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Abstract. Spectral clustering has exhibited a superior performance in analyzing 
the cluster structure of network. However, the exponentially computational 
complexity limits its application in analyzing large-scale social networks. To 
tackle this problem, many low-rank matrix approximating algorithms are pro-
posed, of which the NystrÖm method is an approach with proved lower approx-
imate errors. Currently, most existing sampling techniques for NystrÖm method 
are designed on affinity matrices, which are time-consuming to compute by 
some similarity metrics. Moreover, the social networks are often built on link 
relations, in which there is no information to construct an affinity matrix for the 
approximate computing of NystrÖm method for spectral clustering except for 
the degrees of nodes. This paper proposes a spectral clustering algorithm for 
large-scale social networks via a pre-coarsening sampling based NystrÖm me-
thod. By virtue of a novel triangle-based coarsening policy, the proposed algo-
rithm first shrinks the social network into a smaller weighted network, and then 
does an efficient sampling for NystrÖm method to approximate the eigen-
decomposition of matrix of spectral clustering. Experimental results on real 
large-scale social networks demonstrate that the proposed algorithm outper-
forms the state-of-the-art spectral clustering algorithms, which are realized by 
the existing sampling techniques based NystrÖm methods.   
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1 Introduction 

Spectral clustering is one of the most popular methods for analyzing the cluster struc-
ture of networks. In comparison with other classical clustering algorithms such as k-
means or linkage algorithm, spectral clustering often yields superior performances. 
However, spectral clustering is unable to extend its application in large-scale net-
works [1]. The key reason is that, the exponential increment of time consumption and 
space occupation restricts the scalability of spectral clustering, especially facing up to 
the daily exploding social networks. To break the limitation, a number of low-rank 
matrix approximating algorithms for spectral clustering have been proposed. 

The NystrÖm method is a widely used and efficient low-rank matrix approximat-
ing technique to speed up spectral clustering, which is able to reduce the computing 
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and memory burdens enormously [2]. Lots of sampling techniques such as uniform  
sampling [3], weighted sampling [4], random walking sampling [5], k-means sam-
pling [6] etc. have been designed to lower the error of approximation for spectral 
clustering as much as possible. In common, these techniques select the interpolation 
points for NystrÖm method with some probabilities, which are computed in view of 
the degrees of nodes or the weights of edges. Generally, the weights come from the 
similarity between pairwise nodes in the networks, and the similarity computation by 
a metric is time-consuming. Even though based on node degrees, there is no valuable 
information for the judicious selection of columns and rows for a low-rank approx-
imate matrix. In addition, the social networks are often built on the link structure 
simply, as well lack of enough useful information for the construction of affinity ma-
trix (or similarity matrix). Hence, there are many obstacles for the NystrÖm method 
to generate a low-rank matrix, which is used for the approximation of spectral cluster-
ing efficiently to mine the cluster property of social networks with large scale nodes. 

Apart from link relations, if there is no other resource such as the attribute or fea-
ture of nodes in the social networks to construct an affinity matrix, can we extract 
available information to motivate the approximate computing of NystrÖm method for 
spectral clustering? As is known to us, the triangle has a strong cluster property due to 
its any two vertices’ connection [7]. If we traverse the triangles in social networks and 
shrink the encountered triangle into a single node (multi-node), the accumulated edge 
weights appear, which reflect the local aggregating property and can be extracted to 
cut down the blindness of further study; moreover, along with the networks become 
smaller and smaller, the basic cluster structure of original networks has still been kept 
up. Therefore, In light of what is discussed, we propose a spectral clustering algo-
rithm for large-scale social networks via a pre-coarsening sampling based NystrÖm 
method, which embeds a new triangle-based coarsening process to make the low-rank 
matrix approximation of spectral clustering much more efficient and targeted. 

