
Semi Supervised Adaptive Framework
for Classifying Evolving Data Stream

Ahsanul Haque1(B), Latifur Khan1, and Michael Baron2

1 Department of Computer Science, The University of Texas at Dallas,
Richardson, TX, USA

{ahsanul.haque,lkhan}@utdallas.edu
2 Department of Mathematical Sciences, The University of Texas at Dallas,

Richardson, TX, USA
mbaron@utdallas.edu

Abstract. Most of the approaches for classifying evolving data stream
divide the stream into fixed size chunks to address infinite length and
concept drift problems. These approaches suffer from trade-off between
performance and sensitivity. To address this problem, existing adaptive
sliding window techniques determine chunk boundaries dynamically by
detecting changes in classifier error rate which requires true labels for all
of the data instances. However, true labels are scarce and often delayed in
reality. In this paper, we propose an approach which determines dynamic
chunk boundaries by detecting significant changes in classifier confidence
scores using only limited number of labeled data instances. Moreover,
we integrate suitable classification technique with it to propose a com-
plete semi supervised framework which uses dynamic chunk boundaries
to address concept drift and concept evolution efficiently. Results from
the experiments using benchmark data sets show the effectiveness of our
proposed framework in terms of handling both concept drift and concept
evolution.

Keywords: Dynamic chunk size · Change detection · Concept drift

1 Introduction

Data streams have inherent properties which make it difficult for the traditional
data mining techniques to classify stream data. Some of the most challenging
properties of data streams include but not limited to infinite length, concept
drift, concept evolution, limited labeled data and delayed labeling. Since data
stream is an infinite stream of data, it cannot be stored into any storage for
analyzing, e.g., labeling. So, data stream classification is essentially a single pass
process. Concept drift occurs when the target class or concept evolves within
the feature space such that, the class encroaches or crosses previously defined
decision boundaries of the classifier [1]. So, any classification method used in the
context of data streams need to be updated to cope up with changing concepts.
Concept evolution occurs when a new class emerges in the data stream [2,3].
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part II, LNAI 9078, pp. 383–394, 2015.
DOI: 10.1007/978-3-319-18032-8 30



384 A. Haque et al.

To address infinite length and concept drift problems, most of the approaches
in the literature divide the data stream into fixed size chunks [2–4]. As a result,
these approaches fail to adapt to the change of concepts immediately. If the chunk
size is too small, classification method may end up with frequent training during
stable period when there is no concept drift, causing performance drawback due
to unnecessary update of the classifier. On the contrary, if the chunk size is too
large, the classifier may remain outdated for a long period of time. Some other
approaches [5,6] use gradual forgetting to address infinite length and concept
drift problems. These approaches use various decay functions to assign weight
to the instances based on their age. This strategy also suffers from similar trade-
off while choosing the decay rate to match unknown rate of change.

To solve the problems due to fixed chunk size or decay rate, a dynamic sliding
window is maintained in [7,8] by tracking any major change in error rate of the
classifier. These approaches mostly assume that, true labels of the data instances
will be available to calculate the error rate as soon as it is tested. However, in
the real world, labeled data is scarce since labeling data instances manually is
costly and time consuming [9]. In data streams, where data arrives very quickly,
it may not be possible to label all the data instances as soon as they arrive.
So, a good classifier in streaming context should be able to defer the training
until true labels become available yet continuing labeling newly arrived instances
using the current classifier. Moreover, it should be able to use partially labeled
training data [9].

In this paper, we present a complete framework which addresses all of the
above challenges. It uses similar semi supervised approach as [2] for classification
and novel class detection. However, unlike [2], our proposed framework divides
the data stream into dynamically determined chunks using change detection
technique. To avoid the use of true labels of data instances for change detection,
our proposed framework calculates a confidence value while predicting label of
each data instance. It then uses a change point detection technique to detect any
significant change in the classifier confidence scores and determines the chunk
size dynamically. If a significant change is detected, the classifier is updated
using only recent labeled training data instances. To address the concept drift
problem, our framework maintains an ensemble of classifier models, each trained
on different dynamically determined chunks. Both of classification and confi-
dence value calculation in our framework are semi supervised. So, the proposed
framework can work with delayed labeling and partially labeled training data. To
the best of our knowledge, our framework is the first semi supervised approach
which addresses both of concept drift and concept evolution using dynamically
determined chunk boundaries.

