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Preface

The 12th International Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) techniques in Constraint Programming (CPAIOR 2015) was
held during May 18–22, 2015 in Barcelona, Spain. The purpose of the conference se-
ries is to bring together researchers in the fields of Constraint Programming, Artificial
Intelligence, and Operations Research to explore ways of solving hard and large-scale
combinatorial optimization problems that emerge in various industrial domains. Pooling
the skills and strengths of this diverse group of researchers has proved extremely effec-
tive and valuable during the past decade leading to improvements and cross-fertilization
between the three fields as well as breakthrough for actual applications.

This year, the call for papers was opened to both long (15 pages) and short (8 pages)
papers. A dedicated Program Committee of 29 members reviewed both types of sub-
missions with the same stringent criteria. The conference received 90 submissions in
total and the field narrowed down to 80 papers contending for publication. In the end,
we accepted 35 papers for presentation and publication. This year, CPAIOR also fea-
tured a Journal Fast Track dedicated to the publication of selected papers with a level
of maturity and details that warrants their immediate archival publication. Five papers
among the 35 were identified for this process and are published in a special issue of the
Journal.

In addition to the papers, the conference attendees enjoyed three invited talks. The
speakers were Nikolaos Sahinidis, who is the John E. Swearingen Professor of Chemi-
cal Engineering at Carnegie Mellon University, Robert Nieuwenhuis who is a Profes-
sor in the Computer Science Department at the Technical University of Catalonia, and
Jeffrey T. Linderoth who is a Professor in the Department of Industrial and Systems
Engineering at the University of Wisconsin-Madison.

The traditional CPAIOR Master Class was delivered on the afternoon of May 18
and the entire day on the 19th. Pascal Van Hentenryck, who holds the Vice-Chancellor
Chair in Data-Intensive Computing at the Australian National University and leads the
NICTA Optimization Research Group organized the event whose theme was “Con-
straint Programming and Verification.” The event featured no less than nine speakers all
focused on verification. The morning of May 18 was devoted to three workshops titled
“CPAIOR Meets CAV” organized by Justin Pearson and Michel Rueher, ISA: “Inno-
vative Scheduling and Scheduling Applications using CPAIOR” organized by Pierre’s
Schaus and “Smart Cities” organized by Michele Lombardi.

I wish to extend my deepest gratitude to all the organizers. Carlos Ansotegui from
Universitat de Lleida carried the torch as Conference Chair and was supported by a team
consisting of Maria Bonet (UPC), Jordi Levy (IIIA-CSIC), and Mateu Villaret (UDG).
David Bergman (UConn) was at the helm of the publicity effort and cannot be thanked
enough. Pascal’s enthusiasm delivered a stellar cast for this year’s Master Class and I’m
truly thankful for his energy and involvement. Finally, I wish to extend my thanks to
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the entire Program Committee for their efforts and participation throughout the entire
process despite the tight schedule.

Naturally, I would be remiss if I did not express my gratitude to the sponsors of the
conference which include, at the time of this writing, the ACP, Google Inc., National
ICT Australia, The Catalan Association for Artificial Intelligence (ACIA), AIMMS,
AMPL, ECCAI, Gurobi, and Inspires (The Polytechnic Institute of Research and In-
novation in Sustainability). Last but not least, EasyChair deserves accolades for its
flawless platform.

March 2015 Laurent Michel
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Symmetry in Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering,
University of Wisconsin-Madison, Madison, WI 53706-1572, USA

We will discuss mechanisms for dealing with integer programs that contain a great deal
of symmetry [1,2]. The methods use information encoded in the symmetry group of
the integer program to guide the branching decision and prune nodes of the search tree.
These methods are adaptations of similar methods used in the constraint programming
community, and they have been adapted into commercial integer programming soft-
ware. We will discuss some recent work on using symmetry to augment the cutting
plane procedures of branch-and-cut based solvers, and we will conclude with a brief
discussion of using large-scale distributed computing platforms to solve difficult sym-
metric integer programs [3].

Joint work with Jim Ostrowski, Francois Margot, Fabrizio Rossi, Stefano Smriglio,
and Greg Thain.

References

1. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical
Programming, 126(1):147–178, 2011.

2. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital branching. In IPCO
2008: The Thirteenth Conference on Integer Programming and Combinatorial Optimization,
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21:445–457, 2009.



IntSat: From SAT to Integer Linear Programming

Robert Nieuwenhuis

Barcelogic.com and Technical University of Catalonia (UPC), Barcelona, Spain

One of the most remarkable successes in Artificial Intelligence (AI) and Constraint
Programming (CP) is probably the combination of activity-based heuristics and learn-
ing that allows Conflict-Driven Clause Learning (CDCL) propositional SAT solvers to
solve, fully automatically, large and hard real-world industrial and scientific problems.

On the other hand, extremely powerful tools for Integer Linear Programming (ILP)
and Mixed Integer Programming (MIP) exist, based on sophisticated techniques from
Operations Research (OR), combining LP relaxations, simplex, branch-and-cut, includ-
ing specialized cuts, heuristics and presolving methods, an extremely mature technol-
ogy, with a 475000 times speedup between 1991 and 2012, according to [1].

Since SAT is the particular case of ILP where all variables are binary (0-1) and
constraints have the form x1 + . . . + xm − y1 . . . − yn > −n, (usually written as
clauses x1 ∨ . . .∨xm ∨y1 ∨ . . .∨yn, i.e., disjunctions of literals), some natural questions
arise. Why do OR solvers perform so poorly on pure SAT problems? Can CDCL-based
techniques also beat OR ones for richer ILP problems than just deciding SAT?

Indeed, an extensive amount of work exists on CDCL-like techniques for Pseudo-
Boolean optimization (aka. 0-1 ILP), see [4] for all background and references. IntSat
[3] goes another step beyond, introducing a CDCL technique for full ILP (arbitrary in-
teger variables, linear constraints and objective). IntSat extends CDCL by taking deci-
sions on bounds (instead of literals), exhaustive bound propagation, and at each conflict
it attempts to obtain by cuts a new ILP constraint, use it to backjump, and to learn it.
This learning precludes “similar” future conflicts, which are ubiquitous in structured
real-world problems (but not in randomly generated ones). IntSat appears to be the first
method that is competitive, at least on certain ILP problem classes, with commercial
OR tools such as CPLEX and Gurobi.

In this talk we will give an overview of CDCL-based SAT, the difficulties that arise
when extending it, the key ideas behind IntSat, and several options between SAT and
ILP, including Cutsat [2]. Along the way we will address further questions: How to
exploit (and control) learned ILP constraints? Are CDCL-based techniques superior on
problems with a combinatorial flavor? Are OR techniques better for the rather numerical
ones? We also contribute to the theoretical background: completeness of cut-related
inference rules, and infeasibility (or refutation) proof complexity.

References

1. Bob Bixby. Presentation: 1000X MIP Tricks, 12 June 2012, Bill Cunninghams 65th, 2012.
2. Dejan Jovanovic and Leonardo Mendonça de Moura. Cutting to the chase - solving linear

integer arithmetic. J. Autom. Reasoning, 51(1):79–108, 2013.
3. Robert Nieuwenhuis. The IntSat method for integer linear programming. In 20th Principles

and Practice of Constraint Programming, CP, LNCS 8656, pages 574–589, 2014.
4. Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints.

Chapter in Handbook of Satisfiability, 695–733. IOS Press, 2009.



Constraint Programming
for Infeasibility Diagnosis with BARON

Yash Puranik and Nikolaos V. Sahinidis

Carnegie Mellon University, Pittsburgh, PA 15213, USA

Since its inception in the early 1990s, the BARON global optimization solver [1,2] was
designed as a system that combined constraint programming and mathematical pro-
gramming techniques for the global solution of algebraic nonlinear and mixed-integer
nonlinear optimization problems (NLPs and MINLPs).

In this paper, we discuss recent developments in BARON, aiming to diagnose infea-
sibilities in nonconvex optimization models. Early work in the optimization literature
to address the cause of infeasibilities has shown that the identification of Irreducible
Inconsistent Sets (IIS) in a model can help speed up the process of correcting infeasible
models [3]. An Irreducible Inconsistent Set is defined as an infeasible set of constraints
with every proper subset being feasible. Identifying an IIS provides the modeler with a
set of mutual inconsistencies that need to be diagnosed. Currently, efficient implemen-
tations for IIS isolation are only available for linear programs (LPs).

We propose a novel approach for IIS identification that is applicable to NLPs and
MINLPs. This approach makes use of constraint programming techniques in a compu-
tationally inexpensive preprocessing stage to test for infeasibility in subparts of the in-
feasible model. This stage allows for rapid elimination of a large number of constraints
in the model. Further, this preprocessing step itself could be sufficient to eliminate all
constraints not part of an IIS for a large number of problems. The reduced model ob-
tained can be filtered with any standard IIS isolation algorithm to obtain an IIS. The
benefits of the approach lie in the efficient reduction in the model obtained by the pre-
processing stage which leads to speedups in IIS identification. Extensive computational
results are presented with an implementation of the proposed preprocessing algorithm
in BARON along with four different filtering algorithms: deletion filter, addition filter,
addition-deletion filter and depth-first binary search filter [4].

References

1. Sahinidis, N.V.: BARON: A general purpose global optimization software package. Journal
of Global Optimization. 8 (1996) 201–205

2. Sahinidis, N.V.: Global optimization and constraint satisfaction: The branch-and-reduce ap-
proach. Lecture Notes in Computer Science. 2861 (2003) 1–16

3. Greenberg, H.J.: An empirical analysis of infeasibility diagnosis for instances of linear pro-
gramming blending models. IMA Journal of Mathematics in Business and Industry. 3 (1992)
163–210
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Lagrangian Bounds from Decision Diagrams

David Bergman1, Andre A. Cire2, and Willem-Jan van Hoeve3

1 School of Business, University of Connecticut, USA
2 Department of Management, University of Toronto Scarborough, Canada

3 Tepper School of Business, Carnegie Mellon University, USA
david.bergman@business.uconn.edu,acire@utsc.utoronto.ca,

vanhoeve@andrew.cmu.edu

Decision diagrams are compact graphical representations of Boolean functions widely
applied in circuit design and verification. Recently, relaxed decision diagrams were
introduced as a new type of relaxation for discrete optimization problems [2]. In the
context of constraint programming, relaxed decision diagrams have been successfully
applied to improve constraint propagation and optimization reasoning [1,3]. One typi-
cally associates a decision diagram with a specific global constraint that is defined on
a subset of variables (its scope), and the diagram is subsequently filtered and refined
according to the other constraints of the problem. Additionally, if the objective function
is evaluated on the same set of variables, the decision diagram can be used to obtain
optimization bounds and for applying cost-based filtering.

In this work we propose a technique to strengthen a relaxed decision diagram of
a problem by incorporating inference from constraints via a Lagrangian relaxation
method. Namely, we associate penalties with the constraints that may be potentially
violated by the solutions encoded in a relaxed decision diagram. These penalties are
incorporated directly into the diagram as arc costs, which are taken into account in the
diagram’s objective function evaluation. We show that, with this generic approach, the
resulting diagram may potentially yield stronger optimization bounds than the one ob-
tained from the original relaxation, while the associated cost-based filtering allows for
further refining the diagram and ultimately reducing the search space. If the incorpo-
rated constraints are linear, we also demonstrate that the optimal set of penalties are the
duals of a shortest-path linear program derived from the decision diagram.

To evaluate our approach, we perform computational experiments on the traveling
salesman problem with time windows. Relaxed decision diagrams are used in a global
constraint enforcing that city visits must not overlap in time, and tests are performed
with a state-of-the-art constraint-based scheduler. Results show that the diagram with
improved Lagrangian bounds can drastically reduce solution times in comparison to the
original relaxation.

References

1. Bergman, D., Cire, A.A., van Hoeve, W.J.: MDD propagation for sequence constraints.
J. Artif. Intell. Res. (JAIR) 50, 697–722 (2014)
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A Constraint-Based Local Search
Backend for MiniZinc (Summary)

Gustav Björdal, Jean-Noël Monette, Pierre Flener, and Justin Pearson

Uppsala University, Department of Information Technology, 752 37 Uppsala, Sweden
gustav.bjordal@gmail.com,

{Jean-Noel.Monette,Pierre.Flener,Justin.Pearson}

@it.uu.se

Solving combinatorial problems is a difficult task and no single solver can be univer-
sally better than all other solvers. Hence, when facing a problem, it is useful to be
able to model it once and run several solvers to find the best one. MiniZinc [3] is a
technology-independent modelling language for combinatorial problems, which can
then be solved by a solver provided in a backend. There are many backends, based
on various solving technologies. However, to the best of our knowledge, there is cur-
rently no constraint-based local search (CBLS, see [4]) backend. While most MiniZinc
backends are just a parsing interface in front of the underlying solver, things are not
as straightforward in the case of CBLS. In [1], we discuss the challenges to develop
such a CBLS backend and give an overview of the design of a backend based on the
OscaR/CBLS solver [2]. Our backend is called fzn-oscar-cbls and is publicly
available from https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar. The main contri-
butions of [1] are:

– a description of a CBLS backend for MiniZinc;
– a heuristic to discover the structure of a model that can be used by a black-box local

search procedure;
– a black-box local search procedure using constraint-specific neighbourhoods;

Experimental results show that, for some MiniZinc models, fzn-oscar-cbls is able
to give good-quality results in competitive time. In [1], we focus on presenting a back-
end that works with existing MiniZinc models without modification, but we also briefly
discuss how one can modify MiniZinc models or add annotations that would help a
CBLS backend.
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New Filtering for ATMOSTNVALUE
and Its Weighted Variant: A Lagrangian Approach

Hadrien Cambazard and Jean-Guillaume Fages

Univ. Grenoble Alpes, G-SCOP, 38000 Grenoble, France
CNRS, G-SCOP, 38000 Grenoble, France

COSLING S.A.S., CS 70772, 44307 Nantes Cedex 3, France
hadrien.cambazard@grenoble-inp.fr, jg.fages@cosling.com

The ATMOSTNVALUE global constraint, which restricts the maximum number of
distinct values taken by a set of variables, is a well known NP-Hard global constraint.
The weighted version of the constraint, ATMOSTWVALUE, where each value is asso-
ciated with a weight or cost, is a useful and natural extension. Both constraints occur in
many industrial applications where the number and the cost of some resources have to
be minimized. They have been initially introduced in [1,2]. Filtering these constraints
has been proved to be NP-hard [4] but has been widely investigated by the Constraint
Programming (CP) community [4] and remains an active topic [5,9,12].

This paper introduces a new filtering algorithm based on a Lagrangian relaxation
for both constraints. The role of Lagrangian relaxation in constraint programming is
an active area of research [11]. Its use for propagating NP-Hard global constraints
is not new but has mostly been performed in very specific and applicative contexts
[7,8,14,15] although propators for the Multi-cost-regular and Weighted-circuit global
constraints have been designed with Lagrangian relaxation [3,8,10,13]. We believe that
many global constraints (and in particuler NP-Hard global constraints involving costs)
could be propagated using Lagrangian relaxation in a relatively generic manner [6].
This paper is investigating this idea for ATMOSTNVALUE and ATMOSTWVALUE .

The main contribution of this paper is a new filtering algorithm, based on La-
grangian relaxation, for both ATMOSTNVALUE and ATMOSTWVALUE. The algorithm
proposed in this paper has several advantages : First, from a software engineering point
of view, it is simple to implement and it does not require any connection with a linear
solver. Second, it can provide a significantly stronger level of filtering compared to the
state of the art algorithm for these constraints. Third, instead of the graph-based algo-
rithm, it can be used directly to propagate the ATMOSTWVALUE global constraint for
which no simple and efficient filtering algorithm exists. Thus, it is relevant to include it
in a CP solver.

Several design options are discussed and empirically evaluated. The contribution is
illustrated on problems related to facility location, which is a fundamental class of prob-
lems in operations research and management science. Results show that the Lagrangian
propagator for both ATMOSTNVALUE and ATMOSTWVALUE provides significant im-
provement over a CP approach, up to being competitive with an Integer Linear Program-
ming (ILP) approach. We believe it can help to bridge the gap between CP and ILP for
a large class of problems related to facility location.



XX H. Cambazard and J.-G. Fages
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A Hybrid Exact Method for a Scheduling Problem
with a Continuous Resource and Energy
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Margaux Nattaf1,2, Christian Artigues1,2, and Pierre Lopez1,2

1CNRS, LAAS, 7 Avenue du colonel Roche, 31400 Toulouse, France
2 Univ de Toulouse, LAAS, 31400 Toulouse, France

{nattaf,artigues,lopez}@laas.fr

Keywords: Continuous scheduling · Energy constraints · Energetic reasoning ·
Branching scheme · Mixed integer programming

We are studying a scheduling problem with a continuous resource and energy
constraints, the Continuous Energy-Constrained Scheduling Problem (CECSP). In this
problem, given a cumulative continuous resource of capacity B and a set of tasks, the
goal is to find a schedule such that each task uses a variable resource quantity lying
between a minimum and a maximum value, bmin

i and bmax
i respectively. Furthermore,

each task needs to be executed during its time window [ri, di]. Finally, each task has an
energy requirement Wi and the energy used by a task is obtained by the integration of a
function of the resource allocated to it, i.e.

∫
fi(bi(t))dt ≥ Wi (where bi(t) ≤ B, ∀t is

the resource quantity consumed by task i at time t). In this study, we focus on the case
where function fi is non-decreasing, continuous and linear.

For this NP-complete problem, we exhibit structural properties of the feasible solu-
tions and we present a Mixed Integer Linear Program (MILP) based on an event-based
formulation.

We also adapt the famous “left-shift/right-shift” satisfiability test (keystone of the
so-called energetic reasoning) and the associated time-window adjustments to our spe-
cific problem. To achieve this test, we present three different ways for computing the
relevant intervals.

Finally, we present a hybrid branch-and-bound method to solve the CECSP, which
performs, at each node, the satisfiability test and time-window adjustments and, when
the domains of all start and end times are small enough i.e. below a given parameter,
the remaining solution space is searched via the event-based MILP.

Computational experiments on randomly generated instances are reported showing
the interest of the hybrid method compared to pure MILP.
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Large-scale evacuation planning is a critical part of the preparation and response to nat-
ural and man-made disasters. Surprisingly, local authorities still primarily rely on expert
knowledge and simple heuristics to design and execute evacuation plans, and rarely in-
tegrate human behavioral models in the process. This is partly explained by the limited
availability of algorithms and decision support systems able to produce evacuation plans
that are compatible with operational constraints. Apart from a few exceptions, existing
evacuation approaches rely on free-flow models which assume that evacuees can be
dynamically routed in the transportation network. However, free-flow models violate a
key operational constraint in actual evacuation plans, i.e., the fact that all evacuees in a
given residential zone are instructed to follow the same evacuation route. In addition,
only few studies have considered behavioral models and the mobilization process, and
mainly from a simulation perspective.

This work addresses these issues and introduce the Joint Mobilization and Evacu-
ation Planning Problem (JMEPP) which integrates evacuation planning and mobiliza-
tion by incorporating the behavioral response of the evacuees. This methodological
contribution is implemented through the integration of response curves into a column-
generation algorithm that jointly decides the evacuation route, evacuation time, and the
resource allocation for each evacuated area in order to maximize the number of evac-
uees reaching safety and minimize the total duration of the evacuation.

The column-generation algorithm for the JMEPP decomposes the problem as fol-
lows. The master problem selects time-response evacuation plans, which consists of an
evacuation path, a response curve, and an evacuation time. The pricing subproblem gen-
erates columns of negative reduced costs, each representing a time-response evacuation
plan associated with a single evacuated area. The approach leverages the response curve
to solve the pricing subproblem efficiently by finding a shortest path for each evacuated
node in a time-expanded graph.

Experimental results based on real instances demonstrate the practicability and ben-
efits of the approach. Indeed, the case study shows that the quality of the resulting evac-
uation plans remains reasonably close to earlier approaches which assume full control
of evacuation timing. In addition, the proposed approach produce evacuation sched-
ules that ensure a continuous evacuation process, while previous approaches can lead
to a schedule with numerous interruptions of the flow of vehicles — which would be
difficult to enforce in a practical setting.

NICTA is funded by the Australian Government through the Department of Communications
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Abstract. The Time-Dependent Traveling Salesman Problem (TDTSP)
is the extended version of the TSP where arc costs depend on the time
when the arc is traveled. When we consider urban deliveries, travel times
vary considerably during the day and optimizing a delivery tour comes
down to solving an instance of the TDTSP. In this paper we propose a
set of benchmarks for the TDTSP based on real traffic data and show the
interest of handling time dependency in the problem. We then present a
new global constraint (an extension of no-overlap) that integrates time-
dependent transition times and show that this new constraint outper-
forms the classical CP approach.

1 Introduction

When we consider real world optimization problems, time is usually an important
dimension to take into account. This is particularly the case for Delivery Prob-
lems for which time is typically present in different forms: travel times between
consecutive deliveries; time windows where deliveries are allowed; precedence
constraints. We are interested in the Time-Dependent Traveling Salesman Prob-
lem (TDTSP), an extended version of the Traveling Salesman Problem (TSP)
where the travel time between deliveries (visits) depends on the date of the
travel. The TDTSP is at the core of many real-world scheduling problems such
as urban delivery problems, for example, since traffic conditions in urban areas
usually vary a lot during the day. In these real-world problems, there are fre-
quently additional constraints such as time-windows or precedence constraints.

Since the availability of extensive real-world data in this area is quite recent,
the TDTSP has not been much studied in the literature and Constraint Pro-
gramming (CP) approaches are even rarer. One reason for this is that CP is
usually less efficient than Integer Linear Programming or Meta-heuristics (Local
Search, Evolutionary Algorithms, Ant Colonies) for pure (non time-dependent)
vehicle routing problems. On the other hand, Constraint-Based Scheduling [4],
that is the application of CP to scheduling problems, is one of the biggest indus-
trial success of CP and has shown that CP technologies can be very efficient for
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 1–17, 2015.
DOI: 10.1007/978-3-319-18008-3 1
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solving temporal problems. A variety of specialized variable types (interval vari-
ables, sequence variables) and related global constraints and search algorithms
have been developed until recently [21–23] to improve the expressiveness and
efficiency of CP-based models involving temporal domains.

In this paper, we start by giving a general definition of the TDTSP in Section
2. Then, we introduce a new benchmark for this problem in Section 3. This
benchmark has been generated from real-world traffic data, coming from the
city of Lyon, and we study the interest of handling time-dependent data on this
benchmark. Section 4, describes related work. In Section 5, we introduce a basic
CP model for the TDTSP and show some of its limitations. In Section 6, we
describe a new global constraint (called TDnoOverlap) for efficiently tackling
time-dependent data while ensuring that visits are not overlapping. This global
constraint has been implemented on top of the CP Optimizer engine of IBM
ILOG CPLEX Optimization Studio, and we experimentally evaluate it on our
new benchmark in Section 7.

2 Definition of the TDTSP

The real world problem we address is the problem of scheduling a sequence of
deliveries in a urban zone. The city of Lyon and other partners started a project
called Optimod [1] with the goal to leverage city data to improve urban mobility.
Traffic predictions are made from historic data and these predictions can be used
to optimize moves in the city. In our case, we optimize delivery tours.

The theoretical problem involved is the TDTSP, an extension of the TSP
where arc costs depend on the time when the arc is traveled.

In the TSP we are given a list of locations and the distances between every
two of them. We are asked to find the tour minimizing the total traveled dis-
tance while visiting every location exactly once and coming back to the point of
departure (depot).

In some cases though we are interested in minimizing the total travel time
instead of distance or we simply need to schedule interventions or deliveries in
certain time-windows predefined by the client. To do so we need to know the
travel times between consecutive deliveries. To ensure a certain precision, since
in urban zones travel times usually vary a lot during the day, we need time-
dependent travel times. In order to take this variation into account we must
know at which time the travel between two addresses starts so that we can take
the time-dependent travel times into account.

We formally define the concepts of path, travel time function and timed-path
in a graph and give a general formal definition of the TDTSP.

Definition 1 (Path). A path P = (v1, ..., vk) in a graph G = (V,A) is a
sequence of vertices such that (vi, vi+1) ∈ A,∀i ∈ {1, ..., k − 1}, k ≥ 2.

Definition 2 (Travel Time Function). A travel time function f : A×R
+ →

R
+ is a function such that for a given arc (vi, vj) ∈ A, f(vi, vj , t) is the travel

time from vi to vj when leaving vi at time t.
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In the case of deliveries and specially of interventions, the duration of visits
is generally not the same so we consider that each visit vi is associated with a
given duration d(vi). The notion of Timed-Path extends the notion of path in
the context of TDTSP.

Definition 3 (Timed-Path). Given a graph G = (V,A), a starting time τ ∈
R

+, a travel time function f : A × R
+ → R

+ and a duration function d : V →
R

+, a timed-path Pτ,f in G is a path (v1, . . . , vk) such that each vertex vi has
an associated start time t(vi, Pτ,f ), corresponding to the time of arrival at vi.
Furthermore start times must respect:

t(v1, Pτ,f ) ≥ τ

t(vi+1, Pτ,f ) ≥ t(vi, Pτ,f ) + d(vi) + f(vi, vi+1, t(vi, Pτ,f ) + d(vi)),∀i ∈ {1, ..., k}
Definition 4 (TDTSP). Given a graph G = (V,A), a depot s ∈ V , a start-
ing time τ ∈ R

+ and a travel time function f : A × R
+ → R

+, the Time-
Dependent Traveling Salesman Problem is the problem of finding the timed-path
Pτ,f = (v1, . . . , vk) which starts from the depot (v1 = s) and visits each vertex
exactly once ({v1, . . . , vk} = V ), and such that the returning time to the depot,
t(vk, Pτ,f ) + d(vk) + f(vk, s, t(vk, Pτ,f ) + d(vk)), is minimal.

We could consider minimizing different objective functions but for our appli-
cation’s purpose we consider that minimizing the end time is a good objective.

3 A New Benchmark for the TDTSP

In the context of the Optimod project we had access to real traffic data measured
from 630 sensors installed in the main axes of Lyon for 6 years. Those sensors
measure vehicle’s speed and estimations are made for the neighboring streets
where there are no sensors. Given this data, a predictive model has been built,
which gives predicted speeds on every street section, by 6-minute time steps.

We propose a benchmark generated using this model. The benchmark is built
from 255 addresses randomly chosen from a list of delivery tours of transporters
from Lyon, we can see their distribution in the city on Fig. 1.

Since the predictive model considers 6-minute time steps we produced a
(stepwise) travel time function giving predicted travel times between every two
addresses in the list for every 6-minute time step from 6h00 to 12h30 so that we
have m = 65 time steps.

Travel times are computed using a time-dependent version of Dijkstra’s point-
to-point shortest path algorithm for every time step [27]. One limitation of our
approach though is that we do not take into consideration the time spent in
vertices in the path, where vertices are junctions between two or more street
sections. We know from experience that the time it takes to traverse a crossroad
or to turn left, for example, is an important factor in the augmentation of travel
times during rush hours.
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Fig. 1. 255 delivery addresses in Lyon
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Fig. 2. Example of time-dependent travel time functions

The travel time functions given in the benchmark are represented as stepwise
functions1. Examples of time-dependent travel time functions generated by this
approach are depicted on Fig. 2.

We randomly generated 500 instances for each problem size n (10, 20 and
30 visits) by randomly selecting n locations among the 255 positions referenced
in the travel time function. The duration of each visit is randomly selected in
the interval [60s,300s]. Because the transition function tends to underestimate
the travel time in congested areas, we generated two additional versions of the
function with a dilatation of travel times of respectively 10% and 20% centered
on the average travel time. So we end up with 3 functions: T00 (the original one)
and T10, T20.
1 This was a choice made to simplify the usage of the benchmark. We could generate

piecewise linear functions from the same data by using the algorithm described in
[19] in the travel time calculation section.
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In a preliminary study, we want to evaluate the potential gain of using a
time-dependent travel time model compared to a less precise TSP model that
rules out time dependency. Given a stepwise travel time function T , we com-
puted a TSP matrix MedianTSPT such that for every couple (i, j) of vertices,
MedianTSPT (i, j) is the median value over the set of all time-dependent values
associated with (i, j) in the stepwise travel time function T .

For each instance, we have solved the TSP defined by this median matrix
MedianTSP (T ). Then, we have computed costMedianTSP , which is the cost of
the TSP solution found previously when considering the time-dependent travel
time function T as transition cost. We denote optTDTSP the cost of the opti-
mal solution of the TDTSP. Obviously, costMedianTSP gives an upper bound of
optTDTSP . To evaluate the tightness of this bound, Fig. 3 gives the cactus plot
of the relative gain defined as:

gain =
costMedianTSP − optTDTSP

optTDTSP
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Fig. 3. Relative gain of TDTSP, instances ordered by decreasing gain

This figure shows that for more than 10 % of the instances, the gain is greater
than 5 %, whereas for 40 % of the instances it is equal to 0 %. Note that a
gain of 5 % is considered as very important in our context. Furthermore, real-
world delivery problems usually have time-window constraints. In this case, it
is mandatory to consider time-dependent data. As expected, the gain tends to
increase (to more than 13% and 21%) when using functions T10 and T20 with
larger amplitude. A similar behavior was observed for larger problems with 20
and 30 visits although the gain was slightly smaller, probably due to the fact
that the peaks of traffic congestion occur between 06:00 and 09:00 which more or
less corresponds to the time frame of a 10 visit problem so, for larger problems,
part of the route is executed on less congested time windows.

For each problem size n (10, 20 and 30 visits) we selected a smaller set of 60
instances that is representative of the different types of gains between TSP and
TDTSP (20 instances with the largest estimated gains, 20 instances with inter-
mediate gains, 20 instances with negligible/zero gains). These instances are used
in the experimental section to compare two models for solving the TDTSP prob-
lem. The benchmark is available on liris.cnrs.fr/christine.solnon/TDTSP.html.
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4 Related Work

The name TSDTSP is used in the literature for two different problems. In 1978,
[28] used the term TDTSP to describe the problem of scheduling jobs on a single
machine with costs depending on the position of the job in the sequence. Since
then, [2,8,16,17] also addressed this version of the problem.

We are interested in the actual time dependent problem introduced by [26]
in 1992. They give several simple heuristics for the TDTSP and for the more
general Time Dependent Vehicle Routing Problem (TDVRP) where a whole
fleet must be routed instead of a single vehicle. Other heuristic approaches like
ant colony systems [11], monte carlo [7], tabu search [19], simulated annealing
[29] and others [13,18,24,25] are proposed for the TDTSP and TDVRP. Integer
programming approaches are used in [8,9,30], some of these papers also take
time-window constraints into account. To our knowledge, the only paper using a
Constraint Programming approach for a time-dependent problem is [20], treating
two scheduling problems with time-dependent task costs.

Aside from [14,25], the papers cited here consider instances which are ran-
domly generated by applying some congestion rates during rush hours. The num-
ber of time steps considered is usually 3 but can go up to 16. In most cases, not
more than 4 different congestion patterns are considered. The number of visits
per tour varies between 10 and 65 but optimality is rarely proven for the largest
instances.

Solutions used to tackle real time-dependent vehicle routing problems in Ger-
many are presented in [14] and in the United Kingdom in [25]. In [25] they con-
sider 96 time steps of 15 minutes and in [14] they use 217 time steps to model a
whole day but test instances are not provided. In this sense, the benchmark pro-
vided by us offers a new testing parameter for the Time-Dependent VRP/TSP.
In this new benchmark, we deal with a much larger number of time steps (i.e.,
65), compared to what is usually considered in existing work.

5 Classical CP Model for the TDTSP and Its Limitations

5.1 CP Model

In this section we consider that f is a step function where each (time-)step has
the same length l so that f is modeled with a cost matrix T . The input data is :

– A number n > 0 of visits, by convention the first (resp. last) visited vertex
is 1 (resp. n + 1).

– A time horizon H > 0, a number of time steps m > 0 and a duration l > 0
of time steps so that H = lm.

– A cost matrix T : [1, n + 1] × [1, n + 1] × [0,m] → R
+ so that the travel time

from vertex i to vertex j when leaving i at time t is given by T [i][j][t/l].
– A visit duration vector D : [1, n] → R

+.
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We present here a TDTSP model adapted from the classic CP model used
to solve the TSP (see [6]). We added variables time[i], which give the arrival
time at each vertex i, and modified constraints to take into account the fact
that a duration Di is associated with every vertex i, and that travel durations
are time-dependent.

intVar position[1..n] ∈ 1..n

next[1..n + 1] ∈ 1..n + 1, prev[1..n + 1] ∈ 1..n + 1

time[1..n + 1] ∈ 0..H

minimize time[n + 1]

subject to alldifferent(position), alldifferent(next), alldifferent(prev)

inverse(prev, next)

position[1] = 1, time[1] = 0, prev[1] = n + 1, next[n + 1] = 1

∀i ∈ 1..n + 1 : next[i] �= i, prev[i] �= i

∀i ∈ 1..n : position[next[i]] = position[i] + 1

∀i ∈ 2..n + 1 : position[prev[i]] + 1 = position[i]

∀i ∈ 1..n + 1 : time[i] ≥ time[prev[i]] + D[prev[i]] + T [prev[i]][i][time[prev[i]]/l](1)
∀i ∈ 1..n + 1 : time[next[i]] ≥ time[i] + D[i] + T [i][next[i]][time[i]/l] (2)

Note that the numbers of positions in a path is n+1 since we have to return
to the depot. For each visit i: next[i] and prev[i] give the next and previous
visits, position[i] the position of the visit in the path and time[i] the time of
arrival at i. Beside constraints at the extremities of the tour to fix initial and end
visits and the start time, an alldifferent constraint is posted on each group of
variables whereas prev/next variables are linked with inverse constraints. The
relation between time and relative positions of visits is modeled with constraints
(1) and (2). For a stronger propagation, the term T[...] in these constraints is
modeled using a table constraint.

We also added the following redundant constraints to help improving the
lower bound on the objective term time[n+1]. We noticed that these redundant
constraints help reducing the number of branches by a factor close to 2 and the
CPU time by a factor varying between 1 and 2.

time[n + 1] ≥
∑

i∈1..n

D[i] +
∑

i∈1..n

T [i][next[i]][time[i]/l] (3)

time[n + 1] ≥
∑

i∈1..n

D[i] +
∑

i∈2..n+1

T [prev[i]][i][time[prev[i]]/l] (4)

In the search branching scheme used to compare the performance of the
propagation in Section 7, we use a search that builds the sequence of visits in a
chronological order. For this reason, we added a new set of variables atPosition[j]
that represent the vertex at the jth position in the sequence. These variables are
related with the rest of the model thanks to the following constraints:

intVar atPosition[1..n] ∈ 1..n + 1

constraints alldifferent(atPosition)

inverse(position, atPosition)

atPosition[1] = 1, next[atPosition[n]] = n + 1, atPosition[n] = prev[n + 1]

∀j ∈ 1..n : next[atPosition[j]] = atPosition[j + 1]

∀j ∈ 1..n : prev[atPosition[j + 1]] = atPosition[j]
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5.2 Model Limitations

In the context of TDTSP, time variables time[i] representing the dates of a visit
are very important and their domain should be as tight as possible because
the value of the travel time depends on the actual time value. An important
limitation of the model presented above is the weakness of the propagation
between temporal variables time and sequencing variables (like next and prev).
For instance, it should be clear from their formulation that constraints like (1)
and (2) would benefit from some more global reasoning over the travel time
between i and prev[i] (resp. between i and next[i]). Furthermore, reasoning only
locally on direct successors of a visit (next, prev) may miss some important
propagation as illustrated by the following example.

We call a visit a a successor of another visit b if a comes somewhere after b
in the path, we call it next of b if it is visited exactly after b. We can see from
our variables that all the propagation is done reasoning with direct neighbors of
a visit (next, prev).

We can show that reasoning with successors (besides prev/next variables)
allows to obtain tighter bounds on the time of visits, as soon as the problem is
asymmetric2. For simplification we will work here with a TSP example. Consider
the following slightly asymmetric TSP problem where D is the depot, A,B,C
are visits and the distance matrix T is as shown on Table 1. We suppose that
the upper-bound of the objective is 100, therefore only two paths are feasible
(D,B,C,A,D) and (D,C,B,A,D), each with a total length of 100. Given these
two feasible solutions, the tightest possible domains of prev and next variables
can be seen in Table 2.

In what follows we use dom(a) to refer to the domain of a variable a, a for
the smallest value in its domain and ā for the biggest. If a is fixed then a= ā
and dom(a) is a singleton.

Table 1. Distance Matrix T

D A B C
D 0 9 46 8
A 8 0 46 8
B 46 46 0 38
C 8 8 38 0

Table 2. Next &Prev Domains

visit dom(next) dom(prev)

D {B,C}
A {D} {B,C}
B {A,C} {C,D}
C {A,B} {B,D}

If time bounds are computed using only prev/next variables, the best we can
do boils down to apply the following formulas to compute the minimum time
bounds (smallest value in the domain) until a fix point is reached:

2 Asymmetric in the sense that reversing a solution may change its total travel time
or its feasibility. Some common causes of asymmetry are: asymmetric travel times
(like time-dependent travel times), time windows constraints or precedences between
visits.



A Time-Dependent No-Overlap Constraint: Application 9

time[A] = max(time[A],min(time[B] + T [B][A], time[C] + T [C][A]))
time[B] = max(time[B],min(time[C] + T [C][B], time[D] + T [D][B]))
time[C] = max(time[C],min(time[B] + T [B][C], time[D] + T [D][C]))

It gives time[A] = 16, time[B] = 46 and time[C] = 8. Let’s now look at how
we could propagate by also considering (indirect) successors. The distances in
matrix T satisfy the triangle inequality3 so we know that if A comes before B in
the path the total length of any path starting from D, passing through A and B
and returning back to D will be at least T [D][A]+T [A][B]+T [B][D] = 101, which
is infeasible. Thus B must be visited before A and we can infer a precedence
B → A. This corresponds to the so-called disjunctive constraint in scheduling.
With this, we know that A cannot start before time[A] = T [D][B] + T [B][A] =
92, which is a lot better than the value of time[A] = 16 found when reasoning
only with prev and next variables.

If the TSP was purely symmetric we would not be able to deduce any suc-
cessor links (indirect precedence) since any solution would be reversible and give
the same cost. This type of reasoning is interesting as soon as solutions are
asymmetric, which is usually the case for time-dependent travel times.

6 Time-Dependent No-Overlap Constraint

In order to integrate this kind of reasoning we use the concepts of interval and
sequence variables in CP Optimizer [22,23]. Each visit i is modeled as an interval
variable with start time denoted time[i]. The tour is modeled as a sequence
variable over the set of visits. This variable maintains a precedence graph to
propagate temporal relations between visits [15]. The vertices of this graph are
the time variables associated to each visit. Two types of arcs are considered:

1. A next arc between two visits i ⇒ j means that we pass through j directly
after visiting i.

2. A successor arc between two visits i → j means that we visit j after i but
we can go through other visits in between.

During the search, new next and successor arcs are added into the prece-
dence graph because of search decisions (like when chronologically building a
route) or as the result of constraint propagation (for instance by the extended
disjunctive constraint sketched in subsection 6.3). The precedence graph incre-
mentally maintains the transitive closure of the arcs.

In CP Optimizer the NoOverlap constraint allows to enforce a minimal transi-
tion time between vertices on the precedence graph. In this paper, we extended the
NoOverlap into a TDNoOverlap constraint to take into account time-dependent
3 If the triangle inequality is not satisfied, one can easily pre-compute a smaller tran-

sition time corresponding to the length of the shortest path (using Floyd-Warshall
algorithm) to provide a lower bound on travel times. That is what the noOverlap

constraint of CP Optimizer is doing internally.
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transition times. The resulting model using the new TDNoOverlap constraint is
sketched below.

intervalVar visit[i ∈ 1..n + 1] size D[i]

sequenceVar tour in all(i ∈ 1..n) visit[i]

minimize startOf(visit[n + 1])

subject to first(tour, visit[1])

last(tour, visit[n + 1])

tdnooverlap(tour, T )

To propagate the bounds of time variable domains we need lower bound
functions for the time-dependent transition time functions. Given two visits i
and j, such that there exists a next arc or a successor arc going from i to j, we
define two lower bound functions for each type of arc:

1. fnext
earliest(i, j, td) and fsucc

earliest(i, j, td), are the transition times giving the ear-
liest arrival time at j if we leave i at time td or later.

2. fnext
latest(i, j, ta) and fsucc

latest(i, j, ta), are the transition times giving the latest
departure time from i in order to arrive at j at time ta or earlier.

With these functions, the TDNoOverlap constraint propagates the earliest
time for j (5) and the latest time for i (6), by using the adequate lower bound
function depending on whether we propagate a successor arc (x = succ) or a
next arc (x = next):

time[j] ≥ time[i] + D[i] + fx
earliest(i, j, time[i] + D[i]) (5)

time[i] + D[i] ≤ time[j] − fx
latest(i, j, time[j]) (6)

Now we introduce the formal definitions of the bounding functions and explain
how to calculate them.

6.1 Propagation of Next Arcs

Here we consider a next arc i ⇒ j in the precedence graph. The earliest arrival
time at j, if we leave i at time td, is propagated by formula (5), using the
transition time function:

fnext
earliest(i, j, td) = min

t≥td
{f(i, j, t) + t − td} (7)

In fnext
earliest we check if leaving from visit i later (waiting in place) allows to

arrive at j sooner. In the case where waiting is never advantageous we say that
the transition times satisfy the FIFO property.

Definition 5 (FIFO property). A time-dependent transition time function
f is said to satisfy the FIFO (First In First Out) property iff:

∀i, j ∈ V,∀t1, t2,
(
t1 ≤ t2

) ⇒ (
t1 + f(i, j, t1) ≤ t2 + f(i, j, t2)

)
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It follows from Def. 5 and from Eq. (7) that if f satisfies the FIFO property
then fnext

earliest and f are equal. Although the FIFO property generally holds in
practice, our approach does not assume that f satisfies the FIFO property for two
reasons: (1) stepwise functions do not satisfy it because of the discretization and
(2) imprecision in data acquisition and time-dependent travel time calculations
may introduce non-FIFO effects.

If f is a stepwise or a piecewise linear function, fnext
earliest is a piecewise linear

function. So, as we need in any case to handle piecewise linear functions in the
propagation, in our implementation of the TDNoOverlap constraint we decided
to treat the more general case where the input function f is a piecewise linear
function.

In Algorithm 1 we describe the method used in pre-solve phase to calculate
fnext

earliest for each pair of vertices in the graph. We suppose a fixed arc (i, j) and
f a piecewise linear function defined on the time domain T = [tMin, tMax) ∈ R

and we simplify the notation to f(t) instead of f(i, j, t).
Each time interval pk = [tkmin, tkmax) on which the function is linear is called

a piece. Since pk is open on tkmax, by abuse of notation we write f(tkmax)
for limx→tkmax

f(x). For instance, if f is not continuous on tkmax = tk+1
min then

f(tkmax) �= f(tk+1
min). The notation f �pk

means that f is restricted to interval pk

and therefore all operations are done only in this interval.
Finally, function linear((t, v), (t′, v′)) denotes the linear function defined by

the two points (t, v) and (t′, v′).
In the implementation, we used the class of piecewise linear function provided

by CP Optimizer4. If ν is the number of pieces of the function, this class allows
for a random access to a given piece with an average complexity of O(log(ν)).
Furthermore, when two consecutive pieces of the function are co-linear, these
pieces are automatically merged so that the function is always represented with
the minimal number of pieces.

The other type of propagation we do on next arcs in formula (6) depends on
the estimation of the latest departure time from i in order to arrive at j at time
ta or before, given by:

fnext
latest(i, j, ta) = min

t+f(i,j,t)≤ta
{ta − t} (8)

Since fnext
earliest already gives the minimum transition time from a given time

it is clear that the minimum in Equation (8) is satisfied for the biggest t′ such
that t′ + fnext

earliest(i, j, t
′) ≤ ta. Then, calculating fnext

latest comes down to finding
this biggest t′.

Algorithm 2 describes the method used in a presolve phase to compute fnext
latest

for each pair of vertices in the graph.
A similar procedure as the one described in Alg. 1 is used by [14], they also

propose an algorithm like Alg. 2 but in their case, calculations are done for a
single time t instead of calculating the whole function at once.
4 Namely: IloNumToNumSegmentFunction.
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Algorithm 1. Calculate fnext
earliest

Require: f , ν (the number of pieces of f)
1: fnext

earliest ← f
2: for all k ∈ {0, ..., ν} do
3: x0 ← tk+1

min

4: v0 ← f(x0)
5: if v0 < f(tkmax) then
6: for all j ∈ {0, ..., ν}|pj ⊂ [tMin, x0) do
7: fnext

earliest �pj← min(fnext
earliest, linear((x0, v0), (v0, x0)) �pj )

8: end for
9: end if

10: end for
11: return fnext

earliest

Algorithm 2. Calculate fnext
latest

Require: fnext
earliest, ν (the number of segments of fnext

earliest)
1: arrivalT ime ← linear((0, 0), (1, 1)) + fnext

earliest

2: fnext
latest(t) ← 0

3: for all k ∈ {0, ..., ν} do
4: x0 ← tkmin

5: x1 ← tkmax − 1
6: v0 ← arrivalT ime(x0)
7: v1 ← arrivalT ime(x1)
8: slopek(t) ← x0 + x1−x0

v1−v0
∗ (t − v0)

9: for all j ∈ {0, ..., ν}| pj ⊂ [v0, v1] do
10: fnext

latest �pj← max(fnext
latest, linear((v0, x0), (v1, x1))) �pj

11: end for
12: for all j ∈ {0, ..., ν}| pj ⊂ ]v1, arrivalT ime(tMax)] do
13: fnext

latest �pj← max(fnext
latest, x1) �pj

14: end for
15: end for
16: return fnext

latest

6.2 Propagation of Successor Arcs

Now we consider a successor arc i → j in the precedence graph. To estimate
the earliest possible time of arrival at j if we leave i at time td or after we have
to check if we can arrive faster at j by passing through other vertices. Let ℘i,j

τ,f

be the set of all timed-paths from i to j starting after time τ with travel times
function f . We have:

fsucc
earliest(i, j, td) = min

p∈℘i,j
td,f

t(j, p) − td

where t(j, p) is the start time of j in path p.
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If there exists a shortest path from i to j, shorter than the direct arc, then
the triangular inequality extended to the time-dependent case does not hold. It
means that there is at least one vertex k such that passing through k allows to
arrive faster at j.

Definition 6 (Time-dependent triangular inequality). Function f is said
to satisfy the triangular inequality property iff:

∀i, j, k ∈ V,∀t ∈ R
+, f(i, k, t) ≤ f(i, j, t) + f(j, k, t + f(i, j, t))

To calculate fsucc
earliest we use a time-dependent extension of the Floyd Warshall

All Pairs Shortest Path algorithm [10]. We use fnext
earliest as travel time function

in the algorithm so that waiting at intermediate vertices to possibly go faster is
already taken into account.

The second type of propagation on successor arcs is based on the estimation
of the latest departure time from i in order to arrive at j at time ta or before,
given by:

fsucc
latest(i, j, ta) = min

p∈℘i,j
t,f ,t(j,p)≤ta

ta − t

The reasoning for calculating fsucc
latest is exactly the same as the one we used

for fnext
latest and the algorithm (2) is the same too, only this time we use fsucc

earliest

instead of fnext
earliest as input.

6.3 Time-Dependent Disjunctive Propagation

Classical propagation algorithms used in constrained-based scheduling can be
extended to time-dependent transition times. In our implementation of the
TDNoOverlap constraint we extended the disjunctive reasoning [5]. As soon as
two visits i and j are such that one of the conditions below is satisfied then it is
clear that it is not possible to visit j before i and thus, we can add a successor
arc i → j in the precedence graph:

time[j] + D[j] + fsucc
earliest(j, i, time[j] + D[j]) > time[i]

time[i] − fsucc
latest(j, i, time[i]) − D[j] < time[j]

This extended disjunctive reasoning helps discovering new arcs in the prece-
dence graph that are themselves propagated as described in subsections 6.1 and
6.2.

6.4 Complexity

The complexity of the TDNoOverlap constraint is dominated by the complexity
of maintaining the precedence graph and the disjunctive propagation. The worst-
case complexity of the full-fledged propagation is quadratic with respect to the
number of visits. We also implemented a slightly weaker but lighter propagation
with linear complexity.
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7 Experimental Evaluation

We compare the classical CP model presented in Section 5 with the model using
the TDNoOverlap constraint5 presented in Section 6.

In a first experiment we compare the filtering power of the two models. We
use the same depth first search strategy for both models so that we can estimate
the impact of constraint propagation on the number of branches of the complete
search tree. We do a chronological scheduling of visits and choice of the nearest
visit in terms of transition time first, given that the earliest date of the previous
visit is known. For the classical CP model, this means that the search first fixes
the variables atPosition[i] for i = 1, 2, ...n. However, as the search strategy is
not static, the search tree is different (one tree is not a sub-tree of the other).
We could have tested on a static search strategy but this would have resulted in
a more “artificial” type of search. We measured the number of branches and the
CPU time of the two approaches on the 60 instances of size 10 on the 3 functions
T00, T10, T206. For those 180 tests (all solved to optimality with both models),
the left side of Fig. 4 shows the comparison of the number of branches of the
search tree explored by the two approaches while the right side compares the
CPU times.
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Fig. 4. Comparison of number of branches (left) and CPU time (right)

Not only the TDNoOverlap model propagates a lot more (about 50 times
fewer branches) but it also finds better solutions faster than the classical CP
model. For 10-sized instances the search is about 100 times faster on average.

On Fig. 5 we compare on the instances of size 20 and 30 the cost of the
best solution found by the two approaches using the automatic search of CP
Optimizer which is more sophisticated than depth first search. We used the
same search heuristics as above and a time limit of 900s.

For instances of size 20, the TDNoOverlap model finds and proves the optimal
solution for 165 instances out of 180 and, in average the solution found is more
than 10 % better than the one of the classical CP model. For instances of size
5 In these experiments we used the lighter version of the propagation but we noticed

that there was not much difference with respect to the full-fledged version.
6 Comparison was performed only on instances of size 10 as the classical CP model is

not able to solve the larger problems to optimality.
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Fig. 5. Comparison of solution quality on problems of size 20 (left) and 30 (right)

30, both models are incapable of proving optimality in the time limit, but in
average the solutions found by TDNoOverlap are more than 20 % better than the
ones of the classical CP model.

We also compared the TDNoOverlap model with an intermediate model
(described in [3]) using the NoOverlap constraint. In average on the 180 intances
of size 10, the TDNoOverlap model proves optimality with 20 times less branches
and is 40 times faster.

8 Discussion

In this paper we showed, in the context of scheduling a sequence of deliveries, the
impact of reasoning with successors, other than just next/previous, and of taking
time-dependent transition times into account directly into a global constraint.
Reasoning on successors is crucial for problems involving time variables like the
TDTSP. From an application perspective, the interest of the scheduling model we
presented is that it is very easy to integrate additional constraints like precedence
between visits or disjunctive time-windows. These constraints are in fact directly
available in CP Optimizer and should work pretty well when added to the central
TDTSP model presented in this paper.

Reasoning on successors is in fact complementary with reasoning on a prev/
next graph. In future work we plan to improve our constraint propagation
by calculating tighter bounds for the TDTSP by using Minimum Spanning
Trees or Assignment Problem relaxations on the prev/next graph, extending
the approaches described in [6,12,15]. We also want to see if the successor rela-
tions stored in the precedence graph can be exploited in this context. We plan
to evaluate our new constraint on other benchmarks, and compare it with other
approaches.

Acknowledgments. This work has been done in the context of the Optimod’Lyon
project. We would like to give our special thanks to Thomas Baudel for his help in the
obtention of traffic data.



16 P.A. Melgarejo et al.

Christine Solnon is supported by the LABEX IMU (ANR-10-LABX-0088) of Uni-
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Abstract. We report our solution to the problem of designing test-
site chips. This is a specific variation of the VLSI floorplanning problem
where rectangular macros must be placed without overlap in a given area,
but no wiring between the macros exists. Typically, industrial problems
of this type require placing hundreds of macros of different sizes and
shapes and include additional constraints such as fixing or grouping some
of the macros. Many tools and techniques developed to solve similar
problems proved unsuitable for this specific variation. We used constraint
programming (CP) with additional heuristics, including sophisticated
variable and value orderings, to produce floorplans for real test-sites.
Our CP solution is successfully used in production by test-site designers.

Keywords: Floorplanning · Electronic design automation · Constraint
programming · Non overlapping rectangles placement

1 Introduction and Background

Floorplanning of a VLSI chip is the design phase in which placement of main
functional units is determined. General chip floorplanning is a highly complex
task, since the placement of the units must take into account not only spatial
considerations, but also wiring, pin placement, power planning and power grid
design.

Test-site chips are designed specifically for testing various aspects of the chip
manufacturing processes. These chips house design units called macros which
may be integrated circuits (IC) themselves. Floorplanning of test-site chips is
subject to considerations such as spatial arrangement, density, and precision
of manufacturing tools. However, this problem is significantly simpler than the
general floorplanning problem because the macros are not interconnected.

The actual placement of macros on a chip is limited by the precision of the
chip manufacturing tools. In order to account for that, a grid is defined on the
chip and macro placement is limited to the grid points. The distance between
any two adjacent points of the grid is the precision of the manufacturing tools.

Test-site chips are usually divided into several chiplets that are later diced
and can be tested as individual chips. This division into chiplets enables design
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 18–30, 2015.
DOI: 10.1007/978-3-319-18008-3 2
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and testing of different chiplets by separate design teams or even different com-
panies.

When placing macros on a test-site, there are two fundamental constraints
that must be satisfied. The first is that every macro must reside completely inside
one of the chiplets. The second is that no two macros may overlap. Satisfying
even just these two constraints may already prove challenging for real instances
with high area utilization and a mix of macro sizes and shapes. Yet in many
cases there are further requirements pertaining to the placement of individual
macros or sets of macros.

Examples of requirements affecting a single macro:

Chiplet - Certain macros are confined to specific chiplets because these macros
are to be designed, integrated, diced-out and tested separately.

Fixed-point - Some macros are pre-placed in specific locations.
Block - Some areas on the chip are reserved for later placement of special units

and therefore macros cannot be placed there.
Perimeter - Certain macros may be confined to particular areas to accommo-

date various spatial considerations e.g., to minimize the efect of these macros
on other macros.

Proximity-point - Some macros should reside as close as possible to a given
point to enable chip-wide spatial analysis.

Examples of requirements affecting a set of macros:

Offset - A specific offset or distance may be defined between a given pair of
macros. This enables local spatial measurements and analysis. A certain
tolerance or deviation may be allowed in the specified offset.

Cluster - Manufacturing process-related spatial considerations may dictate that
a certain group of macros form a single contiguous region. This requirement
may be somewhat relaxed to require the macros to form as few contiguous
regions as possible. In this case, we call this constraint soft-cluster.

In typical test-site placement problems, the width and height of the chip,
when aligned to the precision grid, can be several tens of thousands of units. A
single test-site is divided into around 10 chiplets and contains several hundred,
up to 1500, macros. These macros are of 15-20 different sizes. Typical density,
of area covered by macros, is between 85% to 95%. Figure 1 depicts a floorplan
of a typical test-site. The black outlines indicate a perimeter constraint, and
the diagonal lines over rectangles indicate that these rectangles participate in a
cluster constraint. As can be seen in this figure, the high density dictates highly
structured floorplans.

1.1 Placement Algorithms and Tools

Macro placement for test-site is currently mostly a manual process performed
by experienced engineers. However, the increasing number of macros and shorter
time to market requirement drive the need to automate this process.
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Fig. 1. A typical test-site design containing 9 chiplets. Black outlines indicate a perime-
ter constraint. Diagonal lines over rectangles indicate cluster constraints.

In this section, we review existing solutions that aim to provide a convenient,
fast and scalable tool for macro placement. We focus on tools that target the
mixed size placement problem, as opposed to standard cell or block placement
problems in VLSI [1]. The mixed-size placement problem requires placement of
macro blocks of intermediate size intermixed with a large number of standard
cells. These are more challenging problems, since moving a macro block involves
the relocation of large numbers of standard cells. It should be noted that none
of the reviewed tools and techniques is specifically designed to deal with the
test-site placement problem.

To deal with large instances, most of the tools for mixed block placement use
hierarchical floorplanning [4]. They divide the problem into multi-level placement
problems by top-down divisioning or bottom-up clustering. For the placement
problems at each level, most tools use a hybrid algorithm approach: one algo-
rithm is used to reach an initial solution, and then another algorithm is used to
improve or legalize the solution.

The algorithms used for placement fall into 4 categories:

– recursive partitioning - Min-cut [2] or bi-section [3] algorithms are used to
recursively partition the area, until small enough regions are formed.

– local search - These algorithms exploit the fact that floorplans can be rep-
resented as graphs. For example, compact floorplans can be represented as
B*-trees [5]. This representation allows easy introduction of perturbations in
the floorplan, so that simulated annealing or genetic algorithms can be used
to find a good placement. An academic tool that uses simulated annealing
is Capo [6]. Local search algorithms usually converge slowly, require tuning
of various input parameters and are not suitable when fixed macros exist.

– analytical methods - These methods are used for example in mPL6 [7], which
models the macros as a set of masses and springs and uses force-directed
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algorithms to find a placement. Another example is NTUplace [8] that for-
mulates placement as density function control. Analytical methods usally
require solving a quadratic program, or a linear relaxation.

– greedy algorithms - The floorplan is constructed by iteratively adding rectan-
gles until all rectangles are placed. The location of the next rectangle depends
on the current shape formed by the already placed rectangles. Hence rect-
angles order is important. With such algorithms, it is hard to accommodate
requirements such as offsets between macros or proximity points. The cluster
growth method [9], is an example of a greedy placement algorithm.

Existing commercial florplanning tools were found not suitable for test-site
floorplanning by test-site designers. The main reason is that they try to account
for power consumption and interconnectivity concerns which are not relevant
for the test-site floorplanning case. In addition, they cannot accommodate some
of the necessary constraints. Many of the algorithms mentioned above do not
impose the no-overlap constraint while others treat this constraint inefficiently.
Integer linear programming (ILP) based solvers, for example, model no-overlap
constraint with two binary variables for every pair of macros, resulting in over
a million binary variables for a typical test-site.

The remainder of the paper is organized as follows: in Section 2, we present
a CP formulation of the test-site problem and in section 3 the heuristics used
to solve it. In Section 4 we present our solution results for several industrial
test-sites. Finally, in Section 5, we discuss the results.

2 Constraint Programming (CP) Formulation

We begin by introducing a few notations. We describe a rectangular area in the
plane by the Cartesian product [left, right] × [bottom, top]. For example [−1, 3] ×
[2, 4] is a rectangle with two diagonally opposite corners at positions (−1, 2) and
(3, 4).

We denote a placement of a rectangle by a pair of coordinates (x, y) that
indicate the position of its bottom-left corner. Note that when the rectangle
with height H and width W is placed at (x̄, ȳ), the rectangular area it occupies
is [x̄, x̄ + W ] × [ȳ, ȳ + H].

Given a rectangular area C = [LC , RC ] × [BC , TC ] and a rectangle A with
width WA and height HA placed at (xA, yA), we define the following relationships
between A and C:

A inside C ⇔ LC ≤ xA ≤ RC − WA ∧ BC ≤ yA ≤ TC − HA (a)
A overlaps C ⇔ LC − WA < xA < RC ∧ BC − HA < yA < TC (b)
A ¬overlap C ⇔ (c)

xA ≥ RC ∨ xA +WA ≤ LC ∨ yA ≥ TC ∨ yA + HA ≤ BC

A borders C ⇔ (d)
(LC − WA < xA < RC ∧ (BC = yA + HA ∨ yA = TC) )
∨ (BC − HA < yA < TC ∧ (xA = RC ∨ xA + WA = LC) )

(1)
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In the test-site floorplanning problem, we are given a rectangular area of the
entire chip (defined by [L,R]×[B, T ]), divided to K smaller, rectangular chiplets
Ck = [Lk, Rk] × [Bk, Tk] k = 1 . . .K.

Given N macros, represented as rectangles with respective heights Hi and
widths Wi, where i = 1, . . . , N , we have to find an on-grid placement (xi, yi) for
each of these macros, such that no two macros overlap and each macro is inside
a chiplet. If there are additional constraints on some of the macros, these must
be satisfied as well.

2.1 Variables and Domains

We define for each macro two decision variables: xi, yi, i = 1 . . . N , where (xi, yi)
represent the placement coordinates (bottom-left corner) of macro i. The initial
domain for variable xi is [L,R − Wi] and for variable yi is [B, T − Hi].

The actual placement of a macro on a chip is limited by the precision P of
the chip manufacturing tools. Thus we define a grid on the chip such that macros
can be placed only on grid points. Therefore, the coordinates are scaled by P
and the variables domains are actually ranges of integers. For our convenience,
we shall assume P = 1.

Note that this choice of decision variables may hinder prunning. Consider,
for example, a macro that can be placed at only three locations: (1, 1), (2, 1)
and (1, 2). Using our choice of decision variables the initial domain of xi = [1, 2]
and yi = [1, 2]. If the location (1, 1) proves to be infeasible for this macro, no
prunning of variables xi or yi is possible. However, the alternative of having a
single decision variable to represent the location of each macro entails handling
very large domains, of magnitude (R − L) ∗ (T − B).

2.2 Constraints

Using the relationships given in Eq. 1(a),(b),(c) and (d), we can formulate the
test-site floorplanning problem as the following set of constraints:

∃k = 1, . . .K : Ai inside Ck ∀i = 1, . . . , N (a)
Ai ¬overlap Aj ∀i, j = 1, . . . , N, j 
= i (b)
Ai inside Ck i ∈ Chiplet(k) (c)
Ai inside T i ∈ Perimeter(T ) (d)
∀i = 1, . . . , N : Ai ¬overlap B Blocked(B) (e)
∃j ∈ Cluster, j 
= i : Ai borders Aj i ∈ Cluster (f)
xi = Fx ∧ yi = Fy i ∈ Fixed(Fx, Fy) (g)
|xi − xj − Xo| ≤ tx ∧ |yi − yj − Yo| ≤ ty i, j ∈ Offset(Xo, Yo, tx, ty) (h)
Ai overlaps R(px, py, distx, disty) i ∈ Proximity(px, py) (i)

(2)

where N is the number of rectangles to be placed, Ai, i = 1, . . . , N denotes the
area occupied by rectangle i when placed at (xi, yi), i.e. Ai = [xi, xi + Wi] ×
[yi, yi + Hi] , Ck k = 1, . . . ,K denote the test-site chiplets and R(px, py, distx,
disty) = [px − distx, px + distx] × [py − distx, py + disty] is a rectangular area
around point (px, py).
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Constraint (a) in Eq. 2 ensures that all placed rectangles fully reside inside
the test-site chiplets, while constraint (b) ensures that no two placed rectangles
overlap. These two constraints appear for every test-site design. The rest of the
constraints listed in Eq. 2 describe types of possible additional constraints. These
additional constraints are defined specifically per design. Thus, their number and
parameters vary for different designs.

Chiplet constraints (type (c)) restrict macro i to reside within a specific
chiplet (of given index k).

Perimeter constraints (type (d)) restrict certain macros to reside within a
given rectangular area (denoted by T ).

Block constraints (type (e)) define a rectangular area (denoted by B) which
none of the placed rectangles can overlap.

Cluster constraints (type (f)) ensure that a given set of placed rectangles
form a contiguous region. We use dedicated heuristics (described in Section 3.1)
to deal with this type of constraints.

Fixed constraints (type(g)) place a certain rectangle i at a given location
(Fx, Fy).

Offset constraints (type (h)) require that two particular macros i, j will be
offset from each other by (Xo, Y o), perhaps with respective tolerance (tx, ty).
Note that when no tolerance is allowed, the offset constraints become equalities.

Offset constraints can have 3 origins:

– Explicit - designer defines an offset constraint between two macros
– Transitive - If macros i, j have an offset constraint, and macros j, k also have

an offset constraint, then an offset constraint is added between the macros i
and k.

– Same cell - If a macro is an IC, it can contain several macros. In this case, the
relative locations of the internal macros must be preserved in the solution.
Therefore, the IC macro is translated into the set of its internal macros, with
offset constraints between them, according to the internal placement in the
IC macro.

Proximity constraints (type (i)) require that macro i should reside as close
as possible to point p = (px, py). Instead of resolving this exact constraint which
involves an optimization problem, we define (distx, disty) which determines the
maximum allowed distance from p in each dimension. We set dist to a predefined
percentage of the total chip size in that dimension.

In our tool, we reformulated Block constraints as Fixed constraints: if area
T = [LT , RT ] × [BT , TT ] is blocked, we introduce a new dummy macro d with
Wd = RT −LT , Hd = TT −BT , fixed at location (LT , BT ). Similarly, to account
for chiplets, we added dummy fixed macros that cover all the chip area outside
the chiplets. This reformulation eliminates constraints (a) and (d) appearing in
Eq. 2, at the expense of adding some dummy fixed rectangles to the problem.

In addition, the No-overlap constraint (b) was modeled as the DIFF2 global
constraint. The propagator we implemented is similar to that described in [10].
The main idea is that for every rectangle we maintain obligatory regions, that is
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regions which will be covered by any placement of this rectangle, and forbidden
regions, which represent placements (lower-left corner locations) of this rectangle
that lead to infeasibility. The obligatory and forbidden regions are updated for
all rectangles during propagation by a single sweep through the xy plane. It is
the most time-consuming constraint in the problem.

All unary constraints (Fixed, Proximity, Chiplet, Perimeter) can be handled
by preprocessing the variable domains or by a single invocation of their propa-
gators.

3 Heuristics for Test-site Placement

3.1 Cluster Handling

Cluster constraints (see Eq. 2 (f)) require that a group of macros (i.e., a subset
of 1..N) form a single contiguous region after placement. We use two heuristics
to ensure this type of constraints is satisfied. The first is named bounding box
and the second continuous placement.

The continuous placement heuristic is similar to the cluster growth technique
mentioned in Section 1.1. It is triggered when one of the cluster macros is placed
during the solving process. Then, it selects the remaining macros that belong to
the cluster one by one, and places them adjacent to any of the already placed
cluster macros. While this heuristic ensures the creation of a contiguous region of
the macros, it may be triggered too late in the solving process leaving insufficient
space to place all cluster macros. In addition, this heuristic takes long, since
after each placement, arc-consistency is performed. Therefore, the continuous
placement heuristics is used only for soft clusters or for clusters that contain a
fixed macro or a macro that has an offset from a macro outside the cluster.

The bounding box heuristic deals with the disadvantages presented by the
continuous placement heuristics by trying to place all cluster macros at once.
This is done by iterating two steps. First, we select a rectangular area on the
chip whose area is large enough to accommodate the entire cluster. This area
is called the bounding box. Then, a sub-problem of placing the cluster macros
inside the bounding box is created. If the bounding box is small enough, the
solution will form a contiguous region. In case the sub-problem created is not
satisfiable, a new bounding box is selected, and so-on. When the sub-problem
is satisfiable, we translate the macros in the sub-problem back to the original
problem.

The bounding box heuristic is connected to the main problem by a mechanism
that we name a restrictor. A restrictor can be viewed as a sophisticated type of
constraint combined with variable and value ordering on a subset of the variables.
Similarly to a propagator, a restrictor implements a constraint by removing all
unsupported values, but unlike a propagator, it may leave only a subset of the
supported values. At the extreme case, a restrictor may return a single tuple
of valid values for all the variables participating in this constraint. Restrictors
are integrated into the CP solving algorithm in place of an instantiation step
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(choice). Thus, if the instantiation by the restrictor fails in the main CSP, the
algorithm will backtrack and the restrictor can make a new instantiation.

3.2 Merging IC Macros

Macros that are ICs can contain several macros. If these internal macros are
spaced, their respective locations must be preserved. For packed floorplans, it is
necessary to place macros in the spaces between these internal macros. As part
of the pre-processing, we look for IC macros with spaced internal blocks that can
be weaved together to form an (almost) continguous region. When such macros
are found, we merge them into a single macro.

3.3 Value Ordering

To comply with high area utilization, we must produce a compact placement. We
achieve this by value ordering heuristics: we select a consistent direction to place
all macros. For example, we try to position each macro in the minimum possible
locations of x and y coordinates, effectively placing macros from bottom to top,
left to right. At the beginning of the solving process, a direction is randomly
selected from four possible directions: for each of x, y coordinates we can select
the minimum or maximum. The chosen direction applies to all macros with the
exception of macros inside a perimeter, where the direction may be reversed.
This exception tries to avoid the collision between filling the perimeter area and
filling the chiplet it resides in.

3.4 Variable Ordering

Our choice of variable ordering was derived from the typical characteristics of
the macros to be placed. Most of the rectangles have an aspect ratio of between
20:1 to 80:1. There are very few nearly square or flat macros. Moreover, there
are many macros sharing the same height. In addition, the test-site problem
typically has few macros that are involved in more than 3 constraints. All these
observations led us to the following variable ordering heuristics:

1. Macros with constraints that directly affect their placement (Perimeter,
Proximity, Cluster and Offset constraints) are placed before macros with
no such constraints.

2. Macros are ordered by height, so that macros of the same height will be
adjacent.

3. Macros within a group with the same height are ordered by their width.
4. Randomly select some (a pre-defined percentage) macros and move them to

a different place in the ordering. This can be done for individual macros and
for sets of macros of the same height.

Although we describe order of placing macros, in fact the decision variables
are x and y coordinates of their locations. Hence, we place every macro by first
selecting its y coordinate, and then immediately its x coordinate.



26 M. Aharoni et al.

3.5 Retries

We point out several observations which cause backtracks to be very ineffective
on this problem. First, note that the variable domains are huge, of magnitude
of 10,000 elements. Generally, small pertubations on the location of a particular
macro will have a neglibible effect on the solutions. Furthermore, the effect of
positioning a particular macro is not immediate, and we must perform a large
number of choices, before we can identify a conflict.

This special nature of the problem may cause thrashing of the CP solver. In
other words, if we use regular backtracks, the solver may get stuck on the same
solution scheme for a very long time. One way to avoid thrashing is to direct the
value ordering towards far/random values after each backtrack. In our case, such
value ordering produces highly disordered placements that significantly reduce
the chances of reaching a complete solution. Therefore, we believe that a better
practice for the test-site problem is to refrain from any backtracks and perform a
retry upon reaching a conflict. That is, reset the problem and run the solver again
with a totally different randomization path. For this approach to be successful,
we must ensure that different runs will produce different results. This is achieved
by the randomness introduced in variable and value orderings that was described
previously: in each retry the order in which macros are placed and the chosen
placement direction are changed.

4 Experimental Results

Over the last two years, we used the CP-based tool described above to find
placements for several test-site designs. Table 1 displays the properties of each
test-site, including the number of chiplets and the number of macros. Note that
some of the macros are ICs containing internal rectangles. The area utilization
is calculated by dividing the sum of the areas of all the rectangles by that of
the chiplets. The number of constrained macros is the number of macros that
are subject to constraints defined by the designer (types (c)-(i) in Eq. 2). We
do not include in this count same-cell offset constraints. Macros that appear in
multiple designer constraints are counted only once.

Table 1. Characteristics of recent test-sites

Test-site Chiplets Macros Area Constrained Cluster sizes Soft cluster sizes
utilization macros

B 7 909 95.56% 0 - -

P 9 1006 91.96% 33 - -

I 7 1064 92.44% 203 3,5 -

O 7 962 83.42% 715 2,3,7,7,44,44,47 3,5,7,8,9,10,41,90

S 8 1026 96.19% 177 3,4,4,6,6,6,7,10,23,40 3

G 8 1221 87.80% 0 - -
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We solved the floorplanning problems induced by these designs using the
IBM CSP Solver [11], with the heuristics described in section 3. Table 2 summa-
rizes the dimensions of the CP problem created for each design and the solver’s
performance on it. The number of variables appearing in this table is not exactly
twice the number of macros appearing in Table 1, because some of the macros
include internal macros and because of the merging pre-process described in 3.2.

For each design we performed 5 separate runs on a Linux machine with an
Intel 1.9GHz processor and 2.1GB memory. The Solved [%] column shows the
percentage of runs in which the solver managed to reach a solution within 7200
seconds (2 hours).

Under Successful Runs we show the average number of retries and the average
run time of the solver until a solution was found.

Under Timed Out Runs we show data for the runs that were terminated due
to time out. The seventh column shows the average number of retries in this
case. In addition, the solver stores the placement of the best retry it had so far.
If it times out, it returns this placement as the (partial) solution. The eighth
column shows the average number of unplaced rectangles in the partial solutions
of the timed out runs.

Table 2. Rectangles Placement Results

Problem Successful Runs Timed Out Runs

Test-site Variables Constraints Solved [%] Retries Solution Retries Unplaced
Time [sec] Rectangles

B 1830 1 60 6 3101 14.5 6.5

P 2036 5 100 1 968 – –

I 2158 44 80 12 4938 22 12

O 1834 178 100 1.8 1111 – –

S 1982 263 0 – – 6.6 16.4

G 2472 13 100 1.2 4182 – –

The results in Table 2 show that the solver performed well on all test-site
designs, solving most of them in under 2 hours. For those not solved completely,
the solver produced an almost complete placement with very few macros left
out. Such placements are also useful for test-site designers, and serve as good
starting points to find a complete placement manually. Thus, the solver saves
several days of manual placement by an experienced designer.

Examining the placements produced by our solver (as in Figure 1), we see a
highly structured arrangement. Our choice of value and variable ordering results
in rows of contiguous identical rectangles which are favored by the designers,
and are similar to the type of solution an engineer would produce.

Figure 2 depicts the effectiveness of various retries. For every duration and
number of placed rectangles, we measure how many retries over all designs
achieved this result. For example, the height at a duration of 4000 [sec] and
200 placed rectangles is zero, indicating that no retry ended with such results.
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Figure 2 demonstrates that at each retry, the solver either fails almost instantly
(see the large peak at the origin), or succeeds in placing all or almost all the
rectangles. Over all designs, there are very few retries that took a significant
amount of time (a few minutes) and managed to place only a small or medium
percentage of the rectangles.
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Fig. 2. Histogram showing the number of retries (over all test-sites) sharing the same
duration and same success (num of placed rectangles)

4.1 Soft Retries

One of the main disadvantages of the retries heuristic is that we may give up
on some good solution paths too early. However, as indicated in Section 3.5, we
want to refrain from backtracking or backjumping. Therefore, after detecting a
conflict, we perform an analysis on the already placed rectangles. If we identify
chiplets that are almost full (occupied over some predefined percentage), we
retain their placement for the next retry. We call this approach Soft Retries. To
avoid getting stuck in some local neighborhood, we perform a full reset after a
few such soft resets.

We re-ran the experiments described above on all designs with soft retries
activated. A chiplet placement is retained if the chiplet was filled over 96%. A
hard reset was performed on each fifth retry. Table 3 shows the results (The
Retries column in this case counts both soft and regular retries).

Comparing the results in Table 3 with those in Table 2, we can conclude
that the soft retries approach improved the percentage of solved designs. A
fine grained examination of the single retry run times (not shown here) reveals
that the soft retries took much less time on average and usually improved over
the results of the initial retry. However, in some cases (especially when the
number of retries required to solve the test-site was very small) soft retries
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Table 3. Rectangles Placement Results with Soft Retries

Problem Successful Runs Timed Out Runs
Test-site Variables Constraints Solved [%] Retries Solution Retries Unplaced

Time [sec] Rectangles
B 1830 1 80 14.5 4032 24 8
P 2036 5 100 1 975 – –
I 2158 44 100 7.8 3450 – –
O 1834 178 100 2.8 1739 – –
S 1982 263 20 2 1351 8.5 14.75
G 2472 13 100 1.6 5538 – –

caused a degradation in runtime. This may be a result of our small sample size
and the large impact of being stuck on a bad path for 5 retries. Perhaps tuning
of parameters of the soft retries heuristic can improve runtime as well.

5 Discussion

We transform the test-site florplanning problem into a rectangles placement
problem within a fixed outline. The approach we took in addressing this place-
ment problem is a combination of CP with dedicated heuristics.

Using CP for solving the test-site floorplanning problem provided several
advantages:

1. The strength of propagation to continually prune the domains.
2. A controlled degree of randomness, giving unique solutions at every run.
3. The flexibility to introduce a range of heuristics.

We chose to use our own home-grown solver because it gave us the required
flexibility. A strong feature of our solver is restrictors, described in Section 3.1.
This allowed us to implement the cluster constraints as sub-problems that were
solved separately, but integrated into the full flow of the solution. Other features
we used are the ability to model variable and value ordering as C++ functions.
We also implemented our own version of the DIFF2 constraint. As described
before, the variables representing x and y coordinates of each rectangle have
large, non-contiguous integer domains. Our solver supports the representation
of integer domains as sets of ranges, which is very suitable for this problem.

The retries heuristic proves very suitable for this problem because of the large
domains, late propagation and large number of choices made during the solving
process. However, refraining from backtracking has two main disadvantages. The
first is giving up on some good solution paths too early. This was handled by
using soft retries, an approach that improved the percentage of solved designs
and the average runtime of a single retry. We believe tuning of parameters of
the soft retries heuristic may lead to further improvement.

The second disadvantage of refraining from backtracks is the inability to
determine unsatisfiability. If the solver neither reaches a complete solution nor
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encounters a conflict during first arc-consistency, we cannot determine whether
the given instance of the problem is unsatisfiable or just hard to solve. However,
even with backtracking, the chances to prove unsatisfiability are very low due
to domain sizes and number of choices. In either case, relaxing some of the
constraints is advised.

In the time since this tool was introduced to test-site designers, we have been
seeing a steady increase in the complexity of designs: the number of macros has
been increasing, as has the number of constraints. New types of constraints have
been introduced over time as well. This trend continues. The automatic solution
enables designers to define more complex constraints they did not define before,
which in turn drives ongoing improvement of the tool.
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Abstract. Many network design problems arising in areas as diverse
as VLSI circuit design, QoS routing, traffic engineering, and computa-
tional sustainability require clients to be connected to a facility under
path-length constraints and budget limits. These problems can be mod-
elled as Rooted Distance-Constrained Minimum Spanning-Tree Problem
(RDCMST), which is NP-hard. An inherent feature of these networks
is that they are vulnerable to a failure. Therefore, it is often impor-
tant to ensure that all clients are connected to two or more facilities via
edge-disjoint paths. We call this problem the Edge-disjoint RDCMST
(ERDCMST). Previous works on RDCMST have focused on dedicated
algorithms which are hard to extend with side constraints, and there-
fore these algorithms cannot be extended for solving ERDCMST. We
present a constraint-based local search algorithm for which we present
two efficient local move operators and an incremental way of maintain-
ing objective function. Our local search algorithm can easily be extended
and it is able to solve both problems. The effectiveness of our approach
is demonstrated by experimenting with a set of problem instances taken
from real-world passive optical network deployments in Ireland, the UK,
and Italy. We compare our approach with existing exact and heuristic
approaches. Results show that our approach is superior to both of the
latter in terms of scalability and its anytime behaviour.

1 Introduction

Many network design problems arising in areas as diverse as VLSI circuit design,
QoS routing, traffic engineering, and computational sustainability require clients
to be connected to a facility under path-length constraints and budget limits. Here
the length of the path can be interpreted as distance, delay, signal loss, etc. For
example, in a multicast communication setting where a single node is broadcast-
ing to a set of clients, it is important to restrict the path delays from the server
to each client. In Long-Reach Passive Optical Networks (LR-PON) a metro-node
is connected to the set of exchange-sites via optical fibres, the length of the fibre
between an exchange-site and its metro-node is bounded due to signal loss, and
the goal is to minimise the cost resulting from the total length of fibres [1]. In VLSI
circuit design path delay is a function of maximum interconnection path length
c© Springer International Publishing Switzerland 2015
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while power consumption is a function of the total interconnection length [2]. In
package shipment service guarantee constraints are expressed as restrictions on
total travel time from an origin to a destination, and the organisation wants to
minimise the transportation costs [3]. In wildlife conservation, which is an appli-
cation from computational sustainability [4], the landscape connectivity is key to
resilient wildlife populations in an increasingly fragmented habitat matrix where
landscape connectivity is a function of the length of the path in terms of landscape
resistance to animal movement.

Many of these network design problems can be modelled as Rooted Distance-
Constrained Minimum Spanning-Tree Problem (RDCMST) [2] which is NP-
hard. The objective is to find a minimum cost spanning tree with the additional
constraint that the length of the path from a specified root-node (or facility) to
any other node (client) must not exceed a given threshold. Many networks are
complex systems that are vulnerable to a failure. A major fault occurrence would
be a complete failure of the facility which would affect all the clients connected
to the facility. Therefore it is important to provide network resilience.

In this paper we focus on the networks where all clients are required to be
connected to two facilities via two edge-disjoint paths so that whenever a single
facility fails or a single link fails all clients are still connected to at least one facil-
ity. We define this problem as the Edge-disjoint Rooted Distance-Constrained
Minimum Spanning-Trees Problem (ERDCMST). Given a set of facilities and a
set of clients such that each client is associated with two facilities, the problem is
to find a set of distance-constrained spanning trees rooted from each facility with
minimum total cost. Additionally, each client is connected to its two facilities via
two edge-disjoint paths. Notice that if a same edge appears in two trees then it
means there exists a client which is connected to its two facilities using the same
edge. This would effectively mean that each pair of distance-bounded spanning
trees would not be mutually disjoint in terms of edges. Certainly, ERDCMST is
more complex than RDCMST as the former not only involves finding a set of
distance-constrained spanning trees but also enforces that an edge between any
pair of clients can only be used in at most one tree.

Previous works on RDCMST [5,6] have focused on dedicated algorithms
which are hard to extend with side constraints, and therefore these algorithms
cannot be extended for solving ERDCMST. We present a constraint-based local
search algorithm which can easily be extended to apply widely. We present two
efficient local move operators, an incremental way of maintaining information
required to checking constraints efficiently and an incremental way of main-
taining cost of the assignment which are key elements for efficient local search
algorithms. Our local search algorithm is able to solve both RDCMST and ERD-
CMST problems. The effectiveness of our approach is demonstrated by exper-
imenting with a set of problem instances taken from real-world passive optical
network deployments in Ireland, the UK, and Italy. We compare our approach
with existing exact and heuristic approaches. Our results show that our app-
roach is superior to both of the latter in terms of scalability and its anytime
behaviour.
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2 Formal Specification and Complexity

Let M be the set of facilities. Let E be the set of clients. Let Ei ⊆ E be the
set of clients that are associated with facility mi ∈ M . We use N to denote the
set of nodes, which is equal to M ∪ E. We use Ti to denote the tree network
associated with facility i. We also use Ni ⊆ N = Ei ∪ {mi} to denote the set
of nodes in Ti. Let λ be the maximum path-length from a facility to any of its
clients.

Rooted Distance-Constrained Minimum Spanning-Tree Problem (RDCMST)
Given a facility mi ∈ M , the set of clients Ei, a set of feasible links Li ⊆ N2

i , two
real numbers, a cost cl and a distance dl for each link l ∈ Li, and a real number
λ, the RDCMST is to find a spanning tree Ti with minimum total cost such that
the length of the path from the facility mi to any ej ∈ Ei is not greater than λ.

Edge-Disjoint Rooted Distance-Constrained Minimum Spanning-Trees Problem
(ERDCMST). Given a set of facilities M , a set of clients E, a set of feasible
links L ⊆ N2, two real numbers, a cost cl and a distance dl for each link l ∈ L,
an association of clients with two facilities π : E → M2, and a real number λ,
the ERDCMST is to find a spanning tree Ti for each facility mi such that:

1. The length of the unique path from the facility mi to any of its clients is not
greater than λ.

2. For each client ek, the two paths connecting ek to mi and mj , where π(ek) =
〈mi,mj〉, are edge disjoint.

3. The sum of the costs of the edges in all the spanning trees is minimum.

Figure 1 shows an example with two facilities F1 and F2 and N={a, b, c, d,
e, f}, black (reps. gray) edge denote the set of edges used to reach F1 (reap. F2),
the minimum valid value for λ is 12 and the total cost of the solution is 46 for this
illustrative example. The indicated solution satisfies the length constraint (i.e., the
distance from the facilities to any node is less or equal to λ=12), and the paths
connecting the set of nodes to the facilities are edge disjoint. For instance a solution
with lower cost would be replacing gray edge 〈F2, a〉 and 〈F2, b〉 for a gray edge
〈a, b〉, but this solution would not be edge disjoint, because edges 〈a, b〉 and 〈b, c〉
would be used for nodes b and c to reach the two facilities.

Complexity. ERDCMST involves finding a rooted distance-bounded spanning
tree for every facility whose total cost is minimum. This problem is known to be
NP-complete [2].

3 Constraint Optimisation Formulation

In this section we present a constraint optimisation formulation of ERDCMST.
Without loss of generality, in the formulation of the problem we assume full con-
nectivity in the graph, and non-existing links can be added in L by associating
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Fig. 1. Example of an instance of the ERDCMST problem. λ=12.

them with very large distances (w.r.t. to λ). The model only relies in integer
variables and all constraints are linear, and therefore it can be encoded directly
into existing MIP solvers.

Variables

– Let xi
jk be a Boolean variable that denotes whether an arc between clients

j ∈ Ei and k ∈ Ei of facility i ∈ M is selected or not. Each arc (i, j) has an
associated cost cij

1.
– Let f i

j be a variable that denotes the length of the path from the facility i
to its client j.

– Let bij be a variable that denotes the maximum length of the path from the
client j to any client in the tree of facility i that is acting as a leaf-node.

We remark that the partial order enforced by f or b help to rule out cycles
in the solution.
Constraints. Each client associated with each facility has only one incoming
arc:

∀mi∈M∀ek∈Ei
:

∑

ej∈Ni

xi
jk = 1

Each facility is connected to at least one of its clients:

∀mi∈M :
∑

ej∈Ei

xi
ij ≥ 1

The total number of arcs in any tree Ti is equal to |Ei|:
∀mi∈M :

∑

ej∈Ni

∑

ek∈Ei,ej �=ek

xi
jk = |Ei|

1 In this paper we assume that the cost is symmetrical, i.e., the cij=cji.
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If there is an arc from ej ∈ Ei to ek ∈ Ei then the length of the path from mi

to ek is r equal to the sum of the lengths from mi to ej plus the length between
ej and ek:

∀mi∈M∀{ej ,ek}∈Ni
: xi

jk = 1 ⇒ f i
k = f i

j + djk

If there is an arc from ej ∈ Ei to ek ∈ Ei then the length of the path from ej
to any leaf-node through ek is greater than or equal to the sum of the lengths
from ek to any of its leaf-node plus the length between ej and ek:

∀mi∈M∀{ej ,ek}∈Ni
: xi

jk = 1 ⇒ bij ≥ bik + djk

At any node in the tree the length of the path from a facility mi to a client ej
and the length of the path from ej to the farthest client on the same path should
be less than λ:

∀mi∈M∀ej∈Ni
: f i

j + bij ≤ λ

If mi and mi′ are the facilities of the client j, and if there exists any path in the
subnetwork associated with facility i that includes the arc 〈ej , ek〉, then facility
i′ cannot use the same arc. Therefore, we enforce the following constraint:

∀{mi,mi′}∈M∀{ej ,ek}∈Ei∩Ei′ : xi
jk + xi′

jk ≤ 1

Objective. The objective is to minimize the total cost:

min
∑

mi∈M

∑

{ej ,ek}∈Ei

cjk · xi
jk

4 Iterated Constraint-Based Local Search

The Iterated Constraint-based Local Search (ICBLS) [7,8] framework depicted
in Algorithm 1 comprises two phases. First, in a local search phase, the algorithm
improves the current solution, little by little, by performing small changes. Gen-
erally speaking, it employs a move operator in order to move from one solution
to another in the hope of improving the value of the objective function. Second,
in the perturbation phase, the algorithm perturbs the incumbent solution (s∗) in
order to escape from difficult regions of the search (e.g., a local minima). Finally,
the acceptance criterion decides whether to update s∗ or not. To this end, with
a probability 5% s′∗ will be chosen, and the better one otherwise.

Our algorithm starts with a given initial solution where all clients are able
to reach their facilities while satisfying all constraints (i.e., the upper bound in
the length and disjointness). We use the trivial solution of connecting all clients
directly to their respective facilities. We switch from the local search phase to
perturbation when a local minima is observed; in the perturbation phase we
perform a given number of random moves (20 in this paper). The stopping
criteria is either a timeout or a given number of iterations.
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Algorithm 1. Iterated Constraint-Based Local Search
1: s0 := Initial Solution
2: s∗ := ConstraintBasedLocalSearch(s0)
3: repeat
4: s′ := Perturbation(s∗)
5: s′∗ := ConstraintBasedLocalSearch(s′)
6: s∗ := AcceptanceCriterion(s∗, s′∗)
7: until No stopping criterion is met
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Fig. 2. Move operators

4.1 Move-Operators

In this section we propose node and subtree move operators. We use Ti to denote
the tree associated with facility i. An edge between two clients ep and eq is
denoted by 〈ep, eq〉.

Node operator (Figure 2(b)) moves a given node ei from the current location
to another in the tree. As a result of this, all successors of ei will be directly
connected to the predecessor node of ei. ei can be placed as a new successor for
another node or in the middle of an existing arc in the tree.

Subtree operator (Figure 2(c)) moves a given node ei and the subtree emanating
from ei from the current location to another in the tree. As a result of this, the
predecessor of ei is not connected to ei, and all successors of ei are still directly
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connected to ei. ei can be placed as a new successor for another node or in the
middle of an existing arc.

Edge Operator (Figure2(d)). In this paper we limit our attention to moving a
node or a complete subtree. [9] proposed to move edges in the context of the
Constrained Optimum Path problems. Pham et al. move operator (Figure 2(d))
chooses an edge in the tree and finds another location for it without breaking
the flow.

4.2 Operations and Complexities

We first present the complexities of node and subtree operators as they share
similar features. For an efficient implementation of the move operators, it is
necessary to maintain f i

j (the length of the path from facility i to client j) and
bij (length of the path from ej down to the farthest leaf associated with it in
tree Ti) for each client ei associated with each facility mi. This information
will be used to maintain the path-length constraint. Let epj

be the immediate
predecessor of ej and let Sj be the set of immediate successors of ej in Ti. Table 1
summarises the complexities of the move operators. In this table n denotes the
maximum number of clients associated with a single facility.

Table 1. Complexities of different operations

Node Subtree Arc

Delete O(n) O(n) O(1)
Feasibility O(1) O(1) O(n)
Move O(n) O(n) O(n)
Best move O(n) O(n) O(n3)

Delete. Deleting a node ej from Ti requires a linear complexity with respect to
the number of clients of facility mi. For both operators, it is necessary to update
bij′ for all the nodes j′ in the path from the facility mi to client epj

in Ti. In
addition, the node operator updates f i

j′ for all nodes j′ in the subtree emanating
from ei. After deleting a node ej or a subtree emanating from ej , the objective
function is updated as follows:

obj = obj − cj,pj

Furthermore, the node operator needs to add to the objective function the cost
of disconnecting each successor element of ej and reconnecting them to epj

.

obj = obj +
∑

k∈Sj

(ck,pj
− ckj)
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Feasibility. Checking feasibility for a move can be performed in constant time
by using f i

j and bij . If ej is inserted between an arc 〈ep, eq〉 then we check the
following:

f i
p + cpj + cjq + biq < λ

If ep is a leaf-node in the tree and ej is placed as its successor then the following
is checked:

f i
p + cpj + bij < λ

Move. A move can be performed in linear time. We recall that this move operator
might replace an existing arc 〈ep, eq〉 with two new arcs 〈ep, ej〉 and 〈ej , eq〉. This
operation requires to update f i

j for all nodes in the emanating tree of ej , and bij
in all nodes in the path from the facility acting as a root node down to the new
location of ej . The objective function must be updated as follows:

obj = obj + cpj + cjq − cpq

Best Move. Selecting the best move involves traversing all clients associated with
the facility and selecting the one with the maximum reduction in the objective
function.

Now we switch our attention to the edge operator. This operator does not
benefit by using bij . The reason is that moving a given edge from one location
to another might require changing the direction of a certain number of edges in
the tree as shown in Figure 2(d). Deleting an edge requires constant complexity,
this operation generates two separated subtrees and no data structures need
to be updated. Checking the feasibility of adding an edge 〈ep′ , eq′〉 to connect
two subtrees requires linear complexity. It is necessary to actually traverse the
new tree to obtain the distance from eq′ to the farthest leaf in tree of facility i.
Performing a move requires a linear complexity, and it involves updating f i

j for
the new emanating tree of eq′ . And performing the best move requires a cubic
time complexity, the number of possible moves is n2 (total number of possible
edges for connecting the two subtrees) and for each possible move it is necessary
to check feasibility. Due to the high complexity (O(n3)) of the edge operator
to complete a move, hereafter we limit our attention to the node and subtree
operators.

Disjointness. To ensure disjointness among spanning-trees we maintain a 2·|E|
Matrix, where |E| represents the number of clients. For every client, there are
two integers indicating the predecessor in the primary and secondary facilities,
these two numbers must always be different.

We also maintain a graph which we call facility connectivity graph, denoted
by fcg, where the vertices represent the trees associated with the facilities and
an edge between a pair of trees represent that a change in one tree can affect
the change in another tree. An edge between two vertices in fcg is added if the
facilities share at least 2 clients. Notice that if two facilities do not share at least
2 clients then they are independent from disjointness point of view.
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[6] also proposed two move operators for the RDCMST. Edge-Replace is a
special case of our subtree operator, which removes an arc in the tree, and finds
the cheapest arc to reconnect the two sub-trees. Component-Renew removes
an arc in the tree, nodes that are separated from the root node are sequentially
added in the tree using Prim’s algorithm, nodes that violate the length constraint
are added in the tree using a pre-computed route from the root node to any node
in the tree. It is worth noticing that the Component-Renew operator cannot be
applied to DRDCMST as the pre-computed route from the root node to a give
node might not be available due to the disjoint constraint.

4.3 Algorithm

The pseudo-code for constraint-based local search is depicted in Algorithm 2. It
starts by selecting and removing a client ej of a facility mi randomly from Tree
Ti (Lines 5 and 6) and performs a move by using one of the move operators as
described before. Here the move-operator, which is itself a function, is passed as
a parameter. In each iteration of the algorithm (Lines 9-19), we identify the best

Algorithm 2. ConstraintBasedLocalSearch (move-op,sol)
1: {T1 . . . Tn} ← sol
2: list ← {(mi, ej)|mi ∈ M ∧ ej ∈ Ei}
3: fcg ← {(mi, mj)||Ni ∩ Nj | ≥ 2}
4: while list �= ∅ do
5: Select (mi, ej) randomly from list
6: Delete ej from Ti and update Ti

7: Best ← {(epj , Sj)}
8: cost ← ∞
9: for (eq, S) in Locations(move-op, Ti) do

10: if FeasibleMove(move-op, (eq, S), ej) then
11: cost′ ← CostMove( (eq, S), ei)
12: if cost′ < cost then
13: Best ← {(eq, S)}
14: cost ← cost′

15: else if cost′ = cost then
16: Best ← Best ∪{(eq, S)}
17: end if
18: end if
19: end for
20: Select (eq′ , S′) randomly from Best
21: if eq′ �= epj ∨ S′ �= Sj then
22: list ← list ∪ {(mk, e)|(mi, mk) ∈ fcg ∧ e ∈ Nk ∩ (Sj ∪ {epj})}
23: end if
24: list ← list − {(mi, ej)}
25: Ti ←Move( Ti,move-op, (eq′ , S′), ej )
26: end while
27: return {T1 . . . Tn}
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location for ej . A location in a tree Ti is defined by (eq, S) where eq denotes the
parent of ej and S denotes the set of successors of ej after the move is performed.
Broadly speaking, there are two options for the new location: (1) Breaking an
arc 〈ep, eq〉 and inserting ej in between them such that the parent node of ej
would be ep and the successor set would be singleton, i.e., S = {eq}; (2) Adding
a new arc 〈ep, ej〉 in the tree in which case the parent of ej is ep and S = ∅.
Locations returns all the locations relevant w.r.t. a given move-operator (Line 9).
Line 10 verifies that the new move is not breaking any constraint and CostMove
returns the cost of applying such move using a given move operator. (Line 11).

If the cost of new location is the best so far then the best set of candidates is
reiniliased to that location (Lines 12-14). If the cost is same as the best known
cost so far then the best set of candidates is updated by adding that location
(Lines 15-16). The new location for a given node is randomly selected from the
best candidates if there is more than one (Lines 20).

Instead of verifying that the local minima is reached by exhaustively checking
all moves for all clients of all facilities, we maintain a list of pairs of clients and
facilities. The list is initialised in Line 2 with all pairs of facilities and clients. In
each iteration a pair of facility and client, (mi, ej) is selected and removed from
the list (Line 24). When list is empty the algorithm reaches a local minima. If an
improvement is observed then one simple way to ensure the correctness of local
minima is to populate list with all pairs of facilities and clients. However, this can
be very expensive in terms of time. We instead exploit the facility connectivity
graph (fcg) where an edge between two facilities is added (in Line 3) if they share
at least two clients. If an edge between mi and mk exists in fcg then it means
that if there is a change in Ti then it might be possible to make another change
in Tk such that the total cost can be improved. Consequently, we only need to
consider clients of affected facilities. This mechanism helps in reducing the time
significantly by reducing the number of useless moves. We further strengthen the
condition for populating list by observing the fact that the set of clients that
can be affected in a facility mk is a subset of {epj

} ∪ Sj . The reason is all the
other clients of mk were not subject to any constraint from Ti (Line 22).

Algorithm 2 can tackle both RDCMST and ERDCMST. For the former, there
would be only one facility. In addition, FeasibleMove will only check path-length
constraint.

5 Long-Reach Passive Optical Networks

We now describe a real-world application whose instances are used for evaluating
our approach. Long-Reach Passive Optical Networks (LR-PONs) provides an
economically viable solution for fibre-to-the-home network architectures [1]. In
LR-PON fibres are distributed from the Metro-Nodes (MNs) to the Exchange-
Sites (ESs) through cables that forms a tree distribution network. A major fault
occurrence in LR-PON would be a complete failure of the MN, which could
affect tens of thousands of customers. The dual homing protection mechanism
for LR-PON enables customers to be connected to two MNs, so that whenever
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Fig. 3. Example of a LR-PON network for Ireland where each exchange-site is con-
nected to two metro-nodes through disjoint paths. In the plot the subnetwork of each
metro node is associated with a colour. Two subnetworks may have the same colour if
they do not share nodes.

a single MN fails all customers are still connected to a back-up. Notice that the
paths from an ES to its two MNs cannot contain the same link. Otherwise, this
would void the purpose of having two MNs. Given as association of MNs with
ESs the problem is to determine the routes of cables such that there are two
edge-disjoint paths from an ES to its two MNs, the length of each path is below
threshold and the total cable length required for connecting each ES to two MNs
is minimised. Notice that here metro-nodes are facilities and exchange-sites are
clients.

To evaluate the performance of the proposed local search algorithm and the
move operators we use three datasets corresponding to real networks from three
EU countries: Ireland with 1121 ESs, the UK with 5393 ESs, and Italy with
10708 ESs. For each dataset we use [10] to identify the position of the MNs and
computed four instances for each country. Ireland with 18, 20, 22, and 24 MNs;
the UK with 75, 80, 85, and 90 MNs; and Italy with 140, 150, 160, and 170 MNs.
The LS algorithm starts with the trivial solution which consists in connecting
all ESs (clients) to their MNs (facility). A solution obtained using our approach
for Ireland is shown in Figure 3.

6 Empirical Evaluation

6.1 Experimental Protocol

All the experiments were performed on a 4-node cluster, each node features 2
Intel Xeon E5430 processors at 2.66Ghz and 12 GB of RAM memory.
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In addition to the proposed MIP and local search approaches, we also con-
sidered BKRUS [2], a well known heuristic for solving RDCMST when the cost
function and the delay function in RDCMST are equivalent and follow the Tri-
angle inequality property (i.e., given three points a, b, and c then d(a, b) +
d(b, c) > d(a, c)). The overall complexity of BKRUS is cubic in terms of num-
ber of nodes, which hinders its scalability when the bound on the path-length is
tight. Although there are approaches that are better than BKRUS [5,6], our aim
is not to claim superiority over the RDCMST approaches since we are solving
a more general problem for which these approaches would not be applicable.
Instead, our aim is to show that although our approach is not specialised for
RDCMST, it still provides very good quality solutions.

In particular in this paper we consider the following three experimental sce-
narios.

– RDCMST : In this scenario we report results on a set of real-life instances
coming from our industrial partner in Ireland, each instance contains |E| ∈
{200, 300, . . ., 800} nodes. In this dataset the minimum valid value for λ is
415.

– ERDCMST : In this case we consider the following two scenarios:
• Real-life: We consider real-life instances coming from our industrial part-

ners with real networks in Ireland, the UK, and Italy detailed in the
previous section.

• Random: We generated 10 random instances extracted from the previ-
ous real-life network in Ireland. Each instance is generated by using 18
facilities and for each facility we randomly select |E| ∈ {100, 200, . . .,
1000} nodes.

6.2 Experimental Results

Figures 4(a) and 4(b) report results of the RDCMST problem for the three
approaches: the local search approach using the subtree move-operator (LS),
CPLEX, BKRUS, and the lower bound of the solution computed using CPLEX
(LB). For each experiment we increase λ from 415 to 623, and used a timelimit
of one hour. When λ is not playing an important role (i.e., λ=623) the problem
is close to the unbounded minimum spanning tree, and except for CPLEX with
|E|=800, the three approaches report near-optimal values. However, for tight
values of λ (i.e., 415) the problem becomes more challenging and BKRUS is
unable to solve instances with |E|>700, and the gap for CPLEX (w.r.t. the
lower bound) considerably increases as the number of nodes increases. On the
other hand, for the difficult case (λ=415) LS reports better upper bounds than
CPLEX and BKRUS in all 8 instances, and the quality of the solution w.r.t. the
lower bound does not degrade with the problem size.

Table 2 reports results for the random set of instances of the ERDCMST
problem, here we depict the median value across 11 independent executions of
the node and subtree operators; the best solution obtained with CPLEX; the
best solution obtained with CPLEX using the solution of the first execution of
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Fig. 4. RDCMST results with different limits on path-length

LS (subtree operator); and the best known LBs for each instance obtained with
CPLEX using a larger time limit. The time limit for each local search experiment
was set to 30 minutes, and 4 hours for CPLEX-based approaches.

Intheseexperimentsweobservethatthesubtreeoperatorgenerallyoutperforms
the node operator, we attribute this to the fact that moving a complete subtree
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Table 2. Results for the small-sized instances of ERDCMST problem where |M | = 18
and λ=67

|E| LS (Subtree) LS (Node) CPLEX LS+CPLEX LB

100 4674 4674 4674 4674 4674
200 6966 6988 6962 6962 6962
300 8419 8575 8404 8404 8152
400 9728 10008 9728 9721 9329
500 11203 11672 11318 11203 10298
600 11885 12559 12276 11924 10517
700 13148 13981 13812 13140 11485
800 14040 15133 15118 13977 12402
900 14770 16098 16438 14839 12860
1000 15962 17479 18174 16009 13943

helps to maintain the structure of the tree in a single iteration of the algorithm. The
node operatormight eventually reconstruct the structure, however,more iterations
would be required. CPLEX-based approaches report the optimal solution for 100
and 200 clients, while the median execution of the local search approaches reported
the optimal solution for 100 clients, and the subtree operator reached the optimal
solution in 5 out of the 11 executions for 200 clients. After |E|=500 LS dominates
the performance for a margin ranging between 1% (|E|=500) to 12% (|E|=900).
Moreover, cplex+LS was only able to improve the average performance of the sub-
tree operator in a very small factor (up to 0.4% for |E|=800) after running the solver
for 4 hours.We also experimentedwith instanceswith |E|<100 and |E|>800. In the
first case the three algorithms reported similar results. In the second case only LS
was able to provide good quality solutions with a Gap of 10% w.r.t. the LB, while
BKRUS reported timeouts and CPLEX a Gap of about 59%.

Now, we move our attention to Table 3 where we report results for real
ERDCMST instances. In this case, we used a time limit of one hour for LS (using
the subtree move operator), and four hours for cplex. As it can be observed, LS

Table 3. Results for Ireland, UK and Italy

Country |M | Subtree CPLEX LB Gap-Subtree Gap-CPLEX

18 17107 26787 14809 13.43 44.71
Ireland 20 16819 83746 14845 11.73 82.27
|E|=1121 22 16711 79919 14990 10.29 81.24

24 16163 26918 14570 9.85 45.87

75 65377 285014 54720 16.30 80.80
UK 80 64565 301190 54975 14.85 81.74
|E|=5393 85 63517 281546 55035 13.35 80.45

90 62163 220041 55087 11.38 74.96

140 89418 – 76457 14.49 –
Italy 150 88255 – 76479 13.34 –
|E|=10708 160 88336 – 76794 13.06 –

170 87405 – 77013 11.88 –
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dominates the performance in all these experiments, and once again the solution
quality of LS does not degrade with the problem size. Indeed, the Gap w.r.t.
to the LB for local search varies from 9% to 13% for Ireland, 11% to 16% for
the UK, and 12% to 14% for Italy. CPLEX ran out of memory when solving
instances from Italy, and we report ‘–’ since no valid solutions were obtained.
For the UK instances CPLEX also ran out of memory before the time limit.

7 Conclusions and Future Work

We have presented an efficient local search algorithm for solving Edge Disjoint
Rooted Distance-Constrained Minimum Spanning-Trees problem. We presented
two novel move operators along with their complexities and an incremental eval-
uation of the neighbourhood and the objective function. Any problem involving
tree structures could benefit from these ideas and the techniques presented make
sense for a constraint-based local search framework where this type of incremen-
tally is needed for network design problems. The effectiveness of our approach is
demonstrated by experimenting with a set of problem instances taken from real-
world long-reach passive optical network deployments in Ireland, the UK, and
Italy. We compare our approach with a MIP-based exact approach and a span-
ning tree-based heuristic approach. Results show that our approach is superior
in terms of scalability and its anytime behaviour.

In future we would like to extend ERDCMST with the notion of optional
nodes, since this extension is a common requirement in several applications of
ERDCMST. Effectively this means that we would compute for every facility a
Minimum Steiner Tree where all clients are covered but the path to them may
follow some optional nodes. We also plan to make our constraint-based local
search approach parallel in two different ways. First, we intend to study the
performance of the portfolio approach [11] where multiple copies of the algorithm
compete and cooperate to solve a given problem instance, and second we intend
to exploit a decomposition of the problem into smaller sub-problems that can
be solved in parallel. Preliminary results have been presented in [12]2.
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Abstract. This paper introduces an integer programming approach to
the minimum chordal completion problem. This combinatorial optimiza-
tion problem, although simple to pose, presents considerable compu-
tational difficulties and has been tackled mostly by heuristics. In this
paper, an integer programming approach based on Benders decompo-
sition is presented. Computational results show that the improvement
in solution times over a simple branch-and-bound algorithm is substan-
tial. The results also indicate that the value of the solutions obtained
by a state-of-the-art heuristic can be in some cases significantly far away
from the previously unknown optimal solutions obtained via the Benders
approach.

1 Introduction

Given graph G, the minimum chordal completion problem (MCCP) asks for a
minimum cardinality set of edges whose addition to G results in a chordal graph
(a graph for which every cycle consisting of four or more vertices contains a
chord - an edge connected vertices that do not appear consecutively in the cycle).
The problem is also known as the minimum fill-in problem and the minimum
triangulation problem.

Chordal completions findapplications in a variety of fields.These include sparse
matrix computation and semidefinite programming [18,23,27,31], database man-
agement [1,34], computer vision [12], many others (the interested reader may refer
to a survey on the topic [19]). In addition to these applications, chordal comple-
tions are related to the tree-width problem [6], the minimum interval completion
problem [25], and are a special case of graph sandwich problems [17].

Although the problem has applications in a variety of domains, computa-
tional approaches in the literature have been very limited, with the focus being
on developing heuristics. The MCCP (in its decision version which ask whether
or not a chordal completion containing fewer than k edges exists) was listed as
one of the open problems in Garey and Johnson’s classical book on computa-
tional complexity [15] and later proven NP-complete [36].

Surprisingly, the optimization community has largely overlooked computa-
tional approaches to the problem. Some algorithms are published which solve
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 47–64, 2015.
DOI: 10.1007/978-3-319-18008-3 4
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the MCCP exactly on particular classes of graphs [7,9,11,12,24,33]. For gen-
eral graphs algorithms exists as well, although computational results have not
been reported. The first fixed parameter tractable algorithm [22] was proven to
have time complexity O

(
2O(k) + k2nm

)
(where n is the number of vertices in

the graph and m is the number of edges in the graph). Algorithms have since
been investigated [8] and recently the running time has been reduced to sub-
exponential parameterized time complexity [13].

As opposed to exact algorithms, the literature is vast on algorithms designed
to find minimal chordal completions (the interested reader can again refer to a
survey written on the topic [19]). The objective of these algorithms are twofold.
First, they seek to create chordal completion in the least possible computational
time. Second, they search for chordal completions using as few edges as possible.
A surprisingly simple algorithm based on ordering the vertices of the graph by
their degree and running a vertex elimination game [16] runs in polynomial time
[20] (O(n2m)) and produces very good solutions in terms of the number of edges
added, compared to other heuristics [3–5,26,29].

This paper presents an integer programming approach to the MCCP based
on Benders decomposition [2], and in particular on logic-based Benders decom-
position [21]. The problem is modeled using only a quadratic (with respect to
the number of vertices in the graph) number of variables (one per edge not in the
graph), and cuts are added iteratively when they become violated. The problem
is decomposed into a master problem and a subproblem. In the master problem,
a solution is found which adds some subset of the complement edge set to the
graph subject to Benders cuts that have been previously identified. This graph
then defines a subproblem which returns either that the graph is chordal (and
hence a minimum chordal completion) or finds chordal cuts that must be sat-
isfied by any chordal completion of the graph. In the latter case, the cuts are
added to the master problem, and any solution found by the master problem in
subsequent iterations will never violate these cuts.

The remainder of the paper is organized as follows. In Section 2 graph nota-
tion is introduced which will be used throughout the paper. Section 3 formally
introduces the MCCP. Section 4 introduces the Benders decomposition approach
to the MCCP with Section 5 explaining in detail the solution to the subprob-
lem and Section 6 describing the Benders cuts and proving that they are valid.
Section 7 details the exact algorithm and heuristic algorithms used for com-
parison in the computational experiments presented in Section 8. The paper
concludes in Section 9.

2 Graph Notation

Let S be any set.
(
S
2

)
denotes the family of two-element subsets of S.

Let G = (V,E) be a graph. For the remainder of the paper it is assumed that
G is connected, undirected, has no self-loops or multi-edges.

Each edge e ∈ E ⊆ (
V
2

)
is a two-element subset of V . We denote by Ec the

complement edge set of G: Ec =
(
V
2

)\E.



A Benders Approach to the Minimum Chordal Completion Problem 49

The neighborhood N(v) of a vertex v ∈ V is the set of vertices which share an
edge with (are adjacent to) v: N(v) = {v′ : (v, v′) ∈ E}. The closed neighborhood
N [v] is the neighborhood of v together with v: N [v] = N(v) ∪ {v}.

Let V ′ ⊆ V . The graph induced by V ′, G[V ′] = (V ′, E(V ′)) is the graph on
vertex set V ′ with edge set E(V ′) = E ∩ (

V ′

2

)
. Given F ⊆ Ec, a completion of

G, denoted by G + F , is the addition of the sets in F to E: G + F = (V,E ∪ F ).
A cycle C in G = (V,E) is an ordered list of distinct vertices of G, C =

(v1, . . . , vk), for which
⋃

i=1,...,k−1{vi, vi+1} ∪ {vk, v1} ⊆ E. We denote by V (C)
the set of vertices that appear in the cycle, and E(C) the edges connected to
consecutive vertices in the cycle (E(C) :=

⋃
i=1,...,k−1{vi, vi+1} ∪ {vk, v1}). The

interior of C, int(C), is the family of two-element subsets of the vertices in the
cycle that do not coincide with the edges of the cycle: i.e., int(C) =

(
V (C)

2

)\E(C).
A cycle containing k vertices is called a k-cycle.

A cycle C for which the graph G[V (C)] contains only those edges in the cycle
is a chordless cycle. A graph is said to be chordal (or chordless) if the maximum
size of any chordless cycle is three. A chordless cycle with k vertices is called a
k-chordless cycle.

3 Problem Description

Let G = (V,E) be a graph. A chordal completion of G is any subset of edges
F ⊆ Ec for which G + F is chordal. A minimal chordal completion is a chordal
completion F for which F ′ is not a chordal completion for any proper subset
F ′ ⊂ F . A minimum chordal completion is a chordal completion of minimum
cardinality. The minimum chordal completion problem (MCCP) is the problem
of identifying such a subset of the complement edge set.

We refer to Ec as both the complement edge set and the set of candidate fill
edges, since we think of filling G with edges in order to create chordless graphs.
We will use both terms interchangeably.

Example 1. Consider the graph in Figure 1 (a). This graph has two chordless
cycles, C1 = (1, 2, 3, 4) and C2 = (2, 3, 4, 5). Figure 1 (b) shows a minimal chordal
completion, which adds edges {1, 3} and {3, 5}. Removing either of these edges
will result in a graph that is not chordal. Figure 1 (c) shows a smaller, minimum
chordal completion consisting only of edge {2, 4}.

4 Integer Programming Approach

Benders decomposition is a general scheme proven to be useful for a variety of
problems. Benders decomposition calls for the communication of Benders cuts
between two models in order to communicate inferences.

In the scheme proposed in this paper, the decomposition is broken into an
integer programming (IP) phase which identifies completions of G (the master
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Fig. 1. (a) A graph. (b) A minimal chordal completion of the graph. (c) A minimum
chordal completion of the graph.

problem) and a combinatorial optimization problem (the subproblem) of identi-
fying cutting planes that will restrict the completions found by the subsequent
IPs. Each time a completion is assigned and found to be inconsistent (i.e., lead-
ing to a graph which is not chordal), an inequality is produced at the end of the
subproblem phase which will prohibit the IP from ever leading to this solution
again. This passing of information is done iteratively until the subproblem no
longer finds a Benders cut and certifies that the completion found by the mas-
ter problem is not only feasible (a chordal completion), but a minimum such
completion.

The master problem is the following:

min
∑

f∈Ec

zf

subject to [accumulated Benders cuts]
zf ∈ {0, 1}, f ∈ Ec

(MP)

leading initially to the solution z0 for which, ∀f ∈ Ec, z0f = 0, Benders cuts are
yet to be generated.

For a solution z′ with elements in {0, 1} for each f ∈ Ec, let F (z′) = {f :
z′
f = 1}. Each time a master problem is solved, the solution zk encodes a graph

G(zk) = (V,E ∪F (zk)). The subproblem has the goal of either determining that
G(zk) is chordal, or producing some certificate of infeasibility which is translated
into a linear inequality, restricting the master problem from ever producing this
solution again (called Benders cuts). In the case of the MCCP, this certificate
will be a k-cycle C with k ≥ 4 (or a set of such cycles).

In a general iteration, the master problem will contain all of the elements in
(MP), in addition to Benders cuts which are accumulated from earlier iterations.

The pseudocode for the algorithm is presented in Algorithm 1. We start with
z0 as defined above. This specifies that G(z0) = G. Given solution zk, the algo-
rithm tests whether or not the graph G(zk) is chordal. If it is, the solution relates
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Algorithm 1. Benders decomposition for the MCCP in graph G = (V,E)
1: k ← 0
2: let z0 be the optimal solution to (MP), with no Benders cuts // ∀f ∈ Ec, z0f = 0

3: while G(zk) is not chordal do
4: k ← k + 1
5: Let Ck be a set of chordless cycles in G(zk−1)
6: for all C ∈ Ck do
7: generate Benders cuts B(C) and add them to (MP)
8: zk ← optimal solution to (MP) with all accumulated Benders cuts
9: return F (zk)

to an optimal solution and F (zk) is returned. If not, the algorithm increases the
iteration count by one, identifies a set of chordless cycles Ck in G(zk), generates
a set of Benders cuts B(C) for each C ∈ Ck, and adds these cuts to the master
problem. The master problem is then re-solved, to find a possible solution.

Several elements of Algorithm 1 need to be specified. Namely, line 3 which
determines whether or not a given graph is chordal, line 5 which finds a set
of chordless cycles in a graph which is not chordal, and line 7 which generates
Benders cuts based on the cycles. In general, a relaxation is also added to the
master problem in order guide the initial solution. One can view the first round
of Benders cuts as such a relaxation since, as explained below, the first round of
cuts is based entirely on the original graph. The following sections specify these
particulars.

5 Finding Chordless Cycles

Determining whether a graph is chordal or not can be accomplished in linear
time in the size of the graph [30]. This can be shown to be equivalent to finding
a perfect elimination order of a graph, and even finding all perfect elimination
orders has been investigated [10].

Papers have been published which seek to identify all chordless cycles in a
graph too [32,35], but the running time of these algorithms are exponential in
the size of the graph. For the purpose of this paper, it is not necessary to list all
chordless cycles; in any iteration of Algorithm 1, it is only necessary to find at
least one chordless cycle, if one exists.

A simple strategy can be employed, based on searching through triples of
vertices, that can be used to find a set of chordal cycles (or stopped prematurely
to find a single chordal cycle) if one exists. This is presented in Algorithm 2.

The algorithm starts with no cycles in C. For every ordered triple of vertices
i, j, k for which i, j, k is an induced path (i.e., j is adjacent to both i and k, but i
and k are not adjacent), the algorithm checks whether i and k are connected in
the graph G [(V \N [j]) ∪ {i, k}] induced by all vertices in G besides the closed
neighborhood of j (include i and k). If so, the algorithm adds the set of vertices
{i, j, k} together with the shortest path between i and k in G [(V \N [j]) ∪ {i, k}]
to C.
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Theorem 1. Algorithm 2 returns a set C for which every C ∈ C is a chordless
cycle in G, and is empty at the end of the execution of the algorithm if and only
if G is chordal.

Proof. Suppose C 	= ∅. Let C be any cycle in C and i, j, k the ordered triple of
vertices that produced C. C is a cycle because i is adjacent to j, j is adjacent to
k, and i, k are connected in G through the path P = (i, v1, . . . , v�, k) (determined
during the algorithm) that connects i and k, does not contain j, and is connected
in the subgraph G [V \N [j] ∪ {i, k}] of G.

Furthermore, C must be a chordless cycle. By the construction of C, j is
only adjacent to i and k (with {i, k} /∈ P ), so that j does not participate in
any chord of C. In addition, since P is the shortest path in G [V \N [j] ∪ {i, k}],
there cannot be any edge {va, vb}, for a ≤ b − 2 (otherwise P would not be a
shortest path) in the subgraph. Therefore, C is a chordless cycle in G.

What remains to be shown is that C is empty if and only if G is chordal.
From the previous arguments, if C is non-empty, then every set C ∈ C is a cycle
in G. Therefore in this case G is not chordal.

