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Abstract. This paper presents a novel approach for the detection of con-
textual anomalies. This approach, based on log-linear tensor factorization,
considers a stream of discrete events, each representing the co-occurence
of contextual elements, and detects events with low-probability. A para-
metric model is used to learn the joint probability of contextual elements,
in which the parameters are the factors of the event tensor. An efficient
method, based on Nesterov’s accelerated gradient ascent, is proposed to
learn these parameters. The proposed approach is evaluated on the low-
rank approximation of tensors, the prediction of future of events and the
detection of events representing abnormal behaviors. Results show our
method to outperform state of the art approaches for these problems.

Keywords: Contextual anomaly detection · Tensor factorization · Low-
rank approximation · Future event prediction

1 Introduction

The recent commercialization of technologies for the real-time identification,
location, and tracking of people and objects has opened the door to various
new applications in domains such as safety, logistics and retail. Among these
applications, the real-time detection of malicious or abnormal behaviors is of
critical importance to the safety of the population.

The approaches proposed for this problem over the years can be roughly
divided in two categories: the ones based on probabilistic generative models, and
those using trajectory patterns. Approaches in the first category use a generative
model, for instance based on Markov [7] or Hierarchical Dirichlet [9] processes, to
determine the likelihood of a sequence of observed events/actions, and consider
as abnormal behaviors the ones with a low probability. On the other hand, the
second category of methods represent behaviors as trajectories through space,
and considers as anomalies the trajectories that are significantly different from
commonly observed ones. Trajectories can be encoded in various ways, such
as sequences of points [16] or cubic splines [18]. Moreover, several approaches
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have been proposed to model the class of normal trajectories, for instance one-
class SVM (OCSVM) [16], Gaussian Mixture Model [18], sparse coding [14] and
frequent sub-sequence mining [10].

While these solutions are adequate in small and controlled environments, in
which well defined activities occur, they usually perform poorly in large and dyna-
mic environments, where the same sequence of events is almost never observed
twice. In such complex environments, the context of events (such as location, dura-
tion, person ID, type of job, etc.) is often more important than their sequence.
Thus, a person might take a slightly different route to go to the office, so analyz-
ing the exact trajectory would likely result in many false positives. Moreover, even
though the usual route is taken, this person’s behavior can be abnormal if he/she
goes to the office at an odd time (e.g., after 9 pm) or on a odd day (e.g., Sunday).
This behavior might however be considered normal for other employees, such as
security agents working on the evening or weekend shifts.

Although several approaches have been proposed to include contextual infor-
mation in generative models, for example [3] and [5], these approaches are limited
to specific contextual dimensions, such as the duration of events, and are unsuit-
able for complex environments. On the other hand, tensors have been recognized
as a powerful and efficient method to model complex contextual information,
and have been used in diverse applications like item recommendation [17] and
analyzing email exchanges [1]. Recently, tensor factorization [4,12,21] has been
explored as a novel way to detect anomalies, for instance, by tracking the recon-
struction error over time [19], detecting outliers in the factor subspace [8,20], or
decomposing a tensor as the sum of a low-rank component and a sparse residual
representing the anomaly [11].

In this paper, we propose a novel method based on log-linear tensor factor-
ization to detect contextual anomalies in large and complex environments. The
advantages of this method are as follows:

1. Unlike existing tensor factorization approaches, which focus on detecting
global anomalies [11,19] or distance-based outliers [8,20], our method learns
the joint distribution of contextual dimensions. This allows it to evaluate the
true probability of incoming events and mark low probability ones as abnor-
mal. Our method also has the ability to detect specific types of anomalies
efficiently, by using the probability of a given dimension conditioned over
the other ones.

2. While most tensor factorization approaches are based on a linear model, our
method uses a log-linear model, which can learn more complex relations in
the data. Moreover, the proposed model implicitly enforces non-negativity in
the tensor, a useful property when dealing with count data. In comparison,
state of the art factorization techniques like Non-negative Tensor Factoriza-
tion (NTF) [21] and Alternating Poisson Regression (APR) [4] impose non-
negativity by constraining the factors, making the inference process more
complex.

