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Abstract. In recent years, extensive studies have been conducted on high utility 
itemsets (HUI) mining with wide applications. However, most of them assume 
that data are stored in centralized databases with a single machine performing the 
mining tasks. Consequently, existing algorithms cannot be applied to the big data 
environments, where data are often distributed and too large to be dealt with by a 
single machine. To address this issue, we propose a new framework for mining 
high utility itemsets in big data. A novel algorithm named PHUI-Growth (Paral-
lel mining High Utility Itemsets by pattern-Growth) is proposed for parallel min-
ing HUIs on Hadoop platform, which inherits several nice properties of Hadoop, 
including easy deployment, fault recovery, low communication overheads and 
high scalability. Moreover, it adopts the MapReduce architecture to partition the 
whole mining tasks into smaller independent subtasks and uses Hadoop distri-
buted file system to manage distributed data so that it allows to parallel discover 
HUIs from distributed data across multiple commodity computers in a reliable, 
fault tolerance manner. Experimental results on both synthetic and real datasets 
show that PHUI-Growth has high performance on large-scale datasets and outper-
forms state-of-the-art non-parallel type of HUI mining algorithms. 
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1 Introduction 

The rapid growth of data generated and stored has led us to the new era of Big Data 
[3, 4, 14, 18, 19]. Nowadays, we are surrounded by different types of big data, such as 
enterprise data, sensor data, machine-generated data and social data. Extracting valu-
able information and insightful knowledge from big data has become an urgent need 
in many disciplines. In view of this, big data analytics [3, 4, 14, 18, 19] has emerged 
as a novel topic in recent years. This technology is particularly important to enterpris-
es and business organizations because it can help them to increase revenues, retain 
customers and make more intelligent decisions. Due to its high impact in many areas, 
more and more systems and analytical tools have been developed for big data analyt-
ics, such as Apache Mahout [14], MOA [3], SAMOA [19] and Vowpal Wabbit [20]. 
However, to the best of our knowledge, no existing studies have incorporated the 
concept of utility mining [2, 6, 7, 8, 11, 12, 13] into big data analytics. 
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Utility mining is an important research topic in data mining. The main objective of 
utility mining is to extract valuable and useful information from data by considering 
profit, quantity, cost or other user preferences. High utility itemset (HUI) mining is 
one of the most important tasks in utility mining, which can be used to discover sets 
of items carrying high utilities (e.g., high profits). This technology has been applied to 
many applications such as market analysis, web mining, mobile computing and even 
bioinformatics. Due to its wide range of applications, many studies [2, 6, 7, 8, 11, 12, 
13] have been proposed for mining HUIs in databases. However, most of them as-
sume that data are stored in centralized databases with a single machine performing 
the mining tasks. However, in big data environments, data may be originated from 
different sources and highly distributed. A large volume of data also makes it difficult 
to be moved to a centralized database. Thus, existing algorithms are not suitable for 
the applications of big data. 

Although mining HUIs from big data is very desirable for many applications, it is a 
challenging task due to the following problems posed: First, due to a large amount of 
transactions and varied items in big data, it would face the large search space and the  
combination explosion problem. This leads the mining task to suffer from very expen-
sive computational costs in practical. Second, pruning the search space in HUI mining 
is more difficult than that in frequent pattern mining because the downward closure 
property [1] does not hold for the utility of itemsets. Therefore, many search space 
pruning techniques developed for frequent pattern mining cannot be directly trans-
ferred to the scenario of HUI mining. Third, a large amount of data cannot be effi-
ciently processed by a single machine. A well-designed algorithm incorporated with 
parallel programming architecture is needed. However, implementing a parallel algo-
rithm involves several problematic issues, such as search space decomposition, avoid-
ance of duplicating works, minimization of synchronization and communication 
overheads, fault tolerance and scalability problems.  