Finally, suppose G is not chordal. Let C = (v1, . . . , v�) be a smallest length
chordless cycle in G (� ≥ 4). Consider when the algorithm examines i = v1, j =
v2, k = v3. C is a chordless cycle, therefore v2 is only adjacent to v1 and v3 in G.
Therefore, the path P = (v1, v�, . . . , v3) is in G [V \N [j] ∪ {i, k}]. Furthermore,
this must be the shortest path in this subgraph, because otherwise C would
not be a smallest length chordless cycle. Therefore, C is in C at the end of the
execution of Algorithm 2, as desired, completing the proof. �

Algorithm 2. Find a set of chordless cycles C in G = (V,E) (or return C = ∅ if
G is chordal)

1: C ← ∅
2: for all i, j, k ∈ V // all ordered triples of vertices do
3: if {i, j}, {j, k} ∈ E and {i, k} /∈ E then
4: if i, k are connected in G [V \N [j] ∪ {i, k}] then
5: P ← shortest path from i to k in G [V \N [j] ∪ {i, k}]
6: C ← C ∪ (P ∪ {j})
7: return C

6 Benders Cuts

In this section a class of Benders cuts is presented, each generated by a chordless
cycle in a graph. The main idea behind the Benders cuts developed here is that if
a graph G contains a k-chordless cycle C then at least k −3 of the edges interior
to the cycle must be in any chordal completion of the graph.

Example 2. Consider the graph is Figure 2 (a). The graph is a cycle C =
{1, 2, 3, 4, 5} which is not chordal. Any chordal completion requires at least two
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Fig. 2. (a) A graph. (b) A chordal completion with two fill edges. (c) A completion
with two edges that is not chordal.

edges. One such completion is depicted in Figure 2 (b). Note only specific sub-
sets of size two can be added to the graph to result in a chordal completion.
Consider for example the graph depicted in Figure 2 (c), where the edges {1, 3}
and {2, 4} are added to the graph although the graph is not chordal.

Lemma 1. Let G be a graph containing a chordless cycle C of length k ≥ 4.
Then at least k − 3 edges in int(C) are in any chordal completion of G.

Proof. We proceed by induction on k. For k = 4, if fewer that 4− 3 edges in the
interior of the chordless cycle are added to G the graph will still contain this
chordless cycle and hence not be chordal.

For the base case, let k = 5 and C = (1, 2, 3, 4, 5). Suppose we add fewer
than 5 − 3 = 2 edges to the interior of C. Adding zero edges to the interior of C
leaves G not chordal. Suppose we add only one edge to the interior of C. Since
the cycle is symmetric with respect to the edges interior to the cycle, suppose
{1, 3} is added. This leaves chordless cycle (1, 3, 4, 5).

Fix k > 5. Suppose that ∀�, 4 ≤ � ≤ k − 1, if a chordless cycle C ′ with length
� appears in G then at least � − 3 edges in the interior of C ′ must appear in any
chordless completion of G.

Let C be a chordless cycle in G of length k. Let the vertices in C be the first
k integers: C = (1, 2, . . . , k). There must be at least one edge in the interior of
C that appears in any chordless completion of G. Since C is symmetric with
respect to the vertices, let suppose that {1, p} is added to G.

If p = 3, then C ′ = (1, 3, 4, . . . , k) is a chordless cycle of length k − 1. By the
inductive hypothesis, any chordal completion requires at least (k−1)−3 = k−4
edges in the interior of C ′ (which are also interior to C). Therefore any chordal
completion of G requires at least 1 + k − 4 = k − 3 edges in the interior of C.

If p = k − 1, the vertices can be renamed in opposite order, resulting in the
same case as p = 3.

Let 4 ≤ p ≤ k − 2. This chord cuts C and creates two, separate chordless
cycles: C1 = (1, 2, . . . , p) and C2 = (1, p, p + 1, . . . , k). By the inductive hypoth-
esis, any chordless completion will require at least p − 3 edges in the interior of
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C1 and at least k − p+2− 3 = k − p− 1 edges in the interior of C2 (all of which
are also in the interior of C). Therefore, any chordal completion requires at least
(1) + (p − 3) + (k − p − 1) = k − 3 edges in the interior of C, as desired. �

A valid Benders cut (or simply Benders cut) for a solution zk is any inequality
az ≥ b that satisfies the following two properties:

(B.1) zk must violate the constraint: azk < b
(B.2) Any solution z′ to the master problem which generates a graph G(z′)

which is chordal should satisfy the constraint: az′ ≥ b

Given a solution zk in Algorithm 1 which yields graph G(zk) which is not
chordal, after identifying a chordless cycle C (or set of chordless cycles) in line 5,
the goal is to find a linear inequality which can be added to the master problem
which prohibits zk from appearing again and is satisfied by every solution z′

which corresponds to a chordal completion F (zk). The simplest such cut, which
is readily applicable in Benders schemes, is the following:

∑

f :zk
f=1

(1 − zf ) +
∑

f :zk
f=0

(zf ) ≥ 1 (1)

This simple cut forbids only the given solution zk

Example 3. Take for example z0 with z0f = 0 for all f ∈ Ec for the graph in
Figure 2. There are many possible Benders cuts associated with this solution.
These include, for example:

z{1,3} + z{1,4} + z{2,4} + z{2,5} + z{3,5} ≥ 1 (2)

(2) is the standard Benders cut (1).

The application of Benders decomposition necessitates the generation of
problem specific valid Benders cuts so that the inequalities are tighter and elim-
inate additional infeasibility, for otherwise too many iterations are realized. The
remainder of this section is devoted to proving that the following inequality, for
a chordless cycle C identified in Algorithm 1, is a valid Benders cut:

∑

f ∈ int(C)

zf ≥ (|V (C)| − 3) ·
⎛

⎝
∑

f ∈ E(C)∩Ec

zf − |E(C) ∩ Ec| + 1

⎞

⎠ (3)

Example 4. Let G be the graph in Figure 2. Suppose the solution zk to the
master problem is zk

{1,3} = zk
{1,4} = zk

{2,4} = zk
{2,5} = zk

{3,5} = 0. (3) becomes

z{1,3} + z{1,4} + z{2,4} + z{2,5} + z{3,5} ≥ 2 · 1 = 2

This is a valid Benders cut. The solution violates this constraint and in any
chordal completion at least two of the edges in the interior of the cycle must be
present.
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Example 5. Take again the graph G in Figure 2. Suppose the solution zk to the
master problem is zk

{1,3} = 1 and zk
{1,4} = zk

{2,4} = zk
{2,5} = zk

{3,5} = 0. Let
C = (v1, v3, v4, v5), which is a chordless cycle in the graph G(zk). In this case,

V (C) = {1, 3, 4, 5}
E(C) = {{1, 3} , {3, 4} , {4, 5} , {1, 5}}
int(C) = {{1, 4} , {3, 5}}
E(C) ∩ Ec = {{1, 3}}

(3) now becomes

z{1,4} + z{3,5} ≥ (4 − 3) · (z{1,3} − 1 + 1
)

= z{1,3}

This inequality will force at least one of z{1,4} or z{3,5} to be equal to one
if z{1,3} = 1 in any subsequent master problem solution. This inequality is a
valid Benders cut because (B.1) is satisfied (plugging in zk into the converse
of the inequality yields 0 < 1) and (B.2) is satisfied (if a completion of G
contains edge {1, 3}, it must contain either edge {1, 4} or {3, 5}, for otherwise
cycle C = (1, 3, 4, 5) will be a chordless cycle in G).

Theorem 2. Suppose C is a chordless cycle, identified in line 5, in the graph
G(zk) derived from solution zk obtained by solving the master problem in itera-
tion k of Algorithm 1. (3) is a valid Benders cut.

Proof. Let C be such a cycle.
(B.1): Because C is a chordless cycle, there cannot be any edges in the interior
of C in G(zk) so that the left-hand side of (3) becomes

∑
f ∈ int(C) zk

f = 0.
Therefore it suffices to show that the right-hand side of (3) is strictly greater

than 0. C is a chordless cycle, so |V (C)| ≥ 4 and (|V (C)| − 3) > 0. In addition,
each edge in E(C) ∩ Ec must be in C, for otherwise C would not be a cycle in
G(zk), so that for the variables in this set zk

f = 1. Therefore,
∑

f ∈ E(C)∩Ec

zk
f − |E(C) ∩ Ec| + 1 = 1,

and the right-hand side of (3) evaluates to (|V (C)| − 3) which is greater than 0.
(B.2): Let z′ be any solution that generates a graph G(z′) that is chordal.
First note that (3) is satisfied by any solution (not just feasible ones) if for any
f ∈ E(C) ∩ Ec, z′

f = 0. This is because the left-hand side of the inequality is
always greater than or equal to 0, and if z′

f = 0 for some such z′, the right-
hand side of the inequality will be less than or equal to 0. Therefore consider
only those z′ for which the right hand side is greater than or equal to 1 i.e.
∀f ∈ E(C) ∩ Ec, z′

f = 1.
For such z′, the second of the two terms multiplied on the right-hand side of

(3) evaluates to 0 at z′. It therefore suffices to show that
∑

f ∈ int(C)

z′
f ≥ |V (C)| − 3.
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Because ∀f ∈ E(C)∩Ec, z′
f = 1, G(z′) contains every edge in E(C). C is a cycle

in G(z′). Therefore, by Lemma 1, at least |V (C)| − 3 edges in the interior of C
are in any chordal completion of G(z′). �

7 Minimum/Minimal Chordal Completion Algorithms

As discussed in Section 1, there is a vast literature on minimal chordal comple-
tions while the literature investigated computational approaches to the MCCP
is surprisingly thin. In order to evaluate, computationally, Algorithm 1, it is nec-
essary to compare with another MCCP algorithm. In the experimental results
section, Section 8, the Benders approach is compared with a simple variant of an
algorithm for the MCCP that has exponential running time [8]. This algorithm
is explained below, along with a state-of-the-art heuristic.

ExactAlgorithm. Developing any exact algorithm designed to solve the MCCP
is non-trivial. Even formulating the problem with an IP model, a standard app-
roach to solving combinatorial optimization problems, is difficult.

The fastest (in terms of time performance guarantee) algorithm for solv-
ing the MCCP [13], to the best knowledge of the authors, has time complexity
O
(
2O(

√
k log (k)+k2nm)

)
, although it is not implemented nor have computational

experiments on the algorithm been reported. The algorithm branches on chord-
less cycles of length four, and then on moplexes, keeping track of certain indi-
cators which allow pruning. The interested reader can refer to the paper in the
references for an explanation of the algorithm.

In place of implementing this complex algorithm, a simpler version is pre-
sented in Algorithm 3, which will be used for computational comparison. This
algorithm searches on the complement edge set. It starts with a single search
tree node s. Search tree nodes have two sets associated with them: I(s) is the
set of complement edges included in this search node, and O(s) are the set of
edges to be excluded. For any search tree node, if it is chordal, the upper bound
is updated and the set I(s) becomes the incumbent solution. If it isn’t, two new
nodes are created, only if they can lead to better solutions (it is required that
|I(s)| ≤ zub − 2 because at least one more additional edge has to be included
and so it can only lead to a better solution if the number of edges is at least
two less than the size of the incumbent solution). Then, a cycle is identified in
G′ = (V,E ∪I(s)) and for some edge in the interior of this cycle but not in O(s),
a search node is created which includes the edge and a search node is created
which excludes this edge. The search concludes when there are no more nodes to
explore. This algorithm can have a warm start where any heuristic can be ran
prior to the algorithm for a starting incumbent solution F . The computational
experiments in Section 8 assumes a depth-first search ordering.

Heuristic Algorithms. This section describes a heuristic that will be used for
comparison with the Benders approach, to see the gap that results from running
only a minimal chordal completion algorithm.
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Algorithm 3. Branch-and-bound algorithm for the MCCP in graph G = (V,E)
1: F ← Ec

2: zub ← |F |
3: create search node s with I(s) = O(s) = ∅
4: Q ← {s}
5: while Q �= ∅ do
6: let s be some node in Q
7: Q ← Q\{s}
8: if G′ = (V,E ∪ I(s)) is chordal then
9: F ← I(s)

10: zub ← |F |
11: else
12: if |I(s)| ≤ zub − 2 then
13: find chordless cycle C of length greater than 3 in G′

14: let e be any edge in int(C)\O(s)
15: if e exists then
16: create search node s′ with I(s′) = I(s) ∪ {e}, O(s′) = O(s)
17: create search node s′′ with I(s′′) = I(S), O(s′′) = O(s) ∪ {e}
18: Q ← Q ∪ {s′, s′′}
19: return F

A classical algorithm that can be used to find small minimal chordal com-
pletions of graphs is the elimination graph model: In this algorithm, the vertices
are sorted by some permutation σ. The vertices are then relabeled according to
σ. Then, for i = 1, . . . , n, edges are added to G in order to make the neighbors
of i in {i + 1, . . . , n} adjacent. The minimal chordal completions of G exactly
coincide with the graphs that results from this process [14].

Finding the ordering that results in the smallest set of additional edges
exactly corresponds to solving the MCCP. Finding this ordering is NP-hard,
and many heuristics have been developed, most popular and highly implemented
being the minimum degree ordering [16] which in general finds very good, nearly
optimal solutions. This algorithm will henceforth be referred to as MDOC (for
minimum degree ordering completion).

8 Computational Results

This section reports computational results on the Benders approach to the
MCCP. All algorithms are implemented in C++ and ran on a 3.20 GHz Intel(R)
Core(TM) i7-3930K CPU processor with 32 GB RAM. The IP solver used is
Gurobi version 5.63. All settings were set to default, except that the solver was
restricted to solving on one processor by setting Threads to 1.

The algorithms are tested on random graphs generated according to the
Erdős-Réyni model. The graphs generated have n vertices and density d, with
n ranging from 15 to 35, in increments of 5, and d ranging from 0.1 to 0.9, in
increments of 0.1. 10 graphs are generated per configuration.
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For the remainder of this section, the means reported are geometric means
with shift 1.

Comparison with Simple Branch-and-boundAlgorithm. Figure 3 depicts
the time to solve the graphs generated with n = 15 vertices, displaying the geomet-
ric mean, shifted by 1, of the complete solution time for four different algorithms.
BandB(nowarmstart) represents the simplebranch-and-boundalgorithm inAlgo-
rithm3. BandB(no warm start) is the same algorithm, but initializedwith a heuris-
tic solution for bounding purposes, provided by MDOC. Benders(single cycle)
represents Algorithm 1, where only one cycle is generated each time the subprob-
lem is solved (Algorithm 2 is stopped once the first chordless cycle is identified),
and Benders(multi cycle) is the same algorithm but with Algorithm 2 ran until
completion.
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Fig. 3. Time to solve graphs with n = 15 vertices

As can be seen in Figure 3, the Benders approach outperforms the sim-
ple branch-and-bound algorithm except on those instances that are solved very
quickly. Within 10,000,000 search nodes not all instances with n = 20 and above
are solved by the simple branch-and-bound algorithm and so the plot is only
generated for n = 15.

Even more elucidating of the difference in computational time is the number
of instances that are solved within 30 seconds, depicted in Figure 4. For the same
algorithms as above, this plot shows that within 30 seconds each of the instances
with n = 20 are solved by Benders(multi cycle) (the maximum time on this
set of instances for this technique is 1.13 seconds with mean of 0.053 seconds).
In the alternative methods, there are many instances which remain unsolved in
this time horizon, and several remaining unsolved even after 1800 seconds.
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Improvement Over MDOC. The heuristic, MDOC, works surprisingly well
in practice and hence is heavily implemented in practice. In this section the
difference between the solution provided by MDOC and the Benders approach
(Benders(multi cycle)) are provided in order to evaluate the importance of
searching for optimal solution, compared with a standard, simple, and powerful
heuristic.

In general, as reported in the literature, the solutions outputted by MDOC
are of high quality. Figure 5 shows the comparison between the optimal solutions
found by the Benders approach with the solutions obtained by MCOD for n =
20, 25, 30, 35. As can be seen in this figure, the gap between the heuristic solution
and the optimal solution is not too substantial, however the gap grows as the
graphs increase in size.

To better see the differences in the chordal completions, consider Figure 6,
where plots are generated for this data, for n = 20, 25, 30, 35, individually. In
addition to the mean, the minimum and maximum difference per configuration
is depicted. This plot more readily shows that as n grows the gap between the
heuristic solution and the optimal solution grows.

This of course comes at the expense of extra computation time. The time
necessary to run the heuristic is a fraction of a second, compared to the time to
run the Benders algorithm, reported in Table 1, although solutions are provided
with optimality guarantees. This table reports the numerical values depicted in
Figure 6 along with the times to solve the MCCP using the Benders approach
described in this paper. n and d are the number of vertices and density in
the random graphs tested (10 instances per row in the table). MinFillDiff,
MeanFillDiff, and MaxFillDiff report the minimum, mean, and maximum
difference in the number of edges in the chordal completions calculated using
MDOC and the Benders approach, respectively. MinBendersTime, MeanBenders
Time, and MaxBendersTime report the minimum, mean, and maximum time to
solve the instances using the Benders approach, respectively.
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Fig. 6. Difference in number of fill edges added, n = 20, 25, 30, 35

Table 1. Difference in number of edges resulting from chordal completions using Ben-
ders versus MDOC ; Benders time

n d MinFillDiff MeanFillDiff MaxFillDiff MinBendersTime MeanBendersTime MaxBendersTime
20 0.1 0 0.07 1 0.00 0.00 0.01

0.2 0 0.47 3 0.02 0.04 0.13
0.3 0 0.47 3 0.02 0.04 0.07
0.4 0 0.15 1 0.02 0.15 1.13
0.5 0 0.37 3 0.03 0.11 0.37
0.6 0 0.64 3 0.02 0.05 0.10
0.7 0 0.53 2 0.03 0.05 0.10
0.8 0 0.07 1 0.02 0.03 0.04
0.9 0 0.15 1 0.01 0.01 0.02

25 0.1 0 0.00 0 0.01 0.02 0.04
0.2 0 0.35 4 0.03 0.87 24.04
0.3 0 0.96 6 0.08 1.00 5.28
0.4 0 1.61 11 0.17 1.05 2.72
0.5 0 0.57 4 0.10 0.42 1.83
0.6 0 0.83 6 0.05 0.11 0.33
0.7 0 0.53 5 0.08 0.17 0.66
0.8 0 0.37 2 0.04 0.06 0.12
0.9 0 0.28 2 0.02 0.03 0.04

30 0.1 0 1.31 4 0.02 0.87 5.36
0.2 0 1.03 4 0.28 8.05 181.68
0.3 0 2.09 7 2.85 15.44 371.47
0.4 0 2.73 15 0.23 6.39 38.70
0.5 0 2.98 8 0.24 4.91 194.28
0.6 0 1.02 13 0.24 0.91 2.17
0.7 0 1.88 5 0.13 0.82 2.60
0.8 0 0.20 2 0.08 0.23 0.75
0.9 0 0.15 1 0.03 0.05 0.09

35 0.1 0 0.53 2 0.04 2.90 70.83
0.2 0 2.32 9 1.31 86.49 1822.97
0.3 2 5.54 15 2.92 635.38 11782.80
0.4 0 3.93 16 4.51 91.90 2394.53
0.5 0 1.94 10 0.75 17.24 624.04
0.6 1 3.01 13 3.73 15.03 100.23
0.7 0 1.76 7 0.52 5.39 19.57
0.8 0 0.64 5 0.24 0.57 1.15
0.9 0 0.23 1 0.07 0.10 0.19
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Table 2. Chordal completion sizes on benchmark graphs ; * indicates that the value
is a bound due to the Benders approach timing out in one hour

Instance |V | |E| BendersTime BendersValue MDOCValue
1-FullIns 3 30 100 5.85 80 80
1-FullIns 4 93 593 - 623* 839
2-FullIns 3 52 201 - 206* 273
2-Insertions 3 37 72 - 68* 103
3-FullIns 3 80 346 - 379* 661
3-Insertions 3 56 110 - 102* 198
4-Insertions 3 79 156 - 148* 331
david 87 406 1.99 64 66
mug100 1 100 166 0.56 64 91
mug100 25 100 166 0.66 64 93
mug88 1 88 146 0.37 56 82
mug88 25 88 146 0.52 56 84
myciel3 11 20 0 10 10
myciel4 23 71 0.04 46 46
myciel5 47 236 35.71 196 197
myciel6 95 755 - 713* 753
queen10 10 100 1470 - 2045* 2671
queen5 5 25 160 262.57 93 94
queen6 6 36 290 - 218* 244
queen7 7 49 460 - 402* 444
queen8 12 96 1368 - 1863* 2401
queen8 8 64 728 - 772* 970
queen9 9 81 1056 - 1301* 1664

Benchmark Graphs. Table 2 reports results on benchmark graphs, appearing
frequently in the literature in papers which test graph coloring algorithms and
other problems as well [28]. The algorithm was tested only on those instances
with 100 or fewer vertices that are connected.

The results indicate that there can be a significant gap between what the
state-of-the-art minimal chordal completion algorithm returns and the optimal
value of the MCCP. The table reports Instance (the name of the instance)
the number of vertices and edges in the graph, followed by BendersTime (the
amount of time, in seconds, to solve the instance), BendersValue (the optimal
solution if the instance was solved within an hour and lower bound otherwise
and indicated by an asterisk), and finally MDOCValue (the size of the chordal
completion obtained by MDOC). Of particular note are the mug instances for
which the gap between the heuristic solution value and the optimal value can be
very substantial.

9 Conclusion

In conclusion, this paper introduces a Benders approach to the minimum chordal
completion problem. Computational results indicate that the approach is promis-
ing as the algorithm significantly outperforms a simple branch-and-bound algo-
rithm for the problem. In addition the paper reports that the gap between the
value obtained using a state-of-the-art heuristic and the formally unknown opti-
mal solutions to random graphs and benchmark instances can be significant.
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Abstract. In this work we propose a MaxSAT formulation for the
problem of scheduling business-to-business meetings. We identify some
implied constraints and provide distinct encodings of the used cardinality
constraints. The experimental results show that the proposed technique
outperforms previous existing approaches on this problem.

1 Introduction

In recent years, solving combinatorial problems by encoding them into proposi-
tional formulae and proving their satisfiability has been proved to be a robust
approach. Although the field of automated timetabling is dominated by local
search heuristic methods, SAT and MaxSAT-based methods have been success-
fully applied to curriculum-based timetabling problems recently [2,5].

In this work we propose some MaxSAT encodings for the problem of schedul-
ing business-to-business (B2B) bilateral meetings. Those meeting sessions occur
in events from several fields like sports, research, etc. and aim to facilitate partic-
ipants with similar interests meeting each other. We consider the generation of
timetables for B2B meetings in the particular setting of the Forum of the UdG’s
Science and Technology Park.1 The goal of this forum is to be a technologi-
cal marketplace in Girona, by bringing the opportunity to companies, research
groups, investors, etc., to find future business partnerships.

In the scheduling of B2B meetings it is desirable to avoid unnecessary idle
time periods between meetings, and to be fair in such minimization, i.e., to
avoid big differences in the number of idle time periods among participants.
Experience shows that idle time periods may led some participants to leave the
event, dismissing later scheduled meetings. We propose to face this optimization
problem by encoding it as a partial MaxSAT formula [11], where some clauses
are marked as hard whilst others are marked as soft, and the goal is to find
an assignment to the variables that satisfies all hard clauses and falsifies the
minimum number of soft clauses. In our case, the falsification of a soft clause
will represent the existence of an idle time period for some participant.
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As far as we know, there are not many works dealing with this problem.
In [7] we can find a system that is used by the company piranha womex AG for
computing matchmaking schedules in several fairs. That system differs from ours
in some aspects: e.g., it considers neither forbidden slots nor fairness. In [3] the
authors proposed a Constraint Programming (CP) model and a pseudo-Boolean
(PB) model, and provided performance results for basic configurations of several
solvers. Among the model and solver combinations considered, the CP model
with a SMT solver, and the PseudoBoolean model with a SAT-based PB solver,
were shown to be the most robust. This fact motivates us to go one step further
with SAT-based technology by providing a direct MaxSAT encoding for this
problem in this paper. We report on experiments showing that a basic MaxSAT
encoding outperforms previous results. We show that even better results can
be obtained with state-of-the-art encodings of cardinality constraints and some
improvements and extensions of the initial encoding. As test suite we use (and
provide) the industrial instances of previous editions of the Forum and some
crafted modifications of those.

2 The B2B Problem

Here we define the problem at hand. For more details on the nature of the
problem and the instances from the Forum of the UdG’s Science and Technology
Park, see [3].

Definition 1 (B2BSOP-d). Given a set of participants, a list of time slots, a
set of available locations (tables) and a set of meetings between pairs of partici-
pants, where for each participant there can be forbidden time slots and meetings
may be required to be held in morning or afternoon slots, the goal of the “B2B
Scheduling Optimization Problem with homogeneity d” is to find a total mapping
from the meetings to time slots and locations such that:

– At most one meeting involving the same participant is scheduled in each time
slot.

– No meeting is scheduled in a forbidden time slot for any of its participants.
– Each meeting having a morning or afternoon slot requirement is scheduled

in a time slot of the appropriate interval.
– The difference between the number of idle time periods of each pair of partic-

ipants is at most d, where by an idle time period we refer to a group of idle
time slots between two successive meetings involving the same participant.

– The total number of idle time periods is minimized.
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3 Encodings

3.1 MaxSAT Base Encoding for the B2BSOP-d

Parameters. Each instance is defined by the following parameters.

nMeetings: number of meetings
nTimeSlots: number of available time slots
nMorningSlots: number of morning time slots
nTables: number of available locations
nParticipants: number of participants
morningMeetings : subset of {1, . . . ,nMeetings} to be scheduled in morning slots
afternoonMeetings : subset of {1, . . . ,nMeetings} to be scheduled in afternoon

slots
meetings , function from {1, . . . ,nParticipants} to 2{1,...,nMeetings}: set of meet-

ings involving each participant
forbidden, function from {1, . . . ,nParticipants} to 2{1,...,nTimeSlots}: set of for-

bidden time slots for each participant

Variables. We define the following propositional variables.

schedulei,j : meeting i is held in time slot j
usedSlotp,j : participant p has a meeting scheduled in time slot j
fromSlotp,j : participant p has a meeting scheduled at, or before, time slot j
endHolep,j : participant p has an idle time period finishing at time slot j
max 1, . . . ,max �(nTimeSlots−1)/2� and min1, . . . ,min�(nTimeSlots−1)/2�:

unary representation of an upper bound and a lower bound of the max-
imum and minimum number of idle time periods among all participants,
respectively. Note that there can be at most �(nTimeSlots − 1)/2� idle time
periods per participant. By restricting the difference between these variables
to be less than a certain value, we will enforce homogeneity of solutions
(Constraints (16) to (21)).

We also use some auxiliary variables that will be introduced when needed.

Constraints. All constraints except (15) are hard. To help readability we define
M = {1, . . . ,nMeetings}, T = {1, . . . ,nTimeSlots}, P = {1, . . . ,nParticipants}.

– At most one meeting involving the same participant is scheduled in each time
slot.

atMost(1, {schedulei,j | i ∈ meetings(p)}) ∀p ∈ P, j ∈ T (1)

– No meeting is scheduled in a forbidden time slot for any of its participants.
∧

i∈meetings(p), j∈forbidden(p)

¬schedulei,j ∀p ∈ P (2)
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– Each meeting having a morning or afternoon slot requirement is scheduled
in a time slot of the appropriate interval.

exactly(1, {schedulei,j | j ∈ 1..nMorningSlots}) ∀i ∈ morningMeetings
(3)

¬schedulei,j
∀i ∈ morningMeetings
∀j ∈ nMorningSlots + 1..nTimeSlots (4)

exactly(1, {schedulei,j | j ∈ nMorningSlots + 1..nTimeSlots})
∀i ∈ afternoonMeetings (5)

¬schedulei,j
∀i ∈ afternoonMeetings
∀j ∈ 1..nMorningSlots (6)

exactly(1, {schedulei,j | j ∈ T}) ∀i ∈ M \ (morningMeetings ∪
afternoonMeetings)

(7)

– At most one meeting is scheduled in a given time slot and location.

atMost(nTables, {schedulei,j | i ∈ M}) ∀j ∈ T (8)

Note that with Constraints (3) to (8) we get a total mapping from the meet-
ings to time slots and locations.

In order to be able to minimize the number of idle time periods we introduce
channeling constraints between the variables schedule, usedSlot and fromSlot .

– If a meeting is scheduled in a certain time slot, then that time slot is used
by both participants of the meeting.

schedulei,j → (usedSlotp1
i ,j

∧ usedSlotp2
i ,j

) ∀i ∈ M, j ∈ T

where p1i and p2i are the participants of meeting i. (9)

In the reverse direction, if a time slot is used by some participant, then one
of the meetings of that participant is scheduled in that time slot.

usedSlotp,j →
∨

i∈meetings(p)

schedulei,j ∀p ∈ P, j ∈ T (10)

– For each participant p and time slot j, fromSlotp,j is true if and only if
participant p has had a meeting at or before time slot j.

¬usedSlotp,1 → ¬fromSlotp,1 ∀p ∈ P (11)

(¬fromSlotp,j−1 ∧ ¬usedSlotp,j) → ¬fromSlotp,j ∀p ∈ P, j ∈ T \ {1} (12)

usedSlotp,j → fromSlotp,j ∀p ∈ P, j ∈ T (13)

fromSlotp,j−1 → fromSlotp,j ∀p ∈ P, j ∈ T \ {1} (14)
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Optimization. Minimization of the number of idle time periods is achieved
by means of soft constraints (except for the case of a cardinality network based
encoding that we describe in Subsection 3.3).

− [Soft constraints] If some participant does not have any meeting in a certain
time slot, but it has had some meeting before, then she does not have any
meeting in the following time slot.

(¬usedSlotp,j∧fromSlotp,j) → ¬usedSlotp,j+1 ∀p ∈ P, j ∈ T \{nTimeSlots}
(15)

We claim that, with these constraints, an optimal solution will be one having
the least number of idle time periods. Note that, for each participant, each
meeting following some idle time period increases the cost by 1.

Remark 1. If we were just considering optimization, Constraints (11) and (12)
would not be necessary, since minimization of the number of idle time periods
would force the value of fromSlotp,j to be false for every participant p and time
slot j previous to the first meeting of p. However, since we are also seeking
for homogeneity, these constraints are mandatory. Without them, the value of
fromSlotp,j could be set to true for time slots j previous to the first meeting of
p, inducing a fake idle time period in order to satisfy the (hard) homogeneity
constraints defined below. Constraints (11) and (12) were missing by mistake
in [3].

Homogeneity. We reify the violation of soft constraints in order to count the
number of idle time periods of each participant. This will allow us to find the
maximum and minimum number of idle time periods among all participants,
and to enforce homogeneity by bounding their difference.

– endHolep,j is true if and only if participant p has an idle time period finishing
at time slot j.

endHolep,j ↔ ¬ (
(¬usedSlotp,j ∧ fromSlotp,j) → ¬usedSlotp,j+1

)

∀p ∈ P, j ∈ T \ {nTimeSlots} (16)

– sortedHolep,1, . . . , sortedHolep,nTimeSlots are the unary representation of the
number of idle time periods of each participant p.

sortingNetwork([endHolep,j | j ∈ T ], [sortedHolep,j | j ∈ T ]) ∀p ∈ P
(17)

– max1, . . . ,max �(nTimeSlots−1)/2� and min1, . . . ,min�(nTimeSlots−1)/2� are (an
approximation to) the unary representation of the maximum and minimum
number of idle time periods among all participants, respectively.

sortedHolep,j → max j ∀p ∈ P, j ∈ 1..�(nTimeSlots − 1)/2� (18)
¬sortedHolep,j → ¬minj ∀p ∈ P, j ∈ 1..�(nTimeSlots − 1)/2� (19)
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Constraints (18) and (19) are not enough to ensure that the max and min
variables exactly represent the maximum and minimum number of idle time
periods among all participants. However, together with Constraints (20)
and (21), they suffice to soundly enforce the required homogeneity degree.

– The difference between the maximum and minimum number of idle time
periods can be at most d (in our setting the chosen number was 2).

dif j ↔ minj XOR max j ∀j ∈ 1..�(nTimeSlots − 1)/2� (20)

atMost(d, {dif j | j ∈ 1..�(nTimeSlots − 1)/2�}) (21)

3.2 Extended Encoding

Implied Constraints. We have identified the following implied constraints.

– The number of meetings of a participant p as derived from usedSlotp,j vari-
ables must match the total number of meetings of p.

exactly(|meetings(p)|, {usedSlotp,j | j ∈ T}) ∀p ∈ P (22)

– The number of participants having a meeting in a given time slot is bounded
by twice the number of available locations.

atMost(2 × nTables, {usedSlotp,j | p ∈ P}) ∀j ∈ T (23)

Symmetry Breaking. With respect to symmetry breaking, the model implic-
itly eliminates possible table symmetries, since only the number of tables occu-
pied is considered. Unfortunately, removing time symmetries in the presence of
participants’ forbidden time slots seems not to be feasible. However, we can break
some time symmetries when there are no forbidden time slots and the meetings
have neither morning nor afternoon slot requirements (there are several instances
with these characteristics). Note that since we are minimizing the number of idle
time periods, we cannot soundly break time symmetries by simply fixing a priori
an ordering of meetings. Instead, what we do is to force some ordering in the
“matrix” of usedSlot variables as follows, assuming an even number of time-slots
and the existence of a participant with an odd number of meetings.2

– For some participant p with an odd number of meetings we force the number
of meetings of p taking place in the first half of time slots to be odd.

((. . . (usedSlotp,1 XOR usedSlotp,2) . . . ) XOR usedSlotp,�nTimeSlots/2�)
(24)

3.3 Encoding of Global Constraints

The cardinality constraints stating that at most (atMost) or exactly (exactly) k
of a given set of variables must be true have been encoded in several ways. Sim-
ilarly for the sortingNetwork constraint, which corresponds to a sorting network
on a set of Boolean variables.
2 All instances considered are like this.
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Näıve Encoding.

– atMost(1, ): quadratic number of pairwise mutex clauses.
– exactly(1, ): atMost(1, ) plus a clause (disjunction) with all the involved

variables, for the “at least” part of the constraint.
– sortingNetwork : odd-even sorting network.
– atMost(k, ): näıve sequential unary counter [12].

Cardinality Networks based Encoding.

– atMost(1, ): quadratic number of pairwise mutex clauses.
– exactly(1, ): commander-variable encoding [9].
– exactly(k, ), sortingNetwork and atMost(k, ): cardinality networks [1].

By using cardinality networks we can deal with soft constraints in a more clever
way: instead of soft constraints (15), we post as soft constraint the negation
of each “output variable” sortedHolep,j of the sortingNetwork corresponding
to constraint (17). This way, knowing that each participant will have at most
�(nTimeSlots − 1)/2� idle time periods, we can reduce the number of soft con-
straints, as well as the number of sortedHolep,j variables of each participant, to
a half.

4 Experiments, Conclusions and Future Work

In this section we compare the performance of the state-of-the-art MaxSAT
solver QMaxSat14.04auto-g3 [10] using the proposed base model and a näıve
encoding of the global constraints, with the performance of the best known
method and solver for each instance in [3]. We also show how using cardinality
networks for the global constraints, and extending the model with implied con-
straints and symmetry breaking, we can significantly improve the solving time.
We use the same nine instances that the authors used in [3], plus new eleven
instances.3 Among all there are five industrial instances (the ones without craf
annotation); the rest have been crafted from those by increasing the number of
meetings, reducing the number of locations and removing the forbidden time
slots.

All experiments have been run using the default options of each solver, on
Intel R© XeonTMCPU@3.1GHz machines, under CentOS release 6.3, kernel 2.6.32.
Table 1 summarizes the results obtained. Only instances named tic do not con-
tain forbidden time slots nor morning and afternoon preferences, hence sym-
metry related experiments are only reported for those. Column named best
known shows the best results obtained in [3], where PB clasp and PB cplex
refer to a pseudo-Boolean model solved with clasp 3.1.0 [8] and IBM ILOG
CPLEX 12.6, respectively, and CP sbdd refers to a CP like model solved with
3 All instances can be found in http://imae.udg.edu/recerca/lap/simply/. Results

from [3] have been updated according to Remark 1.

http://imae.udg.edu/recerca/lap/simply/
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WSimply using shared BDD optimization [4] and Yices 1.0.33 [6] as SMT solver.
Columns näıve and cardinal show the results using the näıve and cardinality
network based encodings of our base model, respectively. Columns imp1, imp2,
imp1+2 and imp1+2+sym show the results for the cardinality networks based
encoding using implied constraints 1, 2, both, and both with symmetry break-
ing, respectively. The three numbers below the names of each instance are: the
ratio between the median of meetings per participant and nTimeSlots, the ratio
between nTables and nParticipants, and the ratio between the number of meet-
ings to schedule and the available slots (nTables × nTimeSlots).

Table 1. Solving time (in seconds) and optimum found (number of idle time periods)
per instance and solver. TO stands for 2 hours timeout. For aborted executions we
report the (sub)optimum found if the solver reported any.

instance best known näıve cardinal imp1 imp2 imp1+2 imp1+2+sym
forum-13

(0.20, 0.40, 0.52)
153.1 (PB clasp) 0 24.8 0 20.5 0 13.4 0 25.2 0 18.3 0 - -

forum-13crafb
(0.24, 0.36, 0.66)

TO (CP sbdd) 12 1492.7 6 83.4 6 82.4 6 83.1 6 81.2 6 - -

forum-13crafc
(0.20, 0.34, 0.61)

TO (CP sbdd) 20 116.3 1 1872.4 1 1661.3 1 1800.5 1 1300.2 1 - -

forum-14
(0.35, 0.56, 0.62)

TO (CP sbdd) 7 TO - 431.2 2 349.1 2 409.2 2 240.2 2 - -

forumt-14
(0.79, 0.90, 0.87)

- - 21.1 5 8.0 5 8.5 5 11.9 5 10.2 5 - -

forumt-14crafc
(0.79, 0.83, 0.94)

- - 148.9 5 32.7 5 28.8 5 33.1 5 31.5 5 - -

forumt-14crafd
(0.78, 0.83, 0.94)

- - 84.9 4 32.4 4 26.6 4 37.1 4 35.5 4 - -

forumt-14crafe
(0.78, 0.80, 0.98)

- - TO - 95.2 5 78.1 5 105.2 5 94.7 5 - -

ticf-13crafa
(0.21, 0.40, 0.52)

- - 21.2 0 24.6 0 15.0 0 45.9 0 35.9 0 - -

ticf-13crafb
(0.51, 0.36, 0.66)

- - 3866.1 3 118.3 3 117.3 3 111.3 3 114.2 3 - -

ticf-13crafc
(0.21, 0.34, 0.61)

- - 309.4 1 574.2 1 562.3 1 416.9 1 432.3 1 - -

ticf-14crafa
(0.35, 0.56, 0.62)

- - TO - TO - 1532.8 0 2044.1 0 1339.6 0 - -

tic-12
(0.74, 1.00, 0.74)

0.2 (PB clasp) 0 0.2 0 0.2 0 0.3 0 0.2 0 0.2 0 0.4 0

tic-12crafc
(0.74, 0.76, 0.97)

53.2 (PB cplex) 0 7.8 0 4.1 0 3.1 0 2.5 0 2.6 0 3.4 0

tic-13
(0.76, 0.89, 0.85)

3.0 (PB clasp) 0 18.4 0 5.9 0 4.1 0 4.6 0 4.2 0 5.7 0

tic-13crafb
(0.80, 0.89, 0.87)

2.1 (PB clasp) 0 3.6 0 2.4 0 2.6 0 7.1 0 5.5 0 4.1 0

tic-13crafc
(0.76, 0.80, 0.94)

TO (PB cplex) 4 TO 4 25.9 4 19.1 4 25.2 4 23.9 4 26.1 4

tic-14crafa
(0.79, 0.90, 0.87)

- - 30.0 0 16.3 0 10.2 0 24.4 0 16.4 0 14.2 0

tic-14crafc
(0.79, 0.83, 0.94)

- - 740.0 0 49.3 0 45.1 0 45.7 0 44.5 0 56.8 0

tic-14crafd
(0.79, 0.83, 0.94)

- - 190.7 0 35.2 0 47.9 0 32.5 0 34.9 0 53.2 0

From the results reported we can extract the following conclusions: a) our
base MaxSAT model with a näıve encoding outperforms all approaches consid-
ered in [3]; b) the cardinality network based encoding of our base model outper-
forms the näıve encoding; c) using implied constraints is in general beneficial;
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d) when the amount of information provided by the implied constraints is ele-
vated is when really pays off to use them: in particular, for implied constraint 1,
this happens when the ratio between the median of meetings per participant and
nTimeSlots is low; for implied constraint 2, this happens when the ratio between
nTables and nParticipants is low; e) the use of symmetry breaking seems not to
really help (in fact we think that we need some more hard instances to appreciate
its possible benefits).

As future work we plan to find some more implied constraints and to improve
symmetry breaking. We also plan to develop a portfolio with all these encodings,
and to deeply compare with other solving techniques.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A parametric
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Abstract. In past papers, we have introduced Empirical Model Learn-
ing (EML) as a method to enable Combinatorial Optimization on real
world systems that are impervious to classical modeling approaches. The
core idea in EML consists in embedding a Machine Learning model in
a traditional combinatorial model. So far, the method has been demon-
strated by using Neural Networks and Constraint Programming (CP). In
this paper we add one more technique to the EML arsenal, by devising
methods to embed Decision Trees (DTs) in CP. In particular, we pro-
pose three approaches: 1) a simple encoding based on meta-constraints;
2) a method using attribute discretization and a global table constraint;
3) an approach based on converting a DT into a Multi-valued Decision
Diagram, which is then fed to an mdd constraint. We finally show how
to embed in CP a Random Forest, a powerful type of ensemble classifier
based on DTs. The proposed methods are compared in an experimental
evaluation, highlighting their strengths and their weaknesses.

1 Introduction

Combinatorial Optimization methods have been successfully applied to a broad
range of industrial problems. Many of such approaches rely on the availability of
some declarative model describing decisions, constraints on these decisions, their
cost and their impact on the considered system. In short, they rely on an accurate
problem model. However, in some application domains, the model is either not
fully known, or it is described in a way that is not useful for combinatorial
optimization. As an example, for many domains there are predictive models to
forecast the temporal dynamic of a target system via differential equations, but
those are unfortunately impossible to insert into a combinatorial optimization
model without incurring in computational issues.

In these cases, it is likely that the domain expert proposes some heuristic
knowledge on the problem that is a (non measurable) approximation of the effect
that some decisions have on the system dynamic. We propose here an alternative
approach, which is an instantiation of a general method called Empirical Model
Learning that we proposed in [2]. We aim at learning part of the combinatorial
optimization model and to embed the learned piece of knowledge in the combi-
natorial model itself. In this way, we have two advantages: the first is that we
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can use this knowledge to reduce the search tree and the second is that we know
the accuracy that we have obtained in the process.

In this paper, we consider the problem of embedding in a CP model two
types of tree-based classifiers from Machine Learning, namely Decision Trees
and Random Forests. Formally, a classifier is a function f mapping a tuple of
values for a set of discrete or numeric attributes to a discrete class. We can
embed a classifier in CP by introducing a vector of variables x to represent the
attributes and a variable y to represent the class. Then we need to find a set of
constraints such that they guarantee and enforce some degree of consistency on
the relation:

x = v ∧ y = w ⇔ f(v) = w (1)

In other words, an effective embedding technique does not simply act as a func-
tion evaluator. Rather, it is capable to narrow the set of possible values for y
given the current domain of x and vice-versa, i.e. it is capable of performing
domain filtering.

Here, we show three CP encoding techniques for Decision Trees and Random
Forests, in particular: 1) an approach based on rules and modeled via meta-
constraints; 2) an encoding based the discretization of numeric attributes and
a global table constraint; 3) another approach relying on attribute discretiza-
tion, but making use of an mdd constraint instead of table. Each of the three
approaches has its own merits: the rule-based encoding has the best scalability,
but provides the weakest propagation. The table and mdd approaches are both
capable of enforcing GAC, but may suffer from scalability issues when dealing
with large and complex trees.

We experiment our methods on a thermal-aware workload dispatching prob-
lem over an experimental multicore CPU by Intel, called Single-chip Cloud Com-
puter (SCC, see [19]). Our goal is to map jobs so as to maximize the number
of cores operating at high efficiency. The efficiency of each core depends on a
number of complex factors, making it impossible to assess the effect of a job
mapping via a traditional, expert designed, model. Hence, we obtained a model
approximation by learning a set of Decision Trees (or Random Forests), each
one trained to predict if a specific core will have high (class 1) or low (class 0)
efficiency given a specific workload. We compare the behavior of the proposed
techniques in a variety of conditions and we show how the EML approach is
capable of providing improvements over a powerful Local Search method.

2 Background

In this section we discuss the basics of Decision Trees (DT) and Random Forests
(RF), so as to establish the background to present our encoding techniques.
A brief review of works that combine optimization and Machine Learning is
provided in Section 5.

Decision Trees are a type of Machine Learning model typically employed for
classification tasks. Each leaf of a Decision Tree (DT) is labeled with a class.
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Each node is labeled with one of a set of numeric or symbolic attributes that are
used to described the DT input. The outgoing branches of a node are labeled with
conditions over its attribute. The conditions are such that they form a partition
of the attribute domain: in particular, branches over symbolic attributes are
labeled with a set of symbolic values, while branches over numeric attributes are
labeled with a splitting condition such as xi ≤ θ or xi > θ. An example of a
simple Decision Tree is depicted in Figure 1.

Trees can be learned in a greedy manner by procedures like the C4.5 algo-
rithm [26]. The learning process starts from a set of examples, i.e. (tuples of
attribute values, associated with a class). Then, this training set is recursively
split into subsets, according to the attribute that makes the classes in the subsets
most homogeneous (e.g. that achieves minimum Gini index maximum Informa-
tion Entropy). The recursive process terminates when the remaining subsets are
sufficiently pure to conclude with a classification, which is then associated with
a leaf of the tree. A new example is classified by starting from the root node and
traversing the tree, always taking the branches whose condition is satisfied by
the values of the example attributes. For a fully specified example, this process
will lead to a single leaf, corresponding to the predicted class.

Decision trees are quick to train and easy to understand, they can provide
class probabilities and error bars, they can handle wrong or missing attribute
values. On the downside, they require relatively large training sets in order to
be effective and they do not always reach satisfactory accuracy levels.

The last drawback can be overcome by using DTs in an ensemble learning
method, leading to Random Forests [10,18]. A Random Forest is a set of DTs
and the forest output is the statistical mode of the classifications made by its
components, i.e. the class predicted by the majority of the trees. Each DT is
defined over a random subset of attributes and trained on a subset of the orig-
inal examples (bagging). Additionally, randomization can also be employed for
selecting the splitting value at each tree root. Such extensive use of randomiza-
tion aims at breaking correlations between the trees, which greatly increases the
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prediction ability of the forest. Random Forests are widely considered among
the most powerful Machine Learning models.

3 Embedding Decision Trees and Random Forests in CP

In the following paragraphs we describe several techniques to guarantee the
satisfaction of and to enforce consistency on Equation (1) from Section 1, i.e.:

x = v ∧ y = w ⇔ f(v) = w (2)

assuming the f is a Decision Tree or a Random Forest.
On this purpose, it is useful to introduce some formal notation. For sake of

uniformity with other graphical structures mentioned in this paper, we view a
DT as a (tree structured) directed acyclic graph T = 〈N,A〉. N is the set of the
nodes ni and A is the set of arcs aj . The source and sink endpoints of an arc are
referred to as src(aj) and snk(aj). Each node is associated to an attribute x(ni)
and we refer as x(aj) to x(src(aj)). Each arc is associated to a set λ(aj), called
the arc label. The labels correspond to the arc conditions: an arc associated to
the condition x(aj) ∈ {0, 2} has the label {0, 2} (symbolic values can always be
associated to integers); an arc with condition x(aj) ≤ 3 has the label ] − ∞, 3].
Arcs having the same source always have disjoint labels. The leaf nodes of the
DT are associated to a class from a set of classes C.

3.1 Rule Based Encoding

A DT can be converted to a set of classification rules by interpreting each path
from root to leaf as a logical implication. A simple approach to encode a DT in
CP consists in translating each implication into a boolean meta-constraint.

Formally, let P be the set of root-to-leaf paths π in the tree, each path π being
a sequence of arcs indices π(0), . . . , π(k) such that snk(aπ(i)) = src(aπ(i+1)) for
all i = 0, . . . k − 1. Each path ends in a leaf node with a certain class, denoted
here as class(π). Then the DT can be encoded as a set of constraints:

∧

π(i)∈π

[[
x(aπ(i)) ∈ λ(aπ(i))

]] ⇒ [[y = class(π)]] ∀π ∈ P (3)

where the notation [[−]] refers to the reification of the constraint enclosed by
the brackets. The notation x(aj) refers here to an attribute variable (attributes
and attributes variables will often be considered interchangeable). If x(aπ(i)) is
numeric, then the reified constraint

[[
x(aπ(i)) ∈ λ(aπ(i))

]]
is defined as:

[[
x(aπ(i)) ≤ θ

]]
if λ(aπ(i)) is in the form ] − ∞, θ] (4)

[[
x(aπ(i)) > θ

]]
if λ(aπ(i)) is in the form ]θ,∞[ (5)

while the constraint form for symbolic attributes is:
∨

θj∈λ(aπ(i))

[[
x(aπ(i)) = θj

]]
(6)
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This encoding approach can be strengthened by observing that if the class
variable takes a specific value, then one of the corresponding root-to-leaf paths
in the DT must necessarily be true. This leads to this second, stronger, encoding:

[[y = w]] ⇔
∨

π∈P :
class(π)=w

∧

π(i)∈π

[[
x(aπ(i)) ∈ λ(aπ(i))

]] ∀w ∈ C (7)

which will serve as our reference rule-based encoding in the paper.
On solvers that do not provide support for logical constraints, sums can be

used instead of ∨, multiplications instead of ∧, and implications can be modeled
as ≤ relations. A double implication such as the one in Equation (7) must be
modeled using separate ≤ constraints for the two implication directions.

The rule-based encoding from Equation (7) is defined using a number of
constraints that grows linearly with the number of leaves and logarithmically
with the DT depth, yielding a space complexity of O(|N | log |N |). The encodings
is simple, scalable, and easy to implement, but provides only a weak form of
propagation. It makes therefore sense to investigate methods for embedding DTs
in CP that strike a difference balance between propagation power and cost.

3.2 Table Based Encoding

The table constraint in CP can be used to define a constraint in extensional
form, i.e. by enumerating the allowed (or forbidden) tuples for its variables.
The rules employed by our first encoding (corresponding to paths in the DT)
are related to tuples in a table constraint in that they specify conditions over
the attribute and class variables. It makes therefore sense to investigate the
possibility to embed a Decision Tree in CP using table. For this to be possible,
there are four important issues that should be addressed.

First, (#1)DTsextracted viaMachineLearningmay featurenumeric attributes,
for which enumerating the possible values is, strictly speaking, impossible. A
straightforward solution consists in using integer variables to encode numerical
attributes with finite precision. In fact, with many CP solver this is a mandatory
step, since real valued variables are often not supported. However, with this form
of discretization the variables corresponding to numeric attributes end up having
a very large domain, dramatically reducing the scalability.

We address the issue via an interval-based discretization. Specifically, we
traverse the DT and collect for each numeric attribute all the splitting thresholds.
Let θi be the sorted vector of the thresholds θk

i for a given numeric attribute xi,
to which we always add the values ±∞. For example, θA = [−∞, 10, 20,∞] for
DT from Figure 1. Then, we introduce a new integer variable δ(xi) with domain{
0, . . . |θi| − 2

}
such that:

δ(xi) = k ⇔ θk
i < xi ≤ θk+1

i (8)

Equation (8) can be enforced via specific channeling constraints (if supported
by the solver) or by using reification. Then, we update the numeric labels in the
DT with the substitution:



Embedding Decision Trees and Random Forests in Constraint Programming 79

λ(aj) =
{
k ∈ D(δ(xi)) : ]θk

i , θk+1
i ] ⊆ λ(aj)

}
(9)

Once this is done, we can use δ(xi) as a replacement for xi in the encoding.
Then, (#2) arcs in the DT are labeled with sets and each path on the tree

corresponds to a set of tuples rather than to a single one. This problem can be
(inefficiently) addressed by generating all possible combination of values for the
attribute and class variables, and removing those that violate Equation (1). A
better approach would be to generate directly the set of feasible tuples, which
is intuitively related to the cartesian product of the path labels.

However, this requires some care, because (#3) a path in a DT obtained via
Machine Learning can specify multiple conditions on the same attribute, which
makes a straightforward computation of the cartesian product

∏
π(i) λ(aπ(i))

meaningless. However, the problem can be easily fixed by replacing all the labels
defined over a specific attribute with their intersection. Formally, we introduce
the term refined label to refer to:

L(π, xi) =
⋂

π(i)∈π :
x(aπ(i))=xi

λ(aπ(i)) (10)

Even with the refined labels, the set of allowed tuples cannot be formulated as a
cartesian product, since (#4) a path in the DT may specify no label for one or
more attributes. When this happens, it means that such attributes are irrelevant
for the associated classification. Speaking in terms of tuples, this means that all
possible completions obtained by assigning values to the missing attributes are
feasible. In other words, the set of all allowed tuples corresponding to a path π
is given by the following cartesian product:

{class(π)} ×
∏

xi∈x

{
L(π, xi) if a label over xi exists in π

D(xi) otherwise
(11)

where D(xi) is the domain of the attribute variable xi. We have a polynomial
number of products in the form of Equation (11), each one compactly represent-
ing a set of allowed tuples and corresponding to a c-tuple in the terminology
of [23]. In that paper the authors introduce an algorithm to enforce GAC on a
table constraint formulated by using c-tuples rather then regular tuples. We plan
to test such method for future research, while in this work we focus on inves-
tigating a more classical approach, namely using Equation (11) to generate all
the allowed tuples for a “traditional” table constraint. This method may have
limited scalability, but it is readily applicable on off-the-shelf available solvers.

3.3 MDD Based Encoding

Graphical structures closely related to decision trees are employed by propaga-
tors for several global constraints. In [13], the authors propose a filtering algo-
rithm that achieves GAC on table and is based on a trie. A trie is a particular
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type of decision tree where the attributes are always 1) discrete, 2) considered
exactly once, and 3) in the same order.

The approach from [13] is improved in [11] by converting the trie into a MDD,
which is then used to define an efficient GAC propagator. From the purpose
of this paper, an MDD can be considered as a trie generalization, where the
requirement to have a tree structure is relaxed and multiple arcs are allowed
to point to the same node. Thanks to this ability, an MDD can be considerably
more compact than a trie, reducing the complexity of enforcing GAC. This raises
interest in using MDDs to encode Decisions Trees and perform propagation.

Both MDDs and tries differ from the Decision Trees employed in Machine
Learning (after the attribute discretization) in two important respects: 1) DTs
can consider the same attribute multiple times and 3) in DTs attributes can
be considered in a different order along different paths1. Such differences have
deep consequences when trying to encode a DT. In fact, the encoding requires
to re-order attributes, which causes the graph size to grow. Consider Figure 2.1,
which shows a portion of the DT from Figure 1 after the attribute discretization.
Assume that the selected attribute order is A, B, C. Moving the “B” split to
the correct position requires to copy part of the graph, as shown in Figure 2.2.
The phenomenon is multiplicative, possibly leading to an exponential growth.
MDD reduction algorithms can mitigate the issue by sharing identical graph
portions (e.g. the children of the circled node in Figure 2.2), but as of today we
have no proof that exponential growth can be avoided, and some evidence that
it actually occurs in practice.

Our approach for encoding a DT into an MDD is similar to the one from [11]:
we construct a trie-like structure, which is then reduced using the mddReduce
algorithm. The term “trie-like” is used because we allow multiple outgoing arcs
of a node to point to the same child, as an (effective) measure for mitigating the
graph expansion: strictly speaking, this make our structure already an MDD.

The algorithm starts from the set of all c-tuples obtained via Equation (11)
and assumes that the attribute order has been pre-specified. We recall that in this
formalization the class variable is considered an additional attribute. Algorithm 1
1 Additionally, DTs can skip attributes that are irrelevant for a specific path, which

may lead to an incorrect behavior of the MDD propagator from [11]. Despite this,
skipped attributes are still easy to handle using MDDs.
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Algorithm 1. build trie(c-tuples, pos, [parent], [label])
1: node = a new MDD node
2: if parent is defined then
3: for v ∈ label do build an arc from parent to node with label v
4: if pos = |x| then return node
5: L = ∅, D = the set of all values of xpos in the c-tuples
6: while |D| > 0 do {Cover the c-tuples values with a set L of disjoint labels}
7: λ = ∅
8: for v ∈ D do
9: if if all c-tuples containing v at position pos contain also λ then

10: λ = λ ∪ {v}, D = D \ {v}
11: L = L ∪ λ
12: for λ ∈ L do
13: T = set of c-tuples containing all values of λ at position pos
14: build trie(T , pos + 1, node, label)
15: return node

describes our build trie function, which takes as input a set of c-tuples, an index
over the sequence of attributes, plus an MDD node (to serve as a parent) and a
label. The parent node and the label are left blank at the first invocation.

The function builds a new node and connects it to the parent (lines 2-3).
Then the process stops if all xi have been considered (line 4). Otherwise, we
identify the set D of all values appearing at position pos in the c-tuples, and
then we build a set L of labels such that: 1) the labels are disjoint; 2) the set
of values for xpos in any c-tuple can be expressed as a union of labels in L; 3)
the cardinality of L is minimal. This is done via a loop with O(|D||c-tuples|)
iterations (polynomial in the size of the DT). This steps allows to limit the trie
growth by grouping equivalent children of the current node. Finally, for each of
the identified labels we build a set of compatible rules and we make a recursive
call to build trie. When the whole recursive process is over, the first call to the
function returns the root of the trie/MDD.

Figure 3.1 shows the result of the conversion for the DT from Figure 1, using
‘A, B, C, class’ as attribute order. The inflating effect of attributes reordering
is apparent. The graph size can be considerably reduced by feeding the trie
to the mddReduce procedure from [11] (the output of the process is shown in
Figure 3.2). For enforcing GAC over the MDD we use the same approach as [11].

3.4 Embedding Random Forests in CP

Embedding a Random Forest in CP requires to 1) embed in the CP model each
DT from the forest and 2) define a constraint model for the mode computation,
i.e. for aggregating the DT results and obtain the final classification. Since step
(1) has already been throughly discussed, we now focus on step (2).

The statistical mode of a sample is the value that occurs most often in the
collection. Formally, let yF be the output of the forest and let yj be the class
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reduced MDD.

variable for the j-th DT. Then our goal is to enforce consistency on the following
mathematical expression:

yF = argmaxw∈C (cnty(w)) (12)

where cnty(w) = | {yj ∈ y : yj = w} |. Our approach to modeling the mode
uses a global constraint to compute the cnt functions and one for argmax . In
particular, we employ the following pair of constraints:

gcc(y, C, z) (13)
element(C, yF ,max(z)) (14)

where we recall that C is the set of the classes w, treated here as a vector; z is
a vector of fresh variables zw, each representing (thanks to the gcc constraint)
the cardinality of the value w in the vector y. The element constraint ensures
that yF is the index of the value w ∈ C with the largest zw, i.e. the mode.

This approach is based on classical global constraints and very easy to imple-
ment. As a drawback, the mode computation can be incomplete in case of ties
among the zw variables. If this happens, the element constraint ensures that
the domain of yF contains the indices of all w values having maximal zw. This
situation can be resolved in the case of binary classifications by using an odd
number of trees. In general, the user can force the solver to pick a value by
adding yF to the branching variables.

4 Experimentation

Our experimentation is divided in two parts. First, we compare all the presented
techniques to embed DTs and RFs, in order to assess their effectiveness and
scalability. Second, we evaluate the practical performance of our CP approach
against a powerful solver based on Local Search.

For both the comparisons we consider a workload dispatching problem over
an experimental 48-core CPU by Intel called Single-chip Cloud Computer (SCC,
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see [19]). The chip is designed to accept job batches and does not support pro-
cess migration. We target a simulated version of the platform that has been
augmented for research purpose with thermal controllers to slow down the cores
in case they get too warm [1]. As a consequence, the efficiency of a core depends
on its temperature. This in turns depends on many complex factors including
the workload, the temperature of the other cores, the position on the silicon
die, and the action of the thermal controllers. Our goal is to map jobs so as to
maximize the number of cores operating at “high” efficiency (≥ 97%).

Due to the complexity of the interactions determining the core behaviors,
it is not possible to assess the effect of a job mapping on the efficiency via a
traditional, expert designed, model. Hence, we obtained an approximation by
generating a training set and then learning a Decision Tree (or Random Forest)
for each core, to predict if it will have high (class 1) or low (class 0) efficiency
given a specific workload. The input of each classifier is a set of four attributes
(discussed later), whose values depend on the mapping decisions. We built the
training set following a factorial design over a set of parameters identified in
preliminary experiments. The training sets for each core range from 500 to 1000
tuples. Experiments were run on realistic sets of jobs.

Formally, there are n jobs that should be mapped to 48 cores. Each job i is
characterized by its average Clocks Per Instruction (CPI) value cpii: jobs with
low CPI are CPU-intensive and generate more heat, whereas jobs with high CPI
are comparatively colder. All jobs are assumed to run indefinitely and hence, in
order to avoid overloading, we require each core to run the same number of jobs.
The mapping decisions are modeled via integer variables corei ∈ {0, .., 47} such
that corei = k iff job i is mapped on core k. The overload prevention constraint
is formulated using a single gcc with fixed cardinalities:

gcc(core, [0, . . . 47], [m, . . . m]) (15)

where m = n/48. The model objective is:

max
∑

k=0..47

eff k (16)

where eff k is the integer class variable for the DT/RF associated to core k. The
attributes for each DT are all numeric and correspond to:

– The average CPI of the jobs mapped on core k, i.e. avgcpik.
– The minimum CPI of the jobs mapped on core k, i.e. mincpik.
– The average avgcpih for all the cores h that are within one tile from k.
– The average of avgcpih for all the cores except k.

We model the attributes via integer variables (using a finite precision approxi-
mation). Attribute and mapping variables are connected by the following con-
straints:

avgcpik =
1
m

n−1∑

i=0

cpii · [[corei = k]] ∀k = 0..47

mincpik = min
i=0..47

(max(cpii) − [[corei = k]] (max(cpii) − cpii)) ∀k = 0..47
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Table 1. Comparison of DT encodings

Closed Inst. Time Sol.%
cores attr. rls tbl mdd rls tbl mdd T>R M>R T>M

4 100% 100% 100% 0.02 0.01 0.01 0.00% 0.00% 0.00%
3

28 100% 100% 100% 0.06 0.04 0.06 0.00% 0.00% 0.00%
4 72% 98% 98% 19.27 2.22 2.51 1.67% 1.67% 0.00%

4
28 57% 99% 99% 30.55 1.64 2.15 3.00% 3.00% 0.00%
4 13% 38% 34% 53.16 41.61 42.71 4.33% 4.00% 0.33%

5
28 5% 38% 35% 57.47 40.60 42.05 8.33% 7.67% 0.67%
4 3% 14% 13% 58.30 52.40 52.59 9.67% 8.67% 1.00%

6
28 1% 2% 2% 59.41 58.88 58.97 12.67% 11.67% 1.00%
4 0% 0% 0% 60.01 60.01 60.01 7.00% 7.00% 0.00%

7
28 0% 1% 1% 60.01 59.47 92.54 10.00% 9.67% 0.67%

neighcpik =
1

|N(k)|
∑

h∈N(k)

avgcpih ∀k = 0..47

allcpik =
1
47

∑

h�=k

avgcpih ∀k = 0..47

The constraints connecting the attribute and class variable eff k for each core
are obtained via the techniques discussed in Section 3.

4.1 Comparing the Different Encodings

For comparing the proposed DT and RF encodings, we generated benchmarks
of instance with controlled size. This was done by 1) selecting random groups
of cores and 2) generating a set of 6 jobs per core with realistic CPIs. Each
benchmark contains 100 instances. We then solved each instance to optimality
using a static search strategy and a time limit of 60 seconds. All experiments
are run on a 2.3 GHz Intel Core i7. Our approaches have all been implemented
over the Google or-tools solver [25].

Comparing DT Encodings: We tested our Decision Trees encodings, investigating
the effect of the problem size and the number of attributes. This was done by
building benchmarks with different numbers of cores and by augmenting the
initial set of four attributes with up to 24 similarly computed features. The trees
were learned from a training set using the implementation of C4.5 in Weka [16].

The results for this first evaluation are displayed in Table 1. Columns cores
and attr report the number of cores and attributes for the benchmark. Then
for each encoding approach (based on rules, table, and mdd) we show the
number of closed instances and the average solution time (time-outs at 60 sec
of search are included). The last columns report the fraction of instances where
each approach (R for rules, T for table, and M for mdd) managed to find more
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Table 2. Comparison of RF encodings, over different number of attributes

Res. ok closed Mem (MB) Time/106 brnc
attr rls tbl mdd rls tbl mdd rls tbl mdd rls tbl mdd

4 100% 100% 100% 87% 92% 87% 38.5 39.3 40.3 25.17 13.59 30.29
8 100% 100% 100% 87% 92% 85% 40.9 49.5 53.4 34.13 18.36 42.29
12 100% 57% 55% 92% 57% 55% 46.0 351.4 197.4 40.59 28.38 51.60
16 100% – – 97% – – 47.6 – – 45.43 – –
20 100% – – 95% – – 53.2 – – 49.72 – –

solutions than another: since we use a static search strategy, this is an indication
of the size of the explored search space.

As a general trend, both approaches capable of enforcing GAC considerably
outperform the rule-based encoding. The trend stays the same when the number
of attributes is inflated from 4 to 28: since more attributes tend to yield con-
siderably bigger trees, this result show that the table and mdd provide good
scalability, despite the potential risk of combinatorial explosion of their main
data structures. A hint of this risk is given by the average time for solving 7-
cores, 28-attributes instances with the mdd approach, which is higher than 60
seconds. The catch is that the 60 seconds timeout is enforced only on search,
while the total solution time takes into account also the model construction.
Basically, in such case building the MDDs took a very long time. This is in part
due to inefficiencies of our implementation, but is also symptomatic of possible
scalability issues. In general the performance of the rule based approach seems
to be the one most affected by the increased number of attributes.

Comparing RF Encodings: Next, we investigated the effectiveness of our encod-
ings when applied to Random Forests. This was done by generating: 1) a first
group of benchmarks defined over random groups of three cores, with several
number of attributes and a fixed number of trees per forest (seven); 2) a second
group of benchmarks defined again over core triplets, but with fixed number of
attributes (four) and variable number of trees. The RFs were learned with the
default algorithm provided by Weka.

The results of the first evaluation (variable number of attributes) are show in
Table 2. The training algorithm for RFs yields trees that are radically different
from those of C4.5 and translates to much bigger tuple-sets and MDDs. As a
consequence, the table and mdd based encodings have considerable scalability
problems at model construction time, before the search process evens starts. In
practice, we decided to stop some runs before the model construction started
to take an impractical amount of resources (memory or time). The fraction of
complete runs for all approaches is reported in the “Res. ok” columns. The
memory usage (column “Mem”) was found to be the main bottleneck for the
table based approach, whereas for the mdd method the biggest issue was the
model construction time. The larger number of trees and their size had a negative
effect on the branching speed: the table was the most affected approach, despite
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Table 3. Comparison of RF encodings, over different number of attributes

closed Time Time/106 brnc
trees rls tbl mdd rls tbl mdd rls tbl mdd

3 95 % 97 % 97 % 10.71 8.58 12.22 14.58 10.01 17.05
5 92 % 97 % 90 % 14.08 9.86 15.95 18.07 10.81 22.39
7 87 % 92 % 87 % 17.07 11.83 18.39 24.51 13.58 29.60

being the one with the highest branching speed. Overall, the rule based approach
managed to cope considerably better than any other with the scalability issues
associated to RFs.

The effect of varying the number of trees can be observed in Table 3. The most
striking finding is not reported in the table: basically, regardless of the number
of trees, all approaches reported exactly the same number of fails in the instances
they were able to close. This is probably due to the fact that the advantage of
enforcing GAC on the individual trees gets lost at in the mode computation,
performed by constraints (13) and (14). In such a situation, the best approach
is the one with the lowest computation time. With this number of attributes
(just 4) the table encoding emerged as slightly faster, thanks also to the highly
optimized implementation available in or-tools. Increasing the number of trees
did not seem to have dramatic effects on the performance of the encodings.

4.2 Comparison with a State of the Art Local Search Approach

We performed a last set of experiments to evaluate our CP-based solution w.r.t.
alternative approaches that can easily embed a Decision Tree in a model, but
cannot benefit from constraint propagation. As a reference for the comparison,
we used a model written and solved using Localsolver [6,12]. The choice was
motivated by the simplicity of use of Localsolver, and its effectiveness in solving
problems with non-trivial constraints and non-linear objective functions. Our
Localsolver model is similar to the CP one, but the corei variables are missing,
the reified [[corei = k]] are replaced by binary variables, and the gcc is replaced
by a set of bounded sums.

For the CP model, we developed a solution approach that works by: 1) gen-
erating a first mapping via a heuristic; 2) using Large Neighborhood Search [27]
to relax and re-map the jobs allocated to a subset of cores. In particular, we
always select a few “bad” cores having eff k = 0 at random, plus a few “good”
cores with a probability based on their avgcpik value. For exploring each neigh-
borhood we use Depth First Search with random variable/value selection and
restarts. We used the rules and table encoding for embedding Decision Trees.

We tested both approaches on a benchmark of 20 instances with 48 cores
(modeled using DTs with four input attributes) and 288 jobs each. Since all
methods are randomized, we performed 10 runs per instance, with a time limit
of 90 seconds. A time limit of 2 seconds was enforced on each LNS iteration for
CP. Table 4 reports the average value of the problem objective over the 10 runs
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Table 4. Comparison with a state-of-the-art hybrid solver based on Local Search

CP(rls) CP(tbl) LS CP(rls) CP(tbl) LS
ID avg std avg std avg std ID avg std avg std avg std

0 29.60 0.98 30.50 0.50 27.70 0.46 10 35.60 0.98 36.80 0.87 33.20 0.88
1 33.60 0.80 35.60 0.80 32.40 0.67 11 24.30 0.78 24.20 0.75 24.00 0.00
2 28.70 1.01 30.00 0.78 28.10 0.70 12 33.10 0.83 34.20 1.17 31.30 0.78
3 25.10 0.70 25.60 1.02 25.10 0.54 13 24.00 1.00 25.30 0.78 24.00 0.00
4 23.30 0.46 23.80 1.08 23.50 0.50 14 29.60 0.66 30.90 0.70 28.60 0.92
5 30.50 1.12 31.80 0.60 29.00 0.63 15 32.90 0.83 35.00 0.78 30.80 0.60
6 39.10 0.70 40.00 0.63 36.90 0.70 16 25.10 0.70 25.90 0.70 24.70 0.64
7 28.60 0.80 30.30 0.64 27.90 1.04 17 38.90 0.54 40.10 0.54 36.60 1.02
8 32.90 1.30 34.10 0.54 30.70 0.64 18 26.40 1.02 26.80 0.60 25.20 0.40
9 37.30 0.64 38.70 0.90 34.90 1.04 19 32.90 1.14 34.80 0.98 31.80 0.75

and its standard deviation. The CP and LS approach proved to work very well2,
but CP managed to find the best solutions for the majority of the instances. This
result was made possible by the use of domain knowledge for selecting the LNS
fragments, and by the propagation performed by our DT encodings. Using the rule
encoding was sufficient to quickly close many ill-chosen fragments and speed up
the search. The additional propagation granted by enforcing GAC allowed the
table encoding to work even better.

5 Other Related Work

The integration of Machine learning and CP (and in general combinatorial opti-
mization) has received increased attention in the last decade. Fertilizations in
both directions have been studied: on one hand the machine learning community
has studied how constraints can be used during mining and learning; on the other
way round, machine learning may allow to automatically tune an optimization
approach, or to acquire constraints and objective functions from data.

Along the first line of research, works such as [5,28] have studied the core
optimization problems in Machine Learning algorithms and proposed efficient
methods for extracting knowledge from huge volumes of data. On the other way
round, some researchers have considered the problem of learning optimization
problem instances for testing new techniques [17]. Clustering methods have been
employed for automatic algorithm selection in [22]. Several Machine Learning
techniques have been used for predicting the run time of optimization algorithms
(e.g. [20]), and in general for algorithm selection (e.g. [24]).

The approaches that are closest in spirit to this paper are those that focus on
learning parts of the model from data. Along this line several papers
[4,7,9] show how to learn a constraint network from a set positive and negative
examples, while the QuAcq system [8] requires only partial queries on subsets

2 w.r.t. other approaches that are not reported here due to lack of space.
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of problem variables, with no need of positive examples. All such approaches
have a focus on learning an unknown problem while simultaneously trying to
solve it. Conversely, in our approach we focus on embedding in combinatorial
optimization a well-defined, pre-extracted, Machine Learning model, which may
however lack a straightforward encoding.

Many approaches for optimizing non-linear functions over continuous domains
rely on on-line learning techniques to reduce the number of required function eval-
uations. The authors of [21] introduced methods to fit a response surface based
on a few sampled points: the surface is then employed to guide the search process.
The OptQuest [14] system integrates in a closed loop simulation and metaheuris-
tics and relies on a simple form of learning (a neural network accelerator) to avoid
trivially bad solutions. Only a few works (e.g. [15,29]) have resorted to using pre-
extracted Machine Learning models to speed up the cost function evaluation. The
LION book [3] proposes a similar approach, although in this case the goal is tack-
ling problems where the cost function is difficult to model, rather than expensive
to compute. The LION method focuses on extracting a function from available
data, and then on obtaining solutions via model fitting. As a common feature, all
such methods are designed for functions defined over an unconstrained (or loosely
constrained) domain. Conversely, our method targets problems that mix a core
combinatorial structure (typically having non-trivial constraints) with complex
functions that we approximate via Machine Learning.

6 Concluding Remarks

The Empirical Model Learning (EML) method is aimed at learning part of the
model from data or predictive tools. The learned component not only declar-
atively links decision variables with prediction/class variables, but contains an
operational semantics enabling domain filtering and constraint propagation.

In this work, we have devised an additional component for EML: we have
used Decision Trees and Random Forests as learning methods. We have provided
three encodings of for DTs, respectively based on meta-constraints, on the global
table constraint, and on an MDD – the last two being able to enforce GAC.
The experimentation on Decision Trees and Random Forests had quite different
outcomes in terms of scalability, mainly because of differences between their
learning algorithms. While for DTs the table and mdd approaches are clearly
the most effective, in RFs the table constraint and mdd have serious scalability
issues in terms of memory and model construction time respectively.

As part of future research, we plan to test the modified GAC-schema algo-
rithm for c-tuples from [23], and to investigate methods to convert a DT into
an MDD without the passing for an intermediate trie. We will also research the
possibility to enforce GAC using the DT itself as the main data structure.

Finally, we are interested in finding ways to exploit the accuracy information
provided by the Machine Learning models (e.g. class distributions in RFs). This
is particularly important when combining different constraints, each representing
an approximate relation between variables.
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Abstract. Given a short term mining plan, the task for an operational
mine planner is to determine how the equipment in the mine should be
used each day. That is, how crushers, loaders and trucks should be used
to realise the short term plan. It is important to achieve both grade
targets (by blending) and maximise the utilisation (i.e., throughput) of
the mine. The resulting problem is a non-linear scheduling problem with
maintenance constraints, blending and shared resources. In this paper, we
decompose this problem into two parts: the blending, and the utilisation
problems. We then focus our attention on the utilisation problem. We
examine how to model and solve it using alternative approaches: specif-
ically, constraint programming, MIQP and MINLP. We provide a repair
heuristic based on an outer-approximation, and empirically demonstrate
its effectiveness for solving the real-world instances of operational mine
planning obtained from our industry partner.

1 Introduction

In open-pit mines, a common form of materials handling is through truck and
loader fleets [16], where the loaders excavate the material from blocks and the
trucks haul it to dumpsites, stockpiles, run–of-mine (rom) stockpiles, or directly
to the crusher. In this paper, we will consider a challenging scheduling problem
that arises in the context of this form of materials handling. We denote the
movement of material by a movement, which is a representation of the material,
its source location (a block or stockpile), its destination location (a crusher or
stockpile) and the grade of material. In Figure 1, we represent the movements of
material by edges. Our task is to schedule these movements subject to constraints
on the plants and equipment. At most one loader may excavate a movement.
Since loader traversal is slow (≈5km/h), it is preferable to sequence the loader’s
tasks in such a way that loader traversal doesn’t prohibit flow of material to
the crusher. That is, at least one loader should always be working at any given
time. Thus, we can think of the task of sequencing the loaders as sequencing
the movements. The loaders transfer material to the trucks, which haul the
material to one of various destinations. Importantly, the trucking resources are
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limited and shared between all loaders. The material flow to the crusher is key to
measuring productivity of the mine, and therefore it is important to maximise
the feedrate to the crusher at any moment in time.

Fig. 1. An abstract representation of a mine. The squares are movement sources; the
edges are movements; loaders excavate the movements at the source; trucks haul mate-
rial from the loaders to the crusher or the various stockpiles. Icon images adapted from
[4] and [8].

In open-pit mining operations, there are several levels of planning, each of
which pass down restrictions in decisions. That is, long-term plans (strategic) are
handed down to short-term planners, who in turn generate plans for operations
planners (tactical). At each of these levels of planning, the task is to determine
the order in which material movements should be mined and how they should be
processed, such that blending and utilisation targets are met. Additionally, all of
the equipment, including crushers, are subject to maintenance tasks which cre-
ate periods of unavailability. The operations planners have the task of enacting
the plans—physically, with trucks and loaders—such that the mine performance
goals are met. At the core of our work is a nonlinear scheduling problem with
shared resources, blending, and maintenance constraints. The goals of interest
in our research are (a) correct blending of materials, and (b) utilisation of equip-
ment. The output of a tactical mine plan is a sequence of builds (i.e., small,
short-term stockpiles) with an allocation of partial movements to builds such
that the builds have the correct blend and the crusher is maximally utilised.

In this paper, we investigate principled approaches for both modelling and
solving a subproblem of tactical mine planning, which requires flexible partition-
ing of tasks to facilitate fixed maintenance tasks. We arrive at the subproblem by
first decomposing the global problem into the blending and utilisation problems.
We then derive event-based formulations for the latter subproblem: exploring
formulations in constraint programming and mathematical programming. Moti-
vated by finding a more computationally efficient solving approach, we derive
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an outer-approximation and repair heuristic which utilises aspects from each of
our formulations.

The contributions of this paper are:
• a new modelling and solution approach for an operational mine scheduling

problem with flexible partitioning, that allows for fixed maintenance tasks;
• a comparison of modelling approaches for this problem, using CP and OR

techniques;
• a repair heuristic for obtaining efficient solutions to the subproblem; and
• a detailed set of experiments on real-world instances of the problem.

In previous work [12], we consider a different version of the build planning
problem. The model in [12] does not consider maintenance, and does not include
the crusher requirements. These considerations were considered crucial by our
industry partner, and lead to a nonlinear problem. Another critical difference is
that the modelling approach to the build planning problem in this paper uses
CP and MIP/MINLP technology, whereas in [12] we use planning technology to
account for state-dependent components that we do not include in this paper.
Overall, this paper results from moving to a more realistic version of the problem
we addressed in [12].

In the literature, scheduling problems with fixed maintenance have been
addressed for up to 2 machines [1,11,15] and m machines [9,13]. None of these
works consider the side constraints of shared resources, blending or feedrate con-
straints. The latter, [9], does consider a nonlinear objective function and provides
a linearisation of the model. In [10], the authors consider an integrated scheduling
problem, which is equivalent to the loader sequencing problem without mainte-
nance tasks. However, it is clear from the scheduling with maintenance literature
that the problem we consider here has not been addressed.

In the mining literature, the shared resources and blending constraints have
been addressed. In particular, [2] develop an outer-approximation and repair
heuristic for nonlinear blending constraints at stockpiles. This problem is the
most similar to ours from the literature that we could find. However, as these
authors consider a longer planning horizon, they do not consider the traversal
of equipment or the feedrates at the crushers. The key difference between the
nonlinear blending at stockpiles and the nonlinear feedrate at the crushers is
that it is not possible to obtain tight bounds on the feedrate at the crushers.
Apart from this, the nonlinear constraints that arise are both bilinear in form.

The remainder of the paper is organised as follows. We first describe the sub-
problem that addresses the problem of scheduling the equipment and sequenc-
ing the movements to keep the crushers busy. We formulate this problem using
event-based models, allowing for mixed fleets, in Section 3. Then, we extend
these formulations to account for maintenance constraints in Section 4. We pro-
vide a heuristic approach based on outer-approximation and feasibility repair in
Section 5. We provide experiments across all models in Section 6. We conclude
with a discussion of our experience in Section 7.
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2 Problem Description

For our industry partner, operations planning and grade control—which together
form the tactical mine scheduling problem—are performed separately. The grade
controller (at the build) is interested in minimising deviation of the grade blend.
Once the grade control plan is constructed we need to solve the utilisation prob-
lem to complete it as efficiently as possible.

In this sense, if there are multiple pits in a mine, each with their own crusher,
then it is important that the scheduled tasks are aligned, i.e. complete at the
same time. That is, there may be multiple crushers that create one build at the
end of the supply chain. Therefore, these subproblems within pits (for example)
are not completely independent.

Problem Description 1 (Tactical mine scheduling). Given a set of move-
ments to be mined, determine the mining sequence such that the movements form
builds with correct blend bounds, the crushers contributing to a build are aligned,
and the utilisation of the crusher is maximised.

In practical applications, the sequence must respect movement precedences, which
determine which movement is accessible first. For example, it may be required to
clear all movements associated with a particular location before another move-
ment (or set of movements) is possible. Additionally, all of the equipment—
trucks, loaders and crushers—are subject to maintenance at pre-defined periods.
The sequencing should therefore also account for maintenance of equipment.

In previous work (see [12]), we decomposed this problem into the blending
and utilisation problems. In this paper, we will adopt the same scheme with the
additional requirement that we align the crusher tasks contributing to the same
build. We then focus completely on the utilisation problem in the remainder of
this paper. For a general description of the decomposition approach, see [3].

In our decomposition approach, we partition the problem into two subprob-
lems. We first model the blending subproblem as a mixed-integer program. We
add new constraints that approximate the time required to mine a build, for
each crusher, in the context of a mine with multiple crushers. To achieve this,
we ensure that the contribution (in tonnes) of each crusher to the build, is pro-
portional to the maximum feedrate of the crusher itself. That is:

Ci

Φ̄i
=

Cj

Φ̄j
,

where Ci is the total quantity of material contributed to the build from crusher i,
and Φ̄i is the maximum feedrate of crusher i. To improve robustness, we introduce
these alignment constraints in the objective function: i.e., as soft constraints. The
output of this first partition is an allocation of movements to builds such that
the blending constraints are met, and the builds are aligned with respect to
maximum crusher utilisation.

The utilisation subproblem amounts to the question: how should the equip-
ment be used so that our mining goals are met and the equipment is maximally
utilised? The components of this problem include:
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1. sequencing the loaders—this allows the loader traversal times between
movements to be counted, and allows a feedrate to be allocated to each
movement.

2. allocating the trucks—the cycle time (i.e., round trip travel time between
pick-up and dumping locations and back) is accounted for.

3. maximising feedrate at crusher—the incoming ore feedrate is limited by
the capacity of the crusher, and yet the crusher should not be scheduled to
be underutilised.

And, key to this problem, we must allow for maintenance events. We assume that
we have obtained a sub-set of the movements from a solution to the blending
subproblem, such that the blending constraints are already met.

Problem Description 2 (Build Planning). Given a set of movements that
together meet blending constraints, determine the mining sequence that max-
imises the crusher utilisation, such that loading and truck fleet capacity con-
straints are met, and maintenance events are accounted for.

The underlying challenges in this problem arise from the essential non-linearity
of determining the mining rate (tonnes/minute) of a movement m. The feedrate
of a movement, φm, is determined by the capacity, CT

t , of each truck, t, assigned
to the movement divided by the cycle time of the truck travelling from movement
source to the crusher and back again, TT

m,t. Conversely, the duration of mining the
movement is the ratio of the size of the movement to the movement feedrate. Sum-
ming up the feedrates of the movements currently being sent to the crusher will
determine the current crusher utilisation. Summing up the trucks assigned to all
movements currently mined must remain below the trucking capacity limit. Hence
we have a scheduling problem with variable durations and resource usages where
we are trying to maximise utilisation of resources.

The fact that the movements themselves are discrete leads to an intuitive dis-
cretisation of the problem. That is, it is intuitive to assign a feedrate and truck
allocation to each movement. However, this is actually an unnatural restriction
on the problem—it might be better to, for example, change the truck alloca-
tion part way through mining the movement. This is not only important for
optimising the solution (or finding feasible solutions in very tightly constrained
instances), but also for accounting for maintenance.

With maintenance events, it is possible that the discretisation will lead
directly to poor quality solutions in terms of crusher utilisation. Consider, for
example, the case where the durations between maintenance events are so small
that the given movement sizes cannot be mined, subject to operational con-
straints. In this case, it would be ideal to determine ways to partition the move-
ments such that good solutions can be obtained.

3 Build Planning Models

We begin by addressing the problem of scheduling the crusher without mainte-
nance tasks. In this section, we formalise our approaches as event-based models.
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This is, in part, inspired by Automated Planning encodings, and in part by the
logical representation of Constraint Programming.

3.1 Discretised Approach: Constraint Programming

We define the build planning problem by a set of movements, m ∈ M, with a
defined size (in tonnes), CM

m , a source location, Om, a destination location, Dm,
and precedences between movements, p ∈ P, defined by p = (m′,m) ∈ M × M
that require a specific movement, m’, is completed before another, m, can begin.
Additionally, the problem has a set of loaders, l ∈ L, a set of crushers, κ ∈ F , a
set of truck types, t ∈ T , and the number of trucks of each type, NT

t .
For each crusher we have a maximum feed rate, Φ̄κ. For each loader we have

a maximum dig rate, Φ̄L
l , and a time to traverse from the source location of

movement m to the source location of movement m′, TL
m,m′,l. For each truck

type, we have a truck capacity, CT
t , and a cycle time for each movement m,

TT
m,t—that is, how long it takes the truck to go from the source location Om to

the destination Dm and back to Om. In addition, we assert a maximum number
of movements per loader, NM

l .
The principal decisions to be made are:

• for each loader l, the sequence of movements dl,i ∈ M ∪ {⊥}, i = 1, . . . NM
l

it will complete (with ⊥ representing dummy unused movements),
• for each movement, τm,t is the number of trucks of different types, t ∈ T ,

assigned to the movement.

Auxiliary variables give:
• the start, sm, duration, tm, and end times, em, for each movement,
• the movement rate, φm, (tonnes/minute) for each movement,
• the loader assigned to each movement, λm,
• indicator variables, z∧

m,m′ , for which movements m are running when move-
ment, m′, is started.

The constraints are:
• Precedence constraints are satisfied:

em ≤ sm′ , (m,m′) ∈ P. (1)

• Dummy movements ⊥ are at the end

dl,i = ⊥ → dl,i+1 = ⊥, l ∈ L, i ∈ 1 . . . NM
l − 1. (2)

• The next task cannot begin until the loader has moved there:

edl,i
+ TL

m,m′,l ≤ sdl,i+1 , l ∈ L, i ∈ 1 . . . NM
l − 1, dl,i+1 �= ⊥. (3)

• Each movement is assigned to at most one loader (assuming ⊥ = 0):

all different except 0([dl,i | l ∈ L, i ∈ 1 . . . NM
l ]). (4)
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• Ensure the λm and dl,i variables agree:

dl,i = m → λm = l, m ∈ M, l ∈ L, i ∈ 1 . . . NM
l , (5)

λm = l → ∃i∈1...NM
l

dl,i = m. (6)

• The feedrate for a movement is constrained by loader dig rate:

φm ≤ Φ̄L
λm

, m ∈ M. (7)

• Movement rate is constrained by trucking capacity assigned:

φm ≤
∑

t∈T
τm,t × CT

t /TT
m,t, m ∈ M. (8)

• Duration of a movement is given by the tonnage divided by move rate:

tm =
CM

m

φm
, m ∈ M. (9)

• Start and end times are related by movement duration:

sm + tm = em, m ∈ M. (10)

• Crusher is not overloaded:
∑

m∈{M|Dm=κ}
z∧
m,m′φm + φm′ ≤ Φ̄κ, κ ∈ F ,m′ ∈ {M | Dm′ = κ}, (11)

We only test overload at the start time of any movement, since that is the
only time when more can be fed to a crusher.

• Trucking capacities are respected:

cumulative(sm, tm, [τm,t|m ∈ M], NT
t ), t ∈ T . (12)

• Indicator variables for coinciding events are correct:

z∧
m,m′ ↔ (sm ≤ sm′ ∧ em > sm′ ∧ m �= m′). (13)

The objective function is tominimise themakespan, i.e.minimisemaxm∈M em.
Our search strategy first assigns a movement to each loader, dl,i ∈ M, then assigns
the earliest possible start times, sm, and tries to assign the maximum feedrate, φm,
while minimising the number of trucks assigned, τm,t.

3.2 Discretised Approach: Mixed-integer Quadratic Programming

For a mathematical programming approach, we wish to keep the event-based
representation and linearise the constraints as much as possible. The loader
sequencing problem is represented by a graph where nodes are movement source
locations, and edges are traversals of loaders from one movement source to
another. Loader traversal decisions are represented by flow variables, xm,m′,l,
which take a non-zero integer value if loader l performs movement m followed
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directly by m′. We extend the movement set M to include a dummy source, σ,
and sink, σ′, such that M ∪ {σ, σ′} = M′.

We encode the loader sequences constraints with a node-disjoint
multi-commodity flow formulation, which effectively allocates loaders to move-
ments and derives their traversal sequence. That is,

∑

m′∈M′,l

xm′,m,l −
∑

m′∈M′,l

xm,m′,l =

⎧
⎨

⎩

min{|M|, |L|} if m = σ,
− min{|M|, |L|} if m = σ′,
0 otherwise,

∀ m ∈ M, (14)

∑

l,m′∈M′
xm′,m,l = 1 ∀ m ∈ M′, (15)

em′ +
∑

l

T L
m′,m,lxm′,m,l − MS(1 −

∑

l

xm′,m,l) ≤ sm ∀ m′∈ M′ (16)
m ∈ M
m �= m′,

where MS represents the maximum possible makespan. In constraint (14), we
create sequences for each loader. However, if the number of blocks is less than
the number of loaders, we must restrict the sequences to the smaller number.
Constraint (15) ensures that all blocks are visited by exactly one loader. We use
a big-M formulation for constraint (16) to ensure the travel time for each loader
is accounted for, but only if that edge is traversed by that loader.

We can now use the flow variables to indicate which loader performs a task—
this permits us to encode the loader maximum dig-rate bounding the movement
feedrate:

φm ≤
∑

l,m′
Φ̄L

l xm′,m,l ∀ m ∈ M. (17)

To encode the cumulative constraints we must determine whether two events
coincide. To do this, we reason that, for any two events, if they both end after
the other began, then the two events coincide. To formalise this, we introduce
binary variables z�

m,m′ to indicate that movement m finishes after m′ starts.
Recall that z∧

m,m′ indicates that event m occurs at the same time as the start of
event m′. The constraints to activate these variables are:

MSz�
m,m′ ≥ em − sm′ ∀ m ∈ M, m′ ∈ M, (18)

z∧
m,m′ ≥ z�

m,m′ + z�
m′,m − 1 ∀ m ∈ M, m′ ∈ M, (19)

z∧
m,m′ ≤ z�

m,m′ + z�
m′,m

2
∀ m ∈ M, m′ ∈ M. (20)

The cumulative trucking capacity constraints can now be encoded as
∑

m∈M\{m′}
τm,tz

∧
m,m′ + τm′,t ≤ NT

t ∀ m′ ∈ M, t ∈ T . (21)

The crusher feed rate constraints are similarly encoded as
∑

m∈{M\{m′}|Dm=κ}
φmz∧

m,m′ + φm′ ≤ Φ̄κ ∀ m′ ∈ {M|Dm′ = κ}. (22)
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With the exception of the nonlinear duration calculation, the remaining con-
straints as presented in the constraint programming model are linear, and can
be used directly in the mathematical programming model. The constraints (22)
and (21) can be linearised exactly, leaving us with a mixed-integer quadratic
programming formulation with positive semi-definite form of constraint (9).

We linearise (21) and (22) by introducing two ancillary variables φ
′
m,m′ and

τ
′
m,m′,t, which will take on the value of φm if z∧

m,m′ is 1, and zero otherwise. Let
Φ̄ and τ̄m be the upper bounds on their respective variables. Then,

φ
′
m,m′ ≥ φm − (1 − z∧

m,m′)Φ̄ ∀ m,m′ ∈ {M | Dm = κ,Dm′ = κ}, (23)

φ
′
m,m′ ≤ φm + (1 − z∧

m,m′)Φ̄ ∀ m,m′ ∈ {M | Dm = κ,Dm′ = κ}, (24)

τ
′
m,m′,t ≥ τm,t − (1 − z∧

m,m′)τ̄m ∀ m,m′,m �= m′, t, (25)

τ
′
m,m′,t ≤ τm,t + (1 − z∧

m,m′)τ̄m ∀ m,m′,m �= m′, t. (26)

Then, we alter constraints (21) and (22) as follows:
∑

m∈M\{m′}
τ

′
m,m′,t + τm′,t ≤ NT

t ∀ m′ ∈ M, t ∈ T , (27)

∑

m∈{M\{m′}|Dm=κ}
φ

′
m,m′ + φm′ ≤ Φ̄κ ∀ m′ ∈ {M|Dm′ = κ}. (28)

We improve computational performance with the following valid inequalities:
∑

m,m′∈M′
xm′,m,l ≤ 1 ∀ l ∈ L, (29)

∑

m′∈M′,l

xm′,m,l = 1 ∀ m ∈ M, (30)

∑

m′∈M′,l

xm,m′,l = 1 ∀ m ∈ M, (31)

em ≤ MS
∑

m′∈M′,l

xm′,m,l ∀ m ∈ M, k ∈ K, (32)

z∧
m,m′ = z∧

m′,m ∀ m ∈ M,m′ ∈ M′. (33)

In the objective function and constraint (34), we represent the makespan as
a max function over all movement event end times. Thus we obtain a model of
the discretised heterogeneous crusher scheduling problem as follows:

MIQPDisc : min ω

s.t. ω ≥ em ∀ m ∈ M, (34)
(1), (8)–(10), (14)–(20), (23)–(33),

z∧
m,m′ , z�

m,m′ ∈ {0, 1},

xm,m′,l, φ
′
m,m′ , τm,t, τ

′
m,m′,t,φm, tm, ω, sm, em ∈ R+.
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3.3 Overview: Discretised Approach

As we will see in the experiments section (Section 6), the models we presented
solve easily in constraint programming, mixed-integer nonlinear programming
and mixed-integer quadratic programming solvers for realistic sized instances.
One key issue with this approach, however, is that the trucking fleet is allocated
to one movement for the entirety of the mining event. This is equivalent to
fixing the feedrate for the entire event. On one hand, this alone can lead to poor
crusher utilisation. On the other hand, we wish to introduce maintenance tasks,
which too can lead to poor crusher utilisation. For example, consider a scheduling
problem with one loader and one movement. Suppose the minimum duration of
the event is 1000, and the maintenance task occurs between 999 ≤ t ≤ 1099.
This will force the makespan to be 2099, while the crusher is doing nothing for
the first 1099 time units.

This strongly motivates a need to be able to partition the movements on-
the-fly. In the following section, we will extend our models to allow for this type
of flexible partitioning. For simplicity, we present only the loader maintenance
constraints, from which it is straightforward to extend the model to account for
truck and crusher maintenance.

4 Build Planning Models with Flexible Partitioning

In this section, we extend the formulations from previous sections by introducing
a flexible partitioning of each movement. We restrict our formulation to the case
of two partitions. However, further partitions are an easy extension, but with
particular attention paid to the symmetry constraints. The flow constraints are
sufficient in the form of constraints (14)–(15). The variables sm, em, τm,t, z�

m,m′ ,
z∧
m,m′ , φm and tm extend with an additional index representing the partition.

The new partitions have unknown size. Therefore, we require a variable, cm,k,
to represent the size of the partition (in tonnes), where the total size must equal
the original size of the movement:

∑

k

cm,k = Cm ∀ m ∈ M. (35)

Importantly, this leads to an expression for feedrate that is no longer positive
semi-definite:

φm,k =
cm,k

tm,k
∀ m ∈ M, k ∈ K. (36)

Symmetry is a big issue when we can partition a movement anywhere and
then alternate the order of the partitions. To restrain this computational issue,
we introduce the following constraint (in combination with a restriction on k
and k + 1 in constraint (38)):
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sm,k+1 ≥ em,k ∀ m ∈ M (37)
k < |K| − 1,

em′,k+1 +
∑

l

TL
m′,m,lxm′,m,l − MS(1 −

∑

l

xm′,m,l) ≤ sm,k ∀ m ∈ M (38)

m′ ∈ M′

m �= m′

k < |K| − 1.

We first ensure that the k + 1th partition follows the kth partition (of the
same movement) with respect to start time—see constraint (37). Then, we ensure
that only the first partition includes the loader traversal time.

We incorporate maintenance tasks for the loaders into the partition model
as follows. Each maintenance task has a predefined start (sH

l ) and finish (eH
l )

time. We require that each maintenance task does not overlap with the scheduled
tasks

edl,i,k ≤ sH
l ∨ sdl,i,k ≥ eH

l ∨ dl,i = ⊥, ∀ l ∈ L, k ∈ K, i ∈ 1 . . . NM
l . (39)

We can encode this for MIP models by introducing variables indicating a move-
ment has finished before, zH,≺

m,k,l, or after, zH,�
m,k,l, each maintenance task l, and

use a big-M approach as follows:
em,k ≤ sH

l + (1 − zH,≺
m,k,l)MS + (1 −

∑

m′
xm′,m,l)MS ∀ m, k, l, (40)

sm,k ≥ eH
l − (1 − zH,�

m,k,l)MS − (1 −
∑

m′
xm′,m,l)MS ∀ m, k, l, (41)

∑

m′
xm′,m,l = zH,≺

m,k,l + zH,�
m,k,l ∀ m, k, l. (42)

Thus we obtain the following mixed-integer nonlinear program:
MINLPexact : min ω

s.t. (1)∗
, (8)∗

, (10)∗
, (14)∗–(15)∗

,(17)∗–(20)∗
, (34)∗

, (35)–(38), (40)–(42),

zH,≺
m,k,l, z

H,�
m,k,l, z

∧
(m,k),(m′,k′),z

�
(m,k),(m′,k′) ∈ {0, 1},

τm,k,t, xm,m′,l, φm,k, φ
′
(m,k),(m′,k′)cm,k,τ

′
(m,k),(m′,k′), tm,k, ω, sm,k, em,k ∈ R+.

Constraints marked with (∗) are extended to account for partitions in the
obvious way.

Since the partition is flexible, it seems plausible that the MINLP represen-
tation provides an optimal solution to the utilisation subproblem. However, this
is not the case, as we show in the following theorem.

Theorem 1. Let m1 be a movement that can be flexibly partitioned, and let all
remaining movements, {M\m1}, be fixed such that they cannot be partitioned.
Further, let maintenance tasks only exist for loaders. Then, the minimum number
of partitions required for m1 to guarantee a solution optimality for the overall
problem is

|Km1 | ≥
∑

l

|Maint(l)| + |M|.
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Proof. Suppose there are L > 1 loaders operating and there are no maintenance
tasks. W.l.o.g, let l1 mine only movement m1 during the makespan of the build,
and the remaining loaders mine the remaining |M| − 1 movements. Since the
remaining movements are fixed, if we consider |M| partitions, then we have con-
sidered all possible |M|−1 event end times, and therefore guarantee optimality.
Now suppose each loader, l, has its own set of maintenance tasks, Maint(l).
Since each task may introduce a new event partition end time, we must consider
a further

∑
i∈Maint(l)

∀l∈L
i partitions in order to guarantee optimality. ��

Furthermore, when we allow all movements to partition, then the number of par-
titions (per movement) to guarantee optimality depends on the number of parti-
tions introduced in all the movements. That is, there is a recursive relationship.
The take-home message here is that the number of partitions required cannot
be determined a priori, and therefore should be determined during search.

5 Outer-Approximation and Repair Heuristic

Wecanobtain a completely linear outer-approximationby introducingMcCormick
inequalities to represent the bilinear term φm,k tm,k. While a solution to this model
is not feasible for the original problem, it may provide us with useful information,
such as a suggestion of the partitioning point for the movements. This gives rise to
an Outer-Approximation and Repair Heuristic.

We approximate the bilinear term φm,k tm,k, using the upper (Φ̄,T̄M
m ) and

lower (Φ,TM
m ) bounds on the variables, with constraints analogous to (23)–(26)

to arrive at an ancillary variable, μm,k. We substitute the ancillary variable into
our feedrate constraint:

μm,k ≥ cm,k ∀ m, k. (43)

The outer-approximation model is therefore:

MIPouter : min ω

s.t. (1)∗
, (8)∗

, (10)∗(14)∗–(15)∗
, (17)∗–(20)∗

,(23)∗–(26)∗
, (34)∗

, (35)–(42), (43),
z∧
(m,k),(m′,k′), z

�
(m,k),(m′,k′) ∈ {0, 1},

τm,k,t, μm,k, φm,k, φ
′
(m,k),(m′,k′), xm,m′,l, cm,k,τ

′
(m,k),(m′,k′),

tm,k, ω, sm,k, em,k ∈ R+.

We use this model to obtain new partition breakpoints of existing move-
ments. Specifically, we take the partitioned movement capacity, cm,k, solution
and fix this variable. This reduces the problem to a form that can be solved using
MIQPDisc. This translation requires the following steps. We set the number
of movements to be equal to the number of active partitions (i.e., movement
partitions with capacity greater than zero). All movements that are split have
their new indexes saved in a split movement set, MS . We perform a translation
on all data indexed by movements.
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Algorithm 1. The outer-approximation and repair heuristic for partitioning
movements in the presence of maintenance tasks.
1: Solve MIPouter model using a MIP solver.
2: if Optimal or Feasible then
3: Partition movements according to cm,k solution.
4: Fix new Cm = cm,k.
5: Solve MIQPDisc model using MIQP solver.
6: end if

This repair heuristic is guaranteed to find a feasible partition and will never
provide a solution worse than MIQPDisc, however it is not guaranteed to find
an improved solution. In fact, when there are no maintenance constraints, the
cm,k variables are not driven to find good solutions by any mechanism and we
expect to obtain solutions equivalent to those found in MIQPDisc. However,
once maintenance tasks are added, the cm,k variables have a strong bound and
will snap to the maintenance tasks. Therefore, we expect much better quality
solutions from the repair heuristic for problems with maintenance.

The quality of the repair heuristic is bounded from below by an optimal
solution to MIQPDisc. Furthermore, if the repair heuristic is run with the same
number of partitions as MINLPexact, then the quality of the repair heuristic
is bounded from above by an optimal solution to MINLPexact.

6 Experiments

We validated all models by cross-checking the objective values on a set of val-
idation instances. We created a set of test instances by extending a set of real
instances provided by our industry partner. The base set included three weeks
of movements, to be subdivided into five builds per week across three pits. In
the context of our experiments, the equipment in the three pits are independent;
they have their own crusher and truck and loader fleets. We therefore have 45
instances in the base set. On average there are 4.6 blocks and 1.4 stockpiles per
pit—the biggest pit containing 9 blocks. The blocks and stockpiles range in size
from 1.2kt up to 90kt. One pit has a mixed fleet of 5 loaders (4 types) and 13
trucks (1 type), while the other two pits have a mixed fleet of 6 loaders (2 types),
and 17 trucks (2 types). We extend every pit instance in the following ways:

• Symmetry : we double the number of loaders from 5 and 6 to 10 and 12;
• Truck constrained : we decrease trucks from 13 and 17, to 6 and 8.
• Maintenance: for every pit, we schedule maintenance for the complete loader

fleet in a cascade, each for 8 hours, decreasing the available loaders by 1 at
any time. To make the instances more sensible to these events, we decreased
the number of loaders available to 3 in total.
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Table 1. When 5 or 300 is not followed by any tag, it refers to the original benchmark
with their respective timeouts. Tags sym, const, maint, and maint e stand for the
symmetric, constrained, maintenance and extreme maintenance variations. CPU stands
for average CPU time in seconds, M [min] stands for average Makespan in minutes,
M. D. stands for the average build-crushers alignment difference in minutes.

Bench. Id MIQdisc MIPouter MINLPexact CP
CPU M. [min] M. D. CPU M. [min] M. D. CPU M. [min] M. D. CPU M. [min] M. D.

‖5‖ 1.3 1699 284 1.3 1709 288 4.9 2095 1557 3.7 1738 364
‖5‖sym‖ 0.7 1642 157 1.2 1693 267 5.0 1771 972 3.9 1708 291
‖5‖const‖ 1.4 2405 1412 1.7 2405 1420 5.2 2167 2169 4.2 2408 1853
‖300‖ 23.0 1654 186 34.9 1652 174 235.0 1774 455 164.8 1713 308
‖300‖sym‖ 4.6 1642 157 20.4 1653 178 240.8 1761 414 173.3 1699 272
‖300‖const‖ 44.3 2369 1393 51.0 2368 1393 268.1 2341 1542 208.9 2357 1770
‖300‖maint‖ 26.7 2011 750 45.2 2013 758 188.9 1978 779 – – –
‖300‖maint e‖ 10.7 2521 1263 62.0 2317 1139 152.0 2277 1049 – – –

• Extreme Maintenance as failure: for every pit, we schedule maintenance for
the complete loader fleet for 1000 minutes, thus allowing the crusher to be
fed only by stockpiles1 if they are available.

We run experiments on the base set and all extension sets: thereby obtaining
225 instances. Each instance is tested with a time-out of 5 and 300 seconds.
We solve the blending problem using Cplex version 12.6 with default settings—
all instances solved within milliseconds, and therefore the solver required no
intervention to improve computational efficiency. We solve MIQPDisc and
MIPouter with Gurobi version 5.6.3, using tuned parameters GomoryPasses = 0
and PrePasses = 2. We tested the quadratic models using numerical stabil-
ity settings (i.e., Presolve = 0, FeasTol = 1e − 9, Quad = 1), but found
these had no impact on the validity of solutions. We model MINLPexact using
Pyomo version 3.5. We solve MINLPexact with the Scip Optimization Suite
version 3.1.0, using IpOpt version 3.11.8, coinHSL version 2014.01.10 [7] and
Cplex version 12.6. We model the constraint programming (CP ) approach using
MiniZinc [14], and solve it using Gecode 4.2.1 [6]. None of the solvers reach the
maximum memory allowed of 4GB. MIQPDisc and MIPouter were able to
find a solution for all tested instances, CP failed solving only 2 instances of
the constrained benchmark, MINLPexact failed between 3 to 6 instances in all
benchmarks when the time limit was set to 5 seconds.

In Table 1, we show the average (CPU) time for solving each instance,
the average makespan of each build (M. [min]), and the average completion
time difference of the slowest and fastest crusher within the same build (M.
D.). MIQPDisc is consistently the fastest solver in terms of CPU time, and
achieves the best (lowest) average makespan in 5 out of the 8 tested benchmarks.
MIPouter have a similar performance in terms of makespan quality, outper-
forming MIQPDisc significantly in the extreme maintenance benchmark, which
benefits from the flexible partitioning. In the other benchmarks, if MIPouter is
able to solve the problem optimally, its makespans are as good or substantially
1 Stockpiles have dedicated loaders and do not require a loader to be moved. In practice

we extend our models to accommodate this restriction.
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Table 2. When 5 or 300 is not followed by any tag, it refers to the original benchmark
with their respective timeouts. Tags sym, const, maint, and maint e stand for the
symmetric, constrained, maintenance and extreme maintenance variations. Cr. Util.
stands for crusher utilization in (%); Tr. Util. is truck utilization in (%).

Bench. Id MIQdisc MIPouter MINLPexact CP
Cr. Util. Tr. Util. Cr. Util. Tr. Util. Cr. Util. Tr. Util. Cr. Util. Tr. Util.

‖5‖ 94.3 53.5 94.0 52.2 79.8 46.5 93.4 55.8
‖5‖sym‖ 96.9 54.9 94.8 53.2 81.6 56.7 93.9 56.7
‖5‖const‖ 74.3 75.5 74.3 75.4 71.5 59.9 67.8 32.6
‖300‖ 96.3 55.0 96.4 54.2 91.7 56.2 94.0 56.3
‖300‖sym‖ 96.9 55.3 96.2 55.3 91.8 59.5 94.2 56.8
‖300‖const‖ 75.1 76.7 75.1 76.6 72.4 70.9 68.8 32.8
‖300‖maint‖ 81.7 42.6 81.7 42.0 83.7 50.6 – –
‖300‖maint e‖ 66.3 34.2 72.1 36.5 73.1 46.2 – –

better than MIQPDisc. This is not reflected on average, as MIPouter performs
worse than MIQPDisc in those instances where it only finds a primal solution in
the allotted time. Similarly, MINLPexact outperforms all other solvers in both
maintenance and constrained benchmarks, when 300 CPU seconds are allowed.
We remark that the only solver that substantially benefits from the increase of
maximum computation time is MINLPexact. Therefore, we tested MIPouter
and MINLPexact with a timeout of 900 seconds, but it did not result in the
same quality improvement that we observed by changing from 5 to 300 seconds,
so we omit those results. The CP approach has a competitive performance with
respect to MIP solvers, but is not the best solver in any benchmark. CP failed
solving the flexible partition model, and therefore we did not run this model
on the maintenance sets. In terms of crusher alignment (M.D.), clearly the best
results are achieved in the original benchmarks with 300 seconds, and even better
in the symmetric version where more loaders were available. Crusher alignment
is strongly correlated to the success of each solver on achieving 100% crusher
utilisation, as we assumed the crushers operated at 100% efficiency in the blend-
ing model to help allocate the right proportion of tons for each pit. Whenever
the average crusher feedrate decreases, the alignment is likely to be harmed.
In Table 2, we provide the crusher and truck utilisation statistics. The best
crusher utilisation is achieved by MIQPDisc in the 300 CPU time symmetric
benchmark, which coincides with the best alignment achieved in Table 1.

MIQPDisc is the best model, achieving a crusher utilisation factor up to
96.9%. The constrained and maintenance benchmark variations harm the ability
to fully utilise the crusher. Note that in those variations, it is not possible to
achieve a 100% utilisation. The constrained version harms most significantly the
CP approach, while the best models in the constrained version are MIQPDisc
and MIPouter. The best models to handle maintenance tasks are MIPouter
and MINLPexact, achieving an improvement of 6% and 7% respectively over
MIQPDisc. Again, this highlights the benefits of flexible partitions.

Loader utilisation is not shown in the table, as this resource is unconstrained
in practice. We observe that in the data given to us by our industry partner,
truck fleet availability is not too constrained either. As they pointed out, truck
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resources can become scarce in other data sets. To confirm this statement, we
observed in the original benchmark that the most extremely truck constrained pit
solved by MIQPDisc resulted in truck utilisation of 99.06% with 90% crusher
utilisation, which highlights the ability of the solvers to push the truck utilisation
to the maximum if it is required.

7 Discussion

An advantage of modelling the full problem using a high-level language, such as
MiniZinc, is that it can lead to a more intuitive and natural representation of the
problem. This simplified the extensions to a compact mathematical programming
form, where the linearisations and logical constraints can sometimes be inelegant
and cumbersome to de-bug. In this sense, it was beneficial to have multiple
models from which we could validate the others results.

Beyond constraint programming and mathematical programming, the flexible
partition scheduling problem could also be cast as a temporal planning problem
over continuous variables with processes and events. We modelled this problem
using the high-level Planning Domain Description Language (PDDL 2.1) [5], but
no solver technology could handle the model. However, the flavour of planning
encodings—event-driven modelling—is still present in our modelling approach.

Our industry partner solves this problem with an experienced planner and
grade-controller, who develop plans by hand. They aim to achieve 80% utilisation
at the crushers, after all practical constraints have been taken into account.
While we cannot claim to have modelled all practical constraints, it it clear that
these models will provide our partner with a useful decision-making tool with
huge potential to push their crusher utilisation well beyond 80% where possible.
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Abstract. Search heuristics are of paramount importance for finding
good solutions to optimization problems quickly. Manually designing
problem specific search heuristics is a time consuming process and
requires expert knowledge from the user. Thus there is great interest
in developing autonomous search heuristics which work well for a wide
variety of problems. Various autonomous search heuristics already exist,
such as first fail, domwdeg and impact based search. However, such
heuristics are often more focused on the variable selection, i.e., pick-
ing important variables to branch on to make the search tree smaller,
rather than the value selection, i.e., ordering the subtrees so that the
good subtrees are explored first. In this paper, we define a framework
for learning value heuristics, by combining a scoring function, feature
selection, and machine learning algorithm. We demonstrate that we can
learn value heuristics that perform better than random value heuristics,
and for some problem classes, the learned heuristics are comparable in
performance to manually designed value heuristics. We also show that
value heuristics using features beyond a simple score can be valuable.

1 Introduction

Search heuristics are of paramount importance for finding good solutions to opti-
mization problems quickly. Search heuristics can roughly be divided into two
parts: the variable selection heuristic, which selects which variable to branch on,
and the value heuristic, which determines which value is tried first. There has
been significant research on autonomous search heuristics including: first fail [1],
variable state independent decaying sum (VSIDS) [2], domain size divided by
weighted degree (domwdeg) [3], impact based search [4], solution counting based
search [5], and action1 based search [6]. Most of these search heuristics concen-
trate on variable selection, as this is critical in reducing the size of the search
tree, although some, in particular impact and action based search also gen-
erate value heuristics. Phase saving [7] if a value-only heuristic which reuses
the last value of a Boolean variable (its phase) when it is reconsidered. In

1 It was originally called activity-based search, we use the alternate name to distinguish
it from the long established activity-based search used in SAT, SMT and LCG
solvers.
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this paper, we focus on learning useful value heuristics for improving constraint
programming search.

Given a current domain D and a variable x to branch on, assuming a max-
imization problem, the task of the value heuristic is to give the order in which
the values in x’s current domain should be explored. This is typically accom-
plished by defining a scoring function g(D,x, v) which gives a score indicating
how good assigning the value v to x is likely to be given the current domain D.
The values are then sorted based on their scores and visited in decreasing score
order. Ideally, g is a function such that g(D,x, v1) ≥ g(D,x, v2) iff the optimal
value down the x = v1 branch is greater than or equal to the optimal value
down the x = v2 branch. Such a value heuristic would immediately lead us to
the optimal solution. In practice, a perfect scoring function is not likely to be
feasible to compute and hence we will settle for a heuristic that is likely to have
ordered the good/optimal branches near the front.

Many optimization problems have good, manually designed scoring function
which allow the solver to find good solutions quickly. However, manually design-
ing scoring functions can be a time consuming process and requires expert knowl-
edge from the user. Thus there is significant value in developing autonomous
search heuristics which work well for a wide variety of problems. One way to
produce an autonomous value heuristic is to treat the design of the scoring func-
tion g(D,x, v) as a machine learning problem. In order to do so, we have to
characterize the current domain D using a set of appropriate features, generate
a set of appropriate training instances along with their scores (i.e., values for
D, x, v and the output value of the function for these arguments), and use an
appropriate regression technique from machine learning to learn the function g.

Several autonomous search heuristics already exist, such as impact based
search [4] and action based search [6]. The value heuristics suggested in these
two methods can be seen as simple instances of machine learning. In both cases,
the current domain is characterized by 0 features (i.e., both of these meth-
ods completely ignore the current domain when scoring a value), the training
instances are collected during search or during an initial probing phase, and the
score assigned to each training instance is the impact (i.e., proportional reduc-
tion in domain size) for impact based search, and the number of variables with
reduced domains for action based search. In both cases, since there are no fea-
tures used, the learning simply consists of taking the average score of all the
training instances involving an assignment x = v and assigning that average
score as the value of g(D,x, v).

There are several possible improvements to these methods. First, both of
these methods do not use the current domain in the scoring function at all. This
may be fine for problems where the merit of an assignment x = v is largely
independent of what else has been assigned. However, in problem classes where
the merit of an assignment depends significantly on what else has been assigned,
we should be able to learn a much better scoring function by taking into account
the current domain D. Thus we are interested in finding features of D which help
us to predict the merit of an assignment x = v and using them in our machine
learning algorithm. We claim that features of variables which are closer to the
decision variable in the constraint graph are more likely to be predictive of the
merit of its values. Thus we propose using the features of variables within a



110 G. Chu and P.J. Stuckey

k-neighborhood of the decision variable in the constraint graph as our features,
where k is a parameter of our algorithm.

Second, the scores assigned to the training instances in the above two meth-
ods, i.e., impact and the number of domain changes, are only indirect measures
of how good the subtree is, and there may be better ways to assign scores to the
training instances. Indeed neither of these scores consider the objective function
of the problem. We propose an alternative scoring method based on the pseudo-
cost [8,9], i.e., the change in bound of the objective function after propagating
the decision.

Note that the application of machine learning to Constraint Programming in
this paper is significantly different from the large body of work using machine
learning for solver/algorithm selection in portfolio based solvers (e.g. [10]). There,
machine learning is used to predict how well existing solvers/algorithms may per-
form on a particular instance in order to select a solver/algorithm which works
well for the instance. Here, we are using machine learning to predict how well a
particular value assignment may do in order to generate new search heuristics.
Clearly, these two uses of machine learning are complementary and it is possible
to use the search heuristics we generate as the input to the algorithm selection
problem.

The contributions of this paper are:

– A framework for learning value heuristics by defining scoring functions, and
using linear regression over a restricted class of features of the problem

– A new scoring function, analogous to that used in pseudo-costs [8,9] we can
use to define a value heuristics

– A new method of taking the objective function into account for constraint
programming search.

– Experiments demonstrating that learnt value heuristics can be as effective
as programmed value heuristics

The remainder of the paper is organized as follows. In Section 2, we go
through our definitions and background. In Section 3, we describe how to gen-
erate training instances for the machine learning algorithm. In Section 4, we
discuss feature selection and the machine learning algorithm. In Section 5, we
present experimental results. In Section 7, we conclude and discuss future work.

2 Background

Constraint programming A constraint optimization problem (COP) P is a tuple
(V,D,C, f) where V is a set of variables, D is a set of domains, C is a set of
constraints, and f is an objective function. Let Dx be the domain of variable x.
Without loss of generality, we assume the objective function f is to be maxi-
mized. A CP solver solves a COP P by interleaving search with inference. It
starts with the original problem P = (V,D,C, f) at the root of the search tree.
At each node in the search tree, it repeatedly propagates the constraints c ∈ C to
try to infer variable/value pairs in the current domain D which cannot take part
in any improving solution to the problem within that subtree. Such pairs are
removed from the current domain D to create a new domain D′. The process is
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repeated until no more pairs can be removed. We denote this as D′ = solv(C,D).
If the resulting domain D′ is a false domain, i.e. D′(v) = ∅ for some v ∈ V , then
the subproblem has no solution and the solver backtracks. Once the propagation
fixed point is reached, if all the variables are assigned, then a solution θ has been
found. The solver adds a branch and bound constraint constraining the solver
to find only solutions with better objective value than θ, and then continues the
search. If not all variables are fixed, then the solver further divides the problem
into a number of more constrained subproblems and searches each of those in
turn. The search heuristic determines how this division is performed. Typically,
the search strategy consists of two parts, a variable selection heuristic which
picks an unassigned variable x to branch on, and a value heuristic which pick a
value v to try. The search will then explore x = v down one branch and x �= v
down the other branch.

