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Abstract. Multiple variables and high dimensions are two main challenges for 
classification of Multivariate Time Series (MTS) data. In order to overcome 
these challenges, feature extraction should be performed before performing 
classification. However, the existing feature extraction methods lose the impor-
tant correlations among the variables while reducing high dimensions of MTS. 
Hence, in this paper, we propose a new feature extraction method combined 
with different classifiers to provide a general classification strategy for MTS da-
ta which can be applied for different area problems of MTS data. The proposed 
algorithm can handle data of high feature dimensions efficiently with unequal 
length and discover the relationship within the same and between different 
component univariate time series for MTS data. Hence, the proposed feature ex-
traction method is application-independent and therefore does not depend on 
domain knowledge of relevant features or assumption about underling data 
models. We evaluate the algorithm on one synthetic dataset and two real-world 
datasets. The comparison experimental result shows that the proposed algorithm 
can achieve higher classification accuracy and F-measure value.  

Keywords: Multivariate time series · Time series classification · Intra-temporal 
patterns · Inter-temporal pattern 

1 Introduction 

A multivariate time series (MTS) can be considered as made up of a collection of data 
values taken by a set of temporally interrelated variables monitored over a period  
of time at successive time instants spaced at uniform time intervals [4]. Effective 
classifying of such data can be applied into various problem domains. For example, in 
medicine and healthcare, the values taken by many variables representing different 
signs and symptoms may be temporally related or interrelated and they have to be 
monitored for a patient over a period of time for such relationship or interrelationship 
to be discovered. In financial analysis, as another example, the performance of a stock 
in terms of such variables as highs and lows, opening and closing prices, trading vo-
lumes, may also be temporally related or interrelated and for such relationship or 
interrelationship to be understood. 
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Time series classification has received a great deal of attention in the past, and it 
also brings some new challenges to the data mining and machine learning community 
[1]. A number of different approaches have been proposed for univariate time series 
classification [9-11], however, few papers are found about multivariate time series 
classification in the literature [6]. 

Generally, to classify MTS data, feature extraction need to be performed for the 
original data, and then the classifiers, such as Support Vector Machine (SVM) or 
Artificial Neural Network (ANN), is used to classify the feature vectors [14-16]. The 
challenges of the classification process can be summarized as follows [2,7]: i) The 
most of the classifiers (e.g. decision trees, neural networks) can only take input data 
as a vector of features, but there are no explicit features in sequence data. ii) The di-
mensionality of feature space should be very high and the computation is costly. iii) 
The important correlations information among variables may be lost if the value of 
one variable is broken into MTS or each processed separately. Finally, the MTS can 
be of different lengths that cannot be extracted features by traditional method easily. 

Hence, for satisfying the above requirement, we propose a new feature extraction 
algorithm combined with traditional classifier that provides a general classification 
strategy, called as Multivariate Time Series Classifier (MTSC). The algorithmic con-
tributions of the proposed algorithm are: i) it can handle MTS data of high feature 
dimensions efficiently with unequal length; ii) it focuses on discovering the relation-
ship in the same or among different variables; iii) it is a general method that can be 
applied to different problems on MTS data. 

The structure of this paper is arranged as follows. In Section 2, we present a  
summary of existing work on feature extraction and classification for MTS data.  
In Section 3, we describe the details of the proposed algorithm. In Section 4, the results 
of the algorithm for both simulated and real world data sets are performed and  
presented. In the same section, we discuss results of the various tests carried out for 
effectiveness of its tasks. In the last section, we present a summary of the paper and the 
possible directions for future work. 

2 Literature Survey 

A multivariate time series (MTS) can be defined as a sequence of vectors, which may 
carry a class label [2]. For example, Electrocardiography (ECG) is a kind of MTS 
data, which is recorded from several sensors to describe the electrical activity of the 
heart, and it may come from either a healthy or ill person, labeled as “healthy” and 
“ill”. The classification of MTS is the problem of classifying a set of MTS samples 
into a pre-defined set of classes [8]. To summary the existing algorithms of classifica-
tion for MTS data, two main steps are considered: extract features using classical 
feature extraction method as pre-processing for MTS data, and classify feature vectors 
using classifier.  