3. The proposed method uses an efficient inference strategy, based on Nesterov’s
accelerated gradient ascent, which has a complexity comparable to the state
of the art Alternating Least Square (ALS) method [17], but offers more
flexibility (e.g., ALS is limited to linear models and does not impose non-
negativity).
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The rest of this paper is divided as follows. In Section 2, we describe our
proposed model, its inference strategy, and the method used to detect anoma-
lies. Section 3 then evaluates our model on the tasks of approximating tensors
using a small number of parameters, predicting the occurrence of future events
and detecting abnormal events from their context. Finally, we summarize our
contributions and results in Section 4.

2 The Proposed Method

2.1 Model Description

We model the multi-dimensional context of an event using a set of discrete
random variables {X1, . . . , XD}, representing the identifier (ID) of contextual
elements like person, zone, time of day, etc. Each variable Xj has domain Ωj =
{1, . . . , Nj}, and we denote as Xj = ij the observation of element ij ∈ Ωj for
dimension j. To simplify the notation, we use xij as shorthand for this observa-
tion. For example, if the first dimension represents people, then xi1 means the
observation of person i1, from a group of N1 people, in the event.

We suppose that the observation of events depend on a set of latent fac-
tors Z = {Z1, . . . , ZD}, providing high-level information about the contextual
elements. We define as zij ∈ R

K the latent factor vector corresponding to the
ij-th element of dimension j, where K is a user-supplied parameter. Using the
previous example, zi1 would be the latent factor vector of person i1.

To model the joint probability of contextual elements, we use the following
log-linear model:

p(xi1 , . . . , xiD | Z) =
exp

(〈zi1 , . . . , ziD 〉)
N1∑

i′1=1

. . .
ND∑

i′D=1

exp
(〈zi′1 , . . . , zi′D 〉)

, (1)

where 〈zi1 , . . . ,ziD 〉 is the inner product between D vectors of size K:

〈zi1 , . . . ,ziD 〉 =
K∑

k=1

zi1,k · zi2,k · . . . · ziD−1,k · ziD,k. (2)

To learn the model parameters, we suppose that a set X of M observed events
(xi1 , . . . , xiD ) is available. This set can also be represented as a D-dimension
tensor, in which element (i1, . . . , iD) contains the number of events of X having
context (i1, . . . , iD). We call this structure the event tensor.

Considering the events as i.i.d., the observation likelihood of the events in X
corresponds to

p(X |Z) =
∏

(xi1 ,...,xiD
)∈X

p(xi1 , . . . , xiD | Z)

=
N1∏

i1=1

. . .

ND∏

iD=1

p(xi1 , . . . , xiD | Z)Mi1,...,iD , (3)
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where Mi1,...,iD is the number of events of X with context (i1, . . . , iD). Since the
number of events is small compared to the size of the multi-dimensional event
space (i.e., N1× . . .×Nj), only a few of these values are expected to be non-zero.
In other words, the event tensor should be very sparse. To regularize the solution,
we suppose the factor vectors as independent and following a zero-mean normal
distribution with uniform variance:

p(Z) =
D∏

j=1

Nj∏

ij=1

N (
zij ; 0, σ−1I

)
. (4)

The latent factors Z are found using the maximum a posteriori (MAP) esti-
mate, which corresponds to maximizing the following cost function:

f(Z) = log p(X |Z) + log p(Z)

=
N1∑

i1=1

. . .

ND∑

iD=1

Mi1,...,iD log p(xi1 , . . . , xiD | Z) − σ

2

D∑

j=1

Nj∑

ij=1

||zij ||2.(5)

Note that this is equivalent to minimizing the KL divergence between the model
and empirical distribution of events, as done in [4].

Since the cost function of Eq. (5) is both non-linear and non-concave, obtain-
ing globally optimum parameters is an intractable problem. Therefore, we must
optimize it using an iterative approach like the gradient ascent method, which
has a linear convergence rate. However, because this function is concave with
respect to each factor vector, we can instead use Nesterov’s accelerated gradient
method [15] for which the convergence rate is quadratic.

Unlike gradient ascent, Nesterov’s method performs two different steps at
each iteration. The first step is a simple gradient ascent step of size η from the
current solution z

(t)
ij

to a intermediate solution y
(t+1)
ij

:

y
(t+1)
ij

= z
(t)
ij

+ η
∂f

∂zij

(Z(t)). (6)

Let Ri1,...,iD (Z) be the difference between the observed number of events in
context (i1, . . . , iD) and the expected one according to parameters Z:

Ri1,...,iD (Z) = Mi1,...,iD − M · p(xi1 , . . . , xiD | Z). (7)

The gradient with respect to zij is given by

∂f

∂zij

(Z) =
N1∑

i1=1

. . .