Given a constraint problem P ≡ (V,D,C, f), let its constraint graph G be
the graph with the variables V as nodes, and with an edge between two variables
x, y ∈ V iff x and y appear together in at least one constraint c ∈ C. Given a
graph G, let the k-neighborhood of a node x in graph G be the set of all nodes
within a distance k of node x.

Impact Based Search. Impact based search was proposed in [4]. The impact of
a decision x = v can be defined as follows. Let D be the domain before the
decision, and D′ = solv(C ∪ {x = v},D) be the domain after the decision
has been propagated to fixed point. The impact of the decision is then: 1 −∏

x∈V |D′
x|/|Dx|. In impact based search, a running average Ī(x = v) of the

impact of each assignment x = v is maintained. The impact of a variable x given
the current domain D is given by

∑
v∈Dx

1 − Ī(x = v). The variable heuristic
picks the variable x with the highest impact and the value heuristic picks the
value with the lowest impact.

Action Based Search. Action based search was proposed in [6]. At each decision
in the search tree, the action A(x) of each variable x is decayed by some factor
α if x was not fixed before the decision, and A(x) is increased by 1 if its domain
was reduced after propagating the decision. The variable heuristic chooses the
variable with the highest A(x)/|Dx| value. The action of an assignment x = v
is the running average of the number of variables whose domains were reduced
after propagating a decision x = v. The value heuristic chooses the value with
the lowest action.

Linear Regression. In supervised learning, there is an underlying function h :
X → Y which we wish to learn, and we are given a set of training instances
{(x̄1, ȳ1), . . ., (x̄n, ȳn)} such that ȳi = h(x̄i) for each i. The goal is to learn an
approximation h′ of h which is as close to h as possible under some notion of
error. The inputs x̄i and the outputs ȳi could be single values or could be a
vector of values. In this paper, we are interested in the case where the inputs are
a set of Boolean or numeric features x1, . . . , xm, the output is a single numerical
value y, and we are interested in learning a linear function y =

∑
aixi + a0

which relates the inputs and the output, where Boolean features are considered
0-1 numeric variables. One common method for doing this is ordinary least
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squares regression (OLS) (see e.g.[11]). Unfortunately, OLS is insufficient for
our purposes as it requires there to be more training instances than there are
features, and the features must be linearly independent. An alternative is partial
least squares regression (PLS) [12]. PLS attempts to project the input into a
lower dimensional space represented by latent variables such that these latent
variables explain as much of the variance in the output as possible. The number
of latent variables to use is a parameter of the algorithm. PLS is able to handle
cases where features may be linearly dependent or where there may be far more
features than training instances.

3 Generating Training Instances

In this paper, we would like to treat the design of the scoring function g(D,x, v)
used in the value heuristic as a machine learning problem. However, unlike a
typical machine learning problem where we are given a set of training instances,
in this case, we need to generate our own. Furthermore, it is not obvious what the
function g(D,x, v) is supposed to output. One possibility is try to learn a function
g(D,x, v) which outputs the optimal value of the subproblem (V,D,C ∪ {x =
v}, f). To do this, we could generate some training instances by picking some
D, x and v values and solving the COP’s (V,D,C ∪ {x = v}, f) exactly to get
the correct output values. However, this is clearly highly impractical, because
solving (V,D,C ∪ {x = v}, f) exactly is very expensive and we would have to
do this for each training instance we want to generate. Alternatively, we could
try to learn a function g which outputs an easier to calculate measure which is
predictive of how high the optimal value of (V,D,C ∪ {x = v}, f) is. As long as
this measure tends to have higher values for subproblems with higher optimal
value, it can still be a good value heuristic.

We consider three different approximate measures for use in computing g:
those used in impact and action based search which do not make use of the
objective function f of the problem; and one other which attempts to take into
account the objective. These measures are

score impact Impact based search tries to learn a function g which predicts the
impact of a particular assignment, with the assumption that lower impact
tends to lead to better solutions. We will call this score impact defined as
gscore impact(D,x, v) = 1 − ∏

x∈V |D′
x|/|Dx| where D′ = solv(C ∪ {x =

v},D).
score num red Action based search tries to learn a function g which predicts

how many variables will have their domains reduced by a particular assign-
ment, with the assumption that fewer domain reductions lead to better solu-
tions. We’ll call this score num red defined as gscore num red(D,x, v) = |{x ∈
V | Dx �= D′

x} where D′ = solv(C ∪ {x = v},D).
score pseudo cost Pseudo-cost branching [8,9] is an important variable selec-

tion strategy in mixed integer programming. Recall that we are assuming
that the objective f is to be maximized. We try to learn a g which pre-
dicts how much the upper bound of the objective function f will decrease by
when the assignment is made. Value choices for which the upper bound
of f decreased less are likely to lead to better solutions. We’ll call this
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score pseudo cost defined as gscore pseudo cost(D,x, v) = max Df − max D′
f

where D′ = solv(C ∪ {x = v},D).

Generating training instances to learn these three measures is much easier
than generating instances to learn a function to predict the optimal value. Sim-
ilar to impact based search and action based search, we propose to generate
training instances with an initial probing phase followed by a normal search
phase. In the probing phase, we use a random value heuristic, restart after every
solution, and do not perform branch and bound. The aim of this phase is to get
a good coverage of all the assignments. In the normal search phase, we use the
learned value heuristic and perform branch and bound as normal. At each node
during each of these two phases, when we get to the propagation fixed point and
make a decision, we record those (D,x, v) values as a new training instance, and
depending on which of the three scoring functions we are trying to learn, the
score for this training instance will either be: the impact, the number of variables
with reduced domains, or the change in the upper bound of f .

4 Feature Selection

In order to apply machine learning techniques to this problem, we need to define
the set of features to be used in the model. Potentially, we could train a single
model for g(D,x, v) where x and v are considered features. However, we expect
that the relevant features and the way that they affect the value could be very
different for different values of x and v. Instead, we train a separate model
for each possible assignment x = v, i.e., we learn a set of functions gx1,v1(D),
gx1,v2(D), . . ., gxn,vm

(D) s.t. g(D,x, v) = gx,v(D).
We need to extract from D a set of good features for predicting the value of

the function we are trying to learn. We claim that the domains of the variables
in the problem contain many of the features which are useful for predicting the
value. Furthermore, we claim that it is typically the features of the variables
which are close to the decision variable in the constraint graph which are the
most useful. This is borne out by our analysis of the custom search heuristics for
a variety of problems. In most of these custom search heuristics, the features used
in the scoring function are simply the lower bounds, upper bounds or assignments
of variables close to the decision variable in the constraint graph.

Example 1. Consider the minimization of open stacks problem [13]. We have a
set of customers and a set of products. Each customer requires some subset of the
products, and has a stack which must be opened when any product they require
begins production. The customer’s stack can be closed when all the products
that the customer requires have finished production. We wish to find the order
in which to produce the products such that the maximum number of open stacks
at any time is minimized. It has been shown that rather than a model where we
determine the order in which to produce products, it is better to determine the
order in which we close the stacks of the customers [13]. In the model proposed
in [13], we create a customer graph G where the nodes are customers and there
is an edge between two customers iff there is a product that they both require.
Closing a particular customer’s stack means that all the products they require
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Fig. 1. A MiniZinc [14] model for minimization of open stacks

must be produced before that time, which in turn means that the stacks of all
its neighbors in the customer graph must be opened before that time. This leads
to the model shown in Figure 1.

A good variable ordering is simply to label the x variables in order, as that
produces the best propagation. The value heuristic proposed in [13] picks the
customer which opens the fewest new stacks at each stage. In terms of the
variables in this model, the score for the decision x[t] = c can be written
as:

∑
d∈CUST where g[d,c](opened before[d, t] − 1), where we are simply giving a

penalty of 1 to each stack that closing customer c’s stack would force open
and which is not already open. Clearly, this scoring function is simply a linear
combination of the values of variables which already exist in the model.

We divide integer variables into two classes: value type integer variables and
bound type integer variables.

– Value type integer variables typically have small domains. The value are
unordered and each value means a completely different thing. They are typ-
ically involved in constraints like alldifferent, element or table where
there is a lot of propagation based on values. For value type integer vari-
ables x for each value v in its original domain, we take the truth values of
D ⇒ x = v and D ⇒ x �= v as features where D is the current domain.

– Bound type integer variables on the other hand could have much larger
domains, and the values are ordered, so values close together are closely
related. They are typically involved in constraints like cumulative or linear
constraints where there is only propagation based on bounds. For bounds
type integer variables, we take their lower bound and upper bounds as fea-
tures.

For a Boolean variable b, we take the truth values of D ⇒ b and D ⇒ ¬b as
features. When used in a linear regression, integer features are kept as is, while
Boolean features are converted to 0-1 integers.



Learning Value Heuristics for Constraint Programming 115

Example 2. Suppose we have Boolean variables b1, b2 and b3, with current domain
b1 ∈ {true}, b2 ∈ {false} and b3 ∈ {false, true}. The two features for a Boolean
variable b are the truth values of D ⇒ b and D ⇒ ¬b. For b1, they are 1 and 0
respectively. For b2, they are 0 and 1 respectively. For b3, they are 0 and 0 respec-
tively. Suppose we have value type integer variables x1 and x2, both with original
domain {1, 2, 3} and current domains x1 ∈ {1, 3} and x2 ∈ {2}. The features are
the truth values of D ⇒ x = v and D ⇒ x �= v for each v in the original domain.
For x1, this gives 0 and 0 for v = 1, 0 and 1 for v = 2, and 0 and 0 for v = 3. For
x2, this gives 0 and 1 for v = 1, 1 and 0 for v = 2 and 0 and 1 for v = 3. Suppose
we have bound type integer variable x with current domain {2, . . . , 153}. The two
features are simply its lower and upper bound, i.e., 2 and 153.

In general, it is difficult to tell which variables have features which are useful
for the function we wish to learn. We could of course, use the features of all
the variables in the problem and use some standard feature selection algorithm
to find a good subset of them. However, such methods are far too expensive
in this context and are prone to over-fitting due to the large number of poten-
tial features and a limited number of training instances. Instead, we exploit our
knowledge that variables closer to the decision variable in the constraint graph
tend to be more useful and define a series of subsets of features to check. For each
k = 0, 1, 2, . . ., we pick the features of the variables in the k-neighborhood of the
decision variable in the constraint graph as our features. Using a larger neighbor-
hood may mean that useful features get included, improving the performance
of the learned function, but it may also add irrelevant features and produce
over-fitting as well as increase overhead. Note that using the 0-neighborhood
with score impact and score num red corresponds to the value heuristics used in
impact based search and action based search respectively. However, here we have
the potential to use higher k to learn that other assignments have an effect on
the current decision.

After the training instances are generated and the features are selected, we
can run our regression algorithm. We choose to use the partial least squares
regression method. The reason is that the vast majority of custom scoring func-
tions we analyzed were simple linear combinations of features, and thus we
believe a linear function should do well. Secondly, we have to deal with co-
linearity in the features as well as the possibility that there are more features
than training instances. Partial least squares regression is able to handle all these
and is therefore a good choice. We run the regression algorithm once when the
probing phase is complete. After that, we re-run it every time we double the
number of our training instances. In the special case where we are using a 0-
neighborhood of features, there are actually no features at all, so we can simply
keep a running average and update the scoring function whenever we get a new
training instance.

Example 3. Consider the minimization of open stacks problem again. Suppose
we are branching on x[t]. A 1-neighborhood will include the open before and
closed before variables from time t and t − 1. A 2-neighborhood would include
the open before and closed before variables from time t − 2 to t + 1, as well
as the open during variables from time t. Suppose we use a 1-neighborhood with
the score num red scoring function. We pick a random decision from a random
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instance for illustrative purposes. In this instance, the custom scoring function
for the assignment x[3] = 4 is: 1 ∗ open before[3, 4] + 1 ∗ open before[3, 15] + 1 ∗
open before[3, 27] + 1 ∗ open before[3, 29] − 4.

The scoring function learned using partial least squares regression after the
training instance has significantly more terms. However, the terms with the
largest (absolute value of) coefficients are: 28.716 ∗ open before[3, 4], 28.740 ∗
open before[3, 15], 24.047∗open before[3, 27], 24.485∗open before[3, 29], 33.880∗
closed before[3, 16], −26.664 ∗ closed before[3, 19], −24.726 ∗ closed before[3, 26],
and it can be seen that the features considered important in the custom scoring
function also have large coefficients in this learned scoring function. However,
several terms not in the custom scoring function also have large coefficients
here, possibly representing other useful features. In practice however, despite the
differences, our experiments in Section 5 show that this learned value heuristic
is almost identical in strength to the custom one.

5 Experiments

The experiments are run on Intel Xeon 2.40GHz processors using the CP solver
Chuffed. We use the minimization of open stacks problem (see e.g. [13]) (MOSP),
the talent scheduling problem (see e.g. [15]) (Talent), the resource constrained
project scheduling problem (see e.g. [16]) (RCPSP), the nurse scheduling
problem [17] (Nurse), the traveling salesman problem (TSP), and the soft car
sequencing problem [18] (CarSeq). We select some hard instances from the J60
benchmark for RCPSP and generate 100 random instances for the other 5 prob-
lem classes. MiniZinc models and data for the problems can be found at: www.
cs.mu.oz.au/∼pjs/learn-value-heuristic/.

For each problem, we use a k-neighborhood for feature selection as described
in Section 4 with k = 0, 1, 2. For RCPSP and TSP, k = 1 is identical to k = 2
since it already includes all the variables, so we only give results for k = 1. We
try each of the three scoring methods for the training instances described in
Section 3. We use a 10 second probing phase followed by a 590 second search
phase for a total of 10 minutes per instance. We use a limit of 10 latent variables
in the partial least squares regression method.

Since we are principally interested in the value heuristic part of the search
heuristic in this paper, for the first experiment we use the same variable selection
heuristic for all the different settings of the value selection heuristics so we can
just compare the effect of the value heuristic.

We use an in-order variable heuristic for the minimization of open stacks
problem, the talent scheduling problem, the nurse scheduling problem, and the
soft car sequencing problem. We use a max-regret variable heuristic for the trav-
eling salesman problem. And we use the earliest first variable heuristic (also
called schedule generation [19]) for the resource constrained project schedul-
ing problem. We also compare using a random value heuristic and a manually
designed value heuristic. We use the following manually designed value heuris-
tics. For the open stacks problem, we use the one described in [13], which tries to
pick the customer which opens the fewest new stacks. For the talent scheduling
problem, we pick the scene which minimizes the cost of new actors plus the cost

www.cs.mu.oz.au/~pjs/learn-value-heuristic/.
www.cs.mu.oz.au/~pjs/learn-value-heuristic/.
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Table 1. Cost of partial least squares regression as a percentage of total run time

1-neighborhood 2-neighborhood
MOSP 0.4% 3.3%
Talent 1.1% 3.2%
RCPSP 9.1% –
Nurse 6.2% 67.5%
TSP 1.2% –
CarSeq 0.4% 1.7%

Table 2. Solution quality at the end of 10 minutes

random custom pseudo cost-0 impact-0 num red-0 pseudo cost-1 impact-1 num red-1 pseudo cost-2 impact-2 num red-2

MOSP 23.6 13.6 26.8 19.3 21.4 26.6 18.4 14.0 26.0 20.3 14.3
Talent 999 422 678 865 770 650 687 580 640 693 571
RCPSP 972 119 119 121 426 798 974 828 – – –
Nurse 66.5 136.9 127.6 70.3 86.5 93.8 68.2 78.4 98.9 66.5 77.1
TSP 1157 521 527 874 881 535 968 1036 – – –
CarSeq 32.4 8.4 24.0 35.4 35.4 31.6 26.6 27.0 29.0 32.7 31.1

of actors who are on-location but not in the scene. For the resource constrained
project scheduling problem, we assign the start time to its current lower bound.
For the nurse scheduling problem, we assign the nurse to the available shift they
most prefer. For the traveling salesman problem, we pick the closest available
city. For the car-sequencing problem, we pick the car type which utilizes the
most heavily loaded available machine.

The average cost of the partial least squares regression as a percentage of run
time is given in Table 1. The costs are generally quite small at just a few percent,
however, for nurse scheduling with a 2-neighborhood, it grows to a rather massive
67.5%.

The solution quality at the end of 10 minutes is given in Table 2. The graph
for average solution quality over time is given for each problem in
Figures 2. The best learned heuristics are: for open stacks score num red-1,
for talent scheduling score num red-2, for RCPSP score pseudo-cost-0, for nurse
scheduling score pseudo-cost-0, for travelling salesman score pseudo-cost-0, and
for car sequencing score pseudo-cost-0.

Note that these searches do not tend to find any good solutions during the
initial 10 second probing phase where it is using a random value heuristic with
no branch and bound. After that however, they may start finding much bet-
ter solutions. It can be seen that in all the problems, there are some settings
which allow the algorithm to learn a value heuristic which is significantly better
than random. In some cases, the learned value heuristic is of comparable per-
formance to the manually designed value heuristics. It can be seen that using a
k-neighborhood with k > 0 is highly beneficial on problems like minimization
of open stacks and talent scheduling, where whether a particular value is good
or not depends significantly on what other decisions have been made. On other
problems however, the extra features from using a larger neighborhood are not
useful and only cause over-fitting, degrading the performance of the learned value
heuristic. It can also be seen that using score pseudo cost to score the training
instances is far better than using score impact or score num red in many cases.
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Fig. 2. Solution Quality vs Time graph for various value heuristics for the 6 problem
classes. Smaller is better for all except Nurse where larger is better.
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Table 3. Number of times each setting was best out of 1000 random samples of 5
instances

pseudo cost-0 impact-0 num red-0 pseudo cost-1 impact-1 num red-1 pseudo cost-2 impact-2 num red-2
MOSP 0 0 0 0 0 635 0 0 365
Talent 0 0 0 0 1 382 5 1 611
RCPSP 1000 0 0 0 0 0 – – –
Nurse 1000 0 0 0 0 0 0 0 0
TSP 761 0 0 239 0 0 – – –
CarSeq 840 0 0 0 107 51 0 0 2

Table 4. Solution quality at the end of 10 minutes

random custom impact action vsids ml-5
MOSP 23.6 13.6 19.2 18.9 14.0 14.1
Talent 999 422 992 1068 1236 575
RCPSP 972 119 774 415 118 119
Nurse 66.5 136.9 69.0 76.1 140.5 127.6
TSP 1157 521 108 846 722 529
CarSeq 32.4 8.4 52.8 52.3 29.6 24.4

Although it may be difficult to know beforehand which settings will be best
for a problem class, the relative performance of each setting is usually the same
across all instances in a problem class, i.e., the good settings tend to do well on
all instances and the bad settings tend to do badly on all instances. Hence if
we need to solve a large number of instances from the same problem class, we
can simply solve a few sample instances using the different settings, and use the
setting which had the best average performance on the sample instances for the
rest of the instances in the benchmark.

In Table 3, we show the number of times each setting had the best perfor-
mance for 1000 different random samples of 5 instances from each of the bench-
mark. As can be seen, simply by trying the different settings on 5 instances, we
will almost always end up picking the optimal or near optimal setting for the
problem class.

In the third experiment we compare our method against various existing
autonomous searches. From the first and second experiments, we can work out
the expected solution quality over time curve of our method when we pick the
setting by picking the best performing one on a random sample of 5 instances.
That is, we take a weighted average of the curves in the first experiment, where
they are weighted by the numbers in Table 3. We will call this ml-5. We compare
against full impact based search impact, action based search action, the variable
state independent decaying sum heuristic vsids, and the random and custom
search heuristics from the first experiment.

The solution quality at the end of 10 minutes is shown in Table 4. The graph
for average solution quality over time is given for each problem in Figures 3. It
can be seen that our new value heuristic is generally much better at finding good
solutions than the other autonomous searches, although for nurse scheduling,
VSIDS is so good that it beats our heuristic and even beats the custom search.
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Fig. 3. Solution Quality vs Time graph for various search heuristics on the 6 problem
classes. Smaller is better for all except Nurse where larger is better
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6 Related Work

A closely related work is Bandit-based Search for Constraint Programming [20].
This method is based on Monte-Carlo tree search and uses reinforcement learning
to learn which values should be explored first. They use a reward function based
on whether the decision led to a failure depth which was above or below the
average, so they do not really target optimization problems. This method differs
from ours in that it uses reinforcement learning and does not attempt to predict
the reward from features of the domain like our method.

Solution counting [5] is a powerful method for defining autonomous search,
giving both variable and value heuristics. It relies on extending propagators
to count or estimate the number of remaining solutions they have. It learns
estimators for variable value pairs, similar to impact and action based search.
Again it does not directly take into account the objective. It would be interesting
to explore measures based on counting in our framework, where the current
domain D can also be taken into account.

Regret [21] is a commonly used variable selection strategy for CP problems
where the objective is the sum of a set of variables. The regret is equivalent to
the difference in score pseudo cost for the two largest values that remain in the
domain of a variable, for these problems.

Pseudo-cost branching [8,9] is an important MIP heuristic for variable selec-
tion. It is also used in the ToulBar2 [22] weighted CSP solver. It ranks variables
by the expected gain per unit change in the variable, which is the difference
between neighbouring values in score pseudo cost. Value heuristics are not com-
mon in MIP search, since node exploration is more commonly implemented by
selecting from a frontier of open nodes, but it would be unsurprising if pseudo-
cost had been used as a value heuristic in MIP.

Given that regret for CP and pseudo-costs for MIP are important search
heuristics it is surprising that we are not aware of widespread use of pseudo-cost
for CP search heuristics.

7 Conclusion

Autonomous search is an important topic for constraint programming, since its
removes the burden from the modeller of deciding how best to search for solu-
tions. The majority of work on autonomous search for CP has concentrated on
variable selection heuristics since these can have a significant effect on the size of
the search tree. But when we consider optimization problems, the value heuris-
tic used can also substantially effect the size of the search tree. Similarly when
we are considering optimization problems that are too hard to find/prove opti-
mal solutions, value heuristics can make a significant difference on the quality
of solutions found in a limited time. In this paper we define a framework for
learning value heuristics by combining a score function, feature selection, and
machine learning. We show that we can learn value heuristics that are compa-
rable to programmed heuristics, and the cost of learning can be paid for during
the search.

While we have investigated some choices for score functions, feature selec-
tion and machine learning each component of the framework could be replaced,
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leaving us wide scope for further exploration of the framework. Clearly we can
imagine many other: score functions, e.g. the objective of the first solution found
in a subtree; feature selections, e.g. a tighter definition of neighbouring variables
using constraint activity; and learning methods, such as polynomial regression;
which might be worth considering.
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Abstract. Most of the derivative-free optimization (DFO) algorithms
rely on a comparison function able to compare any pair of points with
respect to a black-box objective function. Recently, new dedicated
derivative-free optimization algorithms have emerged to tackle multi-
objective optimization problems and provide a Pareto front approxi-
mation to the user. This work aims at reusing single objective DFO
algorithms (such as Nelder-Mead) in the context of multi-objective opti-
mization. Therefore we introduce a comparison function able to com-
pare a pair of points in the context of a set of non-dominated points.
We describe an algorithm, MOGEN, which initializes a Pareto front
approximation composed of a population of instances of single-objective
DFO algorithms. These algorithms use the same introduced comparison
function relying on a shared Pareto front approximation. The different
instances of single-objective DFO algorithms are collaborating and com-
peting to improve the Pareto front approximation. Our experiments com-
paring MOGEN with the state-of the-art Direct Multi-Search algorithm
on a large set of benchmarks shows the practicality of the approach,
allowing to obtain high quality Pareto fronts using a reasonably small
amount of function evaluations.

1 Introduction

Continuous optimization aims at minimizing a function f(x) with x ∈ R
n. When

some information is known about the derivatives of f , one generally uses gra-
dient based methods. For some other problems the function is black-box which
means it can only be evaluated (for instance the evaluation is the result of a
complex simulation model). Original algorithms have been imagined to optimize
f by only relying on its evaluation. This family of techniques is generally called
derivative-free optimization (DFO). One differentiates further the applicability
of the derivative-free algorithms depending whether or not the function eval-
uation is costly to evaluate. Genetic algorithms obtain very good results for
DFO benchmarks but they generally require a prohibitive number of evalua-
tions. Finally, in many practical applications, considering a single-objective is
not sufficient. In many cases, objectives are conflicting, which means they do
not share the same optimum. As such, dedicated multi-objective optimization
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 124–140, 2015.
DOI: 10.1007/978-3-319-18008-3 9
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methods aim at finding a set of solutions being tradeoffs between the different
objectives. This set of tradeoffs is called the Pareto front. This is the context
of this work: We are interested at optimizing multi-objective black-box functions
costly to evaluate providing to the user a set of non-dominated points.

Current state-of-the-art multi-objective optimization algorithms use the
Pareto dominance to determine if new points can be added to the current
Pareto front approximation. Our first contribution is the definition of a compar-
ison function allowing to compare points with regards to a current Pareto front
estimation.

Our second contribution is the definition of a framework, MOGEN, making
use of this comparison function to solve multi-objective optimization problems.
This framework uses derivative-free optimization single-objective algorithms
(such as the Nelder-Mead algorithm) in which we substitute our new compar-
ison function to the classical one. With this comparison function, these DFO
single-objective algorithms are able to identify directions to discover new points
potentially improving the current Pareto front optimization. This framework
can be instantiated with several algorithms and performs elitism such that algo-
rithms bringing the most improvement to the Pareto front approximation will
be favoured. The aim of MOGEN is to solve multi-objective optimization prob-
lems using a limited amount of evaluations; such behaviour is desired to solve
problems for which the evaluation is expensive in terms of computation time.
For example, problems where each evaluation requires a costly simulation could
be solved using MOGEN.

2 Background

A generic multi-objective optimization problem can be expressed as follows:

minimize F (X) ≡ {f1(X), . . . , fm(X)}
such that X ∈ Ω

(1)

where Ω ⊆ R
n is the feasible region and fi(X) are the objective functions. When

m = 1, the problem is a single-objective optimization problem. For the rest of this
paper, we consider the feasible region Ω defines upper and lower bounds on each
dimension. In such case, X ∈ Ω can be translated as ∀ i ∈ {1, . . . , n} : xi ∈ [li, ui]
such that ∀ i ∈ {1, . . . , n} : li < ui.

The Pareto dominance allows to evaluate if a point is better than another
point with regards to several objective functions. Considering two points x, y ∈
Ω, we say that the point x dominates the point y on functions f1, . . . , fm, written
x ≺ y, if the two following conditions are satisfied:

x ≺ y ≡
{∀ i ∈ {1, . . . , m} : fi(x) ≤ fi(y)

∃ i ∈ {1, . . . , m} : fi(x) < fi(y)

Alternative dominance definitions exist, as those proposed in [11], [15] and [2],
but they are not detailed in this article. These dominance definitions could also
be used in the framework we define.
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A point x is said to be Pareto optimal if it satisfies the following condition:

� y ∈ Ω : y ≺ x

The Pareto optimal set is defined as the set of Pareto optimal points, i.e.
the set of non-dominated points. Multi-objective optimization algorithms aim at
finding an approximation of this Pareto optimal set.

3 Derivative-Free Optimization

In this section, we recall the concept of Derivative-Free optimization methods.
Three popular DFO algorithms are described to illustrate this concept. These
latter are used by the MOGEN framework described later in this article.

3.1 Derivative-Free Optimization Methods

Derivative-free optimization methods, as defined in [3] and [12], are optimization
search techniques. These methods iteratively use comparisons between points to
evaluate the search progress. This iterative design with comparisons is rather
intuitive and many DFO algorithms rely on simple concepts and structures. The
main advantage of these methods is that the only information they need is the
comparison of evaluations of the objective functions.

DFO algorithms can be used to optimize black-box functions, i.e. functions
for which the only information available is its evaluation. In many practical
applications, it is desired to optimize black-box functions. There exists a huge
range of single-objective DFO algorithms; several of them being described in [3].
In the following sections, we rapidly explain three single-objective DFO algo-
rithms. These methods are designed to solve single-objective problems as defined
in Equation 1 with m = 1. If new points xi are discovered outside the box defined
by Ω, they are replaced by the closest points in Ω to ensure the bound constraints
are always respected.

The Directional Direct Search Algorithm. The Directional Direct Search
Algorithm described in [3] converges to a local optimum by iteratively polling
new points around the current iterate which is a point in Ω. This algorithm relies
on a collection of unit vectors D and a step size α. At each iteration, for each
direction di ∈ D, a new point around the current iterate, xcurrent is created as
follows: xi = xcurrent + α × di. If a new point xi is discovered such that it is
better than xcurrent, i.e. f(xi) ≤ f(xcurrent), then xi becomes the new iterate
and a new iteration can begin. If no better point has been discovered at the end
of an iteration, α is decreased. On the other hand, if the iteration was successful,
α is either maintained or increased. By replacing the current iterate with better
points, the algorithm eventually converges to a local minimum.
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The Nelder-Mead Algorithm. The Nelder-Mead algorithm introduced in [13]
is a popular single-objective DFO algorithm. This algorithm converges to a local
optimum by iteratively applying transformations on a hypervolume (also called
simplex). To solve a problem in Ω ⊆ R

n, the Nelder-Mead algorithm uses a
hypervolume containing n+1 points. These points y0, . . . , yn are sorted such that
f(y0) ≤ f(y1) ≤ . . . ≤ f(yn−1) ≤ f(yn). At each iteration, the worst point yn is
transformed into a new point y′

n such that f(y′
n) ≤ f(yn). The transformations

applied are, depending on the situation, reflection, expansion, inside and outside
contraction. The Nelder-Mead transformations are applied around the centroid
of all the hypervolume points but the worst. A 2D example of reflection of the
worst point of a Nelder-Mead hypervolume is shown in Figure 1. In this example,
the centroid of points y0 and y1 is yc and the reflection of the worst point y2
over the centroid is yr.

y0

y1

y2 yc
yr

Fig. 1. Example of transformation of the worst point (y2) from an hypervolume of the
Nelder-Mead algorithm into its reflection (yr) over the centroid (yc)

If transformations fail to produce a new point better than yn, the hypervol-
ume is shrunk around y0. By transforming the worst point of the hypervolume
at each iteration, all points contained in the hypervolume are increasing in terms
of quality eventually converging to a local minimum.

The MultiDirectional Search Algorithm. The MultiDirectional Search
algorithm introduced in [7], similarly to the Nelder-Mead algorithm, applies
transformation to a hypervolume structure to converge to a local optimum. This
hypervolume contains n + 1 points to solve problems in Ω ⊆ R

n. These points
y0, . . . , yn are sorted such that f(y0) ≤ f(y1) ≤ . . . ≤ f(yn−1) ≤ f(yn). At each
iteration, all points but the best are transformed into new points y′

i by apply-
ing transformations: reflection, expansion (these are different from those of the
Nelder-Mead algorithm since they are applied on all points but the best of the
hypervolume while only the worst point is transformed in the Nelder-Mead algo-
rithm). If at least one of the new point y′

i is better than the former best point
y0, then the iteration is a success. Otherwise, the hypervolume is shrunk around
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y0. These successive transformations of the hypervolume eventually converge to
a local optimum.

3.2 The Comparison Step

DFO algorithms rely on comparisons of the objective evaluations to decide
whether a point allows the algorithm to progress and is worth to be kept.
DFO methods need a comparison function, cmp, to assess if a point is bet-
ter than another one according to the considered problem. For example, in
the case of a minimization problem, the comparison function used would be
cmp<(x1, x2) ≡ f(x1) < f(x2). Indeed, if we have f(x1) < f(x2) where f is the
objective function, then x1 is better than x2 in order to minimize f .

These comparison functions could be replaced by any comparison function
according to the type of problem considered. For example some industrial appli-
cations would require to minimize a non-deterministic function. In this case,
the comparative function < is not sufficient. Hypothesis tests would be more
relevant as comparative functions. As a consequence, it would be interesting to
be able to adapt the comparison function used in a DFO search to the type of
problem considered. DFO algorithms are parametrized with a comparison func-
tion cmp(x1, x2) that returns a boolean which is true if x1 is better than x2,
false otherwise. A formal definition of the comparison function used in DFO
algorithms can be expressed as follows:

cmp : R
n × R

n → B

A comparison function can be used in a DFO algorithm only if it is transi-
tive. Using a non-transitive comparison function could lead to a non-productive
looping search.

By using a comparison function as a parameter for a DFO algorithm, it is
possible to solve different optimization problems declaratively. For example we
could parametrize the Nelder-Mead algorithm as follows: NM(f, cmp, x0) where
f is the objective to optimize, cmp is the comparison function to use (e.g. the
function cmp< declared earlier) and x0 is the starting point.

4 Multi-Objective Optimization Comparison Function

In this section we define a comparison function between two points in a multi-
objective optimization context. The aim of this comparison function is to be
used as a parameter in any DFO algorithm. Multi-objective optimization search
techniques tend to iteratively improve their current approximation of the Pareto
front. As stated in [5], the quality of a Pareto front approximation can be mea-
sured in terms of two criteria. First, it is desired that points in a Pareto front
approximation are as close as possible to the optimal Pareto front. Then, it
is desired that points in a Pareto front approximation span the whole optimal
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Pareto front. The approximation of a Pareto front inside a multi-objective opti-
mization algorithm is often referred to as an archive. An archive is a set of points
such that no point is dominating (nor dominated by) any other point in the set.

The classical way of comparing two points with respect to several objectives is
the Pareto dominance comparison function. In the context of an algorithm trying
to improve its current archive, it is not sufficient. For example, comparing two
points x1 and x2 with the Pareto dominance, could determine that no point is
better than the other one (i.e. they don’t dominate each other). On the other
hand, one of these points could dominate more points in the archive. Therefore
we introduce a new comparison function using the Pareto dominance between
two points but applying it additionally to the whole archive. This comparison
function compares two points x1 and x2 with respect to an archive A.

We define dominates(x,A) as the set of points in A that x dominates. Simi-
larly, dominated(x,A) is the set of points in A by which x is dominated. From
these two sets, we define the quantity score(x,A) that represents the potential
improvement brought by x in the archive A.

dominates(x,A) = {y ∈ A | x ≺ y}
dominated(x,A) = {y ∈ A | y ≺ x}

score(x,A) = |dominates(x,A)| − |dominated(x,A)|

The higher score(x,A) is, the more promising x is to be included in the archive
A. We base our comparison function cmp≺(A) on this definition of score. It
compares two points x1, x2 ∈ R

n with respect to a set of non-dominated points
A ⊆ R

n and is defined as follows:

cmp≺(A)(x1, x2) = score(x1, A
′) ≥ score(x2, A

′) (2)

where A′ = A ∪ {x1, x2}. We use A′ instead of A to guarantee that cmp≺(A) is
true if x1 ≺ x2. Indeed, if the two points dominate or are dominated by the same
number of points in the archive A, we would have score(x1, A) = score(x2, A).
In some cases, even if we obtain the same result for the evaluation of the score
function on x1 and x2 with respect to A, x1 dominates x2, or vice versa. Figure 2
illustrates an example where both x1 and x2 dominate all the points in A but
x1 dominates x2. In this situation, using the score function on A would not
have been sufficient while using it on A′ = A ∪ {x1, x2} would have shown that
x1 ≺ x2.

In [14], the transitivity of the Pareto dominance function is proven. It is then
straightforward to prove that cmp≺(A) defined in Equation (2) is transitive and
could be used in DFO methods. cmp≺(A)(x1, x2) has the behaviour desired to
solve multi-objective optimization problems; it improves an archive A both in
terms of distance to the real Pareto front and in terms of spreading of the points
within A.

The next section defines a framework using single-objective DFO algorithms
with cmp≺(A) to perform multi-objective optimization.
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Fig. 2. The score values are equivalent: score(x1, A) = |A|, score(x2, A) = |A| but
x1 ≺ x2. Need to use score with A′ = A ∪ {x1, x2}.

5 The MOGEN Algorithm

As stated in [4], most current state-of-the-art multi-objective optimization algo-
rithms are evolutionary/genetic algorithms. These algorithms provide Pareto
front approximations of high quality both in terms of spreading and in terms
of distance to the real Pareto front but at the cost of an important number of
function evaluations [9]. In many real world applications, the cost of evaluating
the objective functions is too high to make those techniques practicable. Alter-
native multi-objective optimization methods should allow to find high quality
Pareto front approximations using a small number of evaluations of the objective
functions. The MOGEN algorithm attempts to perform efficient multi-objective
optimization search using a limited amount of evaluations of the objective func-
tions.

According to [4], only few multi-objective optimization search techniques
which are not evolutionary/genetic algorithms are efficient. In particular, the
Direct Multi-Search (DMS) algorithm introduced in [5] can be considered state-
of-the-art. The Direct Multi-Search algorithm has the particularity that its
archive contains triplets (x,D, α) where x is a point in the input space, D is
a set of direction vectors and α is a real number. At each iteration, a triplet
(x,D, α) is selected and new points are computed for a subset of d ∈ D with
xnew = x + α × d. The new points are then inserted as triplets (xnew,D, α) in
the archive if they are not dominated (and dominated points are removed from
the archive).

The MOGEN algorithm described in Algorithm 1 follows a similar approach
since it associates to each point in the archive an algorithm and its current state
of execution. MOGEN aims at using several single-objective DFO algorithms
to perform multi-objective optimization. In MOGEN, the single-objective DFO
algorithms are used to discover new points that are potentially inserted into a
Pareto front approximation shared by all the single-objective DFO algorithms
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used. It is possible to use these single-objective DFO algorithms by modifying
the comparison function they usually use such that they favour points improving
the shared Pareto front. All the data needed by an algorithm to continue its
execution starting from where it has stopped is enclosed in its state of execution.
This is illustrated on Figure 3. However MOGEN differs in two ways:

1. It may use several single-objective DFO algorithms. In Figure 3, three dif-
ferent DFO algorithms are used.

2. It uses the cmp≺(A) comparison function, focusing on the possible improve-
ments of the current archive.

To the best of our knowledge no other multi-objective optimization search
method proposes to use single-objective DFO algorithms. In MOGEN, several
single-objective DFO algorithms are in competition.

f1

f2

y0

y1

y2

y3

Directional 
Direct Search 

Nelder-Mead 

Multi Directional Search

Nelder-Mead 

Fig. 3. An example of a MOGEN archive. The current state of execution is attached
to each point of the archive. For example, y1 is the best point of the simplex of a
Nelder-Mead algorithm state.

Algorithm 1. MOGEN
Input: F A set of functions fi : R

n → R to optimize
Input: Ω The feasible region (Ω ⊆ R

n)
Input: cmp A comparison function
Input: M A set of DFO algorithms
Output: Arch A set of non-dominated points in R

n which is an
approximation of the Pareto front

1 Arch ← InitArchive(M , Ω)

2 while stopping criterion not met do
3 (x, a, s) ← SelectIterate(Arch)
4 (Ynew, snew) ← Apply(x, a, s, cmp, Ω)

5 Arch ← AddAndClean(Arch, Ynew, a, snew)

6 return Arch
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5.1 The Algorithm

The MOGEN algorithm described in Algorithm 1 takes several parameters as
input. The first parameter, F , is the set of functions to optimize. The second
parameter, Ω, is the feasible region of the considered problem. The third parame-
ter, cmp, is the comparison function used by DFO algorithms to compare points.
This comparison function must be adapted to the type of problem considered
(e.g. deterministic maximization, stochastic minimization, . . .). In this article,
we assume MOGEN uses the comparison function cmp≺(A). The last parameter,
M = {a1, . . . , am}, is a set of single-objective derivative-free algorithms in which
the comparison function cmp can be used. A simplified version of MOGEN could
consider the use of a single algorithm which would be the same for every element
in the archive.

The InitArchive function in Algorithm 1 at Line 1 initializes the archive
as a set of triplets (x, a, s) where x ∈ Ω, a is an algorithm from the set of
algorithms M and s is a state for the algorithm a in which x is the best point
(according to cmp). This state s is needed to be able to start a new iteration
of the algorithm from where it was paused before. The algorithm a considered
can still remain a black-box algorithm; it only has to be able to perform a
single iteration on demand. After the initialization, the elements in Arch are
non-dominated points. Once Arch has been initialized, the algorithm updates it
iteratively until a stopping criterion is met. This stopping criterion is somewhat
arbitrary. Examples of stopping criteria are: a given number of iteration has been
reached, a given number of evaluations has been exceeded or the running time
of the algorithm exceeds a given threshold.

The first step performed at each iteration at Line 3 is the selection of a
triplet (x, a, s) in the archive as current iterate. The Apply function at Line 4
allows to perform a single iteration of a DFO algorithm from a given state1. It
takes five elements as parameters. The first parameter is x, the best point of the
state s. The second parameter, a is the algorithm on which the iteration has to
be performed. The third parameter is s, the state from which the algorithm a
begins its iteration. The fourth parameter, cmp, is the comparison function used
in a. The last parameter is Ω, the feasible region. Apply returns two elements.
The first one is Ynew, the set of new points discovered during the iteration of
a (the algorithm sometimes discovers multiple interesting points, for example
in the case of a Shrink of the Simplex in the Nelder-Mead algorithm). The
second one is snew, the new state reached after one iteration of a was performed
starting from state s.

Once Ynew has been computed, the function AddAndClean at Line 5 updates
the archive. It takes four arguments. The first argument is the current archive,
Arch. The second argument, Ynew, is the set of new points found by using the
Apply function with x, a, s, cmp and Ω. The third argument is the algorithm
that was used to find the points in Ynew and the fourth argument snew is the
state of algorithm a in which new points from Ynew were found. AddAndClean
1 For instance a reflection operation applied to the simplex of a Nelder-Mead instance.
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compares every point yi in Ynew with elements from the archive. If an element in
the archive is dominated by a point yi, it is removed from Arch. If a point yi is
not dominated by any point in the archive Arch, it is added in Arch as a triplet
(yi, a, snew). When an element (yi, a, snew) is added to the archive, the state of
execution snew associated to yi is a clone of the state of execution from which it
was obtained; as such, each instance of the same algorithm in the archive has its
own state of execution that is not shared. When the stopping criterion is met,
the algorithm returns the current archive, Arch.

If we consider an archive containing triplets with several different DFO algo-
rithms ai, then MOGEN performs elitism on these algorithms. Indeed, an algo-
rithm abad performing poorly and failing to find a lot of new non-dominated
points will generate fewer new point triplets (xj , abad, sj) in the archive. On
the opposite, an algorithm agood with good performances discovering many new
non-dominated points will generate more new point triplets (xk, agood, sk) in
the archive. Furthermore, the AddAndClean function will clean points which are
further from the optimal Pareto front. Triplets (xj , abad, sj) obtained with algo-
rithms failing to get closer to the optimal Pareto Front will be eventually removed
from the archive. Such algorithms will have less and less triplet representatives
and potentially disappear from the archive. On the opposite, algorithms gener-
ating a lot of non-dominated points and getting closer to the optimal Pareto
front will have more and more triplets representatives. As such, the MOGEN
algorithm is elitist because it tends to use more and more often algorithms pro-
viding good results and to use less and less often (or even abandon) algorithms
providing poor results.

5.2 Running Example

Let us consider a small running example of the MOGEN algorithm. This bi-
objective problem has the following definition:

minimize F (x1, x2) ≡ {
(x1 − 1)2 + (x1 − x2)2), (x1 − x2)2 + (x2 − 3)2

}

such that x1, x2 ∈ Ω ≡ [−5, 5]

We consider an initial archive containing only two triplets: one associated to the
Nelder-Mead algorithm and the other one to the Directional Direct Search algo-
rithm. The first triplet is (x0, NM, s0) where x0 = (2.0, 2.0), NM is the Nelder-
Mead algorithm and s0 = {x0 = (2.0, 2.0);x0,1 = (0.0, 2.0);x0,2 = (2.0, 0.0)} is
the hypervolume (also called simplex) structure (i.e. the state) of the Nelder-
Mead algorithm. This hypervolume is well sorted according to the cmp≺(A) since
its evaluations are: {F (x0) = (1.0, 1.0);F (x0,1) = (5.0, 5.0);x0,2 = (5.0, 13.0)}.
The second triplet is (x1,DDS, s1) where x1 = (0.75, 1.5), DDS is the Direc-
tional Direct Search algorithm and s1 = (D1, alpha1) is the state of the DDS
algorithm where D1 = {(1, 0); (−1, 0); (0, 1); (0,−1)} is the collection of unit
vectors and α1 = 0.5 is the step size. The initial archive is thus Arch =
{(x0, NM, s0), (x1,DDS, s1)}.

The first iteration begins with SelectIterate(Arch). For this example, we
consider that SelectIterate considers the archive as a FIFO queue; it selects
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the first triplet in the archive. At the end of end of the iteration, the cur-
rent iterate triplet is appended at the end of the archive with the new dis-
covered points. The selected triplet is (x0, NM, s0). The iteration continues
with Apply(x0, NM, s0, cmpArch, Ω) that applies an iteration of the Nelder-Mead
algorithm starting from state s0. The Nelder-Mead algorithm applies a reflec-
tion and an internal contraction discovering the new point xnew

0 = (1.5, 1.0)
which evaluations are F (xnew

0 ) = (0.5, 4.25). The Apply function returns a pair
(Y new

0 , snew0 ) where Y new
0 = {xnew

0 = (1.5, 1.0)} is the set of new points discov-
ered and snew0 = {x0 = (2.0, 2.0);xnew

0 = (1.5, 0.5);x0,1 = (0.0, 2.0)} is the new
hypervolume for the Nelder-Mead algorithm associated to x0. Then the itera-
tion ends with AddAndClean(Arch, Y new

0 , NM, snew0 ) which inserts points from
Y new
0 in Arch such that they are associated to NM and snew0 . The new archive

is thus Arch = {(x1,DDS, s1), (xnew
0 , NM, snew0 ), (x0, NM, snew0 )} at the end of

the first iteration.
The second iteration begins with SelectIterate(Arch) which returns

the triplet (x1,DDS, s1). Then, Apply(x1,DDS, s1, cmpArch0 , Ω) applies
an iteration of the Directional Direct Search algorithm starting from
state s1. Polling discovers a new point xnew

1 = (1.25, 1.5) which eval-
uation is F (xnew

1 ) = (0.125, 2.3125). The Apply function returns a
pair (Y new

1 , snew1 ) where Y new
1 = {xnew

1 = (1.25, 1.5)} and snew1 =
(D1, α1 = 1.0). Finally, AddAndClean(Arch, Y new

1 ,DDS, snew1 ) inserts points
from Y new

1 in Arch to obtain Arch = {(x0, NM, snew0 ), (xnew
1 ,DDS, snew1 )}.

Note that xnew
0 and x1 have been removed from the archive since they were

dominated by xnew
1 .

6 Performance Assessment and Benchmarks

Intuitively it is desirable for a Pareto front estimation to contain points close
to the optimal Pareto front and representing a diversified subset of the optimal
Pareto front. Several measures exist to evaluate these two criteria (see in [17]
and [16]). We present only the purity and delta metrics both used in [5] to
evaluate the state-of-the-art Direct Multi-Search algorithm.

6.1 The Purity Metric

The Purity metric defined in [1] allows to compare several Pareto front approx-
imations and define which one is the closest to the optimal Pareto front. Let us
consider several different multi-objective DFO algorithms. Let A be the set of
archives Ai produced by each algorithm i, and let Aglobal be the union of these
archives Ai with dominated points removed:

Aglobal =

{

u ∈
⋃

A
Ai

∣
∣
∣
∣
∣
∀ v �= u ∈

⋃

A
Ai : u ⊀ v

}
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The Purity metric of an archive Ai ∈ A is then defined as the ratio of the number
of points in both Ai and Aglobal and the number of points in Aglobal:

Purity(Ai) =
|Ai ∩ Aglobal|

|Aglobal|
The higher the Purity of an archive Ai is, the less points from Ai are dominated
by other archives and the closer Ai is to the optimal Pareto front. As mentioned
in [5], two similar solvers produce similar archives, which can decrease their
performances for the Purity metric since many points from these approximations
will dominate each other. Therefore a third solver could benefit from this effect
and obtain a higher Purity metric performance than the other two. To avoid this
phenomenon, we only compare solvers in pairs for the Purity metric.

6.2 The Delta Metric

The Delta metric, Δ, proposed in [6] and extended in [5], is a spreading metric
like the Gamma metric (Γ ) defined in [5]. The Γ metric is however ambiguous for
problems with more than two objectives. For a given archive, Fi is an objective
space containing k dimensions, the Delta metric Δ(Ai) is defined as follows:

Δ(Ai) = max
j=1,...,n

(
δ0, j + δk, j +

∑k−1
i=1

∣
∣δi, j − δ̄j

∣
∣

δ0, j + δk, j + (k − 1)δ̄j

)

where δ̄j for j = 1, . . . , n is the average of the distances δi, j = fi+1, j − fi, j with
i = 1, . . . , k − 1 (assuming the objective function values have been sorted by
increasing value for each objective j). This metric allows to measure how well
an archive is spread along several objective dimensions.

6.3 Benchmark Problems

Our goal is to assess the performances of the MOGEN algorithm on a wide range
of multi-objective problems reported in the literature. We consider problems
involving bound constraints on each dimension, i.e. problems where the input
space is contained in a hyper-volume: Ω = [l, u] with l, u ∈ R

n and l < u.
In [5], a collection of 100 problems with bound constraints from the literature

was modelled in AMPL (A Modelling Language for Mathematical Programming)
[10]. This collection of problems, available at http://www.mat.uc.pt/dms, contains
a wide range of problems with different dimensions and properties. We used this
collection to assess the performances of our algorithm.

The results obtained on these benchmarks for the Purity and the Δ metrics
are reported graphically using performance profiles as in [8] and [5]. Let tp, s
represent the performance of the solver s ∈ S on the problem p such that lower
values of tp, s indicate better performance. The ratio of the performance is defined
as follows: rp, s = tp, s

min{tp, s∗ |s∗∈S} . A ratio rp, s = 1 means that solver s obtained

the best value on problem p. The performance profile ρs(τ) = 1
|P |×|{p ∈ P |rp, s ≤

τ}| is a cumulative distribution of the performance of s compared to other solvers.
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7 Results

Our results are divided in two parts. We first compare different MOGEN variants,
then we compare MOGEN to the Direct Multi-Search algorithm.

7.1 Comparison of MOGEN Variants

The MOGEN algorithm can be instantiated in several ways since it involves
several parameters and heuristics. We restrict our experimental comparison to
different algorithm sets in the initial archive; the other (meta-)parameters are
fixed and described as follows.

We decided to initialize all MOGEN variants with the Line Multiple Point
Initialization. It selects n equidistant points on the line connecting l and u,
respectively the lower and the upper bound of the input space Ω ⊆ R

n. The
initial archive is defined as follows: A0 = {l+( i

n−1 )(u−l)} where i = 0, . . . , n−1.
The results obtained in this paper were all performed for n = 10 to ensure that
all MOGEN variants start from the same initial archive. To select the iterate
at the beginning of each iteration, we apply the (fair) First In First Out Queue
selection heuristics. This means every iteration, a point is popped from the queue,
an iteration is performed and the point (and possibly the new points found) is
inserted back into the queue.

Finally, MOGEN variants may differ according the DFO algorithm associated
with each point in the initial archive. We consider four different versions of
MOGEN with the following algorithm proportions:

– MOGEN(NM) uses only the Nelder-Mead algorithm introduced in [13].
– MOGEN(DDS) uses only the Directional Direct Search algorithm as

described in [3].
– MOGEN(MDS) uses only the MultiDirectional Search algorithm intro-

duced in [7].
– MOGEN(ALL) uses the three algorithms described above; namely Nelder-

Mead, Directional Direct Search and MultiDirectional Search. These algo-
rithms are represented in the initial archive in identical proportions.

In Figure 4 we see the evolution of the average Purity metric on the bench-
marks for the four MOGEN variants. As can be observed, MOGEN(NM) outper-
forms the other three variants. Even after a very small number of evaluations,
MOGEN(NM) already has a high average Purity metric. It remains the case
after a larger number of evaluations.

In Figure 5 we see the performance profiles of the Purity metric for the four
MOGEN variants with a maximum budget of 20,000 evaluations. The perfor-
mance profiles graph have to be read as follow: for a given solver s, a point on
this graph in (τ, ρ(τ)) means that for a proportion ρ(τ) of the tested instances,
the solver s was at worst τ times worse than the best performance obtained on
all solvers represented in the graph. As such, the height ρ(τ) reached by a solver
s in τ = 1 represents the proportion ρ(τ) of instances on which solver s obtained
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the best performance among all represented solvers. If the curve of a given solver
s never reaches ρ(τ) = 1 but stops at ρ(τ) = r, it means that the solver obtained
an infinite performance ratio for a proportion (1 − r) of the instances.

As can be observed, MOGEN(NM) outperforms the three other variants.
These curves even show that MOGEN(NM) is very efficient. Indeed, for τ = 1,
MOGEN(NM) obtains the best metric value for more than 85% of the prob-
lems. MOGEN(NM) is also very robust since it is able to find at least one non-
dominated point for more than 95% of the problems (i.e. there were less than
5% of the instances for which MOGEN(NM) was not able to discover a single
point in the global archive). MOGEN(ALL) is only the second best. This could
be explained by the fact that, eventually, points in the archive associated to the
MDS and DDS algorithms are dominated by points associated to NM, leading
to an increasing proportion of points associated to NM, performing better.

In Figure 6 we see the evolution of the average Δ metric on the bench-
marks for the four MOGEN variants. As can be observed, MOGEN(NM) out-
performs the other three variants. Even after a very small number of evaluations,
MOGEN(NM) already has a low average Δ metric. It remains the case after a
larger number of evaluations as this metric stabilizes after around 1,000 evalua-
tions.

Figure 7 shows performance profiles of the Delta metric for the four MOGEN
variants. For the Δ metric, MOGEN(NM) seems to outperform the other vari-
ants. We can also see that it is again the MOGEN(DDS) variants that seems
to have the worst performance for the Δ metric while the MOGEN(MDS) and
the MOGEN(ALL) variants have similar performances. We can conclude that,
according to the Purity and the Δ metrics, MOGEN(NM) is the MOGEN variant
showing the best performance.

7.2 Comparison of MOGEN and Direct Multi-Search

In [5], the authors show that the Direct Multi-Search (DMS) algorithm outper-
formed state-of-the-art solvers. We compare the best MOGEN variant,
MOGEN(NM), to DMS. The parameters used for MOGEN(NM) are the same
that those used to compare MOGEN variants. In Figure 8, we compare the
purity metrics for MOGEN(NM) and the DMS algorithm. MOGEN(NM) per-
forms globally better than the DMS algorithm. Indeed, the performance profile
reveals that MOGEN(NM) has the best purity metric value for more than 65% of
the instances while the DMS algorithm only has the best purity metric value for
less than 40% of the instances. The fact that the DMS algorithm seems to per-
form better than MOGEN(NM) for 8 instances between τ = 6 and τ = 100 only
means that when the archive of DMS is largely dominated by another archive,
it tends to have a few more non-dominated points than MOGEN(NM).
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Fig. 4. Average Purity evolution -
MOGEN

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

τ

ρ

MOGEN(NM)
MOGEN(DDS)

2,000 4,000 6,000
0

0.2

0.4

0.6

0.8

1
Purity Performance Profile

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

τ

ρ

MOGEN(NM)
MOGEN(MDS)

1,000 2,000 3,000
0

0.2

0.4

0.6

0.8

1
Purity Performance Profile

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

τ

ρ

MOGEN(NM)
MOGEN(ALL)

500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1
Purity Performance Profile

Fig. 5. Purity performance profiles -
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Figure 7 shows performance profiles of the Δ metric for the four MOGEN
variants and DMS. For the Δ metric, DMS seems to outperform the MOGEN
variants. However, a solver can have a very good Δ metric performance while
its archive is completely dominated by the archives of other solvers. As such,
DMS seems to diversify more than MOGEN(NM) but tends to produce archives
dominated by those produced by MOGEN(NM). Similarly to what is done in
DMS, a search step could be added at the beginning of each iteration of MOGEN
to perform more diversification.
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8 Conclusion

In this paper, we introduced a new comparison function, cmp≺(A), allowing
to compare points in a multi-objective optimization context with regards to
an existing archive A. We defined a new generic multi-objective optimization
framework, MOGEN, that uses single-objective DFO algorithms with cmp≺(A).
Several MOGEN variants using different sets of DFO algorithms have been
compared and the one with the Nelder-Mead algorithm has obtained the best
performances. The comparison between DMS and MOGEN revealed that the
latter produces archives closer to the optimal Pareto front but tends to be less
diversified.

Several research directions could be explored as future work. It would be
interesting to use MOGEN with different comparison functions. Other algo-
rithms could be used in the algorithm as well and it is possible that other single-
objective DFO algorithms would improve greatly the performances obtained by
MOGEN. The heuristics used in this algorithm should also be studied to reveal
how much they impact the produced archive.
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Abstract. In mixed-integer programming, the branching rule is a key
component to a fast convergence of the branch-and-bound algorithm.
The most common strategy is to branch on simple disjunctions that
split the domain of a single integer variable into two disjoint intervals.
Multi-aggregation is a presolving step that replaces variables by an affine
linear sum of other variables, thereby reducing the problem size. While
this simplification typically improves the performance of MIP solvers, it
also restricts the degree of freedom in variable-based branching rules.

We present a novel branching scheme that tries to overcome the above
drawback by considering general disjunctions defined by multi-aggregated
variables in addition to the standard disjunctions based on single vari-
ables. This natural idea results in a hybrid between variable- and con-
straint-based branching rules. Our implementation within the constraint
integer programming framework SCIP incorporates this into a full strong
branching rule and reduces the number of branch-and-bound nodes on a
general test set of publicly available benchmark instances. For a specific
class of problems, we show that the solving time decreases significantly.

1 Introduction

Since the invention of the branch-and-bound method for solving mixed-integer
linear programming in the 1960s [1,2], branching rules have been an important
field of research, being one of its core components. For surveys, see [3–5]. In this
paper we address branching strategies for mixed-integer linear programs (MIPs)
of the form

min{cTx : Ax ≤ b, � ≤ x ≤ u, xi ∈ Z for all i ∈ I} (1)

with c ∈ R
n, A ∈ R

m×n, b ∈ R
m, �, u ∈ R̄

n where R̄ := R ∪ {±∞}, and
I ⊆ N = {1, . . . , n} being the index set of integer variables. When removing the
integrality restrictions, we obtain the linear programming (LP) relaxation of the
problem.
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 141–156, 2015.
DOI: 10.1007/978-3-319-18008-3 10
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If the solution x̃ to the LP relaxation of (1) is fractional, i.e., if the index
set Ĩ := {i ∈ I : x̃i /∈ Z} of fractional variables is not empty, the task of a
branching rule is to split the problem into two or more subproblems. The strategy
is typically to exclude the LP solution from all subproblems while keeping the
feasible integer solutions, each being present in exactly one subproblem.

The choice of which subproblems to create is crucial for the performance of
the algorithm. The approach most widely used by MIP solvers is to branch on
simple disjunctions

xk ≤ �x̃k�
∨

xk ≥ 
x̃k�. (2)

each side being enforced in one subproblem. As this procedure splits the domain
of a single variable at a time, it is also called branching on variables. Alterna-
tively, branching can be performed on a general disjunction

πTx ≤ π0

∨
πTx ≥ π0 + 1. (3)

where (π, π0) ∈ Z
n × Z, and πi = 0 for all i /∈ I.

Branching on variables can be seen as the special case in which all considered
disjunctions are of the form (π, π0) = (ej , �x̃j�), ej being the j-th unit vector.
Note that for branching on variables the set of branching candidates among which
a branching rule chooses is usually the list of fractional variables Ĩ. For branching
on general disjunctions, the branching candidates consist of a potentially much
larger list of disjunctions of form (3). Research on general branching disjunctions
has largely been dedicated to determine a short list of promising candidates, see
our literature overview in Sec. 2.

Another key component of state-of-the-art MIP solvers is presolving. It
is applied before the branch-and-bound process and transforms a given MIP
instance into a typically smaller instance with a tighter relaxation, which is hope-
fully easier to solve. These reductions can be based on pure feasibility arguments
(keeping the set of feasible solutions unchanged) as well as optimality arguments
(excluding also feasible solutions as long as one optimal solution remains).

Important presolving operations are fixings, aggregations, and multi-aggre-
gations of variables. Here, fixing means that a variable gets permanently assigned
to a constant value, aggregation means that a variable is replaced by (a constant
value plus a scalar multiple of) another variable, and multi-aggregation means
that a variable gets replaced by an affine linear combination of several variables.
Hence, a multi-aggregated variable is a variable that is present in the original for-
mulation, but is represented by an affine linear sum of variables in the presolved
problem.

Contribution. The intuitive appeal of branching on general disjunctions is
the increased degree of freedom that promises the creation of more balanced
subproblems with tighter relaxations. This obvious advantage comes with the
main challenge of determining promising candidate disjunctions. We address this
difficulty by considering specifically the subset of disjunctions that are defined
by the affine combinations stemming from multi-aggregations performed during
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the presolving stage. These disjunctions are naturally available in state-of-the-
art MIP solvers at no cost and branching on them mimics branching on decision
variables in the original model formulation.

Note that while the set of all general disjunctions of form (3) is exponen-
tially large even when restricting π to {−1, 0, 1}n, the set of multi-aggregated
variables provides a list of potential candidates that is linear w.r.t. the size of
the original model. Our experiments show that—in combination with standard
single-variable disjunctions—this restriction yields not only a managable, but
also computationally promising set of candidate disjunctions.

The remainder of the article is organized as follows. In Sec. 2, we give an
overview of the literature on branching in MIP, with a particular focus on
branching on general disjunctions. Sec. 3 introduces in more detail the con-
cept of multi-aggregation, and Sec. 4 describes the idea of our new branching
strategy and details about the implementation in the constraint integer program-
ming framework SCIP [6,7]. In Sec. 5 we presents our computational study and
Sec. 6 contains our conclusions and gives an outlook on potential extensions of
branching on multi-aggregated variables.

2 Related Work

Various criteria for selecting fractional variables for branching on simple dis-
junctions have been presented in the literature. Most selection rules focus on the
improvement in the dual bound that the branching restrictions produce in the
created child nodes since this helps to tighten the global dual bound and prune
nodes early. A fundamental strategy of this type is strong branching [8], which
tentatively restricts the bound of a candidate variable and explicitly computes
the resulting dual bound of the potential child node by solving the LP relaxation.

The full strong branching rule applies this at every node for each fractional
variable. This typically leads to very small branch-and-bound trees, but on the
other hand invests considerable effort in analyzing candidates. On average, this
usually results in an overall performance deterioration w.r.t. computing time [5].
Nevertheless, the default branching rules in most state-of-the-art MIP solvers use
some restricted form of strong branching and combine it with history information
to reduce the computational effort for branching in later solving stages. Further
strategies based on the same criteria can be found in [4,7,9–12]. Recent research
efforts on different criteria for variable-based branching rules include, e.g., [13–
18].

Branching on general disjunctions dates back to the 1980s [19], and has been
addressed by various researchers in the last 15 years, see, e.g., [20–24]. The main
challenge is to find a good class of general disjunctions that can lead to a better
and more accurate tightening process of the feasible region, and consequently
to a faster convergence of the dual bound to the optimal solution value, ideally
without requiring a high computational effort for its generation and evaluation.

Owen and Mehrotra [20] present an algorithm that determines the branching
disjunction via a neighborhood search heuristic. They prove that their algorithm
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is finite, if all variables have finite bounds and the size of the coefficients in the
used disjunctions is bounded. As a consequence, they restrict their search to
coefficients πi ∈ {−1, 0, 1}. Combining this idea with [13], Mahmoud and Chin-
neck [24] choose a constraint that is active for the current LP optimum and
construct a general disjunction with coefficients in {−1, 0, 1} that is as perpen-
dicular or as parallel as possible to the chosen active constraint.

Karamanov and Cornuéjols [22] consider disjunctions which correspond to
Gomory mixed integer cuts (GMICs) [25]. They filter the GMICs to only keep
the ten deepest cuts, and apply a strong-branching-like procedure on the corre-
sponding candidate disjunctions. An extension of [22] is proposed by Cornuéjols
et al. [23] who not only consider GMICs on tableau rows, but also on linear
combinations of the tableau rows.

On the theoretical side, Mahajan and Ralphs proved that the problem of find-
ing a general disjunction with maximal objective gain is NP-hard [26]. Finally,
Local Branching by Fischetti and Lodi [27] is a strategy to interleave variable-
based branching with branching on general {−1, 0, 1}-disjunctions. These dis-
junctions measure the distance to the incumbent solution.

A typical result when branching on general disjunctions in MIP is that the
generated branching trees are smaller on average, but the performance deterio-
rates w.r.t. running time. One major reason for this computational overhead is
that the set of candidate disjunction for branching is much larger, so that a lot
of time is spent determining the best one to choose at each node. However, this
could in principle be overcome if we had more efficient (implicit) algorithms for
evaluating the set of candidates, and it is of course not an issue when such set
is still relatively small.

Another, more structural reason is that branching on variables changes a
variable bound, which often fixes the variable to the other bound (in partic-
ular when branching on binary variables). This decreases the size of the LP
relaxation for the subproblems by (at least) one column, whereas branching on
general disjunctions potentially increases the LP’s size by one row. This affects
the simplex algorithm, which in most cases is the method of choice for solving
the LP relaxations during LP-based branch-and-bound. Because the dimension
of the basis matrix increases when adding a new row, most simplex implementa-
tions will have to recompute its factorization, causing computational overhead. In
addition, many performance-relevant components of state-of-the-art MIP solvers
such as domain propagation and conflict analysis are currently designed to ben-
efit from branching on variables and become less effective when branching is
performed on general disjunctions.

3 Multi-aggregations of Variables

Before the branch-and-bound process is started, state-of-the-art MIP solvers
perform a presolving phase during which they analyze the problem and remove
redundancies, tighten the formulation, and collect information about the problem
structure, see [7,28–31] for examples. This procedure is exact in the sense that
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each optimum of the simplified problem can be mapped to an optimal solution
of the original problem.

The presolving technique which forms the basis of our newly developed
branching rule is the multi-aggregation of variables. It reduces the number of
variables by

1. detecting that—in at least one optimal solution—variable xk equals an affine
linear combination of other variables, i.e.,

xk =
∑

j∈Sk

αk
jxj + βk, (4)

with Sk ⊆ N , k �∈ Sk,
2. replacing every occurrence of xk in constraints and objective function by the

right-hand side in (4), and
3. enforcing the bounds on xk—if finite—by adding the new constraint

�k ≤
∑

j∈Sk

αk
jxj + βk ≤ uk. (5)

Equation (4) may either be explicitly present as one of the problem constraints1

or implied by a combination of constraints and optimality conditions. An exam-
ple for the latter is the case when xk appears in exactly one constraint and its
objective function coefficient ensures that this constraint will be fulfilled with
equality in an optimal solution. The constraint integer programming framework
SCIP, which we use for our computational experiments, has five different pre-
solving operations in which multi-aggregation is performed.

After this step, one of the constraints implying (4) usually becomes void or is
modified to enforce (5). If xk is an integer variable, multi-aggregations are only
performed if the integrality is enforced by the multi-aggregation. This holds, e.g.,
if (4) is an integer combination of integer variables, i.e., Sk ⊆ I, αk

j ∈ Z for all
j ∈ Sk, and βk ∈ Z.

In order to avoid a deterioration of performance and potential numerical
problems during LP solving, it is crucial to safe-guard against fill-in in the con-
straint matrix. This can be done a priori by comparing the number of non-zeros
that would be removed to the number of non-zeros that would get introduced
in the constraint matrix, the latter of which can be bounded from above by the
cardinality of S times the number of occurences of xk.

To the best of our knowledge, all state-of-the-art MIP solvers use some form
of multi-aggregation. For a test set of general MIP instances consisting of the last
three MIPLIB [32–34] benchmark sets, the performance of SCIP is deteriorated
by 3% on average when disabling multi-aggregation. Taking into account that
multi-aggregations are performed for no more than 15% of the instances in this
test set, this shows that multi-aggregations significantly improve the performance
of MIP solvers when applicable.
1 Although in (1) we have formulated MIPs in terms of inequalities, this also includes

equality constraints formulated via two inequalities.
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In the following, we call a variable inactive, if presolving removed it from the
problem. This includes variables which are already fixed to some value as well as
aggregated and multi-aggregated variables. All other variables are called active.
During the subsequent solving process, inactive variables are disregarded since
their solution value is uniquely defined by the value of the active variables. In
the remainder of this article, a MIP of form (1) always refers to the presolved
problem containing only active variables. When referencing the original problem,
we are using the following notation: the index sets of original and corresponding
integer variables are denoted by N ′ and I ′, respectively. Original variables are
written as x′

i and the variable on the left-hand side of a multi-aggregation (4)
is an original variable x′

k, while all variables on the right-hand side are active
variables xj .2

4 Branching on Multi-aggregated Variables

Simple aggregations of form x′
k = αk

jxj +βk performed during presolving do not
restrict the choices of variable-based branching rules since branching on the sub-
sequently inactive variable x′

k remains implicitly possible by branching on xj . In
contrast, branching on multi-aggregated variables cannot be realized via branch-
ing on active variables. We are not aware of any study that has investigated the
effect of multi-aggregation on the performance of branching rules and note that
this restriction may indeed have negative performance impact—especially since
this effect is currently not considered during presolving.

Our new branching strategy considers the general disjunctions defined by all
multi-aggregations (4) for which k ∈ I ′ but

∑
j∈Sk

αk
jxj + βk evaluates to a

fractional value in the current LP solution. In a strong branching fashion, we
tentatively test which improvement in the local dual bounds we would obtain by
adding one part of the corresponding general disjunction. We compare this to
the improvements obtained by simple disjunctions on fractional active variables
and choose the best among all branching disjunctions.

The motivation is twofold: first, to compensate for the above drawback, and
second, to obtain a set of candidates for general branching disjunctions that is
available at no cost in state-of-the-art MIP solvers and computationally man-
agable. As mentioned earlier, the set of all general disjunctions of form (3) is
exponentially large even when restricting π to {−1, 0, 1}n, in contrast to that,
the number of multi-aggregations is linear w.r.t. the size of the original model.

In an LP-based branch-and-bound algorithm, the multi-aggregated branching
rule is called whenever the optimal solution x̃ to the linear relaxation of the
current node is fractional. Its procedure is outlined in Algorithm 1.

First, strong branching is performed on all elements in the set of fractional
variables Ĩ. For each candidate variable xi, two auxiliary LPs are solved to
compute dual bounds z̃− and z̃+ for the potential child nodes. If both are larger
2 Note that nested multi-aggregations can be transferred into this form by (recursively)

replacing inactive variables in the right-hand side of a multi-aggregation (4) by the
corresponding constant or affine linear combination of variables.
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Algorithm 1. Multi-aggregated branching rule

input : – a MIP of form (1),
– an optimal solution x̃ of the LP relaxation,
– an upper bound z∗ on the objective value of solutions, and
– the index set A′ ⊆ N ′ of multi-aggregations of form (4),

x′
k =
∑

j∈Sk αk
j xj + βk, k ∈ A′, Sk ⊆ N

output : – a branching disjunction of form (3) given as (π̃, π̃0) ∈ Z
n × Z, or

– a valid inequality, or
– the conclusion that the current node can be pruned

begin1

// 0. initialization

for k ∈ A′ ∩ I′ do // compute LP values of multi-aggregated vars2

x̃′
k :=

∑
j∈Sk αk

j xj + βk
3

Ĩ := {i ∈ I : x̃i /∈ Z} // single-variable candidates4

Ã := {k ∈ A′ ∩ I′ : x̃′
k /∈ Z} // multi-aggregated candidates5

(π̃, π̃0) := (0, 0) // incumbent disjunction6

s(π̃,π̃0) := −∞ // incumbent score7

// 1. full strong branching on simple disjunctions

for i ∈ Ĩ do8

z̃− ← min{cT x : Ax ≤ b, � ≤ x ≤ u, xi ≤ �x̃i	}9

z̃+ ← min{cT x : Ax ≤ b, � ≤ x ≤ u, xi ≥ �x̃i	 + 1}10

if min{z̃−, z̃+} ≥ z∗ then return current node can be pruned11

else if z̃− ≥ z∗ then return valid inequality xi ≥ �x̃i	 + 112

else if z̃+ ≥ z∗ then return valid inequality xi ≤ �x̃i	13

else if score(z̃−, z̃+) > s(π̃,π̃0) then14

(π̃, π̃0) := (ei, �x̃i	)15

s(π̃,π̃0) := score(z̃−, z̃+)16

// 2. full strong branching on multi-aggregated disjunctions

for k ∈ Ã do17

z̃− ← min{cT x : Ax ≤ b, � ≤ x ≤ u,
∑

j∈Sk αk
j xj ≤ �x̃′

k	 − βk}18

z̃+ ← min{cT x : Ax ≤ b, � ≤ x ≤ u,
∑

j∈Sk αk
j xj ≥ �x̃′

k	 − βk + 1}19

if min{z̃−, z̃+} ≥ z∗ then return current node can be pruned20

else if z̃− ≥ z∗ then return
∑

j∈Sk αk
j xj ≥ �x̃′

k	 − βk + 1 valid21

else if z̃+ ≥ z∗ then return
∑

j∈Sk αk
j xj ≤ �x̃′

k	 − βk valid22

else if score(z̃−, z̃+) > s(π̃,π̃0) then23

(π̃, π̃0) := (
∑

j∈Sk αk
j ej , �x̃′

k	 − βk)24

s(π̃,π̃0) := score(z̃−, z̃+)25

return branching disjunction (π̃, π̃0)26

end27
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than or equal the given upper bound (usually the objective function value of
the incumbent solution), we can stop since no better solution can be found in
the current subproblem and the node can be cut off. If only one of the two
dual bounds is smaller than the upper bound, the corresponding bound change
can directly be applied at the current problem, since the other child node does
not contain an improving solution. If both dual bounds are smaller than the
upper bound, the score for the candidate variable is computed and the simple
disjunction (ei, �x̃i�) corresponding to branching on this variable is stored as
new best candidate if its score exceeds the best one found so far. The branching
score used in SCIP is the product of the objective gains of the two child nodes,
more specifically,

score(z̃−, z̃+) = max{Δ−
j , ε} · max{Δ+

j , ε} (6)

with ε = 10−6 and Δ−
j = z̃− −cT x̃ and Δ+

j = z̃+−cT x̃ being the objective gains
in the child nodes when branching on xj .

In the second step of the algorithm, full strong branching is performed on
the general disjunctions defined by the multi-aggregated variables of the orig-
inal problem. To this end, all integer multi-aggregated variables x′

k are taken
into account for which the LP solution translates into a fractional solution x̃′

k.
Analogously to the first step, two auxiliary LPs are solved with the potential
branching disjunction added and the computed dual bounds are compared to the
upper bound in order to prune the node or identify valid constraints. The score
of the candidate disjunction is evaluated and compared to the best score found
so far. If it is higher, the candidate disjunction is updated. Note that possible
ties are broken in favor of candidate variables, since those are evaluated first and
we are looking for strict improvements.

In the case that a valid bound change or inequality was found, we stop the
branching rule, tighten the formulation, and return to the MIP solving process,
which will continue by applying domain propagation, reoptimizing the LP, and
calling the branching rule again if needed. After the evaluation of all candidate
variables and disjunctions, and if no such valid bound or inequality was found,
the best disjunction is returned and branching is performed on it.

5 Computational Results

In the following, we present our experiments with branching on multi-aggregated
variables. We used the academic constraint integer programming framework
SCIP 3.1.0 [6,7] with SoPlex 1.7.0.4 [35] as underlying LP solver and imple-
mented Algorithm 1 as a branching rule plug-in. Our new method builds on the
full strong branching scheme and extends it by choosing as the set of candidates
to evaluate via strong branching not only candidate variables, but also candi-
date disjunctions given by multi-aggregations. Therefore, it is consequential to
compare our strategy with the basic full strong branching rule of SCIP.

All results were obtained on a cluster of 3.2 GHz Intel Xeon X5672 CPUs
with 48 GB main memory, running each job exclusively on one node. To keep the
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computation time under control, a time limit of 7200 seconds for each instance
was imposed.

Settings. We compare the methods for two different settings. The first one,
called pure, focuses on the main goal of a branching rule, namely proving the
optimality of a solution. To this end, it disables cutting plane separation, primal
heuristics, domain propagation, restarts, and conflict analysis. Additionally, we
provide the optimal objective value as a cutoff bound at the beginning of the
solving process. This is done in order to measure only the impact of branching
without side-effects to and from other solver components. In particular, this
reduces performance variability, cf. [34]. The second setting is called default and
runs full strong branching (SB) and multi-aggregated branching (MA) in the
SCIP default environment.

Instances. Our first experiments were performed on a test set of scheduling
[36,37] instances. More specifically, we were investigating resource allocation and
scheduling problems, where jobs are assigned to machines, thereby minimizing
the processing costs which depend on the machine on which a job is performed.
Given sets J of jobs and M of machines, the capacity C ∈ N of the machines,
and assignment cost cj,m, resource allocation and scheduling can be expressed
via the following MIP model [38]:

min
∑

m∈M

∑

j∈J
cj,mxj,m

s.t.
∑

m∈M
xj,m = 1 for all j ∈ J ,

∑

t∈Tj,m

xt
j,m = xj,m for all m ∈ M, j ∈ J ,

∑

j∈J

∑

t̄∈T t
j,m

cjx
t̄
j,m ≤ C for all m ∈ M, t ∈ T ,

xt
j,m ∈ {0, 1} for all m ∈ M, j ∈ J , t ∈ Tj,m,

xj,m ∈ {0, 1} for all m ∈ M, j ∈ J .

The formulation uses binary variables xj,m and xt
j,m, which represent the

decision whether job j ∈ J is processed on machine m ∈ M, and whether the
processing of job j ∈ J on machine m ∈ M is started at time t ∈ T , respectively.
We use two subsets of the time periods: Tj,m which contains all time steps in
which job j can start on machine m, and T t

j,m which further restricts Tj,m to
those starting times causing j to be (still) running in period t. When solving
these instances, the xj,m variables are frequently multi-aggregated, which makes
this problem an interesting test case for our first experiments.

We used a collection of 335 scheduling instances modeled this way in [38]. We
excluded all instances that were solved either during presolving or at the root
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node. This left a total of 263 problem instances with the default setting and 276
instances with the pure setting.

In our second experiment, we used a test set of general MIP instances from dif-
ferent sources, including MIPLIB [32–34] and the Cor@l test set [39]. We removed
some instances which to the best of our knowledge have never been solved so far
and two numerically unstable instances giving slightly different results with both
branching rules. Additionally, we restricted the test set to instances in which pre-
solving performed multi-aggregations and removed instances which were solved
during presolving or at the root node without branching. This gave us two test
sets for the pure and default settings of 76 and 107 instances, respectively.

In the following, we present aggregated results over these test sets. For
detailed instance-wise results, we refer to [40].

5.1 Results for Scheduling Instances

Table 1 compares the multi-aggregated branching strategy (MA) against the
basic version of full strong branching (SB) available in SCIP with both pure
and default settings, as indicated in the first column.

The remainder of the table is split into two parts: The four columns below
the “scheduling test set” label display numbers about the performance on the
complete scheduling test set. Column “size” shows the number of instances in
the test set, “solved” gives the number of instances solved to proven optimality
within the time limit of two hours. Column “faster” (“slower”) show the num-
ber of instances that the MA strategy solved at least 10% faster (slower) than
standard full strong branching.

The right side of the table, labeled “all optimal”, shows results for the subset
of instances that both variants in the respective setting solved to optimality.
Column “size” shows the number of instances in this subset, “nodes” the shifted
geometric mean of the B&B nodes and “time (s)” the shifted geometric mean
of the running time in seconds. We use shifts of 100 and 10 for the number of
nodes and the solving time, respectively. For a discussion of the shifted geometric
mean, we refer to [41, Appendix A3].

Let us first look at the results with the pure settings, which focus on the plain
branch-and-bound performance. They are promising: 25 more instances (142 vs.
117) can be solved by branching on multi-aggregated variables compared to
standard strong branching; this corresponds to an increase of more than 20%.
Furthermore, 100 instances are solved at least 10 % faster with the new method,
compared to 13 which slow down by 10% or more. This corresponds to 70% of
the instances being solved faster with branching on multi-aggregated variables.
Looking at the instances that were solved to optimality by both variants, both
the number of nodes and the requested time are reduced by a factor of two on
average: 58% less nodes are needed and 49% less time.

When looking at the results with default settings, the effect is smaller, but
still significant: the multi-aggregated branching strategy is able to solve 9 more
instances to optimality, with 56 instances being solved faster and 31 slower. On
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Table 1. Results for scheduling instances with default and pure settings

scheduling test set all optimal
setting size solved faster slower size nodes time (s)

SB-pure 276 117 115 472 51.8
MA-pure 276 142 100 13 115 196 26.4

SB-default 263 126 122 349 84.6
MA-default 263 135 56 31 122 221 70.3

instances that both variants solve to optimality, it needs 37% less nodes and
reduces the solving time by 17%.

One might argue that the multi-aggregation of variables itself could have a
negative impact on the performance for the scheduling instances as it restricts
standard branching rules from branching on the xj,m variables which can be seen
as first-level decisions. However, this is only partly true: When disabling multi-
aggregations, the shifted geometric mean of the number of branch-and-bound
nodes is indeed decreased by 14% for the instances solved to optimality both with
and without multi-aggregations. On the other hand, the average solving time is
increased slightly by 2%. This shows that the gains obtained by having more
branching opportunities with multi-aggregation disabled are compensated by not
being able to reduce the problem size so much and having more effort, e.g., in LP
solving. Our proposed branching scheme takes the best of both variants, allowing
the problem size reductions while still providing the potentially more powerful
branching possibilities given by the multi-aggregated variables. This helps to
improve both the number of nodes as well as the solving time significantly over
the individual best of the two other variants.

Let us note that the positive effect of branching on multi-aggregated vari-
ables grows stronger the harder an instance is. This seems reasonable since the
additional overhead might not pay off if a standard strong branching is able to
solve an instance within a few nodes. When taking into account only instances
which needed more than 100 seconds to solve by at least one setting, the reduc-
tion in the number of nodes and the solving time goes up to 42% and 25%,
respectively.

This first computational experiment shows that branching on multi-aggre-
gated variables can significantly improve the performance of SCIP compared
to a pure variable-based branching rule: more instances are solved, with less
enumeration, in shorter time. Note that in all cases the relative reduction in
running time was smaller than the relative reduction in the number of branch-
and-bound nodes, which is a typical result for branching strategies that involve
general disjunctions (see Sec. 2).

In order to analyze the impact of the new branching rule in more detail,
we collected some statistics during the execution of SCIP. On average over the
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test set, the number of integer multi-aggregations is only 5.7% of the number of
integer variables. Thus, the list of branching candidates is only slightly extended
in most cases, which overcomes a typical issue for branching on general disjunc-
tions. Interestingly, despite this relatively small number of multi-aggregations,
39% of the branching decisions select a multi-aggregated disjunction for branch-
ing. Even more, in 85% of the cases, the first branching on a multi-aggregated
disjunction was performed at the root node.

Finally, each time we perform a multi-aggregated branching, we store the
ratio of the gain that we would have obtained when branching on the best
fractional variable compared to the gain obtained by branching on the current
multi-aggregated variable. The gain is computed as the square root of the SCIP
branching score value and thus measures the improvement in the score SCIP
tries to maximize. On average over all calls where we branched on a multi-
aggregated disjunction, the gain would have been reduced to 22% by branching
on the best variable instead.

5.2 Results for General MIP Instances

The results for our collection of general MIP instances are presented in Table 2.
The columns and rows show the same statistics as described in Sec. 5.1. We can
see that on these instances, multi-aggregated branching is significantly slower
and solved one less instance in both settings, compared to standard strong
branching. With pure settings, the solving time increases by 25 % while the num-
ber of branch-and-bound nodes is decreased by 13 %. Compared to the schedul-
ing instances, multi-aggregated variables are much less effective for branching.
That the increased effort in strong branching outweighs the observed node reduc-
tion seems plausible. These results confirm our observation from the scheduling
instances in the sense that the impact on the number of branch-an-bound nodes
was better than the impact on the overall running time. For the scheduling
instances, the additional candidates were structurally different and allowed dif-
ferent, higher-level decisions which had an enormous effect on the tree size that
even allowed for a running time reduction. For standard MIPs, however, such a
large effect is apparently obtained rarely, thus, the performance deteriorates on
average. The picture looks even worse for the default settings. Here, the solving
time increases by 26 % and the number of nodes now increases by 6 % as well.

Again, we collected statistics to analyze the impact of the multi-aggregated
branching scheme. On average over the test set, the amount of integer multi-
aggregations is almost twice as high as for the scheduling set, namely 14.4% of
the number of integer variables. However, multi-aggregated variables are selected
less often (only for 1.84% of the branchings) and consequently, also the first
branching on a multi-aggregated disjunction was less often performed at the
root node (only for 7.4% of the instances for which multi-aggregated branching
was performed). If a multi-aggregated disjunction was selected, selecting the best
fractional variable instead would have decreased the gain by 31% on average,
compared to 78% for the scheduling instances. This shows that multi-aggregated
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Table 2. Results for general MIP instances with default and pure settings

MIP test set all optimal
setting size solved faster slower size nodes time (s)

SB-pure 76 33 32 983 150.9
MA-pure 76 32 0 26 32 852 188.9

SB-default 107 55 49 253 100.4
MA-default 107 57 1 33 49 269 126.3

disjunctions play a smaller role for branching on this test set, but can still be
used to improve the quality of branching disjunctions.

Even more surprising is the increase in the number of nodes, which can be
explained, however, by the tailoring of many MIP solving algorithms towards
variable-based branching. Domain propagation (or node preprocessing, see, e.g.,
[28] for MIP), for example, tries to tighten the local domains of variables by
inspecting the constraints and current domains of other variables at the local
subproblem. Tightening or fixing variables by branching is naturally beneficial
for domain propagation, the impact of adding general disjunctions is rather
opaque. Furthermore, techniques like primal heuristics, cutting plane separation,
or conflict analysis profit from tightened variable bounds rather than from added
general disjunctions. Since all these techniques help to reduce the size of the
branch-and-bound tree, branching on general disjunctions with a high branching
score can even increase the number of nodes, since as a side effect it makes the
named procedure less effective.

We see our results for general MIPs as an important negative result that con-
firms previous observations by other authors that it is hard to find a branching
rule on general disjunctions which is competitive on standard MIP benchmarks.
Our results indicate that this holds even when restricting the selection to rela-
tively few additional candidates that are naturally obtained from the problem
structure. Finally, adapting procedures like primal heuristics or conflict analysis
in such a way that they benefit from added constraints as much as from tight-
ened or fixed variables might be a prerequisite to excel with constraint-based
branching schemes in state-of-the-art MIP solvers.

6 Conclusions and Outlook

In this paper, we presented a new branching rule which takes into account a
specific type of general disjunctions. These general disjunctions, so-called multi-
aggregations, are the affine linear sums of active variables in the presolved prob-
lem, which correspond to a decision variable in the original problem. We extended
the full strong branching rule of SCIP by taking additionally into account
all general disjunctions induced by multi-aggregations. On a set of scheduling
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instances, this significantly improved the performance of SCIP w.r.t. the tree
size as well as the solving time and the number of solved instances.

We tested the same branching rule on standard MIP benchmark sets. The
results were much less convincing, but a certain potential for branching on
multi-aggregated variables was indicated by the observation that in a “pure”
setting, it led to a reduction in the number of branch-and-bound nodes for gen-
eral MIPs. However, before this potential can be harnessed, we conclude that
many advanced solution techniques applied in state-of-the-art MIP solvers—
domain propagation, conflict analysis, etc.—must be extended towards a more
efficient handling of general disjunctions. An additional performance bias is the
slow-down in current simplex implementations when adding and removing con-
straints. This bottleneck may be alleviated by the recent developments of [42,43],
which improve the underlying linear algebra routines such that the factorization
of the basis matrix is preserved when adding new rows. We identify these points
as important directions for future research.

Another field for future research would be to find criterions to assess the
structure of multi-aggreagations and predict the power of the new scheme for
the current instance in order to decide on whether to use it or not. A first
basic variant of this would be to heuristically detect scheduling substructures
and turn on the branching scheme for the involved multi-aggregations. Many
improvements for MIP solving in recent years are based on specific structures,
cf. [44,45]. If this structure is detected, they lead to a significant improvement—
as is the case for our scheme for scheduling problems—while the detection is
typically fast enough that the performance on other problems is not deterio-
rated. Therefore, we are convinced that the new strategy can also improve the
performance of MIP solvers for general MIP test sets.

The proposed strategy has been studied and implemented for the first time
in the constraint integer programming framework SCIP. Since it proved its
effectiveness for certain problem classes, it will be available in the next release
of SCIP.
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Abstract. Scheduling has been a successful domain of application
for constraint programming since its beginnings. The cumulative

constraint – which enforces the usage of a limited resource by several
tasks – is one of the core components that are surely responsible of this
success. Unfortunately, ensuring bound-consistency for the cumulative

constraint is already NP-Hard. Therefore, several relaxations were pro-
posed to reduce domains in polynomial time such as Time-Tabling, Edge-
Finding, Energetic Reasoning, and Not-First-Not-Last. Recently, Vilim
introduced the Time-Table Edge-Finding reasoning which strengthens
Edge-Finding by considering the time-table of the resource. We pursue
the idea of exploiting the time-table to detect disjunctive pairs of tasks
dynamically during the search. This new type of filtering – which we call
time-table disjunctive reasoning – is not dominated by existing filtering
rules. We propose a simple algorithm that implements this filtering rule
with a O(n2) time complexity (where n is the number of tasks) without
relying on complex data structures. Our results on well known bench-
marks highlight that using this new algorithm can substantially improve
the solving process for some instances and only adds a marginally low
computation overhead for the other ones.

Keywords: Constraint programming · Scheduling · Cumulative con-
straint · Time-table · Disjunctive reasoning

1 Introduction

Many real-world scheduling problems involve cumulative resources. A resource
can be seen as an abstraction of any renewable entity – as machinery, electric-
ity, or even manpower – which is used to perform tasks (also called activities).
Although many tasks could be scheduled simultaneously on a same resource, the
total use of a resource cannot exceed a fixed capacity at any moment.

In this paper, we focus on a single cumulative resource with a discrete finite
capacity C ∈ N and a set of n tasks T = {1, . . . , n}. Each task i has a starting
time si ∈ Z, a fixed duration di ∈ N, and an ending time ei ∈ Z such that the
equality si + di = ei holds. Moreover, each task i consumes a fixed amount of
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 157–172, 2015.
DOI: 10.1007/978-3-319-18008-3 11
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Fig. 1. Task i is characterized by its start-
ing time si, its duration di, its ending time
ei, and its resource consumption ci

Fig. 2. Accumulated resource con-
sumption over time. The cumulative

constraint ensures that the maximum
capacity C is not exceeded.

resource ci ∈ N during its processing time. Tasks are non-preemptive, i.e., they
cannot be interrupted during their processing time. In the following, we denote
by si and si the earliest and the latest starting time of task i and by ei and ei
the earliest and latest ending time of task i (see Fig. 1). The cumulative con-
straint [1] ensures that the accumulated resource consumption does not exceed
the maximum capacity C at any time t (see Fig. 2):

∀t ∈ Z :
∑

i∈T : si≤t<ei

ci ≤ C. (1)

Unfortunately, ensuring bound consistency for the cumulative constraint is
already NP-Hard [11]. Therefore, many relaxations were proposed during the
last two decades to remove inconsistent starting and ending times in polyno-
mial time. Among them, the Time-Tabling filtering rule has been the subject of
much research in the scheduling community [4,9,13]. The idempotent algorithm
proposed by Letort in [9] implements Time-Tabling with a O(n2) time com-
plexity and has been successfully applied on problems with hundreds of thou-
sands of tasks. The fastest (non-idempotent) known algorithm for Time-Tabling
has a time complexity of O(n log n) [13]. Despite its scalability, Time-Tabling
suffers from limited filtering. On the other extreme, Energetic Reasoning [3,10]
achieves a strong filtering at the cost of a prohibitive O(n3) time complexity.
Between these two extremes, several tradeoffs were proposed to
balance strong filtering with low time complexity, e.g., Edge-Finding [6,15],
Time-Table Edge-Finding [16], Time-Table Extended-Edge-Finding [13], or Not-
First-Not-Last [14]. All the filtering rules listed above are subsumed by the fil-
tering achieved by Energetic Reasoning at the exception of Not-First-Not-Last
that is not comparable with Energetic Reasoning.

Surprisingly, Disjunctive Reasoning (DR) [3] has only been partially adapted
to the cumulative context. In [2], Baptiste and Le Pape proposed to detect sets
of tasks that cannot overlap in time without exceeding the amount of resource
available initially. However, this approach is limited as it does not take in account
the changes in the amount of resource available over time. This situation is
illustrated in Fig. 3 where a task k has been fixed (by search or propagation).
It is easy to see that tasks i and j cannot overlap in time due to the amount
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Fig. 3. Tasks i and j cannot overlap in time due to the amount of resource already
consumed by task k. As j cannot be scheduled before i, j has to be scheduled after i:
ei ≤ sj . This situation is not detected by the approach proposed in [2].

of resource consumed by k. Unfortunately, this situation is not detected by the
approach proposed by Baptiste and Le Pape.

In this work, we propose to improve Disjunctive Reasoning by considering
changes in the amount of resource available. Similarly to the idea of Vilim in [16],
we leverage the time-table – a core concept of Time-Tabling – to detect disjunc-
tive pairs of tasks dynamically. Our new filtering rule – namely Time-Table Dis-
junctive Reasoning – is not subsumed by any known filtering rule. We propose
a simple algorithm that implements this filtering rule with a O(n2) time com-
plexity without relying on complex data structures. We also propose two ways of
improving the filtering of this algorithm. Our results on well known benchmarks
from PSPLIB [7] highlight that Time-Tabling Disjunctive Reasoning is a promis-
ing filtering rule for state-of-the-art cumulative constraints. Indeed, using our
algorithm can substantially improve the solving process of some instances and,
at worst, only adds a marginally low computation overhead for the other ones.

This paper is structured as follows. Section 2 describes the time-table and
the necessary background. Section 3 is dedicated to the Time-Table Disjunctive
Reasoning rule and presents the algorithm and two possible extensions. The
evaluation of our approach is presented in Section 4. This paper concludes on
future works and possible improvements.

2 Mandatory Parts and Time-Table

Even tasks that are not fixed convey some information that can be used by
filtering rules. For instance, tasks with a tight execution window must consume
some resource during a specific time interval known as mandatory part.

Definition 1 (Mandatory part). Let us consider a task i ∈ T . The manda-
tory part of i is the time interval [si, ei[. Task i has a mandatory part only if its
latest starting time is smaller than its earliest ending time.
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If task i has a mandatory part, we know that task i will consume ci of resource
during all its mandatory part no matter its starting time. Fig. 4 illustrates the
mandatory part of an arbitrary task i.

Fig. 4. Task i has a mandatory part [si, ei[ if its latest starting time si is smaller than
its earliest ending time ei: si < ei. Task i always consumes the resource during its
mandatory part no matter its starting time.

By aggregation, mandatory parts allow to have an optimistic view of the
resource consumption over time. This aggregation is known as the time-table
(also called minimum resource profile).

Definition 2 (Time-Table). The time-table TTT is the aggregation of the
mandatory part of all the tasks in T . It is formally defined as the following
step function:

TTT = t ∈ Z −→
∑

i∈T | si≤t<ei

ci. (2)

The problem is inconsistent if ∃t ∈ Z : TTT (t) > C.

The time-table can be computed in O(n) with a sweep algorithm given the tasks
sorted by latest starting time and earliest ending time [4,9,16].

3 Time-Table Disjunctive Reasoning

In order to explain Time-Table Disjunctive Reasoning, we will use some addi-
tional notations. Let I, J be time intervals. If I ⊆ J , we say that J contains I.
If I ∩ J 	= ∅, we say that I overlaps J , or that I and J overlap.

3.1 Disjunctive Reasoning and Minimum Overlapping Intervals

In [3], Baptiste et al. briefly describe Disjunctive Reasoning in the cumulative
context as a reasoning on all pairs of tasks i 	= j that enforces bound-consistency
on the formula:

ci + cj ≤ C ∨ ei ≤ sj ∨ ej ≤ si. (3)

The filtering rule to update start variables based on this formula is given next.
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Proposition 1 (Disjunctive Reasoning). Let us consider a pair of tasks
i 	= j in T , such that ci + cj > C, sj < ei and si < ej. Then, ei ≤ sj must hold.

This rule states that if i and j cannot overlap, and if scheduling j at sj would
make it overlap i, then ei ≤ sj , so the start of j must be at least ei. We say
that task i is a pushing task while task j is a pushed task. A rule for filtering
the ending times can be derived by symmetry.

The rule from Prop. 1 does some of the work of time-table filtering: when ci+
cj > C and i has a mandatory part, the reasoning on pair (i, j) is subsumed by
time-tabling [3]. An additional filtering can be achieved by Disjunctive Reasoning
when task i does not have a mandatory part. This filtering occurs when placing
task j at sj would make it overlap i in every schedule. It is based on the fact that
j cannot contain a time interval that i must overlap. When i has no mandatory
part, there is a minimum such interval.

Definition 3 (Minimum Overlapping Interval). The minimum overlapping
interval of task i, denoted moii, is the smallest time interval that overlaps i no
matter the starting time of i. It is defined by the interval [ei − 1, si]. Task i is
always executed during at least one time point of moii.

The moi of a task i is illustrated in Fig. 5.

Fig. 5. Minimum overlapping interval of task i. Wherever i is placed, i must overlap
moii, and moii is the smallest such interval.

When a task has a mandatory part, we consider that it has no minimum
overlapping interval. Using the concept of minimum overlapping interval, it is
possible to rewrite the part of Prop. 1 that is specific to Disjunctive Reasoning.

Proposition 2 (Restricted Disjunctive Reasoning). Let us consider a
pair of tasks i 	= j such that task i has no mandatory part (ei ≤ si) and that
ci + cj > C. If scheduling task j at its earliest starting time makes it completely
overlap the minimum overlaping interval of i (moii ⊆ [sj , ej [), then ei ≤ sj must
hold.

The rule from Prop. 2 is illustrated in Fig. 6. Algorithm 1 directly follows from
this rule.
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Fig. 6. On the left, tasks i and j cannot fit together for capacity reasons. Setting sj
to sj would make j contain moii, and placing i would be impossible. On the right, the
inconsistent values of sj are removed, these are t ≤ min(moii). This filtering is achieved
by setting sj to ei.

Algorithm 1. O(n2) algorithm to enforce rule of Prop. 2
Input: a set of tasks T , capacity C
Input: an array s′ mapping i to si
Output: array s′ mapping i to updated starting time

1 for i ∈ T such that ei ≤ si do
2 for j ∈ T − {i} do
3 if ci + cj > C ∧ moii ⊆ [sj , ej [ then

4 s′
j ← max(s′

i, ei)

3.2 Restricted Time-Table Disjunctive Reasoning

One weakness of Disjunctive Reasoning lies in the fact that it does not take into
account the changes in the amount of resource available over time (see Fig. 3).
In this section, we show how to exploit the information contained in the time-
table (see Section 2) to propose an enhanced disjunctive filtering rule called
Time-Table Disjunctive Reasoning.1 We first introduce Time-Table Disjunctive
Reasoning for the case where tasks i and j have no mandatory part and thus do
not contribute to the time-table. This particular case saves us from removing the
possible contribution of i or j from the time-table when applying a disjunctive
reasoning. This restricting assumption will be relaxed to any pair of tasks later
on in section 3.3.

Let us consider a pair of tasks i 	= j with no mandatory parts such that
moii ⊆ [sj , ej [. Then Prop. 2 only compares ci + cj to C. However, tasks in
T −{i, j} may not leave C units of resource available during the overlap of i and
j. We derive a new rule that leverages the mandatory part of such tasks.

Proposition 3. Let us consider a pair of tasks i 	= j ∈ T such that i and j have
no mandatory part and that ci + cj +mint∈moii TTT (t) > C. If scheduling task j

1 The idea of leveraging the time-table to strengthen an existing filtering rule has
already been applied successfully in [13,16].



Time-Table Disjunctive Reasoning for the Cumulative Constraint 163

at its earliest starting time makes it completely overlap the minimum overlapping
interval of i (moii ⊆ [sj , ej [), then ei ≤ sj must hold.

Proof. If j contained moii, then j would increase consumption by cj during all of
moii, because j does not yet contribute to resource consumption. Then, placing
i anywhere would increase consumption by ci at some point t of moii, making
consumption at t greater than C. Moreover, since moii ⊆ [sj , ej [, the duration
of j is such that scheduling j before ei makes j contain moii. Hence, these values
are inconsistent, and ei ≤ sj must hold. �

Using this rule, we can only filter values among tasks with no mandatory
parts. Next section shows how to apply the same reasoning to every task.

3.3 Time-Table Disjunctive Reasoning

Using the same idea as in [13,16], we strengthen our rule further by splitting
every task in two parts, a free part and the mandatory part.

Definition 4 (Free part). Let us consider a task i ∈ T such that i has a
mandatory part (si < ei). Its free part, denoted if , is a separate task with the
same earliest starting time and latest ending time as i: sif = si and eif = ei.
The duration of if is equal to the duration of i minus the size of its mandatory
part: dif = di − (ei − si). If i has no mandatory part, then i = if .

Fig. 7. A task i with a mandatory part and its free part if . The free part if always
has a minimum overlapping interval moiif .

Free parts have no mandatory part and always have an moi (see Fig. 7). In
the remainder, we refer to Tf = {if | i ∈ T ∧ dif > 0} as the set of all the free
parts of strictly positive duration (i.e. free parts of not assigned tasks).

Using free parts enables us to use any task in the reasoning, without worrying
whether or not they contribute to the time-table. Notice that while the update
is triggered by computations on free parts of tasks, the actual update should be
made on tasks themselves, here sj .
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Proposition 4 (Time-Table Disjunctive Reasoning). Let us consider a
pair of tasks if 	= jf ∈ Tf such that ci + cj + mint∈moiif

TTT (t) > C. If task jf
scheduled at its earliest starting time completely overlaps the minimum overlap-
ping interval of if (moiif ⊆ [sjf , ejf [), then, eif ≤ sj must hold.

Proof. Suppose that the premises are true, and then suppose sj ≤ min(moii).
Since jf contains moiif when left-shifted and dj ≥ djf , placing j before or at
min(moiif ) makes it contain moiif . Notice that j does not contribute to the
time-table during moiif , since max(moiif ) ≤ ejf = min(ej , sj).

If i has no mandatory part, it does not contribute to the time-table. This
means that ∀t ∈ moiif , TT (t) = TTT −{i,j}(t). Then placing j before or at
min(moii) increases resource consumption on moiif by cj , which prevents i = if
from being placed on its moi, and is contradictory.

If i has a mandatory part, it contributes to the time-table on [min(moiif ) +
1,max(moiif ) − 1]. Placing j before or at min(moiif ) increases resource con-
sumption at min(moiif ) and at max(moiif ) by cj , This prevents if from being
left-shifted or right-shifted, which in turn means that i itself cannot overlap
these time points. Since it must overlap at least one of these points, this is
contradictory. �

Algorithm 2 is an easy to implement O(n2) algorithm combining moi and
free parts abstractions. This algorithm enforces the updates of starting times
given by Prop. 4. The tasks Pushing are candidate pusher tasks (taking the role
of i). The tasks Pushed are candidate pushed tasks (take the role of j). For
now, they are both Tf . The time-table is basically an array of pairs (t, c) where
t is a time and c is a consumption, it must be sorted by nondecreasing t. Its
initialization in line 1 can be done in O(n log n), by sorting tasks according to
s and e and sweeping over these time points. In line 3, consumption(i,TT) can
be implemented2 as mint∈moiif

TT(t), it can be computed in linear time on the
time-table. Hence, this algorithm is O(n2). Its correctness follows from Prop. 4.

Proposition 5. The filtering of Time-Table Disjunctive Filtering is not sub-
sumed by Energetic Reasoning nor by Not-First-Not-Last.

Proof. Figure 8 shows an example where Time-Table Disjunctive Reasoning can
filter some values, but Energetic Reasoning and Not-First-Not-Last cannot. Task
i is defined by (si, ei, di, ci) = (2, 11, 3, 2), task j is defined by (sj , ej , dj , cj) =
(1, 20, 9, 1). Consumption in the resource could come from task k, defined by
(sk, ek, dk, ck) = (2, 11, 9, 1). Tasks i and j have no mandatory part, so if = i
and jf = j. The condition moii = [4, 8] ⊆ [sj , ej [= [1, 10[ is satisfied, and the
minimum of TT over moii = [4, 8] is 1. It means that the two tasks i and j,
consuming respectively 2 and 1 unit of resource, are not allowed to overlap over
[4, 8]. Hence sj is updated to min(moii) + 1 = ei = 5. �
2 This primitive is voluntarily let abstract to describe further improvements.
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Algorithm 2. Time-Table Disjunctive filtering algorithm
Input: sets of tasks T , Pushing ⊆ Tf and Pushed ⊆ Tf , capacity C
Input: an array s′ initially mapping i to si
Output: array s′ with updated starting times

1 TT ← initializeT imeTable(T )
2 for if ∈ Pushing do
3 gap ← C − ci − consumption(i,TT)
4 for jf ∈ Pushed −{if} do
5 if moi(i) ⊆ [s(j), e(j)[ then
6 if cj > gap then
7 s′

j ← max(s′
j , e(i))

1

2

0 41 52 3 6 107 118 9 12 13 14 16 1715 18 19 20
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3
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1

Fig. 8. Due to the time-table, tasks j and i cannot overlap. Since j cannot be scheduled
before i, j has to be scheduled after i: ei ≤ sj .

3.4 Improvements

The computation of allowed gap in Prop. 4, reflected at line 3 of Algorithm 2,
can be strengthened in some cases, allowing to filter more values.

Pushing Task Does Not Fit Inside Its moi. When the duration of if
is larger than its moi, we can strengthen the gap allowed by i by taking the
minimum of the time-table on extremities of moiif instead of taking it on the
whole interval:

Proposition 6 (Improvement 1). Let if 	= jf ∈ Tf , such that |moiif |− 1 ≤
dif . Suppose moiif ⊆ [sjf , ejf [ and

cif + cjf + min(TT(min(moiif )),TT(max(moiif ))) > C

then eif < sj must hold.
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Proof. If sj ≤ min(moiif ), then j contains moiif , so it contains the extremities
of moiif . Thus, j makes the consumption at min(moiif ) and max(moiif ) increase
by cj . Because of its duration, if must overlap at least one of min(moiif ) and
max(moiif ). Doing so would overload the resource, so this is contradictory. �

1

2

0 41 52 3 6 107 118 9 12 13 14 16 1715 18 19 20

0

3

2

1

Fig. 9. Illustration of Prop. 6

Example 1. We refer to the Figure 9. Task i = if has moii = [4, 7], and 3 =
|moii |−1 ≤ di = 5. Prop. 4 does not cause any update, since mint∈moii TT(t) =
0. However, Prop. 6 would trigger and would compute a smaller gap, since
min(TT(4),TT(7)) = 1. Hence, Prop. 6 allows us to adjust the starting time
of j to 5.

Notice that improving Algorithm 2 using Prop. 6 can be done by changing
consumption(i,TT) at line 3 to compute the minimum only at the extremities
of moii when |moiif | ≤ dif + 1.

Pushing Task Has a Mandatory Part. When task i has a mandatory part,
despite if ’s domain, the consumption of if will not really be scheduled inside
moiif . Thus, we can strengthen the gap in the same way as the previous improve-
ment:

Proposition 7 (Improvement 2). Let if 	= jf ∈ Tf , such that i has a manda-
tory part. Suppose moiif ⊆ [sjf , ejf [ and

cif + cjf + min(TT(min(moiif )),TT(max(moiif ))) > C

then eif < sj must hold.
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1
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Fig. 10. Illustration of Prop. 7

Proof. The argument is the same as for Prop. 6: i must overlap either min(moiif )
or max(moiif ), hence computing the gap using only these points is sufficient. �

Example 2. We refer to the Figure 10. Task i has a mandatory part. Since 4 =
|moiif | − 1 > dif = 2, we are not in the case of application of Prop. 6. We
cannot apply Prop. 4 either, since mint∈moiif

(TT(t)) is 1, allowing i and j to
overlap. Nevertheless, since i has a mandatory part, we can apply Prop. 7 and
use min(TT(4),TT(8)) = 2 to compute the gap, which forbids i and j to overlap
in moiif . Hence, Prop.7 allows us to adjust the starting time of j to 5.

Once more, improving Algorithm 2 using Prop. 7 can be done by changing
consumption(i,TT) at line 3 to compute the minimum only at the extremities
of moii when i has a mandatory part.

Reducing the Number of Pairs to Consider. Our algorithm has a theoreti-
cal O(n2) time complexity, but it is possible to reduce it in practice by removing
tasks that cannot push, and by removing tasks that cannot be pushed. Refining
these sets allows to keep the same filtering, while examining much less than the
theoretical O(n2) pairs of tasks.

First, pushing tasks must have a tight enough moi and high enough con-
sumption during their moi to push any other task. After refining Pushing, we
found useful to refine tasks of Pushed according to their time location: a pushed
task must not be schedulable before the minimal earliest start of pushing tasks
mois, and must be updatable at least by their maximal earliest end.

This procedure is formalized in Algorithm 3.
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Algorithm 3. Refinement of Pushing and Pushed with O(n) overhead
Input: a set of tasks T , initialized TT, capacity C
Output: Pushing and Pushed arrays for TTDR input

1 D = max dif , G = max cif
2 Pushing0 = {if ∈ Tf s.t. | moiif | ≤ D}
3 for if ∈ Pushing0 do
4 gapif

← C − ci − consumption(i,TT)

5 Pushing = {if ∈ Pushing0 s.t. gapif
< G}

6 S = minif∈Pushing sif , E = maxif∈Pushing eif
7 Pushed = {if ∈ Tf s.t. sjf < E ∧ S < ejf }

4 Experiments and Results

This section presents the experimental evaluation of Time-Table Disjunctive
Reasoning (TTDR) on several well known benchmarks of the Resource Con-
straints Project Scheduling Problem (RCPSP) from PSPLIB [7]. The aim of
these experiments is to measure the performance of the cumulative constraint
when TTDR is added to a set of filtering rules. To achieve this, we compared
the performance of classical filtering rules with and without TTDR. Here is the
exhaustive list of the compared algorithms:

– Time-Tabling (TT) is implemented using a fast variant of [9];
– Time-Table Disjunctive Reasoning (TTDR) implemented as described in this

paper with all proposed improvements;
– Edge-Finding (EF) is implemented as proposed in [6];
– Energetic Reasoning (ER) is the well known implementation proposed by

Baptiste et al. in [3]. We added some improvements proposed by Derrien et
Petit to reduce the number of considered intervals [5];

– Not-First-Not-Last (NFNL) is implemented with a O(n3) variant of the algo-
rithm proposed by Schutt et al. [14].

All the algorithms were implemented in the open-source OscaR Solver [12]. The
priorities chosen for cumulative constraints in the propagation queue are such
that TT is executed first, then TTDR, EF, ER and finally NFNL. We used a
classic SetTimes search [8], breaking ties by taking a task of minimal duration.

We used a machine with a 4-core, 8 thread Core(TM) i7-2600 CPU @ 3.40GHz
processor and 8GB of RAM under GNU/Linux. using Java SE 1.7 JVM.

We report the cumulated distribution F (τ) of instances solved within com-
putational limit τ in Fig. 11 and Fig. 13. On the left column, τ refers to time,
on the right it refers to the size of the search tree; the x-axis is logarithmic in
both cases. F (τ) = k means that k instances where solved under τ ms or nodes.
We set a timeout of 90s for every computation.3 Due to a lack of room, we only
3 Which is why time graphs will not show points further than 217ms.
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Fig. 11. Plots for all instances of PSPLIB30. y-axis is the cumulative number of solved
instances. In the left column, x-axis is log2(t), with t time in ms. In the right column,
x-axis is log2(n), with n the number of nodes to find optimal and prove optimality.

display results obtained on instances with 30 and 120 tasks. Results obtained on
instances with 60 tasks are similar. However, we observed that adding TTDR
has a very little effect on instances with 90 tasks in which only two additional
instances were closed using TTDR.

In Fig. 12 and Fig. 14, we report results for destructive lower bound experi-
ments, that compute the best lower bound given by propagation alone.

Despite its O(n2) theoretical complexity, the algorithm for TTDR is more of
a lightweight algorithm. The only computation overhead appears on very small
time limits when TTDR is used with TT. However, the additional filtering of
TTDR quickly takes over, allowing to solve more instances for a given time
limit τ . The PSPLIB instances are well-known to be rather disjunctive than
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Stack TT TT+EF TT+ER+NFNL

Score 26364 26712 26765

+TTDR, Score 26543 26815 26845

+TTDR, #Improvements 104 73 65

Fig. 12. Results for destructive lower bound experiments. Score is the sum of proven
lower bounds, with the original stack or with TTDR. #Improvements shows the number
of instances where adding TTDR gives a strictly higher bound.
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Fig. 13. Plots for all instances of PSPLIB120. y-axis is the cumulative number of solved
instances. In the left column, x-axis is log2(t), with t time in ms. In the right column,
x-axis is log2(n), with n the number of nodes to find optimal and prove optimality.
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Stack TT TT+EF TT+ER+NFNL

Score 58365 69074 69509

+TTDR, Score 58575 69117 69536

+TTDR, #Improvements 132 33 22

Fig. 14. Results for destructive lower bound experiments. Score is the sum of proven
lower bounds, with the original stack or with TTDR. #Improvements shows the number
of instances where adding TTDR gives a strictly higher bound.

cumulative.4 Adding energy-based reasoning on PSPLIB instances is a risky
trade-off. Indeed, energy-based reasoning does not trivialize much the PSPLIB
instances, whereas TTDR does improve on the number of instances solved by TT
alone. This confirms experimentally that TTDR is complementary to existing
energy-based filtering for the cumulative constraint (see Prop. 5)

Finally, we also see that the gain in solved instances does not drop from the
30-task set to the 120-task set. This means that the filtering depends more on
the nature of instances than on their size, and that the O(n2) algorithm for
TTDR scales well.

5 Conclusion

This paper introduces Time-Tabling Disjunctive Reasoning – a new filtering rule
that leverages the time-table to detect disjunctive pairs of tasks dynamically. By
relying on minimum overlapping intervals, this filtering rules achieve a new type
of filtering that is not subsumed by existing filtering rules such as Energetic
Reasoning or Not-First-Not-Last. Besides its novelty, Time-Table Disjunctive
Reasoning can be implemented with a simple O(n2) algorithm that does not
rely on complex data-structures. Benefits of using Time-Table Disjunctive Rea-
soning in combination with other filtering rules were evaluated on well-known
benchmarks from PSPLIB. Our results highlight that Time-Table Disjunctive
Reasoning is a promising filtering rule to extend state-of-the-art cumulative
constraints. Indeed, using our algorithm can substantially improve the solving
process of some instances and, at worst, only adds a marginally low overhead
for the other ones.

Although the strengthening proposed by Time-Table Disjunctive Reasoning
is already a good tradeoff in terms of speed and filtering, it could be improved
further. For instance, its practical complexity could be reduced by using sweeping
techniques to prevent the examination of non-overlapping pairs of tasks. An even
more interesting improvement would be on the filtering side. For instance, one
may be able to strengthen the filtering by considering minimum overlapping
intervals on more than one task at the same time.
4 A problem is said to be highly disjunctive when many pairs of activities cannot

execute in parallel; on the contrary, a problem is highly cumulative if many activities
can effectively execute in parallel [2].
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Abstract. Uncertain data due to imprecise measurements is commonly
specified as bounded intervals in a constraint decision or optimization
problem. Dependencies do exist among such data, e.g. upper bound
on the sum of uncertain production rates per machine, sum of traffic
distribution ratios from a router over several links. For tractability rea-
sons existing approaches in constraint programming or robust optimiza-
tion frameworks assume independence of the data. This assumption is
safe, but can lead to large solution spaces, and a loss of problem struc-
ture. Thus it cannot be overlooked. In this paper we identify the context
of matrix models and show how data dependency constraints over the
columns of such matrices can be modeled and handled efficiently in rela-
tionship with the decision variables. Matrix models are linear models
whereby the matrix cells specify for instance, the duration of produc-
tion per item, the production rates, or the wage costs, in applications
such as production planning, economics, inventory management. Data
imprecision applies to the cells of the matrix and the output vector. Our
approach contributes the following results: 1) the identification of the
context of matrix models with data constraints, 2) an efficient modeling
approach of such constraints that suits solvers from multiple paradigms.
An illustration of the approach and its benefits are shown on a produc-
tion planning problem.

Keywords: Data uncertainty · Data constraints · Interval reasoning ·
Interval linear programs

1 Introduction

Data uncertainty due to imprecise measurements or incomplete knowledge is
ubiquitous in many real world applications, such as network design, renewable
energy economics, investment and production planning (e.g. [13,18]). Formalisms
such as linear programming or constraint programming have been extended and
successfully used to tackle certain forms of data uncertainty. Bounded intervals
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are commonly used to specify such imprecise parameters, which take the form
of coefficients in a given constraint relation. In such problems, uncertain data
dependencies do exist, such as an upper bound on the sum of uncertain pro-
duction rates per machine, the sum of traffic distribution ratios from a router
over several links. To our knowledge, existing approaches in Operations Research
assume independence of the data when tackling real world problems essentially
to maintain computational tractability. This assumption is safe in the sense that
no potential solution to the uncertain problem is removed. However, the solution
set can be very large even if no solution actually holds once the data dependen-
cies are checked, since the problem structure is lost. Thus accounting for possible
data dependencies cannot be overlooked.

In this paper we tackle these issues, by identifying the context of matrix
models, where we show how constraints over uncertain data can be handled
efficiently. Matrix models are of high practical relevance in many combinatorial
optimization problems where the uncertain data corresponds to coefficients of
the decision variables. Clearly, the overall problem does not need to be itself a
matrix model. With the imprecise data specifying cells of an input matrix, the
data constraints correspond to restrictions over the data in each column of the
matrix. For instance in a production planning problem, the rows would denote
the products to be manufactured and the columns the machines available. A data
constraint such as an upper bound on the sum of uncertain production rates per
machine, applies to each column of the matrix. In this context, we observe that
there is a dynamic relationship between the constraints over uncertain data and
the decisions variables that quantify the usage of such data. Uncertain data
are not meant to be pruned and instantiated by the decision maker. However,
decision variables are, and the solver controls their possible values. This leads
us to define a notion of relative consistency of uncertain data constraints, in
relationship with the decision variables involved, in order to check and infer
consistency of such constraints. For instance, if an uncertain input does not
satisfy a dependency constraint, this does not imply that the problem has no
solution! It tells us that the associated decision variable should be 0, to reflect
the fact that the given machine cannot produce this input.

