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Abstract. Graph-based anomaly detection plays a vital role in various
application domains such as network intrusion detection, social network
analysis and road traffic monitoring. Although these evolving networks
impose a curse of dimensionality on the learning models, they usually
contain structural properties that anomaly detection schemes can exploit.
The major challenge is finding a feature extraction technique that pre-
serves graph structure while balancing the accuracy of the model against
its scalability. We propose the use of a scalable technique known as
random projection as a method for structure aware embedding, which
extracts relational properties of the network, and present an analytical
proof of this claim. We also analyze the effect of embedding on the accu-
racy of one-class support vector machines for anomaly detection on real
and synthetic datasets. We demonstrate that the embedding can be effec-
tive in terms of scalability without detrimental influence on the accuracy
of the learned model.

Keywords: Anomaly detection · Block structured graph · One-class
SVM · Random projection · Embedding

1 Introduction

Anomaly detection or outlier detection refers to the study of a system’s normal
state and the detection of unusual patterns based on the learned normal model.
Mining abnormal, i.e., anomalous, patterns is a significant component of many
data mining tasks. Numerous methodologies have been developed for detecting
anomalous data objects under the assumption that there is no relational infor-
mation between these objects [1]. However, in many scenarios such as biology,
social sciences and information systems, the data points cannot be considered
as independent entities. Data objects may demonstrate relationships or depen-
dencies that must be considered in the process of detecting abnormal behavior.
Graphs are known as a means of representing these relationships and network
structures in real world datasets.

Anomalies in graphs can be determined within one graph [2,3], i.e., static,
or over a sequence of graphs [4], i.e., dynamic. In this paper, we focus on the
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latter case where dynamic graphs can represent snapshots of evolving networks.
Our objective is to determine an anomalous graph by constructing a normal
model of the observed graphs. A major challenge in this task is to handle the
complexity of the relational data structure, and find a technique that can exploit
the relational properties of a graph data structure and represent the graph in a
simple abstraction. We also need to find a way to handle possible noisy datasets.
Therefore, we need a robust and scalable algorithm to summarize the graph
dataset and detect abnormal graphs instances among a set of graphs.

Graph embedding is a common approach for simplifying graph structure
and can be considered as a feature extraction process. Graph embedding meth-
ods assume that the data in a high dimensional space, i.e., a graph, usually
lies near a non-linear manifold with lower complexity [5]. Therefore, a required
pre-processing step in graph anomaly detection is graph embedding. Graph
embedding techniques can help us in devising more efficient and interpretable
anomaly detection techniques. Moreover, they provide a method of visualization
for analyzing graph data [5,6]. However we need to extract features that preserve
structural information of a graph and help us in detecting abnormal patterns.

To address this challenge, we propose a structure aware graph embedding
scheme. Our embedding approach is based on random projection and exploits
the Johnson and Lindenstrauss lemma [7] to provide a theoretical proof of its
performance. Although random projection has been proven to preserve pair-
wise distances in Euclidean space, its suitability for non-relational datasets has
received little attention. As opposed to traditional object or vectorial datasets,
graphs are relational data structures known for their ability to capture topolog-
ical proximity and structural properties.

In order to confirm that random projection has structure preserving proper-
ties for relational datasets, we need to prove that the Euclidean distance between
entities in a graph can be representative of node proximity. Therefore, we con-
sider the case of community structured graphs and assert that the Johnson and
Lindenstrauss theorem is also applicable in this case [7]. Moreover, we can infer
that the lower bound properties on the accuracy of random projection still holds
for the case of community structured graphs.

We apply these embedding techniques on community structured datasets and
analyze their influence on one-class Support Vector Machines (OCSVM) [8] as
the dimension of the embedding decreases. We demonstrate that for dimensions
much less than the Johnson and Lindestrauss lower bound, we can still achieve
high levels of accuracy. Moreover, we introduce perturbations to graphs in the
form of background noise and discuss their effect on the performance of our
anomaly detection approach, i.e., OCSVM.

The main contributions of this paper are as follows: (i) We propose a structure
aware embedding of community structured graphs based on random projections
such that the proximity of the nodes comprising a community is maintained
during embedding. (ii) We provide an analytical proof on the structure preserving
property of our embedding approach as well as stating that the lower bound on
the dimension of the random projection technique can also be applicable in our
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embedding approach. (iii) We demonstrate the effect of random projection on
the scalability and accuracy of OCSVM. (iv) We analyze the effect of background
noise on the performance of OCSVM in addition to random projection.

