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Abstract. This paper presents a constraint-based local search algo-
rithm to find an optimal Golomb ruler of a specified order. While the
state-of-the-art search algorithms for Golomb rulers hybridise a range
of sophisticated techniques, our algorithm relies on simple tabu meta-
heuristics and constraint-driven variable selection heuristics. Given a rea-
sonable time limit, our algorithm effectively finds 16-mark optimal rulers
with success rate 60% and 17-mark rulers with 6% near-optimality.
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1 Introduction

Golomb rulers were described in 1977 by S.W. Golomb [4] although such concept
was already conceived in 1953 by W.C. Babcock [3]. A Golomb ruler of order
m > 0 and length n is a sequence of m integers called marks 0 = x1 < x2 <
· · · < xm = n such that each xj − xi is unique for 1 ≤ i < j ≤ m. A Golomb
ruler of order m is optimal if n is the minimum possible integer. Golomb rulers
have a wide variety of applications that include x-ray crystallography [4], radio
astronomy [5], information theory [18] and pulse phase modulation [17].

Finding an Optimal Golomb Ruler (OGR) is an extremely difficult task.
It takes 36200 CPU hours to find a 19-mark Golomb ruler on a Sun SPARC
workstation using an exhaustive parallel search algorithm [8]. OGR is a combi-
natorial problem whose bounds grow geometrically with respect to the solution
size [19]. The major limitation is that each new ruler to be discovered is, by
necessity, larger than its predecessor. However, the search space is bounded and,
therefore, solvable [13]. Also, for a given order, more than one OGR may exist.

To solve this highly combinatorial problem, a number of approaches have
already been developed before. However, the current state-of-the-art results come
from a sophisticated hybrid method [7] that combines ideas from greedy ran-
domised adaptive search procedure (GRASP), scatter search (SS), tabu search
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(TS), clustering techniques and constraint programming. The hybrid algorithm
found 16-mark OGRs with success rates 5-10%. Nevertheless, an analysis of the
fitness landscape of OGR presented in [7] shows that high irregularities in the
neighbourhood structure introduce a drift force towards low-fitness regions of
the search space. For higher order rulers, search algorithms thus quickly reach
a near-optimal value and then stagnate around it, apparently causing a cycling
problem and making the search space less accessible. A restarting mechanism is
therefore needed at that stage.

In this paper, we present a constraint-based local search approach to find
Golomb rulers. Our algorithm takes m and n as input and finds the m integers
of the Golomb ruler. For OGRs, we assume xm to be equal to the optimal n
for order m. For near-optimal rulers, we assume xm to be less than or equal
to a given n. Instead of a sophisticated hybridisation of a range of techniques,
we rather rely on simple tabu meta-heuristics and constraint-driven variable
selection heuristics. Besides the traditional way of enforcing tabu on recently
modified variables for a given number of iterations, we use a special type of tabu
called configuration checking (CC) [6]. The CC strategy for OGR prevents a
variable (i.e. a mark) from being selected if it is fully confined by neighbouring
variables. The use of CC effectively reduces the number of restarts required
during search and thus mitigates the cycling problem of local search for finding
an OGR. Experimental results show that within a reasonable time limit, our
algorithm effectively achieves significantly high success rate of 60% in finding
OGRs of order 16 and about 6% near-optimal rulers of order 17.

The rest of the paper is organised as follows: Section 2 explores related work;
Section 3 describes our approach; Section 4 presents the experimental results;
and finally, Section 5 draws our conclusions.

2 Related Work

Various techniques have been applied so far to find Golomb rulers. Scientific
American algorithm, token passing algorithm, shift algorithm are described and
compared in [16]. Geometry tools such as projectile plane construction and affine
plane construction are used in a non-systematic method in [10]. A systematic
branch and bound algorithm along with the Depth First Search (i.e backtracking
algorithm) is proposed in [19]. A genetic algorithm is proposed in [21]. Constraint
programming techniques are used in [20]. A combination of constraint program-
ming and sophisticated lower bounds for Golomb rulers are used in [12]. A hybrid
of local search and constraint programming is proposed in [15].

