, Problem 1 lies in the category of
convex-concave problems. In the constant case, i.e. p.x/ D p > 1, the authors in
[6] establish the existence of infinitely many solutions that have negative energy.
A similar problem is considered also in [8] when p is not constant. More precisely,
the considered problem was

N. Benouhiba (�) • A. Bounouala
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(
�4p.x/u D Ajuja�2u C Bjujb�2u; in ˝

u D 0; on @˝
(2)

where a; b;A, and B are constants. Under the assumptions 1 < a < p� < pC < b <
min.N; Np�

N�p� / and A;B > 0, the author shows that there exists � > 0 such that for
any A;B 2 .0; �/ Problem 2 has at least two distinct nontrivial weak solutions.

In [7], the authors investigate the following problem

(
�4p.x/u D �.a.x/jujq.x/�2u C b.x/jujh.x/�2u/; in ˝

u D 0; on @˝:
(3)

Assuming that 1 < q� < qC < p� � pC < h� < hC < Np�

N�p� and pC < N they
establish the existence of a nontrivial weak solution with positive energy for any �
in some neighborhood of zero.

In this paper, we consider 1 as an eigenvalue problem. Using adequate variational
methods we set the existence of � such that for any � 2 .�1; �/ there exists a weak
solution of the considered problem with no positive energy.

We study Problem 1 under the assumptions

.A1/ 1 < s1; s2; q; p are in C.˝/; s1.x/; s2.x/; q.x/ < p�.x/ in ˝ and

s�
2 < sC

2 < q� < qC < s�
1 < sC

1 < p� < pC < N:

.A2/ The functions g; h, and k are such that

.A2;g/ 0 � g 2 Lr.x/.˝/ where 1 < r.x/ 2 C.˝/ is such that p�.x/
p�.x/�q.x/ < r.x/

in ˝,
.A2;h/ 0 � h 2 Lm.x/.˝/ where 1 < m.x/ 2 C.˝/ is such that p�.x/

p�.x/�s1.x/
< m.x/

in ˝ and
.A2;k/ 0 � k 2 Ll.x/.˝/ where 1 < l.x/ 2 C.˝/ is such that p�.x/

p�.x/�s2.x/
< l.x/

in ˝.

Organization of the paper.
The rest of the paper is organized as follows. In section 2 we state some elementary
properties of variable Lebesgue and Sobolev spaces. In Section 3 we prove the
existence of a global minimum with no positive energy.

2 Notations and auxiliary results

Let ˝ be an open bounded subset of RN . Write

L1C .˝/ D fhjh 2 L1.˝/; ess inf
x2˝h.x/ � 1g;
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h� D ess inf
x2˝h.x/; hC D ess sup

x2˝
h.x/:

For p 2 L1C .˝/ the variable exponent Lebesgue space Lp.x/.˝/ is defined by

Lp.x/.˝/ D
8<
:uju is a measurable real-valued function,

Z
˝

ju.x/jp.x/dx < 1
9=
;

with the norm

jujp.x/ D inf

8<
:� > 0 W

Z
˝

ˇ̌̌
ˇu.x/�

ˇ̌̌
ˇ
p.x/

dx � 1

9=
; :

Define the variable exponent Sobolev space W1;p.x/.˝/

W1;p.x/.˝/ D ˚
u 2 Lp.x/.˝/ W jruj 2 Lp.x/.˝/

�

equipped with the norm

kuk1;p.x/ D jujp.x/ C jrujp.x/:

We also define the space W1;p.x/
0 .˝/ the closure of C1

0 .˝/. Assuming p� > 1,

the spaces Lp.x/.˝/, W1;p.x/.˝/, and W1;p.x/
0 .˝/ are separable and reflexive Banach

spaces [5] and we have the following properties.

Proposition 1 ([5]).

(i) The conjugate space of Lp.x/.˝/ is Lp0.x/.˝) where p0.x/ D p.x/
p.x/�1 .

(ii) If p1.x/ � p2.x/ for all x 2 ˝, then Lp2.x/.˝/ ,! Lp1.x/.˝/ and the embedding
is continuous if j˝j < C1.

(iii) For any f 2 Lp.x/.˝/ and g 2 Lq.x/.˝) such that 1
p.x/ C 1

q.x/ D 1, we have the
Hölder inequality

ˇ̌̌
ˇ
Z
˝

fgdx

ˇ̌̌
ˇ � .

1

p� C 1

q� /jf jp.x/jgjq.x/ � 2jf jp.x/jgjq.x/: (4)

(iv) For any f 2 Lp.x/.˝/, g 2 Lq.x/.˝/ and k 2 Lr.x/.˝/ such that 1
p.x/ C 1

q.x/ C
1

r.x/ D 1, we have

ˇ̌̌
ˇ
Z
˝

fgkdx

ˇ̌̌
ˇ �

�
1

p� C 1

q� C 1

r�

�
jf jp.x/jgjq.x/jkjr.x/ � 3jf jp.x/jgjq.x/jkjr.x/:

(5)
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Proposition 2 ([3, 5]). Define %p.x/.f / D R
˝

jf .x/jp.x/dx. We have

(i) for any f 2 Lp.x/.˝/ we have

jf jp�

p.x/ � %p.x/.f / � jf jpC

p.x/ if jf jp.x/ > 1;
jf jpC

p.x/ � %p.x/.f / � jf jp�

p.x/ if jf jp.x/ � 1:
(6)

(ii) For fn; f 2 Lp.x/.˝/ we have

fn ! f in Lp.x/.˝/ if and only if %p.x/.fn � f / ! 0: (7)

Proposition 3 ([2]). Let p and q be measurable functions and 1 � p.x/q.x/ < 1
for a. e. in ˝. Let f 2 Lq.x/.˝/, then

jf jp�

p.x/q.x/ � ˇ̌jf jp.x/ ˇ̌q.x/ � jf jpC

p.x/q.x/ if jf jp.x/q.x/ > 1;
jf jpC

p.x/q.x/ � ˇ̌jf jp.x/ ˇ̌q.x/ � jf jp�

p.x/q.x/ if jf jp.x/q.x/ � 1:
(8)

In particular, if p.x/ D p is constant, then

j j u jp jq.x/ D jujpq.x/:

Let us define the critical Sobolev exponent of p

p�.x/ D
(

Np.x/
N�p.x/ if p.x/ < N;

C1 if p.x/ � N:
(9)

Proposition 4 ([3]). Let ˝ be a bounded domain in R
N with Lipschitz boundary

and p; q 2 C.˝/ such that p.x/ < N and 1 < q.x/ < p�.x/ 8x 2 ˝. Then there is
a compact and continuous embedding W1;p.x/

0 .˝/ ! Lq.x/.˝/.

On the Sobolev space W1;p.x/
0 .˝/ we can consider the equivalent norm

kuk D jrujp.x/:

3 Global Minimum

We begin this section by giving the definition

Definition 1. We say that � is an eigenvalue of Problem1 if there exists u 2
W1;p.x/
0 .˝/ n f0g such that



Nonstandard eigenvalue problems 323

Z
˝

jrujp.x/�2 rurvdx C
Z
˝

h.x/ jujs1.x/�2 uvdx

� �
Z
˝

g.x/ jujq.x/�2 uvdx �
Z
˝

k.x/ jujs2.x/�2 uvdx D 0 (10)

for all v 2 W1;p.x/
0 .˝/:

Let us recall that u satisfying 10 is a critical point of the functional defined in
W1;p.x/
0 .˝ by

I.u/ D
Z
˝

1

p.x/
jrujp.x/ dxC

C
Z
˝

h.x/

s1.x/
jujs1.x/ dx � �

Z
˝

g.x/

q.x/
jujq.x/ dx �

Z
˝

k.x/

s2.x/
jujs2.x/ dx: (11)

Standard arguments show that I 2 C1.W1;p.x/
0 .˝/;R/ and that

˝
I0.u/; v

˛ D
Z
˝

jrujp.x/�2 ru:rvdxC

C
Z
˝

h.x/ jujs1.x/�2 uvdx � �
Z
˝

g.x/ jujq.x/�2 uvdx�

�
Z
˝

k.x/ jujs2.x/�2 uvdx

for all u; v 2 W1;p.x/
0 .˝/.

In order to prove that I attains its minimum in W1;p.x/
0 .˝/ let us begin with the

following Lemmas.

Lemma 1. There exists � > 0 such that for every � < � there is a real M� such
that

I.u/ � M�

for all u 2 W1;p.x/
0 .˝/.

Proof. We begin to prove the following inequality

at˛ � btˇ � a
�a

b

�˛=.ˇ�˛/
; 8t � 0 (12)

for any a; b > 0 and 0 < ˛ < ˇ.
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For t � �
a
b

� 1
ˇ�˛ we have

t˛.a � btˇ�˛/ � 0 < a
�a

b

�˛=.ˇ�˛/
:

Now if 0 < t <
�

a
b

� 1
ˇ�˛ we get

at˛ � btˇ < at˛ < a
�a

b

�˛=.ˇ�˛/

since t 7! t˛ is an increasing function.
We set

�� D inf
u2W

1;p.x/
0 .˝/nf0g

R
˝

1
p.x/ jrujp.x/dxR

˝
g.x/
q.x/ jujq.x/dx

: (13)

It is known (see [1]) that �� is a positive number. Then, we have for all
u 2 W1;p.x/

0 .˝/

�� �

R
˝

1
p.x/ jrujp.x/ dx

R
˝

g.x/

q.x/
jujq.x/ dx

so
Z
˝

g.x/ jujq.x/ dx � q�

��p�

Z
˝

jrujp.x/ dx:

For � � 0 we have

I.u/ � 1

pC

Z
˝

jrujp.x/ dx � �

qC

Z
˝

g.x/ jujq.x/ dx � 1

sC
2

Z
˝

k.x/ jujs2.x/ dx

and then

I.u/ �
�
1

pC � �q�

��p�qC

�Z
˝

jrujp.x/ dx � 1

sC
2

Z
˝

k.x/ jujs2.x/ dx:

Applying the Hölder inequality and Proposition 2 it yields

Z
˝

k.x/ jujs2.x/ dx � 2 jkjl.x/ jujsi
2

s2.x/l0.x/
; i D Cor � :
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We have by .A2;k/ that 1 < s2.x/l0.x/ < p�.x/. So the embedding W1;p.x/
0 .˝/ ,!

Ls2.x/l0.x/.˝/ is continuous. So there exists c1 > 0 such that

Z
˝

k.x/ jujs2.x/ dx � c1 jkjl.x/ kuksi
2 ; i D Cor � : (14)

This together with 6 gives

I.u/ � �
"

c1
sC
2

jkjl.x/ kuksi
2 �

�
1

pC � �q�

��p�qC

�
kukpj

#
; i; j D C;�:

If we suppose that � < ��p�qC

pCq� we get by relation 12

I.u/ � �
 

c1 jkjl.x/
sC
2

!2
4 c1 jkjl.x/

sC
2

�
1

pC � �q�

��p�qC

�
3
5

s
j
2=pi�s

j
2

This means that for 0 � � < ��p�qC

pCq� there exists M� D M.�; ��; p; q; k; s2/ < 0

such that

I.u/ � M�

for any u 2 W1;p.x/
0 .˝/.

Now if � < 0 it yields by relations 6 and 14

I.u/ � �
 

c1
sC
2

jkjl.x/kuksi � 1

pC kukpj

!
; i; j D C;�:

Using again relation 12 we have

I.u/ � � c1
sC
2

jkjl.x/
 

c1jkjl.x/
sC
2 pC

! si
2

pj�si
2

; i; j D C;�:

This means that I is also bounded from below in the case where � < 0. Hence the
lemma is proved.

Lemma 2. The functional I is coercive and weakly lower semicontinuous on
W1;p.x/
0 .˝/.

Proof. For any u 2 W1;p.x/
0 .˝/ we have by the Hölder inequality and Proposition 2
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Z
˝

g.x/ jujq.x/ dx � 2 jgjr.x/ jujqi

q.x/r0.x/ ; i D C;�: (15)

By assumption .A2;g/ we get 1 < q.x/r0.x/ < p�.x/ so there exists a constant c2 > 0

from the continuous embedding of W1;p.x/
0 .˝/ into Lq.x/r0.x/.˝/ such that

Z
˝

g.x/ jujq.x/ dx � c2 jgjr.x/ kukqi
; i D C;�: (16)

If � > 0 and kuk > 1, it follows by relations 6, 14, and 16 that

I.u/ � 1

pC kukpC � �c2
qC jg.x/jr.x/ kukqi � c1

sC
2

jk.x/jl.x/ kuks
j
2

� 1

pC kukqi
�
kukpC�qi � c3 � c4 kuks

j
2�qi

�
:

Since we have by assumptions s�
2 < sC

2 < q� < qC < p� < pC then by the last
inequality I.u/ ! C1 when kuk ! C1.

Same argument shows that I is also coercive on W1;p.x/
0 .˝/ in the case where

� < 0.
For the second part of the lemma we put

J1.u/ D
Z
˝

1

p.x/
jrujp.x/dx C

Z
˝

h.x/

s1.x/
jujs1.x/dx and

J2.u/ D I.u/ � J1.u/:

Since J1 is a continuous convex functional on W1;p.x/
0 .˝/ (see [8]) it follows that it

is weakly lower semicontinuous.
Let now .un/ 	 W1;p.x/

0 .˝/ such that un * u for some u in W1;p.x/
0 .˝/. So un is

bounded in W1;p.x/
0 .˝/. By assumption .A2;g/ and Proposition 4 the embedding of

W1;p.x/
0 .˝/ in Lq.x/r0.x/.˝/ is compact. Then, we get a subsequence still denoted

by un that converges to u in Lq.x/r0.x/.˝/. This together with 15 yields that
u 7! R

˝
g.x/
q.x/ jujq.x/dx is a weakly strongly continuous functional.

Using similar arguments we get the same result for the functional u 7!R
˝

k.x/
s2.x/

jujs2.x/dx. It follows that J2 is weakly lower semicontinuous and the proof
of the lemma is complete.

We state now the main result of this section.

Theorem 1. For any � < ��p�qC

pCq� where �� is given by 13 there exists

u� 2 W1;p.x/
0 .˝/ and u� ¤ 0 solution of Problem 1.
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Proof. By lemmas 6 and 7 we deduce the existence of a global minimum

u� 2 W1;p.x/
0 .˝/ of I for any � < ��p�qC

pCq� .
Let now � 2 C1

0 .˝/ be fixed and 0 < t < 1. We have

I.t�/ � tp�

Z
˝

1

p.x/
jr�jp.x/dx � �tqi

Z
˝

g.x/

q.x/
j�jq.x/dx

C ts�
1

Z
˝

h.x/

s1.x/
j�js1.x/dx � tsC

2

Z
˝

k.x/

s2.x/
j�js2.x/dx

and then

I.t�/ � tsC
2 f .t/

where f .t/ D tp��sC
2

R
˝

1
p.x/ jr�jp.x/dx � �tqi�sC

2

R
˝

g.x/
q.x/ j�jq.x/dx C ts�

1 �sC
2

R
˝

h.x/
s1.x/

j�js1.x/dx � R
˝

k.x/
s2.x/

j�js2.x/dx:
It is clear that f is a continuous function and that f .0/ < 0, then there exists

0 < t0 < 1 such that f .t0/ < 0. It follows that

I.u0/ < 0

where u0 D t0�, then I.u�/ < 0 and this means that u� is not trivial. The proof of
the Theorem is complete.
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On the time asymptotic behavior of a transport
operator with bounce-back boundary condition

Salma Charfi, Asrar Elleuch, and Aref Jeribi

Abstract This paper deals with the spectral properties of multidimensional
transport equations with bounce-back boundary conditions arising in Lp-spaces
.1 � p < 1/. These properties are closely related to the large dependent solutions
of transport equations. An adequate assumption allows us to investigate the uniform
stability of solutions for the Cauchy problem without restriction on the initial data.

Keywords Cauchy problem • C0-semigroup • transport operator • asymptotic
behavior

1 Introduction

The main aim is to investigate the time asymptotic behavior of the solution of the
following initial-boundary-value problem in Lp-spaces .1 � p < 1/.

.I/

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

� @ 
@t
.x; v; t/ D �v:rx .x; v; t/�˙.v/ .x; v; t/C

Z
V
	.x; v; v0/  .x; v0; t/ dv0

D TH .x; v; t/C K .x; v; t/; .x; v/ 2 D � V; t > 0

�  .x; v; 0/ D  0.x; v/:

Here D 	 R
N is a convex-bounded domain, V be a symmetric bounded subset

of R
N , and H denotes the boundary operator relating the outgoing  C and the

incoming fluxes  �. The collision frequency ˙.:/ is a non-negative function. The
scattering kernel 	.:; :; :/ is non-negative and defines the linear operator K called
the collision operator, which is assumed to be bounded on Lp

�
D 
 V; dx ˝ dv

�
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.1 � p < 1/. The operator TH appearing in (I) is called the streaming operator,
whereas TH C K denotes the transport operator. The bounce-back boundary condi-
tions are modeled by:

 � D H. C/;

where

H C.x; v/ D �  C.x;�v/; for any .x; v/ 2 ��:

Here, � is a real constant belonging to .0; 1/ and �˙ represents the incoming and
outgoing parts of the boundary of the phase space (see Section 2 for more details).

Then, Eq. (I) can be written formally, as the first order Cauchy problem

8̂̂
<
ˆ̂:

@ 

@t
D AH WD TH C K 

 .0/ D  0;

(1)

where  0 2 Lp
�
D 
 V; dx ˝ dv

�
.

It is well known that, if kHk < 1, TH generates a C0-semigroup of contractions
.U.t//t�0 in Lp

�
D 
 V; dx ˝ dv

�
(see [7]). Since AH is a bounded perturbation of

TH , then, by the classical perturbation theory [6, Theorem 2.1, p. 495], it generates
a C0-semigroup .V.t//t�0.