Our main contribution lies in identifying the context of matrix models, to
study the efficient handling of uncertain data constraints. To our knowledge,
this is a first efficient handling of uncertain data constraints in combinatorial
problems. Our approach contributes the following within this context: 1) identify
the role of uncertain data constraints and their impact on the decision variables,
2) propose a new consistency notion of the uncertain data constraints and a
model that implements it efficiently. We illustrate the benefits and impacts of
our approach on a classical production planning problem with data constraints.

The paper is structured as follows. Section 2 summarizes the related work,
while Section 3 gives the intuition of our approach. Section 4 defines our app-
roach, and Section 5 illustrates it. A conclusion is given in Section 6.
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2 Related Work

In the past 15 years, the generic CSP formalism has been extended to account
for forms of uncertainty: e.g. numerical, mixed, quantified, fuzzy, uncertain CSP
and CDF-interval CSPs [6]. The numerical, uncertain, or CDF-interval CSPs,
extend the classical CSP to approximate and reason with continuous uncertain
data represented by intervals; see the real constant type in Numerica [19] or the
bounded real type in ECLiPSe [7]. The solution sets produced can be very large.
This led to some research to extract the relationship between uncertain data
that satisfy dependency constraints and possible solutions by applying regression
analysis techniques [11]. The fuzzy and mixed CSP [9] coined the concept of
uncontrollable variables, that can take a set of values but their domain is not
meant to be pruned during problem solving (unlike decision variables). Some
constraints over uncontrollable variables can be expressed and thus some limited
form of data dependency modeled, mainly in a discrete environment.

The general QCSP formalism introduces universal quantifiers where the
domain of a universally quantified variable (UQV) is not meant to be pruned,
and its actual value is unknown a priori. There has been work on QCSP with
continuous domains, using one or more UQV and dedicated algorithms [2,5,15].
Discrete QCSP algorithms cannot be used to reason about uncertain data since
they apply a preprocessing step enforced by the solver QCSPsolve [10], which
essentially determines whether constraints of the form ∀X,∀Y,C(X,Y ), and
∃Z,∀Y,C(Z, Y ), are either always true or false for all values of a UQV. This is a
too strong statement, that does not reflect the fact that the data will be refined
later on and might satisfy the constraint.

Closer to our approach are the fields of Interval Linear Programming [8,14]
and Robust Optimization [3,4], whereby in the former we seek the solution set
that encloses all possible solutions whatever the data might be, and in the latter
the solution that holds in the larger set of possible data realization. They do
offer a sensitivity analysis to study the solution variations as the data changes.
However, to our knowledge, uncertain data constraints have been ignored for
computational tractability reasons.

3 Intuition

The main novel idea behind our work is based on the study of a problem struc-
ture. We identify the context of matrix models where uncertain data correspond
to coefficients of the decision variables, and the constraints over these apply to
the columns of the input matrix. Such data constraints state restrictions on the
possible usage of the data, and we show how their satisfaction can be handled
efficiently in relationship with the corresponding decision variables.

In this context, the role and handling of uncertain data constraints is to
determine “which data can be used, to build a solution to the problem”. This
is in contrast with standard constraints over decision variables, which role is
to determine “what value can a variable take to derive a solution that holds”.
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We illustrate the context and our new notion of uncertain data constraint satis-
faction on a production planning problem inspired from [12].

Example 1. Three types of products are manufactured, P1, P2, P3 on two dif-
ferent machines M1,M2. The production rate of each product per machine is
imprecise and specified by intervals. Each machine is available 9 hrs per day,
and an expected demand per day is specified by experts as intervals. Further-
more we know that the total production rate of each machine cannot exceed 7
pieces per hour. We are looking for the number of hours per machine for each
product, to satisfy the expected demand. An instance data model is given below.

Product Machine M1 Machine M2 Expected demand
P1 [2, 3] [5, 7] [28, 32]
P2 [2, 3] [1, 3] [25, 30]
P3 [4, 6] [2, 3] [31, 37]

The uncertain CSP model is specified as follows:

[2, 3] ∗ X11 + [5, 7] ∗ X12 = [28, 32] (1)
[2, 3] ∗ X21 + [1, 3] ∗ X22 = [25, 30] (2)
[4, 6] ∗ X31 + [2, 3] ∗ X32 = [31, 37] (3)
∀j ∈ {1, 2} : X1j + X2j + X3j ≤ 9 (4)
∀i ∈ {1, 2, 3},∀j ∈ {1, 2} : Xij ≥ 0 (5)

Uncertain data constraints:

a11 ∈ [2, 3], a21 ∈ [2, 3], a31 ∈ [4, 6], a11 + a21 + a31 ≤ 7 (6)
a12 ∈ [5, 7], a22 ∈ [1, 3], a32 ∈ [2, 3], a12 + a22 + a32 ≤ 7 (7)

Consider a state of the uncertain CSP such that X11 = 0. The production
rate of machine M1 for product P1 becomes irrelevant since X11 = 0 means
that machine M1 does not produce P1 at all in this solution. The maximum
production rate of M1 does not change but now applies to P2 and P3. Thus
X11 = 0 infers a11 = 0. Constraint (6) becomes:

a21 ∈ [2, 3], a31 ∈ [4, 6], a21 + a31 ≤ 7 (8)

Assume now that we have a different production rate for P3 on M1:

a11 ∈ [2, 3], a21 ∈ [2, 3], a31 ∈ [8, 10], a11 + a21 + a31 ≤ 7 (9)

P3 cannot be produced by M1 since a31 ∈ [8, 10] � 7, the total production rate
of M1 is too little. This does not imply that the problem is unsatisfiable, but that
P3 cannot be produced by M1. Thus a31 � 7 yields X31 = 0 and a31 = 0. �

4 Our Approach

We now formalize our approach: define the context of matrix models we identified
and the handling of uncertain data constraints within it.
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4.1 Problem Definition

Definition 1 (interval data). An interval data, is an uncertain data, specified
by an interval [a, a], where a (lower bound) and a (upper bound) are positive real
numbers, such that a ≤ a.

Definition 2 (Matrix model with column constraints). A matrix model
with uncertain data constraints is a constraint problem or a component of a
larger constraint problem that consists of:

1. A matrix (Aij) of input data, such that each row i denotes a given product
Pi, each column j denotes the source of production and each cell aij the
quantity of product i manufactured by the source j. If the input is bounded,
we have an interval input matrix, where each cell is specified by [aij , aij ].

2. A set of decision variables Xij ∈ R
+ denoting how many instances of the

corresponding input shall be manufactured
3. A set of column constraints, such that for each column j: Σi[aij , aij ] @ cj,

where @ ∈ {=,≤}, and cj can be a crisp value or a bounded interval.

To reason about uncertain matrix models we make use of the robust counter-
part transformation of interval linear models into linear ones. We recall it, and
define the notion of relative consistency of column constraints.

4.2 Linear Transformation

An Interval Linear Program is a Linear constraint model where the coefficients
are bounded real intervals [3,8]. The handling of such models transforms each
interval linear constraint into an equivalent set of atmost 2 standard linear con-
straints. Equivalence means that both models denote the same solution space.
We recall the transformations of an ILP into its equivalent LP counterpart.

Property 1 (Interval linear constraint and equivalence). Let all decision variables
Xil ∈ R

+, and all interval coefficients be positive as well. The interval linear
constraint C = Σi[ail, ail] ∗ Xil @ [cl, cl] with @ ∈ {≤,=}, is equivalent to the
following set of constraints depending on the nature of @. We have:

1. C = Σi[ail, ail] ∗ Xil ≤ [cl, cl] is transformed into: C = Σiail ∗ Xil ≤ cl
2. C = Σi[ail, ail] ∗ Xil = [cl, cl] is transformed into:

C = {Σiail × Xil ≤ cl ∧ Σiail ∗ Xil ≥ cl}
Note that case 1 can take a different form depending on the decision maker

risk adversity. If he assumes the highest production rate for the smallest demand
(pessimistic case), the transformation would be: C = Σiail ∗ Xil ≤ cl. The
solution set of the robust counterpart contains that of the pessimistic model.

Example 2. Consider the following constraint a1 ∗ X + a2 ∗ Y = [120, 150] (case
2), with a1 ∈ [0.2, 0.7], a2 ∈ [0.1, 0.35],X, Y ∈ [0, 1000]. It is rewritten into the
system of constraints: l1 : 0.7∗X +0.35∗Y ≥ 120 ∧ l2 : 0.2∗X +0.1∗Y ≤ 150.

The transformation procedure also applies to the column constraints, and is
denoted transf. It evaluates to true or false since there is no variable involved.
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4.3 Relative Consistency

We now define in our context, the relative consistency of column constraints
with respect to the decision variables. At the unary level this means that if
(Xij = 0) then (aij = 0), if ¬ transf(aij@cj) then (Xij = 0) and if Xij > 0
then transf(aij@ cj) is true.

Definition 3 (Relative consistency). A column constraint Σiail@ cl over
the column l of a matrix I ∗ J , is relative consistent w.r.t. the decision variables
Xil if and only if the following conditions hold (C4. and C5. being recursive):

C1. ∀i ∈ I such that Xil > 0, we have transf(Σiail @ cl) is true
C2. ∀k ∈ I such that {¬transf(Σi�=kail@ cl) and transf(Σiail@ cl)} is true,

we have Xkl > 0
C3. ∀i ∈ I such that Xil we have i, transf(ail @ cl) is true
C4. ∀k ∈ I, such that ¬transf(akl @ cl), we have Xkl = 0 and Σi�=kail@ cl is

relative consistent
C5. ∀k ∈ I, such that Xkl = 0, we have Σi�=kail@ cl is relative consistent

Example 3. Consider the Example 1. It illustrates C4. and C5, leading to the
recursive call to C3. Let us assume now that the Xi1 are free, and the column
constraint [2, 3]+[2, 3]+[4, 6] = [7, 9]. Rewritten into 2+2+4 ≤ 9, 3+3+6 ≥ 7,
we have X31 > 0, since 3 + 3 	≥ 7 and 3 + 3 + 6 ≥ 7. It is relative consistent with
X31 > 0 (C2.).

4.4 Column Constraint Model

Our intent is to model column constraints and infer relative consistency while
preserving the computational tractability of the model. We do so by proposing a
Mixed Integer Interval model of a column constraint. We show how it allows us
to check and infer relative consistency efficiently. This model can be embedded
in a larger constraint model. The consistency of the whole constraint system is
inferred from the local and relative consistency of each constraint.

Modeling column constraints. Consider the column constraint over column l:
Σi[ail, ail] @ cl. It needs to be linked with the decision variables Xil. Logical
implications could be used, but they would not make an active use of consistency
and propagation techniques. We propose an alternative MIP model.

To each data we associate a Boolean variable. Each indicates whether: 1) the
data must be accounted for to render the column constraint consistent, 2) the
data violates the column constraint and needs to be discarded, 3) the decision
variable imposes a selection or removal of the data. Thus the column constraint
in transformed state is specified as a scalar product of the data and Boolean vari-
ables. The link between the decision variables and their corresponding Booleans
is specified using a standard mathematical programming technique that intro-
duces a big enough positive constant K, and a small enough constant λ.
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Theorem 1 (column constraint model). Let Xil ∈ R
+ be decision variables

of the matrix model for column l. Let Bil be Boolean variables. Let K be a large
positive number, and λ a small enough positive number. A column constraint

Σi[ail, ail] @ cl

is relative consistent if the following system of constraints is bounds consistent

transf(Σi[ail, ail] × Bil @ cl) (10)
∀i, 0 ≤ Xil ≤ K × Bil (11)

∀i, λ × Bil ≤ Xil (12)

The proof is omitted for space reasons.

5 Illustration of the Approach

We illustrate the approach on the production planning problem. The robust
model is specified below. Each interval linear core constraint is transformed into
a system of two linear constraints, and each column constraint into its robust
counterpart.

For the core constraints we have:
2 ∗ X11 + 5 ∗ X12 ≤ 32, 3 ∗ X11 + 7 ∗ X12 ≥ 28,
2 ∗ X21 + X22 ≤ 30, 3 ∗ X21 + 3 ∗ X22 ≥ 25,
4 ∗ X31 + 2 ∗ X32 ≤ 37, 6 ∗ X31 + 3 ∗ X32 ≥ 31,
∀j ∈ {1, 2}, X1j + X2j + X3j ≤ 9,
∀i ∈ {1, 2, 3}, ∀j ∈ {1, 2} : Xij ≥ 0,
∀i, j, Xij ≥ 0, Bij ∈ {0, 1},

And for the column constraints:
a11 ∈ [2, 3], a21 ∈ [2, 3], a31 ∈ [4, 6], a11 + a21 + a31 ≤ 7 and
a12 ∈ [5, 7], a22 ∈ [1, 3], a32 ∈ [2, 3], a12 + a22 + a32 ≤ 7 transformed into:

2 ∗ B11 + 2 ∗ B21 + 4 ∗ B31 ≤ 7,
5 ∗ B12 + B22 + 2 ∗ B32 ≤ 7,
∀i ∈ {1, 2, 3}, j ∈ {1, 2} 0 ≤ Xij ≤ K ∗ Bij ,
∀i ∈ {1, 2, 3}, j ∈ {1, 2} λ ∗ Bij ≤ Xij

We consider three different models: 1) the robust approach that seeks the
largest solution set, 2) the pessimistic approach, and 3) the model without
column data constraints. They were implemented using the ECLiPSe ic inter-
val solver [7]. We used the constants K=100 and λ = 1. The column con-
straints in the tightest model take the form: 3 ∗ B11 + 3 ∗ B21 + 6 ∗ B31 ≤
7 and 7 ∗ B12 + 3 ∗ B22 + 3 ∗ B32 ≤ 7.

The solution set results are summarized in the following table with real values
rounded up to hundredth for clarity. The tightest model, where the decision
maker assumes the highest production rates has no solution.
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Variables With column constraints Without column constraints
Robust model Tightest model

Booleans Solution bounds Solution bounds Solution bounds
X11 0 0.0..0.0 − 0.0..7.00
X12 1 4.0..4.5 − 0.99..6.4
X21 1 3.33..3.84 − 0.33..7.34
X22 1 4.49..5.0 − 0.99..8.0
X31 1 5.16..5.67 − 1.66..8.67
X32 0 0.0..0.0 − 0.0..7.0

Results. From the table of results we can clearly see that:

1. Enforcing Bounds Consistency (BC) on the constraint system without the
column constraints, is safe since the bounds obtained enclose the ones of
the robust model with column constraints. However, they are large, and the
impact of accounting for the column constraints, both in the much reduced
bounds obtained, and to detect infeasibility is shown.

2. The difference between the column and non column constraint models is also
interesting. The solutions show that only X11 and X32 can possibly take a
zero value from enforcing BC on the model without column constraints. Thus
all the other decision variables require the usage of the input data resources.
Once the column constraints are enforced, the input data a11 and a32 must be
discarded since otherwise the column constraints would fail. This illustrates
the benefits of relative consistency over column constraints.

3. The tightest model fails, because we can see from the solution without col-
umn constraints that a21 and a31 must be used since their respective Xij

are strictly positive in the solution to the model without column constraints.
However from the tight column constraint they can not both be used at full
production rate at the same time. The same holds for a12 and a22.

All computations were performed in constant time given the size of the prob-
lem. This approach can easily scale up, since if we have n uncertain data (thus n
related decision variables) in the matrix model, our model generates n Boolean
variables and O(2n + 2) = O(n) constraints. This number does not depend on
the size or bounds of the uncertain data domain, and the whole problem models
a standard CP or MIP problem, making powerful use of existing techniques.

6 Conclusion and Future Work

In this paper we have identified the context of matrix models to account for
uncertain data constraints efficiently. Such models are common in many appli-
cations ranging from production planning, economics, or inventory management
to name a few. In this context, we defined the notion of relative consistency, and
a model of uncertain data constraints that implements it effectively. An inter-
esting challenge to our eyes, would be to investigate how the notion of relative
consistency can be generalized and applied to certain classes of global constraints
in a CP environment, whereby the uncertain data appears as coefficients to the
decision variables.
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Abstract. A partial Latin square (PLS) is a partial assignment of n
symbols to an n × n grid such that, in each row and in each column,
each symbol appears at most once. The partial Latin square extension
problem is an NP-hard problem that asks for a largest extension of a
given PLS. In this paper we propose an efficient local search for this
problem. We focus on the local search such that the neighborhood is
defined by (p, q)-swap, i.e., removing exactly p symbols and then assign-
ing symbols to at most q empty cells. For p ∈ {1, 2, 3}, our neighborhood
search algorithm finds an improved solution or concludes that no such
solution exists in O(np+1) time. We also propose a novel swap operation,
Trellis-swap, which is a generalization of (1, q)-swap and (2, q)-swap. Our
Trellis-neighborhood search algorithm takes O(n3.5) time to do the same
thing. Using these neighborhood search algorithms, we design a proto-
type iterated local search algorithm and show its effectiveness in com-
parison with state-of-the-art optimization solvers such as IBM ILOG
CPLEX and LocalSolver.

Keywords: Partial latin square extension problem · Maximum inde-
pendent set problem · Metaheuristics · Local search

1 Introduction

We address the partial Latin square extension (PLSE ) problem. Let n ≥ 2 be a
natural number. Suppose that we are given an n×n grid of cells. A partial Latin
square (PLS ) is a partial assignment of n symbols to the grid so that the Latin
square condition is satisfied. The Latin square condition requires that, in each
row and in each column, every symbol should appear at most once. Given a PLS,
the PLSE problem asks to fill as many empty cells with symbols as possible so
that the Latin square condition remains to be satisfied.

In this paper, we propose an efficient local search for the PLSE problem. Let
us describe our research background and motivation. The PLSE problem is prac-
tically important since it has various applications such as combinatorial design,
scheduling, optical routers, and combinatorial puzzles [5,8,18]. The problem is
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NP-hard [7], and was first studied by Kumar et al. [28]. The problem has been
studied in the context of constant-ratio approximation algorithms [16,21,23,28].
Currently the best approximation factor is achieved by a local search algo-
rithm [11,13,21]. In that local search the neighborhood is defined by (p, q)-swap,
where p and q are non-negative integers such that p < q. It is the operation of
removing exactly p symbols from the current solution and then assigning sym-
bols to at most q empty cells. To the best of the author’s knowledge, there is no
literature that investigates efficient implementation of local search.

Our local search is based on Andrade et al.’s local search [2] for the maximum
independent set (MIS ) problem. The MIS problem is a well-known NP-hard
problem as well [14]. We utilize Andrade et al.’s methodology since, as we will
see later, the PLSE problem is a special case of the MIS problem.

We improve the efficiency of the local search by utilizing the problem struc-
ture peculiar to the PLSE problem. Specifically, for p ∈ {1, 2, 3} and q = n2,
our neighborhood search algorithm takes only O(np+1) time to find an improved
solution or to conclude that no improved solution exists in the neighborhood,
whereas the direct usage of Andrade et al.’s algorithm (p = 1 and 2) and Itoy-
anagi et al.’s algorithm (p = 3) [27] requires O(np+3) time to do the same things
even for q = p + 1. Note that q = n2 is the upper limit of the number of nodes
that can be inserted in a swap operation. Our swap operations insert as many
nodes to the solution as possible.

We then propose a new type of swap operation that we call Trellis-swap. It
is a generalization of (1, n2)-swap and (2, n2)-swap, and contains certain cases
of (3, n2)-swap. Our Trellis-neighborhood search algorithm takes O(n3.5) time
to find an improved solution, or to conclude that no improved solution exists in
the neighborhood.

We regard our local search as efficient since the time complexities above
should be the best possible bounds. For example, when p = 1, we may not be
able to improve the bound O(n2) further since in fact the bound is linear with
respect to the solution size.

We show how our local search is effective through computational studies. The
highlight is that our prototype iterated local search (ILS ) algorithm is likely to
deliver a better solution than such state-of-the-art optimization softwares as IP
and CP solvers from IBM ILOG CPLEX [26] and a general heuristic solver from
LocalSolver [32]. Furthermore, among several ILS variants, the best is one
based on Trellis-swap.

The decision problem version of the PLSE problem is known as the quasigroup
completion (QC ) problem in AI, CP and SAT communities [3,17,18,38]. The
QC problem has been one of the most frequently used benchmark problems in
these areas and variant problems are studied intensively, e.g., Sudoku [9,10,29,
31,34,36], mutually orthogonal Latin squares [4,33,39], and spatially balanced
Latin squares [19,30,35]. Our local search may be helpful for those who develop
exact solvers for the QC problem since the local search itself or metaheuristic
algorithms employing it would deliver a good initial solution or a tight lower
estimate of the optimal solution size quickly.



184 K. Haraguchi

The paper is organized as follows. In Sect. 2, preparing terminologies and
notations, we see that the PLSE problem is a special case of the MIS problem.
We explain the algorithms and the data structure of our local search in Sect. 3
and then present experimental results in Sect. 4. Finally we conclude the paper
in Sect. 5.

2 Preliminaries

Let us begin with formulating the PLSE problem. Suppose an n×n grid of cells.
We denote [n] = {1, 2, . . . , n}. For any i, j ∈ [n], we denote the cell in the row
i and in the column j by (i, j). We consider a partial assignment of n symbols
to the grid. The n symbols to be assigned are n integers in [n]. We represent a
partial assignment by a set of triples, say T ⊆ [n]3, such that the membership
(v1, v2, v3) ∈ T indicates that the symbol v3 is assigned to (v1, v2). To avoid a
duplicate assignment, we assume that, for any two triples v = (v1, v2, v3) and
w = (w1, w2, w3) in T (v �= w), (v1, v2) �= (w1, w2) holds. Thus |T | ≤ n2 holds.

For any two triples v, w ∈ [n]3, we denote the Hamming distance between
v and w by δ(v, w), i.e., δ(v, w) = |{k ∈ [3] | vk �= wk}|. We call a partial
assignment T ⊆ [n]3 a PLS set if, for any two triples v, w ∈ T (v �= w), δ(v, w)
is at least two. One easily sees that T is a PLS set iff it satisfies the Latin square
condition. We say that two disjoint PLS sets S and S′ are compatible if, for any
v ∈ S and v′ ∈ S′, the distance δ(v, v′) is at least two. Obviously the union of
such S and S′ is a PLS set. The PLSE problem is then formulated as follows;
given a PLS set L ⊆ [n]3, we are asked to construct a PLS set S of the maximum
cardinality such that S and L are compatible.

Next, we formulate the MIS problem. An undirected graph (or simply a graph)
G = (V,E) consists of a set V of nodes and a set E of unordered pairs of nodes,
where each element in E is called an edge. When two nodes are joined by an edge,
we say that they are adjacent , or equivalently, that one node is a neighbor of the
other. An independent set is a subset V ′ ⊆ V of nodes such that no two nodes in
V ′ are adjacent. Given G, the MIS problem asks for a largest independent set.
For any node v ∈ V , we denote the set of its neighbors by N(v). The number
|N(v)| of v’-s neighbors is called the degree of v.

Now we are ready to transform any PLSE instance into an MIS instance.
Suppose that we are given a PLSE instance in terms of a PLS set L ⊆ [n]3. For
any triple v ∈ L, we denote by N∗(v) the set of all triples w’-s in the entire [n]3

such that δ(v, w) = 1, i.e., N∗(v) = {w ∈ [n]3 | δ(v, w) = 1}. Clearly we have
|N∗(v)| = 3(n − 1). The union

⋃
v∈L N∗(v) over L is denoted by N∗(L).

Proposition 1. A set S ⊆ [n]3 of triples is a feasible solution to the PLSE
instance L iff S, as a node set, is a feasible solution to the MIS instance GL =
(VL, EL) such that VL = [n]3 \ (L ∪ N∗(L)) and EL = {(v, w) ∈ VL × VL |
δ(v, w) = 1}.
We omit the proof due to space limitation. By Proposition 1, we hereafter
consider solving the PLSE instance by means of solving the transformed MIS
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instance GL = (VL, EL). Omitting the suffix L, we write G = (V,E) to represent
GL = (VL, EL) for simplicity.

Let us observe the structure of G. We regard each node v = (v1, v2, v3) ∈ V as
a grid point in the 3D integral space. Any grid point is an intersection of three
grid lines that are orthogonal to each other. In other words, each node is on
exactly three grid lines. A grid line is in the direction d if it is parallel to the axis
d and perpendicular to the 2D plane that is generated by the other two axes. We
denote by �v,d the grid line in the direction d that passes v. Two nodes are joined
by an edge iff there is a grid line that passes both of them. The nodes on the
same grid line form a clique. This means that any independent set should contain
at most one node among those on a grid line. Since |N(v)| ≤ |N∗(v)| = 3(n − 1)
and |V | = O(n3), we have |E| = O(n4).

We introduce notations and terminologies on local search for the MIS prob-
lem. We call any independent set in G simply a solution. Given a solution S ⊆ V ,
we call any node x ∈ S a solution node and any node v /∈ S a non-solution node.
For a non-solution node v, we call any solution node in N(v) a solution neighbor
of v. We denote the set of solution neighbors by NS(v), i.e., NS(v) = N(v) ∩ S.
Since v has at most one solution neighbor on one grid line and three grid lines
pass v, we have |NS(v)| ≤ 3. We call the number |NS(v)| the tightness of v and
denote it by τS(v). When τS(v) = t, we call v t-tight . In particular, a 0-tight
node is called free. When x is a solution neighbor of a t-tight node v, we may
say that v is a t-tight neighbor of x.

For two integers p, q such that 0 ≤ p < q, the (p, q)-swap refers to an oper-
ation of removing exactly p solution nodes from S and inserting at most q free
nodes into S so that S continues to be a solution. The (p, q)-neighborhood of
S is a set of all solutions that are obtained by performing a (p, q)-swap on
S. We assume q ≤ n2 since, for any q > n2, the (p, q)-neighborhood and the
(p, n2)-neighborhood are equivalent. A solution S is called (p, q)-maximal if the
(p, q)-neighborhood contains no improved solution S′ such that |S′| > |S|. We
call a solution p-maximal if it is (p, n2)-maximal. In particular, we call a 0-
maximal solution simply a maximal solution. Being p-maximal implies that S is
also p′-maximal for any p′ < p. Equivalently, if S is not p′-maximal, then it is
not p-maximal either for any p > p′.

3 Local Search

In this section, we present the main component algorithm of the local search.
The main component is a neighborhood search algorithm. Given a solution S
and a neighborhood type being specified, it computes an improved solution in
the neighborhood or concludes that no such solution exists. Once a neighbor-
hood search algorithm is established, it is immediate to design a local search
algorithm that computes a maximal solution in the sense of the specified neigh-
borhood type; starting with an appropriate initial solution, we repeat moving to
an improved solution as long as the neighborhood search algorithm delivers one.
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Specifically we present (p, n2)-neighborhood search algorithms (p ∈ {1, 2, 3})
and a Trellis-neighborhood search algorithm. The basic data structure is bor-
rowed from [2], but we improve the efficiency by using the problem structure
peculiar to the PLSE problem. The (p, n2)-neighborhood search algorithms run
in O(np+1) time, whereas Trellis-neighborhood search algorithm runs in O(n3.5)
time. We describe the data structure that is commonly used in all these algo-
rithms in Sect. 3.1 and present the neighborhood search algorithms in Sect. 3.2.
Finally in Sect. 3.3, from the viewpoint of approximation algorithms, we mention
approximation factors of p-maximal and Trellis-maximal solutions and analyze
the time complexities that are needed to compute them.

We claim that our work should be far from trivial. Without using the MIS
formulation, one may conceive a (1, 2)-neighborhood search algorithm that runs
in O(n3) time, but its improvement is not easy. Concerning previous local search
algorithms for the MIS problem, their direct usage would require more compu-
tation time. Andrade et al.’s [2] (1, 2)-neighborhood search algorithm (resp.,
(2, 3)-neighborhood search algorithm) requires O(|E|) = O(n4) time (resp.,
O(Δ|E|) = O(n5) time, where Δ denotes the maximum degree in the graph).
Itoyanagi et al. [27] extended Andrade et al.’s work to the maximum weighted
independent set problem. Their (3, 4)-neighborhood search algorithm runs in
O(Δ2|E|) = O(n6) time.

3.1 Data Structure

We mostly utilize the data structure of Andrade et al.’s [2]. We represent a
solution by a permutation of nodes. In the permutation, every solution node is
ordered ahead of all the non-solution nodes, and among the non-solution nodes,
every free node is ordered ahead of all the non-free nodes. In each of the three
sections (i.e., solution nodes, free nodes and non-free nodes), the nodes can be
ordered arbitrarily. We also maintain the solution size and the number of free
nodes. For each non-solution node v /∈ S, we store its tightness τS(v) and pointers
to its solution neighbors. Since τS(v) ≤ 3, we store at most three pointers for v.

Let us mention the novel settings that we introduce additionally to enhance
the efficiency. Regarding each node as a grid point in the 3D integral space, we
store the node set V by means of a 3D n × n × n array, denoted by C. For
each triple (v1, v2, v3) ∈ [n]3, if (v1, v2, v3) ∈ V , then we let C[v1][v2][v3] have
the pointer to the node (v1, v2, v3), and otherwise, we let it have a null pointer.
For each solution node x ∈ S, we store the number of its 1-tight neighbors
along each of the three grid lines passing x. We denote this number by μd(x)
(d = 1, 2, 3), where d denotes the direction of the grid line. We emphasize that
maintaining μd(x) should play a key role in improving the efficiency of the local
search. Clearly the size of the data structure is O(n3). We can construct it in
O(n3) time, as preprocessing of local search.

Using the data structure, we can execute some significant operations effi-
ciently. For example, we can identify whether S is maximal or not in O(1) time;
it suffices to see whether the number of free nodes is zero or not. The neigh-
bor set N(v) of a node v = (v1, v2, v3) can be listed in O(n) time by searching
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C[v′
1][v2][v3]’-s, C[v1][v′

2][v3]’-s and C[v1][v2][v′
3]’-s for every v′

1, v
′
2, v

′
3 ∈ [n] such

that v′
1 �= v1, v′

2 �= v2 and v′
3 �= v3. Furthermore, we can remove a solution node

from S or insert a free node into S in O(n) time. We describe how to implement
the removal operation. Let us consider removing x ∈ S from S. For the permu-
tation representation, we exchange the orders between x and the last node in
the solution node section. We decrease the number of solution nodes by one and
increase the number of free nodes by one; as a result, x falls into the free node
section. Its tightness is set to zero since it has no solution neighbor. For each
neighbor v ∈ N(x), we release its pointer to x since x is no longer a solution
node, and decrease the tightness τS(v) by one.

– If τS(v) is decreased to zero, then v is now free. To put v in the free node
section, we exchange the permutation orders between v and the head node
in the non-free node section, and increase the number of free nodes by one.

– If τS(v) is decreased to one, then v is now 1-tight and has a unique solu-
tion neighbor, say y. We increase the number μd(y) by one, where d is the
direction of the grid line that passes both v and y.

The total time complexity is O(n). The insertion operation can be implemented
in an analogous way.

3.2 Neighborhood Search Algorithms

Let us describe the key idea on how to realize efficient neighborhood search
algorithms. Suppose that a solution S is given. Removing a subset R ⊆ S from
S makes R and certain neighbors free, that is, non-solution nodes such that
all solution neighbors are contained in R. If there is an independent set among
these free nodes whose size is larger than |R|, then there is an improved solution.
Of course a larger independent set is preferred. A largest one can be computed
efficiently in some cases although the MIS problem is computationally hard in
general.

The first case is when p = |R| is a small constant. Below we explain (p, n2)-
neighborhood search algorithms for p = 1, 2 and 3. Running in O(np+1) time,
the algorithms have the similar structures. Each algorithm searches all R’-s that
can lead to an improved solution by means of searching “trigger” nodes, at it
were, sweeping the permutation representation. The time complexity is linearly
bounded by the number of trigger nodes; For each trigger node, the algorithm
collects certain solution nodes around it, which are used as R. This takes O(1)
time. On the other hand, the algorithm does not search for the non-solution
nodes to be inserted unless it finds the MIS size among the free nodes from S \R
larger than |R|. Surprisingly we can decide the MIS size in O(1) time. Only when
the size is larger than |R|, the algorithm searches for the MIS to be inserted,
and thereby it obtains an improved solution and terminates. The search for the
MIS requires O(n) time, but it does not affect the total time complexity.

Another case such that the MIS problem is solved efficiently is when all
solution nodes in R are contained in such a 2D facet that is induced by fixing
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the value of one dimension in the 3D space. In this case, the MIS problem is
solved by means of bipartite maximum matching. This motivates us to invent a
novel swap operation, Trellis-swap. In this swap, the size |R| is not a constant but
can change from 1 to n. Trellis-neighborhood search algorithm runs in O(n3.5)
time.

(1, n2)-Swap. Let S be a maximal solution. Its (1, n2)-neighborhood contains
an improved solution iff there are a solution node x ∈ S and non-solution nodes
u, v /∈ S such that (S \ {x}) ∪ {u, v} is a solution. It is clear that u and v should
be neighbors of x. They are 1-tight, and their unique solution neighbor is x. The
u and v should not be adjacent, which implies that u and v are not on the same
grid line. Then, the number of nodes that can be inserted into S \ {x} is given
by ν(x) = |{d ∈ {1, 2, 3} | μd(x) > 0}|, i.e., the number of grid lines passing x
on which a 1-tight node exists.

Theorem 1. Given a solution S, we can find an improved solution in its (1, n2)-
neighborhood or conclude that it is 1-maximal in O(n2) time.

Proof. We assume that S is maximal; we can check in O(1) time whether S is
maximal or not. If it is not maximal, we have an improved solution by inserting
any free node into S. Finding a free node and inserting it into S take O(n) time,
and then we have done.

An improved solution exists iff there is x ∈ S such that ν(x) ≥ 2. All solution
nodes can be searched by sweeping the first section of the permutation repre-
sentation. There are at most n2 solution nodes. For each solution node x, the
number ν(x) can be computed in O(1) time. If x with ν(x) ≥ 2 is found, we can
determine the 1-tight nodes to be inserted in O(n) time by searching each grid
line with μd(x) > 0. Removing x from S and inserting the nodes into S \ {x}
take O(n) time. �

(2, n2)-Swap. Let S be a 1-maximal solution. Its (2, n2)-neighborhood contains
an improved solution iff there exist x, y ∈ S and u, v, w /∈ S such that (S\{x, y})∪
{u, v, w} is a solution. These nodes should satisfy Lemmas 1 to 4 in [2], which are
conditions established for the general MIS problem. According to the conditions,
at least one node in {u, v, w} is 2-tight, and x and y are the solution neighbors
of the 2-tight node. Let u be this 2-tight node without loss of generality.

See Fig. 1. Suppose inserting u into S\{x, y}. The nodes that can be inserted
additionally should be on the four solid grid lines, say �x,2, �x,3, �y,1 and �y,3.
Let F be the set of nodes on these grid lines that are free from (S ∪{u})\{x, y}.
Let v be any node in F . For S, v should not have any solution neighbors other
than x or y since otherwise it would not be free from (S ∪ {u}) \ {x, y}. Then
we have NS(v) ⊆ {x, y} and thus v is either 1-tight or 2-tight. As can be seen,
uxy, the intersection point of �x,2 and �y,1, is the only possible 2-tight node. All
the other nodes in F are 1-tight. Note that, even though the node uxy exists, it
does not necessarily belong to F ; it can be 3-tight.
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Fig. 1. An illustration of the case such that (2, n2)-swap can occur

Suppose that the node uxy exists and it is 2-tight. In the subgraph induced
by F , one can readily see that every MIS contains uxy only when no 1-tight node
exists on �x,2 or �y,1 (i.e., μ2(x) = μ1(y) = 0). Thus, when we count the MIS
size in the subgraph, we need to take uxy into account only in this case.

Theorem 2. Given a solution S, we can find an improved solution in its (2, n2)-
neighborhood or conclude that it is 2-maximal in O(n3) time.

Proof. Similarly to the proof of Theorem 1, we assume that S is 1-maximal.
Let u be any 2-tight node and x and y be its solution neighbors. The number

of 2-tight nodes is at most |V \ S| ≤ |V | ≤ n3. We can recognize its solution
neighbors x and y in O(1) time by tracing the pointers from u. The size of an MIS
among F can be computed in O(1) time as follows; First we count the number of
the four grid lines �x,2, �x,3, �y,1 and �y,3 such that a 1-tight node exists, where
we follow the dimension indices in Fig. 1 without loss of generality. This can
be done by checking whether μd(x) > 0 (or μd(y) > 0) or not. Furthermore,
if μ2(x) = μ1(y) = 0, we check whether a 2-tight node uxy exists or not. The
check can be done in O(1) time by referring to the 3D array C. If it exists, we
increase the MIS size by one. Finally, if the MIS size is no less than two, there
exists an improved solution. The non-solution nodes to be inserted other than u
are found in O(n) time by searching the four grid lines. �

(3, n2)-Swap. Given a solution S, consider searching for an improved solution
in its (3, n2)-neighborhood. To reduce the search space the following result on
the general MIS problem is useful.
Theorem 3. (Itoyanagi et al. [27]) Suppose that S is a 2-maximal solution
and that there are a subset R ⊆ S of solution nodes and a subset F ⊆ V \ S
of non-solution nodes such that |R| = 3, |F | = 4 and (S \ R) ∪ F is a solution.
We denote F = {u, v, w, t}, and without loss of generality, we assume τS(u) ≥
τS(v) ≥ τS(w) ≥ τS(t). Then we are in either of the following two cases:
(I) u is 3-tight and R = NS(u).
(II) u and v are 2-tight such that they have exactly one solution node as a

common solution neighbor, i.e., |NS(u) ∩ NS(v)| = 1, and R = NS(u) ∪
NS(v).

Theorem 4. Given a solution S, we can find an improved solution in its (3, n2)-
neighborhood or conclude that it is 3-maximal in O(n4) time.
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Fig. 2. An illustration of the cases (I) and (II) such that (3, n2)-swap can occur

Proof. We assume that S is 2-maximal, similarly to previous theorems. Below
we prove that the search for (I) in Theorem 3 takes O(n3) time, and that for
(II) takes O(n4) time.

For (I), we search all 3-tight nodes. There are O(n3) 3-tight nodes. For each
3-tight node u, the solution nodes to be removed are the three solution neighbors
of u, which can be decided in O(1) time. Let x, y and z be the three solution
neighbors, and F be the set of free nodes from (S \ {x, y, z}) ∪ {u}. The nodes
in F should be on solid grid lines in Fig. 2 (I). There are at most three 2-tight
nodes among F , that is, uxy, uxz and uyz. Similarly to the proof of Theorem 2,
every MIS among the free nodes contains uxy only when no 1-tight node exists
on �x,2 or �y,1, i.e., μ2(x) = μ1(y) = 0. The condition on which uxz (or uyz)
belongs to every MIS is analogous. Taking these into account, we can decide the
MIS size among the free nodes in O(1) time. If it is no less than three, then an
improved solution exists; an MIS to be inserted can be decided in O(n) time.

Concerning (II), we search every solution node x ∈ S and every pair of its
2-tight neighbors that are not on the same grid line. Thus there are O(n4) pairs in
all since there are at most n2 solution nodes, and for each x ∈ S, there are O(n2)
pairs of 2-tight neighbors. Given x and a pair {u, v} of its 2-tight neighbors,
the removed solution nodes are three solution nodes in NS(u) ∪ NS(v), which
includes x. They can be found in O(1) time. Let NS(u) ∪ NS(v) = {x, y, z}.
We illustrate an example of this case in Fig. 2 (ii). The free nodes from (S \
{x, y, z}) ∪ {u, v} should be on the solid grid lines in the figure. By means of
enumerative argument, we can show that the MIS size among the free nodes
can be decided in O(1) time. The argument is rather complicated, and we omit
details here. If the MIS size is no less than two, then an improved solution exists;
an MIS to be inserted can be decided in O(n) time. �

Trellis-Swap. Now let us introduce Trellis-swap. Note that, in (2, n2)-swap, all
removed solution nodes belong to such a 2D facet that is induced by fixing the
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value of one dimension in the 3D space. We can regard that (1, n2)-swap is also
in the case. We invent a more general swap operation for such a case.

Definition 1. Suppose that a solution S is given. Let R ⊆ S be a maximal
subset such that all nodes in R are contained in a 2D facet that is generated by
setting vd = k for some d ∈ [3] and k ∈ [n]. We denote by F1 (resp., F2) the
set of all 1-tight (resp., 2-tight) nodes such that the unique solution neighbor is
contained in R (resp., both of the solution neighbors are contained in R). We
call the subgraph induced by R ∪ F1 ∪ F2 a trellis (with respect to R).

One sees that all nodes in R ∪F2 are on the same 2D facet, whereas some nodes
in F1 are also on the facet, but other nodes in F1 may be out of the facet like a
hanging vine. Note that removing R from S makes all nodes in the trellis free.
We define the Trellis-neighborhood of a solution S as the set of all solutions that
can be obtained by removing any R from S and then inserting an independent
set among the trellis into S \ R.

Theorem 5. Given a solution S, we can find an improved solution in the Trellis-
neighborhood or conclude that no such solution exists in O(n3.5) time.

Proof. We explain how we compute an MIS in the trellis for a given R. Let us
partition F1 into F1 = F ′

1 ∪ F ′′
1 so that F ′

1 (resp., F ′′
1 ) is the subset of nodes

on (resp., out of) the considered 2D facet. The node set F ′′
1 induces a subgraph

that consists of cliques, each of which is formed by 1-tight nodes on a grid
line perpendicular to the 2D facet. One can easily show that, among MISs in
the trellis, there is one such that a solution node is chosen from every clique.
Intending such an MIS, we ignore the nodes in F ′′

1 and their solution neighbors;
let R′′ ⊆ R be a subset such that R′′ =

⋃
u∈F ′′

1
NS(u). Now that we have chosen

nodes from F ′′
1 , we can no longer choose the nodes in R′′. Let R′ = R \ R′′.

The remaining task is to compute an MIS from R′ ∪ F ′
1 ∪ F2. All the nodes in

R′ ∪ F ′
1 ∪ F2 are on a 2D facet, and we are asked to choose as many nodes as

possible so that, from each of 2n grid lines on the facet, a node is chosen at most
once. We see that the problem is reduced to computing a maximum matching
in a certain bipartite graph; a grid line on the 2D facet corresponds to a node in
the bipartite graph, and the bipartition of nodes is determined by the directions
of grid lines. A node v ∈ R′ ∪ F ′

1 ∪ F2 on the 2D facet corresponds to an edge
in the bipartite graph such that two nodes are joined if v is on the intersecting
point of the corresponding two grid lines.

We have 3n 2D facets. For each 2D facet, it takes O(n2) time to recognize
the node sets R, F1 and F2 and partitions R = R′ ∪ R′′ and F1 = F ′

1 ∪ F ′′
1 , and

then to construct the bipartite graph since the bipartite graph has 2n nodes and
O(n2) edges. We need O(n2.5) time to compute a maximum matching [24]. �

3.3 Approximation Factors and Computation Time

In a maximization problem instance, a ρ-approximate solution (ρ ∈ [0, 1]) is a
solution whose size is at least the factor ρ of the optimal size. Hajirasouliha
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et al. [21] analyzed approximation factors of (p, p + 1)-maximal solutions, using
Hurkens and Schrijver’s classical result [25] on the general set packing problem.
From this and Theorems 1, 2, 4 and 5, and since the solution size is at most n2,
we have the following theorem.

Theorem 6. Any 1-maximal, 2-maximal, 3-maximal and Trellis-maximal
solutions are 1/2-, 5/9-, 3/5- and 5/9-approximate solutions respectively. Fur-
thermore, these can be obtained in O(n4), O(n5), O(n6) and O(n5.5) time by
extending an arbitrary solution by means of the local search.

4 Computational Study

In this section we illustrate how our local search computes high-quality solutions
efficiently through a computational study. We design a prototype iterated local
search (ILS) algorithm and show that it is more likely to deliver better solutions
than modern optimization solvers. Furthermore, the best ILS variant is one based
on Trellis-swap.

ILS Algorithm. We describe our ILS algorithm in Algorithm 1, which is no
better than a conventional one. Let us describe how to construct the initial
solution of the next local search by “kicking” S∗ (line 7). For this, the algorithm
copies S∗ to S0 and “forces” to insert k non-solution nodes into S0. Specifically, it
repeats the followings k times; it chooses a non-solution node u /∈ S0, removes the
set NS0(u) of its solution neighbors from the solution (i.e., S0 ← S0\NS0(u)), and
inserts u into the solution (i.e., S0 ← S0∪{u}). If there appear free nodes, one is
chosen at random and inserted into S0 repeatedly until S0 becomes maximal. The
number k is set to k = κ with probability 1/2κ. We choose the k nodes randomly
from all the non-solution nodes, except the first one. We choose the first one with
great care so that (i) trivial cycling is avoided and (ii) the diversity of search is
attained. For (i), we restrict the candidates to nodes in N(S′

0), where S′
0 ⊆ S0

is a subset of solution nodes such that S′
0 = {x ∈ S0 | ∃d ∈ [3], μd(x) > 0}. In

other words, S′
0 is a subset of solution nodes that have a 1-tight neighbor. Then

for (ii), we employ the soft-tabu approach [2]; we choose the non-solution node
that has been outside the solution for the longest time among N(S′

0).
1 We omit

the details, but the mechanism for (i) dramatically reduces chances that the next
local search returns us to the incumbent solution S∗. In fact, it is substantially
effective in enhancing the performance of the algorithm.

We consider four variant ILS algorithms that employ different neighborhoods
from each other: 1-ILS, 2-ILS, Tr-ILS and 3-ILS. 1-ILS is the ILS algorithm that
iterates 1-LS (i.e., the local search with (1, n2)-neighborhood search algorithm)
in the manner of Algorithm 1. The terms 2-LS, 2-ILS, Tr-LS, Tr-ILS, 3-LS and
3-ILS are analogous.
1 When there is no 1-tight node, S′

0 becomes an empty set. In this case, we use N(S0)
instead of N(S′

0).
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Algorithm 1 An ILS algorithm for the PLSE problem
1: S0 ←an arbitrary solution and S∗ ← S0 � S∗ is the incumbent solution.
2: while the computation time does not exceed the given time limit do
3: compute a locally optimal solution S by local search that starts with an initial

solution S0

4: if |S| ≥ |S∗| then
5: S∗ ← S
6: end if
7: compute the initial solution S0 of the next local search by “kicking” S∗

8: end while
9: output S∗

Experimental Set-up. All the experiments are conducted on a workstation
that carries Intel R© Core

TM
i7-4770 Processor (up to 3.90GHz by means of Turbo

Boost Technology) and 8GB main memory. The installed OS is Ubuntu 14.04.1.
Benchmark instances are random PLSs. We generate the instances by utiliz-

ing each of the two schemes that are well-known in the literature [6,18]: quasi-
group completion (QC) and quasigroup with holes (QWH). Note that a PLS is
parametrized by the grid length n and the ratio r ∈ [0, 1] of pre-assigned symbols
over the n × n grid. Starting with an empty assignment, QC repeats assigning
a symbol to an empty cell randomly so that the resulting assignment is a PLS,
until �n2r cells are assigned symbols. On the other hand, QWH generates a
PLS by removing n2 − �n2r symbols from an arbitrary Latin square so that
�n2r symbols remain. Note that a QC instance does not necessarily admit a
complete Latin square as an optimal solution, whereas a QWH instance always
does. Here we show experimental results only on QC instances due to space lim-
itation. We note that, however, most of the observed tendencies are quite similar
between QC and QWH. One can download all the instances and the solution
sizes achieved by the ILS algorithms and by the competitors from the author’s
website (http://puzzle.haraguchi-s.otaru-uc.ac.jp/PLSE/).

Let us mention what kind of instance is “hard” in general. Of course an
instance becomes harder when n is larger. Then we set the grid length n to 40,
50 and 60, which are relatively large compared with previous studies (e.g., [18]).
For a fixed n, the problem has easy-hard-easy phase transition. Then we regard
instances with an intermediate r “hard”.

For competitors, we employ two exact solvers and one heuristic solver. For
the former, we employ the optimization solver for integer programming model
(CPX-IP) and the one for constraint optimization model (CPX-CP) from IBM
ILOG CPLEX (ver. 12.6) [26]. It is easy to formulate the PLSE problem by these
models (e.g., see [18]). For the latter, we employ LocalSolver (ver. 4.5) [32]
(LSSOL), which is a general heuristic solver based on local search. Hopefully
our ILS algorithm will outperform LSSOL since ours is specialized to the PLSE
problem, whereas LSSOL is developed for general discrete optimization prob-
lems. All the parameters are set to default values except that, in CPX-CP,

http://puzzle.haraguchi-s.otaru-uc.ac.jp/PLSE/
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Table 1. Improved sizes brought by the ILS algorithms and the competitors

n r |L| + |S0| 1-ILS 2-ILS Tr-ILS 3-ILS CPX-IP CPX-CP LSSOL

40 0.3 1597.68 2.32 2.32 2.32 2.32 0.00 2.32 ∗0.99
0.4 1595.28 4.72 4.72 4.72 4.72 0.00 4.72 ∗2.72
0.5 1591.18 8.82 ∗8.80 8.82 ∗8.80 0.00 5.35 5.51
0.6 1578.89 16.64 ∗17.01 17.92 16.69 5.52 5.85 11.80
0.7 1550.10 18.35 ∗18.76 18.78 18.33 17.37 8.68 15.01
0.8 1508.98 ∗5.05 5.06 5.06 5.04 5.06 3.68 5.00

50 0.3 2496.03 3.97 3.97 3.97 3.97 0.00 ∗3.84 0.32
0.4 2493.78 6.22 6.22 6.22 ∗6.20 0.00 4.24 0.87
0.5 2488.52 11.38 ∗11.46 11.48 11.34 0.00 1.40 4.44
0.6 2476.21 20.22 ∗21.38 21.97 20.06 0.00 2.66 13.00
0.7 2442.21 28.03 ∗28.30 28.58 27.68 4.19 8.83 21.24
0.8 2382.07 ∗12.18 12.14 12.16 12.08 12.51 6.03 11.60

60 0.3 3593.07 6.93 6.93 6.93 ∗6.85 0.00 5.22 0.13
0.4 3590.68 9.32 9.32 9.32 ∗9.20 0.00 1.87 0.49
0.5 3585.29 ∗14.65 ∗14.65 14.67 14.06 0.00 0.54 2.21
0.6 3572.61 24.16 25.07 ∗25.02 22.62 0.00 1.09 12.91
0.7 3534.62 ∗37.70 37.54 39.05 35.73 0.09 5.83 26.43
0.8 3456.59 ∗22.15 22.16 ∗22.15 21.99 21.99 7.55 19.85

DefaultInferenceLevel and AllDiffInferenceLevel are set to extended. We
set the time limit of all the solvers (including the ILS algorithms) to 30 seconds.

Results. We show how the ILS algorithms and the competitors improve the
initial solution S0 in Table 1. The S0 is generated by a constructive algorithm
named G5 in [1], which is a “look-ahead” minimum-degree greedy algorithm.
We confirmed in our preliminary experiments that G5 is the best among sev-
eral simple constructive algorithms. For each pair (n, r), a number in the 3rd
column is the average of |L| + |S0| (i.e., the given PLS size |L| = �n2r plus the
initial solution size) and a number in the 4th to 10th columns is the average
of the improved size over 100 instances. A bold number (resp., a number with
∗) indicates the 1st largest (resp., the 2nd largest) improvement among all. An
underlined number indicates that an optimal solution is found in all the 100
instances. We can decide a solution S to be an optimal solution if L ∪ S is a
complete Latin square or an exact solver (i.e., CPX-IP or CPX-CP) reports so.

Obviously the ILS algorithms outperform the competitors in many (n, r)’-s.
We claim that Tr-ILS should be the best among the four ILS algorithms. Clearly
3-ILS is inferior to others. The remaining three algorithms seem to be competitive,
but Tr-ILS ranks first or second most frequently.

Concerning the competitors, CPX-CP performs well for under-constrained
“easy” instances (i.e., r ≤ 0.4), whereas CPX-IP does well for over-constrained
“easy” instances (i.e., r ≥ 0.7). LSSOL is relatively good for all r’-s and out-
standing especially for “hard” instances with 0.5 ≤ r ≤ 0.7.
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Table 2. Improved sizes in the first LS, 5s, 10s and 30s, and averaged computation
times of a single run of LS (n = 60); when r is smaller (resp., larger), the number |V |
of nodes in the graph becomes larger (resp., smaller), and then LS takes more (resp.,
less) computation time

r Algorithm Improved size Computation
1st LS 5s 10s 30s time of LS (ms)

0.4 1-ILS 0.29 9.24 9.32 9.32 1.44
2-ILS 1.03 9.28 9.30 9.32 1.84
Tr-ILS 1.13 9.28 9.32 9.32 2.29
3-ILS 2.10 6.73 7.91 9.20 42.80

0.5 1-ILS 0.60 14.42 14.58 14.65 0.83
2-ILS 1.63 14.27 14.47 14.65 1.00
Tr-ILS 1.65 14.52 14.65 14.67 1.04
3-ILS 3.08 10.79 12.28 14.06 16.82

0.6 1-ILS 0.75 22.58 23.23 24.16 0.45
2-ILS 2.69 22.78 23.80 25.07 0.55
Tr-ILS 2.96 23.38 24.06 25.02 0.45
3-ILS 4.95 17.86 20.18 22.62 5.91

0.7 1-ILS 1.57 35.33 36.66 37.70 0.24
2-ILS 4.33 35.16 36.54 37.54 0.28
Tr-ILS 5.41 35.90 37.52 39.05 0.27
3-ILS 7.95 29.08 31.91 35.73 2.14

To observe the behavior of the ILS algorithms in detail, we investigate how
they improve the solution in the first LS and in the first 5, 10 and 30 seconds in
Table 2 (n = 60). We also show the averaged computation time of a single run of
LS in the rightmost column. Most of the improvements over the 30 seconds are
made in earlier periods. It is remarkable that the improvements made by the ILS
algorithms in the first 5 seconds are larger than those made by the competitors
in 30 seconds in all the shown cases (see Table 1).

The reason why Tr-ILS is the best among the ILS variants must be its effi-
ciency; as can be seen in the rightmost column, Tr-LS is so fast as 2-LS, or even
faster in some r’-s, although Trellis-swap is a generalization of (2, n2)-swap.
We implemented the Trellis-neighborhood search algorithm so that it runs in
O(αn2.5) time rather than in O(n3.5) time, where α denotes the number of 1-
tight nodes. The implementation is expected to be faster since, to the extent
of our experiment, the number α is much smaller than n. We will address the
detail of this issue in our future papers.

On the other hand, 3-LS is much more time-consuming than the others; the
computation time of 3-LS is about 10 to 40 times those of the other three LSs.
3-ILS may not iterate so sufficient a number of 3-LSs that the diversity of search
is not attained to a sufficient level. It is true that, in the 1st LS, for all r’-
s, 3-LS finds the best solution, followed by Tr-LS, 2-LS and 1-LS; a single LS
with a larger neighborhood will find a better solution than one with a smaller
neighborhood. By the first 5 seconds pass, however, 3-ILS becomes inferior to
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the other three ILS algorithms. The solutions that the three ILS algorithms find
in 10 seconds are better than those that 3-ILS outputs after 30 seconds.

Then, to enhance the performance of the ILS algorithm, the neighborhood
size should not be too large. It is important to run a fast local search with a
moderately small neighborhood many times from various initial solutions. We
should develop a better mechanism to generate a good initial solution of the
local search rather than to investigate a larger neighborhood. This is left for
future work.

5 Concluding Remarks

We have designed efficient local search algorithms for the PLSE problem such
that the neighborhood is defined by swap operation. The proposed (p, n2)-
neighborhood search algorithm (p ∈ {1, 2, 3}) finds an improved solution in the
neighborhood or concludes that no such solution exists in O(np+1) time. We also
proposed a novel swap operation, Trellis-swap, a generalization of (1, n2)-swap
and (2, n2)-swap, whose neighborhood search algorithm takes O(n3.5) time.

Our achievement is attributed to observation on the graph structure such
that each node is regarded as a 3D integral point, its neighbors are partitioned
into O(1) cliques and no two neighbors in different cliques are adjacent. Our idea
is never limited to the PLSE problem but can be extended to MIS problems on
graphs having the same structure, including some instances of the maximum
strong independent set problem on hypergraphs [22].

Our ILS algorithm is no better than a prototype and has much room for
improvement. Nevertheless it outperforms IBM ILOG CPLEX and Local-
Solver in most of the tested instances. Of course there are various solvers avail-
able, and comparison with them is left for future work. Among these, we consider
that SAT based solvers may not be so effective due to our preliminary experi-
ments as follows; we tried to solve the satisfiability problem on QWH instances
by Sugar (ver. 2.2.1) [37], where we used MiniSat (ver. 2.2.1) [12] as the core
SAT solver. Note that any QWH instance is satisfiable. Sugar decides the sat-
isfiability (and thus finds an optimal solution) for about 50% of the instances
(n = 40 and r ∈ {0.3, 0.4, ..., 0.8}) within 30 seconds, while Tr-ILS finds an
optimal solution for 78% of the instances within the same time limit.

Alternatively one can conceive another metaheuristic algorithm, utilizing
methodologies developed so far [15,20]. Our local search can be a useful tool
for this. For example, in GA, one can enhance the quality of a population by
performing our efficient local search on each solution.

Although the local search achieves the best approximation factor for the
PLSE problem currently, no one has explored its efficient implementation in the
literature. This work resolves this issue to some degree.
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Abstract. The selection of a good branching variable is crucial for small
search trees in Mixed Integer Programming. Most modern solvers employ
a strategy guided by history information, mainly the variable pseudo-
costs, which are used to estimate the objective gain. At the beginning of
the search, such information is usually collected via an expensive look-
ahead strategy called strong branching until variables are considered reli-
able.

The reliability notion is thereby mostly based on fixed-number thresh-
olds, which may lead to ineffective branching decisions on problems with
highly varying objective gains.

We suggest two new notions of reliability motivated by mathemat-
ical statistics that take into account the sample variance of the past
observations on each variable individually. The first method prioritizes
additional strong branching look-aheads on variables whose pseudo-costs
show a large variance by measuring the relative error of a pseudo-cost
confidence interval. The second method performs a specialized version
of a two-sample Student’s t-test for filtering branching candidates with
a high probability to be better than the best history candidate.

Both methods were implemented in the MIP-solver SCIP and compu-
tational results on standard MIP test sets are presented.

1 Introduction

A Mixed Integer Program (MIP) denotes a minimization problem of a linear
objective function under linear inequalities and integrality restrictions for a sub-
set of the variables, or to prove that no solution exists. We use the term ”mixed”
to refer to the occurence of two variable types, continuous and integer variables,
in the problem formulation.

Most modern solvers for MIP [1–5] apply a branch-and-bound procedure [6,7],
which creates a search tree for a MIP P by a successive problem division based
on the LP relaxation information at a node. In the most common scheme of
variable-based branching, it is crucial to select good branching variables in order
to quickly reach terminal nodes and thus keep the required search tree small.
A branching rule is a scoring mechanism to guide the selection of a branching
variable at each inner node of the search tree.

Branching rules [8,9] using variable history information of prior branching
decisions have been shown to perform well at later stages of the search, see
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 199–214, 2015.
DOI: 10.1007/978-3-319-18008-3 14
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also [10]. The initial lack of information can be overcome by a computationally
expensive strong branching initialization [11], which virtually performs a 1-level
look-ahead by solving the child node LP relaxations for a subset of the fractional
variables and then selects the best candidate.

The current state-of-the-art branching rule for balancing between strong
branching and estimation, reliability branching [12], uses a fixed number of
branching decisions after which the variable information is considered reliable.
This approach has the disadvantage that it uses the same fixed reliability thresh-
old for all variables. In practice, however, it appears natural that variables
that are structurally different inside a MIP model also have different reliabil-
ity requirements. Another disadvantage of a fixed parameter is that it might not
scale well with increasing problem size.

The aim of the present paper is to introduce different notions of reliability
by exploiting more statistical information during the branching process. Using
the sample variance of past observations, we formulate two criteria for switching
between strong branching and estimation that take into account each variable
history individually. We perform computational experiments on standard MIP
test sets to evaluate the impact of our approach.

The remainder of this article is organized as follows: First, we summarize
past and recent related work by other authors from the literature in Section 2.
Section 3 introduces the necessary notation and presents the reliability branch-
ing rule in more detail. Afterwards, we introduce new notions of reliability
in Section 4, and present computational results, which were obtained with an
implementation in the Constraint Integer Programming framework Scip [5] in
Section 5. We finish with some concluding remarks in Section 6. The appendix
contains an instance-wise summary of our computational experiments.

2 Related Work

Research on branching rules for Mixed Integer Programming has been a focus of
interest since the advent of the Branch-and-Bound procedure in the 1960’s [6,7].
Note that in this paper, we only consider variable-based branching. This concept
is generalizable by incorporating branching on general disjunctions, which was
introduced in [13].

Pseudo-costs, which measure the average objective gain for every integer
variable, and their use for branching first appeared in [9]. The use of degradation
bounds for the pseudo-cost initialization was suggested in [14]. Equipped with
more computational power, strong branching was first applied in the context
of the Traveling Salesman Problem [11], whereas its first use for general MIP
solving is attributed to the commercial MIP solver Cplex [2]. An important
computational study for these techniques, also in the context of node selection,
can be found in [10].

In a recent work [15], the strong branching procedure of Scip could be
improved by applying domain propagation techniques at each sub-node in addi-
tion to solving the LP relaxation. The authors of [16] observe unnecessary strong
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branching effort at the presence of chimerical variables, i.e. fractional variables
with little or no effect on the objective of the LP solutions. They exploit this
fact to safely ignore such candidates for the strong branching procedure. Cloud
branching [17] has been proposed as a novel approach for better dealing with
the frequent degeneracy of LP solutions. It computes several optimal LP solu-
tions and considers variable fractionalities as intervals rather than points. The
computational complexity for this approach is comparable to the effort of strong
branching because two child relaxations are solved for every fractional variable.

The pseudo-cost branching rule is an effective replacement of the strong
branching rule at later stages of the search but lacks information at the begin-
ning. For that reason, combinations of pseudo-cost branching and strong branch-
ing have been developed that either use a single strong branching initialization
on uninitialized variables, and pseudo-costs for every initialized candidate, or
strong branching at the topmost d levels of the tree, and pseudo-cost branching
at deeper levels. The state-of-the-art branching scheme, which is applied by most
modern MIP solvers albeit the concrete implementation might vary, is reliability
branching [12], see also Section 3. A threshold number is dynamically adjusted
at every node depending on the proportion of Simplex iterations during strong
branching and the total number of iterations spent on solving regular nodes,
see [18] for further details. Other forms of history information such as inference
or cutoff histories have been adopted for general MIP in [19]. A combination of
such feasibility-based history information and pseudo-costs into a single score
was introduced as Hybrid reliability branching [8].

For recent variable branching methods that use other techniques than history
information, see, e.g., [20,21]. The branching strategies presented in [22] aim at
quickly finding feasible solutions. Therefore, solution densities are approximated
by means of normal distributions. Although their approach is quite different from
the one presented here, their work has indeed been a motivation to further study
links between statistics and optimization. The authors of [23] recently presented
a method for restricting the set of branching candidates by calculating so-called
backdoor sets in advance.

The approach presented here uses variations of past branching information
for the decision if strong branching should be continued on a variable or not.
It extends the idea of reliability branching by taking into account each variable
individually. In the present paper, we further concentrate only on pseudo-costs
and do not consider other history information. We do not collect any information
prior to the actual search as in [21,23].

3 Reliability Branching with Fixed-Number Thresholds

Let A ∈ R
m,n be a real matrix, and let c ∈ R

n and b ∈ R
m be a cost and a right-

hand-side vector, respectively. Let further l, u ∈ R
n ∪ {−∞,∞}n denote bound

requirements for the variables, and let a subset I ⊆ {1, . . . , n} of the variables
index set denote integrality restrictions.
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An optimization problem defined by c,A, b, l, u, I as

copt := inf
{
ctx : Ax ≤ b, l ≤ x ≤ u, x ∈ R

n, xj ∈ Z for all j ∈ I} (MIP)

is called a Mixed Integer Program (MIP). We denote its optimal objective value,
which may be infinite, by copt. Variables indexed by j ∈ I are called integer
variables. If the set of integrality restrictions is empty, we call (MIP) a Linear
Program (LP). An LP P̃ is called the LP relaxation of a MIP P if it is derived
from P by dropping the integrality restrictions. Since the solution space of P̃ is
a superset of the solution space of P , its holds that copt

P̃
≤ coptP .

The branch-and-bound procedure [6,7] creates a search tree for P =: P (0) by
a successive problem division called branching based on the LP relaxation infor-
mation at a node. Let P (l) be a feasible (sub-)problem currently processed. We
solve the LP relaxation of P (l) and obtain an LP-solution ỹ with objective value
ctỹ = c̃P (l) . If ỹ violates some of the integrality restrictions F ⊆ I, branching
creates two child problems P

(l)
− , P

(l)
+ by selecting a fractional variable j ∈ F

and locally restricting the lower and upper bound of j in the child problems
to uj ← �ỹj	 in P

(l)
− and lj ← 
ỹj� for P

(l)
+ , respectively. Each restriction

renders ỹ infeasible. The created problems are then enqueued in a list of open
subproblems. The procedure terminates when there is no open subproblem left.

For a fractional variable j ∈ F we define its up-fractionality and down-
fractionality as

f+
j := 
ỹj� − ỹj and f−

j := ỹj − �ỹj	,
respectively. The decision on which fractional variable to branch is crucial for the
success of the branch-and-bound search. A branching rule is characterized by its
score function ϑ : F → R. It selects a branching variable j∗ ∈ F that maximizes
the score function. All branching rules in this paper calculate branching scores
ϑ− (j) and ϑ+ (j) separately for the two directions. In Scip, these two score
values are then combined to yield a product score

ϑ (j) := max{ϑ+ (j) , ε} · max{ϑ− (j) , ε} (1)

with a small ε = 10−6 in order to find a good balance between the two individual
scores.

Throughout this paper, we will give definitions and explanations only for the
down-branch. The according formula and argumentation for the other direction
can be derived analogously.

Let P−(j) denote the MIP obtained by branching down on j ∈ FP . In this
paper, we focus on the gain in the objective function

ϑ− (j) = c̃P−(j) − c̃P (2)

in the child node LP relaxation objectives w.r.t. their parent as branching score.
Since this information is unknown by the time a candidate needs to be

selected, the strong branching rule determines ϑ−
str (j) and ϑ+

str (j) by virtually
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solving 2 · |F| child node relaxations and evaluating the gains (2). Although
strong branching is guaranteed to select the locally best candidate regarding
the objective gain, the exhaustive solving of child nodes makes the computa-
tional cost of this procedure often too expensive. However, it is well suited as an
initialization method for pseudo-costs.

The pseudo-costs [9] of a variable are a typical measure to estimate its impact
on the children objective gain. Consider a node P with LP solution value c̃P

and a fractional variable j ∈ FP . Let P−(j) be the down-child of P whose LP
relaxation was solved to optimality. The normalization of the objective gain
between P−(j) and P ,

ς−
j (P ) :=

c̃P−(j) − c̃P

f−
j

by the fractionality of j in ỹP is called unit gain. The pseudo-costs of a variable
are the average over all such unit gains,

Ψ−
j :=

⎧
⎨

⎩

γ−
j

η−
j

, if η−
j > 0,

0, else,
(3)

where η−
j denotes the number of problems Q for which j was selected as branch-

ing variable and the child node Q−(j) has been solved and was feasible, and
γ−

j the sum of obtained unit gains over all these problems. If η−
j is 0, we call j

uninitialized in this direction. The pseudo-cost score function uses the pseudo-
cost information

ϑ−
ps (j) := Ψ−

j · f−
j

to estimate the objective gain in the child obtained by branching on j.
We give a definition of reliability branching that is more general than the

original definition by Achterberg et al. [12] in that it assumes a subdivision of
the fractional variables into reliable and unreliable candidates as input. We will
use it later together with our novel notions of reliability.

Definition 1 (Reliability branching). Let P be a MIP with non-empty set of
fractional variables F . Given a subdivision F = Frel∪̇Furl of the fractional vari-
ables into reliable and unreliable branching candidates, we define the reliability
branching score function of j ∈ F as

ϑ−
rel (j) :=

{
ϑ−
str (j) , if j ∈ Furl,

ϑ−
ps (j) , if j ∈ Frel.

(4)

Reliability branching performs strong branching on the set of unreliable candi-
dates Furl to determine their exact gains (2), but uses pseudo-cost estimates for
all other branching candidates. It is characterized by its notion of (un-)reliability,
i.e. a rule how to split the branching candidates into a reliable and an unreliable
set.
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We refer to the notion of reliability by Achterberg et al. [12], as fixed-number
threshold reliability :

Definition 2 (Fixed-number threshold reliability). Given a reliability param-
eter η > 0, fixed-number threshold (fnt)-reliability splits the fractionals accord-
ing to

Furl
fnt (η) := {j ∈ F : min{η−

j , η+
j } < η}.

We call a variable j ∈ F \ Furl
fnt (η) (fnt)-reliable.

Using the term ”fixed-number”, we emphasize that (fnt)-reliability of a variable
solely depends on the number of previous branching observations. Achterberg
et al. [12] suggested to use 8 as threshold, currently, Scip uses 5, based on exper-
imentations to yield a good average performance on a variety of MIP instances.
In the next section, we introduce novel notions of reliability.

4 Relative-Error and Hypothesis Reliability

The drawback of (fnt)-reliability is that a fixed threshold is supposed to measure
the reliability of all variables of the problem equally well. Intuitively, it seems
desirable to have a more individual look at the pseudo-cost information of every
variable and to continue strong branching on those candidates whose pseudo-
costs fail to converge. In the following, we extend the statistical model for pseudo-
costs by including the sample variance, which allows for the construction of
confidence intervals and testing of hypotheses. There are many textbooks that
cover these topics in more detail, see, e.g. [24].

We model the unit gains of a variable j ∈ I as independent samples of a
normally distributed random variable Cj,− ∼ N (μj,−, σ2

j,−) with unknown mean
μj,− and variance σ2

j,−. It should be noted here that a normal distribution model
for unit gains is of limited accuracy because unit gains are always non-negative.
The pseudo-costs represent an estimate for μj,−. By using the corrected sample
variance, we obtain an estimate for the variance, as well:

Definition 3. Let X1, . . . , Xn be independent, identically distributed samples.
The corrected sample variance about the sample mean X̄ is given by

s2 =
1

n − 1

n∑

i=1

(
Xi − X̄

)2 =
1

n − 1

n∑

i=1

X2
i − 1

n(n − 1)

(
n∑

i=1

Xi

)2

. (5)

The corrected sample variance is an unbiased estimate of the variance of the
underlying distribution of the Xi. The right term of Equation (5) allows for
constant-time updates of s2 every time a new sample X is observed.

With increasing n, we can expect X̄ to approach the mean of the distri-
bution from the law of large numbers. Under the assumption that the samples
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X1, . . . , Xn are drawn from a normal distribution with unknown mean μ and
variance σ2, the random variable

T :=
X̄ − μ

s/
√

n

is distributed along a Student’s t-distribution with n − 1 degrees of freedom.
This relation can be used to construct a confidence interval I, which contains
the true value of μ with a probability of 1 − α for any error rate 0 < α < 1:

I =
[

X̄ − tα,n−1
s√
n

, X̄ + tα,n−1
s√
n

]

,

denoting by tα,n−1 > 0 the α-percentile of the distribution of T . The distance
of the endpoints of I relative to its center X̄ �= 0,

εrel = tα,n−1 · s√
n|X̄| , (6)

is called the relative error of the estimation.

4.1 Relative-Error Reliability

Applied to pseudo-costs, we determine the relative error for the pseudo-costs
associated with each variable. Whenever a new unit gain for variable j ∈ F in
the down-branching direction at a node P was observed, we increase the counter
η−

j by 1 and update the sum of unit gains γ−
j . In addition, we keep track of

the sum of squared unit gains (ς−
j (P ))2. This enables us to calculate the sample

variance
(
s−

j

)2
whenever η−

j ≥ 2. At a node Q, we calculate the relative error
εrel,−j of the current pseudo-costs Ψ−

j as

εrel,−j :=

⎧
⎨

⎩

tα,η−
j −1 · s−

j√
η−
j Ψ−

j

, if Ψ−
j > 0

0, else.
(7)

Recall that pseudo-costs are always non-negative. Hence, we can omit the abso-
lute in the denominator of (6). Furthermore, if the pseudo-costs of j are equal to
zero, this also holds for the sample variance

(
s−

j

)2
. We therefore set the relative

error to zero in this case.

Definition 4 (Relative-error reliability). For η > 0, relative-error (rer)-
reliability splits the fractionals according to

Furl
rer (η) := {j ∈ F : max{εrel,+j , εrel,−j } ≥ η}. (8)

We call a variable j ∈ F \ Furl
rer (η) (rer)-reliable.
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The rationale of (rer)-reliability is to continue strong branching on the subset
of variables with highly varying objective gains, whereas variables with constant
gains are early considered (rer)-reliable. In order to obtain relative errors for the
branching directions, we need at least η−

j , η+
j ≥ 2 observations in each direction.

Note that a variable, which has already been (rer)-reliable, can become (rer)-
unreliable again when the relative error rises again above the threshold after new
information becomes available. In Section 5, we test an implementation of (rer)-
reliability branching. It should be noted that in general there is no containment
relation between the variable subsets considered by reliability branching with
fixed number thresholds and our approach, i.e. neither is a strict subset of the
other.

4.2 Hypothesis Reliability

The disadvantage of (rer)-reliability is that it is likely to spend much strong
branching effort on variables with overall low objective gains, but high relative
error. In order to overcome this, it is possible to restrict the variables that are
selected for strong branching evaluation to only candidates with a probability to
be actually better than the best candidate jps according to pseudo-cost branch-
ing. Roughly speaking, we want to ensure that there is little probability that
f−

j μj,− ≥ f−
jpsμjps,− for jps �= j ∈ F .

Therefore, we test against the hypothesis that a fractional j ∈ F has an
objective gain as least as high as jps, i.e., f−

j μj,− ≥ f−
jpsμjps,−. For two variables

i, j ∈ F with fractionalities f−
i and f−

j , we use the pooled variance

S−
i,j :=

(η−
i − 1)(f−

i )2
(
s−

i

)2
+ (η−

j − 1)(f−
j )2

(
s−

j

)2

η−
i + η−

j − 2

to calculate a 2-sample t-value for i and j,

T−
i,j :=

√
√
√
√ η−

i η−
j

η−
i + η−

j

f−
i Ψ−

i − f−
j Ψ−

j

S−
i,j

.

Under the hypothesis, T−
jps,j follows a Student-t distribution with η−

jps + η−
j − 2

degrees of freedom. If, for a given threshold 0 < α < 1, T−
jps,j exceeds t−α,jps,j :=

tα,η−
jps+η−

i −2, we can reject the hypothesis with an error probability of at most
α/2. The division by two is justified because the hypothesis is one-sided. Con-
versely, if the hypothesis cannot be safely rejected, it is safer to perform strong
branching on the two candidates.

The second novel notion of reliability in the present paper rules out fractional
variables with little probability to be better than the best pseudo-cost candidate:

Definition 5 (Hypothesis reliability). Let jps ∈ F be the best pseudo-cost
fractional candidate for branching, and let 0 < α < 1 be a rejection probability.
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The unreliable fractional set for hypothesis reliability is

Furl
hyp(α) :=

{
j ∈ F : T−

jps,j < t−α,jps,j and T+
jps,j < t+α,jps,j

}
. (9)

Variables j ∈ F \ Furl
hyp(α) are called (hyp)-reliable.

For practical reasons, we also include variables j with min{η−
j , η+

j } ≤ 1. It should
be noted that the best pseudo-cost candidate jps is never (hyp)-reliable because
T−

jps,jps = T+
jps,jps = 0. If no other candidate than jps is (hyp)-unreliable, this

means that no other fractional variable has an estimated objective gain nearly as
good as jps. In this case, we immediately branch on jps without strong branching.
In the experiments in the following section, we tested an error probability of
α = 0.05, i.e. the error probability for ruling out a better candidate based on
the current branching history is α/2 = 2.5%.

Note also that the variant of a t-test that we use for (hyp)-reliability is, in
theory, only applicable when the two variables can be assumed to have equal
variances. In practice, it would be possible to test for equal variances using an
F -test and resort to the Welch-test if the variances are significantly unequal.

5 Computational Results with Scip

We implemented the new reliability notions from Section 4 into the existing
reliability branching rule of a development version of the Constraint Integer
Programming framework Scip [5] version 3.1.0.2, which we compiled with a gcc
compiler version 4.8.2. As underlying LP-solver, we used SoPlex [25] version
2.0. We used Scip with default settings except for the following changes: For
using a pure objective-based branching score function as in Section 3, tie-breakers
such as, e.g., inference scores were deactivated by setting their corresponding
weight to 0. Furthermore, we set the known optimal solution values – in case
they exist – minus a small threshold 10−9 as objective cutoffs, so that only a
proof for the optimality/infeasibility of a problem needed to be found. We also
disabled all primal heuristics and activated depth-first search node selection as
an attempt to minimize performance variability [26,27] due to other factors than
the tested branching rules. Finally, the child node selection was changed to use
solely pseudo-costs, where Scip with default settings uses a hybrid approach
together with inference scores.

The test bed for our comparison of the different approaches consists of a
subset of instances from the three publicly available libraries Miplib 3.0 [28],
Miplib 2003 [29], and Miplib 2010 [27], from which we omitted four instances for
which an optimal objective value is not known by the time of this writing. Since
we are mainly interested in reducing the search tree size, we further dropped
all 29 instances that could be solved before or during the processing of the root
node. Our final test bed thus contains 135 MIP instances.

The computations were performed on a cluster of 32 computers, each of which
runs with a 64bit Intel Xeon X5672 CPUs at 3.20 GHz with 12 MB cache and
48 GB main memory. The operating system was Ubuntu 14.4. Hyperthreading
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Table 1. All instances

98 instances solved by all 135 total
t (sec) % n % t (sec) %

Settings
(fnt)-5 81.9 100.0 3402.3 100.0 290.3 100.0
(rer)-0.01 87.0 106.2 2722.3 80.0 303.1 104.4
(rer)-0.05 84.7 103.4 2716.5 79.8 298.1 102.7
(rer)-0.1 85.6 104.5 2902.9 85.3 300.3 103.4
(hyp) 82.7 101.0 2774.0 81.5 289.4 99.7

and Turboboost were disabled. We ran only one job per computer in order to
minimize the random noise in the measured running time that might be caused
by cache-misses if multiple processes share common resources. Finally, all exper-
iments were run with a time limit of 2h and a 40 GB memory limit.

The newly proposed notions of reliability from Section 4 are represented
by four different settings: (hyp) renders candidates (hyp)-unreliable according
to the rule (5), whereas (rer)-0.01, (rer)-0.05, and (rer)-0.1 use (rer)-
reliability regarding relative errors in pseudo-cost confidence intervals at three
different threshold levels 1 %, 5 %, and 10 %. Note that these levels represent
different levels of the relative error threshold, whereas the confidence level 1−α
is kept fixed at 95 % for both (hyp) and (rer)-reliability. We compare them to
(fnt)-reliability at a fixed threshold of 5, denoted by (fnt)-5. The latter setting
constitutes the default of Scip except that we disabled the threshold to be
dynamically adjusted during the search.

In this section, we only present compressed results of our experiments. For an
instance-wise outcome, please refer to Tables 5 and 6 in the Appendix. The first
three tables show the aggregated results regarding the solving time t (sec) and
the number of explored search tree nodes n for all instances and for only those
which could be solved within the time limit by all settings. We consider node
results incomparable between settings where the solution status differs and thus
only show time results for all instances. We report shifted geometric means with
a shift of 10 seconds and 100 nodes, respectively. The column ”%” shows the
percentage deviation from the result for the reference setting (fnt)-5; values
below 100 represent an improvement in this respect.

In Table 1, we compare the results over all instances from the test bed. 98
instances could be solved by all settings within the time limit of 2h, for which the
reference run was fastest regarding the solving time, but also required the most
branch-and-bound nodes on average. For our novel notion of (rer)-reliability, an
evaluation of the different thresholds comes with a surprise: there is no significant
difference between the levels 1 % and 5 % error tolerance. The highest node
reduction of 20.2 % was obtained with the setting (rer)-0.05, closely followed
by (rer)-0.01, which could not reduce the overall solving nodes further in the
shifted geometric mean. Regarding the running time, (rer)-0.05 was the fastest
to finish the tests among the three (rer)-settings, yet we observe a slight slow
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Table 2. Large Trees: n > 1000 with at least one setting

52 instances solved by all 88 total
t (sec) % n % t (sec) %

Settings
(fnt)-5 212.6 100.0 49741.5 100.0 897.9 100.0
(rer)-0.01 232.0 109.1 35322.9 71.0 947.4 105.5
(rer)-0.05 221.3 104.1 35104.9 70.6 924.0 102.9
(rer)-0.1 224.9 105.8 38227.1 76.9 932.5 103.9
(hyp) 212.9 100.1 35427.6 71.2 885.9 98.7

down of 3.4 % for the group of instances solved by all settings, and 2.7 % over
all 135 instances compared to the reference run. By using (hyp)-reliability, we
obtained a node reduction of 18.5 % and an almost performance neutral result
for the running time.

The discrepancy between a reduction of the tree size at the cost of more
solving time per node is the result of a more aggressive use of strong branching
by the novel notions of reliability. The notion of (hyp)-reliability hereby appears
to be more effective than relative-error reliability for guiding strong branching
effort because it focusses on resolving cases among the top pseudo-cost score
branching candidates where the estimation alone may lead to inferior branching
decisions.

Table 2 contains only instances for which at least one of the settings needed
more than 1000 nodes before termination. With (hyp)-reliability, we could
improve the performance of Scip w.r.t. the reference run by 28.8 % nodes and
also obtain a slight time reduction in total, whereas the time on instances in
the group containing only solved instances is competitive with the reference run
(fnt)-5. Among the (rer)-settings, (rer)-0.05 is fastest regarding the solving
time, but is still 4.1 % slower on average than the reference setting. All three
settings (rer)-0.05, (rer)-0.01, and (hyp) show a similar decrease in the
number of nodes, but at different computational efforts spent per node.

For the sake of completeness, we also present the remaining instances, for
which no solver took more than 1000 branch-and-bound nodes before termina-
tion, in Table 3. Out of the 47 instances in this group, there is only one, namely
stp-3d, that could not be solved by any of the settings. All novel notions of
reliability reduce the search tree size, although the effect is less striking than
on the instances that required larger search trees. Note that the node reduction
obtained with (rer)-0.01 and (rer)-0.05 is now considerably better than the
reduction obtained with (hyp)-reliability.

For those 37 instances for which optimality could not be proven within the
time limit by at least one of our settings, we computed integrals of the dual gap
as a function of time. This measure, which was suggested in [30,31], attempts to
compare the convergence of the dual gap towards zero. Table 4 shows the shifted
geometric mean integral for all settings using a shift of 1000. All novel notions
of reliability decrease the dual integral of the reference run, where the decrease
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Table 3. Small trees: All solvers needed n ≤ 1000 nodes

46 instances solved by all 47 total
t (sec) % n % t (sec) %

Settings
(fnt)-5 23.8 100.0 74.1 100.0 27.8 100.0
(rer)-0.01 24.5 103.0 61.7 83.3 28.6 102.8
(rer)-0.05 24.5 103.0 62.1 83.8 28.6 102.8
(rer)-0.1 24.6 103.4 68.8 92.9 28.7 103.2
(hyp) 24.3 102.4 67.5 91.1 28.5 102.3

Table 4. Shifted geom. mean dual integral for 37 time limit instances

Γ ∗(T ) %

Settings
(fnt)-5 73867.8 100.0
(rer)-0.01 66392.1 89.9
(rer)-0.05 73454.5 99.4
(rer)-0.1 72959.7 98.8
(hyp) 63101.8 85.4

is best with (hyp) yielding a reduction of 14.6 %. A similar result is obtained
with (rer)-0.01, which outperforms other thresholds for (rer)-reliability in this
respect.

6 Conclusions and Future Work

We introduced two novel notions of reliability: the (rer)-reliability based on
pseudo-cost confidence intervals, and (hyp)-reliability implementing a variant
of Student’s t-test. First experimental results with our implementation in Scip
show that these methods are promising for effectively reducing the size of branch-
and-bound-trees compared to the current state-of-the-art fixed-number thresh-
old, especially for large trees. Note that node reductions and the resulting
reductions of the required memory play an important role, e.g., in the con-
text of solver-parallelization to reduce load-coordination overhead. Together with
the presented smaller dual integrals for instances which hit the time limit, we
consider the reliability notions useful for proving optimality faster on harder
instances.

Our first implementation only considers pseudo-cost information, but can be
readily applied to different history information such as, e.g., the inference history
of a variable, as well. In the computational study presented, we collected very
little history information before using the statistical methods. Combining them
with traditional fixed-number threshold reliability might increase the power of
the hypothesis and relative error thresholds significantly.
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Note that for our computational experiments, we did not allow a dynamic
adaption of the fixed-number thresholds depending on the computational
expenses on strong branching during the search. Fixed-number thresholds, how-
ever, show a superior performance if they are dynamically adjusted during the
search, so that the overall strong branching effort is kept reasonably small. For
making a more effective use of the suggested approaches, it is necessary to let also
the novel approaches dynamically adjust to problems for which strong branching
is very expensive.
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Operations Research Proceedings 2011, pp. 71–76. Springer, Berlin Heidelberg
(2012)

31. Berthold, T.: Measuring the impact of primal heuristics. Operations Research
Letters 41, 611–614 (2013)

https://mip2014.engineering.osu.edu/sites/mip2014.engineering.osu.edu/f iles/uploads/Berthold_MIP2014_Cloud.pdf
https://mip2014.engineering.osu.edu/sites/mip2014.engineering.osu.edu/f iles/uploads/Berthold_MIP2014_Cloud.pdf
http://soplex.zib.de/
http://coral.ie.lehigh.edu/ jeff/mip-2008/program.pdf
http://coral.ie.lehigh.edu/ jeff/mip-2008/program.pdf


Enhancing MIP Branching Decisions 213

Appendix

This appendix contains an instance-wise outcome of our computational exper-
iments described in Section 5. For each of the five settings, we present three
columns; the measured dual integral Γ ∗(T ), the number of nodes n, and the
solving time in seconds t (sec). Table 5 shows the results for instances which we
classified as small tree instances, and Table 6 contains the remaining instances,
cf. Tables 3 and 2, respectively.

Table 5. Instance-wise experimental outcome for instances requiring at most 1000
nodes to solve

Settings (hyp) (rer)-0.01 (rer)-0.1 (rer)-0.05 (fnt)-5

Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec)

Problem
30n20b8 12699.9 13 196.4 14587.7 79 221.4 13000.5 18 200.6 15786.8 120 237.6 12756.5 18 196.3
air04 1766.8 8 36.2 1842.3 8 37.6 1842.3 8 37.6 1847.3 8 37.7 1862.4 8 37.9
air05 1275.2 50 25.7 1290.3 52 25.9 1290.4 52 26.0 1275.1 52 25.6 1270.2 62 25.6
app1-2 110453.1 23 1763.5 110730.3 19 1766.7 109918.4 19 1754.8 109878.9 19 1754.2 55296.9 41 875.6
ash608gpia-3col 2010.0 7 20.1 2120.0 9 21.2 2060.0 9 20.6 2080.0 9 20.8 2000.0 7 20.0
blend2 23.4 252 0.6 24.3 117 0.7 28.8 155 0.7 23.4 205 0.6 23.4 240 0.6
dcmulti 5.5 8 1.2 5.4 14 1.0 5.5 14 1.1 5.5 14 1.1 0.3 8 0.8
fast0507 1457.3 598 140.5 4264.0 714 150.5 4570.0 722 149.6 1128.5 646 146.8 4444.4 630 147.8
fiber 7.5 4 1.2 8.0 4 1.2 1.8 4 1.0 7.2 4 1.1 4.1 4 1.0
fixnet6 14.2 18 2.1 19.7 10 2.2 15.3 10 2.2 20.1 10 2.3 11.5 10 1.9
gesa2 5.2 3 0.8 5.1 3 0.8 5.2 3 0.7 5.2 3 0.7 5.0 3 0.4
gesa2-o 5.2 2 1.0 5.2 2 1.1 5.2 2 1.0 5.3 2 1.1 5.1 2 0.9
gesa3 5.2 7 1.3 5.2 7 1.2 5.2 7 1.3 5.1 7 1.0 5.1 7 1.0
gesa3 o 10.1 7 1.3 5.1 7 1.2 5.2 7 1.3 5.1 7 1.2 0.1 7 0.9
khb05250 0.1 4 0.5 0.2 4 0.5 0.2 4 0.5 0.2 4 0.5 0.2 4 0.5
l152lav 31.2 19 1.2 46.6 19 1.6 41.2 19 1.3 41.5 19 1.5 40.9 19 1.1
lseu 21.8 58 0.5 21.8 64 0.5 21.8 64 0.5 21.8 64 0.5 5.9 191 0.2
map18 15193.4 309 291.8 15757.4 275 302.4 15821.5 275 303.6 15777.8 275 302.7 15510.6 285 297.8
map20 12007.8 265 229.9 12518.0 307 239.4 12523.8 307 239.6 12560.5 307 240.2 12353.0 281 236.3
misc03 43.4 77 1.4 37.8 23 1.2 36.3 23 1.1 33.1 23 1.0 24.1 80 0.8
misc06 5.0 4 0.5 5.0 4 0.6 5.0 4 0.6 5.0 4 0.6 5.0 4 0.5
mod008 2.5 7 0.8 0.0 7 0.8 0.0 7 1.0 3.1 7 1.0 2.3 7 0.8
mod010 5.1 2 0.5 5.1 2 0.5 5.1 2 0.5 5.1 2 0.5 5.1 2 0.5
mod011 327.1 671 108.8 329.4 671 109.2 326.5 671 108.6 331.6 853 110.4 333.0 855 116.3
modglob 5.1 21 0.6 5.1 19 0.5 10.1 23 0.6 10.1 25 0.6 0.1 25 0.5
mspp16 131239.4 57 2474.8 88730.3 31 1673.2 95963.6 29 1809.6 98487.9 29 1857.2 98434.8 31 1856.2
mzzv42z 5076.1 132 147.7 5117.1 96 148.4 5101.4 96 147.9 5065.3 96 147.2 5458.9 110 155.5
neos-476283 1971.2 233 73.8 1961.2 105 70.4 2006.2 175 70.1 1976.3 394 74.9 1971.2 110 70.6
neos13 876.7 6 31.2 883.0 8 31.2 860.5 8 30.8 866.8 8 30.7 897.8 8 32.1
ns1208400 33880.0 598 338.8 52850.0 860 528.5 52890.0 860 528.9 52820.0 860 528.2 49760.0 881 497.6
nw04 476.0 8 20.4 480.0 8 20.1 470.0 8 20.0 465.7 8 20.2 496.4 8 20.7
p0201 42.9 11 1.3 37.7 9 1.2 27.5 9 1.0 32.3 9 1.0 32.6 9 1.1
p0282 0.5 3 0.5 0.5 3 0.5 0.5 3 0.5 0.0 3 0.4 0.0 3 0.3
p2756 1.7 3 0.9 1.8 3 1.1 1.8 3 1.1 6.8 3 1.1 5.1 3 0.7
pp08a 32.4 53 1.2 27.4 51 1.1 32.4 51 1.2 27.4 51 1.1 21.2 161 0.7
pp08aCUTS 12.8 53 1.2 23.0 51 1.3 18.1 51 1.3 18.0 51 1.2 1.5 153 0.8
qnet1 16.7 3 2.0 16.7 3 2.0 11.9 3 2.0 17.3 3 2.2 10.2 3 2.0
qnet1 o 4.1 4 1.4 0.0 4 1.3 4.1 4 1.4 0.0 4 1.4 0.0 4 1.3
rail507 760.6 554 145.5 664.3 546 136.9 1207.0 582 144.2 704.4 586 142.6 529.0 644 147.1
rentacar 71.9 4 3.3 77.1 4 3.4 81.7 4 3.8 80.6 4 3.4 80.6 4 3.4
rmatr100-p10 6884.6 723 121.2 7004.4 793 123.3 7028.6 793 123.8 6981.6 791 122.9 6821.8 709 120.1
rmatr100-p5 14864.3 339 245.6 15234.8 367 251.7 15562.9 367 257.1 15224.8 367 251.6 14256.9 349 235.6
set1ch 0.0 3 0.8 0.0 3 0.8 3.0 3 0.8 0.0 3 0.6 0.0 3 0.6
stp3d 145498.8 17 7200.0 145872.3 14 7200.0 145433.0 14 7200.0 145579.5 14 7200.0 145433.0 14 7200.0
tanglegram1 92121.1 31 922.3 77378.6 27 774.7 77468.4 27 775.6 77108.9 27 772.0 99072.9 33 991.9
tanglegram2 783.1 3 7.9 793.1 3 8.0 783.1 3 7.9 793.1 3 8.0 793.1 3 8.0
vpm2 19.1 298 0.9 35.3 50 1.3 24.8 50 1.1 25.0 110 1.1 19.6 272 1.0
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Table 6. Instance-wise experimental outcome for instances for which one setting
required more 1000 nodes

Settings (hyp) (rer)-0.01 (rer)-0.1 (rer)-0.05 (fnt)-5

Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec) Γ ∗(T ) n t (sec)

Problem
a1c1s1 259882.7 1120506 7200.0 259873.5 1364025 7200.0 259879.2 1685774 7200.0 259876.3 2004990 7200.0 259863.8 2070335 7200.0
aflow30a 508.5 1720 12.6 502.7 1908 12.4 507.3 1908 12.4 511.8 1908 12.4 377.5 1246 10.1
aflow40b 20210.8 104858 596.3 29534.9 172263 856.6 31494.3 179651 893.0 9929.0 116421 647.2 16390.8 143682 536.0
arki001 105.7 1120884 7200.0 105.7 592970 7200.0 105.7 754036 7200.0 105.7 1089108 7200.0 105.7 365939 7200.0
atlanta-ip 70465.2 7972 7200.0 70460.7 10011 7200.0 70460.7 10012 7200.0 70469.4 11789 7200.0 70469.7 8529 7200.0
bab5 6707.5 133720 7200.0 6649.7 110708 7200.0 6623.3 105423 7200.0 6644.2 123080 7200.0 6632.3 96735 7200.0
beasleyC3 94243.8 2408887 7200.0 92905.6 2107529 7200.0 92907.7 1377166 7200.0 92907.5 1849676 7200.0 92907.7 2841834 7200.0
bell3a 0.0 20025 3.0 0.0 20027 3.2 1.3 20261 3.1 11.4 21353 3.2 16.3 22611 2.8
bell5 10.0 1025 0.3 10.0 956 0.3 10.0 956 0.3 10.0 956 0.3 10.0 1152 0.3
biella1 34013.5 7109 679.4 19260.3 3629 384.8 19260.3 3629 384.8 15824.9 2771 316.2 33983.5 6883 678.8
bienst2 10925.9 66579 328.4 10702.5 101007 426.9 10718.1 101007 427.7 15947.8 113088 463.4 29985.7 309529 561.7
binkar10 1 596.4 86776 149.4 645.7 107739 163.3 2009.0 106799 161.7 139.4 100593 157.2 175.9 142580 139.1
cap6000 25.0 984 1.6 25.0 738 1.6 25.0 738 2.1 25.0 738 1.7 30.0 1801 1.5
cov1075 238889.6 2029811 4343.6 276493.1 2302521 5027.3 272692.6 2343053 4958.2 239021.6 2057875 4346.0 265179.6 2274377 4821.6
csched010 66451.7 369300 5305.9 84124.4 603007 7200.0 83471.9 595757 7200.0 82408.9 580198 7200.0 84082.4 1035664 7200.0
danoint 28360.6 1587831 6349.2 26431.6 916872 5941.5 32253.7 1563067 7200.0 32305.3 1741600 7200.0 20001.8 1102583 4476.0
dfn-gwin-UUM 1896.5 46931 118.7 1183.9 56297 135.2 1045.1 54593 133.4 1336.6 51457 139.2 1333.5 68085 93.1
ds 273675.0 6949 7200.0 273443.2 8668 7200.0 273433.4 8668 7200.0 273437.3 8554 7200.0 273445.3 7413 7200.0
eil33-2 1769.4 844 34.0 1748.3 1244 38.6 1818.4 1688 40.0 1183.5 1750 36.8 1351.2 340 30.3
eilB101 15408.3 8352 296.7 3224.8 5724 237.5 3264.2 5724 238.4 12732.3 6842 266.3 12660.3 6284 265.1
enlight13 1985.2 35737 21.2 1292.9 19169 14.1 1293.3 19169 14.1 8782.4 212656 97.6 13838.2 522384 158.9
glass4 61870.2 3541756 2966.7 240005.6 6451908 7200.0 70217.8 4150120 3363.6 240005.6 7997381 7200.0 240002.3 12763342 7200.0
gmu-35-40 65.0 21704510 7200.0 65.0 19643305 7200.0 65.0 20060056 7200.0 65.0 20562455 7200.0 60.0 32198403 7200.0
harp2 6822.5 197138 136.7 504.5 243174 161.1 320.6 198128 145.5 6887.6 209303 137.9 233.9 448438 160.7
iis-100-0-cov 19380.1 71291 522.7 26112.1 63349 685.3 30456.6 68587 737.3 25113.1 68335 578.4 24816.6 76155 523.3
iis-bupa-cov 98475.4 176675 2454.5 124920.5 146447 3222.1 65723.4 151437 2874.6 56189.1 153879 2319.6 58125.2 181441 2500.9
iis-pima-cov 14787.3 7531 263.6 13231.9 5821 239.4 14110.9 6339 254.5 13808.1 6059 249.3 13735.8 5869 248.4
macrophage 294853.6 2815744 7200.0 294850.8 1594719 7200.0 294850.8 2450737 7200.0 294854.2 2734477 7200.0 294851.0 2875395 7200.0
markshare1 720000.0 91697134 7200.0 720000.0 101065996 7200.0 720000.0 101801275 7200.0 720000.0 100882365 7200.0 720000.0 102171542 7200.0
markshare2 720000.0 83206634 7200.0 720000.0 88008981 7200.0 720000.0 87343340 7200.0 720000.0 87701931 7200.0 720000.0 88721939 7200.0
mas74 4034.7 2035460 395.3 3886.4 2112420 404.3 3425.2 2476385 355.0 3287.4 2567408 338.0 3306.0 2752472 342.5
mas76 99.8 221799 35.2 143.0 381797 55.0 318.2 395730 54.8 283.6 407343 46.7 244.8 547767 51.4
mcsched 60729.2 101259 1249.8 65736.7 108207 1334.0 56338.3 95019 1160.0 6662.9 60293 826.0 26190.3 46543 603.9
mik-250-1-100-1 1897.8 1072724 434.3 5327.1 3197358 1212.0 2179.0 1076085 438.0 1632.6 1505029 379.8 5995.2 6996847 1372.3
mine-166-5 1724.8 1240 31.1 1196.3 198 22.2 1333.9 328 24.5 1351.9 328 24.8 1250.2 2038 23.1
mine-90-10 2573.4 27903 96.5 8327.5 69247 208.1 10010.1 75221 240.3 8448.2 67032 209.7 20332.3 197329 428.7
misc07 973.8 31204 24.8 1183.4 33968 27.1 1245.4 33905 27.3 1027.9 30592 24.7 1201.8 47624 26.3
mkc 5503.8 1759678 7200.0 5504.2 2780944 7200.0 5503.8 1346673 7200.0 5504.0 1750343 7200.0 5504.2 2175182 7200.0
momentum1 85138.8 224442 7200.0 85144.8 395927 7200.0 85133.0 221818 7200.0 85158.2 264131 7200.0 85140.1 519796 7200.0
momentum2 244940.0 95882 4298.6 146827.4 34806 2723.9 202627.9 218703 7200.0 116352.8 140632 5152.9 226569.4 183471 4366.0
msc98-ip 5196.4 19531 7200.0 5196.4 8595 7200.0 5186.4 88283 7200.0 5196.4 40128 7200.0 5191.4 58884 7200.0
mzzv11 10377.6 1873 332.0 9712.5 1857 319.5 9701.3 1857 318.2 9716.6 1857 318.3 10185.3 2014 324.5
n3div36 54503.3 305537 7200.0 52926.8 350961 7200.0 52929.1 346823 7200.0 54503.6 362117 7200.0 52928.9 513914 7200.0
n3seq24 4800.8 7497 7200.0 4840.6 10605 7200.0 4820.7 9713 7200.0 4825.7 9711 7200.0 4815.7 8601 7200.0
n4-3 40980.4 37963 742.5 47000.5 44277 850.6 47119.4 42763 852.8 47852.6 43169 866.2 9826.5 46719 557.0
neos-1109824 4752.2 16018 88.0 2215.8 5143 41.3 2644.7 7432 49.2 2493.4 6008 46.5 1674.8 17347 84.2
neos-1337307 2851.4 499306 7200.0 2846.1 537959 7200.0 2851.1 501053 7200.0 2856.0 499990 7200.0 2841.1 714364 7200.0
neos-1396125 165458.3 100396 4394.8 107606.3 57401 2582.8 105651.4 59324 2592.5 108259.0 57159 2594.8 37201.4 88307 836.4
neos-686190 2695.3 2190 44.4 2793.4 2400 46.0 2793.4 2400 46.0 2711.4 2263 44.6 2705.3 1865 44.5
neos-916792 124357.4 1936201 7200.0 115050.5 1637517 7200.0 115058.7 1695767 7200.0 117813.7 1944367 7200.0 117042.3 2065470 7200.0
neos18 1316.9 34892 75.9 2794.3 59418 116.6 1699.9 44814 72.4 4982.4 113871 136.1 2054.8 59329 79.2
net12 225620.4 2616 2776.5 289044.4 3642 3556.3 291354.0 3642 3584.8 188654.2 2273 2321.9 231010.4 3139 2842.7
netdiversion 59360.6 1262 7200.4 59214.5 2450 7200.6 59507.7 2440 7200.2 59409.7 2448 7200.2 59752.9 2430 7200.8
newdano 116175.7 1337377 2695.1 202838.0 2102759 4739.1 166152.1 2281511 3972.2 172475.7 2390353 3843.2 166449.7 3194194 3936.2
noswot 7283.7 759174 139.2 7744.2 541939 148.0 5264.0 349424 100.6 9245.9 937041 176.7 16508.7 1607445 315.5
ns1688347 638.9 216 11.5 666.1 227 11.9 765.2 547 13.7 587.2 132 10.6 690.6 1088 12.4
ns1766074 342820.0 741161 3428.2 339300.0 749137 3393.0 342910.0 718315 3429.1 270620.0 774224 2706.2 237360.0 848597 2373.6
ns1830653 16954.7 51131 396.1 30657.6 44597 427.5 30736.6 44597 428.6 31033.3 46837 432.7 9767.1 22244 219.9
nsrand-ipx 11004.5 4470709 7200.0 11118.5 2278695 7200.0 15952.5 3796812 6527.1 11109.1 4328054 7200.0 10543.7 3978440 6502.4
opm2-z7-s2 52472.5 1511 873.2 45429.7 1275 756.0 45772.2 1421 761.7 51655.3 1325 859.6 46319.1 1283 770.8
pg5 34 3338.5 110314 797.7 35711.3 93606 830.2 33931.0 71290 801.6 3277.9 67830 755.8 1535.8 136710 713.1
pigeon-10 72000.0 1903058 7200.0 72000.0 2340172 7200.0 72000.0 2260479 7200.0 72000.0 3267789 7200.0 72000.0 3010254 7200.0
pk1 8503.0 441505 86.6 7850.0 245985 78.5 7230.0 275029 72.3 7341.0 344029 74.6 7282.0 393967 74.0
protfold 169384.3 6724 7200.0 169388.0 3654 7200.0 169388.0 3648 7200.0 169387.9 3643 7200.0 169388.3 6014 7200.0
pw-myciel4 161437.8 504422 2868.5 432078.7 3985751 7200.0 432084.8 3052407 7200.0 432083.7 2963901 7200.0 432085.2 3293759 7200.0
qiu 6514.4 9203 75.4 5908.2 8355 70.0 5790.7 8355 68.6 5799.0 8355 68.7 4489.9 9557 48.7
ran16x16 1579.1 254683 255.4 1497.2 251567 244.4 2064.1 248711 251.3 2212.5 261833 270.0 1222.1 284383 177.9
rd-rplusc-21 719565.9 292482 7200.0 719565.9 365129 7200.0 719565.9 176050 7200.0 719565.9 181324 7200.0 719565.9 563331 7200.0
reblock67 1950.7 38170 79.3 1462.0 27716 67.3 668.6 34065 75.3 1492.4 27858 67.9 789.7 49872 75.6
rmine6 29837.3 379250 643.4 36649.5 264194 787.7 26286.3 275832 588.8 837.0 381988 662.7 28254.0 367462 608.8
rocII-4-11 139430.3 5922 2117.2 326485.0 37845 4944.7 124937.9 20613 3489.0 197450.1 44679 5502.3 219386.9 140524 6949.1
rococoC10-001000 78138.0 960714 7200.0 78138.8 646077 7200.0 78139.8 1134644 7200.0 78140.2 1009680 7200.0 78134.2 2225139 7200.0
roll3000 30539.2 1592527 7200.0 30533.5 1828356 7200.0 30538.8 1883210 7200.0 30528.4 1647039 7200.0 30528.9 2722022 7200.0
rout 527.2 33158 45.0 1253.8 24804 38.4 1232.1 24804 38.0 1438.2 28995 41.8 528.1 19618 22.0
satellites1-25 208591.3 6503 2383.9 215188.8 6168 2459.3 215468.8 6168 2462.5 215582.5 6168 2463.8 149555.0 5749 1709.2
seymour 22803.9 432465 7200.0 22813.7 266060 7200.0 22813.7 298616 7200.0 22808.7 406612 7200.0 22808.8 438631 7200.0
sp97ar 715183.0 2860 7200.0 715182.9 2859 7200.0 715183.0 2859 7200.0 715183.0 2861 7200.0 715182.9 2862 7200.1
sp98ic 643739.2 24910 7200.1 643980.9 25556 7200.1 645279.9 22326 7200.0 645193.7 21939 7200.0 642833.8 33432 7200.0
sp98ir 1717.5 3354 38.1 1550.3 2928 34.7 1560.5 2928 35.0 1591.3 2910 35.9 1661.9 2582 37.1
stein27 51.1 3215 0.8 121.4 921 1.9 115.0 933 1.8 115.0 1449 1.8 38.3 4073 0.6
stein45 646.0 37211 10.2 277.3 41231 10.8 715.7 41669 11.3 614.3 42251 9.7 430.7 49451 6.8
swath 132806.3 955499 7200.0 131192.6 1032573 7200.0 131192.7 1090076 7200.0 131195.7 1120004 7200.0 131547.9 1526206 7200.0
timtab1 10953.6 576355 331.3 18586.8 1024342 535.7 20956.3 1127633 610.5 20065.1 1044816 578.8 10270.7 826333 292.0
timtab2 323569.0 8355916 7200.0 323567.1 8320061 7200.0 323567.7 7890308 7200.0 323567.2 11934864 7200.0 323566.6 13961074 7200.0
tr12-30 661.8 1052649 1724.2 632.6 1371401 2138.7 986.9 1155493 1850.1 554.8 1461519 1985.9 437.4 1072845 1082.6
unitcal 7 3786.0 185919 7200.0 3771.3 186486 7200.0 278109.7 106121 6253.8 148395.5 58245 3666.5 205323.5 112703 4696.1
vpphard 720000.0 5160 7200.0 720000.0 29923 7200.0 720000.0 53957 7200.0 720000.0 41002 7200.0 720000.0 58045 7200.0
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Abstract. Nogood learning is a critical component of Boolean satisfia-
bility (SAT) solvers, and increasingly popular in the context of integer
programming and constraint programming. We present a generic method
to learn valid clauses from exact or approximate binary decision diagrams
(BDDs) and resolution in the context of SAT solving. We show that any
clause learned from SAT conflict analysis can also be generated using
our method, while, in addition, we can generate stronger clauses that
cannot be derived from one application of conflict analysis. Importantly,
since SAT instances are often too large for an exact BDD representation,
we focus on BDD relaxations of polynomial size and show how they can
still be used to generated useful clauses. Our experimental results show
that when this method is used as a preprocessing step and the generated
clauses are appended to the original instance, the size of the search tree
for a SAT solver can be significantly reduced.

Introduction

Solvers for Boolean satisfiability (SAT) have become increasingly powerful in
recent decades and can now be used to solve large-scale instances involving
millions of variables and constraints. Much of the success of modern SAT solvers
stems from their ability to quickly learn new constraints from infeasible search
states via conflict-directed clause learning (CDCL). Conflict analysis has also
been applied in the context of mixed-integer programming (MIP) [1,17] and
constraint programming (CP) [15,21,24] as “nogood” learning. In the context
of constraint programming, nogood learning techniques have been proposed for
specific combinatorial structures that arise from global constraints. For example,
Downing et al. [12] study nogoods for global constraints that can be represented
as a network flow. However, it remains a challenge to learn effective nogoods for
MIP and CP solvers in a more generic context.

In this paper we introduce a generic approach for learning nogoods from deci-
sion diagrams, both exact and approximate. Decision diagrams provide a compact
representation of the solution space for discrete optimization problems, and have
been used to improve constraint propagation [2,11,14] and to derive optimization
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 215–230, 2015.
DOI: 10.1007/978-3-319-18008-3 15



216 B. Kell et al.

bounds [6,8]. This work proposes an extension of the use of such decision diagrams
to learn nogoods. We specifically focus on clause learning in the context of SAT
solving, being perhaps the most general form of nogood learning.

The architecture of today’s SAT solvers, combining unit propagation with
rapid restarts and CDCL, focuses on techniques with very low overhead and
maximizes the number of search nodes that can be processed per second. While
this has clearly been beneficial, the unit propagation inference performed by
SAT solvers is arguably limited in strength. We therefore investigate a way
to generate clauses that are stronger than those currently derived from unit
propagation and CDCL. We show that these clauses, when added to the original
formula, can substantially reduce the search tree size.

Our clause generation scheme is based on a novel application of binary deci-
sion diagrams (BDDs) to represent a given propositional formula. In contrast
to conventional BDD construction methods that are context-agnostic, we asso-
ciate a meaning with each node of the BDD: the set of clauses that are not yet
satisfied. This allows us to apply a top-down compilation scheme [8] in which
node equivalence is defined by the set of unsatisfied clauses. This node informa-
tion provides a sufficient condition for efficiently creating BDDs (that are not
necessarily reduced, however).

The key observation in our work is that the BDD node information, for those
nodes that do not lead to a satisfying solution, can also be used to generate
new clauses. Such clauses can be viewed as “nogoods” that forbid the solver to
visit the associated search states. Since a node in a BDD can represent multiple
partial assignments, a single nogood generated in this way is as strong as multiple
nogoods derived from these separate partial assignments.

We formally characterize the strength of the clauses generated by our method.
For example, we show that our clauses can indeed be stronger than one invoca-
tion of traditional conflict analysis. We also show the equivalence of our approach
to regular and ordered resolution, which are specific restricted forms of resolution
proofs.

BDDs that exactly represent a given CNF formula are well known to grow
exponentially large in general. This has significantly limited the success of BDD-
based techniques for SAT solving. To circumvent this limitation, we explore ways
to apply our method to relaxed and restricted BDDs that represent a superset
and subset, respectively, of all solutions instead [7,8]. These approximate BDDs
are created by merging non-equivalent nodes so as to respect a given limit on the
size of the BDD. We show that the clauses derived from relaxed (or restricted)
BDDs are still valid and can be computed efficiently.

We report results of computational experiments performed to evaluate the
strength of our generated clauses in practice. We show that, for certain problem
classes, our clauses can reduce the search tree size considerably. Interestingly, the
solving time is not always reduced accordingly; we attribute this behavior to the
length and number of our generated clauses. Nonetheless, the qualitative strength
of our clauses demonstrates a great potential for inclusion in SAT solvers, and
we propose several suggestions for doing so in the conclusion.
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Binary Decision Diagrams

A binary decision diagram (BDD) [10,18,19,25] is an edge-labeled acyclic directed
multigraph whose nodes are arranged in n + 1 layers L1, . . . , Ln+1. The layer L1

consists of a single node, called the root. In this paper, every edge in the BDD
is directed from a node in layer Li to a node in layer Li+1. Each node in lay-
ers L1, . . . , Ln has two outgoing edges, one labeled “true” and the other labeled
“false.” There are two nodes in layer Ln+1, called the sinks or terminals; one of
them, labeled �, is the true sink, while the other, labeled ⊥, is the false sink.

A BDD represents a Boolean function f defined on variables x1, . . . , xn as fol-
lows. The layers L1, . . . , Ln correspond respectively to the variables x1, . . . , xn.
A path from the root to a sink corresponds to values of these variables; a “true”
edge from a node in layer Li to a node in layer Li+1 corresponds to xi = 1, while
a “false” edge corresponds to xi = 0. If the path corresponding to the values
of x1, . . . , xn ends at the true sink, then f(x1, . . . , xn) = 1; otherwise the path
ends at the false sink, and f(x1, . . . , xn) = 0.

BDDs for SAT

An instance of the Boolean satisfiability (SAT) problem is a propositional for-
mula on variables x1, . . . , xn, expressed in conjunctive normal form (CNF),
that is, as a conjunction of disjunctions of literals, where a literal is a variable xi

or its negation xi. Each of these disjunctions is called a clause. Because logical
conjunction and disjunction are commutative, associative, and idempotent, we
may view a SAT instance as a set of clauses, each of which is a set of literals. The
objective is to determine whether there exists an assignment of Boolean values
to the variables that simultaneously satisfies every clause.

Let I be a SAT instance on the variables x1, . . . , xn, and let S denote the
set of satisfying assignments to these variables. Let B be a BDD defined on the
variables x1, . . . , xn, and let B denote the set of assignments to these variables
represented by B (that is, for which the Boolean function defined by B is true).
If B = S, B ⊇ S, or B ⊆ S, then B is said to be an exact BDD, a relaxed BDD,
or a restricted BDD for I, respectively [2,7,8,13].

A path in a BDD from the root to a node in the layer Li+1 represents a
partial assignment, i.e., an assignment y ∈ {0, 1}i of values to the variables
x1, . . . , xi. Let S(y) denote the set of satisfying completions of this partial
assignment, that is, S(y) =

{
z ∈ {0, 1}n−i : (y, z) is feasible

}
. If y and y′ are

partial assignments with S(y) = S(y′), then we say that y and y′ are equivalent.
Note that in an exact BDD all paths from the root to a fixed node v represent
equivalent partial assignments, and conversely if two partial assignments y and y′

are equivalent then the paths in an exact BDD that correspond to y and y′ can
lead to the same node.

In the literature, BDDs are commonly required to be reduced, in the sense
that any two equivalent partial assignments must be represented by the same
node. The BDDs in this paper are not necessarily reduced.
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In general, determining whether two partial assignments are equivalent is NP-
hard for the SAT problem. However, we can sometimes determine that two par-
tial assignments are equivalent by associating partial assignments with “states”
[14,16]. A state function for layer i is a map σi from the set {0, 1}i−1 of partial
assignments at layer i into some set Si of states, such that σi(y) = σi(y′) implies
S(y) = S(y′). In other words, two partial assignments that lead to the same
state have the same set of satisfying completions.

Behle [5] described a top-down algorithm for the construction of threshold
BDDs, which are exact representations of solution sets of instances of 0–1 knap-
sack problems. A general algorithm for a top-down, layer-by-layer construction
of a multivalued decision diagram (MDD), which is similar to a BDD except
that the labels of the edges may come from any set, was given by Bergman
et al. [8]. This algorithm works by maintaining state information for each node,
computing the resulting state for each outgoing edge, and reusing nodes (i.e.,
pointing two edges at the same node) when the resulting states are the same.

To apply this top-down algorithm for the construction of a BDD from a SAT
instance, we define σi(y) for a partial assignment y = {y1, . . . , yi−1} to be the set
of clauses in the instance that are not satisfied by the assignments x1 = y1, . . . ,
xi−1 = yi−1. Observe that if two partial assignments at layer i have the same
set of unsatisfied clauses, then they have the same set of feasible completions,
so this is indeed a state function. The state of the root node is the full set of
clauses in the instance, and the state of a child node is formed from the state of
its parent by removing all clauses that are satisfied by the variable assignment
corresponding to the edge from the parent to the child.

Example 1. Consider a graph coloring problem on a complete graph with three
vertices. Vertices 1 and 2 can be colored 0 or 1, while vertex 3 can be colored
0, 1, or 2. All nodes must be colored differently. We introduce variable x1 for
vertex 1, where x1 represents color 0 and x1 represents color 1. Likewise we
introduce x2 for vertex 2. For vertex 3, we introduce three variables x3, x4,
and x5 for colors 0, 1, and 2, respectively. Here a positive literal represents that
we choose that color, while its negation represents that we do not choose that
color (e.g., x3 means that vertex 3 is not colored 0). We can formulate this
problem as the following SAT instance with 11 clauses:

(1) x3 ∨ x4 ∨ x5 (7) x1 ∨ x2

(2) x3 ∨ x4 ∨ x5 (8) x1 ∨ x4 ∨ x5

(3) x3 ∨ x4 (9) x1 ∨ x3 ∨ x5

(4) x3 ∨ x5 (10) x2 ∨ x4 ∨ x5

(5) x4 ∨ x5 (11) x2 ∨ x3 ∨ x5

(6) x1 ∨ x2

The constructed BDD, using the lexicographic variable ordering, is presented
in Figure 1. The state of each node is the set of (indices of) clauses that have not
been satisfied by any path from the root to that node. “True” edges are drawn as
solid lines, and “false” edges are drawn as dashed lines. Infeasible nodes, that is,
nodes from which no path leads to the true sink, are shaded gray.
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1..11

1..6,8,10,11 1..5,7,9..11

⊥ 1..5,8,11 1..5,9,10 ⊥

1,5,8,11 2..5,8 1,5,9,10 2..5,10

1,8,11 5,11 4,8 ⊥ 1,9,10 5,9 4,10 ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

x1

x2

x3

x4

x5

false
true

Fig. 1. The exact BDD for the example. The false sink is drawn multiple times for
clarity.

Approximate BDDs

In general, exact BDDs can be of exponential size, so the construction of an
exact BDD may not be practical. For this reason, it is useful to consider BDDs
that represent relaxations or restrictions of the SAT instance. Such BDDs are
called approximate BDDs because their structure approximates the structure of
the exact BDD.