The primary contributions of our work are as follows: 1) We present a
technique to estimate classifier confidences in predicting labels of stream data
instances. 2) We propose a change detection approach which takes classifier confi-
dence values as input and detects if there is any significant change in the classifier
confidence. It detects the chunk boundary dynamically if there is a significant
change, which triggers updating of the existing classifier on recent labeled train-
ing data. Unlike other adaptive sliding window techniques which detect changes



Semi Supervised Adaptive Framework for Classifying Evolving Data Stream 385

in error rates of the classifier, our approach does not need true labels of all the
data instances for determining the chunk boundary dynamically. 3) We present
a semi supervised framework by integrating classification and novel class detec-
tion technique with the change detection approach to address both of concept
drift and concept evolution using dynamic chunk sizes. 4) We implement and
evaluate our proposed framework on several benchmark and synthetic data sets.
Results from the experiments show that, our framework outperforms other state
of the art approaches for data stream classification and novel class detection.

The rest of the paper is organized as follows: In Section 2, we briefly discuss
some related works. Section 3 describes our approach in detail. We describe the
data sets, evaluation metrics and present experiment results in Section 4. Finally,
Section 5 concludes the paper.

2 Related Works

Typically, existing data stream classification approaches address infinite length
and concept drift in data stream by dividing it in fixed length chunk sizes [2–4] or
using gradual forgetting [5,6]. However, setting a fixed size of the chunks or find-
ing the perfect decay function for gradual forgetting are challenging tasks if the
information on time-scale of change is not available [8]. Unlike these approaches,
we determine the chunk size dynamically based on a significant change in clas-
sifier confidence in predicting labels of test data instances.

There are two types of techniques in terms of change detection, i.e., detect-
ing change in the posterior distribution of the classes given the features P (y|X),
another one is detecting change in the generating distribution P (X) [10]. In the
literature, several methods[11,12] exist to deal with change of P (X) in multidi-
mensional data. However, detecting change in P (X) is a hard problem especially
in case of multi-dimensional data and does not work well to detect change of con-
cept in multi-dimensional multi-class data streaming context [13]. In this paper,
we focus on detecting changes in one dimensional classifier confidence values.

Various techniques to detect changes in P (y|X) have been proposed in [7,
8,13], which are mostly based on loss estimation of a predictor performance.
These approaches track any significant change in classifier error rate over time
which requires the true labels of the data instances. Instead of using the error
rate, we calculate classifier confidence in the prediction. Monteith et al. propose
a method to estimate classifier confidence in [14], but they use confidence scores
only for weighted voting. Unlike this approach, we use confidence scores both
for weighted voting and for determining chunk boundaries dynamically. We use
two sample t-test for one sided right tail hypothesis testing to detect changes
in classifier confidence scores. Our proposed framework uses this change detec-
tion technique to address both of concept drift and concept evolution problems
where [7,8,13] address only the concept drift problem. Unlike most of the above
approaches, both of the classification and change detection of our approach are
semi supervised in nature.



386 A. Haque et al.

3 Proposed Approach

As discussed in Section 2, finding the fixed size of chunks or rate of decay
is a non trivial task without prior knowledge on time-scale of change [8,10].
Moreover, approaches which use dynamic sliding window using change detection
techniques [7,8,13] are based on loss estimation of predictor performance. This
estimation needs true labels of the data instances to calculate the predictive per-
formance. However, in the real world data streams, labeled data is scarce and
not readily available. The above mentioned approaches might suffer in these
scenario.

Fig. 1. High level work flow of the framework

In this paper, we present a complete framework SCDMiner (Adaptive Semi
supervised Concept Drift Miner with novel class detection and delayed labeling)
for classifying evolving data streams with novel class detection. It predicts the
label of a data instance along with a confidence behind this prediction. Moreover,
we also propose a change detection technique which takes these confidence values
as input and detects any significant change in the classifier confidence over the
time. If a significant change is detected, chunk boundary is determined and the
classifier is updated using only the recent labeled data. In this way, SCDMiner
addresses different challenges of data stream mining discussed in Section 1.

