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Abstract. Propagation is at the very core of Constraint Programming
(CP): it can provide significant performance boosts as long as the search
space reduction is not outweighed by the cost for running the propaga-
tors. A lot of research effort in the CP community is directed toward
improving this trade-off, which for a given type of filtering amounts to
reducing the computation cost. This is done chiefly by 1) devising more
efficient algorithms or by 2) using on-line control policies to limit the
propagator activations. In both cases, obtaining improvements is a long
and demanding process with uncertain outcome. We propose a method
to assess the potential gain of both approaches before actually starting
the endeavor, providing the community with a tool to best direct the
research efforts. Our approach is based on instrumenting the constraint
solver to collect statistics, and we rely on replaying search trees to obtain
more realistic assessments. The overall approach is easy to setup and is
showcased on the Energetic Reasoning (ER) and the Revisited Cardinal-
ity Reasoning for BinPacking (RCRB) propagators.

Keywords: Constraint programming ·Propagator ·Analysis ·Energetic
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1 Introduction

Propagation is undoubtedly one of the signature features of Constraint Program-
ming (CP): it makes a constraint solver capable of skipping large portions of the
search space, possibly achieving significant performance boosts. In practice, the
effectiveness of the approach depends on the balance between the time saved by
filtering values and the time spent in running the propagators. Improving this
trade-off is the objective of huge research efforts in the CP community.

Here, we consider the specific case where the goal is to optimize the per-
formance of a given propagation technique, without changing its input-output
behavior. For example, we may be interested in finding a more efficient way to
enforce Generalized Arc Consistency (GAC) for a specific constraint. In general,
this goal can be achieved by either 1) devising more efficient algorithms that
achieve the same filtering, or by 2) guarding the activation of the propagator
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with a necessary condition to reduce fruitless activations1. In both cases, obtain-
ing improvements is a long and demanding process with uncertain outcome.

As an example, the sequence constraint was introduced in 1994 [5], but no
poly-time GAC algorithm was available until 2006 [21]. Then, the original GAC
run time of O(n3) was not low enough to consistently beat weaker (but cheaper)
propagators. This motivated improvement efforts that are still ongoing [6,9,11].
The trade-off between computation time and pruning power is even more critical
for NP-hard constraints. For example, Energetic Reasoning (ER) was proposed
as a (powerful) filtering technique for cumulative in the nineties (see [3,14]):
however, the approach has never been widely employed due to its large run time.
Improving the original O(n3) complexity took in this case around 20 years [12],
while an approach to reduce the overhead by guarding the ER activation with a
necessary condition was presented only in 2011 [7].

In general, this line of research would greatly benefit from tools and methods
to probe the potential of propagation techniques and to assess the likely impact
of specific improvement measures. Such tools would allow the researchers to
focus their efforts in the most promising directions (notice that for preliminary
analysis, profiling tools already allow to reason about potential linear speedups).

A typical approach for evaluating propagators consists in measuring time
and fails w.r.t. a baseline propagator, on a set of benchmark instances that are
solved to completeness. This allows to asses the propagator performance, but
provides little or no information on how to improve it. It is also common to use
static search strategies to make the evaluation fair and rigorous, with the risk to
reduce the analysis significance, since dynamic strategies are often preferred in
practice. Finally, the need to solve the problems to completeness may bias the
analysis toward relatively small instances.

We propose to extend this basic evaluation approach by: 1) instrumenting the
solver to collect information about the constraint; 2) storing and replaying search
trees to enable fair comparisons with arbitrary search strategies and instance
sizes. Our approach is simple and allows to assess the amount of improvement
that could be obtained by reducing the propagator run-time or by controlling its
activation. We use the Energetic Reasoning (ER) and the Revisited Cardinality
Reasoning for BinPacking (RCRB) propagators as case studies.

2 The Proposed Approach

Formally, we consider the problem of evaluating a filtering function φ that maps
a set of domains D0, . . . Dn−1 to a second set of domains D′

0, . . . D
′
n−1 such that

D′
i ⊆ Di. In practice, φ may represent a propagator for enforcing GAC or a

domain-specific consistency level (e.g. Energetic Reasoning), or it can be some
kind of meta-propagation scheme such as Singleton Arc Consistency [8].

1 A more general approach consists in trying to predict when the propagator should be
triggered: we plan to develop tools to analyze this scenario as part of future research.
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We assume we are interested in reducing the time for computing φ, without
changing the function definition. In particular, our goal is to assess the poten-
tial of two improvement directions: 1) increasing the efficiency of the current
implementation and 2) guarding the activation of φ with a necessary condition.

