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Abstract. In this paper, a plane moving average algorithm is proposed
for solving the urban road flow forecasting problem. This new approach
assembles information from relevant traffic time series and has the follow-
ing advantages: (1) it integrates both individual and similar flow patterns
in making prediction, (2) the training data set does not need to be large,
(3) it has more generalization capabilities in predicting unpredictable and
much complex urban traffic flow than previously used methods. To assess
the new model, we have performed extensive experiments on a real data
set, and the results give evidence of its superiority over existing methods.
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1 Introduction

Traffic flow forecasting is a vital component of transportation planning, traffic
control, intelligent transportation systems, and forecasting accurate traffic flow
conditions has long been considered as an active approach to regional traffic con-
trol [16]. The approach can be broadly classified under: i) short-term and ii) long-
term traffic flow forecasting [1]. Long-term forecasting provides monthly or yearly
traffic flow forecasting conditions and is commonly used for long-term planning
of transportation or construction. Short-term forecasting focuses on making pre-
dictions about traffic flow changes in the short-term, typically within one hour. In
particular, short-term traffic volume forecasts support proactive dynamic traffic
control. As a result, prediction technologies have gotten the attention of traffic
engineers and researchers. A wide variety of techniques have been applied in the
context of short-term traffic flow forecasting, depending upon the type of data
that are available and the potential end use of the forecast. These techniques
include moving average methods [17], k-nearest-neighbor methods [8], autore-
gressive MA (ARIMA) model or seasonal ARIMA (SARIMA) [19,20], neural
networks (NNs) [9], and combining technologies such as DA approach [18].
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Development of traffic flow forecasting models relies mainly on historical and
current traffic flow data. The problem of traffic flow forecasting is a standard time
series prediction task and the goal is to approximate the function that relates
future values of traffic flow to previous and current observations of traffic flow,
and the short-term traffic flow predictor represents a multi-input-single-output
system, which relates the past traffic flow conditions to the future traffic flow
conditions. Recent literatures have been concentrating on three aspects: i). pre-
senting new or enhanced approaches [2,11,15], ii). merging efficient forecasting
results [3,7,18], and iii). proposing effective pre-processing technologies [4,5,10].

However, it becomes clear that there are a few major problems with the
existing methods. Firstly, those methods use data collected from motorways and
freeways, where the change of traffic flow seems quite stable. Secondly, they use
data collected from single point sources, which are limited in a more complicated
situation. Thirdly, existing forecasting methods do not consider the temporal
data as complex interactions in densely populated urban road networks and
fresh comprehensive enough as well. Precisely, short-term traffic forecasting at
urban arterials forms a more complex problem than freeway predictions due to
constraints such as signalization, and urban flow collections contain lots of data
points that previous models cannot handle their relations. The irrelevant traffic
junctions may get the similar change rule and present the same flow pattern.
The traditional methods do not consider the similar flow patterns and mine
these similarities as well, they are often narrow in the angle of the data source
and some of them are modeled so complicated, these reasons make them not
appear to get practical application.

To solve those problems, we propose a Plane Moving Average (PMA) algo-
rithm. The main idea of PMA is that it uses the closest flow data to make
predictions through a new perspective. The PMA model is simple but effective
and builds upon two models: the Individual Model and the Similarity Model.
The first one, focuses on individual traffic junction using its own past vehicle
volumes, the second one utilizes all traffic junctions’ vehicle flow data based on
the customized WWL (Where We Like) method which is a kind of Top-K tech-
nology and both of two sub-models use PMA algorithm to make predictions.
Finally, We combine these two forecasting results by neural network to produce
a more accurate predictor.

The contributions of this paper can be summarized as follows.

– We propose a Plane Moving Average to predict the short-term traffic flow. It
is much simple but effective and uses a new angle of flow patterns in making
prediction.

– To the best of our knowledge, PMA is the first model that takes similar-
ity flow patterns into account and integrates both individual and similarity
outcomes.

– We perform extensive experiments using a real data set and the results
demonstrate the effectiveness of PMA.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 provides a brief description of preliminary preparation. Section 4
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designs and describes the PMA Modeling of the short-term traffic flow pre-
dictor. In Section 5, the performance is discussed. Finally, the discussion of the
conclusions and the future visions, regarding short-term traffic flow predictor
design using the PMA with WWL algorithm, is presented in Section 6.