In this paper, we address all of the above challenges by proposing a new frame-
work for mining high utility itemsets in big data. To our knowledge, this topic has not 
yet been explored. The contributions of this work are summarized as follows: 

• First, we propose a novel algorithm named PHUI-Growth (Parallel mining High 
Utility Itemsets by pattern-Growth) for parallel mining HUIs in big data. It is im-
plemented on a Hadoop platform [14] and thus it inherits several nice properties 
from Hadoop, such as easy deployment in high level language, fault tolerance, low 
communication overheads and high scalability on commodity hardware. 

• Second, PHUI-Growth adopts the MapReduce architecture to partition the whole 
mining task into smaller independent subtasks and uses HDFS (Hadoop Distri-
buted File System) to process distributed data. Thus, it can parallel mine HUIs 
from distributed databases across multiple commodity computers in a reliable 
manner.  

• Third, PHUI-Growth adopts a novel strategy called DLU-MR (Discarding local 
unpromising items in MapReduce framework) to effectively prune the search space 
and unnecessary intermediate itemsets produced during the mining process, which 
further enhances the performance of PHUI-Growth.  
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• Experimental results on both synthetic and real datasets show that PHUI-Growth 
outperforms the state-of-the-art algorithms developed for mining HUIs on a single 
machine and that it has good scalability on large-scale datasets.  

The remaining of this paper is organized as follows. Section 2 and Section 3 re-
spectively introduce the basic concepts of HUI mining and related works. Section 4 
presents the proposed methods. Experimental results and conclusion are presented in 
Section 5 and Section 6, respectively. 

2 Basic Concept and Definitions 

In this section, we introduce the related definitions about HUI mining. Let I* = {I1, 
I2, …, IN} be a finite set of distinct items. A transactional database D = {T1, T2, …, 
TM} is a set of transactions, where each transaction Tc∊ D (1 ≤ c ≤ M) is a set of items 
has a unique transaction identifier c, called its TID. Each item Ij∈I* (1≤ j ≤ N) in D 
has a global positive real number p(Ij, D), called its external utility (e.g., unit profit). 
The external utilities of items are stored in a utility table. Every item Ij in a transaction 
Tc has a local positive real number q(Ij, Tc), called its internal utility (e.g., quantity). 
An itemset X is a set of items {I1, I2,…, Ik}, where k=|X| is called the length of X. An 
itemset of length k is called k-itemset.  

Definition 1 (Utility of an itemset in a transaction).  The utility of an itemset  
X in a transaction Tc ∊ D is denoted as u(X, Tc) and defined as 

.) ,(×) ,(∑   ∈ ∧ ∈ cjjTIXI TIqDIp
cjj

 

Definition 2 (Utility of an itemset in a database). The utility of an itemset X in a 
database D is the summation of the utilities of X in all the transactions containing X, 
which is denoted as u(X) and defined as .),(∑  ⊆ ∧ ∈ cTXDT TXu

cc
 

Definition 3 (Transaction utility of a transaction). The transaction utility (abbre-
viated as TU) of a transaction Tc ∊ D is the summation of the utility of each item in Tc, 
which is denoted as tu(Tc) and defined as .),(∑

 ∈ ccDT TTu
c

 

Definition 4 (Total utility of a database). The total utility of a database D is the 
summation of the transaction utility of each transaction in the database, which is de-
noted as λ and defined as ).(∑

 ∈ cDT Ttu
c

 

Table 1. Transactional database 

TID Transaction 
T1 A(4), B(2), C(8), D(2) 
T2 A(4), B(2), C(8) 
T3 C(4), D(2), E(2), F(2) 
T4 E(2), F(2), G(1) 

Table 2. Utility table 

Item A B C D E F G 
External Utility 2 3 1 3 4 4 8 
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Definition 5 (Relative utility of an itemset in a database). The relative utility of an 
itemset X in a database D is denoted as ru(X) and defined as the ratio of u(X) to λ. 