The time asymptotic behavior of V.t/ was studied for the first time, in a general
setting, by I. Vidav [12]. His approach relies on the spectra of perturbed semigroups
and consists in expressing the solution  .t/ as an inverse Laplace transform of
the resolvent of AH . This technique was systematized in an abstract setting by M.
Mokhtar-Kharroubi [9] and it was based on the following conditions:

.A0/

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂̂
:̂

� There exists an integer m such that Œ.� � TH/
�1K�m is compact for Re� > �;

� There exists an integer m such that

lim
jIm�j!C1

kŒ.� � TH/
�1K�mk D 0 uniformly on f� W Re� � w;w > �g;

where � is the type of .U.t//t�0.
The spectral analysis of the streaming operator subjected to bounce-back bound-

ary conditions is studied in [8], where the authors showed that

lim
jIm�j!C1

kK.� � TH/
�1Kk D 0 uniformly on f� W Re� � w;w > �g;

where � is the type of .U.t//t�0.
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Combining this result with the compactness of Œ.� � TH/
�1K�4 (see Theorem 1

and 2), we remark that condition .A0/ is fulfilled then, �.AH/ \ f� 2
C such that Re� > �g consists at most of discrete eigenvalues with finite algebraic
multiplicities f�1; �2; : : : ; �n; �nC1; : : :g which can be ordered in such a way that
the real part decreases [6], i.e., Re�1 > Re�2 > : : : > Re�nC1 > : : : > � and
f� 2 C such that Re� > �g n f�n W n D 1; : : : ; g 	 �.AH/, where �.AH/ is the
resolvent set of AH . Moreover, for any initial data  0 2 D.A2H/, the solution of the
Cauchy problem (1) fulfills

����� .t/ �
nX

iD1
e�iteDitPi 0

����� D o.eˇ
�t/ where ˇ1 < ˇ

� < ˇ2 (2)

ˇ1 D supfRe� such that � 2 �.AH/;Re� < wg; and ˇ2 D minfRe�i; 1 � i � ng,
Pi and Di denote, respectively, the spectral projection and the nilpotent operator
associated with �i; i D 1; 2; : : : ; n:

Hence, the estimate of kK.� � TH/
�1Kk, for large jIm�j, given in [8] leads to

a characterization of the time asymptotic behavior of the solution of the transport
equation with bounce-back boundary conditions only for  0 2 D.A2H/:

Our interest in this paper is to ameliorate the description of the time asymptotic
behavior for large times of the solution without restriction to initial data  0 2
D.A2H/.

To this purpose, we are based on the spectral analysis given in [1] where the
estimation (2) has been ameliorated and the time asymptotic behavior of solution
of the abstract Cauchy problem (1) is given by an estimation similar to (2) when
the stern condition  0 2 D.A2H/ is eliminated. This analysis is applied by S. Charfi
et al. in [2, 3] for the study of solution of transport operators with diffuse reflection
and Maxwell boundary conditions on L1-spaces.

In our paper, referring to [1, 4], we have to show that for all r 2 Œ0; 1/

lim
jIm�j!C1

jIm�jr kK.� � TH/
�1Kk D 0 uniformly on Rw;

where Rw WD f� 2 C such that Re� � ��� C wg.
This interesting result enables us to investigate the time asymptotic behavior of

the solution of multidimensional transport equation and we prove that, for any initial
data  0 2 D.AH/:

(i) For each " > 0, there exists M > 0 such that

�����V.t/ �
nX

iD1
e�iteDitPi

�����
Xp

� M e.Re�nC1C"/t; 8 t > 0 and p 2 Œ1; 2�:
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(ii) Further, if K is positive, then for each p > 1 there exists M0 > 0 such that

��V.t/.I � QP/��Xp
� M0 e.s.AH/�"/t; 8 t > 0

and for every " 2 .0; 2r.1 � p�1// .resp. " 2 .0; 2rp�1// if p � 2 .resp. p > 2/,
where s.AH/ is the spectral bound of AH which is defined by

s.AH/ WD sup
n
Re� W � 2 �.AH/

o
;

QP denotes the projection operator corresponding to

n
� 2 �.AH/ W Re� D s.AH/

o
;

and r be the real defined by

r WD s.AH/ � sup
n
Re� W � 2 �.AH/; � ¤ s.AH/

o
:

This paper is organized as follows: in the next section, we fix notation and derive
fundamental preliminary. In Section 3, we give crucial lemmas for future use. In
Section 4, we prove under some conditions that, for all r 2 Œ0; 1/

lim
jIm�j!C1

jIm�jr kK.� � TH/
�1Kk D 0 uniformly on Rw;

where Rw WD f� 2 C such that Re� � ��� C wg. This estimation will be useful in
Section 5, in which we investigate the asymptotic spectrum of AH and we describe
the time asymptotic behavior of the solution of our problem without restriction on
the initial data.

2 Preliminary and Compactness Results

In this section, we gather the different notions and notation facts connected to our
problem. Let

Xp WD Lp
�
D 
 V; dx ˝ dv

�
.1 � p < 1/;

where D be a smooth-bounded open subset of RN whilst V 	 R
N is a symmetric

bounded subset. We define the partial Sobolev spaces as

Wp WD
n
 2 XpI v:rx 2 Xp

o
:
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We denote by �� (respectively �C) the incoming (resp. outgoing) part of the
boundary of the phase space D 
 V defined as

�˙ WD
n
.x; v/ 2 @D 
 VI ˙ v:n.x/ � 0

o
;

where n.x/ stands for the outward normal unit at x 2 @D.
Suitable Lp-spaces for the traces on �˙ are defined as

Lṗ WD Lp
�
�˙I jv:n.x/j d�.x/ 
 dv

�
;

where d�.:/ being the Lebesgue measure on @D. For any  2 Wp, one can define
the traces  ˙ WD  =�˙

on �˙; however, these traces do not belong to Lṗ but to a
certain weighted space. For this reason, one defines

fWp WD
n
 2 WpI  =�˙

2 Lṗ

o
:

Moreover, these boundary spaces endowed with norm

k �kL�
p

WD
� Z

��

j .x; v/jpjv:n.x/j d�.x/ dv
� 1

p

and

k CkLC
p

WD
� Z

�C

j .x; v/jpjv:n.x/j d�.x/ dv
� 1

p
:

Definition 1. For any .x; v/ 2 D 
 V , define

t˙.x; v/ WD sup
n
t > 0I x ˙ sv 2 D;8 0 < s < t

o
;

WD inf
n
s > 0I x ˙ sv 62 D

o
:

Furthermore, set

�.x; v/ WD t�.x; v/C tC.x; v/ for any .x; v/ 2 D 
 V:

}
We define the streaming operator TH with bounce-back boundary condition:

8̂
<̂
ˆ̂:

TH W D.TH/ � Xp �! Xp

 �! TH .x; v/ D �v:rx .x; v/ �˙.v/ .x; v/

D.TH/ D ˚
 2 fWp such that  � D H. C/

�
;
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where H is the boundary operator defined by

(
H W LC

p �! L�
p

 C �! H CI H C.x; v/ WD �  C.x;�v/ for any .x; v/ 2 ��;

where 0 < � < 1.
We will assume that the collision frequency is non-negative and bounded. Set

�� WD inf
v2V

˙.v/:

Now, let us investigate the resolvent of TH . Let us define the following operators for
Re�C �� > 0 :

(
M� W L�

p �! LC
p

u �! M�uI M�u.x; v/ D u.x � �.x; v/v; v/ exp
n

� �.x; v/��C˙.v/
�o
;

(
B� W L�

p �! Xp

u �! B�uI B�u.x; v/ D u.x � t�.x; v/v; v/ exp
n

� t�.x; v/
�
�C˙.v/

�o
;

8<
:

G� W Xp �! LC
p

' �! G�'I G�'.x; v/ D
Z �.x;v/

0

'.x � sv; v/ exp
n

� �
�C˙.v/

�
s
o

ds;

8<
:

C� W Xp �! Xp

' �! C�'I C�'.x; v/ D
Z t�.x;v/

0

'.x � sv; v/ exp
n

� �
�C˙.v/

�
s
o

ds:

These operators are bounded in their respective spaces. In fact, for Re� > ���,
the norms of the operators M�, B�, G�, and C� are bounded, respectively, by 1,

Œp.Re�C ��/��
1
p , Œq.Re�C ��/��

1
q and .Re�C ��/�1 where q�1 C p�1 D 1.

Now, we have kHk < 1, then for any � satisfying Re� > ���, we have
kM�Hk < 1 hence .I � M�H/�1 exists and the resolvent of the operator TH is
given by

.� � TH/
�1 D B�H.I � M�H/�1G� C C�: (3)

Next, the transport operator AH can be written as follows:

AH WD TH C K;
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where K is a bounded linear operator on Xp defined by

8<
:

K W Xp �! Xp

 �!
Z

V
	.x; v; v0/  .x; v0/ dv0;

where the scattering Kernel 	 W D 
 V 
 V ! R is assumed to be measurable.
We observe that the operator K acts only on the velocity variable v0, so x may be

viewed as a parameter in D. Consequently, we can consider K as a function

	
K.:/ W D �! L

�
Lp.V; dv/

�
x �! K.x/;

we consider the following assumption:

.A /

8̂
<
:̂

� The function K.:/ is strongly measurable;
� There exists a compact subset C � L

�
Lp.V; dv/

�
such that K.x/ 2 C a.e on D;

� K.x/ 2 K .Lp.V; dv// a.e;

where K .Lp.V; dv// is the subspace of compact operators.
Let us denote by Z WD L

�
Lp.V; dv/

�
. Using the second point of the above

assumption, we obtain

K.:/ 2 L1.D;Z/:

If  2 Xp, then it is easy to see that .K /.x; v/ D .K.x/ /.v/; and so

Z
V

j.K /.x; v/jp dv � kK.:/kp
L 1.D;Z/

Z
V

j .x; v/jp dv:

Therefore,

Z
D

Z
V

j.K /.x; v/jp dv dx � kK.:/kp
L 1.D;Z/

Z
D

Z
V

j .x; v/jp dv dx:

Consequently,

kKkL .Xp/ � kK.:/kL 1.D;Z/:

In this paper we will use the concept of regular collision operators introduced by M.
Mokhtar-Kharroubi.

Definition 2. A collision operator K is regular if it satisfies the assumption .A /. }
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Definition 3 ([8, Definition 4.1]). If the collision operator K is regular, then it can
be approximated in the operator norm by operators of the form:

' 2 Xp �!
X
i2I

˛i.x/ ˇi.v/

Z
V
�i.w/ '.x;w/ dw 2 Xp;

where I is finite, ˛i 2 L1.D/, ˇi 2 Lp.V; dv/ and �i 2 Lq.V; dv/; p D q.p � 1/. }
Remark 2.1. We can assume in the above definition that ˇi and �i are measurable
simple functions with compact supports in V . }
The compactness results are established in [7] and given by the following theorems:

Theorem 2.1. Let 1 < p < 1. If K is a regular operator, then for any complex
number � satisfying Re� > ���, the operators K.� � TH/

�1 and .� � TH/
�1K are

compact on Xp. }
Theorem 2.2. Let K be a regular operator on X1. If H is weakly compact operator,
then for Re� > ��� we have K.� � TH/

�1K is weakly compact on X1. }
In the next, we will prove the following result.

Proposition 1. Let the boundary operator H be non-negative, then TH generates a
strongly continuous semigroup positive .U.t//t�0, satisfying

kU.t/k � e���t: }

Proof. According to [7, Lemma 2.2] we have for any � satisfying Re� > ���,

k.� � TH/
�1k � 1

Re�C �� :

Combining this result together with [11, Corollary 3.8, p. 12], we may immediately
deduce the result.

In all the sequel, we shall assume that ˙.:/ is an even function of the velocity,
i.e. for any v 2 V , ˙.�v/ D ˙.v/.

3 Auxiliary Lemmas

The goal of this section is to establish some lemmas which we will use in the next
section.

Let w > 0 and set

Rw WD f� 2 C such that Re� � ��� C wg:
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Note that if � 2 Rw, then

Re�C �� � w

2
� w

2
> 0

and for all v 2 V

˙.v/ � �� C w

2
� w

2
> 0:

We consider
8̂
<̂
ˆ̂:

Q'x W Œ� d
a ;

d
a � �! C

t �! Q'x.t/ D exp
n�
�� �˙.� x

t / � w
2

�
t
o

exp
n

� �
�C˙.� x

t /
�


�2n�.x C z;� x
t /C 2t�.x C z;� x

t /
�o
;

where x 2 D and Q'x 2 L1.Œ� d
a ;

d
a �/.

Indeed,

Z d
a

� d
a

j Q'x.t/jdt �
Z d

a

� d
a

exp
n�
�� �˙.�x

t
/ � w

2

�
t
o

exp
n

� �
Re�C ����2n�.x C z;�x

t
/C 2t�.x C z;�x

t
/
�o

dt

Z d
a

� d
a

j Q'x.t/jdt �
Z d

a

� d
a

exp
n�
�� �˙.�x

t
/ � w

2

�
t
o

dt

�
h 1

�� � supv ˙.v/ � w
2

�
1 � exp

n
� �
�� � sup

v

˙.v/ � w

2

�d

a

o�

� 2
w

�
exp

n
� wd

2a

o
� 1

�i
:

Let x 2 D and denote by
�

Q�x;p.:/
�

p2N a sequence of continuous functions with

compact support which converges to Q'x.:/ in L1.Œ� d
a ;

d
a �/.

Set for v 2 V

h.v/ WD �1.v/ˇ1.�v/:

Clearly, h.:/ is a simple measurable function with compact support.

Let I WD
�

� t�.x C z;� x
t /; tC.x C z;� x

t /
�

and we introduce

Gp;�.x/ D sup
z2D�x

ˇ̌̌ Z
R

h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �I.t/
dt

jtN j
ˇ̌̌
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and

G�.x/ D sup
z2D�x

ˇ̌̌ Z
R

h.�x

t
/ exp

n
�
�
�C˙.�x

t
/
��

t C 2n�.x C z;�x

t
/

C2t�.x C z;�x

t
/
�o
�I.t/

dt

jtN j
ˇ̌
ˇ;

where �I.:/ denotes the characteristic function of I.

Lemma 1. Let p 2 N and � 2 Rw, then:

(i) G� 2 L1.D/.
(ii) Gp;� 2 L1.D/.

(iii) The sequence .Gp;�/p2N converges in L1.D/ uniformly on Rw to the function G�.

}
Proof. .i/ We have

ˇ̌
ˇ
Z
R

h.�x

t
/ exp

n
�
�
�C˙.�x

t
/
��

t C 2n�.x C z;�x

t
/

C 2t�.x C z;�x

t
/
�o
�I.t/

dt

jtN j
ˇ̌̌

�
Z
R

ˇ̌
ˇh.�x

t
/
ˇ̌
ˇ exp

n
�
�

Re�C˙.�x

t
/
�

t
o

exp
n

�
�

Re�C ����2n�.x C z;�x

t
/C 2t�.x C z;�x

t
/
�o dt

jtN j :

There is no loss of generality assuming that there exist two constants a, b > 0 such
that

Supp(h) 	 fv 2 V W a � jvj � bg:

In this case, in the above integral, one can see that t 2 R is such that

a �
ˇ̌
ˇx

t

ˇ̌
ˇ � b

which implies that jtj � jxj
a . This means that the above integral over R can be

reduced actually to an integral over Œ� d
a ;

d
a �, where d is the diameter of D.

G�.x/ �
Z d

a

� d
a

ˇ̌
ˇh.�x

t
/
ˇ̌
ˇ exp

n
�
�

Re�C˙.�x

t
/
�

t
o dt

jtN j :
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Therefore,

Z
D

G�.x/ dx �
Z

D

Z 0

� d
a

ˇ̌̌
h.�x

t
/
ˇ̌̌

exp
n

�
�

Re�C sup
v

˙.v/
�

t
o dt

jtN j dx

C
Z

D

Z d
a

0

ˇ̌
ˇh.�x

t
/
ˇ̌
ˇ exp

n
�
�

Re�C ���t
o dt

jtN j dx:

The change of variable v D x

t
gives

Z
D

G�.x/ dx �
Z

V

Z 0

� d
a

jh.�v/j exp
n

�
�

Re�C sup
v

˙.v/
�

t
o

dt dv

C
Z

V

Z d
a

0

jh.�v/j exp
n

�
�

Re�C ���t
o

dt dv:

Z
D

G�.x/ dx �
Z

V
jh.�v/j dv

h �1
Re�C sup

v

˙.v/

�
1 � exp

n�
Re�C sup

v

˙.v/
�d

a

o�i

C
Z

V
j�1.�v/j jˇ1.v/j dv

h 1

Re�C ��

�
exp

n
� .Re�C ��/

d

a

o
� 1

�i
:

Using Hölder’s inequality, we get

Z
D

G�.x/ dx � k�1kLq.V/ kˇ1kLp.V/

h �1
Re�C sup

v

˙.v/

�
1 � exp

n�
Re�C sup

v

˙.v/
�d

a

o�

C 1

Re�C ��

�
exp

n
� .Re�C ��/

d

a

o
� 1

�i
< 1:

(ii) Since we have

ˇ̌̌ Z
R

h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �I.t/
dt

jtN j
ˇ̌̌

� sup j Q�.:/j
Z d

a

� d
a

ˇ̌̌
h.�x

t
/
ˇ̌̌

exp
n

�
�

Re�C �� � w

2

�
t
o dt

jtN j ;

we get after making the change of variable v D x

t

Z
D

Gp;�.x/ dx � sup j Q�.:/j
Z

V

Z d
a

� d
a

jh.�v/j exp
n

�
�

Re�C �� � w

2

�
t
o

dt dv:
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Now using Hölder’s inequality, we obtain

Z
D

Gp;�.x/ dx � sup j Q�.:/j k�1kLq.V/ kˇ1kLp.V/

h 1

.Re�C �� � w
2
/

�
exp

n�
Re�C �� � w

2

�
d
a

o
� exp

n
� �

Re�C �� � w
2

�
d
a

o�i
:

(iii) For all p 2 N and � 2 Rw, we have

jGp;�.x/ � G�.x/j

D
ˇ̌̌

sup
z2D�x

ˇ̌̌ Z
R

h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �I.t/
dt

jtN j
ˇ̌̌

� sup
z2D�x

ˇ̌̌ Z
R

h.�x

t
/ exp

n
�
�
�C˙.�x

t
/
�

�
t C 2n�.x C z;�x

t
/C 2t�.x C z;�x

t
/
�o
�I.t/

dt

jtN j
ˇ̌
ˇ
ˇ̌
ˇ

� sup
z2D�x

ˇ̌̌ Z
R

h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �I.t/
dt

jtN j

�
Z
R

h.�x

t
/ exp

n
�
�
�C˙.�x

t
/
�

�
t C 2n�.x C z;�x

t
/C 2t�.x C z;�x

t
/
�o
�I.t/

dt

jtN j
ˇ̌̌

� sup
z2D�x

ˇ̌̌ Z
R

h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o
�I.t/

h
Q�x;p.t/ � Q'x.t/

i dt

jtN j
ˇ̌̌
:

This implies

jGp;�.x/ � G�.x/j

� exp
n�

Re�C �� � w

2

�d

a

o
sup

z2D�x

� Z d
a

� d
a

ˇ̌̌
h.�x

t
/
ˇ̌̌

j Q�x;p.t/ � Q'x.t/j dt

jtN j
�
:

Therefore

kGp;� � G�kL1.D/ � exp
n�

Re�C �� � w

2

�d

a

o Z
D

Z d
a

� d
a

ˇ̌̌
h.�x

t
/
ˇ̌̌

sup
z2D�x

j Q�x;p.t/ � Q'x.t/j dt

jtN jdx
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� exp
n�

Re�C �� � w

2

�d

a

o Z
D

Z d
a

� d
a

ˇ̌̌
h.�x

t
/
ˇ̌̌

sup
x2D

sup
z2D�x

j Q�x;p.t/ � Q'x.t/j dt

jtN j dx:

The change of variable v D x

t
gives

kGp;� � G�kL1.D/ � exp
n�

Re�C �� � w

2

�d

a

o Z
V

Z d
a

� d
a

ˇ̌̌
h.�v/

ˇ̌̌
j Q�x1;p.t/ � Q'x1 .t/jdt dv:

Applying Hölder’s inequality, we get

kGp;� � G�kL1.D/ � exp
n�

Re�C �� � w

2

�d

a

o
k�1kLq.V/ kˇ1kLp.V/k Q�x1;p � Q'x1kL1.Œ�

d
a ;

d
a �/
:

Consequently,

lim
p!C1 kGp;� � G�kL1.D/ D 0 uniformly on Rw:

Lemma 2. Let r 2 Œ0; 1/ and p 2 N, then

lim
jIm�j!C1

jIm�jr
Z

D
Gp;�.x/ dx D 0 uniformly on Rw:

}
Proof. Observe that

Gp;�.x/ � G�
p;�.x/C GC

p;�.x/;

where

G�
p;�.x/ D sup

z2D�x

ˇ̌̌ Z 0

�1
h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �I�.t/
dt

jtN j
ˇ̌̌

and

GC
p;�.x/ D sup

z2D�x

ˇ̌
ˇ
Z C1

0

h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �IC.t/
dt

jtN j
ˇ̌
ˇ;

with I� D I\� � 1; 0� and IC D I \ Œ0;C1Œ.
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Consider now the sequence of operators .GC
p;�;"n

/n2N and .G�
p;�;"n

/n2N where

G�
p;�;"n

.x/ D sup
z2D�x

ˇ̌̌ Z "n

�1
h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �I�
"n
.t/

dt

jtN j
ˇ̌̌
;

GC
p;�;"n

.x/ D sup
z2D�x

ˇ̌̌ Z C1

"n

h.�x

t
/ exp

n
�
�
�C �� � w

2

�
t
o

Q�x;p.t/ �IC
"n
.t/

dt

jtN j
ˇ̌̌
:

Clearly the sequence .GC
p;�;"n

/n2N (resp. .G�
p;�;"n

/n2N) converges to GC
p;� (resp. G�

p;�)
uniformly on Rw when "n goes to zero. So, it suffices to show that, for all " > 0

lim
jIm�j!C1

jIm�jr
Z

D
GC

p;�;".x/ dx D 0 and lim
jIm�j!C1

jIm�jr
Z

D
G�

p;�;".x/ dx D 0:

Set
(

Lx;p W Œ";C1Œ�! C

t �! h.� x
t / Q�x;p.t/ �IC

"
.t/ 1

jtN j :

Lx;p is a simple function. Let .ti/1�i�m denote a subdivision of its support satisfying
Lx;p.t/ D Lx;p.ti/, for all t 2 Œti; tiC1Œ, with i 2 f1; : : : ;m � 1g. Hence

Z C1

"

exp
n

�
�
�C �� � w

2

�
t
o

Lx;p.t/ dt

D
m�1X
iD1

Lx;p.ti/
Z tiC1

ti

exp
n

�
�
�C �� � w

2

�
t
o

dt;

D 1

.�C �� � w
2
/

m�1X
iD1

Lx;p.ti/
�

exp
n

�
�
�C �� � w

2

�
ti
o

� exp
n

�
�
�C �� � w

2

�
tiC1

o�
:

Since we have
8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

ˇ̌̌
exp

n
�
�
�C �� � w

2

�
ti
o

� exp
n

�
�
�C �� � w

2

�
tiC1

oˇ̌̌
� 2

1

j�C �� � w
2
j � 1

jIm�j

jLx;p.ti/j � sup jh.:/j sup j Q�.:/j
"N

;
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then

ˇ̌
ˇ
Z C1

"

exp
n

�
�
�C �� � w

2

�
t
o

Lx;p.t/ dt
ˇ̌
ˇ � 2.m � 1/

jIm�j "N
sup jh.:/j sup j Q�.:/j:

Therefore Z
D

GC
p;�;".x/ dx � 2.m � 1/

jIm�j "N
sup jh.:/j sup j Q�.:/j

Z
D

dx:

So,

lim
jIm�j!C1

jIm�jr
Z

D
GC

p;�;".x/ dx D 0 uniformly on Rw:

As the same way, we prove that

lim
jIm�j!C1

jIm�jr
Z

D
G�

p;�;".x/ dx D 0 uniformly on Rw:

Let " > 0, for x 2 D, we consider
(
�x W Œ";C1Œ�! RC

s �! 1
sN exp

n
�
�
˙. x

s /C w
2

� ��
�

s
o
:

0 � �x.:/ 2 L1.Œ";C1Œ/. We denote by
� Q�x;n.:/

�
n2N, an increasing sequence of

non-negative step functions with compact support which converge to �x.:/.
Let A0

2.�/ be the operator defined by

	
A0
2.�/ W Lp.D/ �! Lp.D/

' �! .A0
2.�/'/

.A0
2.�/'/.x/ D

Z
D

Z t�.x;
x�y

s /

"

h1
�x � y

s

�
'.y/ exp

n
�
�
�C˙

�x � y

s

��
s
ods

sN
dy:

We introduce the sequence
�
A0
2;n.�/

�
n2N of operators defined, for all n 2 N, by

(
A0
2;n.�/ W Lp.D/ �! Lp.D/

' �! .A0
2;n.�/'/

.A0
2;n.�/'/.x/ D

Z
D

Z t�.x;
x�y

s /

"

h1
�x � y

s

�
'.y/

exp
n

�
�
� � !

2
C ���s

o Q�x�y;n.s/ds dy:
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Lemma 3. The sequence of operators
�
A0
2;n.�/

�
n2N converges uniformly on Rw to

A0
2.�/ in L .Lp.D//. }

Proof. For all n 2 N and � 2 Rw, we have

ˇ̌̌
.A0
2;n.�/'/x � .A0

2.�/'/x
ˇ̌̌p D

ˇ̌̌ Z
D

Z t�.x;
x�y

s /

"

h1
�x � y

s

�
exp

n
�
�
� � !

2
C ���s

o
h Q�x�y;n.s/ � �x�y.s/

i
'.y/ ds dy

ˇ̌̌p
:

This implies

ˇ̌
ˇ.A0

2;n.�/'/x � .A0
2.�/'/x

ˇ̌
ˇp

�
� Z

D

Z C1

"

ˇ̌
ˇh1
�x � y

s

�ˇ̌ˇ
ˇ̌
ˇ Q�x�y;n.s/ � �x�y.s/

ˇ̌
ˇj'.y/j dsdy

�p
:

Then
Z

D

ˇ̌
ˇ.A0

2;n.�/'/x � .A0
2.�/'/x

ˇ̌
ˇpdx

�
Z

D

h Z
D

Z C1

"

ˇ̌̌
h1
�x � y

s

�ˇ̌̌ ˇ̌̌ Q�x�y;n.s/ � �x�y.s/
ˇ̌̌

 j'.y/j ds dy

ip
dx:

The change of variable z D x � y 2 D gives

kA0
2;n.�/' � A0

2.�/'kp �
Z

D

h Z
D

Z C1

"

ˇ̌
ˇh1
� z

s

�ˇ̌ˇ
ˇ̌
ˇ Q�z;n.s/ � �z.s/

ˇ̌
ˇj'.y/j ds dy

ip
dz:

Therefore

kA0
2;n.�/' � A0

2.�/'kp �
Z

D

� Z
D
.j'.y/jp C 1/dy

�p

sup jh1.:/jp
� Z C1

"

sup
z2D

ˇ̌̌
Q�z;n.s/ � �z.s/

ˇ̌̌
ds
�p

dz:

Thus

kA0
2;n.�/'�A0

2.�/'k �
� Z

D
dz
� 1

p
�
k'kp C

Z
D

dy
�

sup jh1.:/j
��� Q�z1;n ��z1

���
L1.Œ";C1Œ/

:

Consequently

kA0
2;n.�/ � A0

2.�/k �
� Z

D
dz
� 1

p
�
1C

Z
D

dy
�

sup jh1.:/j
��� Q�z1;n � �z1

���
L1.Œ";C1Œ/

:
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4 Estimation of the Resolvent

The objective of this section is to establish Theorem 4.1 which is required in the
proof of our main result.

Theorem 4.1. Let p 2 Œ1;C1Œ, assume that the collision operator K is regular.
Then for all r 2 Œ0; 1/, we have

lim
jIm�j!C1

jIm�jr kK.� � TH/
�1Kk D 0 uniformly on Rw: }

The proof of Theorem 4.1 is very technical, so it will be decomposed into several

lemmas. For any � belonging to the half-plane
n
� 2 C such that Re� > ���

o
, we

have

K.� � TH/
�1K D KB�H.I � M�H/�1G�K C KC�K:

Remark 4.1. According to Lemma 3 and Remark 2.1, it suffices to establish the
result for a one rank collision operator K with kernel in the form

	.x; v; v0/ D ˛1.x/ ˇ1.v/ �1.v
0/

where ˛1.:/ 2 L1.D/, while ˇ1.:/ and �1.:/ are measurable simple functions with
compact supports in V . }
Lemma 4. According to the hypotheses of Theorem 4.1, we have

lim
jIm�j!C1

jIm�jr kKB�H.I � M�H/�1G�Kk D 0 uniformly on Rw:

}
Proof. It is shown in [8] that

B�H.I � M�H/�1G� D
X
n�0

Jn.�/;

where
h
J2nC1.�/'

i
.x; v/ D

Z C1

0

expf��tg
h
U2nC1.t/'

i
.x; v/ dt

and

h
J2n.�/'

i
.x; v/ D

Z C1

0

expf��tg
h
U2nC2.t/'

i
.x; v/ dt 8 n � 0:

Where for any fixed t � 0, ŒU0.t/'�.x; v/ D '.x� tv; v/ exp
n

�˙.v/t
o
�ft<t�.x;v/g

8 .x; v/ 2 D 
 V . While for any n � 0
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ŒU2nC2.t/'�.x; v/ D �2nC2 exp
n

�˙.v/t
o
�I2nC1.x;v/.t/

'.x � tv C .2n C 2/�.x; v/v; v/

and

ŒU2nC1.t/'�.x; v/ D �2nC1 exp
n

�˙.v/t
o
�I2n.x;v/.t/

'.x C tv � 2t�.x; v/v � 2n�.x; v/v;�v/;
with

Ik.x; v/ D
h
k�.x; v/C t�.x; v/I .k C 1/�.x; v/C t�.x; v/

i
for any k 2 N:

So it suffices to establish the result for J2nC1.�/ and J2n.�/ for all n 2 N.
Let ' 2 Xp,

h
KJ2nC1.�/K'

i
.x; v/

D KJ2nC1.�/
�
˛1.x/ˇ1.v/

Z
V
�1.w/'.x;w/ dw

�

D K
� Z C1

0

�2nC1 expf��tg expf�˙.v/tg �I2n.x;v/.t/ ˛1.x C tv � 2t�.x; v/v

� 2n�.x; v/v/ˇ1.�v/
Z

V
�1.w/'.x C tv � 2t�.x; v/v � 2n�.x; v/v;w/dw dt

�

D ˛1.x/ ˇ1.v/
Z

V
�1.w

0/
Z C1

0

�2nC1 expf��tg expf�˙.w0/tg 
 ˛1.x C tw0

� 2t�.x;w0/w0 � 2n�.x;w0/w0/ �I2n.x;w0/.t/ ˇ1.�w0/Z
V
�1.w/'.x C tw0 � 2t�.x;w0/w0 � 2n�.x;w0/w0;w/ dw dt dw0:

As a result, we can see that
h
KJ2nC1.�/K'

i
.x; v/ D

h
A3A2.�/A1'

i
.x; v/;

where8<
:

A1 W Xp �! Lp.D/

' �! .A1'/I .A1'/.x/ D ˛1.x/
Z

V
'.x;w/�1.w/ dw 8 x 2 D;

	
A3 W Lp.D/ �! Xp

 �! .A3 /I .A3 /.x; v/D�2nC1 ˛1.x/ ˇ1.v/  .x/ 8 .x; v/2D 
 V
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and 	
A2.�/ W Lp.D/ �! Lp.D/

' �! .A2.�/'/

such that for all x 2 D we have

.A2.�/'/.x/ D
Z

V
ˇ1.�w0/ �1.w0/

Z C1

0

exp
n

� .�C˙.w0//t
o

'.x C tw0 � 2t�.x;w0/w0 � 2n�.x;w0/w0/ �I2n.x;w0/.t/ dt dw0:

A1 and A3 are bounded. Indeed

Z
D

j.A1'/.x/jp dx � k˛1kp
L1.D/

Z
D

� Z
V

j'.x;w/j j�1.w/j dw
�p

dx

� k˛1kp
L1.D/ k�1kp

Lq.V/
k'kp

Xp
:

Consequently,

kA1k � k˛1kL1.D/ k�1kLq.V/:

Furthermore,

kA3k < k˛1kL1.D/ kˇ1kLp.V/:

Since A1 and A3 are independent of �, it suffices to show that

lim
jIm�j!C1

jIm�jr kA2.�/k D 0 uniformly on Rw: (4)

To do so, let ' 2 Lp.D/,

.A2.�/'/.x/ D
Z

V
ˇ1.�w0/ �1.w0/

Z .2nC1/�.x;w0/Ct�.x;w0/

2n�.x;w0/Ct�.x;w0/

exp
n

� .�C˙.w0//t
o


 '.x C tw0 � 2t�.x;w0/w0 � 2n�.x;w0/w0/ dt dw0:

The change of variable s D t � 2n�.x;w0/ � t�.x;w0/ gives

.A2.�/'/.x/

D
Z

V
ˇ1.�w0/ �1.w0/

Z �.x;w0/

0

exp
n

� .�C˙.w0//.s C 2n�.x;w0/C t�.x;w0//
o

'.x C sw0 � t�.x;w0/w0/ ds dw0:
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Set �.w0/ D �C˙.w0/ and make the change of variable t D s � t�.x;w0/, then we
get

.A2.�/'/.x/ D
Z

V
h.w0/ exp

n
� �.w0/

�
2n�.x;w0/C 2t�.x;w0/

�o



Z tC.x;w0/

�t�.x;w0/

exp
n

� �.w0/t
o
'.x C tw0/ dt dw0:

Since for all .x;w0/ 2 D 
 V we have

t 2 .�t�.x;w0/; tC.x;w0// ” y D x C tw0 2 D;

so the change of variable y D x C tw0 gives

.A2.�/'/.x/ D
Z

D

Z tC.x;
y�x

t /

�t�.x;
y�x

t /

h
�y � x

t

�
exp

n
� �

�y � x

t

��
t C 2n�

�
x;

y � x

t

�

C 2t�.x;
y � x

t
/
�o
'.y/

dt

jtN j dy

D
Z

D
	.�; x; y/ '.y/ dy

where

	.�; x; y/ D
Z
R

h
�y � x

t

�
exp

n
� �

�y � x

t

��
t C 2n�

�
x;

y � x

t

�

C 2t�.x;
y � x

t
/
�o


 ��
�t�.x;

y�x
t /; tC.x;

y�x
t /

�.t/ dt

jtN j :

Notice that the very rough estimate

kA2.�/k �
� Z

D

� Z
D

j	.�; x; y/jq dy
� p

q
dx
� 1

p

apparently does not lead to (4). We have to estimate the norm of A2.�/ more
carefully.

The difficulty in estimating kA2.�/k is that A2.�/ is not a convolution operator.
To overcome this difficulty, we set

N�.x; z/ D
Z
R

h
�

� x

t

�
exp

n
� �

�
� x

t

��
t C 2n�

�
x C z;�x

t

�

C 2t�.x C z;�x

t
/
�o


 ��
�t�.xCz;� x

t /; tC.xCz;� x
t /

�.t/ dt

jtN j ;
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where .x; z/ 2 D 
 D with x C z 2 D. This approach is inspired from [8]. Therefore

G�.x/ D sup
z2D�x

jN�.x; z/j:

Observe that N�.x � y; y/ D 	.�; x; y/ and denote by G� (resp. ') the trivial
extension to R

N , then we have

j.A2.�/'/.x/j �
Z

D
jN�.x � y; y/j j'.y/j dy

�
Z

D
G�.x � y/ j'.y/j dy

� .G� � j'j/.x/:

This yields

Z
RN

jA2.�/'.x/jp dx �
Z
RN

j.G� � j'j/.x/jp dx

kA2.�/'kLp.RN / � kG� � j'jkLp.RN /

� kG�kL1.RN / k'kLp.RN /:

Consequently

kA2.�/'kLp.D/ � kG�kL1.D/ k'kLp.D/;

kA2.�/k � kG�kL1.D/:

Using Lemma 2, we obtain

lim
jIm�j!C1

jIm�jrkG�kL1.D/ D 0 uniformly on Rw:

So

lim
jIm�j!C1

jIm�jr kKJ2nC1.�/Kk D 0 uniformly on Rw:
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A similar reasoning allows us to prove that

lim
jIm�j!C1

jIm�jr kKJ2n.�/Kk D 0 uniformly on Rw:

This ends the proof of Lemma 4.