2 Related Work

Detecting abnormal events in graphs has received considerable attention in var-
ious disciplines [9,10]. If we are presented with a set of evolving graphs, an
important form of actionable information that we may extract is the normal and
abnormal patterns in such a set of graphs. Due to the large volume of data and
lack of labels, this task is usually performed in an unsupervised manner.

We discuss anomaly detection in graph data only for plain graphs where there
are only nodes and edges representing the data without any associated feature.
However these techniques can be extended to attributed graphs as well. Nodes
and/or edges in an attributed graph represent various features. For instance, a
node in a social network may have various education levels or interests, and links
may have different strengths.

Several approaches to pattern mining in graphs stem from distance based
techniques, which utilize a distance measure in order to detect abnormal vs.
normal structures. An example of such an approach is the k-medians algorithm
[11], which employs graph edit distance as a measure of graph similarity. Other
approaches take advantage of graph kernels [12], where kernel-based algorithms
are applied to graphs. They compare graphs based on common sequences of
nodes, or subgraphs. However, the computational complexity of these kernels
can become a limitation when applied to large graphs.

Graph centric features are common forms of information to extract from a
graph. These features can be computed from the combination of two, three or
more nodes, i.e., dyads, triads and communities. They can also be extracted
from the combination of all nodes in a more general manner [3]. Many intrusion
detection approaches [2] have utilized graph centric features in their process of
anomaly detection.

The main task in many graph-based anomaly detection schemes is to utilize
graph structure in the process of detecting anomalies. Many techniques try to
transform the problem of anomaly detection in graphs to the well-known prob-
lem of spotting outliers in an n-dimensional space. This step, known as graph
embedding, is considered as a necessary pre-processing phase in many domains.
Therefore we have considered a brief overview of embedding techniques. After
performing graph embedding, standard unsupervised anomaly detection schemes
such as OCSVM can be employed [13,14]. A thorough survey of such techniques
can be found in [1,15].

2.1 Large Scale Graph Embedding

Graphs represent relational information between various entities in a dataset.
However the structure of the graph is complex and is not readily suited to
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traditional classification and anomaly detection techniques that assume the avail-
ability of input data in a d-dimensional space. The input of such techniques is
the adjacency or distance matrix of the graph, and the outcome is the equivalent
point coordinates for each vetrex. One of the techniques to transform a graph
into its corresponding point coordinates is spectral embedding [16]. This app-
roach employs singular value decomposition to the adjacency matrix of a graph.
The result is a set of eigenvalues and eigenvectors. The largest eigenvalues and
their corresponding eigenvectors correspond to the dimensions that capture the
variability in the input data. Therefore, spectral embedding preserves the eigen-
vectors corresponding to the largest eigenvalues [17].

Another technique that has been developed for graph embedding based on
eigendecomposition is proposed in [17] where they use the Laplacian instead
of the adjacency matrix. The Laplacian matrix represents the connectedness
of a graph and can be computed from the adjacency matrix. In addition to
eigendecomposition based approaches, techniques such as spring embedding have
been developed. The intuition behind spring embedding is to simulate nodes as
mass particles and edges as springs. The optimum state for such a system is the
state where the energy is minimized. Note that such an objective function is non-
convex, and due to random initialization the results may be highly suboptimal.

Both of the mentioned approaches ignore the topology of the graph. Therefore
the outcome of embedding is not reversible for these techniques. The authors
in [5] try to learn a positive semi-definite kernel matrix from the adjacency
matrix and apply eigendecomposition to the learned kernel matrix. This method
makes the following assumption: the data in a high dimensional space lies near
a low dimensional nonlinear manifold. The kernel matrix aims to preserve the
local pairwise distances between neighboring nodes in a graph and therefore
simulates the distances on the manifold, as opposed to spectral techniques where
the outcomes, i.e., eigenvectors, were arbitrary directions. The embedding results
may be reversible to the original input by using algorithms such as nearest
neighbor and maximum weight spanning tree.