Definition 6 (High utility itemset). Let θ (0 < θ  ≤ λ) be a user-specified minimum 
utility threshold. An itemset X is called a high utility itemset (abbreviated as HUI) iff 
u(X) ≥ θ. An equivalent definition is that X is a HUI iff ru(X) ≥ θ/λ, where θ/λ is 
called relative minimum utility threshold. Otherwise, X is called low utility itemset. 

Notice that the well-known downward closure property [1] does not held for the 
utility of itemsets. For example, {A} is low utility, but its superset {AC} is high utili-
ty. As a consequence, the search space of HUI mining cannot be effectively pruned as 
it is done in traditional frequent itemset mining. To effectively prune the search space, 
the concept of transaction-weighted utilization model (abbreviated as TWU model) [6] 
was proposed, which is based on the following definitions. 

Definition 7 (TWU of an itemset). The transaction-weighted utilization (abbreviated 
as TWU) of an itemset X is the summation of transaction utility of each transaction 
containing X, which is denoted as TWU(X) and defined as ).(∑  ⊆X ∧ ∈ cTDT Ttu

cc
  

Definition 8 (High TWU itemset). An itemset X is called high TWU itemset iff 
TWU(X) ≥ θ. Otherwise, X is called low TWU itemset. 

Definition 9 (TWU downward closure property). The TWU downward closure 
property states that any superset of a low TWU itemset is low utility. By this proper-
ty, the downward closure property can be applied to the TWU of itemsets for effec-
tively prune the search space. The detailed proof of this property can be found in [6]. 

3 Related Work 

In this section, we review some studies that are related to parallel programming, HUI 
mining, and parallel HUI mining. 

3.1 Parallel Programming 

Parallel programming has become a necessity for handling big data. The parallel 
algorithms can be generally categorized into two types: shared-memory algorithm and 
shared-nothing algorithm (also called distributed algorithm) [14]. The main feature of 
shared-memory algorithms is that it allows all processing units to concurrently access 
a shared memory. In general, it is easier to adapt algorithms to the shared-memory 
architecture. However, the resulting algorithms are usually not scalable enough and 
still suffer from the bottleneck of huge memory requirement. On the other hand, the 
main feature of shared-nothing algorithms is that it allows different processors that 
have their own memories to communicate with each other by passing messages. Al-
though it is not easy to adapt algorithms to the shared-nothing architecture, a well-
designed distributed algorithm usually has better scalability. 
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The message passing interface (MPI) is one of the most well-known framework 
based on shared-nothing architecture, but it works efficiently only on low-level pro-
gramming languages (e.g., C and Fortran). Nowadays, high-level programming lan-
guages (e.g., Java) have become more and more important and popular in many do-
mains. Apache Foundation has developed a Jave-based open-source library named 
Hadoop [14] for parallel processing big data. It consists of two key services: HDFS 
(Hadoop Distributed File System) and MapReduce software. HDFS is a reliable dis-
tributed file system designed to efficiently access and store large-scale data. On the 
other hand, MapReduce software is designed to process vast amounts of data in paral-
lel. The combination of HDFS and MapReduce software allows to parallel process 
large-scale datasets across multiple clusters of commodity hardware in a reliable, 
fault-tolerant manner. A MapReduce program consists of two stages: map stage and 
reduce stage. In map stage, each Mapper processes a distinct chunk of data and pro-
duces several key-value pairs. In reduce stage, these key-value pairs are aggregated 
and transformed. The transformed key-value pairs are fed to Reducers. Reducers fur-
ther process these transformed pairs and then output the final or intermediate results.  

3.2 High Utility Itemset Mining 

Extensive studies have been proposed for efficiently mining HUIs in centralized data-
bases. These algorithms can be generally categorized into two types: two-phase and 
one-phase algorithms. The main characteristic of two-phase algorithms is that they 
consist of two phases. In the first phase, they generate a set of candidates (e.g., high 
TWU itemsets) for HUIs. In the second phase, they calculate the utility of each candi-
date found in the first phase to identify HUIs. For example, Two-Phase [6], IHUP [2], 
IIDS [9] and UP-Growth+ [12] are typical two-phase algorithms. On the contrary, the 
main feature of one-phase algorithms [7, 8] is that they discover HUI using only one 
phase. For example, HUI-Miner [7] is one of the state-of-the-art one-phase algo-
rithms. Although these algorithms are very efficient for mining HUIs from a centra-
lized database, they have not been parallelized for handling big data. 