2 Related Work 

Due to the outstanding capability of identifying the objective clusters in the sampling 
space with arbitrary shape efficiently and the convergence to the global optimal re-
sults [8], spectral clustering has been widely applied to many research fields such as 
machine learning, computer vision, and bioinformatics etc. In general, spectral clus-
tering makes use of the eigenvectors of an affinity matrix which is derived from the 
data points, to analyze the aggregating characteristic of the original data implicitly 
and group the similar points into one cluster [9]. Both the procedures of the construc-
tion of affinity matrix and the eigen-decomposition of matrix to obtain eigenvectors 
are complex, which induces spectral clustering unsuitable for the problems with large 
data sets. Thus, a number of heuristic methods and approximation algorithms are 
designed to alleviate the computational burdens of spectral clustering.  

Yan et al. [10] utilized a distortion-minimizing local transformation of data to 
speed up the approximating process of spectral clustering. However, the clustering 
results are prone to the local optimum and sensitive to the original selection because 
of k-means, or not steady because of RP tree. Mall et al. [11] employed a primal-dual 
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framework to infer the cluster affiliation for out-of-sample extensions, accelerating 
spectral clustering in the process of searching for eigenspace. Even if the similarity 
metric is simplified to the angular cosine between pairwise data points, too much time 
is cost to compute the affinity matrix.  

Inspired by the original application in numerical approximate solution of integral 
equations [12], the NystrÖm method is introduced to generate a low-rank matrix ap-
proximation for the eigen-decomposition of spectral clustering, making spectral clus-
tering capable of studying large-scale networks. Fowlkes et al. [13] simplified the 
spectral clustering problem by a small random sampling subset of data and then ex-
tend the computing results to the whole data set. However, the adopted sampling 
technique has not improved the computational accuracy. Zhang et al. [6] employed a 
k-means based sampling scheme to reduce the approximation error of NystrÖm me-
thod, but the constraint conditions that the kernel functions comply to make this 
scheme time-consuming. Belabbas et al. [14] proposed that the probability of choos-
ing interpolation points for NystrÖm method was in proportion to the determinant of 
similarity matrix, and the Schur complement was used to analyze the NystrÖm recon-
struction error. While the bigger the determinant is, the smaller the error is.  

Unfortunately, the existing spectral clustering algorithms based on the NystrÖm 
method cannot be applied to large-scale social networks for the following two main 
reasons. Firstly, no matter what sampling scheme is adopted for the NystrÖm method, 
most low-rank matrix approximation algorithms for spectral clustering are based on 
an affinity matrix, which is too time-consuming to construct due to the high com-
plexity of similarity computing. Secondly, the social networks are often built on link 
relations, while the node similarity information is insufficient and difficult to obtain. 
In order to solve the above problems, this paper proposes a spectral clustering algo-
rithm for large-scale social networks via a pre-coarsening sampling based NystrÖm 
method, which avoids the time-consuming pairwise similarity computation and im-
proves the performance of spectral clustering. 

3 Our Approach 

3.1 Background 

The NystrÖm method is originally used to find the numerical approximations to ei-
genfunction problems, which are expressed by integral equations of the form [15] as:  න ,ݔሺܭ ݕሻ݀ݕሺ݌ሻݕሻ߶ሺݕ ൌ  ሻ                                            ሺ1ሻݔሺ߶ߣ

where ݌ሺכሻ denotes the probability density function, ܭሺכ,כሻ denotes a kernel func-
tion, ߣ and ߶ሺכሻ denote the eigenvalue and eigenvector of the kernel ܭ based on 
the integral equation respectively. To approximate the integral on the left of Equation  
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(1), sample ݍ  interpolation points ሼݔଵ, ,ଶݔ … , -ሻ, the approxכሺ݌ ௤ሽ drawn fromݔ
imate result by the empirical average is as follows: 1ݍ ෍ ,ݔ൫ܭ ௝൯ݔ௝൯߶෨൫ݔ ؄ ௤ߣ

