
Distributed Hierarchy of Clusters

in the Presence of Topological Changes

François Avril, Alain Bui, and Devan Sohier

Laboratoire PRiSM (UMR CNRS 8144), Université de Versailles, France
francois.avril@uvsq.fr, {alain.bui,devan.sohier}@prism.uvsq.fr

Abstract. We propose an algorithm that builds a hierarchical clustering
in a network, in the presence of topological changes. Clusters are built
and maintained by random walks, that collect and dispatch information
to ensure the consistency of clusters.

We implement distributed communication primitives allowing clusters
to emulate nodes of an overlay distributed system. Each cluster behaves
like a virtual node, and executes the upper level algorithm. Those prim-
itives ensure that messages sent by a cluster are received and treated
atomically only once by their recipient, even in the presence of topolog-
ical changes. Decisions concerning the behavior of the cluster (virtual
node for the higher level algorithm) are taken by the node that owns the
random walk at this time.

Based on this abstraction layer and the overlay network it defines, we
present a distributed hierarchical clustering algorithm, aimed at cluster-
ing large-scale dynamic networks.

1 Introduction

We deal in this paper with the problem of clustering large dynamic networks.
This study is motivated by the need to cope with topological changes in a local
and efficient manner: as far as possible, we intend to take in charge a topological
change inside the cluster where it happened, transparently for the rest of the
network.

To achieve this, the clustering algorithm itself must be resilient to topological
changes. Thus, after a topological change, the clustering is recomputed only
locally: the only clusters affected by the algorithm are the cluster in which the
topological change occurred and possibly adjacent clusters.

Based on the algorithm presented in [4], that computes clusters with a size
bounded by a parameter K of the algorithm, we propose a distributed algorithm
above this clustering, by making each cluster behave as a virtual node. We then
apply this method to build a distributed hierarchical clustering.

The cluster is embodied in a special message, the Token: any action taken by
the cluster is actually initiated by the node that holds the token, making the
treatment of higher level messages atomic.

c© Springer International Publishing Switzerland 2015 369
H.A. Le Thi et al. (eds.), Advanced Computational Methods for Knowledge Engineering,
Advances in Intelligent Systems and Computing 358, DOI: 10.1007/978-3-319-17996-4_33

370 F. Avril, A. Bui, and D. Sohier

The inter-cluster communication primitive SSend is implemented so as to en-
sure that it works even in the presence of topological changes: if a message is sent
by a cluster to an adjacent cluster using this primitive, it is eventually received if
the clusters remain adjacent. Then the associated treatment is executed exactly
once. Thus, the mobility of nodes affects only a limited portion of the system.

A distributed algorithm can then be applied on the overlay network defined by
the clustering. If this algorithm is resistant to topological changes, the resulting
method will also be resistant to topological changes. In particular, we apply
this method to the presented clustering, leading to a distributed bottom-up
hierarchical clustering algorithm.

1.1 Related Works

Designing distributed algorithms that build a nested hierarchical clustering has
recently been the subject of many research works (see for example [7]). Those
methods build a clustering with a standard method iterated on clusters, rep-
resented by a distinguished node called the clusterhead. First, clusterheads are
elected in the network. Then, each clusterhead recruits its neighbors. This elec-
tion can be done on several criteria, such as their id ([1]), their degree ([8]),
mobility of nodes ([3]), a combination of those criteria ([5]) or any kind of weight
([2],[9]). The algorithm is then iterated on the graph of the clusters, involving
only clusterheads. This results in creating clusters of clusters, and thus building
a hierarchical nested clustering by a bottom-up approach.

These methods are very sensitive to topological changes: after a topological
change, all clusters can be destroyed before a new clustering is computed, with
possibly new clusterheads.

In this paper, we present an algorithm based on the clustering in [4]: a fully
decentralized one-level clustering method based on random walks, without clus-
terhead election, and with the guarantee that reclusterization after a topological
change is local, i.e. after a cluster deletion, only clusters adjacent to this cluster
can be affected. We design a hierarchical clustering by allowing every cluster in
every level to emulate a virtual node. This algorithm preserves properties of [4].