Three algorithms, namely a genetic algorithm on its own, then with local
search and Baldwinian learning, and with local search and Lamarckian learning
are studied in [11]; the best results have the distance between 6.8 and 20.3%
from the optimum. A simple hybrid evolutionary algorithm (called GRHEA)
is presented in [9] to find an OGR of a specified length. Also, an indirect but
effective approach (called GROHEA) is proposed to find near-optimal Golomb
rulers. For a given order m, GROHEA starts from an upper bound of n and
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if a Golomb ruler of length n is found, it then tries to find another one with
length n − 1. GROHEA systematically finds optimal rulers for up to 11 marks
very quickly. It also finds optimal rulers for 12 and 13 marks in less than two
minutes, and for 14 marks in about 40 minutes. For 15 and 16 marks, the best
solutions of GROHEA are within 4.6% and 5.6% of the optimal rulers.

2.1 A Recent Hybrid Local Search Algorithm

This algorithm [7] combines the greedy randomised adaptive search procedure
(GRASP), evolutionary algorithms (EA), scatter search (SS), tabu search (TS),
clustering techniques, and constraint programming (CP) to find optimal or
near-optimal Golomb rulers. To find OGRs, this algorithm first uses an indi-
rect approach, which incorporates GRASP. However, one major problem of the
basic GRASP procedure is that it relies on certain parameter values to select
an attribute value from the Ranked Candidate List (RCL). The choice of the
parameter value often hinders to find high-quality solutions. GRASP is there-
fore combined with EA in HEAGRASP so that different parameter values can
be used in each application of the ruler construction phase. The plain GRASP
and HEAGRASP can find OGRs up to 9 and 10 marks respectively.

The work in [7] then proposes a scatter search (SS) that is basically a memetic
algorithm. SS uses an indirect approach in the initialisation and restarting phase
(ideas borrowed from HEAGRASP) and a direct approach in the local improve-
ment and recombination phase. More specifically, the TS is used as the local
improvement method. SS can find OGRs for up to 15 marks and computes high
quality near-optimal solutions for 16 (i.e. 1.1% from the optimum). SS is fur-
ther enhanced by using a complete search in recombination of individuals and a
clustering procedure to achieve higher degree of diversity. As a result, 16-mark
OGRs are found with success rates 5-10%.

2.2 A Recent Hybrid Genetic Algorithm

Recently, a hybrid genetic algorithm is presented in [2] to find optimal or near-
optimal Golomb rulers. This approach has been able to obtain OGRs for up to
16 marks at the expense of an important execution time. For instance, around
5 hours for 11-mark, 8 hours for 12-mark, and 11 hours for 13-mark ruler. It is
also able to find near-optimal rulers for 20 and 23 marks using enormous time.
The parallel implementation of this algorithm can be found in [1].

3 Our Approach

Our approach is based on a constraint-based local search algorithm. It is a simple
but effective algorithm to find an OGR of a specified order. Given the optimal
length n of an m-mark ruler, it searches for a ruler that satisfies the criteria of an
optimal one. Note that the first and last marks are fixed to 0 and n respectively.
For a near-optimal Golomb ruler, the last mark remains flexible to take a value
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less than or equal to n′, where n′ is the optimal length of a (m+ 1)-mark ruler.
To overcome the cycling problem of local search, we use the tabu mechanism
and the configuration checking techniques [6]. Nevertheless, below we provide a
detailed description of our search algorithm.

3.1 Problem Model

We represent a Golomb ruler of order m and length n by using m variables
x1, x2, · · · , xm. Without loss of generality, we fix the value of x1 at 0 and the
value of xm at n. Initially, the domain of all other marks is defined xi ∈ [1, n−1].
However, we assume the ordering x1 < x2 < · · ·xm. As the search progress, the
domain of a mark xi(1 < i < m) is thus dynamically restricted by the values of
its neighbours. Thus, xi ∈ [xi−1 + 1, xi+1 − 1] for each 1 < i < m.