2 Related Work

For the past two decades, a considerable effort has made to develop efficient
traffic prediction methods, which is backed by a huge number of literatures in
this field. In what follows, we will describe three categories of studies that are
most closely related to us.

Long-term prediction: Long-term prediction is researched in [13,14] and pro-
vides monthly or yearly flow forecasting conditions that is commonly used for
long-term planning. Papagiannaki explores the properties of the network traf-
fic, and propose a methodology that can be applied to forecast network traffic
volume months in the future.

Short-term prediction: Short-term prediction has been widely investigated [2,
3,7,11,15,18–20], which is concerned with the prediction of only the nearly next
period of time. Some of these methods make prediction with only the individual
models [19,20], while others use the combination models [3,7,18]. Williams uses
the well-known time series model ARIMA and SARIMA to make vehicular traf-
fic flow prediction [19,20]. Tan et al. proposes an aggregation model (DA) that is
elaborated using different fitting functions: the moving average (MA), exponential
smoothing (ES), ARIMA and simple neural network for evaluation of prediction
values [18]. Chan et al. provides a neural-network-based models for short-term
traffic flow forecasting using a hybrid exponential smoothing and levenberg?
Cmarquardt algorithm [3]. Davarynejad describes a multi-phase time series archi-
tecture to solve the motorway flow forecasting problem [7]. [2,11,15] incorporate
multiple factors more or less, such as travel speed, weather conditions and geo-
graphical features of a road. Given the travel speed and traffic volume of a road
segment, more accurate predicting model can be built.

Preprocessing techniques: Several studies adopt data preprocessing technique
to improve the final forecasting results [4,5,10]. Chan et al. proposes a simple
but effective training method to pre-process traffic flow data before training
purposes and the pre-processing approach intends to aid the back-propagation
algorithm to develop more accurate neural networks [4,5]. Gao et al. decomposes
the original data into burst data traffic and non-burst data and be predicted,
respectively [10]. These techniques indicate that the flow predictor based on
these pre-processed data outperform those that are developed based on original
data.

3 Preliminary Preparation

In this section, we will define a few terms that are required for the subsequent dis-
cussion and describe our modeling strategy for the vehicle traffic flow forecasting.
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Definition 1 (Sampling Flow). The traffic flow data are collected all the time,
each sampling flow refers to a total number of passed vehicles during a certain
period of time. Unaffectedly, we choose Δt minutes per period that the traffic
flow is collected within the time interval (t − Δt, t], t is an integer. q(t) is also
an integer and stands for the traffic volume in the No.t periods.

Definition 2 (Flow Pattern). For each sampling flow, q(t) is the source time
series. By analyzing the observed traffic flow data, it can be found that the traffic
flow pattern is almost cyclical every day. Thus, two relevant time series are con-
structed as the period series sa(t) and the daily series sb(t), denoted as follows:
I. sa(t) is a set that includes the previous ka periods traffic flow data before q(t).

sa(t) = {q(t − kaΔt), q(t − (ka − 1)Δt), ..., q(t − Δt), q̂(t)}.

II. sb(t) is a set that includes the previous traffic flow record within the same
time interval on kb days before q(t).

sb(t) = {q(t − 1440kb), q(t − 1440(kb − 1)), ..., q(t − 1440), q̂(t)}.

4 PMA Modeling

We use a new PMA model to solve the short-term traffic flow prediction problem.
PMA is an improvement algorithm of moving average(MA). Specifically, PMA
runs on the plane flow pattern (a 2-dimensional data structure).

Fig. 1. Plane flow pattern of individual model. q̂(t) is the predicted value.

In order to take into account both individual and similar flow patterns to
make the prediction, we propose two models, an Individual Model to model the
individual flow patterns by using its own past traffic flow data and a Similarity
Model to model the similar flow patterns by using alike historical traffic flow
data. They are combined by using neural network to generate a predictor. What
calls for special attention is that these two models share the PMA algorithm.
Next we will present data construction methods about similarity model, individ-
ual model, the PMA training approach and the model integration.
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4.1 Individual Model

We call sa(t) the horizontal flow pattern and call sb(t) vertical flow pattern, and
propose a new perspective to build a plane flow pattern (PFP) (see Figure 1).
There are sa(t), sb(t), ka periods before sb(t − kaΔt) and kb days before
sa(t − 1440kb) combined together to build plane flow pattern (PFP) and each
two adjacent value q’s timestamp differs either of Δt minutes and a day. We may
find out it is possible that kaΔt probably equals to 1440 which means that a
typical sampling flow will appear more than once in PFP and get reutilization.

