
Clustering Over Data Streams Based
on Growing Neural Gas

Mohammed Ghesmoune(B), Mustapha Lebbah, and Hanene Azzag

University of Paris 13, Sorbonne Paris City LIPN-UMR 7030 - CNRS,
99, av. J-B Clément, 93430 Villetaneuse, France

{mohammed.ghesmoune,mustapha.lebbah,hanene.azzag}@lipn.univ-paris13.fr

Abstract. Clustering data streams requires a process capable of parti-
tioning observations continuously with restrictions of memory and time.
In this paper we present a new algorithm, called G-Stream, for clustering
data streams by making one pass over the data. G-Stream is based on
growing neural gas, that allows us to discover clusters of arbitrary shape
without any assumptions on the number of clusters. By using a reservoir,
and applying a fading function, the quality of clustering is improved. The
performance of the proposed algorithm is evaluated on public data sets.

Keywords: Data stream clustering · Topological structure · GNG

1 Introduction

Clustering is the problem of partitioning a set of observations into clusters such
that observations assigned in the same cluster are similar (or close) and the
inter-cluster observations are dissimilar (or distant). The other objective of clus-
tering is to quantify the data by replacing a group of observations (cluster)
with one representative observation (or prototype). A data stream is a sequence
of potentially infinite, non-stationary (i.e., the probability distribution of the
unknown data generation process may change over time) data arriving contin-
uously (which requires a single pass through the data) where random access
to data is not feasible and storing all arriving data is impractical. The stream
model is motivated by emerging applications involving massive data sets; for
example, customer click streams, financial transactions, search queries, Twitter
updates, telephone records, and observational science data are better modeled
as data streams [9]. Mining data streams can be defined as the process of find-
ing complex structures in large data. Clustering data streams requires a process
capable of partitioning observations continuously with restrictions of memory
and time. In the literature, many data stream algorithms have been adapted
from clustering algorithms, e.g., the density-based method DBScan [7,10], the
partitioning method k-means [1], or the message passing-based method AP [18].
In this paper, we propose G-Stream, a novel algorithm for discovering clusters of
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part II, LNAI 9078, pp. 134–145, 2015.
DOI: 10.1007/978-3-319-18032-8 11

Clustering Over Data Streams Based on Growing Neural Gas 135

arbitrary shape in an evolving data stream, whose main features and advantages
are described as follows: (a) The topological structure is represented by a graph
wherein each node represents a cluster, which is a set of “close” data points and
neighboring nodes (clusters) are connected by edges. The graph size is not fixed
but may evolve; (b) We use an exponential fading function to reduce the impact
of old data whose relevance diminishes over time. For the same reason, links
between nodes are also weighted by an exponential function; (c) Unlike many
other data stream algorithms that start by taking a significant number of data
points for initializing the model (these data points can be seen several times),
G-Stream starts with only two nodes. Several nodes (clusters) are created in
each iteration, unlike the traditional Growing Neural Gas (GNG) [8] algorithm;
(d) All aspects of G-Stream (including creation, deletion and fading of nodes,
edges management, and reservoir management) are performed online; (e) A reser-
voir is used to hold, temporarily, the very distant data points, compared to the
current prototypes. The remainder of this paper is organized as follows: Section
2 is dedicated to related works. Section 3 describes the G-Stream algorithm.
Section 4 reports the experimental evaluation on both synthetic and real-world
data sets. Section 5 concludes this paper.