௝ୀଵ ߶෨ሺݔሻ                                          ሺ2ሻ 

where ߶෨ሺݔሻ approximates ߶ሺݔሻ in Equation (1). In addition, choose ݔ in Equation (2) 
from ሼݔଵ, ,ଶݔ … , ഥܭ ௤ሽ as well to generate an eigen-decompositionݔ ഥܷ ൌ Λഥݍ ഥܷ, ܭഥ de-
notes the positive semi-definite matrix with elements ሼܭ൫ݔ௜, ,݅|௝൯ݔ ݆ ൌ 1,2, … ,  ሽ, ഥܷݍ
denotes the eigenvector matrix of ܭഥ  and ഥܷ א ܴ௤ൈ௤  has orthonormal columns, Λഥ א ܴ௤ൈ௤ is a diagonal matrix whose non-zero elements are the eigenvalue of ܭഥ. Any 
eigenvector ߶௜ሺݔሻ and eigenvalue ߣ௜ in Equation (1) can be estimated by ഥܷ and  Λഥ.  ߶௜ሺݔሻ ؄ ඥݍ ഥܷ௜௝, ௜ߣ ؄  ሺ3ሻ                                      ݍ/ҧ௜௜ߣ

The eigenvector of any point ݔ can be approximated by the eigenvectors of inter-
polation points in ሼݔଵ, ,ଶݔ … , ሻݔcan be computed by: ߶෨௞ሺ ݔ ௤ሽ, because the k-th eigenvector at an unsampled pointݔ ؄ పഥߣݍ1 ෍ ,ݔ൫ܭ ௝൯                                    ሺ4ሻ௤ݔ௝൯߶෨௞൫ݔ

௝ୀଵ  

As is shown above, different interpolation points to be selected will lead to differ-
ent approximating results.  

How to extend the NystrÖm method to spectral clustering? Consider a ݉ ൈ ݊ ma-
trix ܣ, which is partitioned as follows:  ܣ ൌ ሾܣଵଵ ଶଵܣଵଶܣ  ଶଶሿ                                                      ሺ5ሻܣ

without loss of generality, let ܣଵଵ א ܴ௣ൈ௤ denotes the submatrix which is generated 
by the intersection of ݍ columns and ݌ rows sampled in some manner, ܣଵଶ and ܣଶଵ denotes the submatrix consisting of elements with a sampled column label (ex-
clusive) or sampled row label, respectively, and ܣଶଶ א ܴሺ௠ି௣ሻൈሺ௡ି௤ሻ denotes the 
submatrix consisting of the remaining elements of ܣ.  

Suppose the eigen-decomposition of ܣଵଵ is  ܣଵଵ ൌ ෩ܷΛ෩ ෩ܷ஋, the eigenvector matrix 
of ܣଶଵ can be approximated by ܣଶଵ ෩ܷΛ෩ିଵ, thus the spectral analysis on the submatrix 
can be extended to the original matrix ܣ, and the estimation of ܣ is as follows: ܣҧ ൌ ൣ ෩ܷ; ଶଵܣ ෩ܷΛ෩ିଵ൧Λ෩ൣ ෩ܷ; ଶଵܣ ෩ܷΛ෩ିଵ൧்                                     ൌ ൤ܣଵଵ ଶଵܣଵଶܣ  ଵଶ൨                                                ሺ6ሻܣଵଵିଵܣଶଵܣ

the corresponding approximate eigenvectors are ഥܷ ൌ ൣ ෩ܷ; ଶଵܣ ෩ܷΛ෩ିଵ൧.  
In addition, some details on the normalization of eigenvectors, the transformation 

of matrix based on whether positive semi-definite or not etc. are not discussed here, 
which can be referred to [16] for further studies. 
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3.2 A Pre-Coarsening Sampling Based NystrÖm Method 

From the viewpoint of topology, the social networks are built on link relations ubi-
quitously, which is the most direct resource for studying social networks. Without any 
help of other information like attribute or feature of nodes to serve for similarity com-
puting in social networks, is it possible that the task of low-rank matrix approximation 
based on the NystrÖm method for spectral clustering can proceed? At least impossible 
for weighted sampling, random walking sampling or k-means sampling based 
NystrÖm methods, because there is no appropriate affinity matrix to match with them. 
Even though an endeavor is made to search for such a matrix, it is time-consuming to 
compute the matrix by some similarity metrics like Cosine [17]. 