MDDs of limited width were proposed by Andersen et al. [2] to reduce space
requirements. In this approach, the MDD is constructed in a top-down, layer-
by-layer manner, and whenever a layer of the MDD exceeds some predetermined
value W an approximation operation is applied to reduce its size to W before
constructing the next layer. One way to perform this approximation is to use a
relaxation (or restriction) operation ⊕ defined on the states of nodes so that,
given nodes v and v′, the state given by state(v)⊕ state(v′) is a “relaxation” (or
“restriction”) of both state(v) and state(v′). A subset of nodes in a layer can be
merged into a single node by applying this operator to obtain a state for the new
node, and this is repeated until the size of the layer is reduced to W [8,14,16].

In our case, the state of a node is a set of unsatisfied clauses, and so the
appropriate relaxation operation is the intersection operation (and the appro-
priate restriction operation is the union operation).

Clause Generation with BDDs

We propose the use of a BDD representation of a SAT instance to generate
clauses. One simple way to deduce clauses from a BDD is to project the variable
assignments along the satisfying paths in a BDD and to look for variables whose
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values must be fixed. For instance, in the example above, we can infer from
both feasible paths that we can fix x3, x4, and x5. However, in practice we
must use approximate BDDs, and this approach does not produce much useful
information.

A more fruitful approach is to deduce clauses from the infeasible nodes of
the BDD (that is, the nodes from which no path leads to the true sink) by
using the state information for these nodes. In particular, we generate a clause
for each infeasible node in the BDD that witnesses its infeasibility. We do this
systematically by applying a sequence of resolution steps.

Resolution is a commonly used inference rule applied to propositional for-
mulas in conjunctive normal form. The resolution rule, applied to two clauses
xi ∨ P and xi ∨ Q, where P and Q denote disjunctions of literals, is

xi ∨ P xi ∨ Q

P ∨ Q
.

The resulting clause P ∨ Q is called the resolvent.
During the top-down construction of a BDD for a SAT instance, infeasibility

of a state is detected when an unsatisfied clause contains no variable correspond-
ing to a lower layer of the BDD. When this occurs, we choose one such clause
as a witness of the infeasibility of the corresponding node.

After the BDD construction is complete, we perform a single bottom-up
pass to identify all infeasible nodes and generate a witness clause for each. For
an infeasible node v in layer Li, we generate a witness clause as follows:

– If one of the child states has a witness clause that does not contain the
variable xi, then choose this clause as the witness clause for v.

– Otherwise, one child has a witness clause containing xi and the other has a
witness clause containing xi, so apply the resolution rule to these two clauses
with respect to the variable xi and use the resolvent as the witness clause
for v.

At the end, we output the witness clauses for all roots of maximal infeasible
subtrees of the BDD.

Example 2. Continuing the graph-coloring example from earlier, consider the
infeasible subtree rooted at the node with state {2, 3, 4, 5, 8} in layer L4 in
Figure 1. This subtree is redrawn in Figure 2. Setting x4 = 0 satisfies clauses
2, 3, and 5, so the “false” child (i.e., the child along the “false” edge) has state
{4, 8}. However, from this node, setting x5 = 0 means that clause 8 cannot be
satisfied, and setting x5 = 1 means that clause 4 cannot be satisfied. Therefore,
neither of the children of the node with state {4, 8} is feasible, and we have a
witness of the infeasibility of each: clause 8, x1 ∨ x4 ∨ x5, for the “false” child,
and clause 4, x3 ∨ x5, for the “true” child.

Likewise, returning to the node with state {2, 3, 4, 5, 8}, if we set x4 = 1 then
clause 3 cannot be satisfied, so clause 3, x3 ∨ x4, is a witness of the infeasibility
of this child.
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2, 3, 4, 5, 8

4, 8 ⊥ (3)

⊥ (8) ⊥ (4)

x1 ∨ x3

x1 ∨ x3 ∨ x4 x3 ∨ x4

x1 ∨ x4 ∨ x5 x3 ∨ x5

x4

x5

Fig. 2. Witness clauses generated from the infeasible subtree rooted at the node with
state {2, 3, 4, 5, 8} in layer L4

Now, in our bottom-up pass, we first determine that the node with state
{4, 8} is infeasible. Both of its child nodes have witness clauses that contain
the variable x5, so we apply the resolution rule to these two witness clauses
with respect to x5 to obtain the clause x1 ∨ x3 ∨ x4, which is a witness of
the infeasibility of the node with state {4, 8}. Likewise, the node with state
{2, 3, 4, 5, 8} is infeasible, so we apply the resolution rule to these two witness
clauses with respect to x4 to obtain the clause x1 ∨ x3.

Since the node with state {2, 3, 4, 5, 8} is the root of a maximal infeasible
subtree of the BDD, we produce the clause x1 ∨ x3 as output. This is a valid
clause for the original SAT instance.

In a similar way, we generate the witness clause x2 ∨ x3 for the node with
state {2, 3, 4, 5, 10} in layer L4 in the BDD in Figure 1.

Characterization of Generated Clauses

Let us formally define a clause C to be valid for a propositional formula F if
F |= C, i.e., F logically entails C. In other words, F ∧ C has the same set of
solutions as F itself. We begin with a few properties of witness clauses generated
using the BDD method.

Theorem 1. Let F be a CNF formula and B be a top-down exact, relaxed, or
restricted BDD for F constructed as described above. Then:

1. Every witness clause generated from B is valid for F .
2. The set of variables in every witness clause generated at layer Li+1 is a

subset of {x1, x2, . . . , xi}.
3. If B is an exact or relaxed BDD, the witness clause C generated for a node v

of B is falsified by the partial assignment corresponding to every path from
the root of B to v. In particular, C does not contain any variable that appears
both negatively and positively in paths from the root to v.

4. If B is an exact or relaxed BDD, the witness clause C associated with any
infeasible node v of B witnesses the infeasibility of v.
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5. Let U denote the roots of maximal infeasible subtrees of B. If B is exact, then
the set G of all witness clauses associated with nodes v ∈ U is a reformulation
of F .

Proof. The first claim follows immediately from the observation that the witness
clause C associated with any node v is derived using a sequence of resolution
operations starting from the clauses in state(v). Since resolution is a sound proof
system, state(v), and hence F , must entail C.

We prove the second claim by induction on i. For i = n+1, the claim trivially
holds. Suppose the claim holds for clauses generated at layer Li, with i > 1. By
construction, any clause C generated at layer Li−1 either is identical to a clause
generated at layer Li, in which case it does not contain the variable xi−1, or else
is obtained by resolving two clauses at layer Li on the variable xi. In either case,
by the induction hypothesis, the variables appearing in C must be a subset of
{x1, x2, . . . , xi−2}.

To prove the third claim, we recall from the definition of the state function
that when B is exact or relaxed, the partial assignment y corresponding to any
path from the root to v does not satisfy any clause in state(v) = Fv ⊆ F . For
the sake of contradiction, suppose � is a literal of the witness clause C that is
satisfied by y. Since C is derived by applying resolution steps to clauses in Fv, the
literal � must appear in at least one clause C ′ of Fv. Since y satisfies �, it would
also satisfy C ′, a contradiction. Hence, C must be falsified by y. Finally, if C
contained a literal � that appears positively and negatively in partial assignments
y and y′ corresponding to two paths from root to v, then C would clearly be
satisfied by at least one of y and y′, which, as proved above, cannot happen.
Hence, C must not contain any such literal.

For proving the fourth claim, we use the above property that when B is exact
or relaxed, the partial assignment y corresponding to any path from the root to v
does not satisfy C. Suppose y could be extended to a full assignment (y, z) that
satisfies F . Then z must satisfy all clauses in state(v) = Fv as these clauses, by
definition of the state function, are not satisfied by y. Since C is derived from Fv

by applying a sequence of resolution operations, z must then also satisfy C.
However, as observed above, C is a subset of {x1, x2, . . . , xi−1}, where Li is
the layer containing v, and hence C cannot possibly be satisfied by z. This
proves that y cannot be extended to a full assignment satisfying F , and that the
generated clause C witnesses this fact as well as the infeasibility of v.

Lastly, when B is exact, we argue that the set G of witness clauses associated
with roots of maximal infeasible subtrees of B is logically equivalent to F . If y
is a solution to F , then y must satisfy all witness clauses as these clauses are
entailed by F . Hence y must also satisfy G. On the other hand, if y is not a
solution to F , then let y′ be the partial assignment corresponding to the path
in B associated with y but truncated at the root v′ of a maximal infeasible
subtree. By the third property above, y′ (and hence y) must falsify the clause C ′

associated with v′, and hence falsify G. It follows that F and G have the same
set of solutions and thus G is a reformulation of F . 
�
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In the remainder of this section, we explore how BDD-guided clause genera-
tion relates to propagation and inference techniques used in today’s SAT solvers.
To make this connection precise, we recall the notion of absorbed clauses [3,22].
A clause C is said to be absorbed by a CNF formula F if for every literal � ∈ C,
performing unit propagation1 on F starting with all literals of C except � set to
false either infers � or infers a conflict. The intuition here is that C is absorbed
by F if F and F ∧C have identical entailment power with respect to unit propa-
gation, i.e., whatever one can derive from F ∧ C using unit propagation one can
also derive from F itself.

Pipatsrisawat and Darwiche [22] showed that the conflict-directed clause
learning (CDCL) mechanism in SAT solvers always produces clauses that are
not absorbed by the current theory, that is, by the set of initial clauses of F
and those learned thus far during the search. As we show next, this property
also holds for clauses generated by the BDD method applied to F , as long as we
ignore any states at which unit propagation already identifies a conflict.

More formally, given a BDD B, let us define a unit-propagated BDD, denoted
Bup, as the one obtained by removing from B all nodes v such that unit propa-
gation on state(v) results in a conflict. From a practical standpoint, such nodes
can be easily identified in linear time and discarded.

Theorem 2. Let F be a CNF formula and B be a top-down exact, relaxed, or
restricted BDD for F constructed as described above. Let C be the witness clause
for the root v of any maximal infeasible subtree in Bup. Then C is not absorbed
by F .

Proof. We first show that setting all literals of C to false and performing unit
propagation does not result in a conflict. From Theorem 1, the partial assignment
y corresponding to the path from the root of Bup to y falsifies C. Yet, by design,
unit propagation on state(v) does not result in a conflict. Therefore, it must be
the case that unit propagation on F starting with the partial assignment y does
not result in a conflict. Since y falsifies all literals of C, we infer that falsifying
all literals of C and performing unit propagation does not result in a conflict.

To finish the argument that C is not absorbed by F , we next show that
there exists a literal � in C such that setting all literals of C except � to false
does not allow unit propagation to infer �. Since v is the root of a maximal
infeasible subtree in Bup, it must be the case that v has a sibling node v′ that is
not identified as being infeasible. Let u be the common parent of v and v′. The
witness clause C associated with v must include a literal � corresponding to the
branching variable associated with the layer of u. We will use � to demonstrate
that C is not absorbed by F .

Suppose, for the sake of contradiction, that setting all literals of C other
than � to false and performing unit propagation infers �. Consider the partial
1 Unit propagation on a CNF formula is the process of identifying, if there is one, a
clause that contains only one literal �, setting � to true, simplifying the formula by
removing �̄ from all clauses and removing all clauses containing �, and repeating.
Unit propagation is said to result in a conflict if it generates an empty clause.
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assignment z corresponding to the path from the root of Bup to u. This partial
assignment z differs from the partial assignment y identified above in only the
literal �. It must then be the case that z falsifies all literals of C except for �,
and therefore unit propagation on state(u) starting with z must infer �. In other
words, there exists a clause C ′ in state(u) such that � ∈ C ′ and z, after unit
propagation, falsifies all literals of C ′ other than �. This, however, implies that
C ′ is also in state(v′), the state corresponding to the sibling v′ of v, and further
that unit propagation on state(v′) must falsify C ′, resulting in a conflict. This,
however, contradicts the fact that v′ was not identified as an infeasible node
in Bup. 
�

This establishes that our clause generation approach effectively produces
clauses that provide useful information not already captured by unit propagation
inference on F .

While a series of potentially exponentially many applications of the CDCL
mechanism can eventually let the solver learn any clause entailed by F (including
the empty clause in case F is unsatisfiable), we show below that any clause that
it can learn with one application of conflict analysis starting from a clause set F
is a special case of the BDD-generated clauses starting from F . This holds for any
clause learning scheme employed by the solver to choose a cut in the underlying
conflict graph.2

The proof of this claim uses properties of a few different restrictions of general
resolution which we briefly recapitulate. A tree-like resolution is one where no
clause, other than the initial clauses of F , is used in more than one resolution
step. A regular resolution is one where no variable is resolved upon more than
once in any root-to-leaf path. Finally, an ordered resolution is one where the
order of variables resolved upon is identical across all root-to-leaf paths.

Theorem 3. For any clause C learned from one application of SAT conflict
analysis on F using any clause learning scheme, there exists a variable ordering
under which a top-down approximate BDD of width at most 2|C| for F generates
a clause C ′ ⊆ C.

Proof. To prove this, we use the resolution-based characterization of CDCL
clauses [4], namely, the CDCL derivation of a clause C starting from F and
using any clause learning scheme can be viewed as a very simple form of resolu-
tion derivation that has a ladder-like structure. More formally, the derivation τ
of C is simultaneously a tree-like, regular, linear, and ordered resolution deriva-
tion from the clauses in F . This means that each intermediate clause Cj+1 in τ is
obtained by resolving Cj with a clause of F and that the sequence σ of variables
resolved upon in τ consists of all distinct variables.

We can use BDDs to derive from F a clause C ′ that, together with F ,
absorbs C. To construct such a BDD B, we use as the top-down (partial) variable
order first the variables that appear in C (in any order) followed by variables
in the reverse order of σ. The first |C| variables result in a BDD of width at
2 The specifics of the SAT conflict analysis terminology are not critical here. The
interested reader is referred to relevant surveys such as by Marques-Silva et al. [20].
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most 2|C|. Let v be the node of B in the layer L|C|+1 at which all literals of C
are falsified. When expanding B from v, the ladder-like structure of τ guarantees
that at least one branch on the variables in σ can be labeled directly by a clause
of F that is falsified. The corresponding lower part of B starting at v is thus of
width 1. For the remaining 2|C| − 1 nodes of B in the layer L|C|+1, we construct
an approximate lower portion of the BDD such that the overall width does not
increase. This makes the overall width of B be 2|C|.

While B may have several infeasible nodes, the node v in the layer L|C|+1

is guaranteed by the derivation τ to be infeasible. Recall that the path p from
the root of B to v falsifies C. Consider the node v′ that is the root of the
maximal infeasible subtree of B that contains v. Let C ′ be the BDD-generated
clause witnessing the infeasibility of v′. By Theorem 1, C ′ must be falsified by the
path p′ from the root of B to v′. Note that p′ is a sub-path of p. By construction,
C contains all |C| literals mentioned along p, while, by Theorem 1, C ′ contains
a subset of the literals mentioned along p′ and hence along p. It follows that
C ′ ⊆ C. 
�

The above reasoning can be extended to construct an exact BDD that gen-
erates a subclause of C. However, the width of such a BDD will depend not only
on |C| but also on the number of resolution steps involved in conflict analysis
during the derivation of C.

Theorem 4. Clauses generated by applying the BDD method to F correspond
to regular and ordered resolution derivations starting from the clauses of F .

Proof. It is easily seen that the resolution operations performed during clause
generation from a BDD respect, by construction, the restrictions of being regular
and ordered. Hence, any BDD generated clause C can be derived using regular
and ordered resolution starting from F .

On the other hand, let τ be any regular and ordered resolution derivation
of C starting from F . An argument similar to the one in the proof of Theorem 3
can be used to show that there exists a natural variable order (namely, first
branch on the variables of C, then follow the top-down variable order imposed
by τ) under which the top-down BDD B for F contains a node v such that the
path from the root of B to v falsifies all literals of C. As before, witness clauses
for B may not directly include C as is, but the witness clause C ′ associated
with the root of the maximal infeasible subtree of B containing v would be a
subclause of C. 
�

Werecall again the resolution-based characterization ofCDCLclauses, namely,
those that can be derived using tree-like, regular, linear, and ordered resolution.
This results in linear-size resolution derivations and thus forms a strict subset of
all possible derivations that are regular and ordered, but not necessarily tree-like
and linear. The above theorem therefore implies the following:

Corollary 1. There exist BDD-generated clauses that cannot be derived using
one application of SAT conflict analysis.
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Implementation and Experimental Results

We implemented the clause generation algorithm described above in C++, as a
program called Clausegen. Several implementation decisions needed to be con-
sidered.

The variable ordering used in a BDD can have a very significant effect on
the size of the BDD (and consequently the quality of an approximate BDD).
Unfortunately, determining the optimal variable ordering is very difficult; in
general, the problem of determining whether a given variable ordering of a BDD
can be improved is NP-complete [9]. For our implementation, we use a simple
heuristic to determine the variable ordering: each variable is assigned a score,
computed as the quotient between the number of clauses containing the variable
and the average arity of those clauses, and the variables are sorted in decreasing
order according to this score, so that higher-scoring variables (that is, variables
that appear in many mostly short clauses) correspond to layers nearer the top
of the BDD.

The construction of a relaxed BDD via merging also requires a rule for deter-
mining which nodes to merge in a layer that exceeds the maximum width. Since
unsatisfied clauses lead to infeasibility, and our method generates clauses from
infeasible subtrees, the following merging rule is used: if a constructed layer
exceeds the maximum width W , sort the nodes by the number of unsatisfied
clauses in their states, preserve the W − 1 nodes with the greatest number of
unsatisfied clauses, and merge the other nodes into a single node. (The state
of the resulting node is the intersection of the states of the nodes that were
merged.) Merging rules similar to this one have been applied before in the con-
text of optimization and scheduling, for example by Cire and van Hoeve [11].

To demonstrate our method, we considered SAT instances produced from
randomly generated bipartite graph matching problems, with 15 vertices on each
side, in which a random subset of 10 vertices on one side is matched with only
9 vertices on the other side, so that the graph fails to satisfy Hall’s condition,
thereby making the SAT instance unsatisfiable. We preprocessed the instance
with SatELite 1.0 (using the +pre option) and used Minisat 2.2.0 as the SAT
solver (with -rnd-freq=0.01). Because Minisat uses a nondeterministic algo-
rithm, it was run 20 times for each test with different random seeds, and the
results were averaged. The experiments were run on an Intel Xeon E5345 at
2.33 GHz with 24 GB of RAM running Ubuntu 12.04.5.

For a representative instance of this type, with 225 variables and 748 clauses
(80 variables and 405 clauses after preprocessing), Minisat made 864,930 deci-
sions and encountered 714,625 conflicts on average.

Figure 3 shows the results of appending the clauses produced by Clausegen
before the instance is given to Minisat. As the maximum BDD width is increased
from 10 to 10,000, thus yielding more accurate approximate BDDs, the numbers
of decisions and conflicts encountered by Minisat decrease. The clauses generated
at BDD width 10,000 produced an improvement in these metrics by over 75% in
comparison with the original instance: Minisat averaged 212,158 decisions and
178,101 conflicts.
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However, we do not see a corresponding improvement in the running time of
Minisat. The stacked area plot in Figure 3 shows the running time of Clausegen
and Minisat as the BDD width is increased. On the original instance, Min-
isat required an average of 7.83 s; this time increased to 17.65 s when the
clauses generated at BDD width 10,000 were added. The number of generated
clauses increases linearly with the BDD width, from 12 clauses at width 10 to
9745 clauses at width 10,000. The clauses generated at width 10,000 have an
average length of 11.8, compared to an average length of 2.1 in the original
instance.

100k

200k

300k

400k

500k

600k

700k

800k

900k

 10  100  1000  10000

Maximum BDD width

Decisions
Conflicts

 0

 5

 10

 15

 20

 25

 30

 10  100  1000  10000

R
un

ni
ng

 ti
m

e 
(s

)

Maximum BDD width

Minisat
Clausegen

Fig. 3. Minisat statistics for an unsatisfiable bipartite matching instance

Figure 4 shows our results for another instance, counting-clqcolor-unsat-set-
b-clqcolor-08-06-07.sat05-1257.reshuffled-07.cnf, from the SAT Challenge 2012
Hard Combinatorial SAT+UNSAT benchmark instances [23]. This instance has
132 variables and 1527 clauses of average length 2.9 (117 variables and 1599
clauses of average length 4.3 after preprocessing with SatELite) and is also unsat-
isfiable; it represents a graph coloring instance with a hidden clique that is larger
than the number of colors available. Minisat averaged 2,072,107 decisions and
1,511,029 conflicts for the original instance, taking 14.18 s on average. When the
3255 clauses of average length 8.7 produced by Clausegen at BDD width 10,000
were added, the average numbers of decisions and conflicts decreased to 713,718
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and 515,514, respectively, and the average running time of Minisat decreased to
6.34 s. The minimum total running time of Clausegen and Minisat together was
achieved at a BDD width of 464; Clausegen took 0.57 s to generate 340 clauses
of average length 8.7, and Minisat averaged 1,351,691 decisions and 972,674 con-
flicts, taking 9.14 s on average to solve the instance, for a total average solving
time of 9.71 s (an improvement of 31.5% over the original instance).
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Fig. 4. Minisat statistics for counting-clqcolor-unsat-[. . .].cnf from SAT Challenge 2012

It may be that not all of the generated clauses are necessary. Preliminary
experiments involving the selection of random subsets of the generated clauses
appear to indicate that some subsets are significantly more helpful than others.
A heuristic to select useful subsets of the generated clauses may allow a decrease
in running time to match the decreases in the numbers of decisions and conflicts.

Conclusion

We presented a new algorithm that uses BDDs and resolution to generate valid
clauses from a SAT instance. This algorithm can use approximate BDDs for
instances that are too large for an exact BDD. We compared the strength of
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our method to that of SAT conflict analysis and showed that our method can
generate strictly stronger clauses than a single application of SAT conflict anal-
ysis. Our experimental results show that concatenating these generated clauses
to the original instance can significantly reduce the size of the search tree for a
SAT solver.

For a practical implementation of our method, we propose the following tech-
niques to improve computational efficiency. First, initial experimentation has
shown that not all generated clauses are equally effective. We therefore suggest
the development of a heuristic to select and add only a small subset. Second, a
large formula may be decomposable into subformulas that are each representable
effectively by a BDD. It seems natural to make such a decomposition based on
structural properties of the formula (e.g., properties of the constraint graph).
Third, when a SAT solver appears to be making very little progress, and the
number of remaining free variables is limited, we can interrupt the search and
give the rest of the formula to a BDD to generate clauses conditional on the
partial assignment represented by the last search state.
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Abstract. We propose an extension to the discrete ellipsoid-based
search (DEBS) to solve the exact quadratic knapsack problem (EQKP),
an important class of optimization problem with a number of practical
applications. For the first time, our extension enables DEBS to solve
convex quadratically constrained problems with linear constraints. We
show that adding linear constraint propagation to DEBS results in an
algorithm that is able to outperform both the state-of-the-art MIP solver
CPLEX and a semi-definite programming approach by about one order
of magnitude on two variations of the EQKP.

1 Introduction

The exact quadratic knapsack problem (EQKP) [1] consists of selecting a subset
of elements such that the sum of the distances between the chosen elements is
maximized while also satisfying a knapsack constraint. The EQKP is an exten-
sion of the well studied maximum diversity problem [2], the quadratic knapsack
problem [3], and the exact linear knapsack problem [4], which arise in a wide
range of real world applications such as wind farm optimization [5,6] and task
allocation [7]. The EQKP consists of one quadratic objective function and two
linear constraints, i.e., one knapsack constraint and one cardinality constraint,
where all variables are binary. The EQKP was first studied by Létocart [1] who
proposed an efficient heuristic method for the problem.

For solving EQKPs exactly, the common generic approach in Operations
Research is the use of a commercial MIP solver such as CPLEX or Gurobi.
These solvers have been extended to reason about quadratic constraints [8] and
they are able to outperform several other exact approaches [9]. The other generic
approach is the semi-definite programming (SDP) based branch-and-bound algo-
rithm [10], which is often regarded as the state-of-the-art approach for solving
binary quadratic programming problems (BQP). EQKP is an extension of the
BQP and it can be solved with the SDP approach. However, the SDP approach
has not been evaluated on problems with the EQKP structure.

c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 231–239, 2015.
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In this paper, we extend discrete ellipsoid-based search (DEBS) method to
solve the EQKP. DEBS is a specialized search used in the communications lit-
erature (e.g., see [11]) to solve integer least squares problems (ILS) based on
the clever enumeration of integer points within the hyper-ellipsoid defining the
feasible space. We have previously shown that DEBS can be applied to the BQP
efficiently [12]. As EQKPs can be reformulated as ILS problems, we perform this
transformation and extend DEBS for solving convex quadratically constrained
problems with linear constraints. To our knowledge, this is the first time that
DEBS has been applied to problems with linear constraints so our extension
enables DEBS to solve a much broader class of problems, i.e., problems with a
quadratic objective function and any number of linear constraints. As an initial
test-bed, we use the EQKP to show that our extension achieves state-of-the-art
for solving the EQKP and a variation, outperforming both CPLEX and the SDP
based approach. Interestingly, the three exact approaches agree on problem dif-
ficulty: instances that take more time for the DEBS method to solve are also
more challenging for the other two approaches.

2 The Exact Quadratic Knapsack Problem

The EQKP problem is defined as follows:

max
x∈{0,1}

n−1∑

i=1

n∑

j=i+1

hijxixj , (1)

s.t.
n∑

i=1

xi = K,

n∑

i=1

aixi ≤ B,

where n ∈ Z , K ∈ Z, ai ∈ R
+,∀i, B ∈ R

+, hij ∈ R,∀i, j.
For the simplicity of explanation, we reformulate the EQKP in its minimiza-

tion form with matrix representation as follows:

min
x∈{0,1}

1
2
xTHx + fTx, s.t. cT1 x = K, cT2 x ≤ B, (2)

where H ∈ R
n×n is a symmetric semi-definite positive matrix, f ∈ R

n is a
vector equal to zeros, c1 ∈ R

n is a vector equal to ones, and c2 ∈ R
n is a vector

equal to ais. Note that H can always be made symmetric semi-definite positive
to ensure convexity when all variables are binary [9].

To solve the EQKP with the DEBS method, we need to transform the objec-
tive function into its equivalent integer least squares (ILS) form through the
relationship H = ATA and f = −yTA. Thus, the equivalent ILS problem can
be defined as follows:

min
x∈{0,1}

‖y − Ax‖22 , s.t. cT1 x = K, cT2 x ≤ B. (3)
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3 The DEBS Method

The DEBS method has been developed to address three types of the ILS prob-
lems: unconstrained, box-constrained, and ellipsoid-constrained [13–15]. To the
best of our knowledge, the DEBS method has not been extended to solve ILS
problems with general linear constraints.

The DEBS method consists of two phases: reduction and search. The reduc-
tion is a preprocessing step that transforms A to an upper triangular matrix R
with properties such that the search is more efficient [13]:

min
x∈Zn

‖y − Ax‖22 → min
z∈Zn

‖ȳ − Rz‖22 . (4)

Geometrically, the optimal solution is found by searching discretely inside the
ellipsoid defined by the objective function of the reduced ILS problem (right
hand side of Equation (4)). Suppose the optimal solution z∗ to the ILS problem
satisfies the bound ‖ȳ − Rz∗‖22 < β, where β is a constant. This expression
defines a hyper-ellipsoid with center R−1ȳ.

Reduction. The reduction phase of DEBS transforms A into an upper triangular
matrix R such that the diagonal entries are ordered in non-decreasing order:

|r11| ≤ |r22| ≤ . . . ≤ |rkk| ≤ . . . ≤ |rn−1,n−1| ≤ |rnn|.
It has been shown that the above order can greatly affect the efficiency of the
DEBS search by reducing the branching factor at the top of the search tree [13].

Transforming A to R can be achieved by finding an orthogonal matrix Q ∈
R

n×n and a permutation matrix P ∈ Z
n×n such that QTAP =

[
R
0

]

, Q =
[
Q1,Q2

]
. Therefore we have:

‖y − Ax‖22 =
∥
∥
∥QT

1 y − RP Tx
∥
∥
∥
2

2
+

∥
∥
∥QT

2 y
∥
∥
∥
2

2
.

Let ȳ = QT
1 y, z = P Tx, and c̄2 = c2P , the original EQKP (3) is then trans-

formed to the new reduced EQKP:

min
z∈{0,1}

‖ȳ − Rz‖22 , s.t. cT1 x = K, c̄T2 x ≤ B. (5)

Note that applying the permutation matrix P to the original problem changes
the order of the variable bounds and the coefficients of the linear constraints.
However, since the original lower and upper bounds on the variables are all zeros
and ones, and the coefficients of the cardinality constraint are all ones for the
EQKP, the new bounds and c1 remain unchanged after applying the permutation
matrix P . For problems with general variable bounds, i.e., l ≤ x ≤ u, the
reordering can be done with l̄ = P T l and ū = P Tu.

After the optimal solution z∗ to the new EQKP problem (5) is found, the
optimal solution, x∗, to the original EQKP problem (3) can be recovered with
the relationship x∗ = Pz∗.
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Search. The search is performed on the reduced problem (5). Among several
search strategies in the literature, the Schnorr & Euchner strategy is usually
considered the most efficient [16]. The search systematically enumerates all the
integer points in the bounded hyper-ellipsoid with specific variable and value
ordering heuristics. In addition, the hyper-ellipsoid is contracted during the enu-
meration process to further constrain the search space. The main ideas of the
search are as follows.

Suppose the optimal solution z∗ satisfies the bound ‖ȳ − Rz‖22 < β, or
equivalently

∑n
k=1(ȳk − ∑n

j=k rkjzj)2 < β, where β is a constant which can
be obtained by substituting any feasible integer solution to equation (5). Let
zn
i = [zi, zi+1, . . . , zn]T . Define the so-far-unknown (apart from cn) and usually

non-integer variables:

cn = ȳn/rnn, ck = ck(zk+1, . . . , zn) = (ȳk−
n∑

j=k+1

rkjzj)/rkk, k = n−1, . . . , 1.

Note that ck is a function of zk+1 to zn, and it is fixed when zk+1 to zn are
fixed. The above equation can be rewritten as

∑n
k=1 r2kk(zk − ck)2 < β, which

defines the possible values that zk can take on. This inequality is equivalent to
the following n inequalities:

level n : (zn − cn)2 <
1

r2nn
β,

level n − 1 : (zn−1 − cn−1)2 <
1

r2n−1,n−1

[β − r2nn(zn − cn)2],

...

level k : (zk − ck)2 <
1

r2kk
[β −

n∑

i=k+1

r2ii(zi − ci)2],

...

level 1 : (z1 − c1)2 <
1

r211
[β −

n∑

i=2

r2ii(zi − ci)2].

The search starts at level n, heuristically assigning zn = �cn�, the nearest
integer to cn. Given the value of zn, cn−1 can be calculated from the above
equation as cn−1 = (ȳn−1 − rn−1,nzn)/rn−1,n−1. From this value, we can set
zn−1 = �cn−1� and search continues. During the search process, zk is deter-
mined at level k, where zn, zn−1, . . . , zk+1 have already been determined, but
zk−1, zk−2, . . . , z1 are still unassigned. At some level k − 1 in the search, it is
likely that the inequality cannot be satisfied, requiring the search to backtrack
to a previous decision. When we backtrack from level k − 1 to level k, we choose
zk to be the next nearest integer to ck, and so on.

In the Schnorr & Euchner strategy, the initial bound β can be set to ∞.
Once the first integer point is found, we can use this integer point to update β,
reducing the hyper-ellipsoid thus the search space.
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In order to take into account the variable bounds, i.e., l ≤ z ≤ u, the
algorithm limits the enumeration of zk at level k to be within [lk, uk].

4 Extending the DEBS Method to Solve the EQKP

From a constraint programming perspective, DEBS does three things. First, the
search strategy implies a fixed variable ordering heuristic (zn, zn−1, . . . , zk, . . . , z1)
that is determined after the reduction phase, where the variables are reordered
with the permutation matrix as z = P Tx. Second, through the calculation of ck,
DEBS provides a value ordering heuristic: for zk, integer values closer to ck are pre-
ferred. Third, the inequalities described above induce an interval domain for each
zk. DEBS is essentially the enumeration of these domains under the prescribed
variable and value orderings. We use this insight to integrate linear constraints
into DEBS in a straightforward way: linear constraints are made arc consistent to
further reduce the domains of the zk variables.

A linear constraint is defined as b ≤ aTz ≤ b̄, where b, b̄ ∈ R
n ∪ {±∞}, and

a ∈ R
n is the coefficients of the constraint. Given a linear constraint, let

αk = min{aTz − akzk | l ≤ z ≤ u} and ᾱk = max{aTz − akzk | l ≤ z ≤ u}
be the minimal and maximal values that aTz can achieve over all variables
except zk with respect to the variable bounds. These values can be computed by
substituting the zks with their lower or upper bounds, depending on the signs
of the aks. The propagation rule for each integer variable zk is then defined as
follows: ⌈

b − ᾱk

ak

⌉

≤ zk ≤
⌊

b̄ − αk

ak

⌋

if ak > 0, (6)

⌈
b̄ − αk

ak

⌉

≤ zk ≤
⌊

b − ᾱk

ak

⌋

if ak < 0. (7)

Although the idea of propagating the linear constraint is straightforward and
not novel, the implementation involves maintaining useful information efficiently
as the search moves between levels. As a variable is fixed when the search moves
down the levels, the values αk and ᾱk actually consist of two parts: the sum of all
the variables that are fixed already (zk+1 to zn), and the sum of the maximum or
minimum values that the unfixed variables (z1 to zk−1) can achieve, according
to the variable bounds. Below we show how to update αk and ᾱk using the
cardinality constraint as an example.

For the cardinality constraint, we have ak = 1,∀k, and b = b̄ = K. Therefore,
using Equation (6), the lower bound Lk and upper bound Uk imposed by the
cardinality constraint can be derived as follows:

Lk = K −
n∑

i=k+1

zi −
k−1∑

i=1

ui and Uk = K −
n∑

i=k+1

zi −
k−1∑

i=1

li,

where
∑k−1

i=1 li = 0 and
∑k−1

i=1 ui = k − 1, since zis are binary for the EQKP.
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During the search, the sum of the fixed values S =
∑n

i=k+1 zi is only changed
when moving up or down between two adjacent levels. Therefore, we can use a sin-
gle variable to keep track this value, efficiently updating S rather than computing
from scratch. When the search backtracks from level k to k + 1, we set S = S − zk
to reverse the assignment of zk. Similarly, when the search moves down from level
k to k − 1, we set S = S + zk to take into account the current assignment of zk.

Equations (6) and (7) are general and they can be applied to all types of linear
constraints. In addition, some types of constraints, e.g., the cardinality constraint
as shown above, can be specialized from the general linear constraint formulation
and be propagated more efficiently. Similarly, each linear constraint keep tracks
of its own sum of the current assigned values S. Therefore our extended DEBS
can be used to solve problems with any number of linear constraints of any type.
The variable domain at each level is therefore the intersection of all the bounds
imposed by the linear constraints.

A naive extension of the DEBS method for solving problems with linear
constraints can be achieved by using the linear constraints only as “checkers”:
the constraints simply return true or false when all the variables are instantiated.
If all linear constraints agree on an instantiation, it is accepted as an integer
solution and the search proceeds correspondingly. However from our preliminary
experiments, this naive implementation is, unsurprisingly, orders of magnitude
slower than the MIP and SDP approaches. Thus, we do not report the results
but note that our simple propagation is critical for results presented below.

Solving Non-Binary Problems. Our extended DEBS method can solve non-binary
problems without any modification. However, it requires that the quadratic objec-
tive function be inherently convex, as convexifying a non-binary problem is not
possible. The reduction and the propagation on the linear constraints are not
affected by the variable domains and therefore remain the same.

5 Experimental Results

Experimental Setup. The CPU time limit for each run on each problem instance
is 3600 seconds. All experiments were performed on a Intel(R) Xeon(R) CPU E5-
1650 v2 3.50GHz machine (in 64 bit mode) with 16GB memory running MAC OS
X 10.9.2 with one thread. The DEBS approach is written in C. We use CPLEX
Optimization Studio v12.6 and the SDP solver BiqCrunch downloaded from the
website [17] for comparison. Both solvers are executed with their default settings.
For the SDP solver, there are four specialized versions that deal with problem-
specific structures. Three of them are consistent with the EQKP problem and
the SDP results presented are the best of the three versions for each individual
problem instance, representing the “virtual best” SDP solver. We report the
arithmetic mean CPU time “arith”, and the shifted geometric mean CPU time
“geo” to find and prove optimality for each problem set.1
1 The shifted geometric mean time is computed as follows:

∏
(ti + s)1/n − s, where ti

is the actual CPU time, n is the number of instances, and s is chosen as 10. Using
geometric mean can decrease the influence of the outliers of data [18].
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Table 1. A comparison of CPLEX, DEBS and the SDP approach for the EQKP
({0,1} Problems) and its problem variation ({0,1,2} Problems). Bold numbers indicate
the best approach for a given problem set. The superscripts indicate the number of
instances not solved to optimality within 3600 seconds.

{0,1} Problems

n DEBS DEBS+Red. CPLEX SDP

arith geo arith geo arith geo arith geo

10 0.00 0.00 0.00 0.00 0.04 0.04 0.14 0.14
20 0.01 0.01 0.01 0.01 0.18 0.18 4.94 4.35
30 0.72 0.68 0.69 0.65 18.82 12.21 336.94 152.53
40 115.64 31.91 109.63 30.78 1274.052 401.52 2374.784 1238.914

50 317.83 49.87 329.31 50.91 1810.346 1006.416 3237.457 3119.117

{0,1,2} Problems

n DEBS DEBS+Red. CPLEX

arith geo arith geo arith geo

10 0.00 0.00 0.00 0.00 0.01 0.01
20 0.02 0.02 0.02 0.02 0.26 0.25
30 1.05 0.95 0.99 0.90 11.49 6.78
40 276.28 65.86 308.52 69.78 1203.592 281.982

50 2354.506 1216.436 2406.486 1262.996 3149.808 2700.368

Test sets. We use five sets of the benchmark instances with different sizes gen-
erated in the same way as Létocart et al. [1], with 10 instances in each set. For
additional comparison, we relax the binary domains xj ∈ {0, 1} to xj ∈ {0, 1, 2}.
This means that we have the option of selecting two “copies” of each element when
maximizing the quadratic objective function but hjj = 0 (see Formulation 1). To
the best of our knowledge, this problem has not been studied in the literature.

In order to ensure convexity, we compute the smallest eigenvalue for the H
matrix of each problem and let it be λmin. If λmin is negative, i.e., the problem is
non-convex, we apply the perturbation vector u = (−λmin + 0.001)e such that
the original objective function is transformed to: minx∈{0,1} 1

2x
T H̄x + f̄

T
x,

where H̄ = H +diag(u) and f̄ =
(
f − 1

2u
)T . Note that this convex formulation

has the same optimal solution as the original one. For the DEBS method, we use
Cholesky decomposition on the perturbed matrix H̄ to obtain matrix A in the
ILS formulation (3), and we obtain y from the relationship f̄ = −yTA, which
gives us y = −(f̄A−1)T . If the problem is originally convex, we obtain A and y
with H and f .

Results and Discussion. From Table 1, it is clear that the DEBS method per-
forms the best both for the EQKP and its relaxed problem. For the EQKP,
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DEBS is on average one to two orders of magnitude faster than CPLEX and it
strictly dominates CPLEX on each problem instance in our experiments. The
SDP approach performs the worst among the three approaches. This is surprising
given the strong results for solving the BQPs, and the fact that these results
are the best per instance results over the three BiqCrunch variations. Analysis
of CPLEX and the SDP solving behaviour shows that the reason that both
approaches are unable to prove optimality for larger problems is mainly the
weakness in the dual bound. This apparently favours the DEBS method as it
does not rely on dual bounding. In fact, DEBS completely lacks a dual bounding
mechanism, depending on propagation to reduce the search space.

Interestingly, the running times for all three approaches increase significantly
when K is increased. The reason is that during the search, when the sum of the
already fixed variables at a node is equal to K, we know that the unfixed variables
have to be set to zero to satisfy the cardinality constraint. Intuitively, if K is
small, such solutions are early in the search tree, as fewer branching decisions are
required to reach such nodes. For the same reason, we expect that the running
time to be also decreased when K is further increased towards n.

From Table 1, it is observed that the relaxed domain makes the problem
much more difficult to solve, but DEBS still dominates CPLEX. The SDP app-
roach cannot be used to solve the relaxed problem without transforming the
problem back to binary domain at the cost of introducing additional variables
and constraints. Therefore, we expect its performance to be inefficient.

It is interesting to observe that the reduction does not seem to improve
the performance for the EQKP as it does on the BQP problems without gen-
eral linear constraints [12]. Reduction even worsens performance on the relaxed
problems. This suggests that it might be of interest to develop new reduction
algorithms that take into the account of the linear constraints.

6 Conclusion

We proposed an extension to the discrete ellipsoid-based search (DEBS) method
to solve the exact quadratic knapsack problem (EQKP) and a variation. The
core of our extension required the modification of the DEBS approach to incor-
porate linear constraints. We did this by adopting standard linear constraint
propagation algorithms. Results showed that our algorithm outperforms both
the state-of-the-art MIP and SDP approaches. For future work, we would like
to further extend DEBS to solve general mixed integer convex quadratic pro-
gramming problems and test its ability as a general solution approach. It is also
interesting to investigate dual bounding mechanism for the DEBS search algo-
rithm, as it is possible to compute a dual bound at each level to further limit
the search interval.
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Abstract. One of the main inefficiencies in building management sys-
tems is the widespread use of schedule-based control when operating
heating, ventilation and air conditioning (HVAC) systems. HVAC sys-
tems typically operate on a pre-designed schedule that heats or cools
rooms in the building to a set temperature even when rooms are not
being used. Occupants, however, influence the thermal behavior of build-
ings. As a result, using occupancy information for scheduling meetings
to occur at specific times and in specific rooms has significant energy
savings potential. As shown in Lim et al. [15], combining HVAC control
with meeting scheduling can lead to substantial improvements in energy
efficiency. We extend this work and develop an approach that scales to
larger problems by combining mixed integer programming (MIP) with
large neighborhood search (LNS). LNS is used to destroy part of the
schedule and MIP is used to repair the schedule so as to minimize energy
consumption. This approach is far more effective than solving the com-
plete problem as a MIP problem. Our results show that solutions from
the LNS-based approach are up to 36% better than the MIP-based app-
roach when both given 15 minutes.

Keywords: Smart buildings · Scheduling · Large neighborhood search ·
HVAC control

1 Introduction

In 2010, electricity expenditures in both residential and commercial buildings
were over 300 billion dollars in the United States alone. About one third of this
consumption can be attributed to space heating, ventilation and air conditioning
(HVAC)1. Hence, with over 100 billion dollars in annual electricity expenditures
even a small percentage improvement in the operation of HVAC systems can
lead to significant savings.

While it is possible to reduce energy consumption by retrofitting buildings
with more efficient HVAC systems, it is far more cost effective to improve their
1 See Table 1.2.5 at http://buildingsdatabook.eren.doe.gov/
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control algorithms. A building management system (BMS) predominantly oper-
ates on a pre-designed schedule that incorporates a nighttime setback strategy,
which relaxes the comfort constraints during the night. Bloomfield and Fisk [2]
show that such a strategy leads to significant energy savings. Building man-
agement systems, however, could be far more dynamic by adopting strategies
that consider occupancy information. Occupants impact the thermal behavior
of buildings. For example, a BMS may relax the comfort constraints for those
rooms in the building that are not planned on being used.

HVAC control and meeting scheduling have been studied extensively as sep-
arate problems and only recent work has started to look at integrating the two
problems [15]. This work introduced a mixed integer programming (MIP) model
for energy aware meeting scheduling. Given the highly-constrained nature of
meeting scheduling with HVAC control, solving the integrated problem as a MIP
seems to be a reasonable choice. MIP easily manages the interaction between
meeting scheduling and the impact it has on HVAC energy consumption. The
problem with the MIP-based approach, however, is that it does not scale. Con-
sequently, in this work we introduce a hybrid solution that combines MIP with
large neighborhood search (LNS) so as to scale to problem sizes that, for exam-
ple, companies and universities may face when scheduling meetings and courses.
In order to fine-tune the LNS heuristic we apply automatic parameter tuning,
which is a useful step in producing better results on average.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 describes the MIP formulation, which consists of an HVAC
model and a scheduling model that are combined into one energy aware meeting
scheduling model. Section 4 describes the LNS heuristic and discusses the auto-
matic parameter tuning. Experimental results are presented in Section 5 and we
conclude with key observations and opportunities for further work in Section 6.

2 Related Work

Energy aware meeting scheduling has gotten more attention in recent years pos-
sibly due to the significant cost saving opportunities. Even simple rules like
consolidating meetings in fewer buildings have proven to be very effective. For
example, Portland State University consolidated night and weekend classes that
were held across 21 buildings into 5 energy efficient buildings. By doing so, they
reported a reduction of 18.5% in electricity consumption over the fall season
compared to the previous three-year average [22].

Majumdar et al. [16] evaluate the performance of a number of scheduling
algorithms that they run through the energy simulation software EnergyPlus
[3]. Some criteria considered in their algorithms include minimizing the number
of rooms, minimizing time between meetings in the same room, and minimizing
room size. The latter performed best when considering only one criterion, but
a more involved A* search with successive calls to EnergyPlus performed best
overall. Similar criteria are considered in the work by Kwak and others [12,13],
but they use MIP to calculate an energy efficient schedule. Pan et al. [21] use the
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criterion of scheduling meetings back-to-back and observed 30% energy savings
when comparing results to existing schedules.

It is important to note that these works minimize energy use without directly
modeling the HVAC system. In our work we integrate meeting scheduling with
HVAC control, because it is of key importance to determine which rooms need
to be heated or cooled and when. For example, sometimes it is more energy
efficient to pre-cool a room rather than cool it at the time of a meeting. In
order to determine the HVAC operation one needs to decide the HVAC control
settings.

Occupancy information, knowing whether or not there are people in a room
and ideally also knowing how many people there are in a room, is at the basis
of moving away from schedule-based control towards model predictive control
(MPC). Schedule-based control is inefficient as it operates HVAC systems accord-
ing to a fixed schedule that often assumes maximum zone occupancy. Oldewurtel
et al. [20] use MPC, which takes into account weather and occupancy fore-
casts to estimate energy saving opportunities. Goyal et al. [10] also take into
account occupancy forecasts and compare the performance of MPC strategies
with feedback controllers using occupancy measurements. Their conclusion is
that occupancy predictions can lead to additional energy savings over occu-
pancy measurements especially when ventilation standards change. Currently
the ASHRAE ventilation standard[1] requires that a certain amount of outside
air is mixed with return air from the zones regardless whether a zone is occupied
or not.

Lim et al. [15] combine MPC with meeting scheduling and propose a MIP-
based solution. This model achieves an energy reduction of over 50% when com-
pared to approaches similar to those presented in [10,13,16]. The drawback of
this approach is that it does not scale well, which is why we developed a hybrid
solution that combines MIP with LNS. In [15], we presented some of the ini-
tial results on applying LNS on this problem. Here, we significantly expand on
the details of the LNS algorithm, and present extensive results supporting the
quality of the algorithm.

Combining constraint-based methods with neighborhood search methods is
not new. For example, LeBras et al. [14] used LNS with MIP in network design
for a species conservation problem, Di Gaspero et al. [5] used LNS with CP
in balancing bike sharing systems, Rendl et al. [23] applied CP with variable
neighborhood search for homecare scheduling, and Danna et al. [4] used LNS in
job-shop scheduling. We are, however, unaware of its application in the space of
energy aware scheduling in smart buildings.

3 Mixed Integer Programming Model

In this section we present our combined HVAC control and meeting schedul-
ing formulation. In the description of the model, values of constants are given
between square brackets. We present key elements of the HVAC model and dis-
cuss two updates over Lim et al. [15].
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Following Goyal et al. [9,10], we focus on commercial buildings with VAV-
based HVAC systems, which serve over 30% of the commercial building floor
space in the United States [6]. In particular, we focus on control strategies that
can be applied to each VAV box. Specifically, we determine the supply air tem-
perature and the air flow rate, which are manipulated by a heating coil and
dampers inside the VAV box. A schematic of a VAV-based HVAC system with
two VAV boxes is shown in Figure 1.

Fig. 1. VAV-based HVAC system

Conditioned air is the air supplied by the air handling unit (AHU) to the
VAV boxes. Energy is consumed by the AHU when mixing outdoor air with
return air and cooling it to a pre-set conditioned air temperature TCA [12.8 ◦C].
The AHU consumes less energy when the outdoor air temperature TOA is closer
to TCA. Energy is also consumed by the VAV box when regulating the supply air
temperature TSA and the supply air flow rate aSA to keep the zone temperature
T within comfort bounds. In particular, the supply fan at the AHU tries to
maintain a constant air pressure through the supply duct and thus may speed
up or slow down depending on air flow rates used by the VAV boxes. Moreover,
in order to keep the zone temperature within comfort bounds the conditioned
air may need to be reheated in the VAV box.

3.1 Objective Function

We want to schedule meetings in such a way that the HVAC energy consumption
is minimized. Thus, the objective function is defined as minimizing the energy use
of fan, air-conditioning and heating operations. Let K = 1, ..., n be an ordered
set of time steps, where the length of each time step is tk − tk−1 = Δt. Let L
be the set of zones in the building. We assume that each zone corresponds to
one room. In general, however, a zone may correspond to a set of rooms. The
objective function is defined as

Min
∑

k∈K

(

pfan
k + pcond

k +
∑

l∈L

pheat
l,k

)

× Δt (1)
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where

pfan
k = β

∑

l∈L

aSA
l,k ∀k ∈ K (2)

pcond
k = Cpa

(
TOA

k − TCA
)∑

l∈L

aSA
l,k ∀k ∈ K (3)

pheat
l,k = Cpa(TSA

l,k − TCA)aSA
l,k ∀l ∈ L, k ∈ K (4)

Constraints (2)-(4) determine the values of the variables pfan
k , pcond

k , pheat
l,k , which

respectively correspond to the energy consumed by the AHU for air conditioning,
the supply fan for maintaining air pressure, and the VAV box for reheating the
air. It is assumed that a forecast of the outdoor temperature TOA

k is available
for each time step k. Also, β is the fan power coefficient [0.65] and Cpa is the
heat capacity of air at constant pressure [1.005 kJ/kg·K].

3.2 HVAC Model

We want to determine the air flow rate aSA
l,k and supply air temperature TSA

l,k

for each zone l ∈ L and each time step k ∈ K so as to minimize total energy
consumption. In order to keep zone temperature within comfort bounds, we
introduce the variables Tl,k to represent the indoor temperature in zone l at
time step k. We also introduce the variable zl,k, which is equal to 1 if zone l
is occupied at time step k and equal to 0 otherwise. The meaning of zl,k will
become clearer when we describe the scheduling constraints in section 3.3. The
variables below are used in the HVAC model to determine how much energy is
needed to, for example, cool a zone from say 28 ◦C (82.4 ◦F) to 23 ◦C (73.4 ◦F).

Tunocc,lb + δlbzl,k ≤ Tl,k ≤ Tunocc,ub − δubzl,k (5)

TCA ≤ TSA
l,k ≤ TSA,ub ∀l ∈ L, k ∈ K (6)

aSA,lb ≤ aSA
l,k ≤ aSA,ub ∀l ∈ L, k ∈ K (7)

Constraints (5) describe the comfort bounds on zone temperature. When
a zone is occupied, the zone temperature must be within a specified comfort
interval (T occ,lb, T occ,ub) [(21 ◦C, 23 ◦C)]. At other times the zone temperature
can fluctuate more freely (Tunocc,lb, Tunocc,ub) [(16 ◦C, 28 ◦C)]. These bounds can
be set to reflect individual building guidelines. We use T occ,lb = Tunocc,lb+δlb and
T occ,ub = Tunocc,ub − δub, where δlb and δub are appropriately valued constants.
Constraints (6) and (7) ensure that the supply air temperature and the air flow
rate are bounded by the HVAC operational capacity. The supply air temperature
TSA

l,k may supply conditioned air at temperature TCA, or heat the conditioned air
up to TSA,ub [40 ◦C]. The air flow rate can fluctuate between aSA,lb [0.108 kg/s]
and aSA,ub [5.0 kg/s], where the lower bound is determined by the ASHRAE
ventilation standard and the upper bound is reached when the dampers are
fully open.
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The most involved constraints in the HVAC model come from modeling build-
ing thermal dynamics. We use a lumped resistor-capacitor (RC) network, which
is commonly used in [7–9] for constructing a model of the transient heat flow
through solid surfaces, such as walls and windows. To predict zone temperatures
we use the following parameters as inputs: (1) characteristics of the supply air
(flow rate and temperature), (2) thermal heat gain due to occupants, (3) thermal
heat gain due to solar radiation, and (4) outdoor temperature.

In Lim et al. [15], the temperature in a zone is affected by both internal and
external walls. In our experiments, however, we observed that the temperature
in a zone is mostly affected by the HVAC, occupants in the zone, and the heat
flow through external walls. The heat transfer from neighboring rooms through
the internal walls is negligible based on our building settings. Hence, in this
model we only consider external walls, that is, those with an outside facing.

The temperature constraints are presented below.
⎡

⎢
⎢
⎢
⎢
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Ṫl,k
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(8)

Qp
l,k = qpppl,k ∀l ∈ L, k ∈ K (9)

ΔHl,k = CpaaSA
l,k (TSA

l,k − Tl,k) ∀l ∈ L, k ∈ K (10)

Constraints (8) model the temperature dynamics in zone l when considering
a room with N external walls. The expression Ṫl,k = Tl,k−Tl,k−1

Δt is the rate
of change in zone temperature and Ṫn

l,k is the rate of change in temperature
of the external wall(s) n = 1, ..., N . Cl and Cn

l respectively denote the thermal
capacitance of zone l and of the external wall n in zone l. Rn

l and Rw
l respectively

represent the thermal resistance of wall n and the windows separating zone
l with the outdoors. Constraints (9) determine the internal heat gain due to
occupants Qp

l,k, which is calculated by multiplying the heat energy qp [75W] with
the number of occupants ppl,k. The value of the variable ppl,k is determined in
the scheduling model, which is described in the next section. Constraints (10)
determine the enthalpy of the heat supplied and extracted by the HVAC.

Note, constraints (4) and (10) contain bilinear terms aSA
l,k TSA

l,k and aSA
l,k Tl,k,

which turns the problem into a mixed integer non-linear programming (MINLP)
problem. We use the reformulation method of McCormick [18], which relaxes the
original nonlinear equality constraints into a set of linear inequality constraints.
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3.3 Scheduling Model

Let M be a set of meetings. Each meeting m ∈ M has a duration τm, a set
of allowable start time steps Km ⊆ K, a set of allowable zones Lm ⊆ L and
a list of attendees Pm ⊆ A, where A is the set of all attendees. The sets Km

and Lm can be used to express a number of constraints, such as, room capacity
requirements, room equipment requirements, and time restrictions. Moreover, in
order to express meeting conflict constraints due to attendees we let N ⊆ 2M

be the set of meeting sets that have at least one attendee in common, that is
N = {Mi ⊆ M | ∀m,m′ ∈ Mi, Pm ∩ Pm′ �= ∅}.

We want to determine xm,l,k, which is equal to 1 if meeting m is scheduled
to start at time step k in zone l and equal to 0 otherwise. The scheduling model
interacts with the HVAC model via the variables zl,k that indicate whether zone
l is occupied at time step k or not, and via the variables ppl,k that indicates the
number of people in zone l at time step k.

The constraints are as follows.
∑

l∈Lm,k∈Km

xm,l,k = 1 ∀m ∈ M (11)

∑

m∈M,k′∈Km:
l∈Lm, k−τm+1≤k′≤k

xm,l,k′ ≤ zl,k ∀l ∈ L, k ∈ K (12)

∑

m∈M,k′∈Km:
l∈Lm, k−τm+1≤k′≤k

xm,l,k′ × |Pm| = ppl,k ∀l ∈ L, k ∈ K (13)

∑

m∈ν,l∈Lm,k′∈Km:
k−τm+1≤k′≤k

xm,l,k′ ≤ 1 ∀k ∈ K, ν ∈ N (14)

Constraints (11) require that all meetings must be scheduled exactly once. Con-
straints (12) state that no more than one meeting can occupy a zone at any
time. Observe that the right hand side in this constraint is either zero or one,
which limits the number of meetings to at most one. Also, when the left hand
side equals one then the zone must be occupied. Constraints (13) determine the
number of occupants in a zone ppl,k, which is a variable used in the HVAC model
and finally constraints (14) ensure that meetings with at least one attendee in
common cannot be scheduled in parallel.

One issue with the current model (and the one used in [15]) is that it can have
a large number of equivalent solutions when two or more meetings are identical.
For example, let meetings 1 and 2 have the same time windows, same number of
attendees, and same meeting conflicts. In this case, a solution in which x1,l,k = 1
and x2,l,k = 0 would be equivalent to one in which x1,l,k = 0 and x2,l,k = 1. In
order to avoid the computational cost of generating both solutions we reduce the
number of integer variables by defining meeting types. Meetings that are identical
are considered to be of the same meeting type. Since the number of meeting types
is smaller than the number of meetings, it allows for a more simplified model
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that reduces symmetry. Without changing the model in its entirety we simply
redefine M to be the set of meeting requests and replace constraint (11) with the
one below to state that all meeting types must be scheduled ψm times, where
ψm represents the number of meetings of type m.

∑

l∈Lm,k∈Km

xm,l,k = ψm ∀m ∈ M (15)

4 Large Neighborhood Search

LNS is a local search metaheuristic, which was originally proposed by Shaw
[24]. In LNS, an initial solution is improved iteratively by alternating between a
destroy and a repair step. The main idea behind LNS is that a large neighborhood
allows the heuristic to easily navigate through the solution space even when the
problem is highly-constrained. As opposed to a small neighborhood, which may
make escaping a local minimum much harder.

An important decision in the destroy step is determining the amount of
destruction. If too little is destroyed the effect of a large neighborhood is lost, but
if too much is destroyed then the approach turns into repeated re-optimization.
As for the repair step, an important decision is whether the repair should be
optimal or not. An optimal repair will typically be slower than a heuristic, but
may potentially lead to high quality solutions in a few iterations.

Our LNS approach starts with an initial feasible solution, which is generated
using a greedy heuristic. First, this heuristic finds a feasible meeting schedule
by minimizing the number of rooms. Second, it determines the HVAC control
settings of supply air temperature and supply air flow rate to minimize energy
consumption given a fixed schedule. This two-stage approach allows us to come
up with an initial solution in reasonable time.

4.1 Destroy and Repair

Our LNS approach considers a neighborhood that contains a subset of the rooms
or zones. In particular, we destroy the schedule in two to four randomly selected
rooms. This forms a subproblem that can be solved effectively using MIP. When
destroying meetings in more than four zones, MIP performance can degrade
very quickly and even solving the linear programming relaxation can become
quite time consuming. The repair consists of solving an energy aware meeting
scheduling problem that is much smaller than the original problem. We do,
however, limit MIP runtime to avoid excessive search during a repair step, and
to avoid any convergence issues of the MIP problem. Setting a limit on runtime
means that we do not necessarily solve the subproblem to optimality, but given
that MIP solvers are anytime algorithms, we do improve solution quality in many
of the LNS iterations. If we find an improved solution, then the new schedule and
control settings are accepted. Otherwise, we maintain the solution that was just
destroyed. Given that the LNS starts with a feasible solution and does not accept
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infeasible solutions, the solution remains feasible throughout the execution of the
algorithm.

We should note that we have experimented with a variety of neighborhoods.
These include: destroying all meetings in randomly selected time steps, a com-
bination of destroying all meetings in randomly selected rooms and time steps,
and simply destroying a set of randomly selected meetings. Our observation was
that none of these neighborhoods performed as well as destroying all meetings
in a number of randomly selected rooms. Destroying selected rooms means that
meetings could be rescheduled at any time during the day. This allows the model
to optimize supply air flow rate and supply air temperature over all the time
steps. Destroying selected time steps means that meetings may switch rooms, but
may need to be scheduled to the same time step due to time window restrictions.
This limits the optimization of supply air flow rate and supply air temperature
due to the HVAC control constraints on neighboring time steps.

4.2 LNS Parameter Tuning

The parameters that govern the behavior of the LNS heuristic are parameters
determining the number (2, 3, or 4) of rooms to destroy and the MIP runtime
limit for the repair step. The probabilities on the number of rooms to destroy
are defined as a 3-tuple with values ranging between [0,1] and the MIP runtime
limit is a parameter with values ranging between 1 and 10 seconds.

While it is possible to reason about certain parameters and their impact on
overall performance, there are numerous values that these parameters can take
on. Even though we consider only 4 parameters, it is impossible to try all possible
configurations because of their continuous domains. Note, even with discretized
domains with reasonable level of granularity it remains impractical to try out
all configurations. As a result, we use the automated algorithm-configuration
method called Sequential Model-based Algorithm Configuration (SMAC) [11] to
optimize these parameters.

SMAC can be used to train parameters in order to minimize solution runtime,
or to optimize solution quality. In our case, we fix the runtime and minimize
energy consumption. We generate problem instances with different degrees of
constrainedness and train the parameters to achieve the average best quality for
all input scenarios.

Given a list of training instances and corresponding feature vectors, SMAC
learns a joint model that predicts the solution quality for combinations of param-
eter configurations and instance features. These information are useful in select-
ing promising configurations in large configuration spaces. For each training
instance we computed up to 17 features, including: (1) number of constraints, (2)
number of variables, (3) number of non-zero coefficients, (4) number of meetings,
(5) number of meeting types, (6) scheduling flexibility, (7) average duration of
meetings, (8) number of meeting slots per day, (9) total number of meeting slots,
(10)-(14) number of rooms in up to 5 building types, and (15)-(17) minimum,
maximum, and average difference between outdoor temperature and tempera-
ture comfort bounds. These features reflect problem characteristics and are used
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by SMAC to estimate performance across instances and generate a set of new
configurations.

Given a list of promising parameter configurations, SMAC compares them
to the current incumbent configuration until a time limit is reached. Each time
a promising configuration is compared to the incumbent configuration, SMAC
runs several problem instances until it decides that the promising configuration
is empirically worse or at least as good as the incumbent configuration. In the
latter case the incumbent is updated. In the end, the configuration selected by
SMAC is generalized to all problem instances in the training set.

5 Experimental Results

Before describing our main results, we first point out the typical behavior of solv-
ing energy aware meeting scheduling as a MIP. Figure 2 shows the performance
of the MIP approach on two typical problem instances when given 2 hours of
runtime. In general, MIP convergence on larger problems is slow and sometimes
MIP fails to converge even after 2 hours. This is exactly why we developed the
LNS approach. The typical performance of the LNS approach is also given in
Figure 2. In the figure, LNS was given only 15 minutes of runtime but it is
capable of returning significantly better results when compared to MIP.

Fig. 2. Typical performance of MIP (2 hours) and LNS (15 minutes) on two benchmark
instances

We analyze our LNS approach by considering 8 problem sets. Each prob-
lem set contains 10 problem instances that we built by adding energy related
information to instances extracted from the PATAT timetabling dataset [19].
The problem sets differ by the number of meetings (M) and the number of
rooms (R). Specifically, our problem sets are referred to as 20M-20R, 50M-20R,
100M-20R, 200M-20R, 50M-50R, 100M-50R, 200M-50R, and 500M-50R, where
20M-20R represents the problem set with 20 meetings and 20 rooms. All our
experiments were run on a cluster that consists of a 2 × AMD 6-Core Opteron
4334, 3.1GHz with 64GB memory.
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Table 1. Total thermal resistance (TR)
(

m2K
W

)
and thermal capacitance (TC)

(
KJ
m2K

)

of the walls and the window for five types of zones. R and C of each wall can be derived
by dividing TR and multiplying TC with area size respectively.

Building Types External Wall Internal Wall Window
(TR) (TC) (TR) (TC) (TR)

1 3 120 1.5 120 0.5

2 3 140 1.5 140 0.5

3 3 240 1.5 240 0.5

4 6 120 3 120 0.5

5 6 240 3 240 0.5

In each problem set we must schedule up to 500 meetings whose durations
are 1 or 1.5 hours. The meetings must be scheduled over a period of 5 summer
days. The available rooms are located in 5 buildings, that differ by their thermal
resistance and capacitance as specified in Table 1. We use a 1 × 4 zone layout
where each zone has the same thermal resistance and capacitance as its neigh-
boring zones. Moreover, all rooms have the same geometric area of 6×10×3 m3

with a window surface area of 4 × 2 m2 and a capacity of 30 people. The solar
gain ranges from 50 to 350 W/m2 during the day. All meetings have between 2
and 30 attendees and we vary the scheduling flexibility for each meeting with an
allowable time range of one or two random days (between 09:00-17:00) within
the 5 summer days.

First, we used SMAC to tune the parameters for all 80 instances. How-
ever, it is possible that one set of parameter configurations might not produce
best results across all problem sets. For example, Malitsky et al. [17] observed
that instance specific algorithm configuration finds good quality solutions for
large sized instances in limited time. Hence, second we independently tuned the
parameters for the 8 problem sets. In each case, we used 0.33, 0.33, and 0.34 as
the default destroy probabilities and 5 seconds for the default MIP runtime dur-
ing each repair step. SMAC trains on 60% of the instances and cross-validates
with the remaining 40%.

On average, SMAC generated 300 configurations for each problem set. Figure
3 shows the result of the best parameter configurations as determined by SMAC
for all 80 instances (AllM-AllR), and for the each of the 8 problem sets. In
the end, a MIP runtime of 8.5 seconds, and probabilities of 0.64, 0.28, 0.08 to
destroy 2, 3, and 4 rooms respectively were determined to be the best settings
by SMAC for all 80 instances. However, the best parameter configurations do
vary somewhat for the different problem sets.

Figure 4 shows the performance improvement of MIP and LNS compared to
the initial feasible solution, which is referred to as the heuristic solution (HS),
over 500 runs. For each run, both the MIP and LNS approach were seeded with
HS as an initial solution. Both MIP and LNS were given the same runtime limit of
15 minutes and HS was given 60 seconds. LNS was executed using the parameter
configurations that were determined best for each problem set. The results show
that LNS significantly improves over MIP when given limited runtime. Overall,
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Fig. 3. Parameter configurations as determined by SMAC

the improvement of LNS over MIP is between 14% and 36%. Note that in the
largest problem instances, those in 500M-50R, MIP often fails to find even a
slight improvement over the given initial solution HS in 15 minutes.

We reran all problem instances in Figure 4 using the AllM-AllR parameter
settings. In this case, the performance of LNS decreased by 1 to 2%. Hence,
instance specific algorithm configuration did have some impact, but even without
it LNS performed significantly better than MIP.

Fig. 4. Performance improvement of MIP and LNS over heuristic solution (HS). MIP
and LNS runtime 15 minutes.

Figure 5 provides insight into the optimality gap of the MIP approach and
in the variation in solution quality. The MIP optimality gap after 15 minutes
runtime is shown on the left. Each box shows the median and the upper and
lower quantiles of the optimality gap. The endpoints indicate the maximum
and minimum. As observed previously the MIP approach fails to converge on
the larger problem instances. Moreover, as can be seen from the figure, MIP’s
performance substantially degrades as problems become more constrained and
exhibit a higher number of meetings to number of rooms ratio.
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The variation in solution quality is shown on the right. The median of LNS
always falls below the lower quantile of MIP. We note, however, that for problem
instances in 20M-20R, MIP and LNS have almost similar performance. For even
smaller problem instances MIP tends to be very effective, which is exactly why
we have combined the two. We believe that the combination of LNS and MIP
is especially good when considering highly constrained problems. LNS is used
destroy and repair the solution space and MIP is used to find good local solution,
possibly optimal solution, in a short amount of time.

Fig. 5. MIP optimality gap (left) and HS/LNS/MIP solution values (right)

6 Conclusions

In this paper we extend the work by Lim et al. [15], which introduced a MIP
model for energy aware meeting scheduling. This previous work shows that com-
bining HVAC control with meeting scheduling can lead to substantial improve-
ments in energy efficiency. The MIP model that is described, however, only
solves problem instances that involve a small number of meetings and rooms.
We combine MIP with LNS in order to scale to larger problems.

We developed a heuristic to generate an initial feasible solution quickly, which
we use to warm start both the MIP and LNS approach. In our experiments,
the most effective neighborhood was one that destroys and repairs all meetings
scheduled in 2 to 4 rooms. The resulting subproblem was small enough for MIP
to solve to (near) optimality and, at the same time, large enough to explore
alternate solutions. We studied the performance of MIP and LNS and demon-
strated the potential of our LNS approach for effectively tackling large-scale
HVAC control and meeting scheduling problems. The LNS achieves 14 to 36%
better energy savings than the MIP approach when both given a runtime of 15
minutes. In order to provide an absolute sense of the solution quality, we plan
to evaluate our schedules with the EnergyPlus simulator.

We are interested in exploring new algorithmic approaches that allows us
to scale even further. We are particularly interested in investigating symmetry
breaking in MIP. Symmetry leads to a large number of equivalent solutions,
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which causes branch-and-bound to be ineffective. While we dealt with symme-
tries due to meetings with similar characteristics by introducing meeting types,
symmetries still exists in our MIP formulation due to rooms with similar char-
acteristics. Introducing room types, however, may not be possible because room
temperature at time step t is dependent on time step t − 1. In future work, we
aim to identify branching strategies that can better deal with symmetries in our
MIP formulation.

Moreover, we are also interested in investigating an online stochastic app-
roach to our HVAC control and meeting scheduling problem. Such an app-
roach can deal with current requests, future requests, changes and cancelation
of requests, but also with the uncertainty around outdoor air temperature and
weather conditions.
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Abstract. Lazy reformulations of classical combinatorial optimization
problems are new and challenging classes of problems. In this paper we
focus on the Lazy Bureaucrat Problem (LBP) which is the lazy coun-
terpart of the knapsack problem. Given a set of tasks with a common
arrival time and deadline, the goal of a lazy bureaucrat is to schedule
a least profitable subset of tasks, while having an excuse that no other
tasks can be scheduled without exceeding the deadline.

Three ILP formulations and their CP counterparts are studied and
implemented. In addition, a dynamic programming algorithm that runs
is pseudo-polynomial time and polynomial greedy heuristics are imple-
mented and computationally compared with ILP/CP approaches. For
the computational study, a large set of knapsack-type instances with
various characteristics is used to examine the applicability and strength
of the proposed approaches.

1. Introduction

The lazy bureaucrat problem is a scheduling problem in which a set of jobs
has to be scheduled in a most inefficient way. We will consider a special variant
of this problem in which all jobs are arriving at the same time and have a
common deadline. In this paper, we will simply refer to this problem as the Lazy
Bureaucrat Problem (LBP).

The problem is motivated by the following application: a lazy bureaucrat
needs to choose a subset of jobs to execute in a single day, in a such a way
that no other job fits in his/her working hours and the total profit of selected
jobs (e.g., their duration) is minimized (and, hence, for example, the bureaucrat
has a good excuse to go home as early as possible). Governments or funding
agencies may be interested in applications of the LBP: how to distribute the
available budget so that the minimal amount of money is allocated to funding
requests, while having a good excuse that no additional funds can be granted
without violating the available budget? For further applications and motivations
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of this problem, see, e.g., [1,5]. The study of the LBP could potentially lead to
new interesting insights for knapsack-type problems, see also the conclusion for
a discussion on the importance of the LBP.

Definition 1 (Lazy Bureaucrat Problem (with common arrivals and
deadlines), LBP). We are given a set of jobs I = {1, . . . , n}, such that each
job i ∈ I is assigned a duration wi ∈ N and a profit pi ∈ N. All jobs arrive at the
same time, and all have a common deadline C ∈ N. The goal is to find a least
profitable subset of jobs S to be executed so that the schedule cannot be improved
by inserting an additional job into it. More precisely, the optimal solution S∗ ⊂ I
solves the following problem:

S∗ = arg min
S⊂I

{
∑

i∈S

pi |
∑

i∈S

wi ≤ C and
∑

i∈S

wi + wj > C, ∀j �∈ S}.

Note that we assume that the problem instance is non-trivial, so that the opti-
mal solution S is a proper subset of I. The objective considered in this paper is
of a very general form and referred to in literature as weighted-sum. It gener-
alises the min-number-of-jobs objective, which is obtained for pi = 1 and the
time-spent objective, which is obtained for pi = wi.

The problem has been introduced in [1] where it was shown that a more
general problem variant with individual arrival times and deadlines is NP-hard.
For the problem variant with common arrival times and deadlines, [4] show
that the problem is weakly NP-hard for the min-number-of-jobs objective by
reduction from subset-sum. Thus, the problem studied in this paper (with the
more general weighted-sum objective) is also at least weakly NP-hard. Note that
in [1] it is claimed, that the LBP with common arrival times can be solved in
pseudo-polynomial time for various objective functions (including time-spent
and weighted-sum), but neither proof nor the corresponding algorithm were
explicitly given for this claim. In [5] two greedy heuristics and an FPTAS have
been proposed for the time-spent objective with common arrival and deadlines.
The FPTAS is obtained as an approximate version of an exact enumeration
algorithm.

Our Contribution: In this article we provide a first dynamic programming algo-
rithm for the weighted-sum LBP (see Section 2) that runs in pseudo-polynomial
time. Thus the problem is indeed weakly NP-hard. Besides, we prove properties
of optimal solutions that can be used to derive more efficient mathematical mod-
els and algorithmic approaches or to derive valid inequalities or stronger con-
straints in both integer linear programming (ILP) and constraint programming
(CP) formulations. Three ILP models including their CP counterparts are pre-
sented in Section 3 and greedy heuristics are discussed in Section 4. An extensive
computational study is conducted on a large set of diverse benchmark instances,
demonstrating the strengths and weaknesses of the proposed approaches.

Notation: Notice that the LBP consists of selecting a subset of jobs, but due
to the common arrival times and the common deadline, the order in which the
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jobs are scheduled remains irrelevant. Therefore, the LBP shares a lot of sim-
ilarities with the knapsack problem (KP), and can be seen as the problem of
packing a set of items in a knapsack in a most inefficient (and therefore, rather
counterintuitive) way. Due to this similarity to the knapsack problem, in the
remainder of this article we will refer to elements of I as items, job durations wi

as item weights and pi as item profits. The deadline C will be called the budget
or capacity.

In the following, we will assume that all items are sorted in non-decreasing
lexicographic order, first according to their weight, i.e., w1 ≤ w2 ≤ · · · ≤ wn,
and then, according to their profits pi. For each i ∈ I, let Ci := C − wi, so we
have C1 ≥ C2 ≥ . . . Cn. We will also denote by wmax := maxi∈I wi(= wn) and
wmin := mini∈I wi(= w1). Let W :=

∑
i∈I wi and P :=

∑
i∈I pi.

1.1 Solution Properties

In this section we point out some general solution properties that will be used
to prove the validity of our models.

Property 1. The capacity used by an arbitrary feasible solution S is bounded
from below by C − wmax + 1.

Proof. By definition, inserting any item outside of S into the knapsack will
exceed its capacity. So, in particular, the capacity of S plus wmax must be ≥ C+1,
i.e., the capacity of S must be at least C − wmax + 1. Since wmax ≥ wi,∀i ∈ I,
this bound is clearly valid for any item. �	
Despite the minimization objective, imposing the upper bound on the size of the
knapsack is in general not redundant. Consider the following example in which
we are given three items such that w1 = 1, w2 = 2 and w3 = 3, and p1 = 10,
p2 = p3 = 1, and that the knapsack capacity is C = 4. Without imposing the
knapsack capacity, the optimal solution will be to take the items {2, 3} with
the total profit of 2, whereas, with the condition of not exceeding the knapsack
capacity, the optimal solution will be {1, 3} with the total profit of 11. However,
in the time-spent problem variant, the knapsack constraint is redundant, as
shown by the following result:

Property 2. If wi = pi for all i ∈ I, capacity of any optimal solution S will not
exceed C, even without explicitly imposing this condition.

Definition 2 (Minimal Knapsack Cover). Given a knapsack problem with
capacity C, a cover C is a set of items, with the property

∑
c∈C wc ≥ C + 1, i.e.,

a subset of items, which exceeds the capacity C. A cover C is called minimal, iff
C \ {i} is not a cover for any i ∈ C. We denote the family of all minimal covers
with K.

Definition 3 (Maximal Knapsack Packing). Given a knapsack problem
with capacity C, a packing P is a set of items, with the property

∑
i∈P wi ≤ C,

i.e., a subset of items, which does not exceed the capacity C. A packing P is
called maximal, iff P ∪ {i} is not a packing for any i �∈ P.
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The following property characterizes the set of feasible LBP solutions.

Property 3. Each feasible LBP solution corresponds to a maximal feasible pack-
ing of the knapsack with capacity C.

It is worth mentioning that searching for a minimum-profit minimal knapsack
cover, and removing an item from it does not lead to an optimal solution of the
LBP. Even in the simplest case when pi = wi, for all i ∈ I, this does not hold:
Let the set of items be ordered according to their weights(=profits) {31, 32,
33, 40, 45} and let the knapsack capacity be 80. The minimum-profit minimal
knapsack cover is {40, 45}, and after removing one of these items from the cover,
the obtained solution is not feasible to LBP (since one can obviously add one of
the items from {31, 32, 33} without violating the knapsack capacity).

Definition 4 (Critical Weight and Critical Item.). Assume that items are
sorted so that w1 ≤ w2 ≤ · · · ≤ wn. Denote by

ic = arg min{i ∈ I |
∑

j≤i

wj > C}

the index of a critical item, i.e., the index of the first item that exceeds the
capacity, assuming all i ≤ ic will be taken as well. The critical weight, denoted
by wc, is the weight of the critical item, i.e., wc = wic .

Note that the critical item and its weight are uniquely defined, assuming the
lexicographic ordering of the items defined above.

Proposition 1. The weight of the smallest item left out of any feasible LBP
solution is bounded above by the critical weight wc, i.e.:

S is feasible ⇒ min
i�∈S

wi ≤ wc.

Consequently, the size of the knapsack can be bounded from below as:

w(S) ≥ C − wc + 1.

Proof. Suppose there exists a feasible solution S′ with mini�∈S′ wi > wc. Since
the items are ordered by weight, it follows that all items i ≤ ic are in S′. By the
definition of the critical item, the sum of the weights of these items exceeds C
and thus S′ is not feasible. The second part is a refinement of Property 1. �	

2. Dynamic Programming Approach

The latter result indicates a possible iterative approach for solving the LBP.
Once, the smallest item left out of the solution is known, the problem reduces
to solving the knapsack problem with a lower and upper bound on its capacity
(which we will denote LU-KP below). Let S∗ be an optimal LBP solution and
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assume that i ≤ ic is the index of the smallest item not taken into S∗ (following
the lexicographic ordering of items). Let Ii be the set of the first i − 1 items,
Ii = {1, . . . , i − 1} (I1 = ∅), and let Pi =

∑
j<i pj and Wi =

∑
j<i wj be the

profits and weights of items from Ii. Then, S∗ = Ii∪J∗ where J∗ ⊂ {i+1, . . . , n}
solves the following problem:

(KPmin
i )J∗ = arg min

J⊆{i+1,...,n}
{
∑

j∈J

pj + Pi | C − wi − Wi + 1 ≤
∑

j∈J

wj ≤ C − Wi}

The optimal solution of (KPmin
i ) can be obtained by solving the complementary

maximization problem, which is a LU-KP, as shown in the following result:

Proposition 2. The optimal LBP solution S∗ can be obtained as:

i∗ = arg min
i≤ic

max(KPi) and S∗ = I \ arg max(KPi∗)

where max(KPi) is defined as:

max(KPi) = max{
∑

j>i

pjyj |
∑

j>i

wjyj ≥ C ′
i,

∑

j>i

wjyj ≤ C ′′,yj ∈ {0, 1},∀j > i},

with C ′
i := W − C − wi and C ′′ := W − C + 1.

Proof. Let J∗ be defined as above and let the binary variables yj be equal to
one if j �∈ J∗ and to zero, otherwise. By rewriting the problem (KPmin

i ) stated
above as a maximization problem and using yi variables to indicate items outside
of the solution, we end up with the desired reformulation. The value KPmin

i∗ is
obtained as P − KPi∗ . �	

Proposition 2 demonstrates that the LBP could be solved in ic iterations,
in each of which a LU-KP is solved to optimality to obtain max(KPi) for an
i ≤ ic. This can be done in O(n2W ) time, by applying a standard dynamic
programming procedure for the LU-KP that runs in O(nW ). We demonstrate
below a modification of this algorithm that is based on iteratively solving KPmin

i

by dynamic programming. Similar iterative arguments are used to construct the
exact enumeration algorithm underlying the FPTAS for the time-spent variant
in [5].

Let Cl
i := C − wi − Wi + 1 and Cu

i = C − Wi. For solving KPmin
i (for a fixed

i) we need to apply a “dynamic programming by weights” approach, in which
the smallest profit z(j) that can be obtained for each capacity j ∈ {1, . . . , Cu

i }
is computed. The following recursive formulas are used (see, e.g., [3]):
{

M(0, 0) = 0, M(0, j) = −∞, ∀j ≤ Cu
i

M(i′, j) = max{M(i′−1, j),M(i′−1, j−wi′)− pi′}, i′ > i,∀j ∈ {1, . . . , Cu
i }

The algorithm searches for the filling of the knapsack of capacity j, j ∈ {0, 1,
. . . , Cu

i }, that maximizes the sum of negative item profits (which is equivalent
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to minimizing the sum of the profit of collected items). That way, only the
cells containing values �= −∞ represent feasible solutions, whose total weight
is exactly equal to j , i.e., cell M(i′, j) contains the maximum possible sum of
negative item profits which can be achieved by a solution with weight j using
items up to i′. Let z(j) denote the complemented value at the cell M(|I|, j) after
applying the DP. The optimal solution of KPmin

i is obtained as minCl
i≤j≤Cu

i
z(j).

3. ILP and CP Formulations

The DP presented above relies on solving ic iterations of the LU-KP, and hence
the approach may become prohibitive from the computational perspective if
C and/or ic are very large. In this section we study alternative, integrative
approaches, in which the LBP is solved as a whole. We propose three ways
to formulate the problem, always presenting the valid ILP formulation first, fol-
lowed by its CP counterpart. We provide some valid inequalities and show how
some of them can be lifted to obtain stronger lower bounds. A hybridization of
the proposed ILPs and CPs is also discussed in this section as well as a branch-
and-cut algorithm based on the ILPs.

3.1 A First Formulation

The first ILP model is obtained by formulating the problem using the binary
variables xi which are set to one if the item is selected, and to zero, otherwise.
Each feasible solutions needs to fit into a knapsack, and should exceed its capac-
ity by adding an arbitrary additional item left outside. The formulation uses the
Proposition 1, and considers only the items left outside of S whose weight does
not exceed the critical weight. The model reads as follows:

(ILP1) min
x∈{0,1}|I|

∑

i∈I

pixi

∑

i∈I

wixi ≤ C (1)

∑

j∈I,j �=i

wjxj + wi(1 − xi) ≥ (C + 1)(1 − xi) ∀i ∈ I : i ≤ ic (2)

Constraint (1) is a knapsack constraint stating that the weight of all selected
items cannot exceed the available budget C. Inequalities (2) make sure that
adding each additional item i such that wi ≤ wc will exceed C. We will refer to
them as covering inequalities associated to items i ≤ ic. Notice that the latter
inequalities can be rewritten as:

∑
j∈I,j �=i wjxj ≥ (Ci+1)(1−xi) ∀i ∈ I : i ≤ ic.

Proposition 3. The model (ILP1) is a valid formulation for the LBP.
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Strengthening Covering Inequalities. Proposition 3 shows that it is suf-
ficient to consider items not exceeding the critical weight to enforce a feasible
LBP solution. It is not difficult to see that covering inequalities associated with
remaining items i > ic are also valid for our problem:

∑

j∈I,j �=i

wjxj + wi(1 − xi) ≥ (C + 1)(1 − xi) ∀i ∈ I : i > ic

However, all these constraints are dominated by the global covering constraint,
derived from the global lower bound given in Proposition 1:

∑

j∈I

wixi ≥ Cc + 1, (3)

where Cc = C −wc. One can easily construct an example showing that the lower
bound of the LP relaxation of the model (ILP1) is strengthened by adding this
constraint: Let the item weights be w = p = (1, 119, 552, 605, 739, 863)t. The
optimal LP-solution of the (ILP1) is x′ = (0.4685, 0.4647, 0.4357, 0.4285, 0.4004,
0.3435)t with the LP-relaxation value equal to 1147.91. However, the optimal
LP-solution of the (ILP1) extended by (3) is x′ = (0.3994, 0.3871, 0.2945, 0.2716,
1.0000, 0.2140)t with the LP-relaxation value equal to 1297. This example also
illustrates that the LBP is more difficult than the KP when it comes to the
structure of the optimal LP-solution.

Furthermore, coefficients of the covering constraints (2) and (3) can be down-
lifted as shown in the following Proposition. Let (for a fixed i ∈ I)

C̃ =

{
Ci + 1, i ≤ ic

Cc + 1, otherwise

Proposition 4. For a given i ∈ I, coefficients of the associated covering inequal-
ities (2) can be down-lifted to

∑
k∈I αkxk ≥ C̃ where

αk :=

{
min{wc, C̃}, k = i

min{wk, C̃}, otherwise
∀k ∈ I

Similarly, coefficients of the constraint (3) can be down-lifted as αk = min{wk,
C̃}, for all k ∈ I.

Proof. We only show the first part of the proof. For a given i ∈ I, let us rewrite
the covering constraint (2) as:

∑

j∈I,j �=i

wjxj + C̃xi ≥ C̃

Lifting down from wk to min{wk, C̃} follows by standard arguments, given that
we are dealing with binary decision variables. We can also down-lift the coeffi-
cient next to the variable xi from C̃ to wc (assuming wc < C̃), which follows
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from the following arguments. If xi = 0, the whole constraint makes sure that
the capacity of the solution is at least C̃. On the other hand, if xi = 1, by
Property (1), we know that the following inequality holds:

∑

j∈I,j �=i

wjxj + wi ≥ C − wc + 1.

The latter inequality can also be rewritten as
∑

j∈I,j �=i wjxj + wc ≥ C̃. Hence,
by reordering the coefficients, we end up with αi = wc. �	
Observe that after lifting, however, the covering inequality (2) associated to ic
and the global covering inequality (3) become identical.

Formulation (CP1). A constraint programming counterpart of the given ILP
formulation is derived by following the problem definition. The set of chosen
items cannot exceed the given capacity (see constraint (4)), and every item
which is left outside, if added to the solution, exceeds C (see constraint (5)).
The same set of x of binary variables is used to indicate selected items.

(CP1) min
x∈{0,1}|I|

∑

i∈I

pixi

Pack≤(w, x,C) (4)
if (xi = 0) then Pack≥(w, x,Ci + 1) ∀i ∈ I (5)

In constraint (4), a bin-packing constraint Pack≤(w, x,C) of size one (i.e.,
a knapsack constraint) is used to ensure that the selected items do not exceed
the capacity. In our notation, Pack≤(w, x,C) means that the set of items whose
weights are given by a vector w, need to be packed into a knapsack of capacity
C. The constraint is usually implemented by requiring that the items are placed
in two bins, one of them having the capacity of C (and corresponding to items
i such that xi = 1), and the other of capacity W − C, containing the remaining
items. Note that efficient constraint propagation techniques for bin-packing type
of constraints exist, see, e.g., [8,9]. The remaining set of constraints (5) are a
direct translation of inequalities (2) into the CP language. They impose that,
for any item i, which is not selected, it must hold that the item cannot be added
to the schedule without violating the capacity constraint. The latter is ensured
with constraint Pack≥(w, x,Ci + 1). Again, by complementing the x variables,
Pack≥(w, x,C + 1 − wi) can be modeled as a bin-packing constraint. Note that
this constraint can be down-lifted to Pack≥(w \ wi, x \ xi, Ci + 1).

Model (CP1) has |I| + 1 constraints. The size of the model can be improved
by exploiting Proposition 1, i.e., the size of any feasible solution is bounded
below by Cc + 1. Since Ci ≤ Cc for all i ≥ ic, we do not need to impose (5) for
these items, but replace it with a single constraint

Pack≥(w, x,Cc + 1)
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Hybridization and Branch-and-Cut. One could easily hybridize the (ILP1)
with (CP1) by replacing the capacity inequalities (2) by the indicator con-
straints (5).

Concerning the implementation of the (ILP1), there are two possibilities. The
model, involving ic + 1 constraints, can be given as-is (i.e., as a compact model)
to a black-box MIP solver. Alternatively, one may start with a simple knapsack
constraint (1) and insert the capacity inequalities (2) “on the fly” inside of the
branch-and-bound tree, only when these inequalities are violated by the current
LP-solution. This procedure, known as branch-and-cut, may be advantageous
over the compact model, in particular if the number of items, and respectively
the index of the critical item, are very large.

Both observations also hold for the remaining formulations presented below.

3.2 A Second (and Sparser) Formulation

To motivate this new formulation, let us first focus on the capacity inequality
for i = 1: ∑

j∈I,j �=1

wjxj ≥ (C1 + 1)(1 − x1).

Obviously, if x1 = 1, this constraint is not binding, but for x1 = 0, it will
dominate the remaining covering constraints (2) of the previous formulation
(ILP1) (since the items are ordered in non-decreasing order according to wi,
which implies C1 ≥ Ci, for all i > 1).
Similarly, if x1 = 1, and x2 = 0, the constraint

∑
j∈I,j �=2 wjxj ≥ (C2+1)(1−x2)

of the previous model will be binding. Hence, for x1 = 1, and x2 = 0, the latter
constraint can be replaced by a stronger inequality:

∑

j∈I,j>2

wjxj + w1(1 − x2) ≥ (C2 + 1)(1 − x2),

which also remains valid for x2 = 1 (since it is not binding in this case). One
easily observes that we can continue deriving valid inequalities in this fashion,
until we reach the critical item. We finally derive the following lifted model for
the LBP:

(ILP2) min
x∈{0,1}|I|

∑

i∈I

pixi

∑

i∈I

wixi ≤ C

∑

j>i

wjxj ≥ (C + 1 −
∑

j≤i

wj)(1 − xi) ∀i ∈ I, i < ic (6)

The new covering constraints (6) (that we will refer to as sparser covering con-
straints) state that, if the item i ∈ I, i < ic is the smallest item left outside of
the solution, the remaining capacity to be filled by the items j, j > i has to be
at least C + 1 − ∑

j≤i wi. We observe that covering constraints (6) for i ≥ ic are
redundant, since, by definition, in that case we have C + 1 − ∑

j≤i wj < 0.
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Proposition 5. The model (ILP2) is a valid formulation for the LBP.

Proof. To show the validity of this model, we need to prove that a) no feasible
solutions are cut off by this model, and b) all knapsack solutions that are not
maximal are not feasible for this model.

a) Assume that S ⊂ I is a feasible LBP solution that is cut off by our model.
Then, there exists a covering constraint (6) associated to an item ĩ such
that S violates that constraint. Obviously, ĩ �∈ S, and let ĩ < ic be the item
with the smallest index such that constraint (6) is violated. Let x∗ be the
characteristic vector associated to S. So we have:

∑

j>ĩ

wjx
∗
j +

∑

j<ĩ

wj + wĩ ≤ C

This however contradicts the feasibility of S, since the latter inequality says
that even if all items from {1, . . . , ĩ − 1} belong to S, S would not be a
maximal knapsack solution, since by adding the item ĩ to it, we would still
end up with a feasible packing of the knapsack.

b) Let us now assume a subset S ⊂ I is a feasible solution to our model such that
it is a feasible knapsack packing, but not maximal, i.e., it can be extended
by at least one more item without violating the capacity constraint. Let x∗

be the characteristic vector of S. Let k be the index of the smallest item that
does not belong to S. If k > ic, then by definition of ic, no further items can
be added to S, so S is maximal.
Assume now that there exists an item that can be added to S so that S still
remains a feasible packing. If such an item exists, then this certainly holds
for the smallest item not in S as well. Since S is a feasible solution, it also
satisfies the covering constraint (6) associated to k:

∑

j>k

wjx
∗
j ≥ (C + 1 −

∑

j≤k

wj)(1 − x∗
k)

i.e. ∑

j>k

wjx
∗
j ≥ C + 1 −

∑

j≤k

wj

Since x∗
j = 1 for all j < k, the latter inequality can also be rewritten as:

∑

j>k

wjx
∗
j +

∑

j<k

wjx
∗
j + wk ≥ C + 1

which implies that adding the item k into the solution S would exceed the
available knapsack capacity, which is a contradiction.

�	
In a similar fashion as above, we can down-lift some of the coefficients asso-

ciated to the covering constraints (6).
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Proposition 6. For a given i ∈ I, let C̄i = C +1−∑
j≤i wj. Coefficients of the

associated capacity inequality (6) can be down-lifted to
∑

k∈I,k>i αkxk + C̄ixi ≥
C̄i where

αk :=

{
min{wk, C̄i}, k > i

min{wc, C̄i}, k = i
∀k ≥ i

A potential advantage of (ILP2) over (ILP1) is the sparsity of the covering con-
straints (6). Since less variables are involved, and even more, the constraint
matrix has a triangular structure, we expect that these properties will be effec-
tively exploited by ILP solvers.

Formulation (CP2). A CP counterpart of the (ILP2) can be easily derived
using the packing and the indicator constraint. In the formulation (CP1), one
has to replace (5) by:

if (xi = 0) then Pack≥((w)ni+1, (x)ni+1, C + 1 −
∑

j≤i

wj) ∀i < ic (7)

3.3 A Third (and Extended) Formulation

Recall that for any knapsack solution to be feasible for the LBP it is sufficient
that adding the weight of the smallest item left out of the knapsack already vio-
lates the capacity C. Our next model encodes this information by extending the
previous model with a non-negative continuous variable z modeling the weight
of a smallest item that is left out of the solution.

(ILP3) min
x∈{0,1}|I|,z≥0

∑

i∈I

pixi

∑

i∈I

wixi ≤ C (8)

∑

i∈I

wixi + z ≥ C + 1 (9)

z ≤ wc − (wc − wi)(1 − xi) ∀i ∈ I, i ≤ ic (10)

This formulation contains only a single additional variable, but significantly
simplifies the structure of the constraint matrix. Besides the packing constraint (8)
and the covering constraint (9), the remaining matrix has a diagonal structure,
plus one column of ones (corresponding to the variable z). Therefore, it is expected
that the ILP solvers can be even more efficient when solving (ILP3) than the pre-
vious formulations.

Validity of this model can be easily verified. Coupling constraints (10) make
sure that z ≥ 0 is smaller than the weight of the smallest item not included in
the solution. Due to the covering constraint (9) and the minimization objective
function (with pi ≥ 0), it follows that z be exactly the same as the weight of
the smallest item left out of the solution. For the same reasons as above (cf.
Proposition 1), it is not necessary to impose constraints (10) for i > ic.
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Formulation (CP3). CP counterpart (CP3) for the latter ILP model is also
obtained with the help of an additional integer variable z.

(CP3) min
x∈{0,1}|I|,z∈N

∑

i∈I

pixi

Pack≤(w, x,C)
Pack≥(w, x,C + 1 − z) (11)

z = min{wi | i ∈ I, xi = 0, i ≤ ic} (12)

The set of constraints (5) (respectively, (7)) is replaced by the combination
of constraints (11) and (12). Constraint (12) ensures that z is the weight of the
smallest item not selected, and constraint (11) makes sure, that this smallest item
can not be added to the selected items without violating the capacity constraint.

4. Greedy Heuristics

To complete our study, and to verify the difficulty of the studied benchmark
instances, we have also implemented a greedy heuristic. Greedy heuristics are
the most classical tool for constructing an initial feasible solution to knapsack-
related problems. The approach consists of two basic steps: (i) examining the
items according to a pre-specified order, and, at each iteration, (ii) adding the
current item to the solution iff its weight does not exceed the current residual
capacity.

The greedy algorithm for the traditional 0/1 KP sorts the items according
to non-increasing pj/wj values. For the LBP, since the sum of profits needs to
be minimized, different orderings need to be considered. We have tested the
following six sorting criteria for creating feasible solutions:

1/pj ; 1/wj ; wj/pj ; 1/(pj ∗ wj); 1/(pj + wj); pj/wj . (13)

Note that in the greedy approximation algorithms of [5] for the time-spent
variant, the items are ordered non-decreasing according to pi (which is equiva-
lent to our first variant). Finally, since greedy heuristics are typically executed
very fast, we also propose to combine all of them, and return the best obtained
solution. This latter approach we call greedy-comb.

5. Computational Study and Conclusion

Benchmark Instances. We used the well-known instance generator of [7] for
the classical 0/1 KP problem to randomly generate instances. Such instances are
the classical instances used in the literature to test KP algorithms. Nine different
classes of instances are obtained, see [6] for more details.

For each instance class and value of R ∈ {1000, 10000}, we generated 27 LBP
instances by considering all combinations of (i) number of items n ∈ {10, 20,
30, 40, 50, 100, 500, 1000, 2000}; (ii) capacity C ∈ {�0.25W �, �0.50W �, �0.75W �}
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(and C increased by 1, if even, for classes 7 and 8); thus obtaining 486 LBP
instances. In the next section we present the outcome of our computational
study.

Results. All algorithms were coded in C++ and the experiments were performed
on a cluster of computers, each consisting of 20 cores (2.3 GHz) and with 64GB
RAM available for 20 cores. As ILP and CP solver we used Cplex 12.6 (single
thread mode). Default time limit of 600 seconds was imposed to all runs.

We first compare the quality of solutions obtained by the proposed greedy
heuristic, with respect to different selection criteria. Table 1 reports percentage
gaps to the optimal (or best known solutions) averaged over all instances for all
six selection variants presented above, and for the greedy-comb approach. We

Table 1. Average percentage gaps from best known solutions by different heuristic
algorithms

Class
Algorithm 1 2 3 4 5 6 7 8 9 avg

Greedy heuristics
greedy[1/pj ] 29.25 7.53 11.83 1.55 11.78 2.23 2.24 11.76 2.94 9.01
greedy[1/wj ] 66.85 9.08 11.83 1.55 11.78 2.23 2.24 11.76 55.35 19.19
greedy[wj/pj ] 6.71 2.16 1.92 1.55 2.11 2.23 2.24 1.85 2.94 2.63
greedy[1/(pj ∗ wj)] 56.20 8.35 11.83 1.55 11.78 2.23 2.24 11.76 2.94 12.10
greedy[1/(pj + wj)] 56.35 8.39 11.83 1.55 11.78 2.23 2.24 11.76 4.20 12.26
greedy[pj/wj ] 71.34 19.67 11.83 22.03 11.78 2.23 2.24 11.76 68.07 24.55
greedy-comb 6.71 1.14 1.03 1.55 1.07 2.23 2.24 0.96 2.82 2.19

observe that among the single selection criteria, the one based on sorting the
items according to wj/pj performs the best, which is also intuitive, since in this
case we prefer items with low profit and high weight. It is worth mentioning that
the greedy-comb approach succeeds to improve the quality of solutions obtained
by the best greedy approach, for several classes of instances, for which it seems
that the other selection criteria perform better. Even for the largest instances,
the greedy-comb takes less than one second, which makes it the method of choice
for determining high-quality upper bounds.

The quality of lower bounds of the proposed ILP formulations is reported in
Table 2. Lifted formulations (ILPi) are denoted by (ILPl

i) for i = 1, 2. Table 2
shows that lifting significantly reduces the LP-gap for both (ILP1) and (ILP2),
and that (ILP3) provides very strong lower bounds, comparable to those obtained
after lifting the first two formulations. Looking at different classes of instances,
we notice that the first class (uncorrelated weights and profits) is by far the most
difficult one, with average LP-gaps of more than 13% for all ILP formulations.

Finally, Table 3 provides a comparison of running times of three basic ILP for-
mulations, (ILPl

1), (ILPl
2), two ILP+CP hybrids (in which indicator constraints

are used), a branch-and-cut implementation of (ILP1), constraint programming
formulation (CP3), and the DP algorithm. The first half of the table shows the
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Table 2. Average percentage gaps from best known solutions by different linear pro-
gramming relaxations

Class
Algorithm 1 2 3 4 5 6 7 8 9 avg

Linear Relaxation
ILP1 20.11 41.52 40.09 45.62 39.90 45.35 45.35 40.17 22.98 37.90

ILPl
1 13.67 3.19 2.75 2.52 2.68 2.92 2.93 2.84 6.64 4.46

ILP2 26.20 43.82 41.37 45.90 41.14 46.61 46.62 41.44 43.71 41.87

ILPl
2 13.75 4.30 3.28 2.46 3.25 2.64 2.64 3.38 6.64 4.71

ILP3 13.67 3.19 2.79 2.52 2.68 2.95 2.96 2.88 6.64 4.47

Table 3. Comparison between the different exact methods proposed

ILP1 ILP2 ILP3 CP3 DP

Items ILP1 ILPl
1 B&C ILP1 + CP ILP2 ILPl

2 ILP2 + CP

Avg t[sec.s]
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3
20 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 6.1 55.6
30 0.3 0.1 0.1 0.5 0.2 0.1 0.3 0.1 432.3 55.6
40 0.6 0.2 0.2 1.3 0.5 0.2 0.7 0.2 555.8 66.7
50 1.1 0.2 0.7 2.7 0.8 0.3 1.3 0.2 557.6 66.7
100 45.6 1.9 30.5 61.2 34.5 26.7 31.6 1.2 600.0 67.2
500 315.9 59.9 341.6 362.0 357.4 169.3 402.9 56.0 600.0 257.3
1000 476.6 60.7 367.5 542.9 531.2 185.9 555.8 34.3 600.0 377.1
2000 552.8 152.3 445.7 567.9 584.1 230.5 578.8 61.5 600.0 555.8

# of TL
10 0 0 0 0 0 0 0 0 0 3
20 0 0 0 0 0 0 0 0 0 5
30 0 0 0 0 0 0 0 0 36 5
40 0 0 0 0 0 0 0 0 50 6
50 0 0 0 0 0 0 0 0 50 6
100 1 0 1 3 2 1 1 0 54 6
500 22 5 27 24 25 15 30 5 54 22
1000 32 3 31 45 44 16 48 3 54 30
2000 48 3 37 51 52 18 51 5 54 46

average computing times over all instances, sorted according to the number of
items. The second half reports the number of unsolved instances per each group
(out of 54). Results for (CP1) and (CP2) are not reported, as they appear even
slower than (CP3). We notice that the best performing exact approaches are
(ILPl

1) and (ILP3) which we explain by a fact: very tight lower bounds. Among
the whole benchmark set of 486 instances, less then 20 remain unsolved within
10 minutes by running these approaches. On the contrary, for CP and DP algo-
rithms, instances with ≥ 100 already appear very difficult: none of them could
be solved to optimality within the time-limit by CP, and less than half of them
with ≥ 500 items could not be solved by the DP. The DP did especially struggle
to solve instance class 9, where the value of the capacity is high. Surprisingly,
running the B&C implementation of (ILPl

1) is slower than solving the compact
model, which may be explained by the strength of general-purpose CPLEX cuts
(like knapsack-cover inequalities, MIR or 0-1/2 cuts) that are better exploited
if complete information on the structure of the solution is given to the solver,
rather then when this information is provided “on the fly”.
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Conclusions and Future Work. This article considers integrative ILP and
CP approaches for solving the LBP problem to optimality. As pointed out at the
beginning of this article, one could alternatively solve the problem by resolving
a linear number of iterations of a knapsack problem with a lower and upper
bound on its capacity. We are currently working on a faster dynamic program-
ming algorithm and alternative formulations that might be competitive against
the approaches presented in this paper. Furthermore, we consider the CP for-
mulations presented in this article as a first attempt to model the problem using
constraint programming and hope to draw attention of the CP community to
this interesting problem for which we believe more efficient approaches could be
developed, by hybridizing ILP, CP and DP techniques. In particular, an adapta-
tion of a DP algorithm could be used for propagation (as it was proposed in [9]
for the knapsack problem).

“Lazy” reformulations of other standard combinatorial optimization prob-
lems (such as, bin packing) have been recently proposed (see, e.g. [2]), but only
approximation algorithms have been studied so far. Studying lazy packing or
scheduling problems is a particularly interesting field of research for both the IP
and the CP community, since it gives rise to a rich set of new solution proper-
ties, valid inequalities, and studies of the opposite side of the polytope, as the
optimization is driven in the opposite direction when compared to their stan-
dard (non-lazy) counterparts. Our computational study showed that the LBP is
more difficult than the KP: for the latter, instances with several thousands of
items can be easily solved, while for the LBP, a few thousands items make the
problem difficult (using ILP formulations). Finally exact methods for the LBP
are especially important since, as the lazy counterpart of the KP, the LBP is
a basic problem which appears as a subproblem in many lazy reformulations.
Effective methods for the LBP can then lead to computational speed-up for a
large set of lazy problems.
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Michele Monaci and Ulrich Pferschy for useful discussions. The research of M. Sinnl
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Abstract. Table Constraints are very useful for modeling combinato-
rial problems in Constraint Programming (CP). They are a universal
mechanism for representing constraints, but unfortunately the size of
their tables can grow exponentially with their arities. In this paper, we
propose to authorize entries in tables to contain simple arithmetic con-
straints, replacing classical tuples of values by so-called smart tuples.
Smart table constraints can thus be viewed as logical combinations of
those simple arithmetic constraints. This new form of tuples allows us
to encode compactly many constraints, including a dozen of well-known
global constraints. We show that, under a very reasonable assumption
about the acyclicity of smart tuples, a Generalized Arc Consistency algo-
rithm of low time complexity can be devised. Our experimental results
demonstrate that the smart table constraint is a highly promising general
purpose tool for CP.

Table constraints explicitly express the allowed combinations of values as sets of
tuples, which are called tables. Table constraints can theoretically encode any
kind of constraints and are amongst the most useful ones in Constraint Pro-
gramming (CP). Indeed, they are often required when modeling combinatorial
problems in many application fields. The design of filtering algorithms for such
constraints has generated a lot of research effort, see [2,8,14–16,19,21,24,27].
The biggest problem with table constraints are their size. Several approaches
have been proposed to reduce this size. Two of them modify the definition of
classical tuples: compressed tuples [12,25,30] and short supports applied to table
constraints [10]. Compressed tuples allow tuples entries to contain sets. A com-
pressed tuple thus represents all the tuples in the cartesian product of the sets.
Short supports applied to table constraints allow variables to be left out of
the short tuple. Left-out variables can take any values from their domains. In
this paper, we propose to generalize both compressed tuples and short sup-
ports in table constraints by authorizing tuples to contain simple arithmetic
constraints. We call such tuples smart tuples, and tables containing smart tuples
smart tables. For instance, the following set of tuples {(1, 2, 1), (1, 3, 1), (2, 2, 2),
(2, 3, 2), (3, 2, 3), (3, 3, 3)} on variables {x1,x2,x3} with domains {1, 2, 3} can be
represented by a smart table containing only one smart tuple:

x1 x2 x3

= x3 ≥ 2 ∗
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 271–287, 2015.
DOI: 10.1007/978-3-319-18008-3 19
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or in an equivalent form by (x1 = x3,x2 ≥ 2). A symbol ∗ in the tabular form
of a smart tuple means that, if not occurring anywhere else, the corresponding
variable is not constrained at all by the tuple (which is not the case here).

As a motivating example, let us consider a car configuration problem. We
assume that the cars to configure have 2 colors (one for the body, colB , and the
other for the roof, colR), a model number modNum, an option pack optPack
and an onboard computer comp. A configuration rule might state that, for a
particular model number a and some fancy body color set S, an option pack less
than a certain pack b implies that the onboard computer cannot be the most
powerful one, c, and that the roof color has to be the same as the body color.
This configuration constraint can be written as:

modNum = a ∧ colB ∈ S ∧ optPack < b ⇒ comp �= c ∧ colR = colB

The encoding of this constraint with a smart table consists of four smart
tuples: (modNum �= a), (colB �∈ S), (optPack ≥ b) and (comp �= c, colR = colB),
which gives under tabular form:

modNum colB colR optPack comp

�= a ∗ ∗ ∗ ∗
∗ �∈ S ∗ ∗ ∗
∗ ∗ ∗ ≥ b ∗
∗ ∗ = colB ∗ �= c

Encoding this constraint with classical tuples is exponentially larger. Even
using compressed tuples or short supports results in a table that is strictly longer.
This is because none of these techniques can be used to encode compactly the rela-
tion existing between colB and colR (they require, for this case, one distinct tuple
for each possible color). Smart table constraints can never be larger than classical
table constraints, even using compressed tuples or short support because smart
table constraints generalize all of the above. Using reification (decomposition by
adding auxiliary variables) of the configuration rule does not guarantee the same
level of pruning as the smart table encoding since there is a cycle to handle.

Importantly, smart table constraints can be viewed as a disjunction of con-
junctions of basic arithmetic constraints. Indeed, each smart tuple contains a
conjunction of basic arithmetic constraints and the table is a disjunction of
such tuples, since the variables can satisfy any of the smart tuples. Filtering
of logical combinations of constraints has already been studied in the literature
[1,3,4,9,11,17,18,28,29]. However, the particular form of our smart tuples leads
to a filtering algorithm with a low polynomial time complexity. More precisely,
we show how Simple Tabular Reduction (STR) [14,27] can be adapted for smart
table constraints to produce an efficient filtering procedure to enforce General-
ized Arc Consistency. Smart table constraints can be viewed as a subset of the
logic algebra defined in [1]: we impose a particular form on the logical combina-
tions (disjunction of conjunction, conjunctions forming acyclic networks) and we
restrict the constraints that can be combined to be simple arithmetic constraints.
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The rules for the filtering smart table constraints follow the ones defined in [1].
The reasons for such a subset of the logical algebra are multiple. The choice of
disjunction of conjunctions has been made to keep smart tables close to classical
tables. The restriction to acyclic conjunctions is a requirement for the filtering
rules from [1] to provide the GAC maximal inconsistent sets. Maximal inconsis-
tency sets are mandatory if the filtering rules from [1] are to be used to compute
GAC of a smart table constraint. Without this guarantee, a procedure, more
complex and more expensive than the filtering rules of [1], would have to be
used. See for instance the filtering for general conjunctions defined in [3,11,17].
Despite those restrictions, smart tuples greatly increase the expressive power of
classical tuples. The novelty in our approach lies in the introduction of a con-
crete propagator for such a subset of the logic algebra. The pruning achieved by
the disjunction is equivalent to the pruning of constructive disjunction [28,29].
The propagation of a whole table constraint can even be seen as the propaga-
tion of a large constructive disjunction. The ability to leave variables out of the
constraints in the smart tuple makes their filtering as efficient as the improved
constructive disjunction filtering defined in [17]. In [4], the authors propose a
filtering for constructive disjunction based on indexicals as well as a stronger
filtering, considering disjunctions together with other constraints. In this paper,
we do not investigate propagating more than one table constraint at a time. The
filtering for disjunctions proposed in this paper is stronger than the one proposed
in [9], as we have here the same pruning as the constructive disjunction, which
is not the case in [9].

1 Defining Smart Table Constraints

A Constraint Satisfaction Problem (CSP) P is composed of an ordered set of
variables X = {x1, . . . ,xn}, where each variable x has a domain of possible
values denoted by dom(x), and a set of constraints C = {c1, . . . , ce}, where each
constraint c corresponds to a relation denoted by rel(c) on a subset of variables
of X ; this subset is called the scope of c and denoted by scp(c). Each constraint
c defines the possible combinations of values satisfying c in rel(c). The arity of
a constraint c is #scp(c), i.e., the number of variables involved in c. The largest
arity is denoted by r, while the size of the largest domain is denoted by d.

A literal is a variable value pair (x, a) such that x ∈ X. A literal of a constraint
c is a literal (x, a) such that x ∈ scp(c). A literal (x, a) is valid iff a ∈ dom(x).
A tuple on an (ordered) subset of variables Y = {y1, . . . , yp} ⊆ X is a sequence
of literals ((y1, a1), . . . , (yp, ap)), one for each variable y ∈ Y . When there is no
ambiguity about Y , we simply write (a1, . . . , ap). A tuple is valid iff all its literals
are valid. A tuple τ is allowed by a constraint c iff τ ∈ rel(c). A tuple τ satisfies
a set of constraints C ′ iff for every constraint c′ ∈ C ′, τ [scp(c′)] is allowed by c′,
where τ [Y ] denotes the restriction of τ on literals referring to variables in Y . The
set of solutions of a CSP P = (X,C) is denoted by sols(P ) ; these are the valid
tuples on X that satisfy C. A table constraint is a constraint whose semantics
is defined in extension by listing the set of allowed (or forbidden) tuples. These
tuples are classical. In this paper, we introduce smart table constraints.
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A smart table constraint sc is defined semantically from a set of smart tuples,
called smart table and denoted by table(sc). A smart tuple σ is a set of tuple
constraints, where a tuple constraint can take four possible forms:

1. <var><op>a
2. <var>∈ S or <var>�∈ S
3. <var><op><var>
4. <var><op><var>+ b

where <var>is a variable in the scope of the smart table constraint, a and b some
constants, S a set of constants and <op>an operator in the set {<,≤, =, �=,≥,>}.

The semantics of smart table constraints is simple and natural: a classical
tuple τ is allowed by a smart table constraint sc iff there is at least one smart
tuple σ ∈ table(sc) such that τ satisfies σ. Note that when a variable x ∈ scp(sc)
is not involved in any tuple constraint of a smart tuple σ ∈ table(sc) then x can
take any value in its domain; such a variable is said to be unrestricted on σ and
the set of unrestricted variables on σ is denoted by unres(σ). Note also that any
classical tuple (a1, . . . , ar) on a set of variables {x1, . . . ,xr} can be re-written as
the smart tuple {x1 = a1, . . . ,xr = ar}.

As seen in the introduction, smart tuples can help modeling constraints in a
compact and natural way, when disjunction is needed. Smart table constraints
can also be used to encode some global constraints. The encodings of Lex, Max
and Element are smart table constraint versions of the ones proposed in [1]. In the
examples below, tuple constraints are written directly inside the tables to ease
reading. A tuple constraint of the form xi <op>a (resp. xi <op>xj+b) is written
as <op>a (resp. <op>xj + b ) in the column of the table corresponding to xi.
The following global constraints illustrate the modeling power of the smart table
constraint. Their equivalent with classical tuples are exponentially larger. For
instance, in the table for element, each smart tuple corresponds to dm classical
tuples. For compressed tuples, if only one variable is the target of all the tuple
constraints, each smart tuple can be translated as d compressed tuples. This
is the case for all the global constraints presented below except for Lex. For
this constraint, the smart table is O(dm) times smaller than the table using
compressed tuples. Short supports applied to table constraints can only encode
efficiently unrestricted variables, making the encoding of each smart tuple O(dm)
tuples with short supports for Lex, Max and AtMost1. Global constraints are of
course not the sole purpose of the smart table constraints but being able to
encode efficiently those constraints has many advantages.

Lex([x1,. . . ,xm], [y1,. . . , ym]): x̄ > ȳ
x1 x2 . . . xm y1 y2 . . . ym

> y1 ∗ . . . ∗ ∗ ∗ . . . ∗
= y1 > y2 . . . ∗ ∗ ∗ . . . ∗
. . . . . . . . . . . . . . . . . . . . . . . .

= y1 = y2 . . . > ym ∗ ∗ . . . ∗
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Max ([x1,x2, . . . ,xm],M): max(x̄) = M

x1 x2 . . . xm M

∗ ≤ x1 . . . ≤ x1 = x1

≤ x2 ∗ . . . ≤ x2 = x2

. . . . . . . . . . . . . . .

≤ xm ≤ xm . . . ∗ = xm

Element(I, [x1,x2, . . . ,xm],R): x̄[I] = R

I x1 x2 . . . xm R

= 1 ∗ ∗ . . . ∗ = x1

= 2 ∗ ∗ . . . ∗ = x2

. . . . . . . . . . . . . . . . . .

= m ∗ ∗ . . . ∗ = xm

AtMost1([x1, . . . ,xm],Y ): #{1 ≤ i ≤ m|xi = Y } ≤ 1

x1 x2 . . . xm Y

∗ �= Y . . . �= Y ∗
�= Y ∗ . . . �= Y ∗
. . . . . . . . . . . . . . .

�= Y �= Y . . . ∗ ∗

NotAllEqual(x1, . . . ,xm): ∃1 ≤ i, j ≤ m : xi �= xj

x1 x2 x3 . . . xm

∗ �= x1 ∗ . . . ∗
∗ ∗ �= x1 . . . ∗

. . . . . . . . . . . . . . .

∗ ∗ ∗ . . . �= x1

Diffn([x1, . . . ,xm], [i1, . . . , im], [y1, . . . , ym], [j1, . . . , jm]):
no overlap between orthotopes defined in R

m from points x̄ and ȳ with lengths
along axes of ī and j̄ respectively.

x1 x2 . . . xm y1 y2 . . . ym

∗ ∗ . . . ∗ ≥ x1 + i1 ∗ . . . ∗
≥ y1 + j1 ∗ . . . ∗ ∗ ∗ . . . ∗

∗ ∗ . . . ∗ ∗ ≥ x2 + i2 . . . ∗
∗ ≥ y2 + j2 . . . ∗ ∗ ∗ . . . ∗
. . . . . . . . . . . . . . . . . . . . . . . .

∗ ∗ . . . ∗ ∗ ∗ . . . ≥ xm+im

∗ ∗ . . . ≥ ym+jm ∗ ∗ . . . ∗
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2 Filtering Smart Table Constraints

This section presents a filtering algorithm to establish GAC on smart table
constraints. GAC is a property that relies on the concept of support. A support
of a constraint c is a tuple on scp(c) which is both valid and allowed by c. A
support on c for a literal (x, a) of c is a support of c containing (x, a).

Definition 1. A constraint c is Generalized Arc Consistent (GAC) iff all the
literals of the constraint have a support on c. A CSP is GAC iff all its constraints
are GAC.

In general, identifying the set of supports of a constraint allows us to enforce
GAC. Actually, for any smart table constraint sc, each smart tuple σ corresponds
to a small CSP Pσ = (Xσ,Cσ), with Xσ = scp(sc) and Cσ = σ. The classical
tuples that are supports of sc from σ are exactly the solutions in sols(Pσ). Hence,
the full set of supports of sc is equal to

⋃
σ∈table(sc) sols(Pσ). This is similar to

the way set of supports are computed for constructive disjunction.
Our objective is to efficiently identify and remove valid literals of sc without

any support. It may seem costly to compute sols(Pσ) for every smart tuple σ.
Obtaining the set of supports for an arbitrary logical combination of constraints
is NP-hard [1]. However, we impose that the constraint graph of any CSP Pσ

that is associated with a smart tuple σ, is acyclic and Pσ is a conjunction.
This restriction allows an efficient processing of the smart tuples when used for
filtering.

Property 1. Let σ be a smart tuple of a smart table constraint, P ′
σ, the GAC

closure of Pσ, is globally consistent, i.e., each literal of P ′
σ appears in at least

one solution of Pσ.

This property is derived from [20] and the acyclic nature of the constraint
graphs defined by smart tuples. This means that the set of literals appearing in
sols(Pσ) can be obtained by simply applying GAC on Pσ.