Feature extraction greatly affects the design and performance of the classifier and 
feature extraction is to use the existing feature parameters to comprise a lower-
dimensional feature space, map useful information contained by original features to a 
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small number of features, ignoring redundant and irrelevant information [15]. The 
classical feature extraction methods are based on statistical analysis. As the represent-
ative, there are some classical methods such as Principal Component Analysis (PCA), 
Linear Discriminant Analysis (LDA) [16], Factor Analysis [16], and so on [15]. In 
addition, for improving the performance of classification MTS data, some new feature 
extraction methods are proposed. Li et al. [7] proposed a feature extraction method, 
Singular Value Decomposition (SVD), to reduce the different length of data to feature 
vectors, and then apply SVM on the feature vectors to classify MTS data. Weng et al. 
[6] project original MTS into PCA subspace by throwing away the smallest principal 
components firstly, and then MTS samples in the PCA subspace are projected into a 
lower-dimensional space by using supervised Locality Preserving Projection (LPP). 
However, the above existing extraction method may lose the dependency relationship 
information among different univariate time series.  

Hence, to extract the features among the same and different variables can retain 
more significant information for further classification. For proving the efficiency of 
the proposed algorithm, we compare the proposed algorithm with classical feature 
extraction methods, PCA. We focus on discovering the relationship within the same 
variable (intra-temporal patterns) and between different variables (inter-temporal 
patterns) at different time points, and combine the degree value of all patterns as fea-
ture vector.    

After extracting features from original MTS data, a classifier, such as Support Vec-
tor Machine (SVM) [18] and Artificial Neural Networks (ANN) [19] can be applied 
to classify output feature vectors. The SVM transforms original input data into a 
higher dimensional space using a nonlinear mapping and then searches for a linear 
separating hyper-plane [20]. Considering the input vector is a m n matrix, m is the 
number of MTS, n is the number of features, in order to classify MTS, it applies a 
kernel function to the original input data. ANN is composed of interconnecting artifi-
cial neurons that can compute values from inputs. Multi-Layer Perceptron (MLP) and 
Radial Basis Function (RBF) are two of the most widely used neural network archi-
tecture in literature for classification or regression problems. RBF is a local type of 
learning which is responsive only to a limited section of input space, and MLP is a 
distributed approach [21].  

3 Methodology 

With the above requirements in mind, we developed a feature extraction method to 
catch the dependency relationship between different variables, and classify MTS data 
based on feature vectors. Combining the proposed feature extraction method and clas-
sical classifier, the proposed strategy is called as Multivariate Time Series Classifier 
(MTSC).  
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Fig. 1. The process of the proposed algorithm 

The task of the proposed algorithm is to uncover the temporal relationship or inter-
relationships between different variables. These temporal relationship or interrelation-
ships constituent what we call intra- and inter- temporal patters respectively. The 
proposed algorithm performs its tasks in several steps: 1) discretize MTS data into 
level value using Equal Frequency; 2) extract features from MTS data which contains 
three sub-steps: 2.1) discover intra-temporal patterns within each component time 
series in each MTS; 2.2) discover inter-temporal patterns between different compo-
nent time series within each MTS; 2.3) combine the value of degree of patterns disco-
vering in 2.1) and 2.2); 3) classify MTSs based on feature vectors outputting in 2.3) 
using SVM with RBF-kernel function or MLP ANN. The structure of our proposed 
algorithm is shown in Figure 1. The definitions and notations are given in the Section 
3.1, and then Section 3.2 specifies the proposed algorithm in detail. 