Previous works on virtual nodes, like [6] or [10], aim at simplifying the de-
sign of distributed algorithms. Virtual nodes are in a predetermined area of the
network, and their mobility is known in advance. Several replica of the virtual
machine are necessary to resist topological changes and crashes. Maintaining
coherence between replica requires synchronized clocks and a total order on
messages, which also allows to verify FIFO hypothesis on channels.

In this work, virtual nodes are built dynamically, with weaker hypotheses on
communications: non-FIFO, asynchronous.

1.2 Model and Problem Statement

We suppose that all nodes have a unique id, and know the ids of their neighbors.
In the following, we do not distinguish between a node and its id.

Distributed Hierarchy of Clusters in the Presence of Topological Changes 371

The distributed system is modeled by an undirected graph G = (V,E). V is
the set of nodes with |V | = n. E is the set of bidirectional communication links.
The neighborhood of a node i (denoted by Ni) is the set of all nodes that can
send messages to and receive messages from i.

We make no assumption on the delivery order of messages. Indeed, the pro-
tocol we define for communications between virtual nodes does not verify any
FIFO property.

We suppose that all messages are received within finite yet unbounded time,
except possibly when the link along which the message is sent has disappeared
because of a topological change.

The algorithm is homogeneous and decentralized. In particular, all nodes use
the same variables. If var is such a variable, we note vari the instance of var
owned by node i.

A random walk is a sequence of nodes of G visited by a token that starts at
a node and visits other vertices according to the following transition rule: if a
token is at i at time t then, at time t+ 1, it will be at one of the neighbors of i
chosen uniformly at random among all of them.

All nodes have a variable cluster that designates the cluster to which they
belong. A boolean core indicates if the node is in the cluster core. All nodes
know a parameter K of the algorithm, that represents an upper bound on the
size of a cluster.

Definition 1. The cluster Cx is the set of nodes {i ∈ V/clusteri = x}. Its core
is the set Kx = {i ∈ Cx/corei}. A cluster is said complete if |Kx| = K.

The clustering we are computing is aimed at giving clusters with cores of size
K as far as possible. To ensure intra-cluster communications, a spanning tree of
each cluster is maintained, through a tree variable, with tree[i] the father of i
in the tree.

Definition 2 (Specification). A cluster is called consistent if: it is connected;
its core is a connected dominating set of the cluster; its core has a size between
2 and K with K a parameter of the algorithm; a single token circulates in the
cluster and carries a spanning tree of the cluster.

A clustering is called correct if: all clusters are consistent; each node is in a
cluster; a cluster neighboring an incomplete cluster is complete.

This, together with the property that an incomplete cluster has no ordinary node,
guarantees that clusters have maximal cores with respect to their neighborhood.

The algorithm presented next eventually leads to a correct clustering, after a
convergence phase during which no topological change occurs. Each topological
change may entail a new convergence phase.

Topological changes result in configurations in which the values of variables
are not consistent with the actual topology of the system. Then, mechanisms
triggered by nodes adjacent to the topological change allow to recompute cor-
rect clusters, without affecting clusters other than the one in which the change
occurred, and possibly adjacent clusters.

372 F. Avril, A. Bui, and D. Sohier

Additionally, we require that primitives are defined for inter-cluster commu-
nications, providing the functionalities of send and upon reception of to higher
levels. The SSend primitive we define and implement ensures that a node holding
the token can send higher level messages to adjacent clusters. Then, we guarantee
that the token in charge of the recipient cluster eventually meets this message,
and executes the appropriate treatment on the variables it stores. This allows
to implement a distributed algorithm on the clustering, with clusters acting as
nodes w.r.t. this algorithm.

We define a hierarchical clustering, in which a correct clustering of level i is
a correct clustering on the overlay graph defined by the clusters of level i − 1,
with edges joining adjacent clusters.

2 Algorithm

2.1 Clustering

Each unclustered node may create a cluster, by sending a token message to a
neighbor chosen at random. The token message then follows a random walk,
and recruits unclustered and ordinary nodes it visits to the cluster core. It visits
all nodes of the cluster infinitely often, which ensures the updating of variables
on nodes and in the token message. When a token message visits a node in
another cluster core, it may initiate the destruction of its own cluster with a
Delete message if both clusters are incomplete and if the id of the token cluster
is less than that of the visited cluster. Thus two adjacent clusters cannot be both
incomplete once the algorithm has converged.