3.3 Parallel High Utility Itemset Mining 

In utility mining, only few preliminary studies [11, 13] have been proposed for paral-
lel mining HUIs in distributed databases. Vo et al. proposed the DTWU-Mining algo-
rithm [13] for parallel mining HUIs from vertical partitioned distribute databases. 
Subramanian et al. proposed the FUM-D algorithm [11] to extract HUIs from distri-
buted horizontal databases. FUM-D enumerates local HUIs in each local database and 
then uses local HUIs to infer all global HUIs in the global database. Although these 
two approaches are parallel HUI mining algorithms, they are not implemented in Ha-
doop platform and do not integrated with the MapReduce framework. Therefore, they 
do not support fault tolerance. However, fault tolerance is a very important issue in 
parallel mining algorithms because the probability that none of computers of cluster 
crashes is very small when handling big data. Therefore, DTWU-Mining and FUM-D 
are not reliable and practical enough for handling big data. 
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Fig. 1. The system architecture of the PHUI-Growth algorithm 

4 The Proposed Method: PHUI-Growth 

In this section, we propose a novel algorithm named PHUI-Growth (Parallel mining 
High Utility Itemsets by pattern-Growth) for efficiently parallel mining HUIs based 
on Hadoop MapReduce architecture. It has three input parameters: (1) a distributed 
database DD, (2) a utility table and (3) a user-specified minimum utility threshold 
min_util. After the whole mining process, the algorithm outputs the complete set of 
HUIs in  DD. PHUI-Growth consists of three main phases: (1) counting phase, (2) 
transformation phase and (3) mining phase. Fig. 1 shows the system architecture of 
PHUI-Growth.  

4.1 Counting Phase 

The input database DD can be viewed as a set of transactions that are stored in several 
computers. In counting phase, the algorithm takes one MapReduce pass to parallel 
counts TWU of items in DD. The whole process in this phase can be divided into map 
stage and reduce stage.  

Map Stage. In map stage phase, each Mapper is fed with a transaction Tc = {I1, I2,…, 
IL} in DD. For each item Ij in Tc (1 ≤ j ≤ L), the Mapper outputs a key-value pair <Ij, 
TU(Tc)>, called Item-TU pair.  

Reduce Stage. In reduce stage, Item-TU pairs outputted by Mappers are fed to Re-
ducers.  The Item-TU pairs having the same key are collected into the same Reducer. 
Let R = {<I, v1>, <I, v2>,…, <I, vn>} be the set of all the Item-TU pairs collected by a 
Reducer. The Reducer calculates TWU of I by summing up each value of a pair and 
outputs a key-value pair <I, TWU(I)>, called Item-TWU pair.  

Fig. 1 shows the process of map and reduce stages in counting phase. In Fig.2(a), 
the input of the Mapper 1 is T1 = {A, B, C, D} of Table 1. After the process, the Map-
per outputs four Item-TU pairs <{A}, 28>, <{B}, 28>, <{C}, 28> and <{D}, 28>. All 
the Item-TU pairs having the same key {A} are collected into the Reducer 1. After the 
process, Reducer 1 outputs an Item-TWU pair <{A}, 50>. 
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Fig. 2. Map and reduce stages in counting phase 

4.2 Database Transformation Phase 

In database transformation phase, the algorithm removes all low TWU 1-itemsets 
from DD (Definition 7, 8 and 9) and sorts remaining items in a TWU ascending order. 
A transaction after the above process is called reorganized transaction. Then, the 
algorithm transforms each reorganized transaction T’ = {I1, I2,…, IL} in DD into a 
special structure called u-transaction. A u-transaction is of the form <I1(u1), I2(u2),…, 
IL(uL)>, where uj is called the utility of Ij in T’. Initially, uj is set to p(Ij, DD) × q(Ij, 
T’). The transaction utility of T’ is denoted as TU(T’) and defined as the summation 
of utilities of all the items in T’.  