3.1 The Problem Definition and Notations 

Let S represent a set of MTS with the following characteristics: 
1. S consists of m MTS represented as S , , … , . 
2. For ith MTS, , 1, … ,  consists of n components univariate time series 

(variables) that can be represented as , j=1, ….,n, so that  = { , , … , }, 

and  represent the jth univariate time series in ith MTS. 

3. The values in the vector , j =1, …., n, takes on the time instants of 1, … ,  can 

be represented as , , , , … , , , … , , , … , , , 1 , . 
4. The domains of the value of variable, , 1, … , ,, are represented as ( ) = 

[ , , 1, … , ,   represent the lower bound and represent the upper 

bound of the values that  can take on. 
Given a set of MTS, S, with characteristics as described above, they are pre-classified 

into k classes, where, = { , , … , }, ={ , , … , , …, 

= , , … , . To classify these MTS, we need to find their class labels   

to .  

3.2 The Proposed Algorithm 

3.2.1   Discretization 
Before discovering patterns from MTS data, the preprocessing is needed. For reduc-
ing and simplifying the original data, numerous values of a continuous variable is 
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always be replaced by a small number of interval labels, which leads to a concise, 
easy-to-use, knowledge-level representation of mining results [22]. Data discretiza-
tion is a frequently used technique to partition the value space of a continuous varia-
ble into a finite number of intervals and assigning a nominal value of each of them 
[23, 24]. Equal Width and Equal Frequency are two simplest discretization methods. 
However, if uncharacteristic extreme values (outliers) exist in the data set, Equal 
Width can hardly handle this situation. Hence, in our case, we transform original nu-
merical ,  which represents the ith MTS of jth variable at t time point into D ,  us-
ing Equal Frequency [17] algorithm. And we set the number of bins is three, that is to 
say, the original numerical data is transformed into three levels (such as {high, me-
dium, low}).  

3.2.2 Discover Intra-/Inter-Temporal Patterns 
After preprocess, discovering intra- and inter-temporal patterns among one MTS is 
applied. As one MTS contains several variables (univariate time series) which are 
temporally interrelated, the value that a particular variable take on at any time instant 
can be related to the variable’s previous values or to the previous values of other va-
riables. These interrelationships constitute, respectively, the intra- (within one univa-
riate time series) and inter- (between different univariate time series) temporal pat-
terns in one MTS. We use the proposed significant discrepancy measures to evaluate 
these patterns, and use a set of value of these measures to represent MTS. This 
process can be treated as feature extraction process from MTS, and the value of de-
gree that describes dependency patterns can be treated as Feature Vectors. Two main 
sub-steps are specified as following. 

Step One: Discovering Intra-Temporal Patterns. 
Given a value, say, , , which represents the value on the time point t in jth time 
series in ith MTS, the magnitude of the difference between the conditional probability 
Pr( , | , ), 1≤ , and the a priori probability Pr( , ) can be estimated as 
follows: 

, , , ,   ,,                            (1) 

where , , ,  is the number of instants of the value, , , being preceded at 

 instants ahead by ,  and ,  is the number of instants of the value ,  that appear in  in . As for Pr( , ), it can be estimated as follows: 

, ,   is the total number of time points        (2) 

Given these probability estimations, the magnitude of the difference between the 
conditional probability , ,  and the apriori probability ,  can be 

defined simply as: , , , . And the differences in the two probabil-
ities are normalized using (3) [23].  
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,  , , ,, , , ,                (3) 

The significance of the temporal relationship depends on the magnitude of norma-
lized difference, ,  [23] which can be either ≥ 0 or ≤ 0. If | , | is large, the presence 

or absence of ,  would likely imply that at  time instants later, the component 

univariate time series will or will not take on the value , , respectively. The magni-
tude of the normalized differences in conditional captures the strength of the temporal 
relationships [23] and they constitute the intra-temporal patterns for . Hence, ,  
can be defined as the significant discrepancy measure to evaluate the relationship of 
two values within the same variable.   