A node that receives a Delete message from its father leaves its cluster and
informs all its neighbors. This initiates the destruction of the cluster by propa-
gation of Delete messages along the spanning tree.

All nodes periodically inform their neighbors of their cluster by sending a
Cluster[cluster] message, which ensures the coherence of gate variables.

Each node knows the cluster to which it belongs with the variable cluster;
it knows if it is a core node thanks to the core variable. Some other technical
variables are present on each node : complete indicates if the cluster to which
the node belongs is complete, father is the father of the node in the spanning
tree.

The algorithm uses five types of messages: Token[id, topology,N, gateway,
Status], Recruit[id], Cluster[id], Delete[id] and Transmit[message, path, em,
dst].

Token messages carry the following variables: id, the id of their cluster id; N ,
a list of adjacent clusters; tree, a spanning tree of the cluster; size, the size of
the cluster core; corenodes, an array of booleans indicating which nodes are in
the cluster core, gateway, a vector of links to adjacent clusters; and status, a
structure containing the same variables as a node, to be used by upper levels.

Token messages follow a random walk and recruit core nodes. Recruit[id]
messages recruit nodes adjacent to a core node as ordinary nodes in cluster id,

Distributed Hierarchy of Clusters in the Presence of Topological Changes 373

Delete[id] messages delete the cluster id and Cluster[id] messages inform that
the sender is in cluster id.

A variable var on a message Token is noted token.var.

Initialization: When a node connects to the network, we assume that all vari-
ables are set to 0 or ⊥, except for T , that is initialized with a random value.
JoinCore function: The JoinCore function is used to update variables in node
i when the node enters a cluster as a core node.

Algorithm 1. JoinCore()

cluster ← token.id
core ← true
token.size ← token.size+ 1

token.corenodes[id] ← true
complete ← (token.size ≥ K)

On Timeout.When the timeout on node i is over, it creates a new cluster, with
id x = (i, nexto), and increments nexto. Node i joins cluster x and then sends a
token message to a neighbor chosen uniformly at random. This node becomes the
father of i in the spanning tree. Node i also recruits all its unclustered neighbors
as ordinary nodes by sending them Recruit messages.

Algorithm 2. timeout()

if N �= ∅ then
token =new token message
token.size ← 0
token.id ← (id, nexto)
token.tree ← EmptyVector
token.tree[id] ← id
UpdateStatus()
JoinCore()

nexto ← nexto+ 1
Send Cluster[cluster] to all nodes in N
Send Recruit[cluster] to all nodes in N

father ← random value in N
Send token to father

else
T ← random value

On Reception of a Recruit[id] Message. On reception of a Recruit[id] mes-
sage, if node i is unclustered, it joins cluster id as an ordinary node by calling
JoinOrdinary. The core node that sent the Recruit message becomes the father
of i in the spanning tree.

Algorithm 3. JoinOrdinary(Sender)

if (cluster = (⊥, 0)) ∨ (cluster =
recruit.id) then

cluster ← recruit.id
core ← false

father ← Sender
Send Cluster[cluster] to all nodes in
N

On Reception of a Delete[id] Message from e. When node i receives a
Delete[id] message from e, if e is its father in the spanning tree, i leaves the
cluster and sends a Delete[id] message to all its neighbors.

374 F. Avril, A. Bui, and D. Sohier

Algorithm 4. On reception of a Delete[id] message from e

if e = father∧delete.id = cluster then
LeaveCluster()

Send Delete[cluster] to all neighbors.

LeaveCluster() reinitializes all variables and sends a Cluster[(⊥, 0)] message
to all neighbors.Deletemessages are then propagated along the cluster spanning
tree.

On Reception of a Cluster[id] Message from e. When node i receives a
Cluster[id] message from node e, it stores the received cluster id in gate[e].

On j Leaving N (Disconnection between Current Node and a Neigh-
bor j). The disappearance of an edge (i, j) can lead to an unconnected (and
thus faulty) cluster only if the link is in the spanning tree. If a node loses
connection with its father in the spanning tree, it leaves the cluster by calling
LeaveCluser().