Lemma 5. With same hypotheses as Theorem 4.1, we have

lim
jIm�j!C1

jIm�jr kKC�Kk D 0 uniformly on Rw:

}
Proof. Consider the sequence of operators .C�;"n/n2N, where

.C�;"n'/.x; v/ D
Z t�.x;v/

"n

'.x � sv; v/ exp
n

� �
�C˙.v/

�
s
o

ds:

This sequence converges to C� uniformly on Rw when "n goes to zero. Hence, it
suffices to prove that, for " > 0

lim
jIm�j!C1

jIm�jr kKC�;"Kk D 0 uniformly on Rw:

Let ' 2 Xp, an immediate calculation shows that

h
KC�;"K'

i
.x; v/ D ˛1.x/ˇ1.v/

Z
V
�1.w

0/
Z t�.x;w0/

"

˛1.x � sw0/ˇ1.w0/
Z

V
�1.w/'.x � sw0;w/ 
 exp

n
� .�C˙.w0//s

o
dw ds dw0

D
h
A0
3A

0
2.�/A

0
1'
i
.x; v/;

where
8<
:

A0
1 W Xp �! Lp.D/

' �! .A0
1'/I .A0

1'/.x/ D ˛1.x/
Z

V
'.x;w/�1.w/ dw 8 x 2 D;

	
A0
3 W Lp.D/ �! Xp

' �! .A0
3'/I .A0

3'/.x; v/ D ˛1.x/ ˇ1.v/ '.x/ 8 .x; v/ 2 D 
 V
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and

	
A0
2.�/ W Lp.D/ �! Lp.D/

' �! .A0
2.�/'/

such that .A0
2.�/'/.x/ D

Z
V
�1.w

0/ ˇ1.w0/
Z t�.x;w0/

"

'.x � sw0/ exp
n

� .� C
˙.w0//s

o
ds dw0.

A0
1 and A0

3 are bounded and independent of �, so it suffices to show that

lim
jIm�j!C1

jIm�jr kA0
2.�/k D 0 uniformly on Rw:

Let ' 2 Lp.D/,

.A0
2.�/'/.x/ D

Z
V

Z t�.x;w0/

"

h1.w
0/ '.x � sw0/ exp

n
� .�C˙.w0//s

o
ds dw0;

where h1.w0/ D �1.w0/ ˇ1.w0/.
We have

s 2 Œ"; t�.x;w0/Œ” y D x � sw0 2 D:

The change of variable y D x � sw0 2 D gives

.A0
2.�/'/.x/ D

Z
D

Z t�.x;
x�y

s /

"

h1
�x � y

s

�
'.y/ exp

n
�
�
�C˙

�x � y

s

��
s
o ds

jsN j dy:

According to Lemma 3, it remains to show that, for all n 2 N,

lim
jIm�j!C1

jIm�jr kA0
2;n.�/k D 0 uniformly on Rw;

where

.A0
2;n.�/'/.x/ D

Z
D

Z t�.x;
x�y

s /

"

h1
�x � y

s

�
'.y/

exp
n

�
�
� � !

2
C ���s

o Q�x�y;n.s/ds dy:

Set

(
fx;y W Œ";C1Œ�! R

s �! h1
�x � y

s

� Q�x�y;n.s/ �Œ";t�.x; x�y
s /Œ.s/
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is a simple function. Let .si/1�i�m denote a subdivision of its support satisfying
fx;y.s/ D fx;y.si/, for all s 2 Œsi; siC1Œ with i 2 f1; : : : ;m � 1g. So,

Z C1

"

fx;y.s/ exp
n

�
�
�C �� � w

2

�
s
o

ds

D
m�1X
iD1

fx;y.si/

Z siC1

si

exp
n

�
�
�C �� � w

2

�
s
o
ds

D 1�
�C �� � w

2

�
m�1X
iD1

fx;y.si/
�

exp
n

�
�
�C �� � w

2

�
si

o

� exp
n

�
�
�C �� � w

2

�
siC1

o�
:

Since

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

ˇ̌̌
exp

n
�
�
�C �� � w

2

�
si

o
� exp

n
�
�
�C �� � w

2

�
siC1

oˇ̌̌
� 2

1ˇ̌̌
�C �� � w

2

ˇ̌̌ � 1

jIm�j

jfx;y.si/j � sup jh1.:/j sup j Q�.:/j;

then

ˇ̌̌ Z C1

"

fx;y.s/ exp
n

�
�
�C �� � w

2

�
s
o

ds
ˇ̌̌

� 2.m � 1/
jIm�j sup j Q�.:/j sup jh1.:/j:

This yields

ˇ̌̌
.A0
2;n.�/'/.x/

ˇ̌̌p �
�2.m � 1/

jIm�j sup jh1.:/j sup j Q�.:/j
�p� Z

D
j'.y/jdy

�p
:

Therefore

jIm�jpr
Z

D

ˇ̌̌
.A0
2;n.�/'/.x/

ˇ̌̌p
dx

�
�2.m � 1/

jIm�j1�r
sup jh1.:/j sup j Q�.:/j

�p� Z
D
.j'.y/jp C 1/dy

�p
Z

D
dx:

Consequently,

jIm�jr kA0
2;n.�/k � 2.m � 1/

jIm�j1�r
sup jh1.:/j sup j Q�.:/j

�
1C

Z
D

dy
�� Z

D
dx
� 1

p
.
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5 Asymptotic Behavior of the solution

In this section we will discuss the part of the spectrum of the transport operator AH

in the half-plane
n
� 2 C W Re� > ���

o
, such that

P.AH/ D �.AH/ \
n
� 2 C W Re� > ���o:

Lemma 6. Let p 2 Œ1;C1Œ and assume that the collision operator K is regular on
Xp. If H is weakly compact operator, then

(i) P.AH/ consists of, at most, isolated eigenvalues with finite algebraic multiplic-
ity.

(ii) If w > 0, then the set �.AH/ \ Rw is finite.
(iii) If w > 0, then k.� � AH/

�1k is uniformly bounded on Rw for large jIm�j. }
Proof. Let � such that Re� > ���. Since K is regular, then the use of Theorems 2.1

and 2.2 implies the compactness of
h
.� � TH/

�1K
i4

on Xp for 1 � p < 1.

Furthermore, applying Theorem 4.1 for r D 0, we obtain

lim
jIm�j!C1

���h.� � TH/
�1K

i4��� D 0 uniformly on Rw:

We have .i/, .ii/, and .iii/ follow immediately from Lemma 1.1 in [9].

In all the sequel, we denote by TH;p and AH;p, the streaming operator and the
transport operator on the space Xp, respectively. Then, we designate by �p.:/ the
point spectrum and r� .:/ the spectral radius.

Lemma 7. Let � 2 C such that Re� > ��� and p 2 Œ1;C1Œ. Assume that the
collision operator K is regular on Xp. If H is weakly compact operator, then

(i) � 2 �p.AH;p/ if and only if 1 2 �p..� � TH;p/
�1K/ and the corresponding

eigensubspaces coincide.
(ii) � 2 �.AH;p/ if and only if 1 2 �..� � TH;p/

�1K/. }
The above lemma can be checked as the same way as [1, Lemma 7.2]. Now, we state
the following result:

Lemma 8. Let E WD
n
� 2 C W Re� > ���

o
and p 2 Œ1;C1Œ. Then, we have

r�
h�
.� � TH;p/

�1K
�4i

< 1 for some � 2 E:

}
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Proof. Let � 2 E, so we can write

���h.� � TH;p/
�1K

i4��� �
� kKk

Re�C ��
�4
:

Then, there exists ˛ > 0 such that for every � satisfying Re� > ˛ we have:

r�
h�
.� � TH;p/

�1K
�4i

< 1:

In the remainder of this section, we denote by P�;p the spectral projection associated
with � which is an eigenvalue of AH;p with finite algebraic multiplicity. Let ı > 0

be such that f� 2 C W 0 < j� � �j � ıg \ P.AH;p/ D ;, so

P�;p D 1

2i�

Z
j���jDı

.� � AH;p/
�1 d�:

Lemma 9. The spectral projection P�;p satisfying for every k � 1,

NŒ.� � AH;p/
k� � R.P�;p/;

where NŒ.� � AH;p/
k� and R.P�;p/ designate, respectively, the null space of

.� � AH;p/
k and the range of P�;p. }

Proof. We argue by recurrence, we have:
for k D 1, NŒ.� � AH;p/� � R.P�;p/.
We assume that the inclusion is true until the order k � 1 and we prove that it

remains true to the order k. Let f 2 NŒ.��AH;p/
k�nNŒ.��AH;p/�, where NŒ.��AH;p/�

is a subspace of finite dimension on Xp. Then, there is a closed subspace H satisfying
N.� � AH;p/˚ H D NŒ.� � AH;p/

k�. Set, f D f1 C fH . Since .� � AH;p/f 2 NŒ.� �
AH;p/

k�1� then P�;pŒ.�� AH;p/fH� D .�� AH;p/fH . Therefore, P�;pfH � fH 2 R.P�;p/.
Consequently, fH 2 R.P�;p/.

Now, we are ready to prove the following result.

Theorem 5.1. Let p 2 Œ1;C1Œ and assume that the collision operator Kis regular
on Xp. If H is weakly compact, then:

(i) P.AH;p/ is independent of p.
(ii) For each � 2 P.AH;p/ and k 2 N

�, NŒ.� � AH;p/
k� is independent of p. }

Proof. Recall that E WD
n
� 2 C W Re� > ���

o
. Let � 2 E and K is regular

operator. Using Lemma 8, we obtain that I � Œ.�� TH;p/
�1K�4 is invertible for some

� 2 E. We know from Theorems 2.1 and 2.2 that the operator Œ.� � TH;p/
�1K�4 is

compact on Xp for p 2 Œ1;C1Œ. Since E is connected open subset of C, applying
the Gohberg-Shmul’yan theorem [5, Theorem 11.4, p. 258] we infer that, for p � 1,h
I � �

.� � TH;p/
�1K

�4i
is invertible on E except a set Sp of isolated points which
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are poles of finite orders. Since

h
I � .� � TH;p/

�1K
i�1

D
h
I C .� � TH;p/

�1K
i h

I C ..� � TH;p/
�1K/2

i h
I � ..� � TH;p/

�1K/4
i�1

;

the function
h
I�.��TH;p/

�1K
i�1

has a similar behavior as
h
I�..��TH;p/

�1K/4
i�1

in the half-plane Re� > ���. Using Lemma 7, we obtain that P.AH;p/ D Sp for
every p � 1. In [1], it is shown that Sp is independent of p, hence the proof of this
assertion is completed.

(ii) Since

.� � AH;p/
�1 D ŒI � .� � TH;p/

�1K��1 .� � TH;p/
�1;

then P�;1�Xp D P�;p. Furthermore, P�;p.C1
0 .D 
 V// D R.P�;p/ this implies that

R.P�;p/ D P�;p.C1
0 .D 
 V// 8 p � 1. Thus, the use of R.P�;1/ D R.P�;p/ and

Lemma 9 leads to NŒ.� � AH;1/
k� � Xp. Consequently, NŒ.� � AH;p/

k� D NŒ.� �
AH;1/

k� � Xp.

Since TH is an infinitesimal generator of a C0-semigroup .U.t//t�0 acting on Xp,
p 2 Œ1;C1Œ and K is a bounded linear operator, then by the classical perturbation
theory [6, Theorem 2.1, p. 495], the operator AH D TH C K generates also a
C0-semigroup .V.t//t�0 on Xp given by the Dyson-Phillips expansion

V.t/ D
n�1X
jD0

Uj.t/C Rn.t/;

where U0.t/ D U.t/;Uj.t/ D
Z t

0

U.s/KUj�1.t � s/ ds; j D 1; 2; : : : ; and the nth

order remainder term Rn.t/ can be expressed by

Rn.t/ D
Z

s1C:::sn�t;si�0
U.s1/K : : :U.sn/KV.t � s1 � : : : � sn/ ds1 : : : dsn:

We suppose that K is regular on Xp and H is a weakly compact operator. Then,
from Lemma 6 .i/, the asymptotic spectrum P.AH/ consists of, at most, isolated
eigenvalues with finite algebraic multiplicity f�1; �2; : : : ; �n; �nC1; : : :g which can
be ordered in such way that the real part decreases [6], i.e., Re�1 > Re�2 > : : : >

Re�n > Re�nC1 > : : : > ���; and f� 2 C such that Re� > ���g n f�n W n D
1; 2; 3; : : :g 	 �.AH/.

Now, using the spectral decomposition theorem corresponding to the set
f�1; �2; : : : ; �ng and �.AH/ n f�1; �2; : : : ; �ng which was established in [10],
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we can write

V.t/ D QV.t/C
nX

iD1
e�iteDitPi;

where Pi and Di denote, respectively, the spectral projection and the nilpotent

operator associated with �i, i D 1; 2; : : : ; n: P D
nX

iD1
Pi is the spectral projection of

the compact set f�1; �2; : : : ; �ng which commutes with V.t/ and QV.t/ WD V.t/.I�P/
is a C0-semigroup on the Banach space .I � P/Xp with generator QAH D AH.I � P/.

In the same way as in [1], we prove the following lemma.

Lemma 10. Let K be a regular collision operator. If H is weakly compact, then for
any " > 0 we have:

(i) For all q 2 ˚
0; : : : ; 3

�
,
���h.� � TH/

�1K
iq��� is uniformly bounded on

n
� 2 C W

Re� � Re�nC1 C "
o
.

(ii) k.� � AH/
�1.I � P/k is uniformly bounded on

n
� 2 C W Re� � Re�nC1 C "

o
.

}
Now, we will prove the main results of this paper.

Theorem 5.2. Let p D 1 and assume that the hypotheses of Lemma 10 are satisfied,
then for each " > 0, there exists M > 0 such that

�����V.t/ �
nX

iD1
e�iteDitPi

����� � M e.Re�nC1C"/t; 8 t > 0: }

Proof. From Proposition 1, the type of U.t/ is less than or equal to ���. Let us first

recall that by Theorems 2.1 and 2.2 we obtain
h
.� � TH/

�1K
i4

is compact on Xp

for 1 � p < 1. Furthermore, inspired on [1, Lemma 4.3], it is easy to check that
f� 2 C such that Re� � kKk � �� C 1g 	 �.AH/ and

k.� � AH/
�1k � 1:

Now, according to Theorem 4.1, we have
8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

.i/k.� � AH/
�1k is uniformly bounded on

n
� 2 C W Re� � kKk � �� C 1

o
;

.ii/ a real r0 and for w > ���; there exists C.w/ such that

jIm�jr0
���h.� � TH/

�1K
i4��� is uniformly bounded on

n
� 2 CI Re� � w; jIm�j � C.w/

o

Hence, the result follows from Lemma 10 and [1, Theorem 1.1].
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Let r be the real defined by

r WD s.AH/ � sup
n
Re� W � 2 �.AH/; � ¤ s.AH/

o
:

By virtue of Lemma 6, we can see that r > 0. Let QP denote the projection operator

corresponding to
n
� 2 �.AH/ W Re� D s.AH/

o
which is compact. Therefore, the

spectral decomposition theorem [10, Theorem 3.3, p. 70] can be applied.
We close this paper with the following theorem which can be checked in a similar

way as [1, Theorem 1.2].

Theorem 5.3. Let K be a regular collision operator on Xp, 1 � p < 1. If H is
weakly compact operator, then

(i) For each " > 0, there exists M > 0 such that

�����V.t/ �
nX

iD1
e�iteDitPi

�����
Xp

� M e.Re�nC1C"/t; 8 t > 0 and p 2 Œ1; 2�:

(ii) Further, if K is positive, then for each p > 1 there exists M0 > 0 such that

��V.t/.I � QP/��Xp
� M0 e.s.AH/�"/t; 8 t > 0

and for every " 2 .0; 2r.1� p�1// .resp. " 2 .0; 2rp�1// if p � 2 .resp. p > 2/:

}
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Construction of MATLAB adaptative step
ODE solvers

E. Alberdi Celaya and J.J. Anza Aguirrezabala

Abstract MATLAB software package offers a set of open source adaptative step
functions for solving Ordinary Differential Equations (ODEs) which are easy
to use by non-experts. Two of these functions are the well-known ode45 and
ode15s. The ode45 is adequate when solving nonstiff problems, while the ode15s
is recommended for stiff problems. Due to the wide utilization of MATLAB in
science and engineering and taking into account that some issues of interest are
found, we have studied the numerical methods in which these two ode solvers are
based, describing the error estimation and the step size control implemented in
the codes. First and second order linear ODEs are solved as two extreme examples
to characterize the functions response and finally, some conclusions related to the
stability of these solvers and the inefficiency of ode15s in stiff problems with pure
imaginary eigenvalues are presented.
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1 Introduction

A set of codes to solve initial value problems (IVPs) [1, 12] is implemented in
MATLAB:

y0.t/ D f .t; y.t// ; y .t0/ D y0 (1)

Some of these ode solvers are recommended for nonstiff problems and others for
stiff problems. The ode45 based on the Dormand Prince (5,4) pair [3] is one of
the codes recommended for nonstiff problems, and the ode15s for stiff problems,
which uses the Backward Differentiation Formulae (BDF) [4] and the Numerical
Differentiation Formulae (NDF) [14].

The term stiffness has been defined in different ways [2, 5, 7, 8, 10, 15],
sometimes leading to confusion. The definition used in this work is given in [6, 9],
which says that the greater the ratio of the eigenvalues of the Jacobian matrix, the
more stiff becomes the system of ODEs.

We have considered the first order ODE given by:

y0 D � � y; y.0/ D 1; where � < 0 (2)

And the second order ODE:

y00 D �2 � y; .y.0/; y0.0// D .1; 0/; where �2 < 0 (3)

which has been reduced to a system of two first order ODEs:

�
y0
z0
�

D
�
0 1

�2 0

��
y
z

�
; .y.0/; z.0// D .1; 0/ (4)

being z D y0.
The eigenvalues of (2) and (4) are, respectively, � and ˙ j�j i, which represent

two extreme cases: the problem with real eigenvalues and the one with pure
imaginary eigenvalues. Problems (2) and (4) have been solved in the time interval
T D Œ0; 10� using the ode solvers ode45 and ode15s, for different values of � and �2,
with default values for relative and absolute tolerances. The number of steps given
by each ode solver is listed in Tables 1 and 2, respectively.

For the smallest eigenvalues, the ode45 takes less steps than the ode15s when
solving problem (2); while the ode15s results more efficient (less steps) with the
largest ones, as expected for a specialize function for stiff systems. Nevertheless,
this does not happen in problem (4), where the ode45 is more efficient than the
ode15s, even for the large eigenvalues. In order to understand the low efficiency
of the ode15s when solving second order stiff systems associated with vibratory
or wave-type problems, this work studies the algorithms that support the functions
ode45 and ode15s: the methods on which they are based, the local error estimation,
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Table 1 Number of steps
given by the ode45 and the
ode15s when solving
problem (2).

� ode45 ode15s NDF ode15s BDF

�1 13 42 42

�2 19 55 55

�4 24 62 64

�8 36 68 70

�20 73 75 74

�100 314 80 78

Table 2 Number of steps
given by the ode45 and the
ode15s when solving
problem (4).