Figure 1 depicts the high level workflow of SCDMiner. It maintains an
ensemble of L classification models and a dynamic window W containing clas-
sifier confidence scores in predicting labels of data instances in the stream. Let
{M1, ...,ML} be the models in the ensemble. As soon as an instance of the
data stream arrives, label for this instance is predicted by the current ensem-
ble along with a confidence score which is inserted into W . Subsequently, a
change detection technique is executed on W . If it detects a significant change in



Semi Supervised Adaptive Framework for Classifying Evolving Data Stream 387

the confidence scores, i.e., values stored in W , SCDMiner determines the chunk
boundary which contains all the instances corresponding to the values stored
in W . A new model is trained on the instances which are already labeled in this
chunk, and the ensemble is updated by including the newly trained model. On the
other hand, if the change detector finds no significant change in the confidence
scores, the current ensemble is retained and W keeps growing. Since, SCDMiner
tracks changes in the confidence values instead of the predictive performance, so
it does not need all the true labels immediately after the prediction.

3.1 Classification and Novel Class Detection

SCDMiner uses similar techniques as ECSMiner [2] for classification and novel
class detection. A k-NN based classifier is trained with the training data. Rather
than storing the raw training data, K clusters are built using a semi-supervised
K-means clustering, and the cluster summaries (mentioned as pseudopoints) of
each cluster are saved. These pseudopoints constitute the classification model.
The summary contains the centroid, radius, and frequencies of data points be-
longing to each class. The radius of a pseudopoint is equal to the distance between
the centroid and the farthest data point in the cluster. The raw data points are
discarded after creating the summary. Therefore, each model Mi is a collection of
K pseudopoints. A test instance xj is classified using Mi as follows. Let h ∈ Mi

be the pseudopoint whose centroid is nearest from xj . The predicted class of xj

is the class that has the highest frequency in h. A confidence score between 0
to 1 is calculated based on certain criteria (will be discussed shortly) which is
used as the weight of this prediction. The data point xj is classified using the
ensemble M by taking a weighted majority vote among all the classifiers.

Each pseudopoint corresponds to a “hypersphere” in the feature space with a
corresponding centroid and radius. The decision boundary of a model Mi is there-
fore the union of the feature spaces encompassed by all pseudopoints h ∈ Mi. The
decision boundary of the ensemble M is the union of the decision boundaries of
all models Mi ∈ M . If a test instance is outside of the ensemble decision bound-
ary, it is declared as an F-outlier, or filtered outlier. These are potential novel
class instances, and are temporarily stored in a buffer buf to observe whether
they are close to each other (cohesion) and farther apart from the data points
of other classes (separation) [2]. A new class is declared if there are sufficient
number of F-outliers fulfilling these conditions.

3.2 Calculation of Confidence Scores

We calculate three different confidence estimator values on each of the test
instance to calculate confidence of each individual model. Finally, we combine
all these individual model confidences to calculate the overall confidence of the
ensemble classifier. Assuming h is the closest pseudopoint from labeled data
instance x in model Mi, our proposed confidence estimators are as follows:

– Association is calculated by Rh − Di(x), where Rh is the radius of h and
Di(x) is the distance of x from h.



388 A. Haque et al.

– Purity is calculated by Nm/Ns, where Ns is the sum of all the frequencies
and Nm is the highest frequency in h.

– Representativeness is calculated by Ns/Nt, where Nt is the number of labeled
training instances used to build Mi and Ns is the sum of all the frequencies
in h.