When a communication link (i, j) disappears, messages in transit on this link
may be lost. A Recruit[id] or a Cluster[id] message is no longer necessary, since
nodes are no longer adjacent. If a Delete[id] message is lost, the system will react
as if it receives it when j detects the loss of connection. If a Token message is
lost, the associated cluster is deleted: indeed, if i had sent a Token message to
j, it considers j as its father. When i detects the loss of connection, it initiates
the destruction of the cluster. Last, if a Transmit message is lost, then this is a
topological change at the upper level, and the same arguments apply.

In any case, the configuration resulting from the loss of a message on a dis-
appeared channel may be the result of an execution without any message loss,
and the algorithm continues its operation transparently.

On Reception of a Token[id, topology,N, gateway, status] Message. When
node i receives a Token[id, topology, N, gateway, status] message from node e,
the following cases may occur:

Update Information on a Core Node: If i is a core node of cluster token.id,
variables token.topology and complete are updated. Then, the treatment of up-
per level messages is triggered. Then, i sends Recruit[token.id] messages and
Cluster[token.id] messages to all its neighbors, and sends the token to a neighbor
chosen at random.

Algorithm 5. token(Sender) on a node i with (clusteri = token.id) ∧ (corei)

{update information - core node}
UpdateStatus()
if (token.tree[i] �= i) then

{the token has not just been bounced
back by another cluster}
token.tree[e] ← id
token.tree[id] ← id

complete ← (token.size ≥ K)

TriggerUpperLevel()
Send Recruit[token.id] to all nodes in N

Send Cluster[token.id] to all nodes in N

Choose father uniformly at random in
N
Send Token[id, topo,N, gateway, status]
to father

Distributed Hierarchy of Clusters in the Presence of Topological Changes 375

Update Information on an Ordinary Node: If i is an ordinary node of clus-
ter token.id and the cluster is complete (token.size = K), i cannot be recruited.
Information on token is updated, upper level messages are processed and the
token is sent back to the core node that sent it.

Algorithm 6. token(Sender) on a node i with (clusteri = token.id)∧(¬corei)∧
(token.size ≥ K)

{update information - ordinary node}
UpdateStatus()
token.tree[e] ← id
token.tree[id] ← id

TriggerUpperLevel()
father ← e
Send Token[id, topo,N, gateway, status]
to father

Recruit a Node to the Core: If i is an ordinary or unclustered node, it be-
comes a core node of cluster token.id. Information on the token is updated, upper
level messages are processed, Recruit[cluster] and Cluster[cluster] messages are
sent to all neighbors, and the token is sent to a neighbor chosen uniformly at
random.

Algorithm 7. token(Sender) on a node i with (token.size < K) ∧ (¬corei)
{recruit a node to the core}
if cluster �= token.id then

LeaveCluster()
JoinCore()
UpdateStatus()
token.tree[e] ← id
token.tree[id] ← id

complete ← (token.size ≥ K)
TriggerUpperLevel()
Send Cluster[cluster] to all nodes in N
Send Recruit[cluster] to all nodes in N
Choose father uniformly at random in N

Send Token[id, topo,N, gateway, status]
to father

Initiate the Destruction of the Cluster: A cluster x can destroy a cluster y
when y has a size of 1, or when both clusters are non-complete and the id of x is
greater than that of y. If the token cluster can be destroyed by the node cluster,
the token message is destroyed and a Delete[cluster] and a Recruit[cluster]
messages are sent to the sender, that considers i as its father in the spanning
tree. This leads to the destruction of cluster token.id.

Algorithm 8. token(Sender) on a node i with [(token.size < K) ∧
(¬completei) ∧ (clusteri > token.id)] ∨ (token.size = 1)

{initiate the destruction of the cluster
token.id}

Send Delete[token.id] to e
Send Recruit[cluster] to e

Send the Token Back: In all other cases, the token message is sent back to
the sender.