How to mine some available information from the link structure of social networks 
for the approximate computing of NystrÖm method for spectral clustering is a chal-
lenge to our work. Let’s start from an example in Figure 1. Figure 1(a) shows a link 
relation based network which contains many triangles. If we execute operations as 
follows: traverse the triangles in the network, and when encountering a triangle as 
labeled by one circle in Figure 1(a), shrink it into one single node (multi-node), the 
network will be transformed into a smaller weighted network gradually as is shown in 
Figure 1(b). During the transforming process, the edges adjacent to the shrunk vertic-
es in a triangle are accumulated, thus the unit edge-weight values of original network 
become numerical values after transformation, which can be utilized as the foundation 
of further sampling of NystrÖm method. In addition, it is obvious that the generated 
network keeps the basic cluster topology structure of the original network.  

  
(a) Before coarsening                    (b) After coarsening 

Fig. 1. The transforming process of the link relation based network by shrinking triangles 

As is familiar to us, the three vertices of a triangle are bound to belong to the same 
cluster, owing to the strong connection between any two of its inner vertices. There-
fore, in virtue of the strong cluster property of triangles, the generated smaller 
weighted network by shrinking the traversed triangles into multi-nodes will not break 
down the original cluster structure. On the contrary, the weights of edges in the net-
work appear after transformation, which reflect the joint strength of any two nodes. In 
addition, some connections between nodes in the transformed network are the indirect 
relations constructed over the shrunk vertices, which is beneficial for mining deeper 
associations and is an advantage that other methods lack of. So in summary, lots of 



 Spectral Clustering for Large-Scale Social Networks via a Pre-Coarsening Sampling 111 

information about edge weight, cluster and connection etc. has been mined from the 
transformation of link relation based network, which is able to be utilized for the fur-
ther sampling of NystrÖm method explicitly.  

Extending the principle to the social networks, where triangles are the basic struc-
tural elements, we propose a pre-coarsening sampling based NystrÖm method. We 
first give the formulized definition of the novel triangle-based coarsening problem: 

Definition 1. (Triangle-based Coarsening Problem) 
Input: undirected, link relation based social network ܰ ൌ ሺܸ, ,ܧ ܹሻ, ݒ א ܸ denote 
nodes of ܰ, ݁ א ߱ denote triangles, edge weight ߂ ,denote edges ܧ א ܹ are unit. 
Output: undirected, coarsened weighted network ܰᇱ ൌ ሺܸᇱ, ,ᇱܧ ܹᇱሻ, what ݒᇱ א ܸᇱand ݁ᇱ א ᇱof ܰᇱdenote is similar to ܰ, ߱ᇱܧ א ܹᇱ are numerical. 

Process: traverse ߂ of ܰ in an order (ascending or descending) of node degrees, {ݒ 
has not been shrunk or to be a multi-node just only one time}; when encounter a ߂, 
shrink it into a single multi-node ݒ௠௨௟௧௜ି௡௢ௗ௘ᇱ ; accumulate the edges adjacent to shrunk 
nodes ݒ௦௛௥௨௡௞ and reweight the corresponding remained edges ߱௘ି௥௘௠௔௜௡௜௡௚ᇱ .  

The certain order of node degrees in Definition 1 is a necessary condition, which is 
used to avoid the indeterminacy of generated network by coarsening the random tra-
versed triangles. And if traversing and shrinking triangles in the network without any 
constraint, the coarsening will make the original cluster structure disappear some-
times, thus to prevent this phenomenon from happening, another condition as ‘to be a 
multi-node just only one time’ must be added. Figure 2 shows an example of the gen-
eration of a smaller weighted network by triangle-based coarsening.  