2 Related Works

This section discusses previous works on data stream clustering problems, and
highlights the most relevant algorithms proposed in the literature to deal with
this problem. Most of the existing algorithms (e.g. StreamKM++ [1], CluS-
tream [2], DenStream [7], or ClusTree [12]) divide the clustering process in two
phases: (a) Online, the data will be summarized; (b) Offline, the final clusters will
be generated. Both CluStream [2] and DenStream [7] use a temporal extension
of the Clustering Feature vector [17] (called micro-clusters) to maintain statisti-
cal summaries about data locality and timestamps during the online phase. By
creating two kinds of micro-clusters (potential and outlier micro-clusters), Den-
Stream overcomes one of the drawbacks of CluStream, its sensitivity to noise. In
the offline phase, the micro-clusters found during the online phase are considered
as pseudo-points and will be passed to a variant of k -means in the CluStream
algorithm (resp. to a variant of DBScan in the DenStream algorithm) in order
to determine the final clusters. StreamKM++ [1] maintains a small outline of
the input data using the merge-and-reduce technique. The merge step is per-
formed by a means of a data structure, named the bucket set. The reduce step is
performed by a significantly different summary data structure, the coreset tree.
ClusTree [12] is an anytime algorithm that organizes micro-clusters in a tree
structure for faster access and automatically adapts micro-cluster sizes based on
the variance of the assigned data points. Any clustering algorithm, e.g. k-means
or DBScan, can be used in its offline phase. SOStream [10] is a density-based
clustering algorithm inspired by both the principle of the DBScan algorithm and
that of self-organizing maps (SOM) [11]. E-Stream [15] classifies the evolution of
data into five categories: appearance, disappearance, self evolution, merge, and

136 M. Ghesmoune et al.

Table 1. Comparison between algorithms (WL: weighted links, 2 phases :
online+offline)

split. It uses another data structure for saving summary statistics, named α-bin
histogram. StrAP [18], an extension of the Affinity Propagation algorithm for
data streams, uses a reservoir for saving potential outliers. In SVStream [16],
the data elements of a stream are mapped into a kernel space, and the sup-
port vectors are used as the summary information of the historical elements to
construct cluster boundaries of arbitrary shape. SVStream is based on support
vector clustering (SVC) and support vector domain description (SVDD) [16].
AING [6], an incremental GNG that learns automatically the distance thresholds
of nodes based on its neighbors and data points assigned to the node of inter-
est. It merges nodes when their number reaches a given upper-bound. Table 1
summarizes the main features offered by each algorithm in terms of: the basic
clustering algorithm, whether the algorithm identifies a topological structure or
not, whether the links (if they exist) between clusters (nodes) are weighted, how
many phases it adopts (online and offline), the types of operations for updat-
ing clusters (remove, merge, and split cluster), and whether a fading function is
used.

3 Growing Neural Gas Over Data Stream

In this section we introduce Growing Neural Gas over Data Stream (G-Stream)
and highlight some of its novel features. G-Stream is based on Growing Neu-
ral Gas (GNG), which is an incremental self-organizing approach that belongs
to the family of topological maps such as Self-Organizing Maps (SOM) [11] or
Neural Gas (NG) [13]. It is an unsupervised algorithm capable of representing
a high dimensional input space in a low dimensional feature map. Typically,
it is used for finding topological structures that closely reflect the structure of
the input distribution. We assume that the data stream consists of a sequence
DS = {x1,x2, ...,xn} of n (potentially infinite) elements of a data stream arriv-
ing at times T1, T2, ..., Tn, where xi = (x1

i , x
2
i , ..., x

d
i) is a vector in �d. The

notations used in this paper are presented in Table 2. At each time, G-Stream

Clustering Over Data Streams Based on Growing Neural Gas 137

Table 2. Notations used in the algorithm

Notation Description

DS = {x1,x2, ...,xn} set of n (potentially infinite) data streams

xi = (x1
i , x

2
i , ..., x

d
i) d-dimensional data point

ti time-stamp of data point xi

wc prototype wc = (w1
c , w

2
c , ..., w

d
c) of node c

δc threshold distance of node c

error(c) local accumulated error variable

weight(c) local weight variable

bmu best matching unit (the nearest node)