Step Two: Discovering Inter-Channels Temporal Patterns. 
Similar to Step One, the inter-temporal patterns can be also discovered. The inter-
temporal patterns are defined between two different variables say, , and , both 
within , to consist of a set of temporal relationships or interrelationships detected 
between a value of  at a particular time instant, t, and those that it takes on at an 
earlier time instant, , 1≤ . These temporal relationships or interrelation-
ships can be determined as follows.  
 

Algorithm 1. The Proposed Feature Extraction Method 

Input: , , … , (m is the number of MTS) 

       = {S , S , … , S } (n is the number of variable) 

      τ(the time window 1•τ< t) 
Output: finalResult(feature vector for one MTS) 

 

for each MTS  in S 

Discretization using Equal Frequency for  
for each univariate time series S  in  

       Calculate ,  
Result + = ,  /*degree vector of intra-patterns*/ 

    end 
for each channels s , s ,   in MTS 

       Calculate ,    
Result + = ,  /*degree vector of inter-patterns*/ 

end 

finalResult += Result  

end /*finalResult is a set of degrees of all patterns*/ 

 
Given a value, say, , , and another value, say, , , The magnitude of the dif-

ferences can be determined by first estimating the two probabilities Pr( , | , ) and 



 A Feature Extraction Method for Multivariate Time Series Classification  415 

Pr( , ), 1≤ , based on the data and calculated using (1) and (2). And simi-
larly, the differences in the two probabilities, , , are normalized using same equa-
tion of (3). As the significant discrepancy measure can evaluate the relationship between 

two variables  and  in MTS, ,  is used to represent degree of relationship between 

 and . The pseudo code of the whole process of the feature extraction method is 
shown in Algorithm 1. 

3.2.3 Classification Using SVM or ANN 
Once all the temporal patterns are discovered, for MTS, we get a set of intra-temporal 
patterns measure , , (i = 1, 2, …, m, j = 1, 2, …, n, and  = 1,2,… ), and a set of 

inter-temporal patterns measure ,  (i = 1, 2, …, m; jj’ = 1, 2, …, n, j j’ and  = 

1,2,… ), associated with it. These intra- and inter- temporal patterns forms feature 
vectors:{ , , … , ,  , ,  , , … , , , …  , }, where n is the total number of 

variables, 1≤  and i = 1, 2, …, m. In addition, each ,  may contain a set 

of value for when ,  equal to different discrete value. And then the classifier, SVM 
with RBF or MPL ANN, can be used to classify these feature vectors. The detail of 
classification algorithm has been specified in Section 2. 

4 Experimental Result 

To evaluate the performance of MTSC, a number of different experiments were car-
ried out using both synthetic and real world data. In order to prove the proposed algo-
rithm can handle both categorical and numerical data, the synthetic data set is a dis-
crete data set which was generated by embedding different temporal patterns in the 
data to see if MTSC can discover them for classification. The other two real world 
data sets included EMG: Physical Action data set and ECG data set. For the purpose 
of performance evaluation, the test samples are compared with the known class labels 
using two performance measures: F-measure and classification accuracy. In the fol-
lowing, we describe the data set in section 4.1; and then the experimental results using 
the proposed algorithm are provided in section 4.2; finally, a comparison result be-
tween the proposed algorithm and traditional methods are given in section 4.3.  

4.1 Data Set Description  

4.1.1 Discrete Data Set: Synthetic Data Set 
The synthetic data set is a discrete dataset that consists of 45 MTS generated random-
ly. Each of these MTS consists, in turn, of 5 variables, v , … v , and v  = ( , , ), 
i= 1,2,…5. There are total of 500 data values are generated for each variable to make 
all 5 univariate time series consists of 500 time points. Hence the synthetic data set is 
a 45 (MTS)  5 (variables)  500 (time points) dimensions data set. 
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Table 1. The Inserted Rules for Synthetic Dataset 

Classes Rules 
Class 1 1. v  and v  are totally random.   