Association, Purity and Representativeness of the model Mi for instance x
are denoted by Ax

i , Px
i and Rx

i respectively. Each of the confidence estimators
contribute to the final confidence in prediction of a model according to their
estimation capability. We measure this capability by calculating the correlation
coefficient between confidence estimator values and classification accuracy for
each model Mi using the labeled training instances as follows. Mi calculates
confidence estimator values for each of the labeled training instances. Let hk

ij be
the value of jth confidence estimator in Mi’s classification of instance k. Since
we use three confidence estimators, j ∈ {1, 2, 3}. Let ŷk

i be the prediction of Mi

on instance k and yk be the true label of that instance. Let vi be the vector
containing vk

i values indicating whether the classification of instance k by model
Mi is correct or not. In other words, vk

i = 1 if ŷk
i = yk and vk

i = 0 if ŷk
i �= yk.

Finally, correlation vector ri is calculated for model Mi. It contains rij values
which are pearson’s correlation coefficients between hij and vi for different j.

Correlation coefficients calculated in the training phase are used for classifica-
tion and confidence estimation during testing phase as follows. First, SCDMiner
calculates confidence estimator values hx

i for a test instance x. Let cx
i be the

confidence value of model Mi in predicting test instance x. cx
i is calculated by

taking the dot product of hx
i and vi, i.e., cx

i = hx
i .vi. Similarly, SCDMiner cal-

culates confidence value of each of the models in the ensemble along with the
prediction for each test instance. Each confidence value is normalized between 0
and 1. Normalized confidence value is treated as the weight of the prediction
ŷi by model Mi. Finally, to estimate confidence of the entire ensemble denoted
by cx, SCDMiner takes the average confidence of the models in the ensemble
towards the predicted class.

3.3 Change Detection and Updating the Ensemble

As discussed earlier, SCDMiner maintains a variable size window W to mon-
itor confidence scores of the ensemble classifier on recent data instances. The
expectation is, the size of W will increase during stable period, and will decrease
when there is a concept drift. The basic intuition behind this is, concept drift or
concept evolution causes change of class boundaries which worsens performance
of the classifier if not updated timely [15]. Confidence estimators are chosen in
such a way that estimator values are expected to be decreased if class bound-
aries are changed. For example, if class boundaries are changed due to concept
drift, more recent instances will be nearby the decision boundary or outside of
the decision boundary of the ensemble classifier. So, in case of these instances,
classifier models will have low association values. A change detection algorithm
is therefore applied on the confidence values stored in W to detect any significant



Semi Supervised Adaptive Framework for Classifying Evolving Data Stream 389

change in classifier confidence scores. If a change is detected, the base learning
algorithm is invoked to build a new model on data instances corresponding to
the current window W and subsequently W is shrinked. On the contrary, if no
change is detected, W keeps growing indicating a stable period.

Algorithm 1.. Change detection algorithm
1: W ← ∅
2: while true do
3: x ← the latest data point in the stream
4: [ŷ, cx] ← Classify(x) // cx is calculated as discussed in Section 3.2
5: W ← W ∪ cx

6: for n ← � to N − � do
7: Wb ← W [1 : n]
8: Wa ← W [n + 1 : N ]
9: tobs ← calcObsStat()

10: pV al ← Pr(t ≥ tobs | H0)
11: if pV al ≤ α then
12: RetrainClassifier()
13: ShrinkW()
14: end if
15: end for
16: end while

Algorithm 1 sketches our proposed change detection method. The variable
size window W is maintained as follows. After inserting each confidence value of
the ensemble classifier, our change detection technique divides W into two sub
windows. Let Wb and Wa are two sub windows within W , where Wa contains
performance values on more recent data instances than Wb. Change detection
algorithm detects any significant change of statistical properties between con-
tents of the sub windows for all possible combinations of sufficiently large Wa

and Wb (Lines 6 to 15). By mentioning sufficiently large, we mean that each of
the sub windows must have atleast � number of values. We use one tenth of the
size of W as � in our experiments.

We use statistical hypothesis testing to detect change of a statistical prop-
erty θ between elements of Wb and Wa. In this paper, we use the mean of the
population as θ. Let μa and μb be the mean of population of distribution in
Wa and Wb respectively. Let D be the difference between the mean of two sub
windows, i.e., D = μb − μa. Since we want to detect the case where Wb contains
greater average confidence value than Wa, i.e., decreasing classifier confidence,
we perform a one sided right tail hypothesis testing. In this hypothesis testing,
Null Hypothesis is D ≤ δ; in other words μb is at most δ more than μa. On the
contrary, Alternative Hypothesis is D > δ; in other words μb is greater than μa

and difference between them is more than δ. Here, δ is a small real number and
an user defined parameter.