Obtaining the GAC closure on each of the Pσ and taking their union at the
end to have the set of supported literals corresponds exactly to an application
of the filtering rules defined in [1], when seeing the smart table constraint as
a logical combination of basic arithmetic constraints. The acyclic nature of the
conjunctions in the smart tuples guarantees that the set of supported literals
computed by this procedure is the set of GAC literals for the logical combination
of arithmetic constraints by Theorem 3 in [1]. Hence, this procedure is correct
and computes the GAC literals for the smart table constraint. Moreover, the
complexity of filtering Pσ can also benefit from the form of the smart tuples, as
expressed below.

Property 2. The GAC closure of an acyclic binary CSP can be obtained in O(e ·
F ), where filtering an individual constraint if O(F ).

The procedure for obtaining the GAC closure of an acyclic binary CSP
P = (X,C) is the following. The CSP forms a forest (possibly, with only one
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tree), and each tree of the forest can be filtered independently since no variable is
shared between trees. For each tree T , revising constraints in turn from the deep-
est ones to the shallowest ones, and then the other way around, achieves GAC
on T . Each constraint in C is thus revised two times (no fixed point needed).
Revising a constraint c consists in removing the literals that have no support on
c. We call this procedure GAC tree. GAC tree can be viewed as an application of
the rules defined in [1] for conjunction. The acyclicity of the networks guarantees
that the inconsistency sets computed are maximal [1] and hence that GAC tree
is correct. GAC tree, as well as properties 1 and 2, are not original to this work,
but they justify the filtering procedure of the smart table constraints.

Applying GAC tree to a smart tuple σ of a constraint sc requires decompos-
ing σ according to its connected components; the result of this decomposition
will be denoted by forest(σ). More precisely, for each subset cc ⊆ σ that rep-
resents a connected component, there is an associated tree T in forest(σ) that
defines an independent sub-CSP (XT ,CT ) with XT = vars(cc) and CT = cc.
We shall refer to such sub-CSPs with tree shape as treeCSPs. An additional void
tree T defining a trivial sub-CSP (XT ,CT ) with XT = unres(σ) and CT = ∅ is
introduced if unres(σ) �= ∅. This guarantees that sols(Pσ) = ΠT∈trees(σ)sols(T ),
which results from the independence of the trees w.r.t each other.

The filtering algorithm proposed for smart table constraints, called smart-
STR, works with the decompositions into treeCSPs instead of working directly
with the smart tuples. It is inspired from STR (Simple Tabular Reduction)
[14,27]. STR works by scanning constraint tables, going through each tuple
sequentially. The validity of each row is checked. When a row is not valid, it
is removed from the table. Otherwise, all the literals of the row are marked as
having a support. After scanning the whole table, all the literals for which no
support has been found are removed. The difference between STR and smartSTR
is the way validity checks and the collection of supported literals is performed.
A smart tuple σ is valid iff Pσ admits at least one solution. A smart tuple σ is
thus valid iff each treeCSP in forest(σ) admits at least one solution. The literals
supported by σ are the literals in sols(Pσ) (obtained with GAC tree), computed
as the union of the supported literal sets of each individual treeCSP in forest(σ).

Algorithm 1 presents the pseudo-code of smartSTR. In all the algorithms
presented in this paper, pre is the precondition and post is the postcondition.
SmartSTR uses a data structure sl that contains all the literals without any
found support (sl stands for support-less). Line 3 initializes sl with all valid
literals (no support has been found yet). Then the algorithm loops over all the
smart tuples of the constraint (line 4). The test at line 5 checks the validity
of the current smart tuple by testing the validity of all its treeCSPs. If the
smart tuple σ is valid, each of its independent treeCSP removes from sl the
literals they support (loop at lines 6-7). The loop at line 8 empties the sets sl
of all unrestricted variables on σ, as there is no restriction on those variables
(actually, this corresponds to dealing with the void tree that is not in practice
included in forest(σ)). If the smart tuple is invalid, it is removed from the table
(line 9); the table of the constraint is represented using a sparse set, as in STR1
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and STR2. After going through all the smart tuples of the constraint, smartSTR
removes the literals that are still left without a support (loop at line 10).

Algorithm 1: smartSTR

As seen in Algorithm 1, each treeCSP is responsible to check its validity
and to remove from sl the literals it supports. This is done through isValid
and collect methods. Those methods correspond to GAC tree. Their pseudo
codes are given below because it is a non standard GAC procedure, efficient
and adapted to smart tuples. This also eases the complexity analysis. Their
specifications can be found in Interface 1, called TreeCSP. Note that a treeCSP
involves a set of variables vars and belongs to the forest of a smart tuple σ.

Interface 1: Interface for treeCSPs

From now on, the treeCSPs that are composed of only one constraint will be
called branches. In the code presented below, we have specific classes for unary
branches (containing a tuple constraint of the form <var><op>a, <var>∈ S
or <var>�∈ S), and binary branches (containing a tuple constraint of the form
<var><op><var>, or <var><op><var>+ b). There is one unary and binary
branch class for each value of <op>. We also introduce one class for simple
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trees (trees of height 1 consisting of multiple branches all sharing the same root
variable) and another one for general trees (trees of height > 1).

Algorithm 2 presents the classes introduced for unary branches with opera-
tions =, and <. The pseudo-code for the other operators are very similar. The
additional method filterX, not contained in Interface 1, is responsible to filter
the (pseudo) domain Dx given as argument. It is used by simple and general
trees, where GAC has to be enforced on several branches. Dx is used to avoid
filtering directly dom(x), because the effective filtering can only be done when
all smart tuples have been processed.

Algorithm 2: Classes for unary branches = and <

Algorithm 3 presents the classes introduced for binary branches with oper-
ations = and <, respectively. Again, the pseudocodes for the other operators
are very similar. In those pseudocodes, S ⊕ b, where S is a set and b a value,
represents the addition of the constant to all the values in the set. They all
implement the method filterX, as unary branches do, but with two parameters
(Dx and Dy). Dx is the copy of the domain of x to filter and Dy is a domain for
y to use to filter Dx . The second parameter is needed during the execution of
GAC tree to use an already filtered copy of the domain of y to filter the copy of
dom(x). Again, the filtering of the real domains of the variables can only occur
after all the smart tuples have been processed. Those classes also implement a
filterY method which is the counterpart of filterX for y. They implement a
method collectY, used by simple trees to collect values, but only for the second
involved variable y with respect to a (pseudo) domain Dx , given as a parameter,
for the first involved variable x. It is called after Dx , which is initially a copy of
dom(x), has been filtered through the entire simple or general tree.
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Algorithm 3: Classe for binary branches = and <

Algorithm 4 gives the pseudo-code for simple trees, where all involved
branches share the same root variable x (see the assertion at line 4). Since we
can change the order of the variables in binary branches (x1 < x2 → x2 > x1,
etc.), this is not a requirement on the form of the smart tuples. This is enforced
at the creation of the smart tuples trees. The validity test at line 5 starts by
making a copy Dx of dom(x). Then, Dx is filtered through all branches (loop
starting at line 7). The unary branches are treated at lines 8-9 and the binary
ones, at lines 10-11. For the binary branches, filterX is called with the full
domain of y as argument for the copy of y’s domain. If Dx does not become
empty, that means that the simple tree has at least one solution. The method
collect at line 13 uses Dx (which has already been filtered by isValid). Since
all values in Dx have a support in the simple tree, they are removed from sl[x]
(line 14). The loop at line 15 goes through every binary branch (i.e., with a scope
containing 2 variables) to collect the supported values for the second involved
variables (y) from the filtered domain Dx . The supported values for variables
y are directly removed from sl instead of copying their domains and filtering
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Algorithm 4: Class for simple trees

them. Note that methods isValid and collect are adaptations of the two pass
filtering GAC tree. During the first pass, only the domain of x (actually, Dx )
is filtered. Indeed, as it may change at each new processed branch, filtering the
domains of variables y (actually, updating sl) is useless at that time. The validity
test is not concerned by the second pass because if x still has values in its domain
after the first pass, the simple tree is guaranteed to have at least one solution.

The class for general trees is given in Algorithm 5. This algorithm uses several
fields. The array allVars contains all the variables appearing in the tree. The
2 dimensional array branches contains all the branches for each level of the
tree, from 1 (branches containing the root variable) to treeHeight. The array
domCopy contains the copies of the domains of the variables of the tree that are
used during the procedure GAC tree. For this algorithm, we will suppose that,
for all the binary branches, the variable x is always the closest to the root. This
is again enforced during the creation of the smart tuples trees. The assertion
at line 5 thus checks that all the variables x have a corresponding variable as
y at the level below (closer to the root). The isValid method (line 7) realizes
the first pass of GAC tree (using copies of the domains), filtering the domains
of the different x variables from the leafs to the root. If the variable at the root
(branches[1][1].x) of the tree still has values, it returns true. Its collect method
(line 17) then achieves the second pass by filtering the (copies of the) domains
of the y variables of the branches. It also removes supported values from sl. At
this point, it is important to note that the code presented for unary branches,
binary branches and simple trees already covers all the examples given in this
paper.
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Algorithm 5: Class for general trees

We now study the complexity of our approach. The complexity of filtering a
smart tuple depends on the complexity of filtering each of its treeCSPs, as they
are independent. For a smart tuple σ (on variables with maximal domain size
d), the time complexities for the different operators are:

for unary branches

<op> isValid collect filterX

= O(1) O(1) O(1)
�= O(1) O(1) O(1)

>≥<≤ O(1) O(d) O(d)
∈�∈ O(d) O(d) O(d)

for binary branches

<op> isValid collect/ filterX/

collectY filterY

= O(d) O(d) O(d)
�= O(1) O(1) O(1)

>≥<≤ O(1) O(d) O(d)

Each tuple constraint is either its own tree or belongs to a larger tree. If
the branch is its own tree, the time complexities of isValid and collect are
O(d) for any operator. If the branch is included in a simple or general tree,
then GAC tree guarantees that the collectY, filterX and filterY methods
are called a constant number of times. The time complexity imputable to the
branch is thus O(d) for validity testing and value collection. This makes the
treatment of one smart tuple with k tuple constraints O(k · d + r), where r
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is the arity of the table constraint. The last term comes from the treatment
of unrestricted variables. The initialization of sl at the beginning of smartSTR
and the actual filtering of the domains at the end are O(r · d). The total time
complexity of one call to smartSTR for a smart table constraint of arity r with t
smart tuples is thus O(r ·d+ t ·k ·d+ t ·r). For a classical table constraint of arity
r with t′ tuples, we have that STR2 has a time complexity of O(r ·d+t′ ·r). In all
the examples given, we have that k ≤ r (less tuple constraints than variables).
We also have that the number of smart tuples is at least d + 1 times less than
the number of classical tuples. In those conditions, the complexity of filtering
the smart table is less than the complexity of using STR2 on the table without
smart tuples. Indeed, we have t · k · d + t · r ≤ t′ · r.

3 Experimental Results

Optimization present in STR2 can also be included in smartSTR. The obtained
algorithm is then called smartSTR2. Comparing SmartSTR2 with all specialized
algorithms developed over the years for the global constraints mentioned earlier
is clearly beyond the scope of this paper. However, we shall show the interest of
SmartSTR2 on a few case studies. Comparing a propagator F with SmartSTR2
on a global constraint means that, in the same CSP, all the instances of the
global constraint are either propagated with F or their encoding in smart table
constraint is propagated with SmartSTR2. We have conducted an experimen-
tation (with the solver AbsCon) on a laptop computer, equipped with Intel(R)
Core(TM) i7-2820QM CPU @ 2.30GHz, under Linux. Results are given in sec-
onds, or corresponds to number of visited nodes per second. We have checked
that all tested approaches were traversing the exact same search trees (most of
the time using dom/ddeg as variable ordering heuristic for this purpose).

In natural language processing, one task is to determine whether a given sen-
tence is well-formed (i.e., to what extent, it respects a grammar). A constraint
model (R. Coletta, personal communication) has been recently developed for
this problem, denoted here by TAL. It involves the Element constraint (with R
as a variable as described earlier in the paper). Instances for this optimization
problem are defined by entering an input sentence. In this model, Element con-
straints represent about 8% of the constraints. We compare SmartSTR2 with
GACElt that corresponds to the GAC propagator based on watched literals [7].
In this context, the two algorithms are very close in term of performance as
shown by Table 1.

A BIBD is a standard combinatorial problem. We consider here the model
introduced in [22] and the series of instances tested in [5]. There is a lexicographic
constraint between any two adjacent rows or columns. We compare SmartSTR2
with GACLex that corresponds to the filtering procedure described in [13] and is
a variant of [6]. Table 2 shows the results we have obtained with both algorithms.
Interestingly, one can observe that replacing the specialized propagator GACLex
with the general-purpose SmartSTR2 has a very limited cost, although Smart-
STR2 is generic. Similar results are obtained with the social golfer problem.
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Table 1. CPU time to solve TAL instances

sentence GACElt SmartSTR2

phrase1 3.6 3.7

phrase2 17.6 17.9

phrase3 54.4 54.2

phrase4 46.8 46.8

phrase5 82.4 82.6

Table 2. CPU time to solve BIBD instances

v-b-r-k-λ GACLex SmartSTR2

6-50-25-3-10 1.3 1.6
6-60-30-3-12 1.5 2.1
6-70-35-3-10 2.2 2.8
10-90-27-3-6 5.8 7.3
9-108-36-3-9 11.4 14.2
15-70-14-3-2 7.4 7.9
12-88-22-3-4 7.0 8.3
9-120-40-3-10 17.9 25.1
10-120-36-3-8 10.6 14.0
13-104-24-3-4 99.1 108.6

The RectanglePacking problem [26] consists of packing all squares from size
1 × 1 to n × n into a rectangle of size w × h. We adopt the model and search
parameters given in [10,23]. Table 3 reports the nodes searched per second by the
algorithms. This measurement has been chosen because some instances trigger
timeouts for some algorithms. The node count per second gives, in this context,
more information than the runtimes/timeouts. It shows that SmartSTR2 is very
efficient on this problem. It clearly outperforms ShortSTR2, and seems to be
at least as efficient as the other methods proposed in [23] (not implanted in
our system) when we compare their results with ours. Note that GAC-valid
(sometimes called GAC-schema) is another general approach, given here as a
baseline.

For our last experiment, we consider Case Study 4 in [10], where a prob-
lem, denoted by AllDistinctVectors here, involves the VectorDiff constraint. An
instance p-a-d of this problem has exactly p vectors (arrays of variables), each
vector of length a and each variable with a domain whose size is equal to d: any
pair of vectors must be distinct. In [10], it has been shown that ShortSTR2 is an
interesting competitor to HaggisGAC. When we consider Boolean variables only
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Table 3. Nodes searched per second for RectanglePacking instances

n-w-h GAC-valid ShortSTR2 SmartSTR2

18-31-69 1, 821 2, 784 57, 249
19-47-53 2, 003 3, 166 57, 221
20-34-85 1, 324 1, 579 45, 600
21-38-88 849 1, 295 40, 600
22-39-88 981 1, 035 41, 162
23-64-68 983 1, 292 40, 495
24-56-88 446 790 32, 758
25-43-129 661 347 30, 544
26-70-89 544 703 31, 374
27-47-148 326 175 26, 786

Table 4. CPU time to enforce GAC on AllDistinctVectors instances

p-a-d ShortSTR2 SmartSTR2

40-100-2 0.07 0.07
40-100-8 1.55 0.18
40-100-16 6.49 0.18
40-100-24 14.7 0.19
40-100-32 28.1 0.20
40-100-40 44.5 0.21

(i.e., d = 2), SmartSTR2 is slightly slower than ShortSTR2 (because tables are
small). However, when we increase d, Table 4 shows that, just when applying
GAC stand-alone, SmartSTR2 is clearly superior to ShortSTR2. This can be
explained by the size of the constraint tables. For example, for 40-100-40, tables
contain 156, 000 and 100 tuples in ShortSTR2 and SmartSTR2, respectively.

4 Conclusion

Smart tuples generalize (classical) tuples in tables of constraints, as well as
short and compressed tuples. They allow a compact and natural representa-
tion of many constraints, including important global constraints. Smart table
constraints can be seen as a subset of the logical algebra defined in [1]. Restrict-
ing smart table constraints to this subset allows an efficient filtering of the con-
straints. The contribution of this paper is to introduce the smart table constraint
and propose a practical GAC filtering algorithm for it. Its practical interest is
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also demonstrated. We do believe that there exist many optimisations and exten-
sions to this work that still deserve to be explored.
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Abstract. The goal of constraint-based sequence mining is to find
sequences of symbols that are included in a large number of input
sequences and that satisfy some constraints specified by the user. Many
constraints have been proposed in the literature, but a general frame-
work is still missing. We investigate the use of constraint programming
as general framework for this task.

We first identify four categories of constraints that are applicable to
sequence mining. We then propose two constraint programming formu-
lations. The first formulation introduces a new global constraint called
exists-embedding. This formulation is the most efficient but does not sup-
port one type of constraint. To support such constraints, we develop a
second formulation that is more general but incurs more overhead. Both
formulations can use the projected database technique used in specialised
algorithms.

Experiments demonstrate the flexibility towards constraint-based set-
tings and compare the approach to existing methods.

Keywords: Sequential pattern mining · Sequence mining · Episode
mining · Constrained pattern mining · Constraint programming · Declar-
ative programming

1 Introduction

In AI in general and in data mining in particular, there is an increasing interest
in developing general methods for data analysis. In order to be useful, such
methods should be easy to extend with domain-specific knowledge.

In pattern mining, the frequent sequence mining problem has already been
studied in depth, but usually with a focus on efficiency and less on generality and
extensibility. An important step in the development of more general approaches
was the cSpade algorithm [20] which supports a variety constraints. It supports
many constraints such as constraints on the length of the pattern, on the maxi-
mum gap in embeddings or on the discriminative power of the patterns between
datasets. Many other constraints have been integrated into specific mining algo-
rithms (e.g. [6,14,17,18]). However, none of these are truly generic in that adding
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extra constraints usually amounts to changing the data-structures used in the
core of the algorithm.

For itemset mining, the simplest form of pattern mining, it has been shown
that constraint programming (CP) can be used as a generic framework for
constraint-based mining [5] and beyond [11,15]. Recent works have also inves-
tigated the usage of CP-based approaches for mining sequences with explicit
wildcards [3,7,8]. A wildcard represents the presence of exactly one arbitrary
symbol in that position in the sequence.

The main difference between mining itemsets, sequences with wildcards and
standard sequences lies in the complexity of testing whether a pattern is included
in another itemset/sequence, e.g. from the database. For itemsets, this is simply
testing the subset inclusion relation which is easy to encode in CP. For sequences
with wildcards and general sequences, one has to check whether an embedding
exists (matching of the individual symbols). But in case only few embeddings
are possible, as in sequences with explicit wildcards, this can be done with a
disjunctive constraint over all possible embeddings [8]. In general sequence (the
setting we address in this paper), a pattern of size m can be embedded into a
sequence of size n in O(nm) different ways, hence prohibiting a direct encoding
or enumeration.

The contributions of this paper are as follows:

– We present four categories of user-constraints, this categorization will be
useful to compare the generality of the two proposed models.

– We introduce an exists-embedding global constraint for sequences, and show
the relation to projected databases and projected frequency used in the
sequence mining literature to speedup the mining process [6,21].

– We propose a more general formulation using a decomposition of the exists-
embedding constraint. Searching whether an embedding exists for each trans-
action is not easily expressed in CP and requires a modified search procedure.

– We investigating the effect of adding constraints, and compare our method
with state-of-the-art sequence mining algorithms.

The rest of the paper is organized as follows: Section 2 formally introduces the
sequence mining problem and the constraint categories. Section 3 explains the
basics of encoding sequence mining in CP. Section 4 and 5 present the model
with the global constraint and the decomposition respectively. Section 6 presents
the experiments. After an overview of related work (Section 7), we discuss the
proposed approach and results in Section 8.

2 Sequence Mining

Sequence mining [1] can be seen as a variation of the well-known itemset mining
problem proposed in [2]. In itemset mining, one is given a set of transactions,
where each transaction is a set of items, and the goal is to find patterns (i.e.
sets of items) that are included in a large number of transactions. In sequence
mining, the problem is similar except that both transactions and patterns are
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ordered, (i.e. they are sequences instead of sets) and symbols can be repeated.
For example, 〈b, a, c,b〉 and 〈a, c, c,b,b〉 are two sequences, and the sequence
〈a,b〉 is one possible pattern included in both.

This problem is known in the literature under multiple names, such as embed-
ded subsequence mining, sequential pattern mining, flexible motif mining, or serial
episode mining depending on the application.

2.1 Frequent Sequence Mining: Problem Statement

A key concept of any pattern mining setting is the pattern inclusion relation.
In sequence mining, a pattern is included in a transaction if there exists an
embedding of that sequence in the transaction; where an embedding is a mapping
of every symbol in the pattern to the same symbol in the transaction such that
the order is respected.

Definition 1 (Embedding in a sequence). Let S = 〈s1, . . . , sm〉 and S′ =
〈s′

1, . . . , s
′
n〉 be two sequences of size m and n respectively with m ≤ n. The tuple

of integers e = (e1, . . . , em) is an embedding of S in S′ (denoted S �e S′) if
and only if:

S �e S′ ↔ e1 < . . . < em and ∀i ∈ 1, . . . , m : si = s′
ei (1)

For example, let S = 〈a,b〉 be a pattern, then (2, 4) is an embedding of S in
〈b, a, c,b〉 and (1, 4), (1, 5) are both embeddings of S in 〈a, c, c,b,b〉. An alter-
native setting considers sequences of itemsets instead of sequences of individual
symbols. In this case, the definition is S �e S′ ↔ e1 < . . . < en and ∀i ∈
1, . . . , n : si ⊆ s′

ei . We do not consider this setting further in this paper, though
it is an obvious extension.

We can now define the sequence inclusion relation as follows:

Definition 2 (Inclusion relation for sequences). Given two sequences S
and S′, S is included in S′ (denoted S � S′) if there exists an embedding e of
S in S′:

S � S′ ↔ ∃e s.t. S �e S′. (2)

To continue on the example above, S = 〈a,b〉 is included in both 〈b, a, c,b〉 and
〈a, c, c,b,b〉 but not in 〈c,b, a, a〉.
Definition 3 (Sequential dataset). Given an alphabet of symbols Σ, a sequen-
tial dataset D is a multiset of sequences defined over symbols in Σ.

Each sequence in D is called a transaction using the terminology from itemset
mining. The number of transactions in D is denoted |D| and the sum of the
lengths of every transaction in D is denoted ||D|| (||D|| =

∑|D|
i=1 |Ti|). Further-

more, we use dataset as a shorthand for sequential dataset when it is clear from
context.
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Given a dataset D = {Ti, . . . , Tn}, one can compute the cover of a sequence
S as the set of all transactions Ti that contain S:

cover(S,D) = {Ti ∈ D : S � Ti} (3)

We can now define frequent sequence mining, where the goal is to find all
patterns that are frequent in the database; namely, the size of their cover is
sufficiently large.

Definition 4 (Frequent sequence mining). Given:

1. an alphabet Σ
2. a sequential dataset D = {T1, . . . , Tn} defined over Σ
3. a minimum frequency threshold θ,

enumerate all sequences S such that |cover(S,D)| ≥ θ.

In large datasets, the number of frequent sequences is often too large to be
analyzed by a human. Extra constraints can be added to extract fewer, but more
relevant or interesting patterns. Many such constraints have been studied in the
past.

2.2 Constraints

Constraints typically capture background knowledge and are provided by the
user. We identify four categories of constraints for sequence mining: 1) con-
straints over the pattern, 2) constraints over the cover set, 3) constraints over
the inclusion relation and 4) preferences over the solution set.

Constraints on the Pattern. These put restrictions on the structure of the
pattern. Typical examples include size constraints or regular expression con-
straints.
Size constraints: A size constraint is simply |S| ≷ α where ≷∈ {=, �=, >,≥, <,≤}
and α is a user-supplied threshold. It is used to discard small patterns.
Item constraints: One can constrain a symbol t to surely be in the pattern:
∃s ∈ S : s = t; or that it can not appear in the pattern: ∀s ∈ S : s �= t, or more
complex logical expressions over the symbols in the pattern.
Regular expression constraints: Let R be a regular expression over the vocabulary
V and LR be the language of sequences recognised by R, then for any sequence
pattern S over V , the match-regular constraint requires that S ∈ LR [6].

Constraints on the Cover Set. The minimum frequency constraint
|cover(S,D)| ≥ θ is the most common example of a constraint over the
cover set. Alternatively, one can impose the maximum frequency constraint:
|cover(S,D)| ≤ β.

Discriminating constraints: In case of multiple datasets, discriminating con-
straints require that patterns effectively distinguish the datasets from each other.
Given two datasets D1 and D2, one can require that the ratio between the size of
the cover of both is above a threshold: |cover(S,D1)|

|cover(S,D2)| ≥ α. Other examples include
more statistical measures such as information gain and entropy [13].
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Constraints over the Inclusion Relation. The inclusion relation in defi-
nition 2 states that S � S′ ↔ ∃e s.t. S �e S′. Hence, an embedding of a
pattern can match symbols that are far apart in the transaction. For example,
the sequence 〈a, c〉 is embedded in the transaction 〈a,b,b,b, . . . ,b, c〉 indepen-
dently of the distance between a and c in the transaction. This is undesirable
when mining datasets with long transactions. The max-gap and max-span con-
straints [20] impose a restriction on the embedding, and hence on the inclusion
relation. The max-gap constraint is satisfied on a transaction Ti if an embedding
e maps every two consecutive symbols in S to symbols in Ti that are close to
each-other: max-gapi(e) ⇔ ∀j ∈ 2..|Ti|, (ej − ej−1 − 1) ≤ γ. For example, the
sequence 〈abc〉 is embedded in the transaction 〈adddbc〉 with a maximum gap
of 3 whereas 〈ac〉 is not. The max-span constraint requires that the distance
between the first and last position of the embedding of all transactions Ti is
below a threshold γ: max-spani(e) ⇔ e|Ti| − e1 + 1 ≤ γ.

Preferences over the Solution Set. A pairwise preference over the solution
set expresses that a pattern A is preferred over a pattern B. In [11] it was shown
that condensed representations like closed, maximal and free patterns can be
expressed as pairwise preference relations. Skypatterns [15] and multi-objective
optimisation can also be seen as preference over patterns. As an example, let Δ be
the set of all patterns; then, the set of all closed patterns is {S ∈ Δ|�S′ s.t. S �
S′ and cover(S,D) = cover(S′,D)}.

3 Sequence Mining in Constraint Programming

In constraint programming, problems are expressed as a constraint satisfaction
problem (CSP), or a constraint optimisation problem (COP). A CSP X =
(V,D,C) consists of a set of variables V , a finite domain D that defines for
each variable v ∈ V the possible values that it can take, and a set of constraints
C over the variables in V . A solution to a CSP is an assignment of each variable
to a value from its domain such that all constraints are satisfied. A COP addi-
tionally consists of an optimisation criterion f(V ) that expresses the quality of
the solution.

There is no restriction on what a constraint C can represent. Examples
include logical constraints like X ∧ Y or X → Y and mathematical constraints
such as Z = X + Y etc. Each constraint has a corresponding propagator that
ensures the constraint is satisfied during the search. Many global constraints have
been proposed, such as alldifferent, which have a custom propagator that is often
more efficient then if one would decompose that constraint in terms of simple
logical or mathematical constraints. A final important concept used in this paper
is that of reified constraints. A reified constraint is of the form B ↔ C ′ where B
is a Boolean variable which will be assigned to the truth value of constraint C ′.
Reified constraints have their own propagator too.
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S : A

p=1

B

p=2

ε

p=3

ε

p=4

1C1 : T1 : A C B

0C2 : T2 : B A A C

Fig. 1. Example assignment; blue boxes represent variables, white boxes represent data

Variables and domains for modeling sequence mining. Modeling a problem as a
CSP requires the definition of a set of variables with a finite domain, and a set
of constraints. One solution to the CSP will correspond to one pattern, that is,
one frequent sequence.

We model the problem using an array S of integer variables representing the
characters of the sequence and an array C of Boolean variables representing
which transactions include the pattern. This is illustrated in Fig. 1:

1. T1 and T2 represent two transactions given as input. We denote the number
of transactions by n;

2. The array of variables S represents the sequence pattern. Each variable Sj

represents the character in the jth position of the sequence. The size of S
is determined by the length of the longest transactions (in the example this
is 4). We want to allow patterns that have fewer than maxi(|Ti) characters,
hence we use ε to represent an unused position in S. The domain of each
variable Sj is thus Σ ∪ {ε};

3. Boolean variables Ci represent whether the pattern is included in transaction
Ti, that is, whether S � Ti. In the example, this is the case for T1 but not
for T2.

What remains to be defined is the constraints. The key part here is how
to model the inclusion relation; that is, the constraint that verifies whether a
pattern is included in the transaction. Conceptually, this is the following reified
constraint: Ci ↔ ∃e s.t. S �e Ti. As mentioned in the introduction, the number
of possible embeddings is exponential in the size of the pattern. Hence, one can
not model this as a disjunctive constraint over all possible embeddings (as is
done for sequences with explicit wildcards [8]).

We propose two approaches to cope with this problem: one with a global con-
straint that verifies the inclusion relation directly on the data, and one in which
the inclusion relation is decomposed and the embedding is exposed through vari-
ables.

4 Sequence Mining with a Global Exists-Embedding
Constraint

The model consists of three parts: encoding of the pattern, of the minimum fre-
quency constraint and finally of the inclusion relation using a global constraint.
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Algorithm 1. Incremental propagator for Ci ↔ ∃e s.t. S �e Ti:
internal state, posS: current position in S to check, initially 1
internal state, pose: current position in Ti to match to, initially 1

1: while posS ≤ |Ti| and S[posS ] is assigned do � note that |Ti| ≤ |S|
2: if S[posS ] �= ε then
3: while not (Ti[pose] = S[posS ]) and pose ≤ |Ti| do � find match
4: pose ← pose + 1
5: end while
6: if pose ≤ |Ti| then � match found, on to next one
7: posS ← posS + 1; pose ← pose + 1
8: else
9: propagate Ci = False and return

10: else � previous ones matched and rest is ε
11: propagate Ci = True and return

12: end while
13: if posS > |S| then � previous ones matched and reached end of sequence
14: propagate Ci = True and return

15: if posS > |Ti| and |Ti| < |S| then
16: let R ← S[|Ti| + 1]
17: if R is assigned and R = ε then � S should not be longer than this transaction
18: propagate Ci = True and return

19: if ε is not in the domain of R then
20: propagate Ci = False and return

21: if Ci is assigned and Ci = True then
22: propagate by removing from S[posS ] all symbols not in 〈Ti[pose]..Xi[|Ti|]〉

except ε

Variable-length pattern: The array S has length k; patterns with l < k symbols
are represented with l symbols from Σ and (k − l) times an ε value. To avoid
enumerating the same pattern with ε values in different positions, ε values can
only appear at the end:

∀j ∈ 1..(k − 1) : Sj = ε → Sj+1 = ε (4)

Minimum frequency: At least θ transactions should include the pattern. This
inclusion is indicated by the array of Boolean variables C:

n∑

i=1

Ci ≥ θ (5)

Global exists-embedding constraint: The goal is to encode the relation: Ci ↔
∃e s.t. S �e Ti. The propagator algorithm for this constraint is given in Algo-
rithm 1. It is an incremental propagator that should be run when one of the S
variables is assigned. Line 1 will loop over the variables in S until reaching an
unassigned one at position posS . In the sequence mining literature, the sequence
〈S1..SposS〉 is called the prefix. For each assigned Sj variable, a matching element
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in the transaction is sought, starting from the position pose after the element
that matched the previous Sj−1 assigned variable. If no such match is found
then an embedding can not be found and Ci is set to false.

Line 11 is called when an Sj variable is assigned to ε. This line can only be
reached if all previous values of S are assigned and were matched in Ti, hence
the propagator can set Ci to true and quit. Similarly for line 14 when the end
of the sequence is reached, and lines 15-20 in case the transaction is smaller than
the sequence. Lines 21-22 propagate the remaining possible symbols from Ti to
the first unassigned S variable in case Ci = True.

The propagator algorithm has complexity O(|Ti|): the loop on line 1 is run
up to |Ti| times and on line 3 at most |Ti| times in total, as pose is monotonically
increasing.

4.1 Improved Pruning with Projected Frequency

Compared to specialised sequence mining algorithms, posS in Algorithm 1 points
to the first position in S after the current prefix. Dually, pose points to the
position after the first match of the prefix in the transaction. If one would
project the prefix away, only the symbols in the transaction from pose on would
remain; this is known as prefix projection [6]. Given prefix 〈a, c〉 and transaction
〈b, a, a, e, c,b, c,b,b〉 the projected transaction is 〈b, c,b,b〉.

The concept of a prefix-projected database can be used to recompute the
frequency of all symbols in the projected database. If a symbol is present but
not frequent in the projected database, one can avoid searching over it. This is
known to speed up specialised mining algorithms considerably [6,17].

To achieve this in the above model, we need to adapt the global propaga-
tor so that it exports the symbols that still appear after pose. We introduce an
auxiliary integer variable Xi for every transaction Ti, whose domain represents
these symbols (the set of symbols is monotonically decreasing). To avoid search-
ing over infrequent symbols, we define a custom search routine (brancher) over
the S variables. It first computes the local frequencies of all symbols based on
the domains of the Xi variables; symbols that are locally infrequent will not not
be branched over. See Appendix in extended version [12] for more details.

4.2 Constraints

This formulation supports a variety of constraints, namely on the pattern (type
1), on the cover set (type 2) and over the solution set (type 4). For example, the
type 1 constraint min-size, constrains the size of the pattern to be larger than
a user-defined threshold α. This constraint can be formalised as follows.

k∑

j=1

[Sj �= ε] ≥ α (6)

Minimum frequency in Equation (5) is an example of a constraint of type 2,
over the cover set. Another example is the discriminative constraint mentioned
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in Section 2.2: given two datasets D1 and D2, one can require that the ratio
between the cover in the two datasets is larger than a user defined threshold α:
|cover(S,D1)|
|cover(S,D2)| ≥ α. Let D = D1∪D2 and let t1 = {i|Ti ∈ D1} and t2 = {i|Ti ∈ D2}
then we can extract the discriminant patterns from D by applying the following
constraint. ∑

i∈t1
Ci

∑
i∈t2

Ci
≥ α (7)

Such a constraint can also be used as an optimisation criterion in a CP frame-
work.

Type 4 constraints a.k.a. preference relations have been proposed in [11] to
formalise well-known pattern mining settings such as maximal or closed pat-
terns. Such preference relations can be enforced dynamically during search for
any CP formulation [11]. The preference relation for closed is S′ � S ⇐⇒ S �
S′ ∧ cover(S,D) = cover(S′,D) and one can reuse the global reified exists-
embedding constraint for this.

Finally, type 3 constraints over the inclusion relation are not possible in
this model. Indeed, a new global constraint would have to be created for every
possible (combination of) type 3 constraints. For example for max-gap, one
would have to modify Algorithm 1 to check whether the gap is smaller than the
threshold, and if not, to search for an alternative embedding instead (thereby
changing the complexity of the algorithm).

5 Decomposition with Explicit Embedding Variables

In the previous model, we used a global constraint to assign the Ci variables
to their appropriate value, that is: Ci ↔ ∃e s.t. S �e Ti. The global constraint
efficiently tests the existence of one embedding, but does not expose the value
of this embedding, thus it is impossible to express constraints over embeddings
such as the max-gap constraint.

To address this limitation, we extend the previous model with a set of embed-
ding variables Ei1, . . . ,Ei|Ti| that will represent an embedding e = (e1, . . . , e|Ti|)
of sequence S in transaction Ti. In case there is no possible match for a character
Si in Ti, the corresponding Eij variable will be assigned a no-match value.

5.1 Variables and Constraints

Embedding Variables. For each transaction Ti of length |Ti|, we introduce
integer variables Ei1, . . . ,Ei|Ti|. Each variable Eij is an index in Ti, and an
assignment to Eij maps the variable Sj to a position in Ti; see Figure 2, the value
of the index is materialized by the red arrows. The domain of Eij is initialized
to all possible positions of Ti, namely 1, . . . , |Ti| plus a no-match entry which we
represent by the value |Ti| + 1.
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S :

A

p=1

B

p=2

ε

p=3

ε

p=4

1C1 : T1 : A C B E1 : 1

j=1

3

j=2

4

j=3

4

j=4

0C2 : T2 : B A A C E2 : 2 5 5 5

Fig. 2. Example assignment; blue boxes represent variables, white boxes represent data.
The cursive values in E1 and E2 represent the no-match value for that transaction.

The position-match constraint. This constraint ensures that the variables
Ei either represent an embedding e such that S �e Ti or otherwise at least one
Eij has the no-match value. Hence, each variable Eij is assigned the value x only
if the character in Si is equal to the character at position x in Ti. In addition,
the constraint also ensures that the values between two consecutive variables
Eij,Ei(j+1) are increasing so that the order of the characters in the sequence
is preserved in the transaction. If there exist no possible match satisfying these
constraints, the no-match value is assigned.

∀i ∈ 1, . . . , n,∀j ∈ 1, . . . , m : (Sj = Ti[Eij]) ∨ (Eij = n + 1) (8)
∀i ∈ 1, . . . , n,∀j ∈ 2, . . . , m : (Ei(j−1) < Eij) ∨ (Eij = n + 1) (9)

Here Sj = Ti[Eij] means that the symbol of Sj equals the symbol at index
Eij in transaction Ti. See Appendix in [12] for an effective reformulation of these
constraints.

Is-embedding constraint. Finally, this constraint ensures that a variable Ci

is true if the embedding variables Ei1, . . . ,Ei|Ti| together form a valid embedding
of sequence S in transaction Ti. More precisely: if each character Sj �= ε is
mapped to a position in the transaction that is different from the no-match value.

∀i ∈ 1, . . . , n : Ci ↔ ∀j ∈ 1, . . . , |Ti| : (Sj �= ε) → (Eij �= |Ti| + 1) (10)

Note that depending on how the Eij variables will be searched over, the above
constraints are or are not equivalent to enforcing Ci ↔ ∃e s.t. S �e Ti. This is
explained in the following section.

5.2 Search Strategies for Checking the Existence of Embeddings

CP’s standard enumerative search would search for all satisfying assignments
to the Sj,Ci and Eij variables. As for each sequence of size m, the number of
embeddings in a transaction of size n can be O(nm), such a search would not
perform well. Instead, we only need to search whether one embedding exists for
each transaction.
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With Additional Constraints on Eij But not Ci. When there are addi-
tional constraints on the Eij variables such as max-gap, one has to perform
backtracking search to find a valid embedding. We do this after the S variables
have been assigned.

We call the search over the S variables the normal search, and the search
over the Eij variables the sub search. Observe that one can do the sub search
for each transaction i independently of the other transactions as the different
Ei have no influence on each other, only on Ci. Hence, one does not need to
backtrack across different sub searchers.

The goal of a sub search for transaction i is to find a valid embedding for that
transaction. Hence, that sub search should search for an assignment to the Eij

variables with Ci set to true first. If a valid assignment is found, an embedding
for Ti exists and the sub search can stop. If no assignment is found, Ci is set to
false and the sub search can stop too. See Appendix in [12] for more details on
the sub search implementation.

With Arbitrary Constraints. The constraint formulation in Equation (10)
is not equivalent to Ci ↔ ∃e s.t. S �e Ti. For example, lets say some arbitrary
constraint propagates Ci to false. For the latter constraint, this would mean that
it will enforce that S is such that there does not exists an embedding of it in
Ti. In contrast, the constraint in Equation (10) will propagate some Eij to the
no-match value, even if there exists a valid match for the respective Sj in Ti!

To avoid an Eij being set to the no-match value because of an assignment to
Ci, we can replace Equation (10) by the half-reified ∀i : Ci → (∀j (Sj �= ε) →
(Eij �= |Ti| + 1) ) during normal search.

The sub search then has to search for a valid embedding, even if Ci is set to
false by some other constraint. One can do this in the sub search of a specific
transaction i by replacing the respective half-reified constraint by the constraint
C′

i ↔ (∀j (Sj �= ε) → (Eij �= |Ti| + 1) ) over a new variable C′
i that is local to

this sub search. The sub search can then proceed as described above, by setting
C′

i to true and searching for a valid assignment to Ei. Consistency between C′
i

and the original Ci must only be checked after the sub search for transaction i
is finished. This guarantees that for any solution found, if Ci is false and so is
C′

i then indeed, there exists no embedding of S in Ti.

5.3 Projected Frequency

Each Eij variable represents the positions in Ti that Sj can still take. This is
more general than the projected transaction, as it also applies when the previous
symbol in the sequence Sj−1 is not assigned yet. Thus, we can also use the Eij

variables to require that every symbol of Sj must be frequent in the (generalised)
projected database. This is achieved as follows.

∀j ∈ 1 . . . n,∀x ∈ Σ,Sj = x → |{i : Ci ∧ Ti[Eij] = x}| ≥ θ (11)

See Appendix in [12] for a more effective reformulation.
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5.4 Constraints

All constraints from Section 4.2 are supported in this model too. Additionally,
constraints over the inclusion relations are also supported; for example, max-gap
and max-span. Recall from Section 2.2 that for an embedding e = (e1, . . . , ek),
we have max-gapi(e) ⇔ ∀j ∈ 2 . . . |Ti|, (ej − ej−1 − 1) ≤ γ. One can constrain
all the embeddings to satisfy the max-gap constraint as follows (note how x is
smaller than the no-match value |Ti| + 1):

∀i ∈ 1 . . . n,∀j ∈ 2 . . . |Ti|, x ∈ 1 . . . |Ti| : Eij = x → x − Ei(j−1) ≤ γ + 1 (12)

Max-span was formalized as max-spani(e) ⇔ e|Ti| − e1 + 1 ≤ γ and can be
formulated as a constraint as follows:

∀i ∈ 1 . . . n,∀j ∈ 2 . . . |Ti|, x ∈ 1 . . . |Ti| : Eij = x → x − Ei1 ≤ γ − 1 (13)

In practice, we implemented a simple difference-except-no-match constraint that
achieves the same without having to post a constraint for each x separately.

6 Experiments

The goal of these experiments is to answer the four following questions: Q1:
What is the overhead of exposing the embedding variables in the decomposed
model? Q2: What is the impact of using projected frequency in our models?
Q3: What is the impact of adding constraints on runtime and on number of
results? Q4: How does our approach compares to existing methods?

Algorithm and execution environment: All the models described in this paper
have been implemented in the Gecode solver1. We compare our global and
decomposed models (Section 4 and Section 5) to the state-of-the-art algorithms
cSpade [20] and PrefixSpan [6]. We use the author’s cSpade implementation2 and
a publicly available PrefixSpan implementation by Y. Tabei3. We also compare
our models to the CP-based approach proposed by [10]. No implementation of
this is available so we reimplemented it in Gecode. Gecode does not support non-
deterministic automata so we use a more compact DFA encoding that requires
only O(n ∗ |Σ|) transitions, by constructing it back-to-front. We call this app-
roach regular-dfa. Unlike the non-deterministic version, this does not allow the
addition of constraints of type 3 such as max-gap.

All algorithms were run on a Linux PC with 16 GB of memory. Algorithm
runs taking more than 1 hour or more than 75% of the RAM were terminated.
The implementation and the datasets used for the experiments are available
online4.
1 http://www.gecode.org
2 http://www.cs.rpi.edu/∼zaki/www-new/pmwiki.php/Software/
3 https://code.google.com/p/prefixspan/
4 https://dtai.cs.kuleuven.be/CP4IM/cpsm

http://www.gecode.org
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/
https://code.google.com/p/prefixspan/
https://dtai.cs.kuleuven.be/CP4IM/cpsm
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Table 1. Dataset characteristics. Respectively: dataset name, number of distinct sym-
bols, number of transactions, total number of symbols in the dataset, maximum trans-
action length, average transaction length, and density calculated by ||D||

|Σ|×|D| .

dataset |Σ| |D| ||D|| max
T∈D

|T | avg |T | density

Unix user 265 484 10935 1256 22.59 0.085

JMLR 3847 788 75646 231 96.00 0.025

iPRG 21 7573 98163 13 12.96 0.617

FIFA 20450 2990 741092 100 36.239 0.012

Datasets: The datasets used are from real data and have been chosen to represent
a variety of application domains. In Unix user5, each transaction is a series
of shell commands executed by a user during one session. We report results
on User 3; results are similar for the other users. JMLR is a natural language
processing dataset; each transaction is an abstract of a paper from the Journal of
Machine Learning Research. iPRG is a proteomics dataset from the application
described in [4]; each transaction is a sequence of peptides that is known to
cleave in presence of a Trypsin enzyme. FIFA is click stream dataset6 from logs
of the website of the FIFA world cup in 98; each transaction is a sequence of
webpages visited by a user during a single session. Detailed characteristics of the
datasets are given in Table 1. Remark that the characteristic of these datasets
are very diverse due to their different origins.

In our experiments, we vary the minimum frequency threshold (minsup).
Lower values for minsup result in larger solution sets, thus in larger execution
times.

Experiments: First we compare the global and the decomposed models. The exe-
cution times for these models are shown on Fig. 3, both without and with pro-
jected frequency (indicated by -p.f.). We first look at the impact of exposing
the embedding variables in the decomposed model (Q1). Perhaps unsurprisingly,
the global model is up to one order of magnitude faster than the decomposed
model, which has O(n∗k) extra variables. This is the overhead required to allow
one to add constraints over the inclusion relation. We also study the impact of
the projected frequency on both models (Q2). In the global model this is done
as part of the search, while in the decomposed model this is achieved with an
elaborate constraint formulation. For global-p.f. we always observe a speedup in
Fig. 3. Not so for decomposed-p.f. for the two largest (in terms of ||D||) datasets.

We now evaluate the impact of user constraints on the number of results
and on the execution time (Q3). Fig. 4 shows the number of patterns and the
execution times for various combinations of constraints. We can see that adding
constraints enables users to control the explosion of the number of patterns, and
that the execution times decrease accordingly. The constraint propagation allows
early pruning of invalid solutions which effectively compensates the computation
5 https://archive.ics.uci.edu/ml/datasets/
6 http://www.philippe-fournier-viger.com/spmf/

https://archive.ics.uci.edu/ml/datasets/
http://www.philippe-fournier-viger.com/spmf/
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Fig. 3. Global model vs. decomposed model: Execution times (Timeout 1 hour.)

Fig. 4. Number of patterns (top) and execution times (bottom) for the decomposed
model with various combinations of constraints

time of checking the constraints. For example, on the Unix user dataset, it is not
feasible to mine for patterns at 5% minimum frequency without constraints, let
alone do something with the millions of patterns found. On the other hand, by
adding constraints one can look for interesting patterns at low frequency without
being overwhelmed by the number of results (see also later).

The last experiment compares our models to existing algorithms. Fig. 5 shows
the execution times for our global model compared with regular-dfa, PrefixSpan
and cSpade (Q4). First, we can observe that regular-dfa is always slowest. On
iPRG it performs reasonably well, but the number of transitions in the DFAs
does not permit it to perform well on datasets with a large alphabet or large
transactions, such as Unix user, JMLR or FIFA. Furthermore, it can not make
use of projected frequencies.
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Fig. 5. Global model vs. other approaches. Execution times. (Timeout 1 hour.)

global shows similar, but much faster, behaviour than regular-dfa. On datasets
with many symbols such as JMLR and FIFA, we can see that not using projected
frequency is a serious drawback; indeed, global-p.f. performs much better than
global there.

Of the specialised algorithms, cSpade performs better than PrefixSpan; it is
the most advanced algorithm and is the fastest in all experiments (not counting
the highest frequency thresholds). global-p.f. has taken inspiration from PrefixS-
pan and we can see that they indeed behave similarly. Although, for the dense
iPRG dataset PrefixSpan performs better than global-p.f. and inversely for the
large and sparse FIFA dataset. This might be due to implementation choices in
the CP solver and PrefixSpan software.

Analysis of the pattern quality. Finally, we use our constraint-based framework
to perform exploratory analysis of the Unix user datasets. Table 2 shows different
settings we tried and patterns we found interesting. Few constraints lead to too
many patterns while more constrained settings lead to fewer and more interesting
patterns.

7 Related Work

The idea of mining patterns in sequences dates from earlier work by Agrawal
et al. [1] shortly after their well-known work on frequent itemset mining [2]. The

Table 2. Patterns with various settings (User 2): F1: minfreq = 5%, F2: F1 ∧
min-size = 3, F3: F2 ∧ max-gap = 2 ∧ max-span = 5, D1: minfreq = 5% ∧
discriminant = 8 (w.r.t. all other users), D2: minfreq = 0.4% ∧ discriminant =
8 ∧ member(quota)

setting # of patterns interesting pattern comment

F1 627 - Too many patterns

F2 512 - Long sequences of cd and ls

F3 36 〈latex, bibtex, latex〉 User2 is using Latex to write a paper

D1 7 〈emacs〉 User2 uses Emacs, his/her collaborators use vi

D2 9 〈quota, rm, ls, quota〉 User is out of disc quota
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problem introduced in [1] consisted of finding frequent sequences of itemsets;
that is: sequences of sets included in a database of sequences of sets. Mining
sequences of individual symbols was introduced later by [9]; the two problems
are closely related and one can adapt one to the other [17]. Sequence mining was
driven by the application of market basket analysis for customer data spread
over multiple days. Other applications include bio-medical ones where a large
number of DNA and protein sequence datasets are available (e.g. [19]), or nat-
ural language processing where sentences can be represented as sequences of
words (e.g. [16]).

Several specialised algorithm have addressed the problem of constrained
sequence mining. The cSpade algorithm [20] for example is an extension of the
Spade sequence mining algorithm [21] that supports constraints of type 1, 2
and 3. PrefixSpan [6] mentions regular expression constraints too. The LCM-
seq algorithm [14] also supports a range of constraints, but does not consider
all embeddings during search. Other sequence mining algorithms have often
focussed on constraints of type 4, and on closed sequence mining in particu-
lar. CloSpan [18] and Bide [17] are both extentions of PrefixSpan to mine closed
frequent sequences. We could do the same in our CP approach by adding con-
straints after each solution found, following [8,11].

Different flavors of sequence mining have been studied in the context of a
generic framework, and constraint programming in particular. They all study
constraints of type 1, 2 and 4. In [3] the setting of sequence patterns with explicit
wildcards in a single sequence is studied: such a pattern has a linear number of
embeddings. As only a single sequence is considered, frequency is defined as
the number of embeddings in that sequence, leading to a similar encoding to
itemsets. This is extended in [7] to sequences of itemsets (with explicit wildcards
over a single sequence). [8] also studies patterns with explicit wildcards, but in a
database of sequences. Finally, [10] considers standard sequences in a database,
just like this paper; they also support constraints of type 3. The main difference
is in the use of a costly encoding of the inclusion relation using non-deterministic
automata and the inherent inability to use projected frequency.

8 Conclusion and Discussion

We have investigated a generic framework for sequence mining, based on con-
straint programming. The difficulty, compared to itemsets and sequences with
explicit wildcards, is that the number of embeddings can be huge, while knowing
that one embedding exists is sufficient.

We proposed two models for the sequence mining problem: one in which the
exists-embedding relation is captured in a global constraint. The benefit is that
the complexity of dealing with the existential check is hidden in the constraint.
The downside is that modifying the inclusion relation requires modifying the
global constraint; it is hence not generic towards such constraints. We were
able to use the same projected frequency technique as well-studied algorithms
such as PrefixSpan [6], by altering the global exists-embedding constraint and
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using a specialised search strategy. Doing this does amount to implementing
specific propagators and search strategies into a CP solver, making the problem
formulation not applicable to other solvers out-of-the-box. On the other hand,
it allows for significant efficiency gains.

The second model exposes the actual embedding through variables, allowing
for more constraints and making it as generic as can be. However, it has extra
overhead and requires a custom two-phased search strategy.

Our observations are not just limited to sequence mining. Other pattern min-
ing tasks such as tree or graph mining also have multiple (and many) embed-
dings, hence they will also face the same issues with a reified exists relation.
Whether a general framework exists for all such pattern mining problems is an
open question.
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{gilles.pesant,greg.rix,louis-martin.rousseau}@polymtl.ca

Abstract. The Business-to-Business Meeting Scheduling Problem was
recently introduced to this community. It consists of scheduling meetings
between given pairs of participants to an event while taking into account
participant availability and accommodation capacity. The challenging
aspect of this problem is that breaks in a participant’s schedule should
be avoided as much as possible. In an earlier paper, starting from two
generic CP and Pseudo-Boolean formulations, several solving approaches
such as CP, ILP, SMT, and lazy clause generation were compared on real-
life instances. In this paper we use this challenging problem to study
different formulations adapted either for MIP or CP solving, showing
that the cost regular global constraint can be quite useful, both in
MIP and CP, in capturing the problem structure.

1 Introduction

Business-to-business events consist of scheduling meetings between pairs of par-
ticipants with similar interests. The business-to-business scheduling optimization
problem (B2BSOP) was formally introduced in [2], with application to the 4th
Forum of the Scientific and Technological Park of the University of Girona1.
Several constraints must be respected including participant availability by time,
accommodation capacity, and fairness constraints between participants. The
challenging aspect of this problem is that breaks in a participant’s schedule
should be avoided as much as possible. The objective is therefore to minimize
the number of breaks assigned to participants, cumulatively over all participants.

The authors of [2] mentioned that solving this problem allowed the organizers
to significantly improve their efficiency, in particular because the models were
able to handle side constraints, such as fairness, and extend partly fixed sched-
ules. Adopting a “model-and-solve” approach with two fairly straightforward
models but state-of-the-art solvers using different combinatorial optimization
1 http://www.forumparcudg.com

c© Springer International Publishing Switzerland 2015
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methods, they wondered whether more dedicated SAT or MIP models would
perform better. Additionally their CP model did not make use of global con-
straints, which are known to play an important role in the success of CP solvers.
These motivated us to look more closely at the B2BSOP in a attempt to capture
its underlying structure and to better exploit it in MIP and CP approaches.

In this paper we thus derive and compare empirically several MIP and
CP formulations of the problem. Our main observation is that the use of the
cost regular constraint is powerful in capturing the structure of the problem,
producing stronger lower bounds than simpler MIP formulations, scaling better
to larger instances by finding better feasible solutions, and providing a more
effective cost-aware branching heuristic for CP.

The remainder of this paper is organized as follows. Section 2 recalls the
definition of the B2BSOP. Section 3 focuses on the CP approach, presenting the
models, computational results and comparisons. Section 4 presents, evaluates
and compares four MIP models. Section 5 then discusses the overall results with
respect to previously published methodologies.

2 Problem Definition, Instance Description, and
Experimental Setting

Let P be the set of participants, M the set of meetings between pairs of partici-
pants, Mp ⊆ M the set of meetings involving participant p, L the set of locations
for meetings, and T the set of time slots. The problem is to assign the meetings
in M to time slots in T and locations in L so that no participant is in more
than one meeting at a time and at most |L| meetings are held at any time. A
participant’s schedule can then be seen as a vector of length T in which each
element is either a meeting in Mp (each appearing only once), or a free period
(“0”). We refer to a sequence of 0s that occurs between two meetings as a break.

A few other constraints must hold. The set of meetings Mp for participant
p can be refined into meetings Mam

p that can only be held in the morning and
meetings Mpm

p that can only be held in the afternoon. These two sets typically
have meetings in common, as some meetings are unrestricted. T am and T pm

respectively represent the morning and afternoon time slots. We also define Fp ⊂
T representing the forbidden time slots for p. We can derive Tm ⊆ T , the set of
allowed time slots for meeting m, which takes into account the forbidden time
slots of both participants as well as any morning or afternoon requirements of
meeting m.

The above defines a feasibility problem for B2B scheduling that could be
modeled and solved simply as a graph colouring problem. However an impor-
tant aspect of the problem is to minimize the number of breaks assigned to all
participants cumulatively; this is added as an objective function. Additionally,
a schedule must be observed to be fair from the point of view of any partici-
pant: too many breaks in an individual schedule relative to another participant
is viewed as unfair; we define bmax to be the maximum deviation in the number
of breaks between any two participants.
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Table 1. Features of the B2BSOP instances from [2]

feature T2a T2c T3a T3b T3c F3a F3b F3c F4a

#meetings 125 125 180 184 180 154 195 154 302
#participants 42 42 47 46 47 70 76 70 78
#locations 21 16 21 21 19 14 14 12 22
#time slots 8 8 10 10 10 21 21 21 22
#am slots 0 0 0 0 0 13 13 13 12

Table 1 lists the main features of the instances from [2]. There are two sets
T� and F�, each originating from an actual event with a mix of real and syn-
thetic instances. The first set has fewer participants, fewer time slots, no meeting
restricted to morning or afternoon slots, and no forbidden time slots for partic-
ipants. The second set is richer and more difficult to solve.

The MIP and CP models were executed on Dual core AMD 2.1 GHz proces-
sors with 8 GB of RAM, running IBM ILOG Solver 6.7 as the CP solver and
Gurobi 6.0 as the MIP solver. As in [2] we used a 2-hour time limit.

3 CP Models

A natural CP model defines variables {spt : p ∈ P, t ∈ T} to represent what
participant p is scheduled to do at time t, value 0 corresponding to no meeting.
An alternative model could have defined one variable per meeting with the set
of allowed time slots for its domain, as proposed in [2]. However such a repre-
sentation does not allow us to express constraints directly on the sequence of
meetings for a participant, which is important to evaluate the cost of an individ-
ual schedule and ultimately the objective we seek to minimize: the latter authors
had to define auxilliary variables similar to ours and channel them to their main
variables.

Here is our model for the feasibility subproblem:

gcc({sp�}, 〈|T | − |Mp|, 1, . . . , 1〉) p ∈ P (1)
gcc({s�t}, 〈{|P | − 2|L|, . . . , |P |}, {0, 2}, . . . , {0, 2}〉) t ∈ T (2)

spt = 0 p ∈ P, t ∈ Fp (3)
spt ∈ Mam

p ∪ {0} p ∈ P, t ∈ T am (4)
spt ∈ Mpm

p ∪ {0} p ∈ P, t ∈ T pm (5)

Constraints (1) use a global cardinality constraint [8] on the decision variables
of a given participant to ensure that each of his meetings appears once (the first
component of the vector of occurrences, corresponding to value 0, indicates the
number of time slots without a meeting). Constraints (2) use a global cardinality
constraint on the decision variables of a given time slot to express two things:
the first component says that the number of participants not having a meeting
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Fig. 1. Automaton A1 for a participant with three meetings. Arc label “m” stands for
any meeting and label “0” for no meeting. Only the red dashed arcs carry a cost, of
one unit, to mark the start of a break.

must be at least |P | − 2|L| because we can hold at most |L| meetings and each
meeting appears twice (once for each participant); the other components, for
each meeting, say that the two participants to a given meeting must attend it in
the same time slot and therefore a meeting occurs twice or not at all. Constraints
(3) ensure that there is no meeting scheduled for a participant during one of his
forbidden time slots.

3.1 Modeling Break Patterns

We now model the optimization component of our problem. We define a variable
bp for each participant p giving the number of breaks in his schedule and seek
to minimize the total number of breaks in the schedule. In order to link the bp

variables to the main spt variables we need to consider the sequence of values
taken by the decision variables of a participant: each subsequence of zeros in
between scheduled meetings for p corresponds to a break and bp represents how
many such breaks there are in the sequence. For example, patterns 0��00�00
and �000�0�0 for eight time slots and three meetings feature respectively one
and two breaks.

To express this globally we could enumerate each possible pattern, associate
its number of breaks and use a table constraint. For given T , Mp, and maximum
number of breaks b� this makes

b�
∑

i=0

(|Mp| − 1
i

)

·
(|T | − |Mp| + 1

i + 1

)

patterns. Even if we restrict ourselves to at most b� = 2 breaks, the number
of patterns is in Θ(|Mp|2(|T | − |Mp|)3) which, when the number of meetings
is about half of the number of time slots, simplifies to Θ(|Mp|5). Considering
that the largest instance has 22 time slots with some participants holding 11
meetings, we could end up generating hundreds of thousands of patterns.

A much more compact way to express this uses an automaton on 2|Mp| states
that recognizes precisely these patterns. Figure 1 presents such an automaton
for a participant with three meetings. Observe however that by concentrating on
patterns without distinguishing between meetings we may miss some inferences.
For example any assignment from the sequence of domains 〈{m1,m2,m3, 0},
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{m1,m2,m3, 0}, {m4, 0}, {m4, 0}, {m1,m2,m3, 0}, {m1,m2,m3, 0}〉 correspond-
ing to four meetings being scheduled over six time slots will necessarily introduce
at least one break but such an automaton will not recognize it. To catch this, a
more fine-grain automaton distinguishing between meetings will have 2|Mp|+1−2
states essentially representing all subsets of meetings (see Figure 2). Because this
automaton has significantly more states we will refrain from using it when the
number of meetings is greater than a certain threshold mmax. Here is the rest of
our model:

min
∑

p∈P

bp s.t. (6)

bp − min
p′∈P

bp′ ≤ bmax p ∈ P (7)

bp = 0 p ∈ P : |Mp| ∈ {0, 1, |T |} (8)
cost regular(〈sp�〉,A2, bp) p ∈ P : 1 < |Mp| ≤ mmax (9)
cost regular(〈sp�〉,A1, bp) p ∈ P : mmax < |Mp| < |T | (10)

bp ∈ N p ∈ P (11)

As in [2] we ensure some fairness between individual schedules by requiring
that the number of breaks among individual schedules differ by at most bmax = 2
(see Constraints (7)). Constraints (8) fix bp to zero for participants who trivially
have no break in their schedule (e.g. they have a single meeting or as many
meetings as there are time slots). Note that because in every instance considered
there are always such participants, individual schedules will feature at most two
breaks. The cost regular constraint (10) on automaton A1 maintains a layered
digraph on 2|Mp|(|T |+1) vertices and makes variable bp equal to the sum of the
costs of the arcs on the path corresponding to the values taken by the sequence of
variables 〈sp�〉 [4]. The upper bound on bp limits the feasible paths in the digraph
and possibly removes arcs (i.e. filters values in a domain) that do not belong to
any feasible path. Conversely the smallest cost of the possible paths given the
current domains of the variables provides a lower bound on bp. Constraints (9)
work similarly but on the larger automaton A2.

3.2 Branching Heuristics

For the most part, CP branching heuristics are feasibility-driven: an optimization
problem is solved as a succession of feasibility problems from which each new
improved solution provides a tighter bound on the objective value, formulated
as a constraint that is added to the model. A generic heuristic such as max regret
[1] does take into account the objective but it is only effective if the cost of a
solution can be decomposed at the level of individual variable assignments. For
the B2BSOP one needs to consider neighbouring assignments in the sequence or
even the whole sequence in order to assess the impact of a particular variable-
value assignment on the number of breaks. To make matters worse the objective
is a sum, reputed to back propagate poorly.
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Fig. 2. Automaton A2 for a participant with three meetings. Arc label “mi” stands for
that particular meeting and label “0” for no meeting. Only the red dashed arcs carry
a cost, of one unit, to mark the start of a break.

Table 2. Number of breaks in best solution found within the time limit using different
heuristics branching on spt variables for chronological backtrack search on the same
CP model. For reference we add the performance reported in [2] for the CP solver they
used (Gecode), albeit on a different model.

heuristic T2a T2c T3a T3b T3c F3a F3b F3c F4a

dom 1 1 27 13 31 64 – – 81
IBS 0 6 0 0 19 72 – 68 100
maxSD 10 7 – 5 – – – – –
maxSD� 0 0 3 0 – 1 – 13 23

Gecode [2] 0 – 0 0 – – – – –

Table 2 reports the performance of a few standard generic branching heuris-
tics on the spt variables of our CP model. Smallest-domain-first (dom), impact-
based search (IBS)[7], and counting-based search (maxSD)[6] perform poorly, as
expected, since they are not driven at all by the objective. Some of the smaller
instances are solved well by IBS but generally the solutions obtained are quite
far from the optimal or best-known solutions and for some instances we get no
solution at all within the time limit. This is consistent with the observations
of Bofill et al. [2] albeit on a different CP model and running a different CP
solver: we report their findings on the last line of the table. We also investi-
gated branching on the bp variables and trying lower values first, which did help
generate somewhat better-quality solutions but not competitive with what we
describe below.

Heuristic maxSD, previously shown to be very effective on feasibility problems
[6], performs particularly poorly on this optimization problem. It branches on the
variable-value pair that has the highest solution density, which is the proportion of
solutions to an individual constraint that feature this given assignment. Because
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Table 3. Number of breaks in best solution found within the time limit using different
heuristics branching on spt variables for limited-discrepancy search on the same CP
model

heuristic T2a T2c T3a T3b T3c F3a F3b F3c F4a

dom 0 0 0 0 8 35 73 61 80
IBS 0 0 1 0 15 72 – 76 123
maxSD 0 0 11 0 – – – – –
maxSD� 0 0 0 0 11 0 23 9 25

it does not discriminate between these solutions in terms of their quality with
respect to the objective, such information can be misleading. We experimented
with a cost-aware version of this approach: instead of considering solutions of any
quality, we compute solution densities among the solutions of lowest cost, thereby
integrating optimization into our branching recommendation. For the B2BSOP
we retrieve solution densities from the cost regular constraints, the combinato-
rial substructure from which the cost (i.e. the number of breaks) associated with
individual participants can be computed. Instead of considering all paths in the
layered digraph maintained by the constraint, we only consider shortest paths. We
branch on the largest cost-aware solution density for scheduling a meeting (values
in M). We denote that generic heuristic as maxSD� in Table 2. As anticipated it
performs much better than the others, producing higher-quality solutions, though
not producing any solution in two instances.

It is well known for backtrack search that regardless of a branching heuristic’s
quality, chronological backtracking may take a very long time to undo a bad
branching decision made early on. There are a few devices commonly used to
add robustness to heuristics, e.g. randomized restarts and limited-discrepancy
search (LDS) [5]. The latter modifies the order in which the leaves of a search
tree are visited according to how often the corresponding path deviates from
the search heuristic’s recommendation: first the leaf with 0 deviation, then those
with 1k deviations, followed by those with 2k deviations, and so forth, for a
given parameter k. This has the effect of more quickly changing decisions close
to the root. We add LDS to our branching heuristics (see Table 3). We note
a general improvement of solution quality and of robustness, and maxSD� now
finds good-quality solutions to every instance.

The mmax threshold, determining when a participant has too many meetings
to use the increased-inference but also increased-time-and-space-consumption
fine-grain automaton A2, has an impact on solution quality. Table 4 reports
our findings for a few values of that threshold. The first line shows that never
using that automaton produces lower-quality solutions for the larger instances.
Otherwise a moderate threshold of 5 already makes a difference and the approach
does not appear too sensitive to the actual value of the threshold. In our other
experiments we used mmax = 10.
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Table 4. Number of breaks in best solution found within the time limit using different
mmax thresholds to select which automaton to use in each cost regular constraint.
The maxSD� branching heuristic is used together with LDS.

mmax T2a T2c T3a T3b T3c F3a F3b F3c F4a

0 0 0 0 0 11 7 24 12 27
5 0 0 0 0 11 0 22 10 26

10 0 0 0 0 11 0 23 9 25
12 0 0 0 0 11 0 21 10 25

Table 5. Applying Large Neighbourhood Search on the CP model for the six instances
without a proof of optimality after one minute of CP backtrack search

approach T3a T3c F3a F3b F3c F4a

maxSD� 0 11 0 23 9 25
LNS with maxSD� (avg of 10 runs) 0 4.2 2.4 16.8 3.8 17.1
LNS with maxSD� (best of 10 runs) 0 4 0 13 3 13

3.3 Applying Large Neighbourhood Search to the CP Model

Local search is often the method of choice to solve large combinatorial optimiza-
tion problems. Large Neighbourhood Search (LNS) is a natural way to perform
local search on a solution space defined by a CP model [9]: it iteratively freezes
part of the current solution and explores the remaining solution space (a poten-
tially large neighbourhood) by applying a (usually incomplete) CP tree search,
benefiting from the usual inference and search heuristics.

We evaluated a simple implementation of this idea: we run our exact CP
algorithm for one minute in order to get a fair initial solution and then itera-
tively freeze the schedule of a randomly-selected subset of the participants whose
schedule does not contain any break (but we disregard participants who trivially
cannot have any break). We explore each neighbourhood with the same exact
CP algorithm, stopping at the first improving solution or until 20 seconds have
passed. We use the same overall time limit as before.

Table 5 reports the performance of our LNS with respect to our previous CP
backtrack search. Since that approach is not deterministic, we give the average
and the best objective value out of ten runs. We see a significant improvement
of the solutions (except on F3a for which an optimal solution was not obtained
consistently). In particular an optimal solution to T3c (see Section 4) is finally
found and we also obtain our best overall solution for F4a.

4 MIP Models

We compare four mathematical formulations that exactly solve the B2BSOP.
Each formulation contains a common subset of binary variables that fix a meet-
ing to a particular time slot, and a common subset of constraints that enforce a
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feasible schedule without consideration of the objective value of break minimiza-
tion. The difference in the formulations is with respect to the added variables
and constraints that cumulate this objective value, as well as use the objective
function to enforce fairness constraints on the resulting schedule.

The first formulation uses a set of binary variables that determine if a time
slot is the terminating time slot of a break period before a participant begins a
meeting. These variables are linked to the feasibility problem through a series of
linearized logical constraints. The logical constraints to be linearized are those
derived in the pseudoboolean model of [2]. The second formulation defines a net-
work flow problem for each participant, with the flow representing the journey
of the participant between breaks and meetings. The final two formulations are
derived using the cost regular constraint, with two unique deterministic finite
automatons (DFAs) that cumulate the cost of a schedule for each participant.
The first DFA is the previously defined automaton A1, whereas the second addi-
tionally enforces the fairness constraints. However, this final automaton requires
a fixed maximum on the number of breaks in a schedule. As mentioned in Section
3.1, all considered instances contain participants who must have 0 breaks; hence
the maximum number of breaks is equivalent to the maximum deviation bmax.
Hence this formulation is applicable in this context and will be used for compar-
ative purposes, but does not solve the B2BSOP as defined in the general sense.
We also note that preliminary experimentation showed that the number of vari-
ables associated with the automaton A2 proved too large to be competitive with
the other formulations.

In order to apply the cost regular constraints to the MIP formulations, we
use the approach of [3]. We first create the layered graph of the cost regular
constraint consistency algorithm. From this layered graph we derive a network
flow formulation, where the source node is the initial state of the DFA, and
the sink node is connected to every final state. The network flow is then easily
translated to a set of linear variables and constraints.

We first give the subproblem present in all considered formulations that
enforces the feasibility of a solution. We let xmt be a binary variable that equals
1 if meeting m is held at time t, and enforce the following constraints.

∑

t∈T

xmt = 1 m ∈ M (12)

∑

m∈Mp

xmt ≤ 1 p ∈ P, t ∈ T (13)

∑

m∈M

xmt ≤ |L| t ∈ T (14)

xmt = 0 m ∈ M, t ∈ T \ Tm (15)

Constraints (12) force each meeting to be held. Constraints (13) force each par-
ticipant to be in at most one meeting at a time. Constraints (14) force the
number of meetings at any time to be at most the number of locations. Con-
straints (15) force each meeting to be held in an allowed time slot. The following
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subsections give the formulation-specific variables and constraints that cumulate
the objective function derived from the schedule of each participant.

4.1 Logical

We define the following variables:

b′ ∈ Z Variable cumulating the minimum number of breaks assigned
to any participant,

ypt ∈ {0, 1} Indicator if participant p has a meeting at time t,
zpt ∈ {0, 1} Equals 1 for time t starting from participant p’s first meeting,
hpt ∈ {0, 1} Indicator if time t terminates an idle period for participant p.

The variables hpt contribute a value of 1 to the objective function. The necessary
constraints linking these variables to the model appear below.

∑

t∈T

ypt = |Mp| p ∈ P (16)

xmt ≤ ypt p ∈ P,m ∈ Mp, t ∈ T (17)
ypt ≤ zpt p ∈ P, t ∈ T (18)

zpt ≤ zp,t+1 p ∈ P, t ∈ T, t ≤ |T | − 1 (19)
yp(t+1) − hpt ≤ ypt + 1 − zpt p ∈ P, t ∈ T (20)

∑

t∈T

hpt ≥ b′ p ∈ P (21)

∑

t∈T

hpt ≤ b′ + bmax p ∈ P (22)

Constraints (16) through (19) link the y and z variables to the formulation.
Constraints (20) then link the h variables to the formulation, forcing a break to
be counted after an idle period. Constraints (21) and (22) are fairness constraints
that limit the difference in the number of breaks per participant. We then define
the problem (P1) as the minimization of the objective function

∑

p∈P

∑

t∈T

hpt

subject to constraints (12) through (15) and (16) through (22).

4.2 Network Flow

We define the space-time network Gp = (Np, Ap) for each participant p, with
node set {source, sink}⋃

(T × {0, 1}). We define vtq to be one such node for
time slot t and binary index q. The index q = 0 corresponds to the participant
on break at time t, and q = 1 corresponds to the participant in a meeting. We
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create an arc from the source to each vt1, from each vt1 to the sink, and from
each vtq to each v(t+1)q′ .

Variables ypt are added to the formulation, with the same definition as in
problem (P1), and constraints (16) and (17) link these variables to the variables
xmt. Additionally, the binary variable fp

a is defined for all arcs in Gp to represent
the source-to-sink flow. This flow is defined by the following constraints.

∑

(source,v)∈Ap

fp
(source,v) = 1 p ∈ P (23)

∑

(v,sink)∈Ap

fp
(v,sink) = 1 p ∈ P (24)

∑

(v,w)∈Ap

fp
(v,w) −

∑

(w,v)∈Ap

fp
(w,v) = 0 p ∈ P, v ∈ T × {0, 1} (25)

fp
(source,vt1)

+ fp
(v(t−1)0,vt1)

+ fp
(v(t−1)1,vt1)

= ypt p ∈ P , t ∈ T (26)
∑

t∈T,t≤|T |−1

fp
(vt1,v(t+1)0)

≥ b′ p ∈ P (27)

∑

t∈T,t≤|T |−1

fp
(vt1,v(t+1)0)

≤ b′ + bmax p ∈ P (28)

Constraints (23) through (25) define a source-to-sink flow of 1 unit, for each par-
ticipant. Constraints (26) link this network flow to the variables ypt. Constraints
(27) and (28) are fairness constraints that limit the difference in the number of
breaks per participant. We then define the problem (P2) as the minimization of
the objective function

∑

p∈P

∑

t∈T,t≤|T |−1

fp
(vt1,v(t+1)0)

subject to constraints (12) through (15), (16), (17), and (23) through (28).

4.3 Cost Regular

We create a MIP cost regular constraint for each participant p ∈ P using
the previously defined automaton A1 as illustrated at Figure 1, which links to
the variables ypt. This constraint ensures that a covering of the meetings Mp

is a word recognized by the DFA, with the objective function measured as the
cost of the word. We then define the problem (P3) as the minimization of the
objective function defined by the set of these cost regular constraints, subject
to constraints (12) through (15), (16), (17), and the cost regular constraints
defined by the DFA A1. We enforce the fairness constraints in an analogous
manner to the previous two models, bounding the appropriate subsets of the
objective function.
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4.4 Cost Regular with Integrated Fairness Constraints

We again define a DFA for each participant p ∈ P . Each state corresponds to
the triple (n,w, h), where parameter w is 1 if the previous activity was a meeting
and 0 otherwise, and parameter h represents the number of breaks taken on the
schedule thus far. The DFA presented in Figure 3 is for a participant with three
meetings and a maximum of one break. All arcs have zero cost, except again
those denoted with a dashed line.
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Fig. 3. Automaton A3 integrating fairness for a participant with three meetings. Arc
label “m” stands for any meeting and label “0” for no meeting. Only the red dashed
arcs carry a cost, of one unit, to mark the start of a break. Notice that there is no
transition labeled “0” out of state “211” because of the limit of one break.

We define the problem (P4) to be the minimization of the derived objec-
tive function, subject to constraints (12) through (15), (16), (17), and the MIP
cost regular constraints defined by the DFAs A3. Note that for the CP app-
roach this augmented automaton is redundant because we already consider fair-
ness in the CP cost regular constraints by restricting the bp variables: paths
in the digraph will already be of length at most bmax.

4.5 Empirical Results

We resolved each of the nine problem instances considered in [2] with each MIP
formulation. This was executed for the parameter bmax set to values of both
2 (as used in [2]) and 1. For each resolution, we give the number of variables
and constraints present in the formulation, the objective value of the root node
linear relaxation, the value of the best found solution by the branch-and-bound,
the branch-and-bound lower bound associated with this best solution, and the
runtime in seconds. The results for bmax values 2 and 1 appear in Tables 6 and
7, respectively. The formulation that yields either the best objective value or the
best runtime is bolded.

All but one formulation are able to solve only the first 6 instances to optimal-
ity, with the remaining 3 instances timing out. The exceptions are (P3) and (P4),
which additionally proved optimality on instance F3c when bmax = 2. Under this
setting, (P3) also finds the best solution to the instance F3b and hence scales
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Table 6. MIP Results with bmax = 2

Model Result T2a T2c T3a T3b T3c F3a F3b F3c F4a

P1 |V | 1967 1967 3164 3175 3164 7575 9231 7575 11715
|C| 3427 3427 5627 5687 5627 12675 15277 12675 21160
Root 0 0 0 0 0 0 3 0 2
Objective 0 0 0 0 4 0 12 6 9
Bound 0 0 0 0 4 0 5 0 2
Time 7.62 15.48 27.04 167.01 303.44 942.61 7200 7200 7200

P2 |V | 2173 2173 4007 3645 4007 13245 14923 13245 17961
|C| 3043 3043 5361 5196 5361 12955 15563 12955 21398
Root 0 0 0 0 2 0 3.0198 0 2
Objective 0 0 0 0 4 0 45 2 16
Bound 0 0 0 0 4 0 5 0 2
Time 14.43 10.04 9.44 156.28 822.97 1545.7 7200 7200 7200

P3 |V | 2225 2225 4503 4013 4503 22507 25952 22507 34408
|C| 3297 3297 6105 5764 6105 20313 23955 20313 33003
Root 0 0 0 0 4 0 3.4317 0 2
Objective 0 0 0 0 4 0 9 1 26
Bound 0 0 0 0 4 0 4 1 2
Time 22.52 0.66 27.24 566.54 37.27 573.12 7200 2930.74 7200

P4 |V | 3419 3419 7017 6204 7017 94027 102023 94027 110778
|C| 4328 4328 8126 7567 8126 84051 91004 84051 97026
Root 0 0 0 0 4 0 3.5125 0 2
Objective 0 0 0 0 4 0 25 1 -
Bound 0 0 0 0 4 0 5 1 2
Time 9.19 7.89 555.38 281.64 24.78 506.25 7200 3225.67 7200

the best with problem size while also being competitive in time to optimality
on the smaller instances. On the other hand, when bmax = 1, formulations (P3)
and (P4) are competitive on the 6 smaller instances, proving optimality in the
shortest runtime in 2 and 4 instances, respectively. However formulation (P4)
is superior to (P3) on all 3 of the more difficult instances, and the best overall
formulation under this parameter setting.

While the formulations derived from the cost regular constraints have the
greatest number of binary variables, they are tighter formulations that scale well
to large problem sizes. Hence they better capture the structure of the B2BSOP.
The root node lower bound, derived from a stronger relaxation and the MIP cuts
applied by Gurobi, is observably stronger on instances T3c and F3b. It would
be interesting to further observe this on data sets without a trivial optimal
lower bound of 0. However, the number of states to be represented in the DFA
A3 increases quickly with the parameter bmax; this correlates with an increased
number of variables in the MIP formulation. Therefore the simpler DFA appears
to be the most appropriate when fairness is less tight.
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Table 7. MIP Results with bmax = 1

Model Result T2a T2c T3a T3b T3c F3a F3b F3c F4a

P1 |V | 1967 1967 3164 3175 3164 7575 9231 7575 11715
|C| 3427 3427 5627 5687 5627 12675 15277 12675 21160
Root 0 0 0 0 0 0 3 0 2
Objective 0 0 0 0 4 0 12 2 30
Bound 0 0 0 0 4 0 3 0 2
Time 1.22 29.07 401.76 193.24 647.63 833.11 7200 7200 7200

P2 |V | 2173 2173 4007 3645 4007 13245 14923 13245 17961
|C| 3043 3043 5361 5196 5361 12955 15563 12955 21398
Root 0 0 0 0 2 0 3.0475 0 2
Objective 0 0 0 0 4 0 - 4 -
Bound 0 0 0 0 4 0 5 0 2
Time 10.77 3.4 289.17 243.64 236.33 2313.79 7200 7200 7200

P3 |V | 2225 2225 4503 4013 4503 22507 25952 22507 34408
|C| 3297 3297 6105 5764 6105 20313 23955 20313 33003
Root 0 0 0 0 4 0 3.5140 0 2
Objective 0 0 0 0 4 0 20 2 -
Bound 0 0 0 0 4 0 5 1 2
Time 1 0.93 469.77 370.42 136.69 1034.5 7200 7200 7200

P4 |V | 3039 3039 5973 5344 5973 68359 74052 68359 80402
|C| 4030 4030 7368 6930 7368 63235 68735 63235 74547
Root 0 0 0 0 4 0 3.6699 0 2
Objective 0 0 0 0 4 0 12 2 28
Bound 0 0 0 0 4 0 5 1 2
Time 1.17 1.92 266.28 3.15 132.14 552.43 7200 7200 7200

5 Discussion

Table 8 summarizes the best results obtained with our MIP, CP, and LNS
approaches, and recalls those of the two best approaches in [2]: SBDD and clasp
are respectively an SMT solver representing the objective function as a binary
decision diagram and a conflict-driven answer set solver.

Looking at the different instances, we noticed that although the T� set are
generally easy, T3c is challenging for most of the computational approaches
considered. It is quickly solved to optimality by MIP but CP and SBDD only
find suboptimal solutions and clasp, none at all. It is interesting that the only
difference between instances T3a and T3c is that the latter has fewer available
locations: that type of restriction does not seem to be handled well by those
approaches. On the harder F� set there is no clear winner but MIP, LNS, and
SBDD are generally performing better than the other two.

For CP to be competitive on the harder instances, having a good model did
not seem to be sufficient and it required branching heuristics geared toward opti-
mization. This was the case even though an optimization-based global constraint
was used in the formulation.
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Table 8. An empirical comparison of the computational approaches proposed in this
paper as well as some of the previous proposals. For MIP we report the best solution
out of the four models presented and for LNS, the best solution out of the ten runs.
We give the time in seconds to find the solution value reported, except for SBDD and
clasp on non-optimal solutions since these were not provided.

Instance Approach Obj. Time

T2a MIP 0 7.6
CP 0 0.5
LNS 0 0.5

SBDD 0 2.7
clasp 0 0.1

T2c MIP 0 0.7
CP 0 3.9
LNS 0 3.9

SBDD 0 235.4
clasp 0 977.9

T3a MIP 0 9.4
CP 0 98.5
LNS 0 64.0

SBDD 0 65.2
clasp 0 2.1

T3b MIP 0 156.3
CP 0 12.0
LNS 0 12.0

SBDD 0 24.1
clasp 0 2.1

T3c MIP 4 24.8
CP 11 87.8
LNS 4 850.6

SBDD 8 –
clasp – –

Instance Approach Obj. Time

F3a MIP 0 506.3
CP 0 1514.9
LNS 0 5442.9

SBDD 0 3128.1
clasp 0 52.4

F3b MIP 9 5833.0
CP 23 4795.0
LNS 13 3189.0

SBDD 12 –
clasp 24 –

F3c MIP 1 2930.7
CP 9 5070.3
LNS 3 2507.4

SBDD 20 –
clasp – –

F4a MIP 9 7172.0
CP 25 1296.5
LNS 13 5996.0

SBDD 7 –
clasp – –

The main conclusion that can be drawn is that the cost regular structure is
quite useful in building efficient MIP and CP models. Compared to the MIP and
CP formulations proposed in [2], models using such structure are more efficient
on the instances considered, and often state-of-the-art. For the MIP approach one
could ask whether it is possible to tighten the more compact formulations (P1)
or (P2) with valid constraints derived from the cost regular constraints. As an
avenue of future research, we believe that embedding some of these constraints
into a branch-and-cut algorithm could result in a more robust exact algorithm
for the B2BSOP.
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8. Régin, J.-C.: Generalized Arc Consistency for Global Cardinality Constraint. In:
Proceedings of the Thirteenth National/Eighth Conference on Artificial Intelli-
gence/Innovative Applications of Artificial Intelligence, AAAI-98/IAAI-98, vol. 1,
pp. 209–215 (1996)

9. Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)



Constraint-Based Local Search for Golomb
Rulers

M.M. Alam Polash1(B), M.A. Hakim Newton1, and Abdul Sattar1,2

1 Institute for Integrated and Intelligent Systems, Griffith University,
Nathan, Australia

mdmasbaul@gmail.com, {mahakim.newton,a.sattar}@griffith.edu.au
2 Queensland Research Lab, National ICT Australia, Sydney, Australia

Abstract. This paper presents a constraint-based local search algo-
rithm to find an optimal Golomb ruler of a specified order. While the
state-of-the-art search algorithms for Golomb rulers hybridise a range
of sophisticated techniques, our algorithm relies on simple tabu meta-
heuristics and constraint-driven variable selection heuristics. Given a rea-
sonable time limit, our algorithm effectively finds 16-mark optimal rulers
with success rate 60% and 17-mark rulers with 6% near-optimality.

Keywords: Golomb ruler · Constraints · Local search · Tabu
meta-heuristics

1 Introduction

Golomb rulers were described in 1977 by S.W. Golomb [4] although such concept
was already conceived in 1953 by W.C. Babcock [3]. A Golomb ruler of order
m > 0 and length n is a sequence of m integers called marks 0 = x1 < x2 <
· · · < xm = n such that each xj − xi is unique for 1 ≤ i < j ≤ m. A Golomb
ruler of order m is optimal if n is the minimum possible integer. Golomb rulers
have a wide variety of applications that include x-ray crystallography [4], radio
astronomy [5], information theory [18] and pulse phase modulation [17].

Finding an Optimal Golomb Ruler (OGR) is an extremely difficult task.
It takes 36200 CPU hours to find a 19-mark Golomb ruler on a Sun SPARC
workstation using an exhaustive parallel search algorithm [8]. OGR is a combi-
natorial problem whose bounds grow geometrically with respect to the solution
size [19]. The major limitation is that each new ruler to be discovered is, by
necessity, larger than its predecessor. However, the search space is bounded and,
therefore, solvable [13]. Also, for a given order, more than one OGR may exist.

To solve this highly combinatorial problem, a number of approaches have
already been developed before. However, the current state-of-the-art results come
from a sophisticated hybrid method [7] that combines ideas from greedy ran-
domised adaptive search procedure (GRASP), scatter search (SS), tabu search
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(TS), clustering techniques and constraint programming. The hybrid algorithm
found 16-mark OGRs with success rates 5-10%. Nevertheless, an analysis of the
fitness landscape of OGR presented in [7] shows that high irregularities in the
neighbourhood structure introduce a drift force towards low-fitness regions of
the search space. For higher order rulers, search algorithms thus quickly reach
a near-optimal value and then stagnate around it, apparently causing a cycling
problem and making the search space less accessible. A restarting mechanism is
therefore needed at that stage.

In this paper, we present a constraint-based local search approach to find
Golomb rulers. Our algorithm takes m and n as input and finds the m integers
of the Golomb ruler. For OGRs, we assume xm to be equal to the optimal n
for order m. For near-optimal rulers, we assume xm to be less than or equal
to a given n. Instead of a sophisticated hybridisation of a range of techniques,
we rather rely on simple tabu meta-heuristics and constraint-driven variable
selection heuristics. Besides the traditional way of enforcing tabu on recently
modified variables for a given number of iterations, we use a special type of tabu
called configuration checking (CC) [6]. The CC strategy for OGR prevents a
variable (i.e. a mark) from being selected if it is fully confined by neighbouring
variables. The use of CC effectively reduces the number of restarts required
during search and thus mitigates the cycling problem of local search for finding
an OGR. Experimental results show that within a reasonable time limit, our
algorithm effectively achieves significantly high success rate of 60% in finding
OGRs of order 16 and about 6% near-optimal rulers of order 17.

The rest of the paper is organised as follows: Section 2 explores related work;
Section 3 describes our approach; Section 4 presents the experimental results;
and finally, Section 5 draws our conclusions.

2 Related Work

Various techniques have been applied so far to find Golomb rulers. Scientific
American algorithm, token passing algorithm, shift algorithm are described and
compared in [16]. Geometry tools such as projectile plane construction and affine
plane construction are used in a non-systematic method in [10]. A systematic
branch and bound algorithm along with the Depth First Search (i.e backtracking
algorithm) is proposed in [19]. A genetic algorithm is proposed in [21]. Constraint
programming techniques are used in [20]. A combination of constraint program-
ming and sophisticated lower bounds for Golomb rulers are used in [12]. A hybrid
of local search and constraint programming is proposed in [15].

Three algorithms, namely a genetic algorithm on its own, then with local
search and Baldwinian learning, and with local search and Lamarckian learning
are studied in [11]; the best results have the distance between 6.8 and 20.3%
from the optimum. A simple hybrid evolutionary algorithm (called GRHEA)
is presented in [9] to find an OGR of a specified length. Also, an indirect but
effective approach (called GROHEA) is proposed to find near-optimal Golomb
rulers. For a given order m, GROHEA starts from an upper bound of n and
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if a Golomb ruler of length n is found, it then tries to find another one with
length n − 1. GROHEA systematically finds optimal rulers for up to 11 marks
very quickly. It also finds optimal rulers for 12 and 13 marks in less than two
minutes, and for 14 marks in about 40 minutes. For 15 and 16 marks, the best
solutions of GROHEA are within 4.6% and 5.6% of the optimal rulers.

2.1 A Recent Hybrid Local Search Algorithm

This algorithm [7] combines the greedy randomised adaptive search procedure
(GRASP), evolutionary algorithms (EA), scatter search (SS), tabu search (TS),
clustering techniques, and constraint programming (CP) to find optimal or
near-optimal Golomb rulers. To find OGRs, this algorithm first uses an indi-
rect approach, which incorporates GRASP. However, one major problem of the
basic GRASP procedure is that it relies on certain parameter values to select
an attribute value from the Ranked Candidate List (RCL). The choice of the
parameter value often hinders to find high-quality solutions. GRASP is there-
fore combined with EA in HEAGRASP so that different parameter values can
be used in each application of the ruler construction phase. The plain GRASP
and HEAGRASP can find OGRs up to 9 and 10 marks respectively.

The work in [7] then proposes a scatter search (SS) that is basically a memetic
algorithm. SS uses an indirect approach in the initialisation and restarting phase
(ideas borrowed from HEAGRASP) and a direct approach in the local improve-
ment and recombination phase. More specifically, the TS is used as the local
improvement method. SS can find OGRs for up to 15 marks and computes high
quality near-optimal solutions for 16 (i.e. 1.1% from the optimum). SS is fur-
ther enhanced by using a complete search in recombination of individuals and a
clustering procedure to achieve higher degree of diversity. As a result, 16-mark
OGRs are found with success rates 5-10%.

2.2 A Recent Hybrid Genetic Algorithm

Recently, a hybrid genetic algorithm is presented in [2] to find optimal or near-
optimal Golomb rulers. This approach has been able to obtain OGRs for up to
16 marks at the expense of an important execution time. For instance, around
5 hours for 11-mark, 8 hours for 12-mark, and 11 hours for 13-mark ruler. It is
also able to find near-optimal rulers for 20 and 23 marks using enormous time.
The parallel implementation of this algorithm can be found in [1].

3 Our Approach

Our approach is based on a constraint-based local search algorithm. It is a simple
but effective algorithm to find an OGR of a specified order. Given the optimal
length n of an m-mark ruler, it searches for a ruler that satisfies the criteria of an
optimal one. Note that the first and last marks are fixed to 0 and n respectively.
For a near-optimal Golomb ruler, the last mark remains flexible to take a value
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less than or equal to n′, where n′ is the optimal length of a (m+ 1)-mark ruler.
To overcome the cycling problem of local search, we use the tabu mechanism
and the configuration checking techniques [6]. Nevertheless, below we provide a
detailed description of our search algorithm.

3.1 Problem Model

We represent a Golomb ruler of order m and length n by using m variables
x1, x2, · · · , xm. Without loss of generality, we fix the value of x1 at 0 and the
value of xm at n. Initially, the domain of all other marks is defined xi ∈ [1, n−1].
However, we assume the ordering x1 < x2 < · · ·xm. As the search progress, the
domain of a mark xi(1 < i < m) is thus dynamically restricted by the values of
its neighbours. Thus, xi ∈ [xi−1 + 1, xi+1 − 1] for each 1 < i < m.

To define the constraint model, for each i > j, we first calculate the difference
expression dij = xi − xj . The value of dij is the distance between xi and xj .
We then define an alldifferent constraint on the dijs. To guide the search, the
constraint violation metric is calculated as in [9]. Given the current solution R
i.e. the values of all xis, the violation VR(d) of a distance d is the number of
times distance d appears between two marks beyond its allowed occurrences.

VR(d) = max(0,#{dij = d|1 ≤ j < i ≤ m} − 1) (1)

The violation V(R) of the current ruler R is simply the sum of VR(d)s:

V (R) =
n∑

d=1

VR(d) (2)

Obviously, a ruler R with V (R) = 0 is a solution to the Golomb ruler problem.
In each iteration, our algorithm will try to minimise the value of V (R).

To define a variable selection heuristic, we further define the violation metrics
for each difference dij and for each variable xi(1 < i < m). The violation for
each distance dij will be the violation of its distance value.

VR(dij) = VR(d) (3)

where dij = d in R. The violation of a variable is calculated by summing the
violations of the distances that depend on that variable.

VR(xi) =
i−1∑

k=1

VR(dik) +
m∑

k=i+1

VR(dki) (4)

During search, we mainly follow max/min style search. At each iteration, a
variable xi(1 < i < m) having the maximum VR(xi) is selected first and then a
value v ∈ [xi−1 + 1, xi+1 − 1] that minimises VR is selected for xi.
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3.2 Avoiding the Cycling Problem

The cycling problem in local search has been typically tackled by the tabu mech-
anism. Besides using the tabu mechanism, in this paper, we use another recently
emerging strategy called configuration checking (CC) [6].

Tabu Mechanism. By maintaining a parameter called tabu tenure, the tabu
mechanism prevents the local search to immediately return to a previously visited
candidate solution. In our algorithm, we tabu the variable selected in the last
iteration and we tabu it for the tabu-tenure period.

Configuration Checking. The CC [6] strategy reduces the cycling problem
by checking the circumstance information. The core idea is: A variable’s value
should not change until at least one of its neighbouring variables has a new
value. Since in our algorithm, a variable’s value depends on its neighbour as we
enforce xi ∈ [xi−1 + 1, xi+1 − 1] during search, CC is relevant here along with
the tabu mechanism. However, we use CC in our algorithm in a special case
when a variable’s range has nothing but its own current value. In this case, the
variable is locked for any future changes until any of its neighbouring variables
have changed.

3.3 Search Algorithm

Our constraint-based local search algorithm to find Golomb rulers is shown in
Algorithm 1. The core of the algorithm is in Lines 4–19 where local moves are
performed for a number of iterations or until a solution is found. The unlocked
variable with the highest number of violations is selected in Line 8 and a value
for that variable is selected in Line 9 such that the number of violations decreases
after assigning the value to the variable. The new ruler is generated in Line 13
and the tabu is applied on the variable in Line 14. Note that the tabu tenure tt
is normally within 3 to 5. Line 11 and 15 implement the idea of CC. CC locks
a variable whenever its domain contains no value except the current one. When
a new value is set into a variable, CC unlocks the neighbours of that variable
provided they are already locked. Lines 16–19 update the best violation metric
and plateau size depending on the progress of violation metrics. Lines 5–6 restart
the search when the current plateau size exceeds a given limit.

Initialisation and Restarting Mechanism. The initial ruler is generated by
selecting random values from the initial domain of each mark. Special care is
taken so that no two marks have the same value. The marks are then sorted
to obtain an ordered ruler. When our search algorithm gets stuck showing no
progress, we just use the initialisation procedure to restart the search from
scratch. We detect the stagnation situation when the global best violation seen
so far does not change for a given number of iterations.
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Algorithm 1. Constraint-Based Local Search for Golomb Rulers
1 Parameters: order m, length n, tabu tenure tt
2 Generate an initial solution R using an initialisation procedure
3 plateauSize = 0, iteration = 0, bestViolation = V (R)
4 while ++iteration ≤ maxIteration and bestViolation > 0 do
5 if plateauSize > maxPlateauSize then
6 Restart from scratch and set plateauSize = 0

7 else
8 Select the unlocked variable xk(1 < k < m) with the highest VR(xk)
9 Select a value v ∈ [xk−1 + 1, xk+1 − 1] such that V (R) is minimised

10 if v is xk’s current value then
11 lock xk to stop its future changes //part of CC

12 else
13 set xk = v in the current ruler R
14 apply tabu on xk for the specified tabu tenure tt
15 unlock xk−1 and xk+1 if they are locked //part of CC

16 if currentViolation < bestViolation then
17 bestViolation = currentViolation, plateauSize = 0

18 else if currentViolation == bestViolation then
19 plateauSize++

4 Experiments and Analyses

We implemented our algorithm using C++ and on top of the constraint-based
local search system, Kangaroo [14]. The functions and the constraints are defined
using invariants in Kangaroo. Invariants are special constructs that are defined
by using mathematical operators over the variables. While propagation of vio-
lations, simulation of moves, execution and related calculations are performed
incrementally by Kangaroo, we mainly focus on the search algorithms.

We ran our experiments on High Performance Computing Cluster Gowonda
provided by Griffith University. Each node of the cluster is equipped with Intel
Xeon CPU E5-2650 processors @2.60 GHz, FDR 4x infiniBand Interconnect,
having system peak performance 18949.2 Gflops. Our search algorithm is run
for 25 times with timeout 48 hours for each given order of the Golomb ruler.
The tabu tenure is between 3 and 5. For a given order m and its optimal length
n, we run our algorithm to find an OGR first. If an OGR is not found, then we
consider finding a near-optimal Golomb ruler with an increased ruler length. Our
experimental results are shown in Table 1 and Figure 1. Left most two columns
in the Table 1(a) show the orders 11–16 and the optimal lengths of the Golomb
rulers. Moreover, the columns under “TabuAndCC” show our final results.

4.1 Effectiveness of CC

To investigate the effectiveness of CC, we run a version of our algorithm that
does not use the CC strategy. These results are shown in Table 1(a) in the
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columns under the header “TabuNoCC”. Also, the charts in Figure 1 show how
the two versions’ success rate differ when various timeout limits are assumed.
Overall, we observe the TabuAndCC version, our final algorithm, significantly
outperforms the TabuNoCC version in obtaining higher order OGRs, in success
rates, and in running times. To analyse further, in Table 1(b), we show the
number of restarts required by the TabuAndCC and TabuNoCC versions of our
algorithm. As we can see, the number of restarts required for the TabuAndCC
version is very small compared to the TabuNoCC version. It exhibits that the
use of CC effectively reduces the occurrence of stagnation in the search.

Table 1. (a) Performance of our algorithm when compared to GRHEA[9]. Time statis-
tics for GRHEA is collected from the published article while our algorithms are run on
our computers. (b) Average numbers of restarts required during search (c) Approximate
average numbers of candidate solutions explored/evaluated during search.

Num Opt TabuAndCC TabuNoCC GRHEA[9]

of GR Succ Median Succ Median Succ Median

Marks Len Rate Time Rate Time Rate Time

11 72 100 1.23 S 100 7.96 S 100 5.86 S

12 85 100 28.09 S 100 1.65 M 99 2.78 M

13 106 100 6.47 M 100 11.39 M 99 15.99 M

14 127 100 2.76 H 96 5.64 H 2 1.07 H

15 151 84 3.26 H 76 22.63 H

16 177 60 14.83 H

(a)

Marks TabuAndCC TabuNoCC

11 1.2 366.2

12 64.32 18214.12

13 234.08 77233.4

(b)

Marks TabuAndCC GRHEA[9]

11 1 × 106 10 × 106

12 4.5 × 107 23 × 107

13 5.1 × 108 11 × 108

(c)

4.2 Optimal Golomb Rulers

We compare our algorithm with other state-of-the-art algorithms for Golomb
rulers. As we see in Table 1(a), GRHEA[9] can solve up to order 14 but with
success rate for 14 being 2%. HybridGA[2] claims to have solved up to 16 but suc-
cess rates are not mentioned and run-times are either enormous or not reported.
The Hybrid Local Search [7] states to have consistently found OGRs for up
to 14 marks and for 16 marks with 5-10% success rate1. The OGR problem
gets extremely hard from order 16 onward [7]. Notice that our final algorithm
(Columns “TabuAndCC”) obtains significantly better results with 100%, 84%
and 60% success rates for 14, 15 and 16-mark rulers respectively.

We compare the search effort behind the performance of our algorithm and
those in [7,9] on the average number of candidate rulers explored and evaluated.
Comparison on execution time is not possible because experiments in [7,9] were
run on a number of different machines1. Note that while the algorithms in [7,9]
are variants of memetic algorithms (in other words, local searh is used as a muta-
tion operator in a genetic algorithm), our algorithm is just a constraint-based
local search algorithm. So for a fair comparison between these different types of
1 E-mail communication with Antonio J. Fernandez, one of the authors of [7].
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TabuAndCC for a 16-mark ruler

Time in Hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25

Solutions Found 1 2 2 3 4 5 5 6 6 6 6 6 6 7 8 8 10 13 13 13 13 13 13 14 14 15

Fig. 1. Number of times the optimal ruler is found when 25 attempts are made within
given time limits. The largest timeout was 48 hours for all runs. The times in x-axis
are in seconds for order 12, in minutes for 13, and in hours for 14 and 15. The times
in the first row of the table is also in hours for the ruler of order 16.

algorithm, particularly when time comparison is not possible, we consider the
average numbers of rulers explored and evaluated by each algorithm to be an
appropriate criterion; similar notions were used in [7,9].

To obtain the maximum numbers of rulers explored or evaluated by GRHEA
[9], we take the maximum number of generations (50), the population size (50),
the probability to call the LS procedure for each individual (0.6), the number of
iterations in the LS (10000). We get the numbers of LS iterations altogether to
be 50×50×0.6×10000 = 15×106. In each LS iteration, GRHEA considers each
variable and its value from the range bounded by the two neighbour variables’
values. In GRHEA’s model, a Golomb ruler with m mark and length n has thus
2(n−m+1) neighbours. So (n−m+1)× 30× 106 gives the maximum numbers
of rulers explored or evaluated. However, instead of 15×106, Table 1(c) uses the
average number of local moves made by GRHEA as reported in [9].

For our algorithm, we just take the average numbers of iterations and then
consider the fact that in each iteration, unlike in GRHEA, only one variable is
selected heuristically and then like GRHEA, the value of the variable is selected
only from those bounded by the neighbouring two variables’ values. So the num-
ber of neighbours on an average is 2(n−m+ 1)/(m− 1). Table 1(c) shows that
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our algorithm puts significantly less effort in search than GRHEA but obtains
significantly better performance. The average numbers of explored candidate
solutions by Hybrid Local Search [7] are similar to GRHEA because in [7] these
algorithms are compared giving the same effort in search.

4.3 Near-Optimal Golomb Rulers

As noted before, for OGRs of order m, in our algorithm, we set xm = n where
n is the optimal length for order m. For near-optimal Golomb rulers of order m,
we run the same algorithm but with xm ≤ n′ where n′ is the optimal length for
a Golomb ruler of order m+1. Our algorithm that uses “TabuAndCC” can find
OGRs of order 16 but not of 17. So for the time being, we further run it to find
near-optimal Golomb rulers of order 17. We do not run our algorithm that uses
“TabuNoCC” for order 17 because it could not find OGRs even for 16. Table 2
shows that our “TabuAndCC” algorithm finds near-optimal rulers for order 17
with a success rate of 100% and the best solutions found have lengths within
6.03% of that of the optimal rulers.

Table 2. Performance of our algorithm in finding near-optimal Golomb ruler

Mark n n′ Success Best Mean Median Mean Median

Rate Length Length Length Time Time

17 199 216 100 211 214 215 6.97 Hours 5.88 Hours

5 Conclusion

We have presented a constraint-based local search algorithm that takes the num-
ber of marks and length of an optimal Golomb ruler as input and finds the posi-
tions of the marks. Our algorithm is simple, but given a reasonable time limit,
it effectively finds 16-mark optimal rulers with 60% success rate and about 6%
near-optimal 17-mark rulers.
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Abstract. Packing and vehicle routing problems play an important role
in the area of supply chain management. In this paper, we introduce
a non-linear knapsack problem that occurs when packing items along
a fixed route and taking into account travel time. We investigate con-
strained and unconstrained versions of the problem and show that both
are NP-hard. In order to solve the problems, we provide a pre-processing
scheme as well as exact and approximate mixed integer programming
(MIP) solutions. Our experimental results show the effectiveness of the
MIP solutions and in particular point out that the approximate MIP
approach often leads to near optimal results within far less computation
time than the exact approach.

Keywords: Non-linear knapsack problem · NP-hardness · Mixed inte-
ger programming · Linearization technique · Approximation technique

1 Introduction

Knapsack problems belong to the core combinatorial optimization problems and
have been frequently studied in the literature from the theoretical as well as
experimental perspective [8,12]. While the classical knapsack problem asks for
the maximizing of a linear pseudo-Boolean function under one linear constraint,
different generalizations and variations have been investigated such as the mul-
tiple knapsack problem [5] and multi-objective knapsack problems [7].

Furthermore, knapsack problems with nonlinear objective functions have
been studied in the literature from different perspectives [4]. Hochbaum [9] con-
sidered the problem of maximizing a separable concave objective function subject
to a packing constraint and provided an FPTAS. An exact approach for a non-
linear knapsack problem with a nonlinear term penalizing the excessive use of
the knapsack capacity has been given in [6].

Nonlinear knapsack problems also play a key-role in various Vehicle Routing
Problems (VRP). In recent years, the research on dependence of the fuel con-
sumption on different factors, like a travel velocity, a load’s weight and vehicle’s
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 332–346, 2015.
DOI: 10.1007/978-3-319-18008-3 23
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technical specifications, in various VRP has gained attention from the opera-
tions research community. Mainly, this interest is motivated by a wish to be
more accurate with the evaluation of transportation costs, and therefore to stay
closer to reality. Indeed, an advanced precision would immediately benefit to
transportation efficiency measured by the classic petroleum-based costs and the
novel greenhouse gas emission costs. In VRP in general, and in the Green Vehi-
cle Routing Problems (GVRP) that consider energy consumption in particular,
given are a depot and a set of customers which are to be served by a set of
vehicles collecting (or delivering) required items. While the set of items is fixed,
the goal is to find a route for each vehicle such that the total size of assigned
items does not exceed the vehicle’s capacity and the total traveling cost over all
vehicles is minimized. See [11] for an extended overview on VRP and GVRP.
Oppositely, we address the situation with one vehicle whose route is fixed but the
items can be either collected or skipped. Specifically, this situation represents a
class of nonlinear knapsack problems and considers trade-off between the prof-
its of collected items and the traveling cost affected by their total weight. The
non-linear packing problem arises in some practical applications. For example, a
supplier having a single truck has to decide on goods to purchase going through
the constant route in order to maximize profitability of later sales.

Our precise setting is inspired by the recently introduced Traveling Thief
Problem (TTP) [3] which combines the classical Traveling Salesperson Problem
(TSP) with the 0-1 Knapsack Problem (KP). The TTP involves searching for a
permutation of the cities and a packing such that the resulting profit is maximal.
The TTP has some relation to the Prize Collecting TSP [2] where a decision is
made on whether to visit a given city. In the Prize Collecting TSP, a city-
dependent reward is obtained when a city is visited and a city-dependent penalty
has to be paid for each non-visited city. In contrast to this, the TTP requires
that each given city is visited. Furthermore, each city has a set of available items
with weights and profits and a decision has to be made which items to pick. A
selected item contributes its profit to the overall profit. However, the weight
of an item leads to a higher transportation cost, and therefore has a negative
impact on the overall profit.

Our non-linear knapsack problem uses the same cost function as the TTP,
but assumes a fixed route. It deals with the problem which items to select when
giving a fixed route from an origin to a destination. Therefore, our approach
can also be applied to solve the TTP by using the non-linear packing approach
as a subroutine to solve the packing part. Our experimental investigations are
carried out on the benchmark set for the traveling thief problem [13] where we
assume that the route is fixed.

The paper is organized as follows. In Section 2, we introduce the nonlinear
knapsack problems and show in Section 3 that they are NP-hard. In Section 3, we
provide a pre-processing scheme which allows to identify unprofitable and compul-
sory items. Sections 5 and 6 introduce ourmixed-integer programbased approaches
to solve the problem exactly and approximately. We report on the results of our
experimental investigations in Section 7 and finish with some conclusions.
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2 Problem Statement

We consider the following non-linear packing problem inspired by the traveling
thief problem [3]. Given is a route N = (1, 2, . . . , n + 1) as a sequence of n + 1
cities where all cities are unique and distances di > 0 between pairs of consecutive
cities (i, i + 1), 1 ≤ i ≤ n. There is a vehicle which travels through the cities of
N in the order of this sequence starting its trip in the first city and ending it in
the city n + 1 as a destination point. Every city i, 1 ≤ i ≤ n, contains a set of
distinct items Mi = {ei1, . . . , eimi

} and we denote by M = ∪
1≤i≤n

Mi set of all

items available at all cities. Each item eik ∈ M has a positive integer profit pik

and a weight wik. The vehicle may collect a set of items on the route such that
the total weight of collected items does not exceed its capacity W . Collecting an
item eik leads to a profit contribution pik, but increases the transportation cost
as the weight wik slows down the vehicle. The vehicle travels along (i, i + 1),
1 ≤ i ≤ n, with velocity vi ∈ [υmin, υmax] which depends on the weight of the
items collected in the first i cities. The goal is to find a subset of M such that
the difference between the profit of the selected items and the transportation
cost is maximized.

To make the problem precise we give a nonlinear binary integer program
formulation. The program consists of one variable xik for each item eik ∈ M
where eik is chosen iff xik = 1. A decision vector X = (x11, . . . , xnmn

) defines
the packing plan as a solution. If no item has been selected, the vehicle travels
with its maximal velocity υmax. Reaching its capacity W , it travels with minimal
velocity υmin > 0. The velocity depends on the weight of the chosen items in a
linear way. The travel time ti = di

vi
along (i, i + 1) is the ratio of the distance di

and the current velocity

υi = υmax − ν

i∑

j=1

mj∑

k=1

wjkxjk

which is determined by the weight of the items collected in cities 1, . . . , i. Here,
ν = υmax−υmin

W is a constant value defined by the input parameters. The overall
transportation cost is given by the sum of the travel costs along (i, i + 1), 1 ≤
i ≤ n, multiplied by a given rent rate R > 0. In summary, the problem is given
by the following nonlinear binary program (NKPc).

max
n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

mi∑

k=1

pikxik − Rdi

υmax − ν
i∑

j=1

mj∑

k=1

wjkxjk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

s.t.
n∑

i=1

mi∑

k=1

wikxik ≤ W (2)

xik ∈ {0, 1} , eik ∈ M
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We also consider the unconstrained version NKPu of NKPc where we set
W ≥ ∑

eik∈M wik such that every selection of items yields a feasible solution.
Given a real value B, the decision variant of NKPc and NKPu has to answer the
question whether the value of (1) is at least B.

3 Complexity of the Problem

In this section, we investigate the complexity of NKPc and NKPu. NKPc is
NP-hard as it is a generalization of the classical NP-hard 0-1 knapsack problem
[12]. In fact, assigning zero either to the rate R or to every distance value di

in NKPc, we obtain KP. Our contribution is the proof that the unconstrained
version NKPu of the problem remains NP-hard. We show this by reducing the
NP-complete subset sum problem (SSP) to the decision variant of NKPu which
asks whether there is a solution with objective value at least B. The input for
SSP is given by q positive integers S = {s1, . . . , sq} and a positive integer Q.
The question is whether there exists a vector X = (x1, . . . , xq), xk ∈ {0, 1},
1 ≤ k ≤ q, such that

∑q
k=1 skxk = Q.

Theorem 1. NKPu is NP-hard.

Proof. We reduce SSP to the decision variant of NKPu which asks whether there
is a solution of objective value at least B.

We encode the instance of SSP given by the set of integers S and the integer
Q as the instance I of NKPu having two cities. The first city contains q items
while the second city is a destination point free of items. We set the distance
between two cities d1 = 1, and set p1k = w1k = sk, 1 ≤ k ≤ q and W =

∑q
k=1 sk.

Subsequently, we set υmax = 2 and υmin = 1 which implies ν = 1/W and define
R∗ = W (2 − Q/W )2.

Consider the nonlinear function fR∗ : [0,W ] → R defined as

fR∗ (w) = w − R∗

2 − w/W
. (3)

fR∗ defined on the interval [0,W ] is a continuous convex function that reaches its
unique maximum in the point w∗ = W ·(2−√

R∗/W ) = Q, i.e. fR∗ (w) < fR∗ (w∗)
for w ∈ [0,W ] and w �= w∗. Then fR∗(Q) is the maximum value for fR∗ when
being restricted to integer input, too. Therefore, we set B = fR∗(Q) and the
objective function for NKPu is given by

gR∗ (x) =

q∑

k=1

pkxk − R∗

2 − 1
W

q∑

k=1

wkxk

. (4)

There exists an x ∈ {0, 1}q such that gR∗(x) ≥ B = fR∗(Q) iff
∑q

k=1 skxk =∑q
k=1 w1kxk =

∑q
k=1 p1kxk = Q. Therefore, the instance of SSP has answer

YES iff the optimal solution of the NKPu instance I has objective value at least
B = fR∗ (Q). Obviously, the reduction can be carried out in polynomial time
which completes the proof. �	



336 S. Polyakovskiy and F. Neumann

4 Pre-processing

We now provide a pre-processing scheme to identify items of a given instance
I that can be either directly included or discarded. Removing such items from
the optimization process can significantly speed up the algorithms. Our pre-
processing will allow to decrease the number of decision variables for mixed
integer programming approaches described in Sections 5 and 6. We distinguish
between two kinds of items that are identified in the pre-processing: compulsory
and unprofitable items. We call an item compulsory if its inclusion in any packing
plan increases the value of the objective function, and call an item unprofitable
if its inclusion in any packing plan does not increase the value of the objective
function. Therefore, an optimal solution has to include all compulsory items
while all unprofitable items can be discarded.

In order to identify compulsory and unprofitable items, we consider the total
travel cost that a set of items produces.

Definition 1 (Total Travel Cost). Let O ⊆ M be a subset of items. We define
the total travel cost along route N when the items of O are selected as

tO = R ·
n∑

i=1

di

υmax − ν
∑i

j=1

∑
ejk∈Oj

wjk

,

where Oj = Mj ∩ O, 1 ≤ j ≤ n, is the subset of O selected at city j.

We identify compulsory items for the unconstrained case according to the
following proposition.

Proposition 1 (Compulsory Item). Let I be an arbitrary instance of NKPu.
If pik > R

(
tM − tM\{eik}

)
, then eik is a compulsory item.

Proof. We work under the assumption that pik > R
(
tM − tM\{eik}

)
holds. In

the case of NKPu, all the existing items can fit into the vehicle at once and
all subsets O ⊆ M are feasible. Let M∗ ⊆ M \ {eik} be an arbitrary subset
of items excluding eik, and consider tM\M∗ and tM\M∗\{eik}, respectively. Since
the velocity depends linearly on the weight of collected items and the travel
time ti = di/vi along (i, i + 1) depends inversely proportional on the velocity
vi, we have

(
tM − tM\{eik}

) ≥ (
tM\M∗ − tM\M∗\{eik}

)
. This implies that pik >

R
(
tM\M∗ − tM\M∗\{eik}

)
holds for any subset M \M∗ of items which completes

the proof. �	
For the unconstrained variant NKPu, Proposition 1 is valid to determine

whether the item eik is able to cover by its pik the largest possible transporta-
tion costs it may generate when has been selected in X. Here, the largest possible
transportation costs are computed via the worst case scenario when all the pos-
sible items are selected along with eik, and therefore when the vehicle has the
maximal possible load and the least velocity.
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Based on a given instance, we can identify unprofitable items for the con-
strained and unconstrained case according to the following proposition.

Proposition 2 (Unprofitable Item, Case 1). Let I be an arbitrary instance
of NKPc or NKPu. If pik ≤ R

(
t{eik} − t∅

)
, then eik is an unprofitable item.

Proof. We assume that pik ≤ R
(
t{eik} − t∅

)
holds. Let M∗ ⊆ M \ {eik} denote

an arbitrary subset of items excluding eik such that wik +
∑

ejl∈M∗ wjl ≤ W
holds. We consider tM∗∪{eik} and tM∗ . Since the velocity depends linearly on
the weight of collected items and the travel time ti = di/vi along (i, i + 1)
depends inversely proportional on the velocity vi, the inequality

(
t{eik} − t∅

) ≤(
tM∗∪{eik} − tM∗

)
holds. Therefore, pik ≤ R

(
tM∗∪{eik} − tM∗

)
holds for any

M∗ ⊆ M \ {eik} which completes the proof. �	
Proposition 2 helps to determine whether the profit pik of the item eik is

large enough to cover the least transportation costs it incurs when selected in the
packing plan X. In this case, the least transportation costs result from accepting
the selection of eik as only selected item in X versus accepting empty X as a
solution.

Having all compulsory items included in the unconstrained case according
to Proposition 1, we can identify further unprofitable items. This is the case, as
the inclusion of compulsory items already increases the travel time and therefore
reducing the positive contribution to the overall objective value.

Proposition 3 (Unprofitable Item, Case 2). Let I be an arbitrary instance
of NKPu and M c be the set of all compulsory items. If pik ≤ R

(
tMc∪{eik} − tMc

)
,

then eik is an unprofitable item.

Proof. We assume that pik ≤ R
(
tMc∪{eik} − tMc

)
holds. Recall that in the case

of NKPu, all the existing items can fit into the vehicle at once and all subsets
O ⊆ M are feasible. Let M∗ ⊆ M \ {M c ∪ {eik}} be an arbitrary subset of
M that does not include any item of M c ∪ {eik} and consider tMc∪M∗ and
tMc∪M∗∪{eik}. Since the velocity depends linearly on the weight of collected items
and the travel time ti = di/vi along (i, i + 1) depends inversely proportional on
the velocity vi, we have

(
tMc∪{eik} − tMc

) ≤ (
tMc∪M∗∪{eik} − tMc∪M∗

)
. Hence,

we have pik ≤ R
(
tMc∪M∗∪{eik} − tMc∪M∗

)
for any M∗ ⊆ M \ {M c ∪ {eik}}

which completes the proof. �	
Proposition 3 determines for the NKPu problem whether the profit pik of the

item eik is large enough to cover the least transportation costs resulted from its
selection along with all known compulsory items. Specifically, in Proposition 3
the list transportation costs follow from accepting the selection of eik along with
the set of compulsory items M c in X versus accepting just the selection of M c

as a solution.
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It is important to note that Proposition 2 can reduce NKPc problem to NKPu

by excluding items such that the sum of the weights of all remaining items does
not exceed the weight bound W . In this case, Propositions 1 and 3 can be applied
iteratively to the remaining set of items until no compulsory or unprofitable item
is found. Before applying our approaches given in Section 5 and 6, we remove
all unprofitable and compulsory items using these preprocessing steps.