Measuring the Performance: In order to make such an assessment, we must first
be able to measure the performance of the current implementation of φ. Like
many other approaches, we do this by comparing the time needed to solve a
target CSP with and without φ. Let M and M ∪ φ denote the two CSPs, with
their variables, domains, and constraints. For the comparison to be meaningful,
two well known conditions must be respected:
1. The two runs must explore the same search space;
2. All search nodes that are visited by both runs are visited in the same order.

The first requirement is always met as long as M and M ∪ φ are semantically
equivalent (i.e. they have the same solutions) and the problem is solved to com-
pleteness (feasibility or optimality).

Without the second requirement, one of the approaches could get an unfair
advantage if the search strategy quickly hits a feasible solution (and stops, for
feasibility problems), or a high-quality solution (and gets a good bound, for
optimality problems). Moreover, if the second requirement is satisfied, then the
nodes visited when solving M∪φ will always be a subset of (or the same as) those
visited when solving M . Typically, this is all guaranteed by using static search
strategies. As an alternative, we propose an approach based on replaying search
trees, which does not suffer from most of the drawbacks discussed in Section 1.

The Replay Technique: For the sake of precision, it is useful to introduce some
notation at this point. As it is quite common in CP, we view tree search as a
recursive process, where the search space is iteratively decomposed by opening
choice points and posting constraints on each branch. Formally, we can define
a search strategy as a function b that given the current state of the search and
of a problem M returns a sequence of constraints c0, c1, . . . to be posted each
on a different branch. By “search state” we refer to search parameters that are
not part of the model (i.e. time markers for the SetTimes strategy). The whole
search process can be seen as the evaluation of a recursive function traverse(b,M)
having as parameters the search strategy b and the target problem M .

We guarantee the satisfaction of both requirements for measuring the perfor-
mance by storing in a tree-like structure, during one run: 1) the branching con-
straints and 2) the search state. We then force the following run to post exactly
the same constraints at the same search nodes. This is done by introducing two
wrapper search strategies called store(b) and replay(b) that respectively memorize
and re-post the constraints returned by the strategy b. Then, in order to evaluate
a propagator φ, we simply run in sequence:

traverse(store(b),M) (1)
traverse(replay(b),M) (2)
traverse(replay(b),M ∪ φ) (3)
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and we compare the results of the two latter runs, which both use replay(b) and
hence incur the same search overhead. It is important that the first run is done
with the baseline problem M , because, thanks to the additional propagation
performed by φ, the run with M ∪ φ may skip some parts of the stored tree.
However, all of the runs will always explore the same space and visit the shared
nodes in the same order.

This approach offers two significant advantages: 1) it allows to tackle arbi-
trarily large instances, since a time limit can be enforced on the first run and
the second run will still be guaranteed to explore the same search space. 2) It
allows to use any search strategy, including dynamic ones, making the evalua-
tion more realistic. The comparison remains artificial to some degree, because
an actual dynamic strategy may behave differently on the two runs. Still, the
ability to make fair comparisons using an arbitrary strategy is a very valuable
contribution. Our replay technique is easy to implement on mosts solvers that
allow the user to write custom search strategies.

Assessing the Propagator Potential: In order to assess the potential of improving
the efficiency of φ or controlling its activation, we instrument the solver to collect
detailed information about the propagator. Specifically, we store the total time
for running φ, making a distinction between activations that actually lead to
some pruning and fruitless activations. The two time statistics are respectively
referred to as t+φ and t−φ . We collect the information by introducing a wrapper
function stats(φ) that checks the domain sizes, then runs φ, and finally checks
the domains again and stores the elapsed time. The overhead for the collection
process is properly subtracted. Once again, this approach is easy to implement
on most solvers that allow the user to write new propagators.

It is now easy to get a rough, but valuable, estimate of the impact of specific
measures on the solution time. In particular, let t(b,M) be the time required to
solve the problem M with the strategy b (i.e. to run traverse(b,M)). Then we
can estimate the impact of reducing the run time of φ by a factor μ ∈ [0, 1] by
computing:

t(replay(b),M ∪ stats(φ)) − μ · (t+φ + t−φ ) (4)

i.e. by subtracting a fraction of the total computation time of φ. Similarly, we can
assess the impact of guarding φ with a necessary condition that stops a fraction
μ ∈ [0, 1] of the fruitless propagator activations. This is done by computing:

t(replay(b),M ∪ stats(φ)) − μ · (t−φ ) (5)

This simple, linear, approach allows us to compare fictional implementations of φ
with real ones. By doing so, we get a chance to explore which values of μ would
be necessary for beating the baseline, and we get a better understanding of the
effort required to achieve such goal. In particular, we can approximately evaluate
the impact of havinganhypothetical time complexity for afictional propagator.For
instance, if the current implementation for φ is in O(n3) (where n is the number
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of variables), then we can estimate roughly what would be its cost for an O(n2)
algorithm by choosing μ = (n − 1)/n in equation 4.