Sample average X̄ is the estimator of the mean of the population μ. Let
X̄a and X̄b be the sample averages of the values in Wa and Wb respectively.



390 A. Haque et al.

According to Central Limit Theorem, if sample size n is large, X̄ follows a normal
distribution with expectation μ and variance σ2/n, where σ2 is the variance of
the population. Since we expect each of the sub windows Wa and Wb to contain
sufficiently large number of values and true variance of the distribution of these
values are unknown, we perform a two-sample t-test for the hypothesis testing.
Let n and m be the number of values in Wb and Wa respectively. Test statistic
for our case is the following-

t =
X̄b − X̄a − δ√

sb
2

n + sa
2

m

(1)

Where sa
2 and sb

2 are the sample variances of elements in Wa and Wb respec-
tively. Since the samples in Wa and Wb are not paired, i.e., independent samples,
the test statistic in Equation 1 follows a Student’s t-distribution with degree of
freedom γ, which is the Null Distribution in our case. The value γ is approx-
imated using the following Satterthwaite’s Formula. To limit the possibility
of false positives, we use a small value α as the level of significance so that
Pr[Reject H0 | H0 is true] ≤ α. H0 is rejected and a change point is detected if
tobs ≥ tγ,α holds. We build a new model on the data instances corresponding to
confidence values stored in W and drop the sub window Wb subsequently. Once
a new model is trained, it replaces the oldest model in the ensemble classifier.
This ensures that we have exactly L models in the ensemble at any given point
of time.

4 Experiment Results

We evaluate our proposed approach SCDMiner both on several benchmark real
world and synthetic data sets. In this section, we present and analyze the exper-
iment results.

4.1 Data Sets

We use three real and four different types of synthetic data sets to test perfor-
mance of SCDMiner along with some other baseline approaches. Table 1 depicts
the characteristics of the data sets.

ForestCover [16] contains geospatial descriptions of different types of forests.
We normalize the data set, and arrange the data in order to prepare it for novel
class detection so that in any chunk at most three and at least two classes co-
occur, and new classes appear randomly. In PAMAP [17], nine persons were
equipped with sensors that gathered a total of 52 streaming metrics features
whilst they performed activities. Electricity [16] data set contains data collected
from the Australian New South Wales Electricity Market.

SynCN (Synthetic Data with Concept-Drift and Novel Class) is a synthetic
data set generated using the following equation:

∑d
i=1 aixi = a0 as explained



Semi Supervised Adaptive Framework for Classifying Evolving Data Stream 391

Table 1. Characteristics of Data Sets

Name of Num of Num of Num of
Data set Instances Classes Features

ForestCover 150,000 7 54

PAMAP 150,000 19 52

Electricity 45,312 2 8

SynCN 100,000 20 40

SynRBF@0.001 100,000 7 70

SynRBF@0.002 100,000 7 70

SynRBF@0.003 100,000 7 70

in [2]. SynRBF@X are synthetic data sets generated using RandomRBFGener-
atorDrift of MOA [18] framework where X is the Speed of change of centroids
in the model. We generate three such data sets using different X to check how
efficiently different approaches can adapt to a concept drift.

We use ForestCover, PAMAP and SynCN data sets for simulating both con-
cept drift and novel classes. On the contrary, rest of the data sets are used to
test only concept drift capturing ability of different approaches.

4.2 Experiment Setup

We implement SCDMiner in Java version 1.7.0.51. To evaluate performance, we
use a virtual machine which is configured with 8 cores and 16 GB of RAM. The
clock speed of each virtual core is 2.4 GHZ.

We compare classification and novel class detection performance of our app-
roach SCDMiner with ECSMiner [2]. We choose ECSMiner since it is one of
the most robust and efficient frameworks available in the literature for classi-
fying data streams having both concept drift and concept evolution. However,
ECSMiner uses fixed chunk size where our proposed approach uses variable
chunk size based on the change in classifier confidence.