4.3 Mining Phase 

In mining phase, the algorithm parallel discovers HUIs through several iterations. 
Initially, a variable k is set to 0. Then, the algorithm starts to generate HUIs having a 
length greater than k. In the k-th iteration, all the HUIs of length k are discovered by 
performing a MapReduce pass. The process of this phase can be divided into two 
cases: (1) k = 1 and (2) k ≥ 2. We first explain the former case and then describe the 
latter case.  

4.3.1   Map Stage in the First Iteration  
When k = 1, each Mapper is fed with a u-transaction T’ = <I1(u1), I2(u2),…, IL(uL)>. 
For each item Ij in T’ (1 ≤ j ≤ L), the Mapper generates a special structure called con-
ditional u-transaction. A conditional u-transaction has three fields: Prefix, PrefixUtili-
ty and UTrans. When k =1, Ij and uj are respectively stored in Prefix and PrefixUtility 
fields. For UTrans field, it stores the set of items appearing after Ij in T’ according to 
TWU ascending order, that is, <Ij+1(uj+1), Ij+2(uj+2),…, IL(uL)>. The prefix utility of T’ 
is denoted as TU(T’) and defined as the value in PrefixUtility field. 

For example, in Fig. 3, the Mapper 1 is fed with the u-transaction {A(8), B(6), 
D(6), C(8)}. After the process, it generates four conditional u-transactions <{A}, 8, 
{B(6), D(6), C(8)}>, <{B}, 6, {D(6), C(8)}>, <{D}, 6, {C(8)}>, <{C}, 8, φ >. The 
PU of the first conditional u-transaction is 8.  

 

 

T1 ABCD
T2 ABC
T3 CDEF
T4 EFG

Distributed Database Mapper 1 ABCD <A, 28>,<B, 28>,
<C, 28>,<D, 28>

Mapper 2 ABC <A, 22>,<B, 28>,
<C, 22>

Mapper 3 CDEF <C, 26>,<D, 26>,
<E, 26>,<F, 26>

Reducer 1 A <A, 28>,<A, 22>
B <B, 28>,<B, 28>

Mapper 4 EFG <E, 24>,<F, 24>,
<G, 24>

Reducer 3
E <E, 26>, <E, 24>
F <F, 26>, <F, 24>
G <G, 24>

Reducer 2 C <C, 28>, <C, 22>, 
<C, 26>

D <D, 28>, <D, 26>
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Fig. 3. Map and reduce stages in mining phase when k = 1 

 

Fig. 4. Map and reduce stages in mining phase when k = 2 

4.3.2   Reduce Stage in Mining Phase 
In reduce stage, each Reducer is fed with a conditional u-transaction. The conditional 
u-transactions having the same prefix are collected into the same Reducer. Let R’ be 
the set of conditional u-transactions collected by a Reducer and X be the prefix of 
these conditional u-transactions. Then, the Reducer calculates the utility of X by 
summing up PUs of all the u-transactions in R’. After the process, if the utility of X is 
no less than the min_util threshold, the Reducer outputs X and its utility because X is a 
HUI (Definition 6). Then, the algorithm applies a proposed strategy called DLU-MR 
(Discarding local unpromising items in MapReduce framework) to further reduce the 
search space. The main idea of this strategy is based on the following definitions. 

Definition 10 (Local TWU of an item in k-th iteration). Let R’ be the set of condi-
tional u-transactions collected by a Reducer in k-th iteration, the local TWU of an item 
Y is the summation of transaction utility of each u-transaction containing X, which is 
denoted as LTWU(X, k) and defined as )].(+)([∑  ∈ ∧ ∈ TPUTTUTYRT

 

Definition 11 (Local unpromising items in k-th iteration). Let R’ be the set of con-
ditional u-transactions collected by a Reducer in k-th iteration, an item is called local 
unpromising items in k-th iteration iff LTWU(X, k) < θ.  