Nj−1∑

ij−1=1

Nj+1∑

ij+1=1

. . .

ND∑

iD=1

Ri1,...,iD (Z) · ẑij − σzij , (8)

where ẑij is defined as the Hadamard (i.e., element-wise) product of all factor
vectors expect the one of dimension j:

ẑij =
(
zi1 ◦ . . . ◦ zij−1 ◦ zij+1 ◦ · · · ◦ ziD

)
, (9)
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Algorithm 1. Parameter inference using Nesterov’s method

The second step then finds the next solution z
(t+1)
ij

as a convex combination of
the two last intermediate solutions:

z
(t+1)
ij

= (1 − γt)y
(t+1)
ij

+ γt y
(t)
ij

, (10)

where γt are constants controlling the search momentum (e.g., see Algorithm 1).

2.2 Algorithm Summary and Complexity

The complete inference process is summarized in Algorithm 1. For a greater effi-
ciency, we group latent factor vectors of each dimension j in a single matrix Zj ,
and use standard matrix operations. We start by initializing the factor matrices
randomly following the prior distribution of parameter σ (lines 1-3). Then, at each
iteration of Nesterov’s method, the tensor X̂ of expected counts is reconstructed
using the current intermediate factors Yj (line 6). Operator � corresponds to the
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Khatri-Rao product and X(j) denotes the unfolding of tensor X along dimen-
sion j (see [12] for more information). For each dimension j, the gradient is then
computed using the residual between the observed and expected counts (line
10), and used to update factor matrix Zj (line 11). If the step size η is too
large, the solution may diverge. A strategy is thus added to detect such problem
and adjust η automatically (lines 12-13), thereby eliminating the need to tune
η manually. This strategy is known as backtracking line search. The momentum
constant and intermediate factors are finally updated as per Nesterov’s method
(lines 14-16). The process is repeated until converge is attained, or a maximum
number of iterations is exhausted.

The computational complexity of this algorithm is as follows. For each iter-
ation, reconstructing the expected tensor X̂ take O(K · ∏D

j=1 Nj) operations.
Likewise, updating the latent factors for each dimension can be done in O(K ·∏D

j=1 Nj). Therefore, the total complexity is O(Tmax · K · D · ∏D
j=1 Nj), where

Tmax is the maximum number of iterations.

2.3 Abnormal Event Detection

We use the latent factors learned during training to evaluate the joint proba-
bility of new events in real-time, and mark as abnormal those that have a low
probability. Let θ be a given probability threshold, an event (xi1 , . . . , xiD ) will
be marked as abnormal if p(xi1 , . . . , xiD | Z) < θ. By pre-computing the denom-
inator of Eq. (1), evaluating the joint probability of an incoming event requires
only O(D·K) operations.

To detect specific types of anomalies, we can instead evaluate the probability
of a single dimensional value, conditioned on all other dimensional values. For
example, we could evaluate the probability that the event occurs in a certain
zone, given the person, day, and time of day corresponding to that event. If the
conditional probability of the observed zone is much lower than that of other
zones, the event would then be marked as abnormal. Suppose, without loss of
generality that the query dimension is j = 1. The probability of xi1 , conditioned
on all other dimensions, is given by

p(xi1 |xi2 , . . . , xiD ,Z) =
exp

(〈zi1 , . . . , ziD 〉)
N1∑

i1=1

exp
(〈zi1 , . . . , ziD 〉)

. (11)

To evaluate the computational complexity of this query, we note that the inner
product can be decomposed as 〈zi1 , . . . , ziD 〉 = 〈zi1 , ẑi1〉. Thus, if we pre-
compute ẑi1 , each inner product computation has a time complexity in O(K),
where K is the size of the latent subspace. Since we have to compute N1 of these
inner products, the total cost of evaluating the query is in O(N1 ·K).

3 Experiments

We evaluated the performance of our method by conducting three sets of experi-
ments, related to the low-rank approximation of tensors, the prediction of future
events, and the detection of contextual anomalies.
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3.1 Low-Rank Approximation

The goal of this first experiment is to measure the ability of our method to fit
the event tensor using a small number of parameters.