Other than that, we compare performance of SCDMiner with OzaBagAdwin
(OBA) and Adaptive Hoeffding Tree (AHT) implemented in MOA [18] frame-
work, since these approaches seem to have superior performance than others on
the data sets used in the experiments. Both of OBA and AHT use ADWIN [8] as
the change detector. These approaches do not have novel class detection feature.
So, we compare these approaches with SCDMiner only in terms of classification
performance.

We evaluate the above classifiers on a stream by first testing and then train-
ing. To evaluate SCDMiner and ECSMiner, we use 50 pseudopoints, ensemble
size 6, and 95% of labeled training data as suggested in [2]. On the contrary,
we use 100% labeled training data in case of OzaBagAdwin (OBA) and Adaptive
Hoeffding Tree (AHT), since training and updating of these approaches are fully
supervised.



392 A. Haque et al.

4.3 Performance Metrics

Let FN = total number of novel class instances misclassified as existing class,
FP = total number of existing class instances misclassified as novel class, TP =
total number of novel class instances correctly classified as novel class, Fe =
total number of existing class instances misclassified (other than FP ), Nc = total
number of novel class instances in the stream, N = total number of instances
the stream. We use the following performance metrics to evaluate our technique:

1. ERR: Total misclassification error (percent), i.e., (FP+FN+Fe)∗100
N .

2. Mnew: % of novel class instances Misclassified as existing class, i.e., FN∗100
Nc

.
3. Fnew: % of existing class instances Falsely identified as novel class, i.e.,

FP∗100
N−Nc

.
4. F2: Fβ score provides the overall performance of a classifier. In this paper,

we use β = 2, which gives us F2 = 5∗TP
5∗TP+4∗FN+FP .

Table 2. Summary of classification results

Name of SCDMiner ECSMiner AHT OBA
Data set Error% Error% Error% Error%

ForestCover 2.62 4.23 22.89 18.06

PAMAP 4.96 35.26 8.76 7.27

Electricity 0.0 0.02 27.72 22.26

SynCN 1.20 0.01 4.81 4.5

SynRBF@0.001 9.26 34.64 18.82 11.31

SynRBF@0.002 19.72 63.43 38.75 37.04

SynRBF@0.003 39.77 65.39 48.65 46.86

4.4 Classification Performance

As discussed earlier, SCDMiner avoids unnecessary training during stable period
and frequently updates the classifier when needed using dynamically deter-
mined chunks. As an instance, with increasing speed of change of centroids
X in SynRBF@X data sets, our change detection technique helps SCDMiner
to update the ensemble classifier more frequently to cope up with increasing
concept drift. SCDMiner creates 111 and 160 number of chunks while classify-
ing SynRBF@0.001 and SynRBF@0.003 data sets respectively where ECSMiner
creates same 69 number of chunks in both of the cases. We do not report the
number of chunks for all the data sets due to limited space in this paper.

Table 2 summarizes the classification error of the techniques on each data set
described in Section 4.1. In almost all the cases, our proposed approach SCD-
Miner clearly outperforms all the other approaches by large margin in terms of
classification accuracy. For example, in case of ForestCover data set, SCDMiner



Semi Supervised Adaptive Framework for Classifying Evolving Data Stream 393

Table 3. Summary of novel class detection results

Data set Method Mnew Fnew F2

ForestCover
SCDMiner 0.07 2.39 0.95
ECSMiner 8.42 2.13 0.88

PAMAP
SCDMiner 0.09 13.65 0.98
ECSMiner 0.05 37.53 0.45

SynCN
SCDMiner 0.0 0.01 0.99
ECSMiner 0.0 0.0 1.0

shows around 38%, 89% and 85% better performance than ECSMiner, AHT and
OBA respectively. Only in case of SynCN data set, ECSMiner shows slightly
better performance than SCDMiner. It can be observed that, in case of SynCN
data set, all the approaches show comparatively better result than the other data
sets which indicates that SynCN data set contains less frequent concept drift.
Since, ECSMiner uses fixed chunk size, it updates the model more frequently
during stable time period comparing with SCDMiner. From the experiment, we
know that SCDMiner updates the ensemble classifier only 7 times comparing
with 44 number of updates by ECSMiner. So, ECSMiner gains slightly better
accuracy in expense of more frequent training and updating the ensemble.