However, these techniques do not consider the distances between non-
neighbor nodes. Therefore the outcome of the reversed embedding will not have
the same connectivity as the original graph. In order to handle this problem,
another technique called structure preserving embedding (SPE) has been devel-
oped [6]. The learned kernel matrix in this approach considers the distances
between neighbor and non-neighbor nodes. SPE uses semidefinite programming
to learn a kernel matrix, and then applies eigen-decomposition on this matrix in
order to find the embedding coordinates.

In summary, graphs are complicated data structures and in order to detect
anomalies in these datasets, we need to begin by extracting the structural infor-
mation in the graphs. Many approaches try to embed these graphs into lower
dimensions without studying the structural proprieties that graphs offer. More-
over, the features extracted by these techniques may not be useful in constructing
an anomaly detection model. Therefore, we have analyzed a specific graph struc-
ture before embedding and proven its suitability for a dimensionality reduction
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technique known as random projection. This graph embedding approach pre-
serves the structure of the graphs and makes the anomaly detection scheme
more scalable.

3 Problem Statement and Proposed Approach

In this section, we present our hybrid scheme that comprises random projection
with a OCSVM for the purpose of anomaly detection in block structured graphs.

3.1 Preliminaries

We begin by formally defining the problem of anomaly detection in graphs. A
graph, G = (V,E), is characterized as a set of vertices V and edges E. In this
paper, we consider the case of observing a set of graphs evolving over time
with consistent node labeling, ϑ1..t = {G1

n, G2
n, ..., Gt

n}. Note that the number of
vertices n does not change over time, but edges can be removed or added.

We assume the graphs are plain and directed, but the method can also be
applied to undirected graphs. The adjacency matrix A of such graphs is an
n × n matrix where each Aij ∈ {0, 1}. We also assume that the majority of the
observed graphs are normal and have a specific community structured model.
Block structured graphs are discussed in the following section.

Our aim is to detect abnormal graphs, i.e., graphs with different structures,
by learning a normal model of the observed graphs. However, learning from
several hundreds of graphs that are each presented in an n × n matrix can be
computationally inefficient. The problem we address is to make the learning
process more scalable without losing accuracy by extracting structure aware
features from the graphs. This approach can also be viewed as a graph embedding
scheme.

The key intuition behind our approach is the fact that normal graphs share
common topological features. However, one of the main challenges is to find a
balance between the number of extracted features and the model accuracy. The
feature extraction phase results in A1...t = {A1

n×d, A
2
n×d, ..., A

t
n×d} where d is

the number of extracted features from each node. Thereafter, we can determine
the abnormality of new graphs using the learned model of normal inputs.

3.2 Block Structured Graphs

We now define the properties of block structured graphs [18], specifically com-
munity structured graph models. In this paper, we mainly focus on unweighted
directed graphs. The edges in such graphs demonstrate the existence of links
between vertices and can be represented in an adjacency matrix, An×n, where
n is the number vertices.

Block structured graphs are abundant in real world application such as social
networks [19]. A simple approach to generating such graphs is applying a stochas-
tic block model, i.e., a generative model for creating blocks in graphs [18,19].
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Such models can build realistic network structures such as community, core-
periphery and hierarchical network structures [18].

A stochastic block model generates graphs with the following characteristics:

– They fall into the category of random graph models.
– They can be decomposed to a set of k, 1 ≤ k ≤ n, smaller blocks.
– The membership of each vertex to these blocks is demonstrated through a

membership matrix M ∈ [0, 1]n×k.
– The probability of a link between blocks is defined in a matrix ωk×k.

The overall process of generating a block structured graph is formulated in
Equation 1:

ωij = λωplanted
ij + (1 − λ)ωrandom

ij . (1)

The variable ωplanted
ij creates the underlying blocks in the network based on

the block model that we choose. An example of a community structured graph
with four blocks is shown as follows:

⎡
⎢⎢⎣

b11 0 0 0
0 b22 0 0
0 0 b33 0
0 0 0 b44

⎤
⎥⎥⎦ (2)

However ωrandom
ij generates a random graph without any block model. The

parameter λ modifies the form of the graph from the extreme cases of fully
random, i.e., λ = 0, to fully structured, i.e., λ = 1. A detailed description of this
method can be found in [18].