Fig. 2. Different size of PFP during the PMA training process and ŷ is the forecasting
value

PMA algorithm is used to produce the forecasting results. For convenience,
we will use y(i, j) to refer the ith line of the jth column’s value of the plane flow
pattern. In order to describe PMA algorithm, we must define two factors in the
first place.

Pattern Weight. Each one of flow pattern could be benefited to the forecasting
accuracy, so we define a kind of pattern weight ρ to describe different pattern’s
contribution to the target predictions.

ρ(m − i) =
1
L

L∑

ka=1

y(m, δ) / y(m − i, δ − ka) 0 < i < m (1)

where L is the length of the PFP (see Figure 2) and δ refers to q̂(t)’s column, m
is the target day number of the data set.

PMA Forecasting Value. The computing method is similar to MA, a kind of
simple smoothing technique.

PMA(δ) =
1
W

W∑

kb=1

y(m − kb, δ) × ρ(m − kb) (2)
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where W is the width of the PFP (see Figure 2). Each PMA forecasting value
corresponds to a specific PMA size Li × Wi.

For example, consider this PFP
3 4 5 10
2 3 4 8
1 2 3 [4]

that consists of three kinds of sa

patterns and four kinds of sb patterns, updown adjacent patterns are one day
apart, the target value is 4. If we simply use flow pattern {1, 2, 3} and {10, 8} to
make the average forecasting value, we receive value 2 and 9 but none of them
is closed to 4. Using pattern weight we will get two weight 0.478 and 0.639, and
the final forecasting value would change to (10 × 0.478 + 8 × 0.639)/2 = 4.946.
Obviously, 4.946 is the nearest value.

Algorithm 1. PMA Algorithm
1: Firstly, for the PFP, work out the pattern weight ρ by (1);
2: 〈X, Y 〉 is the size of the training set;
3: for L = 1...X do
4: for W = 1...Y do
5: To each 〈L, W 〉, compute PMA forecasting value of all training samples by

(2);
6: Calculate the average RMSE between the each pair of forecasting value and

the actual value;
7: Update the optimal PMA size according to the minimum RMSE;
8: end for
9: end for

10: Use the optimal PMA size to make predictions.

In designing PMA training approach, the PMA size in the training set is
an important feature that needs to be carefully chosen. The PMA algorithm is
detailed in Algorithm 1. To obtain a PMA size that is capable of generalizing
and performing well with new cases, data samples are usually subdivided into
two sets: 1) a training set, 2) a testing set.

4.2 Similarity Model

In most cases, time series in the same category show the similar change rule, espe-
cially in a certain field (e.g., same area). For example, a flow that over 1000 vehi-
cles /h must not happen in a small town’s main road. Therefore, we put forward
a hybrid distance calculation criterion which combined Euclidean Distance and
Pearson Correlation Coefficient to evaluate time series similarity, and select top-
N similar time series to make predictions. Notice that the comparable time series
should be at least one day before and if not, no known value could be available.

WWL(WhereWeLike)Algorithm. Between each two time series(equilong),
we come up with a hybrid distance calculation which combined Euclidean Dis-
tance and Pearson Correlation Coefficient as the distance metric to define their
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similarities. Minimizing these two metrics can both ensure a highly similar level
about traffic volume and landmark as well. Firstly, filter time series by calculat-
ing Pearson Correlation Coefficient pcc(si, sj) =

∑m
t=1(s

i(t)−s̄i)(sj(t)−s̄j)√∑m
t=1(s

i(t)−s̄i)2
∑m

t=1(s
j(t)−s̄j)2

that pcc value is over 0.8 to obtain the highly closed shape. Secondly, calculate
Euclidean Distance by equation ed(si, sj) = ||si − sj || to make sure that the traf-
fic volume is as much as close and order them in the following way.

PFPsimilarity(t) = {s(t), s1(t), ..., si(t), ..., sd(t)}. (3)

where s(t) is the target flow pattern, si(t) stands for the No.i similar flow pattern
to s(t) and the number d is the parameter of WWL algorithm. Remember that
each si(t) should be at least one day before.