α1 winning node (the nearest node) adaptation factor

α2 winning node, neighbor adaptation factor

β cycle interval between node insertions

agemax oldest age allowed for an edge

λ1 decay factor in the fading function

λ2 strength factor in weighting edges

Fig. 1. Diagram of G-Stream algorithm

is represented by a graph C where each node represents a cluster. Each node
c ∈ C has a prototype wc = (w1

c , w2
c , ..., wd

c) (resp. a distance threshold δc) repre-
senting its position (resp. the distance from the node to the farthest data point
assigned to it). Starting with two nodes, and as a new data point is reached, the
nearest and the second-nearest nodes are identified, linked by an edge, and the
nearest node with its topological neighbors are moved toward the data point.
Each node has an accumulated error variable and a weight, which varies over
time using fading function. Using edge management, one, two or three nodes
are inserted into the graph between the nodes with the largest error values.
Nodes can also be removed if they are identified as being superfluous. Figure 1
represents a schematic diagram of the algorithm.

Fading function: In most data stream scenarios, more recent data can reflect
the emergence of new trends or changes in the data distribution [3]. There are

138 M. Ghesmoune et al.

three window models commonly studied in data streams: landmark, sliding and
damped. We consider, like many others, the damped window model, in which
the weight of each data point decreases exponentially with time t via a fading
function f(t) = 2−λ1(t−t0), where λ1 > 0, defines the rate of decay of the weight
over time, t denotes the current time and t0 is the timestamp of the data point.
The weight of a node is based on data points associated therewith: weight(c) =∑m

i=1 2−λ1(t−ti0), where m is the number of points assigned to the node c at the
current time t. If the weight of a node is less than a threshold value then this
node is considered as outdated and then deleted (with its links).

Edge management: The edge management procedure performs operations
related to updating graph edges, as illustrated in steps 13-16 of Algorithm 1.
The way to increase the age of edges is inspired by the fading function in the
sense that the creation time of a link is taken into account. Contrary to the fading
function, the age of the links will be strengthened by the exponential function
2λ2(t−t0), where λ2 > 0, defines the rate of growth of the age over time, t denotes
the current time and t0 is the creation time of the edge. The next step is to add
a new edge that connects the two closest nodes. The last step is to remove each
link exceeding a maximum age, since these links are no longer useful because
they were replaced by younger and shorter edges that were created during the
graph refinement in steps 18-22.

Reservoir management: The aim of using the reservoir is to hold, temporar-
ily, the distant data points. As mentioned before, each node has a threshold
distance. The first batch of data is assigned to nearest nodes without comparing
distance thresholds. The distance threshold of each node is learned by taking the
maximum distance of the node to the farthest point that it has been assigned.
When the reservoir is full, its data is re-passed for learning. They are placed
in the heap of the data stream, DS, to be dealt with first and the distance
thresholds of nodes are updated accordingly.

Computational complexity: It is obvious that the most consuming opera-
tions, in Algorithm 1, are steps 4, 18-22, 23, and 24 with O(k) time complex-
ity each, where k is the number of nodes in the graph. The node insertion
phase (step 22) is repeated 3.n

β times. Seeking the nearest node (step 4), fad-
ing function (step 22), and adjusting the error variable (step 24) phases are
repeated whenever a new data point is available, i.e. n times. The other steps
have a constant time complexity. Therefore, G-Stream has a complexity given
by n.(3.O(k)) + 3.n

β .O(k) = n.(3 + 3
β).O(k) = O(nk).

4 Experimental Evaluations

In this section, we present an experimental evaluation of the G-Stream algorithm.
We compared our algorithm with the GNG algorithm and several well-known
and relevant data stream clustering algorithms, including StreamKM++, Den-
Stream, and ClusTree. Our experiments were performed on MATLAB platform
using real-world and synthetic data sets. All the experiments are conducted on a

Clustering Over Data Streams Based on Growing Neural Gas 139

Algorithm 1. G-Stream
Data: DS = {x1,x2, ...,xn}
Result: set of nodes C = {c1, c2, ...} and their prototypes W = {wc1 ,wc2 , ...}