Experimental Design. We generated two synthetic datasets, each containing
11 sparse 3D tensors of size 100×100×100 drawn from two types of distributions:
log-linear and Poisson. Each tensor was generated using three sets of 100 latent
factor vectors of size K =20, drawn from a Gaussian prior in the case of log-linear
tensors and a Gamma prior for Poisson tensors. The parameters of these priors
were selected to have a sparsity level between 70% and 90%, and the resulting
tensors normalized to have a total number of events equal to M = 106.

We used the first tensor to tune the regularization parameter σ of our method,
and the remaining 10 to evaluate its average performance in terms of Mean Abso-
lute Error (MAE). Factor sizes of K =5, 10, 15, 20 were tested. We compared our
Log-Linear Tensor Factorization (LLTF) method to two state-of-the-art factor-
ization approaches: Alternating Poisson Regression (APR) [4] and Non-Negative
Tensor Factorization (NTF) [21]. The Matlab Tensor Toolbox v2.5 [2] implemen-
tation of these methods was used.

Results and Discussion. Figure 1 (left) gives the average MAE obtained by the
three tested approaches on the Poisson (blue curves) and log-linear (green curves)
tensors. As expected, the reconstruction error decreases with higher values of K.
Moreover, our LLTF method outperforms APR and NTF for log-linear tensors,
especially for K = 20 where LLTF obtains an average MAE 2.26 times smaller
than APR and 2.41 smaller than NTF. For Poisson data, LLTF performs as well
as APR, even though this data is tailored to APR’s Poisson model not LLTF’s
log-linear one. Since it is not designed for sparse count data, NTF obtains a
lower performance than LLTF and APR for both log-linear and Poisson data.

5 10 15 20

1.07

1.08

1.09

1.1

1.11

M
A

E
 (

P
oi

ss
on

)

Latent factor vector size (K)
5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

M
A

E
 (

Lo
g−

lin
ea

r)

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

M
A

E
 (

Lo
g−

lin
ea

r)

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

M
A

E
 (

Lo
g−

lin
ea

r)

LLTF APR NTF

0 20 40 60 80 100
2

2.5

3

3.5

4

4.5

5x 10
7

N
LL

# of iterations

 

 

0 20 40 60 80 100
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2

M
A

E

0 20 40 60 80 100
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2

M
A

E

NLL Nesterov
NLL GA
MAE Nesterov
MAE GA

Fig. 1. (left) Average MAE obtained by LLTF, APR and NTF on 10 Poisson (blue
curves) and log-linear (green curves) tensors, for latent factor sizes of K = 5, 10, 15, 20.
(right) Convergence of our Nesterov-based method on a sample tensor, compared to
simple gradient ascent (GA).

Figure 1 (right) illustrates the convergence rate of our Nesterov-based method
on a sample tensor, compared to simple gradient ascent (GA). We see that the
convergence in terms of Negative Log-Likelihood (NLL) (blue curves) is attained
within 60 iterations, with an average time of 0.3 seconds per iteration, whereas
GA has not converged after 100 iterations. In contrast to our method, APR takes
on average 1.3 seconds per iteration using the same hardware, and requires over
1000 iterations to converge.
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3.2 Future Event Prediction

The second experiment evaluates how well our method can predict the number
of future events occurring in a given context. As the event tensor is sparse, this
experiment measures the ability of the model to predict events that were not
observed in the training data.

Experimental Design. Two real-life datasets were used for this experiment.

– Reality Mining [6]: Contains the tracking information of 106 students and
faculty members from the MIT Media Laboratory and Sloan Business school,
collected through their cell-phones in 2004-2005. From the 106 participants,
we picked 87 students as the remaining ones had either less than 7 days of data
or no data at all. For the locations, we used the 1027 unique cell-tower IDs,
corresponding to the attribute areaID.cellID in the data. The timestamps of
the tracking events were encoded using 24 discrete values, one for each hour
of the day. Combining these three dimensions, we obtained a 87×1027×24
tensor, each cell containing the number of times a person was recorded as
being near a given cell tower, at a given time of the day.