Definition 12 (Local TWU downward closure property). The local TWU down-
ward closure property (or simply called LTWU-DC Property) states that ∀X iff 
LTWU(X, k) < θ, all the L-itemsets containing X are low utility (L≥k). 

Mapper 1 A(8) B(6) D(6) C(8)

<{A}, 8, {B(6)D(6)C(8)}>
<{B}, 6, {D(6)C(8)}>
<{D}, 6, {C(8)}>
<{C}, 8, {ϕ}>

Mapper 2 A(8) B(6) C(8)
<{A}, 8, {B(6)C(8)}>
<{B}, 6, {C(8)}>
<{C}, 8, {ϕ} >

Mapper 3 E(8) F(8) D(6) C(4)

<{E}, 8, {F(8)D(6)C(4)}>
<{F}, 8, {D(6)C(4)}>
<{D}, 6, {C(4)}>
<{C}, 4, {ϕ}>

Mapper 4 E(8) F(8)
<{E}, 8, {F(8)}>
<{F}, 8, {ϕ}>

Reducer 1
A <{A}, 8, {B(6)D(6)C(8)}>,

<{A}, 8, {B(6)C(8)}>

B <{B}, 6, {D(6)C(8)}>,
<{B}, 6, {C(8)}>

Reducer 2
C <{C}, 8, {ϕ}>, <{C}, 8, {ϕ}>,

<{C}, 4, {ϕ}>

D <{D}, 6, {C(8)}>, 
<{D}, 6, {C(4)}>

Reducer 3
E

<{E}, 8, {F(6)D(6)C(4)}>
<{E}, 8, {F(8)}>

F
<{F}, 8, {D(6)C(4)}>,
<{F}, 8, {ϕ}>

Mapper 1
<{A},8,{B(6)D(6)C(8)}>

<{AB}, 14, {D(6)C(8)}> 
<{AD}, 14, {C(8)}>
<{AC}, 16, {ϕ}>

<{A},8,{B(6)C(8)}> <{AB}, 14, {C(8)}> 
<{AC}, 16, {ϕ}>

Mapper 2 <{B}, 6, {D(6)C(8)}> <{BD}, 12, {C(8)}> 
<{BC}, 14, {ϕ}>

<{B}, 6, {C(8)}> <{BC}, 14, {ϕ}>

Mapper 3 <{D}, 6, {C(8)}> <{DC}, 14, {ϕ}>
<{D}, 6, {C(4)}> <{DC}, 10, {ϕ}>

Mapper 4 <{E}, 8, {F(6)D(6)C(4)}>
<{EF}, 14, {D(6)C(4)}> 
<{ED}, 14, {C(4)}>
<{EC}, 12, {ϕ}>

<{E}, 8, {F(8)}> <{EF}, 16, {ϕ}>

Mapper 5 <{F}, 8, {D(6)C(4)}> <{FD}, 14, {C(4)}> 
<{FC}, 12, {ϕ}>

Reducer 1

AB <{AB}, 14, {D(6)C(8)}>,
<{AB}, 14, {C(8)}>

AC <{AC}, 16, {ϕ}>, 
<{AC}, 16, {ϕ}>

AD <{AD}, 14, {C(8)}>

Reducer 3
EF <{EF}, 14, {D(6)C(4)}>,

<{EF}, 16, {ϕ}>

ED <{ED}, 14, {C(4)}>, 
<{ED}, 14, {C(4)}>

EC <{EC}, 12, {ϕ}>

Reducer 2
BD <{BD}, 12, {C(8)}>
BC <{BC}, 14, {ϕ}>, <{BC}, 14, {ϕ}>
DC <{DC}, 14, {ϕ}>, <{DC}, 10, {ϕ}>

Reducer 4 FD <{FD}, 14, {C(4)}>
FC <{FC}, 12, {ϕ}>
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The DLU-MR strategy is performed by scanning R’ twice. In the first scan of R’, 
the Reducer calculates local TWU of items in u-transactions of R’. In the second scan 
of R’, the Reducer removes local unpromising items in each u-transaction T’ of R’ and 
discards their utilities from TU(T). When the Reducer has finished its work, each 
trimmed conditional u-transaction is outputted as the input of (k+1)-th iteration.  