To define the constraint model, for each i > j, we first calculate the difference
expression dij = xi − xj . The value of dij is the distance between xi and xj .
We then define an alldifferent constraint on the dijs. To guide the search, the
constraint violation metric is calculated as in [9]. Given the current solution R
i.e. the values of all xis, the violation VR(d) of a distance d is the number of
times distance d appears between two marks beyond its allowed occurrences.

VR(d) = max(0,#{dij = d|1 ≤ j < i ≤ m} − 1) (1)

The violation V(R) of the current ruler R is simply the sum of VR(d)s:

V (R) =
n∑

d=1

VR(d) (2)

Obviously, a ruler R with V (R) = 0 is a solution to the Golomb ruler problem.
In each iteration, our algorithm will try to minimise the value of V (R).

To define a variable selection heuristic, we further define the violation metrics
for each difference dij and for each variable xi(1 < i < m). The violation for
each distance dij will be the violation of its distance value.

VR(dij) = VR(d) (3)

where dij = d in R. The violation of a variable is calculated by summing the
violations of the distances that depend on that variable.

VR(xi) =
i−1∑

k=1

VR(dik) +
m∑

k=i+1

VR(dki) (4)

During search, we mainly follow max/min style search. At each iteration, a
variable xi(1 < i < m) having the maximum VR(xi) is selected first and then a
value v ∈ [xi−1 + 1, xi+1 − 1] that minimises VR is selected for xi.
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3.2 Avoiding the Cycling Problem

The cycling problem in local search has been typically tackled by the tabu mech-
anism. Besides using the tabu mechanism, in this paper, we use another recently
emerging strategy called configuration checking (CC) [6].

Tabu Mechanism. By maintaining a parameter called tabu tenure, the tabu
mechanism prevents the local search to immediately return to a previously visited
candidate solution. In our algorithm, we tabu the variable selected in the last
iteration and we tabu it for the tabu-tenure period.

Configuration Checking. The CC [6] strategy reduces the cycling problem
by checking the circumstance information. The core idea is: A variable’s value
should not change until at least one of its neighbouring variables has a new
value. Since in our algorithm, a variable’s value depends on its neighbour as we
enforce xi ∈ [xi−1 + 1, xi+1 − 1] during search, CC is relevant here along with
the tabu mechanism. However, we use CC in our algorithm in a special case
when a variable’s range has nothing but its own current value. In this case, the
variable is locked for any future changes until any of its neighbouring variables
have changed.

3.3 Search Algorithm

Our constraint-based local search algorithm to find Golomb rulers is shown in
Algorithm 1. The core of the algorithm is in Lines 4–19 where local moves are
performed for a number of iterations or until a solution is found. The unlocked
variable with the highest number of violations is selected in Line 8 and a value
for that variable is selected in Line 9 such that the number of violations decreases
after assigning the value to the variable. The new ruler is generated in Line 13
and the tabu is applied on the variable in Line 14. Note that the tabu tenure tt
is normally within 3 to 5. Line 11 and 15 implement the idea of CC. CC locks
a variable whenever its domain contains no value except the current one. When
a new value is set into a variable, CC unlocks the neighbours of that variable
provided they are already locked. Lines 16–19 update the best violation metric
and plateau size depending on the progress of violation metrics. Lines 5–6 restart
the search when the current plateau size exceeds a given limit.

Initialisation and Restarting Mechanism. The initial ruler is generated by
selecting random values from the initial domain of each mark. Special care is
taken so that no two marks have the same value. The marks are then sorted
to obtain an ordered ruler. When our search algorithm gets stuck showing no
progress, we just use the initialisation procedure to restart the search from
scratch. We detect the stagnation situation when the global best violation seen
so far does not change for a given number of iterations.
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Algorithm 1. Constraint-Based Local Search for Golomb Rulers
1 Parameters: order m, length n, tabu tenure tt
2 Generate an initial solution R using an initialisation procedure
3 plateauSize = 0, iteration = 0, bestViolation = V (R)
4 while ++iteration ≤ maxIteration and bestViolation > 0 do
5 if plateauSize > maxPlateauSize then
6 Restart from scratch and set plateauSize = 0

7 else
8 Select the unlocked variable xk(1 < k < m) with the highest VR(xk)
9 Select a value v ∈ [xk−1 + 1, xk+1 − 1] such that V (R) is minimised