376 F. Avril, A. Bui, and D. Sohier

Algorithm 9. token(Sender) on all other cases

{send the token back}
if token.tree[id] �= id then

Send Token[id, topo,N, gateway, status]
to e

Algorithm 10. UpdateStatus()

for all k with token.tree[k] = i {i the id
of the node runing this function} do

if k /∈ N then
RemoveFromTree[k, token.topology]

for all id with token.gateway[id] �= ⊥
do

(l,m) ← token.gateway[id]
if (l �∈ token.tree) ∨ [(l = i) ∧ ((m �∈
N) ∨ (gatei[m] �= id)] then

token.gateway[id] ← ⊥

remove id from token.N
{This may entail a topological
change w.r.t. the higher level, in
which case, it triggers the higher
level Leave function}

for all k ∈ N with gate[k] �= (⊥, 0) and
cluster > gate[k] do

token.gateway[gate[k]] ← (i, k)
Add gate[k] to token.N

2.2 Virtual Nodes

We aim at making every cluster behave as a virtual node, in order to be able to
execute a distributed algorithm on the overlay network defined by the clustering.
In particular, this will allow to build a hierarchical clustering through a bottom-
up approach. In this section, we present mechanisms that allow a cluster to
mimic the behavior of a node:

– virtual nodes know their neighbors (adjacent clusters), and are able to com-
municate with them;

– virtual nodes execute atomically the upper level algorithm.

To ensure that clusters have a unique atomic behavior, the node that holds
the token message is in charge of the decision process about the cluster seen as
a virtual node. Variables of the virtual node are stored in tokenid.Status.

Knowledge on the neighborhood is maintained by Cluster messages and
UpdatesStatus function, as seen in section 2.1.

Neighborhood Observation. Since Cluster[id] messages are sent infinitely
often, all nodes maintain the vector gate indicating the cluster to which each
of their neighbors belong. When a message tokenx visits a node in cluster x
that has a neighbor in another cluster y, the link between the two nodes can be
selected as a privileged inter-cluster communication link between clusters x and
y, and added to tokenx.gateway and tokeny.gateway. To ensure that topological
changes are detected symmetrically at upper level, adjacent clusters need to
agree on the gateway they use to communicate, i.e. tokenCx .gateway[Cy] =
tokenCy .gateway[Cx]. Thus, when this link breaks, both clusters are aware of
this loss of connexion between the two virtual nodes, which allows the overlay
graph to remain undirected. Only the cluster with the smallest id can select
an inter-cluster communication link between two adjacent clusters. The other
cluster adds it at the reception of the first upper level message.

Distributed Hierarchy of Clusters in the Presence of Topological Changes 377

The gateway array in Token message, along with the spanning tree stored in
the Token message, allows to compute a path from the node holding the Token
to a node in any adjacent cluster. This enables virtual nodes to send upper level
messages to their neighbors: see Algorithm 11.

Thus, if token.gateway[id] = (i, j), then j is a node in cluster id. To send a
message to an adjacent cluster id, SSend computes a path to j in the spanning
tree stored in token.topology and adds link (i, j). Then, the upper level message
is encapsulated in a Transmit message, and routed along this path.

Communication. SSend is used when handling a topological change, or when
upper level messages are received. In both cases, this treatment can be initiated
only in presence of the token. Thus, token.topology information is available. On
a higher level, the processing of a Token message is triggered by the processing
of the lower level token. So, when processing a token message, all lower level
tokens are available.

Algorithm 11. SSend(msg, dst, tok) function

(l,m) ← tok.gateway[dst]
path ← ComputePath(tok.topo, l)
path ← (path,m)

lowlevmsg ← Transmit[msg,Tail(path),
tok.id, dst]
SSend(lowlevmsg,Head(path), token)

The recursive calls to SSend end with the bottom level using Send instead
of SSend.

Upper level messages are encapsulated in Transmit messages, along with the
path to follow, sender and recipient virtual nodes id. Such an upper level message
is forwarded along the path to a node of the recipient cluster. This node stores
three pieces of information in listmsg: the encapsulated message; the node that
sent the Transmit message; the cluster that sent the encapsulated message.

This information ensures that the cluster can reply to the sender cluster; it
will be used to add a link to this adjacent cluster and guarantee the symmetry
of comunications. When the token visits a node in this cluster, it triggers the
processing of upper level messages stored in listmsg by the virtual node, and
removes them from listmsg.