3.3 Proposed Graph-Based Anomaly Detection Scheme

We now describe the main phases of our graph-based anomaly detection scheme.
We first define our structure aware embedding approach followed by an unsu-
pervised classifier to learn the normal graph model.

Graph Embedding Scheme. Graph embedding approaches assign point coor-
dinates to each vertex of a graph by optimizing a specific objective. For instance,
a possible objective of graph embedding can be minimizing edge crossings
between nodes. These approaches can also aim to preserve properties like node
proximity in order to capture the topology of a graph [6].

Our aim is to preserve node proximity in our graph embedding scheme, in
order to help identify community structures present in the input graphs. We pro-
pose to use a dimensionality reduction technique known as random projections
for this purpose. Random projection approaches are based on the Johnson and
Lindenstrauss lemma [7]. This lemma asserts that a set of points in Euclidean
space, P 1...n ∈ R

n×m, can be embedded into a d-dimensional Euclidean space,
P ′1...n ∈ Rn×d while preserving all pairwise distances to within a small factor ε.
The Johnson and Lindenstrauss lemma is presented in Lemma 1.



An Embedding Scheme for Detecting Anomalous Block Structured Graphs 221

Lemma 1. Given an integer n and ε > 0, let d be a positive integer such that
d ≥ d0 = O(ε−2 log n). For every set P of n points in R

m, there exists f : Rm →
R

d such that for all u, v ∈ P

(1 − ε)||u − v||2 ≤ ||f(u) − f(v)||2 ≤ (1 + ε)||u − v||2 (3)

We discuss three random projection matrices that have been shown to pre-
serve pairwise distances [20]. Since we are dealing with graphs, we consider each
node, vi, to be an instance and its associated row in the adjacency matrix, Ai,
as its m = n features. We denote n as the number of features in the original
space in the rest of the paper. The construction of the random projection matrix,
Rn×d = r

{i=1...n,j=1...d}
ij , can be based on the following structures formulated in

Equations 4 ,5, 6:

rij =

{
+1 with probability 1/2
−1 with probability 1/2

(4)

rij ∼
√

2 N (0, 1) (5)

rij =
√

3

⎧
⎪⎨
⎪⎩

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(6)

The embedded graph A′ is computed as A′
n×d =

1√
d
AR. In order to prove

that random projection extracts structure aware features from the graph, we
propose Lemma 2 which asserts that the expected Euclidean distance between
the vertices within the same block is close to zero while nodes belonging to
different blocks result in a larger expected Euclidean distance. Therefore, vertices
in a community structured graph can be treated as points in a Euclidean space
where the Euclidean distance reflects the nodes’ memberships to each block.

Lemma 2. Given a graph with a community block structure generated by ω, the
expected Euclidean distance between any two vertices u and v belonging to the
same block bii is close to zero.

E[||v − u||2] � 0 (7)

Proof. The density of a single block bij in the adjacency matrix is generated by
a binomial distribution, B(n, p), where n is the number of trials and p is the
probability of success. The number of trials and probability of success are deter-
mined by the size of the block βij and pij ∼ N (μij , σ

2
ij) respectively. Assigning

0 or 1 to a cell in a block is determined according to a uniform distribution

where every element in a block has the same probability of being 1,
B(n, p)

βij
. We

assume that βij is large enough and 0 ≤ pij ≤ 1, so that we can approximate
B(n, p) with a normal distribution Bi(n, p) ∼ N (np, np(1 − p)).

According to the properties of the normal distribution, the sum or difference
of two normal distributions with the same mean μ and variance σ2 is another
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normal distribution N (0, 2σ2). The expected Euclidean distance of two vertices
in the same block bii can be determined by the sum of squared differences of
normal distributions within all blocks:

E[||u − v||2] = E[||D < bii > ||2 +
∑
i�=j

||D < bij > ||2]

where D < bij >= Xi − Xj

Xi, Yj ∼ N (βijpij , βijpij(1 − pij))
D < bij >∼ N (0, 2βijpij(1 − pij))

(8)

Note that the parameter λ in Equation 1 controls the amount of background
noise, therefore we assume that (1 − λ) ≤ ε and as a result pij , i 	= j is a small
non-zero value. The expected value of Equation 8 is summarized in Equation 9
according to the rule E[X2] = dσ2 + μ2 for any random variable X ∈ R

d.
∑
i,j

E[||D < bij > ||2] =
∑
i,j

2dijβijpij(1 − pij) (9)

The same approach can be followed for determining the expected Euclidean dis-
tance of vertices coming from different blocks. It can be shown that given a
reasonable level of noise in the graphs, λ, the Euclidean distance can be con-
sidered as a proximity measure of community structured graphs. Therefore by
preserving pairwise distances, we are also maintaining the structural information
of the adjacency matrix.