 
(a) A network of word association [18]       (b) Generated weighted network by coarsening 

Fig. 2. The generation of a smaller weighted network 

We put the triangle-based coarsening as the preprocessing for sampling of NystrÖm 
Method, so the proposed pre-coarsening sampling based NystrÖm method is: 

Definition 2. (Pre-Coarsening Sampling based NystrÖm Method) 
Input:  weight matrix ܣሚ constructed on the weighted network which is generated by 
the triangle-based coarsening. 
Output:  low-rank approximating matrix ܣҧ. 
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Process: in view of ܣሚ and the probability distribution ݌௜ ൌ หܣሺ௜ሻหଶ/ԡܣԡிଶ , we sample ݌ rows and ݍ columns to generate a low-rank approximating matrix ܣҧ א ܴ௣ൈ௤. 

3.3 Spectral Clustering for Large-Scale Social Networks 

Subsequently, the key problem is how to estimate the cluster affiliation of out-of-
sample nodes. Depending on the obtained low-rank approximating matrix ܣҧ, the 
eigen-decomposition of ܣҧ is able to extended to the out-of-samples in ܣሚ, making the 
approximation of spectral clustering more efficient for large-scale social networks 
built on link relations. We define the out-of-sample extension problem as follows: 

Definition 3. (Out-of-Sample Extension Problem) 
Input: low-rank approximating matrix ܣҧ. 
Output: approximate eigenvector matrix ෩ܷ. 

Process: compute the eigenvector matrix ഥܷ by ܣҧ ൌ ഥܷ߉ҧ ഥܷఁ, and according to Eq.(4), 
approximate ෩ܷ by ෩ܷ ൌ ൣ ഥܷ; ௢௨௧ି௢௙ି௦௔௠௣௟௘ܣ ഥܷ߉ҧି ଵ൧. 

In contrast to the process of pre-coarsening sampling of NystrÖm method, except 
for the extension of eigenvectors in ഥܷ, it is necessary to use k-means to group all of 
the approximate eigenvectors in ෩ܷ into k clusters, and then unfold the multi-nodes 
and classify the unfolded nodes into the cluster which the corresponding multi-node 
belongs to. By now, we have obtained the ultimate spectral clustering results from 
large-scale social networks. The implementation of integral process of coarsening, 
sampling and clustering of our spectral clustering is depicted in Algorithm 1. 

Algorithm 1. Spectral clustering 
Input: Adjacency matrix of social network ܣ א ܴ௡ൈ௡, n is the number of nodes, m is 

the number of sampled columns, r-rank approximation, m and r<<n. 
Output: k clusters of ܣ. 
1 Begin 
 ;by the triangle-based coarsening ܣ ሚ= weight matrix generated fromܣ   2

3   S =indices of m columns sampled by probability ݌௜ ൌ หܣሺ௜ሻหଶ/ԡܣԡிଶ ;                
ഥܣ   4 ൌ :෩ሺܣ ܵሻ;      

ഥܣ   5 ൌ ഥܷΛഥ ഥܷΤ
;  

6    ௥ܷ ൌ ሺݏݎ݋ݐܸܿ݁݊݁݃݅ܧݐݏ݈݈݁ܽ݉ܵ ഥܷ,    ;ሻݎ
ݏ݋ܷ   7 ൌ ඥ݉/݊ݎܷܥΣݎെ1; // ௢ܷ௦ is the approximating eigenvectors of out-of-sample  

nodes, ߑ௥ is the diagonal eigenvalue matrix 
8   ܻ ൌ ሾ ௥ܷݏݓ݋ܴ݁ݖ݈݅ܽ݉ݎ݋ܰ , ௢ܷ௦ሿ; 
ഥܭ   9 ൌ  ሺܻሻ;    // group the approximate eigenvector matrix into kݏݓ݋ܴݎ݁ݐݏݑ݈ܥ

clusters by k-means  

ܭ 10 ൌ ሚ൯ቁܣ൫݈݀݋ቀܷ݂݊ ݕ݂݅ݏݏ݈ܽܥ by reference to  ܭഥ; 