˙ j�j i ode45 ode15s NDF ode15s BDF

˙1i 18 46 51

˙2i 31 81 82

˙4i 57 151 146

˙8i 109 291 281

˙20i 262 711 689

˙100i 1281 3515 3406

the implementation of the adaptative step size and the stability regions of each
method as the eigenvalues multiplied by the step sizes may lie inside these regions
in order to obtain an accurate solution. When a stiff ODE is solved using a numerical
method with small stability region, the step sizes will be smaller in order to retain
stability requirements [10].

Characteristics of the ode45 and the ode15s have been studied in Sections 2
and 3, respectively. In Section 4, both codes have been used to solve the ODEs (2)
and (3) and among other features, the step sizes, the error estimations, and the
positions of the eigenvalues multiplied by the step sizes with respect to the stability
regions have been analysed. Conclusions derived from this study are presented in
Section 5.

2 The ode solver ode45

The ode solver ode45 is based on an embedded Runge-Kutta method, the Dormad-
Prince pair known as DOPRI(5,4) [3]. The Butcher table of an embedded Runge-
Kutta method is given by Table 3.

The general s-stage Runge-Kutta method is given by:

ynC1 D yn C h
sX

iD1
biki (5)

where the coefficients ki are given by:

ki D f .tn C cih; yn C h
sX

jD1
aijkj/; i D 1; 2; : : : :; s (6)
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Table 3 Butcher table of an
embedded Runge-Kutta
method.

c A

bT

ObT

ET

When the vector bT of DOPRI(5,4) is used to calculate (5), the method is
4-order accurate, while the method obtained using ObT is 5-order accurate. The values
obtained with the 4th and 5th order methods will be denoted by ynC1 and OynC1,
respectively. It is the 5-order formula the one used by the ode45 to advance:

ynC1 D yn C h
sX

iD1
biki; OynC1 D yn C h

sX
iD1

Obiki (7)

2.1 Error estimation in the ode45

The ode45 uses the difference between the values obtained with the 5-order and
the 4-order formulae as the local error estimation. This value results the 4th order
method local truncation error [13] :

est D OynC1 � ynC1

D Ln;4 C O
�
h5C1

�
(8)

being Ln;4 the local truncation error of the 4th-order formula. By substituting the
expressions of (7) in (8), the local error estimation results:

est D OynC1 � ynC1 D h
sX

iD1

�Obi � bi

�
ki (9)

2.2 Step size control in the ode45

Suppose that after having given a step of size h, we want to calculate the next step
size. This step size could be for a new step or for the repetition of the previous step
because the requirement of the tolerance has not been verified. In both cases, the
next step size is calculated by multiplying the previous step size by a constant � :

� D
�

Rtol

kestk
�1=5

(10)
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zS

FU

FL

FS

zU zL
z

F

failed stepsuccessful
step

Fig. 1 The factor F as function of the variable z.

being Rtol the specified tolerance. A safety factor of FS D 0:8 is used to guarantee
that the next step will be under tolerance [13]. So the new step is calculated as
follows:

hnew D F � h (11)

where F D FS � � D 0:8 � � . Introducing a new variable z defined by:

z D 1

0:8 � � D 1:25

�kestk
Rtol

�1=5
(12)

the factor F takes the form F D 1=z which represents the hyperbola of Figure 1.
In this figure two regions can be distinguished, separated by kestk D Rtol, where
zS D 1:25 is verified and which marks the limit between successful and failed steps.
The factor F takes the value of the safety factor, FS D 0:8, when zS D 1:25. In
each step, the ode45 computes the values of kestk and z, and the step is considered
successful if z � zS D 1:25 is verified. Otherwise, the step is considered failed.
When the given step has been successful, that is to say z 2 Œ0; 1:25�, or equivalently,
F D 1

z 2 Œ0:8;1/, an upper threshold FU is introduced to avoid excessively long
steps, see Figure 1. The ode45 uses the value FU D 5. This makes F 2 Œ0:8; 5� and
the next step size, hnew, verifies:

0:8 � h � hnew � 5 � h (13)
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Hence, the next step size is defined as:

hnew D
(

FU � h; z � zU

F � h; zU < z � zS

(14)

being zU D 1
FU

D 0:2, zS D 1
FS

D 1:25. When the given step results failed, that is
to say z > 1:25, or equivalently, F < 0:8, the step is repeated. For the first trial a
lower threshold FL is set to avoid excessively short steps, which in the ode45 takes
the value FL D 0:1. This makes F 2 Œ0:1; 0:8� and the repetition of the step verifies:

0:1 � h � hnew � 0:8 � h (15)

And the expression used in the first trial after a failed step is:

hnew D
(

F � h; zS < z � zL

FL � h; z > zL

(16)

where zL D 1
FL

D 10, zS D 1
FS

D 1:25. The expressions of (16) are replaced by h=2
in second or posterior trials after an unsuccessful step.

3 The ode solver ode15s

The ode15s is based on the BDF methods [4], and it is possible to use the BDFs of
orders 1 � 5. The final s of the ode15s indicates that the algorithm is usually used
to solve stiff differential equations [13]. By default ode15s uses NDF methods [14]
which based on BDF methods, anticipate a backward difference of order .k C 1/

when working in order k. The code always starts solving in order k D 1, and the
maximum order to be reached can be given to the code as data. In Figure 2 the
stability regions of DOPRI (5,4), BDFs and NDFs can be seen.

3.1 Error estimation in the ode15s

The ode15s uses the local truncation error as the error estimation:

est  LTE D ChkC1ykC1.tn/C O
�
hkC2� (17)

being C the error constant of the method. Backward differences are used to calculate
an approximation of ykC1.tn/. An approximation of y.t/ is obtained by using the
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backward interpolating polynomial of Newton that passes from the .k C 2/ points
f.tnCi; ynCi/g for i D �1; 0; 1; 2; : : : ; k:

y.t/  Q.t/ D ynCk C
kC1X
jD1

r jynCk
1

jŠhj

j�1Y
mD0

.t � tnCk�m/ (18)

And the .k C 1/th derivative of expression (18) is calculated:

Q.kC1/.t/ D rkC1ynCk
1

.k C 1/ŠhkC1 .k C 1/Š D rkC1ynCk
1

hkC1 (19)

Obtaining:

y.kC1/.t/  Q.kC1/.t/ D rkC1ynCk
1

hkC1 (20)



366 E.A. Celaya and J.J.A. Aguirrezabala

Substituting the approximation (20) in (17), the error estimation of the ode15s in
terms of backward differences is obtained:

LTE  C � rkC1ynCk D est (21)

3.2 Step size control in the ode15s

The ode15s is not allowed to change either the order or the step size until a minimum
of .k C 2/ consecutive steps are given with the same order and step size. If one of
the steps results failed, the order of the method or the step size is reduced. When
the compulsory .k C 2/ successful steps are given, it is possible to change the order
and the step size. In this case, the step sizes which correspond to orders .k � 1/ (for
k > 1), k and .k C 1/ (whenever the maximum order defined has not been reached)
are calculated. If we are solving in order k, the ode15s calculates the next step hk

which corresponds to order k by multiplying the actual step size by a constant � :

� D
�

Rtol

kestk
� 1

kC1

(22)

The ode15s uses a safety factor FS D 5
6

and the new step size is:

hk D F � h (23)

where F D FS � � D 5
6

� � . Again, a new variable z is defined as follows:

z D 1:2

�kestk
Rtol

�1=.kC1/
(24)

resulting the factor F D 1=z. When the given step is successful, that is to say z 2
Œ0; 1:2�, or equivalently F 2  5

6
;1�

, an upper threshold FU D 10 is set and the step
size of the k-order method is defined as:

hk D
(

FU � h; z � zU

F � h; zS < z � zU

(25)

where FU D 10, zU D 1
FU

D 0:1 and zS D 1:2. In a similar way, the step sizes hk�1
and hkC1 which correspond to orders .k � 1/ and .k C 1/ are calculated, being the
safety factors 10

13
and 10

14
, respectively. The error estimations of the methods of order

.k � 1/ and .k C 1/ are calculated, kestk�1k and kestkC1k. And the actual step size
is multiplied by the factor Fk�1 D 1

zk�1
or FkC1 D 1

zkC1
, respectively, where:
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zk�1 D 1:3 �
�kestk�1k

Rtol

�1=k

; zkC1 D 1:4 �
�kestkC1k

Rtol

�1=.kC2/
(26)

Depending on the values of zk�1 and zkC1, the step sizes hk�1 and hkC1 with upper
threshold Fk�1;U D FkC1;U D 10 are defined:

hk�1 D
(

Fk�1;U � h; zk�1 � zk�1;U
Fk�1 � h; zk�1;S < zk�1 � zk�1;U

(27)

hkC1 D
(

FkC1;U � h; zkC1 � zkC1;U
FkC1 � h; zkC1;S < zkC1 � zkC1;U

(28)

where zk�1;U D 0:1 and zk�1;S D 1:3 and zkC1;U D 0:1 and zkC1;S D 1:4. Once the
step sizes that correspond to orders k, .k � 1/ and .k C 1/ are available, the process
that the ode15s follows to set the next step size is:

1. It compares the step size of order .k � 1/ and the one of order k. If hk�1 > hk is
verified, the value hk�1 is saved in hnew and the order that corresponds to hk�1 is
considered: knew D .k � 1/. If hk�1 > hk is not verified, hnew D hk and knew D k
are considered.

2. Next, the step size that corresponds to .k C 1/ is compared with hnew. If hkC1 >
hnew, the value hkC1 is stored in hnew and the order knew increases one unit.

3. Finally, the value hnew is compared with the step size of the last step h. If hnew > h
is verified, the next step size will be hnew and it will be given with order knew. If
not, the order and the step size of the last step are maintained: order k and step
size h.

When the given step results failed, the step is repeated. The step size which
corresponds to order k is calculated using a lower threshold FL D 0:1 as follows:

hk D
(

F � h; zS < z � zL

FL � h; z > zL

(29)

where zL D 1
FL

D 10 and zS D 1:2 has been defined before. In the case in which
k > 1, the step size for order .k � 1/ is also calculated as:

hk�1 D
(

Fk�1 � h; zk�1;S < zk�1 � zk�1;L
Fk�1;L � h; zk�1 > zk�1;L

(30)

where Fk�1;L D 0:1, zk�1;L D 1
Fk�1;L

D 10 and zk�1;S D 1:3 has been defined before.
If hk�1 > hk, the next step will be given in order .k�1/ and the step size hnew will be
the minimum value of the present step h and hk�1. In second or posterior trials after
an unsuccessful step, the new step size is calculated by dividing by 2 the actual step.
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4 Some numerical results

In this section we will analyse the performance of the ode solvers ode45 and ode15s
in the ODEs (2) and (4).

4.1 First order ODEs

Consider the first order initial value ODE given by (2). The solution of (2) in the
time interval T D Œ0; 10� has been found using ode45 and ode15s. The problem has
been solved for different values of � and using the default values defined in the codes
(Rtol D 10�3 and being 10�6 all the components of the vector Atol). The number
of steps given by each ode solver to solve (2) is listed in Table 1, resulting the
ode45 more efficient with the smallest values of � and the ode15s with the largest.
In particular, we have studied the value � D �100 where the ode15s works better.
The step size and the error estimations of both codes have been calculated. For the
ode15s the order in which each step has been given has been represented too and for
the ode45 positions of the values Oh in the complex plane have been drawn. These
positions have not been drawn for ode15s, as R

� belongs to the stability regions
of BDFs and NDFs. The graphics of these section correspond to use NDFs in the
ode15s. For � D �100 and ode45, some values Oh are outside the 5th order stability
region, Figure 3. A step size h for which Oh lies outside the 5th order stability region
is generally followed by a smaller step size that reduces the error estimation and
which makes Oh be inside the stability region or closer to its exterior limit. The steps
given by the ode45 are very regular although slightly oscillatory, see Figure 4, and
the smaller the error the greater the next step size, see Figure 5. In the ode15s, the
error estimation decreases a lot as long as we advance in the time interval and this
makes the steps longer, Figures 4 and 5. The greatest steps of the ode15s are given
when the function solution has not significant variations (values that are near to
zero).

4.2 Second order ODEs

Consider the second order initial value ODE given by (3), which is reduced to a
system of two first order ODEs (4). The eigenvalues of the problem (4) are ˙ j�j i.
Problem (4) has been solved in the time interval T D Œ0; 10�, using the ode solvers
ode45 and ode15s, and using the default values defined in both codes. Again, we
have analysed the case �2 D �1002. In the case of the ode15s, the problem has
been solved using BDFs. For �2 D �1002, the ode15s gives 3406 steps and the
ode45 1281 steps. The result obtained by the ode15s is worse than the one obtained
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by the ode45, Figure 6. The main reason is that for the ode45, the values Oh are all
inside the 5th order DOPRI(5,4) stability region, Figure 7. But this does not happen
for the ode15s. In the first image of Figure 8 all the positions of the values Oh in
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the BDF stability regions can be seen and the other figures show the detail. With
the exception of the values corresponding to orders k D 1, 2 and 5, all the rest are
outside the stability region.

Figure 9 and Figure 10 show the step sizes and the error estimations of the two
solvers when Rtol D 10�3. It can be observed that the error estimations of the
ode15s are bigger than in the case in which the first order ODE (2) was solved.

5 Conclusions

From this analysis we conclude that:

• The ode solvers ode45 and ode15s do not do additional calculations to control the
eigenvalues of the jacobian matrix [11]. This means that the values Oh D h� may
lie outside the stability regions of the method, although the control of the local
error and the subsequent adaptative step size will avoid an unstable solution.
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Fig. 7 Positions of Oh in
problem (4) in the stab.
region DOPRI(5,4), being
�2 D �1002.
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• The local error estimation of the ode15s results very small when the solution
decreases exponentially. This is the reason why the ode15s results very effi-
cient when solving first order ODEs, mainly when j�j increases. Nevertheless,
when solving second order ODEs with pure imaginary eigenvalues, the strong
variations of the oscillatory solution produce a greater error estimation and the
advantage that the ode15s has in first order ODEs disappears.

• The construction of each ode solver (their local error estimations, the formulae
for the new step sizes, and so on) is what makes each of the codes more efficient
when solving some type of problems.
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An overview on bounded elements in some
partial algebraic structures

Giorgia Bellomonte

Abstract The notion of bounded element is fundamental in the framework of the
spectral theory. Before implanting a spectral theory in some algebraic or topological
structure it is needed to establish which are its bounded elements. In this paper, we
want to give an overview on bounded elements of some particular algebraic and
topological structures, summarizing our most recent results on this matter.

1 Introduction

Though the notion of bounded element has been considered, in different forms,
within the theory regarding the structure of (topological) *-algebras, it is not so
for the algebraic structures that do not possess a multiplication or possess just a
partial one. Indeed, for (topological) *-algebras, the notion of bounded element is
strictly linked to the operation of multiplication. In 1965, Allan wanted to construct
a spectral theory for locally convex algebras. He judged natural to mimic the spectral
theory of a closed operator on a Banach space: it is well known that if A is a closed
operator on a Banach space B, then its spectrum is the set of the complex numbers
� such that the operator A � �I has no bounded inverse. It became fundamental for
him, therefore, to fix the concept of bounded element for a locally convex algebra.
He defined (see [1, Def. 2.1]) bounded those and only those elements a of the locally
convex algebra AŒ� � for which there exists a complex number � ¤ 0 such that the
set f.�x/nI n D 1; 2; : : :g is a bounded subset of AŒ� �. This definition does not apply
to the algebraic structures we will examine in this overview: in general, neither a
partial *-algebra nor a C*-inductive locally convex space possesses an everywhere
defined multiplication, hence powers of a given element need not be defined.

Another notion of bounded element of a *-algebra is due to Vidav [11, Definition
in Section 2] and involves a convex pointed cone P of positive elements of the
algebra (which are all and only those elements that can be written as the finite sums
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of elements of the form a�a, with a 2 A): an element a 2 A is bounded if there
exists a positive number � such that e 2 A the identity of A.

In order to extend the notion of bounded element to our case we have at disposal
more than one possibility: we can define bounded elements taking into account
both the topological structure and the algebraic structure of the set where we pick
elements.

The paper is organized as follows. In Section 2 we will summarize the definitions
and results we gave in [2] about bounded elements in a *-semisimple topological
partial *-algebra: in that paper we considered the elements that are bounded with
respect to a sufficient family M of invariant positive sesquilinear (ips) forms (see
also [4]) and elements that are bounded with respect to some positive cone, hence
defined in purely algebraic terms. The outcome is that, under appropriate conditions,
order bounded elements reduce to M-bounded ones. In Section 3, in the setting of
C*-inductive locally convex spaces, we consider both bounded elements defined
starting from the C*-inductive structure and those we have defined by means of an
order cone and finally prove the equivalence of the two different notions we have
given in [5].

2 Bounded elements in *-semisimple partial *-algebras

This section summarizes the results showed in [2] by J-P. Antoine, C. Trapani, and
the author. We refer to that paper for the proofs and further readings. Before going
forth, let us recall, for convenience of the reader, the main definitions we need.

A partial *-algebra A is a complex vector space with conjugate linear involution
� and a distributive partial multiplication �, defined on a subset � 	 A
A, satisfying
the property that .x; y/ 2 � if, and only if, .y�; x�/ 2 � and .x � y/� D y� � x�. From
now on we will write simply xy instead of x � y whenever .x; y/ 2 � . For every
y 2 A, the set of left (resp. right) multipliers of y is denoted by L.y/ (resp. R.y/),
i.e., L.y/ D fx 2 A W .x; y/ 2 � g (resp. R.y/ D fx 2 A W .y; x/ 2 � g). We denote
by LA (resp. RA) the space of universal left (resp. right) multipliers of A (for more
details, we refer to [3]).

In general, a partial *-algebra is not associative, but in several situations a weaker
form of associativity holds. More precisely, we say that A is semi-associative if
y 2 R.x/ implies yz 2 R.x/, for every z 2 RA, and

.xy/z D x.yz/:

The partial *-algebra A has a unit if there exists an element e 2 A such that e D e�,
e 2 RA \ LA and xe D ex D x, for every x 2 A.

Let A be a partial *-algebra. We assume that A is a locally convex Hausdorff
vector space under the topology � defined by a (directed) set fp˛g˛2I of seminorms.
Assume that
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(cl) for every x 2 A, the linear map Lx W R.x/ 7! A with Lx.y/ D xy, y 2 R.x/,
is closed with respect to � , in the sense that, if fy˛g 	 R.x/ is a net such that
y˛ ! y and xy˛ ! z 2 A, then y 2 R.x/ and z D xy.

in this case, A is said to be a topological partial *-algebra. If the involution x 7! x�
is continuous, we say that A is a *-topological partial *-algebra.