1 Initialize the node set C to contain two nodes, c1 and c2: C = {c1, c2};
2 while there is a data point to proceed do
3 Get the next data point in the data stream, xi;
4 Find the nearest node bmu1 ∈ C and the second nearest node bmu2 ∈ C;
5 if ‖xi − wbmu1‖ > δbmu1 then
6 put xi in the reservoir;
7 if the reservoir is full then Reservoir management ;

8 else
9 Increment the number of points assigned to bmu1;

10 error(bmu1) = error(bmu1) + ‖xi − wbmu1‖2;
11 Move bmu1 and its topological neighbors towards xi:

wbmu1 = wbmu1 + α1.(xi − wbmu1);
12 wc = wc + α2.(xi − wc) for all direct neighbors c of node bmu1;
13 Increment the age of all edges emanating from bmu1 and weight them;
14 if bmu1 and bmu2 are connected by an edge then set the age of this

edge to zero ;
15 else create an edge between bmu1 and bmu2, and mark its time stamp;
16 Remove the edges whose age is greater than agemax;
17 if the number of points passed is a multiple of a parameter β then
18 for i=1 to 3 do
19 Find the node q with the maximum accumulated error;
20 Find the neighbor f of q with the largest accumulated error;
21 Add the new node, r, half-way between nodes q and f ;
22 Insert the edges connecting the new node r with nodes q and f ,

and Remove the original edge between q and f ;

23 Apply fading, delete outdated and isolated nodes;
24 Finally, decrease the error of all units;

PC with Core(TM)i7-4800MQ with two 2.70 GHz processors, and 8GB of RAM,
which runs Windows 7 professional operating system.

4.1 Data Sets and Quality Criteria

To evaluate the clustering quality and scalability of the G-Stream algorithm
both real and synthetic data sets are used. The two synthetic data sets used
are DS1 and letter4. All the others are real-world publicly available data sets.
Table 3 overviews all the data sets used. DS1 is generated by http://impca.
curtin.edu.au/local/software/synthetic-data-sets.tar.bz2. The letter4 data set is
generated by a Java code https://github.com/feldob/Token-Cluster-Generator.
The Sea data set was taken from http://www.liaad.up.pt/kdus/products/
datasets-for-concept-drift. The HyperPlan data set was taken from [19]. The
real-world databases were taken from the UCI repository [4], which are the

http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
https://github.com/feldob/Token-Cluster-Generator
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift

140 M. Ghesmoune et al.

Table 3. Overview of all data sets

Datasets #records #features #classes

DS1 9,153 2 14

letter4 9,344 2 7

Sea 60,000 3 2

HyperPlan 100,000 10 5

KddCup99 494,021 41 23

CoverType 581,012 54 7

KDD-CUP’99 Network Intrusion Detection stream data set (KddCup99) and
the Forest CoverType data set (CoverType) respectively.

The algorithms are evaluated using three performance measures: Accuracy
(Purity), Normalized Mutual Information (NMI) and Rand index [14]. The value
of each measure lies between 0 and 1. A higher value indicates better clustering
results. The Accuracy (Purity) averages the fraction of items belonging to the

majority class of in each cluster. Acc =
∑K

i=1
|Nd

i |
|Ni|

K × 100%, where K denotes the
number of clusters, Nd

i denotes the number of points with the dominant class
label in cluster i, and Ni denotes the number of points in cluster i. Intuitively,
the accuracy (purity) measures the purity of the clusters with respect to the true
cluster (class) labels that are known for our data sets [7]. Normalized mutual
information provides a measure that is independent of the number of clusters
as compared to purity. It reaches its maximum value of 1 only when the two
sets of labels have a perfect one-to-one correspondence [14]. The Rand index
measures how accurately a clusterer can classify data elements by comparing
cluster labels with the underlying class labels. Given N data points, there are
a total of

(
N
2

)
distinct pairs of data points which can be categorized into four

categories: (a) pairs having the same cluster label and the same class label (their
number denoted as N11); (b) pairs having different cluster labels and different
class labels (their number denoted as N00); (c) pairs having the same cluster
label but different class labels (their number denoted as N10); (d) pairs having
different cluster labels but the same class label (their number denoted as N01).
The Rand index is defined as: Rand = (N11 + N00)/

(
N
2

)
.