Empirically, in terms of flow data, the more similar the shape, the more useful
the flow pattern. Hence, for ease of running PMA, we put them bottom-top in
a straight line according to the order of similarity by WWL algorithm just the
same as PFPindividual(t) does in individual model and PMA algorithm is used
to produce its forecasting results.

4.3 Integration

Choosing a proper model to merge these two forecasting results is the primary
task. There are many popular ways can be applied to do combination, such as
Linear Regression, Logistic Regression, Neural Network, etc. For the effectiveness
and simplicity, we choose neural network to integrate these two models that we
have proposed.

As a result, the similarity model and individual model can get a series of
predicting values, Pw = (pw1 , pw2 , ..., pwm) (w = 1 for similarity model and w = 2
for individual model), where m is the number of the time-ordered sampling
results, and pwi is the forecasting value of time m. Certainly, we have a series of
real traffic flow, R = (r1, r2, ..., rm) as the predicting target. Then we can build
a data set like (P1,P2,R).

In designing NN models, the activation functions in the hidden layer and
the output layer are tansig and purelin, respectively. We use the Levenberg-
Marquardt BP algorithm as the learning algorithm because LM algorithm has
the quickest convergence and it is the best learning rule in this case.

hi = tansig(
2∑

j=1

wijp
j − θ1)

net = purelin(
n∑

i=1

wihi − θ2)

(4)

where n is the number of neurons in hidden layer and hi is the hidden layer
output and net is the final output. Although there is no precise rule on the
optimum size of the training set and testing set, it is recommended that the
training set should be larger.
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5 Performance Evaluation

We have made extensive experiments to evaluate the performance of the pro-
posed PMA model by using a real traffic flow data set. In this section, we will
first explain the dataset and experimental settings, followed by the evaluation
metrics to measure the performance and then, show the experimental results.

5.1 Study Area

The dataset used in the experiments consists of real vehicle passage records from
April 1, 2013 to May 5, 2013 that collected from the traffic surveillance system
of a major metropolitan area [6]. The dataset contains 140,440,933 real vehicle
passage records, involves totally 308 camera locations on the main roads and
we divide it into two parts, training set and testing set. The training set for the
above models covers the data from April 1, 2013 to May 2, 2013 and the testing
set is the traffic records from May 3 to May 5, 2013. We average the experi-
mental results of all camera locations. The traffic flow data were aggregated and
averaged into Δt minutes per period.

5.2 Pre-processing

We pre-process the dataset to form the flow patterns, counting the number of
vehicles in each peroid of time, [18] suggests setting time interval Δt as 60. If
a sampling flow is missing (always be 0 in this case) due to the camera’s break
or any other reason, we fix it by averaging the adjacent values. After the pre-
processing, we get a total of 10780 horizontal flow patterns and 7392 vertical
flow patterns and we predict traffic flow of future one period in the experiments.

5.3 Goodness-of-Fit Statistics

We use two widely employed evaluation statistics to assess the forecast accuracy
of the results.
1) The Root Mean Squared Error (RMSE) is a way to measure the average
error about the forecasting results and is calculated as

RMSE =

√√√√ 1
N

N∑

n=1

(yn − ŷn)2 (5)

2) The Mean Absolute Percentage Error (MPAE) is a way to measure the
proportional error about forecasting results and is calculated as

MPAE =
1
N

N∑

n=1

|yn − ŷn|
yn

× 100% (6)

Here, yn and ŷn are the observed and the forecast values of observation n, respec-
tively, and N is the total number of observations.
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Fig. 3. The training RMSEs of the individual models and similarity models with dif-
ferent values of 〈L, W 〉, respectively

5.4 Evaluation of PMA

We evaluate performance of PMA algorithm in these two sub-models, individual
model and similarity model, and their integrations. For each experiment, we
make predictions for all camera locations and report the average of the evaluation
statistics.

Firstly, We vary the parameters 〈L,W 〉 (mentioned before, is the size of
plane series) in (1) and (2) of individual model and similarity model. By reason
of the RMSE could reflect the absolute error in traffic volume, we choose it to
help training our models. Figure 3(a) and (b) show the RMSEs of the individual
models and similarity models with different values of 〈L,W 〉, in which the RMSE
is calculated based on 24 observations (60 mins, one day). Based on the results
showed in the picture, we choose L = 6,W = 2 for individual model and L =
7,W = 2 for similarity model as the optimal PMA size, when the RMSE is the
smallest, respectively.