Starting from the family of seminorms fp˛g˛2I , we can define a second topology
�� on A by introducing the set of seminorms fp�̨.x/g˛2I , where

p�̨.x/ D maxfp˛.x/; p˛.x
�/g; x 2 A:

The involution x 7! x� is automatically ��-continuous. By (cl) it follows that,
for every x 2 A, both maps Lx, R D .Lx�/� are ��-closed. Hence, AŒ��� is a *-
topological partial *-algebra.

Let H be a complex Hilbert space and D a dense subspace of H . We denote
by L �.D ;H / the set of all (closable) linear operators X such that D.X/ D
D ; D.X�/ � D : The set L �.D ;H / is a partial *-algebra with respect to
the following operations: the usual sum X1 C X2, the scalar multiplication �X,
the involution X 7! X� WD X� � D and the (weak) partial multiplication
X1 � X2 WD X1�

�
X2, defined whenever X2 is a weak right multiplier of X1 (we

shall write X2 2 Rw.X1/ or X1 2 Lw.X2/), that is, whenever X2D 	 D.X1�
�
/ and

X�
1D 	 D.X�

2 /:

It is easy to check that X1 2 Lw.X2/ if and only if there exists Z 2 L �.D ;H /

such that

hX2�jX�1�i D hZ�j�i; 8�; � 2 D : (1)

In this case Z D X1 � X2. L �.D ;H / is neither associative nor semi-associative. If
I denotes the identity operator of H , ID WD I � D is the unit of the partial *-algebra
L �.D ;H /. We will indicate by ts the strong topology on L �.D ;H /, defined by
the seminorms

p� .X/ D kX�k; X 2 L �.D ;H /; � 2 D :

Let AŒ� � be a topological partial *-algebra with locally convex topology � . Then
a subspace B of RA is called a multiplication core [2, Definition 2.3] if

(d1) e 2 B if A has a unit e;
(d2) B � B � B;
(d3) B is ��-dense in A;
(d4) for every b 2 B, the map x 7! xb , x 2 A, is � -continuous;
(d5) one has b�.xc/ D .b�x/c; 8 x 2 A; b; c 2 B.

AŒ� � is called A0-regular if it possesses a multiplication core A0 which is a *-algebra
and, for every b 2 A0, the map x 7! bx , x 2 A, is � -continuous [4, Def. 4.1].

A *-representation of a partial *-algebra A in the Hilbert space H is a linear
map � W A ! L �.D.�/;H / such that: (i) �.x�/ D �.x/�, for every x 2 A;
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(ii) x 2 L.y/ in A implies �.x/ 2 Lw.�.y// and �.x/��.y/ D �.xy/: The subspace
D.�/ is called the domain of the *-representation � . The *-representation � is said
to be bounded if �.x/ 2 B.H / for every x 2 A. We will denote by Repc.A/ the
set of all .�; ts/-continuous *-representations of A. Let ' be a positive sesquilinear
form on D.'/ 
 D.'/, where D.'/ is a subspace of A. Then we have

'.x; y/ D '.y; x/; 8 x; y 2 D.'/; (2)

j'.x; y/j2 6 '.x; x/'.y; y/; 8 x; y 2 D.'/: (3)

We put

N' D fx 2 D.'/ W '.x; x/ D 0g:

By (3), we have

N' D fx 2 D.'/ W '.x; y/ D 0; 8 y 2 D.'/g;

and so N' is a subspace of D.'/ and the quotient space D.'/=N' WD f�'.x/ �
x C N' I x 2 D.'/g is a pre-Hilbert space with respect to the inner product

h�'.x/j�'.y/i D '.x; y/; x; y 2 D.'/:

We denote by H' the Hilbert space obtained by completion of D.'/=N' .
Our overview on bounded elements starts focusing on the so-called *-semisimple

topological partial *-algebras. A topological partial *algebras. AŒ� � is called *-
semisimple [2, Definition 3.5] if, for every x 2 A n f0g there exists � 2 Repc.A/
such that �.x/ ¤ 0 or, equivalently, if the *-radical of A

R�.A/ WD fx 2 A W �.x/ D 0; for all � 2 Repc.A/g

is equal to f0g.
A positive sesquilinear form ' on A
A is said to be invariant, and called an ips-

form, if there exists a subspace B.'/ of A (called a core for ') with the properties

(ips1) B.'/ 	 RA;
(ips2) �'.B.'// is dense in H' ;
(ips3) '.xa; b/ D '.a; x�b/; 8 x 2 A;8 a; b 2 B.'/;
(ips4) '.x�a; yb/ D '.a; .xy/b/; 8 x 2 L.y/;8 a; b 2 B.'/.

We will denote by PB.A/ the set of all � -continuous ips-forms with core B.
A family M of continuous ips-forms on A 
 A is sufficient if x 2 A and

'.x; x/ D 0, for every ' 2 M imply x D 0.

Proposition 1. Let AŒ� � be a topological partial *-algebra with unit e. Let B be a
multiplication core. For an element x 2 A the following statements are equivalent.
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(i) x 2 R�.A/.
(ii) '.x; x/ D 0, for every ' 2 PB.A/.

Remark 1. By Proposition 1, AŒ� � is *-semisimple if, and only if, for some
multiplication core B, the family PB.A/ is sufficient.

If the family M is sufficient, any larger family M0 � M is sufficient too. In this
case, the maximal sufficient family (having B as core) is obviously PB.A/. Hence
if a sufficient family M � PB.A/ exists, then AŒ� � is *-semisimple.

We say that the weak multiplication x�y is well defined (with respect to M) if there
exists z 2 A such that:

'.ya; x�b/ D '.za; b/; 8 a; b 2 B;8' 2 M:

In this case, we put x�y WD z and the sufficiency of M guarantees that z is unique.
The weak multiplication � clearly depends on M: the larger is M, the stronger is
the weak multiplication, in the sense that if M � M0 � PB.A/ and x�y exists w.r.
to M0, then x�y exists with respect to M too.

Since it may be difficult to identify in practice such a sufficient family of
continuous ips-forms that guarantees the *-semisimplicity of AŒ� �, we examine
in what sense ips-forms may be replaced by a special class of continuous linear
functionals, called representable.

Definition 1. Let! be a linear functional on A and B a subspace of RA. We say that
! is representable (with respect to B) if the following requirements are satisfied:

(r1) !.a�a/ � 0 for all a 2 B (B-positiveness);
(r2) !.b�.x�a// D !.a�.xb//; 8 a; b 2 B, x 2 A;
(r3) 8x 2 A there exists �x > 0 such that j!.x�a/j � �x !.a�a/1=2, for all a 2 B.

We will denote by Rc.A;B/ the set of � -continuous linear functionals that are
representable (with respect to B).

In this case, one can prove that there exists a triple .�B
! ; �

B
! ;H

B
! / such that

(a) �B
! is a *-representation of A in H B

! ;
(b) �B! is a linear map of A into H B

! with �B! .B/ D D.�B
! / and �B

! .x/�
B
! .a/ D

�B! .xa/, for every x 2 A; a 2 B;
(c) !.b�.xa// D h�B

! .x/�
B
! .a/j�B! .b/i, for every x 2 A, a; b 2 B.

In particular, if A has a unit e and e 2 B, we have:

(a1) �B
! is a cyclic *-representation of A with cyclic vector �! ;

(b1) �B! is a linear map of A into H B
! with �B! .B/ D D.�B

! /, �! D �B! .e/ and
�B
! .x/�

B
! .a/ D �B! .xa/, for every x 2 A; a 2 B;

(c1) !.x/ D h�B
! .x/�! j�!i, for every x 2 A.

For what we have already noted, it is interesting to identify a class of topological
partial *-algebras for which representable linear functionals and ips-forms can be
freely replaced by one another, since every representable linear functional comes
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(as for *-algebras with unit) from an ips-form. These partial *-algebras are called
fully representable: a topological partial *-algebra AŒ� �, with multiplication core B
is fully representable if

(fr) D.'!/ D A, for every continuous linear functional ! on A which is repre-
sentable w.r. to the same core B.

The following definitions and results can be found in [2, Subsection 5.1].

Definition 2. Let A be a topological partial *-algebra with multiplication core B
and a sufficient family M of continuous ips-forms with core B. An element x 2 A
is called M-bounded if there exists �x > 0 such that

j'.xa; b/j � �x '.a; a/
1=2'.b; b/1=2; 8' 2 M; a; b 2 B :

A useful characterization of M-bounded elements is given by the following
proposition.

Proposition 2. Let AŒ� � be a topological partial *-algebra with multiplication core
B. Then, an element x 2 A is M-bounded if, and only if, there exists �x 2 R such
that '.xa; xa/ � �2x '.a; a/ for all ' 2 M and a 2 B.

If x; y are M-bounded elements and their weak product x�y exists, then x�y is
also M-bounded.

2.1 Order bounded elements

Before giving the definition of order bounded element of a topological partial
*-algebra AŒ� � with unit and endowed multiplication core, we need to introduce an
order structure in AŒ� �. We have done it by defining several order cones or wedges
of AŒ� �.

2.1.1 Order structure of AŒ��

Let AŒ� � be a topological partial *-algebra with multiplication core B. If AŒ� � is
*-semisimple, there is a natural order on A defined by the family PB.A/ or by any
sufficient subfamily M of PB.A/, and this order can be used to define a different
notion of boundedness of an element x 2 A [8, 10, 11].

Definition 3. Let AŒ� � be a topological partial *-algebra and B a subspace of RA.
A subset K of Ah WD fx 2 A W x D x�g is called a B-admissible wedge if

(1) e 2 K, if A has a unit e;
(2) x C y 2 K; 8 x; y 2 K;
(3) �x 2 K; 8 x 2 K; � � 0;
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(4) .a�x/a D a�.xa/ DW a�xa 2 K; 8 x 2 K; a 2 B.

As usual, K defines an order on the real vector space Ah by x � y , y � x 2 K.
In the rest of this section, we will suppose that the partial *-algebras under

consideration are semi-associative. Under this assumption, the first equality in (4)
of Definition 3 is automatically satisfied.

Now, let us define a series of admissible cones with respect to some subspace
of RA.

• Let A be a topological partial *-algebra with multiplication core B. We put

B.2/ D
(

nX
kD1

x�
k xk; xk 2 B; n 2 N

)
:

If B is a *-algebra, this is nothing but the set (wedge) of positive elements of B.
The B-strongly positive elements of A are then defined as the elements of
AC.B/ WD B.2/

�
. Since A is semi-associative, the set AC.B/ of B-strongly

positive elements is a B-admissible wedge.
• We also define

AC
alg D

(
nX

kD1
x�

k xk; xk 2 RA; n 2 N

)
;

the set (wedge) of positive elements of A and we put AC
top WD AC

alg

�

. The semi-

associativity implies that RA � RA � RA and then AC
top is RA-admissible.

• Let M � PB.A/. An element x 2 A is called M-positive if

'.xa; a/ � 0; 8' 2 M; a 2 B:

It can be proved that an M-positive element is automatically hermitian. We
denote by AC

M the set of all M-positive elements. Clearly AC
M is a B-admissible

wedge.

As can be easily checked, the following inclusions hold

AC.B/ � AC
top � AC

M; 8M � PB.A/: (4)

Moreover, it can be proved that, if the family M is sufficient, then AC
M is a cone,

i.e., AC
M \ .�AC

M/ D f0g; this automatically implies that AC.B/ is a cone too.
Put AC

P WD AC
PB.A/. It can be proved that, if A is a fully-representable *-

semisimple *-topological partial *-algebra with multiplication core B and unit
e 2 B and if AŒ� � is a Fréchet space and the following property holds

(P) y 2 A and !.a�ya/ � 0, for every ! 2 Rc.A;B/ and a 2 A0, imply y 2 AC.B/
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then the chain of inclusions (4) collapses: AC.B/ D AC
P (see [2, Propositions 5.13,

5.14 and Corollary 5.16]).
The following statement shows that PB.A/-positivity is exactly what is needed

if we want the order to be preserved under any continuous *-representation.

Proposition 3. Let A be a topological partial *-algebra with multiplication core B
and unit e 2 B. Let x 2 A. Then, the following are equivalent:

1. x 2 AC
P ;

2. the operator �.x/ is positive for every .�; ts/-continuous *-representation � with
�.e/ D ID.�/.

2.1.2 Order bounded elements

Let AŒ� � be a topological partial *-algebra with multiplication core B and unit e 2
B. As we have seen in Section 2.1.1, AŒ� � has several natural orders, all related to
the topology � . Each of them can be used to define bounded elements.

Let x 2 A; put <.x/ D 1
2
.x C x�/, =.x/ D 1

2i .x � x�/. Then <.x/;=.x/ 2 Ah (the
set of self-adjoint elements of A) and x D <.x/C i=.x/.

Let now K be an arbitrary B-admissible cone.

Definition 4. An element x 2 A is called K-bounded if there exists � � 0 such that

˙<.x/ � �eI ˙=.x/ � �e:

We denote by Ab.K/ the family of K-bounded elements.
The following statements are easily checked.

(1) ˛x C ˇy 2 Ab.K/; 8x; y 2 Ab.K/; ˛; ˇ 2 C.
(2) x 2 Ab.K/ , x� 2 Ab.K/.

For x 2 Ah, put

kxkb WD inff� > 0 W ��e � x � �eg:

k � kb is a seminorm on the real vector space .Ab.K//h.
Let AŒ� � be a *-semisimple topological partial *-algebra with multiplication core

B. We can then specify the wedge K as one of those defined above. Take first K D
AC

M, where M D PB.A/ is the sufficient family of all continuous ips-forms with
core B. For simplicity, we write again P WD PB.A/, hence AC

P WD AC
PB.A/ and

Ab.P/ WD Ab.A
C
P/.

Proposition 4. If x 2 Ab.P/, then �.x/ is a bounded operator, for every .�; ts/-
continuous *-representation of A. Moreover, if x D x�, k�.x/k � kxkb.

Hence, as it is natural, the Ab.P/-bounded elements are those that are repre-
sented by a bounded operator in any .�; ts/-continuous *-representation of A.
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The following theorem states the equivalence, under opportune hypothesis, of
the notions of order bounded element and of element bounded with respect to a
sufficient family of ips-forms.

Theorem 1. Let AŒ� � be a *-semisimple topological partial *-algebra with mul-
tiplication core B and unit e 2 B. For x 2 A, the following statements are
equivalent.

(i) x is PB.A/-bounded;
(ii) x 2 Ab.P/;

(iii) �.x/ is bounded, for every � 2 Repc.A/, and

supfk�.x/k; � 2 Repc.A/g < 1:

Another possible choice for the order cone is, for instance, AC.B/. It is clear that
Ab.A

C.B// � Ab.P/; it can be proved also that the two wedges coincide if AŒ� �
is a Fréchet space which is also a fully representable, semi-associative *-topological
partial *-algebra, with multiplication core B and unit e 2 B and the property (P)
(see Subsection 2.1.1) holds.

3 Bounded elements for a C*-inductive locally convex space

In this section we recap what S. Di Bella, C. Trapani and the author have done in
[5], i.e. extending the notion of bounded element to the case of C*-inductive locally
convex spaces; for this reason, we refer to that paper for the proofs of every result
we report on.

Before going forth, we recall the notions of directed system of C*-algebras and
of C*-inductive locally convex space we introduced in [7].

Let A be a vector space over C. Let F be a set of indices directed upward and
consider, for every ˛ 2 F, a Banach space A˛ 	 A such that:

(I.1) A˛ � Aˇ , if ˛ � ˇ;
(I.2) A D S

˛2F A˛;
(I.3) 8˛ 2 F, there exists a C*-algebra B˛ (with unit e˛ and norm k � k˛) and a

norm-preserving isomorphism of vector spaces �˛ W B˛ ! A˛;
(I.4) x˛ 2 BC̨ ) xˇ D .��1

ˇ �˛/.x˛/ 2 BC
ˇ , for every ˛; ˇ 2 F with ˇ � ˛.

We put jˇ˛ D ��1
ˇ �˛ , if ˛; ˇ 2 F; ˇ � ˛.

If x 2 A, there exist ˛ 2 F such that x 2 A˛ and (a unique) xˇ 2 Bˇ such that
x D �ˇ.xˇ/, for all ˇ � ˛.

Then, we put

jˇ˛.x˛/ WD xˇ if ˛ � ˇ:
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By (I.4), it follows easily that jˇ˛ preserves the involution; i.e., jˇ˛.x�̨/ D
.jˇ˛.x˛//�.

The family fB˛; jˇ˛; ˇ � ˛g is a directed system of C*-algebras, in the sense
that:

(J.1) for every ˛; ˇ 2 F, with ˇ � ˛, jˇ˛ W B˛ ! Bˇ is a linear and injective map;
j˛˛ is the identity of B˛ ,

(J.2) for every ˛; ˇ 2 F, with ˛ � ˇ, �˛ D �ˇjˇ˛:
(J.3) j�ˇjˇ˛ D j�˛ , ˛ � ˇ � � .

We assume that, in addition, the jˇ˛’s are Schwarz maps (see, e.g., [9]); i.e.,

(sch) jˇ˛.x˛/�jˇ˛.x˛/ � jˇ˛.x�̨x˛/; 8x˛ 2 B˛; ˛ � ˇ.

For every ˛; ˇ 2 F, with ˛ � ˇ, jˇ˛ is continuous [9] and, moreover,

kjˇ˛.x˛/kˇ � kx˛k˛; 8x˛ 2 B˛:

An involution in A is defined as follows. Let x 2 A. Then x 2 A˛ , for some
˛ 2 F, i.e., x D �˛.x˛/, for a unique x˛ 2 B˛ . Put x� WD �˛.x�̨/. Then if ˇ � ˛,
we have

��1
ˇ .x�/ D ��1

ˇ .�˛.x
�̨// D jˇ˛.x

�̨/ D .jˇ˛.x˛//
� D x�̌:

It is easily seen that the map x 7! x� is an involution in A. Moreover, by
the definition itself, it follows that every map �˛ preserves the involution; i.e.,
�˛.x�̨/ D .�˛.x˛//�, for all x˛ 2 B˛; ˛ 2 F.