4.2 Evaluation and Performance Comparison

This section aims to evaluate the clustering quality of the G-Stream and compare
it to well-known data stream clustering algorithms, as well as the GNG algo-
rithm. As explained in section 3, the GNG and G-Stream algorithms start with
two nodes. We used an online version of GNG but without the parameters that
we added expressly to show the interest and contribution of these parameters
in G-Stream. Therefore, we carried out experiments by initializing two nodes
randomly among the first 20 points and we repeated this 10 times. For com-
parison purposes, we used DenStream [7] and ClusTree [12] from the stream
R package [5]. Comparison is also performed with StreamKM++ [1] (this lat-
ter algorithm was coded in the C language). StreamKM++ was evaluated by

Clustering Over Data Streams Based on Growing Neural Gas 141

choosing randomly the seed node (please refer to [1] for details) among the first
20 points. DenStream was evaluated by performing a variant of the DBScan
algorithm in the offline step. ClusTree was evaluated by performing the k-means
algorithm in the offline step by setting the k parameter to 10. All experiments
were repeated 10 times and the results (the average value with its standard devi-
ation) are reported in Table 4. In this Table, it is noticeable that G-Stream’s
Accuracies (Acc) are higher for all data sets as compared to StreamKM++,
DenStream and CluStree, except for DenStream for the HyperPlan data set.
Its NMI values are higher than the other algorithms except for DenStream for
the Sea and HyperPlan data sets. Its Rand index values are higher than the
other algorithms except for StreamKM++ for the Sea data set. We recall that
G-Stream proceeds in one single phase whereas StreamKM++, DenStream and
ClusTree proceed in two phases (online and offline phase).

Figure 2a (resp. Figure 2b) compares G-Stream (red line with circle) with
GNG (blue line with cross) with respect to accuracy (resp. RMS error, number
of nodes) for the letter4 data set. For almost all cases, the accuracy value (resp.
RMS error) of G-Stream is higher (resp. is less) than the one of GNG. Figure 2c
compares the two algorithms in terms of the number of nodes creating the graph.
Despite that we create several nodes at each iteration (against a single node for
GNG), the number of nodes created by G-Stream becomes steady (against a
continuous increase for GNG) due to the application of the fading function. The
same result can be seen for the remaining data sets.

Table 4. Comparing G-Stream with different algorithms

Datasets G-Stream StreamKM++ DenStream ClusTree

DS1
Acc 0.9809±0.0061 0.6754±0.0183 0.7740±0.0000 0.6864±0.0275
NMI 0.7289±0.0113 0.7021±0.0209 0.6973±0.0000 0.7064±0.0168
Rand 0.8530±0.0024 0.8443±0.0048 0.8491±0.0000 0.8442±0.0066

letter4
Acc 0.9832±0.0050 0.6871±0.0263 0.8110±0.0000 0.8110±0.0000
NMI 0.6265±0.0064 0.5532±0.0219 0.1637±0.0000 0.2425±0.0000
Rand 0.8156±0.0015 0.7941±0.0145 0.5019±0.0000 0.5514±0.0000

Sea
Acc 0.8386± 0.0021 0.7886±0.0091 0.8240±0.0001 0.8224±0.0065
NMI 0.1380±0.0009 0.1463±0.0042 0.1646±0.0000 0.1583±0.0095
Rand 0.4707±0.0001 0.5072±0.0016 0.4700±0.006 0.4917±0.0034

HyperPlan
Acc 0.4238±0.0021 0.3966±0.0055 0.4250±0.0000 0.4380±0.0089
NMI 0.0186±0.0009 0.0103±0.0023 0.0208±0.0000 0.0170±0.0042
Rand 0.7042±0.0008 0.6674±0.0004 0.6038±0.0000 0.6529±0.0016