Deeper and more general insights can be obtained by comparing fictional and
real propagators on full benchmarks. To this purpose, we rely on performance
profiles [13]. A performance profile is a cumulative distribution function F (τ)
of a given performance metric τ . In our case, the τ value is the ratio between
the solution time of a target approach and that of the baseline. For the sake of
clarity, if F (2) = 0.75 for an approach, it means that its performance is within a
factor of 2 from the baseline in 75% of the benchmark problems. Assuming the
benchmark is representative enough, the value of F (τ) can be interpreted as a
probability.

Formally, let φ0, φ1, . . . be the set of all considered implementations of φ
(real and fictional alike), and let M be the set for all problems (instances) in
the benchmark. Then the performance profile of φi is given by:

Fφi
(τ) =

1
|M|

∣
∣
∣
∣

{

M ∈ M :
t(replay(b),M ∪ φi)

t(replay(b),M)
≤ τ

}∣
∣
∣
∣

(6)

where t(replay(b),M ∪ φi) for fictional implementations of φ is computed using
Equation (4) or (5).

Reading of Performance Profiles: An important value of a given performance
profile Fφi

(τ) is in τ = 1. For a given φi, Fφi
(τ = 1) gives the percentage of

instances that can be solved using M ∪φi in a time less (or the same) time as the
baseline model M . Although FM is not represented, it would actually be a step
function FM (τ < 1) = 0 and FM (τ ≥ 1) = 100%. The space of τ is therefore
divided in two important regions, τ < 1 and τ ≥ 1. If Fφi

(τ) = 100% for some
τ < 1, then using the model M ∪ φi is always better than using the baseline,
i.e. M ∪ φi provides a speed-up for every instance. Unfortunately, this situation
rarely happens in practice and it is thus interesting to read more carefully the
performance profile. For a given pair φi, φj it is interesting to observe Fφi

(τ)
- Fφj

(τ). It indicates the gain of φi over φj . That is, Fφi
(τ) - Fφj

(τ) reflects
how many more (or less) instances can be solved by using M ∪ φi instead of
M ∪φj within a factor τ of the baseline time. Finally, the region above Fφ(τ) for
τ < 1 is very informative, as it exhibits the gain of a given φi compared to the
baseline M and to M ∪ φ, i.e., the two non-fictional models. Finally, instances
with similar performance give rise to step-like changes in F (τ), while a linearly
growing F (τ) is symptomatic of a diversified performance across the benchmark.

Limitation of the approach: A bottleneck of our approach is the need to store the
search tree in memory. After an experimentation on toy problems with only a
few constraints (such as the n-queens) we found it reasonable that no more than
∼ 5×106 nodes are created per minute on a standard laptop. Our data structure
to store the branching decisions does not use more than 40 bytes per node. Hence,
assuming that 16 GB of memory are available, we can record search attempts up
to 40 minutes long. We believe this time limit should be large enough to collect
valuable statistics in practice.
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3 Experimentation

We applied our approach to two propagators, namely Energetic Reasoning (ER,
see [3,14]) and Revisited Cardinality Reasoning for BinPacking (RCRB, see [18]).
Both the approaches provide powerful filtering, but are expensive to run, so that
the design of more efficient implementations has a strong appeal. In order to
assess the potential for improvements, we considered the following classes of
fictional implementation:

– φcost
μ , i.e. an implementation for which the time is reduced by a factor μ.

– φcost
O(f(n)), i.e. an implementation for which the time complexity is O(f(n)).

– φoracle
p , i.e. an implementation that guards φ with a necessary condition

causing useless activations with a probability p.
The profile of φoracle

0 (perfect necessary condition) bounds the gain that can
be obtained by any necessary condition. The profile of φcost

1 (τ) (zero-cost imple-
mentation), or φcost

O(1)(τ), bounds the performance of any possible implementation.
Against common intuition, φcost

1 is not guaranteed to beat the baseline, since a
weak filtering done by φ may trigger other (possibly expensive) propagators.

Experimental Set-up: We used the constraint solver OscaR [17] and ran instances
on AMD Opteron processors (2.7 GHz). For each instance, we limited the run-time
of traverse(store(b),M) to 600 seconds and the run-time of traverse(replay(b),M)
and traverse(replay(b),M ∪φ) to 1200 seconds. Instances for which either traverse
(replay(b),M ∪φ) timed out or traverse(replay(b),M) took less than 1 second were
filtered out. The target propagator φ was executed with low priority by the con-
straint scheduler.