10 if v is xk’s current value then
11 lock xk to stop its future changes //part of CC

12 else
13 set xk = v in the current ruler R
14 apply tabu on xk for the specified tabu tenure tt
15 unlock xk−1 and xk+1 if they are locked //part of CC

16 if currentViolation < bestViolation then
17 bestViolation = currentViolation, plateauSize = 0

18 else if currentViolation == bestViolation then
19 plateauSize++

4 Experiments and Analyses

We implemented our algorithm using C++ and on top of the constraint-based
local search system, Kangaroo [14]. The functions and the constraints are defined
using invariants in Kangaroo. Invariants are special constructs that are defined
by using mathematical operators over the variables. While propagation of vio-
lations, simulation of moves, execution and related calculations are performed
incrementally by Kangaroo, we mainly focus on the search algorithms.

We ran our experiments on High Performance Computing Cluster Gowonda
provided by Griffith University. Each node of the cluster is equipped with Intel
Xeon CPU E5-2650 processors @2.60 GHz, FDR 4x infiniBand Interconnect,
having system peak performance 18949.2 Gflops. Our search algorithm is run
for 25 times with timeout 48 hours for each given order of the Golomb ruler.
The tabu tenure is between 3 and 5. For a given order m and its optimal length
n, we run our algorithm to find an OGR first. If an OGR is not found, then we
consider finding a near-optimal Golomb ruler with an increased ruler length. Our
experimental results are shown in Table 1 and Figure 1. Left most two columns
in the Table 1(a) show the orders 11–16 and the optimal lengths of the Golomb
rulers. Moreover, the columns under “TabuAndCC” show our final results.

4.1 Effectiveness of CC

To investigate the effectiveness of CC, we run a version of our algorithm that
does not use the CC strategy. These results are shown in Table 1(a) in the
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columns under the header “TabuNoCC”. Also, the charts in Figure 1 show how
the two versions’ success rate differ when various timeout limits are assumed.
Overall, we observe the TabuAndCC version, our final algorithm, significantly
outperforms the TabuNoCC version in obtaining higher order OGRs, in success
rates, and in running times. To analyse further, in Table 1(b), we show the
number of restarts required by the TabuAndCC and TabuNoCC versions of our
algorithm. As we can see, the number of restarts required for the TabuAndCC
version is very small compared to the TabuNoCC version. It exhibits that the
use of CC effectively reduces the occurrence of stagnation in the search.

Table 1. (a) Performance of our algorithm when compared to GRHEA[9]. Time statis-
tics for GRHEA is collected from the published article while our algorithms are run on
our computers. (b) Average numbers of restarts required during search (c) Approximate
average numbers of candidate solutions explored/evaluated during search.

Num Opt TabuAndCC TabuNoCC GRHEA[9]

of GR Succ Median Succ Median Succ Median

Marks Len Rate Time Rate Time Rate Time

11 72 100 1.23 S 100 7.96 S 100 5.86 S

12 85 100 28.09 S 100 1.65 M 99 2.78 M

13 106 100 6.47 M 100 11.39 M 99 15.99 M

14 127 100 2.76 H 96 5.64 H 2 1.07 H

15 151 84 3.26 H 76 22.63 H

16 177 60 14.83 H

(a)

Marks TabuAndCC TabuNoCC

11 1.2 366.2

12 64.32 18214.12

13 234.08 77233.4

(b)

Marks TabuAndCC GRHEA[9]

11 1 × 106 10 × 106

12 4.5 × 107 23 × 107

13 5.1 × 108 11 × 108

(c)

4.2 Optimal Golomb Rulers

We compare our algorithm with other state-of-the-art algorithms for Golomb
rulers. As we see in Table 1(a), GRHEA[9] can solve up to order 14 but with
success rate for 14 being 2%. HybridGA[2] claims to have solved up to 16 but suc-
cess rates are not mentioned and run-times are either enormous or not reported.
The Hybrid Local Search [7] states to have consistently found OGRs for up
to 14 marks and for 16 marks with 5-10% success rate1. The OGR problem
gets extremely hard from order 16 onward [7]. Notice that our final algorithm
(Columns “TabuAndCC”) obtains significantly better results with 100%, 84%
and 60% success rates for 14, 15 and 16-mark rulers respectively.