11 End 
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3.4 Performance Analysis 

By virtue of the triangle-based coarsening, valuable prior information about cluster is 
extracted from the link structure of social networks, which is useful for the further 
sampling of NystrÖm method. What’s more, due to the intrinsic strong cluster proper-
ty of triangle, the basic cluster structure of original network is maintained after coar-
sening preprocessing. Therefore, via the pre-coarsening sampling based NystrÖm 
method, not only the complexity of spectral clustering can be reduced, but also the 
computational accuracy of the low-rank matrix approximation of spectral clustering 
can be promoted greatly. 

Lemma 1 (Running Time). The worst case time complexity of our algorithm is less 
than ߆൫݁ଷ ଶ⁄ ൯ ൅ ሺ݉ଷሻ߆  ൅ ሺ݊݉ଶሻ߆ ൅  ሻ, and the worst case space complexityݐሺ݊݇߆ 
is ߆ሺ݉݊ሻ, where e denotes the number of edges in network ܣ, n denotes the number 
of columns in matrix ܣሚ, ݉ denotes the number of sampled columns from ܣሚ, ݇ 
denotes the number of clusters, ݐ denotes the iteration times of k-means. 

Proof. The process of traversing all of the triangles in the network takes ߆ሺ݁ଷ ଶ⁄ ሻ time 
(refer to compact-forward algorithm), but for the triangle-based coarsening it is unne-
cessary to do the traversing, because the triangles adjacent to the shrunk nodes become 
unavailable, so the time complexity of generating matrix ܣሚ is much less than ߆ሺ݁ଷ ଶ⁄ ሻ; 
from the eigen-decomposition of matrix ܣҧ to the extension to out-of-sample nodes in 
Algorithm 1, the consuming time is ߆ሺ݉ଷሻ ൅  ሺ݊݉ଶሻ; and the execution of k-means߆
on ܻ only needs ߆ሺ݊݇ݐሻ operations (neglect the time of normalizing ܻ). Therefore, 
the time complexity of our algorithm is less than ߆൫݁ଷ ଶ⁄ ൯ ൅ ሺ݉ଷሻ߆  ൅ ሺ݊݉ଶሻ߆ ൅ ߆ሺ݊݇ݐሻ in the worst case. In the process of approximate computing of spectral cluster-
ing based on NystrÖm method, the maximum scale of the matrices which need to be 
stored is ݉ ൈ ݊, so the memory usage of our algorithm is ߆ሺ݉݊ሻ in the worst case. 

4 Experiments 

4.1 Dataset and Experiment Setup 

Our experiments are designed on the dataset of large-scale social networks which are 
collected from Stanford University’s SNAP networks [19]. The details of each social 
network are listed in Table 1. Our spectral clustering algorithm for large-scale social 
networks is realized by a pre-coarsening sampling based NystrÖm method. To test 
our algorithm’s performance, we compare the pre-coarsening sampling with uniform 
sampling [20], weighted sampling [21], k-means sampling [6] and incremental  
sampling [22]. Our pre-coarsening sampling can proceed explicitly based on the link 
relations of social networks, but the weighted sampling, k-means sampling and  
incremental sampling need to search for some available information by other  
approaches to compute the similarity matrices firstly. Therefore, we design two sub-
experiments for different testing tasks. One is to use all the sampling techniques to 
analyze the social networks explicitly, while the other is to add the similarity matrix 
computations for the latter three sampling techniques.   
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Table 1. Large-scale social networks 

Dataset No. of nodes No. of edges No. of clusters No. of triangles 

Youtube 1,134,890 2,987,624 8,385 3,056,386 

Orkut 3,072,441 117,185,08 6,288,363 627,584,181 

LiveJournal 3,997,962 34,681,189 287,512 177,820,130 

Twitter 12,309,718 91,765,139 355,179 519,402,625 

Friendster 65,608,366 1,806,067,135 957,154 4,173,724,142 

 
All social networks in Table 1 contain ground-truth clusters, so we can utilize the 

normalized mutual information (NMI) [23] to evaluate the clustering performance of 
different clustering algorithms, which are based on different sampling techniques of 
NystrÖm methods. In general, the larger NMI is, the better the clustering results are.  