– Geo-Life Taxi Trajectories [22]: Contains the GPS trajectories of 10,357
taxis during the period of Feb. 2 to Feb. 8, 2008 within the city of Beijing.
From the 10,357 taxis in the data, we selected 259 taxis as the remaining ones
had either less than 5000 records of temporal locations or no records at all.
Since most records are located near the center of Beijing, we converted the
Cartesian coordinates (longitude and latitude) to log polar ones (log radius,
angle θ) using the city’s center as origin. We divided θ into 12 bins of 30◦
each, and the log radius into 10 bins, giving a total of 120 zones. Similar
to the Reality Mining dataset, we encoded the timestamps using 24 discrete
values, one for each hour of the day. Combining these three dimensions, we
obtained a 259×120×24 tensor, each cell containing the number of times a
taxi was recorded as being in a specific zone, at a given hour of the day.

We split the datasets temporally, putting the first 60% of each person or taxi’s
events in the training set, the following 20% in the validation set, which was used
to tune the regularization parameter σ, and the remaining 20% in the test set.
We predicted the number of events in the test set for each context (i.e., tensor
cell) by multiplying the probability obtained for this context during training
with the total number of events in the test set. We evaluated the prediction
accuracy of our method, in terms of MAE, RMSE (Root Mean Squared Error)
and NLL, and compared it once again to with APR and NTF. Note that the
Poisson distribution used in APR is specifically tailored to model count data. A
latent factor size of K =10 was used for all three methods.

Results and Discussion. The prediction accuracy of the three tested methods
on the Reality Mining and Taxi datasets is detailed in Table 1. We see that
LLTF outperforms APR and NTF, on both datasets and all three performance
metrics. Thus, LLTF obtains a MAE 2.32 times lower than APR in the Reality
Mining dataset, and 2.10 times lower in the Taxi dataset. We also note that APR
obtained infinite NLL values. This is because it gave a zero probability to the
events in the test set that were not observed in the training set. By regularizing
the factors, our model can better predict such unobserved events.
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Table 1. Prediction error obtained by our LLTF method, as well as the NTF and APR
approaches, on the Reality Mining (with σ = 6) and Taxi (with σ = 4) datasets. NLL
values have been scaled for convenience.

(a) Reality Mining

Metric LLTF APR [4] NTF [21]

MAE 0.384 0.892 0.894
RMSE 8.906 19.134 19.743

NLL ×106 7.270 ∞ 7.814

(b) GeoLife Taxi

Metric LLTF APR [4] NTF [21]

MAE 1.691 3.549 3.084
RMSE 15.319 19.657 24.220

NLL ×106 9.158 ∞ 9.719

3.3 Abnormal Event Detection

In this last experiment, we assess the usefulness of our method to detect abnor-
mal events from their context.

Experimental Design. Once again, the Reality Mining and GeoLife Taxi Tra-
jectory datasets were considered for this experiment. Three types of synthetic
anomalies were generated.

– Swap People: This type of anomalies simulates a person (or taxi) behaving
like someone different. To generate such anomalies, we first computed the
KL divergence between the event distribution (i.e., number of events for
each time and zone) of all pairs of persons. We then used weighted sampling
to pick random person pairs, those with a higher KL divergence having a
greater chance of being selected, and swapped the personID of all events
involving the corresponding two persons.

– Swap Times: This type of anomalies corresponds to a person going to
the same places, but at odd times (hours of the day). To generate these
anomalies, we randomly picked a person and computed the KL divergence
between the event distribution (number of events for each zone) of all time
pairs, for this person. Once more, the time pairs were picked using the KL
divergence as sampling weight, and the timeID of these pairs were swapped
in all the events of the selected person.

– Swap Zones: This last type anomaly corresponds to a person being active
at the same times, but in unusual zones. These anomalies were generated
using the same strategy as in Swap Times, except that the KL divergence
between the time distribution of events of each zone pair was considered.

We split the dataset as in the previous experiment, and used the training
data as is to learn the distribution of normal events. For both the validation and
testing sets, we generated 10 different sets of random anomalies, using the follow-
ing procedure. For Swap People anomalies, we swapped 5 pairs of people/taxis,
while for Swap Times and Swap Zones anomalies, we randomly picked 3 persons
and, for each of them, swapped 3 pairs of timeID or zoneID. The parameters of
the tested methods were tuned using the average Area Under the ROC Curve
(AUC) obtained over the 10 validation anomaly sets. Note that this tuning step
was necessary to have a fair comparison between the tested methods, but such
validation anomalies may not be available in real-life applications. Finally, the
performance of the tuned methods was evaluated as the mean AUC obtained
over the 10 test anomaly sets.
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We tested four variations of our proposed approach. In the first one, called
LLTF-Joint, the ROC curves are generated by evaluating the joint probability of
test examples, as defined in Eq. (1), and then computing the precision/recall for
increasing probability thresholds. The other three methods, denoted by LLTF-
D, where D = {Person,Time,Zone}, instead use the conditional probability of
a single dimension D given the other two dimensions, as described in Eq. (11).