KddCup99
Acc 0.9805±0.0050 0.6922±0.1140 0.9544±0.0031 0.8182±0.1304
NMI 0.6670±0.0089 0.3926±0.2815 0.6290±0.0300 0.5724±0.2974
Rand 0.8380±0.0036 0.6339±0.2316 0.8164±0.0106 0.8289±0.1798

CoverType
Acc 0.6085±0.0087 0.5266±0.0074 0.5850±0.0011 0.5850±0.0000
NMI 0.1403±0.0029 0.0874±0.0086 0.0475±0.0201 0.0362±0.0042
Rand 0.6231±0.0008 0.6106±0.0018 0.4604±0.0070 0.5080±0.0005

142 M. Ghesmoune et al.

(a) accuracy (b) RMS error (c) Nb nodes

Fig. 2. Accuracy, RMS error, and number of nodes for G-Stream and GNG on letter4

4.3 Visual Validation

Figure 3 shows the evolution of the node creation by applying G-Stream on
the letter4 data set (green points represent data points of the data stream and
blue points are nodes of the graph with edges in blue lines). It illustrates that
G-Stream manages to recognize the structures of the data stream and can sep-
arate these structures with the best visualization. Figure 4 compares G-Stream
with GNG-online on 2-dimensional data sets (DS1 and letter4), in terms of
visual results i.e., the final graph found by GNG-online/G-Stream for each data
set. As illustrated on these figures, the G-Stream algorithm is superior to the
GNG-online with respect to visual structures found.

Fig. 3. Evolution of graph creation of G-Stream on letter4 (data set and topological
result)

4.4 Evolving Data Streams

In this subsection, we perform G-Stream on different data streams ordered by
class labels to demonstrate its effectiveness in clustering evolving data streams
(i.e., data points of the first class arrive in first, then the ones of the second,
third, etc. class). In this case, old concepts (class labels) disappear due to the
use of fading function. In the same time, new concepts (class labels) appear as

Clustering Over Data Streams Based on Growing Neural Gas 143

(a) G-Stream on
DS1

(b) GNG-online on
DS1

(c) G-Stream on let-
ter4

(d) GNG-online on
letter4

Fig. 4. Visual result comparison of G-Stream with GNG-online (dataset and topolog-
ical result)

new data points arrive. We use the same experimental protocol as described in
section 4.2, i.e., we did experiments by initializing two nodes randomly among
the first 20 points, we repeated this 10 times, and we report the average value
with its standard deviation in Figure 5a. Figure 5a shows that G-Stream can
find clusters with performance measures as comparable to those without ordering
classes.

(a) G-Stream with and without ordering
of classes

(b) Execution time (in seconds)

4.5 Execution Time

The efficiency of algorithms is measured by the execution time. Referring to
the computational complexity we calculated in Section 3, the execution time
strongly depends to the number of nodes creating the graph and the size of
the data stream. We recall that G-Stream is implemented in MATLAB and
SVStream is the only MATLAB program that we have (the other algorithms
are implemented in Java, R, or C languages). Figure 5b shows the execution
time of G-Stream and that of SVStream. We can see that both the execution

144 M. Ghesmoune et al.

time of G-Stream and SVStream grow as the size of the data stream grows, and
G-Stream is more efficient than SVStream.

5 Conclusion

In this paper, we have proposed G-Stream, an efficient method for topological
clustering an evolving data stream in an online manner. In G-Stream, the nodes
are weighted by a fading function and the edges by an exponential function.
Starting with two nodes, G-Stream confronts the arriving data points to the cur-
rent prototypes, storing the very distant ones in a reservoir, learns the threshold
distances automatically, and many nodes are created in each iteration. Experi-
mental evaluation over a number of real and synthetic data sets demonstrates
the effectiveness and efficiency of G-Stream in discovering clusters of arbitrary
shape. Our experiments show that G-Stream outperformed the GNG algorithm
in terms of visual results and quantitative criteria such as accuracy, the Rand
index and NMI. Its performance, in terms of clustering quality as compared to
three relevant data stream algorithms are promising. We plan in the future to
implement adaptive windows, make our algorithm as autonomous as possible
and develop it in Spark Streaming.