The embedded adjacency matrix A′
n×d makes the learning model more scal-

able by reducing the number of inputs form n2 to n × d. The trade-off between
accuracy and scalability can be determined using the Johnson-Lindenstrauss
Lemma. However, our empirical results demonstrate that even for dimensions d
much less than the lower bound ε−2 log n, we achieve high levels of accuracy.

One-Class Support Vector Machine. We briefly describe the use of the
OCSVM algorithm for the purpose of anomaly detection [8]. A OCSVM maps
the reshaped embedded graphs A′′ = [A′

11...A
′
1dA

′
21...A

′
2d...A

′
n1...A

′
nd] into a high

dimensional feature space Φ by using a kernel k(x, y) = (Φ(x).Φ(y)) [8].
The dot product of the images in Φ(.) can be determined using a kernel

such as the radial basis function. OCSVM tries to find the maximum margin
hyperplane that separates the majority of the observed data, assuming mostly
normal samples, from the origin. Let f(x) = 〈w, x〉 + b to denote the resulting
hyperplane where the terms w and b are the normal vector and bias term of
the hyperplane respectively. When a test graph arrives, we use the reshaped
embedded representation of the graph and determine its label, i.e., normal or
anomalous, using f(x) as a measure of how anomalous is the graph.

4 Empirical Results

In this section we evaluate the quality of our anomaly detection scheme with
graph embedding as a pre-processing phase. The main objective of this empirical
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study is to determine the effect of dimensionality reduction on the computation
time, scalability and accuracy of our approach.

Lemma 2 provides the theoretical proof of the suitability of random pro-
jection as a graph embedding approach. In the beginning, the anomaly detec-
tion schemes have been provided with the reshaped adjacency matrix of the
graphs, i.e., high dimensional data. Thereafter, we apply random projection on
the input graphs and evaluate the accuracy and scalability of the anomaly detec-
tion scheme. We also study the influence of noise on the embedding technique.

We assume that the training data mainly consists of normal samples. How-
ever, in order to make the problem more realistic, we insert 5% of anomalous
instances into the unlabeled train dataset along with the normal instances.

4.1 Datasets

We generate the synthetic datasets with the aim of evaluating the structure
awareness of our embedding scheme and its robustness to the level of background
noise. In order to generate the datasets based on the stochastic block model, we
begin by defining the number of communities in the normal and anomalous
networks, the distribution of the node-to-community assignment, the underlying
density of each community and the background noise level.

The distribution of node-to-community assignments is uniform. Therefore,
we can make sure that the graphs have a number of dominant communities.
We determine the node membership to blocks by drawing random values from
a hypergeometric distribution. The density of each block is determined by a
Gaussian distribution with μ = 0.6, σ2 = 0.1. There are 1000 normal graphs in
addition to 100 anomalous ones where the number of nodes in each graph is 200.

In order to generate multiple normal and anomalous graphs, we preserve the
node-to-community assignments but modify the density of blocks. The levels of
introduced noise can be adjusted using the parameter λ in Equation 1. We have
varied the noise level from 1% to 19%. The number of communities in the normal
and anomalous graphs are 3 and 5, respectively. All other parameters remain the
same for the normal and abnormal graphs.

In addition to this synthetic dataset, we have used the network of American
football games, Karate club social network and 1997 US Air flights graph as
base datasets [21]. We added 1% noise by changing the values of 1% of the edges
in the adjacency matrix and created the anomalous dataset by introducing 10%
noise to the original dataset.