Algorithm 12. Reception of a Transmit[msg, path, em, dst] message from e

if (path = ∅) ∧ (cluster = dst) then
Add (msg, e, em) to listmsg

else if ((cluster = em)∧ (Head(path) ∈
N)) then

Send Transmit[msg,Tail(path), em,
dst] to Head(path)

Processing the Upper Level. Processing of upper level messages stored in a
node is triggered when the Token message visits the node. Function

378 F. Avril, A. Bui, and D. Sohier

TriggerUpperLevel then pops messages out of listmsg and emulates the recep-
tion of this message by the virtual node. TriggerUpperLevel also manages the
triggering of function timeout for upper level, simulating a timer by counting
Token hops.

If the sender virtual node is not in token.N and token.gateway, listmsg
contains enough information to add it. Once all upper level messages are treated,
it decrements the count-down on token.T in structure token.status.

Algorithm 13. TriggerUpperLevel()

while (listmsg �= ∅) do
(msg, s, C) ← Pop(listmsg)
if token.gateway[C] = ⊥ then

token.gateway[C] ← (i, s)
Add C to token.N

else if token.gateway[C] �= (i, s)
then

run “loss of connection” procedure
on the virtual node

token.gateway[C] ← (i, s)
Add C to token.N

Emulate reception of msg by the vir-
tual node using SSend.

if (token.T > 0) then
token.T ← token.T − 1
if (token.T = 0) then

Stimeout()

Functions for processing upper levels are identical to the first level functions
presented in subsection 2.1, except that they use SSend instead of send.

2.3 Hierarchical Clustering

If the upper level algorithm executed by the virtual nodes is this same cluster-
ing algorithm, the virtual nodes compute a distributed clustering resistant to
topological changes. Iterating this process, we obtain a hierarchical clustering.

This provides a framework to contain the effect of topological changes inside
clusters, while allowing communication between nodes in any two clusters. In
particular, a modular spanning tree of the system consisting in the spanning
trees of clusters of all levels is built.

3 Example

We present here an example involving three levels of clustering. Consider a clus-
tering with CA (a cluster of level≥ 3) containing clusters Cx and Cy, CB a cluster
of the same level as CA, containing Cz. Cx, Cy and Cz are composed of nodes
or of clusters of a lower level. Consider that cluster CA sends a Cluster[(⊥, 0)]
message to cluster CB.

Sending the Message Out of x. CA sends a Cluster[(⊥, 0)] message to CB .
This is triggered by the processing of the tokenCA message on a lower level.
Thus, cluster Cx necessarily holds the tokenCA message. It calls the SSend
mechanism and uses information on tokenCA to compute a path to CB, here
to cluster z (see figure 1). Then, since the path is xyz, cluster Cx sends a
Transmit[Cluster[(⊥, 0)], z, A,B] to the next cluster on the path, Cy (with

Distributed Hierarchy of Clusters in the Presence of Topological Changes 379

Fig. 1. Seen from
tokenCA

Fig. 2. Detailed view Fig. 3. Routing
in Cy

Fig. 4. Reception
of the message

the SSend mechanism). A node of Cy finally receives a Transmit message:
Transmit[Transmit[Cluster[(⊥, 0)], z, A,B], ∅, x, y].
Routing the Message in Cy.

1. Node j in Cy receives a Transmit[Transmit[Cluster[(⊥, 0)], z, A,B], ∅, x, y]
from node i. Since it is in Cy , and the path is empty, it stores the transmitted
message (Transmit[Cluster[(⊥, 0)], z, A,B], i, y) in its listmsg.
2. tokenCy eventually visits j and treats upper level messages. Since path =
z �= ∅, node j uses SSend to send Transmit[Cluster[(⊥, 0)], ∅, A,B] to cluster
Cz (line 5 algorithm 12). SSend uses tokenCy .topology to compute a path to
tokenCy .gateway[z] and sends a Transmit message to head(path): Transmit[
Transmit[Cluster[(⊥, 0)], z, A,B], tail(path), y, z].
3. Every node in the path transmits the Transmitmessage until node k receives
the message Transmit[Transmit[Cluster[(⊥, 0)], ∅, A,B], ∅, y, z].