2. v  takes on “ ” at every interval of 2 time units and then V2, at next time 
point, is generated to be “ ”, others are “ ” or “ ” randomly. 

3. If v  not to be “ ”, v takes on “ ” at the next time instant 50% or 
“ ” at the next time instant 50% of the time. 

Class 2 1. v  and v  are totally random. 
2. If v in  then v  in , others are random 
3. If v in ,v takes values in , others are random 
4. If v in , then v in  others are random 

Class 3 1. v  and v   are totally random. 
2. If v  in   then v  in , others are random 
3. v  takes on at every interval of 3 time units and then at the next time 

points, v  is generated to be within , others are random. 

The different rules that belong to three classes are shown in Table 1. For example, 
in Class 1, we generate v  to v  randomly that takes on the value of v  = ( , , ), 
i = 1,2,…5 firstly. The Rule 2 in Class 1 means, we insert patterns into v  to make it 
take on “ ” at every interval of 2 time units, and 1hen Variable 4 takes on value of 
“ ”, v  is generated to be “ ” at next time point. Similarly, Rule 3 means, if value 
of v  is not equal to “ ”, the value of v  is generated as “ ” at the next time in-
stant 50% or “ ” at the next time instant 50% of the time. Hence, for Class 1 v  and v  are noise data since they are totally random.  

4.1.2 Numerical Real-World Data Set 1: EMG Physical Action Dataset 
Physical Action Dataset (EMG) which is a benchmark data set from UCI repository 
[12]. The subjects are three male and one female (age 25 to 30), who have expe-
rienced aggression in scenarios such as physical fighting, took part in the experiment. 
Throughout 20 individual experiments, each subject had to perform ten normal and 
ten aggressive activities. 8 skin-surface electrodes correspond 8 input time series, 
muscle channel 1 to muscle channel 8, placed on the upper arms and upper legs to 
detect the position of actions of muscle. Each time series contains ~10000 samples 
(time points) with sampling frequency of 200Hz. Hence the EMG data is a 80 (MTS) 

 8 (channels)  ~10000 (time points) dimensions data set. 

4.1.3   Numerical Real-World Data Set 2: ECG Dataset 
The other real-world dataset is ECG data set [13]. This data set comprises a collection 
of time-series data sets where each file contains the sequence of measurements rec-
orded with two electrodes by one electrode during one heartbeat. Each heartbeat has 
an assigned classification of normal or abnormal. It contains 200 data sets where 133 
were identified as normal and 67 were identified as abnormal. Hence, in this dataset, 
there are 200 MTS in total, each MTS contains 2 univariate time series, and 39-152 
records are collected for each univariate time series with sampling 200HZ. The di-
mension of this data set is 200 (MTS)  2 (electrodes)  ~150 (time points). 
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4.2 Experiment Process and Evaluation 

The dataset can be processed as described in the methodology section. For the pur-
pose of performance evaluation, 80% data are selected randomly as training data and 
the rest 20% as testing data. Two evaluation measures are used F-measure [14] and 
Classification Accuracy (CA).  

The traditional F-measure or balanced F-score (F1 score) is the harmonic 
mean of precision and recall [14] that can be defined as below. Let C , p {1, …,k}, 
be a class after classification using MTSC and C , q {1, …,k}, be the class that is 
previous known, (k is the number of classes), so the F-measure is defined for C  and C as equal (4) shows [14]. F C , C   ,   ,, , , 

Recall C , C , , Precision C , C  ,
          (4) ,  represents the number of MTS with the cluster label  in the discov-

ered cluster, ,   is the number of records with class label  and 
, is the number of records in the predicted class label . Given this defini-

tion, F-measure therefore takes on values in the interval [0, 1]. The large its value is, 
the better the classification quality it reflects. In addition to the F-measure, due to the 
classes are pre-known, classification accuracy (CA) can be used evaluate how accu-
rate MTSC is and the definition of CA is shown in equation (5) 