Energetic Reasoning: We analyzed the ER propagator for the cumulative
constraint[1,2] on Resource Constrained Project Scheduling Problems (RCPSP).
The baseline model M employs the Timetabling algorithm from [4] and the ER
Checker [3], which both run in O(n2) [3,12]. We did not use the improvements
proposed in [12]. We use a dynamic search strategy, i.e. the classical SetTimes
approach from [16]. We consider two benchmarks: the BL instances [2] (20-25
activities) and the PSPLIB (j30 and j90, with 30 and 90 activities) [15]. We focus
on investigating, for the chosen benchmarks: 1) the potential benefit of having
an ER algorithm running in O(n2) rather than in O(n3); 2) the potential benefit
of a perfect necessary condition (see [10] and [7] for related works).

Figure 1 and 2 report profiles respectively for the BL and j90 instances.
The real ER propagator beats the baseline in ∼ 50% of the cases for BL, but
only in ∼ 10% of the cases for j90. The larger problem size is a likely reason
for the performance drop, so it is interesting to analyze the fictional, reduced-
cost implementations (left-most figures). In the BL benchmark a cost reduction
translates to roughly proportional benefits. On j90, an O(n2) ER would lead
to dramatic performance improvement, but it would beat the baseline on only
40% of the cases. More interestingly, there is a 30% portion of instances where
the baseline would win no matter what the efficiency of ER is, i.e. where the
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Fig. 1. Performance profiles for real and fictional ER propagators on the BL instances

Fig. 2. Performance profiles for real and fictional ER propagators on the j90 instances

additional pruning of ER is sometimes detrimental rather than beneficial. On
such instances, ER cannot lead to benefits unless we find a way to activate it
only when it provides an actual advantage. As for using a necessary condition,
a perfect approach would enable the same performance of a O(n2) ER, but even
a small mistake probability would cancel most of the benefits.

Figure 3 compares profiles for different search strategies on j30 (SetTimes
and a binary static approach): the potential gain of reducing the cost is very
different for the two strategies, even if the performance of the real propagator is
roughly identical. This points out the importance of having an approach for the
rigorous comparison of propagators using practical search strategies.

Revisited Cardinality Reasoning for BinPacking: In our analysis of the RCRB
propagator, we use as a benchmark the instances of the Balanced Academic
Curriculum Problem (BACP) from [18,19]. The baseline model M employs the
BinPacking propagator from [20] and a gcc constraint (model A in [18]). The
search heuristic is binary first-fail, i.e. we choose for branching the variable with
the smallest domain and we assign on the left branch the minimum value.
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Fig. 3. Performance profiles for the SetTimes (left) and binary static (right) strategies

Fig. 4. Performance profiles with fictionally cost-reduced RCRB propagators

Figure 4 (left) is very informative about the cost of RCRB. We can see
that less than 25% of the instances are solved faster than the baseline model.
Moreover, reducing its cost down to 0 provides a small gain before τ = 1.1.
From then, reducing the cost by a factor 0.9 is enough to solve a lot more of the
instances. Hence, reducing the cost would improve considerably the RCRB, but
not that much compared to the baseline model as the benefits come “too late”
in terms of τ . A similar analysis can be done for figure 4 (right).

4 Conclusion

Evaluating the potential advantages of reducing the cost of a given filtering pro-
cedure is of great importance to make our research efforts as fruitful as possible.
In addition, being able to measure exactly the time gain provided by a filtering
algorithm permits to reduce the bias in empirical evaluations. As a first step
in this direction, we proposed a systematic methodology to simulate the per-
formance of fictional implementations of a propagator having reduced activation
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cost. This is done before starting time-consuming research activities to actu-
ally reduce the cost. The approach was illustrated for Energetic Reasoning and
Revisited Cardinality Reasoning for BinPacking over popular sets of instances.
We found that reducing the propagator costs, even to the point of making it neg-
ligible, might actually be beneficial only on a small subset of a given instance set.
Furthermore, this outcome can differ substantially depending on the considered
benchmark and on the search strategy.
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13. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Mathematical programming 91(2), 201–213 (2002)

14. Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time and
resources constraints. In: 2nd international workshop on project management and
scheduling, pp. 115–121 (1990)

15. Kolisch, R., Schwindt, C., Sprecher, A.: Benchmark instances for project schedul-
ing problems. In: Project Scheduling, pp. 197–212. Springer (1999)
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