Definition 5. A locally convex vector space A, with involution �, is called a C*-
inductive locally convex space if

(i) there exists a family ffB˛; �˛g; ˛ 2 Fg, where F is a direct set and, for every
˛ 2 F, B˛ is a C*-algebra and �˛ is a linear injective map of B˛ into A,
satisfying the above conditions (I.1)–(I.4) and (sch), with A˛ D �˛.B˛/, ˛ 2
F;

(ii) A is endowed with the locally convex inductive topology �ind generated by the
family ffB˛; �˛g; ˛ 2 Fg.

The family ffB˛; �˛g; ˛ 2 Fg is called the defining system of A. We notice that the
involution is automatically continuous in AŒ�ind�.

A C*-inductive locally convex space has a natural positive cone.
An element x 2 A is called positive if there exists � 2 F such that ��1

˛ .x/ 2 BC̨,
8˛ � � .

We denote by AC the set of all positive elements of A.
Then,

(i) Every positive element x 2 A is hermitian; i.e., x 2 Ah WD fy 2 A W y� D yg.
(ii) AC is a nonempty convex pointed cone; i.e., AC \ .�AC/ D f0g.

(iii) If ˛ 2 F and x˛ 2 BC̨, �˛.x˛/ is positive.
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Moreover, every hermitian element x D x� is the difference of two positive
elements, i.e. there exist xC; x� 2 AC such that x D xC � x�.

Now, let A be a C*-inductive locally convex space with defining family of
C*-algebras fB˛I˛ 2 Fg (F is an index set directed upward). There are also in
this case several possibilities: the first one consists in taking elements that have
representatives in every C*-algebra B˛ of the family whose norms are uniformly
bounded; the second one consists in taking into account the order structure of A, in
the same spirit of the quoted papers of Vidav and Schmüdgen.

3.1 Bounded elements and the C*-inductive structure of A

In this section we will report definitions and results that can be found in [5],
regarding bounded elements defined through the C*-inductive structure of the space.

Definition 6. Let A be a C*-inductive locally convex space. An element x 2 A is
called bounded if x 2 A˛ , for every ˛ 2 F and sup˛2F kx˛k˛ < 1.

The set of bounded elements of A is denoted by Ab.
It is easy to see that the set Ab is a Banach space under the norm kxkb D

sup˛2F kx˛k˛ .
In what follows we will consider *-representations of a C*-inductive locally

convex space. We recall the basic definitions.
Let F be a set directed upward by �. A family fH˛;Uˇ˛; ˛; ˇ 2 F; ˇ � ˛g,

where each H˛ is a Hilbert space (with inner product h�j�i˛ and norm k � k˛) and,
for every ˛; ˇ 2 F, with ˇ � ˛, Uˇ˛ is a linear map from H˛ into Hˇ , is
called a directed contractive system of Hilbert spaces if the following conditions
are satisfied

(i) Uˇ˛ is injective;
(ii) kUˇ˛�˛kˇ � k�˛k˛; 8�˛ 2 H˛;

(iii) U˛˛ D I˛ , the identity of H˛;
(iv) U�˛ D U�ˇUˇ˛ , ˛ � ˇ � � .

A directed contractive system of Hilbert spaces defines a conjugate dual pair
.D�;D/ which is called the joint topological limit [6] of the directed contractive
system fH˛;Uˇ˛; ˛; ˇ 2 F; ˇ � ˛g of Hilbert spaces.

Definition 7. Let A be the C*-inductive locally convex space defined by the system
ffB˛; ˚˛g; ˛ 2 Fg as in Definition 5. For each ˛ 2 F, let �˛ be a *-representation of
B˛ in Hilbert space H˛ . The collection � WD f�˛g is said to be a *-representation
of A if

(i) for every ˛; ˇ 2 F there exists a linear map Uˇ˛ W H˛ ! Hˇ such that the
family fH˛;Uˇ˛; ˛; ˇ 2 F; ˇ � ˛g is a directed contractive system of Hilbert
spaces;
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(ii) the following equality holds

�ˇ.jˇ˛.x˛// D Uˇ˛�˛.x˛/U
�̌
˛; 8x˛ 2 B˛; ˇ � ˛: (5)

In this case we write �.x/ D lim�!�˛.x˛/ for every x D .x˛/ 2 A or, for short,
� D lim�!�˛ .

The *-representation � is said to be faithful if x 2 AC and �.x/ D 0 imply x D 0 (of
course, �.x/ D 0 means that there exists � 2 F such that �˛.x˛/ D 0, for ˛ � � ).

Remark 2. With this definition (which is formally different from that given in [7]
but fully equivalent), �.x/, x 2 A, is not an operator but rather a collection of
operators. However, as it was shown in [7], �.x/ can be regarded as an operator
acting on the joint topological limit .D�;D/ of fH˛;Uˇ˛; ˛; ˇ 2 F; ˇ � ˛g (see
[6]). The corresponding space of operators was denoted by LB.D ;D�/; it behaves
in the very same way as the space LB.D ;D

�/ studied in [5, Section 3] and reduces
to it when the family of Hilbert spaces is exactly fHAI A 2 L �.D/g. The main
difference consists in the fact that the H˛’s need not be all subspaces of a certain
Hilbert space H .

Let � D lim�!�˛ be a faithful representation. Then, for every ˛ 2 F, �˛ is a
faithful *-representation of B˛ .

As shown in [7, Proposition 3.16], if a C*-inductive locally convex space A
fulfills the following conditions

(r1) if x˛ 2 B˛ and jˇ˛.x˛/ � 0, ˇ � ˛, then x˛ � 0;
(r2) eˇ 2 jˇ˛.B˛/; 8˛; ˇ 2 F; ˇ � ˛;
(r3) every positive linear functional ! D lim�!!˛ on A satisfies the following

property

• if ˛ 2 F and !ˇ.jˇ˛.x�̨/jˇ˛.x˛// D 0, for some ˇ � ˛ and x˛ 2 B˛ , then
!˛.x�̨x˛/ D 0;

then, A admits a faithful representation. These conditions, in fact, guarantee that A
possesses sufficiently many positive linear functionals, in the sense that for every
x 2 AC, x ¤ 0, there exists a positive linear functional ! such that !.x/ > 0 [7,
Theorem 3.14].

The following theorem provides a relation between the bounded elements of A
and its bounded representations.

Theorem 2. Let A be a C�-inductive locally convex space and x D .x˛/ 2 A.

(i) If x 2 Ab, then, for every representation � D lim�!�˛ of A, one has

sup
˛2F

k�˛.x˛/k˛˛ < 1;

where k � k˛˛ denote the norm of B.H˛/.
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(ii) Conversely, if A admits a faithful *-representation � f D lim�!�
f
˛ and

sup
˛2F

k� f
˛.x˛/k˛˛ < 1;

then x 2 Ab.

3.2 Bounded elements and the order structure of A

Here we collect a series of definitions and results given in [5] about bounded
elements of a C*-inductive locally convex space defined by an order cone. As
before, we refer to that paper for the proofs.

The reader will immediately realize that the following definitions are very similar
to those given in Subsection 2.1.2, however we search here a characterization of
bounded elements that originates from the bounded elements of the C*-algebras
that give raise to the C*-inductive locally convex space.

Let A be a C*-inductive locally convex space. If x 2 A, we put, as before,

<.x/ D x C x�

2
and =.x/ D x � x�

2i
:

Both <.x/ and =.x/ are symmetric elements of A.
Assume that A has an element u D u� such that ku˛k˛ � 1, for every ˛ 2 F,

and there exists � 2 F such that uˇ D jˇ� .e� / 8ˇ � � (e� is the unit of B� ). For
shortness we call the element u a pre-unit of A. It is not difficult to prove that the
pre-unit u 2 A, if any, is unique.

Definition 8. Let A be a C*-inductive locally convex space with pre-unit u. We say
that x 2 A is order bounded (with respect to u) if there exists � > 0 such that

��u � <.x/ � �u � �u � =.x/ � �u:

The following theorem shows that the notions of bounded element and of order
bounded element we gave within the present section are equivalent.

Theorem 3. Let A be a C*-inductive locally convex space satisfying condition (r1).
Assume that A has a pre-unit u. Then, x 2 Ab if, and only if, x has a representative
for every ˛ 2 F (i.e., for every ˛ 2 F, there exists x˛ 2 B˛ such that x D �˛.x˛/)
and x is order bounded with respect u.

Now, recalling that the set Ab is a Banach space under the norm kxkb D
sup˛2F kx˛k˛ , we can draw a consequence of Theorem 3.
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Proposition 5. Let x D x� 2 Ab and put

p.x/ D inff� > 0I ��u � x � �ug:

Then, p.x/ D kxkb.
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Some spectral properties for operators acting
on Rigged Hilbert spaces

Salvatore Di Bella

Abstract Operators on Rigged Hilbert spaces have been considered from the 80s
of the 20th century on as good ones for describing several physical models whose
observable set didn’t turn out to be a C�-algebra.

A notion of resolvent set for an operator acting in a rigged Hilbert space
D 	 H 	 D� is proposed. This set depends on a family of intermediate locally
convex spaces living between D and D�, called interspaces. Some properties of the
resolvent set and of the corresponding multivalued resolvent function are derived
and some examples are discussed.

1 Introduction

Spaces of linear maps acting on a rigged Hilbert space (RHS, for short)

D 	 H 	 D�

have often been considered in the literature both from a pure mathematical point
of view and for their applications to quantum theory [2, 4, 5, 11–13]. One of the
motivations about the introduction of partial �-algebras (that came up during the
80s) is within their possible applications in several physical models. In 1964 R.
Haag and D. Kastler proposed the algebraic approach to quantum systems with
infinite degrees of freedom. In this it was supposed that the set of the observable of
the system were a C�-algebra and that all the operations concerning the topology
could be done without any problem. Nevertheless, this didn’t take physicists long to
show the existence of quantum models in which this assumption was no longer true;
then a new approach was needed. A first step was to introduce topological partial
�-algebras (G. Lassner 1980), the use of which showed a good approach to describe
some spin-systems. Since then, the development of topological partial �-algebras
went straight both in mathematical and physical applications [3, 4, 6, 7, 14].

In this paper we consider the case of L.D ;D�/.
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Let D be a dense linear subspace of Hilbert space H and t a locally convex
topology on D , finer than the topology induced by the Hilbert norm. Then the
space D� of all continuous conjugate linear functionals on D Œt�, i.e., the conjugate
dual of D Œt�, is a linear vector space and contains H , in the sense that H can be
identified with a subspace of D�. These identifications imply that the sesquilinear
form B.�; �/ that puts D and D� in duality is an extension of the inner product of D ;
i.e., B.�; �/ D h� j� i, for every �; � 2 D (to simplify notations we adopt the symbol
h� j� i for both of them). The space D� will always be considered as endowed with
the strong dual topology t� D ˇ.D�;D/. The Hilbert space H is dense in D�Œt��.

We get in this way a Gelfand triplet or rigged Hilbert space (RHS)

D Œt� ,! H ,! D�Œt��; (1)

where ,! denotes a continuous embedding with dense range. Clearly this includes
the well-known triplets of distribution spaces

D.˝/ ,! L2.˝; dnx/ ,! D�.˝/

where ˝ is an open of Rn, or

S .Rn/ ,! L2.Rn/ ,! S �.Rn/:

Let L.D ;D�/ denote the vector space of all continuous linear maps from D Œt�
into D�Œt��. In L.D ;D�/ an involution X 7! X� can be introduced by the equality

hX� j� i D hX�� j� i; 8�; � 2 D :

Hence L.D ;D�/ is a *-invariant vector space. As it is shown in [3, 6, 7, 10],
L.D ;D�/ can be made into a partial *-algebra by selecting an appropriate family
of intermediate spaces between D and D�.

2 Operators in RHS

Let D Œt� 	 H 	 D�Œt�� be a rigged Hilbert space and E ŒtE � a locally convex space
such that

D Œt� ,! E ŒtE � ,! D�Œt��: (2)

Let E � be the conjugate dual of E ŒtE � endowed with its own strong dual topology
t�e . Then by duality, E � is continuously embedded in D� and the embedding has
dense range. Also D is continuously embedded in E , but in this case the image of D
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is not necessarily dense in E � [4, Example 10.2.21], unless E is endowed with the
Mackey topology �.E ;E �/ DW �E , [8]; in which case we say that E is an interspace.
If E ;F are interspaces and E 	 F , then �F is coarser than �E .

Let E , F be interspaces. Let us define

C .E ;F / WD fX 2 L.D ;D�/ W 9Y 2 L.E ;F /; Y� D X�;8� 2 Dg;

where L.E ;F / denotes the vector space of all continuous linear maps from E Œ�E �
into F Œ�F �. It is clear that X 2 C .E ;F / if and only if it has a continuous extension
XE W E Œ�E � ! F Œ�F �. In particular, if X 2 C .E ;F /, then X 2 C .E ;D�/. The
continuous extension of X from E into D� clearly coincides with XE . Obviously, if
X;Y 2 C .E ;D�/, then .X C Y/E D XE C YE .

Let now X;Y 2 L.D ;D�/ and assume there exists an interspace E such that
Y 2 L.D ;E / and X 2 C .E ;D�/; it would then be natural to define

X � Y� D XE .Y�/; � 2 D : (3)

However, this product is not well defined, because it may depend on the choice of
the interspace E . There are in fact examples, due to Kürsten [9, 10], showing that
this situation may really occur.

Definition 2.1. A family F of interspaces in the rigged Hilbert space .D Œt�;H ;

D�Œt��/ is called a multiplication framework if

1. D 2 F;
2. 8E 2 F, its conjugate dual E � also belongs to F;
3. 8E ;F 2 F, E \ F 2 F.

Definition 2.2. Let F be a multiplication framework in the rigged Hilbert space
.D Œt�;H ;D�Œt��/. The product X � Y of two elements of L.D ;D�/ is defined, with
respect to F, if there exist three interspaces E ;F ;G 2 F such that X 2 C .F ;G /
and Y 2 C .E ;F /. In this case, the multiplication X � Y is defined by

X � Y D .XFYE / � D

or, equivalently, by

X � Y� D XFY�; � 2 D :

Actually, the product so defined does not depend on the particular choice of the
interspaces E ;F ;G 2 F but it may depend on the choice of F.

As shown in [4, Theorem 10.2.30], we have

Theorem 2.3. Let F be a multiplication framework in the rigged Hilbert space
.D Œt�;H ;D�Œt��/. Then L.D ;D�/, with the multiplication defined above, is a
(non-associative) partial *-algebra.
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3 Resolvent and spectrum

In this section we introduce and discuss a notion of spectrum for operators in
L.D ;D�/. Even though it would be natural to define the inverse of an injective and
surjective X 2 L.D ;D�/ as the operator X�1 W D� ! D such that XX�1 D ID�

and X�1X D ID , this approach, as shown in the next proposition, turns out to be too
restrictive.

Proposition 3.1. Let D Œt� ,! H ,! D�Œt�� be a rigged Hilbert space and X 2
L.D ;D�/ a linear bijection. Then there exists a triplet of Hilbert spaces HX ,!
H ,! H �

X such that D � HX and D� � H �
X .

Since the existence of global inverses of operators of L.D ;D�/ is a so strong
condition, one may try to exploit the intermediate structure between D and D� for
a more appropriate definition of the inversion procedure. The fact that once fixed a
multiplication framework F, L.D ;D�/ becomes a partial *-algebra [Theorem 2.3]
suggests an algebraic definition: Y 2 L.D ;D�/ is the inverse of X 2 L.D ;D�/ if

X � Y and Y � X are well defined and X � Y� D Y � X� D � , 8� 2 D : (4)

This equality, however, does not define Y uniquely, because of possible lack of
associativity.

Actually, as we are going to see, this lack of uniqueness will play a fundamental
rule on our definition of spectrum, [1].

Let X 2 L.D ;D�/ and F0 a family of interspaces. Assume that there exist
E ;F 2 F0 such that X 2 C .E ;F /. If the extension XE is bijective from E into
F , then X�1

E exists. If X�1
E is continuous from F onto E , then its restriction to D

is automatically continuous from D Œt� into D�Œt��; i.e. X�1
E �D2 L.D ;D�/ and,

moreover, X�1
E �D2 C .F ;E /. If this is the case, and if F0 is a multiplication

framework, then (4) holds. So that X�1
E �D is the algebraic inverse of X. The

converse may fail to be true. For this reason there is no need, in what follows, to
consider F0 as a multiplication framework.

Definition 3.2. Let X 2 L.D ;D�/ and � 2 C. We say that � is a generalized
eigenvalue of X if there exists an interspace E such that X has a continuous extension
XE from E ŒtE � into D�Œt�� and XE � �IE is not injective. Any nonzero vector
� 2 N.XE � �IE / 	 E is called a generalized eigenvector. If E D D , we say
that � is an eigenvalue of X and elements of N.XD � �ID/ are called eigenvectors.

Definition 3.3. Let X 2 L.D ;D�/ and F0 be a family of interspaces. The F0-
resolvent set of X, %F0 .X/, consists of the set of complex numbers � satisfying the
following conditions: there exist E ;F 2 F0, with E � F , such that

1. X 2 C .E ;F / and .XE � �IE /E D F ;
2. .XE � �IE /�1 exists and it is continuous from F Œ�F � onto E Œ�E �.
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For consistency of notations we put %E ;F .X/ D ; if X 62 C .E ;F /. With this
convention, one has

%F0 .X/ D
[

E ;F2F0
%E ;F .X/: (5)

The set �F0 .X/ WD C n %F0 .X/ will be called the F0-spectrum of X.

Remark 3.4. The assumption of continuity in condition (1) can be omitted if we
suppose that E ;F are Banach spaces; in this case, in fact, the inverse mapping
theorem guarantees the continuity of .XE � �IE /�1.

In particular, as it is shown in [1], if we suppose that F0 is a family of interspaces
whose elements are Hilbert spaces (in this case we will prefer the notation B.E ;F /

to L.E ;F / ), we get the following properties:

Theorem 3.5. Let E ;F 2 F0 and A 2 B.E ;F /. Then

1. the set G.B.E ;F // of all invertible elements of B.E ;F / is open;
2. the map A 2 G.B.E ;F // ! A�1 2 B.F ;E / is continuous;
3. %E ;F .A/ is open;
4. the function � 2 %E ;F .A/ ! .A � �IE /�1 2 B.F ;E / is analytic on every

connected component of %E ;F .A/.

Proposition 3.6. Let X 2 L.D ;D�/, E 	 F and �0 2 %E ;F .X/. Then there exists
ı > 0 such that, for every � 2 C with j� � �0j < ı, � 2 %E ;F .X/ and

RE ;F
� .X/ D

C1X
nD0
.� � �0/nRE ;F

�0
.X/.nC1/;

where the series converges in the operator norm of B.F ;E /.