We compared the performance of these methods with two well-known unsu-
pervised anomaly detection approaches: One-Class Support Vector Machines
(OCSVM) [16] and Kernel Density Estimation (KDE) [13]. For both of these
methods, the discrete dimensional values (e.g., personID) were first converted
to binary features using an indicator function, giving a total of 1138 binary fea-
tures for Reality Mining and 403 binary features for Taxi. PCA was then applied
to these binary features, using a percentage of variance value of 95%, and the
resulting components were normalized to have uniform variance. For OCSVM,
two parameters required tuning: ν, which controls the fraction of training exam-
ples allowed outside the learned region, and the RBF kernel parameter γ. The
signed distance to the hyperplane was used to evaluate the normality of test
examples, while computing the ROC curves. For KDE, we evaluated the proba-
bility of a test example x (projected in PCA space) as

p (x) ∝ 1
N

N∑

n=1

exp
{

− 1
h

||x − xn||2
}

, (12)

where xn are the training examples (in PCA space) and h is the kernel bandwidth
parameter, tuned on the validation data.

Results and Discussion. The mean ROC curves (and corresponding AUC
values), computed over the 10 test sets of each anomaly type, are shown in
Figure 2. Except for the Swap Time anomalies, our LLTF-Joint method obtained
a higher mean AUC than OCSVM and KDE. In particular, the AUC of LLTF-
Joint is 9% to 35% higher than OCSVM, and 10% to 37% higher than KDE,
for Swap People anomalies. Furthermore, the conditional probability model can
improve the detection of specific types of anomalies. For instance, LLTF-Person
obtained mean AUC values of 0.97 and 0.93 on the Swap People anomalies,
compared to 0.95 and 0.92 for LLTF-Joint. Similarly, LLTF-Time obtained a
mean AUC of 0.85 on the Swap Time anomalies of the Reality Mining dataset,
whereas this value was only 0.63 for LLTF-Joint.

The proposed method is also faster and more robust than OCSVM and KDE.
Thus, training LLTF for the Taxi dataset took less than 10 minutes on a Quad-
Core AMD 2.3 GHz processor with 8 GB of RAM, whereas training OCSVM
on this dataset required over 7 hours using the same hardware (no training
is necessary for KDE). Likewise, predicting anomalies in the test set took on
average 0.03 ms for LLTF, compared to 61 ms for OCSVM and 7 ms for KDE.
Moreover, while the best parameters for each type of anomaly (as selected in
validation) varied greatly in OCSVM and KDE, our method was more robust to
the choice of parameters: K = 25, σ = 8 was used for all anomalies in the RM
dataset, and K = 15, σ = 6 for all anomalies in Taxi.
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Fig. 2. Average ROC curves and AUC obtained by our LLTF, as well as the OCVSM
and KDE approaches, on 10 sets of synthetic anomalies generated from the Reality
Mining (RM) and Taxi datasets. Three types of anomalies are considered: swapping
the events of two people/taxis, and swapping the time/zone of events corresponding to
a person/taxi.

4 Conclusion

We presented a new approach, based on log-linear tensor factorization, for the
detection of contextual anomalies. A parametric model was proposed to estimate
the joint probability of dimensional values, in which the parameters are the fac-
tors of an event count tensor. To learn the factors, an efficient technique based
on Nesterov’s accelerated gradient ascent was presented. The proposed approach
was evaluated on three problems: the low-rank approximation of synthetic ten-
sors, the prediction of future of events in real-life data and the detection of events
representing abnormal behaviors. Results show our method to outperform state
of the art approaches for these problems, while being faster and more robust
than these approaches. As future work, we will investigate the use of additional
dimensions in the tensor, for instance to model the duration and sequence of
events, and extend the method to perform online learning.
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