Fig. 4. Hidden-node numbers versus the RMSE on the training set and testing sets,
and performance comparison among sub-models and their integration

Secondly, for the NN integration model, a series of NNs with different num-
bers of neurons in the hidden layer are trained. The number of neurons varies
from 4 to 12, and the RMSEs are calculated for both the training set and the
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testing set. According to its generalization ability on the testing set, the lower
the value of the RMSE is, the better the network model is. Figure 4(a) shows the
curve of the RMSE versus the number of hidden-layer neurons. In Figure 4(a),
we find that the best number of hidden-layer neurons is 8. Therefore, a 2-8-1 NN
model is selected for the further predictions. Figure 4(b) shows performance
comparison among two sub-models and their integration. We can see that the
RMSEs are significantly reduced and MPAEs are modestly improved.

5.5 Comparison of Results

Several single-source models including the näıve, MA, ARIMA, and NN model,
and an aggregation model are applied to time series sa(t) and sb(t). We compare
their predictions on the testing sets with the PMA model.
1) Näıve (or no-change) model for traffic flow forecasting has the simplest
form

q̂Na(t) = q(t − 1)

where q̂Na(t) is the forecast value at time interval t.
2) MA Model: An MA of order is computed by

ŷt+1 =
yt + yt−1 + tt−2 + ... + tt−k+1

k

where k is the number of terms in the MA [12]. The MA technique deals only
with the latest k periods of known data; the number of data points in each
average dose not change as time continues.
3) ARIMA Model: A general ARIMA model of order (r, d, s), where d is the
order of differencing. and orders r and s are the AR and MA operators.
4) Artificial NN: It is a single-source model that used for comparison with the
PMA. The NN model is used to fit the nonlinear relationship

q̂NN (t) = f1(q(t − 1), q(t − 2), ..., q(t − l))

The inputs of NN model are the traffic flow records at previous l successive time
intervals, and its output is the prediction of traffic flow at time interval t. The
number of inputs l and the number of hidden neurons in the NN model are also
optimized by experimentation.
5) Aggregation Model (DA): It integrates three submodels (MA, ES and
ARIMA) using simple neural network to combine the forecasting results.

Note that different models (näıve, MA, ARIMA, NN, DA) may need a differ-
ent length of historical data. Hence, the sample size should be properly chosen
for each model. For example, the length of time of the training data for the näıve
model is no more than one hour before the forecasting time, while that for the
training data for the ARIMA model at least covers two days before. For each
model, we choose the parameters by observing the best fitting or forecasting and
compare their forecasts on the same test sets.
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Fig. 5. RMSE and MPAE of different models in comparison

We generate forecasts for the future one period. Figure 5 show the RMSEs
and MAPEs of testing set with the different forecasting models. For the Näıve,
we simply use the last value as the forecasting value. As to the MA model, we
set k = 3 which is the most optimal parameter. For the ARIMA model, we set
parameter as (1, 1, 0) where RMSE is the smallest. We set α = 0.1 and γ = 0.1
in the ES model to build DA approach. For the last one, we select a 3-12-1 NN
model for comparison. Figure 5 (a) and (b) show the predictions that resulted
from the PMA model are better than the predictions that resulted from the
other five models.

6 Conclusion

In this paper, aiming at the repeatable pattern of the similar traffic flow time
series that previously methods did not consider, PFP has been constructed, a
PMA algorithm and an aggregation strategy have been proposed to build a short-
term traffic flow predictor. The PFP can be easily constructed from the source
time series and the forecasting value of the PMA model can be automatically
obtained by a computer program once the parameters are specified. Therefore,
this new proposed approach is not a time-consuming but, rather a feasible job.

The PFP make full use of the information in the source time series which is
collected on individual model as well as similarity model. By analyzing the fore-
casting performance of the näıve, MA, ARIMA, NN, DA and PMA, we have shown
that the PMA can provide more accurate results than those of the other models.

For the further work, with the development of big data, data mining and
machine learning, not limited to digital correlation, it is possible that we can
consider the geographic correlation and even each flow movements to describe
more potential characteristics and relationships of traffic flow. This problem
deserves further study.
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