CA =
                            (5) 

4.3 Experimental Result for the Proposed Algorithm 

In synthetic data set, we only insert rules for one time intervals. So, we consider the 
intra-temporal patterns within one variable and inter-temporal patterns among differ-
ent variables only between the previous time point and next one time point (τ=1). We 
use the proposed feature extraction to process the MTS data firstly and then use SVM 
or ANN to classify them. Table 2 summarizes the classification result for synthetic 
dataset using different classifier. The result table shows the value of Mean Acc. (the 
average of classification accuracy), Highest Acc. (the highest classification accuracy) 
and F-measure (the average value of F-measure). When MTSC is applied for ANN 
classifier, the highest accuracy is 100% and the average of classification accuracy is 
98.6% with F-measure is 0.99 for synthetic data set and the average of accuracy is 
more than 75% with F-measure is 0.72 for SVM classifier. Hence, in this experiment, 
ANN can get the higher value for both classification accuracy and F-measure than 
SVM.  
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Table 2. The result of synthetic dataset using the proposed algorithm 

Evalua-
tion 

Mean Acc. (Highest 
Acc.) 

F-
measure 

SVM 76.67% (87.5%) 0.72 
ANN 98.6% (100%) 0.99 

 
In addition, for real-world data sets, considering the dependency or relationship 

within one variable or between different variables may not only in one time interval, 
we set τ=1 to 5 for intra-/inter-temporal patterns. Table 3 and Table 4 show the result 
for the two real data sets using MTSC with SVM or ANN classification algorithm for 
different time intervals.  

In summary, ANN can get higher classification accuracy and F-measure than SVM 
for the most of classification result. In EMG dataset, when τ=5, the proposed algo-
rithm can achieve highest average classification accuracy of 90.6% with the average 
F-measure being 0.89 for SVM classifier, and accuracy of 91.78% with the average F-
measure being 0.92 for ANN classifier. Hence, the intra- and inter- relationship be-
tween variables are the most significant for classification in 5 time intervals. In ECG 
data set, when τ=4, the proposed algorithm can achieve a slightly higher average 
classification accuracy of 77.37% with the average F-measure being 0.72 for SVM 
classifier, and accuracy of 75.89% with the average F-measure being 0.7 for ANN 
classifier. Hence, when setting time interval equal to 4, the relationship within the 
same variable and between different variables can distinguish different samples best. 

Table 3. The result of EMG dataset using the proposed algorithm with different time intervals 

 Evaluation τ=1 τ=2 τ=3 τ=4 =5 

SVM 
Mean Acc. 
(Highest Acc.) 

73.92% 
(92.31%) 

74.94% 
(76.92%) 

74.97% 
(84.62%) 

81.94% 
(100%) 

90.60% 
(100%) 

F-measure 0.79 0.74 0.69 0.89 0.89 

ANN 
Mean Acc. 
(Highest Acc.) 

89.80% 
(100%) 

88.41% 
(100%) 

85.01% 
(87.50%) 

83.00% 
(92.31%) 

91.78% 
(93.75%) 

F-measure 0.85 0.88 0.81 0.83 0.92 

Table 4. Theresult of ECG dataset using the proposed algorithm with different time intervals 

 Evaluation τ=1 τ=2 τ=3 τ=4 =5 

SVM 
Mean Acc. 
(Highest Acc.) 

75.45% 
(80.56%) 

71.32% 
(73.17%) 

70.30% 
(73.17%) 

77.37% 
(81.40%) 

73.75% 
(80.65%) 

F-measure 0.73 0.71 0.66 0.72 0.72 

ANN 
Mean Acc. 
(Highest Acc.) 