4.2 Results and Discussion

In order to evaluate the results, we have applied random projection with three
different methods according to Equations 4, 5, 6. The embedded graphs are then
used as training instances for OCSVM. We have used the hyperbolic tangent
kernel and polynomial kernel for our synthetic and real datasets. These kernel
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functions are formulated as k(u, v) = tanh(γ ×u′ × v + coef) and k(u, v) = (γ ×
u′ ×v+coef)3 respectively. The settings used for the real and synthetic datasets
are summarized in Table 1. The results on the synthetic dataset demonstrate

Table 1. Dataset Description and OCSVM parameter settings

Dataset Number of Nodes OCSVM Kernel OCSVM kernel parameters

Synthetic 200 Hyperbolic Tangent γ = 0.00000001, coef = 0

Football 115 Polynomial γ = 1.0 × 10−8, coef = 1

Karate 34 Hyperbolic Tangent γ = 1.0 × 10−8, coef = 0

US Air 332 Hyperbolic Tangent γ = 1.0 × 10−11, coef = 0

that the outcome of OCSVM varies when the embedding dimension is well below
the lower bound defined in Equation 3. We consider ε = 0.25, therefore the lower
bound on this dataset is 85. Fig. 1, 2 and Table. 2 depict the average training and
test accuracy over various levels of noise against the number of dimensions in the
projected space. As can be seen using Method 1 (Equation 4), we can achieve high
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Fig. 1. Synthetic graphs: Average
training accuracy vs. the dimension
of embedding, where randomization
methods 1, 2 and 3 are defined accord-
ing to Equations 4, 5, 6.
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Fig. 2. Synthetic graphs: Average test
accuracy vs. the dimension of embed-
ding, where randomization methods 1,
2 and 3 are defined according to Equa-
tions 4, 5, 6.

levels of accuracy from approximately 80% up to 100% given a graph embedding
with dimensions as low as d = 2 in most cases. The fluctuations in the diagrams
demonstrate the appropriate dimension and accuracy trade-off.

It is worth mentioning that the computation time of OCSVM as shown in
Table 3 on the original dataset without the embedding, i.e., d = 200, is dramat-
ically higher than when random projection is used, i.e., d < 20. Therefore we
achieve the scalability without losing high levels of accuracy.
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Table 2. Test accuracy of OCSVM using various dimensions of random projection on
Football and Karate datasets. Note that d = 115 and d = 34 in the top and bottom
tables corresponds to no embedding.

Football Method 1 Method 2 Method 3

d=2 93.43 ± 0.78 95.13 ± 0.086 13.2 ± 3.76

d=50 91.12 ± 0.24 98.73 ± 0.65 91.45 ± 6.04

d=115 100 ± 0.0 100 ± 0.0 100 ± 0.0

Karate Method 1 Method 2 Method 3

d=2 90.93 ± 0.52 91.13 ± 3.25 91.87 ± 0.31

d=7 90.13 ± 0.09 91.13 ± 0.26 93.07 + 0.74

d=34 96.33 ± 0.47 96.33 ± 0.47 96.33 ± 0.47

Table 3. Processing time in seconds of OCSVM using various dimensions of random
projection on the synthetic dataset. Note that d = 200 corresponds to no embedding.

Random Projection d = 2 d = 10 d = 20 d = 100 d = 200

Method 1 1.1 × 10−6 1.2 × 10−6 1.0 × 10−6 1.1 × 10−6 24.627

Method 2 1.1 × 10−6 1.0 × 10−6 1.3 × 10−6 1.1 × 10−6 26.551

Method 3 1.0 × 10−6 1.1 × 10−6 1.1 × 10−6 1.0 × 10−6 24.566

5 Conclusion and Future Work

In this paper, we have presented an approach for graph embedding and provided
an analytical proof as well as empirical evidence that this embedding technique
can preserve the underlying structure of communities in graph databases such
as social networks. This graph embedding technique has been used as a pre-
processing step for anomaly detection, i.e., using a OCSVM. We achieved high
accuracy after performing the graph embedding, therefore this technique can
provide a balance in terms of anomaly detection precision as well as scalability.

After applying different levels of perturbation to the real and synthetic
datasets, we observed that OCSVM still performs well after the embedding.
Therefore, we can infer that random projection is a robust technique for graph
embedding. According to the experimental studies, the combination of embed-
ding and OCSVM achieves high accuracy for dimensions much less that the lower
bound of Johnson and Lindenstrauss.

As a follow-up to this preliminary work, we are investigating the use of matrix
re-ordering techniques in order to pre-process other types of block structured
graphs such as core-periphery and hierarchy for random projection embedding.
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