Acknowledgments. This research has been supported by the French Foundation
FSN, PIA Grant Big data-Investissements d’Avenir. The project is titled ”Square Pre-
dict” (http://square-predict.net/). We thank anonymous reviewers for their insightful
remarks.

References

1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: StreamKM++: A clustering algorithm for data streams. ACM Journal of
Experimental Algorithmics, 17(1) (2012)

2. Aggarwal, C.C., Watson, T.J., Ctr, R., Han, J., Wang, J., Yu, P.S.: A framework
for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)

3. de Andrade Silva, J., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho,
A.C.P.L.F., Gama, J.: Data stream clustering: A survey. ACM Comput. Surv.
46(1), 13 (2013)

4. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.
ics.uci.edu/ml

5. Bolanos, M., Forrest, J., Hahsler, M.: Stream: Infrastructure for Data Stream Min-
ing (2014). http://CRAN.R-project.org/package=stream, r package version 0.2-0

6. Bouguelia, M.R., Beläıd, Y., Beläıd, A.: An adaptive incremental clustering method
based on the growing neural gas algorithm. In: ICPRAM, pp. 42–49 (2013)

7. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM, pp. 328–339 (2006)

8. Fritzke, B.: A growing neural gas network learns topologies. In: NIPS, pp. 625–632
(1994)

http://square-predict.net/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://CRAN.R-project.org/package=stream

Clustering Over Data Streams Based on Growing Neural Gas 145

9. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: Theory and practice. IEEE Transactions on Knowledge and Data
Engineering 15(3), 515–528 (2003)

10. Isaksson, C., Dunham, M.H., Hahsler, M.: SOStream: Self Organizing Density-
Based Clustering over Data Stream. In: Perner, P. (ed.) MLDM 2012. LNCS,
vol. 7376, pp. 264–278. Springer, Heidelberg (2012)

11. Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn.
Springer, Secaucus (2001)

12. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The ClusTree: indexing micro-clusters
for anytime stream mining. Knowledge and Information Systems 29(2), 249–272
(2011)

13. Martinetz, T., Schulten, K.: A “Neural-Gas” Network Learns Topologies. Artificial
Neural Networks I, 397–402 (1991)

14. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

15. Udommanetanakit, K., Rakthanmanon, T., Waiyamai, K.: E-Stream: Evolution-
Based Technique for Stream Clustering. In: Alhajj, R., Gao, H., Li, X., Li, J.,
Zäıane, O.R. (eds.) ADMA 2007. LNCS (LNAI), vol. 4632, pp. 605–615. Springer,
Heidelberg (2007)

16. Wang, C., Lai, J., Huang, D., Zheng, W.: SVStream: A support vector-based algo-
rithm for clustering data streams. IEEE Trans. Knowl. Data Eng. 25(6), 1410–1424
(2013). http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.263

17. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method
for very large databases. In: SIGMOD Conference, pp. 103–114 (1996)

18. Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation.
In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II.
LNCS (LNAI), vol. 5212, pp. 628–643. Springer, Heidelberg (2008)

19. Zhu, X.H.: Stream data mining repository (web site) (2010). http://www.cse.fau.
edu/xqzhu/stream.html

http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.263
http://www.cse.fau.edu/ xqzhu/stream.html
http://www.cse.fau.edu/ xqzhu/stream.html

	Clustering Over Data Streams Based on Growing Neural Gas
	1 Introduction
	2 Related Works
	3 Growing Neural Gas Over Data Stream
	4 Experimental Evaluations
	4.1 Data Sets and Quality Criteria
	4.2 Evaluation and Performance Comparison
	4.3 Visual Validation
	4.4 Evolving Data Streams
	4.5 Execution Time

	5 Conclusion
	References