We compare the search effort behind the performance of our algorithm and
those in [7,9] on the average number of candidate rulers explored and evaluated.
Comparison on execution time is not possible because experiments in [7,9] were
run on a number of different machines1. Note that while the algorithms in [7,9]
are variants of memetic algorithms (in other words, local searh is used as a muta-
tion operator in a genetic algorithm), our algorithm is just a constraint-based
local search algorithm. So for a fair comparison between these different types of
1 E-mail communication with Antonio J. Fernandez, one of the authors of [7].



Constraint-Based Local Search for Golomb Rulers 329

TabuAndCC for a 16-mark ruler

Time in Hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25

Solutions Found 1 2 2 3 4 5 5 6 6 6 6 6 6 7 8 8 10 13 13 13 13 13 13 14 14 15

Fig. 1. Number of times the optimal ruler is found when 25 attempts are made within
given time limits. The largest timeout was 48 hours for all runs. The times in x-axis
are in seconds for order 12, in minutes for 13, and in hours for 14 and 15. The times
in the first row of the table is also in hours for the ruler of order 16.

algorithm, particularly when time comparison is not possible, we consider the
average numbers of rulers explored and evaluated by each algorithm to be an
appropriate criterion; similar notions were used in [7,9].

To obtain the maximum numbers of rulers explored or evaluated by GRHEA
[9], we take the maximum number of generations (50), the population size (50),
the probability to call the LS procedure for each individual (0.6), the number of
iterations in the LS (10000). We get the numbers of LS iterations altogether to
be 50×50×0.6×10000 = 15×106. In each LS iteration, GRHEA considers each
variable and its value from the range bounded by the two neighbour variables’
values. In GRHEA’s model, a Golomb ruler with m mark and length n has thus
2(n−m+1) neighbours. So (n−m+1)× 30× 106 gives the maximum numbers
of rulers explored or evaluated. However, instead of 15×106, Table 1(c) uses the
average number of local moves made by GRHEA as reported in [9].

For our algorithm, we just take the average numbers of iterations and then
consider the fact that in each iteration, unlike in GRHEA, only one variable is
selected heuristically and then like GRHEA, the value of the variable is selected
only from those bounded by the neighbouring two variables’ values. So the num-
ber of neighbours on an average is 2(n−m+ 1)/(m− 1). Table 1(c) shows that
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our algorithm puts significantly less effort in search than GRHEA but obtains
significantly better performance. The average numbers of explored candidate
solutions by Hybrid Local Search [7] are similar to GRHEA because in [7] these
algorithms are compared giving the same effort in search.

4.3 Near-Optimal Golomb Rulers

As noted before, for OGRs of order m, in our algorithm, we set xm = n where
n is the optimal length for order m. For near-optimal Golomb rulers of order m,
we run the same algorithm but with xm ≤ n′ where n′ is the optimal length for
a Golomb ruler of order m+1. Our algorithm that uses “TabuAndCC” can find
OGRs of order 16 but not of 17. So for the time being, we further run it to find
near-optimal Golomb rulers of order 17. We do not run our algorithm that uses
“TabuNoCC” for order 17 because it could not find OGRs even for 16. Table 2
shows that our “TabuAndCC” algorithm finds near-optimal rulers for order 17
with a success rate of 100% and the best solutions found have lengths within
6.03% of that of the optimal rulers.

Table 2. Performance of our algorithm in finding near-optimal Golomb ruler

Mark n n′ Success Best Mean Median Mean Median

Rate Length Length Length Time Time

17 199 216 100 211 214 215 6.97 Hours 5.88 Hours

5 Conclusion

We have presented a constraint-based local search algorithm that takes the num-
ber of marks and length of an optimal Golomb ruler as input and finds the posi-
tions of the marks. Our algorithm is simple, but given a reasonable time limit,
it effectively finds 16-mark optimal rulers with 60% success rate and about 6%
near-optimal 17-mark rulers.
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