4.3.3   Map-Reduce Stages in the k-th Iteration (k ≥ 2) 
In the k-th iteration (k ≥ 2), the algorithm takes a MapReduce pass to find all the HUIs 
of length k. In map stage, each Mapper is fed with a conditional u-transaction CT = 
<X, ux, T’> produced from (k-1)-th iteration, where X is the prefix of CT, ux is the PU 
of CT and T’ = <I1(u1), I2(u2),…, IL(uL)> is a u-transaction related to X. For each item 
Ij in T’ (1 ≤ j ≤ L), the Mapper outputs a conditional u-transaction <{X∪Ij}, (ux+uj), 
<Ij+1(uj+1), Ij+2(uj+2),…, IL(uL)>>. When all the Mappers have finished their work, 
those conditional u-transactions having the same prefix are fed to the same Reducer. 
When k ≥ 2, the process of the reduce stage is the same as that in subsection 4.3.2. 
Fig. 3 and Fig. 4 respectively show the running examples when k =1 and k = 2.  

5 Experimental Results 

In this section, we compare the performance of PHUI-Growth with HUI-Miner [7], a 
state-of-the-art non-parallel type of HUI mining algorithms. To evaluate the effec-
tiveness of the DLU-MR strategy, we prepared two versions of PHUI-Growth, respec-
tively called PHUI-Growth(Baseline) and PHUI-Growth(DLU-MR). We also evaluate 
the number of intermediate itemsets produced by the algorithms. For HUI-Miner, 
intermediate itemsets refers to the itemsets having an estimated utility no less than the 
min_util threshold. Thus, the number of intermediate itemsets produced by HUI-
Miner can be regarded as that of utility-lists constructed by HUI-Miner during the 
mining process. For the proposed algorithms, the number of intermediate itemsets is 
the number of conditional u-transactions produced by Reducers during the mining 
process. In this section, the two kinds of intermediate itemsets are called candidates. 
All experiments were conducted on a five-node Hadoop Cluster. Each node is 
equipped with Intel® Celeron® CPU G1610 @ 2.60GHz CPU and 4 GB main memo-
ry. All the algorithms are implemented in Java. Both synthetic and real datasets were 
used in the experiments. Chainstore [10] is a real-life dataset acquired from [10], 
which already contain unit profits and purchase quantities. Retail dataset was obtained 
from FIMI Repository [15]. A synthetic dataset T10I4N10K|D|2,000K was generated 
from the IBM data generator [1]. The parameters of the dataset are described as fol-
lows: |D| is the total number of transactions, T is the average size of transactions; N is 
the number of distinct items; I is the average size of potential maximal itemsets. In-
ternal and external utilities of items are generated as the settings of [6, 12]. In Retail 
and T10I4N10K|D|2,000K datasets, external utilities of items are generated between 1 
and 1,000 by using a log-normal distribution and internal utilities of items are  
generated randomly between 1 and 5, as the settings of [6, 12]. To evaluate the per-
formance of the algorithms on a larger dataset, we duplicate each transaction in 
Chainstore five times to form a dataset named Chainstore×5. Table 3 shows characte-
ristics of the datasets. 
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Table 3. Characteristic of Datasets 

Dataset #Trans. # Items Average 
Trans. Length 

Maximum 
Trans. Length 

Retail 88,162 16,470 10 76 
Chainstore 1,112,949 46,086 7 170 

T10I4N10K|D|2,000K 2,000,000 10,000 10 33 
Chainstore×5 5,564,745 46,086 7 170 

 