5 Exact Solution

Both NKPc and NKPu contain nonlinear terms in the objective function, and
therefore are nonlinear binary programs. They belong to the specific class of
fractional binary programming problems for which several efficient reformulation
techniques exist to handle nonlinear terms. We follow the approach of [10] and
[16] to reformulate NKPc and NKPu as a linear mixed 0-1 program.

The denominator of each fractional term in (1) is not equal to zero since
υmin > 0. We introduce the auxiliary real-valued variables yi, i = 1, . . . , n, such
that yi = 1/

(
υmax − ν

∑i
j=1

∑mj

k=1 wjkxjk

)
. The variables yi express the travel

time per distance unit along (i, i + 1). According to [10], we can reformulate
NKPc as a mixed 0-1 quadratic program by replacing (1) with (5) and adding
the set of constraints (6) and (7).

max
n∑

i=1

(
mi∑

k=1

pikxik − Rdiyi

)

(5)

s.t. υmaxyi + ν

i∑

j=1

mj∑

k=1

wjkxjkyi = 1, i = 1, . . . , n (6)

yi ∈ R+, i = 1, . . . , n (7)

If z = xy is a polynomial mixed 0-1 term where x is binary and y is a real
variable, then it can be linearized via the set of linear inequalities: (i) z ≤ Ux;
(ii) z ≥ Lx; (iii) z ≤ y + L (x − 1); (iiii) z ≥ y + U (x − 1) (see [16]). U and L
are the upper and lower bounds on y, i.e. L ≤ y ≤ U . We can linearize the xjkyi

term in (6) by introducing a new real variable zi
jk = xjkyi. Furthermore, let

pc
i and wc

i denote the total profit and the total weight of the compulsory items
in city i according to Proposition 1. Variable yi, i = 1, . . . , n, can be bounded
from below by Li = 1/

(
υmax − ν

∑i
j=1 wc

j

)
. Similarly, let wmax

i be the total
weight of the items (including all the compulsory items) in city i. We can bound
yi, i = 1, . . . , n, from above by Ui = 1/

(
υmax − ν · min

(∑i
j=1 wmax

j ,W
))

and
formulate NKPc as the following linear mixed 0-1 program (NKPe):
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max

n∑

i=1

(

pc
i +

mi∑

k=1

pikxik − Rdiyi

)

s.t. υmaxyi + ν

(

wc
i +

i∑

j=1

mj∑

k=1

wjkzi
jk

)

= 1, i = 1, . . . , n

zi
jk ≤ Uixjk, i, j = 1, . . . , n, j ≤ i, ejk ∈ Mj

zi
jk ≥ Lixjk, i, j = 1, . . . , n, j ≤ i, ejk ∈ Mj

zi
jk ≥ yi + Ui (xjk − 1) , i, j = 1, . . . , n, j ≤ i, ejk ∈ Mj

zi
jk ≤ yi + Li (xjk − 1) , i, j = 1, . . . , n, j ≤ i, ejk ∈ Mj

n∑

i=1

mi∑

k=1

wikxik ≤ W (8)

xik ∈ {0, 1} , eik ∈ M

zi
jk ∈ R+, i, j = 1, . . . , n, j ≤ i, ejk ∈ Mj

yi ∈ R+, i = 1, . . . , n

We now introduce a set of inequalities in order to obtain tighter relaxations.
The reformulation-linearization technique by [15] uses 3n additional inequalities
for the capacity constraint (8). Multiplying (8) by yl, Ul − yl and yl − Ll, l =
1, . . . , n, we obtain the inequalities

n∑

i=1

mi∑

k=1

wikzl
ik ≤ Wyl;

Ul

n∑

i=1

mi∑

k=1

wikxik −
n∑

i=1

mi∑

k=1

wikzl
ik ≤ UlW − Wyl;

n∑

i=1

mi∑

k=1

wikzl
ik − Ll

n∑

i=1

mi∑

k=1

wikxik ≤ Wyl − LlW.

Another set of inequalities can be derived from the fact that the item eil

in the city i should not be selected if in the same city there exists unselected
item eik with pil < pik and wil > wik. Furthermore, the item ejl in the city j
should not be selected if there exists unselected item eik in the city i, with j < i,
pjl − Δji

l < pik and wjl > wik where

Δji
l = R

i−1∑

a=j

da

(
1

υmax − ν
(
wjl +

∑a
b=1 wc

b

) − 1

υmax − ν
∑a

b=1 wc
b

)

is a lower bound on the transportation cost to deliver ejl from j to i. Similarly,
the item eik in the city i should not be selected if there exists unselected item
ejl in the city j, with j < i, pjl − Δ

ji

l > pik and wjl < wik where
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Δ
ji
l = R

i−1∑

a=j

da

⎛

⎜
⎜
⎜
⎜
⎝

1

υmax − ν · min

(

wjl +
a∑

b=1

w
max
b , W

) − 1

υmax − ν · min

(
a∑

b=1

w
max
b , W

)

⎞

⎟
⎟
⎟
⎟
⎠

is an upper bound on the transportation cost to deliver ejl from j to i. This
leads to the following inequalities for i, j = 1, . . . , n:

xil ≤ xik, eil, eik ∈ Mi : l �= k, pil < pik, wil > wik; (9)

xjl ≤ xik, j < i, ejl ∈ Mj , eik ∈ Mi, : pjl − Δji
l < pik, wjl > wik; (10)

xjl ≥ xik, j < i, ejl ∈ Mj , eik ∈ Mi, : pjl − Δ
ji
l > pik, wjl < wik. (11)

6 Approximate Solution

In practice, the use of approximations is an efficient way to deal with nonlinear
terms. Although the approximate solution is likely to be different from the exact
one, it might be close enough and obtainable in a reasonable computational time.

Consider an arbitrary pair (i, i + 1), i = 1, . . . , n, and the traveling time t′i ∈
[tmin, tmax] per distance unit along it. Here tmax = 1/υmin and tmin = 1/υmax

denote the maximum and minimum travel time per unit, respectively. We parti-
tion the interval [tmin, tmax] into τ equal-sized sub-intervals and determine thus
a set T = {T1, . . . , Tτ} of straight line segments to approximate the curve t (υ)
as illustrated in Figure 1. Each segment a ∈ T is characterized by its minimal
velocity υmin

a and its corresponding maximum traveling time per distance unit
tmax
a , and by its maximum velocity υmax

a and its corresponding minimum travel-
ing time per distance unit tmin

a . Specifically,
(
υmin

a , tmax
a

)
and

(
υmax

a , tmin
a

)
are

the endpoints of a ∈ T referred to as breakpoints. We approximate t′i by the
linear combination of tmax

a and tmin
a if υi ∈ [

υmin
a , υmax

a

]
.

Our approximation model uses three types of decision variables in addi-
tion to the binary variable xik for each item eik ∈ M from Section 2. Let
wi be a real variable equal to the total weight of selected items when travel-
ing along the (i, i + 1). Let pi be a real variable equal to the difference of the
total profit of selected items and their total transportation costs when deliver-
ing them to city i + 1. We set w0 = p0 = 0. Let Ai ⊆ T , 1 ≤ i ≤ n, denote
a set of possible segments to which velocity υi of the vehicle may belong, i.e.
Ai =

{
a ∈ T :

(
υmin

a ∈ [
υmin

i , υmax
i

]) ∨ (
υmax

a ∈ [
υmin

i , υmax
i

])}
, where υmax

i =
υmax − ν

∑i
j=1 wc

j is the maximal possible velocity that the vehicle can move
along (i, i + 1) when packing in all compulsory items only, and υmin

i = υmax −
ν · min

(∑i
j=1 wmax

j ,W
)

the minimum possible velocity along (i, i + 1) after
having packed in all items available in cities 1, . . . , i. Actually, we have υi ∈[
υmin

i , υmax
i

]
.
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Fig. 1. Piecewise linear approximation of t (υ) = 1/υ

When υi ∈ [
υmin

a , υmax
a

]
for a ∈ T , any point in between endpoints of a is

a weighted sum of them. Let Bi denote a set of all breakpoints that the linear
segments of Ai have. Then the value of the real variable yib ∈ [0, 1] is a weight
assigned to the breakpoint b ∈ Bi, b ∼ (υb, tb). NKPc (and NKPu) can be
approximated by the following linear mixed 0-1 program (NKPa

τ ):

max pn (12)

s.t. pi = pi−1 + pc
i +

∑

eik∈Mi

pikxik − Rdi

∑

b∈Bi

tbyib, i = 1, . . . , n (13)

wi = wi−1 + wc
i +

∑

eik∈Mi

wikxik, i = 1, . . . , n (14)

νwi +
∑

b∈Bi

υbyib = υmax, i = 1, . . . , n (15)

∑

b∈Bi

yib = 1, i = 1, . . . , n (16)

wn ≤ W (17)
xik ∈ {0, 1} , eik ∈ M (18)
yib ∈ [0, 1] , i = 1, . . . , n, b ∈ Bi (19)
pi ∈ R, i = 1, . . . , n (20)
wi ∈ R≥0, i = 1, . . . , n (21)
w0 = p0 = 0 (22)

Equation (12) defines the objective pn as the difference of the total profit
of selected items and their total transportation costs delivered to city n + 1.
Since the transportation costs are approximated in NKPa

τ , the actual objective
value for NKPc (and NKPu) should be computed on values of decision variables
of vector X. Equation (13) computes the difference pi of the total profit of
selected items and their total transportation costs when arriving at city i+1 by
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summing up the value of pi−1 concerning (i − 1, i), the profit of compulsory items
pc

i and the profit
∑

eik∈Mi
pikxik of items selected in city i, and subtracting the

approximated transportation costs along (i, i+1). Equation (14) gives the weight
wi of the selected items when the vehicle departs city i by summing up wi−1, the
weight of compulsory items wc

i and the weight
∑

eik∈Mi
wikxik of items selected

in city i. Equation (15) implicitly defines the segment a ∈ Ai to which the
velocity of the vehicle υi belongs and sets the weights of its breakpoints. Equation
(16) forces the total weight of the breakpoints of Bi be exactly 1. Equation (17)
imposes the capacity constraint, and Eq. (18) declares xik as binary. Equation
(19) states yib as a real variable defined in [0, 1]. Finally, Equation (20) declares
pi as a real variable, while Eq. (21) defines wi as a non-negative real. A solution
of NKPa

τ can be used as a starting solution for NKPe in the case that all sets of
inequalities (9), (10) and (11) are met.

7 Computational Experiments

We now investigate the effectiveness of proposed approaches by experimental
studies. On the one hand, we evaluate our MIP models NKPe and NKPa

τ in
terms of solution quality and running time. On the other hand, we assess the
advantage of the pre-processing scheme in terms of quantity of discarded items
and auxiliary decision variables. The program code is implemented in JAVA
using the Cplex 12.6 library with default settings. The experiments have been
carried out on a computational cluster with 128 Gb RAM and 2.8 GHz 48-cores
AMD Opteron processor.

The test instances are adopted from the benchmark set B of [13]. This bench-
mark set is constructed on TSP instances from TSPLIB (see [14]). In addition,
it contains for each city but the first one a set of items. We use the set of items
available at each city and obtain the route from the corresponding TSP instance
by running the Chained Lin-Kernighan heuristic (see [1]). Given the permutation
π = (π1, π2, . . . , πn) of cities computed by the Chained Lin-Kernighan heuristic,
where π1 is free of items, we use N = (π2, π3, . . . , πn, π1) as the route for our
problem. We consider the uncorrelated, uncorrelated with similar weights, and
bounded strongly correlated types of items’ generation, and set υmin and υmax

to 0.1 and 1 as proposed for B.
The results of our experiments are shown in Tables 1 and 2. First, we

investigate three families of small size instances based on the TSP problems
eil51, eil76, and eil101 with 51, 76 and 101 cities, respectively. Note that
all instances of a family have the same route N . We considered instances with
1, 5, and 10 items per city. The postfixes 1, 6 and 10 in the instances’ names
indicate the capacity W . Column 2 specifies the total number of items m. A
ratio α = 100 (m − m′) /m in Column 3 denotes a percentage of items discarded
in pre-processing step, where m′ is the number of items left after pre-processing.
Column 4 identifies by “u” whether NKPc has been reduced to NKPu by pre-
processing. Columns 5 and 6 report a computational time in seconds and a rel-
ative gap reached in percents for NKPe. The time limit of 1 day has been given
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Table 1. Results of Computational Experiments on Small Size Instances

instance m α ver te gape ρ100 t100 β100 ρ1000 t1000 β1000

instance family eil51

uncorr 01 50 42.0 c 1 0.00 1.0000 0 56.9 1.0000 1 55.9
uncorr 06 50 14.0 c 3 0.00 1.0000 0 39.9 1.0000 0 38.7
uncorr 10 50 50.0 u 1 0.00 1.0000 0 11.3 1.0000 0 9.4

uncorr-s-w 01 50 30.0 c 0 0.00 1.0000 0 79.0 1.0000 1 78.0
uncorr-s-w 06 50 24.0 c 3 0.00 1.0000 0 36.5 1.0000 0 35.2
uncorr-s-w 10 50 34.0 u 3 0.00 1.0000 0 13.4 1.0000 0 11.9

b-s-corr 01 50 4.0 c 2 0.00 1.0000 0 91.5 1.0000 2 90.5
b-s-corr 06 50 0.0 c 249 0.00 1.0000 0 54.5 1.0000 1 53.3
b-s-corr 10 50 0.0 c 139 0.00 1.0000 0 26.2 1.0000 0 24.9
uncorr 01 250 39.2 c 1855 0.00 1.0000 0 66.8 1.0000 1 65.7
uncorr 06 250 16.4 c - 10.66 1.0000 0 39.0 1.0000 0 37.8
uncorr 10 250 54.4 u 268 0.00 1.0000 0 11.2 1.0000 0 9.5

uncorr-s-w 01 250 20.8 c 22 0.00 1.0000 0 89.8 1.0000 1 88.8
uncorr-s-w 06 250 14.0 c - 25.20 1.0000 0 45.5 1.0000 0 44.2
uncorr-s-w 10 250 19.2 u 73472 0.00 1.0000 0 16.0 1.0000 0 14.6

b-s-corr 01 250 0.0 c - 0.89 1.0000 0 92.0 1.0000 1 91.1
b-s-corr 06 250 0.0 c - 53.48 1.0000 0 56.9 1.0000 1 55.7
b-s-corr 10 250 0.0 c - 60.94 1.0000 0 27.3 1.0000 0 25.9
uncorr 01 500 37.0 c - 14.82 1.0000 0 69.1 1.0000 1 68.0
uncorr 06 500 15.2 c - 21.26 1.0000 0 39.6 1.0000 0 38.3
uncorr 10 500 51.4 u - 1.27 1.0000 0 11.8 1.0000 0 10.1

uncorr-s-w 01 500 20.2 c - 1.80 1.0000 0 90.8 1.0000 1 89.9
uncorr-s-w 06 500 15.2 c - 37.83 0.9999 0 45.1 1.0000 0 43.9
uncorr-s-w 10 500 18.6 u - 4.44 1.0000 0 16.4 1.0000 0 15.0

b-s-corr 01 500 0.0 c - 5.97 1.0000 0 93.1 1.0000 2 92.1
b-s-corr 06 500 0.0 c - 49.28 1.0000 0 56.5 1.0000 0 55.4
b-s-corr 10 500 0.0 c - 71.87 1.0000 0 26.6 1.0000 0 25.2

instance family eil76

uncorr 01 75 26.7 c 4 0.00 1.0000 0 77.7 1.0000 1 76.7
uncorr 06 75 14.7 c 50 0.00 1.0000 0 34.3 1.0000 0 33.1
uncorr 10 75 48.0 u 15 0.00 1.0000 0 11.5 1.0000 0 9.6

uncorr-s-w 01 75 26.7 c 1 0.00 1.0000 0 79.2 1.0000 3 78.2
uncorr-s-w 06 75 17.3 c 82 0.00 1.0000 0 41.3 1.0000 1 40.1
uncorr-s-w 10 75 16.0 u 9 0.00 1.0000 0 16.8 1.0000 0 15.4

b-s-corr 01 75 0.0 c 6 0.00 1.0000 0 94.7 1.0000 1 93.8
b-s-corr 06 75 0.0 c - 8.53 1.0000 0 59.7 1.0000 2 58.5
b-s-corr 10 75 0.0 c 4555 0.00 1.0000 0 25.9 1.0000 0 24.5
uncorr 01 375 38.1 c - 15.49 1.0000 0 67.2 1.0000 2 66.1
uncorr 06 375 16.0 c - 18.04 1.0000 0 37.5 1.0000 0 36.2
uncorr 10 375 49.3 u - 0.57 1.0000 0 12.0 1.0000 0 10.2

uncorr-s-w 01 375 14.9 c 30376 0.00 1.0000 0 90.9 1.0000 5 89.9
uncorr-s-w 06 375 12.3 c - 48.36 1.0000 0 47.4 1.0000 1 46.2
uncorr-s-w 10 375 14.9 u - 3.70 1.0000 0 17.3 1.0000 0 15.9

b-s-corr 01 375 0.0 c - 9.32 1.0000 0 95.4 1.0000 2 94.4
b-s-corr 06 375 0.0 c - 60.98 1.0000 0 57.4 1.0000 1 56.2
b-s-corr 10 375 0.0 c - 69.90 1.0000 0 27.8 1.0000 1 26.6
uncorr 01 750 32.5 c - 19.52 1.0000 0 72.3 1.0000 2 71.2
uncorr 06 750 14.8 c - 33.14 1.0000 0 39.5 1.0000 0 38.3
uncorr 10 750 43.1 u - 5.25 1.0000 0 13.1 1.0000 0 11.4

uncorr-s-w 01 750 16.7 c - 11.31 1.0000 0 89.8 1.0000 2 88.9
uncorr-s-w 06 750 13.5 c - 60.27 1.0000 0 46.3 1.0000 1 45.1
uncorr-s-w 10 750 14.4 u - 6.88 1.0000 0 17.2 1.0000 0 15.9

b-s-corr 01 750 0.0 c - 10.46 1.0000 0 95.0 1.0000 2 94.0
b-s-corr 06 750 0.0 c - 62.42 1.0000 0 56.1 1.0000 1 54.9
b-s-corr 10 750 0.0 c - 84.45 1.0000 0 26.2 1.0000 0 24.9

instance family eil101

uncorr 01 100 49.0 c 9 0.00 1.0000 0 61.3 1.0000 1 60.2
uncorr 06 100 16.0 c 714 0.00 0.9999 0 40.1 1.0000 2 38.8
uncorr 10 100 57.0 u 21 0.00 1.0000 0 10.2 1.0000 0 8.5

uncorr-s-w 01 100 25.0 c 3 0.00 1.0000 0 91.2 1.0000 1 90.3
uncorr-s-w 06 100 17.0 c 446 0.00 1.0000 0 42.3 1.0000 1 41.0
uncorr-s-w 10 100 15.0 u 68 0.00 1.0000 0 17.4 1.0000 0 16.0

b-s-corr 01 100 0.0 c 532 0.00 1.0000 0 95.4 1.0000 4 94.4
b-s-corr 06 100 0.0 c - 44.03 1.0000 0 56.8 1.0000 2 55.7
b-s-corr 10 100 0.0 c - 28.96 0.9999 0 28.5 1.0000 1 27.2
uncorr 01 500 38.8 c - 13.92 1.0000 0 66.6 1.0000 3 65.5
uncorr 06 500 14.4 c - 20.49 1.0000 0 39.6 1.0000 1 38.4
uncorr 10 500 51.4 u - 1.94 1.0000 0 11.5 1.0000 0 9.8

uncorr-s-w 01 500 20.4 c - 7.00 1.0000 1 89.3 1.0000 14 88.3
uncorr-s-w 06 500 14.2 c - 40.92 1.0000 0 45.3 1.0000 1 44.1
uncorr-s-w 10 500 16.4 u - 7.20 1.0000 0 16.4 1.0000 0 15.1

b-s-corr 01 500 0.0 c - 13.73 1.0000 1 94.4 1.0000 3 93.5
b-s-corr 06 500 0.0 c - 68.68 1.0000 0 55.3 1.0000 2 54.1
b-s-corr 10 500 0.0 c - 77.57 1.0000 0 26.3 1.0000 0 25.1
uncorr 01 1000 37.0 c - 26.74 0.9999 0 67.2 1.0000 3 66.1
uncorr 06 1000 15.1 c - 30.91 1.0000 0 39.5 1.0000 1 38.3
uncorr 10 1000 50.4 u - 4.69 1.0000 0 11.8 1.0000 0 10.1

uncorr-s-w 01 1000 19.7 c - 10.46 0.9999 248 89.3 1.0000 6144 88.3
uncorr-s-w 06 1000 13.7 c - 57.02 1.0000 0 45.6 1.0000 1 44.4
uncorr-s-w 10 1000 15.9 u - 13.54 1.0000 0 16.7 1.0000 0 15.3

b-s-corr 01 1000 0.0 c - 14.41 1.0000 1 93.9 1.0000 7 93.0
b-s-corr 06 1000 0.0 c - 80.39 1.0000 0 55.8 1.0000 2 54.6
b-s-corr 10 1000 0.0 c - 97.54 1.0000 0 27.1 1.0000 1 25.8
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to NKPe. Thus, Column 5 either contains a required time or “-” if the time
limit is reached. Results for NKPa

τ with τ = 100 are demonstrated in Columns
7 and 8, while the case of τ = 1000 is shown in Columns 10 and 11. Columns 7
and 10 report ρτ as a ratio between the best lower bounds obtained by NKPa

τ

and NKPe. Within the experiments, NKPa
τ with τ = 100 produces an initial

solution for NKPe. Columns 8 and 11 contain running times of NKPa
τ . The time

limit of 2 hours has been given to NKPa
τ . Finally, columns 9 and 12 show a rate

βτ which is a percentage of auxiliary decision variables yib for i = 1, . . . , n and
b ∈ Bi used in practice by NKPa

τ . At most τn variables is required by NKPa
τ .

Thus, β is computed as β = 100 (
∑n

i=1 |Bi|) / (τn).
The results show that only the instances of small size are solved by NKPe

to optimality within the given time limit. At the same time, the unconstrained
cases of the problem turn out to be easier to handle. They either are solved
to optimality or have a low relative gap comparing to the constrained cases,
even when latter have less number of items m. Generally, the instances with
large W are liable to reduction. Because W is large, they have more chances
to loose enough items so that the total weight of rest items becomes less or
equal to W . However, the pre-processing scheme does not work for bounded
strongly correlated type of the instances. No instance of this type is reduced to
NKPu. Moreover, the results show that this type is presumably harder to solve
comparing to others as expected in [13]. In fact, the relative gap is significantly
larger concerning this type.

NKPa
τ is particularly fast and its model is solved to optimality for all the

small size instances within the given time limit. The ratio ρτ is very close to 1
which leads to two observations. Firstly, NKPa

τ obtains approximately the same
result as the optimal solution of NKPe has but in a shorter time. Secondly, NKPe

cannot find much better solutions even within large given time. Therefore, we
can conclude that NKPa

τ gives an advanced trade-off in terms of computational
time and solution’s quality comparing to NKPe. It looks very swift even with
instances of hard bounded strongly correlated type. Moreover, NKPa

τ produces
very good approximation even for reasonably small τ = 100. Only one instance
of the whole test suite causes a considerable difficulty for NKPa

τ in terms of
a running time. The rate βτ demonstrates that in practice NKPa

τ uses a very
reduced set of auxiliary decision variables. The medians over all entries of β100

and β1000 are 45.3 and 44.1, respectively. In general, βτ is significantly small
when W is large, since latter results in a slower growth of diapason

[
υmin

i , υmax
i

]

in NKPa
τ , for i = 1, . . . , n. In other words, the instances with large W require

less number of auxiliary decision variables comparing to the instances where W
is smaller.

The goal of our second experiment is to understand how fast NKPa
τ handles

instances of larger size. We use the same settings as for the first experiment, but
now give NKPa

τ the time limit of 6 hours and set τ = 100. We investigate two
families of largest size instances of B of [13], namely those based on the TSP
problems pla33810 and pla85900 with 33810 and 85900 cities, respectively.
Table 2 reports the results. NKPa

τ needs less than ∼ 40 minutes to solve any
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instance of family pla33810. Almost all instances of family pla85900 can be
solved within 2 hours; it takes no longer than ∼ 5.5 hours for any of them.
Therefore, NKPa

τ proves its ability to master large problems in a reasonable
time.

Table 2. Results of Computational Experiments on Large Size Instances

instance m α ver t100 β100

instance family pla33810

uncorr 01 33809 29.0 c 522 77.7
uncorr 06 33809 12.8 c 337 41.9
uncorr 10 33809 35.9 u 32 14.2

uncorr-s-w 01 33809 19.3 c 425 88.5
uncorr-s-w 06 33809 11.2 c 634 46.8
uncorr-s-w 10 33809 8.7 c 33 17.3

b-s-corr 01 33809 0.0 c 419 92.6
b-s-corr 06 33809 0.0 c 582 55.3
b-s-corr 10 33809 0.0 c 696 25.6
uncorr 01 169045 30.6 c 601 75.6
uncorr 06 169045 12.8 c 1276 41.8
uncorr 10 169045 35.8 u 72 13.9

uncorr-s-w 01 169045 15.2 c 389 89.5
uncorr-s-w 06 169045 11.7 c 600 46.3
uncorr-s-w 10 169045 9.0 c 774 17.1

b-s-corr 01 169045 0.0 c 1526 92.7
b-s-corr 06 169045 0.0 c 433 55.4
b-s-corr 10 169045 0.0 c 830 25.4
uncorr 01 338090 31.6 c 2079 74.5
uncorr 06 338090 12.8 c 1272 41.7
uncorr 10 338090 35.9 u 1264 13.8

uncorr-s-w 01 338090 15.2 c 1266 89.6
uncorr-s-w 06 338090 11.9 c 1225 46.2
uncorr-s-w 10 338090 9.0 c 2509 17.1

b-s-corr 01 338090 0.0 c 851 92.6
b-s-corr 06 338090 0.0 c 971 55.4
b-s-corr 10 338090 0.0 c 1300 25.4

instance m α ver t100 β100

instance family pla85900

uncorr 01 85899 32.4 c 2582 72.8
uncorr 06 85899 13.5 c 3888 40.6
uncorr 10 85899 40.8 u 140 12.9

uncorr-s-w 01 85899 16.4 c 1707 89.2
uncorr-s-w 06 85899 12.3 c 2053 45.7
uncorr-s-w 10 85899 13.6 u 152 16.3

b-s-corr 01 85899 0.0 c 4021 92.6
b-s-corr 06 85899 0.0 c 1619 55.4
b-s-corr 10 85899 0.0 c 3550 25.4
uncorr 01 429495 32.5 c 3506 72.7
uncorr 06 429495 13.6 c 6416 40.5
uncorr 10 429495 40.4 u 538 13.0

uncorr-s-w 01 429495 16.3 c 2470 89.2
uncorr-s-w 06 429495 12.8 c 7918 46.3
uncorr-s-w 10 429495 13.2 u 585 16.5

b-s-corr 01 429495 0.0 c 3492 92.6
b-s-corr 06 429495 0.0 c 5835 55.2
b-s-corr 10 429495 0.0 c 6834 25.4
uncorr 01 858990 33.2 c 7213 71.6
uncorr 06 858990 13.6 c 5752 40.4
uncorr 10 858990 40.6 u 1895 13.1

uncorr-s-w 01 858990 16.4 c 5036 89.2
uncorr-s-w 06 858990 12.7 c 11793 46.3
uncorr-s-w 10 858990 13.2 u 15593 17.4

b-s-corr 01 858990 0.0 c 6066 92.6
b-s-corr 06 858990 0.0 c 14733 56.2
b-s-corr 07 858990 0.0 c 19346 26.4

8 Conclusion

We have introduced a new non-linear knapsack problem where items during a
travel along a fixed route have to be selected. We have shown that both the con-
strained and unconstrained version of the problem are NP-hard. Our proposed
pre-processing scheme can significantly decrease the size of instances making
them easier for computation. The experimental results show that small sized
instances can be solved to optimality in a reasonable time by the proposed exact
approach. Larger instances can be efficiently handled by our approximate app-
roach producing near-optimal solutions.

As a future work, this problem has several natural generalizations. First, it
makes sense to consider the case where the sequence of cities may be changed.
This variant asks for the mutual solution of the traveling salesman and knapsack
problems. Another interesting situation takes place when cities may be skipped
because are of no worth, for example any item stored there imposes low or
negative profit. Finally, the possibility to pickup and delivery the items is for
certain one another challenging problem.

Acknowledgments. This research was supported under the ARC Discovery Project
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Abstract. A way of implementing domain-specific cutting planes in
branch-and-cut based Mixed-Integer Programming (MIP) solvers is
through solving so-called sub-IPs, solutions of which correspond to the
actual cuts. We consider the suitability of using Maximum satisfiability
solvers instead of MIP for solving sub-IPs. As a case study, we focus on
the problem of learning optimal graphical models, namely, Bayesian and
chordal Markov network structures.

1 Introduction

A central element contributing to the success of mixed-integer programming
(MIP) solvers are algorithms for deriving cutting planes which prune the search
space within a branch-and-cut routine. One way of implementing domain-specific
cutting planes is through solving so-called sub-IPs, solutions of which corre-
spond to the actual cuts. We consider the suitability of using Maximum sat-
isfiability (MaxSAT) solvers instead of the more typical choice of using MIP
solvers for solving sub-IPs. As a case study, we focus on important NP-hard opti-
mization problems of learning probabilistic graphical models, namely, optimal
Bayesian [4,6,12,16,18,19] and chordal Markov network structures [5,11]. The
GOBNILP system [3,6], which implements a practical MIP-based branch-and-
cut approach using specific sub-IPs for deriving domain-specific cutting planes,
is a state-of-the-art exact approach for these problem domains. We point out
that GOBNILP’s sub-IPs can be naturally expressed as MaxSAT, and thereby
a MaxSAT solver can be harnessed for solving the sub-IPs instead of relying
on a MIP solver such as IBM CPLEX. This results in a hybrid MIP-MaxSAT
approach which allows for fine-grained control over the number and structure of
the derived cutting planes, as well as enables deriving a set of optimal cutting
planes wrt the sub-IP cost function. We present results of a preliminary empiri-
cal evaluation of the behavior of such a hybrid approach. The preliminary results
suggest that MaxSAT can achieve similar performance as GOBNILP while find-
ing fewer but higher quality cutting planes than the MIP-based sub-IP procedure
within GOBNILP. We hope this encourages looking into possibilities of harness-
ing MaxSAT solvers within other domains in which sub-IPs are used for deriving
domain-specific cutting planes within MIP-based approaches.
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 347–356, 2015.
DOI: 10.1007/978-3-319-18008-3 24
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2 Preliminaries

Bayesian Network Structure Learning. Given a set X = {X1, . . . , XN}
of nodes (representing random variables), an element of Pi = 2X\{Xi} is a
candidate parent set of Xi. For a given DAG G = (X,E), the parent set of node
Xi is {Xj | (Xj ,Xi) ∈ E}, i.e., it consists of the parents of Xi in G. Picking a sin-
gle Pi ∈ Pi for each Xi gives rise to the (not necessarily acyclic) graph in which,
for each Xi, there is an edge (Xj ,Xi) iff Xj ∈ Pi. In case this graph is acyclic,
the choice of Pis corresponds to a Bayesian network structure (DAG) [17]. With
these definitions, the Bayesian network structure learning problem (BNSL) [9]
is as follows. Given a set X = {X1, . . . , XN} of nodes and, for each Xi, a non-
negative local score (cost) si(Pi) for each Pi ∈ Pi as input, the task is to find a
DAG G∗ such that

G∗ ∈ arg min
G∈DAGs(N)

N∑

i=1

si(Pi), (1)

where Pi is the parent set of Xi in G and DAGs(N) the set of DAGs over X1.

MaxSAT. Maximum satisfiability (MaxSAT) [2,13,15] is a well-known opti-
mization variant of SAT. For a Boolean variable x, there are two literals, x and
¬x. A clause is a disjunction (∨, logical OR) of literals. A truth assignment is
a function from Boolean variables to {0, 1}. A clause C is satisfied by a truth
assignment τ (τ(C) = 1) if τ(x) = 1 for a literal x in C, or τ(x) = 0 for a literal
¬x in C. A set F of clauses is satisfiable if there is an assignment τ satisfying
all clauses in F (τ(F ) = 1), and unsatisfiable (τ(F ) = 0 for every assignment
τ) otherwise. An instance F = (Fh, Fs, c) of the weighted partial MaxSAT prob-
lem consists of two sets of clauses, a set Fh of hard clauses and a set Fs of soft
clauses, and a function c : Fs → R

+ that associates a non-negative cost with
each of the soft clauses. Any truth assignment τ that satisfies Fh is a solution
to F . The cost of a solution τ to F is

cost(F, τ) =
∑

C∈Fs:
τ(C)=0

c(C),

i.e., the sum of the costs of the soft clauses not satisfied by τ . A solution τ is
(globally) optimal for F if cost(F, τ) ≤ cost(F, τ ′) holds for any solution τ ′

to F . Given an instance F , the weighted partial MaxSAT problem asks to find
an optimal solution to F . We will refer to weighted partial MaxSAT instances
simply as MaxSAT instances.

3 The GOBNILP Approach to BNSL

In this section, we give an overview of the GOBNILP solver for the BNSL prob-
lem. GOBNILP [3,6] is based on formulating BNSL as an integer program (IP),
1 For scoring functions with negative scores (e.g., BD [9]), the problem is instead to
maximize the score. Flipping the signs gives the equivalent minimization problem
considered here.
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and implements a branch-and-cut search algorithm using the constrained integer
programming framework SCIP [1], enabling the use of, e.g., the state-of-the-art
IBM CPLEX IP solver for solving the IP instances encountered during search.

Assume an arbitrary BNSL instance (X = {X1, . . . , X}, {si}N
i=1), where si :

Pi → R
+. GOBNILP is based on the following binary IP formulation of BNSL:

minimize
∑

Xi∈X

∑

S∈Pi

si(S) · PS
i (2)

subject to
∑

S∈Pi

PS
i = 1 ∀i = 1..N (3)

∑

Xi∈C

∑

S∩C=∅
PS

i ≥ 1 ∀C ⊂ X (4)

PS
i ∈ {0, 1} ∀i = 1..N, S ∈ Pi (5)

In words, binary “parent set” variables PS
i are indicators for choosing S ∈ Pi

as the parent set of node Xi (Eq. 5). The BNSL cost function (Eq. 1) is directly
represented as Eq. 2 under minimization. The fact that for each Xi exactly one
parent set Pi ∈ Pi has to be selected is encoded as Eq. 3. Finally, and most
importantly, acyclicity of the graph G∗ corresponding to the choice of parent
sets is ensured by the so-called cluster constraints [10] in Eq. 4, stating that for
each possible cluster C (a subset of nodes), there is at least one variable in C
whose parent-set is either outside C or empty.

Instead of directly declaring and solving the integer program consisting of
Eqs. 2–5, GOBNILP implements a branch-and-cut approach, a basic outline of
which is presented as Algorithm 1. Essentially, the search starts with the linear
programming (LP) relaxation consisting of Eqs. 2–3. Cyclic subgraphs are ruled
out during search by deriving cutting planes based on a found solution to the LP
relaxation consisting of Eqs. 2–3 and the already added cluster constraints. At
each search node, an LP relaxation consisting of the current set of constraints
(Line 3) is solved. If the solution x to the LP relaxation has worse cost than a
best already found solution x∗ (initialized to a known upper bound solution),
the search backtracks (Line 4). Otherwise, x∗ is updated to x, and one or more
clusters C for which the cluster constraints are violated under this new x∗ are
identified, and cutting planes are added to the current LP relaxation (Lines 6
and 7) based on C. If no cutting planes are found (i.e., no clusters C are identi-
fied) and x is integral, then it is the optimal solution for that branch (Line 8).
Failing that, a variable with a non-integral value in x is selected for branching
(Lines 10–13).

Two of the main components of the algorithm are solving the LP relaxation
and computing cutting planes. GOBNILP uses an off-the-shelf LP solver, such
as CPLEX or SoPlex, to solve the LP relaxation. It looks for standard cutting
planes, including Gomory, strong Chvátal-Gomory and zero-half cuts. However,
the primary strength of GOBNILP is in using a custom routine to find vio-
lated cluster constraints, which are added as cutting planes to the current LP
relaxation. We will next describe how this is implemented within GOBNILP.
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Algorithm 1. Branch-and-cut
1: procedure Solve(objective function f , constraints c)
2: while True do
3: x ←SolveLPRelaxation(f, c)
4: if f(x) ≥ f(x∗) then return x∗ � f(x∗) = ∞ if x∗ undefined
5: x∗ ← x
6: cnew ←FindCuttingPlanes(x∗)
7: if cnew �= ∅ then c ← c ∪ cnew

8: else if x∗ is integral then return x∗

9: else break
10: y ← a variable that x∗ assigns a non-integral value
11: x∗

y=0 ← Solve(f, c ∪ {y = 0})
12: x∗

y=1 ← Solve(f, c ∪ {y = 1})
13: return arg maxx∈{x∗

y=0,x
∗
y=1} f(x)

14: end procedure

GOBNILP implements FindCuttingPlanes (Line 6 of Alg. 1), by solving
exactly a nested integer program, referred to as a sub-IP. A solution to the sub-
IP corresponds to a subset of the nodes (i.e., a cluster C) for which the cluster
constraint is violated (Eq. 4). Each identified cluster C gives rise to the cutting
plane ∑

v∈C

∑

S:S∩C=∅
PS

v ≥ 1. (6)

We will now detail the sub-IP formulation used within GOBNILP. Intuitively,
solutions to the sub-IP represent cyclic subgraphs over the set X of nodes. For
the following, let x∗(PS

i ) indicate the value of PS
i in the current best solution x∗

to the outer LP relaxation. Note that, by construction,
∑

S∈Pi
x∗(PS

i ) ≤ 1 holds
generally for any solution x∗ and node Xi. Furthermore, if for each Xi there is an
S ∈ Pi such that x∗(PS

i ) = 1, then x∗ represents a (possibly cyclic) directed graph.
Two types of binary variables are used in the sub-IP: (1) for each Xi, a

binary variable Ci indicates whether Xi is in a cluster C found; and (2) for each
x∗(PS

i ) > 0, where S 	= ∅, a binary variable JS
i indicates whether the set S of

nodes are the parents of Xi in the cyclic subgraph found, such that at least one
of the parents are in C whenever Xi is in C. Using these variables, the sub-IP
formulation is the following.

maximize
∑

Xi∈X

∑

S∈Pi

x∗(PS
i ) · JS

i −
∑

Xi∈X

Ci (7)

subject to JS
i → Ci ∀i = 1..N, x∗(PS

i ) > 0 (8)

JS
i →

∨

s∈S

Cs ∀i = 1..N, x∗(PS
i ) > 0 (9)

∑
Ci ≥ 2 ∀i = 1..N (10)

Ci, J
S
i ∈ {0, 1} ∀i = 1..N, x∗(PS

i ) > 0 (11)
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Intuitively, the objective function (Eq. 7) under maximization balances
between finding small clusters (the term −Ci contributing a unit penalty) and
including nodes from parent-sets with high x∗ values. Eq. 8 declares that a node
Xi must be in C whenever at least one parent set is chosen for Xi; and Eq. 9
states that at least one node in any chosen parent set must be in C. Finally,
Eq. 10 requires that any found cluster must be non-trivial, i.e., contain at least
two nodes.

As argued in [6], any feasible solution to the sub-IP has cost greater than -1, and
corresponds to a valid cutting plane (following Eq. 6). During search, GOBNILP
solves the sub-IPs in a way which generates multiple non-optimal feasible solutions
before finding an optimal solution. GOBNILP generates cutting planes according
to Eq. 6 for each of the found solutions. Eqs. 8–9 are implemented using SCIP’s
logicor construct.

4 Solving Sub-IPs via MaxSAT

We formulate the GOBNILP sub-IP as MaxSAT using the same set of binary
variables, and describe how a MaxSAT solver can be used to provide k best
solutions to the sub-IP under different side-constraints over the next solutions
w.r.t. the already found clusters. Eq. 8 is represented as the hard clause

¬JS
i ∨ Ci, (12)

and Eq. 9 as the hard clauses

¬JS
i ∨

∨

s∈S

Cs. (13)

The non-trivial cluster constraint (Eq. 10, i.e.,
∑

Ci ≥ 2) can be equivalently
expressed using the JS

i variables as the hard clause
∨

S∈Pi

JS
i . (14)

This is due to the fact that, for any Xi, if JS
i = 1 for some S ∈ Pi, Eq. 12 and

Eq. 13 together imply that Ci = 1 as well as Cs = 1 for some s ∈ S (and by the
BNSL problem definition we have that s 	= i for all s ∈ S ∈ Pi).

Finally, the sub-IP objective function (Eq. 7) is represented in two parts with
soft clauses.

– The first part
∑

Xi∈X

∑
S∈Pi

x∗(PS
i ) · JS

i is represented by introducing the
soft clause

JS
i with cost x∗(PS

i ) , for each Xi and S ∈ Pi. (15)

– The second part −∑
Xi∈X Ci is represented by the soft clause

¬Ci with cost 1, for each Xi. (16)
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Given a solution τ to the sub-IP, we have that τ(Ci) = 1 if and only if Xi ∈ C,
i.e., node Xi is in the cluster corresponding to τ . We will here consider different
strategies for ruling out C from the set of candidate clusters when finding k > 1
solutions to the sub-IP via MaxSAT.

Ruling out Exactly the Found Cluster. By adding the hard clause
∨

τ(Ci)=1

¬Ci ∨
∨

τ(Ci)=0

Ci,

we rule out exactly the cluster C from the remaining solutions to the sub-IP.
In other words, C will not correspond to any optimal solution after adding this
hard clause.

Ruling out Cluster Supersets and Subsets. Given two clusters, C and C ′,
such that C ⊂ C ′, the cutting plane resulting from C can result in stronger
pruning of the outer LP search space than the cutting plane resulting from C ′,
since the cutting plane constraint becomes more restrictive. Given a cluster C,
adding the hard clause ∨

τ(Ci)=1

¬Ci

results in ruling out all supersets of C from the set of solutions to the sub-IP; the
clause guarantees that all remaining solutions will correspond to clusters which
include at least one node which is not in C. Analogously, adding the hard clause

∨

τ(Ci)=0

Ci

results in ruling out all subsets of C, ensuring that all remaining solutions be
orthogonal to C in the sense that they will involve variables not mentioned in
the cutting plane corresponding to C.

Ruling out Overlapping Clusters. Even more orthogonal solutions—in terms
of non-overlapping clusters, involving non-overlapping subsets of nodes—to the
sub-IP, provide cutting planes which together prune different dimensions of the
search space of the outer LP relaxation. To guarantee finding a set of non-
overlapping clusters via MaxSAT, after each found solution τ corresponding to
a cluster C, one can add the hard unit clauses

¬Ci for each Ci such that τ(Ci) = 1,

guaranteeing that none of the nodes in C will occur in any of the remaining
solutions.

For integrating the sub-IP search via MaxSAT within GOBNILP, we use our own
prototype re-implementation of the MaxHS MaxSAT solver [8] that in prelimi-
nary experiments showed good performance compared to other MaxSAT solvers
in this domain. The MaxHS algorithm is a hybrid SAT-MIP approach based



MaxSAT-Based Cutting Planes for Learning Graphical Models 353

on iteratively solving a sequence of SAT instances and extracting unsatisfiable
cores, and using the IBM CPLEX MIP solver to solve a sequence of minimum
hitting set problems over the extracted cores. The search progresses bottom-up
by proving increasingly tight lower bounds for the optimal solutions. We have
implemented an API for the solver which allows for incrementally querying for k
best solutions without having to restart the search from scratch after each found
solution. Furthermore, the API enables adding arbitrary hard clauses after each
solution, using which we can apply the different set-based strategies for finding
multiple best solutions to the sub-IPs. Our implementation also natively sup-
ports real-valued weights for the MaxSAT soft clauses. We used Minisat 2.2.0 as
the underlying SAT solver.

5 Experiments

For a preliminary empirical evaluation of using MaxSAT to solve sub-IPs within
GOBNILP (version 1.4.1), we used a set of 530 Bayesian network structure
learning instances from [14] and 285 chordal Markov network learning instances
from [11]2 over 17–61 nodes. The experiments were run on a cluster of 2.53-GHz
Intel Xeon quad core machines with 32-GB memory and Ubuntu Linux 12.04.
A timeout of 2 h and a memory limit of 30 GB were enforced for solving each
benchmark instance.

An overview of the results is presented in Fig. 1. The upper two plots give
views to the total per-instance running times of the default GOBNILP (“GOB-
NILP”, using CPLEX to solve the sub-IP encountered during search) and our
modified GOBNILP variants (“MaxSAT”) which use our MaxSAT solver on the
MaxSAT formulations presented in Sect. 4 to solve the encountered sub-IPs.
In the plot keys, the numerical parameter (1/5/10) after “MaxSAT” gives the
number of best solutions looked for, where “all” (“opt”, respectively) refers to
finding all (respectively, all optimal) solutions regardless of how many exist for
the individual sub-IPs. In case of “super+subset” and “overlap”, the set of solu-
tions to the sub-IPs are incrementally refined after each solution by ruling out
solutions which are either superset or subsets (“super+subset”) of the found
solution, or overlap with the solution, using the clauses detailed in Sect. 4.

Fig. 1 (top left) gives the number of Bayesian network structure learning
instances solved (x-axis) within different timeouts (y-axis). We observe that the
best-performing MaxSAT-based variants for solving the sub-IPs show generally
very similar performance as the default GOBNILP. Here we emphasize that the
default MIP-based sub-IP solving strategy within GOBNILP has been carefully
hand-tuned for these kinds of instances. The MaxSAT-based variant which aims
at finding orthogonal (non-overlapping, i.e., variable-disjoint) cuts, especially the
one which incrementally finds a maximal disjoint set of optimal sub-IP solutions
performs very similarly to GOBNILP. Surprisingly, even finding only a single
optimal solution to the sub-IP using MaxSAT comes close to the performance
2 Setting the option gobnilp/noimmoralities to true in GOBNILP allows for learning

chordal Markov networks with GOBNILP [7] without changing the sub-IP model.
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Fig. 1. Top left: number of solved instances using different timeouts on Bayesian net-
works; right: running time comparison of GOBNILP and MaxSAT finding all cuts
under the disjoint refinement on Markov networks. Bottom left: average cut quality;
middle: number of cuts; right: average sub-IP solving time.

of GOBNILP. These observations seem to suggest that high-quality cuts (in
terms of the sub-IP objective function) are very important in pruning the search
space. In contrast, the variants which look for many cuts (5-10) with the less-
restrictive refinement strategies (ruling out either all supersets and all subsets,
or only the exact solutions found), perform noticeably worse. Here we note that,
due to the fact that our MaxSAT solver implementation allows for adding the
hard refinement clauses incrementally without having to start the solver from
scratch, we observed that the running time cost of finding many solutions is
rather negligible, often a fraction of a second. Hence it seems that the refine-
ment strategy plays a key role. Focusing on the best-performing MaxSAT-based
variant (finding a maximal disjoint set of optimal solutions), Fig. 1 (top right)
gives a per-instance running time comparison with GOBNILP on the Markov
network learning instances, again showing performance close to that of GOB-
NILP. In fact, MaxSAT results in solving one more instance within the timeout,
and the average time spent in solving the sub-IPs is less than that of GOBNILP
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on several Markov network instances (Fig. 1 top right). As can be seen from
Fig. 1 (bottom left), the cuts found with MaxSAT tend to be of better quality
on average compared to those found by GOBNILP. Here it is important to note
that since GOBNILP and the MaxSAT variants find different cuts, the overall
search performed by the different solvers, especially, the sub-IPs encountered
during search, differ. While the MaxSAT-based sub-IP routine results in overall
performance similar to GOBNILP, this is achieved by adding notably fewer cuts,
as shown in Fig. 1 (bottom middle). The price paid for finding better quality
cuts, on the other hand, is reflected in the average running time of solving the
per-instance sub-IPs, as can be seen from Fig. 1 (bottom right).

A current challenge is to further speed up solving the sub-IPs with MaxSAT,
e.g. by by devising domain-specific search heuristics. Similar modifications to
GOBNILP’s MIP-based sub-IP routine, as well as studying alternative sub-IP
objective functions, would also be of interest. It would also be interesting to
apply MaxSAT solvers to sub-IPs within MIP-based approaches to other problem
domains.
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11. Kangas, K., Niinimäki, T., Koivisto, M.: Learning chordal Markov networks by
dynamic programming. In: Proc. NIPS, pp. 2357–2365. Curran Associates, Inc.
(2014)



356 P. Saikko et al.

12. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks.
Journal of Machine Learning Research, 549–573 (2004)
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Abstract. We consider a dynamic vehicle routing problem with time
windows and stochastic customers (DS-VRPTW), such that customers
may request for services as vehicles have already started their tours. To
solve this problem, the goal is to provide a decision rule for choosing,
at each time step, the next action to perform in light of known requests
and probabilistic knowledge on requests likelihood. We introduce a new
decision rule, called Global Stochastic Assessment (GSA) rule for the
DS-VRPTW, and we compare it with existing decision rules, such as
MSA. In particular, we show that GSA fully integrates nonanticipativity
constraints so that it leads to better decisions in our stochastic con-
text. We describe a new heuristic approach for efficiently approximating
our GSA rule. We introduce a new waiting strategy. Experiments on
dynamic and stochastic benchmarks, which include instances of different
degrees of dynamism, show that not only our approach is competitive
with state-of-the-art methods, but also enables to compute meaningful
offline solutions to fully dynamic problems where absolutely no a priori
customer request is provided.

1 Introduction

Dynamic (or online) vehicle routing problems (D-VRPs) arise when information
about demands is incomplete, e.g., whenever a customer is able to submit a request
during the online execution of a solution. D-VRP instances usually indicate the
deterministic requests, i.e., those that are known before the online process if any.
Whenever someadditional (stochastic) knowledgeaboutunknownrequests is avail-
able, the problem is said to be stochastic. We focus on the Dynamic and Stochastic
VRP with Time Windows (DS-VRPTW). These problems arise in many practi-
cal situations, as door-to-door or door-to-hospital transportation of elderly or dis-
abled persons. In many countries, authorities try to set up dial-a-ride services, but
escalating operating costs and the complexity of satisfying all customer demands
become rapidly unmanageable for solution methods based on human choices [10].
However, such complex dynamic problems need reliable and efficient algorithms
that should first be assessed on reference problems, such as the DS-VRPTW.

In this paper, we present a new heuristic method for solving the DS-VRPTW,
based on a Stochastic Programming modeling. By definition, our approach enables
c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 357–374, 2015.
DOI: 10.1007/978-3-319-18008-3 25
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a higher level of anticipation than heuristic state-of-the-art methods. The result-
ing new online decision rule, called Global Stochastic Assessment (GSA), comes
with a theoretical analysis that clearly defines the nature of the method. We pro-
pose a new waiting strategy together with a heuristic algorithm that embeds GSA.
We compare GSA with the state-of-the-art method MSA from [7], and provide
a comprehensive experimental study that highlights the contributions of existing
and new waiting and relocation strategies.

This paper is organized as follows. Section 2 describes the problem. Section
3 presents the state-of-the-art method we compare to and briefly discuss related
works. GSA is then presented in Section 4. Section 5 describes an implementation
that embeds GSA, based on heuristic local search. Finally, section 6 resumes the
experimental results. A conclusion follows in section 7.

2 Description of the DS-VRPTW

Notations. We note [l, u] the set of all integer values i such that l ≤ i ≤ u. A
sequence < xi, xi+1, . . . , xi+k > (with k ≥ 0) is noted xi..i+k, and the concate-
nation of two sequences xi..j and xj+1..k (with i ≤ j < k) is noted xi..j .xj+1..k.
Random variables are noted ξ and their realizations are noted ξ. We note ξ ∈ ξ
the fact that ξ is a realization of ξ, and p(ξ = ξ) the probability that the random
variable ξ is realized to ξ. Finally, we note Eξ[f(ξ)] the expected value of f(ξ)
which is defined by Eξ[f(ξ)] =

∑
ξ∈ξ p(ξ = ξ) · f(ξ).

Input Data of a DS-VRPTW. We consider a discrete time horizon [1,H] such
that each online event or decision occurs at a discrete time t ∈ [1,H], whereas
each offline event or decision occurs at time t = 0. The DS-VRPTW is defined
on a complete and directed graph G = (V,E). The set of vertices V = [0, n]
is composed of a depot (vertex 0) and n customer regions (vertices 1 to n). To
each arc (i, j) ∈ E is associated a travel time ti,j ∈ R≥0, that is the time needed
by a vehicle to travel from i to j, with ti,j �= tj,i in general. To each customer
region i ∈ [1, n] is associated a load qi, a service duration di ∈ [1,H] and a time
window [ei, li] with ei, li ∈ [1,H] and ei ≤ li.

The set of all customer requests is R ⊆ [1, n] × [0,H]. For each request
(i, t) ∈ R, t is the time when the request is revealed. When t = 0, the request is
known before the online execution and it is said to be deterministic. When t > 0,
the request is revealed during the online execution at time t and it is said to be
online (or dynamic). There may be several requests for a same vertex i which are
revealed at different times. During the online execution, we only know a subset
of the requests of R (i.e., those which have already been revealed). However, for
each time t ∈ [1,H], we are provided a probability vector P t such that, for each
vertex i ∈ [1, n], P t[i] is the probability that a request is revealed for i at time t.

There are k vehicles and all vehicles have the same capacity Q.

Solution of a DS-VRPTW. At the end of the time horizon, a solution is a subset
of requests Ra ⊆ R together with k routes (one for each vehicle). Requests in
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Ra are said to be accepted, whereas requests in R \ Ra are said to be rejected.
The routes must satisfy the constraints of the classical VRPTW restricted to
the subset Ra of accepted requests, i.e., each route must start at the depot at
a time t ≥ 1 and end at the depot at a time t′ ≤ H, and for each accepted
request (i, t) ∈ Ra, there must be exactly one route that arrives at vertex i at
a time t′ ∈ [ei, li] with a current load l ≤ Q − qi and leaves vertex i at a time
t′′ ≥ t′ + di. The goal is to minimize the number of rejected requests.

As not all requests are known at time 0, the solution cannot be computed
offline, and it is computed during the online execution. More precisely, at each
time t ∈ [1,H], an action at is computed. Each action at is composed of two
parts: first, for each request (i, t) ∈ R revealed at time t, the action at must
either accept the request or reject it; second, for each vehicle, the action at must
give operational decisions for this vehicle at time t (i.e., service a request, travel
towards a vertex, or wait at its current position). Before the online execution (at
time 0), some decisions are computed offline. Therefore, we also have to compute
a first action a0.

A solution is a sequence of actions a0..H which covers the whole time horizon.
This sequence must satisfy VRPTW constraints, i.e., the actions of a0..H must
define k routes such that each request accepted in a0..H is served once by one
of these routes within the time window associated with the served vertex and
without violating capacity constraints. We define the objective function ω such
that ω(a0..t) is +∞ if a0..t does not satisfy VRPTW constraints, and ω(a0..t) is
the number of requests rejected in a0..t otherwise. Hence, a solution is a sequence
a0..H such that ω(a0..H) is minimal at the end of the horizon.

Stochastic program. There are different notations used for formulating stochastic
programs; we mainly use those from [8]. For each time t ∈ [1,H], we have a vector
of random variables ξt such that, for each vertex i ∈ [1, n], ξt[i] is realized to 1 if a
request for i is revealed at time t, and to 0 otherwise. The probability distribution
of ξt is defined by P t, i.e., p(ξt[i] = 1) = P t[i] and p(ξt[i] = 0) = 1 − P t[i].
We note ξ1..t the random matrix composed of the random vectors ξ1 to ξt. A
realization ξ1..H ∈ ξ1..H is called a scenario.

At each time t ∈ [1,H], the action at must contain one accept or reject
for each request which is revealed in ξt. Therefore, we note A(ξt) the set of all
actions that contain an accept or a reject for each vertex i ∈ [1, n] such that
ξt[i] = 1. Of course, these actions also contain other decisions related to the
k vehicles. We also note A(ξt1..t2) the sequence of sets < A(ξt1), . . . , A(ξt2) >
where t1 ≤ t2.

Hence, at each time t, given the sequence a0..t−1 of past actions, the best
action at is obtained by solving the multistage stochastic problem defined by
eq. (1):

at = argmin
at∈A(ξt)

Eξt+1

[

min
at+1∈A(ξt+1)

Eξt+2

[

· · · min
aH−1∈A(ξH−1)

EξH

[

min
aH∈A(ξH )

ω(a0..H)

]

· · ·
]]

(1)
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2 ∅ ∅ {g, h, i} ∅ ∅ ∅ ∅ ∅

At time t = 1, there is only 1 vehicle
which is on vertex a, and we have to choose
between 2 possible actions: travel to b or
travel to c

Fig. 1. A simple example of nonanticipation. The graph is displayed on the left. Time
windows are displayed in brackets. For every couple of vertices (i, j), if an arrow i → j is
displayed then ti,j = 2; otherwise ti,j = 20. To simplify, we consider only 2 equiprobable
scenarios (displayed on the right). These scenarios have the same prefix (at times 2
and 3 no request is revealed) but reveal different requests at time 4. When using eq.
(1) at time t = 1, we choose to travel to c as the expected cost with nonanticipativity
constraints is 1: At time 4, only one scenario will remain and if this scenario is ξ1 (resp.
ξ2), request (d, 4) (resp. (g, 4)) will be rejected. When using eq. (2), we choose to travel
to b as the expected cost without nonanticipativity constraints is 0 (for each possible
scenario, there exists a sequence of actions which serves all requests: travel to d, e,
and f for ξ1 and travel to g, h, and i for ξ2). However, if we travel to b, at time 3 we
will have to choose between traveling to d or g and at this time the expected cost of
both actions will be 1.5: If we travel to d (resp. g), the cost with scenario ξ1 is 0 (resp.
3) and the cost with scenario ξ2 is 3 (resp. 0). In this example, the nonanticipativity
contraints of multistage problem (1) thus leads to a better action than the two-stage
relaxation (2).

Note that this multistage stochastic problem is different from the two-stage
stochastic problem defined by eq. (2):

at = arg min
at∈A(ξt)

Eξt+1..H [ min
at+1..H∈A(ξt+1..H)

ω(a0..H)] (2)

Indeed, eq. (1) enforces nonanticipativity constraints so that, at each time t′ >
t, we consider the action at′

which minimizes the expectation with respect to
ξt′

only, without considering the possible realizations of ξt′+1..H . Eq. (2) does
not enforce these constraints and considers the best sequence at+1..H for each
realization ξt+1..H ∈ ξt+1..H . Therefore, eq. (1) may lead to a larger expectation
of ω than eq. (2), as it is more constrained. However, the expectation computed
in eq. (1) leads to better decisions in our context where some requests are not
revealed at time t. This is illustrated in Fig. 1.

3 Related Work

The first D-VRP is proposed in [29], which introduces a single vehicle Dynamic
Dial-a-Ride Problem (D-DARP) in which customer requests appear dynami-
cally. Then, [20] introduced the concept of immediate requests that must be
serviced as soon as possible, implying a replanning of the current vehicle route.
Complete reviews on D-VRP may be found in [18,21]. In this section, we more
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Algorithm 1. The ChooseRequest-ε Expectation Algorithm
1 for at ∈ A(ξt) do f(at) ← 0 ;
2 Generate a set S of α scenarios using Monte Carlo sampling
3 for each scenario s ∈ S and each action at ∈ A(ξt) do
4 f(at) ← f(at)+cost of (approximate) solution to scenario s starting with at

5 return arg minat∈A(ξt) f(at)

particularly focus on stochastic D-VRP. [18] classifies approaches for stochastic
D-VRP in two categories, either based on stochastic modeling or on sampling.
Stochastic modeling approaches formally capture the stochastic nature of the
problem, so that solutions are computed in the light of an overall stochastic con-
text. Such holistic approaches usually require strong assumptions and efficient
computation of complex expected values. Sampling approaches try to capture
stochastic knowledge by sampling scenarios, so that they tend to be more focused
on local stochastic evidences. Their local decisions however allow sample-based
methods to scale up to larger problem instances, even under challenging timing
constraints. One usually needs to find a good compromise between having a high
number of scenarios, providing a better representation of the real distributions,
and a more restricted number of these leading to less computational effort.

[7] studies the DS-VRPTW and introduces the Multiple Scenario Approach
(MSA). A key element of MSA is an adaptive memory that stores a pool of
solutions. Each solution is computed by considering a particular scenario which
is optimized for a few seconds. The pool is continuously populated and filtered
such that all solutions are consistent with the current system state. Another
important element of MSA is the ranking function used to make operational
decisions involving idle vehicles. The authors designed 3 algorithms for that
purpose:

– Expectation [3,4] samples a set of scenarios and selects the next request to
be serviced by considering its average cost on the sampled set of scenarios.
Algorithm 1 [27] depicts how it chooses the next action at to perform. It
requires an optimization for each action at ∈ A(ξt) and each scenario s ∈ S
(lines 3-4), which is computationally very expensive, even with a heuristic
approach.

– Regret [3,6] approximates the expectation algorithm by recognizing that,
given a solution sol∗s to a particular scenario s, it is possible to compute a
good approximation of the local loss inquired by performing another action
than the next planned one in sol∗s .

– Consensus [4,7] selects the request that appears the most frequently as the
next serviced request in the solution pool.

Quite similar to the consensus algorithm is the Dynamic Sample Scenario
Hedging Heuristic introduced by [14] for the stochastic VRP. Also, [15] designed
a Tabu Search heuristic for the DS-VRPTW and introduced a vehicle-waiting
strategy computed on a future request probability threshold in the near region.
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Finally, [5] extends MSA with waiting and relocation strategies so that the vehi-
cles are now able to relocate to promising but unrequested yet vertices. As the
performances of MSA has been demonstrated in several studies [5,12,19,22], it
is still considered as a state-of-the-art method for dealing with DS-VRPTW.

Other studies of particular interest for our paper are [13], on the dynamic
and stochastic pickup and delivery problem, and [22], on the DS-DARP. Both
consider local search based algorithms. Instead of a solution pool, they exploit
one single solution that minimizes the expected cost over a set of scenarios.
However, in order to limit computational effort, only near future requests are
sampled within each scenario. Although the approach of [22] is similar to the
one of [13], the set of scenarios considered is reduced to one scenario. Although
these later papers show some similarities with the approach we propose, they do
not provide any mathematical motivation and analysis of their methods.

4 The global Stochastic Assessment decision rule

The two-stage stochastic problem defined by eq. (2) may be solved by a sampling
solving method such as MSA, which solves a deterministic VRPTW for each pos-
sible scenario (i.e., realization of the random variables) and selects the action
at which minimizes the sum of all minimum objective function values weighted
by scenario probabilities. However, we have shown in Section 2 that eq. (2)
does not enforce nonanticipativity constraints because the different determinis-
tic VRPTW are solved independently. To enforce nonanticipativity constraints
while enabling sampling methods, we push these constraints in the computa-
tion of the optimal solutions for all different scenarios: Instead of computing
these different optimal solutions independently, we propose to compute them all
together so that we can ensure that whenever two scenarios share a same prefix
of realizations, the corresponding actions are enforced to be equal.

At each time t ∈ [0,H], let r be the number of different possible realizations of
ξt+1..H , and let us note ξt+1..H

1 , . . . , ξt+1..H
r these realizations. Given the sequence

a0..t−1 of past actions, we choose action at by using eq. (3)

at = arg min
at∈A(ξt)

Q(a0..t, {ξt+1..H
1 , . . . , ξt+1..H

r }) (3)

which is called the deterministic equivalent form of eq. (1).
Q(a0..t, {ξt+1..H

1 , . . . , ξt+1..H
r }) solves the deterministic optimization problem

min
at+1..H
1 ∈A(ξt+1..H

1 ),...,at+1..H
r ∈A(ξt+1..H

r )

r∑

i=1

p(ξt+1..H=ξt+1..H
i ) · ω(a0..t.at+1..H

i )

(4)

s.t. (ξt+1..t′
i = ξt+1..t′

j ) ⇒ (at+1..t′
i = at+1..t′

j ), ∀t′ ∈ [t + 1,H], ∀i, j ∈ [1, r]
(5)

The nonanticipativity constraints (5) state that, when 2 realizations ξt+1..H
i and

ξt+1..H
j share a same prefix from t + 1 to t′, the corresponding actions must be

equal [23].
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Solving eq. (3) is computationally intractable for two reasons. First, since
the number r of possible realizations of ξt+1..H is exponential in the number
of vertices and in the remaining horizon size H − t, considering every possible
scenario is intractable in practice. We therefore consider a smaller set of α sce-
narios S = {s1, ..., sα} such that each scenario si ∈ S is a realization of ξt+1..H ,
i.e., ∀i ∈ [1, α], si ∈ ξt+1..H . This set S is obtained by Monte Carlo sampling
[2]. All elements of S share the same probability, i.e., p(ξt+1..H = s1) = . . . =
p(ξt+1..H = sα).

Second, solving eq. (3) basically involves solving to optimality problem Q for
each possible action at ∈ A(ξt). Each problem Q involves solving a VRPTW for
each possible scenario of S, while ensuring nonanticipativity constraints between
the different solutions. As the VRPTW problem is an NP-hard problem, we
propose to compute an upper bound Q of Q based on a given sequence at+1..H

R

of future route actions. Because we impose the sequence at+1..H
R , the set of

possible actions at time t is limited to those directly compatible with it, denoted
Ã(ξt, at+1..H

R ) ⊆ A(ξt). That limitation enforces ω(a0..H) < +∞. This finally
leads to the GSA decision rule:

(GSA) at = arg min
at∈Ã(ξt,at+1..H

R )

Q(a0..t, at+1..H
R , S) (6)

which, provided realization ξt, sampled scenarios S and future route actions
at+1..H

R , selects the action at that minimizes the expected approximate cost over
scenarios S. Notice that almost all the anticipative efficiency of the GSA decision
rule relies on the sequence at+1..H

R , which directly affects the quality of the upper
bound Q.

Sequence at+1..H
R of future route actions. This sequence is used to compute

an upper bound of Q. For each time t′ ∈ [t + 1,H], the route action at′
R only

contains operational decisions related to vehicle routing (i.e., for each vehicle,
travel towards a vertex, or wait at its current position) and does not contain
decisions related to requests (i.e., request acceptance or rejection). The more
flexible at′

R with respect to S, the better the bound Q. We describe in Section 5
how a flexible sequence is computed through local search.

Computation of an upper bound Q of Q. Algorithm 2 depicts the com-
putation of an upper bound Q of Q given a sequence at+1..H

R of route actions
consistent with past actions a0..t. For each scenario si of S, Algorithm 2 builds
a sequence b0..H for si, which starts with a0..t, and whose end bt+1..H is com-
puted from at+1..H

R in a greedy way. At each time t′ ∈ [t + 1..H], each request
revealed at time t′ in scenario si is accepted if it is possible to modify bt′..H

so that one vehicle can service it; it is rejected otherwise. One can consider
bt′..H as being a set of vehicle routes, each defined by a sequence of planned
vertices. Each planned vertex comes with specific decisions: a waiting time and
whether a service is performed. In this context, trytoServe performs a deter-
ministic linear time modification of bt′..H such that (j, t′) corresponds to the
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insertion of the vertex j in one of the routes defined by bt′..H , at the best posi-
tion with respect to VRPTW constraints and travel times, without modifying
the order of the remaining vertices. At the end, Algorithm 2 returns the aver-
age number of rejected requests for all scenarios. Note that, when modifying a
sequence of actions so that a request can be accepted (line 6), actions bt′..H can
be modified, but b0..t′−1 are not modified. This ensures that Q preserves the
nonanticipativity constraints. Indeed, the fact that two identical scenarios pre-
fixes could be assigned two different subsequences of actions implies that either
trytoServe((j, t′), bt′..H) is able to modify an action bt<t′

or is a nondeterminis-
tic function. In both cases, there is a contradiction. Finally, notice that contrary
to other local search methods based on Monte Carlo simulation as in [13,22],
GSA considers the whole timing horizon when evaluating a first-stage solution
against a scenario.

Comparison to MSA. GSA has two major differences with MSA. Given a set
of scenarios, GSA maintains only one solution, namely the sequence at+1..H

R , that
best suits to a pool of scenarios whilst MSA computes a set of solutions, each
specialized to one scenario from the pool. Furthermore, by preserving nonantic-
ipativity GSA approximates the multistage problem of equations (1,3). In con-
trary, MSA relaxes these constraints and therefore approximates the two-stage
problem (2) [27].

In particular, given a pool of scenarios obtained by Monte Carlo sampling,
MSA Expectation Algorithm 1 reformulates eq. (2) as a sample average approx-
imation (SAA, [1,28]) problem. The SAA tackles each scenario as a separate
deterministic problem. For a specific scenario ξt+1..H , it considers the recourse
cost of a solution starting with actions a0..t. Because the scenarios are not linked
by nonanticipativity constraints, two scenarios i and j that share the same prefix
ξt+1..t′

can actually be assigned two solutions performing completely different
actions a0..t′

i and a0..t′
j , for some t′ > t. The evaluation of action at over the set

of scenarios is therefore too optimistic, leading to a suboptimal choice. By defini-
tion, the Regret algorithm approximates the Expectation algorithm. The Regret

Algorithm 2. The Q(a0..t, at+1..H
R , S) approximation function

1 Precondition: at+1..H
R is a sequence of route actions consistent with a0..t

2 for each scenario si ∈ S do

3 nbRejected [i] ← 0; b0..t ← a0..t; bt+1..H ← at+1..H
R

4 for t′ ∈ [t + 1..H] do
5 for each request (j, t′) revealed at time t′ for a vertex j in scenario si do

6 ct′..H ← trytoServe((j, t′), bt′..H)

7 if bt+1..t′−1 · ct′..H is feasible then bt′..H ← ct′..H

8 else add the decision reject(j,t’) to bt′
and increment nbRejected [i];

9 return 1
|S| · ∑

si∈S nbRejected [i]
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algorithm then also approximates a two-stage problem. The Consensus algo-
rithm selects the most suggested action among plans of the pool. By selecting
the most frequent action in the pool, Consensus somehow encourages nonan-
ticipation. However, the nonanticipativity constraints are not enforced as each
scenario is solved separately. Consensus also approximates a two-stage problem.

5 Solving the Dynamic and Stochastic VRPTW

GSA alone does not permit to solve a DS-VRPTW instance. In this section, we
now show how the decision rule, as defined in eq. 6, can be embedded in an
online algorithm that solves the DS-VRPTW. Finally, we present the different
waiting and relocation strategies we exploit, including a new waiting strategy.

5.1 Embedding GSA

In order to solve the DS-VRPTW, we design Algorithm 3, which embeds the
GSA decision rule.

Main Algorithm. It is parameterized by: α which determines the size of the pool
S of scenarios; β which determines the frequency for re-initializing S; and δins

which limits the time spent for trying to insert a request in a sequence.
It runs in real time. It is started before the beginning of the time horizon, in

order to compute an initial pool S of α scenarios and an initial solution a1..H
R

with respect to offline requests (revealed at time 0). It runs during the whole
time horizon, and loops on lines 3 to 11. It is stopped when reaching the end of
the time horizon. The real time is discretized in H time units, and the variable
t represents the current time unit: It is incremented when real time exceeds the
end of the tth time unit. In order to be correct, Algorithm 3 requires the real
computation time of lines 4 to 11 to be smaller than the real time spent in one
time unit. This is achieved by choosing suitable values for parameters α and
δins.

Lines 4 and 5 describe what happens whenever the algorithm enters a new
time unit: Function handleRequests (described below) chooses the next action
at and updates at+1..H

R ; Finally, S is updated such that it stays coherent with
respect to realization ξt. Each scenario ξt..H ∈ S is composed of a sequence
of sampled requests. To each customer region i is associated an upper bound
ri = min(l0−ti,0−di, li−t0,i) on the time unit at which a request can be revealed
in that region, like in [7]. That constraint prevents tricky or inserviceable requests
to be sampled. At time t, a sampled request (i, t) which doesn’t appear in ξt is
either removed if t ≥ ri or randomly delayed in ξt+1..H ∈ S otherwise.

The algorithm spends the rest of the time unit to iterate over lines 7 to 10,
in order to improve the sequence of future route actions at+1..H

R . We consider a
hill climbing strategy: The current solution at+1..H

R is shaked to obtain a new
candidate solution bt+1..H

R , and if this solution leads to a better upper bound
Q of Q, then it becomes the new current solution. Shaking is performed by the
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Algorithm 3. LS-based GSA
1 Initialize S with α scenarios and compute initial solution a1..H

R w.r.t. known
requests

2 t ← 1;
3 while real time has not reached the end of the time horizon do

/* Beginning of the time unit */

4 (at, at+1..H
R ) ←handleRequests(a0..t−1, at..H

R , ξt)
5 execute action at and update the pool S of scenarios w.r.t. to ξt

/* Remaining of the time unit */

6 while real time has not reached the end of time unit t do

7 bt+1..H
R ← shakeSolution(at+1..H

R )

8 if Q(a0..t, bt+1..H
R , S) < Q(a0..t, at+1..H

R , S) then at+1..H
R ← bt+1..H

R ;
9 if the number of iterations since the last re-initialization of S is equal to

β then
10 Re-initialize the pool S of scenarios w.r.t. ξt+1..H

11 t ← t + 1 /* Skip to next time unit */

12 Function handleRequests(a0..t−1, at..H
R , ξt)

13 b0..t−1 ← a0..t−1; bt..H ← at..H
R

14 for each request revealed for a vertex j in realization ξt do
15 if we find, in less than δins, how to modify bt..H s.t. request (j, t) is

served then
16 modify bt..H to accept request (j, t)
17 else
18 modify bt..H to reject request (j, t)

19 return (bt, bt+1..H)

shakeSolution function. This function considers different neighborhoods, cor-
responding to the following move operators: relocate, swap, inverted 2-opt, and
cross-exchange (see [16,26] for complete descriptions). As explained in Section
5.2, depending on the chosen waiting and relocation strategy, additional move
operators are exploited. At each call to the shakeSolution function, the consid-
ered move operator is changed, such that the operators are equally selected one
after another in the list. Every β iterations, the pool S of scenarios is re-sampled
(lines 9-10). This re-sampling introduces diversification as the upper bound com-
puted by Q changes. We therefore do not need any other meta-heuristic such as
Simulated Annealing.

Function handleRequest is called at the beginning of a new time unit t, to
compute action at in light of online requests (if any). It implements the GSA
decision rule defined in eq. (6). The function considers each request revealed at
time t for a vertex j, in a sequential way. For each request, it tries to insert it
into the sequence at..H

R (i.e., modify the routes so that a vehicle visits j during
its time window). As in shakeSolution, local search operations are performed
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during that computation. The time spent to find a feasible solution including
the new request is limited to δins. If such a feasible solution is found, then the
request is accepted, otherwise it is rejected. If there are several online requests
for the same discretized time t, we process these requests in their real-time order
of arrival, and we assume that all requests are revealed at different real times.

5.2 Waiting and Relocation strategies

As defined in section 2, a vehicle that just visited a vertex usually has the choice
between traveling right away to the next planned vertex or first waiting for some
time at its current position. Unlike in the static (and deterministic) case, in the
dynamic (and stochastic) VRPTW these choices may have a significant impact
on the solution quality.

Waiting and relocation strategies have attracted a great interest on dynamic
and stochastic VRP’s. In this section, we present and describe how waiting and
relocation strategies are integrated to our framework, including a new waiting
strategy called relocation-only.

Relocation strategies. Studies in [8,9] already showed that for a dynamic
VRP with no stochastic information, it is optimal to relocate the vehicle(s) either
to the center (in case of single-vehicle) or to strategical points (multiple-vehicle
case) of the service region. The idea evolved and has been successfully adapted
to routing problems with customer stochastic information, in reoptimization
approaches as well as sampling approaches.

Relocation strategies explore solutions obtained when allowing a vehicle to
move towards a customer vertex even if there is no request received for that
vertex at the current time slice. Doing so, one recognizes the fact that, in the
context of dynamic and stochastic vehicle routing, a higher level of anticipation
can be obtained by considering to reposition the vehicle after having serviced a
request to a more stochastically fruitful location. Such a relocation strategy has
already been applied to the DS-VRPTW in [5].

Waiting strategies. In a dynamic context, the planning of a vehicle usually
contains more time than needed for traveling and servicing requests. When it
finishes to service a request, a vehicle has the choice between waiting for some
time at its location or leaving for the next planned vertex. A good strategy
for deciding where and how long to wait can potentially help at anticipating
future requests and hence increase the dynamic performances. We consider three
existing waiting strategies and introduce a new one:

– Drive-First (DF ): The basic strategy aims at leaving each serviced request
as soon as possible, and possibly wait at the next vertex before servicing it
if the vehicle arrives before its time window.

– Wait-First (WF ): Another classical waiting strategy consists in delaying as
much as possible the service time of every planned requests, without violating



368 M. Saint-Guillain et al.

their time windows. After having serviced a request, the vehicle hence waits
as long as possible before moving to the next planned request.

– Custom-Wait (CW ): A more tailored waiting strategy aims at controlling
the waiting time at each vertex, which becomes part of the online decisions.

– Relocation-Only waiting (RO): In order to take maximum benefit of reloca-
tion strategy while avoiding the computational overhead due to additional
decision variables involved in custom waiting, we introduce a new waiting
strategy. It basically applies drive-first scheduling to every request and then
applies wait-first waiting only to those requests that follow a relocation one.
By doing so, a vehicle will try to arrive as soon as possible at a planned relo-
cation request, and wait there as long as possible. In contrary, it will spend
as less time as possible at non-relocation request vertices. Note that if it is
not coupled to a relocation strategy, RO reduces to DF . Furthermore, RO
also reduces to the dynamic waiting strategy described in [17] if we define
the service zones as being delimited by relocation requests. However, our
strategy differs by the fact that service zones in our approach are computed
in light of stochastic information instead of geometrical considerations.

Depending on the waiting strategy we apply and whether we use relocation or
not, additional LS move operators are exploited. Specifically, among the waiting
strategies, only custom-wait requires additional move operators aiming at either
increasing or decreasing the waiting time at a random planned vertex. Relocation
also requires two additional move operators that modify a given solution by either
inserting or removing a relocation action at a random vertex.

6 Experimentations

We now describe our experimentations and compare our results with those of
the state of the art MSA algorithm of [7].

6.1 Algorithms

Different versions of Algorithm 3 have been experimentally assessed, depending
on which waiting strategy is implemented and whether in addition we use the
relocation strategy or not.

Surprisingly, the wait-first waiting strategy, as well as its version including
relocation, produced very bad results in comparison to other strategies, rejecting
more than twice more online requests in average. Because of its computational
overhead, the custom-wait strategy also produced bad results, even with relo-
cation. For conciseness we therefore do not report these strategies in the result
plots.

The 3 different versions of Algorithm 3 we thus consider are the following:
GSAdf, which stands for GSA with drive-first waiting strategy, GSAdfr which
stands for GSA with drive-first and relocation strategies, and finally GSAro
with means GSA using relocation-only strategy. Recall that, by definition, the
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relocation-only strategy involves relocation. In addition to those 3 algorithms,
as a baseline we consider the GLSdf algorithm, which stands for greedy local
search with drive-first waiting. This algorithm is similar to the dynamic LS
described in [22], to which we coupled a Simulated Annealing metaheuristic.
In this algorithm, stochastic information about future request is not taken into
account and a neighboring solution is solely evaluated by its total travel cost.

Finally, GSA and GLS are compared to two MSA algorithms, namely MSAd
and MSAc depending on whether the travel distance or the consensus function
are used as ranking functions.

6.2 Benchmarks

The selected benchmarks are borrowed from [7] which considers a set of bench-
marks initially designed for the static and deterministic VRPTW in [25], each
of these containing 100 customers. In our stochastic and dynamic context, each
customer becomes a request region, where dynamic requests can occur during
the online execution.

The original problems from [7] are divided into 4 classes of 15 instances. Each
class is characterized by its degree of dynamism (DOD, the ratio of the number
of dynamic requests revealed at time t > 0 over the number of a priori request
known at time t = 0) and whether the dynamic requests are known early or
lately along the online execution. The time horizon H = 480 is divided into 3
time slices. A request is said to be early if it is revealed during the first time slice
t ∈ [1, 160]. A late request is revealed during the second time slice t ∈ [161, 320].
There is no request revealed during the third time slice t ∈ [321, 480], but the
vehicles can use it to perform customer operations.

In Class 1 there are many initial requests, many early requests and very
few late requests. Class 2 instances have many initial requests, very few early
requests and some late requests. Class 3 is a mix of classes 1 and 2. In Class 4,
there are few initial requests, few early requests and many late requests. Finally,
classes 1, 2 and 3 have an average DOD of 44%, whilst Class 4 has an average
DOD of 57%.

In [5], a fifth class is proposed with a higher DOD of 81% in average. Unfor-
tunately, we were not able to get those Class 5 instances. We complete these
classes by providing a sixth class of instance, with DOD of 100%. Each instance
hence contains no initial request, an early request with probability 0.3 and a late
request with probability 0.7.

Figure 2 summarizes the different instance classes.

6.3 Results

Computations are performed on a cluster composed of 32 64-bits AMD Opteron
(tm) Processor 6284 SE cores, with CPU frequencies ranging from 1400 to 2600
MHz. Executables were developed with C++ and compiled on a Linux Red Hat
environment with GCC 4.4.7. Average results over 10 runs are reported. In [7],
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DOD t = 0 t ∈ [1, 160] t ∈ [161, 320] t ∈ [321, 480]

Class 1,2,3 44% P 0[i] = 0.5 P [1,160][i] = 0.25 P [161,320][i] = 0.25 P [321,480][i] = 0

Class 4 57% P 0[i] = 0.2 P [1,160][i] = 0.2 P [161,320][i] = 0.6 P [321,480][i] = 0

Class 5 81% P 0[i] = 0.1 P [1,160][i] = 0.1 P [161,320][i] = 0.8 P [321,480][i] = 0

Class 6 100% P 0[i] = 0 P [1,160][i] = 0.3 P [161,320][i] = 0.7 P [321,480][i] = 0

Fig. 2. Summary of the test instances, grouped per degree of dynamism. P [t,t′][i] rep-
resents the probability that a request gets revealed during the time slice defined by
interval [t, t′].

25 minutes of offline computation are allocated to MSA, in order to decide the
first online action at time t = 1. During online execution, each time unit within
the time horizon was executed during 7.5 seconds by the simulation framework.
In order to compensate the technology difference, we decided in this study to
allow only 10 minutes of offline computation and 4 seconds of online computation
per time unit. Thereafter, in order to highlight the contribution of the offline
computation in our approach, the amount of time allowed at pre-computation is
increased to 60 minutes, while each time unit still lasts 4 seconds. According to
preliminary experiments, both the size of the scenario pool and the resampling
rate are set to α = β = 150 for all our algorithms except GLSdf.

Figure 3 gives a graphical representation of our algorithms results, through
performance profiles. Performance profiles provide, for each algorithm, a cumu-
lative distribution of its performance compared to other algorithms. For a given
algorithm, a point (x, y) on its curve means that, in (100 · y)% of the instances,
this algorithm performed at most x times worse than the best algorithm on each
instance taken separately. Instances are grouped by DOD and by offline com-
putation time. Classes 1, 2 and 3 have a DOD of 44%, hence they are grouped
together. An algorithm is strictly better than another one if its curve stays above
the other algorithm’s curve. For example on the 60min plot of Class 6, GLSdf
is the worst algorithm in 95% of Class 6 instances, outperforming GSAdf in
the remaining 5% (but not the other algorithms). On the other hand, provided
these 60 minutes of offline computation, GSAro obtains the best results in 55%
of the instances, whereas only 30% for GSAdf and GSAdfr. See [11] for a com-
plete description of performance profiles. Detailed results are provided in the
extended version [30].

Our algorithms compare fairly with MSA, especially on lately dynamic
instances of Class 4. Given more offline computation, our algorithms get stronger,
although that MSA benefits of the same offline time in every plots. Surprisingly,
GLSdf performs well compared to other algorithms on classes 1,2 and 3. The
low DOD that characterizes these instances tends to lower the contribution of
stochastic knowledge against the computational power of GLSdf. Indeed, approx-
imating the stochastic evaluation function over 150 scenarios is about 103 times
more expensive than GLSdf evaluation function. However, as the offline com-
putation time and the DOD increase, stochastic algorithms tend to outperform
their deterministic counterpart.
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Fig. 3. Performance profiles on classes [1, 2 ,3], Class 4 and Class 6 problem instances
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We notice that the relocation strategy gets stronger as the offline computation
time increases. This is due to the computational overhead induced by relocation
vertices. GSAdf is then the good choice under limited offline computation time.
However, both GSAro and GSAdfr tend to outperform the other strategies when
provided enough offline computation and high DOD.

As it contains no deterministic request, in Class 6 the offline computation
is not applicable to those algorithms that does not exploit the relocation strat-
egy, i.e. GLSdf and GSAdf. Class 6 shows that, despite the huge difference in
the number of iterations performed by GLSdf on one hand and stochastic algo-
rithms on the other, the laters clearly outperform GLSdf under fully dynamic
instances. We also notice in this highly dynamic context that GSAro tends to
outperform GSAdfr as offline computation increases, highlighting the antici-
pative contribution provided by the relocation-only strategy, centering waiting
times on relocation vertices.

7 Conclusions

We proposed GSA, a decision rule for dynamic and stochastic vehicle routing
with time windows (DS-VRPTW), based on a stochastic programming heuristic
approach. Existing related studies, such as MSA, simplify the problem as a two-
stage problem by using sample average approximation. In contrary, the theoret-
ical singularity of our method is to approximate a multistage stochastic problem
through Monte Carlo sampling, using a heuristic evaluation function that pre-
serves the nonanticipativity constraints. By maintaining one unique anticipative
solution designed to be as flexible as possible according to a set of scenarios, our
method differs in practice from MSA which computes as many solutions as sce-
narios, each being specialized for its associated scenario. Experimental results
show that GSA produces competitive results with respect to state-of-the-art.
This paper also proposes a new waiting strategy, relocation-only, aiming at tak-
ing full benefit of relocation strategy.

In a future study we plan to address a limitation of our solving algorithm
which embeds GSA, namely the computational cost of its evaluation function.
One possible direction would be to take more benefit of each evaluation, by
spending much more computational effort in constructing neighboring solutions,
e.g. by using Large Neighborhood Search [24]. Minimizing the operational cost,
such as the total travel distance, is usually also important in stochastic VRPs.
Studying the aftereffect when incorporating it as a second objective should be of
worth. It is also necessary to consider other types of DS-VRPTW instances, such
as problem sets closer to public or good transportation. Finally, the conclusions
we made in section 2 about the shortcoming of a two-stage formulation (showed
in Fig. 1) are theoretical only, and should be experimentally assessed.
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11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Mathematical Programming 91(2), 201–213 (2002)

12. Flatberg, T., Hasle, G., Kloster, O., Nilssen, E.J., Riise, A.: Dynamic and stochastic
vehicle routing in practice. In: Dynamic Fleet Management, pp. 41–63. Springer
(2007)

13. Ghiani, G., Manni, E., Quaranta, A., Triki, C.: Anticipatory algorithms for same-
day courier dispatching. Transportation Research Part E: Logistics and Trans-
portation Review 45(1), 96–106 (2009)

14. Hvattum, L.M., Løkketangen, A., Laporte, G.: Solving a Dynamic and Stochastic
Vehicle Routing Problem with a Sample Scenario Hedging Heuristic. Transporta-
tion Science 40(4), 421–438 (2006)

15. Ichoua, S., Gendreau, M., Potvin, J.-Y.: Exploiting Knowledge About Future
Demands for Real-Time Vehicle Dispatching. Transportation Science 40(2), 211–
225 (2006)

16. Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge
exchanges. In: Local Search in Combinatorial Optimization, pp. 337–360 (1997)
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Abstract. Constraints on strings of unknown length occur in a wide
variety of real-world problems, such as test case generation, program
analysis, model checking, and web security. We describe a set of con-
straints sufficient to model many standard benchmark problems from
these fields. For strings of an unknown length bounded by an integer, we
describe propagators for these constraints. Finally, we provide an experi-
mental comparison between a state-of-the-art dedicated string solver, CP
approaches utilising fixed-length string solving, and our implementation
extending an off-the-shelf CP solver.

1 Introduction

Constraints on strings occur in a wide variety of problems, such as test case
generation [8], program analysis [6], model checking [11], and web security [5].

As a motivating example, we consider the symbolic execution [7,20] of string-
manipulating programs. Symbolic execution is a semantics for a programming
language, wherein program variables are represented by symbols, and language
operators are redefined to accept symbolic inputs and produce symbolic expres-
sions. In symbolic execution, a program P is represented by a control flow
graph [2]: a directed graph with nodes representing the basic blocks in P , and
arcs representing possible branchings. A path on a control flow graph is a finite
sequence of arc-connected nodes. A symbolic state for a path π on a program P
consists of a mapping, μ, from the program variables of P to symbolic expres-
sions, and a path constraint, PC , which is associated with the path π, over the
symbols used in μ. Solving the path constraint results in either a set of concrete
inputs that yields an execution following the path π, or, when PC is unsatisfi-
able, a proof that π is an infeasible path.

Example 1. In Fig. 1 is some JavaScript-like code (it is uninteresting, but small
enough to illustrate our points), with a corresponding control flow graph. For
the path π = 1-2-4-5-6, a corresponding path constraint may be as follows:

PC π : y = |s| ∧ y mod 2 = 0 ∧ s ∈ L((a∗b)c\1) ∧ x = s1: y/2 (1)

(Notation will be introduced in Section 2 but should not be an obstacle here.)
Note that PC π is unsatisfiable: only a string of odd length can match the expres-
sion on line 4, due to the required symbol ‘c’ in the middle, so if the condition
on that line is true, then the condition on line 2 must also be true, and therefore
π is infeasible, as node 3 should be visited at least once between nodes 2 and 4.
c© Springer International Publishing Switzerland 2015
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0 function doSomething(s) {

1 y = s.len();

2 while (y mod 2 != 0)

3 { x += s[y-1]; y = y/2; }

4 if (s.match(/^(a*b)c\1$/))

5 x = s.substr(1,s.len()/2);

6 return x;

7 }

1

2

3
4

5 6

y = s.len()

while (y mod 2 != 0)
x += s[y-1];
y = y/2if

(s.match(/^(a*b)c\1$/))

x =
s.substr(1,s.len()/2) return x

Fig. 1. JavaScript-like code with a corresponding control flow graph

Example 1 helps to illuminate the type of string constraints needed for soft-
ware verification purposes: the constraint language should be rich enough to
model the kinds of string operators typically found in programming languages.
For example, the substr() operation on line 5 of Fig. 1 suggests that a con-
straint stating “string y is a substring of x, starting from index i” would be
useful. Similarly, the match() operation on line 4 suggests the utility of a con-
straint stating “string x is a member of the regular language L”. However, this
second constraint is somewhat misleading, as the ‘\1’ in the pattern on line 4 is
a back-reference: the parentheses delineate a subexpression (in this case, ‘a*b’),
and the ‘\1’ indicates that the value matched by that subexpression is repeated
in the same string. In the absence of a bound on string length, the languages
defined by expressions with back-references are not regular, but rather context
sensitive.1 Nevertheless, back-references are a common feature of regular expres-
sions as implemented in modern programming languages, and hence are a feature
we would like to model. To avoid confusion, we will write regular expression to
refer only to the formal language concept, while we will write regex to refer to
a possibly non-regular pattern allowed by a programming language.

String constraint solving has been the focus of a large amount of research in
recent years. Current string constraint solving methods may be broadly classi-
fied by their treatment of string length. At one extreme are solvers for string
variables of unbounded length, such as [1,9,11,15,17,18,23,33,36]. These solvers
define the set of all satisfying strings intensionally, typically by formal languages.
Constraint reasoning in these solvers generally reduces to a question of language
intersection; research centres on the question of how to avoid the exponential
blowup of these intersection operations. At the opposite end of the spectrum,
fixed -length string solvers, such as [19,24], are extensional in the sense that they
generate solutions individually. Fixed-length solvers are generally superior to
1 In fact, for strings of bounded length, expressions with back-references do correspond

to regular languages; however the size of a finite-automaton encoding grows expo-
nentially in the size of the bound, so even in the bounded case back-references tend
to result in inefficient encodings.
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unbounded-length solvers for producing a single solution, but suffer compara-
tively when producing the set of all solutions.

In this paper, we address a problem between these two extremes: we con-
sider string variables of bounded length. While bounded-length solvers exist in
other fields, such as [6,29], to this point constraint programming (CP) models
have handled bounded-length strings either by iterating over a series of fixed
string lengths, or by representing a string variable as an array of variables long
enough to accommodate the maximum considered string length, while allow-
ing occurrences of a padding symbol at the end of the string (e. g., [16]). We
focus instead on encoding the string length and contents directly; nevertheless,
our implementation (Sect. 6) can be seen as an encapsulation of padding into a
variable type. Using fixed-length strings with a padding character is appealingly
simple in theory, but in practice it leads to complicated and error-prone models.
Our approach allows simpler modelling, without requiring an extension to the
solver’s modelling language, by introducing a new structured variable type for
strings. In this framework, the choice to use a padding character and the conse-
quences of that choice are implementation details, which may be ignored during
modelling.2 We also note that bounded-length string variables ease the design
of string-specific branching heuristics.

The contributions and organisation of this paper are as follows, after defining
notation and terminology (Sect. 2) and outlining related work (Sect. 3):

– a formalisation of string variables and a specification of several interesting
string constraints, all applicable to strings of fixed, bounded, or unbounded
length (Sect. 4);

– a definition of a bounded-length string variable representation, called the
open-sequence representation, which is directly implementable for any exist-
ing finite-domain CP solver, and propagator descriptions for the specified
string constraints (Sect. 5);

– an implementation of our bounded-length string variable representation and
a principled derivation of actual propagators for the specified constraints, all
for the CP solver gecode [12] (Sect. 6);

– an experimental evaluation of our implementation: despite being only a
prototype, it already outperforms not only off-the-shelf fixed-length CP
approaches [16], but also, by orders of magnitude, the state-of-the-art dedi-
cated string solvers sushi [9] and kaluza [29], on their benchmarks (Sect. 7).

Finally, we conclude in Sect. 8.

2 Notation and Terminology for Strings and Languages

An alphabet Σ is a finite set of symbols. A string s of length |s| = n over an
alphabet Σ is a finite sequence of n symbols of Σ, denoted s1s2 · · · sn, where
2 As noted elsewhere (e. g., [13]), the case for structured variable types is similar to that

for global constraints: both capture commonly recurring combinatorial substructure.
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si ∈ Σ for all 1 ≤ i ≤ n. For a given string s, we denote its ith symbol by si.
We denote the empty string, of length 0, by ε. We denote the concatenation of
strings x and y by x · y. We say that a string y is a substring of a string s if
there exist strings x and z such that s = x · y · z. For 1 ≤ i, j ≤ |s|, we define
si : j as the substring si · · · sj from the ith to the jth symbol of s; if i > j, then
si : j = ε. The reverse of a string s = s1 · · · sn is the string srev = sn · · · s1.

We denote by Σn the set of strings over Σ of length n. The infinite set of all
strings over Σ, including ε, is denoted by Σ∗. A language over Σ is a possibly
infinite subset of Σ∗. The language of a regex r is denoted by L(r).

A constraint C of arity k is a pair 〈R,S〉 where R is the underlying relation
on ground instances of the variable tuple S = 〈X1 , . . . , Xk

〉, called the scope of
C. We denote the domain of a variable X by D(X).

We denote scalar variables in uppercase (e. g., N , N1, etc. for integers, and
A for a symbol of a finite alphabet) and string variables (to be introduced in
Sect. 4) in boldface uppercase (e. g., S). We denote sets in script (e. g., A, B,
etc.), and write |A| for the cardinality of a set A. We refer to the set of integers
{�, �+1, . . . , u−1, u}, which is the empty set ∅ if � > u, using the notation [�, u].
We use angled brackets to denote an ordered sequence, or tuple, 〈a1, . . . , an〉.

3 Related Work

We distinguish between string variables of fixed, unbounded, and bounded
length.

Fixed-Length String Variables. In CP, a fixed-length string variable has a natural
representation as an array of scalar variables that may be acted upon by a
wide variety of constraints. Of particular interest for solving string problems are
constraints for membership in regular [4,26] and context-free [27,32] languages.
For example, the propagator in [26] for regular language membership works by
maintaining a layered graph: each layer replicates the nodes of a finite automaton
representing the regular language, but with each transition connecting to a node
in the next layer. The labels of the arcs between nodes in two consecutive layers
determine the feasible values for the corresponding variable in the string, and
propagation works by removing arcs not on a path between the start node in
the first layer and any accepting node in the last layer. Fixed-length bit-vector
variables have also been explored [24].

hampi [19] provides a theory of fixed-length strings for satisfaction modulo
theories (SMT) solvers, using the bit-vector solver stp [10]. hampi handles con-
straints of membership in both regular and context-free languages. For a set of
such constraints, on a single fixed-length string variable, hampi either returns
one satisfying string, or reports that the constraints are unsatisfiable.

Unbounded-Length String Variables. At the other extreme are solvers for string
variables of unbounded length. An example of this approach in CP is [15], in
which the regular domain of a string variable is defined by a regular language.
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A regular domain is represented as a finite automaton accepting that language,
and propagation of a constraint over string variables is achieved by computing a
series of automaton operations, such as intersection or negation. The expressivity
of regular domains is balanced out by relatively expensive propagation: several of
the presented propagators take time quadratic in the size of the automata, and
the size of the automata themselves may grow exponentially with the number of
constraints. It is not surprising that performing propagation on string variables of
unbounded length by computing on a set of strings is expensive. The equivalent
for integer domains would be propagation over multiple integer variables through
computation on value tuples, which is not generally reasonable. Constraints of
regular language membership are, of course, trivially enforceable on the regular
domain, although extension to context-free languages is impractical.

A decision procedure for Boolean combinations of equalities on unbounded-
length string variables, called word equations, is provided in [23]. A word equa-
tion [21] is a constraint such as x ⊕ y = z, where ⊕ is a string operator and
x, y, z are string variables. Word equations are not decidable in the general case,
and their decidability in conjunction with other constraints, including length
constraints, remains open [6]. Nonetheless, for fragments of the logic of word
equations with constraints on length or regular or context-free language mem-
bership, there exist several decision procedures. For example, sushi [9] handles
a restricted fragment of word equations called simple linear string equations
(SLSE); in essence, these are word equations in which no string variable appears
more than once, and string variables occur only on the left-hand side. sushi
allows concatenation, substring, regular membership, and regular replacement.
Other solvers handling weak fragments include the stand-alone solver dprle [17],
which handles only language subset and language concatenation constraints for
regular languages, and Z3-str [36], an extension for the SMT solver Z3 that pro-
vides a theory of word equations with length constraints, but does not include
language membership. The algorithm in norn [1] is sound for the complete
logic of word equations with both length and regular language membership con-
straints, and is a decision procedure for a restricted fragment (strictly stronger
than that of sushi). Also, S3 [33] improves the Z3-str solver and adds a pro-
cedure for unfolding unbounded repetitions in regular expressions.

Another line of work has focused on avoiding the exponential blowup encoun-
tered in language intersection. Both revenant [11] and norn utilise interpola-
tion, albeit in different contexts, while StrSolve [18] handles automaton inter-
section operations by lazily constructing cross-products.

Also worth noting is that automaton-based approaches do not allow a natural
handling of length constraints. The latter may be directly encoded as automata
(e. g., [35]); however, this results in only a weak connection between string lengths
and other numerical constraints. Solvers that combine automata and numerical
reasoning [1,14,28] strengthen this connection to varying degrees.

Bounded-Length String Variables. Less work has been done on bounded-length
string solvers. Probably the best known solver in this category is kaluza [29],
which solves constraints in two stages. First, an SMT solver is used to find
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possible lengths for strings that satisfy explicit length constraints, length con-
straints implied by the string constraints of the problem, and any other integer
constraints present in the model. Second, these lengths are applied to create a
fixed-length bit-vector problem, solved with stp [10] in the same manner as by
hampi. If the problem in the second stage is unsatisfiable, then the first stage is
repeated, with the addition of new constraints to avoid previously tried lengths.
Further, a stand-alone bit-vector solver for bounded-length strings is described
in [6]; however, it does not handle regular language membership, and no infor-
mation is propagated from numerical constraints to the string variables.

In CP, propagation of constraints for bounded-length sequences of variables
is described in [22], which treats open global constraints. A constraint is global
if the cardinality of its scope is not determined a priori. In a closed global
constraint, the cardinality of the scope is determined by the model, and remains
constant throughout the solution process; however, in an open global constraint,
the cardinality of the scope is determined as the solution process progresses [3].
In [22], the scope of an open global constraint is a sequence of scalar variables
with a length that that has an upper bound that is an integer variable. During
the solving process, scalar variables are added to the end (never the beginning)
of the sequence, in connection with changes to the bounds of the length. We
here take inspiration from that work, particularly in regard to propagation for
constraints of regular and context-free language membership; nevertheless, the
two approaches are essentially orthogonal.

In [31], we introduced a representation for bounded-length string variables
by prefix-suffix pairs, and we designed propagators for this representation in an
ad hoc way, testing them only on a home-made benchmark. We here introduce
a much simpler representation, leading to propagators that are different and
achieve an incomparable level of consistency, show how to derive such propaga-
tors in a principled way, and test them on third-party standard benchmarks.

4 String Variables and String Constraints

In a model of a constraint problem, we refer to unknown strings over a finite
alphabet Σ as string variables. The most precise representation of the domain
of a string variable is a subset of Σ∗; in other words, such a domain of a string
variable is the language of all strings that are not (yet) known to be infeasible.
Operations on this representation are expensive [15], making the representa-
tion unsuitable for propagation. We use this representation as an ideal starting
point, suitable for strings of fixed, bounded, or unbounded length. We introduce
in Sect. 5 a representation more suited to propagation.

We divide constraints involving string variables into three groups: pure string
constraints, mixed string constraints, and language membership constraints.

Pure String Constraints. We refer to constraints involving only string variables
as pure string constraints.
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The constraint Eq(X,Y) holds if string variables X and Y are equal, where
equality for strings means that they have equal length and the same symbol at
each index. The underlying relation E is {〈x, y〉 | |x| = |y|∧∀i ∈ [1, |x|] : xi = yi}.

The constraint Neq(X,Y) holds if string variables X and Y are not equal,
where inequality for two strings holds if the strings have different lengths, or
if there exists an index for which the two strings have a different symbol. The
underlying relation is {〈x, y〉 | |x| 
= |y| ∨ ∃i ∈ [1, |x|] : xi 
= yi}.

The constraint Rev(X,Y), for string variables X and Y, holds if X is equal
to the reverse of Y. The underlying relation is {〈x, y〉 | x = yrev}.

The constraint Cat(X,Y,Z) holds if string variable Z is the concatenation
of string variables X and Y. The underlying relation is {〈x, y, z〉 | z = x · y}.

Mixed String Constraints. We refer to constraints involving at least one string
variable and at least one non-string variable as mixed string constraints.

The constraint Sub(X,Y, N) holds if string variable Y is a contiguous sub-
string of string variable X, starting at the index given by the integer variable
N . The underlying relation is {〈x, y, n〉 | y = xn : n+|y|−1}.

For the special case of Sub in which Y has a fixed length of one (i. e., where
Y can be replaced by a scalar variable), we instead propose Char(X, A,N),
whose underlying relation is {〈x, a, n〉 | xn = a}.

The constraint Len(X, N) holds if the string variable X has a length equal
to the integer variable N . The underlying relation is {〈x, n〉 | n = |x|}.

Language Membership Constraints. Conceptually, a constraint that holds if a
string variable X is a member of a given formal language L may be viewed as
a unary constraint on X, parameterised by L, irrespective of the class of L. In
practice, propagators for such a language membership constraint are specific to
the language class, so it is common to name such constraints by the language
class. For a language L, we have the constraints Regular(X,L), if L is regular,
and ContextFree(X,L), if L is context-free, with L as the underlying relation.

Example 2. Consider once again the path π = 1-2-4-5-6 of Example 1. We can
now express its path constraint PC π in (1) using the string constraints defined
in this section, along with some primitive numerical constraints:

Len(S, Y ) ∧ Mod(Y , 2, 0) ∧ Regular(S1,L(a∗b)) ∧
Cat(“c”,S1,S2) ∧ Cat(S1,S2,S) ∧ Div(Y , 2, Z) ∧ Len(X, Z) ∧ Sub(S,X, 1)

Note the use of Cat in eliminating the back-reference in the regex /^(a*b)c\1$/.

5 Open-Sequence Representation and Propagation

As previously noted, a language is a natural representation of the domain of
a string variable, but the complexity of computation over languages makes this
representation unsuitable for propagation. As a more practical representation, we
consider an over-approximation of a finite set of strings, upon which we describe
propagators for the constraints defined in Sect. 4.
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Open-Sequence Representation. Inspired by [22], we now introduce a string vari-
able representation, called the open-sequence representation: 〈A,N 〉 consists of
a sequence A = 〈A1, . . . ,Am〉 of sets over the same alphabet, and a set N of nat-
ural numbers, representing the possible lengths of the string, with max(N ) ≤ m.
An 〈A,N 〉 pair corresponds to the set of all strings that have a length � ∈ N
and are constructed by selecting a symbol from Ai at each index i ∈ [1, �]; in
other words, the domain of a string variable represented by 〈A,N 〉 is given by:

D(〈A,N 〉) =
⋃

�∈N
{
s ∈ Σ�

∣
∣ ∀i ∈ [1, �] : si ∈ Ai

}
(2)

Intuitively, (2) shows that if any Ai is empty, then D(〈A,N 〉) contains no strings
of length at least i. This insight leads to the following representation invariant:

∀i ∈ [1,m] : Ai = ∅ ⇐⇒ max(N ) < i (3)

Note that we are purposefully general in this section: in Sect. 6, we discuss a
possible implementation of the open-sequence representation, namely by treating
the value sets as the domains of scalar variables. However, the open-sequence
representation could also be implemented for a CP solver as a new first-class
string variable type. In this section, we consider an 〈A,N 〉 pair as the represen-
tation of a string variable, without regard to the choice of implementation.

Open-Sequence Propagators. We now describe, for some representative con-
straints specified in Sect. 4, the strongest pruning that may be achieved by a
propagator implementing that constraint for string variables that are all in the
open-sequence representation. In Sect. 6, we will use these propagator descrip-
tions as the basis for automatically generating an implementation of the pure
and mixed string constraints.

We give the following propagation descriptions, which specify exactly what
pruning can be achieved in the open sequence representation. It is possible to
derive the propagator descriptions in a principled manner, using a methodology
that has been omitted from this paper for reasons of space and orthogonality.

The propagator for Eq performs set intersections between Ax and Ay:

EqP (〈Ax,N x〉, 〈Ay,N y〉)

=

〈 〈〈
Ax

1 ∩ Ay
1, ...,Ax

max(Nx∩Ny) ∩ Ay
max(Nx∩Ny), ∅, ..., ∅

〉
,N x ∩ N y

〉
,

〈〈
Ax

1 ∩ Ay
1, ...,Ax

max(Nx∩Ny) ∩ Ay
max(Nx∩Ny), ∅, ..., ∅

〉
,N x ∩ N y

〉

〉

Note that EqP does not enforce the representation invariant (3): a separation
between the invariant and the propagators presented in this section significantly
simplifies design, at the level of both theory and implementation.

Example 3. If X and Y are string variables with open-sequence representations
X = 〈〈[1, 3], {3}, [1, 3], ∅, . . .〉, [2, 3]〉 and Y = 〈〈[1, 2], [1, 2], [1, 2], ∅, . . .〉, [1, 3]〉,
then propagation by EqP yields X′ = Y′ = 〈〈[1, 2], ∅, [1, 2], ∅, . . .〉, [2, 3]〉. The
invariant (3) reveals that neither string has a feasible length, resulting in failure.
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The propagator for Cat is similar to EqP in regards to the relationship
between Ax and Az, but the relationship between Ay and Az is complicated
by a dependency on N x:

CatP (〈Ax,N x〉, 〈Ay,N y〉, 〈Az,N z〉)
=

〈 〈〈Ax
1

′, . . . , Ax
m

′〉,N x′〉, 〈〈Ay
1

′, . . . , Ay
m

′〉,N y ′〉, 〈〈Az
1
′, . . . , Az

m
′〉,N z ′〉〉

where
N x′ = N x ∩ [min(N z) − max(N y), max(N z) − min(N y)]
N y ′ = N y ∩ [min(N z) − max(N x), max(N z) − min(N y)]
N z ′ = N z ∩ [min(N x) + min(N y), max(N x) + max(N y)]

and

Ax
i

′ =

{
Ax

i ∩ Az
i if i < max(N x′)

∅ otherwise
Ay

i
′ =

⎧
⎪⎨

⎪⎩

Ay
i ∩

⋃

j∈Nx∩[1,max(N z ′)−i]

Az
i+j if i < max(N y ′)

∅ otherwise

Az
i
′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Az
i ∩ Ax

i if i < min(N x′)

Az
i ∩ Ax

i ∩
⋃

j∈Nx′∩[i−max(Ny ′),i]

Ay
i−j if min(N x′) ≤ i < max(N x′)

Az
i ∩

⋃

j∈Nx′∩[i−max(Ny ′),i]

Ay
i−j if max(N x′) ≤ i < max(N z ′)

∅ if max(N z ′) ≤ i

Propagation of Len on the open-sequence representation is trivial:

LenP (〈A,N 〉,S) =
〈〈〈

A1, . . . ,Amax(N∩S), ∅, . . . , ∅
〉
,N ∩ S

〉
,N ∩ S

〉

It is also easy to express the desired propagation for the Regular constraint,
although the description in this case is of little help in regards to efficient imple-
mentation (see Sect. 6).

RegularP (〈A,N 〉,L) =

〈〈
{s′

1 ∈ A1 | s′ ∈ L}, . . . ,

{s′
max(N ) ∈ Amax(N ) | s′ ∈ L}, ∅, ..., ∅

〉
, {� ∈ N}

〉

Propagators for the remaining constraints from Sect. 4 are omitted for reasons
of space; all may be described similarly to the propagators detailed above.

6 Implementation

While the open-sequence representation described in the previous section could
be implemented as a new variable type for a CP solver, the correspondence
between sets of feasible values and the domains of scalar variables suggests
another method of implementing the open-sequence representation, namely as
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an aggregation of two components: an array of scalar variables over the alphabet
of the string, and an integer variable for the length of the string. Without loss
of generality, we focus on strings of integers.

This implementation is similar to [22], which also involves a sequence of
scalar variables that may be extended at the end but not at the beginning, and
an integer variable that determines the length of that sequence. Beyond that
similarity, our treatment diverges significantly. The open constraints described
in [22] rely on the existence of a meta-programming framework to dynamically
add variables to the model during search. In contrast, we extend a (closed)
CP solver by adding a variable type representing a bounded-length sequence,
eliminating the need for meta-programming and maintaining the declarative
nature of CP solving. Unlike [22], we have no concept of adding a variable to
the sequence: our implementation uses a fixed sequence of scalar variables, each
of which may or may not participate in a solution as determined by the length
variable. Additionally, we choose to treat each sequence-length pair as a single
bounded-length sequence variable; whereas in [22] OpenRegular is defined as
a global constraint of bounded arity, in our treatment Regular is a unary (non-
global) constraint on a string variable of bounded length. This choice allows us
to define constraints conventionally as relations over tuples (constraint semantics
in [22] are described using formal languages), and eases the presentation of n-ary
constraints on sequence variables (constraints in [22] involve only one sequence).

After discussing the technical challenges to such an aggregate implementa-
tion, we show how to derive actual propagators in a principled way, both from
the underlying relations of the constraints in Sect. 4 and from the propagator
descriptions in Sect. 5.

Aggregate Implementation. The open-sequence representation 〈A,N〉 for a
string of integers is here implemented as an array of integer variables N =
〈N1, . . . , Nm〉 representing A = 〈A1, . . . ,Am〉, and an integer variable N repre-
senting N .

In regards to consistency level, the length variable and the sequence variables
seem to have different requirements. For the length the most interesting values
are the bounds (i. e., the lengths of the shortest and longest feasible strings). It
seems unlikely, however, that maintaining bounds consistency on the variables
of N is useful, as the set of feasible symbols at any index will rarely form a
meaningful interval. We therefore choose to maintain a mixed consistency level,
which considers the upper and lower bounds of N , and all domain values of the
variables of N ; other choices are certainly possible.

For correctness, the representation invariant (3) must be enforced for each
〈N , N〉 pair. Some care needs to be taken in the interpretation of (3), however:
while Ai = ∅ merely means max(N ) < i, we have that D(Ni) = ∅ leads to
a failed search node. One way to avoid this is to include a reserved character,
Null, in the domains of all variables of N . The representation invariant may
then be enforced by propagating the following conjunction of reified constraints:

∀i ∈ [1,m] : Ni = Null ⇐⇒ N < i (4)
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1 def EQ(vint[] X, vint LenX, vint[] Y, vint LenY){

2 checker{

3 (val(LenX) == val(LenY)) and

4 and(i in (min(rng(X)) .. ((min(rng(X)) + val(LenX)) + -1)))

5 (val(X[i]) == val(Y[i]))

6 }

Fig. 2. Checker for the string equality constraint Eq(X,Y)

Pure and Mixed String Constraints. An interesting feature of the propagator
descriptions in Sect. 5 for pure and mixed string constraints is that they consist
solely of a conjunction of range restriction operations. When applied to a variable
domain, such an operation is called an indexical [34]: it is of the form X ∈ σ
and restricts the domain of the variable X to its intersection with the interval σ.
An indexical language is a high-level solver-independent language for writing a
propagator description with indexicals. The extended indexical language of [25]
includes arrays and n-ary operations, and its system includes the following two
automated transformations:

– A solver-independent synthesis of an indexical description of a propagator
from a ground checker of its constraint.3

– A solver-specific code generation of an actual propagator from an indexical
description thereof.

Following our ideas in [30], applied there to our more complex representation of
bounded-length string variables in [31], we use this system to generate automat-
ically a prototype implementation of the pure and mixed string constraints of
Sect. 4 for gecode [12].

We illustrate this process using the string equality constraint Eq(X,Y). Its
underlying relation E from Sect. 4

E = {〈x, y〉 | x = y} = {〈x, y〉 | |x| = |y| ∧ ∀i ∈ [1, |x|] : xi = yi} (5)

can be seen as a ground checker for the constraint. We first replace the string
variables X and Y with the pairs 〈Ax,N x〉 and 〈Ay,N y〉, respectively, as in
Sect. 5. We then manually translate E into the checker sub-language of the
extended indexical language, yielding Fig. 2. For our purposes, it suffices to
illuminate a few less obvious features of the syntax. The aggregate variable
〈Ax,N x〉 is represented by two variables: an integer variable for the length
(vint LenX) and an array of integer variables for the string (vint[] X). One
constraint is on the lengths of the two strings (line 3). Another constraint is on
the contents of the arrays (lines 4 and 5): it is expressed as an n-ary conjunction
of equality constraints, corresponding to the universal quantification in (5).

From this checker, automatic synthesis yields an indexical description of a
propagator for Eq, given in Fig. 3. Compared with the hand-derived propaga-
tor description EqP in Sect. 5, we note that while the synthesised propagator
3 This synthesiser is not mentioned in [25], but described in a paper under preparation.
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1 def EQ(vint[] X, vint LenX, vint[] Y, vint LenY){

2 propagator(gen)::DR{

3 LenX in dom(LenY);

4 LenY in dom(LenX);

5 forall(i in (min(rng(X)) .. ((min(rng(X)) + min(LenX)) + -1))){

6 X[i] in dom(Y[i]);

7 Y[i] in dom(X[i]);

8 }}}

Fig. 3. Synthesised indexical description of a propagator for Eq(X,Y)

correctly filters values in the arrays X and Y at indices below the current min-
imum length, it misses some propagation on LenX and LenY. Intuitively, if the
intersection of the domains of X[i] and Y[i] is empty, then all feasible strings
in X and Y must be shorter than i. This additional reasoning is expressed with
the following forall construct that can be added to Fig. 3:

forall(i in ((min(rng(X)) + min(LenX)) .. (min(rng(X)) + max(LenX))))

{(dom(X[i]) inter dom(Y[i])) == emptyset -> LenX in inf .. (i - 1);}

Automatic code generation from the extended version of Fig. 3 results in a c++
implementation of an Eq propagator for gecode.

Alternatively, one can hand-code an Eq propagator for gecode directly
from the mathematical description that was derived in Sect. 5. This is much
more labour-intensive and error-prone than the tool-assisted approach. Hence,
the implementation we evaluate in Sect. 7 started as code generated by the
indexical compiler; however, portions have been modified for efficiency reasons.

Language Membership Constraints. Indexicals are no help when it comes to
language membership constraints, because propagators for those constraints rely
on internal data structures. However, there are propagators for open constraints
of language membership.

The Regular propagator of [26] is extended in [22] to handle bounded-
length sequences. Propagation proceeds by dynamically increasing the num-
ber of layers in the layered automaton as the minimum feasible length of the
string increases. We implemented this bounded-length extension of Regular in
gecode. Bounded-length propagators for the GCC and ContextFree con-
straints are also described in [22]; the addition of these constraints to our imple-
mentation has been left to future work.

7 Experimental Results

We compare our bounded -length CP implementation of the open representation,4

called ‘open’ below, against fixed -length CP models and against state-of-the-
art string solvers, on benchmarks provided by the latter. It outperforms the
4 It is available at https://github.com/jossco/gecode-string

https://github.com/jossco/gecode-string
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Table 1. Runtimes in seconds (fastest in bold) for sushi word equations

n = 37 n = 50 n = 100

open pad sushi open pad sushi open pad sushi

Eq. 1 0.02 0.05 0.30 0.02 0.07 1.11 0.09 0.24 2.56
Eq. 2 <0.01 <0.01 0.37 <0.01 <0.01 0.88 0.01 0.02 19.24
Eq. 3 0.01 0.03 0.29 0.01 0.03 0.64 0.02 0.09 1.14
Eq. 4 <0.01 0.01 42.16 <0.01 0.03 >300 0.06 0.07 >300
Eq. 5 <0.01 <0.01 1.56 <0.01 <0.01 2.93 <0.01 0.02 6.37

implementation of our previous representation of bounded string variables [31].
In each experiment, all CP models used the same upper bound for string length.

Benchmark of sushi. sushi [9] is a word equation solver for unbounded -length
string variables (see Sect. 3). Being automaton-based, it computes the entire
solution set in one go, rather than seeking solutions one by one. Nevertheless, the
applicability of sushi as a satisfiability solver for string constraints is considered
in [9]: sushi is compared to the bounded -length string solver kaluza [29] (see
Sect. 3) on a benchmark of five satisfiable word equations, each parameterised
by a natural number n. To solve an equation with kaluza, a bounded-length
version of the equation is created for each n.