By the definition itself of resolvent for an operator X 2 L.D ;D�/, it may
happen that a complex number belongs to more than one local resolvent, i.e.,
�0 2 %E ;F .XE /\ %E 0;F 0.XE 0/ for some E ;E 0;F ;F 0 2 F0. In this case we denote
.X � �0I/�1 the collection of all resolvent operators corresponding to �0 and by
� 2 %F0 .X/ ! .X � –I/�1 the corresponding multivalued resolvent function, where
its restriction to any E 2 F0 can be seen as a single valued branch.

Definition 3.7. Let E ;E 0;F ;F 0 2 F0 and B 2 B.E ;F /, C 2 B.E 0;F 0/. We
say that B and C are equivalent, and write B � C, if B �DD C �D .

Some favorable situations are given by the two following propositions:

Proposition 3.8. Let �0 2 %E ;F .XE / \ %E 0;F 0.XE 0/ for some E ;E 0;F ;F 0 2 F0.
Let us assume that E 	 E 0. The corresponding resolvent functions are equivalent
on some open neighborhood of �0 and they are direct analytic continuations of
each other.
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Proposition 3.9. Let �0 2 %E ;F .XE / \ %E 0;F 0.XE 0/ for some E ;E 0;F ;F 0 2 F0.
If there exist G and G 0 in F0 such that G � E \ E 0 and �0 2 %G ;G 0.X/, then the
functions � ! .XE � �IE /�1 and � ! .XE 0 � �IE 0/�1 are analytic continuations
of each other in some open connected set containing �0.

3.1 Examples

Let A be a self-adjoint operator in Hilbert space H . The space D D D1.A/,
endowed with its natural topology tA, defined by the seminorms pn.�/ D kAn�k,
n 2 N, generates in canonical way an RHS, with D a Fréchet space. For every
n 2 N we denote by Hn the Hilbert space obtained by endowing D.An/ with its
graph norm k � kn WD k.I C A2n/1=2 � k and by H�n the space obtained by completing
H with respect to the norm k � k�n WD k.I C A2n/�1=2 � k. Put H0 WD H . Then, the
family of spaces fHnI n 2 Zg is totally ordered; namely,

� � �HnC1 	 Hn 	 � � � 	 H D H0 	 H�n 	 H�n�1 � � �

Let us put S D A�D and take F0 D fHnI n 2 Zg. The operator A (or its extension
by duality denoted by the same symbol) maps Hn in Hn�1, 8n 2 Z continuously;
hence, S 2 C.Hn;Hn�1/, for every n 2 Z. Let us denote by %H .A/ the usual
resolvent of A. For shortness, we will put %n;m.S/ WD %Hn;Hm.S/.

Proposition 3.10. Let A be a self-adjoint operator, D and F0 as above. Then
%F0 .S/ D %H .A/.

Example 1. Let S be a closed symmetric operator with equal and finite defect
indices. Again we put

D1.S/ D
\
n�0

d.Sn/

and, also in this case, D1.S/ is dense in H [13, Prop. 1.6.1]. If S
0

is a self-adjoint
extension of S, we clearly have

D.Sn/ 	 D.S
0 n
/; 8n � 1

and then

D1.S/ 	 D1.S0

/:

Let us assume that S has a family fS˛g˛2I of self-adjoint extensions. We put H˛;n D
D.Sn

˛/ endowed with the graph norm as before and consider

F0 D fH˛;nI˛ 2 I; n 2 Ng
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Then S 2 C .H˛;n;Hˇ;m/ if and only if ˛ D ˇ and m � n � 1. By the previous
result, it follows that

%H˛;n;H˛;n�1 .S/ D %H .S˛/:

Hence %F0 .S/ D [˛2I %H .S˛/.

Example 2. Let us consider the operator H0 D � d2

dx2
. A case of interest arises if we

impose a boundary condition by taking, for instance, D WD Sy WD ff 2 S I f .y/ D
0g, y 2 R, with the topology induced by S . This domain is used when perturbing
the free Hamiltonian with a ı-interaction centered at y [2]. The domain of the closure
H1 of H0 is W2;2

y .R/ D ff 2 W2;2.R/I f .y/ D 0g. As shown in [2, Th. 3.1.1], the
operator H1 is no longer self-adjoint; it has, in fact, defect indices (1,1) and, for each
˛ 2 R, it possesses a self-adjoint extension H˛ . The domain of H˛ is

D.H˛/ D ˚
g 2 W1;2.R/ \ W2;2.R n fyg/ W g0.yC/ � g0.y�/ D ˛g.y/

�
:

As for the spectrum, we have

�H .H˛/ D
(
R

C [ f0g if ˛ � 0

R
C [ f�˛2

4
; 0g if ˛ < 0;

since for ˛ < 0, �˛2

4
is an eigenvalue of H˛ .

Then, proceeding as in Example 1, we get that

%F0 .H/ D
[
˛ 2R

%H .H˛/ D C n fRC [ f0gg

where F0 D fH˛;nI˛ 2 I; n 2 Ng (with H˛;n D D.Hn
˛/ endowed with the graph

norm, as before). Hence, also in this case, we get

�F0 .H/ D R
C [ f0g:

Example 3. As it is well known, the Hermite functions defined by �0.x/ D
��1=4e�x2=2 and

�n.x/ D .2nnŠ/�1=2.�1/n��1=4ex2=2

�
d

dx

�n

e�x2

constitute an orthonormal basis of L2.R/. If f 2 S , then f has the expansion

f D
1X

nD0
cn�n; with sup

n
jcnjnm < 1; 8m 2 N (6)
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and the series converges in the topology of S . The space of sequences fcng
satisfying, for a given m 2 N,

sup
n

jcnjnm < 1;

will be denoted by sm. We will indicate with s the so-called space of rapidly
decreasing sequences; i.e., s D T

m2N sm.
An element F 2 S � can be represented as

F D
1X

nD0
bn�n; with jbnj � M.1C n/s; for some M > 0; s 2 N; (7)

the series being weakly convergent.
Let now fang be a sequence of complex numbers such that

8fcng 2 s; 9 m 2 N such that sup
n

janjjcnj
.1C n/m

< 1: (8)

Then

f D
1X

nD0
cn�n 7! Af WD

1X
nD0

ancn�n

defines a linear map from S into S �. Since S is a reflexive Fréchet space, it is
sufficient to check that A is continuous from S Œ�.S ;S �/� into S �Œ�.S �;S /�.
Continuity follows immediately from the fact that the map

A� W f D
1X

nD0
dn�n 7! A�f WD

1X
nD0

andn�n; fdng 2 s;

is the adjoint of A. Hence A 2 L.S ;S �/. A natural choice of F0 consists in taking
the spaces Sm whose elements are all F 2 S� for which the expansion (7) has
coefficients in sm and their dual S �

m . It is easy to check that every an is an eigenvalue

of A. Thus, if � 62 fan; n 2 Ng, the sequence
n

1
an��

o
is bounded. For these values

of �, the operator .A � �I/�1 maps Sm into Sm (and S �
m into S �

m ) continuously.
Hence �F0 .A/ D fan; n 2 Ng.

Acknowledgements The author wishes to thank both the organizers of ICAAM 2013 and the PhD
School of the Department of Mathematics and Computer Science of Palermo for having given him
the opportunity of participating and discussing the results of this paper.



Some spectral properties for operators acting on Rigged Hilbert spaces 397

References

1. Bellomonte,G., Di Bella,S., Trapani,C. : Operators in rigged Hilbert spaces: some spectral
properties, J. Math. Anal. Appl., 411, 931–946 (2014).

2. Albeverio,S., Gesztesy,F., Høegh-Krohn,R., Holden,H.: Solvable Models in Quantum Mechan-
ics. Springer Verlag, New York, (1988).

3. Antoine,J-P., Bellomonte,G., Trapani,C.: Fully representable and *-semisimple topological
partial *-algebras, Studia Mathematica, 208 167–194 (2012)

4. Antoine,J-P., Inoue, A., Trapani,C.: Partial *-algebras and their operator realizations. Kluwer,
Dordrecht, (2002)

5. Antoine,J-P., Trapani,C.: Partial Inner Product Spaces — Theory and Applications, Springer
Lecture Notes in Mathematics, vol. 1986, Berlin, Heidelberg, (2009)

6. Bellomonte,G., Trapani,C.: Rigged Hilbert spaces and contractive families of Hilbert spaces,
Monatshefte f. Math., 164, 271–285 (2011)

7. Bellomonte,G.,Trapani, C.: Quasi *-algebras and generalized inductive limits of C*-algebras
Studia Mathematica, 202,165–190 (2011)

8. Köthe,G.: Topological Vector Spaces II, Springer, Heidelberg (1979)
9. Kürsten,K-D.: The completion of the maximal Op*-algebra on a Fréchet domain, Publ. Res.

Inst. Math. Sci., Kyoto Univ. 22, 151–175 (1986)
10. Kürsten,K-D.,Läuter, M.: An extreme example concerning factorization products on the

Schwartz space S.Rn/, Note Mat. 25,31–38 (2005/06)
11. Lassner,G.: Topological algebras and their applications in Quantum Statistics, Wiss. Z. KMU-

Leipzig, Math.-Naturwiss. R. 30,572–595 (1981)
12. Lassner,G.: Algebras of unbounded operators and quantum dynamics, A 124, 471–480 (1984)
13. Schmüdgen,K.: Unbounded operator algebras and representation theory, Birkhäuser Verlag,

Basel (1990)
14. Trapani,C., Tschinke,F.: Partial multiplication of operators in rigged Hilbert spaces, Integral

Equations Operator Theory 51, 583–600 (2005)


	Preface
	Acknowledgements
	Contents
	List of Contributors
	Polaroid operators and Weyl type theorems
	1 Introduction
	2  Definitions and preliminary results 
	3 Examples of polaroid operators
	4 Weyl type theorems
	References

	On non self-adjoint spectral problems occurringin superconductivity
	1 The Ginzburg-Landau model for superconductivity
	1.1 The Ginzburg-Landau functional
	1.2 Minimizers and Ginzburg-Landau equations
	1.3 Basic properties for solutions of the Ginzburg-Landauequations
	1.4 The Giorgi-Phillips Theorem for minimizers

	2 Time-Dependent Ginzburg Landau I: models
	2.1 The model in superconductivity
	2.2 From Ginzburg-Landau to TDGL
	2.2.1 Stationary normal solutions: first analysis

	2.3 Special situation: ϕ affine
	2.4 The results by Almog-Helffer-Pan AHP1
	2.5 A simplified model : no magnetic field
	2.6 Pseudo-spectra and semi-groups
	2.7 The complex Airy operator in R+
	2.8 Higher dimension problems relative to Airy 

	3 Time-Dependent Ginzburg-Landau equation II: general case
	3.1 Boundary conditions
	3.2 Stationary normal solutions
	3.3 The question of stability
	3.4 A non self-adjoint operator
	3.5 Large domains  ΩR
	3.6 The Giorgi-Phillips type theorem for stationary solutions

	References

	Fixed Point Theory for 1-Set Contractions: a Survey
	1 Introduction
	2 Nonexpansive mappings
	2.1 Generalities
	2.2 Structure of domain
	2.3 Geometry of space
	2.4 Recent results
	2.5 Demi-closedness and closedness of the range
	2.6 Back to approximation methods
	2.7 Nonlinear alternatives
	2.8 Boundary conditions
	2.8.1 The Leray-Schauder and the inward conditions
	2.8.2 The interior condition
	2.8.3 The Furi-Pera condition


	3 1-set contractions
	3.1 Measure of noncompactness and related mappings
	3.2 First results with boundary conditions
	3.3 Historical review
	3.4 Recent development

	4 The weak topology
	4.1 Introduction
	4.2 The weak MNC
	4.3 Fixed point theorems

	5 Sum of operators
	5.1 Introduction
	5.2 Recent contributions

	6 Applications
	7 Conclusion
	References

	Spectral results on quantum waveguides
	1 Introduction
	2 The model
	2.1 The Hamiltonian
	2.2 Some known facts
	2.3 Preliminary: Cylindrical coordinates

	3 Results on discrete spectrum
	3.1 One Neumann Window
	3.2 Two Neumann Windows
	3.3 Effect of Aharonov-Bohm filed
	3.3.1 The model


	References

	Multi-field Modeling of Nonsmooth Problems of Continuum Mechanics, Differential Mixed Variational Inequalities and Their Stability
	1 Introduction
	2 Multiple field modelling of a nonsmooth heat conduction problem
	3 Multiple field modelling of frictionless unilateral contact problems in nonlinear elasticity
	4 Multiple field modelling in quasistatic elastoplasticity and differential mixed variational inequalities
	4.1 Primal formulation
	4.2 A mixed formulation

	5 Differential mixed variational inequalities and their stability
	5.1 The general setting of differential mixed variational inequalities
	5.2 Preliminaries; Mosco convergence of sets; epiconvergence of functions
	5.3 The stability result

	6 Some concluding remarks: An outlook
	References

	Iθ-statistical convergence of order α in topological groups
	1 Introduction
	2 Definitions and Notations
	3 Inclusion Theorems
	References

	Periodic Solutions of Cohen-Grossberg type model of Neural Networks with Delay and Impulses
	1 Introduction
	2 Notations and Definitions
	3 The Main Result

	Some Fixed Point Theorems for Orbitally-(p,q)-Quasi-contraction Mappings
	1 Introduction
	2 Preliminaries
	3 Main results
	References

	Third order rational ordinary differential equations with integer indices of Fuchs
	1 Introduction
	2 Corresponding simplified equations
	3 Corresponding reduced equations
	3.1 Leading order q=-1
	3.1.1 Determination of the values of b1, c0, d2 and e4
	3.1.2 Study of obtained equations

	3.2 Leading order q=-2
	3.3 Leading order q=-3
	3.4 Leading order q: negative integer ( q≤-4) 

	4 Corresponding full equations
	4.1 Leading order q=-1
	4.2 Leading order q=-2
	4.3 Leading order q=-3

	5 Conclusion and prospects
	References

	Existence of Weighted Pseudo Almost Periodic Solutions for some Partial Differential Equations with Delay
	1 Introduction
	2 Weighted Pseudo Almost Periodic Functions
	3 Partial Functional Differential Equations
	4 Weighted Pseudo Almost Periodic Solution
	5 Nonlinear Partial Functional Differential Equation
	6 Example
	References

	Using B-splines functions and EM algorithm for Hidden Markov Model-based Unsupervised Image Segmentation
	1 Introduction
	2 Nonparametric density estimation methods and B-splines functions.
	3 Hidden Markov model
	4 Parameters estimation using the EMMB algorithm
	5 Performance comparison
	6 Conclusions
	References

	Iris Localization Using Mixture of Gamma Distributions in the Segmentation Process
	1 Introduction
	2 Mixture of Gamma Distributions and EM Algorithm
	2.1 Mixture of Gamma distributions
	2.2 Extended EM algorithm

	3 Experimentations and Results
	3.1 Data
	3.2 Segmentation method evaluation

	4 Conclusion
	References

	Gamma stopping and drifted stable processes
	1 Introduction
	2 Preliminary
	2.1 Natural exponential family
	2.2 Lévy process
	2.3 Stable process

	3 Main Results
	4 Conclusion
	References

	On the Born-Oppenheimer asymptotic expansions
	1 Introduction
	2 Assumptions and preliminaries
	3 Feshbach reduction
	4 WKB-Constructions
	References

	Finite Kibble's Bivariate Gamma Mixtures for Color Image Segmentation
	1 Introduction
	2 Kibble's Bivariate Gamma
	3 Parameter Estimation
	3.1 Maximum Likelihood Estimation (ML)
	3.2 Method of Moments (MOM)
	3.3 Simulations

	4 Kibble's Bivariate Gamma Segmentation Algorithm 
	4.1 Kibble's bivariate Gamma mixture model
	4.2 Estimation of the parameters mixture by EM-Algorithm
	4.3 Application of the KBG mixture in segmentation

	5 Experimentation
	6 Conclusion
	Appendix
	References

	Stabilization of a class of time-varying systems in Hilbert spaces
	1 Introduction
	2 Stabilization of a class of time-varying systems in Hilbert spaces
	References

	Weighted Sobolev Spaces for the Laplace Equation in an Exterior Domain
	1 Introduction
	2 Preliminary results
	3 The Dirichlet problem for the Laplace operator
	References

	About the quotient of two bounded operators
	1 Introduction and preliminaries
	2 Mains results
	2.1 Bounded, compact quotient operator
	2.2 About the inverse of quotient operator
	2.3 Powers of quotient operator
	2.4 Limit of a sequence of quotient operators 

	References

	Exact Controllability For Korteweg-De Vries Equation and its Cost in the Zero-Dispersion Limit
	1 Introduction and Main Results
	2 Exact Controllability
	2.1 Well-posedness of Cauchy Problem
	2.2 Observability of the Homogeneous Problem
	2.2.1 Ingham's Inequality
	2.2.2 Application of HUM


	3 Cost of Null Controllability
	3.1 Main Results
	3.2 Behavior of Cost of Controllability

	References

	Existence of solutions of a class of second order sweeping process in Banach spaces
	1 Introduction
	2 Notation and Preliminaries
	3 Main Results
	References

	Concave and convex nonlinearities in nonstandardeigenvalue problems
	1 Introduction
	2 Notations and auxiliary results
	3 Global Minimum
	References

	On the time asymptotic behavior of a transport operator with bounce-back boundary condition
	1 Introduction
	2 Preliminary and Compactness Results
	3 Auxiliary Lemmas
	4 Estimation of the Resolvent 
	5 Asymptotic Behavior of the solution
	References

	Construction of MATLAB adaptative step ODE solvers
	1 Introduction
	2 The ode solver ode45
	2.1 Error estimation in the ode45
	2.2 Step size control in the ode45

	3 The ode solver ode15s
	3.1 Error estimation in the ode15s
	3.2 Step size control in the ode15s

	4 Some numerical results
	4.1 First order ODEs
	4.2 Second order ODEs

	5 Conclusions
	References

	An overview on bounded elements in some partial algebraic structures
	1 Introduction
	2 Bounded elements in *-semisimple partial *-algebras
	2.1 Order bounded elements
	2.1.1 Order structure of A[τ]
	2.1.2 Order bounded elements


	3 Bounded elements for a C*-inductive locally convex space 
	3.1 Bounded elements and the C*-inductive structure of A
	3.2 Bounded elements and the order structure of A

	References

	Some spectral properties for operators acting on Rigged Hilbert spaces
	1 Introduction
	2 Operators in RHS
	3 Resolvent and spectrum
	3.1 Examples

	References