4.5 Novel Class Detection

Table 3 summarizes novel class detection performance of SCDMiner and ECS-
Miner on different data sets. From the experiment data, it is clear that SCD-
Miner outperforms ECSMiner by a large margin based on F2 measure on all
the data sets except SynCN . For example, in case of ForestCover data set,
SCDMiner shows 8% better performance than ECSMiner in terms of F2 mea-
sure. In case of SynCN data set, SCDMiner shows competitive performance.
ECSMiner gains slightly better performance due to more frequent updates as
discussed above.

5 Conclusion

In this paper, we present a framework SCDMiner which addresses most of the
challenges of classifying evolving data streams. It exploits a change detection
technique to determine the chunk boundaries dynamically. As a result, SCD-
Miner determines number of training based on the frequency and intensity of
concept drift. Results from the experiments show that, SCDMiner outperforms
other approaches in the stream mining domain in terms of both classification
and novel class detection accuracy.

Acknowledgments. This material is based upon work supported by NSF award no.
CNS-1229652 and DMS-1322353.



394 A. Haque et al.

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for on-demand clas-
sification of evolving data streams. IEEE Transactions on Knowledge and Data
Engineering 18(5), 577–589 (2006)

2. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.M.: Classification
and novel class detection in concept-drifting data streams under time constraints.
IEEE Trans. Knowl. Data Eng. 23(6), 859–874 (2011)

3. Parker, B., Khan, L.: Detecting and tracking concept class drift and emergence in
non-stationary fast data streams. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 2015

4. Aggarwal, C.C., Yu, P.S.: On classification of high-cardinality data streams. In:
SDM, pp. 802–813. SIAM (2010)

5. Koychev, I.: Tracking changing user interests through prior-learning of context.
In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347,
pp. 223–232. Springer, Heidelberg (2002)

6. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weight-
ing. Intell. Data Anal. 8(3), 281–300 (2004)

7. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004)

8. Bifet, A., Gavald, R.: Learning from time-changing data with adaptive windowing.
In: SDM. SIAM (2007)

9. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.M.: A practical app-
roach to classify evolving data streams: Training with limited amount of labeled
data. In: ICDM, pp. 929–934 (2008)

10. Gama, J.A., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

11. Song, X., Wu, M., Jermaine, C., Ranka, S.: Statistical change detection for multi-
dimensional data. In: 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 667–676, New York. ACM (2007)

12. Kuncheva, L.I., Faithfull, W.J.: PCA feature extraction for change detection in
multidimensional unlabelled data. IEEE Transactions on Neural Networks and
Learning Systems (2013)

13. Harel, M., Mannor, S., El-yaniv, R., Crammer, K.: Concept drift detection through
resampling. In: Proceedings of the 31st International Conference on Machine Learn-
ing (ICML 2014), JMLR Workshop and Conference Proceedings, pp. 1009–1017
(2014)

14. Monteith, K., Martinez, T.: Using multiple measures to predict confidence in
instance classification. In: The 2010 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8, July 2010

15. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
16. MOA: Moa massive online analysis-real time analytics for data streams repository

data sets (2015). http://moa.cms.waikato.ac.nz/datasets/
17. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity moni-

toring. In: ISWC, pp. 108–109. IEEE (2012)
18. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.:

Moa: massive online analysis, a framework for stream classification and clustering.
Journal of Machine Learning Research, 44–50 (2010)

http://moa.cms.waikato.ac.nz/datasets/

	Semi Supervised Adaptive Framework for Classifying Evolving Data Stream
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 Classification and Novel Class Detection
	3.2 Calculation of Confidence Scores
	3.3 Change Detection and Updating the Ensemble

	4 Experiment Results
	4.1 Data Sets
	4.2 Experiment Setup
	4.3 Performance Metrics
	4.4 Classification Performance
	4.5 Novel Class Detection

	5 Conclusion
	References