Reception of the Message by CB. Node k receives a Transmit message
from node e (Transmit[Transmit[Cluster[(⊥, 0)], ∅, A,B], ∅, y, z]) and stores
(Transmit[Cluster[(⊥, 0)], ∅, A,B], e, y) in listmsg (algorithm 12, line 2). Then:

1. tokenCz eventually visits k during its random walk, and treats messages in
listmsgk. (Cluster[(⊥, 0)], y, A) is stored in tokenCz .listmsg.
2. tokenCB eventually visits cluster Cz during its random walk, i.e. it is even-
tually stored in the listmsgl variable of a node l in Cz .
3. tokenCz eventually visits node l. Then, it processes tokenCB .
TriggerUpperLevel is called and messages in tokenCZ .listmsg are treated. In
particular, (Cluster[(⊥, 0)], y, A) is processed, ie tokenCB .gate[A] ← (⊥, 0).

4 Conclusion and Perspectives

The algorithm presented in this paper computes a size-oriented hierarchical clus-
tering of a dynamic network. It reacts to topological changes in a local manner:

380 F. Avril, A. Bui, and D. Sohier

after a topological change that makes the clustering faulty, the only clusters af-
fected are the cluster in which this event took place and possibly some adjacent
clusters.

Thus, it is designed to provide a local mechanism to handle topological changes.
Inter-cluster communication mechanisms are proposed that allow to implement
a distributed algorithm above the clustering, and a formal proof is provided.

Proofs of this algorithmmaybe found at: http://www.prism.uvsq.fr/~sode/
hierclus/proof.pdf.

References

1. Baker, D., Ephremides, A.: The architectural organization of a mobile radio net-
work via a distributed algorithm. IEEE Transactions on Communications 29(11),
1694–1701 (1981)

2. Basagni, S.: Distributed and mobility-adaptive clustering for multimedia support in
multi-hop wireless networks. In: IEEE VTS 50th Vehicular Technology Conference,
VTC 1999 - Fall, vol. 2, pp. 889–893 (1999)

3. Basagni, S.: Distributed clustering for ad hoc networks. In: Proceedings of the
Fourth International Symposium on Parallel Architectures, Algorithms, and Net-
works (I-SPAN 1999), pp. 310–315 (1999)

4. Bui, A., Kudireti, A., Sohier, D.: An adaptive random walk-based distributed clus-
tering algorithm. International Journal of Foundations on Computer Science 23(4),
802–830 (2012)

5. Chatterjee, M., Das, S.K., Turgut, D.: Wca: A weighted clustering algorithm for
mobile ad hoc networks. Journal of Cluster Computing (Special Issue on Mobile
Ad hoc Networks) 5, 193–204 (2001)

6. Dolev, S., Gilbert, S., Lynch, N.A., Schiller, E., Shvartsman, A.A., Welch, J.L.: Vir-
tual mobile nodes for mobile ad hoc networks. In: Guerraoui, R. (ed.) DISC 2004.
LNCS, vol. 3274, pp. 230–244. Springer, Heidelberg (2004)

7. Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing
distributed algorithm. Theoretical Computer Science 410, 514–532 (2009),
http://www.sciencedirect.com/science/article/pii/S0304397508007548,
principles of Distributed Systems

8. Gerla, M., Chieh Tsai, J.T.: Multicluster, mobile, multimedia radio network. Jour-
nal of Wireless Networks 1, 255–265 (1995)

9. Myoupo, J.F., Cheikhna, A.O., Sow, I.: A randomized clustering of anonymous
wireless ad hoc networks with an application to the initialization problem. J. Super-
comput. 52(2), 135–148 (2010), http://dx.doi.org/10.1007/s11227-009-0274-9

10. Nolte, T., Lynch, N.: Self-stabilization and virtual node layer emulations. In: Ma-
suzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 394–408. Springer,
Heidelberg (2007), http://dl.acm.org/citation.cfm?id=1785110.1785140

http://www.prism.uvsq.fr/~sode/hierclus/proof.pdf
http://www.prism.uvsq.fr/~sode/hierclus/proof.pdf
http://www.sciencedirect.com/science/article/pii/S0304397508007548
http://dx.doi.org/10.1007/s11227-009-0274-9
http://dl.acm.org/citation.cfm?id=1785110.1785140

	Distributed Hierarchy of Clusters in the Presence of Topological Changes
	1 Introduction
	1.1 Related Works
	1.2 Model and Problem Statement

	2 Algorithm
	2.1 Clustering
	2.2 Virtual Nodes
	2.3 Hierarchical Clustering

	3 Example
	4 Conclusion and Perspectives
	References