78.21% 
(88.89%) 

68.12% 
(70.30%) 

69.08% 
(73.17%) 

75.89% 
(80.00%) 

70.09% 
(72.97%) 

F-measure 0.783 0.60 0.57 0.7 0.70 
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4.4 Comparison Experimental Result 

For performance benchmarking, we compare the proposed MTSC algorithm with 1) 
classification using SVM or ANN classification without feature extraction method 
(No FE), 2) SVM or ANN classification with PCA for MTS data. The Principle Com-
ponent Analysis (PCA) method can reduce high dimensions of MTS data and trans-
form original data into a feature vector. However, PCA can only applied into MTS 
with equal length. So we cut unequal length time series into minimum length. And 
then we use the same classifiers, SVM with RBF kernel function and MPL ANN to 
classify feature vectors. Table 5 and Table 6 summarize the comparison result in clas-
sification accuracy and F-measure. 

Table 5. Comparison of the average of classification accuracy between different algorithms 

Data Sets 
SVM ANN 
No FE PCA MTSC No FE PCA MTSC 

Synthetic 50.46% 67.2% 76.67% 68% 76.45% 98.6% 
EMG 85.71% 86.73% 90.6% 74.73% 78.64% 91.78% 
ECG 75% 75.05% 76.52% 75% 74.96% 77.37% 

Table 6. Comparison of the average of F-measure between different algorithms 

Data Sets 
SVM ANN 
No FE PCA MTSC No FE PCA MTSC 

Synthetic 0.46 0.60 0.72 0.69 0.77 0.99 
EMG 0.71 0.85 0.89 0.70 0.78 0.92 
ECG 0.707 0.67 0.75 0.727 0.66 0.7 

For synthetic dataset, when no feature extraction method is applied, the classifica-
tion accuracy is 50.46% and 68% with F-measure of 0.46 and 0.69 for SVM classifier 
and ANN classifier respectively. PCA+SVM can only achieve an accuracy of 67.2% 
with average F-measure of 0.41, and PCA+ANN can achieve a higher accuracy of 
76.45% with F-measure of 0.67. When comparing with the proposed algorithm, the 
performance of traditional algorithm is worse. Similarly, for two real-world datasets, 
MTSC can get higher both classification accuracy and F-measure than two other tra-
ditional methods. We can conclude from the result table, the value of the average of 
classification accuracy using MTSC is higher than the result using PCA with SVM or 
ANN for all data sets.  

Besides the classification performance comparison, the complexity analysis is 
another significant target. Suppose that we have m MTS with n variables and t time 
points for each univariate time series (n<<t). If there is no feature extraction method is 
used, the classifier has to process for mnt dimensions data. When some feature extrac-
tion method, such as PCA, is used, the run-time complexity of the PCA is mO( ), 
and the run-time of complexity of our proposed algorithm could be . 
Generally, the MTS contains very high dimensions of time points with less variables, 
so in this case, the advantage of MTSC just need to count once for the value of each 
time points.  
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5 Conclusion 

This paper has presented a classification strategy that combining the proposed feature 
extraction method and classifier for classifying MTS data. Unlike many existing me-
thods, it is able to handle multivariate time series that may consist of either conti-
nuous or discrete data or both. As the proposed feature extraction method can perform 
its tasks without requiring any special assumption about data models, it is generic and 
application-independent. Given that MTSC performs classification for MTS data by 
discovering patterns within each time series independently of the others, it can also 
handle time series of different length. For performance evaluation, FEMTS was tested 
with both artificial and real data. The results show that it can be a promising algo-
rithm for multivariate time series classification. The future work could be investigated 
into the possibility of improving the current work in three aspects: 1) after discovering 
intra- and inter- patterns in MTS, the dimensions of each MTS need to be reduced 
using attribute selection method to make algorithm speed up; 2) for improving the 
classification accuracy, fuzzy data/classes can be investigated so that MTS which 
belongs to overlapping classes can be discovered; 3) the more verification to verify 
how the algorithm can be more generally applicable. 
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