 
Fig. 5. Execution time of the algorithms on different datasets 

5.1 Performance Evaluation on Small Dataset 

In this subsection, we evaluate the performance of the algorithms on Retail dataset 
under varied relative min_util thresholds. The execution time of the algorithms and 
the number of candidates are respectively shown in Fig. 5(a) and Fig 6(a). In Fig. 
5(a), PHUI-Growth(Baseline) and Growth(DLU-MR) generally run slightly slower 
than HUI-Miner when relative min_util thresholds are higher than 0.02%. This is 
because that PHUI-Growth(Baseline) and Growth(DLU-MR) use five-node Hadoop 
Cluster to parallel process the mining tasks and they need to pass necessary data and 
messages across different machines via networks, which requires additional commu-
nication overheads. Therefore, they take more time than HUI-Miner for high thre-
sholds. However, when the threshold decreases, HUI-Miner starts to suffer from long 
execution time. For example, for relative min_util = 0.01%, HUI-Miner takes 4,429 
seconds, while PHUI-Growth(DLU-MR) only takes 566 seconds. When the threshold 
decreases, the number of HUIs dramatically increases and HUI-Miner need to pro-
duce a large amount of utility-lists for intermediate itemsets. However, the number of 
candidates produced by PHUI-Growth(DLU-MR) is up to two orders of magnitude 
smaller than that produced by HUI-Miner.  

(a) Retail (b) Chainstore

(c) T10I4N10K|D|2,000K (d) Chainstore 5
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Fig. 6. Number of intermediate itemsets produced by the algorithms 

5.2 Performance Evaluation on Large-Scale Datasets 

In this subsection, we evaluate the performance of the algorithms on large datasets, 
including Chainstore, T10I4N10K|D|2000K and Chainstore×5. Execution time of the 
algorithms and the number of candidates are respectively shown in Fig.5 and Fig. 6. 
Results show that PHUI-Growth(Baseline) and Growth(DLU-MR) outperform HUI-
Miner significantly. The reason why PHUI-Growth(Baseline) and Growth(DLU-MR) 
perform so well is that they  effectively use nodes of a cluster to parallel process 
HUIs across multiple machines, while HUI-Miner is executed on non-parallel single 
machine. In Fig.5, PHUI-Growth(DLU-MR) generally runs much faster than PHUI-
Growth(Baseline) on all the datasets. This is because that PHUI-Growth(DLU-MR) 
integrates the DLU-MR strategy for effectively prune the candidates and hence en-
hances its mining performance. Then, we compare the scalability of the algorithms on 
large datasets Chainstore×5 and T10I4N10K|D|2000K. As shown in Fig 5(c) and Fig. 
5(d), PHUI-Growth(DLU-MR) has very good scalability on large datasets. On the 
contrary, the execution time of HUI-Miner increases dramatically on large datasets. In 
Fig 6(d), as the relative min_util is set to 0.01%, PHUI-Growth(DLU-MR) only takes 
about 592 seconds, while HUI-Miner takes more than 7,500 seconds.  

 

(a) Retail (b) Chainstore

(c) T10I4N10K|D|2,000K (d) Chainstore 5
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6 Conclusion 

In this paper, we propose a new framework for mining high utility itemsets in big 
data. A novel algorithm PHUI-Growth is proposed for efficiently parallel mining 
high utility itemsets from distributed data across multiple commodity computers. It is 
implemented on a shared-nothing Hadoop platform and thus inherits several merits of 
Hadoop, including easy deployment in high level language, supporting fault recovery 
and fault tolerance, low communication overheads and high scalability on commodity 
hardware. A novel strategy called DLU-MR is proposed to effectively prune the 
search space and greatly improve the performance of PHUI-Growth. Empirical evalu-
ations of different types of real and synthetic datasets show that PHUI-Growth has 
good scalability on large datasets and outperforms the state-of-the-art algorithms.  
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