We perform all the experiments on a Linux machine with 4Core 2.6GHz CPU and 
8G main memory. The implementations of all algorithms are in Java. Moreover, we 
repeat to run each algorithm 30 times to obtain an average result of NMI, making the 
analytical results more accurate. 

4.2 Experimental Results and Analysis 

The spectral clustering results corresponding to different social networks are dis-
played in Figure 3, along with the running time of different algorithms in Figure 4.  

From Figure 3(a) we can observe that, our spectral clustering algorithm outper-
forms other algorithms in analyzing the social networks, in which there is no useful 
information except for the link structure. Meanwhile, the algorithm adopting a uni-
form sampling technique has done a little better job than the algorithms which are 
based on the weighted sampling, k-means sampling, and incremental sampling.  

 

  
 

(1) Youtube                            (1) Youtube 

Fig. 3. The comparison of computing accuracy on social networks 
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(2) Orkut                                (2) Orkut 

  

(3) LiveJournal                       (3) LiveJournal 

  

(4) Twitter                               (4) Twitter 

  
(5) Friendster                           (5) Friendster 

  (a) Without any similarity matrix       (b) Add similarity matrix for US, KS and CS 

Fig. 3. (continued) 
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By contrast, we analyze the clustering results in Figure 3(b). There is no doubt that 
the accuracy of clustering results of our algorithm is superior to the others. And with 
the help of similarity matrix, the performances of the algorithms which are based on 
the weighted sampling, k-means sampling, and incremental sampling excel the ones 
of the uniform sampling based algorithm. Besides, when the sampling probabilities of 
different columns of matrix are identical, the temporarily adopted uniform random 
sampling among these columns will degrade the performance of our algorithm, so 
some exceptions appear in LiveJournal, Twitter and Friendster of Figure 3(b).  

 

  
(a) Youtube                            (b) Orkut 

  
(c) LiveJournal                          (d) Twitter 

 
(e) Friendster 

Fig. 4. The comparison of running time on social networks 
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Subsequently, let us compare the running time between different algorithms (note 
that we just do comparison in the case of adding similarity matrices). It is obvious that 
in Figure 4, the algorithm based on the k-means sampling technique spends much more 
time to tackle the clustering problems of large-scale social networks. The key reason 
consists in the inherent iterative computing complexity of k-means as an unsupervised 
method. Because of the relative easier sampling technique, the time consuming of the 
other algorithms is so small to be neglected in contrast to the k-means sampling based 
algorithm. As is shown in Figure 4, although our algorithm experiences a coarsening 
preprocessing before sampling, the running time of our algorithm is less than other 
algorithms except for the uniform sampling based algorithm. This is because that much 
more time needs to be cost to compute the similarity matrix for the algorithms which 
are based on the weighted sampling and incremental sampling.  

5 Conclusion 

This paper proposes a spectral clustering algorithm for large-scale social networks via 
a pre-coarsening sampling based NystrÖm method. By virtue of a new triangle-based 
coarsening policy, this algorithm first extracts a smaller weighted network from the 
link relation based social network, which reveals some useful prior information about 
cluster, and then executes an efficient sampling for the NystrÖm method to generate a 
low-rank matrix approximation for the eigen-decomposition of spectral clustering. 
Due to the cluster property of triangle, the process of coarsening maintains the origi-
nal cluster topology structure. Moreover, the pre-coarsening sampling based NystrÖm 
method makes spectral clustering capable to analyze the social networks explicitly 
without any other available information except for link relations, promoting the com-
puting accuracy of spectral clustering. Experimental results on real social networks 
demonstrate that our algorithm outperforms the state-of-the-art spectral clustering 
algorithms, which are based on other sampling techniques for the NystrÖm method. 
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