Example 4. We can model sushi word equation 1, namely x · an = (a|b)2n, as
follows: Cat(X,Y,Z) ∧ Regular(Y,L(an)) ∧ Regular(Z,L((a|b)2n)).

Using the CP models in [16] for the five word equations, we also test against
two fixed -length CP approaches. In the first, the string lengths are fixed at a pes-
simistically large upper bound [16], and multiple occurrences of a padding symbol
are allowed at the end of each string [16]. In the second (not tried in [16]), the
string lengths are initially fixed to a lower bound and a set of satisfying strings
is sought; upon unsatisfiability, the lengths are increased lexicographically and
search is restarted. These models use the Regular constraint, and concatena-
tion is modelled with reified channelling constraints [16]. The padding approach,
called ‘pad’ below, is always faster, so we omit results on the iterative approach.
Our bounded -length CP models use the OpenRegular propagator [22] and
our indexical-based Cat propagator of Sect. 6. For all CP models, we use the
same deterministic first-fail search heuristic, and stop at the first solution, with
a time-out of 300 seconds. The tests were run on a 2.66 GHz Intel Core 2 Duo
with 4 GB of RAM, on VirtualBox 4.3.10 (the recommended way to run sushi)
running Ubuntu 10.04 on 1 GB of RAM, using sushi 2.0 and gecode 4.3.2.

In Table 1 we give runtimes for all five word equations. We compare the CP
approaches only against sushi; experimental results reported in [9] (and repli-
cated in [16]) show that sushi typically outperforms kaluza, often significantly,
and we do not attempt to replicate those results here. Our smallest instance size,
n = 37, is the largest size tried in [9,16]. Even for n ∈ {50, 100} the benchmark
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Table 2. Runtimes (in seconds) and backtracks (best in bold) for kaluza instances

gecode(open) gecode(pad) kaluza

instance name runtime backtracks runtime backtracks runtime

concat 0.003 0 0.008 0 0.088
indexof 0.003 0 0.010 0 1.560

bettermatch1 0.002 0 0.005 0 0.223
bettermatch2 0.003 0 0.003 0 0.192

streq 0.003 0 0.006 0 0.077
replace 0.006 30 0.019 30 0.364

turns out to be trivial for all CP approaches, outperforming the state-of-the-art
sushi solver by up to three orders of magnitude, as already observed in [16] for
n = 37. On all instances, our bounded-length prototype implementation results
in the same search tree as the fixed-length padding CP approach of [16], but
with a lower runtime.

It turns out that all instances run without backtracks in both CP approaches!
The reason is that the underlying constraint graph (with variables as vertices and
constraints as hyper-arcs) is Berge-acyclic, so that domain consistency on the
entire model is achieved by maintaining domain consistency on each constraint:
this follows from the definition of the SLSE fragment, as one can observe in
Example 4. We argue that a CP model preserves problem structure that is lost by
kaluza when translating to a bit-vector representation, and that knowledge of
the complexity results of CP applicable to high-level models could have prevented
the creation of the sushi word equation benchmark in the first place.

We thus look now at another third-party benchmark (which we did not try
in [31]), also in order to see if our bounded-length prototype implementation can
outperform the fixed-length CP padding approach of [16] by a larger margin.

Benchmark of kaluza. The bounded-length string solver kaluza [29] (see
Sect. 3) includes over 50,000 instances that were generated for the symbolic
execution of JavaScript, based on real-world Ajax web applications. Unfortu-
nately, they all turn out to be trivial for CP approaches, with runtimes below
0.01 seconds, and even the kaluza runtimes are below half a second. Hence
this extensive benchmark is also not particularly interesting. In order not to be
biased by hand-picking among the 50,000 instances, we pick all the 14 instances
that are in the kaluza code. It turns out that kaluza gives erroneous results or
crashes on several of these instances, as reported also by [36]. The results on the
remaining instances are in Table 2; note that kaluza does not report backtracks
(incomparable in any case to those of CP approaches), and that Z3-str [36] can
only be applied to Regular-free versions of the actual instances.

Once again, the state-of-the-art solver is beaten, but the difference between
the CP models with bounded-length string variables (open) and padded fixed-
length string variables (pad) is small: we address this issue in the conclusion.
We are not aware of a hard third-party benchmark for string variables.
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8 Conclusion

We have formalised string variables and specified several interesting string con-
straints, all applicable to strings of fixed, bounded, or unbounded length. We
have defined a bounded-length string variable representation, called the open-
sequence representation, which is directly implementable for any existing CP
solver, and we have given propagator descriptions for the specified string con-
straints. We have implemented the open-sequence representation and derived
in a principled way actual propagators for the specified constraints, for the CP
solver gecode. Despite being only a prototype, our implementation already out-
performs not only off-the-shelf fixed-length CP approaches, but also, by orders of
magnitude, state-of-the-art dedicated string solvers, on their own benchmarks.

The experimental time comparison of our advocated CP approach of
bounded-length string variables against the existing CP approach of padded
fixed-length string variables has shown only minor speed-ups on the third-party
benchmarks. In retrospect, this is not so surprising, as propagation is similar,
witness the backtrack counts in Table 2 and the zero backtracks behind Table 1,
and as those benchmarks seem not to exercise the string length reasoning that
could give an advantage to our approach. The invariant (4) connecting the length
of strings Ni and the length variable N can be seen as an implementation, via
reification, of padding, thus it is unlikely that the bounded-length representation
will perform more propagation than using padding symbols, unless non-trivial
reasoning is required on string lengths. Also, at the modelling level, we argue
that it is much easier to model a bounded-length string problem without using
padding symbols, since encoding such a problem as a fixed-length one is both
labour-intensive and error-prone: by designing the required propagators once and
for all, we allow modellers to save the encoding effort and risk. Indeed, in [16]
the automaton representation had to be modified to include the padding symbol,
adding an extra level of complexity to the modelling. Since our bounded-length
approach subsumes the fixed-length one, it suffices to fix the length instead of
bounding it when one has a fixed-length string variable. Future work consists of
strengthening our length reasoning, implementing our open-sequence represen-
tation as a first-class string variable type, and adapting our propagators.

We argue that CP is well-suited for string variables and constraints: unlike for
many non-CP solvers mentioned here, there is no difficulty in upgrading from a
single string variable to multiple ones, possibly with shared element variables, in
having both string and numeric variables in a model, or in handling numeric
variables and constraints without unnatural encodings. Indeed, it suffices to
extend any CP solver, coming with existing numeric variables and numeric or
symbolic constraints, in plug-and-play fashion, by adding the new type of string
variables and providing propagators for the new constraints. This may result in
high-level models that preserve problem structure and are amenable to faster
solving than by lower-level encodings in ad hoc solvers.
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Abstract. The problem addressed in this paper, of routing and schedul-
ing freight trains within a scheduled passenger rail network, prevails in
many large countries. The actual departure and arrival times of freight
trains are not important, and nor are their routes. Only a starting station
and destination station are specified on the day of travel. The current
paper addresses the problem of how to thread the maximum number
of freight trains through the passenger network, minimising the latest
arrival time of the last freight train. This problem contrasts with the
more traditional rail scheduling requirement of matching as closely as
possible an ideal schedule. The rail network is modelled topologically,
so the size of the network does not grow as the temporal granularity
is made finer. Our use of the modelling language MiniZinc enables us
to compare several different solvers and solving approaches applied to
the model. In particular we investigate constraint programming, using
global constraints and constraint propagation; mathematical program-
ming naively, without using any of the decomposition techniques; and
finally a hybrid of constraint propagation, learning, and dynamic search
control called lazy clause generation. The paper describes two kinds of
experiments. Firstly it gives results for a series of benchmark tests to
investigate the flexibility and scalability of the algorithm, and secondly
it is applied to a freight train scheduling problem on the Victorian rail
network in Australia.

Keywords: MiniZinc · Algorithms · Freight train scheduling · Lazy
clause generation

1 Introduction

The demand for rail transport is increasing in many countries, both for passengers
and freight. In Melbourne, passenger demand has been increasing at 10% per year.
According to the European commission, a single freight train on a track can replace
280 trucks on a road, reducing fuel use, congestion, and emissions, and passenger
travel by rail produces three to ten times less CO2 than cars or airplanes 1.
1 http://ec.europa.eu/digital-agenda/futurium/en/content/trends-rail-transport
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Passenger trains run to a specific published timetable, planned months in
advance, while freight trains are scheduled on-demand at shorter timescales.
Passenger and freight trains often share the same rail network. The problem
addressed in this paper, of routing and scheduling freight trains within a sched-
uled passenger rail network, prevails in many large countries. The actual depar-
ture and arrival times of freight trains are not important, and nor are their
routes. Only a starting station and destination station are specified on the day
of travel. The objective is to minimize the time required to complete the rail
movements. This problem contrasts with the more traditional rail scheduling
requirement of matching an ideal schedule as closely as possible.

In a highly connected rail network, such as that in India, there are a large
number of possible routes a freight train can take from its specified origin to
its destination. The problem therefore is to thread as many freight trains as
possible through the rail network and the passenger rail schedule in such a way
that passenger trains are not disrupted and the freight trains can avoid stopping
repeatedly en route to their destinations.

The train scheduling problem benefits from a rich research literature, and
many variants of the problem have been addressed. The passenger rail scheduling
problem is surveyed in [3]. Periodic passenger schedules are addressed in [8].
Train routing is tackled in [1]. The underlying models for all these varieties is
a network of potential events - potential arrival and departure times at stations
on the rail network.

Two papers address similar problems to this paper -threading freight trains
through a passenger schedule. The 2010 paper [2] minimises the deviation of
freight train schedules from an ideal schedule, and is modelled using an time-
expanded network. The paper [6] on the other hand, does not start from an
ideal schedule. They consider the decision problem of routing and scheduling
freight trains in a passenger rail network in a manner that minimizes Makespan
(time to complete all freight movements) or Flow Times (sum of completion
times for each freight movement). The model used to tackle this problem is a
topological model of the rail network, and the algorithm seeks a (temporally
feasible) shortest path through this network for each freight train.

The number of freight trains threaded through the network is broadly similar
in the benchmark tests in both papers [2] and [6]. The smallest benchmarks have
around 20 freight trains, and the largest benchmark has 96 trains in [2] and 160
freight trains in [6]. A major difference is that [2] use a complete search method
and prove their solutions are within a given percentage of the optimum (around
30% for the largest instances). [6] use a heuristic method for which there is no
quality measure.

The current paper addresses the problem of how to thread the maximum
number of freight trains through the passenger network, minimising the latest
arrival time of the last freight train (termed the Makespan in [6]). The rail
network is modelled topologically, so the size of the network does not grow as
the temporal granularity is made finer. Different from [6], the algorithm used
here is able to prove optimality. Of particular interest is the ability to directly
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model the number of freight trains that could be routed along a network link in
a given time period. This gives a bound on the number of train paths available,
which is essential for detecting and pruning infeasible parts of the search space.

Our use of the modelling language MiniZinc [10] enables us to compare several
different solvers and solving approaches applied to the model. In particular we
investigate constraint programming, using global constraints, constraint propa-
gation; mathematical programming naively, without using any of the decompo-
sition techniques; and finally a hybrid of constraint propagation, learning, and
dynamic search control called lazy clause generation [14].

The next section presents the train threading problem informally and describes
the algorithmic approaches used in this paper. In section 3 we contrast the con-
straint programming and mathematical programming models for the problem, and
then formallypresent ourmodel.The following sectiondescribes anumber of exper-
iments we have carried out on the model, mapping it down to various solvers and
solving techniques. Our experiments use a small network, but the number of pas-
senger trains varies from68 to 136, and thenumber of freight trains from4up to 100.
In the section 5 we model a rail network and passenger timetable taken from the
shared rail network in Melbourne and its suburbs. While based on a real timetable,
with nearly 150 passenger trains, our model of the network is still highly simplified.
The final section presents our conclusions and plans for extensions of this work.

2 The Train Threading Problem

The problem of routing and scheduling a number of freight trains through a rail
network combines both a routing subproblem and a timetabling subproblem.
The requirement is to find a route and a timetable for each freight train from its
specified origin to its specified destination, so that no two trains are scheduled
to run too close together on any segment of rail track.

By expanding the network to represent each time point at each station, the
problem can be mapped onto a single routing problem, but at the expense of dra-
matically increasing the size of the network. The number of nodes in such a net-
work is the number of stations multiplied by the number of possible event times.
For a periodic timetable of one hour, a discretisation of time into one-minute
intervals, ensures the number of nodes is at most only 60 times the number of
stations. However, scheduling a 24-hour period at a time-discretisation of one
minute leads to a number of nodes 1440 times the number of stations. The huge
increase in network size brings a huge increase in the number of variables, with
the result that a large problem instance cannot be loaded into a mathematical
solver and some problem decomposition becomes essential.

Instead we can model the problem as finding a path for each train through
the rail network, and scheduling the train on that path so that it avoids all other
passenger and freight trains. Unfortunately it is not possible to choose a path for
each train and then try and schedule the trains on their paths. The risk is that
too many of the train paths share a rail segment and that there is not sufficient
time available to schedule all the trains through the segment. A natural problem
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decomposition is to plan paths for the trains and if a rail segment becomes a
bottleneck to add a constraint limiting the set of train paths that can share the
segment. This can be done using Lagrangian relaxation (as described in [2]) or
Benders’ decomposition.

The number of paths from origin to destination can grow exponentially in
case there are multiple opportunities to swap between two lines (such as the
10 junctions that allow trains to pass between the fast and slow lines between
Florence and Rome [2]).

Rather than train paths, an algorithm can select which rail links to traverse.
The number of links traversed by a freight train can be limited to a given max-
imum, and the number of decision variables therefore limited to possible links
traversed at each successive stage of the route. Naturally the links possible for
a train at successive stages are restricted to pairs of links that meet at a station
of junction. In fact all junctions can be modelled as stations.

Novel in this paper, we include rail link and temporal constraints in the
same model, and the lazy clause generation algorithm automatically learns which
combinations of decisions are infeasible.

Each link is traversed by a number of passenger trains during the day. This
leaves a set of gaps during which freight trains can traverse the link. Due to
the necessary headway between trains, the maximum number of freight trains
that can traverse the link can be computed a priori. However, during search for
a solution, the time period during which a freight train could possibly traverse
an link becomes more constrained. The cumulative constraint in constraint pro-
gramming, when extended to allow optional tasks, provides a powerful way to
model these constraints.

The different speeds of freight trains give rise to more nodes and more links
in a time-expanded network. The conflict between two links is dependent on
the actual trains that are traversing the links. In our model this difference in
speeds can be represented by two cumulative constraints, the first maintaining
the headways between trains starting to traverse an link, and the second main-
taining the headways at the end of the link. This model makes it possible to
associate a different speed with each train on each station-station link. It even
allows train speeds to be variable, by constraining the time at the end of the
link to be within a certain minimum and maximum time after the time at the
beginning of the link.

3 Problem Formulation

3.1 Mathematical Programming Model

The two subproblems of the train threading problem are

1. routing the freight trains through the network from their start locations to
their destinations

2. scheduling the trains so as to avoid all conflicts.
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For some earlier work such as [1], routing is the key problem. In other work such
as [2], the choice of routes is more constrained and the heart of the problem is
the scheduling.

In the above mathematical programming approaches, the two subproblems
are merged by constructing a network that represents both the routes and the
schedules. Each network node represents a potential event - an arrival or depar-
ture of a train at or from a station. Each network edge represents a potential
train journey leg: starting at a particular time from a particular station and
ending at the next station at a specific later time. The time gap represents the
journey leg duration. If a new train is added to the problem with a different
speed from previous trains, then new edges must be added to represent every
possible journey leg that the train could take.

The left part of Figure 1 represents two stations, and 8 time-points at each
station. The blue edges represent potential journey legs between the two stations
for one train, and the red edges represent potential journey legs for a slower
train. The middle part of the figure shows a set of compatible edges, which can
be chosen in a schedule without violating any headways between pairs of trains.
The right hand part of the figure shows a dual of the network, where the original
blue and red edges are now shown as nodes, and the edges in the dual network
show edges that are incompatible (i.e. pairs of potential journey legs that would
violate headway constraints).

Notice that if different trains with the same speed need different head-
ways,then edges in the original network must be duplicated in order to capture
the conflicts. If every potential train on a leg between two stations had a different
speed or headway, then the original graph would need different edges for every
potential journey leg of every train. The size of the resulting network would be
#Legs×#Periods×#Trains. Such a network model can remain computation-
ally tractable as long as the number of edges is limited. This limitation on the
number of edges is achieved by limiting the divergence from an ideal, or target,
schedule.

Even with a single standard headway and a small number of train types,
the size of the networks is too large to be solved as a single MIP. In the case
of [1], the problem is tackled using column generation, while in [2] Lagrangian
relaxation is used for train conflict constraints, added only when the constraints
are violated as the algorithm progresses. For the larger instances (96 freight
trains) the optimality gap grows to a few percent, in the uni-directional case
which is most similar to the benchmarks tackled in this paper.

3.2 Constraint Programming Model

The constraint programming model represents the problem as a set of tasks. A
task is, of course, a train traversing the link, and in the case of freight trains the
tasks are optional because the train may take a different route avoiding the link.
However each train must perform a sequence of tasks corresponding to a path
from its starting point to its destination.
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Fig. 1. Network representation of possible journey legs between two stations (from [1])

Task scheduling is modelled in constraint programming using the cumulative
constraint. We use the constraint cumulative_optional in which each task has
a given duration, and requires a given amount of resource. Its parameters are:

– duration of each task
– amount of resource used by each task while it is active
– total available capacity of the resource

The decision variables involved in the constraint are

– start time of each task
– boolean variable for each task indicating whether or not the task is performed

To represent potential journey legs, each task represents a different train.
Just two constraints are needed to represent the set of potential journey legs
between two stations, and to enforce the headway between all trains going from
the first station to the other.

The duration of the task is the headway needed by that train (the delay
before the following train can start on the same leg). The resource consumption
of the task is 1. The available resource is the number of tracks (in the given
direction). One cumulative constraint is imposed for each end of the leg. The
link between the two cumulative constraints is as follows

– the start times associated with the corresponding tasks at the beginning
and end of the leg (i.e. the same train) are constrained to differ by the time
needed for the train to cover the leg.

– the same boolean is associated with the corresponding tasks at the beginning
and end of the leg

As an example of the constraint, suppose there are three trains, t1, t2, t3
going from station a to station b. Each train needs 5 minutes to complete the leg
and a headway of 3 minutes. The first cumulative constraint associates a time
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Table 1. Tasks at Station a

Task name Duration Resource Needed Start Time Boolean

t1astart 3 1 ta1 ba1

t2astart 3 1 ta2 ba2

t3astart 3 1 ta3 ba3

at station a with each train: ta1, ta2, ta3, and “optionality” boolean variable
ba1, ba2, ba3. Thus the “tasks” can be represented in a simple table 1.

The second cumulative constraint also has three tasks, with modifed start
times, but the same booleans. The associated tasks are shown in table 2.

Table 2. Tasks at Station b

Task name Duration Resource Needed Start Time Boolean

t1aend 3 1 ta1+5 ba1

t2aend 3 1 ta2+5 ba2

t3aend 3 1 ta3+5 ba3

If we additionally constraint the task starts times all to lie within the range
1..10, then the third boolean variable ba3 must be false, and t2 must go
before t1. A feasible solution is therefore ta1 = 1, ta2 = 4, ba1 = true, ba2 =
true, ba3 = false. Note that the time ta3 is now meaningless, since it represents
the start time of a task that is never active.

It is a limitation of our model using the cumulative constraint that we must
assume dual (or multiple) tracks, so each track is only used in one direction. On
the other hand the model is very flexible in that it allows each train to have
a different speed and a different headway. It can even allow the train to have
the speed as a decision variable optimised as part of the solution (in case, for
example, we seek a solution where freight trains avoid stopping between journey
legs).

The cumulative constraint detects early when a link is becoming congested
during a certain time period, because too many freight trains have been routed
across the link within a certain time period. This enables infeasible combinations
of freight train paths to be detected before any attempt to schedule times for
their journey legs. One of our solution algorithms uses lazy clause generation
[4], and our implementation of cumulative_optional generates explanations of
any infeasibilities it detects. It uses, and explains, both timetabling and edge-
findings, as described in [12,14].

The optionality of tasks can be modelled using optional types in MiniZinc
[9]. In fact our implementation instead uses a pair of variables to represent the
upper and lower bounds on the start times [13]. It sets the boolean variable to
false as soon as the lower bound exceeds the upper bound. Naturally the upper
and lower bound are constrained to be equal if the boolean is true.
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3.3 Formal Model of the Freight Train Threading Problem

For general case we assume that we have S stations, T p passenger trains and
their daily schedule. Our objective is to find earliest feasible schedule for T f

freight trains that does not affect the usual passenger train operation.
We assume that trains flow in one direction. In short, an origin for one train

is not a destination for another.

3.4 Assumptions

We consider this problem with following assumptions:

– For all freight trains, their origin and destination are known.
– No train can overtake any preceding train.
– The passenger train schedule is known. That is, occupancy of each and every

railway link in the network is known.
– Restricted operational times of passenger and freight trains. The passenger

train and freight trains operate between 05:00 - 22:00 and 03:00 - 23:00,
respectively.

– All freight trains traverse at same average speed, which is different from the
passenger train average speed.

– A minimum headway between consecutive trains (freight-freight and freight-
passenger) that share the same link is always maintained.

3.5 Sets and Parameters

Sets
T p passenger trains S stations
T f freight trains R railway links
T all trains

Parameters
Factor speed factor between passenger and freight trains
Gap minimum headway between consecutive trains
MaxLinks maximum number of legs in a freight train path
dr : r ∈ R time taken by a passenger train to travel the

railway link r
sr : r ∈ R start station of the directional railway link r
er : r ∈ R end station of the directional railway link r
Pi : i ∈ T p number of links in the path of passenger train i
li,j : i ∈ T p, j ∈ 1..Pi jth railway link of passenger train i
sti,j : i ∈ T p, j ∈ 1..Pi start time of passenger train i on link li,j
origi : i ∈ T f starting location of freight train i
desti : i ∈ T f destination of freight train i
σf
l lower bound of freight train operation time in a day

σf
u upper bound of freight train operation time in a

day
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3.6 Decision Variables

Find a feasible schedule for freight trains on an existing passenger railway net-
work that satisfies some given objective function. The decisions are represented
by the following variables.

Pi : i ∈ T f The number of links in the path of freight train i
li,j : i ∈ T f , j ∈ 1..Pi jth railway link of freight train i
sti,j : i ∈ T f , j ∈ 1..Pi start time on li,j of freight train i
preci,i′ : i, i′ ∈ T f Train precedence order is true when train i

precedes i′ on any link.

3.7 Constraints

1. Length of path
0 ≤ Pi ≤ MaxLinks : i ∈ T f

2. Start location of freight trains
sli,1 = origi : i ∈ T f

3. Destination of freight trains
eli,Pi

= desti : i ∈ T f

4. Preceding railway links
sli,j+l

= eli,j : i ∈ T f , j ∈ 1..(Pi − 1)
5. Each freight train travels at different average speed than a passenger train

by Factor. This constraint allows a freight train to stop at a station before
its next journey leg.

sti,j+1 ≥ sti,j + (dli,j × Factor) : i ∈ T f , j ∈ 1..(Pi − 1)
6. Freight trains that use the same railway link have a precedence between

them. The precedence order between two trains is the same throughout the
journey, so no train can overtake any preceding train.

li,j = li′,j′ ⇒ preci,i′ ∨ preci′,i : i �= i′ ∈ T f , j ∈ 1..Pi, j
′ ∈ 1..Pi′

7. Minimum headway time between trains is Gap
preci,i′ ∧ li,j = li′,j′ ⇒ sti′,j′ ≥ sti,j + Gap

i, i′ ∈ T f , j ∈ 1..Pi, j
′ ∈ 1..Pi′

li,j = li′,j′ ⇒
(sti′,j′ ≥ sti,j+Gap)∨(sti,j ≥ sti′,j′ +Gap+dli,j ×(Factor−1))

i ∈ T p, i′ ∈ T f , j ∈ 1..Pi, j′ ∈ 1..Pi′

8. Daily operational times of freight trains
σf
l <ti,j <σf

u : i ∈ T f , j ∈ 1..Pi

3.8 Model with the Cumulative Optional Constraint

We can model the problem using the cumulative constraint, and make the
precedence decision variables and constraints redundant. Instead we introduce
a boolean variable for each train and rail link. A cumulative constraint enforces
the required headway between trains at the beginning and end of each rail link
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Decision Variables
bbi,r : i ∈ T, r ∈ R A boolean variable for each train and rail link
tti,r : i ∈ T, r ∈ R A start time for each train on each rail link

1. Durations
– ddi,r = dr : i ∈ T p

– ddi,r = dr ∗ Factor : i ∈ T f

2. Linking constraints
– tti,r = sti,li,j : i ∈ T, j ∈ 1..P
– bbi,li,j = true : i ∈ T, j ∈ 1..P

3. Cumulative constraint: (start-time-list, duration-list, resource-list, boolean-
list,total-resource)
– cumulative_optional([tti,r : i ∈ T ],[Gap : i ∈ T ],[1 : i ∈ T ],[bbi,r : i ∈
T ], 1) : r ∈ R
– cumulative_optional([tti,r + ddi,r : i ∈ T ],[Gap : i ∈ T ],[1 : i ∈ T ],[bbi,r :
i ∈ T ], 1) : r ∈ R

3.9 Objective

The objective is to find earliest or a feasible schedule for freight trains on an
existing railway network that doesn’t affect the passenger train schedule. In
other words, to find a schedule which satisfies all above constraints from (1) to
(8) and minimises a new variable Latest.

Latest ≥ sti,P + (dli,P ) × Factor : i ∈ T f

minimize(Latest)

3.10 Problem Variants

The freight train threading problem can involve a variety of side constraints.
We explored several of these in combination to determine the impact of side-
constraints on the performance of the solving methods. The side-constraints we
investigated were:

1. lines crossing constraint - if two train paths cross, then they must be sepa-
rated by a headway

2. no stopping constraint - a freight train cannot stop en route
3. cyclic network constraint - a constraint precluding freight trains from taking

paths with cycles.

Each side-constraint requires its own parameters and variables.

Lines Crossing.

– Parameters
< r1, r2, r3, r4 > : r1, r2, r3, r4 ∈ R ∧ er1 = er2 = sr3 = sr4 Each
crossing is listed as an array of 4 links.

– Constraints li,j = r1 ∧ li,j+1 = r3 ∧ li′,j = r2 ∧ li′,j′+1 = r4 ⇒
sti,j+1 ≥ sti′,j′+1 + Gap ∨ sti′,j′+1 ≥ sti,j+1 + Gap

i, i′ ∈ T, j ∈ 1..Pi, j
′ ∈ 1..Pi′
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No Stopping.

– This constraint prevents a freight train from stopping at a station before its
next journey leg.

sti,j+1 = sti,j + (dli,j × Factor) : i ∈ T f , j ∈ 1..(Pi − 1)

No cycles.

– Constraints: all the stations visited on a freight train path must be distinct
(This alldifferent is implemented using MiniZinc’s optional types [9]).

all_different([e(li,j) : j ∈ 1..MaxLinks]) : i ∈ T f

4 Experiments

4.1 Benchmark Rail Network

For benchmarking the rail freight threading solvers, we used the rail network
shown in Figure 2, which comprises 15 stations and 16 rail links. This hypothet-
ical network was constructed to connect four possible origins to four possible
destinations allowing 16 possible freight train routes, with 8 rail links where
conflicts could occur, and 7 stations where lines cross. The dotted links were
used in the experiments on side-constraints described below. The node i rep-
resents a main station in the network. A main station is either an end station
(O1..4/D1..4) of a line or a junction station. A junction station is a station that
has more than one incoming edges (railway links/tracks) and/or more than one
outgoing edges. Each edge r = {s,e} represents a directional rail link from sta-
tion s to station e. Intermediate stations (I1..7) between two main stations which
have one incoming track and one outgoing track each, are not modelled, as it
will not affect the solution to our problem.

4.2 Benchmark Tests

We conducted freight train scheduling for ten different scenarios. These sce-
narios were formulated combining different passenger train schedules, freight
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Fig. 2. Benchmark Rail Network
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train speeds and minimum headway. The scenarios are described in Appendix 1.
For each scenario, the benchmark test involved threading a given number of
freight trains, with given origins and destinations, through the given passenger
timetable. To test the scalability of the solvers, we tried different numbers of
freight trains: 4, 8, 16, 32, 64 and 100.

We then extended this rail network to have some cycles by adding rail links as
shown in dotted arrows (Figure 2), and repeated the experiments with additional
combinations of side constraints, namely, cross-links and no-stopping. In the next
section, we discuss the results obtained.

4.3 Testing Environment

We implemented our model using MiniZinc [10]. The Minizinc software sup-
ports the mapping of MiniZinc models to an underlying (Flatzinc) form suitable
for different kinds of solvers. In particular we used mappings to an integer-linear
form, and to constraint-programming forms to suit different solvers. The solvers
we tested were Cplex [7], Gecode [5] and Opturion CPX [11]. All results reported
here were obtained on an Intel(R) Core(TM) i5-3320M CPU @ 2.60Hz and 8GB
RAM. We used MiniZinc version 2.0, Cplex version 12.5.1, Opturion CPX ver-
sion 1.0.2 and Gecode version 4.3.2. Each of the instances (for a certain test
scenario and a certain number of freight trains) was allowed to run a maximum
of 10 minutes.

4.4 Results

We tested our model on the three solvers, Cplex, Opturion CPX and Gecode,
each with varying numbers of freight trains, 4, 8, 16, 32, 64 and 100. As shown in
Table 3, both Opturion CPX and Gecode solvers were able to arrive at feasible
solutions for all cases.

The poor scalability of Cplex on these tests is partly due to the highly dis-
junctive nature of the problem, which is the reason previous mathematical pro-
gramming approaches [1,2] have used problem decompositions. However it may
be that the linearisation carried out when mapping from MiniZinc to the under-
lying form is not be the best possible. This mapping is the subject of ongoing
research.

Scalability Test Table 4 summarises the results obtained using the Opturion
CPX and Gecode solvers. The execution times given on the last row are the times
taken for running all 10 test scenarios for a given number of freight trains, in
seconds. Each of the remaining rows displays the solutions for different numbers
of freight trains for a given test scenario. The solutions shown are the scheduled

Table 3. Maximum size solved on different solvers

Cplex CPX Gecode

No. of Freight Trains 8 100 100
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Table 4. Scalability Test Results of CPX and Gecode Solvers

Opturion-CPX Gecode
No. of Freight Trains No. of Freight Trains

Test Scenario 4 8 16 32 64 100 4 8 16 32 64 100

1 150 155 165 185 225 275 150 155 165 185 225 275
2 300 305 315 335 375 425 300 305 315 335 375 530
3 150 155 165 185 225 275 150 155 165 185 225 275
4 300 305 315 335 375 425 300 305 315 335 430 550
5 150 155 165 185 225 275 150 155 165 185 225 275
6 300 305 315 335 375 425 300 305 315 335 375 530
7 150 155 165 185 225 275 150 155 165 185 225 275
8 300 305 315 335 375 425 300 305 315 335 425 560
9 150 160 180 220 300 400 150 160 180 220 300 400
10 150 160 180 220 300 400 150 160 180 220 300 400

Execution Time (s) 0.3 1.0 7.1 45 519 4474 4 7 19 79 1700 5224

departure times for the last legs of the last freight train, given in minutes. For
example, for test scenario 1 with 4 freight trains, the last train is scheduled to
depart on its last leg at 2:30AM. The results shaded in red show the instances
where the optimal solution could not be reached within the given time limit of
10 minutes.

In the cases of 4, 8, 16 and 32 freight trains, both the solvers arrived at
optimal solutions for all test scenarios. In the case of 64 and 100 freight trains,
however, only the Opturion CPX solver succeeded in obtaining the optimal solu-
tions across all scenarios. For all problem sizes Opturion CPX produced solutions
faster than Gecode.

Test on side-constraints To investigate the impact of the side-constraints:
lines-crossing, no-stopping and cyclic network on the solving method, we per-
formed a test using the Opturion CPX solver. In order to test the cyclic con-
straint, we introduced some cyclic routes into our hypothetical network.

We performed tests with instances sized 32 and 64 freights trains. For all tests
in all combinations CPX found and proved optimality for the size 32 instances.
Optimally could not be proven for size 64 instances.

5 A Real World Example

5.1 Melbourne Network

Finally we applied our model to a network based on real world data. We created
a simplified version of the Melbourne V-Line network shown in Figure 3. In this
network, freight trains start from any of the four destinations: Sunbury, Werribee,
Pakenham and Craigieburn, and travel to any other. Inbound and outbound trains
are on different tracks, and freight trains use different lines from the passenger ser-
vices between Noth Melbourne and Flinders Street.
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Fig. 3. V-Line Simplified Rail Network

The input timetables for the model were constructed based on the actual
incoming and outgoing timetables for each passenger line between 7 AM and
12 Noon. Inbound passenger trains run from Werribee to North Melbourne, from
Sunbury to North Melbourne, from Craigieburn to North Melbourne, and from
Pakenham to Southern Cross. All outbound passenger trains going to Pakenham
depart from Flinders Street, whereas trains going to all other destinations depart
from North Melbourne.

5.2 Experiments

We tested the Melbourne rail network with varying number of freight trains,
12, 24, 48, 60, 72, 84, 96 and 120. The reason for choosing multiple of twelve
was to have equal number of all possible combinations of origin and destination.
Table 5 shows the maximum number of freight trains for which the Opturion
CPX solver gave at least one feasible solution within the allowed runtime (10
minutes for each instance). We restricted the freight train operational time to
match the passenger train timetable, which is from 7 AM till 12 Noon. This is to
simulate an actual situation where freight train threading is required during usual
operational time. For example, when minimum headway (Gap) is 3 minutes and
the speed factor (Factor) is 1, a maximum of 84 freight trains can be scheduled.

Table 5. Scheduling varying number of freight trains

Gap (mins)
Factor 3 4 5

1 84 72 36
2 24 NP NP
NP - Not possible to schedule



Freight Train Threading with Different Algorithms 407

6 Conclusion

The freight train threading problem is both an important practical problem and
an interesting scheduling problem which has been addressed using mathematical
programming approaches as well as metaheuristics. In this paper we explored a
novel approach to the problem using cumulative scheduling and optional tasks.
We compared the available complete methods, and we were pleased to find that
our new approach is able to prove optimality for problem instances with 100
freight trains, which is comparable to the numbers previously tackled using
mathematical programming.

We have also implemented an approach where freight trains can slow down
between stations. This is a variant that cannot be represented in current math-
ematical modelling approach with a space-time network.

We compared an approach using lazy clause generation with a traditional
tree-search implemented in Gecode. The scalability of the traditional tree-search
approach surprised us, though learning made an increasing improvement in the
larger instances. We also investigated the impact of side-constraints on solv-
ing performance. While side-constraints did not prevent the solver from finding
solutions, the number of instances where optimality could be proven was dra-
matically reduced when different side-constraints were combined.

We recognise that the rail networks investigated in this paper are small and
over-simplified. We plan next to augment our tests on scalability with the num-
ber of trains on the network, to investigate scalability with the network itself,
employing a more detailed model of a real network.
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Appendix: Data

Benchmark Scenarios

Passenger Train Timetables

The passenger train timetable for the hypothetical network can be down-
loaded from https://sakai-vre.its.monash.edu.au/access/content/user/wallace/
FreightTrainThreading

Table 6. Passenger train schedules (termed set in table 7) used for freight rail threading
benchmarks)

Set Description

1 Frequency of trains is one per hour per origin

2 Frequency of trains is two per hour per origin

3 Train frequency is two per origin during peak hour and one per origin
during off-peak hour. Peak hours: 6am - 9am, 4pm - 7pm

4 In set 1,2 and 3, passenger trains that start from origin (say O1) always
takes a particular path to reach its destination (D1). In this set, pas-
senger train’s origin and destination remains the same but it takes two
different paths. Therefore, within an hour two trains depart from same
origin (O1). Each will take different paths, but will end up at the same
destination (D1).

Table 7. Ten scenarios used for freight rail threading benchmarks

Test No. Set Total T p Factor Gap (mins) σp
l - σp

u

1 1 68 1 5 05:00 - 23:59

2 1 68 2 5 05:00 - 23:59

3 2 132 1 5 05:00 - 23:59

4 2 132 2 5 05:00 - 23:59

5 3 92 1 5 05:00 - 23:59

6 3 92 2 5 05:00 - 23:59

7 4 136 1 5 05:00 - 23:59

8 4 136 2 5 05:00 - 23:59

9 2 132 1 10 05:00 - 23:59

10 3 92 1 10 05:00 - 23:59

https://sakai-vre.its.monash.edu.au/access/content/user/wallace/FreightTrainThreading
https://sakai-vre.its.monash.edu.au/access/content/user/wallace/FreightTrainThreading
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Abstract. We present a new learning scheme for CSP solvers, which is
based on learning (general) constraints rather than generalized no-goods
or signed-clauses that were used in the past. The new scheme is integrated
in a conflict-analysis algorithm reminiscent of a modern systematic SAT
solver: it traverses backwards the conflict graph and gradually builds an
asserting conflict constraint. This construction is based on new inference
rules that are tailored for various pairs of constraints types, e.g., x ≤
y1 + k1 and x ≥ y2 + k2, or y1 ≤ x and [x, y2] �⊆ [a, b]. The learned
constraint is stronger than what can be learned via signed resolution. Our
experiments show that our solver HCSP backtracks orders of magnitude
less than other state-of-the-art solvers, and is overall on par with the
winner of this year’s MiniZinc challenge.

1 Introduction

The ability of CSP solvers to learn new constraints during the solving process
possibly shortens run-time by an exponential factor (see, e.g., [20]). Despite this
fact, and in contrast to SAT solvers, only few CSP solvers use learning, owing to
the difficulty of making it cost-effective. Learning in a limited form was present
in early CSP solvers, where it was called nogood learning [10]. Nogoods are
defined as partial assignments that cannot be extended to a full solution. Later
generalized nogoods [20] (g-nogoods for short) were proposed, which allow non-
assignments as well, e.g., a g-nogood (x � 1, y ← 1) means that an assignment
in which x is assigned anything but 1 and y is assigned 1 cannot be extended to
a solution. This formalism is convenient for representing knowledge obtained by
propagators. The g-nogood above, for example, can result from removing 1 from
the domain of x, which leads by propagation to removing 1 from the domain of
y. G-nogoods may be exponentially stronger than nogoods, as shown in [20].

A more general and succinct representation of learned knowledge is in the
form of signed clauses. Such clauses are disjunctions of signed literals, where a
signed literal has the form v ∈ D or v �∈ D (called positive and negative signed
literals, respectively), where v is a variable and D is a domain of values. Beckert
et al. [5] studied the satisfiability problem of signed CNF, i.e., satisfiability of
a conjunction of signed clauses. They proposed an inference system, based on
simplification rules and a rule for binary resolution of signed clauses:
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L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 410–426, 2015.
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((v ∈ A) ∨ X) ((v ∈ B) ∨ Y )
(v ∈ (A ∩ B) ∨ X ∨ Y )

[Signed Resolution(v)] (1)

where X and Y consist of a disjunction of zero or more literals, A and B are
sets of values, and v is called the pivot variable. Note that in case v is Boolean
and A,B are complementary Boolean domains (e.g., A = {0}, B = {1}) then
this rule simplifies to the standard resolution rule for propositional clauses that
is used in SAT, namely the consequent becomes (X ∨ Y ).

As we showed in an earlier publication [27], we used this rule in our CSP
solver HCSP (short for HaifaCSP)1, as part of a general learning scheme based
on signed clauses. Using a special inference rule for each type of non-clausal
constraint, HCSP inferred a signed clause e that explains a propagation by that
constraint. This means that e is implied by the constraint, but at the same
time is strong enough to make the same propagation as the constraint, at the
same state. Using such explanations in combination with rule (1) for resolving
signed clauses, HCSP can generate a signed conflict clause via conflict anal-
ysis. By construction this clause is asserting (i.e., it necessarily leads to addi-
tional propagation after backtracking). In contrast to the CSP solver EFC [20],
which generates a g-nogood eagerly for each removed value, HCSP generates a
signed explanation clause lazily, only as part of conflict analysis. Lazy learning of
g-nogoods was also implemented on top of minion [14]. There has also been work
on extending explanations with new Boolean variables, which encode equalities
and inequalities [19,25], and more recently constraint-specific inference [15], such
as partial sums in the case of linear constraints. In all these works there is no
direct inference between general constraints.

In this article we study a different learning scheme, which is based on inference
rules with non-clausal consequents. Non-clausal learning has been studied before
in the context of several first-order quantifier-free theories: Pseudo-Boolean con-
straints (see, e.g., Sect. 22.6.4 in [6] and [11]), difference constraints [9], and inte-
ger linear constraints, e.g., [18,24]. The congruence-closure algorithm for equality
logic with uninterpreted functions, which is implemented in most SMT solvers, can
also be seen as inferring non-clausal constraints, since it infers new equalities. In
all of these cases such learning was shown to improve the search, which motivated
us to develop such a scheme for CSP, that is strongly tied to the conflict-analysis
procedure. What we suggest here is very general, as it can be used with most of
the constraints that are supported by modern CSP solvers, and allows non-clausal
inference between different types of constraints.

Our main goal in introducing this scheme is to learn a conflict constraint
that is logically stronger and easier to compute than its clausal counterpart.
The emphasis is on the first of these goals as it may improve the search itself.
To that end, we propose a generic inference rule called Combine that for many
popular (pairs of) constraints indeed fulfills these two goals. For example, sup-
pose that in a state in which the domains of three variables are defined by
x ∈ {2, 6, 10, 14, . . . , 30}, y1 ∈ {8, 12, 16, 20}, y2 ∈ {1, 2, 3, . . . , 9}, the constraint
c1

.= y1 ≤ x propagates x ∈ {10, 14, . . . , 30}, which leads to a contradiction with
1 In [27] it was still called PCS, for Proof-producing Constraint Solver.
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a constraint c2
.= x ≤ y2. During conflict-analysis, HCSP now infers from this

propagation the constraint [y1, y2] ⊆ [8, 9] =⇒ x ∈ [8, 9], which is clearly
implied by c1, c2 (square brackets denote a range). Rewriting this constraint
as [y1, y2] �⊆ [8, 9] ∨ x ∈ [8, 9], we see that each of the disjuncts has less vari-
ables than the set of input variables, which potentially makes it easier to solve.
Instantiations of Combine always have this property. For some combinations of
rules we do not use Combine since the result is too complicated to derive or
too computationally expensive to support. In such cases we revert to clausal
explanations.

Our experimental results indicates that indeed the new scheme is better
than clausal explanation. For reference, we also compared HCSP to Mistral
[16], CPX [4] and iZplus [13], where the last two won the second and first
places, respectively, in the ‘free-search, single-core’ track of the 2014 ‘MiniZinc
Challenge’ (a CSP competition). HCSP performs better than these tools in
terms of average run-time and the number of runs it is able to complete within the
given time limit, although in optimization problems iZplus typically finds better
solutions. HCSP performs an order of magnitude less backtracks than Mistral
and three orders of magnitudes less backtracks than CPX, which proves that
the constraints it learns are far more effective in pruning the search.

The rest of the article is structured as follows. The next section covers
background material, including the learning framework that we use and clausal
explanations [27]. Sections 3 and 4 describe the new set of inference rules, the
requirements from them and the proofs that they fulfill these requirements. In
Sec. 3 we also explain how we use clausal explanations as a fallback solution
when we are unable to infer a general constraint that satisfies the required prop-
erties. We conclude in Sec. 5 with an empirical evaluation and some proposals
for future research.

2 Background

Our solver HCSP supports all the constraint types specified in the FlatZinc
format [23]. The engine of HCSP adopts classical ideas from the CSP and SAT
literature. We assume the reader is mostly familiar with those, and only mention
several highlights briefly for lack of space. It makes a decision (variable ordering)
by selecting a variable with the highest ratio of score to domain-size, where
score is calculated similarly to Chaff’s VSIDS technique [22]. This can be seen
as a variant of the dom/wdeg strategy [7]. The value is initially chosen to be the
minimal value in the domain, and after that according to the last assigned value,
a technique that is typically referred to by the name phase saving in SAT [26]. It
includes restarts, learning, and deletion of learnt-constraints with low activity.
The rest of this section is focused on the learning mechanism.

2.1 Conflict Analysis

Conflict-analysis and learning in HCSP is based on the familiar pattern of
traversing backward the conflict graph and computing an asserting constraint.
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Conflict-analysis was used in CSP before, but only while assuming that the
constraints are signed clauses, as in MVS [21], or made into signed clauses via
explanations (to be described in Sect. 2.2), as in [12,28]. The conflict-analysis
in HCSP is not restricted to clausal inference, and includes various adaptations
and optimizations as we describe now. Alg. 1 shows pseudo-code of Analyze-
Conflict as implemented in HCSP. It maintains a set of nodes F , which is
initialized to the set of nodes that contradict the input constraint cc. In line 4 it
performs a relaxation of F . Relaxation appeared first in our technical report [28];
A similar idea appeared also in [17]. Relaxation means that each node in F is
‘pushed’ to the left as long as the constraint Cons remains conflicting. Generally
this is possible when domain reductions are redundant, as demonstrated in the
following example.

Example 1. Consider the constraints

c1
.= y ≥ x c2

.= x ≥ y c3
.= x > y + u . (2)

and the conflict graph in Fig. 1 (left).

Fig. 1. Part of a conflict graph, based on the constraints in (2). Empty circles repre-
sent nodes in the set F . The left and right drawings are before and after relaxation,
respectively. Relaxation discovers that the domain reduction by c2 is not necessary for
conflicting the constraint Cons (c3 in this case).

In Alg. 1, initially Cons = c3, and hence after line 2 F = {x ∈ {2}, y ∈
{2}, u ∈ {0}} (those are marked with empty circles). Relaxation in line 4 replaces
in F the node y ∈ {2} with the node y ∈ {2, 3}, because the new F also
contradicts the current constraint Cons. Fig. 1(right) shows this. The reason
that this is possible is that the domain reduction by c2 is redundant in the
current state, because when u = 0, c3 is capable of removing this value by
itself. Such cases appear frequently, because the order in which constraints are
processed is not optimal. ��
Relaxation is necessary for several reasons: a) preventing a situation in which
the learned clause is still conflicting immediately after backtracking, instead of
being asserting, b) in Sec. 4.3 we rely on relaxation in the development of some
of the inference rules, and c) our experiments show that without it many more
cases fall back to clausal explanations, because relaxation enables to circumvent
them.

Let us return to the description of Alg. 1. In lines 5–9 AnalyzeConflict
gradually updates the constraint Cons. It does so by traversing the conflict
graph backwards (i.e., going left, from the conflict node towards the decision
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node) while updating F and the constraint Cons such that the following loop
invariants are maintained:

1. Invar1 . Cons contradicts the domains defined by F , and is able to detect
it via propagation.2

2. Invar2 . No two nodes in F refer to the same variable.

It should be clear that these invariants are maintained at the entry to the loop,
because of the definition of F , Cons, and relaxation. Infer and GetNewSet are
targeted towards maintaining it as will be evident later. The traversal stops in
line 5 once the function stop detects that Cons is asserting, or that it conflicts
the domains at decision level 0. In the latter case the function AssertingLevel
returns -1 to the solver, which accordingly declares the CSP to be unsatisfiable.
In line 8 the current constraint Cons is replaced with a constraint that is inferred
from Cons itself and the antecedent constraint of a node in F . The function Infer
is the main contribution of this article and will be discussed in later sections.

Algorithm 1. AnalyzeConflict receives as input the currently conflicting
constraint, learns a new constraint Cons which is asserting (i.e., necessarily leads
to further propagation), and returns the backtrack level. infer, the subject of
Sect. 3–4, infers a new constraint. GetNewSet computes the new set of nodes
F , as explained in the text.
1: function AnalyzeConflict (constraint cc) � cc = conflicting constraint
2: F ← the set of nodes contradicting cc;
3: Cons ← cc;
4: F ←relax (F, Cons);
5: while !stop (F ,Cons) do � stop if Cons is asserting or UNSAT detected
6: pivot ← node of F that was propagated last;
7: antecedent ← incoming constraint of pivot;
8: Cons ← Infer (Cons, antecedent, pivot, F );
9: F ← GetNewSet(F , Cons, pivot);

10: Remove from F nodes referring to variables not in Cons.
11: F ← relax (F, Cons); � Go left as long as F contradicts Cons

12: Add Cons to the constraints database;
13: return AssertingLevel (Cons,F ); � the backtracking level, or -1 if UNSAT

14: function GetNewSet(node-set F , node pivot)
15: F ← (F \ {pivot}) ∪ parents of pivot;
16: F ← distinct (F ); � Chooses right-most node of each variable in F
17: Return F ;

Let us now shift our focus to GetNewSet, which updates the set F . Initially
it replaces pivot with its parents. In case there is more than one node in F
representing the same variable, in line 16 the function distinct leaves only the
2 Detection is not a given, because not all constraints have a precise propagator, i.e.,

they are all sound but not all are complete. Bounds consistency is an example of
such imprecise propagation.
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right-most one. The reason that there may be multiple entries of a variable in F
is that a parent of pivot may represent a variable that already labels a different
node in F because of relaxation (line 11) in a previous iteration.

2.2 Clausal Explanations

Generic explanations were used in the past (e.g., [14,20]) for learning of
g-nogoods. The scheme we describe here uses inference rules specialized for each
constraint type, resulting in signed clauses. Such clausal explanations are impor-
tant in our context both for understanding the alternative mechanism that we
used in [27] (we use it as one of the points of reference for comparing the results),
and because we still use it as a fallback solution when, e.g., we reach pairs of
constraints for which we do not have an inference rule. Let us begin by formally
defining the notion of explanation.

Definition 1 (Clausal explanation). Let l1, . . . , ln be signed literals at the
current state (each literal represents the current domain of a variable), and let
c be a constraint that propagates the new signed literal l, i.e., (l1 ∧ . . . ∧ ln ∧
c) → l. Then a clause e is an explanation of this propagation if the following
two conditions hold:

c → e (3)

(l1 ∧ · · · ∧ ln ∧ e) → l . (4)

Eq. (3) guarantees that the new clause e is logically implied by an existing con-
straint, hence we do not lose soundness. Eq. (4) guarantees that it is still strong
enough to imply the same literal. It is always possible to derive an explanation
from a constraint, regardless of the constraint type [27].

Example 2. The following rule from [27] provides a clausal explanation for an
inequality constraint:

x ≤ y

x ∈ (−∞,m] ∨ y ∈ [m + 1,∞)
(LE(m)) (5)

where m is a parameter instantiating it (the rule is sound for any m). Note that
the consequent is a signed clause. Now consider two literals:

l1
.= (x ∈ [1, 3]), l2

.= (y ∈ [0, 2])

and the constraint
c

.= x ≤ y ,

which implies in the context of l1, l2 the literal l
.= x ∈ [1, 2]. Using (5) with

m = max(y) = 2 we obtain the explanation

e
.= (x ∈ (−∞, 2] ∨ y ∈ [3,∞)) ,

and indeed (3) and (4) hold, since c → e and (l1 ∧ l2 ∧e) → l. In [27] alternatives
to choosing m = max(y) are discussed. ��
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In [27] we showed how HCSP generates a signed conflict clause with an inference
system based on signed resolution (1), that is reminiscent of how SAT solvers
use binary resolution. Explanations are used for bridging between non-clausal
constraints and a signed clause (as in the example above), and (1) is used for
resolving signed clauses.

Example 3. The following demonstrates conflict analysis with clausal explana-
tions. In addition to (5), we will use a variant of this rule for strict inequality:

x < y

x ∈ (−∞,m − 1] ∨ y ∈ [m + 1,∞)
(L(m)) (6)

We will also use the observation that if c → e, then (l ∨ c) → (l ∨ e), to handle con-
straints with disjunctions. Let Dx = {0, 1}, Dy = {0, 1}, Dz = {0..100}, and

c1
.= (z = 9 ∨ x < y) c2

.= (z = 10 ∨ x ≥ y).
Theconflict graphon the left shows thedecision
(Dz = {0}), and then that c1 propagates Dx =
{0}, Dy = {1} in this order, and finally that
c2 detects a conflict. Now F = {z ∈ {0}, x ∈
{0}, y ∈ {1}} and pivot = {y ∈ {1}}.

Then c2 generates the explanation

(z ∈ {10} ∨ x ∈ [1,∞) ∨ y ∈ (−∞, 0])

based on LE(0) (see (5)), and c1 generates the explanation

(z ∈ {9} ∨ y ∈ [1,∞) ∨ x ∈ (−∞,−1])

based on L(0) (see (6)). Resolving the two explanations on y yields

(z ∈ {9, 10} ∨ x �∈ {0}). (7)

Now pivot = x ∈ {0}. c1 explains the propagation of x with the clause

(z ∈ {9} ∨ y ∈ [2,∞) ∨ x ∈ (−∞, 0])

based on L(1). Resolving it with (7) on x yields

(z ∈ {9, 10} ∨ x ∈ (∞,−1] ∨ y ∈ [2,∞)) . (8)

Now F is equal to the three nodes on the left. (8) is now asserting, since e.g.,
at the previous decision level z ∈ {9, 10} is implied. ��

3 Non-clausal Inference: Requirements

In Alg. 1 Infer is given the constraints Cons(x, �y) and antecedent(x, �y) with a
joint variable x that appears at the node pivot, and some set of variables �y, which
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may or may not be common to both3. It outputs a new constraint over x, �y that
is assigned back into Cons. In the presentation that follows we will use c1(x, �y) to
denote Cons(x, �y), c2(x, �y) to denote antecedent(x, �y), and c∗(x, �y) to denote the
output constraint. We also define

c12(x, �y) .= c1(x, �y) ∧ c2(x, �y).

Typically we will discard the parameters and write c1, c2, c
∗, c12 instead.

Our first requirement from c∗ is that it preserves soundness:

c12 → c∗ . (9)

This guarantees that the constraint eventually learned in line 12 is inferred via
sound derivations, and hence is guaranteed to be implied by the original CSP.

Let D′
x,D′

y denote the domains of x, �y right before the propagation of c1.
Also, let �cp denote the provability relation by constraints propagation, i.e.,
φ �cp ψ denotes that starting with a set of constraints and domains φ, the set of
literals ψ is derivable through constraint propagation. Then to preserve Invar1
(see Sec. 2), our second requirement from c∗ is:

c∗,D′
x,D′

y �cp ⊥ . (10)

Finally, we aspire to find the strongest c∗ that satisfies the above requirements,
and which is easy to propagate.

4 Non-clausal Inference: Rules and Their Proofs

Rules R1–R7 in Table 1 are triples 〈c1, c2, c∗〉 that satisfy the two requirements
(9) and (10). Rules R8 and R9 satisfy (9) but not necessarily (10). We use
them to infer constraints, and then test whether they happen to satisfy (10). In
addition, we use the following meta-rule for handling disjunctions:

(A ∨ c1) (B ∨ c2)
A ∨ B ∨ c∗ (11)

If 〈c1, c2, c∗〉 satisfies (9) and (10), then so does (11). Detailed proofs for all of
these rules can be found in a technical report extending this article [29].

Example 4. We now show two examples in which the rules lead to stronger
learning than explanation-based learning

– Recall example 3, which yielded the conflict clause (8). Given the same
conflict graph but using the meta rule (11) with pivot y, we learn instead
z ∈ {9, 10}, which is clearly stronger.

3 It is of course not necessarily the case that they share all the variables, but the descrip-
tion is simplified if we do not consider the shared and unshared variables separately,
without sacrificing correctness.
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Table 1. Triples 〈c1, c2, c∗〉 that we use for deriving conflict constraints. R1 – R7 are
rules that satisfy both (9) and (10), whereas R8 – R9 are only guaranteed to satisfy
(9). When using them we test if they also satisfy (10). The various min, max operators
refer to the domain values at the point in time in which the rule is activated.

c1 c2 c∗

R1 x ∈ X1 ∨ A1(�y) x ∈ X2 ∨ A2(�y) x ∈ (X1 ∩ X2) ∨ A1(�y) ∨ A2(�y)

R2 y1 ≤ x − k1 x ≤ y2 − k2 (x ∈ [k1 + min(D′
y1), max(D′

y2) − k2

]
) ∨

([y1, y2−k2−k1] �⊆ [min(D′
y1), max(D′

y2)−
k2 − k1])

R3 y1 ≤ x [x, y2] �⊆ [a, b]
(a > x ≥ min(D′

y1)) ∨
([y1, y2] �⊆ [min(D′

y1), b])

R4 x ≤ y1 − k1 [y2, x − k2] �⊆ [a, b]
(max(D′

y1)-k1≥ x > b+k2) ∨
[y2, y1-k1-k2]�⊆ [a, max(b, max(D′

y1 -k1-k2))]

R5 [y1, x] �⊆ [a1, b1] [x, y2] �⊆ [a2, b2] (a2 > x > b1) ∨ ([y1, y2] �⊆ [a1, b2])

R6 [x, y] �⊆ [a1, b1] [y, x] �⊆ [a2, b2]
(x ∈ (D′

y \ ([a1, b1] ∪ [a2, b2]))∨
y �∈ (D′

y ∪ [a1, b1] ∪ [a2, b2]))

R7 xor(x, �y) xor(x, �z) xor(�y, �z, 1)

R8 y ≤ x + k1 x ≤ y + k2

{−k1 ≤ x − y ≤ k2 if k1 + k2 ≥ 0
⊥ otherwise

R9
ax+∑n

i=1 aiyi ≥ k1

−ax+∑n
i=1 biyi ≥ k2

∑n
i=1(ai + bi)xi ≥ k1 + k2

– Consider a variant of the example that was described in the introduction: x ∈
{2, 6, 10, 14, . . . , 30}, y1 ∈ {8, 12, 16, 20}, y2 ∈ {1, 2, 3, . . . , 9}, and constraints

c1
.= (z ∈ {1} ∨ y1 ≤ x) c2

.= (z ∈ {1} ∨ x ≤ y2) .

Suppose we make a decision z ∈ {0}. Then c1 propagates x ∈ {10, 14, . . . , 30}
and c2 detects a conflict. Using rule R2 with k1 = k2 = 0, and the meta rule
(11) we obtain:

(z ∈ {1} ∨ x ∈ [8, 9] ∨ [y1, y2] �⊆ [8, 9]) . (12)

On the other hand if we use explanations, c2’s explanation via LE(9) is
(z ∈ {1} ∨ x ∈ (−∞, 9] ∨ y2 ∈ [10,∞)), c1’s explanation via LE(7) is

(z ∈ {1} ∨ y1 ∈ (−∞, 7] ∨ x ∈ (8,∞]) ,

and resolving these explanations on the pivot x yields

(z ∈ {1} ∨ x ∈ [8, 9] ∨ y1 ∈ (−∞, 7] ∨ y2 ∈ [10,∞)) .

This constraint is strictly weaker than (12) because the right disjunct of (12)
implies y1 ≤ y2.

��
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Most of the entries in the table were developed by instantiating a general
inference rule called Combine (see Sec. 4.1 below), which satisfies these require-
ments. In some other cases instantiating it turned out to be too complicated and
we found c∗ without it. Sec. 4.3 includes proofs for some of these other rules.

Since not all combinations of rule types are supported, not all propagators
are precise (i.e., logically complete) and not all rules are precise (see R8, R9
in the table), then Infer uses explanation-based inference (see Sec. 2.2) as a
fallback solution. Pseudocode of Infer, which is rather self-explanatory, appears
in Alg. 2.

Algorithm 2. infer infers a new constraint c∗ from c1, c2, which satisfies (9)
and (10), the requirements listed in Sec. 3.

function Infer(constraint c1, constraint c2, node pivot, node-set F )
F ′ = GetNewSet (F, pivot);
if the combination of c1, c2 is supported then

con = Combine (c1,c2, pivot); � One of the rules in Table 1.
if F ′, con �cp ⊥ then return con; � con satisfies Invar1

e1 ← explain(c1, parents(pivot), pivot); � Fallback: use explanations.
e2 ← explain(c2, F, ⊥);
return resolve(e1,e2,pivot); � Signed resolution

4.1 A Generic Inference Rule: Combine

Let S be some set of values. Then it is not hard to see that the following is a
contradiction for any constraint c(x, �y):

c(x, �y) ∧ x ∈ S ∧ ∀x′ ∈ S. ¬c(x′, �y) , (13)

or, equivalently, that the following implication is valid:

c(x, �y) → (x �∈ S ∨ ∃x′ ∈ S. c(x′, �y)) . (14)

Let X denote the set of values of x which have no support in D′
y:

X = {x′ | ∀�y′ ∈ D′
y . ¬c12(x′, �y′)} . (15)

Instantiating (14) with c12 for c and with X for S yields the inference rule that
we call Combine:

c12(x, �y)
(x �∈ X ∨ ∃x′ ∈X .c12(x′, �y))

(Combine) (16)

Since (16) is just an instantiation of (14), then (16) is clearly sound, and hence
(9) is satisfied. To satisfy (10) we first prove logical entailment (|=), which is
weaker than the requirement of (10) for provability (�cp).
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Lemma 1. c∗,D′
x,D′

y |= ⊥.

Proof. In our case c∗ .= (x �∈ X ∨ ∃x′ ∈ X .c12(x′, �y)). Falsely assume that c∗

is satisfied for an assignment of values a ∈ D′
x,�b ∈ D′

y to x, �y, respectively.
Consider the two disjuncts of c∗:

– Suppose x �∈ X is satisfied. Considering the definition of X in (15), this
implies that a is supported in c12, or formally

∃�y′ ∈ D′
y. c12(a, �y′) . (17)

Based on Invar1 we know that c12(x, �y),D′
x,D′

y |= ⊥, and hence ∀x ∈
D′

x¬∃�y ∈ D′
y. c12(x, �y), and particularly for x = a, ¬∃�y ∈ D′

y. c12(a, �y),
which contradicts (17).

– Now suppose ∃x′ ∈ X . c12(x′, �y) is satisfied. Expanding X and substituting
�y with its assignment �b yields

∃x′. ∀�y′ ∈ D′
y. ¬c12(x′, �y′) ∧ c12(x′,�b) .

Since �b ∈ D′
y and ¬c12(x′, �y′) is satisfied for all �y′ ∈ D′

y, then it is satisfied
for �y′ = �b. This implies a contradiction: ∃x′. ¬c12(x′,�b) ∧ c12(x′,�b) .

Hence, x ∈ D′
x, �y ∈ D′

y falsifies c∗, which completes our proof. ��
It is trivial to see that this lemma implies (10) when �cp is precise constraint
propagation. When imprecise propagation is involved, e.g., �cp is defined by
bounds consistency [8], HCSP checks whether the constraint happens to be
conflicting, and if not it falls back to clausal explanation.

The Relative Strength of Combine. Two observations about the strength
of Combine that we prove in [29] are:

– There is no alternative to X for replacing S in (14) that makes the resulting
constraint stronger, and

– The signed clause that we obtain through the explanation mechanism—see
Sec. 2.2—cannot yield a stronger consequent.

4.2 Selected Rules Based on Instantiating Combine

We now instantiate Combine (16) with several specific constraints of interest.

Rule R2: c1
.= y2 − x ≥ k2 c2

.= x − y1 ≥ k1

Expanding c12 in (15) yields

X =
{

x | ∀�y′ ∈ D′
y. [y2 − x < k2 ∨ x − y1 < k1]

}

=
{
x | max(D′

y2
) − x < k2 ∨ x − min(D′

y1
) < k1

}

=
{
x | max(D′

y2
) − k2 < x ∨ x < k1 + min(D′

y1
)
}

.
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The complement of X can be written as

X c =
[
k1 + min(D′

y1
), max(D′

y2
) − k2

]
. (18)

Recall (15): x �∈ X ∨ ∃x′ ∈ X . c12(x′, �y). The right disjunct is equal to:

∃x′. x′ ∈ X ∧ [y2 − x′ ≥ k2 ∧ x′ − y1 ≥ k1]
= ∃x′. x′ ∈ X ∧ [y2 − k2 ≥ x′ ≥ y1 + k1]
= ∃x′. x′ ∈ X ∧ x′ ∈ [y1 + k1, y2 − k2] . (19)

We use (18) to rewrite (19):

∃x′. x′ �∈ [
k1 + min(D′

y1
), max(D′

y2
) − k2

] ∧ x′ ∈ [y1 + k1, y2 − k2] ,

which implies

[y1 + k1, y2 − k2] �⊆ [
k1 + min(D′

y1
), max(D′

y2
) − k2

]

= [y1, y2 − k2 − k1] �⊆ [
min(D′

y1
), max(D′

y2
) − k2 − k1

]
.

Hence, the rule is

y2 − x ≥ k2 x − y1 ≥ k1
(
x ∈ [

k1 + min(D′
y1

), max(D′
y2

) − k2
] ∨

[y1, y2 − k2 − k1] �⊆ [
min(D′

y1
), max(D′

y2
) − k2 − k1

] )

(20)

Rule R7: c1
.= xor(x, �y) c2

.= xor(x, �z)
Here �y

.= y1, . . . , yn and �z
.= z1, . . . , zm. We assume that �y and �z are fully

assigned and x is not; we further assume that, w.l.o.g, c1 propagates the value
of x and c2 detects a conflict.

Under these assumptions it is clear that c1 and c2 cannot be simultaneously
satisfied by either x = 0 or x = 1, and hence by definition X = {0, 1}, and
Combine amounts to:

xor(x, �y) xor(x, �z)
x �∈ {0, 1} ∨ ∃x′ ∈ {0, 1}. [xor(x′, �y) ∧ xor(x′, �z)]

.

We can replace x �∈ {0, 1} with false and obtain:

xor(x, �y) xor(x, �z)
∃x′. [xor(x′, �y) ∧ xor(x′, �z)]

.

It is not hard to see that the consequent is equivalent to xor(�y) = xor(�z),
and hence also to xor(�y, �z, 1), which brings us to the desired rule:

xor(x, �y) xor(x, �z)
xor(�y, �z, 1)

.

Note that variables that are shared by �y and �z can be removed from the xor
predicate without changing its value.
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4.3 Selected Rules Not Based on Combine

Rule R3: c1
.= y1 ≤ x c2

.= [x, y2] �⊆ [a, b]
We assume that at the point of conflict, replacing c2 with x ≤ y2 makes c12
too weak to detect the conflict. Otherwise we simply use rule R2. Based on this
assumption, which we denote by ψ, in [29] we show that here

X = {x′ | x′ < min(D′
y1

) ∨ a ≤ x′} . (21)

We propose the following consequent:

c∗ .= x �∈ X ∨ [y1, y2] �⊆ [min(D′
y1

), b] (22)
= a > x ≥ min(D′

y1
) ∨ [y1, y2] �⊆ [min(D′

y1
), b] . (23)

Note that c∗ still follows our general pattern, by which the pivot is separated and
not referred-to by the other disjunct. Since we cannot rely on the correctness of
the general rule, we now prove that (23) satisfies (9) and (10):

– Eq. (9): Falsely assume the contrary, i.e., there are x, y1, y2 such that

a ≤ max(D′
y2

) ≤ b ∧ min(D′
y1

) ≤ max(D′
x) ∧ a ≤ max(D′

x) ∧ y1 ≤ x

∧[x, y2] �⊆ [a, b] ∧ x ∈ X ∧ [y1, y2] ⊆ [min(D′
y1

), b] .

Expanding X yields

a ≤ max(D′
y2

) ≤ b ∧ min(D′
y1

) ≤ max(D′
x) ∧ a ≤ max(D′

x) ∧ y1 ≤ x

∧[x, y2] �⊆ [a, b] ∧ (x < min(D′
y1

) ∨ a ≤ x) ∧ [y1, y2] ⊆ [min(D′
y1

), b] .

If x < min(D′
y1

) then y1 ≤ x implies y1 < min(D′
y1

) which conflicts [y1, y2] ⊆
[min(D′

y1
), b]. Otherwise, x ≥ a and [x, y2] �⊆ [a, b] implies y2 > b which

conflicts [y1, y2] ⊆ [min(D′
y1

), b].
– Eq. (10): Proved in [29].

To summarize, the rule is

y1 ≤ x [x, y2] �⊆ [a, b] ψ

a > x ≥ min(D′
y1

) ∨ [y1, y2] �⊆ [min(D′
y1

), b]
. (24)

Rule R8: c1
.= (y ≤ x + k1) c2 = (x ≤ y + k2)

Isolating x − y on both sides yields c12(x, y) = −k1 ≤ x − y ≤ k2, which is
false if k1 + k2 < 0. Since it is simply a conjunction of the input constraints,
then (9) and (10) are satisfied trivially.
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5 Experimental Results

We performed two sets of experiments as described below. All experiments were
ran on a 4 core Intel� Xeon� 2.5GHz.

The 2009 CSP solver competition benchmarks. Here we used a subset of
benchmarks of the Fourth International CSP Solver competition [2] (this was the
last CSP competition, before the MiniZinc challenge started). Specifically out of
over 7000 in the competition’s satisfiability benchmark-set, we focused on the
2162 benchmarks that have at least one comparison operator from {<,≤,≥, >}
(the reason being that the rules in Table 1 refer to combinations of constraints
based on these operators and constraints that are consequents of these rules).
The CPU time limit was set to 1200 seconds. Out of memory and time-outs are
called ‘fails’ in the discussion below.

We compared three different settings: (1)HCSPwith general constraints learn-
ing based on Combine (from hereon—HCSP), (2) HCSP using only clause-based
learning with explanations, as described in Sec. 2 (from hereon—Explain)4, and
(3) Mistral [16] latest version (1.550). Fig. 2 compares these three engines.

Fig. 2. Number of instances solved within the given time limit comparing HCSP,
Explain, and Mistral. (left) Shows the time in linear scale; (right) A zoom-in of
the left figure showing the cross-over between Mistral and HCSP occurring after 1-2
seconds.

Memory was limited to 1 GiB. Number of fails in HCSP was 25% less than
Mistral. Number of fails ofHCSP was 4.9% less than Explain. The aver-
age number of backtracks in HCSP is 2045, in Explain 4389, and in Mistral
49562. This drastic difference in the average backtrack-count indicates that the
cost of learning is compensated-for by a better search.

MiniZinc benchmarks. Given the recent results of the MiniZinc challenge, we
compared HCSP and Explain to CPX and iZplus, which won the second and
4 We emphasize that this is a far-improved engine in comparison to [27], owing to numer-

ous optimizations that are beyond the scope of the current article.
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first places, respectively, of the ‘free-search/single-core’ track of the MiniZinc chal-
lenge [3].5 iZplus is basedon the iZ-Cconstraintprogramming library, and includes
stochastic local search for optimization problems. CPX is based on a lazy clause
generation (i.e., lazy reduction to SAT). We used all the 100 benchmarks of the
competition, 75 of which are optimization problems. The time-limit was set to 1800
sec., and the memory limit to 3GB. All benchmarks were converted to the FlatZinc
format prior to benchmarking. The following table summarizes the results:

time (avg.) time (med.) backtracks success opt. wins
HCSP 897.8 686.3 35136.2 95 25 35
Explain 965.0 1232.1 37206.2 93 25 39
CPX 1055.0 1786.5 18451225.5 85 20 30
iZplus 972.7 1475.5 88 25 59

Detailed results can be found in [1]. The columns should be interpreted as follows:
time (avg. and median) – the number of seconds in all benchmarks, including
time-out and memout cases; backtracks – the number of backtracks in bench-
marks in which all engines finished successfully before the time-out6; success –
the number of instances solved within time and memory limits, and in the case
of optimization problems found a feasible solution (but not necessarily optimal);
Opt. – the number of instances in which the solver reached optimality and proved
it; wins – the number of optimization instances in which the solver reached the
best value among the four contenders (ties are counted).

The results show that iZplus has more wins than HCSP, and in all other
criteria HCSP is better (the wins column depends on the contenders. If HCSP
and Explain are on their own, the former wins 65 times and the latter only 62).
It is likely that iZplus’s wins are due to its local search part that improves the
objective function once a solution is found, a component that HCSP does not
have. Overall in these experiments 40% of the cases explanation was used as a
fall-back solution.

Conclusion and Future Work. We have presented a new learning scheme
based on inference of general constraints. We presented the development of vari-
ous inference rules that are necessary for this scheme, but it is clear that there is
still a lot of work in deriving such rules for additional popular pairs of constraints
which are currently not supported and force HCSP into a fallback solution. In
addition, currently learning general constraints is incompatible with producing
machine-checkable proofs in case the formula is unsatisfiable, in contrast to our
earlier explanation-based method [27]. HCSP is written in C++, contains 23k
lines of non-comment code, and its architecture enables the addition of new
constraints and new rules without changing the core solver. It is free software
available from [1] under the GPL license.
5 An early version of HCSP also participated in that competition and reached the

5th place. Since then we improved HCSP in multiple ways, including better data-
structures and specialized code (instead of generic) to generate explanations for ‘ele-
ment’ global constraints, e.g., var vector[var i] = var 0.

6 iZplus, a closed-source program, does not print this information.
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Abstract. Propagation is at the very core of Constraint Programming
(CP): it can provide significant performance boosts as long as the search
space reduction is not outweighed by the cost for running the propaga-
tors. A lot of research effort in the CP community is directed toward
improving this trade-off, which for a given type of filtering amounts to
reducing the computation cost. This is done chiefly by 1) devising more
efficient algorithms or by 2) using on-line control policies to limit the
propagator activations. In both cases, obtaining improvements is a long
and demanding process with uncertain outcome. We propose a method
to assess the potential gain of both approaches before actually starting
the endeavor, providing the community with a tool to best direct the
research efforts. Our approach is based on instrumenting the constraint
solver to collect statistics, and we rely on replaying search trees to obtain
more realistic assessments. The overall approach is easy to setup and is
showcased on the Energetic Reasoning (ER) and the Revisited Cardinal-
ity Reasoning for BinPacking (RCRB) propagators.

Keywords: Constraint programming ·Propagator ·Analysis ·Energetic
Reasoning · BinPacking

1 Introduction

Propagation is undoubtedly one of the signature features of Constraint Program-
ming (CP): it makes a constraint solver capable of skipping large portions of the
search space, possibly achieving significant performance boosts. In practice, the
effectiveness of the approach depends on the balance between the time saved by
filtering values and the time spent in running the propagators. Improving this
trade-off is the objective of huge research efforts in the CP community.

Here, we consider the specific case where the goal is to optimize the per-
formance of a given propagation technique, without changing its input-output
behavior. For example, we may be interested in finding a more efficient way to
enforce Generalized Arc Consistency (GAC) for a specific constraint. In general,
this goal can be achieved by either 1) devising more efficient algorithms that
achieve the same filtering, or by 2) guarding the activation of the propagator
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with a necessary condition to reduce fruitless activations1. In both cases, obtain-
ing improvements is a long and demanding process with uncertain outcome.

As an example, the sequence constraint was introduced in 1994 [5], but no
poly-time GAC algorithm was available until 2006 [21]. Then, the original GAC
run time of O(n3) was not low enough to consistently beat weaker (but cheaper)
propagators. This motivated improvement efforts that are still ongoing [6,9,11].
The trade-off between computation time and pruning power is even more critical
for NP-hard constraints. For example, Energetic Reasoning (ER) was proposed
as a (powerful) filtering technique for cumulative in the nineties (see [3,14]):
however, the approach has never been widely employed due to its large run time.
Improving the original O(n3) complexity took in this case around 20 years [12],
while an approach to reduce the overhead by guarding the ER activation with a
necessary condition was presented only in 2011 [7].

In general, this line of research would greatly benefit from tools and methods
to probe the potential of propagation techniques and to assess the likely impact
of specific improvement measures. Such tools would allow the researchers to
focus their efforts in the most promising directions (notice that for preliminary
analysis, profiling tools already allow to reason about potential linear speedups).

A typical approach for evaluating propagators consists in measuring time
and fails w.r.t. a baseline propagator, on a set of benchmark instances that are
solved to completeness. This allows to asses the propagator performance, but
provides little or no information on how to improve it. It is also common to use
static search strategies to make the evaluation fair and rigorous, with the risk to
reduce the analysis significance, since dynamic strategies are often preferred in
practice. Finally, the need to solve the problems to completeness may bias the
analysis toward relatively small instances.

We propose to extend this basic evaluation approach by: 1) instrumenting the
solver to collect information about the constraint; 2) storing and replaying search
trees to enable fair comparisons with arbitrary search strategies and instance
sizes. Our approach is simple and allows to assess the amount of improvement
that could be obtained by reducing the propagator run-time or by controlling its
activation. We use the Energetic Reasoning (ER) and the Revisited Cardinality
Reasoning for BinPacking (RCRB) propagators as case studies.

2 The Proposed Approach

Formally, we consider the problem of evaluating a filtering function φ that maps
a set of domains D0, . . . Dn−1 to a second set of domains D′

0, . . . D
′
n−1 such that

D′
i ⊆ Di. In practice, φ may represent a propagator for enforcing GAC or a

domain-specific consistency level (e.g. Energetic Reasoning), or it can be some
kind of meta-propagation scheme such as Singleton Arc Consistency [8].

1 A more general approach consists in trying to predict when the propagator should be
triggered: we plan to develop tools to analyze this scenario as part of future research.
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We assume we are interested in reducing the time for computing φ, without
changing the function definition. In particular, our goal is to assess the poten-
tial of two improvement directions: 1) increasing the efficiency of the current
implementation and 2) guarding the activation of φ with a necessary condition.

Measuring the Performance: In order to make such an assessment, we must first
be able to measure the performance of the current implementation of φ. Like
many other approaches, we do this by comparing the time needed to solve a
target CSP with and without φ. Let M and M ∪ φ denote the two CSPs, with
their variables, domains, and constraints. For the comparison to be meaningful,
two well known conditions must be respected:
1. The two runs must explore the same search space;
2. All search nodes that are visited by both runs are visited in the same order.

The first requirement is always met as long as M and M ∪ φ are semantically
equivalent (i.e. they have the same solutions) and the problem is solved to com-
pleteness (feasibility or optimality).

Without the second requirement, one of the approaches could get an unfair
advantage if the search strategy quickly hits a feasible solution (and stops, for
feasibility problems), or a high-quality solution (and gets a good bound, for
optimality problems). Moreover, if the second requirement is satisfied, then the
nodes visited when solving M∪φ will always be a subset of (or the same as) those
visited when solving M . Typically, this is all guaranteed by using static search
strategies. As an alternative, we propose an approach based on replaying search
trees, which does not suffer from most of the drawbacks discussed in Section 1.

The Replay Technique: For the sake of precision, it is useful to introduce some
notation at this point. As it is quite common in CP, we view tree search as a
recursive process, where the search space is iteratively decomposed by opening
choice points and posting constraints on each branch. Formally, we can define
a search strategy as a function b that given the current state of the search and
of a problem M returns a sequence of constraints c0, c1, . . . to be posted each
on a different branch. By “search state” we refer to search parameters that are
not part of the model (i.e. time markers for the SetTimes strategy). The whole
search process can be seen as the evaluation of a recursive function traverse(b,M)
having as parameters the search strategy b and the target problem M .

We guarantee the satisfaction of both requirements for measuring the perfor-
mance by storing in a tree-like structure, during one run: 1) the branching con-
straints and 2) the search state. We then force the following run to post exactly
the same constraints at the same search nodes. This is done by introducing two
wrapper search strategies called store(b) and replay(b) that respectively memorize
and re-post the constraints returned by the strategy b. Then, in order to evaluate
a propagator φ, we simply run in sequence:

traverse(store(b),M) (1)
traverse(replay(b),M) (2)
traverse(replay(b),M ∪ φ) (3)
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and we compare the results of the two latter runs, which both use replay(b) and
hence incur the same search overhead. It is important that the first run is done
with the baseline problem M , because, thanks to the additional propagation
performed by φ, the run with M ∪ φ may skip some parts of the stored tree.
However, all of the runs will always explore the same space and visit the shared
nodes in the same order.

This approach offers two significant advantages: 1) it allows to tackle arbi-
trarily large instances, since a time limit can be enforced on the first run and
the second run will still be guaranteed to explore the same search space. 2) It
allows to use any search strategy, including dynamic ones, making the evalua-
tion more realistic. The comparison remains artificial to some degree, because
an actual dynamic strategy may behave differently on the two runs. Still, the
ability to make fair comparisons using an arbitrary strategy is a very valuable
contribution. Our replay technique is easy to implement on mosts solvers that
allow the user to write custom search strategies.

Assessing the Propagator Potential: In order to assess the potential of improving
the efficiency of φ or controlling its activation, we instrument the solver to collect
detailed information about the propagator. Specifically, we store the total time
for running φ, making a distinction between activations that actually lead to
some pruning and fruitless activations. The two time statistics are respectively
referred to as t+φ and t−φ . We collect the information by introducing a wrapper
function stats(φ) that checks the domain sizes, then runs φ, and finally checks
the domains again and stores the elapsed time. The overhead for the collection
process is properly subtracted. Once again, this approach is easy to implement
on most solvers that allow the user to write new propagators.

It is now easy to get a rough, but valuable, estimate of the impact of specific
measures on the solution time. In particular, let t(b,M) be the time required to
solve the problem M with the strategy b (i.e. to run traverse(b,M)). Then we
can estimate the impact of reducing the run time of φ by a factor μ ∈ [0, 1] by
computing:

t(replay(b),M ∪ stats(φ)) − μ · (t+φ + t−φ ) (4)

i.e. by subtracting a fraction of the total computation time of φ. Similarly, we can
assess the impact of guarding φ with a necessary condition that stops a fraction
μ ∈ [0, 1] of the fruitless propagator activations. This is done by computing:

t(replay(b),M ∪ stats(φ)) − μ · (t−φ ) (5)

This simple, linear, approach allows us to compare fictional implementations of φ
with real ones. By doing so, we get a chance to explore which values of μ would
be necessary for beating the baseline, and we get a better understanding of the
effort required to achieve such goal. In particular, we can approximately evaluate
the impact of havinganhypothetical time complexity for afictional propagator.For
instance, if the current implementation for φ is in O(n3) (where n is the number
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of variables), then we can estimate roughly what would be its cost for an O(n2)
algorithm by choosing μ = (n − 1)/n in equation 4.

Deeper and more general insights can be obtained by comparing fictional and
real propagators on full benchmarks. To this purpose, we rely on performance
profiles [13]. A performance profile is a cumulative distribution function F (τ)
of a given performance metric τ . In our case, the τ value is the ratio between
the solution time of a target approach and that of the baseline. For the sake of
clarity, if F (2) = 0.75 for an approach, it means that its performance is within a
factor of 2 from the baseline in 75% of the benchmark problems. Assuming the
benchmark is representative enough, the value of F (τ) can be interpreted as a
probability.

Formally, let φ0, φ1, . . . be the set of all considered implementations of φ
(real and fictional alike), and let M be the set for all problems (instances) in
the benchmark. Then the performance profile of φi is given by:

Fφi
(τ) =

1
|M|

∣
∣
∣
∣

{

M ∈ M :
t(replay(b),M ∪ φi)

t(replay(b),M)
≤ τ

}∣
∣
∣
∣ (6)

where t(replay(b),M ∪ φi) for fictional implementations of φ is computed using
Equation (4) or (5).

Reading of Performance Profiles: An important value of a given performance
profile Fφi

(τ) is in τ = 1. For a given φi, Fφi
(τ = 1) gives the percentage of

instances that can be solved using M ∪φi in a time less (or the same) time as the
baseline model M . Although FM is not represented, it would actually be a step
function FM (τ < 1) = 0 and FM (τ ≥ 1) = 100%. The space of τ is therefore
divided in two important regions, τ < 1 and τ ≥ 1. If Fφi

(τ) = 100% for some
τ < 1, then using the model M ∪ φi is always better than using the baseline,
i.e. M ∪ φi provides a speed-up for every instance. Unfortunately, this situation
rarely happens in practice and it is thus interesting to read more carefully the
performance profile. For a given pair φi, φj it is interesting to observe Fφi

(τ)
- Fφj

(τ). It indicates the gain of φi over φj . That is, Fφi
(τ) - Fφj

(τ) reflects
how many more (or less) instances can be solved by using M ∪ φi instead of
M ∪φj within a factor τ of the baseline time. Finally, the region above Fφ(τ) for
τ < 1 is very informative, as it exhibits the gain of a given φi compared to the
baseline M and to M ∪ φ, i.e., the two non-fictional models. Finally, instances
with similar performance give rise to step-like changes in F (τ), while a linearly
growing F (τ) is symptomatic of a diversified performance across the benchmark.

Limitation of the approach: A bottleneck of our approach is the need to store the
search tree in memory. After an experimentation on toy problems with only a
few constraints (such as the n-queens) we found it reasonable that no more than
∼ 5×106 nodes are created per minute on a standard laptop. Our data structure
to store the branching decisions does not use more than 40 bytes per node. Hence,
assuming that 16 GB of memory are available, we can record search attempts up
to 40 minutes long. We believe this time limit should be large enough to collect
valuable statistics in practice.
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3 Experimentation

We applied our approach to two propagators, namely Energetic Reasoning (ER,
see [3,14]) and Revisited Cardinality Reasoning for BinPacking (RCRB, see [18]).
Both the approaches provide powerful filtering, but are expensive to run, so that
the design of more efficient implementations has a strong appeal. In order to
assess the potential for improvements, we considered the following classes of
fictional implementation:

– φcost
μ , i.e. an implementation for which the time is reduced by a factor μ.

– φcost
O(f(n)), i.e. an implementation for which the time complexity is O(f(n)).

– φoracle
p , i.e. an implementation that guards φ with a necessary condition

causing useless activations with a probability p.
The profile of φoracle

0 (perfect necessary condition) bounds the gain that can
be obtained by any necessary condition. The profile of φcost

1 (τ) (zero-cost imple-
mentation), or φcost

O(1)(τ), bounds the performance of any possible implementation.
Against common intuition, φcost

1 is not guaranteed to beat the baseline, since a
weak filtering done by φ may trigger other (possibly expensive) propagators.

Experimental Set-up: We used the constraint solver OscaR [17] and ran instances
on AMD Opteron processors (2.7 GHz). For each instance, we limited the run-time
of traverse(store(b),M) to 600 seconds and the run-time of traverse(replay(b),M)
and traverse(replay(b),M ∪φ) to 1200 seconds. Instances for which either traverse
(replay(b),M ∪φ) timed out or traverse(replay(b),M) took less than 1 second were
filtered out. The target propagator φ was executed with low priority by the con-
straint scheduler.

Energetic Reasoning: We analyzed the ER propagator for the cumulative
constraint[1,2] on Resource Constrained Project Scheduling Problems (RCPSP).
The baseline model M employs the Timetabling algorithm from [4] and the ER
Checker [3], which both run in O(n2) [3,12]. We did not use the improvements
proposed in [12]. We use a dynamic search strategy, i.e. the classical SetTimes
approach from [16]. We consider two benchmarks: the BL instances [2] (20-25
activities) and the PSPLIB (j30 and j90, with 30 and 90 activities) [15]. We focus
on investigating, for the chosen benchmarks: 1) the potential benefit of having
an ER algorithm running in O(n2) rather than in O(n3); 2) the potential benefit
of a perfect necessary condition (see [10] and [7] for related works).

Figure 1 and 2 report profiles respectively for the BL and j90 instances.
The real ER propagator beats the baseline in ∼ 50% of the cases for BL, but
only in ∼ 10% of the cases for j90. The larger problem size is a likely reason
for the performance drop, so it is interesting to analyze the fictional, reduced-
cost implementations (left-most figures). In the BL benchmark a cost reduction
translates to roughly proportional benefits. On j90, an O(n2) ER would lead
to dramatic performance improvement, but it would beat the baseline on only
40% of the cases. More interestingly, there is a 30% portion of instances where
the baseline would win no matter what the efficiency of ER is, i.e. where the
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Fig. 1. Performance profiles for real and fictional ER propagators on the BL instances

Fig. 2. Performance profiles for real and fictional ER propagators on the j90 instances

additional pruning of ER is sometimes detrimental rather than beneficial. On
such instances, ER cannot lead to benefits unless we find a way to activate it
only when it provides an actual advantage. As for using a necessary condition,
a perfect approach would enable the same performance of a O(n2) ER, but even
a small mistake probability would cancel most of the benefits.

Figure 3 compares profiles for different search strategies on j30 (SetTimes
and a binary static approach): the potential gain of reducing the cost is very
different for the two strategies, even if the performance of the real propagator is
roughly identical. This points out the importance of having an approach for the
rigorous comparison of propagators using practical search strategies.

Revisited Cardinality Reasoning for BinPacking: In our analysis of the RCRB
propagator, we use as a benchmark the instances of the Balanced Academic
Curriculum Problem (BACP) from [18,19]. The baseline model M employs the
BinPacking propagator from [20] and a gcc constraint (model A in [18]). The
search heuristic is binary first-fail, i.e. we choose for branching the variable with
the smallest domain and we assign on the left branch the minimum value.
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Fig. 3. Performance profiles for the SetTimes (left) and binary static (right) strategies

Fig. 4. Performance profiles with fictionally cost-reduced RCRB propagators

Figure 4 (left) is very informative about the cost of RCRB. We can see
that less than 25% of the instances are solved faster than the baseline model.
Moreover, reducing its cost down to 0 provides a small gain before τ = 1.1.
From then, reducing the cost by a factor 0.9 is enough to solve a lot more of the
instances. Hence, reducing the cost would improve considerably the RCRB, but
not that much compared to the baseline model as the benefits come “too late”
in terms of τ . A similar analysis can be done for figure 4 (right).

4 Conclusion

Evaluating the potential advantages of reducing the cost of a given filtering pro-
cedure is of great importance to make our research efforts as fruitful as possible.
In addition, being able to measure exactly the time gain provided by a filtering
algorithm permits to reduce the bias in empirical evaluations. As a first step
in this direction, we proposed a systematic methodology to simulate the per-
formance of fictional implementations of a propagator having reduced activation
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cost. This is done before starting time-consuming research activities to actu-
ally reduce the cost. The approach was illustrated for Energetic Reasoning and
Revisited Cardinality Reasoning for BinPacking over popular sets of instances.
We found that reducing the propagator costs, even to the point of making it neg-
ligible, might actually be beneficial only on a small subset of a given instance set.
Furthermore, this outcome can differ substantially depending on the considered
benchmark and on the search strategy.
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Abstract. This paper presents a new constraint programming search
algorithm that is designed for a broad class of scheduling problems.
Failure-directed Search (FDS) assumes that there is no (better) solution
or that such a solution is very hard to find. Therefore, instead of look-
ing for solution(s), it focuses on a systematic exploration of the search
space, first eliminating assignments that are most likely to fail. It is a
“plan B” strategy that is used once a less systematic “plan A” strategy –
here, Large Neighborhood Search (LNS) – is not able to improve current
solution any more. LNS and FDS form the basis of the automatic search
for scheduling problems in CP Optimizer, part of IBM ILOG CPLEX
Optimization Studio.

FDS and LNS+FDS (the default search in CP Optimizer) are tested
on a range of scheduling benchmarks: Job Shop, Job Shop with Opera-
tors, Flexible Job Shop, RCPSP, RCPSP/max, Multi-mode RCPSP and
Multi-mode RCPSP/max. Results show that the proposed search algo-
rithm often improves best-known lower and upper bounds and closes
many open instances.

Keywords: Constraint programming · Scheduling · Search · Job shop ·
Job shop with Operators · Flexible job shop · RCPSP · RCPSP/max ·
Multi-mode RCPSP · Multi-mode RCPSP/max · CPLEX · CP optimizer

1 Introduction

Generic search algorithms have become quite successful in constraint program-
ming solvers in recent years, see for example impact-based search [22], weighted-
degree heuristics [6] and activity-based search [18]. However, the authors are
aware of only one attempt to use such a generic search (in particular impact-
based search) for scheduling problems [37].

Oneof theobstacles forusing the searchalgorithmsmentionedabove for schedul-
ing is that they make branching decisions of the form x = n ∨ x �= n, where
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x is a variable and n is a value from its domain. In case of scheduling the deci-
sion x �= n usually does not propagate at all because the majority of propaga-
tion algorithms take into account only minimum and maximum values of domains
(see propagation by temporal constraint networks [7], timetable [4, chapters 3.3.1
and 2.1.1] or family of edge-finding algorithms for unary and discrete cumulative
resources [35,36]). A possible solution is to branch on disjunctions as proposed
in [37]. However, this approach is hard to generalize from disjunctive resources to
other scheduling constraints. Failure-directed search overcomes this problem in a
different way: it branches by splitting a domain into two disjoint intervals so that
one of the bounds of the domain is always changed.

2 Scheduling Using Constraint Programming

In this paper we consider a broad class of scheduling problems with activities,
precedences between activities, unary or discrete cumulative resources and also
alternatives and optional activities. For a more detailed description on modeling
those problems using Constraint Programming (and in particular using IBM
ILOG CP Optimizer that implements FDS) please refer to [12,14]. Here we
briefly introduce the main concepts used in this paper.

Interval variable is a decision variable that represents a task/activity with
unknown start and end times. It is possible to express the fact that the task
is optional and may be left unperformed (e.g. because an alternative task
was used instead). More formally domain Dv of an interval variable v is a
subset of:

{⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}
Where ⊥ represents the case that the task is left unperformed. When Dv = ⊥
then we say that v is absent, when ⊥ �∈ Dv then v is present and otherwise
then v is optional.

Precedence models the fact that end/start of some interval variable must be
before/after the start/end of another interval possibly with minimum/max-
imum delay (the delay can be negative). Precedences are propagated by a
dedicated global constraint called the Temporal Network as described in [12]
(inspired by [7]).

Unary resource (noOverlap) forbids any pair of intervals variables from a
given set to overlap (e.g. because all the interval variables require the same
machine). There has been a lot of work on propagation of unary resources—
we are using the methods described in [35].

Discrete cumulative resource models a machine or any other resource that
can process multiple tasks at once but which has a limited capacity for
processing tasks simultaneously. In CP Optimizer, cumulative resources are
modeled by cumulative function expressions. Again, there are many algo-
rithms for propagating this constraint: we are using Timetable Edge Find-
ing [36] and Timetabling [4, chapters3.3.1and2.1.1].

Alternative models an alternative between several optional intervals. Alterna-
tives are used to model, for example, different modes of a task. Propagation
of alternatives is described in [12].
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3 Choices

Failure-directed search does not operate on decision variables directly, instead
it works on a set of binary choices. A choice is an abstraction of anything that
needs to be decided in order to obtain a solution. An obvious example of a choice
is assigning a value to a variable (e.g. choice between x = 5 and x �= 5). However
failure-directed search is using domain splitting instead (see e.g. [9]) and the
following kinds of choices:

Presence choice: for an interval variable v whether v is present (⊥ �∈ Dv) or
absent (Dv = {⊥}). This kind of choice is used only for optional interval
variables.

Start time choice: for an interval variable v and a time t whether startOf(v) ≤
t or startOf(v) > t. Function startOf(v) returns start time of interval variable
v in a solution. Start time choice can be used only on a present interval
variable v, if v is still optional then the presence choice must be applied first
(see later).

At the highest level, failure-directed search knows only a set of choices that needs
to be decided: it is ignorant of what the choices are doing.

For now we assume that all possible presence choices and start time choices
are generated before the search starts. The topic of actual set of choices is further
discussed in Section 6.1.

FDS search operates under the assumption that the current problem is infea-
sible, or alternatively, if there is a solution then it is hard to find (heuristic
methods already failed to find it). Therefore it supposes that it will explore the
whole search space (to prove infeasibility or optimality) or at least a significant
part of it (before a solution is found).

With this assumption in mind, failure-directed search gives up on the idea
of guiding the search towards possible solutions. It does exactly the opposite:
it drives the search into conflicts in order to prove that the current branch is
infeasible. Choices that fail the most are preferred. From two branches of a choice
the one that fails the most is preferred. It is the well-known first-fail principle
but applied also on the branch ordering.

Let’s assume for a while that it is we, not the search algorithm, who decide
how the search space is explored. We are given an infeasible problem, a set of
predefined choices and our task is to build a complete but small search tree. We
can imagine it as a game: there is a box of bricks (the choices) and the task is
to build from them a search tree in a depth-first way. Our task is to repeatedly
pick a choice from the box and add it into the tree. When we pick a choice, it
is possible that the choice is already decided, in this case we continue picking.
Otherwise the choice is added into the tree and it produces two new branches.
Thanks to constraint propagation branches can fail and therefore one of the
following three possibilities will happen (see Figure 1):

0-fails: Neither branch fails. From our tree-builder point of view it is a disap-
pointment because we ended up increasing the number of open branches.
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Fig. 1. Types of internal nodes

Instead of making our tree smaller we ended up increasing it. However at
some points, especially near the root node, there is no other way.

2-fails: Both branches fail. In this case lets calls this choice a closing choice
because it closes the current branch. As we are looking for a small search
tree, closing choice is the best that can happen. Search tree cannot be fully
explored without closing choices.

1-fail: Only one branch fails. We did not close the current branch, but at least
we did not open a new one. Constraint propagation tightened the bounds,
so we have better chances to close the branch next time.

Of course we do not know in advance which of the three possibilities above will
happen. Instead FDS uses a system of ratings that reflects recent behavior of a
choice.

4 Ratings

Ratings are the measure that failure-directed search uses in order to pick the
next choice to explore. Smaller ratings are preferred. The algorithm simply picks
an available choice with the best rating.

For every available choice c, the system maintains separate ratings for its
positive and negative branches1: rating+[c] and rating−[c]. Both rating+[c] and
rating−[c] are initially set to 1.0. Rating of choice c is defined as:

rating[c] = rating+[c] + rating−[c] (1)

Additionally, for every search depth, d there is average rating of choices on the
given depth: avgRating[d]. Its initial value is also 1.0.

Like impact-based search [22], FDS computes an estimate 0 ≤ R ≤ 1 of
the reduction in effort to search the rest of the problem, given a particular
assignment. For example, [22] uses the ratios of the search space sizes (using
variable domains only) before and after propagation of each decision:

R =
|D′

x1 | × · · · × |D′
xn

|
|Dx1 | × · · · × |Dxn

|
1 Note the difference between positive/negative branch and left/right branch. When a

choice is generated one of the branches is called positive and the second negative and
this assignment does not change. It is up to the search algorithm to decide which of
the two branches will be explored first and become the left branch of a node.
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where Dv and D′
v are the domains of variable v before and after the decision,

respectively.
Each time a branch of a choice c is explored its rating rating+[c] or rating−[c]

is updated using the estimation of search effort reduction. The computation
starts with localRating:

localRating :=

{
0 if the branch fails immediately
1 + R otherwise

(2)

Notice that this measure puts a much greater emphasis on failures than tradi-
tional impact-based search, making FDS much more aggressive in seeking out
immediate failures during search.

The local rating of a decision depends a lot on the current subproblem. In
particular the same decision usually has a higher local rating near the root node
than in the depths of the search tree. To compensate for this effect, localRating
is normalized using the average rating on the current depth d. With this in mind,
the rating of a branch (positive or negative) is updated to:

rating+/−[c] := α · rating+/−[c] + (1 − α) · localRating
avgRating[d]

(3)

Where α is a constant controlling the speed of decay (typical values of α range
from 0.9 to 0.99). Note that update of the rating of the branch by (3) has
immediate effect on rating[c] according to (1).

As ratings are decaying by factor α, they reflect the recent behavior of the
choice. Ratings can change quite quickly, especially when closing decisions are
encountered.

5 Search Algorithm

The search algorithm is using several data structures to store choices according
to their current state, see Figure 2. The state of a choice can be:

Unchecked: The choice was not picked for branching in the current branch.
Initially all choices are unchecked. Unchecked choices are stored in a heap
that allows fast access to the choice with the best rating.

Decided: The choice was picked for branching, it was found applicable (i.e. the
choice is not resolved or waiting, see below) and one of the branches was
applied. The choice remains decided until the search backtracks from the
decision about the choice. Decided decisions are kept on a stack in order to
facilitate fast backtracking.

Resolved: Again the choice was already picked for branching but it was found
to be already resolved. e.g. consider a choice is between startOf(v) ≤ 5 and
startOf(v) > 5 where v is a present interval variable. If in the current node
startOf(v) is known to be in interval [7, 12] then there is no point in branching
on the choice. The choice remain resolved until the search backtracks above
the point where the choice was found to be resolved. Therefore resolved
choices are also kept on the stack.
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Fig. 2. Choice states and data structures

Waiting: Let’s consider once more the choice between startOf(v) ≤ 5 and
startOf(v) > 5 but this time consider that v is an optional interval vari-
able. The choice does not split the domain of v into two disjunctive subsets:
the case v is absent is possible in both branches. For this reason choices like
this one can be applied only when v is already present. The choice remains
waiting as long as v is optional. In order to be activated at the right time
the choice must monitor the status of v. Once v becomes present the choice
automatically returns into the heap and becomes unchecked again.

The search proceeds as follows, see Algorithm 1. A choice with the best
rating is taken from the heap and its state is checked (line 7). If it is waiting then
another choice is taken from the heap. Similarly if the choice is resolved then it is
put on the stack and also another choice is drawn. This process continues until
an applicable choice is found (line 15). The applicable choice is decided (the
branch with the better rating first), put on stack and constraint propagation
is run until the fixed point. The process continues this way until constraint
propagation finds the current subproblem infeasible (dead end, line 21). In this
case the search backtracks: choices are removed from the stack and put back into
the heap until the last choice with open branch is found. The choice is switched
(the right branch is applied), constraint propagation is run and branch rating is
updated.
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1 pick :
2 i f heap is empty then begin
3 solution found ;
4 add improving objective cut ;
5 goto backtrack ;
6 end ;
7 remove choice c with the best rating from heap ;
8 i f c is waiting then begin
9 let c monitor the underlying interval variable ;

10 goto pick ;
11 end ;
12 add c to stack ;
13 i f c is resolved then
14 goto pick ;
15 b := branch of c with the better rating
16 propagate :
17 apply branch b ;
18 propagate until a fixed point ;
19 update rating of branch b ;
20 i f not infeasible then goto pick ;
21 backtrack :
22 let c is the last choice with open branch on the stack ;
23 i f there is no such c then
24 terminate ; // whole search space was explored
25 put back into the heap all choices from the stack until c ;
26 b := the unexplored branch of c ;
27 goto propagate ;

Algorithm 1. Search algorithm

6 Other Components

The previous section describes the basic failure-directed search. However there
are more components that contribute to the performance of failure-directed
search.

6.1 Initial Set of Choices

FDS as described in so far requires that all possible choices to be generated before
the search starts. However it may be more efficient to start with only a subset
of choices and generate additional ones when needed. In particular, inspired by
search techniques for square packing described in [5,26], the initial set of choices
only makes sure that if they are all decided then every interval variable is either
absent or has mandatory part (see Figure 3). Then, if the search gets to a point
when all choices have been decided but some decision variables remain unfixed,
then either a more traditional depth-first approach can be used to complete the
solution, or alternatively more choices can be generated at that point, allowing
the search to continue.
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Fig. 3. Consider present interval variable v with duration pv, earliest starting time estv
and latest completion time lctv. If lctv − estv < 2 pv then v always occupies interval
[lctv − pv, estv + pv]. This interval is called mandatory part.

6.2 Restarts and Nogoods

Restarting the search is a widely used technique to improve performance by
breaking out of heavy-tailed behavior typical of depth-first search [8,19]. Similar
generic search algorithms also use restarts [18,22,24].

The search is restarted for the first time after 100 backtracks. The restart
limit is increased by 15% after each restart. These values correspond to the
default parameterization of CP Optimizer (parameters RestartFailLimit and
RestartGrowthFactor).

Nogoods from restarts are recorded and propagated as described in [15],
which is also the same manner in which nogoods are propagated for integer
search inside CP Optimizer.

FDS assumes that it will be restarted many times before it fully explores the
search space. The only result that remains after each restart is a set of nogoods.
The shorter they are, the easier they are to apply. That is the reason why FDS
always explores first the branch that is more likely to fail.

6.3 Strong Branching and Shaving

Ratings try to estimate the behavior of choices, but they are still only estima-
tions. At the top of the search tree, where it is most important to pick the right
choices, the ratings are most imprecise.

Therefore at the root node of each restart it pays off to pre-evaluate a lim-
ited number of best choices to find out their “actual” behavior. FDS tries both
branches of a number of best applicable choices from the heap and updates their
ratings. After that it picks for branching a choice with a branch with the best
localRating as defined by (2).

The process of pre-evaluation of different choices before committing to one
of them is not new, see for example strong branching in MIP solvers [1] and
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shaving in CP (e.g. [29]). Shaving in particular has a different goal: to find a
choice that has an infeasible branch and improve the filtering by applying the
opposite branch. FDS does a similar thing: if one of the choices evaluated during
strong branching has an infeasible branch then the opposite branch is applied
and the pre-evaluation process continues with the reduced set of choices.

Finally while evaluating one of the choices, it can happen that some variable
x is updated by constraint propagation in similar way in both branches. For
example, minimum start time of x is increased from 0 to 7 in one branch and
to 10 in the second branch. In this case the minimum start time of x can be
increased from 0 to 7 immediately.

6.4 Coupling with LNS

As explained earlier, failure-directed search is designed for the case when the
problem is infeasible or a solution is very hard to find. As FDS heads first into
conflicts, it finds solutions just by a happy accident. If there are many easy-to-
find solutions then FDS may not work well.

Therefore FDS is a good “plan B”: when other approaches fail or are not able
to improve any more then FDS can explore the whole search space. In another
words, it pays off to couple FDS with another “plan A” strategy that is able to
find near-optimal solutions and this way limit the search space for FDS.

In CP Optimizer the “plan A” strategy is a self-adapting Large Neighbor-
hood Search (LNS) [11]. It consists of a process of continual relaxation and
re-optimization: a first solution is computed and iteratively improved. Each iter-
ation consists of a relaxation step followed by a re-optimization of the relaxed
solution. This process continues until some condition is satisfied, typically, when
the solution can be proved to be optimal or when a time limit is reached.
In CP Optimizer this approach is made more robust by using portfolios of large
neighborhoods and completion strategies in combination with Machine Learning
techniques to converge on the most efficient neighborhoods and completion
strategies for the problem being solved. Furthermore, in case of non-regular
objective function (like earliness costs), some completion strategies are guided
by a linear relaxation of the problem solved with LP techniques [13].

7 Experimental Results

FDS together with LNS are tested on a number of classical scheduling bench-
marks listed below. Only instances that are still open are considered. The pur-
pose of the experiments is solely to show that FDS is powerful enough to close
number of open problems. A detailed study of individual features of FDS is out
of scope of the paper.

Experiments are performed on a machine with Intel Core i7 2.60GHz processor
(4 cores and hyperthreading) and 16GB RAM using slightly modified2 IBM ILOG
CP Optimizer version 12.6.1. The instances are solved by two different methods:
2 With minor performance improvements.
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1 LB := best known lower bound − 1 ;
2 checkLB :
3 solve with upper bound set to LB and specified time limit ;
4 i f solution found then begin
5 terminate ; // Optimal solution found
6 end ;
7 i f infeasible then begin
8 LB := LB+1;
9 goto checkLB ;

10 end ;
11 terminate ; // Time limit was hit. LB is new valid lower bound

Algorithm 2. Destructive lower bounds

LNS+FDS: This configuration is just the standard automatic search of CP
Optimizer with a parameterization to use two CPU threads (Workers=2)
and more aggressive FDS (FailureDirectedSearchEmphasis=0.99). At the
beginning, both threads use LNS, but once LNS is not able to improve the
current solution for some time (determined automatically by auto-tuning in
CP Optimizer) one of the two threads switches from LNS to FDS.

DestructLB: This approach tries to improve best known lower bounds by prov-
ing them wrong iteratively, see Algorithm 2. This time only one CPU thread
is used and FDS is started immediately3. In order to make a fair comparison
with the state of the art, the algorithm first tries to confirm the current best
known lower bound and only then tries to improve it. The time limit for
DestructLB specified in the benchmark description is used for each iteration
of the algorithm, the total running time of the algorithm is not limited (this
way the result is not biased by the initial value of the lower bound).

Results are summarized in Table 1. Column Instances gives the number of
open instances of the benchmark, the Lower bound and Upper bound improve-
ments columns give the number of lower and upper bounds improved by CP
Optimizer respectively. The last column represents the number of instances that
were closed by CP Optimizer. Detailed lists of improved lower and upper bounds
can be found at http://ibm.biz/FDSearch.

7.1 Job Shop (J ||Cmax)

For job shop scheduling problems, we focus on the open classical instances of [28]
(tail*, 32 open instances), [2] (abz*, 3 open instances), [27] (swv*, 9 open
instances) and [38] (yam*, 4 open instances). The current lower and upper bounds
for these instances were gathered from [30] and [31].

In the case of job shop, computation of current best known lower and upper
bounds usually took a very long time. e.g. computation of upper bounds in [21]
used a time limit of 30000 seconds (8 hours 20 minutes) using a dedicated local
3 In version 12.6.1 IBM ILOG CP Optimizer does not offer yet a public API to run

FDS directly and replicate the reported results.

http://ibm.biz/FDSearch
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Table 1. Results summary

Benchmark set
Number of
instances

Lower bound
improvements

Upper bound
improvements

Closed
instances

JobShop 48 40 3 15
JobShopOperators 222 107 215 208
FlexibleJobShop 107 67 39 74
RCPSP 472 52 1 0
RCPSPMax 58 51 23 1
MultiModeRCPSP (j30) 552 No reference 3 535
MultiModeRCPSPMax 85 84 77 85

search algorithm. FDS is not a local search, it explores the whole search space,
so an even bigger time limit would make sense. We decided to use the same
time limit of 30000s but two threads in LNS+FDS approach and 10 minutes per
iteration for DestructLB.

The DestructLB approach, despite the small time limit, was able to improve
lower bounds for 40 of the 48 instances and close 4 instances (improving the upper
bound for 2 of them). The LNS+FDS approach closed 15 instances, including the
4 instances already closed by DestructLB. Solve times ranged from 50 minutes
(tail12) to 7.5 hours (tail21).

This benchmark illustrates the benefits of the automatic search of CP Opti-
mizer that couples LNS and FDS together using two threads (LNS+FDS). Let’s
take a closer look at instance tail19 by Taillard. After 388s LNS finds a solu-
tion with makespan 1352 which is only 1.5% from the optimum value of 1332.
Such a tight upper bound limits the search space for FDS and at time 1061.2s
FDS finds a solution with makespan 1351. This solution is passed to LNS and
LNS improves it immediately (in 0.32s) to 1350. LNS continues improving the
solution, reaching the optimal value of 1332 at 8518s. In parallel, FDS is sys-
tematically exploring the search space while taking advantage of the new upper
bounds as they come from LNS. Finally after 12853s in total, FDS proves that
there is no better solution and the search stops.

In general, FDS is able to help LNS to escape local minima by providing a new
(possibly totally different) solution. LNS can use this solution as a new starting
point and further improve it. And in the opposite direction, LNS provides tight
upper bounds to FDS and removes from FDS the burden to guide the search
towards possible solutions. This way FDS can concentrate only on the fastest
way to explore the search space.

7.2 Job Shop with Operators

The job shop scheduling problem with operators is an extension of the classical
job shop scheduling problem proposed in [3] where each operation also requires
an operator to aid in the processing of the operation (beside the machine).
An operator can process only one operation at a time and the total number
of operators in the shop is limited. The whole set of operators is modelled by
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a single discrete cumulative resource. Results are compared with the current
best known lower and upper bounds provided by the approach described in [17]
on the 222 open problems. We used a time limit of 600s for the LNS+FDS
approach and 300s per iteration of the DestructLB algorithm. Both LNS+FDS
and DestructLB were able to close many instances. In all, 208 instances were
closed, with 107 lower bounds and 215 upper bounds being improved.

7.3 Flexible Job Shop (FJ ||Cmax)

Flexible job shop scheduling problems are an extension of classical job shop
scheduling problems for production environments where it is possible to run an
operation on more than one machine. Current lower and upper bounds were
taken from [32]4. Out of the 107 open instances, the LNS+FDS approach closes
74 instances (resulting in an indirect improvement of 61 lower bounds among
these instances) and improves 39 upper bounds. Those results with LNS+FDS
were obtained using a time-limit of up to 8h. The DestructLB approach with
a time limit of 3600s per iteration was able to additionally improve 10 lower
bounds.

7.4 RCPSP (PS |prec|Cmax)

For Resource Constrained Project Scheduling Problems (RCPSP), we focus on
the 472 open instances of the PSPLib [10]. Current lower and upper bounds were
taken from [24].

This benchmark allows direct comparison with the approach of [24] as they
also compute destructive lower bounds in exactly the same way on a machine
with the same speed. Therefore we used the same time limits as [24]: 10 minutes
for LNS+FDS and 10 minutes for one iteration of DestructLB. The DestructLB
approach improves 52 lower bounds (by 1, 2 or 3), proves the same lower bound
as [24] for 330 instances and is not able to prove the same lower bound within
the time limit for 90 instances. We conclude that in terms of lower bounds
FDS achieve similar results as [24] despite the fact that FDS does not use use
explanations as Schutt et al. does.

In terms of upper bounds, LNS+FDS is clearly worse despite using two
threads instead of one. Only one upper bound is improved and only in 78 cases
the upper bound is the same. No open instance of RCPSP was closed.

7.5 RCPSP/max (PS |temp|Cmax)

For Resource Constrained Project Scheduling Problems with minimal and max-
imal time lags (RCPSP/max), we use the best known lower and upper bounds
reported in [25]. We used again a time limit of 10 minutes for both LNS+FDS
and DestructLB iteration.
4 Note that this page already includes most of the results reported in the present

article under the reference [CPO].
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The DestructLB approach improves lower bound for 56 out of 57 open
instances and proves optimality for psp j30 73. However as [25] did not compute
destructive lower bounds, a direct comparison is not possible.

The LNS+DFS approach improves best upper bounds for 23 instances, for
10 instances it reaches the same upper bound (again proving optimality for
psp j30 73) but produces a poorer upper bound for 25 instances. Direct com-
parison with [25] is again not possible because we used 2 threads on a faster
machine.

To summarize, one instance is closed by CP Optimizer and the average gap
(defined as (UB − LB)/UB) is reduced from 23.37% to 13.62%.

7.6 Multi-mode RCPSP (MPS |prec|Cmax)

Multi-Mode Resource Constrained Project Scheduling Problems are extensions
of classical RCPSP allowing for alternative execution modes of the tasks. We
worked with the j30* instances of the PSPLib [33] (all other instances are
closed). The bounds reported in [33] include some recent improvements described
in [20]. As [33] reports only upper bounds, we worked with all the 552 feasible
instances of the problem. We used a time limit of 3600s for LNS+FDS and
600s per iteration for DestructLB. Both LNS+FDS and DestructLB were able
to close many instances. In all, 535 instances were closed (almost 97%) and 3
upper bounds are improved.

7.7 Multi-mode RCPSP/max (MPS |temp|Cmax)

Multi-Mode Resource Constrained Project Scheduling Problems with minimal
and maximal time lags combine the two extensions of the classical RCPSP. We
focused on the 85 open instances of the PSPLib (7 in the mm50 group, 79 in the
mm100 group) given the lower and upper bounds reported in [34]. These bounds
include some recent improvements described in [23].

DestructLB with a time limit of 300s was able to improve 53 lower bounds.
LNS+FDS using a time limit of 1800s was able to improve 73 upper bounds.
The combination of the two approaches closes 10 instances.

In fact, this benchmark turns out to be very peculiar because the renewable
(cumulative) resources are not the hardest part of the problem. We exploited this
remark to implement an alternative approach that first solves a MIP relaxation of
the problem that exactly handles all constraints except the renewable resources.
The MIP model has numerical variables si for the start time of each activity i and
boolean variables mij for selecting the mode of activity i. Renewable resources
are relaxed using a basic energy reasoning over the schedule horizon. The MIP
is solved using CPLEX 12.6.1. The optimal makespan of the MIP clearly is a
lower bound on the makespan of the original problem. In a second step, we find
with CP Optimizer the optimal solution to the RCPSP/max problem that uses
the optimal mode allocation of the MIP. It turns out that for 83 instances out
of 85, the optimal makespan of this problem is equal to the MIP lower bound
and thus is an optimal solution to the original problem. For the 2 remaining
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instances, we re-injected the optimal solution of the RCPSP/max as a warm start
into the original Multi-Mode RCPSP/max model using CP Optimizer starting
point functionality. The LNS+FDS approach then improves on the starting point
and produces a solution with a makespan equal to the MIP lower bound. In
conclusion, all 85 open instances were closed.

8 Analysis of FDS Behavior

It is still not completely clear why FDS is so successful on some problem instances.
Therefore we tried to analyze the behavior of FDS in order to get better under-
standing. This section summarizes our observations.

One (perhaps not surprising) observation is that FDS produces unbalanced
search trees. Left branches often fail immediately or at least they are explored
much faster than right branches. Common are long chains of 1-fail nodes ended
by a closing node as demonstrated in Figure 4.

An important feature of failure-directed search is that once a closing choice
is found, it is likely to be reused again immediately after the backtrack. It is
common that the same closing choice is reused several times before it is no
longer closing. This way the search can quickly escape even from deep search
depths. Similarly 1-fail choices are also usually quickly reused. The behavior of
FDS is in this sense very similar to the one of quick shaving [16].

A choice chosen for branching in a root node after a restart is most likely to
be a choice that was recently closing before the restart. As usual, the choice is
probably unbalanced, e.g. it could be a choice between start time in interval [1, 4]
versus [5, 100]. Therefore when the left branch of the root node is proved infeasi-
ble, FDS improves the domain only a little (from [1, 100] to [5, 100]). However as
the choice used to be closing, even such a small improvement is probably impor-
tant. As FDS accumulates those small improvements (and nogoods in general),
search space is reduced and constraint propagation becomes stronger.

Fig. 4. Reusing closing choices
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Heading First into Conflict. The importance of heading first into conflict can
be demonstrated for example on job shop instance tail50. It takes 465 seconds
for FDS to prove that there is no solution with makespan 1832 or lower. Lets
compare that with reverse branching order: pick the choices as usual (low rating
first) but switch the branching order to worse rating first. With this change the
same proof takes 1023 seconds.

The reason why branching order is important seems to be the fact that the
search is periodically restarted. When low rating branches are explored first then
the generated nogoods from restarts are shorter and easier to apply.

Preferring conflicts. We perform one more experiment with the same job
shop instance, this time to demonstrate the importance of preferring immediate
failures in computation of ratings. Lets replace 1 + R by R in formula (2):

localRating :=

{
0 if the branch fails immediately
R otherwise

This new version of localRating resembles much more impact-based search. With
this change the proof that used to take 465 seconds does not finish within 24
hours.

9 Conclusions

Using failure-directed search we were able to improve the state-of-the-art results
for a number of scheduling benchmarks covering disjunctive and cumulative
resources, minimum and maximum lags and multiple modes. Results demon-
strate that FDS and CP Optimizer’s automatic search (LNS+FDS) can compete
with specialized algorithms and even outperform them.

Failure-directed search has been an integral part of the CP Optimizer auto-
matic search algorithm since version 12.6.0.
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